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NOMENCLATURE

Conventional helicopter notation is followed in this report, for example,
for the rotor force and moment coefficients. Quantities are made dimension-
less with p, f, and R (air density, rotor rotational speed, and rotor radius).

a rotor blade section two-dimensional 1ift curve slope
A rotor disk area, mR?2
e rotor blade chord
cq blade section drag coefficient
e, blade section 1ift coefficient
ey wing chord
Cp wing torsion structural damping
qu wing vertical bending structural damping
Cq wing chordwise bending structural damping
2
Co pylon yaw structural damping
Cy pylon pitch structural damping
Cy rotor vertical force coefficient, S S
pmR2 (QR)?
My
CMx rotor lateral moment coefficient, — ——
pR3 (QR)2
M
Cy rotor longitudinal moment coefficient, —
Y pmR3 (R)?
Cp rotor power coefficient, —2
pmR2 (aR) 3
Cq rotor torque coefficient, S —
pnR3 (aR)2
Cp rotor thrust coefficient, I
pmR? (QR)?



vi

Y

rotor side force coefficient, —————
pmR? (QR)?

blade section drag force per unit length

section modulus/moment product

aircraft equivalent parasite drag area

blade section radial aerodynamic force per unit length

blade section inplane aerodynamic force per unit length

blade section out of plane aerodynamic force per unit length
structural damping coefficient

rotor mast height, wing tip spar to rotor hub

rotor mast height, wing tip effective elastic axis to rotor hub
rotor vertical force; also rotor aerodynamic coefficient

Cop

é cga

characteristic inertia of blade bending, used to normalize rotor and

support inertias

R
./P r?m dr

0

wing torsion generalized mass
pylon yaw moment of inertia
pylon pitch moment of inertia

wing bending generalized mass

pylon yaw moment of inertia (including rotor, for four-degree-of-

freedom model)

pylon pitch moment of inertia (including rotor, for four-degree-of-

freedom model)



Ica

R
f nBZm dr, blade flap inertia
0

R

J/. nBPm dr
0

R
nczm dr, blade lag inertia

°

R
rm dr
[
0

wing torsion spring constant

wing vertical bending spring constant
wing chordwise bending spring constant
pylon yaw spring constant

pylon pitch spring constant

rotor blade pitch/flap coupling, tan &3
blade section 1lift force per unit length
blade section mass per unit length

pylon mass

rotor flap moment aerodynamic coefficient

Mach number

R
f m dr, blade mass
0

rotor lateral (yaw) hub moment
rotor longitudinal (yaw) hub moment

blade flap moment

vii



My blade lag moment

Mtip tip Mach number, QR divided by the speed of sound
N number of blades
IB*(\Jé - 1)

Ny 7

B
p wing torsion degree of freedom
q1 wing vertical bending degree of freedom
q, wing chordwise bending degree of freedom
Q rotor torque; also rotor torque and lag moment aerodynamic coefficient
r blade radial station
Ty effective radius
R rotor blade radius
R rotor radial force aerodynamic coefficient
s Laplace variable in transfer functions

sgn @ direction of rotation of rotor on right wing: +1 for clockwise and -1
for counterclockwise

Sy wing bending/torsion inertial coupling, mPZPEAyTw
S m dr
B /-R”s
0
S g dr
: f "
0
T rotor thrust; also rotor aerodynamic coefficient
Up longitudinal aerodynamic gust velocity
Up blade section out of plane velocity
Up blade section radial velocity
up blade section inplane velocity

viii



U blade section resultant velocity, (uT2 + uP2)1/2

v rotor-induced inflow; when dimensionless, the inflow ratio (forward
speed divided by rotor tip speed)

% rotor or aircraft forward velocity

x vertical axis

xp rotor shaft vertical displacement

T, wing chordwise displacement

y lateral axis

yp rotor shaft lateral displacement

wa wing sweep station

yjb cantilever wing length (wing semispan)

Y wing spanwise station

Y rotor side force

z longitudinal axis

Zpg wing tip elastic axis vertical shift due to dihedral

ap rotor shaft longitudinal displacement

S pylop center-of-gravity location, forward of wing tip effective elastic
axis

2, wing vertical displacement

a blade section angle of attack

a rotor blade mean angle of attack

eq vertical aerodynamic gust velocity

e rotor shaft yaw angle at pivot

ay rotor shaft pitch angle at pivot

Oy rotor shaft roll angle at pivot

B blade flap angle

g-1 low-frequency rotor flap mode



§C)

z-1

g+l

high-frequency rotor flap mode

lateral aerodynamic gust velocity

rotor coning degree of freedom

rotor longitudinal flap degree of freedom
rotor lateral flap degree of freedom

pacR"
Ip

Lock number,

small change in a quantity

component of perturbation of up independent of r

component of perturbation of up proportional to »
perturbation or up (independent of r)

component of perturbation of up proportional to r
component of perturbation of upy independent of »r

wing dihedral angle

wing angle of attack

wing sweep angle

rotor blade pitch/flap coupling, Xp = tan &4

blade lag angle

damping ratio of oscillation, fraction of critical damping
low-frequency rotor lag mode

high-frequency rotor lag mode

rotor collective lag (or rotor speed perturbation) degree of freedom
rotor cyclic lag degree of freedom

rotor cyclic lag degree of freedom

blade flap mode shape

blade lag mode shape

wing bending mode shape



blade pitch angle

wing torsion angle

rotor collective pitch input

rotor lateral cyclic pitch input
rotor longitudinal cyclic pitch input
eigenvalue

blade flap rotating natural frequency
effective flap frequency, including pitch/flap coupling
blade lag rotating natural frequency
wing torsion mode shape

air density

Ne

rotor solidity, -

time constant of a real root, %%

u
blade inflow angle, tan"! —
ur

rotor blade azimuth angle, dimensionless time variable
frequency

rotor rotational speed

Subscripts

o

0

trim

blade pitch

hub inplane velocity
blade flapwise velocity
hub out-of-plane velocity

blade lagwise velocity

xi



N .
o,ne,ns, 5 rotor nonrotating degrees of freedom

0 collective rotor mode

1C cyclic rotor mode

18 cyclic rotor mode

m blade index, m=1, . . . , N
Superscripts

* normalized (usually by dividing by Iy or %-Ib)

m blade index, m =1, . . . , N
Derivatives
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DYNAMICS OF TILTING PROPROTOR AIRCRAFT IN CRUISE FLIGHT
Wayne Johnson

Ames Research Center
and :
U.S. Army Air Mobility R&D Laboratory

SUMMARY

A theoretical model is developed for a proprotor on a cantilever wing,
operating in high inflow axial flight. This theory is used to investigate the
dynamic characteristics of tilting proprotor aircraft in cruise flight. The
model, with a total of nine degrees of freedom, consists of first mode flap
and lag blade motions of a rotor with three or more blades and the lowest fre-
quency wing bending and torsion motions; rotor blade pitch control and aero-
dynamic gust excitation are included. The equations of motion for a four-
degree-of-freedom model (lateral and longitudinal tip path plane tilt, pylon
pitch and yaw) are obtained, primarily to introduce the methods and formula-
tion to be used in deriving the rotor and cantilever wing equations. The
basic characteristics of the rotor high inflow aerodynamics and the resulting
rotor aeroelastic behavior are discussed. The problems of classical whirl
flutter (a truly rigid propeller on a pylon) and the two-bladed rotor are
discussed briefly. The influence of the proprotor on the stability deriva-
tives of the aircraft is considered. The theoretical dynamic behavior of two
full-scale proprotors is studied, and comparisons are made with the results of
tests of these rotors in the Ames 40- by 80-Foot Wind Tunnel and with the
results of other theories. These studies show the sensitivity of the theoreti-
cal results to several features and parameters of the proprotor configuration
and to various elements in the theoretical model. In particular, these studies
demonstrate the important influence of the rotor blade lag degree of freedom on
the dynamics of both stiff inplane and soft inplane proprotor configurations,
the dominance of the section 1ift curve slope (cg,) terms in the high inflow
aerodynamics of a rotor and the importance of a good structural model of the
rotor blade and the wing in predicting the dynamic behavior of a proprotor. The
comparisons also establish the theoretical model developed as an adequate
representation of the basic proprotor and wing dynamics, which then will be a
useful tool for further investigations.

INTRODUCTION

The tilting proprotor aircraft is a promising concept for short-haul
V/STOL missions. This aircraft uses low disk loading rotors located on the
wing tips to provide lift and control in hover and low-speed flight; it uses
the same rotors to provide propulsive force in high-speed cruise, the 1lift
then being supplied by a conventional wing. Such operation requires a 90°
change in the rotor thrust angle, which is accomplished by mechanically tilt-
ing the rotor shaft axis. The rotor is vertical for helicopter mode



operation - landing and takeoff, hover, and low-speced flight - and is tilted
forward for airplane mode, high-speed cruise flight. Thus the aircraft com-
bines the efficient VTOL capability of the helicopter with the efficient,
high-speed cruise capability of a turboprop aircraft. With the flexible blades
of low disk loading rotors, the out-of-plane and inplane (flap and lag) motions
of the blades are significant, so the blade motion is as important an aspect

of tilt rotor dynamics as it is for helicopters. When in the cruise mode
(axial flight at high forward speed), the rotor is operating at high inflow
ratio (ratio of axial velocity to rotor tip speed); this introduces aerodynamic
phenomena not encountered with the helicopter rotor, which is characterized by
low inflow. The combination of flapping rotors operating at a high inflow
ratio on the tips of flexible wings leads to dynamic and aerodynamic character-
istics unique to this configuration, and which must be considered in the design
of the aircraft. The combination of efficient VTOL and high-speed cruise capa-
bilities is very attractive, so it is important to establish a clear under-
standing of the behavior of this aircraft and to formulate adequate methods for
predicting it, to enable a confident design of the aircraft. Experimental and
theoretical investigations have been conducted over several yvears to provide
this capability (refs. 1 to 30). This report develops a model of the aero-
clastic system for use in some initial studies of the system character and
behavior. Of particular interest are the featurcs specific to the configura-
tion: high inflow aerodynamics of a flapping rotor in axial flow and the
coupled dynamics of the rotor/pylon/wing aerocelastic system. Therefore, this
work concentrates on the proprotor in airplane configuration: axial flow and
high inflow ratio. In addition, rigid body degrees of freedom of the aircraft
are not considered, only the elastic motion of a cantilevered wing. Many fea-
tures of the coupled wing and rotor motion can be studied with such a model,
theoretically and experimentally, with the understanding, of course, that the
model must eventually incorporate the entire aircraft.

An introduction to the problems characteristic of a high inflow proprotor
is provided by the following discussion (found in the early proprotor litera-
ture, e.g., refs. 3 and 8). Consider the behavior of the rotor in response to
shaft pitch or yaw angular velocity, with the rotor operating in high inflow
axial flight. A moment on the rotor disk is required to precess it to follow
the shaft motion. With an articulated rotor (a rotor with a flap hinge at the
center of rotation), this moment cannot be due to structural restraint between
the shaft and the blade root, so it must be provided by aerodynamic forces on
the blade. For example, pitch angular velocity of the shaft will require a
yaw aerodynamic moment on the disk to precess it to follow the shaft. The
aerodynamic moment is due to incremental 1ift changes on the blade sections;
the component normal to the disk plane provides the yawing moment required.
For high inflow flight, this incremental blade section lift also has a large
inplane component and, as a result, the moment to precess the disk is accom-
panied by a net inplane force on the rotor hub. This force is directed to
increase the rotor shaft angular velocity, so it is a negative damping force
that increases with the inflow ratio. There is also the usual rotor positive
damping due to tip path plane tilt of the thrust vector, plus the damping due
to the hub moment for a hingeless rotor. If the inflow is high enough, the
negative inplane force (# force) damping can dominate. The rotor and aircraft
can be designed so that the velocity for any instability is well above the



flight regime, but the high inflow aerodynamics are always important in the
analysis and design.

The behavior of the proprotor in high inflow (as outlined above) implies
the following characteristics: decreased rotor/pylon/wing aeroelastic stabil-
ity since the negative ¥ force damping of the high inflow aerodynamics can
reduce the dynamic stability at high forward velocity; decreased damping of
the aircraft short period modes, again due to the negative / force damping
contribution of the rotor; and large flapping in mancuvers and gusts. (The
last arises because the moment to precess the rotor to follow the shaft is due
to the flapping motion of the blades with respect to the shaft; a given shaft
velocity requires a fixed component of the section aerodynamic force normal to
the disk, which means then that increased incremental lift is required at high
inflow and thus more flapping since flapping is the source of the lift.)

These features were first delineated in the studies with the XV-3 aircraft
(refs. 1 to 3), the first experimental tilting proprotor aircraft. Investiga-
tions of the concept and its problems with the XV-3 provided the initial impe-
tus for further theoretical and experimental work with the configuration, much
of which is still in progress. The work with proprotor dynamics has its basis
in propeller/nacelle whirl flutter investigations (refs. 4 to 7); however, the
flapping motion of the rotor introduces many new features into the dynamics.
Experimental and theoretical work has been done by several organizations in
the helicopter industry on the various features of tilting proprotor aircraft
dynamics, aerodynamics, and design (refs. 8 to 24). This work has culminated
in tests of full-scale, flight-worthy proprotors (refs. 25 and 26) and prelim-
inary design of prototype demonstrator vehicles (refs. 27 and 28) as part of
the current NASA/Army-sponsored tilt rotor research aircraft program. How-
ever, in the literature there is little concerning the details of the analysis
of proprotor behavior. There are some early reports on very simple analytical
models (e.g., refs. 8 and 18), and some recent reports on the most sophisti-
cated analyses available (refs. 29 and 30). Further exploration of the basic
characteristics of the proprotor dynamics is therefore desirable.

The objectives of this report are to establish a verified method to
predict the dynamic behavior of the tilting proprotor aircraft in cruise
flight; to develop an understanding of the dynamics of the vehicle and of the
theory required to predict it; and to assess the applicability, validity, and
accuracy of the model developed. The model of the wing/rotor system developed
here will be useful for future investigations as well as for these initial
studies. The primary application of the theory in this report is a comparison
with tests in the Ames 40- by 80-Foot Wind Tunnel of two full-scale proprotors.
The analysis begins with a treatment of the four-degree-of-freedom case:
pylon pitch and yaw plus rotor longitudinal and lateral flapping (i.e., tip
path plane pitch and yaw). With this derivation as a guide, the equations of
motion are derived for a rotor with flap and lag degrees of freedom and a six-
degree-of-freedom shaft motion. The high inflow aerodynamics involved are
discussed, followed by some elementary considerations of the rotor behavior in
high inflow. Next, the special cases of classical whirl flutter (no blade
motion degrees of freedom) and the two-bladed rotor are considered briefly;
the implications of the basic rotor behavior concerning the aircraft stability
are investigated. After these preliminary discussions, the development of the
rotor and cantilever wing model is resumed. The equations of motion for a



cantilever wing with the rotor at the tip are obtained and combined with the
rotor equations of motion to produce a nine-degree-of-freedom model for tilt-
ing proprotor aircraft wing/rotor dynamics. This model is applied to two
proprotor designs, in order to examine the basic features of the rotor and
wing dynamics. Finally, the results of the theory are correlated with those
from full-scale tests of these two proprotors in the 40- by 80-Foot Wind
Tunnel.

The author wishes to thank Troy M. Gaffey of the Bell Helicopter Company
and H. R. Alexander of the Boeing Vertol Company for their help in collecting
the descriptions of the full-scale rotors given in table III and figures 14 to
17.

SECTION 1: BASIC THEORY FOR PROPROTOR DYNAMICS

Four-Degree-of-Freedom Model

Consider a flapping rotor on a pylon with pitch and yaw degrees of
freedom operating in high inflow axial flight. Eventually, at least a few
more degrees of freedom must be added to this model for both the rotor and the
support. This limited model is examined first, however, to demonstrate the
methods used to derive the equations of motion, and because this case is
studied in the literature.

The model is shown in figure 1. The pylon has rigid-body pitch and yaw
motion about a pivot, with the rotor forces acting at the hub forward of the
pivot. The pylon degrees of freedom are pitch angle o,, positive for upward
rotation of the hub, and yaw angle a,, positive for 1e¥t rotation of the hub.
The rigid-body pitch and yaw motion has inertia, damping, and elastic restraint
about the pivot. At the hub, a distance % forward of the pylon pivot (% is
the mast height) is a rotor with ¥ blades. The rotor has clockwise rotation
when viewed from the rear, with azimuth angle y measured from vertically
upward. The azimuth position of the mth blade, m = 1, 2, . . ., N is
Yy = ¥ + Ay where Ay = 2n/N is the angle between succeeding blades. The rotor
degrees of freedom are the out-of-plane motion given by the flapping angles
g(m) for each blade, defined positive for forward displacement of the blade
tip from the disk plane (upward in helicopter mode, which is the usual heli-
copter convention). The blade out-of-plane deflection is assumed to be the
result of rigid-body rotation of the blade about a point at the center of
rotation (by the angle 8(™)). The dimensionless rotating natural frequency of
the flap motion is allowed to be greater than 1/rev so that blades with canti-
lever root constraint may be treated as well as articulated blades (which have
an actual hinge at or near the center of rotation). The mode shape for the
flap motion is assumed proportional to the radial distance », that is, rigid-
body rotation. The net forces exerted by the rotor on the hub from all ¥
blades are rotor thrust 7, rotor vertical force H, anc rotor side force Y. It
is assumed in the derivation of the equations of moticn that an engine governor



supplies the torque required to hold the rotor rotational speed Q@ constant
during any perturbed motion, and that the pivot supplies the reaction to the
rotor thrust T. The pivot also reacts the rotor vertical and side forces so
that the only pylon motion is pitch and yaw about the pivot. With a flap
natural frequency greater than 1/rev, as with cantilever root restraint or
with a flap hinge offset or spring, blade flap motion results in a moment cn
the hub. The rotor pitch moment on the hub is My and the rotor yaw moment, M,.

The rotor is assumed to be operating in purely axial flow in the
equilibrium, unperturbed state, at velocity V. The inflow ratio V/QR (which
may be written simply V, with the nondimensionalization implied) is assumed to
be of order 1. Only rotor aerodynamics are considered; any pylon aerodynamic
forces are neglected.

Equilibrium of forces and moments gives the equations of motion: flap
moment equilibrium for each blade and pylon pitch and yaw moment equilibrium
(about the pivot). The linearized equations of motion, that is, for small
angles of the blade and pylon displacement, are then:

mth blade (m =1, . . ., N):
(8™ v 281 L Gy - 20y v (g + 208,)sin U] = M (1)
b 8 - (oy - Q) COS Ypy A ay)sin Yyl = Mg,
Yaw:
T8, + Cpby + Ky = My - hY (2)
Pitch:
Iyay + Cyay + Kyay = My + hH (3)
where
Ip flapping moment of inertia of the blade
B(m) flap motion of mth blade with respect to the hub
MFﬁ aerodynamic flap moment on the blade
Vg rotating natural frequency of flap motion (1/rev for an articulated
blade with no hinge spring or offset; greater than 1/rev for a
cantilever blade)
Iy,Ix pitch and yaw moment of inertia of the pylon about the pivot, includ-
ing the mass of the rotor (as a point mass at the hub)
Cy,Cx pitch and yaw damping
K9,K¢ pitch and yaw spring restraint of pylon motion about pivot



These equations are now made dimensionless with p, @, and R; the inertias are
normalized by dividing the flap equation of motion by I3, and the pylon equa-
tions of motion by (#/2)I;. The normalization of the pylon inertia, damping,
and spring constants (division by (N/2)I) are denoted by a superscript +; for
example, Iy* = Iy/(N/2)Ib. The rotor Lock number vy = pacR“/Ib and solidity

o = Ne/mR “are introduced; the Lock number represents the ratio of aerodynamic
to inertia forces on the rotor blade, and the solidity is the ratio of total
blade area to disk area. Also notice that the normalized and dimensionless
hub force # may be written in terms of the rotor coefficient:

2
H/0Q2RY  paeR 2Cy

(W/2)I/pR>

H

=y

(624
pmR? (AR) 2

and, similarly, for the other forces and moments. The equations of motion
then become

M
- (m m .. . . . . “n
8( ) + vBZB( ) (ay - 2d.)cos Uy + (O + 2ay)s1n Uy = ¥ EEK
261&7 ZCY
Are * 2 1k — Ta '
Ty + Cplay « Kpfay = y| —— - 7 ca [ )
20 2C
T,%0, + Cy*é, + K %a, = v Yoy A
¥y vy -y ¥y 7y oa T oa

These equations are straightforward except perhaps for the pylon acceleration
terms in the flap moment equilibrium. Blade flap with respect to space 1is
composed of g{m), tlap with respect to the hub plane, plus a,, and az,, which
give the tilt of the hub plane; hence the &y and a, contributions to the flap-
wise acceleration. The remaining terms are due to Coriolis acceleration; the
blade has a velocity Qr in the hub plane, which has an angular velocity

Qyp COS Uy + &, sin Y, due to pylon motion, and the cross-product of these
gives a flapwise Coriolis acceleration of the blade. In the flap equation,
the dimensionless aerodynamic flap moment Mpm/pQZES 1s written as Mg, for
simplicity; that is, the nondimensionalization is now implicit in the notation
Mpy,.  This practice is followed in the following equations.

Now introduce a coordinate transform of the Fourier type, defining the
new degrees of freedom as

N W )
.1 (m) 2 (m)
BO—WZB B”c—ﬁZAB cos ny,,
m=1 m=1 (5)
N N
2 m . _1 (m) m
Bae =7 D B sin Sur2 T :E: prn (-1
m=1 m=1 }

6



so that

B(m) = B, + Z (Bnc cos ny  + B sin Vllbm) + BN/Z(‘l)m (6)
n

The coning angle is Bp; B)o and Byg are tip path plane tilt coordinates; and
By/2 is the reactionless flapping mode. The summation over »n goes from 1 to
(N - 1)/2 for N odd, and from 1 to (¥ - 2)}/2 for N even; the By/, degree of
freedom appears only if ¥ is even.

The quantities Bp, Byes Bug, and By/p are degrees of freedom, that is,
functions of time (which, when dimensionless, is the rotor azimuth angle y)
just as the quantities g(m) are. These degrees of freedom describe the rotor
motion as seen in the nonrotating frame, while the g(™) terms describe the
motion in the rotating frame. This coordinate transform must be accompanied
by a conversion of the equations of motion for g(m) from the rotating frame to
the nonrotating frame. This is accomplished by operating on the equations of
motion with the summation operators:

E3C ., 1272( Cdcos v, =L dsinay, T3 (. (D"
m m m

m

The usefulness of the Fourier coordinate transformation lies in the
simplifications it produces in the equations of motion. The above equations
of motion have periodic coefficients because of the nonrotating degrees of
freedom in the rotating equations of motion and vice versa; the periodic coef-
ficients only appear explicitly so far with the pylon inertia terms in the
flapping equation, but there are actually many more in the aerodynamic forces
in all the equations. Since the Fourier coordinate transform converts the
rotor degrees of freedom and equations of motion to the nonrotating frame, the
result is constant coefficients for the inertia terms, and also for the aero-
dynamic terms for axial flow through the rotor (as considered here). 1In
addition, only a limited number of the rotor nonrotating degrees of freedom
couple with the pylon degrees of freedom; in this case, only the Bj¢ and Bjg
degrees of freedom couple with ay and oy. The other rotor degrees of freedom
are coupled from the pylon motion and represent only internal rotor motion.
Thus the transformation reduced a set of N + 2 equations with periodic coef-
ficients to four equations {considering only those influenced by the pylon
motion) with constant coefficients. The rotor behavior for this problem is
basically part of the nonrotating system, so the transformation which converts
the rotor degrees of freedom and equations of motion to that frame is the
appropriate one.



Ooperating with (/) %, (. . .), (2/M 2 (. . .)cos ypy, and
m m

7/N)2d (. . .)sin ¢, on the blade flapping equations gives the nonrotating

equatlons for coning and tip path plane tilt motion, assuming that ¥ = 3;

_ My )
By + vBZBO " Y oae
Mp
. . 2 e N 1C
Blo ¥ 2By g7 - DBy - 8+ 20, =y =2 (7)
Mp
- _ 2 v . _ 15
BlS 2810 + (vB 1]815 oot 2ay =Y

where

, Mpy = %' :E: Mem

=

Mrio =

Z MFm cos ‘bm
m

3]

MPis = W Z.MFm sin v

The pitch and yaw moments on the rotor disk are MFIC and MFlS’ respectively.

Note that the transformation introduces Coriolis and centrifugal acceleration
terms into the 8,, and Byg equations. The equation for By does not couple
inertially with ay and ag, nor will such coupling be found in the aerodynamics;
hence it may be dropped. A set of four coupled equations remains for the
degrees of freedom that describe the rotor tip path plane tilt and the pylon
pitch and yaw motion: Bj., Bygs» @y, and og. If ¥ > 3, the equations for B,
Bic, and Bjg remain as above. %hese are added equations of motion for the
degrees of freedom Boos Bogs -+ +s Byg 3 Byg and By,, as appropriate; like
the By equation, these equatlons are not coupled w1th ay and ag, so they may
also be dropped from the set, since they represent only internal rotor motion.
The four-degree-of-freedom model then is sufficient to represent the coupled
rotor/pylon motion for the general case of a rotor with three or more blades.
The exception is a two-bladed rotor, ¥ = 2, which is considered separately in
a later section.

The equations of motion for the four degrees of freedom (Blc, Blg, oy,
and og) are then



1 0 -1 0 BIC 0 2 0 2 1C
0 1 0 BlS . -2 0 2 0 BlS
* *
0 0 Iy 0 %y 0 0 C 0 ay
0 0 0 I *| \ox 0o 0 0 Ce™ I \og
2
Vg 1 2O 0 0 B o Mplc/ac

. 0 v2-1 0 o ffeg |y Mp, o/ ac

0 0 Ky* 0 ay ZCMy/oa + h(2Cy/oa)

0 0 0 Ko*) \eg 2cy /oa - h(2Cy/oa) (8)

The rotor aerodynamic forces (right-hand side) introduce much more coupling of
the equations.

The hub pitch and yaw moments due to the rotor, M, and M,, might be found
by integrating the forces on the blade (as is done for the other forces on the
hub), but it is simpler to express them directly in terms of the rotor flap-
ping motion. The source of the hub moment is the bending moment at the blade
root due to flapping, M, = Ib(vsz —I)B(m). Transforming the moment into the
nonrotating frame and summing over all ¥ blades gives the hub pitch and yaw
moments:

Mb = E [-I'b(vB2 - I)B(m)cos wm] = - g-lz(vsz - 1)810 1

m

Y (9)

M = E [Ib(vsz'- l)B(m)sin v,] = Izlfb("ez - B4 J
m

where the definition of the tip path plane coordinates By, and B;g has been
applied; vg is the rotating natural frequency of the flap motion. If the
rotor blade has a flap hinge at the center of rotation, then the only spring
restraint of the blade is due to the centrifugal forces, resulting in vg = I;
in that case, no moment on the hub is produced by tip path plane tilt By and
B1g (except for the torque terms), as required for a hinged blade. With hinge
offset, hinge spring, or a cantilever root, the natural frequency is greater
than 1/rev and so tip path plane tilt produces a hub moment. Dividing by
y(N/2)Ip gives

2C vZ2-1
_.A{ZL = - B BlC
aa Y (10)
2 _
qux ) vB 1 ]
oa Y 15



Rotor aerodynamics- Consider now the rotor aerodynamics. Figure 2 shows
the aerodynamic environment of the rotor blade section, and the definition of
the section velocities and forces. A hub plane reference frame is used, that
is, a coordinate frame fixed with respect to the shaft and tilting with pylon
pitch and yaw (ay and ay). All forces and velocities are resolved with
respect to the hub plane coordinate system, and the blade pitch angle and flap
angle are measured from the hub plane. The velocitics seen by the blade sec-
tion are up (in the hub plane, positive in the blade drag direction), up
(normal to the hub plane, positive rearward through the disk), and up (in the
hub plane, radially outward along the blade). The resultant of up and up in
the blade section is . The blade pitch angle, 9, is composed of collective
root pitch, built-in twist, and any increment due to control of the perturbed
blade motion. The inflow angle is ¢ = tan-! wp/uy, and the section angle of
attack, o = 8 - ¢. The aerodynamic forces on the bladc section are 1ift L,
drag D, and radial force Fn. The latter is positive outward (in the same
direction as positive up) and has contributions from the tilt of the 1ift vec-
tor by blade flapping and from the radial drag due to up. The section 1ift
and drag are resolved with respect to the hub plane into normal and inplane
forces F; and Fyp.

The section aerodynamic 1ift and drag forces are expressed in terms of
the 1ift and drag coefficients as

1 2 2 C
= — =—-U‘/'
L= gecluy” +upfe, = 5 Uy
(11)
1 c
D = E-DO(MT2 + up270d = E»Uznd

Working with dimensionless quantities from this point on, the air density o
has been dropped in the last step in equations (11). The coefficients are
functions of the section angle of attack and Mach number:

Q
1}

CQ {a,M)
e, = Cd (OL B M)
where

- tan ¢ —

R
H
D

M=M U
U2 =y, ? o+ oy 2
and Mg, is the tip Mach number, Q% divided by the speed of sound. The

section forces resolved into the hub plane are then

10



Fpn =

LuT - Dup

u

T - B

The radial force F, has terms due to radial drag and due to the tilt of 7, by

the flap angle B.

" The radial drag term in F, is derived assuming that the

viscous drag force on the section has the same sweep angle as the local sec-

tion velocity.

Such a model for the radial drag force is only approximate,

but is adequate for proprotors since this term is not important in high inflow

acrodynamics.

Substituting for L and D, and dividing by ac, where a is the

two-dimensional section 1ift curve slope and ¢ is the section chord, yields

ac

Fy e e
2 U<uT_2._u °d

ac 2a

2

L_li:Uu C_(J_BE
ac R 2aq ac

(13)

The net rotor aerodynamic forces are obtained by integrating the section

forces over the span of the blade and summing over all N blades.

The forces

required are thrust, rotor vertical force, rotor side force, and flap moment:

1
T = E ~/” F dr
P
N 0

L<

1

wn

e

=

<-
R

(e} ’\

*shj

o)

=

|

()

o]

9]

=
3

o'

8"&1

Q

=

3

g (14)
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or, in coefficient form,

m 0
20, L p 1 F
_,.iz_g cos ¥ f L dr + sin ¢ Z gp
oa ! m a ac

- 0 0

s (15)

2y, 1 F, Vg
———=lE sin ¢ f -—— dr - cos Y f—gﬁdr
oa N m 0 ac ac

m 0
M L p
I f r 2 dp
ac ac )

and for the flap equations of motion

COos
m wm

_gz: :
MFlS =¥ MFm sin wm

The net biade forces required then are, if one substitutes for F,, Fp, and F:

=
g
[—
A
i
STINY
o

1 1
F a &4 3
@ = 2 d
/ ac dr = / U(“T 22 - Yp 2a)dr
0 0
e (16)
1 1
F 2
r = dp = rUlu i-&qu-c*q’—dr
ac P 2a T 2a J
0 0

(Eqs. (16) continued on next page.)
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1 F} 1 cd ~1 Fz
f Edr=f UuR—ZZdP_ B / a—cdr y (16)
0 0 0
1 p 1 e o]
- L _ ., d
f r —dr = / r'U(,;T 52 = %p 2a)dr
0

The expressions in equations (16) give the net blade force normal to the hub
plane (thrust) and its moment about the hub (flap moment), the net blade force
in the hub plane (blade drag force), and the net blade radial force.

R |

To evaluate the blade forces, the blade section pitch angle and the
velocities seen by the blade section are required. Each velocity component
has a trim component and a perturbation component, the latter due to the blade
and pylon degrees of freedom. When the differential equations of motion are
linearized, the perturbation components of the velocity are assumed to be
small. The trim velocity components for operation in purely axial flow are

uT = Qr
uP =V +v
uR =0

The velocity up is due to the rotation of the blade; the rotor rotation speed
£ is included here to show the source of this velocity, but it is usually
dropped when dimensionless quantities are used. The inflow up is composed of
the forward velocity V plus the induced inflow v; the latter given by momentum
theory as

-V/2 + (V)% + Cp/2 (17)

<
i}

or

V/2 + / (V/2)2 + Cp/2

<
+

<

I}

ne

V o+ CT/ZV

where the last approximation is valid for large inflow V (really, the inflow
ratio V/QR, since it is dimensionless). The induced inflow will, in fact, be
very small, v/V << 1, for typical proprotor operation; this is due to the high
inflow V, and also to the low working Cp of a proprotor in cruise.

13



Consequently, induced inflow is not generally an important factor in high
inflow proprotor aerodynamics, and the assumption of uniform induced inflow,

or even neglecting it entirely, is reasonable for an investigation of the rotor
aeroelastic behavior. Since the rotor in the unperturbed state is operating

in purely axial flow, the radial velocity component up has no trim term. The
trim blade pitch angle is determined by the collective pitch and the blade
built-in twist.

The perturbation velocities are due to the rotor and pylon degrees of
freedom (B, @y, o, here) and to the aerodynamic gusts. The convention used
for the gust velocities is shown in figure 1. The gust velocities are normal-
ized based on the forward speed V, so that the vertical and lateral gusts (og
and Bg) are angles, and the longitudinal gust (ug;) is a fractional change in
the forward speed. This convention follows the usual practice for aircraft
stability and control investigations. The gust velocities are a small pertur-
bation to the direction and magnitude of the forward velocity V, assumed uni-
form over the entire flow field. The gust influence is entirely aerodynamic;
the gust velocities do not involve a change of the aircraft velocity with
respect to an inertial frame, but only a change with respect to the air.
Therefore, the gust velocities do not appear in the inertia terms of the equa-
tions of motion, but only in the aerodynamic terms. The perturbation
velocities are

7 fro m

Su,, = -h(&y sin wm + o cos ¥ ) )
+ (V + v)(ay sin wm * o cos wm)
+ V(BG cos wm +

G sin wm)

>
<
i

r(g - ay cos wm *a

o

sin wm) + VuG (18)

s
=
H

h(—ay cos wm + A, sin wm)

+ (V + u)(ay cos wm - o, sin wm)

+ V(-BG sin ¢+ a, cos v,

In Sup and Sup there are three terms: inplane hub velocity due to the

angular velocity of the pylon about the pivot; inplane component of the for-
ward velocity V + v due to the tilt of the pylon; and the inplane velocity due
to vertical and lateral gusts. In Sup there are two terms: flapwise velocity
with respect to the air, due to both flapping with respect to the shaft and
angular velocity of the shaft (this term is proportional to »); and longitudi-
nal gusts (this term is independent of r). If Sup in equations (18) is
written as

Su, = réu + Su (18a)

P Py Py

14



then Sup, Sup, Su;B, and Sup, are all independent of », and so may be factored
out of the integrands in the aerodynamic forces. The perturbation of the
blade pitch motion is

66 = 8 - KpB (19)

where now 6 is just the perturbation of the blade pitch, an input variable in
the equations of motion, also available for feedback control. Since this
pitch perturbation is made through the control system, it is uniform over the
blade span (independent of r). Also included above is pitch/flap coupling,
with XKp the gain of negative feedback of blade flap angle to pitch angle.
This feedback is usually accomplished by mechanical means inherent in the
control-system geometry; it is then usually referred to as §3 coupling, where
here Kp = tan 63.

It is now possible to find the perturbations of the acrodynamic forces on
the blade, that is, the forces due to the rotor and pylon degreces of freedom
and gusts. The following relations are made:

ac ac
- L L \
GC,Q, = F Sa + SM— M
oc e
_d d
6Cd = W So + W— SM
U OSu_ -~ U _Su
o = 86 - L LT r (20)
U2
uSu, + u_Su
SU = Va4 PP
U
M = Mtipdy J

where the coefficients of the pérturbation quantities are evaluated at the
trim state. Hence the net blade forces may be expended as linear combinations
of the perturbations of the rotor blade velocity and pitch angle:

T, + TuﬁuT + TéduPB + TAGuFZ + Tede

O\
—
8 fu™
¥
1]

1 F

2 = .
/ r dr = M, + MuﬁuT + MBSupB + M)\MPA + Mede
0 (2D)

ac o T R

_[IFP IFZ
/ a—cdr' RUGuR-B'O/ a—c—dr J

I g (
x
f dr = H_ + Huéu + HeSupy + H Sup, + H,88
0

1]
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The coefficients are constants, independent of rotor azimuth ¥ since trim

axial flight is considered; they are integrals of the blade aerodynamics over
the span (expressions for them are obtained later). The first terms, subscript
o0, are the trim forces and moments on the blade. The second terms, subscript
u, are forces and moments due to hub inplane velocity; the third terms, sub-
script B, are due to flapwise velocity of the blade; the fourth terms, sub-
script A, are due to axial velocity of the rotor; and the last terms, subscript
8, are due to blade pitch control. The thrust forces on the blade are T; the
the flap moments, M; the blade drag forces, H; and the blade radial force R.

In the blade radial force, the trim value of the coefficient of B

(£1 F,/ac dr) is required, which is just Cp/oa; therefore,

1
Fr CT
—dr = R 8u, - — B (22)
0

The last term is the radial tilt of the blade thrust vector.

The blade forces may now be summed over all ¥ blades to find the net
rotor forces. If the expressions for the blade forces (eqs. (21)) are substi-
tuted into those for the rotor forces (eqs. (15)), the aerodynamic coefficients
are independent of m (blade index) so the summation operates only on the per-
turbations of the blade velocities and pitch. If the definitions of the rdtor
nonrotating degrees of freedom (the Fourier coordinate transform described
above) are used, the following is obtained:

c
)
T _r
ca o]
26,
g - (Hu + RU)[—hay + (V + v)ay + VaG]
+ Hy(B)g = Byp * Ga)
+ Ho(8) g - Kpbyg)
C
. I (23
oa BIC' ( (23)
20, .
7 G B lhay + (V+ Vi, + VBl
_ Hé(slc + BLS, - O.y)
- Ho(Byp - KPBIC)
o
ca 15 )

(Eqs. (23) continued on next page.)
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aic = MU[—h&x + (V+ v)a + VB,
EACTRR I %)
+ My (8 = Kpbyo)

2 (23)

1s
ae

Mu[-h&y + (V + v)ay + Vo]
*Mg(Byg - Byo t o)

+ Mg (85— KpByg)

)

The perturbations of the thrust are no longer needed (they are entirely reacted
by the pivot) so only the trim term, 7,, is retained. Again, N 2 3 has been
assumed in evaluating the sums. The fixed frame coordinates for the blade
«pitch motion are

8o = % Z g (™) )
m
- 2 (m)
1c W Ze cos ¥y, ’ (24)
m
0,5 = % E 6 ™sin v )
m

These coordinjtes represent control inputs by means of the usual rotor swash-
plate mechanism: 6y is the rotor collective control, and 6, , and 6,5 are
rotor lateral and longitudinal cyclic control (control plane tilt).

The decoupling of the equations of motion (which has been seen in the
inertia terms) is maintained by the aerodyanmics also because axial flow is
assumed for the trim operating state. In the forces that excite the four-
degree-of-freedom model (Cy, Cy, h#ﬁcu and MFIS) the only rotor degrees of

freedom involved are By and Bjs. The aerodynamic forces introduce some input
variables, but even with these, there is limited coupling: only lateral/
longitudinal control plane tilt (8;,, 615) and lateral/longitudinal gusts
appear in the four-degree-of-freedom set. As for the inertia terms, the aero-
dynamic terms due to the higher rotor degrees of freedom (B2p, B2gs « « -5 Byes
Bngs By/p as appropriate for ¥ > 3) do not involve any coupling with the shaft
motion or with the blade pitch control or gusts (assuming conventional
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swashplate control inputs and uniform gusts); hence these degrees of freedom
remain internal rotor dynamics.

From helicopter rotor aerodynamics, the tilt of the tip path plane (By, or
B1s) is expected to tilt the rotor thrust vector and hence give an inplane
force on the rotor hub. The tip path plane tilt terms in Cy and Cy are (from
eqs. (23)):

2C c
qH _ T .
bz = Az HB B
2C C
A Yo (L. H:18, &
oa ca B)715

The first terms are the inplane forces due to radial tilt of the blade mean
thrust vector by the blade flapping. They are only half that expected because
of the tilt of the rotor thrust by tip path plane tilt, assuming that the
thrust vector remains perpendicular to the tip path plane. The other half is
in Hi. Rotor tip path plane tilt By, or B;g, steady in the fixed system,
causes a flapping velocity in the rotating frame. This flapping velocity
changes the blade angle of attack and so tilts the blade mean thrust vector in
the chordwise direction (like induced drag). The inplane force due to flapping
velocity, Hg, may be written

C
Hé =O—£+ Hé* (25)

where the first term is the tilt of the blade thrust, and Hé* is due to the
rotor inflow. Thus the inplane hub forces due to tip path plane tilt are,
combining that due to direct radial tilt of the blade thrust by 8, and that
due to chordwise tilt of the blade thrust by Rg:

2CY 20
! 7
= _ He*
b oa ca * ]8 BIC
20 2C,
pa
— = . H.*
b oa oa * B BIS

The first term is the inplane component of the rotcr thrust due to tip path
plane tilt, as expected, and the second is the inplanc force due to the inflow
term of #g acting on B. The inflow term Hé* is negative, so it decreases the
inplane force due to tip path plane tilt. For low inflow, the effect of Hz*
is small, but for large inflow (as considered here) it dominates the thrust
vector tilt term. It is, in fact, the negative / force, already mentioned as
an important feature in high inflow rotor aerodynamics. Notice that Hg acts
on the blade flapwise velocity to produce an inplane force, regardless of the
source; hence the angular velocity of the tip path plane (with respect to the
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hub plane) or the shaft (the hub planc) also produces a hub force, with no
corresponding term from thc blade radial force.

Substituting now for the rotor forces and moments into equations (8), one
obtains the equations of motion for the four-degrec-of-freedom model:

1 0 -1 3
0 el\’,‘
0 1 0 3
1 F1o
0 0 I+ 0 a
Y Y
0 8] 0 I * a
L x | x
- -
-yM 2 M. 2 ! ]
g Y B Y U le
-2 -y RESZ vyl
+ ¥ R v H YS 81V
0 <hyH: O ARy (H +R Ayl a
Vg U R ) g "
—:"Z‘(f/) 0 ryfﬁ'é x**’hzy (% +:‘"’U] x,
- - (3())
[—‘ 21;/\‘-1 1. T e ]
Ye o, -vaJB 0 —y(w*).u.u
Mo G 2 17 J I At o
YJB JB _“"PYMG -y (V+: );-;U 0 I
ra
L aend E Y b . B -
v, f-l+hy|—— + /i { iy H iy (Vo) (M 45 ’
8 Nem™ * % P i ay (e Li+hl~) 0
83
20 )
ms il _ 2. 1 T I A [ i v; L
}{pnYAO |t\)8 IHIY(ga +1A8>:| 4] Sy (U4 1(“_}}4-1? ) .
M 0 B v 0 ]
6 N
M '
-0 Y “le ) . 0
hiv T HEP S PANERY ,
0 1Y 18 el‘u‘ 0 e l”‘.f‘ﬂf v
’rzyila 0 iy V(45D 0
i 1

The influence of the rotor aerodynamics in this set of equations is as follows:
damping of the flap motion, Mg, which also acts on flapping velocity due to
shaft angular velocity and tip path plane tilt; speed stability flap moments

M due to hub velocity produced by angular velocity of the pylon about a pivot
aft of the hub, and duec to the inplane component of the forward velocity pro-
duced by the shaft tilt; positive damping and a negative spring on the pylon
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motion due to Hy + Ry (which is positive); and inplane hub forces on the pylon
acting through #g, due to flapping velocity produced by tip path planc tilt
(B10, Blg) or angular velocity (1o, Byg) or shaft angular velocity (&,, dp).
The blade pitch input produces flap moments and hub forces through Mg and Tg;
through pitch/flap coupling Kp thesc coefficients enter the coefficients of
B1c and 81~ also. Gusts produce flap moments and hub forces through the hub
inplanc velocity coefficients, M, and /f;, + 7.

Acrodynamic coefticients- The blade forces required are given in
cquations (16). Substitute for the velocities and section force coefficients
in terms of the trim plus perturbation values, lincarize about the trim state,
and compare with the expanded forms (eys. (21)) to identify the acrodynamic
coefficients. For the moment, the effects of drag (=) and of compressibility
(M) will be neglected. Morcover, only certain coetficients are required for
the four-degree-of-freedom model, namely, 7,, %,, M3, My, Me, /g, iy, and /s,
Only these coefficients will be examined now; in fact, this set is sufficient
to describe the general behavior of all the rotor acrodynamic coefficients
required here.

If the drag coefficient is neglected (cxcept for 5), the forces

required are
C 1 e
T i g -
o = o Y 3a @

i

0
< 1 o e,
@ Q. = wiily £ U 4 dr
o o - "\ 54 T 2al”
0

F 1 o
r —dr = rlu,. ;& dr
ac 4 La
0
1 Fx 1 CQ
L p = L
o P Uup 5 dr
0

where cg = cg(a), a = 8 - tan~! up/up, and U2 = wup? + up?. With the perturba-
tions about the trim state, the flap moment becomes



and,

0 0
e
1 02 Qu
H I h LN S )
+ r 3 ((SL/L{T, + (»’5;(,],) + M 57 Sa ] l»
0
1 a
- l/‘ E’ )
= Py, 5 dr
0
1 2 e
Co fHr” Ly 4
+ o — ] = M —_— 7 )
' A\ Yy T L ?oou
A 142
1 e, Uity e,
+ r2| == ',.‘ - i, =2 e Sup
Ja o T 2a 112 B
O o

1 2
+/ rlu, == dr g8
T 2a
0

=M, + MuéuT + MédupB + MBGB

similarly, the blade drag force is
1 1 o
f a—‘; Jdro= f Uup % ar
0 0
C

1 CQ I3
_x _a
+/ a (GUup + U(Sup) + Uup 7 Saldr

! cQ “’I#P cz uP
+ f Tt Uup 5 dr duT
0
B N T °y u
+/ r 3 U + U ]- Uup e dr (5upB
0
1 ¢y
o
+ / Vg 5 v 69
0

=, 0+ HuéuT + Hésl‘p}? + !{969



Also required is 7,

but 7,

b
drag terms are neglected for now, 7, = 0.

The coefficients are now:

M
u

M

A + R

is due to blade radial drag force and since all

3\
1 ~
moo iy 2 Ay
iO - ':r.,T 2a -t
0
1 I -
e =
= wirlu = + = £
tp = b o4 Hy 2 '
0
1 o ,gmz § i
i & ! Iy
v\ o |
0
1 &4 !
e, Ui, O P
po| 2D e
5 o 7 ; 7
A 2a U 20U (27)
1 CQ
o, ;
riu,, dr
2a T
0
1 &4 2
e U U Loue
_Q‘ rr + a P cr
2a U 20 U )T
0
1 o w2 - % Ui,
r * U + P LA ir
2a U 2a U ]
0
1 €
L
L T dn
Sa P
5 ]

The trim values of the velocities (up, up, and U) and of the blade loading

(g and UQu) should be substituted into these expressions.

the trim values are

22
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For the velocities,



For the lift coefficient and lift curve slope, assuming small angle of attack
so that ¢y = a (two-dimensional lift curve slope), the trim values are

e
YW1
2~ 2
e
2 _ w 1 -
i [6 - tan™ 1(V + v)/»]

where 6 is here the trim collective valuc plus the built-in twist of the blade.

The inplane force due to flupping velocity is also written

Hg = (Cploa) + Hé*; substituting the expression for /o1 from g (with ap = 2)
yields
1 2 ¢
&4 i 414
Q 7 [ [rr ]7 ,
.4 = r{ = - Ay 238
g / 2a U T 2a U (=%)
0

Approximate expressions for the aerodynamic coefficients may bhe obtained
by evaluating the integrands at an cffective radius. Since the inflow angle
is ¢ = tan~! up/up, then also wp/U = cos ¢ and up/l’ = sin ¢; from this, it is
possible to substitute for wp and U in the integrands, in terms of wp and ¢.
Then ¢y and ¢ are evaluated at an cffective radius rs (e = 0.75 usually) and
up = r is used in the integrand; CQQ/JQ = 1/2 may also be used. Then,

¢ 1

T r? o

ca cos ¢ 2 ¥ 05
0

where a is the rotor mean angle of attack. This expression is used to cvaluate
@ in the aerodynamic cocfficients. The coefficient M, is approximately

p—t

e

e}

w
&
o E=2

c

1
L
1 o .
M:/r%r (1+———+ r sin ¢ |dr
2
u 0 l cos ¢ \ cos? ¢ la
- - o 1+ 1 ) N 512 ¢
cos ¢ cos? s
~ sin ¢ . ZCT
6 oa

The last step follows since the Cop term (¢ term) is significant only for low
inflow, when ¢ is small; therefore, [1 + (cos ¢)”2] = 2. Similar approximations
may be found for the other coefficients.



The aerodynamic coefficients are then approximately:

‘r__a
oa 6 cos ¢
. 2C
Mo = sin ¢ N 7
u 6 aa
. - _cos ¢
MB 3
Moo= 1 (29)
8 8 cos ¢ ¢
oo 20,
Ho+p =lsmme Ty
u U 2 ca
__ _sing 7
HB 6 * oa
0=V
‘6 " q cos ¢ )

where ¢ is evaluated at r,, so that

: 7
cos ¢ = rp/Vrp? + V2

sin ¢ = V/Vrez + V2

and usually r, = 3/4 is satisfactory. The thrust cocfficient (eg) terms in

Mg (flap damping) arc always negligible and werc therefore dropped. There are
no ¢ terms in the pitch coefficients My and fig. For operation in high inflow,
V is of order ! and so cos ¢ and sin ¢ arc of order 1 also; CT/oa << 1 (in
fact, for proprotor opcration in cruise, the blade loading is even lower than
usual for helicopters). Hence for high inflow operation, the thrust effects
on all the aerodynamic coefficients (ep terms) may reasonably be neglected
compared with the og  terms. The recason the gy terms dominate the coeffi-
cients is that with high inflow both inplane and out-of-plane velocity pertur-
bations give large angle-of-attack changes. Therefore they give (through Cly)
large section 1ift perturbations, which have significant components in both
the out-of-plane and inplane directions. The high inflow thus allows a great
simplification of the rotor aerodynamic derivatives.
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Retaining now only the ey, terms in cquations (27), that is, assuming
that V is of order 1 and a << %, and substituting for the trim veclocities, onc
obtains the coefficients (writing V for V + v for convenience):

1 ¢y a

o rel .

Mu = dr
2a vrl o+ V2

0

£ L4
Mé = - J/f 5 2 r dr
0 <a /}” + 1'2
1 Cz
M, = f 5 12 Vp? s V2 dr
0
1 ¢
L 2
[{ + H = / 7aa V (,Z["
u H 0 < /rz N V2
1 €
£ 2
H* = - f a iV dr
B 0 Za /p2 + Vz
1 CQ
By = f 2 Ve« V2 dp
0
C 1
—£=/ 2 /2 + V2 dr
oa 2
0

If ¢y 1is assumed to be independent of r, that is, CQa/Za = 1/2, the integrals

may bé evaluated exactly as
73 1 + /1 + V2 )

_v 2
Mu—z‘l'*'V-TQJZ 7
.Y g 2 - 372 3 1 + /1 + 12
MB = -3 1 + 7 % " 1§ VvVt oan — . (31)
_i 2 2 VJ1t 1+71+V2
Me-16/1+V(2+V)-ﬁzn———V—— |

(Eqs. (31) continued on next page.)
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(31)
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and with a mean angle of attack,

c
7= ¢ L+ ¥/ p3

o

[ NE>2

The behavior of these coefficients is clearer from the expansions for small
and large V:

small V large V
" : !
M -5+ VD) - 7
M Els‘(l'vz) g
Hu z;-ln-% 5
y* -7 5
ﬁf 1+ 272 %V
[0

This behavior is also shown in the approximate expressions based on the inflow
angle ¢ at an effective radius. These expressions (eqs. (29)) are in fact most
convenient for examining the general behavior, since they contain (in simple
form) the behavior over the complete range of inflow ratio. For numerical
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work, it is straightforward to evaluate the coefficients by use of the exact
integrals (eqs. (31)) or even more complete expressions (as derived in a later
chapter).

The flap damping coefficient Mz is negative (which is positive damping);
the inplane force due to flapping velocity Hé has the term Cp/ca as expected,
and the inflow term Hg* is negative and therefore opposes the contributions
from tip path plane tilt of the rotor thrust. The speed stability coefficients,
M, and Hy,, and pitch control power coefficients, Mg and Hg, are all positive.
All coefficients are of order 1 for high inflow. For low inflow only, the
flap damping and control, Mg and Mg, are of order 1; the flap moment due to
inplane velocity is an order V smaller in low inflow, and all inplane force
coefficients are an order V smaller than the corresponding flap moment coeffi-
cients. Flap damping Mg and the mean blade angle of attack (for given rotor
thrust) are decreased by high inflow, but remain the same order as for low
inflow; the other coefficients increase with increased inflow ratio. For low
inflow, the rotor thrust coefficient terms must be retained for M, Hys and Hé
(but not for Hg*; Hg, of course, has only cg, terms), but for higﬁ inflow, they
may be neglected for all coefficients.

SECTION 2: THEORETICAL MODEL FOR A ROTOR IN HIGH INFLOW

Equations of Motion and Forces for the Rotor

With the procedures to be followed established from the derivation and
discussion of the simpler four-degree-of-freedom model, consider now a more
comprehensive model for the rotor motion. The blade motion is extended to both
flap and lag (first mode out of plane and inplane) degrees of freedom, and the
shaft motion to all six degrees of freedom; inputs from blade pitch and aero-
dynamic gusts complete the model. The equations of motion are derived for the
rotor degrees of freedom, and expressions for the rotor forces and moments
acting on the hub are obtained. In-a later chapter, a wing is added to this
model, thereby completing the equations for use in the study of proprotor
dynamics.

The model considered and the conventions for the hub forces and moments,
pylon motion, and aerodynamic gust are shown in figure 3. The pylon motion is
defined about a pivot a distance h aft of the hub. The pivot linear displace-
ment degrees of freedom are xp, yp, and 3p - vertical, lateral, and longitudi-
nal, respectively. The angular degrees of freedom are a,, a,, and ay (yaw,
pitch, and roll). The forces and moments exerted by the rotor on the hub and
the gust velocities are as defined in section 1. The torque reaction between
the rotor and pylon is @; following shaft-driven rotor convention, & is the
torque exerted by the shaft on the rotor, hence the torque moment on the hub
due to the rotor is -§ (as indicated in fig. 3). The rotor blade azimuth
angle ¥ is measured with respect to the pylon, which is rotated by aj in roll;
so the rotational velocity of the blade with respect to space is 9 + &y (with-
out blade flap or lag motion). The equilibrium velocity V with respect to the
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air is assumed to be purely axial flow. The blade motion is defined by flap
and lag (degrees of freedom) and pitch (input) motion with respect to the hub
plane.

The blade motion is represented by two degrees of freedom per blade:
flap and lag motion B and z, which are pure out-of-plane and pure inplane
deflection of the blade spar, respectively. The motion is defined with respect
to the hub plane. The mode shape of the blade deflection is ng(r) for flap
and n,.(r) for lag. These modes are functions of » and are normalized to 1
at the tip. The out-of-plane deflection of the blade is then a distance
B(¥)ng(r) normal to the hub plane, with B defined positive for deflection above
the hub plane (forward in airplane cruise mode). The inplane deflection is a
distance C(W)HC(P) from the undeflected spar line, measured in the hub plane,
with ¢ defined positive for deflection opposing the rotor direction of rota-
tion. Rotating mode shapes are used, that is, natural vibration modes includ-
ing the centrifugal spring due to blade rotation. A major influence on the
mode shape is the root restraint, that is, either a hinged or a cantilever
root. However, the centrifugal stiffening is so strong that the effect of the
root restraint on the lowest flap and lag mode shapes is restricted mainly to
the root area. The influence of the root restraint on the natural frequencies
of the modes is of primary importance. The first (lowest frequency) flap and
lag bending modes even for a cantilever blade are then nearly n = »; near the
root of a cantilever blade, the mode shape must deviate from this, of course,
to satisfy the boundary condition of zero slope.

The final form for the equations of motion is in terms of the nonrotating
rotor degrees of freedom. It is possible to have different mode shapes for
the various nonrotating degrees of freedom, for example, one for the coning
mode and one for the tip path plane tilt modes, depending on how the hub
restraint appears during deflection of the blades in that particular rotor
model. Two rotors are considered in applications of this theory; a canti-
lever rotor and a gimballed rotor. For the cantilever rotor, the mode shape
for all nonrotating degrees of freedom of the blade is that of elastic bending
with cantilever root restraint. For the gimballed rotor, the mode shape for
tip path plane tilt degrees of freedonm B1c and B1g is that of an articulated
blade, namely, rigid-body motion about a hinge at the center of rotation,
ng = r. For all other nonrotating modes of the gimballed rotor (specifically,
for the coning and blade lag modes), the rotor blade acts as a cantilever
blade, with corresponding blade deflection mode shapes.

The motion of a cantilever rotor blade in elastic bending is actually
more complex than the representation used here. The inplane and out-of-plane
deflections are highly coupled by the collective pitch and built-in twist of
the blade, which are large for the proprotor. Consequently, although the low-
est bending modes are usually still identifiable as predominantly flap or lag
motion, there is actually both inplane and out-of-plane motion in each mode.
The neglect of this effect, by assuming that the blade flap and lag degrees of
freedom are pure out-of-plane deflections and pure inplane deflections,
respectively, is probably the severest limitation of the theory presented here.
The basic features of the flap and lag motion are represented, so this model
may be expected to predict proprotor behavior fairly well.
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The equations of motion are derived for a constant rotor rotational speed
Q (with respect to the pylon); this is to be considered the model for powered
operation of the rotor. The autorotation case - where the rotor rotates freely
on the shaft, the rotor speed being determined by equilibrium of torques on
the rotor - can also be handled with this model if the collective lag mode Zg
is used. This mode involves the simultaneous motion of all blades in the lag
direction (opposite the rotor rotation direction); if there is no hub restraint
for this mode, it will be equivalent to a perturbation of the rotor azimuth or
rotational speed. If the mode shape for rigid-body rotation is used, and if
the natural frequency in the rotating frame is set to zero (n =r and v = 0 for
the ¢, mode), then, indeed, io will be just the degree of freedom that repre-
sents the rotor rotational speed perturbation. This is a good representation
of the autorotation case. The other limit, a fixed rotor rotation speed &,
will be considered as powered operation. With a constant rotor rotation speed
the collective lag mode is then elastic bending of a cantilever blade with
respect to the hub (which rotates at a constant speed). This limit is, in
fact, the case of operation with a perfect governor on the engine or rotor
speed. For an actual rotor in powered flight, the engine/drive train/governor
dynamics must be included to give a complete representation of the behavior.

The blade also has pitch motion about the feathering axis at the blade
root (given by 8), with the actual blade pitch measured from the hub plane.
The pitch has trim and perturbation contributions as before. The trim value
is due to root collective and built-in twist; the perturbation value is due
to a control input and pitch/flap coupling. Pitch/flap coupling (83) is
included for the gimballed rotor.

The equations of motion for flap and lag degrees of freedom are obtained
from equilibrium of moments on the blade. For the mth blade (m =1, . . ., N)
in the rotating frame, the equations are

]
=

5 2 (s _ - . . - .
IB(B + VB B) + IBa[ (ay Zax)cos wm + (ax + Zay)51n wm] + SBZP i
IC(C + vc g) + Sc[(xP + hay)51n v, - (yP - hax)cos wm] - ICaaZ = ML

The flap and lag aerodynamic moments on the blade are

1
MF = f nBFz dr
0
1
r .Ar nCFx dr

=
|
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and the inertia constants are integrals of the blade section MFSS :

~
Y
i
e
Y
N
3

0
1
Try = / ncrm dr
0
1
SC = [ ncm dr

The rotating natural frequencies of the flap and lapy motions are vg and v,
respectively. A subscript o will be added to the mode shape, inertias, and
natural frequency for the collective modes (coning or collective lag) since
these terms may not be identical to those for the cyclic modes (e.g., for the
gimballed rotor or the autorotation case),

The flap equation is forced by pure out-of-plane aerodynamic forces (#,)
and the lag by pure inplane forces (F2), because of the assumption of decoupled
flap and lag bending modes. The flap equation is as before, with the addition
of the acceleration due to longitudinal motion of the shaft. The flap mode
shape ng influences the effective inertias of the flap motion and the shaft
angular acceleration; with rigid-body flap motion, ng = r, the equation reduces
to that used for four-degree-of-freedom case. The lag motion couples with
inplane acceleration of the rotor hub (resolved into the rotating frame) and
with roll angular acceleration of the rotor shaft. The Coriolis inertial cou-
pling of the flap and lag equations has been neglected. The coefficients of
these terms would be proportional to the rotor trim coning angle, which is of
order yCr/oa. However, aerodynamic terms also contribute to this coupling,
and for high inflow these coefficients are of order 1. Hence the Coriolis
inertia coupling may be neglected compared with the high inflow aerodynamic
forces.

1
Now let I =.f r?m dr and normalize the inertias by dividing by Ip; this
0

normalization is denoted by superscript #, for example, Ig* = Ig/Ip. The Lock

30



number is defined (as before) by vy = pacR”/Ib. Ty is only a normalization
factor - a representative moment of inertia of the blade. It is used in the
blade Lock number (the ratio of blade aerodynamic to inertial forces) and to
normalize the blade masses so they are of order 1. A convenient inertia 1s
that of the blade about the shaft, that is, the rotary moment of inertia of
the entire rotor divided by ¥. This inertia is a well-defined property of the
rotor and also should be the largest possible moment of inertia of the blade.

This normalization yields the following equations:

o 5 Ry . e vei e P

I8 (B + Vg B) + IBG[ (@y -ax]cos v, * (ax + ~QH)51H ¢m} T o T a5
r33)

ML

% ‘- ) o A . 4 e o - ;. _ Z?“ . _ P - _ L

IC (z + vC r) + 5, [(xp + nay)sln wm (JP WQS)LOS wm] ICaag Y %o

If n = » for the flap and lag modes, then the I'* terms arc all ncarly 1 and the
S* terms, nearly 3/2 (for constant mass distribution); with usual blade con-
struction, the I* terms are slightly less than 1, and the 5% terms around 1.

The Fourier coordinate transformation is now applied to convert the
cquations of motion and degrees of freedom of the rotor from the rotating
frame to the nonrotating framc. Again, the nonrotating degrees of freedom
above 0, 10, and 17 arc not coupled with the shaft motion, so these higher

rotor degrces of freedom involve just internal rotor motion. In studies of
the coupled rotor and shaft motion then, the 0, 1¢, 1 sct is sufficient to
trecat the gencral case of ¥ 2 3. The nonrotating cquations of motion for the
degrees of freedom By» BIC’ 815, T CIC’ and CIS are:
51 A
. Fy
* 2 2 o+ r:;(' - = Ny —
. Ig (Bg *+ viofy) g TP "o
0 0
A”':"
Fl”
ATs 5 2 % e . _ &
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where the flap acrodynamic forcing moments are

Mp = M

o
T
™
}‘j

N
WFlG =7 E M@ﬁ cos 1y,
, 2 M sin iy,
RS DI '
m
and, similarly, for the lag moments. The flap modes are coning (Bg) and tip
path plane tilt (B1~» B1s). The collective lag mode Ty 1s simultaneous lagging

motion of all the blades (with respect to the hub rotating at constant speed @,
for the powered casc; for the autorotation casc, gg is the rotor speed pertur-
bation degree of frecdom). The cyelic lag modes 7. and €15 produce rectilin-
car inplane motion of the net rotor center of gravity, laterally for 210 (~up
direction) and vertically for Z1: (x5 direction). Note that the equdtions
separate into a lateral/vertical group (17, 19, x, y) and a longitudinal group
(0, 7), with no inertia coupling between them. This decoupling is maintained
by the acrodynamics also (because of the trim axial flow); the shaft motion due
to the actual wing degrees of freedom will, in general, couple the two groups
of cquations.,

The hub moment duc to the rotor may be expressed (as before) in terms of
tip path plane tilt Blo and By

20
Cy
ga IB*(vBZ -1 1<
= 35
- (35)
’)"‘1
““u 15
T
oa
The inertia contributions to the rotor drag, side force, thrust, and
torque acting on the hub are
Ve " N
Linertia =~ 2 Sl T My (ap hay)
Y =Es'é - NM, (. - ko)
“imertia 2 “cC1C »¥p %2
r (36)
Tinertia = ~V3ggBy - NMpZp
“inertia T Mrgaty * Modiz )




The drag and side forces are the net inplane acceleration of the rotor due to
the motion of the shaft and blade; similarly, the thrust is the net longitudi-
nal acceleration of the rotor; and the torque, the net angular acceleration.
The new inertia constants are
1
U/P r2m dr

I, =
0
1
ﬂlb = .}{~ m dr
0

Therefore, NI, is the moment of inertia of the entire rotor about the shaft,
and NMp, the mass of the entire rotor. When normalized (divided by Ip), I,*
is nearly 1 (exactly 1 if I, is used for Tp) and Mp* is around 3 for a uniform
mass distribution (Mp* is greater than 3 for usual rotors). In coefficient
form, dividing the side and drag forces by (N/2)Ipy and the thrust and torque
by NIpy, these forces are

A
EEE. = - EE_.E o 2 AR+ iE,)
9%/ inertia R e
2Cy 5% .
—_ = =7 .- = b*(y - ha )
9% inertia Yy 10y r *
c 53 M, # B
T ~ Bo 5 B
= = - — Bg - .
99 ) inertia y P
*
CY ICOQ . IO*
oa T fo Ty B
inertia Y

Rotor aerodynamics- The analysis follows that of the previous section;
the section aerodynamic environment, with the conventions for forces and
velocities, remains as shown in figure 2. With the present degrees of free-
dom and shaft motion, the perturbation velocities are

Sup = r(a = &) - (@ sin g, ¢ &, cos V)
o (V+ U)(ay sin y, + a, cos ¥ )+ V(B, cos ¢+ a, sin v
+ (yp cos wm - xp sin wm]
= pSur, + Sup
<A B -
o o . (38)
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Su_ = n(—au cos wm *ar sin wm) + (1 + w](ay cos wm - a sin wm)
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1

2]
o



and the blade pitch perturbation is as before, including control and pitch/flap
coupling Xp:

86 = 6 - KpB (39)

The trim velocities are, again, for equilibrium axial flow: wp = p, up = V +v,
and up = 0,

The rotor motion contributions to the velocity perturbations (in 5“TA and
Supp) assume that Ng = Ng = r for the flap and lag mode shapes. This appToxi-
mation is satisfactory for the aerodynamic forces. The first modes of flap
and lag are nearly this anyway, even for a cantilever blade. Also, this approx-
imate mode shape is correct at and near the tip, where the most important aero-
dynamic loading occurs. The mode shapes Mg = Ng = I" are used in the aerodynamic

moments on the blade so that
1
I “/F rFZ dr

0

1
- .//. PF% dr

0

=
it

=
]

The use of this mode shape for the aerodynamic greatly simplifies the
aerodynamic coefficients involved or, at least, reduces the number of coeffi-
Ccients required. With the correct ng and Nz, separate coefficients are
required for blade motion and shaft angular motion, and for the lag moments
and torque moments on the blade. With Mg = ng = », only r (to some power)
appears in the integrands of the aerodynamic Eoefficients, never n or n<;
hence the evaluation of the coefficients is also simplified.

The expressions for the section aerodynamic forces (L, D, and F,, their
decomposition into the hub plane F; and F,, and the rotor forces and moments
(r, ¥, H, @, and Mp) in terms of the net rotating forces on the blade arc the
same as in the previous section. Again, the net blade forces may be expanded
as linear combinations of the velocity and pitch perturbations:
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where M is the flap moment; X, thc blade inplanc force (drag direction); ¥, the
blade thrust; &, the blade torque moment; and 7, the radial force. The sub-
scripts denote the source of the force or moment; subscript ¢ indicates trim
values; subscript u, hub inplane velocity (speed); z, blade rotational vclocity
(lag damping); 8, flapwise velocity (flap damping); », hub longitudinal velocity
(inflow); and 6, blade pitch control. The coefficients may be grouped as
inplane and out-of-plane forces, so the # and @ terms have similar bchavior,
and the ¥ and T terms have similar bchavior. Alternatively the cocfficients
may be grouped as inplanc and out-of-plane velocities so the cocfficients with
subscripts u and { have similar behavior, and those with subscripts 2 and A
have similar behavior. The only difference betwcen the coefficients within a
particular group (say, the out-of-plane forces duc to out-of-planc velocities:
Mg, My, Té, and 7y) is a factor of r more or less in the spanwise integration
(the difference between the force and moment, and between the translation and
rotational velocities), hence just slightly different numerical constants. The
behavior of the coefficients with a variation in the parameters (in particular,
with forward velocity V) is basically the same within a group; that is, it is
determined primarily by whether an inplane or out-of-plane force is involved,
and whether an inplane or out-of-plane velocity or blade pitch control is the
input. The fundamental set of coefficients is considered to be the M and ¥
terms with subscripts u, 8, and 6 - one cach of inplanc and out-of-planc types-
together with T, and ¢, for the trim values. Then the bechavior of all other
coefficients may be inferred from a knowledge of the behavior of this sct.

Again, the inplane force due to flapping velocity is written:

CT
o = e R 4
HB +HB ( l)

to show explicitly the contribution due to the thrust vector tilt.

The blade forces can now be summed over all N blades to find the net rotor
forces. The aerodynamic coefficients are independent of iy,, so the summation
operates only on the blade velocity perturbations. With the definitions of the
rotor nonrotating degrees of freedom, the flap and lag moments required for the
equations of motion are
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and, similarly, for the lag moments, with the M terms replaced by Q terms,
The aerodynamic contributions to the rotor drag force, side force, thrust, and
torque on the hub are
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The acrodynamics maintain the separation into lateral/vertical and longitudinal
groups because of the purely axial flow in the trim state.

Equations of motion- The complete equations of motion can now be obtained
by combining the aerodynamic and inertia terms. For the lateral/vertical
motion group, the equations of motion are
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with the hub moment,
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and the vertical and lateral forces on the hub,
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The longitudinal equations of motion are
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Note that if, in Cp/oa, the substitution is made for g from the equation of
motion:
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where the last expression holds if n, = r is assumed for the inertias, as it
o}

was for the aerodynamic terms. That assumption is consistent with the use of
only one blade lag mode; this result is comparable to that for the hub moments
M, and My in terms of rotor tip path plane tilt 810 and BlS'

The present model may be used for the case of the rotor operating in
autorotation, as is frequently done for proprotor dynamics wind-tunnel tests,
by use of the collective lag mode for the rotor speed perturbation degree of
freedom. It is important to include that degree of freedom so that proper
representation of the autorotation dynamics is obtained. In fact, the
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representation used for the powered case, assuming that the rotor hub
rotational speed @ is fixed by the engine and that the collective lag motion

is elastic rotor deflection with respect to the hub, can only be considered a
limiting case of a perfect governor. A model with true engine/governor/drive
train dynamics would always allow some rotor speed perturbation, and hence that
motion would also have an important influence on the powered case.

Autorotation operation means no restraint of the rotor rotation about the
hub. Therefore, no rotor torque is transmitted to the shaft, and no pylon roll
motion is transmitted to the rotor. The collective lag degree of freedom is
then rigid-body rotation of the entire rotor about the shaft. The collective
lag mode shape is then nC = r; with no restraint of this degree of freedom,

0
vC = 0. The lag motion of the blade is defined with respect to the pylon,
0
which is rolled by a,, rather than with respect to an inertia frame; there will
then be a response o% Lo to pylon roll agy, but the zero spring rate for col-
lective lag motion (vC = 0) assures that this motion will be only that
0

required to hold the rotor fixed with respect to space. Since no torque is
transmitted through the rotor shaft during autorotation, any Cp forcing terms
in the pylon/wing equations of motion should be dropped. This would auto-
matically be accomplished by the zero spring rate (vgo = 0, as in eq. (49)),

but actually dropping Cp would result in a better conditioned numerical prob-

lem. With n = r, it tollows that 7% = I* = IO* {and all are equal to 1 if
Co Zo oo
Iy = I, is used); and the zero collective lag spring rate means that vC = 0.
0

These changes are all that are required in the equations of motion to accommo-
date the autorotation case.

The Rotor Aerodynamic Coefficients

In this section, the aerodynamic coefficients of the rotor forces
defined in equations (40) are derived and discussed. The derivation follows
that used for the four-degree-of-freedom model; all the coefficients required
will now be derived, and the effects of drag and compressibility retained.
First, the basic set of coefficients is considered; the ¥ and H terms (out-of-
plane and inplane forces) with subscripts u, B, and 6 (inplane and out-of-
plane velocities and blade pitch control), with T, and @, for the trim forces.
The trim thrust and torque follow directly from integration of the section
forces (no perturbation process required) as

c 1 c e
T _ 7 . 2 d
sa = o '/ U(“T 2a ~ Y Za)dr

0
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From the perturbations about the trim state, the flap moment is

o] 1
F e c
2 = L a
/ r = dr = / rU(uT 5, = Up 2a>dr
0 0
c

: 02 2oc
+ r EE-(SUuT + UGuT) + UuT —Ea-éa
0 ‘

"ty °d

+ UMT Ta §M - Z ((SUMP + UGUP)
C‘da CdM

- UL{P —25 So - UL{.P _22 8M | dr

2 e Me 2

_cafe ), Lt Ay ¥p ir sy

2a \U 2a " U 2 U Pp
e

1 2 °q
a a
+ /o P(UuT—z—a—- UuP —ﬁz)dlﬂ &8

= Mb + MuéuTB + Mé6upB + Meﬁe

and, for the blade drag force,
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x _ 4 d
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0 0
1 C.R
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Qu
Uup >, So
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RM cd
+ Uup g M + Ea-(GUuT + UGuT)
cga ch
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+
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|
1o =
QR
+
&
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o
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R

= /f + HPGMTB + HéduPB + H96e

The radial force is simply



D

]?UCSZ/,R - B .

The cocfficients may be identified now; the trim values of the blade
section force coefficients (¢g» ¢4, and their derivatives, cvaluated at the
angle of attack and Mach number of the radical station) must be used in the
integrands, and the trim velocities are

uT=r

V+vu

[l

U

U Vr? + (V + )2

FFor convenience, V + v will be written as V in the following expressions. If
one substitutes for the trim velocities, the rotor acrodynamic coefficients are

C 1 e e
T i, X _ y_dY),
s / L(P > 14 2a>dr 3
0
1
C e e
2 rl V’—&-+ r d dr
oa 2a 2a
0
1 Me Me
7 _O_Q‘U + 24. QIM fi - c_d..+ dM ﬂ
U 2a 2a 2a U 2a 2a u
0
e e
'8 d
o oy 3 50
+( 2a 4 Za)U]dp (50)

X
1

: ga ° o
= —= - —_— /
Me 0 rUtr 5 V 5 dr

(Eqs. (50) continued on next page.)
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where U = (r»? + V2)1/2. The expression for /g* was obtained from
Hg = Cp/oa + lg* using the result for Cp/oa. The effect of 7y in the sum

Lt 4, 1s just a term (ca/2a)U in the integrand. So F, only adds to the drag
terms of #,, which arc usually ncgligible for high inflow aerodynamics anyway.
The following expressions for Y and Hé arc also required, at least to find
the other coefficients:

Me Me
Hlfe % e, e d 2
. 4 MY rV 4, d M
H = : + — + = U + 1=+ —
u 2a Ja U 2a 2a 2a U
0

E ja |4
G
A\ *55"+ r 2a ] U dr

=

(
N
Q

o . Me, , ey (51)
i = r 3 77 Q; + M V2 + __Cg_ + M ﬂ
8 22 2a 2a U 2a 2a U
0
: a Cda r
I AR/ ) rl.
i bl

The behavior of (and the expressions for) all the other coefficients can
be inferred from a knowledge of the above sect. The other coefficients follow
immediately from the fact that, in the spanwise integration, the T terms have
one less r than the M terms, the & terms have one more » than the H terms,
subscripts ¢ have onec more r than subscripts u, and subscripts ) have one
less » than subscripts 8. The basic behavior of the coefficient is determined
by whether it is an out-of-plane force or an inplane force, produced by an
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out-of-plane or inplane velocity or blade pitch control. The combinations

#, + Ry and fig* = H3 - Cp/oq are special effects that do not have comparable
forms in the other coefficients. There is no radial drag due to blade lagging
velocity (no Sup) and no torque moment due to the radial drag force, so there
are no R contributions to H& or any of the ¢ terms. The inplane force due to
flapping velocity is written Hf = Cp/oa + H3* only to show explicitly the term
due to tilt of the thrust vector, so it is not extended to #y or any of the @
terms. Hence the coefficients H, and Hg are used to derive the other
coefficients, not Hy + Ry and #Ag*.

If all terms but ¢; and ey, are dropped from these expressions (and the
degrees of freedom reduced to 810, BIS’ Gy and o,), the results of the
previous section are recovered.

Evaluation of the coefficients- Approximate expressions for the
aerodynamic coefficients are obtained by evaluating the integrands at an effec-
tive radius, with the techniques of the previous section. The results for the
complete set of coefficients required are (dropping terms that are negligible
for both high and low inflow):

M, = (3/4) (Cp/oa) w
M, = (sin 4)/6 + 20p/oa

My = (sin ¢)/8 + 3/2(Cq/0a)

My = -(cos ¢)/8

M = -(cos $)/6

My = 1/(8 cos ¢)

T, = Cp/oa = a/(6 cos ¢)

T = (sin ¢)/4 + 3Cp/oa

U
\
T& = (sin ¢)/6 + 2Cp/oa (52)
Té = -(cos ¢)/6
TA = -(cos ¢)/4
Te = 1/(6 cos ¢)

Hy = (4/3)(Cg/oa)

H + R = (Vsin ¢)/2 - 4V(Cp/oa) + 6(Cg/oa)

H u
Hi = (V sin ¢)/4 - (4/3)V(Cqp/oa) + (8/3) (Cg/oa) |
Hé = -(sin ¢)/6 + Cp/oa

(Eqs. (52) continued on next page.)
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H, = -(sin ¢)/4 + (3/2)(Cp/oa) )
H = V/(4 cos ¢)

@ = CQ/Oa = V(Cp/oa) + cd/8a

Q = (V sin ¢)/4 - (4/3)V(Cp/oa) + (8/3)(C,/oa)
u 2 > (52)
QC = (V sin ¢)/6 - V(Cp/oa) + 2CQ/oa
= -(sin ¢)/8 + (3/4) (Cp/ca)
@, = -(sin $)/6 + Cp/oa
g, = V/(6 cos ¢)

¢] /

where the inflow angle is evaluated at an effective radius rp (rp, = 0.75
usually works well) so that

sin ¢ = V/vVr 2 + V2

Pe/VPCZ + V2

= _1 2
a{r,) = 8(r,) - tan Vir,

cos ¢

Wherever V occurs in these cxpressions, V + v is rcally meant, but the effect
of the induced velocity v is important only for low inflow. The similar behav-
ior of the coefficients within a group (as discussecd above) appears in these
approximations.

The c¢;(Cp) terms are important only for the inplanc forces due to inplane
velocities at low inflow. The ¢cy(Cp) terms are important for low V, but never
for the out-of-plane forces due to out-of-plane velocities. All 7 and (g
terms may be dropped for high inflow, where V is of order 1; in that case,

V + v may be replaced by V also. The compressibility influence, especially edy,
and cy,, may result in important contributions from the 1lift and drag terms
even in high inflow; stalled flow may affect ¢y and ¢4 . In general, however,
for high inflow the behavior of the coefficient$ is giv%n primarily by the cg
terms alone; this is expected to occur so long as significant stall or com- ¢
pressibility effects in the trim operating state are avoided.

The basic features of the rotor aerodynamic coefficients in high inflow
are obtained then the cg, terms. Of particular interest is the variation with
forward speed V. If it is assumed that V/QR is of order 1, that all the blade
section coefficients are small compared with C Qg and that cgu/Za = 1/2, then
the coefficients reduce to
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1 ) )
Mu=%/ Vg
+V2
- -1 /
Yr +V2
Me=% / r2 /p2 + V2 gn
0
& (53)
2
Hzgf_v_dr
H 0 VY’2+V2
r2y
H':- ———dr
B //‘—v
1
H8=%/ Vo2 + V2 dr |
0

These coefficients were obtained in the discussion of the aerodynamics for the
four-degree-of-freedom model, and the integrals were evaluated in that section
(eqs. (31)). The variation of these coefficients with forward velocity is
shown in figure 4. The behavior of any of the remaining coefficients is simi-
lar to one in this set, but with slightly different numerical constants.

If only the cg, terms are retained and with ey /2a = 1/2, the entire set
of aerodynamic coefficients is
M = Vf, H, = V?-fo \
M = Vf, H, = V2f1
Mg = -7, Hg = Hg* = -Vf,
M, = -f, Hy = -Vf,
Mg = 92 g = V9, ( (54)
T, = Vf Q, = V3f,
T, = Vf, 9; v3f,
g = -1y 9 = 7T,
=12 9 =,
To = 9, % = 19,

47



where 1

o 1 f Y’n dr
S T 5 [ ——
2 0 VI’Z + V2

The integrals required are

O
=
A

fo =
fl=é—(/1+v2-V)

f2=%/1+V2-%V2f‘0

f'3=é[/1 + V2 (1 - 2v2) + 273
Fo ==+ 72 (2-302) « 2 b
L 16 8 0

-1y 7 . L2
go—z 1 +7V +2Vf0
g, =3 [T+ )7 - 13

g, =1 M+ ¥ (2+72) T

. The aerodynamic coefficients can also be evaluated using the exact
expressions (eqs. (50)), including the effects of the blade 1ift and drag, and
of stall and compressibility - the only approximation then being in the knowl-
edge of the section aerodynamics. To evaluate the coefficients requires the
blade section force coefficients and their derivatives with respect to angle
of attack and Mach number: cga/Za, cz/Za, eq/ 2a, cda/Za, egl2a + MbQM/Za,

and cy/2a + Mch. The coefficients are to be evaluated at the blade trim

angle of attack and Mach number:
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6 - tan 1 (V + v)/r

Q
[}

M

2 2
Mtip/% + (V +v)

The blade twist and the collective pitch required for a given flight condition
are then required to evaluate the section aerodynamic, in contrast to the
results with only ¢g terms where only V is required. The section coefficients
may be evaluated frof tables of airfoil section data, appropriate to the rotor
blade being considered.

Alternatively, representative analytic expressions may be used for the
blade section coefficients. While a particular section may not be considered
then, a representation that includes typical stall and compressibility effects
will allow a general study of the influence of these effects on the rotor
aeroelastic behavior. The following expressions for the section coefficients
are used here. Below a stall angle of attack ag (typically 12°), a constant
lift curve slope is assumed, with a Prandtl-Glauert correction for compressi-
bility, so that ¢y = aa(l - Mz)‘l/z, and the 1lift coefficients required are

e \

L
o _1 _ m2y-1/2
2a 2 (1 )
s
Lesa-wyt2 o (55)
Me
e 2
L. M _a o a2y-3/2
et T2m -z (- M)

In practice, the Prandtl-Glauert factor (1 - Mz)‘l/2 is truncated at its value
at M = 0.95, say, to avoid numerical problems near M = 1. The drag for
unstalled flow is

cq = 0.0065 - 0.0216a + 0.4a2 + Acy
{O.43(M + lal/0.26 - 0.9) if |a| > ay. = 0.26(0.9 - M) (56a)
Ac , =
d

0 otherwise

This is the classical result of Bailey (ref. 31) with a lower Cdpsy, 38

appropriate for current proprotor sections, and with a compressibility term
obtained from section tests on rotating blades. The compressibility drag
increment has a critical Mach number of 0.9 at zero angle of attack; above the
critical Mach number, there is a large increase in ¢4. The drag coefficient
and its derivatives must be divided by 2a; a = 5.7 is used for the two-
dimensional 1ift curve slope. For stalled flow, la]| > ag, the following
approximation is used:
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1

= ey  sgn{a)
v e (56b)

¢4 cds(sin a)?

where, typically, Cpq = 1.0 and Cdy = 2.0. Combined compressibility and stall

effects are not included. A very important influence of stalled flow is that
possibly Cly = 0 there, so the cy, cg, Cdys Copp and Cdly terms in the coeffi-

cients dominate the behavior even in high inflow (if a large enough portion of
the blade is stalled).

With these analytical, semiempirical expressions for the section
aerodynamics, the influence of the drag and 1ift terms and of stall and com-
pressibility on the rotor aerodynamic coefficients is examined. For the
design of a specific rotor and the prediction of its behavior, the section
characteristics appropriate for the actual blade sections should be used. For
the present work, it is desired only to check the relative importance of these
effects so approximate 1ift and drag coefficients are satisfactory. The
influence of these effects on the rotor coefficients is shown in figure 5, for
Hg, HU’ Hé, Mg, M, andAVé. The coefficients were calculated using the exact
expressions (eqs. (5C)), with the above approximations for the section aero-
dynamics, for two rotors.! The collective required to give the rotor thrust
for equilibrium cruise at a given V is used. In figure 5, the results for
these two rotors are compared with the coefficients found using only the cg,
terms. The coefficients with only the Cp terms arc given by equations (31)
(fig. 4); the approximation is the same for the two rotors since it is inde-
pendent of the section characteristics. The most important difference between
the two rotors so far as the bechavior of the coefficients is concerned is that
they have different tip specds. Therefore for a given forward speed V/QR, the
blades have a different resultant Mach number M = Mtip(p2 + V)12 3¢ 3 sec-

tion. The tip resultant Mach number M = Mpp (1 + v2y1/2 is shown in figure
5(b) for the two rotors. '

The exact coefficients in figure 5 show a significant difference from the
coefficients based only on the oy terms; the difference is particularly large
when the tip critical Mach number (0.9 for o = 0 with the section characteris-
tics used) is exceeded. The following conclusions are reached then: the ey
terms in the rotor aerodynamic coefficients give the basic behavior, at
least so long as the section critical Mach number is not exceeded; the other
terms in the coefficients are not negligible, however, and should be included
to properly evaluate the behavior of a real rotor, especially when operating
at high section a or M. When the section aerodynamics other than ey are
required, actual section characteristics should be used rather than
representative expressions.

Three methods for evaluating the rotor aerodynamic coefficients have been
described:

ISpecifically, this is for the two full-scale rotors examined in later
chapters, hence the labels ''Bell" and '"Boeing" in figure 5.
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(a) Approximations based on evaluating the integrands at an
equivalent radius.

(b) Approximations based on the retention of only the ¢y, terms,
with eg,/2a = 1/2; the integrals may be evaluated, giving
the coefficients as functions of ¥ alone.

(c) Approximations based on analytical expressions for the blade
section aerodynamics in the exact coefficients; representa-
tive stall and compressibility effects are included, but no
specific section is modeled.

The coefficients based on the equivalent radius approximation (method (a)) are
used only for the expository development, never in the calculations. Method
(b) treats the ¢y, terms correctly and exactly, and if the other terms are
required method (c¢) should be used rather than method (a). The coefficients
based on just the o terms (method (b)) will normally be used in the calcula-
tions here. These coefficients include the basic behavior with inflow ratio,
which is of primary interest here. In fact, this level is usually a good
approximation for calculating the dynamic behavior (as shown later}. Method
(c), the coefficients based on the exact expressions (eqs. (50)), is used here
only to check the influence of the terms other than Coq

The method used here allows the derivation of rotor aerodynamic
coefficients, including the influence of 1lift and drag and of stall and com-
pressibility, with no more difficulty than a derivation that includes only cg,
terms. Therefore, a good representation of the rotor aerodynamics 1s available
if one chooses to use it (and if enough information on the section aerodynamics
is available). Evaluation of the coefficients in method (c¢), or even including
tabular data for the actual blade.sections used, requires numerical integration
over the span, but that is no problem for numerical work. There is only one
real complication in evaluating the coefficients by the exact expressions: the
trim angle-of-attack distribution is required, which means that the blade col-
lective pitch at the given operating state must be known. Hence a preliminary
solution of the rotor performance to find the collective pitch is required
before the coefficients can be evaluated for the dynamics. 1In contrast, with
only the ¢y terms (method (b)), only V/QR is required to evaluate the
coefficients.

Discussion of the coefficients- Some properties of the coefficients are
discussed here; in particular, certain useful equivalence among the coeffi-
cients are derived. A helicopter rotor in hover (low inflow axial flight)
exhibits equivalence of control plane, hub plane, and tip path plane tilt;
that is, these inputs produce the same forces on the helicopter (with certain
exceptions). This behavior translates into certain equalities among the rotor
aerodynamic coefficients. The influence of high inflow operation on the
behavior of the rotor, and on the basic set of coefficients in general is
examined now.

Consider the longitudinal moment on the rotor disk due to tip path plane
tilt (Bjg, B1g), hub plane tilt (uy, ay), and control plane tilt (8y., 619);
from equation (42), this moment is
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M
F1g

ac

= (V + U)Muocy + Mé(Bls - BlC + dx] + Meels
Hub plane tilt o, gives an inplane component of V + v, hence a flap moment
through the spee% stability coefficient M,. Tip path plane tilt Bjo (with
respect to the hub plane) gives a flapping velocity in the rotating frame,
hence a flap moment through the flap damping coefficient Mg. Control plane
tilt 71+ produces a flap moment through the pitch control power coefficient

Mg. Tor low inflow,

so the flapping produced by blade pitch is B1o/ 019 = Me/—Mé = 1 (if vg = 1).
That is the familiar result of helicopter hover control (with a low inflow
rotor): the tip path plane remains parallel to the control plane. In high
inflow operation, however, Mg and -Mg are not equal. Based on the equivalent
radius approximation,

Mg = §Cos o
_ _Cos ¢
g = 8
so that Me i 1
_Mé cos? ¢

Pitch control power Mg increases with V, while the flap damping Mé decreases;
the ratio then increases with V. For a V/QR up to 1 or so, there are no
drastic changes in the magnitudes of the coefficients, but the effect is
important. Based on just the ¢y, terms, the coefficients are

1 cza
% 4
5 ruTU o dr
0
1 w2 Cl
M. = p2 T o Jdr
B 2 2CZ
0 u

The integrand of Mé is a factor uTr/U2 = r2/(r? + V2) smaller than that of
Mg; therefore, the ratio of the coefficients is of the order r,2/(r,2 + V2) =
cos? ¢ (as above). This high inflow effect results from the fact that the Sa
due to B is not the same as that due to 6 when the inflow angle ¢ is large.
The flapping term comes from Sup = rg so that
U, 8u Uy .
Sa = &6 - re = 886 - —£i B
v? U2

which gives the additional factor wm/U? in Mj.
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Consider now the hub moment in terms of flapping with respect to space
(in an inertia frame), that is,

Bicr = Bic — %

Bisy = Bls *+ og

so that the longitudinal moment on the rotor disk due to flapping (with respect
to space), hub plane tilt, and control plane tilt is
Mp

15 _ . .
i [-MB + (V + v)Mu]ay + Mé(BlsI 'BISI) + Meels

Flapping with respect to space acts through Mg to give a hub moment as usual.
The moment due to hub plane tilt o, is [—Mé + (V + v)MU], while that due to
control plane tilt is Mg. In high”inflow, these moments are not equal, for
while both o, and 8jg tilt the control plane, only ay tilts the hub plane
reference frame also. The difference is, in fact, small. From the definitions
of the coefficients (eqs. (50)), it follows that

'Mé + (V + v)Mu =

] |
X .
@ \
o
+
V—
o\ r——"s
NIQ
- Q Q.
3 I
= <
T +
N|Q N
Q=
+ ' Q
N =
s e
Nl() |
Q
~—
g N| al
Qe
N——
Q!SM

Hence c
"Mé + (V + v)Mu = Me * ou (57)

Now Mg = 1/(8 cos ¢), so that Mg >> Cg/oa (which is of the order of VCp/oca) for
all V, both high and low inflow. So for all V,

-M: V+0)M =
8 + (V +v) " Me

which means that hub plane tilt and control plane tilt are equivalent. For
low inflow, (V + v)M, is of order v2 small, while Mg and Mgy are of order 1 and
both equal 1/8.

Similar results may be obtained for the inplane forces. Consider the
vertical hub force due to flapping, hub plane tilt, and control plane tilt:
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oq 15

Tip path plane tilt B1o gives an inplane hub force by tilt of the thrust vec-
tor, while blade pitch control has no such effect. The corresponding hub

r

forces due to flapping and pitch, fg* and Hy, are equal for low inflow where

~

Boo= gtz

9 B 4

In high inflow, these forces, like the flap moments, are no longer equal. On
the basis of the equivalent radius approximation,

H = 7
3] 4 cos ¢

ok o= sin ¢

B 6

so that

i

0 . 1
A cos? &

B v

Both forces increase with V, but g increases faster by a factor

s - .
(cos ¢)-% = (ro= + Vz)/rgz. On the basis of just the 0, terms, the
coefficients are

C
1 ]
. (84 ’
= {14 — ¥
6 \LLP 21
0
I
s o i B
e T ' N
0

The integrand of Hé* is a factor ugw/ﬁz = pl /(w7 4 7Y smaller than that of
#a, which agrees with the result from the cquivalent radius expressions.
Also, it is the same factor found between the integrands of Mé and Mg, as
expected since the difference between the coefficients has the same source in
both cases, namely, the difference between 8t due to 5 and due to 2 when the
inflow ¢ is large. 1In terms of flapping with respect to space, the hub

force 1is

20 e el
e - . ) . =

— = | - A (V) o+ ) e o+ i3 - = e e R + /70
oa oa B ( I U TR RCESE ga R /10 g 17
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The equivalence of hub plane tilt and control planc tilt may again be
demonstrated; from the expressions for the coefficients, there follows cxactly

-Hé* + (V +v) (HU + RU) = He + (V + U)FU {58)

which is, for all V, approximately

LA z
-HB + (V + v)(Hu + RU) z He

I
o)
'S

and if only high inflow is considered, so #; it follows that

B g’
'Hé + (V + v)(HU + R ) = H

The speed stability coefficients ¥ and #, + 7 produce moments and
forces due to hub inplane velocity - that is, due to shaft linear velocity,
aerodynamic gusts, or angular velocity of the pylon about a pivot aft of the
hub. For low inflow, these coefficients are an order V smaller than the other
moments and forces. For high inflow, however, the speed stability cocfficients
are of the same order as the others, and this difference betwecn the low inflow
and high inflow aerodynamics may be expected to have an important influence on
the aeroelastic behavior. The speed stability cocfficients usually produce
positive damping of the motion (see, e.g., the four-degree-of-freedom model,
eqs. (26)). With high inflow, hub plane tilt results in an inplane component
of V that produces forces and moments through the speed stability coefficients.
These forces are in the same direction as the displacement, so they act as
negative springs (eqs. (26) again). The speed stability coefficients often
appear in the equations of motion as coupling terms rather than as direct
damping or spring terms. In such cases, the effect of the coefficients may be
significant since their magnitude is of order 1 in high inflow, the overall
effect may be stabilizing or destabilizing, depending on the coupled motion
involved.

The inplane forces on the hub due to tip path plane tilt have
contributions from the direct tilt of the thrust vector (2Cp/oca term) and from
the inflow (#g term). From the equivalent radius approximation, the relative
size of these two terms is

2CT/Oa _a/(3cos ¢) _ 3 a
V cos? ¢

HF T T(sin 9)/6 2

Thus the ratio is of order a/V. In high inflow, Cp/oa may be neglected since
V is of order 1, and also because the working angle of attack a of the prop-
rotor is low. These terms are very important for flapping rotor dynamics.

The response of the rotor to low-frequency excitation, say, control plane tilt
or shaft motion, is tilt of the tip path plane. Through 2C7/oa + Hg*, the tip
path plane tilt gives a hub inplane force that couples the rotor and vehicle

motion or is used to control the vehicle. For high inflow, Hé* dominates the
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thrust term, so the inplane force on the hub is not only an order larger, but
also of opposite sign. This effect is expected to produce dynamic behavior
significantly different from that of low inflow rotors. Hub plane angular
velocity and tip path plane angular velocity act through Hg to produce inplane
forces also. In high inflow, the thrust term may be neglected, so Hp = Hé*;
the cocfficient is then the same as for tip path plane tilt.

Consider now the cross derivatives M and Hg, which are out-of-plane force
due to inplane velocity and inplane force due to out-of-plane velocity, respec-
tively. On the basis of only the G, terms, these coefficients are equal:

1 c
2 '3
M, = 'Hé = / “T‘_Z_ 70‘ dr
0 112 + V2 Fas s

This equality is useful in simplifying the whirl flutter equations of motion
in a later chapter. Examine, therefore, whether it remains valid with the
more complete expressions for the coefficients. From equations (50),

A
S(VT 1 JC,QM @’7 Gda
- / : 3 2 —
ML + HB 5q * Ulr 5t 3V R G e dr (59)
0

The right-hand side is negligible for large V, compared with M, or Hé; for
high inflow, one has always then

Moo= i
U

B

High inflow, V/QF of order 1, influences the rotor aerodynamic
coefficients substantially. It follows then that the features of high inflow
acrodynamics are an important factor in the acroelastic behavior of the rotor
and wing system. 1In summary, the combinations of the coefficients derived are

M- 4 r = y
MB + (V + U)Au MG
-He* V o+ ) (H R =y 60
3 + ( +))(u+ u) 6 (60)
M E—H'J
! B

The first two approximations are valid for all V, while the last is only for
high inflow; to these may also be added Hg = Hé* for high inflow.

Performance considerations- The evaluation of the rotor aerodynamic
coefficients for the analysis of the proprotor dynamics requires a considera-
tion of the proprotor performance. First, to obtain the rotor collective
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pitch value requires a solution for the performance in a specified operating
state, for example, cruise flight (7 given by the airplane drag) or autorota-
tion (CQ = 0). The rotor collective pitch is needed only to evaluatc the com-
plete expressions for the cocfficients, however (eqs. (50), described as

method (c¢) previously). Second, the total axial velocity V + v, a major param-
ceter in the coefficients, includes the induced inflow v, which is related to
the rotor thrust and operating state. Two topics are now considered: the
expressions required for an clementary analysis of the proprotor performance
(Cp and CQ) to find the collective pitch; and an evaluation of the rotor-
induced inflow.

In the previous analysis, expressions were obtained (eqs. (50)) for the
rotor thrust and torque coefficients in terms of the blade scction aerody-
namic forces. Using the identity of the power and torque cocfficients for the
rotor (CP = CQ since P = 40), these expressions are

c 1 c a,
T 2 L
— / — - (V + —= {dr
oa / ur 2a ( v 2a !
0

. (61)
C e e
P L ail s
0
J
where U2 = »2 + (V + v) . If uniform induced inflow v, is assumed, the power
expression 1is
1 oc
- 3
CP = (V + v)CT + 5 U= ax (62)
0

which is the usual result for the power required by a rotor operating in axial
flow. The first term is the sum of the induced power loss and the useful work
done:

CPi = (V + U)CT = (V + CT/ZV)CT (63)

For high inflow, the induced loss term vCp = CTZ/ZV is negligible (see
discussion below); then Cp; is proprotional to Cp, in contrast to hover
operation where the induced inflow is important and for which Cp. 1is
proportional to CT3/2. v

The second term in equation (62) is the rotor profile power loss; if the

scction drag coefficient is constant over the span (or if an effective mean
value of e, is used), then
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D ose
Cp = ~;i [r2 + (V + 0)2]3/2dr

oe s
= SQ 1+ (V+ )2 [1 + = (V o+ 9)7]

“

3 b L + /1 + (V+ 0)?
vy (W)t an 7+ v ( (64)
( CIC'i
—gi-[l + 3(V + v)?2] low V
ge ,
= 8a (6.27) Voew =1
O'C‘7
- (4v3) high v
\ Y,

The two rotor operating conditions of primary interest here are: opecration
with the rotor providing the propulsive force required for equilibrium cruise
flight, and autorotation operation (no net power supplied to the rotor through
the shaft), The latter corresponds to the condition in which dynamic tests of
the proprotor and wing arc often performed. The performance problem involved
is then to find the rotor collective pitch required (and the other coefficient)
for a given Cp (thrust required for equilibrium cruise flight) or Cp (zero for
autorotation).

The rotor aerodynamic coefficients requirc an estimate of the rotor
induced velocity v. For high inflow, however, the induced velocity is much
less than the forward speed of the rotor (as shown below), so great attention
to the inflow calculation is not required to satisfactorily evaluate the coef-
ficients. The assumption of uniform inflow is adequate then, and it may, in
tact, be possible to neglect the induced inflow entirely. The rotor COp
required in cruisc flight is obtained by cquating the rotor thrust (for two
rotors) with the aircraft drag, and expressing the drag in terms of an
equivalent flat-plate area f for the aircraft (= (1/2)QV2f). Therefore, for
the thrust required of the rotor,

Cp = 72

1’7

)=
[y

where A is the disk area of the rotor. Momentum theory can be used to estimate
the induced inflow; the usual Tesult {(ref. 32) for axial flow operation at
thrust Cp is:

= V2 Ik opy2 (65)
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Substituting for Cp yields

v V1w (F/24) -1
i} 2

%4

or, since f/4 and hence CT/V2 is small,

‘m

272

Bty

v 1
v 8

Typical values of proprotor aircraft drag and radius give j/4 = 0.0033; it
follows then that v/V £ 0.0017 typically, which 1is indeed much less than 1.
For the proprotor in equilibrium cruise flight, ncglecting »/7 is a reasonable
approximation then.

When the rotor is operated in autorotation, the performance requirement
is that CQ = 0, which requires that Cp = -C J(V + ) 2 -CQO/V. With the high
inflow result for the profile power, CQO z ?ch/E)V3, the thrust required in
autorotation is

%d
Cp=-73 7
For the proprotor in axial flight at high inflow, autorotation occurs in the
windmill brake state (i.e., at V > 2/[Cp1/2, or |cp/2v?] = |v/v] < 1/4); hence
momentum theory may again be used to estimate the induced inflow (ref. 32).
The same conventions are used for the directions of V and Uy (so the Oy
required in autorotation is negative, as given previously); thc momentum thecory

result is
V+ov = g + (%>2 + S% (66)
Substituting for the required Cp yields
R 4,
Vooop2

Typical values of proprotor drag coefficient and solidity yield
och/Z % 0.0004. Hence the typical induced inflow v/V 2 -0.0002, which 1is
smaller than in cruise flight. Again, the induced inflow may be necglected.

The effect of the induced inflow on the blade load distribution (that
required to evaluate the aerodynamic coefficients for the dynamics analysis),
may be investigated by considering the change in angle of attack due to v/V:

Sa = & tan~! o 2—-——JQ521————
1 + (V/ar)?

Qr %4

which has a maximum value of 8a = (1/2)v/V. Use of the momentum theory
result v/V = C’T/ZV2 (valid for both powered and autorotation operation in
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high inflow) and the mean angle of attack q = 6Cr/oa yield the maximum change
in angle of attack:

Sa .. oqa

242

o

For typical values of rotor solidity, Sa/a 2 0.02V-2, which is a small fraction
for high inflow (V of order 1).

Numerical calculations were performed to verify that V + v 2 V is a good
approximation in the calculation of the aerodynamic coefficients. The impor-
tant consideration in the dynamics analysis is that thc performance calcula-
tion and the calculation of the aerodynamic coefficients be consistent, either
neglecting the induced inflow v/V or using the same estimate of v/V for both
calculations. Any error in estimating the rotor performance or the collective
pitch required is not relevant to the dynamics analysis. The aerodynamic coef-
ficients that correspond to the operation of the rotor at a given value of Cp
or CQ are obtained, the only crror being a small change in the angle-of-attack
distribution over the blade.

SECTION 3: BEHAVIOR OF ROTORS IN HIGH INFLOW

In the next four chapters, several topics on the behavior of high inflow
proprotors are investigated, based on the equations of motion derived pre-
viously. The development of the proprotor and cantilever wing model is
resumed in section 4. The reader interested in that topic may skip the four
chapters in this section.

Elementary Dynamic Behavior

Some aspects of the dynamic behavior typical of proprotor aircraft are
examined. First, the fundamental stability of the blade motion is examined
through the eigenvalues of the uncoupled blade motion. Then the influence of
the transformation to nonrotating degrees of freedom and equations of motion
on the eigenvalues of the rotor is examined. The actual coupled motion of the
proprotor and wing system is considerably more complex, but these considera-
tions are useful in the interpretation of the results for the complete model.
The equations of motion and the hub forces for the rotor were found to separate
into longitudinal and lateral/vertical groups (eqs. (44) to (48)). The wing
motion, in fact, couples these groups, but it is useful for a preliminary
study of the dynamics to neglect that coupling, and examine the rotor response
to shaft motion, gust, or blade pitch control in the longitudinal or in the
lateral/vertical systems. Attention is directed to the low-frequency response,
since that response is useful in evaluating the influence of the proprotor on
the aircraft stability,

»
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Blade stability- Consider the uncoupled, shaft fixed flapping motion of a
single blade. The equation of motion (in the rotating frame) is

&0 . .3 ky 2 -
IB g8 yMBB + (IB vB + KPYMG)B YMee (67)

The roots (eigenvalues) of this equation are

M ¥M, M, 2
N - B ____) (68)

2T B P \arg®

For low inflow, -Mg = Mg = 1/8, and equation (68) reduces then to the usual
result for the flapping motion of a hovering rotor. The flap damping is posi-
tive, Mg < 0, so the real part of ) is negative and the flap motion is stable.
As V/QR increases, the flap damping -Mg decreases and the pitch control power
Mg increases. Then the real part of ) decreases in magnitude as V/QR increases,
and the stability of the flapping motion decreasces. The change is not great

for V/QR of order 1, however; and Mg is always negative (at least the cg
contribution is) so the motion remains stable for even extremely high in%low.

Pitch/flap coupling Xp introduces a flap spring term through the
aerodynamic force Mg, which changes the effective flap natural frequency:

YMG
v = vB? + Kp —— (69)

Be
T 4
8

Negative pitch/flap coupling, Kp > 0, increascs the effective flap frequency
Vgg - Increasing V/QF increases Mg, and so increases the effectiveness of Kp.
Again, the influence is not great for V/QR of order 1 or less.

Consider the uncoupled lag motion with the rotating equation of motion
(homogeneous form):

T AT + y@:g + T *v %0 =0 70
ot YQCC VT (70)

The roots for this motion are

\CR . } ¥a; 2
A= - + 1 VEZ - | 57 (71)
z

27g* N

The lag damping @; is positive, §; > 0, so the motion is stable. The coeffi-
cient @; increases with V/QR, hence the stability of the lag motion increases.
For low inflow, the lag aerodynamic damping is very low. For high inflow,
however, there is a significant increase in lag damping, which is important in
proprotor dynamics. In high inflow, the source of lag damping is the same as
for the flap damping, namely, the 1ift change due to angle-of-attack
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perturbations (i.e., the ¢y, termsj. Therefore, both flap damping and lag
damping are of the same ordér in high inflow.

The flap and lag motions of the blade are strongly coupled by the
acrodynamic forces in high inflow; specifically, they are coupled by the cross
acrodynamic coefficients My and €g, which are of order 1 in high inflow (like
all the coefficients),

Nonrotating svstem eigenvalues- Consider the blade uncoupled flap motion,
as observed in the nonrotating frame. The coning mode By has an equation of
motion (eqs. (47)) identical to that of the blade in the rotating frame, so
the eigenvalues of its motion are the same as those given previously. The
equations of motion for the tip path plane tilt coordinates, Blc and B1g, are
modified by the transformation to the nonrotating frame; centrifugal and
Coriolis terms are introduced, which have the effect of coupling the By, and
B15 motions,

The homogeneous equations of motion in Laplace form for 8 and B, are
1C 15
(from eqs. (44)):
T %2 yMoal *(y 20 1)+EpyM 27 Ag—yl- 8
B8 B "8 "B b . B 8? 10y 0 (72)
- (27  *s~yM: *oC-YM.g+T * “= 1)+ ikt
(._I8 s yMS) IB %[8 +IB (vB 1)+ /Yfe BIS

The characteristic equation for this system is the fourth-order polynomial:

A= [T_*22 - yM-

# 2 : 2 :
g BK + IB (vB 1) + KPyMe] + (27

£y _ 2 -
8 A yMs) 0 (73)

The eigenvalues are then the solutions of this polynomial; writing the roots
of the flapping motion in the rotating frame (eq. (68)) as A = Aps Ap, the
nonrotating system eigenvalues (roots of eq. (73)) are then

A=A 44 (74)

and the conjugates. The nonrotating eigenvalues have the same real parts as
the rotating roots, but the frequency is greater or less than that of the
rotating roots by 1/rev. On the root locus plane (ImX vs. Re)), the nonrotat-
ing roots are then shifted vertically by *1/rev from the rotating roots.

For a three-bladed rotor, the rotating roots on the A-plane are a pair of
triple poles at Ap and its conjugate. The nonrotating roots are a single pair
at Ap and its conjugate for the By mode, plus a pair at Ap+i and Ap-71 and
their conjugates for the 81 and B1g modes. In both the rotating and non-
rotating frame, there are then six roots, corresponding to the three blades
each with a second-order differential equation. The eigenvectors of equa-
tion (72) give the coupled motion of By, and B15 corresponding to the eigen-
values. There are two modes (and their conjugates); each eigenvector defines
a wobbling motion of the tip path plane, at frequency Imip - 1/rev for the
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low-frequency mode and at frequency Imip + l/rev for the high-frequency mode.
The high-frequency mode wobbles in the same direction as the rotor rotational
direction, and so is called a progressive mode. The low-frequency mode wobbles
opposite the rotor direction if Imip > 1/rev, so it is a regressive mode. If
Imip < 1/rev; however, the low-frequency mode wobbles in the same direction as
the rotor rotation and so is another progressive mode. The two modes are
denoted here by 8 = 1 for the flap modes at frequencies Imip *+ 1/rev,

respectively.

The behavior of the roots of the lag motion in the nonrotating frame 1s
similar to that of the flap motion (the influence of the transformation from
the rotating to nonrotating frame is a general result for all rotor degreces of
freedom). The coupled motion of Zy, and r)g 1s a low-frequency and high-
frequency mode, denoted by C * 1, each a whirling of the net rotor center of
gravity about the shaft. This motion has an important role in proprotor
dynamics. The blade flap and lag motions are, of course, highly coupled, with
each other and with the shaft degrees of freedom. The basic flap and lag roots
remain identifiable even for the coupled motion, however, both by the frequency
of the eigenvalue and by the participation of the degrees of frcedom in the
eigenvectors. The characteristic location of the nonrotating roots, at the
low-frequency and high-frequency rotor modes, remains an important feature of
the dynamics.

Longitudinal system - Consider the longitudinal dynamics of the rotor,
described by equations (47) and (48). Tt consists of two degrecs of freecdom
(coning Bg and collective lag zg) excited by longitudinal shaft motion (hub
velocity zp and roll angle az), longitudinal gust (Vug), and rotor collective
pitch control (8g). The influence of the rotor is transmitted to the shaft as
a thrust force and a torque moment (Cp and o) acting on the hub.

The equations of motion for the longitudinal system are, in transfer
function form (and matrix notation),

* 2 * 2 M4
I7 gé=-yM:s+I +y K M M-s
Bo YT 84780 e " B
* * 2
Y@ s+YK R I g2+y@ s+ v
Y& 8 HY KLl o® YT Ve %o
v i -3 ? ¥
) yJe yVMx YMCQ S OS +yMks
= 8y + Us * . , o+ O (75)
Y2, YV, T, so+Yd s Y2, 8

The thrust and torque are
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T Teo - — 2
S TGSO + VTAuG + fcbaz + Y sc + sz Zp

I % o ; .
- Y (‘”B S - YT s + KPYTG)BO lrUC

R o0
0 ( (76)
2
& \)C
_Q. = I* _‘O C
oa z, vy 0

’ )
To simplify the notation, subscript 0 on the inertias and frequencies is
dropped in the rest of the discussion of the longitudinal system; only the

longitudinal dynamics are involved, so the values appropriate to the coning
and collective lag modes are implied throughout.

For the low-frequency response, the equations of motion to lowest order
in s reduce to

*,2 .
IB VB@ 0 Bo yMe YMA YMC .
iy e i = . Bg + . (VuG + sp) + o o, (77)
YA g £V Zs Y4 e Y9,
The rotor thrust and torque are
A
C’T . .
57 C 1890 + [A(VuG + zp) + Tro - KPTGBO
¢ T *y 2 [ (78)
@ _ "zt c
oa Y 0 J
The solution for the low-frequency response of the rotor coning mode to
collective pitch, longitudinal gusts, and shaft motion is then
1 . .
= — .
80 P [yMeeo + yMA(VuG + zP) + ydcaz] (79)
B B

The response of the rotor thrust to these inputs, including the influence of
the rotor dynamics, is obtained by substituting for By in the expression for
Cp/oa (eqs. (78)):
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CT KPYTB
sz~ {Te = Y %
a T *v 2 + KnyMy
K yT
|7, - M, P o (Vu, + éP)
%y 2
I VB + KPYMG
K yT
+ T& -MZ'; P8 dz (80)
%y 2
IB vB + KPyMe
This result can be simplified by use of the relations:
. = 1 sin ¢ sin ¢ 1 -
MeTc - Mcie " 8cos ¢ 6 8 6 cos ¢

and, similarly, MgTy - M\Tg = O. With these relations, the expression for
thrust reduces to

v 2

= [Teeo + TA(VuG + zp) + Téaz] ;E— (81)
Be

!

8
Q3
™

The factor in brackets is the direct response of the rotor thrust to the
inputs. The only influence of the rotor flap dynamics (B, term in eqs. (78))
is to _reduce (if Kp > 0) the direct low-frequency response by the ratio

ve2/v o The effective flap frequency VB, includes the aerodynamic spring due
to pitch/flap coupling Kp. The ratio vB/vBe =1 if Kp = 0 and, for values of
VB and Kp typical of proprotor coning mode, it will always be nearly 1.

With a procedure similar to that used for the rotor thrust, the flap
dynamics are eliminated from the low-frequency lag response to give

1

gy = —— [¥dg8, + v&, (g + ap) + Y, - YKHGB )
T *v 2
(A4
L - \) 2
= T2 [¥Qg8, + Y@y (Vug + 25) + v9.e,] kN (82)
t z Be

Again, the only influence of the flap dynamics on the direct response is the
factor vBZ/vB . The rotor torque follows directly from the solution for Lo
e

The low-frequency response of the rotor coning and collective lag motion
to collective pitch, longitudinal gust, and shaft motion is then
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8, : Y YMA YM: ,
IB*vB vB
= 1 eo + (Vuc + zp) + S (83)
o — YQe yd yQé Vg
T *y 2 e
Lz
The low-frequency response of the rotor thrust and torque 1is
oaq 8 A ) VBZ
= ; My I — 8
c. 0 + \‘/MG + P) + > (gi)
& ¢ v
oa Y QA Be

An important term in the response 1s the shaft torque due to longitudinal
gust. The direct response has the magnitude Y9y = -(V sin ¢)/6. The aerody-
namic torque VQA increases greatly with inflow (the behavior of ¢y 1s similar
to that of Hé, which is shown in fig. 4; in fact, with only the l terms,
&y = Hé exactly) - the source of a fundamental problem of the high inflow
rotor response to longitudinal gusts, namely, & great increasc in shaft and
drive train loads with forward speed.

The rotor aerodynamic coefficients Ty and Qé result in hub thrust and
torque terms that damp the tp and a, motions, respectively. Since
Ty = -(cos ¢)/4 and Qt = (V sin ¢)/6, the damping of zp decreases slightly as V
increases (its behavior is like that of #3), while the damping of &z increases
greatly with U (its behavior is like that of 44).  The thrust force due to
inflow 7y is a usual feature of rotor dynamics; the influence of the torque duc
to rotiational speed Qé is much different than for low inflow rotors, however,
because the coefficient is orders of magnitude larger in high inflow.

In the derivation of the low-frequency results, it was assumed that
Vr # 0; for the autorotation case, however, vCO = 0. Then CQ = 0 always; and
0

the characteristic equation has a factor o, that is, one root at the origin,

which indicates that the proper degree of freedom is tg, the rotor speed per-

turbation. The other root of the collective lag mode is at X = —yQé/ZIz

0

(uncoupled), that is, a real root with time constant - =2Iz /YQé = 12/yV sin ¢.
0

.

The low-frequency response of Ly 1is then

+0ea ] (85)

1
. P) r 3

o = g, [Pg80 + Oy (Ve + s
g
There is a response of %0 to shaft roll &.. even though vy = 0, because CO has
5 -

heen defined with respect to the rolled shaft position; the response is such
that £y — &5, the rotor speed perturbation with respect to space, is exactly

zero.  From the expressions for the coefficients with only the cp, terms, it
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follows that VQA/Qé = —szz/VZfz = -1 exactly (eqs. (54)); hence the response
of the rotor speed perturbation to a longitudinal gust (at low frequency) 1is

= -1 (86)

This is the response required to keep the inflow ratio constant, including the
velocity and rotational speed perturbations, as shown in the following
analysis:

VY _ sV VS(RR)
S(QR)_QR (QR)Z
__V[§Z G(SU?)]
TQRIV T QR
1%

=§R_ (L{G+ ﬁo)

Hence &§(V/9R) = 0 implies éo/uG = -1 as given above. This result holds cven
for the complete model of the rotor and cantilever wing.

Lateral/vertical system: Flap responsc- Consider the lateral/vertical
group of degrees of freedom, inputs, and hub forces (eqs. (44) to (46)). The
cyclic lag degrees of freedom, ¢ and ¢yg, are dropped to obtain a managcable
set of equations. The rotor motion is then described by two degrees of free-
dom (tip path plane tilt Byo and B;g) excited by lateral and vertical shaft
motions (shaft tilt, oy and @, and hub inplane velocity, xp and yp), acrody-
namic gust (angle of attack ag and sideslip B85), and cvclic pitch control (810
and 015). The influence of the rotor is transmitted to the shaft as rotor
drag force and side force (Cy and Cy) and pitch and yaw moments (Cy, and Cy )
acting on the hub. B Y X

The low-frequency response is of interest here so that the basic response
of the rotor in high inflow can be examined, and also as a basis for investi-
gating (in a later section) the influence of the rotor forces on the aircraft
stability and control characteristics. For stability and control problems, it
is convenient to obtain the equations of motion in a body-axis system rather
than in the inertia axis system used so far (the inertia axes arc most conveni-
ent for the cantilever wing problem, which is the main subject of this report).
In body axes, the trim velocity of the rotor (V + v) remains axial during
shaft tilt by o, and a,; then converting to body axes requires that the terms
in the equations of mo%ion and hub forces due to the inplane component of
(V + v) produced by the shaft tilt (i.e., the (V + v)ay, and (V + v)uy terms)
be dropped. The shaft angular velocity &, and &, must then involve a centrif-
ugal acceleration in order to turn the vector (Vy+ v) to keep it aligned with
the shaft. This may be accounted for by simply adding the rotor mass to the
aircraft mass; hence the equations presented here do not incorporate thesc
centrifugal acceleration terms. The perturbations to the aircraft velocity
(V + v) are given by the hub velocities Zp, Yp, and zp. These motions and
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aerodynamic gusts are the only sources of inplane velocity of the hub in body
axes.

The equations of motion for B1c and B1s (in transfer function form with
the ayx and ay terms dropped as discussed previously) are

402 _ M- * 2_ Xa_~ M.
IB s yMBS+IB (vB 1)+prMe 2I8 8 YMB BIC
(27 *g-vM- A2 e * 2 r M
(QIB s YMB) IB s YMBS+IB (vB 1)+ﬁpyﬂ9 813
0 B y I* gyl NEIL IR
=y 1) v “3. Y| Y, B8 Ba g
915 an -Zp _(ZIga+th@) —(Igus—yMé) dx

Consider the response of the rotor to cyclic control, gust, inplane hub
velocity, and shaft angular velocity. For the low-frequency response, only
the lowest order terms in s are required and the equations become

* 2_ M
Tg7 (Vg == 1) +KpyM, v 810
M- * 2_
g T (vg™-1)wvMekp | \ B
b Ut VB ~ha -y, -2T% ) /a
= M, LA YM, 'p A & B ff
9 -x +Vo ~ha o - :
15 PTG, Too Y %,
(38)

Only the steady-state terms in the flap response are retained. A steady tip
path plane tilt gives a flapping velocity in the rotating frame so therc arc
moments through Mé; since shaft angular velocity involves a Coriolis accelera-
tion of the rotating blades in the hub plane (B, and B15 are flapping with
respect to the hub plane), inertia terms also appear.

Inverting the matrix on the left-hand side of equation (88) gives the
solution for Bl” and BlS:

1 N+ . . P . .
e :[—N* ) ] A% /2615 . Mu xP—VaG+hay . bIga ay . a. 591
2 | N7 A Al B .
B1s 1+, 8 \ 00 B \yp+VB,-har B \-d, ay
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where
T A(v 7 - 1)+ KoyM
voo b8 P9 (90)

M-
- Yt
R

The parameter ¥, is a measurc of the lateral/vertical coupling ot the rotor
response (lateral/longitudinal for helicopter orientation); #, = 0 for vp =1
and ¥p = 0, that is, for an articulated rotor with no hinge spring or offsct,
and no pitch/flap coug]ing. Frori equation (69), 1t also follows that 7, can
be written ¥, = fbﬁ(uﬁ, - 17/—th, so the parameter is a mcasurce of the
(effective) structural restraint of the blade flapping motion.

In the flapping responsc (e¢]. (89)), the bracketed quantitics give the
hasic effectiveness of cach kind of excitation, while the factor involving ¥y
accounts for the rotor flapping dynamics. Tnside the brackets, most of the
[nck number factors cancelled, indicating that the responsc is mainly a bal-
ance of acrodynamic forces; the coxception is the third term, which is a bal-
ance of the inertial forces (27% ) dJdue to shaft angular velocity &, and %, and
acrodynamic forces (-yMp) due toutip path plane tilt By, and £y.. Cvelic
pitch control, hub inplanc velocity, and hub plane angular velocity result in
acrodynamic moments on the disk. Thesc moments cause the rotor to flap until
the moment on the disk due to the flapping cancels the applied moment, thus
achieving equilibrium deflection. The coefficient M is the effectiveness of
flapping in producing a moment or: the rotor disk, hence its appearance in the
denominators always. Blade cyclic pitch produces an acrodynamic moment on the
disk through Mg, so the net control cffectiveness is My/-Mz. Hub inplanc
velocity produces an acrodynamic moment on the disk througﬁ Mo, with a net
ctffectiveness of Mu/'Mé' With the pro§ent mo@el, there are threce sources of
hub inplance velocity: shaft velocity &p and y/p, vertical and lateral aerody-
namic gusts ap, and B, (which are angles, so Vu@ and V8~ arc the corresponding

velocity perturbations), and angular velocity of the shaft about a pivot a
distance # aft of the hub producing hub velocities /i, and .

Consider the responsc to shaft angular velocity % and Gy, The inplane
velocity due to angular velocity atbout a pivot aft of the hub gives a moment
on the disk (hence flapping) through M, as discussed previously. The third
term in equation (89), with effectiiveness ZIéu/—yMé, is the lag of the tip
path plane required to precess thc rotor to follow the shaft (By, and B~ are
flapping with respect to the shaft). Tor the tip path planc to follow the
angular velocity of the hub planc requires a Coriolis acccleration of the disk
of magnitude ZIéaa7 hecause of the rotation of the blades. A moment is
required to produce this acceleration, that is, to precess the rotor disk, and
that moment is supplied by aerodynamic forces on the disk that result from the
flapping velocity of the rotating blades. The tip path plane tilts back, lag-
ging the shaft tilt, until the acrodyniamic moment due to flapping (of magni-
tude ‘YMéBIC] is just large enough to provide the required acceleration.

There is a 90° azimuthal phase difference in the responsec, characteristic of
rotor or gyro dynamics: shaft pitch dy requires a lateral moment on the disk
to precess it; that lateral moment is ‘supplied by the flapping velocity in the
rotating frame due to steady tip path plane pitch g, .. The flapping dynamics

. . . 1¢

also introduce a phase shift if ¥, # O.



The last term in equation (89) is also a f lapping response due to shaft
angular velocity. Hub plane angular velocity due to &, or a4, produces a flap-
ping velocity of the rotating blade, hence a moment on the disk through —yMé.
The rotor flaps until the moment on the disk due to tip path plane tilt, which
also acts through -YMg, is just large enough to cancel the exciting moment.
Both moments in the equilibrium are aerodynamic, so the Lock numbers cancel.
Both are due to the flapwise velocity of the blzade so the coefficients Mg also
cancel. The net effectiveness, then, is exactly 1. The last term in equa-
tion (89) results in a coupling of the lateral eind vertical response of the
rotor to shaft angular velocity (¢ and &), even if ¥y = 0. The basic flap-
ping dynamics in the nonrotating frame (as discussed previously) consists of
low-frequency and high-frequency flapping modes (B + 1), each of which appears
as a wobble in the tip path plane. The basic re:sponse of the rotor then
involves coupling of the lateral and vertical motion, a fundamental character-
istic that results from the rotation of the blacles. The low-frequency response
should involve only excitation of the low-freque:ncy flap mode (8 - 1), but the
lateral/vertical coupling is still expected.

When NV, = 0, the first factor in equation (89), representing the influence
of the rotor flap dynamics, rcduces to a unity matrix. With a hingeless rotor
(vg > 1) or pitch/flap coupling (Kp # 0), ¥, is no longer zero and the flap
dynamics matrix introduces a phase shift and a magnitude change in the flapping
response. An example is the response to cyclic pitch control, 8¢ and 67g.

The diagonal terms in the flap dynamics matrix produce a tip path planc tilt
following the control. plane tilt, through equilibrium of the aerodynamic
moments due to blade pitch and flapping. The of’f-diagonal terms correspond to
lateral/vertical coupling of the tip path plane,/control plane tilt, which
results from the aerodynamic pitch moment being recacted by a moment duc to
structural flap restraint (vg > 1) or pitch/flap coupling (Xp # 0), hence due
to ¥y # 0. The two sources of tip path planc tilt produced by control plane
tilt (or any other excitation) have a 90° azimuthal phase difference because
the diagonal terms are due to flapping velocity (in the rotating frame), while
the off-diagonal terms are due to flapping displacement.

Consider the individual terms in the flap responses - cach has the form
of a basic control power multiplied by a factor (involving V,.) that accounts
for the flap dynamics. The effectivencss of cyclic pitch is given by {using
the approximations based on the inflow ut an ct'fective radius)

M- I

M ,2
- ! =1+tan2¢>=1+<b (91)
B cos? ¢ 2

The pitch control power increases with V then, due to both an increase in the
pitch moment Mg and a decrcase in the flap damping M; (as shown in fig. 4);
the increase is slow for the usual range of ¥ (up to 1 or so). With the
influence of the flap dynamics, the response to control is
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and similarly for BIS' The total flapping response to cyclic pitch then has a
magnitude

M. /-M:
algl e’ 7B
T S e (93)

81 A2

and an azimuthal phase shift of
ap = tan~! N, (94)

Then if N, # 0, the magnitude of the response is always decreased (by a factor
(1 + N*z)‘l/z) whether N, is positive or negative (v32 - 1 is always positive,
but the pitch flap coupling Kp can be positive or negative); and N, produces a
phase shift of the response, the sign of which depends on the sign of N,. The
coupling parameter N, is approximately

* 2 _ 2 _
) T*(vg 1) My v 1 Kp
N, = + K = + (95)
* -YM- P -M- 2
B B y(cos ¢)}/8 cos‘ ¢
so N, increases somewhat with the inflow ratio V. The effect of the flap
dynamics (N¥,) on the response to all the inputs follows that on the cyclic
pitch (a magnitude decrease and an azimuthal phase shift), so, for the
remaining terms, only the basic control power is examined.
The response to inplane hub velocity is given by
3B M
P B r 2

The flapping due to hub inplane velocity increases substantially with V then
primarily because of the increase in the speed stability M but also because
of the decreased flap damping M3 (fig. 4). This important influence of the

high inflow aerodynamics produces significant differences in the dynamics from
that of low inflow rotors. The response to aerodynamic gust is

i T ) (rv>2
- = — £ tan ¢ =\— (97)
BaG -MB e
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This is the response to angle-of-attack changes rather than just velocity
perturbations, hence the extra factor of V (though both are hub inplane
velocity changes). The substantial increase in high inflow of the flapping
produced by hub velocity results in problems characteristic of the proprotor
aircraft: high flapping or blade loads in maneuvers and gusts and substantial
coupling of the rotor dynamics with the shaft motion.

The flapping response to shaft angular velocity dy is (for N, = 0)

38 21t M
1 ""Ba UL 16 4
aay - -yMé *h -Mé T Y cos ¢ L 3 tan ¢ (98)

The second term is due to the hub inplane velocity with shaft angular motion
about the pivot a distance % aft of the hub (its behavior was discussed pre-
viously). The first term is the flapping required to produce a moment to
precess the disk to follow the hub plane; it increases somewhat with V because
of the decrease in the flap damping Hé' The response to 4, is

861

3a = -1 (99)
x

.

the equilibrium of the moment due to flapping velocity due to a, and Byg,
which does not change with V. For values of the Lock number, mast height, and
inflow velocity (y, h, V) typical of proprotor operation, the primary contri-
bution to the flapping response due to angular velocity of the shaft is the
term required to precess the disk:

olel a8, g
3 | Y cos ¢ (100)
y y

With only the inertia term of the response to shaft tilt, the influence of N,
is the same as for the response to cyclic pitch.

Lateral/vertical system: Hub forces and moments- Consider the lateral/
vertical hub forces and moments: rotor drag force Cy, side force Cy, hub
pitch moment Cy,,, and hub yaw moment Cpy . Retaining only the flap degrees of
freedom, droppihg the a, and ay terms (giving inplane components of V + v) to
convert to body axes, and then retaining only the lowest order terms in S,
yields the following hub forces:
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The hub moments are simply

2CM

- 8
oa IB*(vBZ -1 1C

(102)
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If one substitutes for the low-frequency flapping response, the hub forces are

B 2C
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Basically, the response for each input is a direct X force plus a contribution
from the rotor flapping motion; the last term is the aerodynamic force pro-
duced by the flapping velocity due to shaft angular velocity, combining the
direct and flapping terms. Note that the hub force response is considerably
simplified if ¥, = 0; then the tip path plane tilt produces hub forces through
only 2Cr/ca + Hg*, and the matrix in the last term reduces to simply Cp/oa
(which may then be neglected for high inflow operation). The hub moment is
simply a constant times the flap response.

Pivot moment - The total moment about the pivot a distance k& aft of the
hub is given by the hub moment plus the hub forces acting on the arm #:

E 3 i
26}4 “Cﬂi 20
- _ ¥ ¥ Ly 1
oa oq oa
50 = 0 (104)
M M 2C
X z _ Y
oa oa T oa
pivot

The hub moment is directly proportional to the tip path plane tilt, Bjc and
B1s; hub forces (eq. (101)) are also produced by the tip path plane tilt
through 2Cp/ca + Hé*, the first term being the thrust vector tilt and the
second, the negative ¥ force contribution of high inflow. (The off-diagonal
terms that result from pitch/flap coupling are not considered now, that is,
it is assumed that Xp = 0.) The total moments about the pivot duc to the tip
path plane tilt are then (after the hub moment and hub force terms are
combined):

M
od T A 2 - 1) 20 8
18 "8 T . 1C
A 50 = + h + H. (105)
20y Y oa B g
[x 15
aga

The combination of terms appearing on the right-hand side has already

appeared in the equations of motion for the four-degrec-of-freedom model

(eq. (26)). With this result, a simple design criterion can be derived for
optimum proprotor/pylon dynamic stability. If the total factor of Bic and B¢
is set to zero, with a proper choice of the parameters, the moments due to the
rotor flapping dynamics (at least the low-frequency response) will not be
transmitted to the pylon. Then the pylon is effectively decoupled from the
rotor and will not respond to rotor flapping motion: this is expected to
improve the stability of the proprotor/pylon system. When the rotor lags the
shaft in response to shaft angular velocity, that tip path plane tilt produces
a hub force through lpfoa + Hé*, which is dominated by the negative H force
term A,* hence it results in negative damping of the shaft tilt motion. This
effect, in particular, is nullified by setting the total tip path plane tilt
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factor of equation (105) to zero. The thrust vector tilt term 2Cp/ca
contributes positive damping, but it is negligible compared to Hg* for high
inflow. Thus the criterion essentially is to use the positive damping avail-
able from the hub moment of a hingeless rotor to counter the negative aerody-
namic damping of Hé*, and the design rule becomes a specification of the flap
frequency vg required to satisfy that criterion.

Setting the coefficient of BlC and BIS in equation (105) to zero gives the

design choice for vS:
. {2C
2. A R G
vB 1 ( o + dB )

IB*

(106)
sin ¢
6

i

1 + vh

For typical values of vy, h, and V for proprotor operation, equation (106)
requires that vg = 1.1 or so such a frequency is easily obtained with current
hingeless rotor technology or even with an offset hinge on an articulated
rotor. An obvious limitation is that Hé* is a function of ¥V while vg is not,
so the design criterion can be met only at one design speed.

This result was first obtained by Young and Lytwyn (ref. 18). On the
basis of optimum flutter stability with the pylon decoupled from the rotor,
they obtained the above result for the optimum flap frequency vg. Numerical
calculations of the flutter boundaries for a four-degree-of-freedom model (a
flapping rotor on a pylon with pitch and yaw motion) show that the optimum
flap stiffness is actually somewhat above this. They suggested that a value
about 5 percent higher be used:

20
v2z=1.08]1 -2 (L, g (107)
B T oa B
B

With this choice of v,, the remaining rotor force acting on the pylon is
mainly a negative spring force due to the speed stability coefficient Hé*;
this force leads to a divergence criterion, which does not require very much
pylon stiffness. They also point out that the only parameter of the pylon to
enter this criterion on vg is the mast height %, because it is essentially a
static decoupling criterion, so the pylon dynamics do not enter at all.

Unfortunately, the problem of proprotor dynamic stability is not so
easily resolved. This criterion for vg is based on pylon pitch and yaw motion,
while, for the rotor on the cantilever wing, the degrees of freedom produce
much different shaft motion and respond differently to hub forces and moments.
This criterion is based on only the low-frequency response of the rotor, and
only the flap motion at that; the dynamics involved with high inflow proprotor
instabilities is more complex. However, many other design considerations are
involved in the choice of wing stiffnesses and blade frequencies; therefore,
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while the proprotor dynamic stability must be verified, and perhaps the
parameters modified somewhat to increase the margins, the actual choice of the
rotor and wing configuration (including the placement of the fundamental fre-
quencies) is not necessarily based on the criterion for optimum dynamic sta-
bility. The above result indicates that, for practical applications, a
flapping frequency greater than 1/rev should be favorable for rotor and wing
dynamic stability.

Whirl Flutter

This chapter cxamines the classical whirl flutter problem: a truly rigid
propeller on a pylon with pitch and yaw degrees of freedom. With the infinite
blade stiffness of a truly rigid propeller, there is no blade flapping motion.
The theory developed here may accommodate the rigid propeller by letting the
flap natural frequency vg go to infinity; in that limit, the four-degree-of-
freedom model reduces to two degrees of freedom, pylon pitch a,, and yaw ay,
which is the usual whirl flutter formulation. Nomenclature pa%ticular to the
whirl flutter analysis is given at the end of this section.

The whirl flutter model may exhibit instabilities at high forward speed
or low pylon stiffness, primarily because of the high inflow aerodynamics. In
fact, it has much different behavior than the flapping rotor case. The whirl
flutter problem is considered here because it is a special limit of proprotor
dynamics, often mentioned in the literature as an ancestor of the current
proprotor analyses; and because, as a two-degree-of-freedom problem, exact
expressions for the stability boundaries may be obtained. However, the
dynamics and aerodynamics of the whirl flutter model are found to bear little
relation to those of the flapping proprotor.

The whirl flutter equations can be derived from the four-degree-of-freedom
cquations of motion already given (eqs. (26)), with the limits vg > = and
B1o,B15 > 0. However, (vBZ - 1)By¢ and (vBZ - 1)B1g must remain finite in this
limit because the propeller can still transmit a hub moment to the pylon; then
the B1p, and Bpy equations become simple substitution relations for the pylon
cquations. A more direct approach is to first substitute for the hub moment
(vBZ - 1)8y¢ and (vBZ - 1)Bjg in the pylon equations of motion, and then take
the limit of Bj,,By¢ > 0. The pylon equations of motion for the four-degree-
of freedom model (eq. (8)) are

A AN A A AN AR (Qy>
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L% o, 0 Co* ]\ oy, 0 K.* o,

[

0
20,
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which is simply a mass/spring/damper system for pylon pitch and yaw, forced by
the rotor moments and inplane forces applied at the hub. The equations have
been made dimensionless (using p, 9, and R) and the inertias, damping coeffi-
cients, and spring constants have been normalized by dividing by (¥/2)I;. The
hub moment is

2C

M
B
ca -
|, |- o2-nf ¥ (109)
o, B 8
x 15
ga

The flapping equations of motion from the four-degree-of-freedom model (eq. (8)
for ¥ 2 3) are rearranged as

-B B\ 0 2\/8, -\ 1
(V 2 1) 1C _ 1C + 1C _ Yy
B
B15/  \Pis AST: %
M
0 o\ [ Fie
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With this result, the hub moment in the pylon equations of motion may be
replaced; then the indeterminant combination (vg2 - 1) no longer appears, and
the limit Bj¢,B1s - O may be taken properly. In other words, the Bjo and Bjg
degrees of freedom may be dropped after substituting for the hub moment, thus
the equations of motion are

T *+1 0 a \ Cc * -2 o \ X * 0 o
Y y\ | y\ .|y y
0 I * + 1|\ 2 ¢ *N\a 0 K * \o
x x x x x,
M
FlC ZCH
T e T h oa
=y ° (111)
M
b
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The pylon is now forced directly by the flap moments on the disk MFIC and MFlS’

which are now transmitted directly to the hub rather than through the flapping
response.
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The aerodynamic forces follow directly from equations (23) for the four-
degree-of-freedom mode, with the B1c and Byg terms dropped, of course. The
hub moments and hub forces are then (hub moment is ohtained by use of eqs.
(109) and (110) with eqs. (23)):
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A comparison of these expressions with the results obtained for the
flapping proprotor dynamics shows that the whirl flutter problem involves con-
siderably different behavior. Comparing the hub forces with equations (101)
indicates that the response to shaft tilt, cyclic control, and gusts is the
same (except that eqs. (101) are in body axes, so the ap and o, terms arc
dropped). With the rigid propeller, however, there are no longer hub forces
caused by flapping, acting through the thrust vector tilt and the negative H
force due to inflow (the 207/caq + Hg* factor). Mab forces due to the tip path
plane tilt are naturally not part of the whirl flutter problem since they arise
only with the flapping rotor, and that difference is very significant.

Comparing the hub moment with equation (89) (the hub moment for the
flapping rotor if it is multiplied by (vgz - 1)/v) shows that the role of the
flap moments is altered. The rigid propeller limit of vBZ -+ = corresponds to
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the limit ¥, - = in equation (89), and with that the two results are identical
(except that in eq. (89) the oy and o, terms were dropped again for body axes,
and the inertia terms 4, and &, were dropped for the low-frequency approxima-
tion). The more appropriate limit for studying the flapping rotor dynamics 1is
vgz + 1, that is, N, » 0. Between NV, » = and NV, - 0 there is a 90° azimuthal
phase shift in the influence of all flap moments. For the rigid propeller,
the flap moments on the disk are transmitted directly to the hub while, for
the flapping rotor, there is a 90° azimuth lag (for vg = 1) from the applica-
tion of the flap moment to the achievement of maximum tip path plane tilt.

ilence the role of the rotor in the whirl flutter behavior changes greatly
from that for the flapping rotor. The Coriolis flap moment and the speed sta-
bility moments on the disk (MU) now are off-diagonal terms (i.e., coupling
terms), while the flap damping disk moment (Mé) now contributes directly to
the damping of the pylon motion. The hub inplane forces are given solely by
the direct terms /4, and Hg, with no contributions from tip path plane tilt.
The speed stability coefficients, M, and #y, have a dominant role in whirl
flutter dynamics.

If one substitutes for the hub forces and moments, the equations of motion
for the pitch and yaw motions of a pylon with a rigid propeller are

T *+1 0 “ |C A+h2y(H +R ) -YM: - (2+hvyH: +hyM a
y X : Y(u U)Y (2+hy Yu)

Y 1 Y B 8 Yy
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K *-hy(V+v) (H +R V+u M
% Y(*’)(u*U) Y(+)u o,
- *_7 Bl
y(V+v)Mu Km ny(V+v)(Hu+Ru, o
hyH -yM_|f6 hyV(H +R ) -yVM a
- 5] 0 15 + U M u G (114)
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These equations are valid for propellers with three or more blades. As usual,
the notation of the aerodynamic coefficients indicates their source: H, for
hub forces; M, for flap moments; subscript u, for inplane velocities; and sub-
script B, for flapwise velocities.

The inertia terms are the sum of the pylon and rotor inertias:

I I + (N/2)I
1= ¥y =X b
/2T, W/ 2)Ip

T * +
Yy
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where Iy + (N/2)Ip is the total moment of inertia of the pylon and rotor (for
N 2 3); I, already includes the contribution h2NMy, of the rotor mass to the
moment of inertia about the pylon. The damping terms (diagonal) have contri-
butions from the structural or mechanical damping of the pylon (Cy* or Cp*

and from the aerodynamic forces on the rotor. All contributions to the
diagonal damping terms are positive (4, and -Mg are positive) so the net damp-
ing is always positive. The aerodynamic contributions result from the flap
damping of the rotation of the hub plane by &, or dy, and from the inplane
force due to the hub inplane velocity during pylon angular velocity. Based on
the equivalent radius approximations, the aerodynamic damping terms are

. v si
Y[-My + R2(H + R )] = Y<co§ e “’)

The first term decreases some with V, while the second term increases. The
spring terms (diagonal) have contributions from the structural restraint of
the pylon deflection (Ky* or X;*) and from the aerodynamic forces on the rotor.
The aerodynamic term, a negative spring (#y, > 0) from the inplane force due to
the inplane component of (V + v) produced by pylon pitch or yaw, is
approximately

V2 sin $

~hy (V o+ v, R = -hy 5

which increases with V. The coupling spring term (off-diagonal) is entirely
aerodynamic, from the flap moment on the disk due to the inplane component of
V + v produced by pylon pitch or yaw; it is approximately

~ V sin
YV + oM, = ‘——7;—J£

which increases with V. The coupling damping terms (off-diagonal) have inertia
and aerodynamic contributions. The inertia term (-24, or 2&9) is the Coriolis
acceleration produced by the pitch or yaw angular velocity of a rotating body.
The aerodynamic terms are from the flap moment due to the inplane velocity
produced by the pylon angular velocity, and from the inplane force due to the
angular velocity of the hub plane. From equation (59), it follows that

SCT

i

<< 2

hy(ML + Hé) hy o

hence the aerodynamic contributions may be neglected compared with the
gyroscopic coupling.

The whirl flutter model then consists of a mass/spring/damper system for
pitch and yaw, with positive aerodynamic damping, a negative aerodynamic
spring, gyroscopic coupling in the damping, and aerodynamic coupling in the
springs.
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Consider the single-degree-of-freedom problem: Kx* + @ 50 a, > 0; the
equation reduces to

(I,*

yt o+ 1)&y + [Cy* + hzy(Hu + Ru) - yMé]&y + [Ky* - hy(V + v)(Hu + Ru)]ay

= hyHgbg + hyV(Hu + Ru)aG (115)

The damping is always positive, so the system is stable in this limit so long
as the net spring constant (structural plus aerodynamic} is positive:

Ky* > hy(V + v)(H, + R)) (116)

This is simply a static stability boundary, that is, the divergence criterion
(for K, * > »). With one spring stiff enough, the system always has dynamic
stability; the only stability criterion remaining is the divergence boundary
for the other spring, due to the negative aerodynamic spring term.

Consider the case of no aerodynamics, but with gyroscopic (Coriolis)
coupling included. For the isotropic case (same mass/spring/damping constants
for both pitch and yaw), the characteristic equation is

[(T* + 1)A2 + C*x + K*]2 + (20)2 =0 (117)

The four roots will have negative real parts so long as y, K*, and I* are all
positive. Therefore, the system is always stable, even with gyroscopic
coupling, if there are no aerodynamic forces on the rotor.

It follows then that any dynamic whirl flutter instability can only be
due to the aerodynamic cross-coupling of the pitch and yaw motion; there is
only one such term, namely, the off-diagonal spring terms YVM,. Since this
aerodynamic force increases with forward speed V, an instability is expected
to occur eventually as the inflow is increased for a given pylon and rotor.
Of course, there is the possibility of a static instability (divergence) due
to the negative aerodynamic spring term. Whirl flutter instability is then
the result of the high inflow rotor aerodynamics.

In Laplace form, the homogeneous equations of motion are

(T, *+1) 82+ [Cy *+h %y (Hy+R, ) -YMg] s
*_hv (V H +R -28+Y (V'H))Mp
+[1{y - Y( +U)( u+ u)]
(Tp*+1)82+[Cp*+h2y (H R, ) -YMg]s| \ %

2 -
s~y (V+v)M, +[Kp*-hy (V+0) (H+R)) ]

(118)
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To simplify the notation, write V for V + v, Hy for iy + Ry, and I* for I* + 1:

Iy*32+(cy*+cu)S+Ky*—Kﬁ -8D+L, Ly . 1109
sDy-Ly, Ix*32+(0m*+0u)s+}\'x*-1{p o,
where
Cu = hzyﬁu - YMé
K, = hYVHu
Dy, =2
Ly = \(VMu

These are, respectively, the aerodynamic damping and negative spring, the
gyroscopic coupling (which is given a symbol so that its influence can be
identified in the results), and the aerodynamic cross spring. Combining the
structural and aerodynamic terms in the spring and damping coefficients yields

I,82 + C s + K -aD + L o
) 1 1
Y Y Y Y -0 (120)

sD - L Tps? + Cpe + X \o,
This last and simplest expression is used for the derivations.

The characteristic equation for the whirl flutter eigenvalues A is then:

(T, A2 + Cyh + K,) (Tph2 + Cpd + Kp) + (2D + L)2
y Y y! Y x x

0 (121)

The stability of the system may be investigated by examination of the root
loci, that is, the behavior of the eigenvalues with variations in V or some
other parameters. For a two-degree-of-freedom problem, however, it is possi-
ble to solve explicitly for the stability boundaries. The stability boundaries
on the K,.*, K,* plane (i.e., as a function of the pylon stiffnesses) is the
usual form for the presentation of the whirl flutter solution. The other major
parameter is the inflow ratio V. Two kinds of instabilities are possible with
a system that can be described by linear constant coefficient differential
equations. The first is divergence, a static instability that, on the X plane
(root locus), takes the form of one root on the real axis that passes through
the origin into the right half plane. The second type of instability is
flutter, a dynamic instability that takes the form of a complex conjugate pair
of roots that cross the imaginary axis (at finite frequency) into the right
half plane. The stability boundaries for these two types of motion are
examined.
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Divergence- The divergence boundary is defined by the requirement that
one of the roots of the characteriistic equation be at the origin. For A = 0,
the characteristic equation gives

KKy + L7 = 0 (122)
or
(£,* - K (Kg* = k) + LU2 =0 (123)
therefore,
124
(Ry* - AYVH,) (Kp* - BYVAY) + (y11,)? = 0 (124)

This sum must be greater than zero for divergence stability. An instability
may be encountered if one of the spi1ing constants, K,* or Kp*, is too small,
so the negative aerodynamic spring makes the first term and hence, perhaps,
the sum negative. Sufficiently large structural spring restraint of pylon
pitch and yaw motion guarantees divergence stability.

The equation for the divergence boundary is a hyperbola on the X%, Kp*
plane; the divergence hyperbola is shown :in figure 6. The asymptotes are the
Ky, Ky axes, that is, Kyp* or Ky* = Ky = hyVH . The asymptotes give the diver-
gence criterion when one of the springs is very stiff; for K,* » =, equation
(124) reduces to (for stability)

Ky >0 (125)
or
Ky* > K, = hyVH, (126)

which, indeed, is the criterion obtained previously for the single-degree-of-
freedom limit. This criterion is that the total spring constant - aerodynamic
plus structural - be positive. For finite Kp*, the cross spring Ly = YVM,,
introduces coupling of the a, and o, motiorni, which eases the criterion on K, *.
The hyperbola intersects the line KZ = -%, (the -45° line on the K&,Ky plane)
at points Ky = xL, = +yVM,, where the closest approach of the two hyperbola
branches occurs. The minimum width of the divergence-stable corridor is thus
2/7Zu = 2/§§VMU. These points occur in the first quadrant of the Kp* Kyt
plane (fig. 6), only if Ly/K, < 1 (which is, in fact, true only for rather
large V). In any case, the cross spring L, is a good measure of the corridor
width at low Kp* and K *.

In terms of the approximation based on the equivalent radius, the

negative aerodynamic spring - which determines the asymptotes of the divergence
boundaries - is

Ky = hyVH, = hy -V——%—“—ﬁ
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which increases with both V and %, so both decreasc divergence stability. The
minimum width of the divergence-free corridor at low X* is

2/3Ly = 2/Ey, = 2/7y LS

which increases with V.

The divergence boundary is then det ermined by two aerodynamic influences:
the wiict negative spring Ky o= hyVHU, whkich gives the location of the asymp-
totes, and the cross spring coupling Ly = yVMU, which gives the width of the
corridor at low #£* independent of K. The first is the direct hub force due
to the rotor and the second is the flap moment on the rotor - both react to
the inplane hub velocity component of vV + » duc to the shaft tilt by pylon
pitch or yaw. Both spring terms increasc with inflow ratio V; the effect of

the direct negative spring also incresses; with h since it is a hub force.

The pylon and rotor will always be statically stable if both K,.* and X, *
are greater than the negative aerodynamic spring &, which is usually not a
very stringent criterion on the pylem stiffness. Static stability is also
achieved always for the nearly isotropic case, X,* = £,% cven if the stiff-
nesses are smaller than £, The cross spring Ly = YM%Z stabilizes the diver-
gence motion if the springs are not. too stiff, so that both degrees of freecdom
arc active and the coupling of the aerodynamic spring may be effective. This
effect produces the divergence-free corridor at low »*, However, the low Ky *
and Kx* region will be within the flutter instability region, so the presence
of the divergence-free corridor has little practical application.

Flutter: Some preliminary considerations- Some general results for whirl
tlutter dynamic instability are presented here; they were originally obtained
by Young and Lytwyn (ref. 18). The equations of motion are

Ly 0 Ya\T C. =D Yo\ K, Ly /e
N - + 4 s v + 4 7 - 0 (127)
0 v

 J\Gp ]JU U\ =1y, LpI\ag,
Forming the vector product wi‘th [¢y,  &p] (i.e., the sum of ay times the first
cquation and oy, times the sccond),” one obhtains

a

_[CU&E,/?' + Cpbp + Lu(uxdy - ocyd.x)] (128)

This equation is an cnerg)ys balance for the whirl flutter motion. The left-
hand side is the time rato of change of the sum of the kinetic and potential
cnergies of the system, which must always be positive (assuming that the diver-
gence criterion is satis‘ied). If the right-hand side is negative, the total
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energy is decreasing with time, hence the system is stable; if it is positive,
the total energy is increasing with time, so the system is unstable. The damp-
ing contributions are always stabilizing and extracting energy from the system.
An instability is possible only if Lu(axdy - aydx) is sufficiently large and
negative. Again, whirl flutter is a direct result of the aerodynamic spring
coupling L, = yVM, = yV(sin ¢)/6. Since this coupling increases with V, an
increase in the forward speed eventually produces an instability (if the term
is negative). The gyro coupling due to the rotor (D,) does mot appear in this
result, but it does influence the mode of motion of oyp and oy and hence may
influence the stability. Without L;, no instability is possible no matter
what influence D, has on the motion.

Since the aerodynamic coefficient Lu is positive, a necessary condition
for an instability to occur is that oayd,; - aydx < 0. Writing ay = q sin 6
and op = g cos 8, it follows that agzd, - aydy = g%6. Hence the requirement is
that & < 0, which means a mode of motion in which the shaft whirls in the
direction opposite the rotor rotation. This mode is called a backward whirl
mode; the motion with the shaft whirling the same direction as the rotor is

called forward whirl.

These considerations show that a whirl flutter dynamic instability for a
rigid propeller on a pylon occurs only in a backward whirl mode, and that it
is a high inflow instability due to the aerodynamic spring coupling M.

Flutter- The flutter boundary is defined by the requirement that a complex
conjugate pair of the roots of the characteristic equation be on the imaginary
axis, that is, that roots with zero real part be a solution. For X = Zw,
where w is real (w2 > 0), the characteristic equation becomes

(iwC,, + K, - w2I,)(iuC, + Ky - w2I,) + (-twD + L[}? = 0 (129)
Y Y ] x x z

The real and imaginary parts of this equation are

(Ky - w?Iy) Kz - wlIp) - w2CxCy + L? - D2w2 = 0
(130)
tw[(Ky - wZIy)Cx + (Kp - w2z¢)cy - 2DL] =0
If it is assumed that w # 0, the imaginary part may be solved for w?:
X,C. + K.C,, - 2DL
b2 = 4E *Y (131)
Iny + Iécy

Substituting the solution for w2 from the imaginary part (eqs. (130))
into the real part produces
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K2T20¢C +KP2r2c¢c -2ITCCKE +K[CA(TC_ +1C)HCC +D2)
¥y oxo Xy x oy xy Yy xxy y ey xy oy

> _ 0 ~ CC n?y -2 - C
+ _DLI#(Cny Fny)] + K}[(y(IéCx + IxCN)(kJFm + D) DLIy(Cny (QI&)]

207 0 7 2 2L v e 12 7 AD2r,271 = 32
(L (Zypx + lxby) + 20 (chx + Ixcy)(ty*x + D)+ ‘xIQJ L] 0 (132)

This general second-order equation for X, and 4, defines the flutter stability
boundary; it is, in fact, the cquation for a parabola. The cquation is
simplified by a transformation to a new axis system Y and Y defined by

.
R L
= = + — K
Iy I«
133
I, 7 ( )
v= Sk, - Ly
= = — K.
I I =
where 72 = Tp? + INZ. This transformation is a rotation by the angle
tan-! I.,/7, from the Ayoand Ay axes; for isotropic inertias, I3y = I, the
rotation angle is 45°.7 The ¥ and Y axes remain orthonormal under this rota-
tion. The relation of the / and ¥ axes to the original . and ¥, axes is

shown in figure 7; the 4y and X, axes are, of course, alrcady shifted by X
(the negative aerodynamic spring) from the structural spring axes, Zr* and Ku*.
With this rotation of the axes, the equation for the flutter boundary becomes

- 0 ~ D PR R o - - ~ -
I 7 (C2-02) + (7.4 -7 2 o0+ D LI - T 0
o Xyt 7/ X 2 Xy 2y X Xy
Ve o4 Y I o o _ — 4 - ¥, o
E -+ T ¥
P o0 T
140 £y
o ke T v Y
TO + T 0200 o+ 2 TCO +TC 2001 + T 0 Yoo o« 2
+ = Y L r2 Y& Y, J L g Y
- Pl e~
120 ¢ 4 20 ey !
X X '
Tl 40°L2
M -1=0 (139
200
I (,,xpy

which is, indeed, the cquation for a parabola.

This equation may be simplified further by expressing it in a form based
on the isotropic case. Let e and gp be measures of the anisotropy of the
moments of inertia and damping coefficients that

I.- 1T,

tan e = o U

) I I, + I,
o - (135)

x by

tan ¢, = —————

C O+ Cy
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and, as representative inertia and damping, use

I = VI + 172
(136)
C = sz + Cy

The angle e7 is the rotation of the X axis from the 45° line on the &z, %,
plane (fig. 7). With these definitions, the equation for the boundary becomes

X sin Z(EI + ec) 02 ) ADL 51n(ec - eI)
Yo+ Y —— cos 2¢, + Do} +
I cos Z2¢ 2 c c cos 2e
c c
2 cosz(sI + ec) c2 )
v X I cos 2¢ 08 280 + D
C
2 .
.. cos (eI + ec) ADL Cos(eI + ec) c2 2\ ap2r2 ©OS ZEI
2L 2 tTIC 2 7 ©0% ZEC M cos 2e
cos 2en cos Ze. o2 2e .
(137)
The equation is now in the standard form for a parabola, namely,
(Y + ey)? + 4dX = 4dhy, (138)

The geometry of the parabola is described by the shape factor d and the vertex
hy (fig. 7). The axis of the parabola is parallel to the X axis, but shifted
a distance ey below it.  The maximum value of X on the boundary occurs at the
vertex, a distance %, from the Y axis. The parameter d describes the shape of
the parabola: at a distance d from the vertex, the parabola has a width of 4d.
Moreover, the isotropic inertias (so ey = 0 and the parabola axis is parallel
to the 45° line on the Ky*,Kx* plane), the shape factor points (points A in
fig. 7) give the maximum values of Ky* and K,* on the parabola.

To first order in ey and eg, that is, for small anisotropy, the parabola
axis shift, vertex, and shape factor are given by:

. 2 + 2D 2DL

ey £ =7 — (er * e * g (g 7 op) (139)
. 2L (. L

hy, - (I 7+ D) (140)
. €% + 2p2 ~

d = >gr (141)

For small anisotropy, there is no first-order influence on hy and d, which
describe the parabola shape and position; there is only a small effect on the
orientation of the parabola axis, which is rotated by £y and translated by €y
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from the 45° line on the Ky,Ki plane. In terms of the approximation based on
the equivalent radius, the” vertex is

. 2L L
}ZU=—5~(I—C“+D>

2L L
“u U
= I* — + D )
/3 (c* + Cu) ( c* + CU H
Y VM YVM
=7 K I* K + 2 (142)
C* + n2yH, - yMp C* + hPyH), - yMp
where
Lu yI/MU YV (sin ¢}/6
- pd (143)

Cf Oy O REYHL - Mz C* s y[(cos $)/8 + R2(V sin $)/2]

The farthest penetration of the parabola that defines the dynamic stability
boundary is governed by the vertex hv‘ The size of hy, is determined primarily
by L/C, the ratio of the coupling aerodynamic spring to the total pylon damp-
ing. The damping of the pylon, with structural and aerodynamic contributions,
decreases k. The aerodynamic damping probably does not change much with 7,
the larger term (Mé) decreasing somewhat while the other increases. An increase
in mast height % is helpful for stability since it increases the aerodynamic
damping. The major influence of V is on the coupling spring Ly = yVMy =

YV (sin ¢)/6, which increases with V, and so h, does also. The gyroscopic cou-
pling Dy contributes to the instability, but the primary source is the cross
spring Ly (the direct hub moment due to the inplane component of V + v pro-
duced by the pylon tilt, Ly = YVM,). The shape factor is approximately

g2 C2 sz (CF 4002 D2
S

2V2 1#

(C* + hzyHu - yMé)Z + 4

2V/2 1*

ig% * v[(cos 9)/8 + h2(V sin ¢)/2]}2 + 4
2v2 I1*

He

(144)

Small 4 means a flatter parabola; therefore, in this respect, damping

(C* + Cy) is bad for stability and the inertia I* is good, in contrast to their
influence on %;. The shape factor is relatively independent of V, however;
hence the main influence of an increase in the inflow ratio is to increase hy,
which shifts the parabola outward without changing its shape much.
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It may be concluded then that the whirl flutter dynamic instability is
due to the aerodynamic spring coupling Ly, = yVMy,, as suggested by earlier dis-
cussions. The shape of the flutter parabola is relatively independent of V,
while the vertex h, increases greatly with V; forward speed therefore decreases
the flutter stability by shifting the parabola outward. Since an increase in
damping, either structural or aerodynamic, makes the parabola broader, but
decreases the vertex size, the overall effect on stability is favorable. Con-
versely, an increase in the inertia is unfavorable. The mast height h only
enters into the aerodynamic damping of the pylon, where 1its influence is favor-
able. The gyroscopic coupling participates in the instability, but cannot
cause it if Lu is small enough.

Construction of boundaries- From the previous solutions, the whirl flutter
stability boundaries can be casily sketched on the Kx*,Ky* plane for a given V.
The relevant axes for both flutter and divergence are the Kp,Ky axes on the
Kx*,Ky* plane, which are offset from the Kp*,K,* (structural spring) axes by
the negative aerodynamic spring Ky = hyvihy. The lines Kp* = K, and Ky* = Ky
are constructed first.

The divergence hyperbola has as asym totes the K, and K, axcs, and a
minimum width for small K * and Ky* of ZJ% L, = 2/2 yVM,. Since the portions
of the divergence boundaries within the flutter boundary are not of practical
interest, the divergence boundaries are defined primarily by the asymptotes.

The flutter boundary construction begins at the 45° line from the Ky and
Ky axes. The X and Y axes are constructed, then rotated an angle €7 from the
45° line; the parabola axis is then constructed a distance ey below the X axis.
The vertex of the parabola is given by the distance h, from the Y axis; from
the shape factor d, four more points on the parabola are easily found (on the
Y axis, and points A as in fig. 7). The shape factor points (A in fig. 7)
give the points of maximum X,* and K,*, at least for isotropic inertias
(er = 0).

It is almost as easy to construct the boundaries exactly as it is to
sketch them. From the equations for the divergence hyperbola and the flutter
parabola (eqgs. (124) and (138)), a number of points on each boundary can be
obtained quickly. Typical results are shown in figure 8, for V/Qr = 1,
h=0.3, vy=4, Ipt = Iy* =2, and Cp* = Cy* = 0 (high inflow, typical prop-
rotor mast height and Lock number, isotropic inertia of the pylon, and no
pylon structural damping). Also shown for the Kp* axis is the equivalent
pylon natural frequency, wg® = Kp*/Ix* (per rev), to aid in the interpretation
of the results.

Whirl Flutter Nomenclature

cy = h2yH, - yMg  direct aerodynamic damping
K, = hyVH, direct aerodynamic spring
D= Du = 2 Coriolis coupling

L =1Ly = YVMy cross aerodynamic spring
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Whirl Flutter Nomenclature (Conc1.)

Ky = Ky* - K, total pitch spring

Ky = Kp* - K, total yaw spring

Cy = Cy* + 0y total pitch damping

Cp = Cpt + ey total yaw damping
Ié - Iy

_ -1 . . .

er = tan j;f:—jz; 1nertia anisotropy
Cp = Cy

€,=tan~! 7 damping anisotropy

C Co + qy

I=Y1,2+7102 representative inertia

C = /0,2 + Cyz representative damping
X,y whirl flutter parabola axes

€y whirl flutter parabola axis offset
d whirl flutter parabola shape factor
hy whirl flutter parabola vertex

Two-Bladed Rotor

Consider a two-bladed flapping rotor on a pylon with pitch and yaw degrees
of freedom. The rotor flapping motion is composed of a teetering mode and a
coning mode. As for N > 3, the coning mode does not transmit any net force or
moment to the pylon to excite its pitch or yaw motion. Moreover, the usual
case of a two-bladed rotor is the teetering rotor, which has both blades canti-
levered to the hub, which is then attached to the shaft by a single flap hinge.
For the teetering mode, the rotor acts as an articulated rotor, while, for the
coning mode, it acts as a hingeless rotor with a very high natural frequency.
Thus the coning mode may be neglected in this model, and the problem reduces
to three degrees of freedom: rotor teetering and pylon pitch and yaw. (This
differs from that for three or more blades, where the equivalent model has
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four degrees of freedom.) For N 2z 3, the rotor motion in the fixed frame 1is
described by tip path plane tilt degrees of freedom (plus N-2 other modes that
do not couple with oy and o). For N = 2, however, such a description over-
describes the transient motion since only one degree of freedom is involved -
the teetering mode. For N 2 3, the use of tip path plane coordinates results
in constant coefficient differential equations, even though the equations of
motion for the individual blades in the rotating frame involve a periodic
variation of the inertia and aerodynamic forces. For N = 2, the periodic coef-
ficients remain in the equations of motion since the teetering mode is really
a rotating degree of freedom. The fundamental difference between the dynamics
of the N > 3 and N = 2 cases, which makes the two-bladed rotor much more dif-
ficult to analyze, is that fact: for N = 2, the equations of motion for the
coupled rotor and pylon system involve periodic coefficients even in purely
axial equilibrium flow.

The equations of motion for the pylon and rotating blades are the same as
for the four-degree-of-freedom development (eqs. (4)). If the coning mode 1is
neglected, since it does not influence the coupled dynamics anyway, the flap-
ping angle of the mth blade (m = 1, 2 here) is given by the teetering degree
of freedom 8: g(2) = g for the blade at azimuth position ¥, and g(1) = -8
for the blade at azimuth position ¢ + w. The equation of motion for the tece-
tering mode is obtained by operating on the rotating equation with
1/22: (-l)m(. . .); this operation yields the total teetering moment on the

m

rotor. With sin y, = (—l)m sin ¢ and cos Yy = (-l)m cos ¥, the equation for B
is
M

. F
B + vBZB - (&y - 24,)cos ¢ + (G + Z&y)sin Yo=Y —ai- (145)

where MF] =1/2 2: (—l)mMFm is the aerodynamic teetering moment. Already,

periodic coeffic?ents appear with the pylon inertia terms as seen by the rotat-
ing blade. The evaluation of the hub moment and force for the pylon equations
and the flap moment for the rotor equation follows exactly that for the four-
degree-of-freedom model, up to the point where the summation over the N blades
is performed. At this point, the influence of N = 2 appears, usually the
introduction of periodic coefficients.

The following equations of motion are obtained (for convenience, V is
written for V + v, except in the gust terms, where it really is just V); and

Hy, for Hj + Ry)e
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0] Iy* 0 ay,
0 0 I.* %
[_ -y, (2+vhM,)sin V+yMg cos y (2+vhi ) cos U-yMg sin y B
+ —r’zyHéZ sin ¥ C;,*+h2yHu(l—cos 2w)+hyllé sin 2y hzyHU sin Zw—hyHé(l—cos 29) ay
_—hyf{él cos P hzyHu sin 29+hyig (1+cos 2y) Cx*+h2yHU(1+cos Zw)—hyHé sin 2¢ O
r v82+yMOKP —yVMUl sin ¢ -yWu cos ¢
B
+ <\)8?-1+vlr 83)2 cos Whyﬁekfi sin o Ky*-}zyVHU (1-cos 2y) -hyVHu sin 2y o,
, Crp Oy
V2 ey —L)0 ein woad o op e _ ; *_
_.— Vg 1+v~ oo /c sin g+ ‘y"BA;P“ cos ¢ hyVHu sin 2y Ky hyVHu(hcos Zw)J
YMG YV‘MU sin ¢ \(VMu cos 2y T
o
. G
= | AvHg2 sin y 81 + hyVHU(l—cos 29) hyVHu sin 2y ( )
B
. : G
hyHg2 cos hyVHu sin 2y hyVHu(1+cos 29) |
(146)

This three-degree-of-freedom set of differential equations has periodic
coefficients, with a period of 27. These equations can be solved, by the
techniques of Floquet theory, for the eigenvalues of the system, which indi-
cate the stability (as described, e.g., in ref. 33). These equations agree
with those derived by Hall (ref. 8) for the two-bladed rotor (that work
involved the XV-3, which had teetering rotors). Hall did not obtain the linear
differential equations, however; he solved the equations by numerical integra-
tion to find the transient motion, which allowed him to keep the equations in

a more general form and even to include nonlinear aerodynamics.,

The pitch input 01 is the differential blade pitch, a degree of freedom
corresponding to the teetering mode; 6, = [g(2) _ 0(1)1/2. If the blade pitch
control is achieved by a conventional swashplate, then the input variables are
really 810 and 615, where 6 = 610 COosS Y + SIS sin y.

The whirl flutter equations for N = 2 are obtained much as for ¥ 2 3:
eliminate the combination vBZB from the pylon equations of motion by use of
the flapping equation, then drop the 8 degree of freedom in taking the limit to
a truly rigid propeller. The result, for homogeneous equations, is



Iy*+l+cos 2y -sin 2y oy o
-sin 2y I *+1-cos 2 T

Cu“thHu(l‘COS Zw)—yMé(hcos ZU/)-(Z*Z"TYMU)sin 2y ;'ZZYHU sin 2y+yMg sin 2yu-2(1+cos Zw)-zhyMu cos 2y (%/).
R
¥

hzvh'u sin 2U+yMg sin 20+2(1-cos 2y)-2hyM, cos 2y thhzyh'u(lwos 2y)-vMg (1-cos 291+ (2+2hyM,)sin 2 %

KH*-J’”‘,YW!'V”.—COS 2y)+y Vi, sin 2y -y s 2pey VY (Trcos 2y) <:L;‘>
+ =0
)

~hyly, sin 2u-yVM; (1-cos 2:) H =l VH, (1+cos 20)-y¥H, sin 2 L

(147)

This is a two-degree-of-freedom problem again, but now with periodic
coefficients (of period m) because of the two-bladed rotor; the solution for
the stability is obtained by Floquet theory techniques. Typical results for
the stability boundaries on the X and X, plane are shown in figure 9, for
V/R = 1, h = 0.3, vy = 4, Izx*[= Ip/(N/2)Ip] = I *# =2, and Cy* = Cp* = 0. The
divergence and flutter boundaries are much as for the ¥ 2 3 whirl flutter
problem (fig. 8). The periodicity of the system also introduces the possibil-
ity of a divergence-like instability that occurs with a frequency 1l/rev in
addition to occurring on the real axis. (Such an instability may occur at any
multiple of one-half the fundamental frequency of the system, which is 2/rev
for the present case with a period of w.) Such instability regions appear in
the solution presented in figure 9. One region occurs for low stiffness,
where the natural frequencies of the pylon (w, and w,) are near zero; that
region is buried in the rlassical flutter region though. A 1/rev divergence
also appears where wy OT Wy is near 1/rev, since that is where one eigenvalue
would be expected to be near l/rev. This new kind of instability for the
proprotor and pylon system, introduced by the periodic coefficients, illustrates
how special the two-bladed rotor is.

AIRCRAFT STABILITY DERIVATIVES

This chapter examines the contributions of the proprotor to the aircraft
stability derivatives, and hence the influence of the proprotor on the entire
aircraft. The aircraft rigid-body motions are assumed to occur at low fre-
quency, and are transmitted to the rotor shaft without modification by the wing
motion. The expressions obtained previously for the response of the flapping
rotor to low-frequency shaft motion are used to estimate the rotor contribu-
tions to the forces and moments on the aircraft. This means, of course, that
the influence of the rotor lag and the wing motion is being neglected. The
rotor contributions are compared with the usual airplane contributions to the
stability derivatives, from the tail and wing in particular, to evaluate the
relative importance of the rotor terms. Nomenclature particular to the air-
craft stability derivative analysis is given at the end of the chapter.

While the assumption that the motion occurs at low frequencies for the
aircraft rigid-body degrees of freedom is valid, it is not quite correct to
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neglect the influence of the wing degrees of freedom and of the rotor lag

motion in determining the low-frequency rotor response.
separation between the

that much frequency
rotor flapping motions (g -
(i.e.,

rotor low-frequency response).

Usually, there is not
aircraft rigid-body motions and the

1) and the wing modes and rotor lag motion (g - 1)

between the motion included and the motion neglected in deriving the

Although the results given here arc thus no

more than a qualitative assessment of the rotor influence, they arc very

uscful as that.

The aircraft axis syste

m and geometry considered
The forces and moments about the aircraft center of gravity are required.
wing span is &y, so the rotor
from the aircraft center of gravity and a distance : forward.

are shown in figure 10.
The
at the wing tip acts a distance £,/ 2 laterally
The forces and

moments and the rigid-body motions of the aircraft are defined in the body axis
system in figure 10; the corresponding rotor forces and shaft motion are shown

in figure 3.

It follows then that the rotor forces and moments acting at the

center of gravity along the Ty ¥, and z directions are

The factor of 2 accounts
in figure

the rcar) for the rotor

rotor on the left wing,
sign of W (sgn 0) in

standard direction shown in

shaft motion due to the six
gravity is then

for the two contrarotating rotors.
S assumes a specific direction of rotation (clockwise viewed from
placed on the right wing as in figure 10.
direction of rotation is accounted

(148)

f"; ";")

Q’v M
s I, e ] P
2 ('M.'L' + 1y - T 4 B l)

204,

The rotor model
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This feature is the source of the influence of the
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where Vu, VB8, Vo are the velocity perturbations along the aircraft x, y, and 2
axes, respectively, and p, q, and r are the angular velocities about these
axes.

Now examine some of the aircraft derivatives to which there are
contributions from the proprotors. First, consider the pitch moment due to
angle of attack, Cma; from its definition,

. 3,/ 9, ] , Myt
My da - VS5 Zp
_ 2ma [ZCM Joa + h(ZCH/oa]]
- x
Vchw P
20y /oa + h(2Cg/oa)
= - od { Y = (150)
V(S,,/ 242, P

where Sw/ZA is the ratio of the wing area to the total rotor disk area (two
rotors), and ¢, is the wing mean aerodynamic chord. This equation gives the
rotor contribution in terms of the rotor coefficients times a factor that
involves the ratio of the rotor and wing geometric parameters to account for
the difference in the normalization of the rotor and airplane coefficients.
Now the coefficient Cp, is directly related to the aireraft static margin by
Cmy, = CLo(heoG - h,), where Cr, is the aircraft 1ift curve slope and h, is the
position of the stick-fixed neutral point (as a fraction of ¢,). The change
in the aircraft static margin due to the rotors is

oa ZCMy/ca + h(2Cy/oa)
bh,, = - T
V(Sw/24)euCL, P

(151)

where Ak, < 0 means a decrease in the static margin and hy is moved forward by
the rotors, which decreases the aircraft longitudinal stability.

The vertical force due to angle of attack, Cza, is

dF_/qS 2Cy/oa
ac, = —2 Y. _i_,éi.= o ( (152)

2
o 3o VSw D V(Sw/ZA) &P

The contribution from the rest of the aircraft, primarily from the wing, is

Cza = -CLa; therefore,
AC
2y _ - sa ZC?/ca (153)
C x

2q  V(5,/24)Cr P
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A positive value means an increment in the same direction as the wing
contribution.

The drag force due to the longitudinal velocity, Cxu’ is

an/qﬁu 4 T 20a C}/oa 2oa
bCa,, = ou VS, E .S P = T (7)) (154)
WP V(S,/24) p V(S,/24)
Because of the rest of the aircraft, Cxu = =2Cp = -2//%, and the influence of
the rotors is
A, 20a

(155)

where a positive value means a contribution in the same direction as the
aircraft drag (a damping term). Using the approximation based on the equiva-
lent radius for Ty vyields

U . 20a cos o
Cxu T VF/A 4

Since the rotor contribution remains fairly constant while the aircraft drag

contribution increases with speed, the relative rotor contribution decreases

with V. The rotor thrust due to inflow, 7y, is always negative, so the rotor
contribution is always in the same direction as the aircraft drag term.

The pitch moment due to pitching velocity, Cmq, is

i

5 & 2 h(2C
. BNz/q&wcw i o Cy foa + h( Fﬁ/ca) 56
m - "_{ — - - _‘ﬁ‘ -
4 297 2V V(s,/24)5 2 %y

The contribution due to the horizontal tail is Cp, = —2a¢St2t2/chw2, where at
S¢s and 24 are, respectively, the horizontal tail lift curve slope, area, and
arm.  Then the increment required to counter the rotor contribution is

o 2 o (2
, Sply o 20y [oa + n(LCH/Ga) (157)
287 7 Vag | &

Y

where a positive value means that more tail is required. This coefficient may
also be expressed in terms of the maneuver margin change: Ahy, = - (eSye,/ 4 ACy,
where M is the aircraft mass. A positive Aﬁmq due to the rotor then decreases™
the stick-fixed naneuver margin, moves Py forward, or equivalently requires

more horizontal tail to maintain the same margin as without the rotors.
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The rolling moment due to roll rate, Cg_, is

p
3N _/qS. A 20 Joa c,./oa
80y = o w9 <_;;___ ; _§E. g (158)
‘P
aplw/ZV 2V(Sw/2A) 2, z
The contribution due to the wing 1s approximately CQP = —CLG/S, and with
3(Cploa)/3dy, = &
AC 2C,/oca
CQ,E - 40’a (_ Z + 8 QZ;> (159)
bp V(S 24)CL, P Qw2

The &y term is due to the change in the rotor rotational velocity with respect
to air, which is produced by the rolling rate of the aircraft; Qi = ¥V (sin ¢)/6,
so this contribution is always in the same direction as the wing term, and
increases with V.

The yawing moment due to sideslip, C"B’ is

- 2 )
BNZ/quQw oa 2CMx/oa h(kCY/oa,
AC”B = 38 = - 7 (160)
V(S,/24) %, P
The contribution of the vertical tail is Cng = avsvav/swaw, so the tail
required to counter the rotor contribution is
Svlv oa ZCMx/ca - h(ZCY/oa)
b= = Va, 5. (161)
v Ip

where a positive value means that more tail is required.

The yaw moment due to yawing rate, C”r’ is

- 2
BNZ/quzw } roa {ZCMx/oa h(ZCY/oa) %, CT/aa} 162)

ACn = = 4+ ——
r are /2V V(Sw/ZA)lwz

&, 2 Zp
The contribution of the vertical tail is Cup
B(CT/oa)/aéP =Ty,

S 32 20y - h(2C,/0a) % 2
A2 v _ __oa {f T Y W TA (163)

—2a,Sp 82/ Syly® and, with

e

24 Va,, a, 2
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where a positive value means that more tail
The thrust coefficient 7 is negative,
that is, the rotor thru
aircraft.

is required to Counter the rotor.
SO0 at least that term requires less tail,
st damping contributes to the yaw damping of the

The rolling moment due to sideslip, CQB, is

N /qS % 2C Joa
ACQB = L _ww = oq (sgn Q)(L ? ) (164)
2V(S,,/24) Ip

The contribution due to wing dihedral is Cq

dihedral angle (in radians, positive up). %hen
the rotors is

‘(CLG/4)P’ where T is the wing
the "equivalent dihedral due to

2C_ /oa
oT = 20@ (sgn Q)(— d ) (165)
V(8s/28)Cy, P

where a positive value means that more wing dihedral is required to counter
the rotor contributions.

The above coefficients are of prim
the aircraft dynamics; a few others to
examined. The vertical force due to pi

ary interest for their influence on

which the rotor contributes are also
tch rate, Czq’ is

SF;/QSb 5 20, /oa
Az, = —2—2 - = = (166)
ach/ZV V(Sw/2A)cw Y
The horizontal tail contribution is ng = —ZatStzt/Swéw, SO
Stgt 40a 2CY/0a
A —5 o - . (167)
24 Vat Yp
where a positive value means that more tail is required.
The side force due to sideslip, CyB’ is
aF%/qSQ 204 ZCY/Ga
AC@B = 5E T - - = (168)
V(S,/24) Ip

Because of the vertical tail, CQB = ~apSy/S,; therefore,
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A €E.= _ 492 | %fy/oa (169)
24 Vay, Up

where a positive value means that more tail is required.

The yawing moment due to rolling rate, Cnp, is

——_—

ACn =
r 0 vee f2A) 8
BF Lw/ZV v (.) /._A) e

. -2 = (170)
xP S

Py ) Ial iy - 1 ‘7“1 - J o
o, /a8, %, oa(sgn ) [%pr/Jd ﬂ(kuy/oa) T/O

The contribution of the wing is approximately Cn.. = -CL/8> and
3(Ccpfoa)/day = Tﬁ; therefore, p

AC 20y Joa - n(2Cy/oa)
M, 802 (egna)|- — & 27, (171)
C g x g

np V(S 280 %0, P

where a positive value means that the rotor contribution is in the same
direction as that of the wing. Now 7o = (sin ¢)/6 is positive, sO that contri-
bution is at least the same as for thé wing if @ > 0, and opposite if o < 0.

The rolling moment due to yawing rate, CQP,-is

BNx/quﬁw ca(sgn ) ZCH/aa ZCQ/ua
. (172)
“P

" IR R S
8Cy,, =

arg J2V &
W V(Sw/ZA)Qw x

The contribution of the wing is C = ¢, /4, and 3(C Joa)/dzp = Q,; therefore,
Ly L 4 P )

ACy, 2C../oa
_ r _ doa (sgn Q)( g + 2Q¥> (173)
bp  V(S,/2A) 0L x

wherc a positive value means a contribution 1in the same direction as from the
wing. The torque due to inflow is Gy = -(sin $)/6, which is always negative at
least.

The influence of the proprotor forces and moments on the aircraft
stability derivatives may be estimated with these expressions. Table 1 gives
the values of the parameters required. Two types of rotors are considered: @
gimballed rotor and a cantilever rotor. The gimballed rotor has a flap fre-
quency of exactly 1/rev because of the hinge at the center of rotation; it also
has positive pitch/flap coupling, Kp < 0 (negative 83 of about 15°), and the
rotor rotates clockwise (from the rear) on the right wing. The cantilever
rotor has a flap frequency above l/rev, namely, Vg = 1.35; it has no pitch/flap
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a proprotor aircraft, The rotor influence is evaluated at y/gp - I, which is
around V = 325 knots, approximately the maximum cruise speed of such ap air-
craft, Generally, the influence of the rotor increases with Speed, hence the
coefficients are evaluated at high velocity,

Cantilever rotor f Gimballed rotor j
’ vg 1.35 ) 1.0
i

|k | 0 | -0.25 |
/R 0.28 | 0.34 |
sgn Q i 1 |
o] 0.1
a 5.7
Y 4
S,,/24 0.19
Cow/R 0.44
%,./R 2.65
e, 4.2
ag 3
ap 3
A 1
Cr  at Kﬁax 0.20
74 0.013
S¢Re/24R 0.09
S/ 24 0.05
Syly/24R. 0.07 to 0.09
Sply2/24R 0.10 to 0.16

The rotor force and moment derivatives are given in table 2 for these
two rotors; the first number is for the gimballed rotor; the second, for the
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cantilever rotor. These low-frequency derivatives, obtained with equations
(102) and (103), were evaluated using the parameters in table 1; only vg, Kp,
h, v, and V are required for the rotor derivatives, the others are aircraft
parameters. The flap frequency is the primary paramecter, responsible for the
major differences between the derivatives for the gimballed and cantilever
rotors; Kp is also important for the cross-derivatives of the gimballed rotor.

The rotor forces and moments due to the hub inplane velocity xp or yp
are hasically produced by the coefficients #, and M,. The derivative -HlZp,
always positive and generally larger for the cantilever blade, gives positive
damping then. The corresponding pivot moment derivative -(M, + hi)/&p is also
always positive. The cross-derivative -H/§p is always ncgative for the canti-
lever rotor, while it is proportional to Kp for the gimballed rotor and there-
fore has its sign. The pivot moment derivative -(¥, + hH)/yp is also
proportional to Kp for the gimballed rotor and has its sign; while, for the
cantilever rotor, the hub moment dominates the hub force acting on the arm 7,
so the net pivot moment is always positive. The hub force due to the shaft
angular velocity —H/é” is large and always negative for the gimballed rotor
because of the flappihg required to precess the rotor acting through the nega-
tive # force (#3) to give a hub force; the derivative is small for the canti-
lever rotor. The corresponding pivot moment - (M, + hH)/4,, is then also negative
for the gimballed rotor (negative damping); for the cantilever rotor, it is
always positive because of the hub moment. The cross-derivative //d4, is nega-
tive for the cantilever rotor, and has the sign of Xp for the gimballed rotor.
The moment derivative (M, + AfH)/é, also has the sign of Xp for the gimballed
rotor, and is positive for the cantilever rotor because of the hub moment.

The longitudinal derivatives required (-7y, -& Ti, and Q&] are all positive
and increases with ¥V (all equal 0.135 at = 1, based on just the ¢y terms as
in eqs. (54)). “

On the basis of the expressions above and the values given for the rotor
derivatives, the following influence of the proprotor on the aircraft dynamics
is found. The change in Oy, due to the Totor always results in decreased
static longitudinal stability, that is, a forward movement of the neutral
point #,. Typicaly, h, moves forward 10 to 20 percent of the wing mean aero-
dvnamic chord, with the larger value for the cantilever rotors. Like many of
the rotor effects, this change is roughly proportional to HU/V, which, from
the equivalent radius approximation, is proportional to sin ¢; hence the rotor
effect increases with V.

The rotor increascs Cza somewhat over the wing contribution; that is,
the rotor contributes to the total 1ift curve slope of the aircraft by about
10 to 30 percent (the higher value for cantilever rotors) of the wing contri-
bution in the same direction, thereby increasing the total aircraft (7 .

This cffect is also proportional to Hy/V, hence to sin ¢ (roughly). The
incrcase in the magnitude of Czu (the coefficient is negative) produces some
increase in the damping of the aircraft longitudinal short period mode.

The rotor contributes to (g, in the same direction as the aircraft drag
contrihution (making (g, more negative)}. The rotor contribution is due to the



rotor thrust damping T and hence is an order of magnitude larger than the
aircraft drag contribution. The result is an increase in the phugoid mode
damping and also in the sensitivity to longitudinal gusts. The great increase
in Cx,, over the usual aircraft values also may change the motion involved in
the longitudinal modes.

The rotor contribution to Chq moves the maneuver point Ay, typically 5 to
7 percent of the MAC. The maneuver margin is decreased for the gimballed rotor
because of the negative # force and is increased for the cantilever rotor
because of the hub moment capability. This indicates the need for about 40 per-
cent more and less horizontal tail effectiveness, respectively. Equivalently,
because of the rotor, the short period mode damping and frequency are decreased
for the gimballed rotor and increased for the cantilever rotor. Note that, with
the high wing configuration of the tilt rotor aircraft, pitching about the cen-
ter of gravity also introduces a T, contribution to Chq, which always increases
hm (less horizontal tail effectiveness required).

The rotor contribution to (g, is of the same order and sign as the wing
contribution. Both the rotor # fgrce and torque terms have the same sign, and
both (H,/V and Q&/V] increase with V approximately as sin ¢. The H force con-
tribution is about the same as that of the torque for the gimballed rotor, but
larger for the cantilever rotor. As a result, the aircraft roll damping is
increased significantly, and hence the roll mode time control is decreased to
typically half the value due to the wing alone.

The rotor contribution to Cyg is always negative and, compared with the
positive term from the vertical tail, the rotor term is small for the gimballed
rotor but more significant for the cantilever rotor. An increase in vertical
tail effectiveness is then required, especially for a cantilever rotor or,
equivalently, the rotor decreases the aircraft Dutch roll mode frequency.

The rotor contributes to C”r by a 7, term and a pivot moment term. To
counter the rotor contribution (maintain the same net Cnp), the Ty term always
requires less tail; the pivot moment term requires more tail for the gimballed
rotor because of the negative H force, but less tail for a cantilever rotor
because of the hub moment. The Ty term dominates, though just barely for the
gimballed rotor, so the net result is a requirement for less vertical tail to
maintain the same value of Cy,, especially for the cantilever rotor. Equiva-
lently, the rotor influence means an increase in the Dutch roll damping.

The rotor contribution to (g, is typically equivalent to about 5° of wing
dihedral (by the present estimate). The rotor derivative involved is a cross
term - a vertical force due to a lateral velocity - so it is proportional to
N, (Kp for the gimballed rotor), and the contribution to the aircraft deriva-
tive is proportional to the rotational direction of the rotor (sgn Q). The
rotor contribution, in terms of the wing dihedral required to counter it, has
the same sign as -sgn @ for the cantilever rotor, and the same sign as
Kp sgn Q@ for the gimballed rotor. For the rotors considered here, more wing
dihedral is required for the cantilever (sgn Q = -1) and less for the gimballed
rotor (Kp < 0 and sgn @ = 1); or, equivalently, the rotor produces worse and
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better spiral mode stability, respectively. Generally, the rotor contributes
significantly to Cyg, the direction depending on the rotor rotation direction,
whether a cantilever or articulated rotor is involved, and on pitch/flap cou-
pling for the articulated rotor. Note that the large tip pylons usually asso-
ciated with the tilt rotor configuration also contribute significantly to CQB.

The rotor contribution to C 8 is negative and several times the negative
contribution of the vertical tail? Hence it requires less vertical tail or,
equivalently, increases the Dutch roll damping. The influence of CyB is
usually considered secondary to that of Cny,, however.

The rotor contribution to Cy,, is an order of magnitude larger than the
wing term; Cy, < 0 is adverse yaw? which is the direction of the wing contri-
bution. There is a thrust term and a pivot moment term from the rotor. In
comparison to the wing term (so that positive ratio means adverse yaw), the T&
term has the same sign as sgn 9; the pivot moment term has the same sign as
sgn Q@ for a cantilever rotor and the same sign as Kp sgn Q for a gimballed
rotor. The pivot moment contribution is small, however, especially for the
gimballed rotor, and the T& term dominates. Hence the net contribution to
ACy,/Cyp, has the same sign as sgn Q and, with variations in V, it behaves as
V sin ¢ (Ty/VCp). For the rotors used here, the rotor contribution for the
gimballed rotor is adverse yaw and, for the cantilever rotor, it is favorable
yaw. Since the rotor results in a coefficient larger by an order of magnitude
than usual for aircraft, however, it is expected to significantly alter the
lateral modes of the aircraft.

The rotor contribution to Cgr, like that to Cy,, is an order of magnitude
larger than the wing contribution. Relative to the wing term (i.e., ACQP/CQP),
the torque term has the same sign as -sgn @, while the hub force term has the
same sign as -sgn @ for the cantilever rotor and the same sign as Kp sgn Q for
the gimballed rotor. The hub force and torque terms have approximately equal
magnitudes; hence the sum would be small for an articulated rotor with Kp > O.
With the present examples then, the rotor contribution is in the same direction
as the wing contribution for the cantilever rotor and opposite for the gimbal-
led rotor. The increase in the magnitude of Clr is expected to significantly
alter the lateral modes of the aircraft.

In summary, the influence of the proprotor on the aircraft dynamics is as
follows. The static longitudinal stability (static margin) is decreased (Cp,);
the phugoid damping is increased (Cxu); the short period damping is increaseg
somewhat by Cz., (but influenced primarily by Cm,); the roll damping is
increased (Cy ?; the Dutch roll frequency is decreased, especially for the
cantilever rotor; and the Dutch roll damping is increased, especially for the
cantilever rotor (Cnr, and also CyB). Because of Cpm,, the short-period damp-
ing and frequency (i.e., maneuver margin) are decreased for the gimballed rotor
(due to the negative H force damping) and are increased for the cantilever
rotor (due to the hub moment capability). The rotor significantly influences
the spiral mode stability (Cggp), the direction depending on the rotor rotation
direction and also on vg and %p. Three of the rotor contributions - (g, Cnp,
and Cy - are lateral/vertical coupling rotor coefficients, hence they are
propor%ional to sgn Q and also depend on vg and Xp, the rotor coupling param-
eters (N,). Three of the rotor contributions - Cp , Cnp» and Cy , - are an
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order of magnitude larger than the usual aircraft derivatives and therefore
may be expected to significantly alter both the longitudinal and lateral modes
of motion of the aircraft.

It is concluded that flapping rotors operating in high inflow contribute
substantially to the aircraft derivatives. A numerical estimate of the rotor
contributions to the aircraft stability derivatives, from the expressions given
here, would probably not be adequate, primarily because rotor lag and wing
motions were neglected.

Stability Derivative Nomenclature

Fo, Fy, F, aircraft longitudin§13 lateral, and vertical forces (subscripts
x, y, 3 for coefficients)

Ny, Ny, Ny aircraft roll, pitch, and yaw moments (subscripts &, m, n for
coefficients)

u, B, o aircraft longitudinal, lateral (sideslip), and vertical (angle
of attack) velocity perturbations

Ps qs 7 aircraft roll, pitch, and yaw angular velocities

L wing span

h mast height (aircraft center of gravity to rotor hub)

Cy wing chord

Sy wing area

CLa aircraft 1ift curve slope

Cr, aircraft 1ift coefficient

Sy horizontal tail area

L4 horizontal tail arm

ay horizontal tail 1ift ‘curve slope

Sy vertical tail area

2y vertical tail arm

a, vertical tail 1ift curve slope

sgn Q rotor rotation direction

q in coefficients, dynamic pressure (1/2)DV2

hy, neutral point
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Stability Derivative Nomenclature (Concl.)

hm maneuver point
r wing dihedral

The aircraft stability derivatives are defined as they are introduced.

SECTION 4: NINE-DEGREE-OF-FREEDOM MODEL FOR A PROPROTOR ON A CANTILEVER WING

Wing Equations of Motion

In this chapter, the equations of motion for a proprotor on a cantilever
wing are derived. The equations of motion and the hub forces and moments were
obtained previously for the six rotor degrees of freedom (blade collective and
cyclic flap and lag motion), including the excitation by the six degrees of
freedom of the shaft motion (eqs. (44) to (48)). The equations of motion for
the wing elastic bending and torsion motion are now derived. The wing degrees
of freedom are forced by the rotor hub forces and moments, and each mode of
wing motion produces a corresponding shaft motion. Thus the two sets of equa-
tions, for the rotor and for the wing, are combined by substituting the wing
degrees of freedom for the shaft motion in the rotor equations of motion and
forces, and then substituting for the rotor forces in the wing equations of
motion. The result is a coupled set of equations that describes the
aeroelastic behavior of the proprotor and wing system.

The proprotor aircraft configuration consists of large diameter flapping
rotors mounted on the wing tips. Usually, the engine and transmission are also
mounted in the pylon at the wing tip; hence there is a large mass and inertia
at the wing tip. The rotor hub forces are transmitted to the wing tip through
a mast of height % (i.e., forward of the pylon pivot).

The dynamics specific to the proprotor configuration are of primary
interest here, that is, the high inflow rotor dynamics coupled with the wing/
pylon motion. Hence the model considered is restricted entirely to the air-
plane cruise mode configuration, with the shaft parallel to the free-stream
velocity. The model is restricted also to the frequency range most important
to the coupled wing and rotor motion. Only the lowest frequency wing modes
are considered, and the elastic motion of the pylon with respect to the wing
tip is neglected since it usually has a much higher natural frequency than the
lowest wing modes. The motion considered then is the wing elastic motion with
the pylon and the rotor shaft rigidly attached to the wing tip. The aircraft
rigid-body motions are also neglected since they are degrees of freedom of
low frequency and are not highly coupled with the motions to be examined.
Neglecting the rigid-body motion places the primary emphasis on the basic rotor
and wing dynamics, as is desired here, and so may be justified as an appropri-
ate first step at least. Indeed this rotor and cantilever wing model is very
useful in establishing the behavior of the proprotor aircraft. Hence a
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cantilever wing model is used for the fixed system motion, with the
understanding, of course, that eventually a more complete model including the
aircraft motion must be used. In addition, the cantilever model corresponds
to the configuration of many proprotor models that have been tested in wind
tunnels, including the full-scale tests considered later.

The model considered consists of a wing and rotor in cruise flight
configuration, operating in a free-stream velocity V with the shaft always
parallel to V so that the rotor equilibrium flow is purely axial. The rotor
operates in high inflow. The wing root is attached to an immovable support
with cantilever root restraint. The wing motion consists of elastic bending,
vertical and chordwise, and elastic torsion. A pylon with large mass and
moment of inertia is rigidly attached to the wing tip. The rotor is mounted
on the pylon with the hub forward of the wing elastic axis, with the rotor
shaft horizontal (parallel to V). The rotor has three or more blades, with
first mode flap and lag motion for each blade. The rotor hub forces and
moments are transmitted through the pylon to the wing tip.

The wing is assumed to have a high aspect ratio so that strip theory can
be used for the wing aerodynamics and engineering beam theory for the elastic
bending; this assumption is well justified for the tilt rotor aircraft, which
have, typically, an aspect ratio around 6. Wing sweep, dihedral, and angle of
attack are considered, but the major effect is that of the wing sweep on the
position of the effective elastic axis of the wing, hence on the effective
mast height for the transmission of the rotor hub forces to the wing bending
and torsion motion, Regardless of the wing sweep, dihedral, or angle of attack,
the rotor shaft is assumed to be maintained parallel to the free-stream veloc-
ity in equilibrium trim flight. This assumption is required to avoid periodic
coefficients in the rotor equations of motion due to an inplane component of
the trim velocity.

Wing geometry and motion- The wing geometry is defined by a straight spar
line that is the locus of the local elastic axis. The wing root is supported
with cantilever restraint; the rotor shaft is attached rigidly to the wing tip.
The wing geometry is shown in figure 11. The wing has a constant chord ¢y and
a length yr from root to tip (semispan). The distance along the spar is y,,
measured from the root. The shaft has length %, the distance the rotor hub is
forward of the wing tip elastic axis (mast height). The wing spar is basically
perpendicular to the forward velocity V, but small wing sweep, dihedral, and
angle of attack are considered. The wing root is attached to a plane defined
by the forward velocity V and the vertical; then three rotation angles define
the orientation of the spar with respect to the free-stream velocity: dihedral
6w, (positive for upward rotation of the wing tip), sweep 3§, (positive for
sweep aft), and angle of attack 8w, (positive nose-up). All°these angles are
assumed to be small, an appropriate assumption for proprotor aircraft in cruise.
The rotor shaft must then be rotated by the angles —Gwl, -Gwz, and '5w3 to keep
the shaft parallel to the free-stream velocity.

The rotor (fig. 3) is placed on the tip of the wing (fig. 11) so that the
wing tip motion is transmitted directly to the rotor shaft. It is also neces-
sary to account for the rotational direction of the rotors. The aircraft has
two counterrotating rotors, one on each wing tip, but the rotational direction
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of the rotor on the right wing (fig. 11) may be either clockwise or counter-
clockwise. The equations of motion and hub forces for the rotor are derived
for the rotor model in figure 3, that is, assuming clockwise rotation. This
model is always used for the rotor, and then the rotational direction of the
rotor is accounted for by placing the rotor on a right-hand wing (fig. 11) or
on a left-hand wing as appropriate. The influence of the rotational direction
is a number of sign changes in the equations of motion, which reflect how the
hub forces and moments of the standard rotor (fig. 3) excite the right or left
wing, and how the right or left wing produces motion of the rotor shaft.

The notation © indicates the influence of the rotational direction of the
rotor. The clockwise rotating rotor on the right wing (figs. 3 and 11) is
denoted by © = 1; the clockwise rotor on the left wing (fig. 3 and the mirror
image in fig. 11) is denoted by Q = -1:

+1; rotor rotation clockwise on right wing,
counterclockwise on left wing
O = (174)
-1; rotor rotation counterclockwise on right wing,
clockwise on left wing

The wing motion is described by elastic bending and torsion of the wing
spar; the wing displacement is shown in figure 11. The pylon (and with it the
shaft) is rigidly attached to the wing tip. The existence of an elastic axis
of the wing (assumed to be a straight line) means that the wing distortion may
be described first by elastic torsion of the wing about the local elastic axis,
without bending the wing; and then by elastic bending of the spar, which
deflects the elastic axis from the undistorted position without changing the
torsional deflection.

A modal description of the wing elastic deformation is used, and only the
lowest frequency modes are retained. The elastic torsion of the wing results
in a pitch change ,(%,y,) of the local wing section (positive nose-up as
shown in fig. 11). With a modal representation, this motion is written

6y = Z pi(t)gwi (Y)

which is an expansion of 6, in a series of the mode shapes &, of the elastic
torsion motion. The gencralized coordinates p; are the degrees of freedom.
The modal representation is useful because it separates the time and space
dependence of 8. Associated with each degrce of freedom p;, there is an
equation of motion with appropriate generalized mass and stiffness, hence a
natural frequency of cach mode. Only the lowest frequency degrees of freedom
are retained in this study of the basic dynamics; it is sufficient, in fact,
to consider only one wing torsion mode. Then,

8, = P()E,(,) (175)
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describes the motion. If the mode shape is normalized to unity at the tip,
Ewlyp ) =1, then p gives the nose-up torsion angle in radians at the tip.
w

The elastic bending of the wing results in the deflection of the wing spar
with components both perpendicular to the wing surface (vertical or beamwise
bending) and parallel to the wing surface (chordwise bending). The deflection
of the spar line normal to the wing surface is 2y(t, ¥,), defined positive for
upward deflection. The deflection in the plane of the wing is x,(t, Yw) s
defined positive for rearward deflection. The vertical and chordwise bending
z,, and x,, are defined with respect to the direction of the local principle axes
of the section. With no built-in wing twist, these axes are the same all along
the wing spar, but they are not vertical or horizontal because of the wing
sweep, dihedral, and angle of attack. A modal representation is used for the
bending deflections, both vertical and chordwise, and only the lowest frequency
modes are retained. For this analysis, it is sufficient to retain only one -~
mode each for the 2, and x,, representations; hence

zy = g, (LIny () e

T = q, () (y,,)

where n, is the mode shape of elastic bending of the wing. For the present
purposes, it is sufficient to use the same mode shape for both vertical and
chordwise bending, but including different modes would be straightforward.

The generalized coordinates g, and g, are the degrees of freedom that represent
wing vertical and chordwise bending, respectively. If the mode shape is nor-
malized to yp_ at the tip, my(yr ) = Y7, then the degree of freedom 8
represents the ratio of the tip Heflectlon to the semispan and, similarly, for

95
The degrees of freedom that represent the wing motion are thus:

P, wing elastic torsion, positive nose-up (p = 8, at the tip);
9. wing vertical or beamwise bending, positive upward (q, = zw/yyb at the tip);

q,, wing chordwise bending, positive rearward (qz = w/yjb at the tip)

Associated with these degrees of freedom are mode shape £(y,,) for torsion and
nw(yw) for bending, which are normalized to £ and yg , respectively, at the
tip.  The assumption of Cantilever root restraint also gives the boundary
conditions £,(0) = n,(0) = n,'(0) = 0 at the root.

Consider the motion of the rotor shaft in terms of the wing degrees of
freedom. The shaft displacement and rotation (xp, Yps 2p, O, Ay s ay) at a
point ~ aft of the hub are required because of the motion at the wing tip,
which is specified by the wing degrees of freedom (ql, 9,> and p). If one
neglects for the moment the effects of the rotor rotation direction and wing
sweep, dihedral, and angle of attack, the following shaft motion is produced.
The wing torsion deflection p results in shaft pitch a,,. The wing vertical
bending gy results in vertical displacement xp of the Shaft; and since bending
also produces a slope of the elastic axis at the tip, it results in shaft roll
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a,. The wing chordwise bending g, results in longitudinal displacement Zp

of the shaft and also shaft yaw angle a,. With this model, there is no first-
order source of shaft lateral displacement ip. If the magnitude of the dis-
placement and rotation at the tip due to the wing degrees of freedom (given by
the mode shapes) are accounted for, the shaft motion is (for a clockwise rotat-
ing rotor on the right wing, figures 3 and 11, with &y, = Sy, = S = 0)

A
Gp = _qznw' (yTw)

N T pgw(yfw) =F

gy = -qqN "y )
q ' G | (177)
gp = g nplip ) = 2T,
yp = 0
Zp = ~C]2nw(yTw) = _q?_yT?J

Note that the wing bending motion produces coupling of the longitudinal and the
lateral/vertical groups of the rotor, g and q,, giving both longitudinal
motion of the shaft (3p and a,) and lateral/vertical motion (xp and ax)' The
coupling is not strong, however, and it is found from the bchavior of the sys-
tem that wing chordwise bending q, 1s basically a longitudinal motion, and
vertical bending and torsion (q, and p) belong with the lateral/vertical group.

Consider the clockwise rotating rotor on the left wing, that is, @ = -1:
the only change is in the direction of the shaft angle due to the slope of the
elastic axis at the tip during bending (consider the mirror image in fig. 11,
including the definitions of the bending and torsion deflection). If this
change in sign is incorporated by use of the & notation,

Oy = -4 i '(HT)
2w (178)

i

—a.on !

%y a,fn,, (yTw)

and the rest of the shaft motion in equations (177) is unchanged. If the wing
motion produced a lateral shaft displacement yp, that, too, would change sign
with the direction of rotor rotation.

Consider the effect of wing sweep, dihedral, and angle of attack. The
wing tip displacement and rotations, along with the wing motion, are defined
with respect to the wing spar and the section principal axes - which are
rotated by 8y, Suss and §,, with respect to the wind axes. Hence the wing tip
motion will have a slightly different decomposition into the shaft motion,
which remains in the wind axes. For example, vertical bending g, produces, in
addition to vertical displacement zp and shaft roll oy as given previously,
some shaft pitch a, due to the wing sweep 8,y4> SOME lateral displacement yp due
to the wing dihedral §, , and some shaft yaw a, and axial displacement zp due
to angle of attack 5w2- After a consideration of the complete set of wing and
shaft motions, the result is
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A
Op = 'ngnw‘(yfb) * PSSy, - qlawzgnw'(yfb)

y TPt qzmwlmw'(yTw) T A1 0uyfin, " (g, )
2 T T, g ) - pRSy, + 2%, iy )

r (179)
P quTw - qzdwzyTw

—q196w1yfb - q296w3y7b

2= - - 1)
D Q2yTw ql wzyTw J

Note that the effect of the rotational direction of the rotor, 2, is only to
change the signs of Ops G, and Yp-

The influence of the wing sweep (and dihedral) requires more attention
than given above. Consider the unswept wing, represented by a straight unswept
elastic axis line with cantilever restraint at the root. This structure has
these characteristics: elastic torsion at an inboard wing section results in
pitch changes at outboard sections, but produces no vertical or chordwise dis-
placement of the elastic axis from its undistorted position; and a force
applied to the wing tip at the elastic axis results in bending of the wing, but
Produces no torsion motion since there is no torsion moment about any section
due to this force. Thus, there is no elastic couplirg of the wing bending
and torsion motions.

If the wing is now swept, that behavior would be maintained if the root
restraint were also swept. In that case, the description developed for the
shaft motion produced by the wing torsion and bending would be correct, includ-
ing the effects of sweep and dihedral. However, this is not the way swept
wings (of the type used for proprotor aircraft) are built. The wings are
usually built with a center box structure in the fuselage, where the spars are
unswept, and only the wing structure outside the fuselage has swept spars.

The wing is restrained at several points, where the wing box is tied to the
fuselage. (The wing used in the full-scale, wind-tunnel tests considered

later was also built this way.) One approach to treating such a structure is
to use a good structural dynamics analysis to calculate the coupled bending and
torsion modes of the wing and pylon, including the influence of the root
restraint and sweep. Such an approach is useful if available and, in fact, it
is probably necessary if an accurate representation of a specific design is
required. Such an analysis is not desired here, however, rather the simplest
representation that includes only the elements most fundamental to the behavior.
Since this report is aimed at a general examination of proprotor dynamics
rather than the design of a specific vehicle (with a swept wing), such a
representation is adequate.

The model used to represent a swept wing has a straight elastic axis line
except for a bend at span station Y, = wa, where the wing sweep and dihedral

111



‘are entered. The root restraint and the wing inboard of yp, are unswept, while
the outboard section is swept. The mast height h is measured from the wing tip
elastic axis to the rotor hub. The following behavior is expected of such a
model, typical of swept wing behavior: elastic torsion of the inboard sections
produces a pitch change at yp ., which then rotates the entire outboard section
about the extension of the inBoard spar line, thereby producing displacements
of the outboard elastic axis from its undistorted position; and a force (verti-
cal for the sweep effect) at the tip elastic axis produces a torsional moment
about the wing sections inboard of yp , thereby producing torsion motion of the
wing rather than just bending as for Yhe unswept case. The torsion and bending
motions of the wing are then elastically coupled. The first effect, in partic-
ular, means that torsion of the wing now results in the displacement of the
wing spar, which is produced only by bending for the unswept wing. Specifi-
cally, the torsion motion produces now displacements at the tip - hence of the
shaft - as well as rotation of the shaft. An advantage of this model is that
the shaft motion due to the wing degrees of freedom can be obtained by simple
geometric considerations, and the wing equations of motion can be obtained by

a simple extension of the methods (based on section force and moment equilib-
rium) used for an unswept wing. Both are the result of retaining the repre-
sentation of the wing by an elastic axis line. The wing motion is defined then
by elastic torsion about the local elastic axis (producing local elastic pitch
changes given by the mode shape &, and elastic axis deflections due to the
sweep), followed by elastic bending of the spar (producing local spar displace-
ment given by the mode shape n,, from the displacement due to torsion). The
effect of the bent elastic axis is to couple the influence of torsion and
bending; with sweep, the tip is displaced due to torsion, and also the torsion
mode is excited by forces at the tip elastic axis.

A swept wing is characterized by an effective elastic axis for the
vertical bending of the tip: at some point on the shaft or its extension, the
application of a vertical force results in purely vertical displacement of the
shaft, with no rotation.. Without sweep of the wing, this point would be at
the wing tip elastic axis; but with sweep, a force there produces a nose-down
pitch motion of the shaft also (for aft sweep). Hence the effective elastic
axis is some distance forward of the wing tip elastic axis. This feature is
included in the model used here. Generally, the effective elastic axis (for
the tip) lies between the actual wing tip elastic axis and the extension of
the inboard (unswept) spar line - the actual position depending on the degrees
of root restraint and sweep and other structural details.

The model used here is, in fact, only conceptual. It is used because it
allows an elementary derivation of the equations of motion, including the most
important features of the swept wing behavior. The bend in the spar is not a
feature that can be determined accurately from the geometry of the wing. Hence
YB,y» the spanwise location of the spar bend, is just a parameter that charac-
tedizes the influence of the wing sweep on the coupled bending and torsion
motions of the wing, which is determined by the details of the wing structural
construction, geometry, and root restraint. This parameter (it will be found
that what is really required is &,(yp,)) can be identified by matching the
behavior of the model to that known from a better model or from actual experi-
ment. The most important feature of the swept wing is the effective elastic
axis position at the wing tip. If that is known from a good structural

112



analysis of the wing, or measured experimentally, then the corresponding value
of yp which gives that effective elastic axis position for the model used
here may be determined. Then that single parameter completely determines all
the characteristics of the swept wing in this model.

The influence of the bent elastic axis model on the rotor shaft motion
due to the wing degrees of freedom can now be determined from simple geometric
considerations. Wing pitch deflection at ¥p,, rotates the entire outboard por-
tion of the wing about the inboard spar line, so torsion of the wing produces
displacements at the wing tip - vertically due to sweep of the wing and longi-
tudinally due to dihedral. The rotation angle is Bw(wa) = p&,(yB,) and the
arm at the tip is (yp - wa)5w3 2 yTw6Q3 (to first o?der for small.6w3 and
ng/yTb) for sweep, and (ymy - wa)éwl z ydewl for dihedral. The increments
in"the shaft vertical and longitudinal displacément are then

b5 = -pE, g Wy S,

(180)

[}

AZP _pgw (wa)yTw(SwB

The complete equations for the shaft motion due to the wing degrees of
freedom are ‘

e F-an'Swz ‘ —an' ‘j95w1 ql
ay )= -an'ﬂdwa an'Qéwl 1 q,
- t ' -
o i an an 6w1 Qéwa
- (181)

“p Yr, ol hgy - P /4

= |-a6 -Q6 0
yP w]_yTw wayTw q2
2P, 'GwzyTw -yTw ZEA p g J

The length hpy = 4 - Ewbwy3¥m, is the distance from the effective tip elastic
axis to the rotor hub and, similarly, for zpg = ~&w01Ym » the vertical elastic
axis displacement due to dihedral. For convenience, n,'Yis written for n' (yp,)
and £,, for Ew(wa). :

Wing Equations of Motion- The equations of motion for the wing degrees of

freedom, lowest mode elastic bending and torsion, are
2 .. . .
(r, + mpyr Jq, + C, q. + K q, + Syp = M, + M
tw wi 7171 Al qlaero lpotor
2 2 . . .
(Zg, + Ip. n'" + mpyp )q. + C dy *+ K5 9, - Spb, p =M + M
o v w2 12 7272 2 qzaero qzrotor
(IRJ + Ipy)p + Cpp + Kpp + Syq, - Sbéwzqz = Mbaero + MProtor (152)
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for the vertical bending, chordwise bending, and torsion motion, respectively.
Each equation has inertia, structural damping, and structural spring terms,
forced by wing aerodynamic forces and by the rotor hub forces and moments act-
ing on the wing tip. The generalized inertia of the wing bending mode 1is

YTy » . YTy 2 4
Iqw =J. MMy dy,y, and for the torsion mode, Ipw = J. Iewgw Yops where
0 0
m, is the mass per unit length of the wing and Ig, is the wing section moment
of inertial. To these wing inertias are added the pylon inertia terms: mp is
the pylon mass (without the rotor) and Ipx and Ip, are, respectively, the
pylon yaw and pitch moments of inertia about the wing tip effective elastic
axis. The inertia coupling of the bending and torsion of the wing is due to
tbe offset of the pylon center of'graviFy: Sy = MpY 7 EPEA> where 2ppy is Fhe
distance the pylon center of gravity (without the rotor) is ahead of the wing
tip effective elastic axis. The structural spring terms are written

yr,
2
- t 7,
qu _[ Elgan,  dyy,

yr

v 112
qu = / EIJ,‘.’X,'nLJ dyw
0

KP =‘/0 Gngu',z dyw

where EIz is the section beamwise modulus/inertia product and, similarly, for
the chordwise and torsion elastic restraint. These expressions are not used
here, however, since a very accurate estimate of the bending and torsion mode
shapes would be required to evaluate them.

The derivation of these modal equations follows the standard methods of
aeroelastic analysis. For typical proprotor configurations, the gylon mass is
so large that it dominates the wing inertias, that is, IQw << mpyf, and
Ip,, << Ip,. Hence the inertia is primarily that of the pylon and rotor, with
tﬁe wing gontributing only the elastic restraint of the motion. This is
fortunate in that calcula*ing the wing inertias requires an accurate estimate
of the mode shapes, while the pylon mass and moments of inertia are well-
defined characteristics that are easily determined. The wing structural spring
constants (Xgy, g, and Kp) are best determined by adjusting their values so
that the pregicteg frequencies of the modes match the frequencies measured
experimentally. By this procedure, the wing inertias and structural parameters
are determined from the characteristics most well defined and easily measured:
pylon inertia and natural frequencies of the modes. It is particularly impor-
tant to match the measured frequencies well since they have the most important
influence on the dynamic behavior of the system. This procedure is satisfac-
tory here, but, for the preliminary design of an actual vehicle, a good
structural analysis method for predicting the generalized masses and stiff-
nessess of the wing and pylon modes is necessary. It is evident that (for the
lowest wing modes at least) the wing mode shapes have a secondary influence on
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the equations of motion. A very rough approximation to Ny and Ew is

satisfactory to estimate the wing contributions Ié and Ip to the inertias
w

since they are dominated by the pylon contributions; the structural spring
constants and other parameters such as nw'(yjb) are determined by matching

them to the measured characteristics of the wing (or those calculated by a
more accurate method) rather than using their definitions in terms of the wing
mode shapes (which are not really available).

The wing structural damping constants (¢ . qu, and Cp) are determined,

as the spring constants are, by matching the theoretical results to the meas-
ured characteristics. By definition, the damping constants are given by

VE/T g, with the appropriate inertia and spring constant, where g5 is the meas-
ured structural damping coefficient of the wing (twice the fraction of critical
damping). The wing structural damping is typically 1 or 2 percent of the
critical damping.

The wing motion is excited by the rotor forces and moments acting at the
hub. For the moment,  if the effects of the rotor rotation direction and of
the wing sweep, dihedral, and angle of attack are neglected, the rotor forcing
terms are

\
Mql = nw'Q + yTwH
rotor '
M = -n '(M. - hY) - T 183)
roter
M = M, + Al - CFy  Tqg
protor y P hy T J
Y.
-
where C;q =.f Ewnw' dyw/yfb £ 2/3. The excitation of wing vertical bending

1

g, 1s due to rotor torque and vertical force, with the effectiveness of the
former determined by the slope of the mode shape at the tip nw'(yT ) (written
w

as my,' in eqs. (183)) and for the latter, by its displacement nylyp ) = yTw.
w

Similarly, the excitation of chordwise bending g, is due to the pivot yaw

Cot2 . . - A
moment (My - %Y) and the thrust force. The wing torsion motion is excited by
p, the pivot pitch moment (M, + hH), and by the trim thrust. The thrust term
results because wing Vertica% bending q, elevates the rotor trim thrust above
the inboard sections and so gives an arm about which the trim thrust produces
a torsion moment; the constant involved, C* , was evaluated using the

approximation £ = yw/yjb and n =‘yw2/y7b for the wing modes.

Introducing the influence of tlie rotor rotation direction, that is,
putting the rotor in figure 3 on a l'eft-hand wing, simply changes the signs of
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the moment contributions to the wing bending excitation. If the convention
for © (given previously) is used to indicate these sign changes, the result is

. 1
Mql - an @+ yTw[7
rotor > (184)
P 1 - - m
qu = an (M, hY) gTwi
rotor

and Mprotor remains unchanged.

If wing sweep, dihedral, and angle of attack arc considered, the first
influence is a slightly different decomposition of thc rotor forces, which are
defined with respect to the shaft (wind) axes, into the wing tip axes for
determining the excitation of the wing bending and torsion. With the
appropriate coordinate rotations, the result is

= ' . -_ /’ - A
M 1 an ' (€ Qéwa(My + hiD) 5w2(f,x nyy)]
rotor
+ H- Q8,Y - &, 1
yTw( W, W, )
— (I -
qu = an ' [-Mp + hY + Qéwl(My + hH) cSwZQ]
rotor 3 (185)
+ -7 - Q8,, Y - &, H
HTw( W, W, )
Mb oF M, + hH + QéwaQ + Q&w‘(h@,— h¥)
rotor 3

+ Oy T(- + 6, q
pqyfw (-q, wzkz)

However, these expressions are for a wing that is swept along its entire length,
including the root restraint. The model considered here has the inboard por-
tion unswept, and only the wing outboard of Y, = UB has sweep and dihedral.

w

With this model, there are also the additionall terms:
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AM =8y n "(ys VM, + BH) + Q8,0 (y, )Y )
qlrotor W3w wa Y Wpw wa

&

= =8y n "(y, Y(M, + hH) + Q8, n (¥, )Y
2potor Yy w By ™Y Y3 v B,
(186)

AM,
protor

6y g ) =96, @ - a8, (4, - hY)

- 8§ H- 8 Vi
w3yTb) wlyTw ] J

The terms in equations (186) (except for last two in the torsion moment) simply
account for the decrease in the effect of the 8y, and &,,; components of the
rotor forces and moments in exciting the wing when not all of the wing has
sweep and dihedral. These terms combine with the similar terms in equations
(185) to produce a reduced net influence. For example, sweep of the wing
produces a component 5w3Mb of the rotor pitch moment that tends to produce
vertical bending motion, that is, it contributes to Mbl . The correspond-

rotor
ing terms in equations (185) and (186) combine to give

-Qﬂw'CyTw)(Q5w3My) + 5w3nw'(y3w)M@ = 'Gwa[ﬂw'(y]b) - nw'(wa)]

which illustrates the decrease in effectiveness due to wa. The other terms

are similar, a straightforward decrease in the effectiveness of the effect of
the sweep and dihedral because they occur only on the outboard portion of the
wing.

The remaining terms in equations (186), the torsion moment due to # and T,
are the effective elastic axis influence. The torsion moments due to the hub
vertical force H (from eqs. (185) and (186)) combine to give

orotor = [n - Ew(wa)ngyfb]H' From this, it follows that a vertical force
on the shaft at % = gw(wa)6w3y1b produces no torsion, and so, by definition,

that is the location of the effective elastic axis at the wing tip. Now &, Yg
is the distance of the wing tip behind (for aft sweep) the root elastic 3w
axis, and £ (yp ) is a constant less than 1 (of order wa/ygb); thus the

w

effective elastic axis is moved forward of the wing tip elastic axis, a frac-
tion Ew(yB ) toward the root spar line. The distance from the wing tip

W
effective elastic axis to the rotor hub is then
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where % is the actual distance from the wing tip spar to the hub. The
corresponding vertical displacement of the effective elastic axis, due to the
dihedral, is

Zpg = ~&,WB) GwlyTw (188)

(Zero geometric vertical displacement of the shaft from the wing tip has been
assumed.)

The parameter Ew(yB ) can be evaluated from a knowledge of the effective
W

clastic axis position. If Ak is the distance the effective elastic axis is

ahead of the wing tip spar (&h = h - hEA)’ then
AR
£.Wp) = 5 — (189)
w Y Py 6w3yTw
The other parameters required can be estimated in terms of Ew(yB ) as
w
= 2 - 2
(190)

1

nw"(wa) n, (g )&, )

Only a single parameter remains to be determined for this model, Ew(yB ). It
w

is determined by matching to the correct effective elastic axis position, hence
the most important feature is correct and this model should provide an adequate
estimate for the other influences of sweep and dihedral.

The complete expressions for the rotor forcing terms in the wing
equations of motion are then: \
= 1 - - -
M&I = an (@ - Qéwa(l gw)(MQ + hH) Gwz(M& hY)]
rotor )
+ yzb[H - Qﬁwl(l - Ew )Y - ész]

M = an '[-M, + hY + Q8 (1 - €)M, + hH) - Sy ?]
qzrotor W 1 ) wo Y 2 ’ (191)
+ -7 - Q8 1 - ¢ Y -6, H
yTw[ w3( o) w, ]
Mb = My + hEAH + ZEAT + de3(1 - Ew)Q
rotor

- - * (-
+ Q(Swl(l Ew) My hy) + Cpquw ( q, + Gwzqz]
where n,' is written for nw'(ygb) and £ for Ew(wa).
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The wing equations of motion are normalized by dividing by (N/2)Ip;
this normalization is denoted by superscript #, as in Iq /(N/2)Iy = Jg and
w w

similarly for the other inertia, damping, and spring constants. The rotor
forcing terms then take the usual rotor coefficient form. The wing aerodynamic
terms (presented in the next section) are normalized by dividing by

y(N/Z)Ib = (v/2)oa, which is also denoted by superscript #. This introduces a

factor y for the wing aerodynamic terms, as for the rotor aerodynamics. The
equations of motion for the wing vertical bending, chordwise bending, and
torsion modes are then:

N ..
Igw + mp 0 Sy q,
2
* ' * -G #
0 Iqw + Il’anw + mp, Sw Gwz q,
Sb* -Sb*&wz I; + Iﬁ p
w Y
* . %
cq1 0 07 /4, ks 0 07 /a)
* #
+] 0 qu 0 q, |+ 0 Kdz 0 q,
0 0 Cp* c* 2Crn/oa -C* 2Cp/oa)é Kp*
D p pquw(Y o/ oa) pquw(Y p/oa) w, »*J\p
M* v !
91 fn "Q8, (1 - &) -an 8,
aero w 3 w w 2 _
- MA + -0 'QG (1 - ) -Q ' ZCMy/Oa
q, Y17 Wy W LY
aero ZCMx/oa
-1 -Q8 1-¢
s 0, (- )
aero
-on' h(l - -on ' -2
Yr, = Ony, 98, 0 - £) n,, 8y, * yTwmwlcl £, 2604/0a
+y{-6, ¥y, + an'Qs k(1 - E) -on 'k o+ Qs,, (1 - ¢.2
2y R v v Iny ) -~2Cy/oa
hEA Q&wl(l - Ew)h
'
Zan —ZbeGwz
1
+y -Zan 6w2 CQ/oa + v —2yzb CT/ca (192)
296w3(1 - Ew) ZZEA

An exception to the normalization is the definition of mp*:
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mP* = mPyTZ/(N/z)Ib

It also follows that S,* = S5,/ (N/2)Ip = mP*ZPEA/yTb' The Lock number y appears

as a factor of all the aerodynamic terms (the rotor forces and moments have
inertia terms, too, but always with a factor Y'l). This single parameter
accounts for the relative influence of the aerodynamic and inertia forces;
specifically, it is the only parameter that varies with air density p, all
other constants being the ratio of inertias (that is, of course, the reason for
the normalization by (N/2)I3). The spring and damping constants are

4 = A L . .
qu qu/(N/Z)Ib and qu qu/(N/Z)Ib (and similarly for chordwise bending

and torsion). Since these constants have already been made dimensionless, in
terms of the dimensional values the normalized spring and damping rates are

* _ 2 _ . . .
qu = qu/(N/Z)IbQ and 051 = qul(N/2)Ib|Ql. The effect of a variatlon 1n

rotor rotational speed is to change the relative spring and damping rates of

the wing, because the wing natural frequencies are really constant dimensional
values (cycles/sec). The wing frequencies then change with Q when expressed

as dimensionless quantities (per rev). This is, in fact, the only influence

of © on the equations of motion, besides a possible change in the rotor natural
frequencies vg and v. with 2. In the inertias, as in the spring and damping
constants, it is not necessary to introduce the intermediate steps of making the

quantities dimensionless (using p, €, and R); for example,, Iﬁy = Ipy/(N/Z)Ib
is correct with dimensional quantities on the right-hand side. The rotor

radius R enters only in normalizing lengths, such as yp and hEA and, of
W

course, the air density p appears only in Y.

Wing aerodynamics- The wing aerodynamic forces that excite the bending
and torsion motions of the wing are defined by

vz, 1
0 F o W,

Y
T
q, - Py %,
aero

0

Ulf-yfb ]
Mg
Paero woy

0

QE
u

=
1

(193)

X
Il

where F., is the vertical aerodynamic force on the wing section (1ift); Fp .,
2y g T

the chordwise force (profile and induced drag); and My, the aerodynamic moment
about the local elastic axis. The section forces Fz and Fp are defined with
w w

respect to the section principle axes, not with respect to the free stream.
The integrals of these section forces over the span, weighted by the appropri-
ate mode shape, give the net forces that excite the wing degrees of freedom.
The velocity seen by the section has perturbations that result from the wing
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degrees of freedom and from aerodynamic gusts; any interference with the rotor
is neglected. From the velocity perturbation, the perturbations of the section
forces are found (following a procedure similar to that used for the rotor aero-
dynamics), and hence the wing aerodynamic coefficients (the trim terms are

dropped):

The coefficients are
*
qqlu
*
qua
%
quB
CU(- .
91491
C* .
419,
C'é(-
q191
C'*
9192
c* .

q,p

C’(‘
q,p

O £ . % .
9,94 quq2 qup q]

1% * . £ .
quql quqz qup 1,

c*. 4, o4,
pa, ‘pa, pp | P

% * *
Rblu C38 Chal/¥

* * *
* CQzu quﬁ qua Pe
C;u C,;B CZ;G. (X.G

d12V22CLOel
dlzvch €3
o

c* + &8, C*
Wy7q 0 Wi q U

8
-d13VCLa€2

—dlaVCLOez

-d12V26w3CLae3

—d12V26w3CLOe3

da2 (1/V[3/4 + (= [2,)1Cy ey

d12V2Cp e

(194)

(195)

(Eqs. (195) continued on next page.)
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= d1V220m, 1
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= -1 V2 (g, /) 5L,

¢

(195)

Cp_ are the aircraft trim 1ift and drag (profile and induced)
0

¢r and Cr are their derivatives with respect to angle of attack.
LO. D(X.

The section moment characteristics are given by x4 ., the distance the aerody-
namic center is behind the elastic axis, and cmac’ the nose-up moment coeffi-

cient about the aerodynamic center.

The coefficients can be corrected for

unsteady airfoil effects (by use of a 1ift deficiency function) and for the
increased dynamic pressure in the rotor slipstream; such corrections would be
small, however, and probably would not be consistent with the accuracy of the

methods used to derive the coefficients.

accounts for the difference in the normalization of the wing and rotor
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coefficients. The dependence on forward velocity V is shown explicitly, except
that for a fixed gross weight; CLO and CDa are proportional to V-2 while CLa

and CDo are constant (at high speed at least, where the induced drag is small).

The constants e, and f_ are integrals of the wing mode shapes, which account
for the way the motion produces forces on the wing:

yjb
ey =j; n, dyw/y%w = 1/3

PyTw ) 5
e, = n.<dy /y2 = 1/5
J, w w' 7T,
'yfb ,
— ' ~
ez = M dyw/yjb =1/2
‘0
ﬂyTw
ey = N6 dyw/yTw 2 1/4
<0
»ygb
fy = & dyw/ylb =172
= (% ' 2/21dy /y3 = 1/12
fz = E‘b)nw [(yw - yTw) ] yw yT -
J0 w
(%,
f3= Jo 7 dyw/yzb =1/3

The constants were evaluated using the approximate mode shapes n, = ywz/yT
w
and Ew = yw/ygb (which are reasonably close with the large mass on the wing

tip).

The derivation of the coefficients follows the standard techniques of
strip theory in aeroelasticity, similar, for example, to the derivation of the
contributions of the wing to the aircraft stability derivatives. The most
important wing aerodynamic coefficients are the vertical bending forces due to
direct angle-of-attack changes: (. : c and ¢ The change in angle

of attack due to wing vertical bending, torsion, and vertical gusts is

anl

Sa = - 7t gwp +a,
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The 1ift perturbation is Gsz 2 §L = (1/2)V2cwCLa6a, and the moment exciting
vertical bending is

Yp
w
6Mq1 Gsznw dyw

aero

1 .5 w
3 VeulryMy|~ —7 * PR, % dyw

‘[

y X
.I‘ up qn
0

2
ey T,V yr, .
— [GG(CLueﬂ + —— q,(-Cp22) + p(Cp en)

If one normalizes by dividing by (m/2)oa, coefficients C} , C* - , anc C*

9107 9191 q1p
are identified (as given in eqs. (195)). The remaining coefficients are
derived in a similar fashion.

Equations of motion for proprotor and wing- All the elements are now
available to construct the equations of motion for the proprotor and cantilever
wing system: the rotor equations of motion (eqs. (44) and (47)), the rotor hub
forces and moments (eqs. (45), (46), and (48)), the shaft motion due to the
wing degrees of freedom (eqs. (181)), and the wing equations of motion (eqs.
(192)). It is only necessary to perform the matrix multiplications required
because of the substitutions. The result is a set of linear ordinary differ-
ential equations for the nine degrees of freedom:

BlC cyclic flap (longitudinal tip path plane tilt)

BlS cyclic flap (lateral tip path plane tilt)

CIC cyclic lag (lateral rotor center-of-gravity offset)

%15 cyclic lag (longitudinal rotor center-of-gravity offset)
Bo collective flap (coning)

Lo collective lag (or rotor speed perturbation)

q, wing vertical (or beamwise) bending

gz wing chordwise bending

p wing torsion

with the inputs
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8 cyclic pitch (lateral control plane tilt)

elS cyclic pitch (longitudinal control plane tilt)
8o collective pitch

Un longitudinal gust

BG lateral gust

aq vertical gust

The matrix multiplications could be left to the machine, but it is better done
by hand since there is considerable cancellation of terms in the coefficients
of the equations of motion. The final expressions for the coefficients remain
rather complex, however, because of the many (small) terms that involve the
wing sweep, dihedral, and incidence angles.

For the autorotation case, the collective lag degree of freedom éo becomes
the rotor spced perturbation in the rotor model used here by setting

I; = IZ 0 1 and vgo = 0 (as discussed earlier). Setting the collective lag
0 0

natural frequency to zero assures that no torque is transmitted to the wing,
but it is probably better to directly drop the (p/ca forcing of the wing
motion from equations (192) (primarily forcing o% ql).

Structural damping of the rotor blades is also added to this model;
however, since the blade flap and lag damping are high already because of the
high inflow aerodynamic forces, the low structural damping of the rotors con-
sidered here is not very important to the dynamics. A term Ic*gs;vC is added

to the rotating lag equation of motion, and IB*QSB(vBZ - 1)1/2 is added to the

rotating flap equation (the structural damping does not act on the centrifugal
spring term in vg). The transformation to the nonrotating degrees of freedom
and equations of motion follows as usual. Different damping coefficients are
allowed for the rotor cyclic and collective modes of the rotor, specifically

to account for the collective lag mode in autorotation (which must have zero
structural damping as well as zero spring) and the coning mode of the gimballed
rotor. The structural damping parameter g, is twice the fraction of critical
damping, which is typically 0.5 to 1 percent for the cantilever rotor blades
considered here.

Simplified equations- The coefficients of the nine equations of motion
for this proprotor model are simplified considerably if all the effects of
sweep, dihedral, and angle of attack are neglected. Since these angles are
always small for the model considered here, they generally contribute only
small corrections to the coefficients. An exception, however, is the effective
clastic axis shaft at the wing tip due to the sweep, which is an important
aspect of the wing structural dynamics; this may be included by use of, for
the mast height %, the distance from the hub to the effective elastic axis
rather than to the actual wing tip spar. The simplified version of the equa-
tions of motion then is obtained by neglecting all effects of Gwl, Gwz, and §,,

3

125



except that the effect of the effective elastic axis is included if #,,, is
used for A wherever it appears. In addition, the calculation of the rotor
coefficients is simplified by considering only the ¢y, terms (i.e., eqs. (54));

this primarily limits the results to below the critical tip Mach number and is,
in fact, the form used almost exclusively for the rotor aerodynamics in the
Tesults presented here. Similarly, only the wing aerodynamic forces due to
(L, are retained. This simplified model is not usually used here, and for the
design and analysis of actual vehicles these simplifications of the structural
and aerodynamic features would probably not be satisfactory. It will be shown,
however, that the simplified model incorporates the essential features of the
high 1nf10w proprotor dynamics and so may be useful in further studies.

Dropping the &, , 6, , and 8, terms from the shaft motion expressions
(eqs. (181)) yields ! 2 3

o 0 -Qn. ! 071 /g x . 0 0
x % 1 P Y, 55!
oy J= 0 0 1l ¢,). yp |=| © 0 off 4, (196)
- ! -
Qg an 0 0 yjb 04 \p
and the wing equations of motion (eqs. (192)) reduce to
*
* .
Iqw + my 0 S, * q,
* 42 *
0 Iéw + IPxnw + my 0 q,
5% 0 Iy o+ Ip
W pw Py p
- yC* 0 -yC* . ’ K* 0 -yC#*
g "¢ 9191 a0 71 q1 Tai /N
* *
+ 0 qu 0 q,] + 0 qu 0 q,
0 0 C'p’e - YCZ’;Z'Q C';qu (v2Cqp/oa) 0 Kp* P
* b
0 0 chla MG 0 0 i 2CM JTM 0 ZCH
=10 0 0 8o |+ v[ 0 -an “Cleyl 0 -anh od
W w LA
0 0 0 & -1 0 o /ZEA 0 - —cra—
20n ! 0
B Cp
+ v a‘ + Y —2yTw ‘(}Z (197)
0 0

126



The simplification is quite substantial. If one substitutes for the shaft
motion into the rotor equations and forces, and then for the rotor forces into
the wing equations, the matrix multiplications are easily carried out. The
result is a set of nine equations of motion of the form:

—_—

Az + AT + Agz = Bo (198)

where the degree-of-freedom vector is

and the control vector is

C!G—‘

The coefficient matrices are given below for the simplified equations. For
convenience, in these matrices, n is written for an'(ygb), y for Y1, h for

hza, and V for V + v; all Cr and Cp terms are dropped and the structural
damping of the blade is neglected; superscripts #* on the inertias and spring
constants are dropped.
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Air Resonance

The incorporation of the wing vertical bending motion into the model
introduces the possibility of a mechanical instability involving that degree
of freedom and the rotor blade inplane motion. Since instability involves the
elastic bending of the airframe, it may occur in flight; hence it is termed
air resonance. The basic mechanism involved, however, is identical with that
in classical helicopter ground resonance (involving inplane hub motion,
typically due to vibration of the helicopter on its landing gear while on the
ground). The analysis and conclusions from ground resonance are thus directly
applicable to air resonance also.

Certain conclusions immediately follow then from the ground resonance
analysis (ref. 34). Air resonance involves a coincidence of the wing vertical
bending frequency (for the proprotor configuration) and the frequency (in the
fixed system) of the lower lag mode ¢z - 1. Any resonance with the upper lag
mode (£ + 1) are always stable. Furthermore, the resonances with the lcwer
lag mode are also stable if the rotor is stiff inplane, that is, if vr > 1/rev.
Air resonance instability is possible only with a soft inplane rotor, that is,
with vC < 1l/rev.

Air resonance instability then occurs at a resonance of the frequencies
Wy and 1 - Ve of the wing and rotor modes, with Vo < 1/rev. Such corditions
1

must be avoided, for example, by use of a wing that is stiff enough so that any
resonance occurs at a rotor speed Q@ much higher than the normal operating
rotational speed. Alternatively, it is possible to stabilize any resonances
that occur by including sufficient damping - structural or aerodynamic - in

the wing and rotor motions.

High inflow operation of the rotor results in an aerodynamic damping of
the lag motion, &, which is of order 1 in high inflow, compared to the order
of the inflow squared in low inflow. Thus increasing forward speed in the air-
plane configuration greatly increases the lag damping and eventually will
stabilize the air resonance motion. Forward speed also contributes to stabil-
ity by increasing the wing aerodynamic damping. Therefore, above a certain
speed, no instability occurs even at a coincidence of the wing and lag fre-
quencies; it is desirable, of course, that this speed be as low as possible,
at least below the aircraft stall speed.

A simple model will yield an estimate of the damping required, so of the
forward speed required, to stabilize the air resonance motion. Consider the
rotor lag and wing vertical bending degrees of freedom (¢1¢> T1gs and q,)
retain only the direct damping of the wing and lag motion as the only aerody-
namic influence. The homogeneous equation of motion, in Laplace form, reduces,
for this set of degrees of freedom, to

A a2 2_ *
IC (s +Ccs+vC 1) IC (23+CC) 0 ElC
_T % A(a2 2_ * 2 -
IZ; (23+CC) IC (s +CC8+\)C 1) SC yTws ng 0 (199)
* 2 A 002 2
0 Sc yjbs Mql(s +qus+wa) q,
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where the definitions of the coefficients follow by a comparison with the
complete set (eqs. (198)). In particular, I *CC has been introduced for the

total lag damping, M; Cq for the total wing vertical bending damping, and wa

for the natural frequency (per rev) of the wing vertical bending motion. The
characteristic equation is then

2 2
T * 2 40+ v2-1)2 + s+ CH2M (82 +C, s+ w
r [(s SV, ) ( C) ] Q1( q, ql)

- IC*(SZ + CCS + vcz - l)S* Jz st =0 (200)

The only coupling of the rotor and wing degrees of freedom is the inertia
coupling that results from S}°; it follows thgn as in ground resonance, that
the damping required must also be of order S% Examine the resonant case,

where Wy = 1 - Ve (v < 1). Assume that thg system is exactly on the stabil-
1
ity boundary, so that s = Zw is a solution of the characteristic equation,
with w real. Let w? be an order SZZ distance from wé . Then, to the lowest
1

order in ng, the characteristic equation is

#2 . 2 _ *
IC ZCciwa(\)C + 1 - w )M C., 1w

919 41
2.2 4
- T A 2 -1 - w2 )S* =0 201
¢ V¢ wq, )57 ¥ bq, (201)
Since the resonant case is being considered, for g, = 1 - VC’ then
1
2.1 -w2 =2 - 1) = -2
vC wa (vC ) wa
2 o2 -
vc + 1 wa 2v
and equation (201) becomes
I My Cq 203 29, - 2 5322 Wb =
£4q91 91 w vc wa 4 yfbwa 0
For dynamic stability, it is required then that
2 2
g4 3
4 yfbwa
*C M: C (202)

T 4, ql g ZvC

that is, that the product of the wing and rotor damping be above a certain
critical value.
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To estimate the damping available, consider the aerodynamic damping of
the wing:
cy37
woT

MiC, = = ¥C, %

-yC*
9179, a1,

o
and the aerodynamic lag damping:
.~ . Vsin ¢
e :” ' s
The contributions of the structural damping of the wing and blade are negligible

at the forward speeds involved. The boundary is usually at a low enough V that
the small V approximation to Qé is accurate still; therefore,

% V2
I *C_ = T E oy -
c Cr YQC Y

The requirement on forward speced V for air resonance stability is then:

73 > (203)
Y2(1/20]CLacwy7b/anc

which gives a critical V only a few percent below that for @: = (V sin ¢)/6, and
so the low inflow approximation for 97 is within the general accuracy of the
result. This result is, of course, in dimensionless form, so the velocity is

really the inflow ratio V/Q7 and the frequencies are all dimensionless values
(per rev).

For the type of soft inplane rotor considered here, vy (per rev) does not
vary much with Q, at least near and above the normal operating rotational
speed. Consequently, the value of w, (per rev) at resonance with 1 - vC is

1]

also independent of Q. Then the entire right-hand side of equation (203) for
the critical V is a constant; it depends on the rotor (vc) and on some geo-
metric properties of the rotor and wing. It does not, however, depend on @ or
on w, (dimensional) because it is in dimensionless form.

!

The criterion for stabilizing the air resonance motion is then a
requirement for a fixed value of the ratio V/QR for a given rotor (soft
inplane, with Ve (per rev) independent of Q). The rotor rotational speed for
the instability is given by the criterion of resonance of the 9, and ¢ - 1
modes; therefore,

w W
91 91
Q= = (204)
w Q 1 -
9,/ 8




where in equation (204) mql is dimensional and Vg, per rev. Thus the rotor

rotational speed (RPM) for resonance is directly proprotional to the wing
vertical bending frequency (Hz). The forward speed required for stability at
the resonance is given in terms of a critical inflow ratio:

V = QRG%L) (205)
R ..
eritical

Thus the aircraft velocity (knots) required for stability is directly propor-
tional to the rotor rotational speed (rpm). Then increasing the wing vertical
bending stiffness increases the Q at which air resonance occurs, but it also

increases the V required for stability. Both effects are linear with Wy (Hz)
1

or (Kq )1/2 for a fixed vc {(per rev); on the V - Q plane, the locus of the
1

highest air resonance instability speed is a constant V/QR line, that is, a
straight line through the origin. The increase in Q is favorable for air
resonance occurring above the normal operating range, but the corresponding
increase in V is unfavorable.

SECTION 5: RESULTS OF THE THEORY AND COMPARISON WITH FULL-SCALE TESTS
Proprotor Dynamic Characteristics

In this chapter (and the following two chapters), the dynamic
characteristics of a proprotor operating at high inflow on the tip of a canti-
lever wing are examined. The investigation uses the results of the theory
developed previously. The cases examined are based on actual proprotor
designs - two full-scale proprotors that were tested recently in the Ames 40-
by 80-Foot Wind Tunnel on a dynamic test stand consisting of a cantilever wing
simulating the full-scale aircraft wing stiffnesses. One rotor was designed
and constructed by the Bell Helicopter Company, and the other by the Boeing
Vertol Company. The Bell and Boeing rotors are shown in the configuration for
the dynamic tests in the 40- by 80-Foot Wind Tunnel in figures 12 and 13,
respectively. The two rotors differ primarily, so far as their dynamic char-
acteristics are concerned, in the placement of the rotating natural frequencies
of the blade flap and lag motions. The Bell rotor has a gimballed hub and
stiff inplane cantilever blade attachment to the hub, hence vg = 1 (nearly, for
it does have a weak hub spring) and v, > 1; it also incorporates positive
pitch/flap coupling, Kp < 0 or 83 < 0, to increase the blade flap/lag stability.
The Boeing rotor has a cantilever or hingeless hub with soft inplane blade
attachment, hence vg > 1 and v, < 1. The flap frequency is large even for a
hingeless rotor because of the operation at lower rotor speed in airplane mode
(the hover value of vg is more typical of a hingeless rotor helicopter). The
different placement of the blade frequencies, at opposing extremes of the
range of choices, results in quite different dynamic characteristics for the
two aircraft. A description of the rotors and the full-scale test results are
given in references 25 to 28. For convenience, in the following discussion,
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the gimballed, stiff-inplane rotor is referred to as the Bell rotor; the
hingeless, soft-inplane rotor is referred to as the Boeing rotor.

The dynamic characteristics of the rotors are examined in the following
two chapters. Of primary interest are the eigenvalucs - the frequency and
damping of the roots of the coupled wing/rotor modes of motion. The basic
parameters for this investigation are forward speed V, rotor rotational speed
Q, and inflow ratio V/QR. A velocity sweep, varying V (and so V/QR) at con-
stant 2 is of interest since it is the way the rotor actually operates in air-
plane mode. The rotor speed Q determines the relative values (i.e.,
dimensionless, per rev) of the wing natural frequencics, and so has a fundamen-
tal influence on the dynamics. Varying © also changes the blade natural fre-
quencies, especially for the cantilever rotors considered here. A rotor speed
sweep at constant V also varies the inflow ratio V/&/. The inflow ratio V/OR
is the primary parameter for the rotor aerodynamics and the wing aerodynamics
as well. Varying V/QR may also change the blade frequencies because of the
change in the rotor collective pitch angle with the inflow ratio.

Several elements in the theoretical model are examined to determine their
influence on the proprotor dynamics: blade lag degrecs of freedom, wing aero-
dynamics, rotor speed perturbation degree of freedom, the complete expressions
for the rotor aerodynamics, and a simplified theoretical model. The influence
of the rotor lag motion can be examined by studying the effect of dropping the
Zio and g5 degrees of freedom from the complete nine-degree-of-freedom model.
The influence of the wing aerodynamics can be examined by setting all wing
aerodynamic coefficients to zero and by comparing the results with those from
the model that includes the wing aerodynamic forces.

The rotor is usually considered to be operating in autorotation for the
theoretical results presented here because this state is found to be least
stable and also it is the configuration in which the full-scale dynamic tests
were conducted. In autorotation, Z; is the rotor speed perturbation degree of
freedom, which is achieved by setting vCO = 0 (as discussed previously); also,

no rotor torque is delivered to the wing tip. The other extreme examined,
considered the powered operation case, is when the hub operates at constant
angular velocity (@) with no perturbation; then z, is the collective lag
degree of freedom, which is achieved by setting ch = vc, and the rotor torque

perturbations are transmitted to the wing. This representation of the powered
case is, of course, the limit of a perfect governor, bhut it provides an
indication of the real powered state dynamics of the proprotor.

The rotor aerodynamic coefficients are usually calculated for the present
results using only the ¢, terms (eqs. (54)). This approximation simplifies
o

the calculations considerably since then the coefficients depend only on V/QR,
and it provides an adequate representation of the rotor aerodynamics for the
range of inflow considered here, at least so long as the critical tip Mach
number is not exceeded. The validity of the approximation can be assessed by
comparisons with the dynamics that result when the complete expressions for
the rotor aerodynamic coefficients are used (eqs. (50}). Since only a check
on the influence of the complete expressions is desired here, representative
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analytical expressions are used for the airfoil characteristics rather than
the characteristics of the actual rotor blade sections (as described in egs.
(55) and (56)). To evaluate the complete coefficients, the angle-of-attack
distribution over the blade span in the trim operating state is required, hence
the rotor collective pitch is required. The determination of the collective
pitch requires a performance analysis to find 64, 75 for a given Cp or Cps a
simpler procedure - the use of an approximate collective pitch angle based on
the inflow angle at 75 percent radius (plus about 1° to account for the mean
operating scction angle of attack) - is also evaluated. The evaluation of the
complete rotor aerodynamic coefficients is also the only time the blade twist
is required in the calculations (with the exception that when only the oy

terms are used, the blade is assumed to have the twist required to maintain
unstalled flow over the entire span).

The effects of the wing sweep, dihedral, and angle of attack considerably
complicate the coefficients of the equations of motion. Therefore, a simpler
theory is evaluated in which all the & .’ 6w2, and 6”3 terms are dropped. The
shift of the effective elastic axis at the wing tip is included by use of hpy
(the distance from the hub to the effective elastic axis at the wing tip) for
the mast height 7 (the physical shaft length in the unswept wing model). The
simplified theory also uses only the Cza terms for the rotor and wing aerody-

namic coefficients. Of course, that is the usual approximation used herc for
the rotor cocfficients, and it includes the primary effects of the wing coef-
ficients. When the option of using the complete expressions for the rotor
coefficieints is not included, the calculations are simplified considerably.

The two full-scale rotors were also tested on a quarter stiffness wing,
which had natural frequencies half those of the full stiffness wing. There-
fore, by operating at half normal rotor rotational speed, the dimensionless
wing frequencies (per rev) could be maintained and a given V/QFR achieve with
half the normal forward velocity V. With the quarter stiffness wing, it was
possible to simulate operation at forward speeds twice the maximum czpability
of the wind tunnel, at least so far as the wing natural frequencies (maintained
at the same per rev values)} and the rotor aerodynamics (primarily a function
of V/QR) were concerned. The rotor stiffness was, however, not correspondingly
scaled down; therefore, the increase (per rev) in the blade flap and lag
natural frequencies where the rotor was slowed down to half normal @ violated
the simulation. For the gimballed rotor, at least the flapping mode (which
has only centrifugal stiffening, except for the weak hub spring) was simulated
on the quarter stiffness wing; but the lag frequency and both the flap and lag
frequencies for the cantilever rotor were considerably different. Consequently,
the results of the quarter stiffness wing tests are not presented here as
simulating operation at twice the actual speed; the results are studied since
they do provide additional data for investigating the dynamic characteristics
of the proprotor.

The theoretical studies concentrate on the eigenvalues as primary
indicators of the dynamic behavior. However, the eigenvectors and also the
frequency response of the system are examined at a typical operating condition
(v/Qr = 0.7). Finally, the results of the theory developed herec are compared
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with experimental data from the full-scale tests and also with results from
other theories.

With the nine-degree-of-freedom model of the present theory, there are
eighteen roots or eigenvalues. The eigenvalues for cach mode are usually a
complex conjugate pair, which are then described by a frequency w and damping
ratio z:

i

W Imh

1

¢ = -Rer/|\|

The damping ratio ¢ is the fraction of critical damping for the mode. The
coincidence of the notation for the damping ratio and the rotor lag angle is
unfortunate, but both are well established and the context should always
clarify which is meant.

Nine eigenvectors or modes correspond to the eigenvalues. The modes are
identifiable by their frequency (which is near the uncoupled frequency, approx-
imately the appropriate natural frequency as indicated in parentheses below)
and by the participation of the degrees of freedom in the eigenvector. The
modes are labelled here as follows:

q, wing vertical bending (wa)

q, wing chordwise bending (w, )
4z

) wing torsion (wp)

R -1 low- frequency flap (vB - 1)

z -1 low-frequency lag (vC - 1)

R coning (vB )
0

B+ 1 high-frequency flap (vg + 1)
c+1 high-frequency lag (vg + 1)

Z collective lag (\)C )

0

Fach mode involves motion of all nine degrees of freedom, of course (q,, q,,
D Bl R Bl“’ BO’ Cior B1g and co). The low- and high-frequency modes were
discussed @arlier. -

Description of the full-scale proprotors.- The parameters that describe
the two full-scale proprotors are given in table 3 and in figures 14 to 17.
The wing described in table 3 is for the configuration tested in the 40- by
80-Foot Wind Tunnel. The rotors are flight-worthy designs. (For further
descriptions of the full-scale rotors and aircraft, see references 25 to 28.)
The parameters given in table 3 are those required for the present theory.
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TABLE 3.- DESCRIPTION OF THE BELL AND BOEING FULL-SCALE PROPROTORS

AS TESTED IN THE AMES 40- BY 80-FOOT WIND TUNNEL

Bell

Boecing

Rotor

Type

Number of blades, ¥

Radius, &

Lock number, vy

Solidity, o

Pitch/flap feedback, Kp

Lift curve slope, a

Rotor rotation direction,
agn

Tip speed, QF

Rotational speed, @

Blade frequencies (per rev)

Blade inertias

Gimballed, stiff
inplane

-

)
3.82 m (12.5 ft)
3.83
0.089
-0.268
5.7

+1
183 m/sec
(600 ft/sec)

458 RPM
7.63 Hz
48.0 rad/scc

600\’ Ve
lrd ) -

(fig. 16(a))
1.85

figure 16(b)

Cantilever, soft
inplane
3
3.97 m (13 ft)
4.04
0.115
0
5.7

-1
160 m/sec
(525 ft/sec)

386 RPM

6.43 Hz
40.4 rad/sec

figure 17(a)

VB
figure 17(b)

0 for autorotation, v, for powered

142 kg-m2

(105 slug-ft?)

1.000
.779

.670
.670

203 kg-m?
(150 slug-ft?)
0.922

.922

.860
.860

.955

.917
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TABLE 3.

_ DESCRIPTION OF THE BELL AND BOEING FULL-SCALE PROPROTOR

AS TESTED IN THE AMES 40- BY 80-FOOT WIND TUNNEL - Continuecd”

Bell Boeing E
[ Blade inertias SC* 1.035 1.092
Sé 1.212 1.286
0
M A 6.160 4,344
1 Except in autorotation 1
where 1
T* 1 :
%o i
I? u 1 1
y E
\ 0 ]
%0
- :
Rlade structural damping !
Isg 0.1 percent 0.5 percent !
gSBO .5 percent .5 percent
9e .5 percent .5 percent
9820 .5 percent .5 percent
Ning
Semispan, Yy 1.333 1.281
Chord, ¢, © 413 .398
Mast height,
h 261 276
Pylon center of gravity, 2Ppy .050 145
irertias
mp* 76.9 110.93
I3 1.086 1.323
x
T4 b
P, 1.206 2.926
I;w 4.03 2.822
I L0141 0099
Py
c* 667 . 667
rq
Al * o) ‘
Sw 2.88 12.56
M
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TABLE 3.- DESCRIPTION OF THE BELL AND BOETNG FULL-SCALE PROPROTOR

AS TESTED IN THE AMES 40- BY 80-FOOT WIND TUNNEL - Continued

Bell Boeing
Mode shape
gw(ygw) 0.535
m' 7 ) 1.74
W
Sweep, S, -6.5°
3
Dihedral, 5w1 0
Thickness ratio, tw/cw 13.5 percent
Aspect ratio 6.6
Acrodynamic center, x; /e, -.01
w
-.005

Moment coefficient, My

Full stiffness wing
Dimensional stiffness

Dimensionaless stiffness
K*
T
K5
‘2
Ko*
. . ., P
Dimensionless damping
Co*
!
q;
*
‘v
Typical resulting frequencies
9
17
p

9.20x10® kg m?/sec?
(6.793x10° slug ft2/scc?)
2.50x107 (1.840x107)

1.77x10% (1.305%x10%)

9030 kg m?/sec

(6653 slug ft2/scc, ¢ = 1 percent)

27,300 (20,185, 1.8 percent)
955 (703, 1.5 percent)

18.72 18.51

50.70 50.14

3.595 3,555

.880 .732

2.67 2.22

.093 .077

3.2 Hz 0.42/rev | 2.3 Hz 0.36/rev

5.35 .70 4.0 .62
9.95 1.30 9.2 1.43
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TABLE 3.- DESCRIPTION OF THE BELL AND BOEING FULL-SCALE PROPROTOR

AS TESTED IN THE AMES 40~ BY 80-FOOT WIND TUNNEL - Concluded

Bell Boeing
Quarter stiffness wing
Dimensional stiffness
Kq 2.28x10° kg m?/sec?
1 (1.687x10% slug ft2/sec?)
“a, 6.60x10° (4.863x10°)
Ky 5.30%10% (3.908x107)
Dimensional damping
Cq 3590 kg m?/sec
1 (2646 slug ft?/sec, ¢ = 0.8 percent)
qu 4700 (3462, 0.6 percent)
Cﬁ 441 (325, 1.0 percent)
Dimensionless stiffness
K; 4.65 4.60
1
K;Z 13.40 13.25
Kp* 1.077 1.065
Dimensionless damping
o 35 .29
q, )
c3 458 -581
2
Cp* .043 -036
Typical resulting frequencies
q, 1.5 Hz 0.40/rev 1.1 Hz 0.35/rev
q, 2.6 .68 1.85 .58
D 5.65 1.48 5.55 1.73
Full-scale aircraft wing
Typical frequencies
q, 0.45/rev 0.49/rev
9, .78 .95
p 1.15 1.22
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The Bell rotor is of gimballed, stiff inplane construction; the Boeing
rotor is of cantilever, soft inplane construction. The Lock number y is based
on the representative inertia I3, which is also given in table 3. The Bell

rotor has -15° of 83, from which Kp = tan &3 = -0.268. The two rotors rotate
in opposite directions; with sgn @ = 1, the Bell rotor rotates clockwise on
the right wing, and with sgn 2 = -1, the Boeing rotor rotates counterclockwise

on the right wing. The blade twist and thickness distributions are given in
figure 14 for the two rotors. The structural properties of the blades are
given in figure 15. The rotor rotational speed Q and the corresponding tip
speed QF, given in table 3, are the design operating speeds for airplane
configuration. All theoretical results for frequencies are presented dimen-
sionless, that is, as a fraction of Q@ (per rev); table 3 gives the dimensional
values of @ for reference and to orientate the dimensionless results.

The blade rotating natural frequencies are given in table 3 and in
figures 16 and 17 for the Bell and Boeing rotors, respectively. Figure 16(a)
shows the variation of the Bell flap frequency with rotor speed Q, from the
expression given in table 3. Since the Bell hub is gimballed, vg is inde-
pendent of V/QR (collective pitch); the variation shown results from the hub
spring restraint, which is rather weak at the normal Q2. The coning mode
natural frequency (for which the Bell rotor acts as a cantilever rotor) given
in table 3 is only approximate, for it should vary with O and with the inflow
ratio (with collective) as the lag frequency docs. The coning mode, especially
with this high frequency, does not participate significantly in the proprotor
and wing dynamics. The lag frequency for the Bell rotor (fig. 16(b)) is
greater than 1l/rev for the stiff inplane blade; the variation with V/QF is
actually the effect of the collective pitch variation. For normal @, the Bell
blade has a lag frequency from about 1.6 to 1.2 over the usual range of inflow
ratio; for reference, the forward speed is about 250 knots at V/QFR = 0.7 and
normal Q. The flap and lag frequencies for the Boecing blade are shown in fig-
ures 17(a) and 17(b) for this cantilever, soft inplane blade, vg > 1/rev and
vg < 1/rev (for the normal operating © at least). The frequencies of the
Boeing rotor do not vary much with inflow ratio (i.e., with collective) because
the blade has a nearly isotropic shank construction to achieve the soft inplane
lag frequencies; in fact, a soft inplane rotor for which the lag frequency did
vary with collective would not be a useful design for thec proprotor because of
the restraints of blade loads and blade stahility. For reference, the forward
speed for the Boeing rotor is about 218 knots at V/QR = 0.7 and normal Q. The
Bell and Boeing rotors both have a hover rotational speed of about 550 rpm;
the blade frequencies up to this @ value are given in figures 16 and 17. The
blade frequencies at half normal operating Q (229 and 193 rpm, respectively,
for the Bell and Boeing rotors) required for operating on the quarter stiffness
wing, are also given in figures 16 and 17.

The blade inertia constants are normalized by the Ip values given. The
blade structural damping values are only approximate; the structural damping
of the blade is in any case negligible compared with the aerodynamic damping
in high inflow.

The same wing is used for both rotors. The wing semispan is 5.1 m
(16.67 ft) from the tunnel floor to the rotor shaft; the difference in the
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dimensionless values results from the usc of different rotor radii in the
normalization. The mast height 2 is from the wing tip spar to the rotor hub,
and hpy is from the effective elastic axis to the hub. The wing has a forward
sweep (6w3 < 0) of 6.5° which shifts the effective clastic axis at the wing

tip a distance hpg - 7 = 0.31 m aft of the wing tip spar. The elastic axis
shift results in the value of Ew(yB ) given. The pylon center-of-gravity loca-
w

tion is the distance forward of the wing tip effective eclastic axis; it is used
only to find Sp* = mp*ngﬁ/yjb. The value of n,'(yy,) given was obtained from

a structural dynamics analysis of the wing modes; note that the approximate
mode shape n, = ywz/ygb gives nw'(yTw) = 2.

The inertia parameters of the wing were obtained from measurements;
the wing stiffnesses were then obtained by finding the values required to
match the experimental frequencies. This procedure makes usc of the most
accurately known wing properties (mass and frecquencies) and ensures that the
most important parameters of the wing dynamic characteristics - the
frequencies - are accurately represented. The result was the dimensional
stiffnesses given in table 3 for the full stiffness wing and the quarter
stiffness wing; the dimensional stiffnesses are the same for both rotors since
the same wing was used. The dimensionless stiffnesses are obtained by dividing
by (N/2)IEQZ. The values given are based on the normal operating rotor speed,
and so must, in general, be multiplied by (QRO/QR)Z where QF, = 183 and
160 m/sec (600 and 525 ft/sec), respectively, for the Bell and Boeing rotors.
To indicate the meaning of the stiffnesses, table 3 includes typical values
of the resulting wing frequencies; since these values are for the coupled
motion - at 100 knots and normal Q (one-half normal @ for the quarter stiff-
ness wing) - they include the rotor inertia and aerodynamic influences, but
the latter are small at this low speed. The results for the predicted and
measured frequencies are always given here in dimensionless form (per rev); for
reference, the corresponding dimensional values of the wing natural frequencies
are given in table 3.

The wing structural damping coefficients were determined from the
stiffness and the measured values of the damping ratio (with the rotor off and
no forward speed, so they include no aerodynamic influences). The wing
structural damping is not well known, which means there is some uncertainty in
the predictions of the wing mode damping levels. The values given in table 3
are based on the measurements with and without the rotor and wing aerodynamic
influences, and are found to produce reasonable correlation with the data. The
dimensionless damping values given are based on the normal rotor operating
speed, so, in general, they must be multiplied by (§7,/QR).

The wing used, while having properties represcntative of the full-scale
aircraft, actually was somewhat thinner (¢,/c, = 13.5 percent as compared with
the more likely 20-23 percent) and of quite different construction. Wing fre-
quencies characteristic of the full-scale aircraft (for airplane cruise con-
figuration and rotor speed) conclude table 3 to indicate the appropriateness
of the wing used for the full-scale tests.
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Other theories- The results of the theory developed here compared with
the results of other theories, as well as with the experimental data from the
full-scale tests. The reports of the full-scale tests of the Bell and Boeing
rotors (refs. 25 and 26) include predictions of the dynamic characteristics,
using theories developed by the companies for their rotors.

The Bell Helicopter Company uses two theories, a linear model and a
nonlinear model. The Bell linear theory (refs. 15 and 25) consists of a
closed-form analysis for calculating eigenvalues and eigenvectors. The model
has linear blade aerodynamics, but no wing aerodynamics. The degrees of free-
dom consist of flap and lag for each rotor blade and, for the wing and pylon,
there are five modes: vertical bending, chordwise bending, torsion, pylon
yaw, and pylon pitch. The Bell nonlinear theory (refs. 25 and 29) consists of
an open-form analysis for calculating the time history of the motion by numeri-
cal integration of the equations of motion. The model uses better blade aero-
dynamics than does the linear theory, and incorporates wing aerodynamics
(including rotor/wing interference effects). For this application at least,
the same degrees of freedom are used as for the linear theory. The nonlinear
theory uses normal modes for the airframe (wing and pylon here) degrees of
freedom, obtained from a NASTRAN calculations.

The Boeing Vertol Company uses a linear theory (refs. 26, 28, and 30)
that consists of a closed-form analysis for calculating the eigenvalues and
eigenvectors. The degrees of freedom consist of flap and lag motion for cach
blade and normal modes for the wing.

The Gimballed, Stiff-Inplane Rotor

A 25-ft-diam flight-worthy gimballed, stiff-inplane proprotor, designed
and constructed by the Bell Helicopter Company, was tested in the 40- by 80-
Foot Wind Tunnel in July 1970. The configuration for the dynamics test (fig.
12) consisted of the windmilling rotor mounted on the tip of a cantilever wing.
The rotor was operated in high inflow axial flow. The rotor and wing were
described previously. The test results, and also theoretical results from
the Bell theories, are given in reference 25. Only the data for the case with
the yaw link in are used here; that configuration had the pylon yaw stiffness
at the airplane mode value. The theoretical dynamic characteristics of this
rotor and wing are discussed, followed by a comparison with the full-scale
test results and the Bell theoretical results. The aspects of the theory to
be examined were discussed in the previous section.

The predicted variation of the eigenvalues of the system with forward
speed, at the normal airplane mode rotor speed (2 = 458 rpm), is shown in
figure 18: the frequency and damping ratio and the root locus. The wing mode
frequencies show a slight decrease with V. The decrease in the lag frequency
ve with V/Qr (really the effect of collective pitch) is apparent in the ¢ * 1
mode frequencies. The 8 * 1 modes show the influence of the negative §3, which
drops the effective flap frequency below 1/rev. For the rotor operating in
autorotation, the rotor speed perturbation degree of freedom z is a first-
order motion (a balance of the inertia and the aerodynamic lag damping) so its
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eigenvalue is on the negative real axis (not shown in fig. 18). The time
constant of the ¢ mode increased greatly from low inflow, where the lag damp-
ing comes from the cp, terms (Q&). The damping of the wing chordwise bending

mode q, decreases with V, the damping of the torsion mode p increases. The
damping of the wing vertical bending mode first increases with V, then it
decreases. The peak occurs where the frequencies of the ¢ - 1 and g, modes
cross; hence it is an effect of the coupling of the rotor lag and wing bending
modes. A similar effect is apparent in the g, damping where the ¢z - 1 and g,
frequencies cross, but it occurs at very low inflow so the effect is small.
The q, mode becomes unstable at 495 knots (V/QR = 1.39); and the q mode, at
600 knots (V/QR = 1.69); these are the characteristic high inflow instabilities
of the proprotor and wing configuration. Of course, the helical tip Mach num-
ber (Mpgr = Meip(l + (V/QR)Z]I/ } is unity at about 550 knots (V/QR = 1.55),
certainly an upper limit on the validity of the theory.

The influence of the rotor lag motion on the system stability is shown in
figure 19, which compares the damping of the wing modes with and without the
t1c and gjg degrees of freedom in the theory (g, is the rotor speed perturba-
tion for this autorotation case, so it must be retained); figure 19(c) shows
the complete root locus without Zjp and ¢35 in comparison with figure 18(c).
The rotor lag motion has a very important influence on the wing modes, espe-
cially the g, damping. Without the resonance of the lower-frequency lag mode
with wing vertical bending, the damping does not show a peak at the resonance,
rather it continues to increase with V until the high inflow effects appear at
about 450 knots (V/QR = 1.27); then the damping drops off very quickly. So
the rotor lag motion has the following influence on the stability: when the
z - 1 frequency is greater than the g, frequency (roughly, when ,

v > wa + 1/rev), the resonance increases the g, mode damping, while,'ihen

the ¢ -1 frequency is less than the g, frequency, it decreases the damping.

The result is that the rotor lag motion significantly reduces the wing vertical
bending mode damping at the higher speeds. The speed at which the g, mode
becomes unstable is not changed much, however, which indicates that the high
inflow instability mechanism is not greatly influenced by the lag motion. The
reduction in damping at high speed is then more importantly accompanied by a
great reduction in the rate at which the damping decreases, which is very
beneficial. The rotor lag motion thus makes the high inflow instability less
severe. The flap and lag modes in high inflow are highly coupled by the aero-
dynamics. Eliminating the gj¢ and g)g motions therefore greatly influences

the behavior of the 8 * 1 mode, as shown in the root loci of figures 18 and 19.
The rotor flap motion is expected to be important to the proprotor and wing
dynamics. The above comparison shows that the rotor lag motion can be equally
important. The influence of the lag motion is a combination of the high inflow

aerodynamic forces and inertia coupling with the shaft motion.

The influence of the rotor speed perturbation degree of freedom and the
wing aerodynamics on the system stability is shown in figure 20. The basic
case is autorotation operation, including the wing aerodynamics. Eliminating
the wing aerodynamic forces decreases the g, and p mode damping, but has only
a small influence on the g, damping, which indicates that the CLa wing damping

is the most important effect. Powered operation (including the wing
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aerodynamics again) is considerably stabilizing for all the wing modes, over
the autorotation case. The powered model considers the hub rotating at a
constant speed, so the £ mode becomes the elastic motion of the blades about
the hub, with spring restraint v_. The powered operation has little influence
on the B + 1 and ¢ * 1 modes, or~”on the wing mode frequencies.

The influence of the complete expressions for the rotor aerodynamic
coefficients, that is, including the Cy» C g cda, OZM, and ch terms as well

as the ¢y, terms, is shown in figure 21. The better rotor aerodynamic model
a

reduces the predicted stability of the wing modes, for both autorotation and
powered cases. The details of the coupling of the high-frequency rotor modes
B+ 1and £ + 1 are also changed somewhat. The complete rotor aerodynamic
coefficients were calculated both by use of the correct collective pitch from
a performance analysis (the collective pitch required for C5 = 0 for autorota-
tion, or for the Cp needed in equilibrium cruise for powereg flight), and by
use of an approximate collective value based on the inflow at 75 percent radius
(89,75 = tan~L(V/Qm)/(3/4) + 1.25°). The performance calculation is very sen-
sitive to the collective pitch used, but figure 21 shows that the dynamics
behavior is not; the approximate collective used is, in fact, within 1 or 2°
of the correct value for both autorotation and powered flight at high speed,
and so evidently is an adequate representation of angle-of-attack distribution.
The complete expressions for the aerodynamic coefficients give somewhat dif-
ferent numerical values compared with those obtained when only the oy terms

are used (fig. 5), but the general behavior remains the same. An exception is
when the drag divergence critical Mach number is exceeded. The helical tip
Mach number exceeds the critical Mach number for the blade section character-
istics used (Mapie = 0.9) at about 475 knots (V/QR = 1.33); it exceeds the
sonic value (M = 1) at about 550 knots (V/QR = 1.55). These points (fig. 21)
are limits to the validity of the theory, but the main effects of the better
blade aerodynamic model occur below these limits. It is concluded that using
only the ¢, terms in the rotor aerodynamic coefficients is satisfactory for

[0

studying the basic behavior, and, in fact, is quite accurate so long as V is
neither too small (low inflow) nor too large (stall and compressibility). For
this example, the range in which the hy expressions are adequate is approxi-

mately V = 25 to 350 or 400 knots (V/QR = 0.1 to 1.0 or 1.1). When one pre-
dicts the characteristics of an actual aircraft, however, especially the
high-speed stability, the best available rotor blade aerodynamic model should
be used, which probably means tabular data for the 1ift and drag coefficients
as a function of angle of attack and Mach number for the blade sections used.

Figure 22 shows the influence of using the simplified theoretical model
on the predicted system stability. The effect is that of eliminating the wing
sweep terms (except for the effective elastic axis shift, which is retained
through %p4); the basic model already uses only the ¢y, terms in the rotor

aerodynamics and has no angle of attack or dihedral. The effect of the better
blade aerodynamics was discussed previously; the effect of dihedral is
expected to be similar to that for sweep; and there is little influence of
angle of attack generally (either experimentally or theoretically, for small
angles at least). Therefore, the simpler theoretical model is quite
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satisfactory for studying basic proprotor dynamics, giving the same general
characteristics as the more involved model. For the design of an actual air-
craft, however, a good structural analysis of the wing and pylon motion should
be used.

Figure 23 shows the behavior of the system dynamics during a rotor
rotational speed sweep at 185 knots. The decrease in the wing mode frequencies
is almost exactly proportional to -1, that is, the dimensional frequencies are
nearly constant during the @ variation. The lag frequency decreases with Q
faster than the (per rev) wing frequencies do. The ¢ - 1 mode again shows a
frequency resonance with the g, mode with increased damping when the ¢ - 1
frequency is higher, and decreased damping when it is lower than the g, fre-
quency. Some of the damping variation probably results from the high inflow
influence. At low 2, a resonance of the 8 + 1 and p modes occur, which is
apparent in both the frequency and damping of these two eigenvalues.

The dynamic characteristics of the Bell rotor on the quarter stiffness
wing, at half normal operating rotor speed (2 = 229 rpm), are shown in fig-
ure 24, including a comparison with the full stiffness wing results (plotted
vs. V/QR). The frequencies of the modes are given in figure 24(a) (except for
the B, 8 + 1, and ¢ + 1 modes), and the great increase in the lag frequency
that results from slowing the rotor is evident (sec also fig. 16(b)). The
wing frequencies are fairly well matched between the quarter- and full-
stiffness wings. However, because of the difference in lag frequencies, the
damping for the wing modes is not well simulated on the quarter-stiffness wing
(figs. 24(b) and (c)), especially for the q, mode, which, for the full-
stiffness wing, encounters a resonance with the £ - 1 mode. The influence of
the rotor lag motion may be removed from the full-stiffness wing theory by
eliminating the tj, and )5 degrees of freedom and, indeed, the g, damping on
the quarter-stiffness wing correlates well with that case. With %he increased
lag frequency on the quarter-stiffness wing, the p mode (instead of the g,
mode) encounters a £ - 1 mode resonance, with a corresponding influence on the
torsion damping. ,

Figure 25 shows the eigenvalues and eigenvectors for the Bell rotor at
the typical cruise condition V/QR = 0.7, @ = 458 rpm, V = 249 knots. This fig-
ure is a time vector representation of the modes, so the eigenvector set for a
given mode rotates counterclockwise at w = Im\ and decreases exponentially at
a rate given by Reh. The projection of each vector on the real axis gives the
participation of the degrees of freedom in the motion during the damped oscil-
lation of the system in that mode. The degrees of freedom not shown for a
given mode have a magnitude negligible on the scale used (i.e., less than
about 5 percent of the maximum). The autorotation and powered cases show
little difference except for the r, motion, of course, and in the wing mode
eigenvalues. The rotor degrees of freedom participate significantly in the
wing modes. The B + 1 and £ * 1 modes show the coupling of the flap and lag
motions due to the high inflow aerodynamics, but little coupling with the wing
motion or with the collective rotor degrees of freedom. If Bj, leads B;g in
the time vector representation, the flap mode is progressive (the tip path
plane wobbles in the same direction as the rotor rotation) and, similarly, for
the lag modes. With the stiff-inplane rotor (vr > 1) and negative &3 (so the
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effective vg < 1), then the 8 - 1, B + 1, and ¢ + 1 modes are progressive and
the 7 -1 mode is regressive, as expected.

The frequency response of the Bell rotor to each of the six input
quantities is shown in figures 26 and 27 for autorotation and powered flight,
respectively. The magnitude of the response of each degree of freedom to the
input is shown; the rotor is operating at V/QR = 0.7, 2 = 458 rpm, and V = 249
knots (the same as for the eigenvectors in fig. 25). The frequency response
of the system is a good indicator of the dynamics involved, particularly the
peaks in the response that occur at the resonant frequencies if the degree of
freedom can be excited by that input. The frequencies of the eigenvalues are
also shown (lower right) to identify the resonances. The wing vertical bending
resonance (g,) is most important for the cyclic inputs (ags Bgs, 010, and 8;9),
and the choréwise bending resonance (qz), for the collective inputs (u; and 89).
There are also significant resonances with the upper-frequency rotor modes
(B + 1, £ +1). The degrees of freedom usually show significant excitation at
the higher frequencies, especially near resonance with the wing modes, even if
there is small or negligible steady-state response. The major differences
between the powered and autorotation cases are the steady-state response
(especially for the collective inputs), which carries into the low frequencies,
too, and the response of the Loy motion.

The response shown at very low frequencies in figures 26 and 27 indicates
the static response of the system to the six inputs. The system generally
separates into a longitudinal or collective group (variables Bp and g, and
inputs Ug and 65) and a lateral/vertical or cyclic group (variables Bics Bigs
C1¢> and g3g and inputs ag, B, elC’ and 615). The wing variables (ql’ Gys p)
couple the two groups, but are excited most by the cyclic group. In autorota-
tion, the static response of the cyclic rotor variables to the cyclic inputs
is of order 1 for the flap motion and of order 0.1 for the lag motion; their
response to the collective inputs is negligible. The static response of the
collective rotor variables to the cyclic inputs is negligible; the response of
Bp to 6g is small, and to ug, it is negligible. The response of éo to the
collective inputs is of order 1; zo/ug = -1, of course, as discussed earlier
(eq. (86)). The static response of the wing variables to the collective inputs
is negligible; the response of g, and p to the cyclic inputs is of order 0.05
and the response of q, is of order 0.005. For powered flight, there is negli-
gible effect on the response to the cyclic inputs compared to autorotation,
but the response to collective inputs (8g, ug) increases significantly. The
static response of the cyclic flap motion to the collective inputs is then of
order 0.05, the response of the cyclic lag motion is of order 0.005, the
response of q, is of order 0.1, the response of q, is of order 0.05, and the
response of p is of order 0.01. The static response of the collective vari-
ables (Bg and gp) to the collective inputs in powered flight is of order 0.2.

Consider a comparison of the predicted dynamic characteristics for the
Bell rotor with experimental results from the full-scale tests in the 40- by
80-Foot Wind Tunnel and with the results of the Bell theories. Full-scale
experimental data are available for the frequency and damping ratio of the
wing modes. The data are limited by the tunnel maximum speed (about 200 knots)
and by the use of an experimental technique that gave primarily only the damp-
ing ratio for the wing vertical bending mode. The data were obtained by use
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of an aerodynamic shaker vane on the wing tip (evident in fig. 12; the same
technique was used for the Boeing rotor, fig. 13). The vane was oscillated to
excite the wing motion desired; when sufficient amplitude was obtained, the
vane was stopped and the system frequency and damping were determined from the
subsequent decaying transient motion. This configuration is best suited for
excitation of the wing vertical bending mode (ql).

Figure 28 shows the variation of the system stability with velocity at
the normal operating rotor speed (& = 458 rpm), in terms of the frequency and
damping ratio for the wing modes. The results of the present theory are com-
pared with the experimental data from the full-scale test, and with the
results of the Bell linear and nonlinear theories. Reasonable correlation
with both experiment and the Bell theories is shown. The good correlation of
the frequencies predicted by use of the present theory with the experimental
data (fig. 28(a)) follows because the wing stiffnesses were chosen specifically
to match the measured frequencies (at around 100 knots). The difference
between the predicted damping levels of the Bell linear and nonlinear thcories
is largely due to the neglect of the wing aerodynamic forces in the former.

Figure 29 shows the variation with rotor speed & of the wing vertical
bending mode damping for the Bell rotor at V = 185, 162, and 150 knots. Rea-
sonable correlation is shown with both the experiment and the Bell theorics.
For V = 162 and 150 knots, the predictions from the Bell theories arc available
only at normal operating rotor speed (2 = 458 rpm, from fig. 28(h)).

Figure 30 shows the variation of the system stability with forward speed
for the Bell rotor on the quarter-stiffness wing, at half normal operating
rotor speed (? = 229 rpm). During the full-scale test of this configuration,
the available collective pitch was limited to the value reached at about 155
knots (at € = 229 rpm). Since the rotor was operated in autorotation, the
collective pitch and inflow ratio V//QR were directly correlated. The maximum
value of the inflow ratio was rcached at 155 knots, where V/Q® = 0.875. Above
this speed, the collective was constant, and the inflow ratio was fixed at
about V/QR = 0.840. The increase in velocity above 155 knots was accompanied
by an increase in the rotor speed 2 to keep the inflow ratio at the constant
value demanded by the collective limit. The theoreticual predictions include
the actual rotor speed. The predicted frequency and damping with the rotor
speed maintained at a constant valuc (2 = 229 rpm) are also shown in figure 30.
The true values of the inflow ratio V/QF for the experimental points above
155 knots are shown in figure 30. Reasonable corrclation is shown with both
the experiment and the Bell theories. The decrease in the frequencies at high
speed is produced mainly by the increasing ©. The increasing @ at high speed
due to the collective limit significantly reduces the wing vertical bending
and torsion damping, primarily because of the decreasce in the cffective (i.c.,
per rev) wing frequencies.

The variation with rotor specd of the wing vertical bending and torsion
damping for the Bell rotor on the quarter stiffness wing is shown in figure 31
for ¥V = 150 and 170 knots. Reasonable correlation is shown with experiment
and the Bell theories.
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Figure 32 shows the rotor flapping due to shaft angle of attack. The
correlation of experiment and theory is shown in figure 32(a). The present
theory predicts fairly well the magnitude of the flapping due to shaft angle
of attack and also the longitudinal flapping Bj,. However, the theory under-
estimates the lateral flapping Byjg by about a factor of 1/2. The results of
the Bell linear theory are almost identical with the results of the present
theory. The Bell nonlinear theory, however, predicts well the lateral flapping
B1s also, as shown in figure 32(a). As discussed in reference 25, the better
prediction of B with the nonlinear theory is probably due to the inclusion of
the influence of the wing-induced velocity on the rotor motion. Further evi-
dence for that conclusion is the single point in figure 32(a) for which the
present theory adequately predicts the lateral flapping 815. That point is
from the powered test, which was not conducted on a wing. The lateral flapping
B1s 1s small compared to the longitudinal flapping Bjs, so the present theory
does predict the magnitude of the flapping well. The azimuthal phase predic-
tion has the same order of error as does B1g, however. Figure 32(b) shows the
predicted and experimental variation of the flapping with inflow ratio V/Q&.
The theoretical results are for a velocity sweep at normal rotor speed (0 =
458 rpm), while the experimental results include limited variation of Q as
well as V, and the flagged points are even for the quarter-stiffness wing.

Yet the flapping correlates well with the single parameter V/QF, indicating
that the primary influence is the rotor aerodynamic forces. The underpredic-
tion of Byg is again observed; the single point that agrees with the theory is
the powered test point.

Figure 33 shows the variation of the wing vertical bending (g,) damping
with V/QR, during velocity sweeps for the Bell rotor on the full-stiffness and
quarter-stiffness wings. The full-scale experimental data show a definite
trend to higher damping levels with the full-stiffness wing than with the
quarter-stiffness wing, and this trend correlates well with the present theory.
The difference in damping at the same inflow ratio results from the lag
motion. Figure 33(b) shows the frequencies of the ¢ - 1, q;, and p modes for
the full-stiffness and quarter-stiffness wings. The full-stiffness wing has a
resonance of the ¢ - 1 and g, modes that increases the g, damping below the
resonance and decreases it above, and produces the peak in the damping
observed in figure 33(a). Slowing the rotor on the quarter-stiffness wing
greatly increases the lag frequency and removes it from resonance with g
(instead there is a resonance with the p mode, as shown in figure 33(b) and
discussed earlier). Another way to remove the influence of the rotor lag
motion - in the theory - is to simply drop the zjo and gjg degrees of freedom
from the full-stiffness wing case. Then the predicted wing vertical bending
damping is almost identical to that for the quarter-stiffness wing (fig. 33(a)).

The Hingeless, Soft-Inplane Rotor

A 26-ft-diam, flight-worthy, hingeless, soft-inplane proprotor, designed
and constructed by the Boeing Vertol Company, was tested in the 40- by 80-Foot
Wind Tunnel in August 1972. The configuration for the dynamics test (fig. 13)
consisted of the windmilling rotor mounted on the tip of a cantilever wing,
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with the rotor operating in high inflow axial flow. The rotor and wing were
described previously. The full-scale test data for the quarter-stiffness wing
runs, and the theoretical results from the Boeing theory are from reference 26.
The theoretical dynamic characteristics of this rotor and wing are discussed,
followed by a comparison with the full-scale test results and the Boeing
theoretical results.

The major changes in the dynamic behavior compared with that of the Bell
rotor are due to the different placement of the blade frequencies. The Boeing
rotor has 1 - v, of the same order as the wing vertical bending frequency (as
did the Bell rotor), but the soft-inplane rotor with vy < 1 introduces the
possibility of an air resonance instability, that is, a mechanical instability
that results from the resonance of the ¢ - 1 and g, modes. This instability
will occur at a definite £ (for resonance) which, in this case, is above the
normal operating rotor speed and at low forward speed. At high enough V/QR,
the lag damping Qi becomes large enough to stabilize the resonance. An analyt-
ical discussion of the air resonance instability was given earlier. Besides
introducing the possibility of an instability, at high Q and low V, the lag
motion of the sofc-inplane rotor generally decreases the wing vertical bending
mode stability.

The Boeing rotor has cantilever blades with vg sufficiently above 1/rev so
that vg - 1 is very close to the wing vertical bending mode frequency. Hence
the B - 1 mode takes on many of the characteristics of the ¢. mode, especially
at high V/QR. In fact, it is usually the 8 - 1 mode that becomes unstable at
high inflow rather than the ¢, mode. By the time the B - 1 root enters the
right half plane, the mode has however assumed the character of a wing vertical
bending mode (this behavior is discussed further in terms of the eigenvectors
of the two modes). Thus the high inflow instability mechanism is the same as
observed already for the Bell rotor.

The predicted variation of the eigenvalues of the system with forward
speed, at the normal airplane mode rotor speed (2 = 386 rpm), is shown in fig-
ure 34: frequency and damping ratio and root locus. The flap frequency is
greater than 1/rev and the coupled frequency of the g *+ 1 modes increases some-
what with the inflow ratio. The lag frequency is less than 1/rev and the
coupled frequency decreases with the inflow ratio. Since vy < 1, the ¢ - 1
mode frequency increases. The proximity of the B - 1 and ¢ - 1 mode fre-
quencies to the gy, and even the g, frequencies is apparent in figure 34(a).
The 9, damping is quite low at low speeds and has a minimum around 200 knots
because of the influence of the ¢ - 1 mode, that is, the air resonance behav-
ior. The g; damping increases at high V, but there is considerable coupling
of the B - 1 and g_ modes (as indicated by the frequencies and the eigenvec-
tors). The B8 - 1 mode damping decreases very quickly at high speed and, by the
time the root crosses into the right half plane at V = 480 knots (V/QR = 1.54),
the mode is really a wing vertical bending instability, that is, the high inflow
inflow proprotor and wing instability. This change in the character of the
B - 1 and g, modes is shown in figure 34(d), which presents the eigenvectors at
¥V = 250, 400, and 500 knots. At low speed, the eigenvector on the left is
clearly identifiable as the g; mode, and the eigenvector on the right as the
B - 1 mode, based both on the frequency of the root and on the participation of
the degrees of freedom in the eigenvector. As forward speed increases, the
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wing vertical bending motion decreases in one mode and increases in the other.
The mode that is originally the rotor low-frequency fiap mode (B - 1) becomes
unstable just before 500 knots, and by that time this mode has assumed the
character of the primary wing vertical bending mode. Note that the wing
vertical bending motion is characterized not simply by the q, degree of free-
dom, but also by the motion of ClC’ CIS’ Zg, and p associated with the mode.

The wing chord (g,) mode damping decreases with speed until an instability
is encountered at V = 510 knots (V/QR = 1.64). This is an air resonance
instability, as indicated by the coincidence of the ¢ - 1 and q, mode fre-
quencies at this speed (fig. 34(a)). Wing chord bending produces a lateral
motion at the rotor hub forward of the wing tip, which couples with the rotor
lag motion. An air resonance instability can occur at even high speed with
the wing chord mode because the wing aerodynamic damping of that mode remains
small. The g, instability occurs at a slightly higher speed than the B - l/q1
instability, so, in some cases, it may be the critical boundary.

The wing torsion (p) mode couples with the rotor coning (8) mode in this
case, mainly due to simply a coincidence of the damping and frequencies of
the two modes. These modes have fundamentally different character (Bg is in
the longitudinal group of variables and p, in the lateral/vertical group) and
do not really want to couple. The roots try to cross on the root locus plane
(fig. 34(c)) and instead exchange roles; the coupling is significant only in
a narrow region near 300 knots; elsewhere, the roots are clearly distinguish-
able. While this coupling does not have great physical significance, it is
discussed because a slight change in the parameters or in the model may elimi-
nate the coupling. For comparison with such cases, it is most convenient to
plot the damping (fig. 34(b)) as if the root loci really did cross, that is,
by joining the corresponding p and B pieces. This practice is followed in the
comparisons that follow.

The influence of the rotor lag motion on the system stability is shown in
figure 35, which compares the damping of the wing modes with and without the
Zic and Ty degrees of freedom in the theory. The rotor lag motion has a
large and important influence on the wing modes. The rotor lag motion sub-
stantially decreases the stability of the g; and 8 - 1 modes. The B - 1 mode
behavior remains the same when the lag degrees of freedom are eliminated, but
the sharp damping decrease (and instability) occurs at a speed about 250 to
300 knots higher, beyond the scale used in figure 35(a). The low damping of
the g, mode around 200 knots is shown to be due to coupling with the z - 1
mode, that is, air resonance behavior. The rotor lag motion also decreases the
q, mode stability at high V, another air resonance effect. The lag motion
s%abilizes the p mode, but that is not really needed. The complete root locus
is shown in figure 35(c), which is to be compared with the root locus that
includes the lag motion (fig. 34(c)).

The influence of the rotor speed perturbation degree of freedom and the
wing aerodynamics on the system stability is shown in figure 36. The basic
case is autorotation operation, including the wing aerodynamics. The rotor
speed perturbation degree of freedom generally decreases the stability, that
is, powered operation is more stable, especially for the q, mode where the air
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resonance behavior is much less noticeable. The wing aerodynamic forces
generally increase the stability.

The influence of the complete expressions for the rotor aerodynamic
coefficients is shown in figure 37(a) (for clarity, only the autorotation case
is shown for the B8 - 1 and p modes). Generally, the use of the better blade
section aerodynamics decreases the predicted stability of the wing modes. The
correct collective was obtained from a performance analysis for powered and
autorotation operation of the Boeing rotor. The approximate collective used,
based on the inflow angle at 75 percent radius, was 8j5.75 = tan~ L (V/QR)/ (3/4) +
1.0°. The helical tip Mach number reaches the blade critical Mach number
(¥ = 0.9) at about 500 knots (V/QR = 1.61) and reaches the sonic value at
about 580 knots (V/9R = 1.86). The conclusions are the same as for the Bell
rotor: the basic behavior of the system is described well with only the ¢y
terms in the rotor aerodynamic coefficients, but the complete expressions
should be used to obtain correct predictions for actual vehicles, particularly
for the high-speed stability boundaries. The use of the approximate collective
does not influence the dynamics much, although it is, of course, not
satisfactory for performance calculations.

Figure 38 shows the influence of the use of the simplified theoretical
model on the predicted system stability. As for the Bell rotor, it is con-
cluded that the simpler model is satisfactory for studying the basic behavior,
but for the design of a particular vehicle, the best available model should be
used.

Figure 39 shows the variation of the system eigenvalues with rotor speed
Q for the Boeing rotor at 50 knots. At this low speed, the ¢ - 1 and g, fre-
quency resonance around 530 rpm (fig. 39(a)) results in an air resonance insta-
bility in the g, mode (fig. 39(b)). At resonance, there is a corresponding
increase in the ¢ - 1 damping. The resonance and corresponding instability
occur above the normal rotor operating speed (9 = 386 rpm) even with the wing
used for the wind-tunnel test, which was softer in bending than the full-scale
design. The general decrease in the z * 1 mode damping with Q results from
the low lag damping at low inflow. Figure 40 shows the variation of the
eigenvalues with @ for the Boeing rotor at 192 knots. The ¢ - 1 and g,
resonance again occurs at about Q = 500 rpm, but this speed is sufficient to
stabilize the air resonance motion. Figure 41 summarizes the Boeing rotor air
resonance behavior: the wing vertical bending mode (g,) damping variation with
rotor speed 2 for V = 50 to 192 knots. The stabilizing influence of the for-
ward speed is shown. An earlier section derived an estimate for the V value
required to stabilize the air resonance motion. In this case, resonance occurs
with the wing vertical bending frequency of about 0.28/rev, and vy of about
0.8/rev; with the other parameters required from table 3, equation (203)
gives V/QR > 0.268 for the stability requirement. At this speed, resonance
occurs at £ = 500 rpm, so the velocity requirement is V > 108 knots. The use
of the equivalent radius approximation for the rotor lag damping Q& gives
instead V/QF > 0.285 or V > 114 knots, which is only about 6 percent higher.
The estimate compares well with the calculated boundary of about 120 knots
(fig. 41), better, in fact, than is reasonable to expect from the simple model
used for the air resonance estimate.
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The dynamic characteristics of the Boeing rotor on the quarter-stiffness
wing, at half normal operating rotor speed (2 = 193 rpm) are shown in figure 42.
The frequencies of some of the corresponding modes on the full-stiffness wing
are also shown in figure 42(a) (plotted vs. V/QK; the 8 + 1, ¢ + 1, and B fre-
quencies are not shown for the full-stiffness wing). The wing mode frequencies
arc well matched to the full stiffness wing values (per rev), but slowing the
rotor increases both the flap and lag frequencies of the blade considerably,
the flap frequency to near 2/rev and the lag frequency to near 1/rev, as com-
pared with about vg = 1.35 and v, = 0.75 at normal Q (see also fig. 17). The
lag frequency moves nearer 1/rev and thus the ¢ - 1 mode frequency is lower for
the quarter-stiffness wing (besides the influence on the dynamics, the lag fre-
quency near l/rev also means large vibration and blade loads). With the rotor
frequencies so different, the system damping shown in figure 42(b) has much
different behavior than for the full-stiffness wing (compare with fig. 34(b)),
especially for the g, and B - 1 modes. Figure 43 shows the variation of the
system stability wit% rotor speed 2, for the Boeing rotor on the quarter-
stiffness wing at 80 knots. Air resonance effects are evident in g, at about
400 rpm and in ¢g,, at about 500 rpm. The peak in the q, damping at 225 rpm is
due to the coupling with the 8 - 1 mode.

Figure 44 shows the eigenvalues and eigenvectors for the Boeing rotor at
the typical cruise condition of V/QR = 0.7, @ = 386 rpm, V = 218 knots. With
this soft-inplane (\)C < 1) and cantilever (vB > 1) rotor, the z - 1, B + 1,
and ¢z + 1 modes are progressive and the B - 1 mode is regressive as expected.

The frequency response of the Boeing rotor to each of the six input
quantities is shown in figures 45 and 46 for autorotation and powered flights,
respectively. The magnitude of the response of each degree of freedom to the
input is shown; the rotor is operating at V/QF = 0.7, Q = 386 rpm, and V = 218
knots (the same as for the eigenvectors in fig. 44). The steady-state (low-
frequency) response, compared with that of the Bell rotor, shows only the fol-
lowing differences: with the hub moment capability of the cantilever rotor
(vB < 1), the flap motion with respect to the shaft is reduced, and the wing
motion is increased. There is increased lag motion because of the softer
blade inplane restraint (lower vy) and there is a change in the azimuthal
phasing of the cyclic rotor response (e.g., By, and Bjg) to the cyclic inputs
(e.g., 610 and 6yg) because of the change in rotor frequencies.

Consider a comparison of the predicted dynamic characteristics for the
Boeing rotor with experimental results from the full-scale tests in the 40-
by 80-Foot Wind Tunnel and with the results of the Boeing theory. Full-scale
experimental data are available for the frequency and damping of the wing
vertical bending mode, obtained by the same shaker vane excitation technique
as used with the Bell rotor.

Figure 47 shows the variation of the system stability with velocity at
the normal operating rotor speed (2 = 386 rpm) in terms of the frequency and
damping ratio for the wing modes. Reasonable correlation of the present theory
with both experiment and the Boeing theory is shown. However, data are
available only for wing vertical bending mode damping.
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Figure 48 shows the variation of the wing vertical bending mode damping
for the Boeing rotor with rotor speed Q@ at ¥V = 50 to 192 knots. These runs
were conducted to investigate the air resonance behavior of this proprotor and
wing configuration. Reasonable correlation is shown with both experiment and
the Boeing theory, except at the higher tunnel speeds. There the data show
considerable scatter because the tunnel turbulence made analysis of the
transient motion difficult.

Figure 49 shows the variation of the system stability with forward speed
for the Boeing rotor on the quarter-stiffness wing, at half normal operating
rotor speed (2 = 193 rpm). Figure 50 shows the variation with rotor speed Q
for the Boeing rotor on the quarter-stiffness wing at V = 80 knots. Reasonable
correlation is shown with both experiment and the Boeing theory. The Q sweep
also shows the air resonance bchavior in both theory and experimental data.

SECTION 6: COMPARISONS WITH OTHER INVESTIGATIONS

In this chapter, the present theory and the results obtained are
compared with the published work of other authors; of primary interest here
are the theoretical models developed in the literature.

Hall (ref. 8) discussed the role of the negative # force damping on the
high inflow proprotor behavior, reviewed the problems found in the XV-3 flight
tests, and reviewed the results of the 1962 test of the XV-3 in the 40- by 80-
Foot Wind Tunnel. He presented an investigation of the influence of various
parameters on the stability of the rotor and pylon, particularly forward speed,
pylon pitch and yaw spring rate, and pitch/flap coupling (83); this investiga-
tion used the full-scale XV-3 test results, model tests that simulated the
XV-3 configuration, and analysis results from a theory presented in the paper.
Hall derived the equations of motion for a two-bladed rotor on a pylon; N = 2
was chosen because the analysis was to support the XV-3 investigation. His
model then had three degrees of freedom: flap angle B (teetering), pylon
pitch ¢,, and pylon yaw ¢,,. The present results (eqs. (146) for N = 2) agree
with Hall's equations, wi%h the following correspondence of notation:

Present Notation Hall
_ay ¢x
ax ¢y
Mpl (1/2)Mg
H H sin vy
Y H cos ¢
Hall considered only the case of vg = 1, that is, no hub spring restraint of

the teetering blade; therefore, no hub moment due to flapping is transmitted
to the pylon motion in his model. The aerodynamic forces Mz and H were
expressed in terms of integrals of the blade section forces F, and F,. over the
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span, which agree with the present results except that the radial drag force
was neglected. Hall did not, however, expand the rotor aerodynamic forces in
terms of the perturbed rotor and pylon motion because he did not derive a set
of linear differential equations. Hall solved for the dynamic behavior by
numerically integrating the equations of motion; hence he found the transient
motion rather than eigenvalues because of the periodic coefficients for ¥ = Z.
With this method, the exact, nonlinear aerodynamic forces could be included
rather than the linearized expansion.

Gaffey, Yen, and Kvaternik (ref. 11) discussed the proprotor aircraft
behavior and design considerations in relation to the wing frequencies, gust
response, and ride quality. The influence of the blade frequencies and pitch/
flap coupling on the rotor and the rotor/wing stability were discussed. It
was shown that a cantilever rotor, that is, v, > 1, has greater stability, and
that vg > 1 reduces flapping significantly but also increases blade loads.
Expressions were given for the low-frequency response of flapping to shaft
angle of attack (xp/V here) and shaft angular velocity (&,, here) in terms of
the equivalent radius approximations; the present results (eqs. (96) to (100))
agree with their expressions. Experimental and theoretical data were given for
proprotor/wing stability, flapping, loads, vibration, and gust response.

Tiller and Nicholson (ref. 13) discussed the stability and control
considerations involved with proprotor aircraft. They found the following
influences on the aircraft stability. The proprotors with positive pitch/flap
coupling and clockwise rotation on the right wing produce, through the negative
H force, an increased effective dihedral in CQB’ the effect increasing with

forward speed. The proprotor negative damping requires a larger horizontal
tail for the short-period mode frequency and damping; the rotor contribution
found was on the order of 30 to 40 percent of the stabilizer contribution.
Similar results were found for the vertical tail requirements (CnB). The rotor

thrust damping in yaw (7,) contributes significantly to Cripae The rotor torque
(Qi) and hub force during rolling increase Clp by about 30 to 50 percent of

the wing value. The thrust due to rolling (Ti) produces adverse yaw (ACnp < 0,

for this rotor rotational direction) that appreciably alters the Dutch roll
damping and mode shape. The rotor influence on the aircraft stability deriva-
tives found here agrees with the results of Tiller and Nicholson. They also
discussed other features of the proprotor configuration that influence the
aircraft stability and control: the thick wing, the high roll inertia, the
nacelle contribution to Cza’ the important influence of the interconnect shaft

stiffness on the lateral derivatives (particularly, Cnp and Cnp)’ and the

control features in helicopter and cruise mode. They point out that the
influence of the rotors on the lateral dynamics is more complex than that on
the longitudinal dynamics, but that meeting the requirements is largely a
matter of enough vertical tail effectiveness.

Young and Lytwyn (ref. 18) developed a four-degree-of-freedom theoretical

model (By1o, Bigs Oy and o) for studying proprotor dynamics. They found an
optimum value for the flap stiffness for pylon/rotor stability at about
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vg = 1.1. An approximation to this result was obtained by setting to zero the
term that couples the rotor with the pylon; that is, in the present notation,

I *(v.2 - 1) 2C )
B '8 .l T+H8*=0
ga

Y

There is then no moment about the pivot due to tip path plane tilt, which
greatly increases the rotor/pylon stability. This optimum was discussed in a
previous section and was also the subject of the discussion of reference 18 by
Wernicke and Gaffey. Young and Lytwyn presented several results for the whirl
flutter case (a truly rigid propeller on the pylon), which were also discussed
previously. Young and Lytwyn found the power-on case to be less stable than
the windmilling case; they were considering, however, the case of a # 0, that
is, the influence of the ¢, terms in the rotor aerodynamic coefficients. The
present results confirm that the use of the better calculation of the aerody-
namic coefficients decreases the predicted stability. The really important
factor in windmill operation (autorotation) is the rotor speed perturbation
degree of freedom, which makes the windmilling case much less stable than the
power-on case. The theoretical model considered by Young and Lytwyn was an
V-bladed rotor (¥ 2 3) on an clastically restrained pylon with pitch and yaw
degrees of freedom. The blade motion allowed was rigid flapping (ng = r), but
elastic blade restraint was included so that v, > 1 was possible. Only the
rotor tip path plane tilt couples with the pylon motion, so the system reduces
to four degrees of freedom. The same four-degree-of-freedom model was
considered here (fig. 1), with the corresponding notation:

Present Notation Young and Lytwyn
B1o Be
B G B
=0y b
Rd %

v

Although the derivation of the rotor acrodynamic coefficients in the linear
equations was considerably different from that used here, the final form is
essentially equivalent to the present result. The corresponding notation for
the rotor aerodynamic coefficients is

Present Notation Young and Lytwyn
207/ oa Mo
20p/oa Myo

2H,, My
2ilg Myp
2y Mpp
-2Mg Mpp
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Young and Lytwyn evaluate these coefficients assuming constant o and cg over
the blade span. The set of four equations of motion obtained correspond to
equations (26).

Descriptions of analyses typical of the most sophisticated currently used
for calculating the dynamic characteristics of tilting proprotor aircraft may
be found in references 29 and 30. These are, in fact, the most complete
descriptions available in the literature for the proprotor aircraft analyses.
Their use lies primarily in the development and support of the design of
specific aircraft. More elementary models remain valuable for general and
exploratory investigations of proprotor dynamics.

Descriptions of the tilting proprotor aircraft, and the design
considerations involved, may be found in references 10, 15, 22, 27, and 28.
The XV-3 flight test results are described in references 2 and 3, and the XV-3
tests in the 40- by 80-Foot Wind Tunnel are described in references 1, 8, and
9. Recent tests of full-scale proprotors in the 40- by 80-Foot Wind Tunnel
are described in references 14, 15, 25, and 26. Some experimental data from
small-scale model tests are also available (refs. 11, 15, 16, and 24, for
example).

CONCLUDING REMARKS

A theoretical model has been developed for a proprotor on a cantilever
wing, operating in high inflow axial flight, for use in investigations of the
dynamic characteristics of tilting proprotor aircraft in the cruise configura-
tion. The equations of motion and hub forces of the rotor were found includ-
ing the response to general shaft motion. This rotor model was combined with
the equations of motion for a cantilever wing. In further studies, however,
the rotor model could easily be combined with a more general vehicle or sup-
port model, including, for example, the rigid-body degrees of freedom of the
aircraft. The general behavior of the high inflow rotor has been investigated
and, in particular, the stability of the proprotor and cantilever wing con-
figuration. The effects of various elements of the theoretical model were
examined, and the predictions were compared with experimental data from wind-
tunnel tests of two full-scale proprotors.

From the theoretical results for the two full-scale rotors, and
comparisons with the full-scale, wind-tunnel test data, it is concluded that
the nine-degree-of-freedom model developed here 1is a satisfactory representa-
tion of the fundamental proprotor dynamic behavior. The model consists of
first mode flap and lag blade motions of a rotor with three or more blades,
and the lowest frequency wing modes. The limitations of the present theory
are primarily the structural dynamics models of the rotor blades and the wing
and the neglected degrees of freedom of the proprotor aircraft system. For
the rotor, it was assumed that the blade flap and lag motions are not coupled,
that is, are pure out-of-plane and pure inplane motions, respectively. The
model neglected the higher bending modes of the blades, and the blade elastic
torsion degrees of freedom were neglected entirely. For the support, the
model used only an elementary representation of the structural modes of the
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wing. The model was limited to the cantilever wing configuration,

neglecting the aircraft rigid-body degrees of freedom as well as the higher
frequency modes of the wing and pylon. The present model does incorporate the
fundamental features of the proprotor aeroelastic system. Hence these limita-
tions of the model are primarily areas where future work would be profitable,
rather than restirctions on its current use.

From a comparison of the behavior of the gimballed, stiff-inplane rotor
and the hingeless, soft-inplane rotor, it is concluded that the placement of
the rotor blade natural frequencies of first mode bending - the flap frequency
Vg and the lag frequency v, - greatly influences the dynamics of the proprotor
and wing. Moreover, the rdtor lag degrees of freedom was found to have a very
important role in the proprotor dynamics, for both the soft-inplane
(VC < 1/rev) and the stiff-inplane (\)C > 1/rev) configurations.

The theoretical model developed here has been established as an adequate
Tepresentation of the basic proprotor and wing dynamics. It will then be a
useful tool for further studies of the dynamics of tilting proprotor aircraft,
including more sophisticated topics such as the design of automatic stability
and control systems for the vehicle.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., 94035, Dec. 26, 1973
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VQG

VUG Gust

Figure 1.- Four-degree-of-freedom model for proprotor dynamics with conventions

for hub forces, pylon motion, and gust velocity; only one of the ¥ rotor
blades is shown.
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Figure 3.- Rotor model for proprotor dynamics: hub forces and moments, pylon

linear and angular motion, and gust velocities; only one of the ¥ rotor
blades is shown.
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Figure 6.- Whirl flutter (two-degree-of-freedom) divergence instability

boundary.
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Figure 12.- Bell Helicopter Company full-scale, 25-ft-diam proprotor on
cantilever wing for dvnamic tests in the Ames 40- by 80-Foot Wind
Tunnel.
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Figure 13.- Boeing Vertol Company full-scale, 26-ft-diam proprotor on

cantilever wing for dynamic tests in the Ames 40- by 80-Foot Wind
Tunnel .
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Figure 14.- Geometric characteristics of two full-scale proprotor blades.
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Figure 18.- Bell rotor velocity sweep, 0 = 458 rpm; predicted eigenvalues.
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Figure 26.- Bell rotor in autorotation at V/QR = 0.7 (@ = 458 rpm,
V = 249 knots), magnitude of response of each degree of freedom

to input at frequency w.
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(a) Wing vertical bending (q1) and torsion (p) damping at 150 knots.
(b) Wing vertical bending (q;) and torsion (p) damping at 170 knots.

Figure 31.- Bell rotor on quarter-stiffness wing, rpm sweeps; comparison with
full-scale experimental data and with Bell theories.
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Figure 32.- Bell rotor flapping due to shaft angle of attack;
full-scale experimental data and Bell theories.
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(a) Comparison with full-scale experimental data.
(b) Frequency of the modes.

Figure 33.- Bell rotor wing vertical bending (q,) damping, velocity sweeps on
full-stiffness and quarter—sti%fness wings.
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(a) Frequency of the modes.
(b) Damping ratio of the modes.

Figure 34.- Boeing rotor velocity sweep, f = 386 rpm; predicted eigenvalues.
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Figure 35.- Boeing rotor velocity sSweep, Q = 386 rpm; with and without
rotor lag motion.
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(a) Frequency of the modes.
(b) Damping ratio of the modes.

Figure 34.- Boeing rotor velocity sweep, @ = 386 rpm; predicted eigenvalues.
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Figure 34.- Concluded.
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(a) Wing vertical bending (q;) and rotor flap (8 - 1) damping.
(b) Wing chordwise bending (qz) and torsion (p) damping.

Figure 35.- Boeing rotor velocity sweep, & = 386 rpm; with and without
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(a) Wing vertical bending (gq,) and rotor flap (8 - 1) damping.
(b) Wing chordwise bending (qz) and torsion (p)} damping.

Figure 36.- Boeing rotor velocity sweep, @ = 386 rpm; comparison of basic

(autorotation and wing aerodynamics), powered, and no wing aerodynamics
cases.
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(a) Wing vertical bending (ql) and rotor flap (B - 1) damping.
(b) Wing chordwise bending (qz) and torsion (p) damping.

Figure 37.- Boeing rotor velocity sweep, Q = 386 rpm; influence of the complete
expressions for the rotor aerodynamic coefficients.
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(a) Frequency of the modes.
(b) Damping ratio of the modes.

Figure 39.- Boeing rotor rpm sweep, V = 50 knots.
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Figure 40.- Boeing rotor rpm sweep; V = 192 knots.
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Figure 42.- Boeing rotor velocity sweep, quarter-stiffness wing, @ = 193 rpm.
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(b) Damping ratio of the modes.

Figure 43.- Boeing rotor rpm sweep, quarter-stiffness wing, V = 80 knots.
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Figure 45.- Boeing rotor in autorotation at V/QR = 0.7 (Q = 386 rpm,
V = 218 knots), magnitude of response of each degree of freedom to
input at frequency w.
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Figure 45.- Concluded.
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Figure 46.- Boeing rotor in powered operation at V/oR = 0.7 (& = 386 rpm,
V = 218 knots), magnitude of response of each degree of freedom to input
at frequency w.
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Figure 47.- Boeing rotor velocity sweep at & = 386 rpm; comparison with full-
scale experimental data and the Boeing theory.
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Figure 48.- Boeing rotor rpm sweep, comparison with full-scale experimental
data and the Boeing theory.
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Figure 49.- Boeing rotor on quarter-stiffness wing, velocity sweep at

Q = 193 rpm; comparison with full-scale experimental data and the
Boeing theory.
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Figure 50.- Boeing rotor on quarter-stiffness wing,
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