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NOMENCLATURE

Conventional helicopter notation is followed in this report, for example,

for the rotor force and moment coefficients. Quantities are made dimension-

less with p, _, and R (air density, rotor rotational speed, and rotor radius).

a

A

d

ed

c£

cp

Cq I

Cq 2

Cx

cy

CH

%

%

ce

cQ

CT

rotor blade section two-dimensional lift curve slope

rotor disk area, _R 2

rotor blade chord

blade section drag coefficient

blade section lift coefficient

wing chord

wing torsion structural damping

wing vertical bending structural damping

wing chordwise bending structural damping

pylon yaw structural damping

pylon pitch structural damping

rotor vertical force coefficient,
H

o_R2(C_R) 2

rotor lateral moment coefficient,

½

O'eR3(riB) 2

rotor longitudinal moment coefficient,
P _R3 (f'a_') 2

rotor power coefficient,
P

o_R 2 (f).R) 3

rotor torque coefficient, Q

o_R 3 G'_') 2

rotor thrust coefficient,
T

onR 2 (92) 2

v



Y
Cy rotor side force coefficient,

p_R2(92) 2

D blade section drag force per unit length

EZ section modulus/moment product

f aircraft equivalent parasite drag area

Fr blade section radial aerodynamic force per unit length

Fx blade section inplane aerodynamic force per unit length

Fz blade section out of plane aerodynamic force per unit length

gs structural damping coefficient

h rotor mast height, wing tip spar to rotor hub

hEA rotor mast height, wing tip effective elastic axis to rotor hub

H rotor vertical force; also rotor aerodynamic coefficient

CT

Zb characteristic inertia of blade bending, used to normalize rotor and

support inertias

Io f R r2m dr

lqw

wing torsion generalized mass

pylon yaw moment of inertia

pylon pitch moment of inertia

wing bending generalized mass

pylon yaw moment of inertia [including rotor, for four-degree-of-

freedom model)

pylon pitch moment of inertia [including rotor, for four-degree-of-
freedom model)

vi



I B

R

f nB2m dr, blade flap inertia
0

RIBa nBrm dr

o

R

I f n 2m dr, blade lag inertia

0

R

f _ rmdr

Kp wing torsion spying constant

Kql wing vertical bending spring constant

Kq2 wing chordwise bending spring constant

Kx pylon yaw spring constant

Ky pylon pitch spring constant

Kp rotor blade pitch/flap coupling, tan 6 3

L blade section lift force per unit length

m blade section mass per unit length

mp pylon mass

M rotor flap moment aerodynamic coefficient

M Mach number

R

f m dr, blade mass
Mb _0

Mx rotor lateral (yaw) hub moment

My rotor longitudinal (yaw) hub moment

MF blade flap moment

vii



Mtip

N

N_

P

ql

q2

Q

r

r e

R

R

S

sgn

Sw

sB

S_

T

uG

Up

uR

UT

viii

blade lag moment

tip Mach number, 92 divided by the speed of sound

number of blades

 \Be

-YM 

wing torsion degree of freedom

wing vertical bending degree of freedom

wing chordwise bending degree of freedom

rotor torque; also rotor torque and Iag moment aerodynamic coefficient

blade radial station

effective radius " _

rotor blade radius

rotor radial force aerodynamic coefficient

Laplace variable in transfer functions

direction of rotation of rotor on right wing: +i for clockwise and -I
for counterclockwise

wing bending/torsion inertial coupling, mPzPEAYTw

nsm dr

o

R

f n_m dr

o

rotor thrust; also rotor aerodynamic coefficient

longitudinal aerodynamic gust velocity

blade section out of plane velocity

blade section radial velocity

blade section inplane velocity



U

V

V

X

Xp

Xw

Y

YP

YBw

Yrw

Yw

Y

Z

ZEA

zp

ZPEA

Zw

(1

_G

ax

_y

o_z

g

8-1

blade section resultant velocity, (UT2 + Up2) I/2

rotor-induced inflow; when dimensionless, the inflow ratio (forward

speed divided by rotor tip speed)

rotor or aircraft forward velocity

vertical axis

rotor shaft vertical displacement

wing chordwise displacement

lateral axis

rotor shaft lateral displacement

wing sweep station

cantilever wing length (wing semispan)

wing spanwise station

rotor side force

longitudinal axis

wing tip elastic axis vertical shift due to dihedral

rotor shaft longitudinal displacement

pylon center-of-gravity location, forward of wing tip effective elastic
axis

wing vertical displacement

blade section angle of attack

rotor blade mean angle of attack

vertical aerodynamic gust velocity

rotor shaft yaw angle at pivot

rotor shaft pitch angle at pivot

rotor shaft roll angle at pivot

blade flap angle

low-frequency rotor flap mode



B+I

_G

SO

_IC

B1S

Y

sup A

6uPs

suR

surA

surs

_w
l

_w
2

_w k

63

_+i

_0

_lS

nB

n_

_W

X

high-frequency rotor flap mode

lateral aerodynamic gust velocity

rotor coning degree of freedom

rotor longitudinal flap degree of freedom

rotor lateral flap degree of freedom

pacR 4
Lock number,

Ib

small change in a quantity

component of perturbation of Up independent of r

component of perturbation of up proportional to r

perturbation or uR (independent of r)

component of perturbation of u T proportional to r

component of perturbation of uT independent of r

wing dihedral angle

wing angle of attack

wing sweep angle

rotor blade pitch/flap coupling, Kp = tan 63

blade lag angle

damping ratio of oscillation, fraction of critical damping

low-frequency rotor lag mode

high-frequency rotor lag mode

rotor collective lag (or rotor speed perturbation) degree of freedom

rotor cyclic lag degree of freedom

rotor cyclic lag degree of freedom

blade flap mode shape

blade lag mode shape

wing bending mode shape



@

@w

@o

elC

@lS

_B

_8e

%

P

blade pitch angle

wing torsion angle

rotor collective pitch input

rotor lateral cyclic pitch input

rotor longitudinal cyclic pitch input

eigenvalue

blade flap rotating natural frequency

effective flap frequency, including pitch/flap coupling

blade lag rotating natural frequency

wing torsion mode shape

air density

Nc

rotor solidity, _-_

-i
time constant of a real root, -_-

blade inflow angle, tan -l U_p_p
UT

rotor blade azimuth angle, dimensionless time variable

frequency

rotor rotational speed

Subscripts

0

@

trim

blade pitch

hub inplane velocity

blade flapwise velocity

hub out-of-plane velocity

blade lagwise velocity

xi



N

Oj _j n8,

0

1C

1S

/7/

rotor nonrotating degrees of freedom

collective rotor mode

cyclic rotor mode

cyclic rotor mode

blade index, m = i, . , N

Superscripts

m

N

normalized (usually by dividing by Ib or _Ib)

blade index, m = i, . , N

Derivatives

d

d

d

d

xii



DYNAMICSOFTILTING PROPROTORAIRCRAFTIN CRUISEFLIGHT

WayneJohnson

AmesResearch Center
and

U.S. Army Air Mobility R&DLaboratory

SUMMARY

A theoretical model is developed for a proprotor on a cantilever wing,
operating in high inflow axial flight. This theory is used to investigate the
dynamic characteristics of tilting proprotor aircraft in cruise flight. The
model, with a total of nine degrees of freedom, consists of first modeflap
and lag blade motions of a rotor with three or more blades and the lowest fre-
quency wing bending and torsion motions; rotor blade pitch control and aero-
dynamic gust excitation are included. The equations of motion for a four-
degree-of-freedom model (lateral and longitudinal tip path plane tilt, pylon
pitch and yaw) are obtained, primarily to introduce the methods and formula-
tion to be used in deriving the rotor and cantilever wing equations. The
basic characteristics of the rotor high inflow aerodynamics and the resulting
rotor aeroelastic behavior are discussed. The problems of classical whirl
flutter (a truly rigid propeller on a pylon) and the two-bladed rotor are
discussed briefly. The influence of the proprotor on the stability deriva-
tives of the aircraft is considered. The theoretical dynamic behavior of two
full-scale proprotors is studied, and comparisons are madewith the results of
tests of these rotors in the Ames40- by 80-Foot Wind Tunnel and with the
results of other theories. These studies show the sensitivity of the theoreti-
cal results to several features and parameters of the proprotor configuration
and to various elements in the theoretical model. In particular, these studies
demonstrate the important influence of the rotor blade lag degree of freedom on
the dynamics of both stiff inplane and soft inplane proprotor configurations,
the dominanceof the section lift curve slope (c_) terms in the high inflow
aerodynamics of a rotor and the importance of a good structural model of the
rotor blade and the wing in predicting the dynamic behavior of a proprotor. The
comparisons also establish the theoretical model developed as an adequate
representation of the basic proprotor and wing dynamics, which then will be a
useful tool for further investigations.

INTRODUCTION

The tilting proprotor aircraft is a promising concept for short-haul
V/STOLmissions. This aircraft uses low disk loading rotors located on the
wing tips to provide lift and control in hover and low-speed flight; it uses
the samerotors to provide propulsive force in high-speed cruise, the lift
then being supplied by a conventional wing. Such operation requires a 90°
change in the rotor thrust angle, which is accomplished by mechanically tilt-

ing the rotor shaft axis. The rotor is vertical for helicopter mode



operation landing and takeoff, hover, and low-speed flight - and is tilted
forward for airplane mode, high-speed cruise flight. Thus the aircraft com-
bines the efficient VTOLcapability of the helicopter with the efficient,
high-speed cruise capability of a turboprop aircraft. With the flexible blades
of low disk loading rotors, the out-of-plane and inplane (flap and lag) motions
of the blades are significant, so the blade motion is as important an aspect
of tilt rotor dynamics as it is for helicopters. Whenin the cruise mode
(axial flight at high forward speed), the rotor is operating at high inflow
ratio (ratio of axial velocity to rotor tip speed); this introduces aerodynamic
phenomenanot encountered with the helicopter rotor, which is characterized by
low inflow. _le combination of flapping rotors operating at a high inflow
ratio on the tips of flexible wings leads to dynamic and aerodynamic character-
istics unique to this configuration, and which must be considered in the design
of the aircraft. The combination of efficient VTOLand high-speed cruise capa-
bilities is very attractive, so it is important to establish a clear under-
standing of the behavior of this aircraft and to formulate adequate methods for
predicting it, to enable a confident design of the aircraft. Experimental and
theoretical investigations have been conducted over several years to provide
this capability (refs. 1 to 30). This report develops a model of the aero-
elastic system for use in someinitial studies of the system character and
behavior. Of particular interest are the features specific to the configura-
tion: high inflow aerodynamics of a flapping rotor in axial flow and the
coupled dynamics of the rotor/pylon/wing aeroelastic system. Therefore, this
work concentrates on the proprotor in airplane configuration: axial flow and
high inflow ratio. In addition, rigid body degrees of freedom of the aircraft
are not considered, only the elastic motion of a cantilevered wing. Manyfea-
tures of tile coupled wing and rotor motion can be studied with such a model,
theoretically and experimentally, with the understanding, of course, that the
model must eventually incorporate the entire aircraft.

An introduction to the problems characteristic of a high inflow proprotor
is provided by the following discussion (found in tile early proprotor litera-
ture, e.g., refs. 3 and 8). Consider the behavior of the rotor in response to
shaft pitch or yaw angular velocity, with the rotor operating in high inflow
axial flight. A momenton the rotor disk is required to precess it to follow
the shaft motion. With an articulated rotor (a rotor with a flap hinge at the
center of rotation), this momentcannot be due to structural restraint between
the shaft and the blade root, so it must be provided by aerodynamic forces on
the blade. For example, pitch angular velocity of the shaft will require a
yaw aerod)mamic momenton the disk to precess it to follow the shaft. The
aerodynamic momentis due to incremental lift changes on the blade sections;
the componentnormal to the disk plane provides the yawing momentrequired.
For high inflow flight, this incremental blade section lift also has a large
inplane componentand, as a result, the momentto precess the disk is accom-
panied by a net inplane force on the rotor hub. This force is directed to
increase the rotor shaft angular velocity, so it is a negative damping force
that increases with the inflow ratio. There is also the usual rotor positive
damping due to tip path plane tilt of the thrust vector, plus the dampingdue
to the hub momentfor a hingeless rotor. If the inflow is high enough, the
negative inplane force (H force) damping can dominate. The rotor and aircraft
can be designed so that the velocity for any instability is well above the



flight regime, but the high inflow aerodynamics are always important in the
analysis and design.

The behavior of the proprotor in high inflow (as outlined above) implies
the following characteristics: decreased rotor/pylon/wing aeroelastic stabil-
ity since the negative H force damping of the high inflow aerodynamics can
reduce the dynamic stability at high forward velocity; decreased damping of
the aircraft short period modes, again due to the negative H force damping
contribution of the rotor; and large flapping in maneuversand gusts. (The
last arises because the momentto precess the rotor to follow the shaft is due
to the flapping motion of the blades with respect to the shaft; a given shaft
velocity requires a fixed componentof the section aerodynamic force normal to
the disk, which meansthen that increased incremental lift is required at high
inflow and thus more flapping since flapping is the source of the lift.)
These features were first delineated in the studies with the XV-3 aircraft
(refs. 1 to 3), the first experimental tilting proprotor aircraft. Investiga-
tions of the concept and its problems with the XV-3 provided the initial impe-
tus for further theoretical and experimental work with the configuration, much
of which is still in progress. The work with proprotor dynamics has its basis
in propeller/nacelle whirl flutter investigations (refs. 4 to 7); however, the
flapping motion of the rotor introduces manynew features into the dynamics.
Experimental and theoretical work has been done by several organizations in
the helicopter industry on the various features of tilting proprotor aircraft
dynamics, aerodynamics, and design (refs. 8 to 24). This work has culminated
in tests of full-scale, flight-worthy proprotors (refs. 25 and 26) and prelim-
inary design of prototype demonstrator vehicles (refs. 27 and 28) as part of
the current NASA/Army-sponsoredtilt rotor research aircraft program. How-
ever, in the literature there is little concerning the details of the analysis
of proprotor behavior. There are someearly reports on very simple analytical
models (e.g., refs. 8 and 18), and somerecent reports on the most sophisti-
cated analyses available (refs. 29 and 30). Further exploration of the basic
characteristics of the proprotor dynamics is therefore desirable.

The objectives of this report are to establish a verified method to
predict the dynamic behavior of the tilting proprotor aircraft in cruise
flight; to develop an understanding of the dynamics of the vehicle and of the
theory required to predict it; and to assess the applicability, validity, and
accuracy of the model developed. The model of the wing/rotor system developed
here will be useful for future investigations as well as for these initial
studies. The primary application of the theory in this report is a comparison
with tests in the Ames40- by 80-Foot Wind Tunnel of two full-scale proprotors.
The analysis begins with a treatment of the four-degree-of-freedom case:
pylon pitch and yaw plus rotor longitudinal and lateral flapping (i.e., tip
path plane pitch and yaw_. With this derivation as a guide, the equations of
motion are derived for a rotor with flap and lag degrees of freedom and a six-
degree-of-freedom shaft motion. The high inflow aerodynamics involved are
discussed, followed by someelementary considerations of the rotor behavior in
high inflow. Next, the special cases of classical whirl flutter (no blade
motion degrees of freedom) and the two-bladed rotor are considered briefly;
the implications of the basic rotor behavior concerning the aircraft stability
are investigated. After these preliminary discussions, the development of the
rotor and cantilever wing model is resumed. The equations of motion for a



cantilever wing with the rotor at the tip are obtained and combinedwith the
rotor equations of motion to produce a nine-degree-of-freedom model for tilt-
ing proprotor aircraft wing/rotor dynamics. This model is applied to two
proprotor designs, in order to examine the basic features of the rotor and
wing dynamics• Finally, the results of the theory are correlated with those
from full-scale tests of these two proprotors in the 40- by 80-Foot Wind
Tunnel.

The author wishes to thank Troy M. Gaffey of the Bell Helicopter Company
and H. R. Alexander of the Boeing Vertol Companyfor their help in collecting
the descriptions of the full-scale rotors given in table Ill and figures 14 to
17.

SECTIONl: BASICTHEORYFORPROPROTORDYNAMICS

Four-Degree-of-Freedom Model

Consider a flapping rotor on a pylon with pitch and yawdegrees of
freedom operating in high inflow axial flight. Eventually, at least a few
more degrees of freedom must be added to this model for both the rotor and the
support. This limited model is examined first, however, to demonstrate the
methods used to derive the equations of motion, and because this case is
studied in the literature.

The model is shown in figure I. The pylon has rigid-body pitch and yaw
motion about a pivot, with the rotor forces acting at the hub forward of the
pivot. The pylon degrees of freedom are pitch angle a_, positive for upward
rotation of the hub, and yaw angle _x, positive for left rotation of the hub.

The rigid-body pitch and yaw motion has inertia, damping, and elastic restraint

about the pivot. At the hub, a distance h forward of the pylon pivot (h is

the mast height) is a rotor with N blades• The rotor has clockwise rotation

when viewed from the rear, with azimuth angle _ measured from vertically

upward The azimuth position of the mth blade, m = 1 9 N is

_m = _ + _ where A_ = 2_/N is the angle between succeeding blades. The rotor

degrees of freedom are the out-of-plane motion given by the flapping angles
fl(m) for each blade, defined positive for forward displacement of the blade

tip from the disk plane (upward in helicopter mode, which is the usual heli-

copter convention). The blade out-of-plane deflection is assumed to be the

result of rigid-body rotation of the blade about a point at the center of

rotation (by the angle 8(m)). The dimensionless rotating natural frequency of

the flap motion is allowed to be greater than i/rev so that blades with canti-

lever root constraint may be treated as well as articulated blades (which have

an actual hinge at or near the center of rotation)• The mode shape for the

flap motion is assumed proportional to the radial distance r, that is, rigid-

body rotation. The net forces exerted by the rotor on the hub from all N

blades are rotor thrust T, rotor vertical force H, and rotor side force Y. It

is assumed in the derivation of the equations of moti0n that an engine governor



supplies the torque required to hold the rotor rotational speed _ constant
during any perturbed motion, and that the pivot supplies the reaction to the
rotor thrust T. The pivot also reacts the rotor vertical and side forces so

that the only pylon motion is pitch and yaw about the pivot. With a flap

natural frequency greater than I/rev, as with cantilever root restraint or

with a flap hinge offset or spring, blade flap motion results in a moment on

the hub. The rotor pitch moment on the hub is My and the rotor yaw moment, Mx.

The rotor is assumed to be operating in purely axial flow in the

equilibrium, unperturbed state, at velocity V. The inflow ratio V/93_ (which

may be written simply V, with the nondimensionalization implied) is assumed to

be of order i. Only rotor aerodynamics are considered; any pylon aerodynamic

forces are neglected.

Equilibrium of forces and moments gives the equations of motion: flap

moment equilibrium for each blade and pylon pitch and yaw moment equilibrium

(about the pivot). The linearized equations of motion, that is, for small

angles of the blade and pylon displacement, are then:

mth blade (m = i,

zb['_ (m) + _S2B(m)

Yaw :

., N):

- (_y 2_x)C°S Cm + (_x + 2_y)sin era] (1)

Zxax + cxa x + _x_x = Mx- hy (2)

Pitch:

(3)

where

flapping moment of inertia of the blade

flap motion of mth blade with respect to the hub

aerodynamic flap moment on the blade

rotating natural frequency of flap motion (I/rev for an articulated

blade with no hinge spring or offset; greater than i/rev for a

cantilever blade)

pitch and yaw moment of inertia of the pylon about the pivot, includ-

ing the mass of the rotor (as a point mass at the hub)

cy, cx pitch and yaw damping

pitch and yaw spring restraint of pylon motion about pivot



These equations are now madedimensionless with p, _, and R; the inertias are

normalized by dividing the flap equation of motion by Ib and the pylon equa-

tions of motion by (N/2)I b. The normalization of the pylon inertia, damping,

and spring constants (division by (N/2)Ib) are denoted by a superscript ,; for

example, Iu* = Iy/(N/2)I b. The rotor Lock number ¥ = oacR4/Ib and solidity
o = Nc/_R -are introduced; the Lock number represents the ratio of aerodynamic

to inertia forces on the rotor blade, and the solidity is the ratio of total
blade area to disk area. Also notice that the normalized and dimensionless
hub force H may be written in terms of the rotor coefficient:

H/p_2R _ paoR 4 _R 2 H 2CH

(;_12) Fhlp£S Q_ No a p_£2 (_£) 2 oa

and, similarly, for the other forces and moments. The equations of motion
then become

M%,7
g(m) + vS2S(m ) _ (a U 2ax)c°s ?m + (ax + 2du)sin em= Y ao

.... [m% _c.]

(4)

These equations are straightforward except perhaps for the pylon acceleration

terms in the flap moment equilibrium. Blade flap with respect to space is

composed of f3(m), flap with respect to the hub plane, plus %t and ax, which

give the tilt of the hub plane; hence the Ky and K_ contribuiions to the flap-
wise acceleration. The remaining terms are due to'_Coriolis acceleration; the

blade has a velocity 2r in the hub plane, which has an angular velocity

a x cos _m + azd sin _m due to pylon motion, and the cross-product of these

gives a flapwlse Coriolis acceleration of the blade. In the flap equation,

the dimensionless aerodynamic flap moment MFm/pf?2R 5 is written as MFm for
simplicity; that is, the nondimensionalization is now implicit in the notation

MFm. This practice is followed in the following equations.

Now introduce a coordinate transform of the Fourier type, defining the
new degrees of freedom as

N

1 _, (m) 2
f3o - 77 _ 6 5nc = 77 _, f_(m)c°s n_m

m= 1 r_l=1

2 k (m) l iv )m6ns - N B sin n_m 57tI2 - N E _(m) (-1

m=l m=l

(;7)

6



so that

B(m) = B0 + Z (Bnc cos nOm + Bns sin nO m) + 8N/2(-1) m

n

(6)

The coning angle is B0; BIC and BIS are tip path plane tilt coordinates; and

8N/2 is the reactionless flapping mode. The summation over n goes from 1 to

(N - 1)/2 for N odd, and from l to (N - 2)/2 for N even; the 8N/2 degree of

freedom appears only if N is even.

The quantities 8o, 8nc, Bns, and BN/2 are degrees of freedom, that is,
functions of time (which, when dimensionless, is the rotor azimuth angle _)

just as the quantities 8(m) are. These degrees of freedom describe the rotor

motion as seen in the nonrotating frame, while the 8(m) terms describe the

motion in the rotating frame. This coordinate transform must be accompanied

by a conversion of the equations of motion for B(m) from the rotating frame to

the nonrotating frame. This is accomplished by operating on the equations of

motion with the summa'tion operators:

1 2 2 1
_-_(. .), _Z(' ")c°s n_) m, _ Z(. .)sin n@m, _(. .)(-1) m

m m m m

The usefulness of the Fourier coordinate transformation lies in the

simplifications it produces in the equations of motion. The above equations

of motion have periodic coefficients because of the nonrotating degrees of

freedom in the rotating equations of motion and vice versa; the periodic coef-

ficients only appear explicitly so far with the pylon inertia terms in the

flapping equation, but there are actually many more in the aerodynamic forces

in all the equations. Since the Fourier coordinate transform converts the

rotor degrees of freedom and equations of motion to the nonrotating frame, the

result is constant coefficients for the inertia terms, and also for the aero-

dynamic terms for axial flow through the rotor (as considered here). In

addition, only a limited number of the rotor nonrotating degrees of freedom

couple with the pylon degrees of freedom; in this case, only the BIC and BIS

degrees of freedom couple with ay and _x. The other rotor degrees of freedom
are coupled from the pylon motion and represent only internal rotor motion.

Thus the transformation reduced a set of N + 2 equations with periodic coef-

ficients to four equations (considering only those influenced by the pylon

motion) with constant coefficients. The rotor behavior for this problem is

basically part of the nonrotating system, so the transformation which converts

the rotor degrees of freedom and equations of motion to that frame is the

appropriate one.



Operating with (II_)_-_.(. .), (21_)_(. .)cos Cm, and
m m

(2/N)_'-_ (. .)sin _m on the blade flapping equations gives the nonrotating
m

equations for coning and tip path plane tilt motion, assuming that N = 3;

where

_0 + _8280 : Y --

MF o

ac

MEIC
"" 2 i) - _ + 2_ : y810 + 2_IS + I(_B - 81C y x ao

MEIS
_ + 2 _ i) + _x + 21 = _81S 281C (_8 BIS y ac

1

m

(7)

2
MFI C = -_ ___

m

Mpm cos _m

2
MFiS = N _E_.MFm sin *m

m

The pitch and yaw moments on the rotor disk are MFI C and MFIs, respectively.

Note that the transformation introduces Coriolis and centrifugal acceleration

terms into the 81C and BIS equations. The equation for 80 does not couple

inertially with _y and ax, nor will such coupling be found in the aerodynamics;

hence it may be dropped. A set of four coupled equations remains for the

degrees of freedom that describe the rotor tip path plane tilt and the pylon

pitch and yaw motion: BIC , 81S, _, and ex" If N > 3, the equations for 80

81C, and 81S remain as above. To these are added equations of motion for the

degrees of freedom 8?C, 82S, .... 8nc ,Sn_ , and 8N/2 as appropriate; like
the 80 equation, the_e equations are not coupled with ey and ex, so they may

also he dropped from the set, since they represent only internal rotor motion.

The four-degree-of-freedom model then is sufficient to represent the coupled

rotor/pylon motion for the general case of a rotor with three or more blades.

The exception is a two-bladed rotor, N = 2, which is considered separately in
a later section.

The equations of motion for the four degrees of freedom (81C, 81S, Sy,

and _x) are then



[i°10
0
_1o1,,c)..[io 1// 18 + -
:_y_ o/_
o Zx'U\_x

,¢8 2 1 0 0

2 _ 1 0
0 "¢B+

0 0 Ky*

0 0 0

2o2],1c).0 Cy* _Cy

0 0 ax* x

ol{ .A / \
°lib'q: 4 |
oi_i U%/_a+ h(2an/oa)I

Kx,J_x/ _2CMx/aa - h(2ay/aa)! (8)

The rotor aerodynamic forces (right-hand side) introduce much more coupling of

the equations.

The hub pitch and yaw moments due to the rotor, My and Mx, might be found

by integrating the forces on the blade (as is done for the other forces on the

hub), but it is simpler to express them directly in terms of the rotor flap-

ping motion. The source of the hub moment is the bending moment at the blade

root due to flapping, Mm = Ib(`082 -l)B (m). Transforming the moment into the

nonrotating frame and summing over all N blades gives the hub pitch and yaw

moments:

= E C-Ib (`082

m

_ 1)B(m)cos Cm ] = _ __ib(`08N 2 _ I)BI C

(9)

M = E ('082" 1)8(m) N 2 _ 1)x [Ib sin Cm] = _-Ib(`0 8 81,9

m

where the definition of the tip path plane coordinates BIC and SIS has been

applied; `08 is the rotating natural frequency of the flap motion. If the

rotor blade has a flap hinge at the center of rotation, then the only spring

restraint of the blade is due to the centrifugal forces, resulting in v8 = l;

in that case, no moment on the hub is produced by tip path plane tilt 81C and

BIS (except for the torque terms), as required for a hinged blade. With hinge

offset, hinge spring, or a cantilever root, the natural frequency is greater

than i/rev and so tip path plane tilt produces a hub moment. Dividing by

y(N/2)I b gives

`082 - i

aa = y BIC

2CMx `082 - I

- 81Sc_a y

(10)

9



Rotor aerodynamics- Consider now the rotor aerodynamics. Figure 2 shows

the aerodynamic environment of the rotor blade section, and the definition of

the section velocities and forces. A hub plane reference frame is used, that

is, a coordinate frame fixed with respect to the shaft and tilting with pylon

pitch and yaw (ay and ax). All forces and velocities are resolved with

respect to the hub plane coordinate system, and the blade pitch angle and flap

angle are measured from the hub plane. Tile velocities seen by the blade sec-

tion are uT (in the hub plane, positive in the blade drag direction), up

(normal to the hub plane, positive rearward through tile disk), and uR (in the

hub plane, radially outward along the blade). The resultant of up and uT in

the blade section is U. Tile blade pitch angle, 0, is composed of collective

root pitch, built-in twist, and any increment due to control of the perturbed

blade motion, lqle inflow angle is _ = tan -I up/_T, and the section angle of

attack, a = @ - _. The aerodynamic forces on tile blade section are lift L,

drag _,, and radial force Fr. _ISe latter is positive outward (in the same

direction as positive UR) and has contributions from the tilt of the lift vec-

tor by blade flapping and from the radial drag due to u_.. The section lift

and drag are resolved with respect to the hub plane into normal and inplane
forces F s and Fx.

The section aerod>mamic lift and drag forces are expressed in terms of
the lift and drag coefficients as

L = _ po(_T2 + Up2)C£ = _ U2_£

I
.0 = -2 pc(ulp2 + _p2]ec f = cg U2cc[

(11)

Working with dimensionless quantities from this point on, the air density p
has been dropped in the last step in equations (ll). The coefficients are

functions of the section angle of attack antl Mach number:

c _ = c _ (a,M)

,s _ (c, ,_r)

where

Up
a : O - tan-t

uT

M = MtipU

U 2 + Up 2= uT2

and Mti p is the tip Mach number, Pd_ divided by the speed of sound.
section forces resolved into the hub plane are then

10
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Lu T - DUp

Fs - U l
Lup + Du T

u j
Fr - U _Fz

(12)

The radial force F r has terms due to radial drag and due to the tilt of Fa by

the flap angle 8. _le radial drag term in F r is derived assuming that the

viscous drag force on the section has the same sweep angle as the local sec-

tion velocity. Such a model for the radial drag force is only approximate,

but is adequate for proprotors since this term is not important in high inflow

aerodynamics. Substituting for L and D, and dividing by ac, where a is the

two-dimensional section lift curve slope and c is the section chord, yields

Fz lu C L Cd)-- = U Upac T 2a

-U +UT I

ac P _

Fr cd F_i

a-c = Uu_ 2a 8 a--c

(13)

l_e net rotor aerodynamic forces are obtained by integrating the section

forces over the span of the blade and summing over all N blades. The forces

required are thrust, rotor vertical force, rotor side force, and flap moment:

1

l

F dr + sin $m / Fx d

o

F dr - cos _m f F d
r x

0

(14)

ii



or, in coefficient form,

CT i

_a N }__fi Fz dr
o

m

2Cll (:" :"4"2 __._. dr + sin Sm_a -,_ cos _m aT aT
m 0 0

2Cy 2

aa N ( {'. i )sin Sm --r-r dr - cos Sm _xx dr
ac ac

m 0

MF fo 1 ["_
--- = r _ dr
(A_. ac

(15)

and for the flap equations of motion

'EMFo = -N _Vm

m

'V.MF1C : _ ;fFm cos tm

m

MFI s = _ MFm sin $m

m

The net blade forces required then are, if one substitutes for Fz, Fx, and Fr:

s,. ..)_ZZacdr = U T 2{--_- Up v_a dr

o

___xdr = rU + u_

0 0

(16)

12

(Eqs. (16) continued on next page.)



s':s'{."')_ dr = V p _ + Ur T-J dr
0 0

S,.r S, .. f,.dr = UuR _-_ dr - S -kz drao ac
0 o o

s s'(. .)1 Fz

r ac--dr = rU T-2a- Up_ dr
o o

(16)

The expressions in equations (16) give the net blade force normal to the hub

plane (thrust) and its moment about the hub (flap moment), the net blade force

in the hub plane (blade drag force), and the net blade radial force.

To evaluate the blade forces, the blade section pitch angle and the

velocities seen by the blade section are required. Each velocity component
has a trim component and a perturbation component, the latter due to the blade

and pylon degrees of freedom. When the differential equations of motion are

linearized, the perturbation components of the velocity are assumed to be

small. The trim velocity components for operation in purely axial flow are

uT =

Up=V+v

UR=0

The velocity uT is due to the rotation of the blade; the rotor rotation speed

is included here to show the source of this velocity, but it is usually

dropped when dimensionless quantities are used. The inflow Up is composed of

the forward velocity V plus the induced inflow v; the latter given by momentum
theory as

v = -Y12 + I ([7/2)2 + CT/2 (17)

or

Y + v = I'/2 + / (Y/2) 2 + CT/2

V + OTI2V

where the last approximation is valid for large inflow V (really, the inflow

ratio V/92, since it is dimensionless). The induced inflow will, in fact, be

very small, u/V << I, for typical proprotor operation; this is due to the high

inflow V, and also to the low working CT of a proprotor in cruise.

13



Consequently, induced inflow is not generally an important factor in high
inflow proprotor aerodynamics, and the assumption of uniform induced inflow,
or even neglecting it entirely, is reasonable for an investigation of the rotor
aeroelastic behavior. Since the rotor in the unperturbed state is operating
in purely axial flow, the radial velocity componentuR has no trim term. The

trim blade pitch angle is determined by the collective pitch and the blade
built-in twist.

The perturbation velocities are due to the rotor and pylon degrees of

freedom (B, _y, _x here) and to the aerodynamic gusts. The convention used
for the gust velocities is shown in figure i. The gust velocities are normal-

ized based on the forward speed V, so that the vertical and lateral gusts (_G

and BG) are angles, and the longitudinal gust (UG) is a fractional change in

the forward speed. This convention follows the usual practice for aircraft

stability and control investigations. The gust velocities are a small pertur-

bation to the direction and magnitude of the forward velocity V, assumed uni-

form over the entire flow field. The gust influence is entirely aerodynamic;

the gust velocities do not involve a change of the aircraft velocity with

respect to an inertial frame, but only a change with respect to the air.

Therefore, the gust velocities do not appear in the inertia terms of the equa-

tions of motion, but only in the aerodynamic terms. The perturbation

velocities are

6um_. = -h(C*y sin Om + C*x cos t m)

+ (V + v)(a sin t m + Ux cos Ore)

+ V(B G cos _m + aG sin _m)

Cup = r(_ - a cos _m + a
y x

sin tm) + VuG

6z*R = h(-& cos _m + & sin _m)y x

+ (V + V)(a cos tpm - a sin tm )y x

+ V(-B G sin tm + a G cos tm )

(18)

In 8uT and 8uR there are three terms: inplane hub velocity due to the
angular velocity of the pylon about the pivot; inplane component of the for-

ward velocity g + v due to the tilt of the pylon; and the inplane velocity due

to vertical and lateral gusts. In 8Up there are two terms: flapwise velocity

with respect to the air, due to both flapping with respect to the shaft and

angular velocity of the shaft (this term is proportional to r); and longitudi-

nal gusts (this term is independent of r). If gup in equations (18) is
written as

8Up = rSupB + 6UpA
(18a)

14



then 6UT, BUR, _UPB , and 8up.A are all independent of r, and so may be factored

out of the integrands in the aerodynamic forces. The perturbation of the
blade pitch motion is

60 = 0 - Kp_ (19)

where now 0 is just the perturbation of the blade pitch, an input variable in
the equations of motion, also available for feedback control. Since this

pitch perturbation is made through the control system, it is uniform over the

blade span (independent of r). Also included above is pitch/flap coupling,

with Kp the gain of negative feedback of blade flap angle to pitch angle.
This feedback is usually accomplished by mechanical means inherent in the

control-system geometry; it is then usually referred to as 63 coupling, where
here Kp = tan 83 .

It is now possible to find the perturbations of the aerodynamic forces on

the blade, that is, the forces due to the rotor and pylon degrees of freedom
and gusts. The following relations are made:

_c_ ac_

6cz = D--J-6a + _ 6M

_cd 9cd

6Cd = D--d--6a + _ 6M

8a = 60 -
UT6U P - Up6U T

U 2

6U=
UT6U T + Up6Up

U

_M = Mtip6U

(20)

where the coefficients of the perturbation quantities are evaluated at the

trim state. Hence the net blade forces may be expended as linear combinations

of the perturbations of the rotor blade velocity and pitch angle:

ac-kzdr = To + TuSu T + T_6up B + Tx6UPA + 2O6O

z M 8u T + Mt 6UPA +r ac--dr = M o + M_6up B + MOS@

l _ (21)
--drac = HO + H_Su T + H_6UPB + Hl6up A + Ho6O

0

1 F 6UR /1 F
_r dr = R - _ -_z dr
ao _ ao

15



The coefficients are constants, independent of rotor azimuth @ since trim

axial flight is considered; they are integrals of the blade aerodynamics over

the span (expressions for them are obtained later). The first terms, subscript

o, are the trim forces and moments on the blade. The second terms, subscript

u, are forces and moments due to hub inplane velocity; the third terms, sub-

script _, are due to flapwise velocity of the blade; the fourth terms, sub-

script X, are due to axial velocity of the rotor; and the last terms, subscript

0, are due to blade pitch control. The thrust forces on the blade are T; the

the flap moments, M; the blade drag forces, H; and the blade radial force R.
In the blade radial force, the trim value of the coefficient of 8

(fl Fz/a c dr) is required, which is just CT/_a; therefore,
0

f R_u R CT
1F__r_rdr = - -- 8 (22)

ao _a

The last term is the radial tilt of the blade thrust vector.

The blade forces may now be summed over all N blades to find the net

rotor forces. If the expressions for the blade forces (eqs. (21)) are substi-

tuted into those for the rotor forces (eqs. (15)), the aerodynamic coefficients

are independent of m (blade index) so the summation operates only on the per-
turbations of the blade velocities and pitch. If the definitions of the rotor

nonrotating degrees of freedom (the Fourier coordinate transform described

above) are used, the following is obtained:

CT
- T

oa o

2CH
- + (V + v)_

_a (H + R)[-h&y Y

+ H_(_IS - SIC + ax)

+ He(els - KpSlS)

CT

oa 81C

2Cy

qa

+ V_ G]

-(H + R ) [-h&x + (V + v)_ x + VBG]

- H_(_lC + BlS - ay)

- H e (OlC

CT

_a BIS

- KpS ic)

_(23)

(Eqs. (23) continued on next page.)

16



@
IS

ao - M_[-h&y + (V + v)_y + w_G]

+ M_(Sis - Sic + ix)

+ Me(sis - KPBIS)

(23)

The perturbations of the thrust are no longer needed (they are entirely reacted

by the pivot) so only the trim term, To, is retained. Again, N _ 3 has been

assumed in evaluating the sums. The fixed frame coordinates for the blade
-_pit, ch motion are

I (m)
o0 = N s

m

2 _--_o(m)cos _moic =
m

2
els - N _ o(m)sin _m

m

(24)

These coordin)tes represent control inputs by means of the usual rotor swash-

plate mechanism: O0 is the rotor collective control, and @IC and @IS are
rotor lateral and longitudinal cyclic control (control plane tilt).

The decoupling of the equations of motion (which has been seen in the

inertia terms) is maintained by the aerodyanmics also because axial flow is

assumed for the trim operating state. In the forces that excite the four-

degree-of-freedom model (CH, Cy, MFIc, and MFI S) the only rotor degrees of

freedom involved are 81C and BIS. The aerodynamic forces introduce some input
variables, but even with these, there is limited coupling: only lateral/

longitudinal Control plane tilt (@IC, @IS) and lateral�longitudinal gusts

appear in the four-degree-of-freedom set. As for the inertia terms, the aero-

dynamic terms due to the higher rotor degrees of freedom (B2c, B2S, • . -, Bnc,

Bn8 , BN/2 as appropriate for N > 3) do not involve any coupling with the shaft
motion or with the blade pitch control or gusts (assuming conventional

17



swashplate control inputs and uniform gusts); hence these degrees of freedom

remain internal rotor dynamics.

From helicopter rotor aerodynamics, the tilt of the tip path plane (BIC or

BIS) is expected to tilt the rotor thrust vector and hence give an inplane

force on the rotor hub. The tip path plane tilt terms in CH and Cy are (from

eqs. (23)):

A -- -_ -

c_a 7a + l! 61C,

A- = + H B1Scla

The first terms are the inplane forces due to radial tilt of the blade mean

thrust vector by the blade flapping. They are only half that expected because

of the tilt of the rotor thrust by tip path plane tilt, assuming that the

thrust vector remains perpendicular to the tip path plane. The other half is

in H_. Rotor tip path plane tilt B1C or B1S, steady in the fixed system,
causes a flapping velocity in the rotating frame. This flapping velocity

changes the blade angle of attack and so tilts the blade mean thrust vector in

the chordwise direction (like induced drag). The inplane force due to flapping

velocity, H_, may be written

CT

where the first term is the tilt of the blade thrust, and HB* is due to the

rotor inflow. Thus the inplane hub forces due to tip path plane tilt are,

combining that due to direct radial tilt of the blade thrust by B, and that

due to chordwise tilt of the blade thrust by 8"

/ oC *I
9:- _ |_ 7

_a _-a IC

z \Tg_a 12

The first term is the inplane component of the rotor thrust due to tip path

plane tilt, as expected, and the second is the inplane force due to the inflow

term of H_ acting on B. l_e inflow term H_* is negative, so it decreases the

inplane force due to tip path plane tilt. For low inflow, the effect of H_*
is small, but for large inflow (as considered here) it dominates the thrust

vector tilt term. It is, in fact, the negative H force, already mentioned as

an important feature in high inflow rotor aerodynamics. Notice that H_ acts
on the blade flapwise velocity to produce an inplane force, regardless of the

source; hence the angular velocity of the tip path plane (with respect to the

18



hub plane) or the shaft (the hub 1)lane) also produces a hul) force, with no

corresponding term from the hlade radial force.

Substituting now For the rotor Forces and moments into equations (S], one

obtains the equations of motion For the four-degree-of-freedom model:

1

0

0

0

0 -i 0

1 0 I

0 I * 0
U

0 0 Zx *

-y,'_:_ 2

- 2 - y,',7_

-_vuA o

'J B 2 _ I+}'J/,y?,l{)

y.V_

v2_l+;,x{2"-"+ ,./_*)
8 " \av

Kphyi! o

B i (7 " "

_1_,,

yM_

:?) * +h 2y (//b +Rp )

2 +y ;!..',:r
lJ

- y,Vk

C' *+_.2y [//U +/fU ]

/ ?'1_" /

BI,:

[
-Y_

'oB2-1+EpyM 0

Kp;zyl/e

- +l/

Y)"fO

0
=

0

_W£ O

,< *-ky (7+_,) (// +A'I )

0

• OlC +

_zyHO O it;

0

-y(_+ ],,

0

;',*-;:y(Y+,'_(./ +R ]

y _,,'-; 0
b

0 "<:7.'

0 ;-fr' ::r. +;" ]

hyY(l# +/- ] 0
;J i;

(2o]

I¸)Bl.l

,.t

:t

The influence of the rotor aerodynamics in this set of equations is as follows:

damping of the flap motion, MB, which also acts on flapping velocity due to

shaft angular velocity" and tip path plane tilt; speed stability flap moments

/4_ due to hub ve]ocity produced by' angular velocity" of the pylon about a pivot

aft of the hub, and due to the inplane component of the forward velocity pro-

duced by the shaft tilt; positive damping and a negative spring on the pylon

19



motion due to H_ + R_ (which is positive); and inplane hub forces on the pylon

acting through H_, due to flapping velocity produced by tip path plane tilt
(_IC, B1S) or angular velocity (_IC, _1,?) or shaft angnllar velocity (&_, &x)"

The blade pitch input produces flap monlents and hub forces through Mo hnd 7:'c3;

through pitch/flap coupling Kp these coefficients onter the coefficients of

fll_: and ?_1,< also. Gusts produce flap moments and hub forces through the hub

inplane velocity coefficients, Mu and _'Y_ + R_.

Aerodynamic coefficients- _lle blade forces required are given in

eq_mtions (16). Substitute for the velocities and section force coefficients

in terms of the trim plus perturbation values, linoarize about the trim state,

and compare with the expanded forms (eqs. (21)) to identify the aerod._mmic

coefficients. For the moment, the effects of drag (:_,_') and of compressibility

(2,f) will be neglected. Moreover, only certain coefficients are required for

the four-degree-of-freedom model, namely, _o,•.... :co, ,'J_,, ;'J_:, .,_hi, !!_, W_, and .W_'_.....
Only these coefficients will be examined now; in fact, this set is sufficient

to describe the general behavior of all the rotor aerodynamic coefficients

required here.

If the drag coefficient is neglected (except for ¢o), the forces
required are

- TO : U_T _ arua

0

J_

o_= Qo : Y'!' p _7_

o

1

r --aTr =
ac

o

f 1 'gkrUu_ 2a ,_b_

l F fl o_XXac,_r = U_p _ dr

0 0

where c_ = c_(a), a = 0 tan -1 up/uT, and U 2 = ;{T 2 + up 2. With the perturba-

tions about the trim state, the flap moment becomes
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l F f 1 cao a

0 0

+ r (6Uu.,_ + i,'&_T) + b'z<., _- 6, 3'

1 o&rU'_T _Ta i_'

0

U2'2 _ z ,

H. d:i
+ P -77-- * ,:'" + U_t,,, --

2

+ r2 _ b' ,Yii_, a 5" _i.qn B
' _ 2a

fO I c'£ a+ rUu'r _a dr 6e

= M 0 + Mp6u T + M_6UPB + Me6e

and, similarly, the blade drag force is

_0 I _' fO,, 1

, 0 .£ draoZ _ir = u.p oT_a

+ (6Uup + U6up) + UUp _a a 6 dr

l 0£= UUp _ dr

+ _ -- + g/up aU 2a dr 6u T

r \ U + - 2a U2 J

+ Uup _a ar 8e

dr 8UPB

= tt o + HpSu m_ + I{_Su:?_,. + tt860
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Also required is R_, but '_° is due to blade radial dra_• force and since all
drag terms are neglected for now, = O.

The coefficients are now:

H
P

CT _ / _' 1 a.% ,

_a (_:0 --- _-( /''

M = r g + + ,kr,
U 2a :' "-

/ ( "f)_'I f = Z, 2 ---- "l :_ _ _

2a U - 2a ,5'

= a_ rUuT ,{r516 2a

+R

['' =

_1 _C _ _IL_P
= _a a +

1 c UZ_.p
£c_ ' ,:fr

2a

I" £ p2
@

2a U /

(27"}

The trim values of the veloc{ties (uf, up, and U) and of the blade loading

(:.'_ and o'_) should be substituted into these expressions. For the velocities,
the trim values are

uT=r

Z_p = V + V

W = Jr 2 + (Y + t') 2
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For the lift coefficient and lift curve slope, assuming small angle of attack

so that e_ = a (two-dimensional lift curve slope), tile trim values are

ct
a 1

2c 2

at a 1

2a 2 2
[@ - tan-l(7 + _)/r]

where 0 is here the trim collective value plus the bt_ilt-in twist of the blade.

7he inplane force due to flapping velocity" is also written

tt_ = (CT/Oa) + H_*; substituting the expression for _7,,,,',/_._ from /i_ (with _,_.... .')
yields

2{ l*1 o z._p2 a i,"_i _
,5_ (2s)

Approximate expressions for the aerodymamic coefficients may be obtained

by evaluating the integrands at an effective radius. Since the inflow angle
is ¢ = tan -1 up/uf, then also _,y/U = cos t and >.p/b' = sin _; from this, it is

possible to substitute for W_ and U in the integrands, in terms of .u7 and ¢.

Then e L and ¢ are evaluated at an effective radius r a (r c = 0.75 usually) and

;_-T = r is used in the integrand; c,ka/2a = 1/2 may" also be used. Then,

CT / 1 p2 a , i &Oa COS _ 9 :_r 2. cos ¢ 6

where /, is the rotor mean angle of attack. This expression is used to evaluate

in the aerodymamic coefficients. The coefficient Mu is approximately

fO o1_

1 a do_
M : r a p 1 + + _ r sin ¢

2 cos $ cos2 $

(1)1 + +

- 6 cos ¢ cos2 $

sin ¢

sin $ 2CT
-- +

6 aa

The last step follows since the CT term (,_ term) is significant only for low
inflow, when 6 is small; therefore, [1 + (cos ¢)-2j _ 2. Similar approximations
may be found for the other coefficients.
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The aerodynamic coefficients are then approximately:

CT &

_a 6 cos ¢

M _ sin t + 2CT
6 _a

cos t
M_ - 8

1
M9 - 8 cos t

2C,p
H + R _ V sin t +_

v 2 aa

sin t (%"
t/_ - 6 +--_a

7

HO - 4 cos t

L;

(29)

where t is evaluated at re, so that

cos ¢ = ,_,://_.,c 2 + ye

sin ¢ = g//pe 2 + V 2

and usually r_ = 3/7 is satisfactory. 3_e thrust coefficient (cg) terms in

M_ (flap damping) are always negligible and were therefore dropped. There are

no c L terms in the pitch coefficients M 0 and 11o. For operation in high inflow,

V is of" order I ancl so cos t and sin t are of order 1 also; CT/aa << 1 (in

fact, for proprotor operation in cruise, the blade loading is even lower than

usual for helicopters). Hence for high inflow operation, the thrust effects

on all the aerodymamic coefficients (cg terms) may reasonably be neglected

compared with the :'_;-a terms. The reason the cga terms dominate the coeffi-

cients is that with high inflow both inplane and out-of-plane velocity pertur-

bations give large angle-of-attack changes. Therefore they give (through eta)
large section lift perturbations, which have significant components in both

the out-of-plane and inplane directions. The high inflow thus allows a great
simplification of the rotor aerodynamic derivatives.
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Retaining now only the 0_, terms in equations (27), that is, assuming
that V is of order 1 and a << _, and substituting for the trim velocities, one

obtains the coefficients (writing V for V + v for convenience):

I o_a r2V arM_ = 2a Jp2 + 72

I og r 4

C_
UP

pO 1 o_,
a r2 /p2 + V2 dr

M(_ : 2a

H
!J 1 o_ Y2+ R = 2a y2!J /p2 +

de

l ogHf_* = c, r2g
0 2a 6, 2 + V2

d>

I 09_
a Z_ep + 72 dr

H@ = 2a

CT _/I a r/r2 + V2 dr

If ct is assumed to be independent of r, that is, cz /2a = 1/2, the integrals

may b_ evaluated exactly as

V 3 1 + d + V2
M W d + W2 _
_=_ 4 w

l 4 + W2 2 - 372 3 V4 _n 1 + C/i" + V2
MA= - 7 8 16 v (Sl)

1 /i + w2 (2 + w2)
M@ = 1-T _]--__n I + _ + V2

V

(Eqs. (31) continued on next page.)
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V2 l + _ + V 2
H +R = _£n

_ 2 V

V 3
V¢_+ V2 + £n

1 + ¢_ + V2

V

V /_ + V2 V 3
He = -4 + -T £n

I + ¢_ + V2

V

(31)

and with a mean angle of attack,

aa 6
[(1 + V2) 3/2- V 3]

The behavior of these coefficients is clearer from the expansions for small
and large V:

small V .large V

V 1M

1 (1 + V2)M_ s
1

lOV

1 (1 - V2) VMe B- _-

V 2 2 V

V 1
L'_* - -_ _ _&

V V2

He T

6CT/ _a

&
3V2 3 V

1+_- _-

This behavior is also shown in the approximate expressions based on the inflow

angle ¢ at an effective radius. These expressions (eqs. (29)) are in fact most

convenient for examining the general behavior, since they contain (in simple
form) the behavior over the complete range of inflow ratio. For numerical
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work, it is straightforward to evaluate the coefficients by use of the exact
integrals (eqs. (31)) or even more complete expressions (as derived in a later
chapter).

The flap damping coefficient M_ is negative (which is positive damping);

the inplane force due to flapping velocity H i has the term CT/_a as expected,

and the inflow term H_* is negative and therefore opposes the contributions

from tip path plane tilt of the rotor thrust. The speed stability coefficients,

M_ and H_, and pitch control power coefficients, M@ and H@, are all positive.

All coefficients are of order 1 for high inflow. For low inflow only, the

flap damping and control, M R and M@, are of order l; the flap moment due to

inplane velocity is an order V smaller in low inflow, and all inplane force

coefficients are an order V smaller than the corresponding flap moment coeffi-

cients. Flap damping M_ and the mean blade angle of attack (for given rotor
thrust) are decreased by high inflow, but remain the same order as for low

inflow; the other coefficients increase with increased inflow ratio. For low

inflow, the rotor thrust coefficient terms must be retained for My, H_, and H_
(but not for HA* ; HO, of course, has only c_ terms), but for high inflow, they

may be neglected for all coefficients.

SECTION 2: THEORETICAL MODEL FOR A ROTOR IN HIGH INFLOW

Equations of Motion and Forces for the Rotor

With the procedures to be followed established from the derivation and

discussion of the simpler four-degree-of-freedom model, consider now a more

comprehensive model for the rotor motion. The blade motion is extended to both

flap and lag (first mode out of plane and inplane) degrees of freedom, and the

shaft motion to all six degrees of freedom; inputs from blade pitch and aero-

dynamic gusts complete the model. The equations of motion are derived for the

rotor degrees of freedom, and expressions for the rotor forces and moments

acting on the hub are obtained. In a later chapter, a wing is added to this

model, thereby completing the equations for use in the study of proprotor

dynamics.

The model considered and the conventions for the hub forces and moments,

pylon motion, and aerodynamic gust are shown in figure 3. The pylon motion is

defined about a pivot a distance h aft of the hub. The pivot linear displace-

ment degrees of freedom are xp, yp, and zp - vertical, lateral, and longitudi-

nal, respectively. The angular degrees of freedom are ax, ay, and _z (yaw,

pitch, and roll). The forces and moments exerted by the rotor on the hub and

the gust velocities are as defined in section I. The torque reaction between

the rotor and pylon is Q; following shaft-driven rotor convention, Q is the

torque exerted by the shaft on the rotor, hence the torque moment on the hub

due to the rotor is -Q (as indicated in fig. 3). The rotor blade azimuth

angle _ is measured with respect to the pylon, which is rotated by _z in roll;

so the rotational velocity of the blade with respect to space is _ + &z (with-

out blade flap or lag motion). The equilibrium velocity V with respect to the
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air is assumedto be purely axial flow. The blade motion is defined by flap
and lag (degrees of freedom) and pitch (input) motion with respect to the hub
plane.

The blade motion is represented by two degrees of freedom per blade:
flap and lag motion B and _, which are pure out-of-plane and pure inplane
deflection of the blade spar, respectively. The motion is defined with respect
to the hub plane. The modeshape of the blade deflection is _8(r) for flap
and n_(r) for lag Thesemodesare functions of r and are normalized 1
a - " to

t the tip. The out-of-plane deflection of the blade is then a distance

8(_)nB(r) normal to the hub plane, with B defined positive for deflection above

the hub plane (forward in airplane cruise mode). The inplane deflection is a

_ance ¢(_)n¢(r)from the undeflected spar line, measured in the hub plane,
defined positive for deflection opposing the rotor direction of rota-

tion. Rotating mode shapes are used, that is, natural vibration modes includ-

ing the centrifugal spring due to blade rotation. A major influence on the

mode shape is the root restraint, that is, either a hinged or a cantilever

root. However, the centrifugal stiffening is so strong that the effect of the

root restraint on the lowest flap and lag mode shapes is restricted mainly to
the root area. The influence of the root restraint on the natural frequencies

of the modes is of primary importance. The first (lowest frequency) flap and

lag bending modes even for a cantilever blade are then nearly n = r; near the

root of a cantilever blade, the mode shape must deviate from this, of course,
to satisfy the boundary condition of zero slope.

The final form for the equations of motion is in terms of the nonrotating

rotor degrees of freedom. It is possible to have different mode shapes for

the various nonrotating degrees of freedom, for example, one for the coning
mode and one for the tip path plane tilt modes, depending on how the hub

restraint appears during deflection of the blades in that particular rotor

model. Two rotors are considered in applications of this theory; a canti-

lever rotor and a gimballed rotor. For the cantilever rotor, the mode shape

for all nonrotating degrees of freedom of the blade is that of elastic bending

with cantilever root restraint. For the gimballed rotor, the mode shape for
tip path plane tilt degrees of freedom BIC and glS is that of an articulated

blade, namely, rigid-body motion about a hinge at the center of rotation,

nB = r. For all other nonrotating modes of the gimballed rotor (specifically,
for the coning and blade lag modes), the rotor blade acts as a cantilever

blade, with corresponding blade deflection mode shapes.

The motion of a cantilever rotor blade in elastic bending is actually

more complex than the representation used here. The inplane and out-of-plane
deflections are highly coupled by the collective pitch and built-in twist of

the blade, which are large for the proprotor. Consequently, although the low-

est bending modes are usually still identifiable as predominantly flap or lag
motion, there is actually both inplane and out-of-plane motion in each mode.

The neglect of this effect, by assuming that the blade flap and lag degrees of

freedom are pure out-of-plane deflections and pure inplane deflections,

respectively, is probably the severest limitation of the theory presented here.

The basic features of the flap and lag motion are represented, so this model

may be expected to predict proprotor behavior fairly well.
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The equations of motion are derived for a constant rotor rotational speed
(with respect to the pylon); this is to be considered the model for powered

operation of the rotor. The autorotation case - where the rotor rotates freely
on the shaft, the rotor speed being determined by equilibrium of torques on
the rotor - can also be handled with this model if the collective lag mode_0
is used. This modeinvolves the simultaneous motion of all blades in the lag
direction [opposite the rotor rotation direction); if there is no hub restraint
for this mode, it will be equivalent to a perturbation of the rotor azimuth or
rotational speed. If the modeshape for rigid-body rotation is used, and if
the natural frequency in the rotating frame is set to zero (_ = r and w = 0 for

the _0 mode), then, indeed, 40 will be just the degree of freedom that repre-
sents the rotor rotational speed perturbation. This is a good representation

of the autorotation case. The other limit, a fixed rotor rotation speed _,

will be considered as powered operation. With a constant rotor rotation speed

the collective lag mode is then elastic bending of a cantilever blade with

respect to the hub (which rotates at a constant speed). This limit is, in

fact, the case of operation with a perfect governor on the engine or rotor

speed. For an actual rotor in powered flight, the engine/drive train/governor

dynamics must be included to give a complete representation of the behavior.

The blade also has pitch motion about the feathering axis at the blade

root (given by @), with the actual blade pitch measured from the hub plane.

The pitch has trim and perturbation contributions as before. The trim value
is due to root collective and built-in twist; the perturbation value is due

to a control input and pitch/flap coupling. Pitch/flap coupling (63 ) is

included for the gimballed rotor.

The equations of motion for flap and lag degrees of freedom are obtained

from equilibrium of moments on the blade. For the mth blade (m = I, ., N)

in the rotating frame, the equations are

"" - )cos _m + (ax + 2& ,)sin tm ] + SB'Zp = MFIS(_ + _S2s) + ISa[-(aW 2&x Y

I (_ + _r2_) + S [(FOp + hEy)Sin _m - (YP - hEx)C°S Cm ] - I_aEz = ML

The flap and lag aerodynamic moments on the blade are

1

MF= o( nsyz dr

(32)
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and the inertia constants are integrals of the blade section m_s"

l

S B nsm

I

1

S : / m Urn{

The rotating natural frequencies of the flap and lag motions are v_ and v{,
respectively. A subscript o will be added to the mode shape, inertias, and

natural frequency for the collective modes (conin_ or collective lag) since

these terms may not be identical to those for the cyclic modes (e.g., for the
gimballed rotor or the autorotation case).

The flap equation is forced by pure out-of-plane aerodynamic forces (Fs)

and the lag by pure inplane forces (Fx), because of the assumption of decoupled
flap and lag bending modes. The flap equation is as before, with the addition

of the acceleration due to longitudinal motion of the shaft. The flap mode

shape nB influences the effective inertias of the flap motion and the shaft

angular acceleration; with rigid-body flap motion, nB : r, the equation reduces

to that used for four-degree-of-freedom case. The lag motion couples with

inplane acceleration of the rotor hub (resolved into the rotating frame) and

with roll angular acceleration of the rotor shaft. The Coriolis inertial cou-

pling of the flap and lag equations has been neglected. The coefficients of

these terms would be proportional to the rotor trim coning angle, which is of

order YCT/ua" However, aerodynamic terms also contribute to this coupling,

and for high inf}ow these coefficients are of order 1. Hence the Coriolis

inertia coupling may be neglected compared with the high inflow aerodynamic
forces.

1

Now let Ib =S r2m dr and normalize the inertias by dividing by Ib" this
0

normalization is denoted by superscript ,, for example, I8" = IB/Ib. The Lock
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number is defined (as before) by ¥ = pacR_/fb. fb is only, a normalization
factor - a representative momentof inertia of the blade. It is used in the
blade Lock number (the ratio of blade aerodynamic to inertial forces) and to
normalize the blade massesso they are of order 1. A convenient inertia is
that of the blade about the shaft, that is, the rotary momentof inertia of
the entire rotor divided by N. This inertia is a well-defined property, of the

rotor and also should be the largest possible moment of inertia of the blade.

This normalization yields the following equations:

IB*(i + vB2B ) + I*_a[-('dU - 2&x)C°S ?m + (_x + 2&2/)sin <_]....+ S3*:i[_,: y --,._<,

;¢,(_ + _¢2¢) + S<*[[_ + h_2/)sin _m' - (iip - h'_::)cos tin] I_<_[ : ¥-_, ao

(33)

If n =- n for the flap and lag modes, then the I* terms are all nearly l and the

,7* terms, nearly 3/2 (for constant mass distribution); with usual blade con-

struction, the I* terms are slightly, less than l, and the S* terms around I.

The Fourier coordinate transformation is now applied to convert the

equations of motion and degrees of freedom of the rotor from the rotating
frame to the nonrotating frame. Again, the nonrotating degrees of freedom

above O, 1C, and 1/; are not coupled with the shaft motion, so these higher

rotor degrees of freedom involve just internal rotor motion. In studies of

the coupled rotor and shaft motion then, the O, 1C, 1,(/ set is sufficient to
treat the general case of /Y > 3. The nonrotating equations of motion for the

degrees of freedom B 0, glC' 81S' _0' ¢IC' and glS are'

50 + ,50.-, P

"'FO

TIC

+ 2 15 + 2 _ ] + Z  (-aU + 2a) :

MF1S

I-B*'['_IS ')_lU + (vB2 - 1)B1S] + IBa(ax + 2&?/) = y ac

ZC l':.... ¢1S (re

* .. 2 I* K
I¢ 0(<0 + v¢0¢0) ¢0a r;

= y

+ : --l)¢iC ] + S¢

1C

ac

ML 1 "
• ° _'iJ

7¢ 1C 1C (re ¢15,] (Xp Y ac

(34)
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where the flap aerodynamic forcing moments are

m

and, similarly., for the lag moments. The flap modes are coning (f_0) and tip

path plane tilt (_1,7, :?l_r). The collective lag mode ¢0 is simultaneous lagging

motion of all the blades (_,ith respect to the hub rotating at constant speed _,

for ttle powered case; for the autorotation case, ¢0 is the rotor speed pertur-
bation degree of freedom). The cyclic lag modes ¢1C and _1.5- produce rectilin-

ear inplane motion of the net rotor center of gravity, laterally for ¢IC (-YT_
direction) and vertically for _1,:;' (zh direction). Note that the equations

separate into a lateral/vertical group (127, 1,_, x, _j) and a longitudinal group
(0, ::), with no inertia coupling between them. This decoupling is maintained

by the aerodynamics also (because of the trim axial flow); the shaft motion due

to the actual wing degrees of freedom will, in general, couple the two groups
of equations.

]lie hub moment due to the rotor may, be expressed (as before) in terms of
tip path plane tilt #IC and #_17;:

_V("

o_

oC
-M

x

oa

ZS*(>_ 2 - 1)

(35)

The inertia contributions to the rotor drag, side force, thrust, and
torque acting on the hub are

Hinerti a - M _ NMbC p h U)2 _IS +

Yinertia - 2 S_¢IC - NMb(Yp- h_x)

Tinerti a = -NSso_ 0 - NMb_ P

Qinertia = -NI¢oa¢O + NIoaz

(36)



The drag and side forces are the net inplane acceleration of the rotor due to

the motion of the shaft and blade; similarly, the thrust is the net longitudi-

nal acceleration of the rotor; and the torque, the net angular acceleration.

The new inertia constants are

1/-

= _ r2m dr
I o

4
1

Mb=j_ 0 mdr

Therefore, NI o is the moment of inertia of the entire rotor about the shaft,

and NMb, the mass of the entire rotor. When normalized (divided by Ib], Io*

is nearly l (exactly 1 if Io is used for Ib) and Mb* is around 3 for a uniform

mass distribution (Mb* is greater than 3 for usual rotors). In coefficient

form, dividing the side and drag forces by (N/2)Iby and the thrust and torque

by NIbY, these forces are

2CH S .. 2 -..
-- + 1

\ _a----/inertia y _lS - _ Mb*(XP °%_)

_a--/inertia - y _IC - _ Mb* - _"

( C_alinertia =

C_alinertia -

$6o ....

-- Bo - -- zpY Y

I_ Oa Io *
_o ÷

y 5'

(37 )

Rotor aerodynamics- The analysis follows that of the previous section;

the section aerodynamic environment, with the conventions for forces and

velocities, remains as shown in figure 2. With the present degrees of free-

dom and shaft motion, the perturbation velocities are

6u7 = "(&z - _) - _(ay sin % • &x cos _m )

+ (V + _,)(ay sin ¢m ÷ ax cos _m) + V(B G cos _m + aG sin _)

+ (!}p cos Cm - xP sin Cm]

: r6_TA ÷ 8UTB

Sap = r(_ - &y cos em + &x sin %) + (Vu g + Zp)

= nSapB ÷ 8u_

_u R = h(-&_ cos % +&x sin %) + (V + :q(ay cos % - a x sin %)

+ V(-8 G sin _m + aG cos Om) - (_p sin _m + xv. cos _m)

(3S)
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_md the blade pitch perturbation is as before, including control and pitch/flap
coupling Kp:

= e - Kps

The trim velocities are, again, for equilibrium axial flow:
and uR = 0.

(39)

uT = r, up = V +v,

The rotor motion contributions to the velocity perturbations (in _UTA and
6_pB ) assume that nB= n¢ = r for the flap and lag mode shapes. This approxi-

mation is satisfactory for the aerodynamic forces. The first modes of flap

and lag are nearly this anyway, even for a cantilever blade. Also, this approx-

imate mode shape is correct at and near the tip, where the most important aero-

dynamic loading occurs. The mode shapes nB = n_ = P are used in the aerodynamic
moments on the blade so that

l

2

]

X

The use of this mode shape for the aerodynamic greatly simplifies the

aerodynamic coefficients involved or, at least, reduces the number of coeffi-

cients required. With the correct n_ and nC, separate coefficients are

required for blade motion and shaft angular motion, and for the lag moments

and torque moments on the blade. With n_ : n_ : r, only _ (to some power)

appears in the integrands of the aerodynamic coefficients, never n or n2.

hence the evaluation of the coefficients is also simplified.

The expressions for the section aerod_mamic forcos (L, D, and Fr, their
decomposition into the hub plane F_ and Fx% and the rotor forces and moments

(T, Y, H, Q, and MF) in terms of the net rotating forces on the blade are the

same as in the previous section. Again, the net blade forces may be expanded
as linear combinations o£ the velocity and pitch perturbations:

0 1 F z

-- =

1 F_

r --_{r =, + + Q_8"T A + _?_uPA + O_u>Bac _o _i'_1_t_T s + C.!e_ e

J_O CT1 F r dr = R u6`_}_,- _ --
aa ca
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where M is the flap moment; II, the blade inplane force (drag direction); f', the

blade thrust; Q, the blade torque moment; and R, the radial force. The sub-

scripts denote the source of the force or moment; subscript o indicates trim

values; subscript V, hub inplane velocity (speed); C, blade rotational velocity
(lag damping); B, flapwise velocity (flap damping); _, hub longitudinal velocity

(inflow); and O, blade pitch control. The coefficients may be grouped as

inplane and out-of-plane forces, so the If and Q terms have similar behavior,
and the :4 and T terms have similar behavior. Alternatively the coefficients

may be grouped as.inplane and out-of-plane velocities so the coefficients with
subscripts v and _ have similar behavior, and those with subscripts g and ),
have similar behavior. The only difference between the coefficients within a

particular group (say, the out-of-plane forces due to out-of-plane velocities:

M_, Mt, T_, and T)_) is a factor of r more or less in the spanwise integration
(the difference between the force and moment, and between the translation and

rotational velocities), hence just slightly different numerical constants. The
behavior of the coefficients with a variation in the parameters (in particular,

with forward velocity V) is basically the same within a group; that is, it is

determined primarily by whether an inplane or out-of-plane force is involved,

and whether an inplane or out-of-plane velocity or blade pitch control is the

input. The fundamental set of coefficients is considered to be the :4 and :J

terms with subscripts'_, B, and @ - one each of inplane and out-of-plane types-

together with T O and Qo for the trim values. Then the behavior of all other

coefficients may be inferred from a knowledge of the behavior of this set.

Again, the inplane force due to flapping velocity is written:

CT

• - + II(_*

to show explicitly the contribution due to the thrust vector tilt.

(41)

The blade forces can now be summed over all N blades to find the net rotor

forces. The aerodynamic coefficients are independent of _m, so the summation

operates only on the blade velocity perturbations. With the definitions of the

rotor nonrotating degrees of freedom, the flap and lag moments required for the

equations of motion are

MF0
-Mo +M_(a - _0) +:4_oao

MEIC

ac

+ Mx(Vu O + _p) + Me(eo - Kp6o)

M [-hax + (V + v)a x + VSa + ::r]

+ M[(-_IC - {1S ) + M_(_IC + _IS

+ /de (@IC - Kp61C)

aU) (42)

MFIs

ac - M [-h& + (V + V)ay + Vao - ]cp]Y

. M_(-_iS÷ _1c)* Mg(glS- BIC

+ M8(@IS - Kp81s)
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and, similarly, for the lag moments, with the M terms replaced by Q terms,

The aerodynamic contributions to the rotor drag force, side force, thrust and
torque on the hub are

°a/acro (H + [-h& + (W + v)_ + V_a: _ R) Y U - }P]

• . •

+ s_(-<is+ <it) + H_(BIS+ _x)

+ HO(elS _p_lS)- -_ + _ BIC

aa]aer o - -(_ + _ )[-_a + Cv + v)_ x + vBG + _p]_ x

- H.C- - _ - H_(_ 1 - & )_IC IS ) C y

C ¢- HO(@IC - KPSiC) - \-_-_ + H_ 81S

(cr)_ T_ o: T + T.(_ - _o) +
_a ero o _ z,

+ TxCVuc + _p) + re Coo - ._rSo)

+ QxCVua + zp) + Qo(Oo_ X_So)

(43)

The aerodynamics maintain the separation into lateral/vertical and longitudinal
groups because of the purely axial flow in the trim state.

Equations of motion- The complete equations of motion can now be obtained

by combining the aerodynamic and inertia terms• For the lateral/vertical
motion group, the equations of motion are
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/B*(v82-1) [45)

and the vertical and lateral forces on the hub,
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The longitudinal equations of motion are

+ + + - " * "" - yMlkp• * 2 KpyMo)SO yn[_ 0 yM_a z + SBoZ PZ_o_O- YM_Bo (Z_o_o

= YMoO 0 + y!1#_'l_{G + y_,_

+ + I _2 _0 - YQ 0 + KpYQoBO -I_o_O _0 _0 _0a z

= YQO o0 + YVQIuG + YQo

with the thrust and torque,

(47)

CT
-- = T
ga o + r[(Gz - [o) + T_o + r_Cvua + :p)

o_° i Hb,_p-v+ i_o(Oo - ZpBo)- Y

oaOQ_ Qo + Q_(&z - 40) + Q_Bo + QI(VUG + Zp)

+ Qe(Oo- Zp_o) - T oc_ T o z

(48)

Note that if, in CQ/oa, the substitution is made for _0 from the equation of
motion:

_2 I* - I* I * - I*

CQ _ I* _0 _0_ _0 .. o _0_
oa _0 _ _0 y _0 + y z

_2
_0

= I* _0 (49)
_0 Y

where the last expression holds if = r is assumed for the inertias, as it
_0

was for the aerodynamic terms. That assumption is consistent with the use of

only one blade lag mode; this result is comparable to that for the hub moments

Mx and My in terms of rotor tip path plane tilt 81C and BIS"

The present model may be used for the case of the rotor operating in

autorotation, as is frequently done for proprotor dynamics wind-tunnel tests,

by use of the collective lag mode for the rotor speed perturbation degree of

freedom• It is important to include that degree of freedom so that proper

representation of the autorotation dynamics is obtained. In fact, the
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representation used for the powered case, assuming that the rotor hub
rotational speed _ is fixed by the engine and that the collective lag motion
is elastic rotor deflection with respect to the hub, can only be considered a
limiting case of a perfect governor. A model with true engine/governor/drive
train dynamics would always allow somerotor speed perturbation, and hence that
motion would also have an important influence on the powered case.

Autorotation operation meansno restraint of the rotor rotation about the
hub. Therefore, no rotor torque is transmitted to the shaft, and no pylon roll
motion is transmitted to the rotor. The collective lag degree of freedom is
then rigid-body rotation of the entire rotor about the shaft. The collective
lag modeshape is then n_0 = r; with no restraint of this degree of freedom,

v_0 = 0. The lag motion of the blade is defined with respect to the pylon,

which is rolled by __, rather than with respect to an inertia frame; there will

then be a response o_ _0 to pylon roll _z, but the zero spring rate for col-

lective lag motion (_0 = 0) assures that this motion will be only that

required to hold the rotor fixed with respect to space. Since no torque is

transmitted through the rotor shaft during autorotation, any CQ forcing terms
in the pylon/wing equations of motion should be dropped. This would auto-

matically be accomplished by the zero spring rate (_ = 0, as in eq. (49)),
S0

but actually dropping CQ would result in a better conditioned numerical prob-

lem. With _0 = r, it follows that I* = I* = I_* _and all are equal to 1 ifSO _0 _
Ib = Io is used); and the zero collective lag spring rate means that _ = 0.

_0

These changes are all that are required in the equations of motion to accommo-
date the autorotation case.

The Rotor Aerodynamic Coefficients

In this section, the aerodynamic coefficients of the rotor forces

defined in equations (40) are derived and discussed. The derivation follows

that used for the four-degree-of-freedom model; all the coefficients required

will now be derived, and the effects of drag and compressibility retained.

First, the basic set of coefficients is considered; the M and H terms (out-of-

plane and inplane forces) with subscripts u, _, and @ (inplane and out-of-

plane velocities and blade pitch control), with TO and Qo for the trim forces.

The trim thrust and torque follow directly from integration of the section

forces (no perturbation process required) as

_0 1 (u C_
C-Z = TO = U T 2a
oa

c_a = Qo = rU +-- PTJa uTT a dr
0
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From the perturbations about the trim state, the flap momentis

/0•l r ac-ZZdr = rU T _ - Up -_a dr

I cI_}__ c _a+ r C_Uu T + U_UT) ÷ Uu T--_ 6a

cd

_M- _a (_UUp + U_Up)

°s °SM ]- Uup --_ _a - UUp _a _M dr

/ I= ru r fSa-upTSa dr

uTUp _ UT2

+ r + U + 2a U + 2a U

cd
ed u_p _ Up 2

2a U 2a U

fo l i_a c_ upUT

+ r 2 upUT a UT2 MC_M
U 2a U + 2a U

- 2-a + U + 2a U MCdM ]UP2 dr _UPB
2a U

+ a UUp 2a]dr 60r uT 2a

= Mo + _6urB + M_6upB + Mo6o

and, for the blade drag force,
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:IF /0Z Xdr=ac U p _-_ + UT _a dr

f l [ c_, c£+ _ (SUUp + U6up) ÷ Uup Ta Sa

c_M Cd

+ uup _ 6M + _ (6uu r + u6u2)

c_ c ]+ U_T _a _a + UuT _a _M dr

/01= U -- + uT drP _a

/olbc_ UTUP _ _pa

+ U + 2a U +

Cd {UT 2 ) Cd upuT+ 2--a\--_- + U + 2a U

M°A M UpU T

2a U

k_d: UT2 ]':" dr 6UTB2a U

/0 1 OIT_a { t_P2 ) O_'a _'ll)+ r \_7- + U 2a U

Mc £M UP 2
+

2a U

,, c., 2 :IczM u_,p]

"d z{pu_; a
a _T dr 6uPB2,a b' 2a U + 2a U

+ U p 2---a+ _T 2a/

= Ho + q 8t_CB + r_6_XpB H8

The radial force is slmply
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rl.(/i)r dr = uOd

]o aa 7jadr _,- _ --

WT

The coefficients may be identified now; the trim values of the blade

section force coefficients (at, od, and their derivatives, evaluated at the

angle of attack and Mach number of the radical station) must be used in the
integrands, and the trim velocities are

uT=r

Up: V+V

U = /r 2 + (V + v) 2

For convenience, V + v will be written as V in the following expressions. If

one substitutes for the trim velocities, the rotor aerodynamic coefficients are

CT /i Ir c_oa 2a

I iv cz
CQ rU
EE = _Ja

/ol' M = r U +

..)v Eja dr

c_ M_ r 2 Cd rV

+ T - + /

o_ Cd )-d]
V a V

+ r 2-- _ - _ dr

r2 + --_--/ U 2a

dr

I <2_ o£
= _ _

M e rU 2a

y _

(Eqs. (50] continued on next page.)

(50)
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H +R
P /oLVa .aj.,a

I.,% %\ _7.,

* = _ _ '-7- '¥s;,-,-- -S_ + 2a ,,/Gr {50)_a _a J _a P _as% Jo L\ t \
{.."_-._%},71.
t v 2a +? 2aluJ ar

1 o o
f / _, d \

T O_ O_ 4/ _.'t_+ __) _
"10 \ _ z. ,,'

He =

where U = (n2 + V2) I/2 The expression for L;'_*was obtained from

H@ = C%_/d:_ + !/_* using the result for CT/Ua. The effect of R u in the sum

+ R;_ is .i_mt a term (_d/2a)W in the integrand. So R_ only adds to the drag

terms of ,_p, which are usually negligible for high inflow aerod)mamics anyway.

The following expressions for L7u and _]_ are also required, at least to find
the other coefficients:

[( "-"qi O,

0£ rV a c_Z r 2

H : _+ + U + +

_ W
+ V __.am+ r dr

2a 2a I

/i" = U + + + +
'6 2a _ -0-- 2a T

- V _ + r 2a I dr

The behavior of (and the expressions for} all the other coefficients can

be inferred from a knowledge of the above set. The other coefficients follow

immediately from the fact that, in the spanwise integration, the !F terms have

one less r than tile M terms, the Q terms have one more r than the H terms,

subscripts _ have one more r than subscripts p, and subscripts X have one

less :_,than subscripts B. The basic behavior of the coefficient is determined

by whether it is an out-of-plane force or an inplane force, produced by an
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out-of-plane or inplane velocity or blade pitch control. The combinations
H_ + R_ and H_* = H_ - CT/_a are special effects that do not have comparable

forms In the other coefficients. There is no radial drag due to blade lagging

velocity (no _UR) and no torque moment due to the radial drag force, so there

are no R contributions to H_ or any of the Q terms. The inplane force due to

flapping velocity is written H_ = CT/_a + H_* only to show explicitly the term

due to tilt of the thrust vector, so it is not extended to Hh or any of the

terms. Hence the coefficients HV and H_ are used to derive the other

coefficients, not H_ + R_ and H_*.

If all terms but cz and cz are dropped from these expressions (and the

degrees of freedom reduced to glC' B1S' ay. and ax) , the results of the
previous section are recovered.

Evaluation of the coefficients- Approximate expressions for the

aerodynamic coefficients are obtained by evaluating the integrands at an effec-

tive radius, with the techniques of the previous section. The results for the

complete set of coefficients required are (dropping terms that are negligible
for both high and low inflow):

Mo = (3/4) (@lcsa)

M = (sin ,)/6 + 2CT/(_a

M_ = (sin ,)/8 + 3/2(CT/ea )

M_ = -(cos ,)/8

Mx = -(cos ,)/6

Me = 1/(8 cos *)

r o = Cr/_a = _/(6 cos ,)

T = (sin _)/4 + 3CT/ea

T_ = (sin ,)/6 + 2CT/_a

r_ = -(cos ,)/6

r_ = -(cos *)/4

T O = 1/(6 cos ,)

Ho = (4/3) (CQ/ea)

H + R = (V sin *)/2 - 4V(CT/aa ) + 6(CQ/_a)v

(52)

H_ = (W sin ,)/4 (4/3)V(CT/c_a) + (8/3)(CQ/ea)

H_ = -(sin *)/6 + CT/qa

(Eqs. (52) continued on next page.)
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H X = -(sin ¢)/4 + (312)(CT/_a)

H e = 7/(4 cos ¢)

Qo = aQlda = V(CT/(_a) + cdlSa

Q = iv sin ¢)I4- (413)v(cml_a) + (813)(00I_a)

Q_ = (V sin ¢)/6 - V(CTIc_a) + 2CQIoa

QB = -(sin ¢)/8 + (314)(CT/aa)

QX = -(sin ¢)/6 + CTIoa

QO = V/ (6 cos ¢)

where the inflow angle is evaluated at an effective radius re (re = 0.75

usually works well) so that

sin ¢ = V//re 2 + V 2

/dr 2 + V2COS _ : rC (9

a(re) : O(rg) - tan -I V/r_

(52)

Wherever V occurs in these expressions, V + v is really meant, but the effect

of the induced velocity v is important only for low inflow. The similar behav-

ior of the coefficients within a group (as discussed above) appears in these

approximations.

The cd(CQ) terms are important only for the inplane Forces due to inplane

velocities at low inflow. _e c_(CT) terms are important For low V, but never

for the out-of-plane Forces due to out-of-plane velocities. All CT and CQ

terms may be dropped for high inflow, where V is of order I; in that case,

V + v may be replaced by V also. The compressibility influence, especially CdM

and CZM, may result in important contributions from the lift and drag terms

even in high inflow; stalled flow may affect c_ and c4 . In general, however,

for high inflow the behavior of the coefflclents is given primarily by the c_a

terms alone; this is expected to occur so long as significant stall or com-

pressibility effects in the trim operating state are avoided.

The basic features of the rotor aerodynamic coefficients in high inflow

are obtained then the c_a terms. Of particular interest is the variation with

forward speed V. If it is assumed that V/_R is of order l, that all the blade

section coefficients are small compared with c_a, and that c_ /2a = 1/2, then
the coefficients reduce to
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I
1 r2V

M_ =7 _ + w2
dr

1

I r 4

H'_- 2 _ + v_
dr

I
_ 1 r 2 _lr2 + V2 dr

Me 2

1
H I V 2- dr

2 _Ir2 + V2

1

1 r2V
dr

i
_ 1 V_lr 2 + V 2 dr

He 2

(53)

These coefficients were obtained in the discussion of the aerodynamics for the

four-degree-of-freedom model, and the integrals were evaluated in that section

(eqs. (31)). The variation of these coefficients with forward velocity is

shown in figure 4. The behavior of any of the remaining coefficients is simi-

lar to one in this set, but with slightly different numerical constants.

If only the c_ terms are retained and with c_/2a = 1/2, the entire set
of aerodynamic coefficients is

M = Vf H = V2f
2 p 0

M_ = Vf3 H_ = V2fl

Mk = -f3 Hk = -Vf 1

M e : g2 H e = Vg 0

T = Vfl Qp = V2fl

T_ : vf 2 Q_= v2f2

T_ : -f3 Q_ : -vf3

Tk = -f2 Qk = -Vf2

Te = gt qe = vg_

(54)
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where

<
_n

1

2

1

gn =

The integrals required are

I

0

1

/
0

rn dr

/r2 + v2

rn /r 2 + V2 dr

1 1 + /[+ Y 2

fo = 2- £n V

1 (,/f + v2 v)fl = 2

1 /i- + V2
f2 = 1 V2fo

1
f3 = [ [/i + V-I (i - 2V 2) + 2V 3]

f_ - 161 ¢_ + V2 (2 - 3V 2) + 83 V_fo

1 _ I V2fo

l
g_ : _ [($f-i-_)3 _ v3]

_2 : i---61/_ + V2 (2 + V2) _ 81 V4fo

The aerodynamic coefficients can also be evaluated using the exact

expressions (eqs. (S0)), including the effects of the blade lift and drag, and

of stall and compressibility - the only approximation then being in the knowl-

edge of the section aerodynamics. To evaluate the coefficients requires the

blade section force coefficients and their derivatives with respect to angle

of attack and Mach number: c_ /2a, c£/2a, Cd/2a , Cd /2a , c£/2a + MC_M/2a ,

and Cd/2a + MCdM. The coefficients are to be evaluated at the blade trim

angle of attack and Mach number:
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= 0 - tan-l(v + v)/r

M = Mtip/r2 ÷ (V + v) 2

The blade twist and the collective pitch required for a given flight condition

are then required to evaluate the section aerodynamic, in contrast to the

results with only c_ terms where only V is required. The section coefficients

may be evaluated fro_ tables of airfoil section data, appropriate to the rotor

blade being considered.

Alternatively, representative analytic expressions may be used for the

blade section coefficients. While a particular section may not be considered

then, a representation that includes typical stall and compressibility effects

will allow a general study of the influence of these effects on the rotor

aeroelastic behavior. The following expressions for the section coefficients

are used here. Below a stall angle of attack as (typically 12°), a constant

lift curve slope is assumed, with a Prandtl-Glauert correction for compressi-

bility, so that c_ = aa(l - M2) -I/2, and the lift coefficients required are

c_

2a 2
(1 M2) -1/2

- a (1 - M2) -1/2 (55)
2a 2

c_ MC_M - _ (1 - M2) -3/2
2-a + 2a 2

In practice, the Prandtl-Glauert factor (1 M2) -1/2 is truncated at its value

at M = 0.95, say, to avoid numerical problems near M = 1. The drag for
unstalled flow is

cd = 0.0065 - 0.0216a + 0.4_ 2 + _cd I

0 43(M + ] l/o.26 - 0.9) if l-I > _div : 0.26(0.9 M) (56a)
}

Acd =
0 otherwise

This is the classical result of Bailey (ref. 31) with a lower c_i n as

appropriate for current proprotor sections, and With a compressibility term

obtained from section tests on rotating blades. The compressibility drag

increment has a critical Mach number of 0.9 at zero angle of attack; above the

critical Mach number, there is a large increase in ed. The drag coefficient

and its derivatives must be divided by 2a; a = 5.7 is used for the two-

dimensional lift curve slope. For stalled flow, ]_[ > as, the following

approximation is used:
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c = a_s sgn(a)

ICd = Cds (sin a) 2

(56b)

where, typically, CZs = 1.0 and Cds = 2.0. Combined compressibility and stall

effects are not included. A very important influence of stalled flow is that

possibly c_a = 0 there, so the c£, Cd, Cda , CZM , and CdM terms in the coeffi-

cients dominate the behavior even in high inflow (if a large enough portion of
the blade is stalled).

With these analytical, semiempirical expressions for the section

aerodynamics, the influence of the drag and lift terms and of stall and com-

pressibility on the rotor aerodynamic coefficients is examined. For the

design of a specific rotor and the prediction of its behavior, the section

characteristics appropriate for the actual blade sections should be used. For

the present work, it is desired only to check the relative importance of these

effects so approximate lift and drag coefficients are satisfactory. The

influence of these effects on the rotor coefficients is shown in figure 5, for

H@, HU, H_, M0, 3_, and '_!li. _e coefficients were calculated using the exact

expressions (eqs. (50)), with the above approximations for the section aero-

dynamics, for two rotors. I _le collective required to give the rotor thrust

for equilibrium cruise at a given V is used. In figure 5, the results for

these two rotors are compared with the coefficients found using only the c£a

terms. The coefficients with only the cz_ terms are given by equations (31)
(fig. 4); the approximation is the same for the two rotors since it is inde-

pendent of the section characteristics. The most important difference between

the two rotors so far as the behavior of the coefficients is concerned is that

they have different tip speeds. Therefore for a given forward speed V/92, the

blades have a different resultant Mach number 3{ = M_ ._(r2 + V2) 172 at a sec-

tion. The tip resultant Math number M = _/ti_(] + 1,2)I/2 is shown in figure
5(b) for the two rotors.

The exact coefficients in figure 5 show a significant difference from the

coefficients based only on the cLa terms; the difference is particularly large
when the tip critical b_ach number (0.9 for _ = 0 with the section characteris-

tics used) is exceeded. The following conclusions are reached then: the

terms in the rotor aerodynamic coefficients give the basic behavior, at c£a

least so long as the section critical Mach number is not exceeded; the other

terms in the coefficients are not negligible, however, and should be included

to properly evaluate the behavior of a real rotor, especially when operating

at high section a or :V. When the section aerodynamics other than cga are
required, actual section characteristics should be used rather than

representative expressions.

Three methods for evaluating the rotor aerod)mamic coefficients have been
described:

ISpecifical]y, this is for the two full-scale rotors examined in later

chapters, hence the labels "Bell" and "Boeing" in figure 5.
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(a) Approximations based on evaluating the integrands at an
equivalent radius.

(b) Approximations based on the retention of only the c_a terms,

with c_a/2a = 1/2; the integrals may be evaluated, giving
the coefficients as functions of V alone.

(c) Approximations based on analytical expressions for the blade

section aerodynamics in the exact coefficients; representa-

tive stall and compressibility effects are included, but no

specific section is modeled.

The coefficients based on the equivalent radius approximation (method (a)) are

used only for the expository development, never in the calculations. Method

(b) treats the c_a terms correctly and exactly, and if the other terms are
required method (c) should be used rather than method (a). The coefficients

based on just the cz terms (method (b)) will normally be used in the calcula-
. . .

tions here. These coefficients include the basic behavior with inflow ratio,

which is of primary interest here. In fact, this level is usually a good

approximation for calculating the dynamic behavior (as shown later). Method

(c), the coefficients based on the exact expressions (eqs. (50)), is used here

only to check the influence of the terms other than c_ .

The method used here allows the derivation of rotor aerodynamic

coefficients, including the influence of lift and drag and of stall and com-

pressibility, with no more difficulty than a derivation that includes only cza

terms. Therefore, a good representation of the rotor aerodynamics is available

if one chooses to use it (and if enough information on the section aerodynamics

is available). Evaluation of the coefficients in method (c), or even including

tabular data for the actual bladesections used, requires numerical integration

over the span, but that is no problem for numerical work. There is only one

real complication in evaluating the coefficients by the exact expressions: the

trim angle-of-attack distribution is required, which means that the blade col-

lective pitch at the given operating state must be known. Hence a preliminary

solution of the rotor performance to find the collective pitch is required

before the coefficients can be evaluated for the dynamics. In contrast, with

only the c_ terms (method (b)) only V/fZ_ is required to evaluate the
coeff_clents.

Discussion of the coefficients- Some properties of the coefficients are

discussed here; in particular, certain useful equivalence among the coeffi-

cients are derived. A helicopter rotor in hover (low inflow axial flight)

exhibits equivalence of control plane, hub plane, and tip path plane tilt;

that is, these inputs produce the same forces on the helicopter (with certain

exceptions). This behavior translates into certain equalities among the rotor

aerodynamic coefficients. The influence of high inflow operation on the

behavior of the rotor, and on the basic set of coefficients in general is

examined now.

Consider the longitudinal moment on the rotor disk due to tip path plane

tilt (B1C, _IS), hub plane til_ (_y, _x), and control plane tilt (@IC, @IS);
from equation (42), this moment is
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v y IS - 81C + ax ) + MS@IS

Hub plane tilt aW gives an inplane component of V + v, hence a flap moment

through the speea stability coefficient MU. Tip path plane tilt 81C (with

respect to the hub plane) gives a flapping velocity in the rotating frame,

hence a flap moment through the flap damping coefficient M_. Control plane

tilt 017 produces a flap moment through the pitch control power coefficient

M o. For low inflow,

1
Me = =

so the flapping produced by blade pitch is BIC/@IS = Mo/-M_ = 1 (if _6 = i).
That is the familiar result of helicopter hover control (wlth a low inflow

rotor): the tip path plane remains parallel to the control plane. In high

inflow operation, however, M@ and -M R are not equal. Based on the equivalent
radius approximation,

1

M0 = 8 cos 6

cos ¢
M_ = 8

so that M@ 1

-M_ cos2 ¢

Pitch control power M@ increases with V, while the flap damping M_ decreases;
the ratio then increases with V. For a Y/_ up to 1 or so, there are no

drastic changes in the magnitudes of the coefficients, but the effect is

important. Based on just the c£_ terms, the coefficients are

I c_aMs = rurU _ dr

I UT 2 c£-M R = r 2 a dr
U2 2a

The integrand of M_ is a factor uTr/U2 = r2/(r 2 + g 2) smaller than that of

M@; therefore, the ratio of the coefficients is of the order re2/(re 2 + V 2) =
cos 2 t (as above). This high inflow effect results from the fact that the 8_

due to B is not the same as that due to @ when the inflow angle t is large.

The flapping term comes from _Up = r8 so that

UT6U P
8a = 80 - 88

U2

which gives the additional factor uTr/U 2 in M_.
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Consider now the hub moment in terms of flapping with respect to space

(in an inertia frame), that is,

81CI = BIC - _y

81SI = 81S + ax

so that the longitudinal moment on the rotor disk due to flapping (with respect

to space), hub plane tilt, and control plane tilt is

MEIS

ao - [-M_ + (V + v)Mlj]C_y + M_(BIS I -81SI ) + M081S

Flapping with respect to space acts through M_ to give a hub moment as usual.

The moment due to hub plane tilt _y is [-M_ + (V + v)M_], while that due to

control plane tilt is M@. In high inflow, these moments are not equal, for

while both _y and @IS tilt the control plane, only _y tilts the hub plane
reference frame also. The difference is, in fact, small. From the definitions

of the coefficients (eqs. (S0)), it follows that

-M_ + (V + v)_p = a V 2aJ Ur rU + 2a

v--_

/, cd)= M@ + rU -_a + r _ dr

Hence

-M_ + (V + v)M = M0 + --sa
(57)

Now M@ ~ 1/(8 cos @), so that M@ >> CQ/(_a (which is of the order of VCT/C_a) for

all V, both high and low inflow. So for all V,

+ (v - M0

which means that hub plane tilt and control plane tilt are equivalent. For

low inflow, (V + v)M_ is of order V 2 small, while M_ and MO are of order 1 and

both equal 1/8.

Similar results may be obtained for the inplane forces. Consider the

vertical hub force due to flapping, hub plane tilt, and control plane tilt:
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_a p)ay _1S _x ) - _a + IC + WeOIs

Tip path plane tilt fllC gives an inplane hub force by tilt of the thrust vec-

tor, while blade pitch control has no such effect. The corresponding hub

forces due to flapping and pitch, [!_* and }Io, are equal for low inflow where

l:O = -ll_* ~ V4

In high inflow, these forces, like the flap moments, are no longer equal. On

the basis of the equivalent radius approximation,

so that

£0 - 4 cos t

sin ¢
_Y_* - 6

]/
0 1

-/:' * cos? t
8

Both forces increase _,'ith V, but ::0 increases faster by a factor
:}

(COS. %5) -2 = (rU'- + V2)/>,. 2_e • On the basi<, of _iust the c£a terms, the
coefficients are

l oga

1 ,J£
-- 7/" * = "_a 61

;7!' " :.... 2a

The integrand of H_* is a factor 2;:T_,,/g;2 = :,,2/(p? + :¢) smaller than that of

L:0, which agrees with the result from the equivalent radius expressions.
Also, it is the same factor found between the inte_,]'ands of "" and '_ as

• ":5 -"e,
expected since the difference between the coefficients has the same source in

both cases, namely, the difference between _,:_ due to 0 and due to _ when the

inflow ¢ is large. In terms of" f]al)pinp, with respect to space, the hub
force is

-- 7: r'7

= _ + /:' * + (Y + :,)(£
cy_ _I + l;' :2 + ":R_TI" + '5" ' l:2'_ '0"1,(/

Z
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The equivalence of hub plane tilt and control plane tilt mayagain be
demonstrated; from the expressions for the coefficients, there follows exactly

-H_* + (V + v)(11' + R.) : ti e + (V + v]_
(58j

which is, for all 7, approximately

-H_* + (V + v)(H + R u) _ H o

and if only high inflow is considered, so II_ = H_*, it follows that

-li_ + (v + v)(H + R ) _ IIe

The speed stability coefficients M_ and H_ + Rp produce moments and

forces due to hub inplane velocity - that is, due to shaft linear velocity,

aerodynamic gusts, or angular velocity of the pylon about a pivot aft of the

hub. For low inflow, these coefficients are an order V smaller than the other

moments and forces. For high inflow, however, the speed stability coefficients

are of the same order as the others, and this difference between the low inflow

and high inflow aerodynamics may be expected to have an important influence on

the aeroelastic behavior. The speed stability coefficients usually produce

positive damping of the motion (see, e.g., the four-degree-of-freedom model,

eqs. (26)). With high inflow, hub plane tilt results in an inplane component

of V that produces forces and moments through the speed stability coefficients.

These forces are in the same direction as the displacement, so they act as

negative springs (eqs. (26) again). The speed stability coefficients often

appear in the equations of motion as coupling terms rather than as direct

damping or spring terms. In such cases, the effect of the coefficients may be

significant since their magnitude is of order 1 in high inflow, the overall

effect may be stabilizing or destabilizing, depending on the coupled motion

involved.

The inplane forces on the hub due to tip path plane tilt have

contributions from the direct tilt of the thrust vector (2CT/oa term) and from

the inflow (H_ term). From the equivalent radius approximation, the relative
size of these two terms is

2CT/oa &/(3 cos ¢) 3 &

H_ r-= (sin %)/6 - 2 V cos 2

Thus the ratio is of order a/V. In high inflow, CT/oa may be neglected since

V is of order I, and also because the working angle of attack a of the prop-

rotor is low. These terms are very important for flapping rotor dynamics.

The response of the rotor to low-frequency excitation, say, control plane tilt

or shaft motion, is tilt of the tip path plane. Through 2CT/_a + H_*, the tip

path plane tilt gives a hub inplane force that couples the rotor and vehicle

motion or is used to control the vehicle. For high inflow, H_* dominates the
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thrust term, so the inplane force on the hub is not only an order larger, but
also of opposite sign. This effect is expected to produce dynamic behavior
significantly different from that of low inflow rotors. Hub plane angular
velocity and tip path plane angular velocity act through H_ to produce inplane

forces also. In high inflow, the thrust term may be neglected, so H_ _ H_*"
the coefficient is then the same as for tip path plane tilt.

Consider now the cross derivatives M. and H;, which are out-of-plane force
• g D

due to inplane velocity and Inplane force due to out-of-plane velocity, respec-

tively. On the basis of only the c_a terms, these coefficients are equal:

I c_
MIj = -H_ = p2V a

+ V2 2a
a>

This equality is useful in simplifying the whirl flutter equations of motion

in a later chapter. Examine, therefore, whether it remains valid with the

more complete expressions for the coefficients. From equations (50),

M + H_ if _M c,j- + U _ + 3V dr (59)
_a 2a _- r 2aJ

The right-hand side is negligible for large V, compared with M_ or H_; for
high inflow, one has always then

lligh inflow, V/P_ of order I, influences the rotor aerodynamic

coefficients substantially.. It follows then that the features of high inflow

aerodynamics are an important factor in the aeroelastic behavior of the rotor

and wing system. In summary, the combinations of the coefficients derived are

-M_ + (V + v),V --- _'O

-itS* + (v + v)(H + _ ) _ il

M _ -/I"

(60)

The first two approximations are valid for all V, while the last is only for

high inflow; to these may" also be added H_ _ H_* for high inflow.

Performance considerations- The evaluation of the rotor aerodynamic
coefficients for the analysis of the proprotor dynamics requires a considera-

tion of the proprotor performance. First, to obtain the rotor collective
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pitch value requires a solution for the performance in a specified operating

state, for example, cruise flight (CT given by the airplane drag) or autorota-

tion (CQ = 0). The rotor collective pitch is needed only to evaluate the com-

plete expressions for the coefficients, however (eqs. (S0), described as

method (c) previously). Second, the total axial velocity V + v, a major param-
eter in the coefficients, includes the induced inflow v, which is related to

the rotor thrust and operating state. _¢o topics are now considered: the

expressions required for an elementary analysis of the proprotor performance

(CT and CQ) to find the collective pitch; and an evaluation of the rotor-
induced inflow.

In the previous analysis, expressions were obtained (eqs. (50)) for the

rotor thrust and torque coefficients in terms of the blade section aerody-

namic forces. Using the identity of the power and torque coefficients for the

rotor iCp = CQ since P = Q_), these expressions are

f

Op_ /c_a

where U 2 = r 2 + iV + v)

expression is

2avvv
(61)

If uniform induced inflow v, is assumed, the power

I _o dCp = IV + v)O T + 2
U3 dr i62)

which is the usual result for the power required by a rotor operating in axial

flow. The first term is the sum of the induced power loss and the useful work

done:

Cp. = (V + v)C T _ (V + CT/2V)C 2 (63)
%

For high inflow, the induced loss term vC T _ CT2/2V is negligible (see

discussion below); then CPi is proprotional to CT, in contrast to hover

operation where the induced inflow is important and for which CPi is

proportional to CT 3/2

The second term in equation (62) is the rotor profile power loss; if the

section drag coefficient is constant over the span (or if an effective mean

value of od is used), then
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fl [r 2 + (v +

UOd[

CPo =
o) 213/2_r

2

_ad8 /1 + (v + _,)2 1 + 7

+ 5 (v + v) _ _n 1 + /1 + (V + z,) "_
V + V (64)

ac d
--g- [l + 3(V + u) 2] low V

(70 ,

-_ (6.27) V + g) = 1

gCcZ

(473) high V

The two rotor operating conditions of primary interest here are: operation

with the rotor providing the propulsive force required for equilibrium cruise

flight, and autorotation operation (no net power supplied to the rotor through

the shaft). The latter corresponds to the condition in which dymamic tests of
the proprotor and wing are often performed. The performance problem involved

is then to find the rotor collective pitch required (and the other coefficient)

for a given CT (thrust required for equilibrium cruise flight) or CO (zero for
autorotation).

The rotor aerod3mamic coefficients require an estimate of the rotor

induced velocity v. For high inflow, however, the induced velocity is much

less than the forward speed of the rotor (as shown below), so great attention

to the inflow calculation is not required to satisfactorily evaluate the coef-

ficients. 3q_e assumption of uniform inflow is adequate then, and it may, in

fact, be possible to neglect the induced inflow entirely. The rotor CT

required in cruise flight is obtained by equating the rotor thrust (for two

rotors) with the aircraft drag, and expressing the drag in terms of an

equivalent flat-plate area f for the aircraft (L = (I/2)0V2f). Therefore, for
the thrust required of the rotor,

I ,, r,_2
CT - 4A

where A is the disk area of the rotor. Momentum theory can be used to estimate

the induced inflow; the usual result (ref. 32) for axial flow operation at
thrust CT is:

Y + v = vI2 + /(v12) 2 + 0/2 (6s)
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Substituting for CT yields

v /f + (:72.4) - 1
g 2

or, since f/d and hence CT/V 2 is small,

CT7) ~ l ("

V 2V 2 8 A

TyTical values of proprotor aircraft drag and radius give f/.4 _ 0.0033; it
follows then that v/V = 0.0017 typically, which is indeed much less than 1.

For the proprotor in equilibrium cruise flight, neglecting 7;/Y is a reasonable

approximation then.

When the rotor is operated in autorotation, the performance requirement

is that Co = O, which requires that CT = -Coo/(V + _) _ -C(2o/V. With the high

inflow result for the profile power, C@ -- lacd/2)V, the thrust required in
autorotation is

aod V2
CT- 2

For the proprotor in axial flight at high inflow, autorotation occurs in the
windmill brake state (i.e., at V > 2/]CTI/2, or ICT/2V2! _ Iv/V1 < I/4); hence

momentum theory may again be used to estimate the induced inflow (ref. -o).

The same conventions are used for the directions of V and CT_ (so the CT

required in autorotation is negative, as given previously]; the momentum theor,v

result is

v (6(_]
V+v =7+ +-T

Substituting for the required C T yields

v CT aCd
_ 0

V 2V 2 4

Typical values of proprotor drag coefficient and solidity yield

OOdo/2 _ 0.0004. Hence the typical induced inflow v/g _ -0.0002, which is
smaller than in cruise flight. Again, the induced inflow may be neglected.

The effect of the induced inflow on the blade load distribution (that

required to evaluate the aerodynamic coefficients for the dynamics analysis),

may be investigated by considering the change in angle of attack due to v/Y:

V + v v V/fm
_a = _ tan -1

ar V
1 + (V/far) 2

which has a maximum value of 6a = (1/2)v/V. Use of the momentum theory

result v/Y _ CT/2V 2 (valid for both powered and autorotation operation in
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high inflow) and the mean angle of attack _ = 6CT/a a yield the maximum change
in angle of attack:

_ot ~ ua

a 24V2

For typical values of rotor solidity, _a/a = O.02V -2 which is a small fraction
for high infiow (V of order 1).

Numerical calculations were performed to verify that V + v _ V is a good

approximation in the calculation of the aerodynamic coefficients. The impor-

tant consideration in the dynamics analysis is that the performance calcula-

tion and the calculation of the aerod?mamic coefficients be consistent, either

neglecting the induced inflow v/V or using the same estimate of v/V for both

calculations. Any error in estimating the rotor performance or the collective

pitch required is not relevant to the dynamics analysis. The aerodynamic coef-

ficients that correspond to the operation of the rotor at a given value of CT

or C0 :ire obtained, the only error being a small change in the angle-of-attack
d. _lstribution over the blade'.

SECTION 3: BEIIAVIOR OF ROTORS IN tIIGII INFLOW

In the next four chapters, several topics on the behavior of high inflow

proprotors are investigated, based on the equations of motion derived pre-
viously. The development of the proprotor and cantilever wing model is

resumed in section 4. The reader interested in that topic may skip the four
chapters in this section.

Elementary Dynamic Behavior

Some aspects of the dynnamic behavior t_ical of proprotor aircraft are

examined. First, the fundamental stability of the blade motion is examined

through the eigenvalues of the uncoupled blade motion. Then the influence of

the transformation to nonrotating degrees of freedom and equations of motion

on the eigenvalues of the rotor is examined. The actual coupled motion of the

proprotor and wing system is considerably more complex, but these considera-

tions are useful in the interpretation of the results for the complete model.

The equations of motion and the hub forces for the rotor were found to separate

into longitudinal and lateral/vertical groups (eqs. (44) to (48)). The wing
motion, in fact, couples these groups, but it is useful for a preliminary

study of the dynamics to neglect that coupling, and examine the rotor response
to shaft motion, gust, or blade pitch control in the longitudinal or in the

lateral/vertical systems. Attention is directed to the low-frequency response,

since that response is useful in evaluating the influence of the proprotor on
the aircraft stability.
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Blade stability- Consider the uncoupled, shaft fixed flapping motion of a

single blade. The equation of motion (in the rotating frame) is

IB* _ - _M_ + (I_*v82 + KF_M0) B : YM0@ (67)

The roots (eigenvalues) of this equation are

/

X - ,(M_ _+i /v 2 + Kp ....

2I B*

(68)

For low inflow, -M_ = M@ = 1/8, and equation (68) reduces then to the usual
result for the flapping motion of a hovering rotor. The flap damping is posi-

tive, M_ < 0, so the real part of X is negative and the flap motion is stable.
As V/fag increases, the flap damping -N_ decreases and the pitch control power

M@ increases. Then the real part of _ decreases in magnitude as V/_R increases,
and the stability of the flapping motion decreases. The change is not great

for V/f_R of order l, however; and M'@ is always negative (at least the c_
contribution is) so the motion remains stable for even extremely high in_low.

Pitch/flap coupling Kp introduces a flap spring term through the

aerodynamic force M@, which changes the effective flap natural frequency:

TMO (69)2

vB = + Kp --
e vB2 IB*

Negative pitch/flap coupling, fp > 0, increases the effective flap frequency

VBe. Increasing V/FaR increases M 8, and so increases the effectiveness of Kp.

Again, the influence is not great for g/gR of order l or less.

Consider the uncoupled lag motion with the rotating equation of motion

(homogeneous form):

I *_ + XQ_ + I{*_ 2{ = 0 (70)

The roots for this motion are

2iB, v¢ 2 -

The lag damping Q_ is positive, Q_ > 0, so the motion is stable. The coeffi-

cient Q_ increases with V/FaR, hence the stability of the lag motion increases.
For low inflow, the lag aerodynamic damping is very low. For high inflow,

however, there is a significant increase in lag damping, which is important in

proprotor dynamics. In high inflow, the source of lag damping is the same as

for the flap damping, namely, the lift change due to angle-of-attack
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perturbations (i.e., the oz terms). Therefore, both flap damping and lagc_ .

damping are of the same order in high inflow.

The flap and lag motions of the blade are strongly coupled by the

aerodynamic forces in high inflow; specifically, they are coupled by the cross

aerodynamic coefficients M_ and Q_, which are of order 1 in high inflow (like
all the coefficients).

Nonrotating system eigenvalues- Consider the blade uncoupled flap motion,
as observed in--the nonrotating frame. The coning mode 8o has an equation of

motion (eqs. (47)) identical to that of tile blade in tile rotating frame, so

tile eigenvalues of its motion are the same as those given previously. The

equations of motion for the tip path plane tilt coordinates, _IC and _IS, are
modified by tile transformation to the nonrotating frame; centrifugal and

Coriolis terms are introduced, which have the effect of coupling the 81C and
B1S motions.

The homogeneous equations of motion in Laplace form for 81C and 81S are(from eqs. (44)):

I_ *82-yM_o +/8 *(vB 2_ i)+Epy?_']O

- (2_B<_-yM_)
: 0 (72)

The characteristic equation for this system is the fourth-order polynomial:

: 2 1) + + = 0A [_B *_2 - r_ + _*(v_ - £prNo]2 (-2_B, _ _ yM_)2 (73)

The eigenvalues are then the solutions of this polynomial; writing the roots

of the flapping motion in the rotating frame (eq. (68)) as _ = XR, IR, the
nonrotating system eigenvalues (roots of eq. (73)) are then

INR = IR _ i (74)

and the conjugates. The nonrotating eigenvalues have the same real parts as

the rotating roots, but the frequency is greater or less than that of the

rotating roots by i/rev. On the root locus plane (Im_ vs. Rel), the nonrotat-

ing roots are then shifted vertically by fl/rev from the rotating roots.

For a three-bladed rotor, the rotating roots on the _,-plane are a pair of

triple poles at _R and its conjugate. The nonrotating roots are a single pair

at IR and its conjugate for the 80 mode, plus a pair at 1R+i and tR-i and
their conjugates for the B1C and gl£' modes. In both the rotating and non-

rotating frame, there are then six roots, corresponding to the three blades

each with a second-order differential equation. The eigenvectors of equa-

tion (72) give the coupled motion of 8IC and 81S corresponding to the eigen-
values. There are two modes (and their conjugates); each eigenvector defines

a wobbling motion of the tip path plane, at frequency ImXg - 1/rev for the
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low-frequency mode and at frequency fmX R + i/rev for the high-frequency mode.

The high-frequency mode wobbles in the same direction as the rotor rotational

direction, and so is called a progressive mode. The low-frequency mode wobbles

opposite the rotor direction if imXR > I/rev, so it is a regressive mode. If

irmxR < I/rev, however, the low-frequency mode wobbles in the same direction as

the rotor rotation and so is another progressive mode. The two modes are

denoted here by B ± 1 for the flap modes at frequencies fm,_,E ± I/rev,

respectively.

The behavior of the roots of the lag motion in the nonrotating frame is

similar to that of the flap motion (the influence of the transformation from

the rotating to nonrotating frame is a general result for all rotor degrees of

freedom). The coupled motion of CiC and _IL7 is a low-frequency and high-

frequency mode, denoted by _ ± I, each a whirling of the net rotor center of

gravity about the shaft. This motion has an important role in proprotor

dynamics. The blade flap and lag motions are, of course, highly coupled, with

each other and with the shaft degrees of freedom. The basic flap and lag roots

remain identifiable even for the coupled motion, however, both by the frequency

of the eigenvalue and by the participation of the degrees of freedom in the

eigenvectors. The characteristic location of the nonrotatin£ roots, at the

low-frequency and high-frequency rotor modes, remains an important feature of

the dynamics.

Longitudinal system - Consider the longitudinal dynamics of the rotor,

described by equations (47) and (48). It consists of two degrees of freedom

(coning B0 and collec-tivc lag _0) excited by longitudinal shaft motion (hub

velocity sp and roll angle as), longitudinal gust (VzqT), and rotor collective

pitch control (60). The influence of the rotor is transmitted to the shaft as
a thrust force and a torque moment (CT and C_) acting on the hub.

]'he equations of motion for the longitudinal system are, in transfer

function form (and matrix notation),

o " B Bo 6o z_ u

"" * v2 _0
-yQ_s+yKpQ e -T_OS2+y_r4_+fCO

= eO + + s2+y _ z yQ_ iv

(75)

The thrust and torque are
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CT

(Ta - -- s 2 + Ths Zpz y

_ _ rq* S 2 _ yT_s + )S O - ]'.S_ 0¥ w_ KpyT e
0

To simplify the notation, subscript 0 on the inert|as and frequencies is

dropped in the rest of the discussion of the longitudinal system; only the

longitudinal dynamics are involved, so the values appropriate to the coning
and collective lag modes are implied throughout.

For the low-frequency response, the equations of motion to lowest order
in s reduce to

(76)

II *v 2

8e 0

YA'p_?0 I *w

The rotor thrust and torque are

0 +[ |(Vu a + Zp) + _. (77)

\%/ VQ / z

ea - reeo + :e_,(vua+ zp) + T_Lz _ zpreB°

da y _ _0

The solution for the low-frequency response of the rotor coning mode to
collective pitch, longitudinal gusts, and shaft motion is then

(78)

0
• °

['fMee o + YN:_(w_o + zp) + ylv_%] (79)

The response of the rotor thrust to these inputs, including the influence of

the rotor dynamics, is obtained by substituting for S0 in the expression for
CT/oa (eqs. (78)):
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CT IT KpyT@
- @ - M8 .... 0°

aa TB,v82 + KpyM8/

l i8,w82 + KpyM6/ + _P)

IT KpyT@ 1

M ..... &

+ [ - < IS*vS2 + KpyM z

This result can be simplified by use of the relations:

(80)

1 sin ¢ sin _ 1

m =- _O 8 cos $ 6 8 6 cos
- 0

and, similarly, M@Tx - MIT @ _ O. With these relations, the expression for

thrust reduces to

2

CT -_ • _B

oa [T@@0 + Tx(VUG + :Zp) + T_a z] w 2

8e

(81)

The factor in brackets is the direct response of the rotor thrust to the

inputs• The only influence of the rotor flap dynamics (B0 term in eqs. (78))

is to reduce (if Kp > 0) the direct low-frequency response by the ratio

vo2/v_ . The effective flap frequency vSe includes the aerodynamic spring due

t_ Di_h/flaD couvling Kp. The ratio vR/_8o = 1 if Kp = 0 and, for values of

_B0 and Kp typical of proprotor coning mode, it w111 always be nearly .

With a procedure similar to that used for the rotor thrust, the flap

dynamics are eliminated from the low-frequency lag response to give

_0 - i [YQo0o + yQI(Vu G + Zp) + YQ_z - YKPQBBo]
I*_ 2

2

• _8 (82)
= 1 [yQe@o + yQx(VUG + Zp) + yQ_a z] 2

*v 2 v
I{ _ Be

Again, the only influence of the flap dynamics on the direct response is the

factor wB2/w_ • The rotor torque follows directly from the solution for _0"
e

The low-frequency response of the rotor coning and collective lag motion

to collective pitch, longitudinal gust, and shaft motion is then
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ZB * v 13 YMe

: 1 @ + (V_(; + "kp) +

Se

The low-frequency response of the rotor thrust and torque is

(83)

0 + rv_ a + _p) + v_2 (84)
2

An important term in the response is tile shaft torque due to longitudinal

gust. The direct response has the magnitude Z?h _ -(V sin ¢)/6. The aerody-

namic torque FQI increases greatly with inflow (the behavior of (_i is similar

to that of H_, which is shown in fig. 4; in fact, with only the c_ terms,

Qh = H_ exactly) - the source of a fundamental problem of the highainflow

rotor response to longitudinal gusts, namely, u great increase in shaft and
drive train loads with forward speed.

The rotor aerodynamic coefficients T t and _ result in hub thrust and
torque terms that damp the zp and a. motions, respectively. Since
T_ _ -(cos ¢)/4 and o-

_c, _ (I/ sin _)/{], the damping of s[_ decreases slightly as g
il]creases (its behavior is like that of /<'_), while the damping of a z increases

greatly with V (its behavior is like that of WU). The thrust force due to

inflow T_ is a usual feature of rotor dynamics; the influence of the torque due

to rotational speed &t_ is much different than for low inflow rotors, however,
because the coefficient is orders of magnitude larEer in high inflow.

In the derivation ot" the low-frequency results, it was assumed that

v¢O # 0; for the autorotation case, however, re0 = 0. Then CQ = 0 always; and

the characteristic equation has a factor _, that is, one root at the origin,

which indicates that the proper degree of freedom is <0, the rotor speed per-

turbation. The other root of the collective lag mode is at _ = -yQ_/2I_o

(uncoupled), that is, a real root with time constant T =2I_o/y Q --" 12/yV in ¢
The low-frequency response of _0 is then & s .

_0 -
1

o. [:?e eo + ¢x(7:_-, , ";p) + " ";,,_ + ,Paa] (85)

There is a response of ¢0 to shaft roll d.. even though v : O, because CO has_, • c_0
been defined with respect to the roiled shaft position; the response is such

that ¢0 - &s, the rotor speed perturbation with respect to space, is exactly

zero. From the expressions for the coefficients with only the c_. a terms, it
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follows that VQ_/Q_ = -V2]'2/V2f2 : -1 exactly (eqs. (34)); hence the response
of the rotor speed perturbation to a longitudinal gust (at low frequency] is

- -1 (s(,5
u G

This is the response required to keep the inflow ratio constant, including the

velocity and rotational speed perturbations, as shown in the following

ann 1ys i s :

(V) 6V V6(g_R)
_ = _--_ - (9J75 2

v [_ 6i_5]= e-_ - eR

V

tlence 6(V/gdg5 : 0 implies [o/uG = -1 as given above. This result holds even

for the complete model of the rotor and cantilever wing.

Lateral/vertical system: Flap response- Consider the lateral/vertical

group of degrees of freedom, inputs, and hub forces (eqs. (445 to (4655. The

cyclic lag degrees of freedom, ¢lC and {1_, are dropped to obtain a manageable

set of equations. The rotor motion is then described by' two degrees of free-

dom (tip path plane tilt 81C and 81S) excited by lateral and vertical shaft

motions (shaft tilt, a m and azj and hub inplane velocity, _['p and 7)p5, aerody-

namic gust (angle of attack ag and sideslip 8G), and cyclic pitch control (_10

and elS). The influence of the rotor is transmitted to the shaft as rotor
drag force and side force (C H and Cy) and pitch and yaw moments (CMU and CMa:)

acting on the hub.

The low-frequency response is of interest here so that the basic response
of the rotor in high inflow can be examined, and also as a basis for investi-

gating (in a later section) the influence of the rotor forces on the aircraft
stability and control characteristics. For stability and control problems, it
is convenient to obtain the equations of motion in a body-axis system rather

than in the inertia axis system used so far (the inertia axes are most conveni-

ent for the cantilever wing problem, which is the main subject of this report).

In body axes, the trim velocity of the rotor (V + v) remains axial during

shaft tilt by a m and a_; then converting to body axes requires that the terms

in the equations of mo_ion and hub forces due to the inplane component of

( V + u) produced by the shaft tilt (i.e., the (V + v)%0 and (V + v)%j terms)

be dropped. The shaft angular velocity &x and &. must then involve a centrif-

ugal acceleration in order to turn the vector ( V_+ v5 to keep it aligned with
the shaft. This may be accounted for by simply adding the rotor mass to the

aircraft mass; hence the equations presented here do not incorporate these

centrifugal acceleration terms. The perturbations to the aircraft velocity

iV + v) are given by the hub velocities Xp, yp, and ap. These motions and
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aerodynamic gusts are the only sources of inplane velocity of the hub in body
axes.

The equations of motion for 81C and BIS (in transfer function form with

the ax and ay terms dropped as discussed previously) are

Zfl*s2-xM_s+I B* (v82_ 1)+KpyM O

- (::8*8-YM_)

1C + yVM + 8a '5

: %\°iJ vM -;: +

Is*s2-yMfls+II3*(vfl2-1)+KPYM,oJ 1:

- I* o_v'_.'_I ,:'_( rsa'- "'_' d

(8 7)

Consider the response of the rotor to cyclic control, gust, inplane hub

velocity, and shaft angular velocity,. For the low-frequency response, only
the lowest order terms in s are required and the equations become

= +
_a

(88)

Only the steady-state terms in the flap response are retained. A steady" tip
path plane tilt gives a flapping velocity in the rotating frame so there are

moments through M_; since shaft angular velocity involves a Coriolis accelera-

tion of the rotating blades in the hub plane (SiC and 81 _ are flapping with
respect to the hub plane), inertia terms also appear.

Inverting the matrix on the left-hand side of equation (88) gives the

solution for fllC and B1S:

: + _ _ + _a + X

\ YI.J

(89)
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who re

"I,'__ =

I *(v# 2 - l) + EpyM 0 (90]

-y?_J,_

The parameter ,"J, is a measure of the lateral/vertical coupling of the rotor

response (lateral/longitudinal fc,r helicopter orientation); ?.,_, = 0 for v_. = 1

and kL'i) : 0, that is, for an articltlated rotor with no binge spring or offset,

and no pitch/flap cout_ling. [:rorl equation (09], it also follows that ,Y._ can
be written if, : ;;:x('0[_ - l}/-Y?.!i_, _o the parameter is _{ measure of the
(effective) stm_ctura] restraint of the blade flapping motion.

In the flapping response (eel. (89)), the bracketed qu_ntities give the
basic effectiveness of each kind of excitation, while the factor involvin_ _:'

accounts for the rotor flapping dwmmics. Inside the brackets, most of the
Lock number factors cancelled, irldicating that the response is main]v a bal-

ance of aerodynamic forces; the (,xception is the third term, which is a bal-.

ance of the inertial forces t,_F_._ j due to shaft an_,ulnr velocity &:. and :% _nd
nerodynamic forces (-yH_) due tO tip path plane ti it fSl57 and ?1." Cyclic'

pitch control, hub inplane velocity, and hub plane angulnr velocit\" result in

aerodynamic moments on the disk. These moments c,'mse the rotor to flap until
the moment on the disk due to thc. flapping cancels the applied moment, thus

achieving equilibrium deflection. The coefficie;_t ?_:"_ is the effectiveness of

flapping in producing a moment or the rotor disk, hence its appearance in the
denominators always. Blade cyclic pitch producc.s an aerodynamic moment on the

disk through ?40 , so the net centre] effectiveness is. _'0"_0/-7¢_'_ tlub inplane
velocity produces an aerodynamic moment on the disk througt_ 5J:., with a net

effectiveness of MJ-N_. With the present model, there are three sources of
hub inl)lane velocity: shaft velocity g[, and _/p, vertical and lnter:tl aerody-

namic gusts a d and Bg7 (which are angles, so Vu¢ and VS,Z are the corresponding
velocity perturbations), and angular velocit'/ of the shaft about a pivot a

distance )'. aft of the hub producing hub velc, cities ;/_a: and L,:_,.

Consider the response to sha:ft angulaT" velocity ,-'i::: and :'_. The inplane

velocity due to angular velocity _tbout a pivot aft of the hub_gives a moment

on the disk (hence flapping) throt_gh 74u a_; discussed previously. The third

term in equation (89), with effectiveness 22_a/-yN _, is the lag of the tip

path plane required to precess the, rotor to follow the shaft (_'1!' and BI.C are

flapping with respect to the shaft). For the tip path plane to follow the
angular velocity of the hub plane requil:es a Coriolis acceleration of the disk

of magnitude 22_,a_, because of the rotation of the blades. A moment is

required to produce this accelerat:ion, that is, to precess the rotor disk, and
that moment is supplied by aerodynsmic forces on the disk that result from the

flapping velocity of the rotating blade's. The tip path plane tilts back, lag-

ging the shaft tilt, until the aerodyn;amic moment due to flapping (of magni-

tude -¥M_81C) is just large enough to provide the required acceleration.
There is a 90 ° azimuthal phase difference in the response, characteristic of

rotor or gyro dynamics: shaft pitch 5.7/ requires a lateral moment on the disk

to precess it; that lateral moment is supplied by the flapping velocity in the

rotating frame due to steady tip path plane pitch _1(7" TI_o flapping dxmamics

also introduce a phase shift if N, ¢ ().
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The last term in equation (89) is also a flapping response due to shaft

angular velocity. Hub plane angular velocity dtle to _g or &x produces a flap-

ping velocity of the rotating blade, hence a monmnt on the disk through -¥M_.
The rotor flaps until the moment on the disk du_ to tip path plane tilt, which

also acts through -yM_, is just large enough to cancel the exciting moment.

Both moments in the equilibrium are aerodynamic, so the Lock numbers cancel.

Both are due to the flapwise velocity of the bl_de so the coefficients M_ also

cancel. The net effectiveness, then, is exactl3r i. The last term in equa-

tion (89) results in a coupling of the lateral _md vertical response of the

rotor to shaft angular velocity (_x and _y), ev(m if ?J, = 0. The basic flap-
ping dynamics in the nonrotating frame ias disctlssed previously) consists of

low-frequency and high-frequency flapping modes (_ :_ 1), each of which appears
as a wobble in the tip path plane. The basic rc_sponse of the rotor then
involves coupling of the lateral and vertical mention, a fundamental character-

istic that results from the rotation of the blacles. The low-frequency response
should involve only excitation of the low-frequcmcy flap mode (_ - 1), but the
lateral/vertical coupling is still expected.

When ;]_ = 0, the first factor in equation (89), representing the influence

of the rotor flap dynamics, reduces to a unity matrix. With a hingeless rotor

(v B > 1) or pitch/flap coupling (Kp ¢ 0), /V_ is no longer zero and the flap

dynamics matrix introduces a phase shift and a nmgnitude change in the flapping

response. An example is the re:q_onse to cyclic pitch control, 010 and @IS.

The diagonal terms in the flap dynamics matrix produce a tip path plane tilt

following the control,plane tilt, through equil_'Lbrium of the aerodynamic

moments due to blade pitch and flapping. The o_f-diagonal terms correspond to
lateral/vertical coupling of the tip path plane/control plane tilt, which

results from the aerodyqmmic pitch moment being reacted by a moment due to

structural flap restraint (v8 > 1) or pitch/fla t) coupling (lip 6 0), hence due

to ]g_ _ 0. The two sources of tip j_ath plane tilt produced by control plane
tilt (or any other excitation) have a 90 ° azimuthal phase difference because

the diagonal terms are due to flapping velocity (in the rotating frame), while
the off-diagonal terms are due to flapping displacement.

Consider the individual terms in the flap responses - each has the form

of a basic control power multiplied by a factoi. (involving ?J_) that accounts

for the flap d_mmics. The effectiveness of cyclic pitch is given by" (using
the approximations based on the inflow :_t an ei'fective radius)

AO _ 1
__,. - - 1 + tan2 _ = 1 +

_g cos 2 qb ,_
(9l)

The pitch control power increases with V then, due to both an increase in the

pitch moment _I_ and a decrease in the flap da!nping ;4_ (as shown in fig. 4).u
the increase Is slow for the usual range of F' (up to 1 or so). With the
influence of the flap dynamics, the response to control is
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and similarly for SIS.
magnitude

 BlC Me/-M

881S 1 + N, 2
(92)

_Sl C (Me/-M[)N,

_@IS I + N, 2

The total flapping response to cyclic pitch then has a

aIB MO/-M _ (93)

2101 _1 + N, 2

and an azimuthal phase shift of

A_ = tan -I N, (94)

Then if N, _ O, the magnitude of the response is always decreased (by a factor

(l + N,2) -I/2) whether N, is positive or negative (vB2 - 1 is always positive,

but the pitch flap coupling Kp can be positive or negative); and N, produces a

phase shift of the response, the sign of which depends on the sign of N,. The

coupling parameter N, is approximately

N_ =

I*(_S2 - I) MO ~ V2 _ i Kp
+

+ Kp = .f(cos  )IS cos2
(95)

so N, increases somewhat with the inflow ratio V. The effect of the flap

dynamics (N,) on the response to all the inputs follows that on the cyclic

pitch (a magnitude decrease and an azimuthal phase shift), so, for the

remaining terms, only the basic control power is examined.

The response to inplane hub velocity is given by

_SIC _ Mp =-_4 tan ¢ = V

_d:p -M R 3 re2

(96)

The flapping due to hub inplane velocity increases substantially with V then

primarily because of the increase in the speed stability Mp but also because

of the decreased flap damping M R (fig. 4). This important influence of the

high inflow aerodynamics produces significant differences in the dynamics from

that of low inflow rotors. The response to aerodynamic gust is

aaGaSlC M _r__Ve/2
_ P

_MI_ tan 2 _b =
(97)
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This is the response to angle-of-attack changes rather than just velocity
perturbations, hence the extra factor of V (though both are hub inplane

velocity changes). The substantial increase in high inflow of the flapping

produced by hub velocity results in problems characteristic of the proprotor

aircraft: high flapping or blade loads in maneuvers and gusts and substantial
coupling of the rotor dynamics with the shaft motion.

The flapping response to shaft angular velocity Gy is (for N, = O)

_810 2I_ M 16

-yM + h i = 4_ay _ y cos ¢ + h y tan ¢ (98)

The second term is due to the hub inplane velocity with shaft angular motion

about the pivot a distance h aft of the hub (its behavior was discussed pre-

viously). The first term is the flapping required to produce a moment to

precess the disk to follow the hub plane; it increases somewhat with V because

of the decrease in the flap damping H_. The response to &x is

_810

3_. - -I (99)
x

the equilibrium of the moment due to flapping velocity due to _x and 81C ,

which does not change with V. For values of the Lock number, mast height, and

inflow velocity (y, h, V) typical of proprotor operation, the primary contri-

bution to the flapping response due to angular velocity of the shaft is the
term required to precess the disk:

m _ 16

26. ad y cos
Y Y

(lOO)

With only the inertia term of the response to shaft tilt, the influence of N,
is the same as for the response to cyclic pitch.

Lateral/vertical system: Hub forces and moments- Consider the lateral/

vertical hub forces and moments: rotor drag force CH, side force Cy, hub

pitch moment CMy, and hub yaw moment CMx. Retaining only the flap degrees of

freedom, dropping the ax and ay terms (giving inplane components of V + v) to

convert to body axes, and then retaining only the lowest order terms in s,
yields the following hub forces:
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\-_a [ -HeXP

, (H + R) )P

2CT 81S/

[

+ He I-@ISI

\ elC/

+

\/8 G

h(Hp + R -&x

(101)

The hub moments are simply

/2CM_

\--_-/ \ _is/

(lO2)

If one substitutes for the low-frequency flapping response,

-
---_- +

__ da2C 1 + N, 2

M /[_p-VOLG÷haY_ 2I_o_( &y _l

+_w._t J"_',u_'-_x"

+ H"8*-HeKPN,

the hub forces are

@IC

'-CT

_--i- N, (M,H_+HeKP)
2CT

/2C T C T

da N,(N,H_+HoK P)

i + N, 2 &

(103)
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Basically, the response for each input is a direct H force plus a contribution

from the rotor flapping motion; the last term is the aerodynamic force pro-

duced by the flapping velocity due to shaft angular velocity, combining the

direct and flapping terms. Note that the hub force response is considerably

simplified if N, = 0; then the tip path plane tilt produces hub forces through

only 2CT/_a + H_*, and the matrix in the last term reduces to simply CT/_a

(which may then be neglected for high inflow operation). The hub moment is

simply a constant times the flap response.

Pivot moment - The total moment about the pivot a distance h aft of the

hub is given by the hub moment plus the hub forces acting on the arm h:

oa /pivot

. 2CII
- + h

ua csa/

(]04)

The hub moment is directly proportional to the tip path plane tilt, B1C and

BIS; hub forces (eq. (101)) are also produced by the tip path plane tilt

through 2CT/csa + H_*, the first term being the thrust vector tilt and the
second, the negative H force contribution of high inflow. (The off-diagonal

terms that result from pitch/flap coupling are not considered now, that is,

it is assumed that Kp = 0.) The total moments about the pivot due to the tip
path plane tilt are then (after the hub moment and hub force terms are
combined) :

I::'iI: .iIcaa ,(v 2 _ + h{2C T f31

A . Mx Y (105)

1)

_e combination of terms appearing on the right-hand side has already

appeared in the equations of motion for the four-degree-of-freedom model

(eq. (26)). With this result, a simple design criterion can be derived for

optimum proprotor/pylon dynamic stability. If the total factor of BIC and _lS
is set to zero, with a proper choice of the parameters, the moments due to the

rotor flapping dynamics (at least the low-frequency response) will not be

transmitted to the pylon. Then the pylon is effectively decoupled from the

rotor and will not respond to rotor flapping motion: this is expected to

improve the stability of the proprotor/pylon system. W_en the rotor lags the

shaft in response to shaft angular velocity, that tip path plane tilt produces

a hub force through 2C_/_a.+ H_*, which is dominated by the negative H force
term H_* hence it results _n negative damping of the shaft tilt motion. This
effect, in particular, is nullified by setting the total tip path plane tilt
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factor of equation (10S) to zero. _]_e thrust vector tilt term 2CT/c_a

contributes positive damping, but it is negligible compared to H_{* for high

inflow. Thus the criterion essentially is to use the positive damping avail-

able from the hub moment of a hingeless rotor to counter the negative aerody-

namic damping of H'B*, and the design rule becomes a specification of the flap

frequency v B required to satisfy that criterion.

Setting the coefficient of BIC and BIS in equation (105) to zero gives the

design choice for v_:

IB * (106)

---1 + yh sin
6

For typical values of y, h, and V for proprotor operation, equation (106)

requires that v B _ I.I or so such a frequency is easily obtained with current
hingeless rotor technology or even with an offset hinge on an articulated

rotor. An obvious ]imitation is that H_* is a function of V while v B is not,

so the design criterion can be met only at one design speed.

This result was first obtained by Young and Lytwyn (ref. 18). On the

basis of optimum flutter stability with the pylon decoupled from the rotor,

they obtained the above result for the optimum flap frequency vR" Numerical
calculations of the flutter boundaries for a four-degree-of-freSdom model (a

flapping rotor on a pylon with pitch and yaw motion) show that the optimum

flap stiffness is actually somewhat above this. _J_ey suggested that a value

about 5 percent higher be used:

(107)

With this choice of _, the remaining rotor force acting on the pylon is
mainly a negative spring force due to the speed stability coefficient H_*;

this force leads to a divergence criterion, which does not require very much

pylon stiffness. They also point out that the only parameter of the pylon to

enter this criterion on vB is the mast height h, because it is essentially a

static decoupling criterion, so the pylon dynamics do not enter at all.

Unfortunately, the problem of proprotor dynamic stability is not so

easily resolved. This criterion for v B is based on pylon pitch and yaw motion,

while, for the rotor on the cantilever wing, the degrees of freedom produce

much different shaft motion and respond differently to hub forces and moments.

This criterion is based on only the low-frequency response of the rotor, and

only the flap motion at that; the dynamics involved with high inflow proprotor

instabilities is more complex. However, many other design considerations are

involved in the choice of wing stiffnesses and blade frequencies; therefore,

75



while the proprotor dynamic stability must be verified, and perhaps the
parameters modified somewhatto increase the margins, the actual choice of the
rotor and wing configuration (including the placement of the fundamental fre-
quencies) is not necessarily based on the criterion for optimum dynamic sta-
bility. The above result indicates that, for practical applications, a
flapping frequency greater than 1/rev should be favorable for rotor and wing
dynamic stability.

Whirl Flutter

This chapter examines the classical whirl flutter problem: a truly rigid
propeller on a pylon with pitch and yaw degrees of freedom. With the infinite

blade stiffness of a truly rigid propeller, there is no blade flapping motion.

The theory developed here may accommodate the rigid propeller by letting the

flap natural frequency _B go to infinity; in that limit, the four-degree-of-
freedom model reduces to two degrees of freedom, pylon pitch a7 and yaw ax,
which is the usual whirl flutter formulation. Nomenclature particular to the
whirl flutter analysis is given at the end of this section.

The whirl flutter model may exhibit instabilities at high forward speed

or low pylon stiffness, primarily because of the high inflow aerodynamics. In

fact, it has much different behavior than the flapping rotor case. The whirl

flutter problem is considered here because it is a special limit of proprotor

dynamics, often mentioned in the literature as an ancestor of the current

preprotor analyses; and because, as a two-degree-of-freedom problem, exact

expressions for the stability boundaries may be obtained. However, the

dynamics and aerodynamics of the whirl flutter model are found to bear little

relation to those of the flapping proprotor.

The whirl flutter equations can be derived from the four-degree-of-freedom

equations of motion already given (eqs. (26)), with the limits v8 ÷ _ and

I31C,_IS -_ O. tlowever, (_2 _ 1)_1C and (v_ 2 - 1)B1S must remain finite in this
limit because the propeller can still transmit a hub moment to the pylon; then

the _IC and B1/7 equations become simple substitution relations for the pylon
equations. A more direct approach is to first substitute for the hub moment

(._ 2 _ 1)_1C and (vB2 1)B1S in the pylon equations of motion, and then take

the limit of B10, B1S ÷ 0. The pylon equations of motion for the four-degree-
of freedom model (eq. (8)) are

[ ](1 ](t ?0 ]<)

2C _1tll1

= T _,a +

C
I_ 2CH<I

yh _a

aa/

(lO8)
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which is simply a mass/spring/damper system for pylon pitch and yaw, forced by

the rotor moments and inplane forces applied at the hub. The equations have

been made dimensionless (using p, _, and R) and the inertias, damping coeffi-
The

cients, and spring constants have been normalized by dividing by (N/2]I_.

hub moment is

The flapping equations of motion from the four-degree-of-freedom model (eq. (8)

for N -> 3) are rearranged as

+ y - _ (110]

-2 x MF1

With this result, the hub moment in the pylon equations of motion may be

replaced; then the indeterminant combination [v82 - I)B no longer appears, and

the limit 81C, BIS + 0 may be taken properly. In other words, the BIC and BIS

degrees of freedom may be dropped after substituting for the hub moment, thus

the equations of motion are

11CI'0 _y " *
+

÷_ x

MFlC h _
ao + --_a

= y

2Cy

(i_1)

The pylon is now forced directly by the flap moments on the disk MFI C and ME1 S,

which are now transmitted directly to the hub rather than through the flapping

response.

77



The aerodynamic forces follow directly from equations (23) for the four-
degree-of-freedom mode,with the 81Cand SIS terms dropped, of course. The
hub momentsand hub forces are then (hub momentis obtained by use of eqs.
(109) and (ll0) with eqs. (23)):

d 'c ii[0IC") •
o _ L-_:% H;Jk.xl

[o4- _ +

(Y + v)M u 0 c_ ,% 0 J\Olc, /

(112)

(_ E taa -h (,_'u + :_;L) ::iS _y " +

-:/_ -h(:: u + n u kC_x/

() :")elS v(:: R )4- + 4- _'

t/O el C u p k8 G

(P + v)(itp + R ]:_Y_

(11.3)

A comparison of these expressions with the results obtained for the

flapping proprotor dynamics shows that the whirl flutter problem involves con-

siderably different behavior. Comparing the hub forces with equations (101)

indicates that the response to shaft tilt, cyclic control, and gusts is the

same (except that eqs. (101) are in body axes, so the _x and ay terms are
dropped). With the rigid propeller, however, there are no longer hub forces

caused by flapping, acting through the thrust vector tilt and the negative :!

force due to inflow (the 2CC/aa + H_* factor). 145b forces due to the tip path

plane tilt are naturally not part of the whirl flutter problem since they arise

only with the flapping rotor, and that difference is very significant.

Comparing the hub moment with equation (89) (the hub moment for the

flapping rotor if it is multiplied by (uS2 - 1)/y) shows that the role of the

flap moments is altered. "_le rigid propeller limit of uS2 ÷ _ corresponds to
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the limit N, ÷ _ in equation (89), and with that the two results are identical

(except that in eq. (89) the ax and aW terms were dropped again for body axes,

and the inertia terms _x and _y were _ropped for the low-frequency approxima-
tion). The more appropriate llmit for studying the flapping rotor dynamics is

_82 ÷ l, that is, N, ÷ 0. Between N, ÷ _ and N, + 0 there is a 90 ° azimuthal

phase shift in the influence of all flap moments. For the rigid propeller,

the flap moments on the disk are transmitted directly to the hub while, for

the flapping rotor, there is a 90 ° azimuth lag (for _8 = i) from the applica-

tion of the flap moment to the achievement of maximum tip path plane tilt.

IIence the role of the rotor in the whirl flutter behavior changes greatly

from that for the flapping rotor. The Coriolis flap moment and the speed sta-

bility moments on the disk (Mv) now are off-diagonal terms (i.e., coupling

terms), while the flap damping disk moment (M_) now contributes directly to

the damping of the pylon motion. The hub inplane forces are given solely by

the direct terms Hv and H i, with no contributions from tip path plane tilt.

The speed stability coefficients, M_ and H_, have a dominant role in whirl

flutter dynamics.

If one substitutes for the hub forces and moments, the equations of motion

for the pitch and yaw motions o£ a pylon with a rigid propeller are

E• ay

+ _Ky*-hy(V+v) (H+R )

m -y(v+v)M _*-h_ (V+v) (H+R. _x

: [hyHo

L YM o h Hd l L
(114)

These equations are valid for propellers with three or more blades. As usual,

the notation of the aerodynamic coefficients indicates their source: H, for

hub forces; M, for flap moments; subscript v, for inplane velocities; and sub-

script _, for flapwise velocities.

The inertia terms are the sum of the pylon and rotor inertias:

I I + (N/2)Ib
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where Iy + (N/2)I b is the total moment of inertia of the pylon and rotor (for

N _ 3); _ already includes the contribution h2NMb of the rotor mass to the

moment of Jinertia about the pylon. The damping terms (diagonal) have contri-

butions from the structural or mechanical damping of the pylon (Cy* or Cx*
and from the aerodynamic forces on the rotor. All contributions to the

diagonal damping terms are positive (H_ and -M_ are positive) so the net damp-

ing is always positive. The aerodynamic contributions result from the flap

damping of the rotation of the hub plane by _x or _y, and from the inplane

force due to the hub inplane velocity during pylon an_ular velocity. Based on

the equivalent radius approximations, the aerodynamic damping terms are

y[-M_ + h2(_u + R)] _ Y_/c°s__ + _2 v sin2_)

The first term decreases some with V, while the second term increases. The

spring terms (diagonal) have contributions from the structural restraint of

the pylon deflection (Ky* or Kx* ) and from the aerodynamic forces on the rotor.

The aerodynamic term, a negative spring (Hv > 0) from the inplane force due to

the inplane component of (V + v) produced by pylon pitch or yaw, is
approximately

-hy(V + v)(HIj + RI;) _ -hy 2
V2 sin

which increases with V. The coupling spring term (off-diagonal) is entirely

aerodynamic, from the flap moment on the disk due to the inplane component of

V + v produced by pylon pitch or yaw; it is approximately

V sin
_(v + v) G _ 6

which increases with V. The coupling damping terms (off-diagonal) have inertia

and aerodynamic contributions. The inertia term (-2& x or 2&_) is the Coriolis

acceleration produced by the pitch or yaw angular velocity of a rotating body.

The aerodynamic terms are from the flap moment due to the inplane velocity

produced by the pylon angular velocity, and from the inplane force due to the

angular velocity of the hub plane. From equation (59), it follows that

3C T

_a
<< 2

hence the aerodynamic contributions may be neglected compared with the
gyroscopic coupling.

The whirl flutter model then consists of a mass/spring/damper system for

pitch and yaw, with positive aerodynamic damping, a negative aerodynamic

spring, gyroscopic coupling in the damping, and aerodynamic coupling in the
springs.

8O



Consider the single-degree-of-freedom problem: Kx* _ _ so _x + O; the

equation reduces to

(fy_ + 1)_y + [cu_ + h2¥( G + G) yM_l_y + [_y_ - h_(v + v)( G + R_)]_y

= hyH@@IS + hyV(H_ + Rv)a G (I15)

The damping is always positive, so the system is stable in this limit so long

as the net spring constant (structural plus aerodynamic) is positive:

Ky* > hy(V + v)(Hv + RV)
(116)

This is simply a static stability boundary, that is, the divergence criterion

(for Kx* _ _). With one spring stiff enough, the system always has dynamic

stability; the only stability criterion remaining is the divergence boundary

for the other spring, due to the negative aerodynamic spring term.

Consider the case of no aerodynamics, but with gyroscopic (Coriolis)

coupling included. For the isotropic case (same mass/spring/damping constants

for both pitch and yaw), the characteristic equation is

[(I* + l)l 2 + C*I + K*] 2 + (2_) 2 = 0 (liT)

The four roots will have negative real parts so long as y, K*, and I* are all

positive. Therefore, the system is always stable, even with gyroscopic

coupling, if there are no aerodynamic forces on the rotor•

It follows then that any dynamic whirl flutter instability can only be

due to the aerodynamic cross-coupling of the pitch and yaw motion; there is

only one such term, namely, the off-diagonal spring terms ¥VM_. Since this

aerodynamic force increases with forward speed V, an instability is expected

to occur eventually as the inflow is increased for a given pylon and rotor.

Of course, there is the possibility of a static instability (divergence) due

to the negative aerodynamic spring term. Whirl flutter instability is then

the result of the high inflow rotor aerodynamics.

In Laplace form, the homogeneous equations of motion are

"(_Ty*+ I )s2 + [Cy*+h2y(Htl+R_l)-yM_]8
-2s+y(V+v)M v

+ [_*-hy (v+v) (S_+_) ]

2s-y(v+v)G
(_rx*+i) s2+[Cx*+hay (H#+R_)-yM_] s

+[_x*-hy(V÷v) (S_+R_)]

(ii8)
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To simplify the notation, write V for V + u, H_ for /:_ + R_, and I* for I* + I:

sD_-Lp

= 0 (119)

where

Cv = h2yHp - yM_

Kp = hyVHp

DV=2

Lu = y VMp

These are, respectively, the aerodynamic damping and negative spring, the
gyroscopic coupling (which is given a symbol so that its influence can be

identified in the results), and the aerodynamic cross spring. Combining the

structural and aerodynamic terms in the spring and damping coefficients yields

yS 2 + Cys + KysD - L
= o (12o)

This last and simplest expression is used for the derivations.

The characteristic equation for the whirl flutter eigenvalues I is then:

(zux2 + cu , + ::y)(z=x2 + c=x + Kx) + (-xD + s)2 = o (121)

The stability of the system may be investigated by examination of the root

loci, that is, the behavior of the eigenvalues with variations in V or some

other parameters. For a two-degree-of-freedom problem, however, it is possi-

ble to solve explicitly for the stability boundaries. The stability boundaries

on the Kx* , Ky* plane (i.e., as a function of the pylon stiffnesses) is the

usual form for the presentation of the whirl flutter solution. The other major

parameter is the inflow ratio V. Two kinds of instabilities are possible with

a system that can be described by linear constant coefficient differential

equations. The first is divergence, a static instability that, on the I plane

(root locus), takes the form of one root on the real axis that passes through

the origin into the right half plane. The second type of instability is

flutter, a dynamic instability that takes the form of a complex conjugate pair

of roots that cross the imaginary axis (at finite frequency) into the right

half plane. The stability boundaries for these two types of motion are
examined.
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Divergence- The divergence b_)undary is defined by the requirement that

one of the roots of the character:istic equation be at the origin. For _ = O,

the characteristic equation gives

KyK x + L 2 = 0 (122)

or

(Ky*- - + 2 : 0 (123)

therefore,

(Ky* - hyVHp)(Kx* -- hyVHp) + (XV?JV)2 : 0
(124)

This sum must be greater than zero :for divergence stability. An instability

may be encountered if one of the spring constants, Xy* or Kx*, is too small,

so the negative aerodynamic spring make:; the first term and hence, perhaps,

the sum negative. Sufficiently large structural spring restraint of pylon

pitch and yaw motion guarantees diw)rgence stability.

T

The equation for the divergence boundary is a hyperbola on the Ky , Kx*

plane; the divergence hyperbola is shown jn figure 6. The asymptotes are the

fx, fy axes, that is, Kx* or Ky* = K_ : h_VH The asymptotes give the diver-
gence criterion when one of the springs is very stiff; for Kx* ÷ _, equation

(124) reduces to (for stability)

xU > 0 (12s)

or

Ky* > Kp = hyVH v (126)

which, indeed, is the criterion obtained pre_'iously for the single-degree-of-

freedom limit. This criterion is that the total spring constant - aerodynamic

plus structural - be positive. For finite Kx "_, the cross spring LU = y_fp
• . • . K _

introduces coupling of the am and a_ motiorl, which eases the crlterlon on w •
O

The hyperbola intersects the line i_m = -K u (th(. -45 line on the Kx, Kz_ plane)

at points K;_ = ±Lp = ±yVMn, where the closest a.pproach of the two hyperbola
branches occurs. The minimum width of the divergence-stable corridor is thus

2/2L_ = 2¢r2yVM_. These points occur in the fir_;t quadrant of the Kx*,Ky*

plane (fig. 6), only if Lp/Kp < 1 (which is. in fact, true only for rather

large V]. In any case, the cross spring LV is a good measure of the corridor

width at low Kx* and Ky*

In terms of the approximation based on the equivalent radius, the

negative aerodynamic spring - which determines the asymptotes of the divergence

boundaries - is

V_'-sin__.
Kp = hyVHp _ hy 2
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which increases with both V and h, so both decrease divergence stability. The
minimum width of the divergence-free corriJor at low >:* is

2¢'2-25p = 2¢"Z2yYH_ -_ 2/2-2y 7 sin t
6

which increases with V.

_I1_edivergence boundary is then determined by two aerodynamic influences:

the ,_i_ 'ct negative spring Kp = /zyrq/_;, _kich gives the location of the asymp-

totes, and the cross spring coupling gl_ =: y_!p, which gives the width of the
corridor at low Y_' independent of A'p. ]'}:e first is the direct hub force due

to the rotor and the second is the flap u_oment on the rotor - both react to

the inplane hub velocity component of 'J + _) due to the shaft tilt by pylon
pitch or yaw. Both spring terms increasc with inflm, ratio V; the effect of
the direct negative spring also incre_se._; with h since it is a hub force.

The pylon and rotor will always be .';tatically stable if both Kx* and KU*
are greater than the negative aerodynamic spring /f;;, which is usually not a
very stringent criterion on the pylen st!illness. Static stability is also

achieved always for the nearly i sotJ'opic case, ;4x* _ K7/*, even if the stiff-
nesses are smaller than t2_. The cross spring L,j = ¥Z_ stabilizes the diver-
gence motion if the springs are not. too stiff, so that both degrees of freedom

are active and the coupling of the aerodynamic spring may be effective. This

effect produces the divergence-free corridor at low ;(*.. floweret, the low Ky*
and Kx* region will be within the fiutter instability region, so the presence
of the divergence-free corridor has little practical application.

Flutter: Some preliminary c:onsiderations- Some general results for whirl

flutter d)mamic instability are !presented here; they were originally obtained

by Young and Lytwym (ref. 18). Yh(, equations of motion are

= 0 (lZ7)

Forming the vector product wi'¢h [_g &a:] (i.e., the sum of &y times the first
eqtv_tion and ,'_j: times the second), one obtains

- [Cy&!/2 + ? & 2 , • •_:c x + _l_('-_x%/ - aya x) ] (128)

']_is equation is an energ,z balance for the whirl flutter motion. The left-

hand side is the t:ime rate of ckange of the sum of the kinetic and potential

energies of the ._vste_, *,:hich mt_st always be positive (assuming that the diver-

gence criterion is satis4:'ied). If the right-hand side is negative, the total
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energy is decreasing with time, hence the system is stable; if it is positive,

the total energy is increasing with time, so the system is unstab]e. The damp-

ing contributions are always stabilizing and extracting energy from the system.

An instability is possible only if L_(axGy - _yGx) is sufficiently large and

negative. Again, whirl flutter is a direct result of the aerodynamic spring

coupling L_ = yVM_ e yV(sin _)/6. Since this coupling increases with V, an
increase in the forward speed eventually produces an instability (if the term

is negative). The gyro coupling due to the rotor (D_) does not appear in this

result, but it does influence the mode of motion of _x and _ and hence may

influence the stability. Without L_, no instability is posslble no matter

what influence D_ has on the motion.

Since the aerodynamic coefficient L_ is positive, a necessary condition

for an instability to occur is that ax&_ - ay& x < 0. Writing ay = q sin @

and _x = q cos @, it follows that ax&y _ ay& x = q2_ Hence the" requirement is

that _ < 0, which means a mode of motlon in which the shaft whirls in the

direction opposite the rotor rotation. This mode is called a backward whirl

mode; the motion with the shaft whirling the same direction as the rotor is

called forward whirl.

These considerations show that a whirl flutter dynamic instability for a

rigid propeller on a pylon occurs only in a backward whirl mode, and that it

is a high inflow instability due to the aerodynamic spring coupling My.

Flutter- The flutter boundary is defined by the requirement that a complex

conjugate pair of the roots of the characteristic equation be on the imaginary

axis, that is, that roots with zero real part be a solution. For I = i_,

where _ is real (_2 > 0), the characteristic equation becomes

(i oy ÷ -  2 y)(i cx + _  2Sx) + (-i D ÷ L)2 = 0
(129)

The real and imaginary parts of this equation are

(Ky - oO2Iy) [Kx - co2-Tx) - oj2OxOy + L2 - D2_o2 = 0 1

!
iw[ (Ky - oo2I_]Cx + (Kx - cO2Ix)Cy - 2DL] = 0

If it is assumed that _ _ 0, the imaginary part may be solved for w2:

(13o]

co2 = KyC x + KxCy - 2DL

IY Cx + IxOy (1"31)

Substituting the solution for _2 from the imaginary part (eqs. (130))

into the real part produces
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K2Z2OO + K2Z 2OC - 2Z_OOKK + K [Oo(_C + _O)(OvC + D2)y x x y x y x y x U Y x x .V Y x , .

+ 2Ds<_(oj, - cu_.) ] + x:, B,,,,(ruc %c.:'? <.<_.., _2) 2psz (cr - az)]Y U U x

[L2(I C + _ <' 2- i, ) + C I 4,U2L2] = 0....._x _=_u) + _-z_z<_ox + _<_) (c'uQ. + "< = u

This general second-order equation for Kx and '<7_defines the flutter stability
boundary; it is, in fact, the equation for a pa)abola. The equation is

simplified by a transformation to a new axis syst:e_, Y and Y defined by

T U T

Y : -C <v + -Y >%,

y __ ___
Ix CU _,
I I "'"

(133)

where 12 = Ix 2 + I_/2. This transformation is a rotation by the angle

tan -1 I,f/Ya: from the .<,,, and .<a: axes; for isotropic inertias, 1-7_ = Ix, the
rotatioii angle is 450. _ "l]le X and Y axes remain orthonormal uniter this rota-

tion. The relation o[' the .'" and Y axes to the o)'i_inal ]:_. and KT. axes is

shown in figure 7; the J_. and .C_t_ axes are, of course, already shifted by K_

(the negative aerodynamic spring) from the structural sprlno axes, _-x' and h!/
i_'ith this rotation of the axes, the equation for the flutter boundary becomes

IL([/'I' (C 2 '" 2) "_ ° £'_:] ..... s "r'" _C CI }

.. + ,- 2-:< C + (2 L, - i _ )- - z -] C _,," __,_.....
F2 + y,___ d x ,7 (_''" : _______ , __

] 2(7 _i' T
20 71

+z c -,,- -,l F z <. +: c 2,?,.</.,.+z c ) cS+ z,,(;t '< i/ + / 2 /_'> :/ /C &" Q' -/ &" X _/ "

L t2C C j L I2C ,c F,:: C I

F._IT_4,G2L 2 ]

* _" " J : o (134)
'x<'?j

which is, indeed, the equation for a parabola.

1]_is equation may be simplified further by expressing it in a form based

on the _sotropic case. Let sI and ¢C be measures of the anisotropy of the
moments of inertia and damping coefficients that

I a. - 2_/

tan CI : _ + I_ Icb _u
tan co _ + C_

(i.:5]
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and, as representative inertia and damping, use

= 2 + 7f I (136:1

C = V'Cx2 + Cy 2 t
The angle EI is the rotation of the X axis from the 45 ° line on the Kx,Ky

plane (fig. 7). With these definitions, the equation for the boundary becomes

_in 2(El + _C) (_cos 2c0 D2) 4DLsin(Ec-_i I)]

c + + c cos o j

+ X I cos _s C cos 2s C + D 2

= L2 aO) 4DL (eI eC ) 4D2L a cos 2eI

cos 2sC + I----C-- cos 2cO cos 2_O + D 2 + C2 cos 2s C

(137)

The equation is now in the standard form for a parabola, namely,

(Y + sy) 2 + 4dX = 4dh v (i38)

The geometry of the parabola is described by the shape factor d and the vertex

hv (fig. 7). The axis of the parabola is parallel to the X axis, but shifted

a distance Ey below it. The maximum value of X on the boundary occurs at the

vertex, a distance hv from the Y axis. The parameter d describes the shape of

the parabola: at a distance d from the vertex, the parabola has a width of 4d.

Moreover, the isotropic inertias (so cy = O and the parabola axis is parallel

to the 45 ° line on the Ky*,Kx* plane), the shape factor points (points A in

fig. 7) give the maximum values of Ky* and Kx* on the parabola.

To first order in cI and cO, that is, for small anisotropy, the parabola

axis shift, vertex, and shape factor are given by:

cy ---
C 2 + 2D 2

2I

2DL

(cI + CO) + --'C- (CO - cI)
(139)

hv "---0- I-C+
(140)

d _ C2 + 2D2 " (141)
4I

For small anisotropy, there is no first-order influence on hv and d, which

describe the parabola shape and position; there is only a small effect on the

orientation of the parabola axis, which is rotated by cI and translated by cy
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from the 45° line on the Ky, Kx plane. In terms of the approximation based on
the equivalent radius, the vertex is

where

Izv:-T _+

= * C* + C u + DU

Y VM (I yVM
: /-j-_. P ,

C* + _2yH U - yM_ C* + h2yHp -
(142)

L yVM
U _ iJ _ yV/sin $)/6

C* + C u C* + h2yHv - yM_ a* + y[[cos $)18 + h2[V sin %)/2]
(143)

The farthest penetration of the parabola that defines the dynamic stability

boundary is governed by the vertex hv. The size of hv is determined primarily

by L/C, the ratio of the coupling aerodynamic spring to the total pylon damp-

ing; The damping of the pylon, with structural and aerodynamic contributions,

decreases hv. The aerodynamic damping probably does not change much with V,

the larger term (M_) decreasing somewhat while the other increases. An increase

in mast height h is helpful for stability since it increases the aerodynamic

damping. The major influence of V is on the coupling spring Lu = yVMp

yV(sin t)/6, which increases with V, and so hv does also. The gyroscopic cou-

pling D v contributes to the instability, but the primary source is the cross

spring L u (the direct hub moment due to the inplane component of V + v pro-

duced by the pylon tilt, LU : yVMp). The shape factor is approximately

C 2 (C* + C_) 2 + 0 2d + 202
4I

242 I*

(C* + h2yH_ - yM_)2 + 4

2¢'2 I*

iv* + V[(COS %)/8 + k2(V sin %)/2]} 2 + 4

26_ T*
(144)

Small d means a flatter parabola; therefore, in this respect, damping

(C* + Cp) is bad for stability and the inertia I* is good, in contrast to their

influence on hv. The shape factor is relatively independent of V, however;

hence the main influence of an increase in the inflow ratio is to increase hv,
which shifts the parabola outward without changing its shape much.
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It may be concluded then that the whirl flutter dynamic instability is
due to the aerodynamic spring coupling Lp = yVM_, as suggested by earlier dis-

cussions. The shape of the flutter parabola is relatively independent of V,

while the vertex hv increases greatly with V; forward speed therefore decreases

the flutter stability by shifting the parabola outward. Since an increase in

damping, either structural or aerodynamic, makes the parabola broader, but

decreases the vertex size, the overall effect on stability is favorable. Con-

versely, an increase in the inertia is unfavorable. The mast height h only
enters into the aerodynamic damping of the pylon, where its influence is favor-

able. The gyroscopic coupling participates in the instability, but cannot

cause it if L_ is small enough.

Construction of boundaries- From the previous solutions, the whirl flutter

stability boundaries can be easily sketched on the Kx*,Ky* plane for a given V.

The relevant axes for both flutter and divergence are the Kx,Ky axes on the

Kx*,Ky* plane, which are offset from the Kx*,K * (structural spring) axes by
the negative aerodynamic spring K_ = hyVH v. T_e lines Kx* = K_ and Ky* = Ku

are constructed first.

The divergence hyperbola has as asymptotes the Kx and K_ axes, and a

minimum width for small Kx* and Ky* of 2_2 Lv = 2_-y_4_. S_nce the portions

of the divergence boundaries withzn the flutter boundary are not of practical

interest, the divergence boundaries are defined primarily by the asymptotes.

The flutter boundary construction begins at the 45 ° line from the Ky and

Kx axes. The X and Y axes are constructed, then rotated an angle _I from the

45 ° line; the parabola axis is then constructed a distance _y below the X axis.

The vertex of the parabola is given by the distance hv from the Y axis; from

the shape factor d, four more points on the parabola are easily found (on the

Y axis, and points A as in fig. 7). The shape factor points (A in fig. 7)

give the points of maximum Ky* and Kx*, at least for isotropic inertias

(_z = 0).

It is almost as easy to construct the boundaries exactly as it is to

sketch them. From the equations for the divergence hyperbola and the flutter

parabola (eqs. (124) and (138)), a number of points on each boundary can be

obtained quickly. Typical results are shown in figure 8, for V/fd{ = i,

h = 0.3, ¥ = 4, Ix* = Iy* = 2, and Cm* = Cy* = 0 (high inflow, typical prop-

rotor mast height and Lock number, isotropzc inertia of the pylon, and no

pylon structural damping). Also shown for the Kx* axis is the equivalent

pylon natural frequency, Wx 2 = Kx*/Ix* (per rev), to aid in the interpretation

of the results.

Whirl Flutter Nomenclature

Cp = h2yHp - yM_

Kp = hyVHp

D = Dp = 2

L = Lp = yVMv

direct aerodynamic damping

direct aerodynamic spring

Coriolis coupling

cross aerodynamic spring
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Whirl Flutter Nomenclature (Concl.)

Ky = Ky* - K_a

Kx = }iX* - KZ

Cy = ay* + C_

Cx = Cx* + C_

I - I

EI : tan_ l x y

total pitch spring

total yaw spring

total pitch damping

total yaw damping

inertia anisotropy

¢C = tan- l
cx+% damping anisotropy

<z

_y

d

representative inertia

representative damping

whirl flutter parabola axes

whirl flutter parabola axis offset

whirl flutter parabola shape factor

whirl flutter parabola vertex

Two-Bladed Rotor

A two-bladed rotor on a pylon is discussed briefly because early

experiments (the XV-3) and analyses (ref. 8) have dealt with this case. The

primary intention of this chapter is to indicate how special the N = 2 case is,
because of the fact that this system is described by periodic coefficient
differential equations.

Consider a two-bladed flapping rotor on a pylon with pitch and yaw degrees

of freedom. The rotor flapping motion is composed of a teetering mode and a

coning mode. As for N > 3, the coning mode does not transmit any net force or

moment to the pylon to excite its pitch or yaw motion. Moreover, the usual

case of a two-bladed rotor is the teetering rotor, which has both blades canti-

levered to the hub, which is then attached to the shaft by a single flap hinge.
For the teetering mode, the rotor acts as an articulated rotor, while, for the

coning mode, it acts as a hingeless rotor with a very high natural frequency.
Thus the coning mode may be neglected in this model, and the problem reduces

to three degrees of freedom: rotor teetering and pylon pitch and yaw. (This

differs from that for three or more blades, where the equivalent model has
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four degrees of freedom.) For N _ 3, the rotor motion in the fixed frame is

described by tip path plane tilt degrees of freedom (plus N-2 other modes that

do not couple with ax and ay). For N = 2, however, such a description over-
describes the transient motion since only one degree of freedom is involved -

the teetering mode. For N _ 3, the use of tip path plane coordinates results
in constant coefficient differential equations, even though the equations of
motion for the individual blades in the rotating frame involve a periodic
variation of the inertia and aerodynamic forces. For N = 2, the periodic coef-
ficients remain in the equations of motion since the teetering :node is really

a rotating degree of freedom. The fundamental difference between the dynamics
of the N _ 3 and N = 2 cases, which makes the two-bladed rotor much more dif-
ficult to analyze, is that fact: for N = 2, the equations of motion for the

coupled rotor and pylon system involve periodic coefficients even in purely

axial equilibrium flow.

The equations of motion for the pylon and rotating blades are the same as
for the four-degree-of-freedom development (eqs. (4)). If the coning mode is

neglected, since it does not influence the coupled dynamics anyway, the flap-
ping angle of the mth blade (m = 1, 2 here) is given by the teetering degree
of freedom B: _(2) = B for the blade at azimuth position _, and B(1) = -B

for the blade at azimuth position _ + _. The equation of motion for the tee-

tering mode is obtained by operating on the rotating equation with

1/2_7 _ (_l)m(. .); this operation yields the total teetering moment on the
m

rotor. With sin _m = (-1)m sin _ and cos _m = ( -1)m cos _, the equation for B

is
MF

k (145)
g + uB2B - (a U - 2&x)COS ¢ + (ax + 2_y)sin _ = ¥ a---c

m Already,
where MF1 = 1/2_'_. (-1) MFm is the aerodynamic teetering moment.

periodic coefficients appear with the pylon inertia terms as seen by the rotat-
ing blade. The evaluation of the hub moment and force for the pylon equations
and the flap moment for the rotor equation follows exactly that for the four-
degree-of-freedom model, up to the point where the summation over the N blades
is performed. At this point, the influence of N = 2 appears, usually the
introduction of periodic coefficients.

The following equations of motion are obtained (for convenience, V is

written for V + v, except in the gust terms, where it really is just V); and

H_ for H_ + Ru):
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l -cos
0 _/*

) 0
oIt'O

-" _y,:!#

+ I -hW7_2 sin

L-hy/l_2 cos t

(2+yhMtj)sin _+y?4_ cos

Cy*+h2ytt_( 1-cos 2_)+hytI_3 sin 2_

h2yk_ sin 2_+hy/#_(l+cos 2_)

h2yH_ sin 2q_-hyH_(1-cos 2V_) c_y

cx*+h2y[[_(l+cos 2_)-hyH_ sin 2qJ x

Vfl2+y?qoKp

,,jB2-1+Y ]__ - cos eg+;Zyl/O_2 sin

-t%2-1+yh _)2 sin qa+I i' K _ cos _yO2"

-yVM sin

Ky*-hY_f!j [1-cos 2¢,)

-hyF/f u sin 2_b

-YVMu cos

-hyVHla sin 2tp

Kx*-hyI/'k'_ (l+cos 2_)

F yM 6
= I hY_/@2 sin @

LhYH@ 2 cos

F yr_ sin

1 + I hYVH_(1-cos 2_)

L hyWf_ sin 2_

yTM_ cos 2_ I

V
hyPT/_(l÷cos 2_d 5"I

[146)

This three-degree-of-freedom set of differential equations has periodic

coefficients, with a period of 27. These equations can be solved, by the

techniques of Floquet theory, for the eigenvalues of the system, which indi-

cate the stability (as described, e.g., in ref. 33). These equations agree

with those derived by Hall (ref. 8) for the two-bladed rotor (that work

involved the XV-3, which had teetering rotors). Hall did not obtain the linear

differential equations, however; he solved the equations by numerical integra-

tion to find the transient motion, which a11owed him to keep the equations in

a more general form and even to include nonlinear aerodynamics.

The pitch input 01 is the differential blade pitch, a degree of freedom

corresponding to the teetering mode; 01 = [@(2) _ 0(i)]/2. If the blade pitch

control is achieved by a conventional swashplate, then the input variables are

really @IC and @Ig' where @1 = OlC cos @ + @Ig sin _.

The whirl flutter equations for N = 2 are obtained much as for N _ 3:

eliminate the combination wB2B from the pylon equations of motion by use of

the flapping equation, then drop the fl degree of freedom in taking the limit to

a truly rigid propeller. The result, for homogeneous equations, is
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sin2 (%1
L -sin 2_ /-m*÷l-cos 2 \C_ml

To'7 *+h2yHu(l-cos 2w)-yM_(l+cos 2_b)-(2+2hy,%)sin 2t_ h2_H u sin 2,'.+y7% sin 2_-2(I+cos 2,_)-2h'#41_ cos 2gJ C_y
+

h2yW_ sin 2t+¥M_ sin 2_÷2(i-cos 2,#)-2_¥N_ cos 2t_ ,gm*+_i2-fWu(1+cos 2_,)-y..%(1-cos 2_J]+(2+2_!y;%)sin 2%.]\%r!

L-_yn.%2 sin 2¢-¥V,%(l-cas 2,_) }/.*_h_,yH, L(l+cos 2t,'}-_GT,,!L sln 2_J\axl

(147)

This is a two-degree-of-freedom problem again, but now with periodic

coefficients (of period _) because of the two-bladed rotor; the solution for

the stability is obtained by Floquet theory techniques. Typical results for

the stability boundaries on the Kx and K,, plane are shown in figure 9, for

V/_ = I, h _ 0.3, y = 4, Ix*[= Ixl(Nl2)_b] = I_* = 2, and ay* : Cx* : O. The

divergence and flutter boundaries are much as _or the N 7 3 whirl flutter

problem (fig. 8). The periodicity of the system also introduces the possibil-

ity of a divergence-like instability that occurs with a frequency I/rev in

addition to occurring on the real axis. (Such an instability may occur at any

multiple of one-half the fundamental frequency of the system, which is 2/rev

for the present case with a period of _.) Such instability regions appear in

the solution presented in figure 9. One region occurs for low stiffness,

where the natural frequencies of the pylon (_x and _y) are near zero; that

region is buried in the classical flutter region though. A i/rev divergence

also appears where _x or _y is near 1/rev, since that is where one eigenvalue

would be expected to be near i/rev. This new kind of instability for the

proprotor and pylon system, introduced by the periodic coefficients, illustrates

how special the two-bladed rotor is.

AIRCRAFT STABILITY DERIVATIVES

This chapter examines the contributions of the proprotor to the aircraft

stability derivatives, and hence the influence of the proprotor on the entire

aircraft. The aircraft rigid-body motions are assumed to occur at low fre-

quency, and are transmitted to the rotor shaft without modification by the wing

motion. The expressions obtained previously for the response of the flapping

rotor to low-frequency shaft motion are used to estimate the rotor contribu-

tions to the forces and moments on the aircraft. This means, of course, that

the influence of the rotor lag and the wing motion is being neglected. The

rotor contributions are compared with the usual airplane contributions to the

stability derivatives, from the tail and wing in particular, to evaluate the

relative importance of the rotor terms. Nomenclature particular to the air-

craft stability derivative analysis is given at the end of the chapter.

While the assumption that the motion occurs at low frequencies for the

aircraft rigid-body degrees of freedom is valid, it is not quite correct to

93



neglect the influence of the wing degrees of freedom and of the rotor lag
motion in determining the low-frequency rotor response. Usually, there is not
that muchfrequency separation between the aircraft rigid-body motions and the
rotor flapping motions (_ 1) and the wing modes and rotor lag motion (_ - 1)
(i.e., between the motion included and the motion neglected in deriving the
rotor low-frequency response). Although the results given here are thus no

more than a qualitative assessment of the rotor influence, they are veryuseful as that.

"II_e aircraft axis system and geometry considered are shown in figure 10.

The forces and moments about the aircraft center of gravity are required. 'llle

wing span is _j, so the rotor at the wing tip acts a distance ,%w/2 laterally
from the aircraft center of gravity and a distance i: forward. 7t_e forces and

moments and the rigid-body motions of the aircraft are defined in the body axis
system in figure 10; the corresponding rotor forces and shaft motion are shown

in figure 5. It follows then that the rotor forces and moments acting at the
center of gravity, along the a:, y, and a directions are

Fz_ = 2Y
L

F_ = -2]1

: 2 (,:j,,_ + ,'_</)

.-, -- --__ rr7}./_, : a. -'Ja: + ,'iY 2 _ n',_}:;; _2

T]IO factor of 2 accoulltS for the two contrarotating rotors. ]'he rotor model
in figure 5 assumes a specific direction of rotation (clockwise viewed from

the rear) for the rotor placed on the right win,g as in figure 10. The opposite
direction of rotation is accounted for by use of the model in figure 3 for the

rotor on the left wing. This feature is the source of the influence of the

sivm of" s'_ C;_7n s<,) in /_"_ and Nz, and in x> and _.[,; _2 positive is taken to be the

standnrd direction shown in figure 5, pl_tced on the right wing. The rotor

shaft motion due to the six rigid-body degrees of freedom of the center of
gr:_vity is then " "

gz4
[Vp = -ga- _ p sg'n _2

_p Vu ;_w
,2.

dx = -r (149)

&y : g

&,v, = P
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where Vu, VB, Va are the velocity perturbations along the aircraft x, y, and z

axes, respectively, and p, q, and r are the angular velocities about these

axes.

Now examine some of the aircraft derivatives to which there are

contributions from the proprotors. First, consider the pitch moment due to

angle of attack, Cm , from its definition,

_Ny/qSwCw 4 My + hH

= _a VSw _w _P

_2C /_a + h(2CH/°a) 1
= 2_Toa . My

gSw_w _P

12CMy/°G + h(2CH/(_G)I
= _ (_a . --

V (Sw/2A) cw Xp

ACm 

(15o)

where Sw/2A is the ratio of the wing area to the total rotor disk area (two

rotors), and _w is the wing mean aerodynamic chord. This equation gives the

rotor contribution in terms of the rotor coefficients times a factor that

involves the ratio of the rotor and wing geometric parameters to account for

the difference in the normalization of the rotor and airplane coefficients.

Now the coefficient Cma is directly related to the aircraft static margin by

Cm _ = CL_(hc G _ hn) , where CL_ is the aircraft lift curve slope and hn is the

position of the stick-fixed neutral point (as a fraction of Cw)" The change
in the aircraft static margin due to the rotors is

12CMy/_a + h(2CH/_a) l
_a (151)

= &p
Ahn V(Sw/2A)_wCLa

where Ahn < 0 means a decrease in the static margin and hn is moved forward by

the rotors, which decreases the aircraft longitudinal stability.

The vertical force due to angle of attack, Cz a, is

aFz/qSw 4 H _ _a (152)

= as vsw w(sJ2A) }

The contribution from the rest of the aircraft, primarily from the wing, is

Cz a = _CLa ; therefore,

ACz_ - _a 12CH/ _a_

-Ca a - V(Sw/2A)CLo_ _, kp } (153)
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A positive value meansan increment in the samedirection as the wingcontribution.

The drag force due to the longitudinal velocity, Cxu ' is

Acx -- V_ w _ V(Swl2A3 V(Swl2A) (Tx)

Because of the rest of the aircraft Cxuthe rotors is ' =

(154)

-2C D _i _= -_Z_'w and the influence of

kCxu 2aa

Cx u - Vf/----A (-Th) (155)

where a positive value means a contribution in the same direction as the

aircraft drag (a damping term). Using the approximation based on the equiva-lent radius for TX yields

ACxu _ 2aa cos

Cxu Vf-7_ 4

Since the rotor contribution remains fairly constant while the aircraft drag
contribution increases with speed, the relative rotor contribution decreases

with V. The rotor thr_st due to inflow, 2),, is always negative, so the rotor
contribution is always in the same direction as the aircraft drag term.

The pitch moment due to pitching velocity, Cmq ' is

_Cm = _____,7_- w W 2aa /aa + h(2aH/aa )

q _qCw/2V V(_/2A)Cw2 - & (156)
,J

The contribution due to the horizontal tail is Cmq _- -2atSt2t2/Swcw 2, where at

S t, and _t are, respectively, the horizontal tail lift curve slope, area, and
arm. Then the increment required to counter the rotor contribution is

(la

A 2A Vat - & _ (157)
Y

where a positive value means that more tail is required. This coefficient may

also be expressed in terms of the maneuver margin change: _h m = _(PSwcw/4M)ACma '
where H is the aircraft mass. A positive _Cma due to the rotor then decreases,

the stick-fixed maneuver margin, moves ]am for_ard, or equivalently requires
more horizontal tail to maintain the same margin as without the rotors.
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The rolling moment due to roll rate, Ogp, is

{2C loa S CUba)_Nx/qSw_w aa _ _ _ .

Xp gw 2 a z_C_p =
ap_w/2V 2V(Sw/2A)

The contribution due to the wing is approximately C_p = -CLa/8, and with

a(OQloa]l_&z : Q_,

(lS8)

( 2CH/_a 8 Q_)
4aa + _ (159)

= _p _ 2
C_p V(Sw/2A)CL a w

The Q_ term is due to the change in the rotor rotational velocity with respect
to air, which is produced by the rolling rate of the aircraft; Q[ _ g[sin t)/6,

so this contribution is always in the same direction as the wing term, and

increases with V.

The yawing moment due to sideslip, Cn 8, is

_Nz/qSw_w _ aa _ = . (160)

ACn B - _B V(Sw/2A) _w YP

The contribution of the vertical tail is CnF3 = avSv_v/Sw_w' so the tail

required to counter the rotor contribution is

SV_ v aa [2CMx/aa - h(2Cy/aa]] (161)A - 2A vav Yp

where a positive value means that more tail is required.

The yaw moment due to yawing rate, Cn r, is

[2CMJaa-h (2Cy/aa) _w2 CT/aa I (162)_Nz/qSw_w _ 2_a + _ _p j

ACn r = _r_J2V V(Sw/2A) _w2 ax

The contribution of the vertical tail is Cnr _ -2avSv_v 2/SwLw2 and, with

a(aT/(_a)/a£ P = T x,

[_ 2CMm - h(2Cy/(_a) _" 2 ,]
Sv_'v 2 c_a - _ T (16.%)

X
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where a positive value means that more tail is required to counter the rotor.

The thrust coefficient T is negative, so at least that term requires less tail

that is, the rotor thrust damping contributes to the yaw damping of theaircraft.

The rolling moment due to sideslip, is
C_ B ,

The contribution due to wing dihedral is C_8 _= _(C L /4)P, where P is the wing

dihedral angle (in radians, positive uo) Then theaequivalent dihedral due tothe rotors is _ "

V (Sw/ 2A )CLo_ -_p --/ (165)

where a positive value means that more wing dihedral is required to counterthe rotor contributions.

The above coefficients are of primary interest for their influence on

the aircraft dynamics_ a few others to which the rotor contributes are also

examined. The vertical force due to pitch rate, Czq ' is

aCzq - aq ol' w_V(Swl2A)5w 2/ a
--C--

y I
(166)

The horizontal tail contribution is =
CZq -2aStzt/Swa w, so

St_t 4_a ( 2Cy/aa]

where a positive value means that more tai] is required.

The side force due to sideslip, CyB, is

- _ .

(167)

(168)

Because of the vertical tail, Cy8 : _avSv/Sw; therefore,
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r

.7 +

(169]

where a positive value means that more tail is required.

The yawing moment due to rolling rate, Cnp, is

_Nz/qSwL w oa(sJn __) ..... h(2Cy/oa)

ACnp V V (Sw/ 2A ) _'w

The contribution of the wing is approximately Cnp = -CL/8' and

_(CT/Oa)/_&z = T_; therefore,

+ 2T (171)

= 8oaa (sgn _) - ------ _p

Cnp V(Sw/2A)_wC L

where a positive wilue means that the rotor contribution is in the same
direction as that of the wing. Now T_ _ (sin _)/6 is positive, so that contri-

for the wing if g > 0, and opposite if g < 0.

bution is at least the same as

The rolling moment due to yawing rate, C_r,is

_N/qSw_w _a(sgn_) (_ 2Cdaa I (172)
Aa_r= ---ar_w12V VCSwl 2A)-_w • + _----U-_-p]

The contribution of the wing is C_r _ aLl4, and _(CQ/_a)/_Zp = QX; therefore,

AC_ r _ 4oa (sgn _)(_+ 2Qx) (173)

C_ r V(SwI2A)_wC L

wherc a positive value means a contribution in the same direction as from the

wing. The torque due to inflow is QX _ -(sin _)/6, which is always negative at

least.

The influence of the proprotor forces and moments on the aircraft

stability derivatives may be estimated with these expressions- Table 1 gives

the values of the parameters required. Two topes of rotors are considered: a

gimballed rotor and a cantilever rotor. The gimballed rotor has a flap fre-

quency of exactly 1/rev because of the hinge at the center of rotation; it also

has positive pitch/flap coupling, Kp < 0 (negative 83 of about 15°), and the

rotor rotates clockwise (from the rear) on the right wing. The cantilever

rotor has a flap frequency above i/rev, namely, _S = 1.35; it has no pitch/flap
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coupling, Kp = 0, and rotor rotation is counterclockwise on the right wing.Th.e gimballed rotor has a somewhat 1

p_ng clearance requlred. These vara_ mast helght to account for
_ale rotors aiscussed later M._ _:_ers are representative of ÷_ _ flaff-

a proprotor aircraft Th_ ___ ,,,_ uther parameters in tab_^ , _-_ _wu full-
around V = 3)c _--- " _ to[or Influence i - *= _ are typical of

-_o _,ocs, approximately t _ .... s evaluated at V/_ = 1 ,.,_-_ •

craft Generally, the influence of the rotor increases with speed, hence the

• : ,Lc maXimUm cruise sneed o _ .... _ -_,sun is
r * _ucn an air-

coefficients are evaluated at high velocity•

TABLE 1.- TYPICAL AIRCRAFT PARAMETERS USED TO EVALUATE THE

INFLUENCE OF _tE PROPROTOR ON AIRCRAFT STABILITY

v B

h/R

sgn

u

a

Y

VJ2A

_w/R

at

av

CL at V
ma_

f/A

StZt/2AR

av/2A

XvZv/2AR.

Sv _v 2/2AR

Cantilever rotor

1.3S

0

0.28

-1

Gimballed rotor

1.0

-0.25

0.34

l

0.1

5.7

4

0.19

0.44

2.65

4.2

3

3

1

0.20

0.013

0.09

0.05

0.07 to 0.09

0.10 to 0.16

The rotor force and moment derivatives are given in table 2 for these

two rotors; the first number is for the gimballed rotor; the second, for the100
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cantilever rotor. These low-frequency derivatives, obtained with equations

(102) and (103), were evaluated using the parameters in table l; only wB; Kp,

hj y, and V are required for the rotor derivatives, the others are aircraft

parameters. The flap frequency is the primary parameter, responsible for the

major differences between the derivatives for the gimballed and cantilever

rotors; KF is also important for the cross-derivatives of the gimballed rotor.

'H_e rotor forces and moments due to the hub inplane velocity xp or yf_

are basically produced by the coefficients flljand Mu. The derivative -H/_'p,

always positive and generally larger for the cantilever blade, gives positive

damping then. The corresponding pivot moment derivative -(M._ + l_H)/.#p is also

always positive. The cross-derivative -H/_jp is always negat'ive for the canti-

lever rotor, while it is proportional to Kp for the gimbalied rotor and there-

fore has its sign. _e pivot moment derivative -(M_¢ + hH)/_p is also

proportional to KI) for the gimballed rotor and has its sign; while, for the
cantilever rotor, the hub moment dominates the hub force acting on the arm h,

so the net pivot moment is always positive. The hub force due to the shaft

angular velocity' -/!/_/ is large and always negative for the gimballed rotor
because of the flappiY1g required to precess the rotor acting through the nega-

tive i{ force (H_) to give a hub force; the derivative is small for the canti-
lever rotor. The corresponding pivot moment -(b!_ + ]zlJ)/&y is then also negative

for the gimballed rotor (negative damping); for _he cantilever rotor, it is

always positive because of the hub moment. The cross-derivative /I/&x is nega-
tive for the cantilever rotor, and has the sign of Kp for the gimballed rotor.

The moment derivative (2,_ + IzH)/&:c also has the sign of Kp for the gimballed

rotor, and is positive f_r the cantilever rotor because of the hub moment.

The longitudinal derivatives required (-'_ -QX, ff'_,and Q_) are all positive
and increases with V (all equal 0.133 at _'= l, ba._ed on just the ¢_ terms as

in eqs. (54)).

_ the basis o_" the expressions above and the values given for the rotor

derivatives, the following influence of the proprotor on the aircraft dynamics

is found. The change in £m_ due to the rotor always results in decreased

static longitudinal stability, that is, a forward movement of the neutral

point Jzn" T_icaly, Jzn moves forward I0 to 20 percent of the wing mean aero-

dyq_amic chord, with the larger value for the cantilever rotors. Like many of
the rotor effects, this change is roughly proportional to HIJV, which, from

the equivalent radius approximation, is proportional to sin _; hence the rotor

effect increases with V.

The rotor increases 5', somewhat over the wing contribution; that is,

the rotor contributes to th_ total lift curve slope of the aircraft by about

l0 to 30 percent (the higher value for cantilever rotors) of the wing contri-

bution in the same direction, thereby increasing the total aircraft CLa.

_is effect is also proportional to IIlj/V, hence to sin _ (roughly). _lq_e

increase in the magnitude of Cza (the coefficient is negative) produces some

increase in the damping of the aircraft longitudinal short period mode.

The rotor contributes to Cx u in the same direction as the aircraft drag

contribution (making _r_ more negative). The rotor contribution is due to the
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rotor thrust damping T_ and hence is an order of magnitude larger than the

aircraft drag contribution. The result is an increase in the phugoid mode

damping and also in the sensitivity to longitudinal gusts. The great increase

in Cx over the usual aircraft values also may change the motion involved inU

the longitudinal modes.

The rotor contribution to Cmq moves the maneuver point hm, typically 5 to
7 percent of the MAC. The maneuver margin is decreased for the gimballed rotor

because of the negative H force and is increased for the cantilever rotor

because of the hub moment capability. This indicates the need for about 40 per-

cent more and less horizontal tail effectiveness, respectively. Equivalently,

because of the rotor, the short period mode damping and frequency are decreased

for the gimballed rotor and increased for the cantilever rotor. Note that, with

the high wing configuration of the tilt rotor aircraft, pitching about the cen-

ter of gravity also introduces a T_ contribution to which always increase_
hm _less horizontal tail effectiveness required). Cmq'

The rotor contribution to CZp is of the same order and sign as the wing

contribution. Both the rotor H force and torque terms have the same sign, and

both (H_/V and Q_/V) increase with V approximately as sin 0. The H force con-

tribution is about the same as that of the torque for the gimballed rotor, but

larger for the cantilever rotor. As a result, the aircraft roll damping is

increased significantly, and hence the roll mode time control is decreased to

typically half the value due to the wing alone.

The rotor contribution to Cn_ is always negative and, compared with the
positive term from the vertical tail, the rotor term is small for the gimballed

rotor but more significant for the cantilever rotor. An increase in vertical

tail effectiveness is then required, especially for a cantilever rotor or,

equivalently, the rotor decreases the aircraft Dutch roll mode frequency.

The rotor contributes to Cnr by a T_ term and a pivot moment term. To

counter the rotor contribution (maintain the same net Cnr), the TX term always

requlres less tail; the pi,ot moment term requires more tail for the gimballed

rotor because of the negative H force, but less tail for a cantilever rotor

because of the hub moment. The T_ term dvminates, though just barely for the

gimballed rotor, so the net result is a requirement for less vertical tail to

maintain the same value of Cnr, especially for the cantilever rotor. Equiva-

lently, the rotor influence means an increase in the Dutch roll damping.

The rotor contribution to C_ is typically equivalent to about 5 ° of wing
dihedral Cby the present estimate_. The rotor derivative involved is a cross

term - a vertical force due to a lateral velocity - so it is proportional to

N, (Kp for the gimballed rotor), and the contribution to the aircraft deriva-

tive is proportional to the rotational direction of the rotor _sgn _). The

rotor contribution, in terms of the wing dihedral required to counter it, has

the same sign as -sgn _ for the cantilever rotor, and the same sign as

Kp sgn _ for the gimballed rotor. For the rotors considered here, more wing

dihedral is required for the cantilever (sgn _ = -I) and less for the gimballed

rotor (Kp < 0 and sgn _ = i); or, equivalently, the rotor produces worse and
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better spiral modestability, respectively. Generally, the rotor contributes
significantly to C£8, the direction depending on the rotor rotation direction,
whether a cantilever or articulated rotor is involved, and on pitch/flap cou-

pling for the articulated rotor. Note that the large tip pylons usually asso-

ciated with the tilt rotor configuration also contribute significantly to C£B.

The rotor contribution to C,. is negative and several times the negative
contribution of the vertical tai_ Hence it requires less vertical tail or,

equivalently, increases the Dutch roll damping. The influence of Cy B is

usually considered secondary to that of Cn r, however.

The rotor contribution to Cn is an order of magnitude larger than the

wing term; Cnp < 0 is adverse ya_, which is the direction of the wing contri-
bution. There is a thrust term and a pivot moment term from the rotor. In

comparison to the wing term (so that positive ratio means adverse yaw), the T_

term has the same sign as s_rn _; the pivot moment term has the same sign as

8gn _ for a cantilever rotor and the same sign as Kp sgn _ for a gimballed

rotor. The pivot moment contribution is small, however, especially for the

gimballed rotor, and the T_ term dominates. Hence the net contribution to

AC£_/C£p has the same sign as 8gn _ and, with variations in V, it behaves as

V s%n ¢ (T_/VCL). For the rotors used here, the rotor contribution for the
gimballed rotor is adverse yaw and, for the cantilever rotor, it is favorable

yaw. Since the rotor results in a coefficient larger by an order of magnitude

than usual for aircraft, however, it is expected to significantly alter the

lateral modes of:the aircraft.

The rotor contribution to CZr, like that to Cnp, is an order of magnitude

larger than the wing contribution. Relative to the wing term (i.e., AC£r/C£r),

the torque term has the same sign as -sgn _, while the hub force term has the

same sign as -sgn _ for the cantilever rotor and the same sign as Kp sgn _ for

the gimballed rotor. The hub force and torque terms have approximately equal

magnitudes; hence the sum would be small for an articulated rotor with Kp > O.

With the present examples then, the rotor contribution is in the same direction

as the wing contribution for the cantilever rotor and opposite for the gimbal-

led rotor. The increase in the magnitude of CZr is expected to significantly
alter the lateral modes of the aircraft.

In summary, the influence of the proprotor on the aircraft dynamics is as

follows. The static longitudinal stability (static margin) is decreased (Cmq);

the phugoid damping is increased (Cxu); the short period damping is increasea

somewhat by Czs (but influenced primarily by Cmq); the roll damping is

increased (C£v); the Dutch roll frequency is decreased, especially for the
cantilever rotor; and the Dutch roll damping is increased, especially for the

cantilever rotor (Cnr, and also CyB). Because of Cmq, the short-period damp-
ing and frequency (i.e., maneuver margin) are decreased for the gimballed rotor

(due to the negative H force damping) and are increased for the cantilever

rotor (due to the hub moment capability). The rotor significantly influences

the spiral mode stability (C£B), the direction depending on the rotor rotation

direction and also on _8 and Kp. Three of the rotor contributions - C£8, Cn n,

and C£ - are lateral/vertical coupling rotor coefficients, hence they _re

proportional to 8gn _ and also depend on WB and Kp, the rotor coupling param-

eters (N,). Three of the rotor contributions - Cxu, Cnp, and C£r - are an
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order of magnitude larger than the usual aircraft derivatives and therefore
maybe expected to significantly alter both the longitudinal and lateral modes
of motion of the aircraft.

It is concluded that flapping rotors operating in high inflow contribute
substantially to the aircraft derivatives. A numerical estimate of the rotor
contributions to the aircraft stability derivatives, from the expressions given
here, would probably not be adequate, primarily because rotor lag and wing
motions were neglected.

Stability Derivative Nomenclature

Fx, Fy, Fz

_, _, NZ

Uj _ j O_

p, q, r

lw

h

9w

Sw

cc

S t

_t

a t

So

av

sgn

q

hn

aircraft longitudinal, lateral, and vertical forces (subscripts
x, y, z for coefficients)

aircraft roll, pitch, and yaw moments (subscripts £, m, n for

coefficients)

aircraft longitudinal, lateral (sideslip), and vertical (angle

of attack) velocity perturbations

aircraft roll, pitch, and yaw angular velocities

wing span

mast height (aircraft center of gravity to rotor hub)

wing chord

wing area

aircraft lift curve slope

aircraft lift coefficient

horizontal tail area

horizontal tail arm

horizontal tail lift 'curve slope

vertical tail area

vertical tail arm

vertical tail lift curve slope

rotor rotation direction

in coefficients, dynamic pressure (I/2)P V2

neutral point
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Stability Derivative Nomenclature (Concl.)

hm maneuver point

F wing dihedral

The aircraft stability derivatives are defined as they are introduced.

SECTION 4: NINE-DEGREE-OF-FREEDOM MODEL FOR A PROPROTOR ON A CANTILEVER WING

Wing Equations of Motion

In this chapter, the equations of motion for a proprotor on a cantilever

wing are derived. The equations of motion and the hub forces and moments were

obtained previously for the six rotor degrees of freedom (blade collective and

cyclic flap and lag motion), including the excitation by the six degrees of

freedom of the shaft motion (eqs. (44) to (48)). The equations of motion for

the wing elastic bending and torsion motion are now derived. The wing degrees

of freedom are forced by the rotor hub forces and moments, and each mode of

wing motion produces a corresponding shaft motion. Thus the two sets of equa-

tions, for the rotor and for the wing, are combined by substituting the wing

degrees of freedom for the shaft motion in the rotor equations of motion and

forces, and then substituting for the rotor forces in the wing equations of

motion. The result is a coupled set of equations that describes the

aeroelastic behavior of the proprotor and wing system.

The proprotor aircraft configuration consists of large diameter flapping

rotors mounted on the wing tips. Usually, the engine and transmission are also

mounted in the pylon at the wing tip; hence there is a large mass and inertia

at the wing tip. The rotor hub forces are transmitted to the wing tip through

a mast of height h (i.e., forward of the pylon pivot).

The dynamics specific to the proprotor configuration are of primary

interest here, that is, the high inflow rotor dynamics coupled with the wing/

pylon motion. Hence the model considered is restricted entirely to the air-

plane cruise mode configuration, with the shaft parallel to the free-stream

velocity. The model is restricted also to the frequency range most important

to the coupled wing and rotor motion. Only the lowest frequency wing modes

are considered, and the elastic motion of the pylon with respect to the wing

tip is neglected since it usually has a much higher natural frequency than the

lowest wing modes. The motion considered then is the wing elastic motion with

the pylon and the rotor shaft rigidly attached to the wing tip. The aircraft

rigid-body motions are also neglected since they are degrees of freedom of

low frequency and are not highly coupled with the motions to be examined.

Neglecting the rigid-body motion places the primary emphasis on the basic rotor

and wing dynamics, as is desired here, and so may be justified as an appropri-

ate first step at least. Indeed this rotor and cantilever wing model is very

useful in establishing the behavior of the proprotor aircraft. Hence a
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cantilever wing model is used for the fixed system motion, with the
understanding, of course, that eventually a more complete model including the
aircraft motion must be used. In addition, the cantilever model corresponds
to the configuration of manyproprotor models that have been tested in wind
tunnels, including the full-scale tests considered later.

The model considered consists of a wing and rotor in cruise flight
configuration, operating in a free-stream velocity V with the shaft always

parallel to V so that the rotor equilibrium flow is purely axial. The rotor

operates in high inflow. The wing root is attached to an immovable support

with cantilever root restraint. The wing motion consists of elastic bending,

vertical and chordwise, and elastic torsion. A pylon with large mass and

moment of inertia is rigidly attached to the wing tip. The rotor is mounted

o11 the pylon with the hub forward of the wing elastic axis, with the rotor

shaft horizontal (parallel to V). The rotor has three or more blades, with

first mode flap and lag motion for each blade. The rotor hub forces and

moments are transmitted through the pylon to the wing tip.

The wing is assumed to have a high aspect ratio so that strip theory can

be used for the wing aerodynamics and engineering beam theory for the elastic

bending; this assumption is well justified for the tilt rotor aircraft, which

have, typically, an aspect ratio around 6. Wing sweep, dihedral, and angle of

attack are considered, but the major effect is that of the wing sweep on the

position of the effective elastic axis of the wing, hence on the effective

mast height for the transmission of the rotor hub forces to the wing bending

and torsion motion. Regardless of the wing sweep, dihedral, or angle of attack,

the rotor shaft is assumed to be maintained parallel to the free-stream veloc-

ity in equilibrium trim flight. This assumption is required to avoid periodic

coefficients in the rotor equations of motion due to an inplane component of
the trim velocity.

Wing geometry and motion- The wing geometry is defined by a straight spar

line that is the locus of the local elastic axis. _le wing root is supported

with cantilever restraint; the rotor shaft is attached rigidly to the wing tip.

The wing geometry is shown in figure II. The wing has a constant chord ow and

a length Y2 from root to tip (semispan). The distance along the spar is Yw,
measured from the root. The shaft has length h, the distance the rotor hub is

forward of the wing tip elastic axis (mast height). The wing spar is basically

perpendicular to the forward velocity V, but small wing sweep, dihedral, and

angle of attack are considered. The wing root is attached to a plane defined

by the forward velocity V and the vertical; then three rotation angles define

the orientation of the spar with respect to the free-stream velocity: dihedral

_w I (positive for upward rotation of the wing tip), sweep _w3 (positive for
sweep aft), and angle of attack.6w2 (positive nose-up). All these angles are

a_sumed to be small, an approprlate assumption for proprotor aircraft in cruise.

The rotor shaft must then be rotated by the angles -_wl, -_w2, and -6w3 to keep
the shaft parallel to the free-stream velocity.

The rotor (fig. 3) is placed on the tip of the wing (fig. ll) so that the

wing tip motion is transmitted directly to the rotor shaft. It is also neces-

sary to account for the rotational direction of the rotors. The aircraft has

two counterrotating rotors, one on each wing tip, but the rotational direction
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of the rotor on the right wing (fig. ll) maybe either clockwise or counter-
clockwise. The equations of motion and hub forces for the rotor are derived
for the rotor model in figure 3, that is, assuming clockwise rotation. This
model is always used for the rotor, and then the rotational direction of the
rotor is accounted for by placing the rotor on a right-hand wing (fig. ll) or
on a left-hand wing as appropriate. The influence of the rotational direction
is a numberof sign changes in the equations of motion, which reflect how the
hub forces and momentsof the standard rotor (fig. 3) excite the right or left
wing, and how the right or left wing produces motion of the rotor shaft.

The notation _ indicates the influence of the rotational direction of the
rotor. The clock_ise rotating rotor on tile right wing (figs. 3 and I1) is
denoted by _ = I; the clockwise rotor on the left wing (fig. 3 and the mirror
image in fig. ll) is denoted by _ = -I:

+i; rotor rotation clockwise on right wing,

counterclockwise on left wing
=

- ; rotor rotation counterclockwise on right wing,
clockwise on left wing

(174)

The wing motion is described by elastic bending and torsion of the wing

spar; the wing displacement is shown in figure ii. The pylon (and with it the

shaft) is rigidly attached to the wing tip. The existence of an elastic axis

of the wing (assumed to be a straight line) means that the wing distortion may

be described first by elastic torsion of the wing about the local elastic axis,

without bending the wing; and then by, elastic bending of the spar, which

deflects the elastic axis from the undistorted position without changing the

torsional deflection.

A modal description of the wing elastic deformation is used, and only the

lowest frequency modes are retained. The elastic torsion of the wing results

in a pitch change 0w(t,y w) of the local wing section (positive nose-up as

shown in fig. ll). With a modal representation, this motion is written

ew = _ Pi(t)_w_" (Yw)

i

which is an expansion of 0w in a series of the mode shapes Cwi of the elastic

torsion motion. The generalized coordinates Pi are the degrees of freedom.

The modal representation is useful because it separates the time and space

dependence of @w. Associated with each degree of freedom Pi, there is an

equation of motion with appropriate generalized mass and stiffness, hence a

natural frequency of each mode. Only the lowest frequency degrees of freedom

are retained in this study, of the basic dynamics; it is sufficient, in fact,

to consider only one wing torsion mode. Then,

@w = p(t) _w(Yw ) (175)
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describes the motion. If the modeshape is normalized to unity at the tip,
_w(YTw)= I, then p gives the nose-up torsion angle in radians at the tip.

The elastic bending of the wing results in the deflection of the wing spar
with components both perpendicular to the wing surface Cvertical or beamwise

bending) and parallel to the wing surface (chordwise bending). The deflection

of the spar line normal to the wing surface is _w( , Yw) defined positive fort

upward deflection. The deflection in the plane of the wing is Xw(t , Yw),

defined positive for rearward deflection. The vertical and chordwise bending

zw and xw are defined with respect to the direction of the local principle axes

of the section. With no built-in wing twist, these axes are the same all along

the wing spar, but they are not vertical or horizontal because of the wing

sweep, dihedral, and angle of attack. A modal representation is used for the

bending deflections, both vertical and chordwise, and only the lowest frequency

modes are retained. For this analysis, it is sufficient to retain only one
mode each for the zw and xw representations; hence

zw = ql(t)qw(Yw) }XW = q2(t)nw(Yw) (176)

where _w is the mode shape of elastic bending of the wing. For the present
purposes, it is sufficient to use the same mode shape for both vertical and

chordwise bending, but including different modes would be straightforward.

The generalized coordinates _I and q2 are the degrees of freedom that represent

wing vertical and chordwise bending, respectively. If the mode shape is nor-

malized to Y_w at the tip, nw(YT.) = YTw' then the degree of freedom ql
represents the ratio of the tip _eflectlon to the semispan and, similarly, for
q2"

The degrees of freedom that represent the wing motion are thus:

p, wing elastic torsion, positive nose-up (p = @w at the tip);

ql' wing vertical or beamwise bending, positive upward (ql = Zw/YT w at the tip);

q2' wing chordwise bending, positive rearward (q2 = Xw/YT w at the tip)

Associated with these degrees of freedom are mode shape _(yw) for torsion and

nw(y w) for bending, which are normalized to g and Y_w' respectively, at the

tip. The assumption of cantilever root restraint also gives the boundary
conditions _(0) = _w(O) = nw'(O) = 0 at the root.

Consider the motion of the rotor shaft in terms of the wing degrees of

freedom. The shaft displacement and rotation (Xp, yp, Zp, _x, ay, az) at a
point h aft of the hub are required because of the motion at the wing tip,

which is specified by the wing degrees of freedom (ql' q2' and p). If one

neglects for the moment the effects of the rotor rotation direction and wing

sweep, dihedral, and angle of attack, the following shaft motion is produced.

The wing torsion deflection p results in shaft p_tch _y. The wing vertical

bending ql results in vertical displacement Xp of the shaft; and since bending

also produces a slope of the elastic axis at the tip, it results in shaft roll
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az. The wing chordwise bending q2 results in longitudinal displacement Sp
of the shaft and also shaft yaw angle ax. With this model, there is no first-

order source of shaft lateral displacement _Ip. If the magnitude of the dis-

placement and rotation at the tip due to the wing degrees of freedom (given by

the mode shapes) are accounted for, the shaft motion is _for a clockwise rotat-

ing rotor on the right wing, figures 3 and II, with 6to = _w2 = 6w3 = 0)

ax = -q2nw' (Yi'w)

_n = -q lnw '(YT w)

xp = qlnw (_ ) = _"_w _1'dTw

yF: 0

sp = -q 2nw (Y Tw) = -q 2Y'_Z'w

(177)

Note that the wing bending motion produces coupling of the longitudinal and the

lateral/vertical groups of the rotor, ql and o 2, g_ving both longitudinal

motion of the shaft (ap and a zl and lateral/vertical motion (Xp and ax). The

coupling is not strong, however, and it is found from the behavior of the sys-

tem that wing chordwise bending q2 is basically a lonpitudinal motion, and

vertical bending and torsion (ql "_nd p) belong with the lateral/vertical group.

Consider the clockwise rotating rotor on the left wing, that is, _ = -l:

the only change is in the direction of the shaft angle due to the slope of the

elastic axis at the tip during bending (consider the mirror image in fig. Ii,

including the definitions of the bending and torsion deflection). If this

change in sign is incorporated by use of the _ notation,

ax = -q2S_rlW' (YTw) } (178)
ay = -q 1_2r1w' (YT w)

and the rest of the shaft motion in equations (177) is unchanged. If the wing

motion produced a lateral shaft displacement L_p, that, too, would change sign

with the direction of rotor rotation.

Consider the effect of wing sweep, dihedral, and angle of attack. The

wing tip displacement and rotations, along with the wing motion, are defined

with respect to the wing spar and the section principal axes - which are

rotated by 8wl, _w2, and _w3 with respect to the wind axes. Hence the wing tip

motion will have a slightly different decomposition into the shaft motion,

which remains in the wind axes. For example, vertical bending ql produces, in

addition to vertical displacement Xp and shaft roll a:; as given previously,

some shaft pitch a. due to the wing sweep 6 ^, some lateral displacement yp due

to the wing dihedral _w ' and some shaft yaw ax and axial displacement Zp due

to angle of attack _w2" I After a consideration of the complete set of wing and

shaft motions, the result is
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ax = -q2_w ,(YTw) + p_6wl - ql6w2_nw' (YTw)

_y = p ÷ q2_6Wl_w'(YTw) - ql_W3_nw'(YTw )

az = -ql_nw' (YTw) - p_Sw3 + q2Sw2_w '(YTw)

xp = %yrw _ % w2UTw

yp = -ql_SwlYTw - q2_SW3YTw

Zp = -q2YTw _ qlSw2YTw

(179)

Note that the effect of the rotational direction of the rotor, _, is only to

change the signs of ax, az, and yp.

The influence of the wing sweep (and dihedral) requires more attention

than given above. Consider the unswept wing, represented by a straight unswept
elastic axis line with cantilever restraint at the root. This structure has

these characteristics: elastic torsion at an inboard wing section results in

pitch changes at outboard sections, but produces no vertical or chordwise dis-

placement of the elastic axis from its undistorted position; and a force

applied to the wing tip at the elastic axis results in bending of the wing, but

produces no torsion motion since there is no torsion moment about any section

due to this force. Thus, there is no elastic couplirg of the wing bending
and torsion motions.

If the wing is now swept, that behavior would be maintained if the root

restraint were also swept. In that case, the description developed for the

shaft motion produced by the wing torsion and bending would be correct, includ-

ing the effects of sweep and dihedral. However, this is not the way swept

wings Cof the type used for proprotor aircraft) are built. The wings are

usually built with a center box structure in the fuselage, where the spars are

unswept, and only the wing structure outside the fuselage has swept spars.

The wing is restrained at several points, where the wing box is tied to the

fuselage. (The wing used in the full-scale, wind-tunnel tests considered

later was also built this way.) One approach to treating such a structure is

to use a good structural dynamics analysis to calculate the coupled bending and
torsion modes of the wing and pylon, including the influence of the root

restraint and sweep. Such an approach is useful if available and, in fact, it

is probably necessary if an accurate representation of a specific design is

required. Such an analysis is not desired here, however, rather the simplest

representation that includes only the elements most fundamental to the behavior.

Since this report is aimed at a general examination of proprotor dynamics

rather than the design of a specific vehicle (with a swept wing) such a
representation is adequate.

The model used to represent a swept wing has a straight elastic axis line

except for a bend at span station Yw = YB w' where the wing sweep and dihedral
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are entered. The root restraint and the wing inboard of FB w are unswept, while

the outboard section is swept. The mast height h is measured from the wing tip

elastic axis to the rotor hub. The following behavior is expected of such a

model, typical of swept wing behavior: elastic torsion of the inboard sections

produces a pitch change at YB , which then rotates the entire outboard section

about the extension of the inboard spar line, thereby producing displacements

of the outboard elastic axis from its undistorted position; and a force (verti-

cal for the sweep effect) at the tip elastic axis produces a torsional moment

about the wing sections inboard of YB , thereby producing torsion motion of the

wing rather than just bending as for _he unswept case. The torsion and bending

motions of the wing are then elastically coupled. The first effect, in partic-

ular, means that torsion of the wing now results in the displacement of the

wing spar, which is produced only by bending for the unswept wing. Specifi-

cally, the torsion motion produces now displacements at the tip - hence of the
shaft - as well as rotation of the shaft. An advantage of this model is that

the shaft motion due to the wing degrees of freedom can be obtained by simple

geometric considerations, and the wing equations of motion can be obtained by

a simple extension of the methods (based on section force and moment equilib-

rium) used for an unswept wing. Both are the result of retaining the repre-

sentation of the wing by an elastic axis line. The wing motion is defined then

by elastic torsion about the local elastic axis (producing local elastic pitch

changes given by the mode shape Sw, and elastic axis deflections due to the

sweep), followed by elastic bending of the spar (producing local spar displace-

ment given by the mode shape nw, from the displacement due to torsion). The
effect of the bent elastic axis is to couple the influence of torsion and

bending; with sweep, the tip is displaced due to torsion, and also the torsion

mode is excited by forces at the tip elastic axis.

A swept wing is characterized by an effective elastic axis for the

vertical bending of the tip: at some point on the shaft or its extension, the

application of a vertical force results in purely vertical displacement of the

shaft, with no rotation. Without sweep of the wing, this point would be at

the wing tip elastic axis; but with sweep, a force there produces a nose-down

pitch motion of the shaft also (for aft sweep). Hence the effective elastic
axis is some distance forward of the wing tip elastic axis. This feature is

included in the model used here. Generally, the effective elastic axis (for

the tip) lies between the actual wing tip elastic axis and the extension of

the inboard (unswept) spar line - the actual position depending on the degrees

of root restraint and sweep and other structural details.

The model used here is, in fact, only conceptual. It is used because it

allows an elementary derivation of the equations of motion, including the most

important features of the swept wing behavior. The bend in the spar is not a

feature that can be determined accurately from the geometry of the wing. Hence

YB , the spanwise location of the spar bend, is just a parameter that charac-
terizes the influence of the wing sweep on the coupled bending and torsion

motions of the wing, which is determined by the details of the wing structural

construction, geometry, and root restraint. This parameter (it will be found
can be identified by matching the

that what is really required is _wCY_))
behavior of the model to that known _rom a better model or from actual experi-

ment. The most important feature of the swept wing is the effective elastic

axis position at the wing tip. If that is known from a good structural
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analysis of the wing, or measuredexperimentally, then the corresponding value
of YBwwhich gives that effective elastic axis position for the model used
here may be determined. Then that single parameter completely determines all
the characteristics of the swept wing in this model.

The influence of the bent elastic axis model on the rotor shaft motion
due to the wing degrees of freedom can now be determined from simple geometric
considerations. Wing pitch deflection at YB rotates the entire outboard por-

tion of the wing about the inboard spar line_ so torsion of the wing produces

displacements at the wing tip - vertically due to sweep of the wing and longi-

tudinally due to dihedral. The rotation angle is @w(YBw ) = P_"(YBw) and the

arm at the tip is (YTw - YBw)_W3 _ YTw_W 3 (to first order for _mall 6W3 and

YBw/YTw) for sweep, and (YTw - YBw)6wl _ YTW_Wl for dihedral. The increments
in the shaft vertical and longitudinal displacement are then

AXp = -p_w(YBw)YTw_W 3 1
AZp -p_w(YBw)YTw6W 3

(180)

The complete equations for the shaft motion due to the wing degrees of
freedom are

ay = -_w '_6w 3 _w '_6w 1

I -_ ' an '
L w w _Wl

__il [ YTw -Sw2Yrwyp = -_SWWrw -_Sw3yrw

[-Sw2Yrw -yrw

IUq

0

ZEA J

(181)

The length hEA = h - _W6W3YTw is the distance from the effective tip elastic

axis to the rotor hub and, similarly,, for ZEA = '¢w_wlY_ , the vertical elastic

axis displacement due to dihedral. For convenience, _w;Wis written for n-' (y-)
and _w, for ¢w(YBw ). w '2'w

Wing Equations of Motion- The equations of motion for the wing degrees of
freedom, lowest mode elastic bending and torsion, are

2 .. •

(lqW + mpyTw)ql + Cqlq I + Kqlq I irotor

(Iqw + IPxnw 2 + mpy_w)q2 + %2_/2 ÷ Kq2q 2 - SWSW2 _ = Mq2aero + Mq2rotor

+ +¢+ + - =%..0+%oto.
(182)
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for the vertical bending, chordwise bending, and torsion motion, respectively.
Each equation has inertia, structural damping, and structural spring terms,
forced by wing aerodynamic forces and by the rotor hub forces and momentsact-
ing on the wing tip. The generalized inertia of the wing bending modeis

_0yTw _0yTw
Iq w = mwnw 2 dYw, and for the torsion mode, Ipw = I@w_w 2 dYw, where

mw is the mass per unit length of the wing and _ is the wing section moment
of inertial. To these wing inertias are added _ pylon inertia terms: mp is

the pylon mass (without the rotor) and Ip and Ip_. are, respectively, the

pylon yaw and pitch moments of inertia about the _ing tip effective elastic

axis. The inertia coupling of the bending and torsion of the wing is due to

the offset of the pylon center of gravity: Sw = mpy_ZPEA, where zpE A is the

distance the pylon center of gravity (without the rotor) is ahead of the wing

tip effective elastic axis. The structural spring terms are written

[YYw 2
= EIzz_'_' _{YwKql _o w

yTw ,,2Kq = EIxx_w dY w
2

0

 YTw

_0 GJ _,2Kp = w%w dYw

where EIzz is the section beamwise modulus/inertia product and, similarly, for
the chordwise and torsion elastic restraint. These expressions are not used

here, however, since a very accurate estimate of the bending and torsion mode

shapes would be required to evaluate them.

The derivation of these modal equations follows the standard methods of

aeroelastic analysis. For typical proprotor configurations, the _ylon mass is

so large that it dominates the wing inertias, that is, Iqw << mpy_w and

I_ w << Ip . Hence the inertia is primarily that of the pylon and rotor, with
t_e wing [ontributing only the elastic restraint of the motion. This is
fortunate in that calculating the wing inertias requires an accurate estimate

of the mode shapes, while the pylon mass and moments of inertia are well-

defined characteristics that are easily determined. The wing structural spring

constants (Kql, Kq2, and Kp) are best determined by adjusting their values so
that the predicted frequencies of the modes match the frequencies measured

experimentally. By this procedure, the wing inertias and structural parameters
are determined from the characteristics most well defined and easily measured:

pylon inertia and natural frequencies of the modes. It is particularly impor-

tant to match the measured frequencies well since they have the most important

influence on the dynamic behavior of the system. This procedure is satisfac-

tory here, but, for the preliminary design of an actual vehicle, a good

structural analysis method for predicting the generalized masses and stiff-

nessess of the wing and pylon modes is necessary. It is evident that (for the

lowest wing modes at least) the wing mode shapes have a secondary influence on
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the equations of motion. A very rough approximation to _w and _w is

Iqw to the inertiassatisfactory to estimate the wing contributions and IPw

since they are dominated by the pylon contributions; the structural spring

constants and other parameters such as nw,(YTw ) are determined by matching

them to the measured characteristics of the wing (or those calculated by a

more accurate method) rather than using their definitions in terms of the wing
mode shapes (which are not really available).

The wing structural damping cons;tants (Cql , Cq2 , and Cp) are determined,

as the spring constants are, by matching the theoretical results to the meas-

ured characteristics. By definition, the damping constants are given by

/K_'/Zgs with the appropriate inertia _tnd spring constant, where gs is the meas-

ured structural damping coefficient el' tile wing (twice the fraction of critical

damping). The wing structural damping is typically 1 or 2 percent of the
critical damping.

The wing motion is excited by the rotor forces and moments acting at the

hub. For the moment,,if the effects oI_ the rotor rotation direction and of

the wing sweep, dihedral, and angle of attack are neglected, the rotor forcing
terms are

Y,n

Hq I = nw'Q + y_s
rotor

zqq2 ....aw'(_x - hz) - Yr r
ro tot w

Mp
rotor

= My + hH - C* y_ Ta

(183)

=w

* =f _WnW ' dYw/YTw _ 2/3. The excitatioii of wing vertical bendingwhere Cpq 0

ql is due to rotor torque and vertical force, with the effectiveness of the

former determined, by the slope of the mode shape at the tip _w (YT w) (written

as nw' in eqs. (183)) and for the latter, by its displacement nw(y_) = YTw.

Similarly, the excitation of chordwise bending q2 is due to the pivot yaw

moment (Mx - hY) and the thrust force. The wing torsion motion is excited by

p, the pivot pitch moment (_ ÷ hH), and by the trim thrust. The thrust term

results because wing vertica_ bending ql elevates the rotor trim thrust above

the inboard sections and so gives an arm about which the trim thrust produces

a torsion moment; the constant involved, C* was evaluated using the
pq"

approximation _w = Yw/YTw and nw = i_w2/YTw for the wing modes.

Introducing the influence of tlle rotor rotation direction, that is,

putting the rotor in figure 3 on a ;!eft-hand wing, simply changes the signs of
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the momentcontributions to the wing bending excitation. If the convention
for _ (given previously) is used to indicate these sJ_l changes, the result is

Mq = _nw"Q + YTw ki
rotor

Mq 2

rotor

1 rm

=-nn w (Mx - hz) -yrw

(184)

and 7_p_,otor remains unchanged.

If wing sweep, dihedral, and angle of attack are considered, the first
influence is a slightly different decomposition of tile rotor forces, which are

defined with respect to the shaft (wind) axes, into the wing tip axes for

determining the excitation of the wing bending and torsion. With the

appropriate coordinate rotations, the result is

Mql ro tot

, (Mx - _z)]

Mq2 = _nw'[-Mx + hY + nSw_(zJ_,_+ _H) - 6w2Q]
rotor

rotor

+ YTw(-T - aSw3Y - 6w?H)

3

+ C_qYTwT(-q I + ($w2q 2)

(185)

l{owever, these expressions are for a wing that is swept along its entire length,

including the root restraint, l]_e model considered here has the inboard por-

tion unswept, and only the wing outboard of y_a = UBw has sweep and dihedral.

With this model, there are also the additional', terms:
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!

&Mqlroto r = _W3nw'(YBw)(My + hH) + _6Wl_w(YBw)Y

AMq 2roto r = -6wln w '(yBw) (My + hH) ÷ _W 3nw (YBw)Y

AMp = _w(YBw) Q_ _Sw CMx _ _y)rotor [-_w3

- Sw3YTwH - SwlYrw2]

(186)

The terms in equations (186)(except for last two in the torsion moment) simply

account for the decrease in the effect of the 6Wl and 6w3 components of the

rotor forces and moments in exciting the wing when not all of the wing has

sweep and dihedral. These terms combine with the similar terms in equations

(185) to produce a reduced net influence. For example, sweep of the wing

produces a component 6w3M_ of the rotor pitch moment that tends to produce

vertical bending motion, that is, it contributes to Mql The correspond-

rotor

ing terms in equations (185) and (186) combine to give

-_n w' (UTw)(R_w3MU) ÷ Sw3_w' (YBw)My: -Sw3Inw' (UTw) - nw, (YSw)]

which illustrates the decrease in effectiveness due to YBw. The other terms

are similar, a straightforward decrease in the effectiveness of the effect of

the sweep and dihedral because they occur only on the outboard portion of the
wing.

The remaining terms in equations (186), the torsion moment due to H and T,

are the effective elastic axis influence. The torsion moments due to the hub

vertical force H (from eqs. (185) and (186)) combine to give

_Mprotor = [h - _w(y B )6w YT ]H. From this, it follows that a vertical force
w 3 w

on the shaft at h = _w(YBw)6w3YTw produces no torsion, and so, by definition,

that is the location of the effective elastic axis at the wing tip. Now
is the distance of the wing tip behind (for aft sweep) the root elastic 6w3YTw

axis, and _w(YBw ) is a constant less than 1 (of order yBw/YTw); thus the

effective elastic axis is moved forward of the wing tip elastic axis, a frac-

tion _w(YBw ) toward the root spar line. The distance from the wing tip

effective elastic axis to the rotor hub is then

hEA = h - _w(YB)w) _W 3YTw (187)
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where h is the actual distance from the wing tip spar to the hub. The

corresponding vertical displacement of the effective elastic axis, due to the

dihedral, is

ZEA = - _w (YBw) 8w IYTw
(188)

(Zero geometric vertical displacement of the shaft from the wing tip has been

assumed.)

The parameter _w(YBw) can be evaluated from a knowledge of the effective

elastic axis position. If Ah is the distance the effective elastic axis is

ahead of the wing tip spar (Ah = h - hEA), then

Ah (189)
_w(YSw ) - 6w3YTw

The other parameters required can be estimated in terms of gw(YBw) as

rlw (YBw) -z- nw (YTw) gw 2 (YBw) = YTwgW 2 (YBw) I

Inw'.(yBw ) = nw' (YTw) gw (YBw )

(190)

Only a single parameter remains to be determined for this model, gw(YBw). It

is determined by matching to the correct effective elastic axis position, hence

the most important feature is correct and this model should provide an adequate

estimate for the other influences of sweep and dihedral.

The complete expressions for the rotor forcing terms in the wing

equations of motion are then:

= _nw, [Q- _6w3(1 - gw)(My hH) - (Mx - hY)]Mqlroto r + 6w2

+ YTw[H - _6wl(1 - _w2)Y- 8W2 r]

= _rl '[-M x + hY + _5w1(1 - gw )(My hH) - Q]Mq2rotor w + 6w2

+ YTw [-T - fl_w3(l _w2)Y - 6w2H]

MProtor = My + hEAH• + ZEAT + g26w3(l gw)Q

+ _6WI(1 - gW)(M x - bY) + * '_-Cp :pw ( + %)

(191)

where nw, is written for nw' (yTw) and gw for gw(YBw).
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The wing equations of motion are normalized by dividing by (N/2)Ib;
this normalization is denoted by superscript ,, as in Iqw/(N/2)I b = I* andqw

similarly for the other inertia, damping, and spring constants. The rotor

forcing terms then take the usual rotor coefficient form. The wing aerodynamic

terms (presented in the next section) are normalized by dividing by

y(N/2)I b = (_/2)_a, which is also denoted by superscript *. This introduces a

factor y for the wing aerodynamic terms, as for the rotor aerodynamics. The

equations of motion for the wing vertical bending, chordwise bending, and
torsion modes are then:

* ÷ m_*

w 0 r

Sw_

1

+ 0 C*
q2

0 0

-  2aerol
 oero/

oe

-Sw*_w 2 r* + r*_p _p
w y

+
cp*l\p I L?qYTw(Y2aT/_a)

0

K*
q2

+ y

_n '_6w (1 _w)

w 3
_nw'_6 w (1 _w)

-_w %, _ _cMy/_

-_'w 2CMx/O_)
-_w1(l - _w

°l{'q
o/F j

_:p__l\ p/

F YTw- £nw'fl6w3h(1 - $w )

+ Y]-_w2YTw + fl_qw'_6w3h(1 - _w )

L hEA

-_nw' _w2h + YTw_Wl(1 - _w2q l 2CH/aa I

-_nw'h + yrw_W3(1 - _w2) J
_6wl(l - ¢w)h -2Cylsa/

2flqw' 1 r2YTw6Wq

L2_6w3(1 - (w)J L 2ZEA _J

(192)

An exception to the normalization is the definition of mp*:
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mp* = mpyT2l (NI2)I b

It also follows that SW* = Sw/(N/2)Ib = mP*ZPEA/YT w" The Lock number y appears

as a factor of all the aerodynamic terms (the rotor forces and moments have

inertia terms, too, but always with a factor y-l). This single parameter

accounts for the relative influence of the aerodynamic and inertia forces;

specifically, it is the only parameter that varies with air density p, all

other constants being the ratio of inertias (that is, of course, the reason for

the normalization by (N/2)Ib). The spring and damping constants are

= Cq /(N/2)I b (and similarly for chordwise bendingK_l = KqII(NI2)I b and a_1 I

and torsion). Since these constants have already been made dimensionless, in

terms of the dimensional values the normalized spring and damping rates are

K*ql = Kql/(N/2)Ib_2 and C*ql = Cql/(N/2)Ibl_ I. The effect of a variation in

rotor rotational speed is to change the relative spring and damping rates of

the wing, because the wing natural frequencies are really constant dimensional

values (cycles/sec). The wing frequencies then change with _ when expressed

as dimensionless quantities (per rev). This is, in fact, the only influence

of _ on the equations of motion, besides a possible change in the rotor natural

frequencies w B and _ with _. In the inertias, as in the spring and damping
constants, it is not necessary to introduce the intermediate steps of making the

* I
quantities dimensionless (using p, 9, and R); for example_ I>y = Ipy/(N/2) b

is correct with dimensional quantities on the right-hand _ide. The rotor

radius R enters only in normalizing lengths, such as YTw _nd hEA and, of

course, the air density p appears only in y.
i

Wing aerodynamics- The wing aerodynamic forces that _xclte the bending

and torsion motions of the wing are defined by

Mql = .sO Fzwnw dyw
aero

Mq 2aero = FXw_ w dYw

MP aer ° = MW_ w dYw

(193)

where Fzw is the vertical aerodynamic force on the wing section (lift); Fxw,

the chordwise force (profile and induced drag); and Mw, the aerodynamic moment

about the local elastic axis. The section forces F z and Fxw are defined with
W

respect to the section principle axes, not with respect to the free stream.

The integrals of these section forces over the span, weighted by the appropri-

ate mode shape, give the net forces that excite the wing degrees of freedom.

The velocity seen by the section has perturbations that result from the wing
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degrees of freedom and from aerodynamic gusts; any interference with the rotor
is neglected. From the velocity perturbation, the perturbations of the section
forces are found (following a procedure similar to that used for the rotor aero-
dynamics), and hence the wing aerodynamic coefficients (the trim terms are
dropped):

_q,_e_o_

Mq2aero

_aero

c,_.lfq \.qlq2 qlP

=IC* • C* • q2pl t 2_q2ql q2q2 C* " q

C*.
L Pql C*.Pq2 C_[_ J \p /

[J* c, qlp]/qqlql qlq2 l_

+ C* q
q2ql q2q2 q2

LC_ql C*pq2 C_p J \ p /

+ C_2 BIc+++'+ ++++It !BGJ

C+p+g_j\+a/
The coefficients are

C*qlu = d12V22CLoe I

C* = dl2V2CL e 1
ql et c_

C* = _ * C*
ql B wlCql_ + 6W3 ql u

C* • = -d I
q lq I 3VCLde2

C_l+2 = -dl3WCLoe 2

= -d12V26w3 e3C_lqI CLa

C *qlq 2 = -d I2V2 6w 3CL o e3

Cqlp* . = d22(l/2)V[3/4 + (XAw/CW)]CL e 4

C* = dlJ2Cn e4
qlP

(194)

(19s)

(Eqs. (195) continued on next page.)
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C* = d12V22(CDo- _w2CLo)elq2u

C* = dl2V2(CDeL - 2CLo)elq 2c_

C* = 8w C* + 6. C*
q28 I q2 _ w3 q2 u

C* • = -d 13V(CD_ - 2CLo)e2
q2ql

, . = -d l
Cq2q2 3V(2CDo- 6w2CD )e2

C* = -dI2V28w3(CD_- 2CLo)e3q2ql

C*
q2q2 = -dI2V26w3(2CD° - 8w2CDa)e2

v* • = _2(I/2)v1[i/2+ (XAw/CW)](Cv_ - 2cco) - (1/4)C5ole4q2P

C* = dI2V2(CDa- CLo)e4
q2P

c_ = _ Iv22C_oZI

C* = V 2
pa -d21 (XAw/ Cw) f iCL_

p8

v_1 = S22V(XAw/aW)e4CG

C_k 2 = -d22V2Cmace4

C* = dl2V2Cmacf 2
Pql

C* = -d 1
Pq 2 2V2CLof 2

C*. = -d31(1/2)V[1/4 + (1/2)(XAw/C w) ]CLC,C 3
PP

C* = -d21 V2 (XAw/Ow)f 3CL_
PP

(19s)

where CLo and CDo are the aircraft trim lift and drag (profile and induced)

coefficients; CL_ and CDc* are their derivatives with respect to angle of attack.

The section moment characteristics are given by mAw, the distance the aerody-

namic center is behind the elastic axis, and Cma c, the nose-up moment coeffi-

cient about the aerodynamic center. The coefficients can be corrected for

unsteady airfoil effects (by use of a lift deficiency function) and for the

increased dynamic pressure in the rotor slipstream; such corrections would be

small, however, and probably would not be consistent with the accuracy of the
n m

methods used to derive the coefficients. The constant dnm = _ yTzo/(_oa)

accounts for the difference in the normalization of the wing and rotor
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coefficients. The dependenceon forward velocity V is shown explicitly, except

that for a fixed gross weight; CLo and CDa are proportional to V -2 while CL_

and CDo are constant (at high speed at least, where the induced drag is small).

The constants en and fn are integrals of the wing mode shapes, which account
for the way the motion produces forces on the wing:

fY wel = _w dYw/Y a 1/3
"0

e2 = nw2 dYw/y = 1/5
"O

ea = nwnw 'dYw/g = i/2

f yrw dUw/Yrwe4 = qwCw _ 1/4
"0

fl = _W dYw/YTw = 1/2

f2 = _wnw [(Yw - YTw )2/2]dyw/y
.rO

YTw
f3 = _W 2 dYw/YTw _ 1/3

"0

1/12

The constants were evaluated using the approximate mode shapes qw a Yw 2/yy-

and _w _ Yw/YT w (which are reasonably close with the large mass on the wing-W
tip).

The derivation of the coefficients follows the standard techniques of

strip theory in aeroelasticity, similar, for example, to the derivation of the

contributions of the wing to the aircraft stability derivatives. The most

important wing aerodynamic coefficients are the vertical bending forces due to

direct angle-of-attack changes: Cql_l, Cqlp, and Cql_. The change in angle

of attack due to wing vertical bending, torsion, and vertical gusts is

nwql

6_ - V + _w p + _G
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The lift perturbation is _Fzw_ 6L = (I/2)V2CwCL_, and the momentexciting
vertical bending is

_Mqlaero = .COyTw 6Fzwn w dyw

YTw 1 V2owCL q nw= _ V
"0

+ P_W + _GldYw

2

CWY TwV [_ YTw )]2 G(CL_ el) + _ qI(-CL_ e2) + p(CLae4

If one normalizes by dividing by (_/2)aa, coefficients C* C* • anc C*
ql _" qlql" qlP

are identified (as given in eqs. (195)). The remaining coefficients are

derived in a similar fashion.

Equations of motion for proprotor and wing- All the elements are now
available to construct the equations of motion for the proprotor and cantilever

wing system: the rotor equations of motion (eqs. (44) and (47)), the rotor hub

forces and moments (eqs. (45), (46), and (48)), the shaft motion due to the

wing degrees of freedom (eqs. (181)), and the wing equations of motion (eqs.

(192)). It is only necessary to perform the matrix multiplications required

because of the substitutions. The result is a set of linear ordinary differ-

ential equations for the nine degrees of freedom:

81C

81S

_1C

_IS

So

_o

cyclic flap (longitudinal tip path plane tilt)

cyclic flap (lateral tip path plane tilt)

cyclic lag (lateral rotor center-of-gravity offset)

cyclic lag (longitudinal rotor center-of-gravity offset)

collective flap (coning)

collective lag (or rotor speed perturbation)

ql

q2

wing vertical (or beamwise) bending

wing chordwise bending

p wing torsion

with the inputs
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_IC

@o

uG

B G

aG

cyclic pitch (lateral control plane tilt)

cyclic pitch (longitudinal control plane tilt)

collective pitch

longitudinal gust

lateral gust

vertical gust

The matrix multiplications could be left to the machine, but it is better done

by hand since there is considerable cancellation of terms in the coefficients

of the equations of motion. The final expressions for the coefficients remain

rather complex, however, because of the many (small) terms that involve the

wing sweep, dihedral, and incidence angles.

For the autorotation case, the collective lag degree of freedom C0 becomes

the rotor speed perturbation in the rotor model used here by setting

I*_O = I*_o a = 1 and V_O = 0 (as discussed earlier). Setting the collective lag

natural frequency to zero assures that no torque is transmitted to the wing,

but it is probably better to directly drop the CQ/ea forcing of the wing

motion from equations (192) (primarily forcing of ql ).

Structural damping of the rotor blades is also added to this model;

however, since the blade flap and lag damping are high already because of the

high inflow aerodynamic forces, the low structural damping of the rotors con-
* is added

sidered here is not very important to the dynamics. A term I S gs _

to the rotating lag equation of motion, and I8*gsB(UB 2 - I) I/2 is added to the

rotating flap equation (the structural damping does not act on the centrifugal

spring term in v_). The transformation to the nonrotating degrees of freedom
and equations of motion follows as usual. Different damping coefficients are

allowed for the rotor cyclic and collective modes of the rotor, specifically

to account for the collective lag mode in autorotation (which must have zero

structural damping as well as zero spring) and the coning mode of the gimballed

rotor. The structural damping parameter gs is twice the fraction of critical

damping, which is typically 0.5 to 1 percent for the cantilever rotor blades
considered here.

Simplified equations- The coefficients of the nine equations of motion

for this proprotor model are simplified considerably if all the effects of

sweep, dihedral, and angle of attack are neglected. Since these angles are

always small for the model considered here, they generally contribute only

small corrections to the coefficients. An exception, however, is the effective

elastic axis shaft at the wing tip due to the sweep, which is an important

aspect of tile wing structural dynamics; this may be included by use of, for

the mast height h, the distance from the hub to the effective elastic axis

rather than to the actual wing tip spar. The simplified version of the equa-

tions of motion then is obtained by neglecting all effects of _Wl, _w2, and 6w3
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except that the effect of the effective elastic axis is included if h_ is
used for h wherever it appears. In addition, the calculation of the rotor

coefficients is simplified by considering only the c_a terms (i.e., eqs. (54));

this primarily limits the results to below the critical tip Mach number and is,

in fact, the form used almost exclusively for the rotor aerodynamics in the

results presented here. Similarly, only the wing aerodynamic forces due to

CL are retained. This simplified model is not usually used here, and for the

design and analysis of actual vehicles these simplifications of the structural

and aerodynamic features would probably not be satisfactory. It will be shown,

however, that the simplified model incorporates the essential features of the

high inflow proprotor dynamics and so may be useful in further studies.

Dropping the 8w , and terms from the shaft motion expressions
(eqs. (181_ yields 1 _w2' 8w3

a -_nw' o oJ¢ / z -yTw OJ\p/

and the wing equations of motion (eqs. (192)) reduce to

* _, ,2

Iqw + IPxn w + mp* 0

L Sw* 0 _* + *
Pw zPu

(196)

+

q o

I - ¥C_iql

0 C*
q2

0 0
o

Cp, - _cf_j_ i

+

0 -¥C* q

0 Zp*J\p/

[i°= 0

0

+ y

i G + T
NaG/

iw CQ CT
_+Y 2T w _-_

-_qW' oa + y 0
2

0 _a/ U!ZEA

-_nw'hEA 2C

o -_/

(197)
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The simplification is quite substantial. If one substitutes for the shaft
motion into the rotor equations and forces, and then for the rotor forces into
the wing equations, the matrix multiplications are easily carried out. The
result is a set of nine equations of motion of the form:

A2x + AlX + Aox = BV (198)

where the degree-of-freedom vector is

_IC I

_IS I

x= BO

ql

q2

and the control vector is

P
h

V =

°ls l

O0
!
o

u G

BG

_G

The coefficient matrices are given below for the simplified equations. For

convenience, in these matrices, n is written for _nw'(YTw), Y for YTw, h for

hEA , and V for V + v; all CT and CQ terms are dropped and the structural

damping of the blade is neglected; superscripts * on the inertias and spring

constants are dropped.
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A 2 =

I

Is I

l

l I

I J

I

I

I

I

I

I

i

I

I

I

I

I

I

I8 o

l

I

I

i

S y

-nIBa

-S_hn

S h

-SSoY

-Shn

S_y

I

I I_°

l

2T]I_0_

Tqw+mp i

+y 22M b

+2r1210

+2hyM b

I
Sw

I +2hYMb

Iq +m_
w

+IPxn2

l+h2n22Mb

+y22_

÷zp
w y

+2h2M b
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m

-YM 8

-2I 8

A1 =

218

i -21B_ n l

I -%_ i yM_

-YM{s

I
yM" Y_y yM_

2I h

+yMph

-YQ'B yQ_ 2I

- 2I YQvY

I -yM_ yM_ yM_n

I
Y¢_n

I I

-yH_y

I Cq_ II I I +2_1 _y% uh_
I -_Q;_ I _Q_I +_ I+Yn_rs_t-Yaq_b

I I I
_ I I -_ I

I I
-yT_2y -2ynyT_ +h2n2yHlJl -hnyHF3

- 2y 2y TX

-yn_h yH_h

i
yHvhy hnyH_

I I

I CPw
+h2yHp

I_%b
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A 0 =

+KpyM e
yM_ ylrMn

yM_ -yM_

i I
y%_p _yQ_ 2I_(_ -1)

Y% YQoKp -YQ_

I
I_ (v2_-l) I

I I

I I

I I

2 1
I IBOuBO

i *yMeKp I

I I

I I

I i
YOo_p

I I

I i

I i i
2nKpyQ O

I

I I
-hnxH" -2yKpyT 0

I I i

Kql

I I -yyVHp

I I -yCqlP

i-hn2yVHv I

hxz,Y_o
1 I i 1

I I I I I -hyVH
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yM@

I
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I

I
YQ@

l i

I I I I

I _Qo I I I

I 1% I _ I

I
YQo

f

I
YYH 0

I
2nyQ e

I I I

I I Y% i

I
yVQp

I

I

i
I

I I I

-h,_%I I -2Y% I

I I
2nyVQz

I l
I yyVH

I +Yaql a

I I

I I I I I

I h_,,_ I I I I hY_'_
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Air Resonance

The incorporation of the wing vertical bending motion into the model
introduces the possibility of a mechanical instability involving that degree
of freedom and the rotor blade inplane motion. Since instability involves the
elastic bending of the airframe, it mayoccur in flight; hence it is termed
air resonance. The basic mechanisminvolved, however, is identical with that
in classical helicopter ground resonance (involving inplane hub motion,
typically due to vibration of the helicopter on its landing gear while on the
ground). The analysis and conclusions from ground resonance are thus directly
applicable to air resonance also.

Certain conclusions immediately follow then from the ground resonance
analysis (ref. 34). Air resonance involves a coincidence of the wing vertical
bending frequency (for the proprotor configuration) and the frequency (in the
fixed system) of the lower lag mode_ - I. Any resonance with the upper lag
mode (_ + I) are always stable. Furthermore, the resonances with the icwer
lag modeare also stable if the rotor is stiff inplane, that is, if v_ > I/rev.
Air resonance instability is possible only with a soft inplane rotor, that is,
with v < I/rev.

Air resonance instability then occurs at a resonance of the frequencies
_ql and 1 - _ of the wing and rotor modes,with vp < I/rev. Such conditions
must be avoided, for example, by use of a wing that is stiff enough so that any
resonance occurs at a rotor speed _ muchhigher than the normal operating
rotational speed. Alternatively, it is possible to stabilize any resonances
that occur by including sufficient damping - structural or aerodynamic - in
the wing and rotor motions.

High inflow operation of the rotor results in an aerodynamic dampingof
the lag motion, Q_, which is of order 1 in high inflow, compared to the order

of the inflow squared in low inflow. Thus increasing forward speed in the air-

plane configuration greatly increases the lag damping and eventually will

stabilize the air resonance motion. Forward speed also contributes to stabil-

ity by increasing the wing aerodynamic damping. Therefore, above a certain

speed, no instability occurs even at a coincidence of the wing and lag fre-

quencies; it is desirable, of course, that this speed be as low as possible,

at least below the aircraft stall speed.

A simple model will yield an estimate of the damping required, so of the

forward speed required, to stabilize the air resonance motion. Consider the

rotor lag and wing vertical bending degrees of freedom (_lC, _IS, and ql )
retain only the direct damping of the wing and lag motion as the only aerody-

namic influence. The homogeneous equation of motion, in Laplace form, reduces,

for this set of degrees of freedom, to

[I_*(s2+C s+v 2-I)

-I_* (2So+C_)

I*(2s+C)

I_*(s2+C_s+w 2-I)

S * s 2
YTw M_I

o
j

(s2+Cqf+W_IJ\q I /

= 0 (199)
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where the definitions of the coefficients follow by a comparison with the
complete set (eqs. (198)). In particular, I_*C_ has been introduced for the

total lag damping, M_iOql for the total wing vertical bending damping, and 00ql

for the natural frequency (per rev) of the wing vertical bending motion. The

characteristic equation is then

I *2[(s 2 C )2 M_ Cq] 2+ C_s + w_2 1)2 + (2s + ] l(s2 + s + _ql)

.2_,2 84
- I *(s 2 + Cg.9 + w¢2 _ 1)S_, jm_w = 0 (200)

The only coupling of the rotor and wing degrees of freedom is the inertia

coupling that results from S_2; it follows then, as in ground resonance, that
the damping required must also be of order S *z. Examine the resonant case,

where _ql = 1 - `0_ (`0 < 1). Assume that th_ system is exactly on the stabil-

ity boundary, so that s = i00 is a solution of the characteristic equation,

2 Then, to the lowestwSth 00 real. Let 002 be an order S 2 distance from 00qi"

order in S .2, the characteristic equation is

I "22C iCOq1(`0¢2 + 1 - 00_l)M_lCqliOOql

,(`0 2 _ 1 2 )S_2 2 4- I _ - 00ql YTw00ql = 0 (201)

Since the resonant case is being considered, for 00qI = 1 - `0, then

`0 2 1 - oa2ql = 2('0g 1) = -200ql

`0 2 + 1 - 00_ 1 = 2_

and equation (201) becomes

- 200_ S*2y_ _ = 0
I6*CgM_ICqI2m$12`0_ _i _ W _I

For dynamic stability, it is required then that

s,2y2
l_ ql

(202)I *C Md Cq >_ ql 1 2_

that is, that the product of the wing and rotor damping be above a certain

critical value.
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To estimate the damping available, consider the aerodynamic damping of
the wing:

c y_ V
W

M_ 6' = * 1 wI ql -yCqlql = YCLa 5 _a

and the aerodynamic lag damping:

Vsin t
*C = y@

I _ "_ Y 6

The contributions of the structural damping of the wing and blade are negligible

at the forward speeds involved. _le boundary is usually at a low enough V that

the small V approximation to O_ is accurate still; therefore,

V 2

*C = YQ'_ _ Y 4

The requirement on forward speed V for air resonance stability is then:

S ,2 3 /2v
a_q ] ¢

V 3 >

y2 ( 1 / 2 O) CZaOw2/Tw,/a_ro

(co3)

which gives a critical V only a few percent below that for Q_ a (V sin t)/6, and
so the low inflow approximation for Q_ is within the general accuracy of the
result. This result is, of course, _n dimensionless form, so the velocity is
really the inflow ratio _SlR and the frequencies are all dimensionless values
(per rev).

For the type of soft inplane rotor considered here, vg (per rev) does not
vary much with _, at least near and above the normal operating rotational
speed Consequently, the value of (per rev) at resonance with 1 - v is

• . Wq 1

also independent of _. Then the entire right-hand side of equation (203) for

the critical V is a constant; it depends on the rotor (wE) and on some geo-
metric properties of the rotor and wing. It does not, however, depend on fi or
on w (dimensional) because it is in dimensionless form

The criterion for stabilizing the air resonance motion is then a

requirement for a fixed value of the ratio V/_ for a given rotor (soft

inplane, with v¢.(per rev) independent of _2). The rotor rotational speed for

the instability _s given by the criterion of resonance of the ql and _ - 1
modes; therefore,

wql ql

(204)
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where in equation (204) _ql is dimensional and v_, per rev. Thus the rotor
rotational speed (RPM)for resonance is directly proprotional to the wing
vertical bending frequency (Hz). The forward speed required for stability at
the resonance is given in terms of a critical inflow ratio:

V = R ritical
(2os)

Thus the aircraft velocity (knots) required for stability is directly propor-

tional to the rotor rotational speed (rpm). Then increasing the wing vertical

bending stiffness increases the _ at which air resonance occurs, but it also

increases the V required for stability. Both effects are linear with _ql _Hz)

or (Kql)i/2 for a fixed _ (per rev); on the V - _ plane, the locus of the

highest air resonance instability speed is a constant V/_ line, that is, a

straight line through the origin. The increase in _ is favorable for air

resonance occurring above the normal operating range, but the corresponding
increase in V is unfavorable.

SECTION 5: RESULTS OF THE THEORY AND COMPARISON WITH FULL-SCALE TESTS

Proprotor Dynamic Characteristics

In this chapter (and the following two chapters), the dynamic

characteristics of a proprotor operating at high inflow on the tip of a canti-

lever wing are examined. The investigation uses the results of the theory

developed previously. The cases examined are based on actual proprotor

designs - two full-scale proprotors that were tested recently in the Ames 40-

by 80-Foot Wind Tunnel on a dynamic test stand consisting of a cantilever wing

simulating the full-scale aircraft wing stiffnesses. One rotor was designed

and constructed by the Bell Helicopter Company, and the other by the Boeing

Vertol Company. The Bell and Boeing rotors are shown in the configuration for

the dynamic tests in the 40- by 80-Foot Wind Tunnel in figures 12 and 13,

respectively. The two rotors differ primarily, so far as their dynamic char-

acteristics are concerned, in the placement of the rotating natural frequencies

of the blade flap and lag motions. The Bell rotor has a gimballed hub and

stiff inplane cantilever blade attachment to the hub, hence _B = 1 (nearly, for

it does have a weak hub spring) and v_ > l; it also incorporates positive
pitch/flap coupling, Kp < 0 or 63 < 0, to increase the blade flap/lag stability.

The Boeing rotor has a cantilever or hingeless hub with soft inplane blade

attachment, hence _B > 1 and v_ < i. The flap frequency is large even for a

hingeless rotor because of the operation at lower rotor speed in airplane mode

(the hover value of _B is more typical of a hingeless rotor helicopter). The

different placement of the blade frequencies, at opposing extremes of the

range of choices, results in quite different dynamic characteristics for the

two aircraft. A description of the rotors and the full-scale test results are

given in references 25 to 28. For convenience, in the following discussion,
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the gimballed, stiff-inplane rotor is referred to as the Bell rotor; the

hingeless, soft-inplane rotor is referred to as the Boeing rotor.

The dynamic characteristics of the rotors are examined in the following

two chapters. Of primary interest are the eigenvalues - the frequency and

damping of the roots of the coupled wing/rotor modes of motion. The basic

parameters for this investigation are forward speed V, rotor rotational speed

f_, and inflow ratio V/_. A velocity sweep, varying 17 (and so ;7/_2) at con-
stant _ is of interest since it is the way the rotor ac:tually operates in air-

plane mode. The rotor speed _ determines the relative values (i.e.,

dimensionless, per rev) of the wing natural frequencic_s, and so has a fundamen-

tal influence on the dynamics. Varying _ also changes the blade natural fre-

quencies, especially for the cantilever rotors con-;id_red here. A rotor speed

sweep at constant V also varies the inflow ratio V/S)2:!. The inflow ratio V/S2R

is the primary parameter for the rotor aerodynamics :rod the wing aerodynamics

as well. Varying V/_ may also change the blade frequencies because of the

change in the rotor collective pitch angle with the inflow ratio.

Several elements in the theoretical model are examined to determine their

influence on the proprotor dynamics: blade lag degrees of freedom, wing aero-

dynamics, rotor speed perturbation degree of freedom, the complete expressions

for the rotor aerodynamics, and a simplified theoretical model. The influence

of the rotor lag motion can be examined by stttdying the effect of dropping the

_1C and _IS degrees of freedom from the complete nine-degree-of-freedom model.
The influence of the wing aerodynamics can be examined by setting all wing

aerodynamic coefficients to zero and by comparing the results with those from

the model that includes the wing aerodynamic forces.

The rotor is usually considered to be operating in autorotation for the

theoretical results presented here because this state is found to be least

stable and also it is the configuration in which the _lll-scale dynamic tests

were conducted. In autorotation, _0 is the rotor speed perturbation degree of

freedom, which is achieved by setting v_0 = 0 (as discussed previously); also,

no rotor torque is delivered to the wing tip. The other extreme examined,

considered the powered operation case, is when the hub operates at constant

angular velocity (_) with no perturbation; then C0 is the collective lag

degree of freedom, which is achieved by setting _0 = v , and the rotor torque

perturbations are transmitted to the wing. This representation of the powered

case is, of course, the limit of a perfect governor, but it provides an

indication of the real powered state dynamics of the proprotor.

The rotor aerodynamic coefficients are usually calculated for the present

results using only the cza terms (eqs. (54)). This approximation simplifies

the calculations considerably since then the coefficients depend only on V/_,

and it provides an adequate representation of the rotter aerodynamics for the

range of inflow considered here, at least so long as the critical tip Mach
number is not exceeded. The validity of the approximation can be assessed by

comparisons with the dynamics that result when the complete expressions for

the rotor aerodynamic coefficients are used (eqs. (50)). Since only a check

on the influence of the complete expressions is desired here, representative
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analytical expressions are used for the airfoil characteristics rather than
the characteristics of the actual rotor blade sections (as described in eqs.
(55) and (56)). To evaluate the complete coefficients, the angle-of-attack
distribution over the blade span in the trim operating state is required, hence
the rotor collective pitch is required. The determination of the collective
pitch requires a performance analysis to find 00.75 for a given CT or CQ; a

simpler procedure - the use of an approximate collective pitch angle based on

the inflow angle at 75 percent radius (plus about 1 ° to account for the mean

operating section angle of attack) - is also evaluated. The evaluation of the

complete rotor aerodynamic coefficients is also the only time the blade twist

is required in the calculations (with the exception that when only the c_a

terms are used, the blade is assumed to have the twist required to maintain

unstalled flow over the entire span).

The effects of the wing sweep, dihedral, and angle of attack considerably

complicate the coefficients of the equations of motion. Therefore, a simpler

theory is evaluated in which all the 6Wl, 6w2, and 6w3 terms are dropped. The

shift of the effective elastic axis at the wing tip is included by use of hEA

(the distance from the hub to the effective elastic axis at the wing tip) for

the mast height h (the physical shaft length in the unswept wing model). The

simplified theory also uses only the c_a terms for the rotor and wing aerody-

namic coefficients. Of course, that is the usual approximation used here for

the rotor coefficients, and it includes the primary effects of the wing coef-

ficients. When the option of using the complete expressions for the rotor

coefficieints is not included, the calculations are simplified considerably.

The two full-scale rotors were also tested on a quarter stiffness wing,

which had natural frequencies half those of the full stiffness wing. There-

fore, by operating at half normal rotor rotational speed, the dimensionless

wing frequencies (per rev) could be maintained and a given V/fIR achieve,! with

half the normal forward velocity V. With the quarter stiffness wing, _t was

possible to simulate operation at forward speeds twice the maximum ct_pability

of the wind tunnel, at least so far as the wing natural frequencies (maintained

at the same per rev values) and the rotor aerodynamics (primarily a function

of V/_R) were concerned. The rotor stiffness was, however, not correspondingly

scaled down; therefore, the increase (per rev) in the blade flap and lag

natural frequencies where the rotor was slowed down to half normal a violated

the simulation. For the gimballed rotor, at least the flapping mode (which

has only centrifugal stiffening, except for the weak hub spring) was simulated

on the quarter stiffness wing; but the lag frequency and both the flap and lag

frequencies for the cantilever rotor were considerably different. Consequently,

the results of the quarter stiffness wing tests are not presented here as

simulating operation at twice the actual speed; the results are studied since

they do provide additional data for investigating the dynamic characteristics

of the proprotor.

The theoretical studies concentrate on the eigenvalues as primary

indicators of the dynamic behavior. However, the eigenvectors and also the

frequency response of the system are examined at a typical operating condition

(V/_R = 0.7). Finally, the results of the theory developed here are compared
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with experimental data from the full-scale tests and also with results from
other theories.

With the nine-degree-of-freedom model of the present theory, there are
eighteen roots or eigenvalues. The eigenvalues for each modeare usually a
complex conjugate pair, which are then described by a frequency w and damping
ratio _:

w : Iml

The damping ratio C is the fraction of critical damping for the mode. The

coincidence of the notation for the damping ratio and the rotor lag angle is

unfortunate, but both are well established and the context should always

clarify which is meant.

Nine eigenvectors or modes correspond to the eigenvalues. The modes are

identifiable by their frequency (which is near the uncoupled frequency, approx-

imately the appropriate natural frequency as indicated in parentheses below)

and by the participation of the degrees of freedom in the eigenvector. The
modes are labelled here as follows:

ql wing vertical bending (_ql)

q2 wing chordwise bending (Wq2)

p wing torsion (_)

B - 1 low-frequency flap (vB - l)

- 1 low-frequency lag (v_ - I)

6 coning (VBO)

B + 1 high-frequency flap (vB + I)

+ I high-frequency lag (_ + i)

collective lag (v_)
0

Each mode invoIves motion of all nine degrees of freedom, of course (ql, q2,

p, 8_, B_o, B_, _IC' _lS' and _0). The low- and high-frequency modes were
discussed earlier.

Description of the full-scale proprotors.- The parameters that describe

the two full-scale proprotors are given in table 3 and in figures 14 to 17.

The wing described in table 3 is for the configuration tested in the 40- by

80-Foot Wind Tunnel• The rotors are flight-worthy designs. (For further

descriptions of the full-scale rotors and aircraft, see references 25 to 28.)

The parameters given in table 3 are those required for the present theory.
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Rotor

Type

TABLF 3.- DESCRIPTION OF TIlE BELL AND BOEING FULL-SCALE PROPROTORS

AS TESTED IN THE AbIES 40- BY 80-FOOT NIND TUNNEL

Number of blades, N
Radius, R

Lock number, 5'
Solidity,

Pitch/flap feedback, K?
Lift curve slope, a

Rotor rotation direction,
syn

Tip speed, 9.;_

Rotational speed, S2

Blade frequencies (per rev)

v_

Blade inertias

uS0

¢

v¢ 0

!_ *

f*
_0

I_*

I*
_0

Io*

.[*
Ba

I*

Bell Boeing

Gimbal led, stiff

inplane
3

3.82 m (1 _ 5 ft)

Cantilever, soft

inplane
3

3.97 m (13 ft)
3.83

0.089

-0.268

5.7

+1

183 m/sec

(600 ft/sec)

458 RPbi

/ .6a ltz

48.0 rad/sec

[i + ().03551600'_2] 1/2
\ _RI J

(fig. 16(a))
1.85

figure 16(b)

4.04

0.115

0

5.7

-1

160 m/sec

(525 ft/sec)

386 RPbl

6.43 flz

40.4 rad/sec

figure 17(a)

figure 17(b)

0 for autorotation, vg for powered

142 kg-m 2

(105 slug-ft 2)
1.000

.779

•670

•670

1.0

1.0

• 787

203 kg-m 2

(150 slug-ft 2)
0.922

.922

.860

.860

1.0

.955

.917
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TABLE3.- DESCRIPTIONOFTHEBEI,I, .:\NDBOEIN(;FULL-SCALF,PROPROTOR

AS TESTEI)IN Till! ,_IES 40- BY 80-FOOT WIND "I'[JNNtiL - Continued

Blade inertias

Except in autorotation
where

gO

I*
_0 a

V¢O

B]ade structural damping

_,TsB

gS6o

gs

gsc. o

a'l :tg

F.emi span, Yi"w
(iho rd, c w

blast height,
h

hFA

Pylon center of gravity, ZpE A
] ::_Yt J aS

mp*

T4

_-Pzt

I*
qw

I*
Pw

C*
Pq

S *
W

Be11 Boeing

1 •035

1 21 _

6. 160

1.092

1. 286

4.344

1

1

0

0.1 percent

.5 percent

• S percent

• 5 percent

1.333

.413

•261

• 342

.050

76.9

1. 086

1. 206

4•03

.0141

.667

2.88

0.5 percent

• S percent

. S percent

. S percent

1.281

.398

.276

.354

.145

110.93

1.323

2.926

2.822

• 0099

.607

12.56
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TABI,E3.- DESCRIPTIONOFTHEBELLANDBOEINGF[ILL-SCAI,EPROPROTOR

AS TESTEDIN TIlE AMES40- BY80-FOOTWINDTUNNEL- Contintied

Modeshape

Thickness ratio, tw/C w

Aspect ratio

Aerodynamic center, x A /c w
w

bloment coefficient, Cma c

Full stiffness wing
Dimensional stiffness

Kq 1

Kq 2

Dimensional structural damping

Cq 1

Cq 2

cp

DimensionaIess stiffness

K*
ql

Dimensionless damping
C*

ql
C*

q2

Cp,
Typical resulting frequencies

ql

q2
P

Bel 1 Boeing

0.535

1.74

_6.5 °

0

13.5 percent

6.6

-.01

-.005

9.20x106 kg m2/sec 2

(6.793x106 slug ft2/sec 2)

2.50x107 (1.840×1073

1.77x10 _ (1.305×106 )

9030 kg m2/sec

(6653 slug ft2/sec, _ = 1 percent)

27,300 (20,185, 1.8 percent)

955 (703, 1.5 percent)

3.2 Hz
5.35

9.95

18.72

50.70

3.595

.880

2.67

.093

0.42/rev
.70

1.30

2.3 Hz

4.0

9.2

18.51

50.14

3.555

.732

2.22

.077

0.36/rev
.62

1.43

141



TABLE3.- DESCRIPTIONOFTHEBELLANDBOEINGFULL-SCALEPROPROTOR

AS TESTEDIN TttENMES40- BY 80-FOOTWINDTUNNEL- Concluded

Quarter stiffness wing
Dimensional stiffness

Kq l

Kq 2

xp
Dimensional damping

Cq 1

Cq 2

Cp

Dimensionless stiffness

K*
ql

K*
q2

Dimensionless damping
C*

ql

C*
q2

Cp*

Typical resulting frequencies

ql

q2
P

Full-scale aircraft wing

Typical frequencies

ql

q2
P

Bell Boeing

2.28x106 kg m2/sec 2

(1.687x106 slug ft2/sec 2)
6.60x106 (4.863x106)

5.30x105 (3.908x105)

5590 kg m2/sec

(2646 slug ft2/sec, ¢ = 0.8 percent)

4700 (3462, 0.6 percent)

1.5 Hz

2.6

5.65

441 (325, 1.0 percent)

4.65

13.40

1.077

.35

.458

•043

0.40/rev

.68

1.48

0.45/rev

.78

1.15

i.I Hz

1.85

5.55

4.60

13.25

1.065

.29

.381

.036

0.35/rev

.58

1.73

0.49/rev

.95

1.22
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The Bell rotor is of gimballed, stiff inplane construction; the Boeing
rotor is of cantilever, soft inplane construction. The Lock numbery is based
on the representative inertia Ib, which is also given in table 3. The Bell

rotor has -15 ° of 63, from which Kp = tan 63 = -0.268. The two rotors rotate

in opposite directions; with sgn _ = l, the Bell rotor rotates clockwise on

the right wing, and with sgn _ = -i, the Boeing rotor rotates counterclockwise

on the right wing. The blade twist and thickness distributions are given in

figure 14 for the two rotors. The structural properties of the blades are

given in figure 15. The rotor rotational speed _ and the corresponding tip

speed f_R, given in table 3, are the design operating speeds for airplane

configuration. All theoretical results for frequencies are presented dimen-

sionless, that is, as a fraction of _ (per rev); table 3 gives the dimensional
values of _ for reference and to orientate the dimensionless results.

The blade rotating natural frequencies are given in table 3 and in
figures 16 and 17 for the Bell and Boeing rotors, respectively. Figure 16(a)

shows the variation of the Bell flap frequency with rotor speed a, from the

expression given in table 3. Since the Bell hub is gimballed, vB is inde-

pendent of V/aR (collective pitch); the variation shown results from the hub

spring restraint, which is rather weak at the normal a. The coning mode

natural frequency (for which the Bell rotor acts as a cantilever rotor) given

in table 3 is only approximate, for it should vary with _l and with the inflow

ratio (with collective) as the lag frequency does. The coning mode, especially

with this high frequency, does not participate significantly in the proprotor

and wing dynamics. The lag frequency for the Bell rotor (fig. 16(b)) is

greater than 1/rev for the stiff inplane blade; the variation with V/f_ is

actually the effect of the collective pitch variation. For normal a, the Bell

blade has a lag frequency from about 1.6 to 1.2 over the usual range of inflow

ratio; for reference, the forward speed is about 250 knots at V/_R = 0.7 and

normal _. The flap and lag frequencies for the Boeing blade are shown in fig-

ures 17(a) and 17(b) for this cantilever, soft inplane blade, vB > 1/rev and

_ < 1/rev (for the normal operating a at least). The frequencies of the
Boeing rotor do not vary much with inflow ratio (i.e., with collective) because

the blade has a nearly isotropic shank construction to achieve the soft inplane

lag frequencies; in fact, a soft inplane rotor for which the lag frequency did

vary with collective would not be a useful design for the proprotor because of

the restraints of blade loads and blade stability. For reference, the forward

speed for the Boeing rotor is about 218 knots at V/P3 = 0.7 and normal a. The

Bell and Boeing rotors both have a hover rotational speed of about 550 rpm;

the blade frequencies up to this a value are given in figures 16 and 17. The

blade frequencies at half normal operating a (229 and 193 rpm, respectively,

for the Bell and Boeing rotors) required for operating on the quarter stiffness

wing, are also given in figures 16 and 17.

The blade inertia constants are normalized by the I b values given. The

blade structural damping values are only approximate; the structural damping
of the blade is in any case negligible compared with the aerodynamic damping

in high inflow.

The same wing is used for both rotors. The wing semispan is 5.1 m

(16.67 ft) from the tunnel floor to the rotor shaft; the difference in the
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dimensionless values results from the use of" different rotor radii in tile
normalization. The mast height h is from the wing tip spar to the rotor hub,

and hEA is from the effective elastic axis to the hub. The wing has a forward

sweep (8w3 < 0) of 6.5 ° which shifts the effective elastic axis at the wing

tip a distance hEA - h = 0.31 m aft of the wing tip spar. _Hle elastic axis

shift results in the value of _w(YBw) given. The pylon center-of-gravity loca-

tion is the distance forward of the wing tip effective elastic axis; it is used

only to find SW* = mp*zpFA/YTw. The value of _w'Q_7',),;_, given was obtained from

a structural d)mamics analysis of the wing modes; note that the approximate

mode shape nw = yw2/YTw_ gives rlw' (yTw) = 2.

The inertia parameters of the wing were obtained from measurements;

the wing stiffnesses were then obtained by finding the values required to

match the experimental frequencies. This procedm'e makes use of the most

accurately known wing properties (mass and frequencies) and ensures that the

most important parameters of the wing dynamic characteristics - the

frequencies are accurately represented. The result was the dimensional

stiffnesses given in table 3 for the full stiffnes_ t,'in_ and the quarter

stiffness wing; the dimensional stiffnesses are the same for both rotors since

the same wing was used. The dimensionless stiffnesses are obtained by dividing

by (N/2)£bS22. The values given are based on the normal operating rotor speed,

and so must, in general, be multiplied by (2Ro/_??)2 where _R o = 183 and

160 m/sec (600 and 525 ft/sec), respectively, for the Bell and Boeing rotors.

To indicate the meaning of the stiffnesses, table 3 includes t)q3ical values

of the resulting wing frequencies; since these values are for the coupled

motion - at 100 knots and normal f? (one-half normal _ for the quarter stiff-

ness wing) they include the rotor inertia and aerodynamic influences, but

the latter are small at this low speed. The results for the predicted and

measured frequencies are always given here in dimensionless form (per rev); for

reference, the corresponding dimensional vslues of the wing natural frequencies

are given in table 3.

The wing structural damping coefficients were determined from the
stiffness and the measured values of the damping ratio (with the rotor off and

no forward speed, so they include no aerodynamic influences). The wing
structural damping is not well known, which means there is some uncertainty in

the predictions of the wing mode damping levels. The values given in table 3
are based on the measurements with and without the rotor and wing aerodynamic

influences, and are found to produce reasonable correlation with the data. The

dimensionless damping values given are based on the normal rotor operating

speed, so, in general, they must be multiplied by (_o/927).

The wing used, while having properties representative of the full-scale

aircraft, actually was somewhat thinner (tw/C w = 13.5 percent as compared with

the more likely 20-23 percent) and of quite different construction. Wing fre-

quencies characteristic of the full-scale aircraft (for airplane cruise con-

figuration and rotor speed) conclude table 3 to indicate the appropriateness

of the wing used for the full-scale tests.
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Other theories- The results of the theory developed here compared with

the results of other theories, as well as with the experimental data from the

full-scale tests. The reports of the full-scale tests of the Bell and Boeing

rotors (refs. 25 and 26) include predictions of the dynamic characteristics,
using theories developed by the companies for their rotors.

The Bell Helicopter Company uses two theories, a linear model and a

nonlinear model. The Bell linear theory (refs. 15 and 25) consists of a

closed-form analysis for calculating eigenvalues and eigenvectors. The model

has linear blade aerodynamics, but no wing aerodynamics. The degrees of free-

dom consist of flap and lag for each rotor blade and, for the wing and pylon,

there are five modes: vertical bending, chordwise bending, torsion, pylon

yaw, and pylon pitch. _le Bell nonlinear theory (refs. 25 and 29) consists of

an open-form analysis for calculating the time history of the motion by numeri-

cal integration of the equations of motion. The model uses better blade aero-

dynamics than does the linear theory, and incorporates wing aerodynamics

(including rotor/wing interference effects). For this application at least,

the same degrees of freedom are used as for the linear theory. The nonlinear

theory uses normal modes for the airframe (wing and pylon here) degrees of
freedom, obtained from a NASTK&N calculations.

The Boeing Vertol Company uses a linear _heory (refs. 26, 28, and 30)

that consists of a closed-form analysis for calculating the eigenvalues and

eigenvectors. The degrees of freedom consist of flap and lag motion for each

blade and normal modes for the wing.

The Gimballed, Stiff-Inplane Rotor

A 25-ft-diam flight-worthy gimballed, stiff-inplane proprotor, designed

and constructed by the Bell Helicopter Company, was tested in the 40- by 80-

Foot Wind Tunnel in July 1970. The configuration for the dynamics test (fig.

12) consisted of the windmilling rotor mounted on the tip of a cantilever wing.

1_e rotor was operated in high inflow axial flow. _le rotor and wing were

described previously, ll_e test results, and also theoretical results from

the Bell theories, are given in reference 25. Only the data for the case with

the yaw link in are used here; that configuration had the pylon yaw stiffness

at the airplane mode value. The theoretical dynamic characteristics of this

rotor and wing are discussed, followed by a comparison with the full-scale

test results and the Bell theoretical results. The aspects of the theory to
be examined were discussed in the previous section.

The predicted variation of the eigenvalues of the system with forward

speed, at the normal airplane mode rotor speed (_ = 458 rpm), is shown in

figure 18: the frequency and damping ratio and the root locus. The wing mode

frequencies show a slight decrease with V. The decrease in the lag frequency

_ with V/G_ (really the effect of collective pitch) is apparent in the _ ± 1

mode frequencies. The _ ± l modes show the influence of the negative _3, which

drops the effective flap frequency below 1/rev. For the rotor operating in

autorotation, the rotor speed perturbation degree of freedom _ is a first-

order motion (a balance of the inertia and the aerodynamic lag damping) so its
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eigenvalue is on the negative real axis (not shownin fig. 18). The time
constant of the _ modeincreased greatly from low inflow, where the lag damp-
ing comesfrom the c_a terms (Q_). The damping of the wing chordwise bending

mode q2 decreases with V, the damping of the torsion mode p increases. The

damping of the wing vertical bending mode first increases with V, then it
decreases. Re k occurs where the frequencies of the _ - 1 and q modespea .l .
cross; hence it is an effect of the coupling of the rotor lag and wlng bendlng

modes. A similar effect is apparent in the q_ damping where the _ - 1 and q2

frequencies cross, but it occurs at very low inflow so the effect is small.

The ql mode becomes unstable at 495 knots (V/_ = 1.39); and the q_ mode, at
600 knots (V/_ = 1.69); these are the characteristic high inflow instabilities

of the proprotor and wing configuration. Of course, the helical tip Mach num-

ber (Mm_ = Mtip[l + (V/_)2] I/k) is unity at about 550 knots (V/_ = 1.55),

certainly an upper limit on the validity of the theory.

The influence of the rotor lag motion on the system stability is shown in

figure 19, which compares the damping of the wing modes with and without the

_1C and _IS degrees of freedom in the theory (_0 is the rotor speed perturba-
tion for this autorotation case, so it must be retained); figure 19(c) shows

the complete root locus without _IC and _IS in comparison with figure 18(c).

The rotor lag motion has a very important influence on the wing modes, espe-

cially the ql damping. Without the resonance of the lower-frequency lag mode
with wing vertical bending, the damping does not show a peak at the resonance,

rather it continues to kncrease with V until the high inflow effects appear at

about 450 knots (V/_R = 1.27); then the damping drops off very quickly. So

the rotor lag motion has the following influence on the stability: when the

- 1 frequency is greater than the ql frequency (roughly, when

v_ > _ql + 1/rev), the resonance increases the ql mode damping, while,_hen

the _ -i frequency is less than the ql frequency, it decreases the damping.

The result is that the rotor lag motion significantly reduces the wing vertical

bending mode damping at the higher speeds. The speed at which the ql mode

becomes unstable is not changed much, however, which indicates that the high

inflow instability mechanism is not greatly influenced by the lag motion. The

reduction in damping at high speed is then more importantly accompanied by a

great reduction in the rate at which the damping decreases, which is very
beneficial. The rotor lag motion thus makes the high inflow instability less

severe. The flap and lag modes in high inflow are highly coupled by the aero-

dynamics. Eliminating the _IC and _IS motions therefore greatly influences

the behavior of the B ± 1 mode, as shown in the root loci of figures 18 and 19.

The rotor flap motion is expected to be important to the proprotor and wing

dynamics. The above comparison shows that the rotor lag motion can be equally

important. The influence of the lag motion is a combination of the high inflow

aerodynamic forces and inertia coupling with the shaft motion.

The influence of the rotor speed perturbation degree of freedom and the

wing aerodynamics on the system stability is shown in figure 20. The basic

case is autorotation operation, including the wing aerodynamics. Eliminating

the wing aerodynamic forces decreases the ql and p mode damping, but has only

a small influence on the q2 damping, which indicates that the C£_ wing damping

is the most important effect. Powered operation (including the wing
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aerodynamics again) is considerably stabilizing for all the wing modes, over
the autorotation case. The powered model considers the hub rotating at a
constant speed, so the _ modebecomesthe elastic motion of the blades about
the hub, with spring restraint v . The powered operation has little influence
on the _ ± l and _ ± l modes, or_on the wing modefrequencies.

The influence of the complete expressions for the rotor aerodynamic
coefficients, that is, including the c_, Cd, Cda, C_M, and CdM terms as well

as the c_a terms, is shown in figure 21. The better rotor aerodynamic model

reduces the predicted stability of the wing modes, for both autorotation and

powered cases. The details of the coupling of the high-frequency rotor modes

fl + 1 and _ + 1 are also changed somewhat. The complete rotor aerodynamic

coefficients were calculated both by use of the correct collective pitch from

a performance analysis (the collective pitch required for C_ = 0 for autorota-

tion, or for the CT needed in equilibrium cruise for powere_ flight), and by

use of an approximate collective value based on the inflow at 75 percent radius
(@0 75 = tan-l(V/_R)/(3/4) + 1 25 °)• • . The performance calculation is very sen-

sitive to the collective pitch used, but figure 21 shows that the dynamics

behavior is not; the approximate collective used is, in fact, within 1 or 2 °

of the correct value for both autorotation and powered flight at high speed,

and so evidently is an adequate representation of angle-of-attack distribution.

The complete expressions for the aerodynamic coefficients give somewhat dif-

ferent numerical values compared with those obtained when only the cza terms

are used (fig. 5), but the general behavior remains the same. An exception is

when the drag divergence critical Mach number is exceeded• The helical tip

Mach number exceeds the critical Mach number for the blade section character-

istics used (Mcrit = 0.9) at about 475 knots (V/_R = 1.33); it exceeds the

sonic value (M = l) at about 550 knots (V/_R = 1.55). These points [fig. 21)
are limits to the validity of the theory, but the main effects of the better

blade aerodynamic model occur below these limits. It is concluded that using

only the c_ terms in the rotor aerodynamic coefficients is satisfactory for

studying the basic behavior, and, in fact, is quite accurate so long as V is

neither too small (low inflow) nor too large [stall and compressibility). For

this example, the range in which the c2a expressions are adequate is approxi-

mately V = 25 to 350 or 400 knots (V/_R = 0.i to 1.0 or 1.1). When one pre-

dicts the characteristics of an actual aircraft, however, especially the

high-speed stability, the best available rotor blade aerodynamic model should

be used, which probably means tabular data for the lift and drag coefficients

as a function of angle of attack and Mach number for the blade sections used.

Figure 22 shows the influence of using the simplified theoretical model

on the predicted system stability. The effect is that of eliminating the wing

sweep terms (except for the effective elastic axis shift, which is retained

through hEA); the basic model already uses only the c_a terms in the rotor

aerodynamics and has no angle of attack or dihedral. The effect of the better

blade aerodynamics was discussed previously; the effect of dihedral is

expected to be similar to that for sweep; and there is little influence of

angle of attack generally (either experimentally or theoretically, for small

angles at least). Therefore, the simpler theoretical model is quite
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satisfactory for studying basic proprotor dynamics, giving the samegeneral
characteristics as the more involved model. For the design of an actual air-
craft, however, a good structural analysis of the wing and pylon motion should
be used.

Figure 23 shows the behavior of the system dynamics during a rotor
rotational speed sweepat 185 knots. The decrease in the wing modefrequencies
is almost exactly proportional to m-l, that is, the dimensional frequencies are
nearly _onstant during the _ variation. The lag frequency decreases with
faster than the (per rev) wing frequencies do. The _ - l modeagain showsa
frequency resonance with the ql mode with increased damping when the _ - l

frequency is higher, and decreased damping when it is lower than the ql fre-

quency. Some of the damping variation probably results from the high inflow

influence. At low _, a resonance of the B + l and p modes occur, which is

apparent in both the frequency and damping of these two eigenvalues.

The dynamic characteristics of the Bell rotor on the quarter stiffness

wing, at half normal operating rotor speed (_ = 229 rpm), are shown in fig-

ure 24, including a comparison with the full stiffness wing results (plotted

vs. V/N). The frequencies of the modes are given in figure 24(a) (except for

the B, B + I, and _ + 1 modes), and the great increase in the lag frequency

that results from slowing the rotor is evident (see also fig. 16(b)). The

wing frequencies are fairly well matched between the quarter- and full-

stiffness wings. However, because of the difference in lag frequencies, the

damping for the wing modes is not well simulated on the quarter-stiffness wing

(figs. 24(b) and (c)), especially for the ql mode, which, for the full-

stiffness wing, encounters a resonance with the _ 1 mode. The influence of

the rotor lag motion may be removed from the full-stiffness wing theory by

eliminating the _lC and _IS degrees of freedom and, indeed, the ql damping on

the quarter-stiffness wing correlates well with that case. With _he increased

lag frequency on the quarter-stiffness wing, the p mode (instead of the ql

mode) encounters a _ - 1 mode resonance, with a corresponding influence on the

torsion damping.

Figure 25 shows the eigenvalues and eigenvectors for the Bell rotor at

the typical cruise condition V/fZR = 0.7, a = 458 rpm, V = 249 knots. This fig-

ure is a time vector representation of the modes, so the eigenvector set for a

given mode rotates counterclockwise at _ = ZmX and decreases exponentially at

a rate given by ReX. The projection of each vector on the real axis gives the

participation of the degrees of freedom in the motion during the damped oscil-

lation of the system in that mode. The degrees of freedom not shown for a

given mode have a magnitude negligible on the scale used (i.e., less than

about 5 percent of the maximum). The autorotation and powered cases show

little difference except for the _0 motion, of course, and in the wing mode

eigenvalues. The rotor degrees of freedom participate significantly in the

wing modes. The B ± l and _ ± 1 modes show the coupling of the flap and lag

motions due to the high inflow aerodynamics, but little coupling with the wing

motion or with the collective rotor degrees of freedom. If BIC leads BIS in

the time vector representation, the flap mode is progressive (the tip path

plane wobbles in the same direction as the rotor rotation) and, similarly, for

the lag modes. With the stiff-inplane rotor (vr > l) and negative 63 (so the
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effective v8 < 1), then the 8 - i, 8 + i, and _ + 1 modesare progressive and
the _-i modeis regressive, as expected.

The frequency response of the Bell rotor to each of the six input
quantities is shownin figures 26 and 27 for autorotation and powered flight,
respectively. The magnitude of the response of each degree of freedom to the
input is shown; the rotor is operating at V/?AR= 0.7, _ = 458 rpm, and V = 249
knots (the sameas for the eigenvectors in fig. 25). The frequency response
of the system is a good indicator of the dynamics involved, particularly the
peaks in the response that occur at the resonant frequencies if the degree of
freedom can be excited by that input. The frequencies of the eigenvalues are
also shown (lower right) to identify the resonances. The wing vertical bending
resonance (ql) is most important for the cyclic inputs (_G, BG, @lC, and @lS),
and the chordwise bending resonance (q_), for the collective inputs (uG and 80)"

There are also significant resonances Qith the upper-frequency rotor modes

(8 + i, C + 1). The degrees of freedom usually show significant excitation at

the higher frequencies, especially near resonance with the wing modes, even if

there is small or negligible steady-state response. The major differences

between the powered and autorotation cases are the steady-state response

(especially for the collective inputs), which carries into the low frequencies,

too, and the response of the C0 motion.

The response shown at very low frequencies in figures 26 and 27 indicates

the static response of the system to the six inputs. The system generally

separates into a longitudinal or collective group (variables 80 and C0 and

inputs uG and 80) and a lateral/vertical or cyclic group (variables BIC , 81S ,

_IC, and _IS and inputs aG, 8G, @IC' and @IS ). The wing variables (ql' q2' P)
couple the two groups, but are excited most by the cyclic group. In autorota-

tion, the static response of the cyclic rotor variables to the cyclic inputs

is of order 1 for the flap motion and of order 0.I for the lag motion; their

response to the collective inputs is negligible. The static response of the

collective rotor variables to the cyclic inputs is negligible; the response of

80 to @0 is small, and to UG, it is negligible. The response of C0 to the

collective inputs is of order i; _o/UG = -i, of course, as discussed earlier

(eq. (86)). The static response of the wing variables to the collective inputs

is negligible; the response of q_ and p to the cyclic inputs is of order 0.05
and the response of q2 is of order 0.005. For powered flight, there is negli-

gible effect on the response to the cyclic inputs compared to autorotation,

but the response to collective inputs (80, UG) increases significantly. The

static response of the cyclic flap motion to the collective inputs is then of

order 0.05, the response of the cyclic lag motion is of order 0.005, the

response of ql is of order 0.i, the response of q2 is of order 0.05, and the
response of p is of order 0.01. The static response of the collective vari-

ables (80 and C0) to the collective inputs in powered flight is of order 0.2.

Consider a comparison of the predicted dynamic characteristics for the

Bell rotor with experimental results from the full-scale tests in the 40- by

80-Foot Wind Tunnel and with the results of the Bell theories. Full-scale

experimental data are available for the frequency and damping ratio of the

wing modes. The data are limited by the tunnel maximum speed (about 200 knots)

and by the use of an experimental technique that gave primarily only the damp-

ing ratio for the wing vertical bending mode. The data were obtained by use

149



of an aerodynamic shaker vane on the wing tip (evident in fig. 12; the same
technique was used for the Boeing rotor, fig. 13). The vane was oscillated to
excite the wing motion desired; whensufficient amplitude was obtained, the
vane was stopped and the system frequency and damping were determined from the
subsequent decaying transient motion. This configuration is best suited for
excitation of the wing vertical bending mode (ql).

Figure 28 shows the variation of the system stability with velocity at
the normal operating rotor speed (£ = 45S rpm), in terms of the frequency and
dampingratio for the wing modes. The results of the present theory are com-
pared with the experimental data from the full-scale test, and with the
results of the Bell linear and nonlinear theories. Reasonable correlation
with both experiment and the Bell theories is sho_. The good correlation of
the frequencies predicted by use of the present theory with the experimental
data (fig. 28(a)) follows because the wing stiffnesses were chosen specifically
to match the measured frequencies (at around 100 knots). The difference
between the predicted damping levels of the Bell linear and nonlinear theories
is largely due to the neglect of the wing aerodynamic forces in the former.

Figure 29 shows the variation with rotor speed _2of the wing vertical
bending modedamping for the Bell rotor at Y = 185, 162, and 150 knots. Rea-
sonable correlation is shownwith both the experiment and the Bell theories.
For Y = 162 and 150 knots, the predictions from the Bell theories are aw_ilable

only at normal operating rotor speed (_ = 458 rpm, from fig. 2S(b)).

Figure 30 shows the variation of the system stability with forward speed

for the Bell rotor on the quarter-stiffness wing, at half normal operating

rotor speed (P_ = 229 rpm). During the full-scale test of this configuration,

the available collective pitch was limited to the value reached at about 155

knots (at 2 = 229 rpm). Since the rotor was operated in autorotation, the

collective pitch and inflow ratio Y/_b_ were directly ,,_orrelated. The maximum

value of the inflow ratio was reached at 1S5 knots, where 7/[I£ = 0.875. Above

this speed, the collective was constant, and the inflow ratio was fixed at

about V/fZ_ -- 0.840. The increase in velocity above 155 knots was accompanied

by an increase in the rotor speed 2 to keep the infl_w ratio at the constant

wllue demanded by the collective limit. The theoretical predictions include

the actual rotor speed. The predicted frequency and damping with the rotor

speed maintained at a constant value (_ = 229 rpm) are also shown in figure 30.

The true values of the inflow ratio V/_.£ for the experimental points above

155 knots are shown in figure 30. Reasonable correlation is shown with both

the experiment and the Bell theories. The decrease in the frequencies at high

speed is produced mainly by the increasing £. The increasing _ at high speed

due to the collective limit significantly reduces the wing vertical bending

antl torsion damping, primarily because of the decrease in the effective (i.e.,

per rev) wing frequencies.

The variation with rotor speed of the wing vertical bending and torsio,_

damping for the Bell rotor on the quarter stiffness wing is shown in figure 31

for V = 150 and 170 knots. Reasonable correlation _.s shown with experiment
and the Bell theories.
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Figure 32 shows the rotor flapping due to shaft angle of attack. The
correlation of experiment and theory is shown in figure 32(a). The present
theory predicts fairly well the magnitude of the flapping due to shaft angle
of attack and also the longitudinal flapping BIC. However, the theory under-
estimates the lateral flapping BIS by about a factor of 1/2. The results of
the Bell linear theory are almost identical with the results of the present
theory. The Bell nonlinear theory, however, predicts well the lateral flapping
BIS also, as shown in figure 32(a). As discussed in reference 25, the better
prediction of BIS with the nonlinear theory is probably due to the inclusion of
the influence of the wing-induced velocity on the rotor motion. Further evi-
dence for that conclusion is the single point in figure 32(a) for which the
present theory adequately predicts the lateral flapping _IS- That point is
from the powered test, which was not conducted on a wing. The lateral flapping
BIS is small comparedto the longitudinal flapping BIC, so the present theory
does predict the magnitude of the flapping well. The azimuthal phase predic-
tion has the sameorder of error as does BIS, however. Figure 32(b) shows the
predicted and experimental variation of the flapping with inflow ratio V/_.

The theoretical results are for a velocity sweep at normal rotor speed (_ =

458 rpm), while the experimental results include limited variation o£ _ as

well as V, and the flagged points are even for the quarter-stiffness wing.

Yet the flapping correlates well with the single parameter V/_, indicating

that the primary influence is the rotor aerodynamic forces. The underpredic-

tion of BIS is again observed; the single point that agrees with the theory is

the powered test point.

Figure 33 shows the variation of the wing vertical bending (ql) damping
with V/_R, during velocity sweeps for the Bell rotor on the full-stiffness and

quarter-stiffness wings. The full-scale experimental data show a definite

trend to higher damping levels with the full-stiffness wing than with the

quarter-stiffness wing, and this trend correlates well with the present theory.

The difference in damping at the same inflow ratio results from the lag

motion. Figure 33(b) shows the frequencies of the _ - l, ql' and p modes for

the full-stiffness and quarter-stiffness wings. The full-stiffness wing has a

resonance of the _ - 1 and q. modes that increases the q_ damping below the

resonance and decreases it a_ove, and produces the peak zn the damping

observed in figure 33(a). Slowing the rotor on the quarter-stiffness wing

greatly increases the lag frequency and removes it from resonance with ql
(instead there is a resonance with the p mode, as shown in figure 33(b) and

discussed earlier). Another way to remove the influence of the rotor lag

motion - in the theory - is to simply drop the _IC and _IS degrees of freedom

from the full-stiffness wing case. Then the predicted wing vertical bending

damping is almost identical to that for the quarter-stiffness wing (fig. 33(a)).

The Hingeless, Soft-Inplane Rotor

A 26-ft-diam, flight-worthy, hingeless, soft-inplane proprotor, designed

and constructed by the Boeing Vertol Company, was tested in the 40- by 80-Foot

Wind Tunnel in August 1972. The configuration for the dynamics test (fig. 13)

consisted of the windmilling rotor mounted on the tip of a cantilever wing,
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with the rotor operating in high inflow axial flow. The rotor and wing were
described previously. The full-scale test data for the quarter-stiffness wing
runs, and the theoretical results from the Boeing theory are from reference 26.
The theoretical dynamic characteristics of this rotor and wing are discussed,
followed by a comparison with the full-scale test results and the Boeing
theoretical results.

_e major changes in the dynamic behavior comparedwith that of the Bell
rotor are due to the different placement of the blade frequencies. The Boeing
rotor has 1 - v_ of the sameorder as the wing vertical bending frequency (as
did the Bell rotor), but the soft-inplane rotor with v_ < 1 introduces the
possibility of an air resonance instability, that is, a mechanical instability
that results from the resonance of the _ - 1 and ql modes. This instability

will occur at a definite _ (for resonance) which, in this case, is above the

normal operating rotor speed and at low forward speed. At high enough Y/_7_,

the lag damping _ becomes large enough to stabilize the resonance. An analyt-

ical discussion of the air resonance instability was given earlier. Besides

introducing the possibility of an instability, at high _ and low V, the lag

motion of the sofc-inplane rotor generally decreases the wing vertical bending

mode stability.

The Boeing rotor has cantilever blades with v B sufficiently above I/rev so

that vB - l is very close to the wing vertical bending mode frequency. Hence

the B - l mode takes on many of the characteristics of the ql mode, especially
at high Y/f_. In fact, it is usually the B - 1 mode that becomes unstable at

high inflow rather than the ql mode. By the time the B - 1 root enters the

right half plane, the mode has however assumed the character of a wing vertical

bending mode (this behavior is discussed further in terms of the eigenvectors

of the two modes). Thus the high inflow instability mechanism is the same as

observed already for the Bell rotor.

The predicted variation of the eigenvalues of the system with forward

speed, at the normal airplane mode rotor speed (_ = 386 rpm), is shown in fig-

ure 34: frequency and damping ratio and root locus. The flap frequency is

greater than 1/rev and the coupled frequency of the B + l modes increases some-

what with the inflow ratio. The lag frequency is less than 1/rev and the

coupled frequency decreases with the inflow ratio. Since v_ < I, the _ 1

mode frequency increases. The proximity of the B - i and _ - 1 mode fre-

quencies to the ql' and even the q2' frequencies is apparent in figure 34(a).
The q_ damping is quite low at low speeds and has a minimum around 200 knots1
because of the influence of the _ - 1 mode, that is, the air resonance behav-

ior. The ql damping increases at high V, but there is considerable coupling

of the B - 1 and q modes (as indicated by the frequencies and the eigenvec-
1

tors). The B - l mode damplng decreases very quickly at high speed and, by the

time the root crosses into the right half plane at Y = 480 knots (7/_7_ = 1.S4),

the mode is really a wing vertical bending instability, that is, the high inflow

inflow proprotor and wing instability. This change in the character of the

B l and ql modes is shown in figure 34(d), which presents the eigenvectors at

Y = 250, 400, and 500 knots. At low speed, the eigenvector on the left is

clearly identifiable as the ql mode, and the eigenvector on the right as the

B 1 mode, based both on the frequency of the root and on the participation of

the degrees of freedom in the eigenvector. As forward speed increases, the
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wing vertical bending motion decreases in one modeand increases in the other.
The modethat is originally the rotor low-frequency flap mode _B l) becomes
unstable just before 500 knots, and by that time this modehas assumedthe
character of the primary wing vertical bending mode. Note that the wing
vertical bending motion is characterized not simply by the ql degree of free-

dom, but also by the motion of _IC' _lS' _0, and p associated with the mode.

The wing chord (q2) mode damping decreases with speed until an instability

is encountered at V = 510 knots (V/_ = 1.64). This is an air resonance

instability, as indicated by the coincidence of the _ - l and q2 mode fre-

quencies at this speed (fig. 34_a)). Wing chord bending produces a lateral

motion at the rotor hub forward of the wing tip, which couples with the rotor

lag motion. An air resonance instability can occur at even high speed with

the wing chord mode because the wing aerodynamic damping of that mode remains

small. The q2 instability occurs at a slightly higher speed than the B - I/ql

instability, so, in some cases, it may be the critical boundary.

The wing torsion (p) mode couples with the rotor coning (_) mode in this

case, mainly due to simply a coincidence of the damping and frequencies of

the two modes. These modes have fundamentally different character _0 is in

the longitudinal group of variables and p, in the lateral/vertical group) and

do not really want to couple. The roots try to cross on the root locus plane

(fig. 34Cc)) and instead exchange roles; the coupling is significant only in

a narrow region near 300 knots; elsewhere, the roots are clearly distinguish-

able. While this coupling does not have great physical significance, it is

discussed because a slight change in the parameters or in the model may elimi-

nate the coupling. For comparison with such cases, it is most convenient to

plot the damping (fig. 34_b)) as if the root loci really did cross, that is,

by joining the corresponding p and _ pieces. This practice is followed in the

comparisons that follow.

The influence of the rotor lag motion on the system stability is shown in

figure 35, which compares the damping of the wing modes with and without the

_IC and _IS degrees of freedom in the theory. The rotor lag motion has a

large and important influence on the wing modes. The rotor lag motion sub-

stantially decreases the stability of the ql and B - 1 modes. The _ 1 mode

behavior remains the same when the lag degrees of freedom are eliminated, but

the sharp damping decrease (and instability) occurs at a speed about 250 to

300 knots higher, beyond the scale used in figure 35(a). The low damping of

the ql mode around 200 knots is shown to be due to coupling with the _ 1

mode, that is, air resonance behavior. The rotor lag motion also decreases the

q^ mode stability at high V, another air resonance effect The lag motion

s_abilizes the p mode, but that is not really needed. The complete root locus

is shown in figure 35(c), which is to be compared with the root locus that

includes the lag motion (fig. 34(c)).

The influence of the rotor speed perturbation degree of freedom and the

wing aerodynamics on the system stability is shown in figure 36. The basic

case is autorotation operation, including the wing aerodynamics. The rotor

speed perturbation degree of freedom generally decreases the stability, that

is, powered operation is more stable, especially for the ql mode where the air
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resonance behavior is much less noticeable. The wing aerodynamic forces
generally increase the stability.

The influence of the complete expressions for the rotor aerodynamic
coefficients is shownin figure 37(a) (for clarity, only the autorotation case
is shownfor the B l and p modes). Generally, the use of the better blade

section aerodymamics decreases the predicted stability of the wing modes. The

correct collective was obtained from a performance analysis for powered and

autorotation operation of the Boeing rotor. The approximate collective used,

based on the inflow angle at 75 percent radius, was @0.75 = tan-l(v/fa_)/(3/4) +

1.0 °. The helical tip blach number reaches the blade critical Mach number

(_ = 0.9) at about 500 knots (V/faR = 1.61) and reaches the sonic value at

about 580 knots (V/P_ = 1.86). The conclusions are the same as for the Bell

rotor: the basic behavior of the system is described well with only the c_
terms in the rotor aerod>mamic coefficients, but the complete expressions

should be used to obtain correct predictions for actual vehicles, particularly

for the high-speed stability boundaries. The use of the approximate collective

does not influence the dymamics much, although it is, of course, not

satisfactory for performance calculations.

Figure 38 shows the influence of the use of the simplified theoretical

model on the predicted system stability. As for the Bell rotor, it is con-

cluded that the simpler model is satisfactory for studying the basic behavior,

but for the design of a particular vehicle, the best available model should be

used.

Figure 39 shows the variation of the system eigenvalues with rotor speed

for the Boeing rotor at 50 knots. At this low speed, the ¢ - 1 and ql fre-

quency resonance around 530 rpm (fig. 39(a)) results in an air resonance insta-

bility in the ql mode (fig. 39(b)). At resonance, there is a corresponding
increase in the _ - l damping. The resonance and corresponding instability

occur above the normal rotor operating speed (_ = 386 rpm) even with the wing

used for the wind-tunnel test, which was softer in bending than the full-scale

design. The general decrease in the ¢ ± 1 mode damping with _ results from

the low lag damping at low inflow. Figure 40 shows the variation of the

eigenvalues with _ for the Boeing rotor at 192 knots. The ¢ - 1 and ql

resonance again occurs at about _ = 500 rpm, but this speed is sufficient to

stabilize the air resonance motion. Figure 41 summarizes the Boeing rotor air

resonance behavior: the wing vertical bending mode (ql) damping variation with

rotor speed 9 for Y : 50 to 192 knots. The stabilizing influence of the for-

ward speed is shown. An earlier section derived an estimate for the Y value

required to stabilize the air resonance motion. In this case, resonance occurs

with the wing vertical bending frequency of about 0.28/rev, and v¢ of about

0.8/rev; with the other parameters required from table 3, equation (203)

gives V/_ > 0.268 for the stability requirement. At this speed, resonance

occurs at _ = 500 rpm, so the velocity requirement is Y > 108 knots. The use

of the equivalent radius approximation for the rotor lag damping Q_ gives

instead g/P_ > 0.285 or g > ll4 knots, which is only about 6 percent higher.

The estimate compares well with the calculated boundary of about 120 knots

(fig. 41), better, in fact, than is reasonable to expect from the simple model
used for the air resonance estimate.
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The dynamic characteristics of the Boeing rotor on the quarter-stif_less
wing, at half normal operating rotor speed (_ = 193 rpm) are shown in figure 42.

The frequencies of some of the corresponding modes on the full-stiffness wing

are also shown in figure 42(a) (plotted vs. V/N; the 8 + i, _ + l, and fl fre-

quencies are not shown for the full-stiffness wing). The wing mode frequencies

are well matched to the full stiffness wing values (per rev), but slowing the

rotor increases both the flap and lag frequencies of the blade considerably,

the flap frequency to near 2/rev and the lag frequency to near 1/rev, as com-

pared with about vB = 1.35 and v_ = 0.75 at normal _ /see also fig. 17). The

lag frequency moves nearer I/rev-and thus the _ - 1 mode frequency is lower for

the quarter-stiffness wing (besides the influence on the dynamics, the lag fre-

quency near I/rev also means large vibration and blade loads). With the rotor

frequencies so different, the system damping shown in figure 42(b) has much

different behavior than for the full-stiffness wing (compare with fig. 34(b)),

especially for the q_ and B - 1 modes. Figure 43 shows the variation of the
system stability with rotor speed _, for the Boeing rotor on the quarter-

stiffness wing at 80 knots. Air resonance effects are evident in ql at about

400 rpm and in q_, at about 500 rpm. The peak in the q2 damping at 225 rpm is
due to the coupllng with the fl - 1 mode.

Figure 44 shows the eigenvalues and eigenvectors for the Boeing rotor at

the typical cruise condition of V/_ = 0.7, _ = 386 rpm, V = 218 knots. With

this soft-inplane (v_ < i) and cantilever (_fl > l) rotor, the _ I, fl + l,
and _ + 1 modes are progressive and the fl 1 mode is regressive as expected.

The frequency response of the Boeing rotor to each of the six input

quantities is shown in figures 45 and 46 for autorotation and powered flights,

respectively. The magnitude of the response of each degree of freedom to the

input is shown; the rotor is operating at V/f_r_= 0.7, _ = 386 rpm, and V = 218

knots (the same as for the eigenvectors in fig. 44). The steady-state (low-

frequency) response, compared with that of the Bell rotor, shows only the fol-

lowing differences: with the hub moment capability of the cantilever rotor

(vB < l), the flap motion with respect to the shaft is reduced, and the wing
motion is increased. There is increased lag motion because of the softer

blade inplane restraint (lower _) and there is a change in the azimuthal

phasing of the cyclic rotor response (e.g., fllC and BIS) to the cyclic inputs

(e.g., Olc and 01S ) because of the change in rotor frequencies.

Consider a comparison of the predicted dynamic characteristics for the

Boeing rotor with experimental results from the full-scale tests in the 40-

by 80-Foot Wind Tunnel and with the results of the Boeing theory. Full-scale

experimental data are available for the frequency and damping of the wing

vertical bending mode, obtained by the same shaker vane excitation technique
as used with the Bell rotor.

Figure 47 shows the variation of the system stability with velocity at

the normal operating rotor speed (_ = 386 rpm) in terms of the frequency and

damping ratio for the wing modes. Reasonable correlation of the present theory

with both experiment and the Boeing theory is shown. However, data are

available only for wing vertical bending mode damping.
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Figure 48 showsthe variation of the wing vertical bending modedamping
for the Boeing rotor with rotor speed _ at V = 50 to 192 knots. These runs

were conducted to investigate the air resonance behavior of this proprotor and

wing configuration. Reasonable correlation is shown with both experiment and

the Boeing theory, except at the higher tunnel speeds. There the data show

considerable scatter because the tunnel turbulence made analysis of the
transient motion difficult.

Figure 49 shows the variation of the system stability with forward speed

for the Boeing rotor on the quarter-stiffness wing, at half normal operating

rotor speed (2 = 193 rpm). Figure 50 shows the variation with rotor speed

for the Boeing rotor on the quarter-stiffness wing at V = 80 knots. Reasonable

correlation is shown with both experiment and the Boeing theory. The _ sweep

also shows the air resonance behavior in both theory and experimental data.

SECTION 6: COMPARISONS WITH OTHER INVESTIGATIONS

In this chapter, the present theory and the results obtained are

compared with the published work of other authors; of primary interest here

are the theoretical models developed in the literature.

llall (ref. 8) discussed the role of the negative H force damping on the

high inflow proprotor behavior, reviewed the problems found in the XV-3 flight

tests, and reviewed the results of the 1962 test of the ×V-3 in the 40- by 80-

Foot Wind Tunnel. He presented an investigation of the influence of various

parameters on the stability of the rotor and pylon, particularly forward speed,

pylon pitch and yaw spring rate, and pitch/flap coupling (_3); this investiga-

tion used the full-scale XV-3 test results, model tests that simulated the

XV-3 configuration, and analysis results from a theory presented in the paper.

Hall derived the equations of motion for a two-bladed rotor on a pylon; N = 2

was chosen because the analysis was to support the ×V-3 investigation. His

model then had three degrees of freedom: flap angle B (teetering), pylon

pitch _x, and pylon yaw _. The present results (eqs. (146) for N = 2) agree

with Hall's equations, wi_h the following correspondence of notation:

Present Notation Hall

-ay tx

ax ty

ME I (II2)MS

H H sin

Y H cos

Hall considered only the case of uB = i, that is, no hub spring restraint of

the teetering blade; therefore, no hub moment due to flapping is transmitted

to the pylon motion in his model. The aerodynamic forces M B and H were

expressed in terms of integrals of the blade section forces Fz and Fx over the
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span, which agree with the present results except that the radial drag force

was neglected. Hall did not, however, expand the rotor aerodynamic forces in

terms of the perturbed rotor and pylon motion because he did not derive a set

of linear differential equations. Hall solved for the dynamic behavior by

numerically integrating the equations of motion; hence he found the transient

motion rather than eigenvalues because of the periodic coefficients for N = 2.

With this method, the exact, nonlinear aerodynamic forces could be included

rather than the linearized expansion.

Gaffey, Yen, and Kvaternik (ref. ll) discussed the proprotor aircraft

behavior and design considerations in relation to the wing frequencies, _st

response, and ride quality. The influence of the blade frequencies and pitch/

flap coupling on the rotor and the rotor/wing stability were discussed. It

was shown that a cantilever rotor, that is, _B > l, has greater stability, and

that v B > 1 reduces flapping significantly but also increases blade loads.

Expressions were given for the low-frequency response of flapping to shaft

angle of attack (xp/V here) and shaft angular velocity (_ here) in terms of

the equivalent radius approximations; the present results _eqs. (96) to (100))

agree with their expressions. Experimental and theoretical data were given for

proprotor/wing stability, flapping, loads, vibration, and gust response.

Tiller and Nicholson (ref. 13) discussed the stability and control

considerations involved with proprotor aircraft. They found the following

influences on the aircraft stability. The proprotors with positive pitch/flap

coupling and clockwise rotation on the right wing produce, through the negative

H force, an increased effective dihedral in C_B, the effect increasing with

forward speed. The proprotor negative damping requires a larger horizontal

tail for the short-period mode frequency and damping; the rotor contribution

found was on the order of 30 to 40 percent of the stabilizer contribution.

Similar results were found for the vertical tail requirements (CnB). The rotor

thrust damping in yaw (T_) contributes significantly to Cnr. The rotor torque

(Q%) and hub force during rolling increase C_p by about 30 to 50 percent of

the wing value. The thrust due to rolling (T_) produces adverse yaw (ACnp < O,

for this rotor rotational direction) that appreciably alters the Dutch roll

damping and mode shape. The rotor influence on the aircraft stability deriva-

tives found here agrees with the results of Tiller and Nicholson. They also

discussed other features of the proprotor configuration that influence the

aircraft stability and control: the thick wing, the high roll inertia, the

nacelle contribution to C_a, the important influence of the interconnect shaft

stiffness on the lateral derivatives (particularly, Cnr and Cnp), and the

control features in helicopter and cruise mode. They point out that the

influence of the rotors on the lateral dynamics is more complex than that on

the longitudinal dynamics, but that meeting the requirements is largely a

matter of enough vertical tail effectiveness.

Young and Lytwyn (ref. 18) developed a four-degree-of-freedom theoretical

model (BIC, 81S, _, and _x) for studying proprotor dynamics. They found an

optimum value for the flap stiffness for pylon/rotor stability at about
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vB = I.I. An approximation to this result was obtained by setting to zero the
term that couples the rotor with the pylon; that is, in the present notation,

16 (' B2_ 1) pcr
+ =or

\

There is then no moment about the pivot due to tip path plane tilt, which

greatly increases the rotor/pylon stability. This optimum was discussed in a

previous section and was also the subject of the discussion of reference 18 by
Wernicke and Gaffey. Young and Lytwyn presented several results for the whirl

flutter case (a truly rigid propeller on the pylon), which were also discussed

previously. Yotmg and I,ytw>m found the power-on case to be less stable than

the windmilling case; they were considering, however, the case of _ # O, that

is, the influence of the c_ terms in the rotor aerodynamic coefficients. The

present results confirm that the use of tim better calculation of the aerody-

namic coefficients decreases the predicted stability. The really important
factor in windmill operation (autorotation) is the rotor speed perturbation
degree of freedom, which makes the windmilling case much less stable than the

power-on case. The theoretical model considered by Young and Lytwyn was an

?_'-bladed rotor (N -> 3) on an elastically restrained pylon with pitch and yaw

degrees of freedom. The blade :notion allowed was rigid flapping (n6 = r), but

elastic blade restraint was included so that _ > 1 was possible. Only the
rotor tip path plane tilt couples with the pylon motion, so the system reduces
to four degrees of freedom. The same four-degree-of-freedom model was

considered here (fig. 1), with the corresponding notation:

Present Notation Young and Lytwyn

61 C 6C

1G 13q

-%j ¢r

%r Cy

Although the derivation of the rotor aerodymamic coefficients in the linear

equations was considerably different from that used here, the final form is

essentialiy equivalent to the present result. The corresponding notation for
the rotor aerodynamic coefficients is

Present Notation Young and Lytw_

2CT/_a MTO

2C4/_a MHO

2Hn MHT

2N u MTT

-2M_ MTp
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Young and Lytwyn evaluate these coefficients assuming constant _ and c_ over

the blade span. The set of four equations of motion obtained correspond to

equations (26).

Descriptions of analyses typical of the most sophisticated currently used

for calculating the dynamic characteristics of tilting proprotor aircraft may

be found in references 29 and 30. These are, in fact, the most complete

descriptions available in the literature for the proprotor aircraft analyses.

Their use lies primarily in the development and support of the design of

specific aircraft. More elementary models remain valuable for general and

exploratory investigations of proprotor dynamics.

Descriptions of the tilting proprotor aircraft, and the design

considerations involved, may be found in references 10, 15, 22, 27, and 28.

The XV-3 flight test results are described in references 2 and 3, and the ×V-3

tests in the 40- by 80-Foot Wind Tunnel are described in references l, 8, and

9. Recent tests of full-scale proprotors in the 40- by 80-Foot Wind Tunnel

are described in references 14, 15, 25, and 26. Some experimental data from

small-scale model tests are also available (refs. ii, 15, 16, and 24, for

example).

CONCLUDING REMARKS

A theoretical model has been developed for a proprotor on a cantilever

wing, operating in high inflow axial flight, for use in investigations of the

dynamic characteristics of tilting proprotor aircraft in the cruise configura-

tion. The equations of motion and hub forces of the rotor were found includ-

ing the response to general shaft motion. This rotor model was combined with

the equations of motion for a cantilever wing. In further studies, however,

the rotor model could easily be combined with a more general vehicle or sup-

port model, including, for example, the rigid-body degrees of freedom of the

aircraft. The general behavior of the high inflow rotor has been investigated

and, in particular, the stability of the proprotor and cantilever wing con-

figuration. The effects of various elements of the theoretical model were

examined, and the predictions were compared with experimental data from wind-

tunnel tests of two full-scale proprotors.

From the theoretical results for the two full-scale rotors, and

comparisons with the full-scale, wind-tunnel test data, it is concluded that

the nine-degree-of-freedom model developed here is a satisfactory representa-

tion of the fundamental proprotor dynamic behavior. The model consists of

first mode flap and lag blade motions of a rotor with three or more blades,

and the lowest frequency wing modes. The limitations of the present theory

are primarily the structural dynamics models of the rotor blades and the wing

and the neglected degrees of freedom of the proprotor aircraft system. For

the rotor, it was assumed that the blade flap and lag motions are not coupled,

that is, are pure out-of-plane and pure inplane motions, respectively. The

model neglected the higher bending modes of the blades, and the blade elastic

torsion degrees of freedom were neglected entirely. For the support, the

model used only an elementary representation of the structural modes of the
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wing. The model was limited to the cantilever wing configuration,
neglecting the aircraft rigid-body degrees of freedom as well as the higher
frequency modesof the wing and pylon. The present model does incorporate the
fundamental features of the proprotor aeroelastic system. Hencethese limita-
tions of the model are primarily areas where future work would be profitable,
rather than restirctions on its current use.

Froma comparison of the behavior of the gimballed, stiff-inplane rotor
and the hingeless, soft-inplane rotor, it is concluded that the placement of
the rotor blade natural frequencies of first modebending - the flap frequency
v8 and the lag frequency v_ - greatly influences the d_namics of the proprotor
and wlng. Moreover, the rotor lag degrees of freedom was found to have a very
important role in the proprotor dynamics, for both the soft-inplane
(v < 1/rev) and the stiff-inplane (v > 1/rev) configurations.

The theoretical model developed here has been established as an adequate
representation of the basic proprotor and wing dynamics. It will then be a
useful tool for further studies of the dynamics of tilting proprotor aircraft,
including more sophisticated topics such as the design of automatic stability
and control systems for the vehicle.

AmesResearch Center
National Aeronautics and SpaceAdministration

Moffett Field, Calif., 94035, Dec. 26, 1973
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Figure 12.- Bell Helicopter Company full-scale, 25-ft-diam proprotor on

cantilever wing for d'_namic tests in the Ames 40- by 80-Foot Wind

Tunnel.
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Figure 13.- Boeing Vertol Companyfull-scale, 26-ft-diam proprotor on
cantilever wing for dynamic tests in the Ames40- by 80-Foot Wind
Tunnel.
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to input at frequency _.
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Figure 31.- Bell rotor on quarter-stiffness wing, rpm sweeps; comparison with

full-scale experimental data and with Bell theories.
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Figure 46.- Boeing rotor in Powered operation at V/_TR = 0.7 (_ = 386 rpm,

V = 218 knots), magnitude of response of each degree of freedom to input

at frequency _.
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Figure 47.- Boeing rotor velocity sweep at £ = 386 rpm; comparison with full-
scale experimental data and the Boeing theory.

238



.03 -

.02 -

.01

0

0
60 knotsl E .
50 knotsj" xper menT

60 knots

} Present theory50 knots

Boeing theory,60 knots

0

(!) •

...--
(o) ;\_
i i oil,II ,

//!
t
I

I
I
I

.03

.O2

.01

0
30O

l
4OO

OO 0 o //

4OO

,O,,rpm

I I

500 600

,Q,R, fps

500 600

°%° //
- o ,_ //

1(b)lOOknot_ I

\_'7"

Present theory

Boeing theory

0 Experiment

C)

- 0 0\ oo °o /
\ ooo o /
- \.o ooo ,/
_',,, / /

'_'\. 0 0 //_

- E) w

(d) 192 knots

I I I I

:300 400 500 600

Q,, rpm

I I I I I I I

700 800 400 500 600 700 800

_,R, fps

(a) Wing vertical bending damping (ql) at SO and 60 knots.

(b) Wing vertical bending damping (ql) at 100 knots.

(c) Wing vertical bending damping (ql) at 140 knots.

(d) Wing vertical bending damping (ql) at 192 knots.

Figure 48.- Boeing rotor rpm sweep, comparison with full-scale experimental

data and the Boeing theory.
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Figure 49.- Boeing rotor on quarter-stiffness wing, velocity sweep at

= 193 rpm; comparison with full-scale experimental data and the

Boeing theory.
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