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ANALYTICAL EXPRESSIONS FOR POSITION ERROR IN

TRIANGULATION SOLUTION OF POINT IN SPACE

FOR SEVERAL STATION CONFIGURATIONS

By Sheila Ann T. Long

Langley Research Center

SUMMARY

Analytical expressions are derived to first order for the rms position error in the

triangulation solution of a point object in space for several ideal observation-station con-

figurations. These expressions provide insights into the nature of the dependence of the

rms position error on certain of the experimental parameters involved. The station

geometries examined are: (1) the configuration of two arbitrarily located stations; (2) the

symmetrical circular configuration of two or more stations with equal elevation angles;

and (3) the circular configuration of more than two stations with equal elevation angles,

when one of the stations is permitted to drift around the circle from its position of sym-

metry. The expressions for the rms position error are expressed as functions of the

rms line-of-sight errors, the total number of stations of interest, and the elevation angles.

INTRODUCTION

Obtaining the errors in the triangulation solution of a point object or an elongated

object in space using data from three or more arbitrarily located observation stations

is a complicated problem, and numerical solutions are usually sought. Reference 1 gives

formulas for the errors in the geocentric position, as calculated using the simultaneity

circle, of a satellite. Reference 2 presents formulas for adjusting all measurements of

a space triangulation to determine the coordinates of the stations on the basis of two or

more well-known stations. In reference 3 formulas are derived for the rms errors in

location, orientation, and shape in the triangulation solution of an elongated object. By

programing the formulas in references 1, 2, and 3 for a high-speed computer and using

data for specific object-station relationships, numerical results can be computed. Ref-

erences 4, 5, and 6 give numerical results for the following respective satellite triangu-

lation nets: five specific stations in the United States; nine specific stations covering the

Australian continent; and thirty-six specific stations covering the earth.

Numerical studies, however, possess the limitation that they do not provide com-

plete insights into the nature of the dependence of the errors on the experimental parame-
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ters involved. Several analytical studies which do provide some of these insights can

be found in the literature. In reference 7 analytical expressions for the position error

in the solution of a point in space are presented for a system employing angle-only infor-

mation for two stations and a system employing range-only information for three stations.

For this latter system the three-station configuration is separated into three two-station

configurations and then the separate results are combined to give the total result. Ref-

erence 8 gives analytical expressions for the position error in the range trilateration

solution of a satellite for two ideal station configurations. The first configuration has

three stations arranged such that the angles 3,1,2 and 1,2,3 are equal. The second con-

figuration has four stations arranged such that the angles 3,1,2; 1,2,3; 2,4,3; and 2,3,4 are

all equal. For both configurations the satellite is located at the zenith as referenced to

the centroid of the triangle 1,2,3.

The purpose of the present paper is to derive analytical expressions for the rms

position error in the triangulation solution of a point in space for several additional ideal

observation-station configurations. These expressions are to provide additional insights

into the nature of the dependence of the rms position error on certain of the parameters

involved.

The first observation-station configuration examined is the configuration of two

arbitrarily located stations. Since, in general, the lines of sight from two stations do

not intersect, a most probable point in space must be chosen. Two choices for the most

probable point - the midpoint of the shortest line between the two lines of sight and the

point, on the aforementioned line, which subtends equal residual angles at the two

stations - are discussed and compared. The situation in which the data from one of

the stations is degraded relative to that from the other is considered. For the first

choice of the most probable point, an expression for the optimum relative weighting

factor for the data from the first station, which minimizes the rms position error, is

derived.

The second observation-station configuration examined is the symmetrical circu-

lar configuration of two or more stations with equal elevation angles. The third configu-

ration examined is identical to the second configuration, except that there are more than

two stations and one of them is permitted to drift around the circle from its position of

symmetry.

For each observation-station configuration considered, an analytical expression for

the rms position error in the triangulation solution of a point in space - as a function of

the rms line-of-sight errors, the total number of stations of interest, and the elevation

angles - is derived to first order. Also for each configuration considered, the optimum

elevation angle, which minimizes the rms position error, is found. Considerations are

given as to whether the symmetrical arrangement of the circular configuration of more

2



than two stations with equal elevation angles is the arrangement of this configuration

which yields the minimum rms position error.

SYMBOLS

A,B,C,) coefficients depending on n, y, and 9
D,E,F9

As  actual point object in space

a distance from each station in circular configuration to point As

al,a2  distances from stations S 1 and S2, respectively, to point A s

b distance between stations in two-station configuration

de,deq line-of-sight errors in plane of 0 from pth and qth stations, respectively

d0 1 ,de 2  line-of-sight errors in plane of 81 and 02 from stations S1 and S2,
respectively

dcp ,dq line-of-sight errors out of plane of 0 from pth and qth stations, respectively

dl 1 ,d0 2  line-of-sight errors out of plane of 01 and 02 from stations S1 and S2,
respectively

e position error function

,p line-of-sight unit vector, in direction of line of sight from pth station

G,H,I, coefficients depending on A,B,C,D,E,F, and 4
J,K,L9

h altitude of point As

1ip actual unit vector, in direction from pth station to point A s

N point defined on figure 1

n total number of stations in circular configuration
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Ps most probable point in space

p,q indices for sequential labeling of stations in circular configuration

R radius of circular configuration of stations

r p most probable vector, from pth station to point Ps

S1,S 2  first and second stations, respectively, in configuration of two arbitrarily

located stations

symmetrical determinant of coefficients A,B,C,D,E,F

X sin2 0

X1,X 2  sin 91 and sin 02, respectively

x,y,z rectangular coordinate system with origin at center of circular configuration

of stations, x-axis toward original position of Oth station, z-axis toward

point As, and y-axis to form right-hand orthogonal triad

x,yz unit vectors in directions of increasing x, y, and z, respectively

ap ,aq angles which pth and qth stations, respectively, make with x-axis

y variable angle which drifting station makes with x-axis

A P difference vector, between unit vector ip and unit vector ep

6pq Kronecker delta

6x, 6y z  x-, y-, and z-components, respectively, of vector 6r

6 p line-of-sight error vector, shortest vector from line of sight from pth

station to point Ps

6r position-error vector, from point As to point Ps

E rms position error in triangulation solution of point in space, in general
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E' rms position error in triangulation solution of point in space - for two arbi-

trarily located stations with point Ps taken as point, on shortest line

between lines of sight, which subtends equal residual angles at stations

C'77, coefficients depending on a, dop, dp, ap, and 0

0 elevation angle, in general

01,02 elevation angles from stations S1 and S2, respectively

a rms line-of-sight error, in general

al, 2 rms line-of-sight errors from stations S1 and S2 , respectively, when data

from one station is degraded relative to that from the other

w relative weighting factor for data from station S 1

A bar over an expression is used to denote the mean value.

ANALYTICAL FORMULATION

Position Error in Solution of Point for

Two Arbitrarily Located Stations

The two arbitrarily located observation stations are denoted by S1 and S2,
respectively, and are shown in figure 1. The two stations are separated by the distance

b. The angles from the stations S 1 and S2 to the actual point object As in space

are denoted by 01 and 02, respectively; these angles will be herein called elevation

angles. The distances of the point As from the stations S 1 and S2 are denoted by

a 1 and a 2 , respectively. The distance from the base line to the point As is denoted

by h; this distance will be herein called the altitude. In practice, errors, herein called

line-of-sight errors, will exist in the measured values of the elevation angles 01 and

02. The line-of-sight errors in the plane of the angles 01 and 02 are denoted by do 1
and dO2 , respectively; the line-of-sight errors out of the plane of the angles 01 and 02
are denoted by dl 1 and d0 2 , respectively.

The position error function e in the triangulation solution of a point in space for

two arbitrarily located observation stations is given by

'ee deo + e a2 d (P2
de= d 1 + e d 2 +e d + d
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The rms position error E in the solution of a point for two arbitrarily located stations is

then given by

e2 = (edo 1 + -d0 2 + -e dI + d 2) (1)

where the bar denotes the mean value. It can be assumed that the line-of-sight errors

de 1 , dB2 , d 1l , and d¢ 2 are uncorrelated; hence, equation (1) becomes

E2 = ae d 1
2  ( d0 2

2  d12 2 I22 (2)
o 2\a+/ 22 d0 2  (2)

Since each of the errors de 1 , de 2 , dpl , and d0 2 is perpendicular to its line of sight,
it can be assumed that

d0 1
2 = d02

2 = d 1
2 = d022 = 2  (3)

where a is the rms line-of-sight error. Therefore, equation (2) becomes

E2 = 02 .ae ae \2 e \2 e (4)

From figure 1, using the law of sines yields

a1  _ b
sin 82 sin(01 + 82)

Hence, the distance al of the actual point A s in space from the observation station

S 1 is

b sin 
2  

(5)
1  sin(81 + 82)

Similarly, the distance a 2 of the point A s from the station S2 is

b sin 81 (6)
sin(01 + 02)

The line-of-sight errors dO1 , d82 , dl 1 , and d0 2 are all independent and, hence,
their respective effects on the rms position error in the triangulation solution of a point
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in space can be examined separately. The position error resulting purely from the error

dO1 is examined first. From figure 1 it is observed that the error do 1 manifests itself

in a change in the distance a 2 , while the elevation angle 02 is unaffected. Hence,

ae aa2  b sin 82 (7)
8o1 881 sin2(81 + 02)

Similarly,

8e _ aa 1  b sin 81 (8)&02 802 sin 2(81 + 82)

Next, the position error resulting purely from the line-of-sight error dl 1 is

examined. The error dl 1 is out of the plane of the elevation angle 81. This pre-

vents the lines of sight from the observation stations from intersecting. For this situa-

tion a most probable point Ps in space must be chosen. Two choices are treated in the

present paper.

Most probable point taken as midpoint of shortest line between lines of sight.- One

choice for the most probable point Ps in space is the midpoint of the shortest line

between the two lines of sight. This choice is used in reference 9. From figure 1 it is

seen that the line segment AsP s is

AsN
AsPs = 2

Since do 1 is small,

AsP s = aldq 1  (9)

Hence,

a

ap 1  2 1

Using equation (5) yields

ae b sin 2  (10)

&01 2 sin(0 + 02)

Similarly,

7



8e bsin 0 1  (11)

8a2 2 sin(01 + 02)

Substituting equations (7), (8), (10), and (11) into equation (4) produces

sin201 + sin209 )F + sin2 .1  2 (12)
62 = a2b 2'

sin 4(01 + 02)

Figure 1 shows that the distance b between the two observation stations is

b =al cos 01+ a2 cos 02 (13)

where the distances a1 and a2 of the actual point As in space from the stations S1

and S2, respectively, are

a h (14)
1a sin 01

a2 h (15)
sin 02

where h is the altitude of the point As . Substituting equations (14) and (15) into equa-

tion (13) leads to

b = h sin(01 + 02) (16;
sin 01 sin 02

Substituting equation (16) into equation (12) results in

e2 = u2h 2 (sin2o1 + sin20 2)[ + sin2 ( l 021 (17)
sin2o 1 sin2 02 sin2(0 1 + 02)

Therefore, the rms position error E in the triangulation solution of a point in

space for two arbitrarily located observation stations, with the most probable point in

space taken as the midpoint of the shortest line between the two lines of sight, is
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1/2

Sh sin2e 1 + sin2 2) + . sin2( + 2 (18)e = h- (18)
tK sin2 01 sin2 02 sin2 (01 + 02)

It is noted that the rms position error is directly proportional to the rms line-of-sight
error. It is also noted that the rms position error is infinite for 01 + 02 = 1800, which
occurs when the two lines of sight are parallel.

Table'I is a table of values of E/h as a function of the elevation angles 01 and

02. For convenience, the only values of E/ha listed are those for the angles 01 and

02 at intervals of 100. From table I it is seen that the minimum value of 6/ha occurs
for 81 equal to 02 in the neighborhood of 550.

Then, the quantity 6/ho was evaluated for values of 01 and 02 from 450 to 650

at increments of 0.0010. Table II is a table of values of 6/ho as a function of 01 and

02 at increments of 0.0010. For convenience, the only values of e/ho listed are those
for 01 and 02 from 56.0960 to 56.1000. From table II it is observed that the minimum
value of E/ha occurs for 01 = 02 = 56.0980. Therefore, the minimum rms position
error in the triangulation solution of a point in space for two arbitrarily located obser-
vation stations, with the most probable point in space taken as the midpoint of the shortest
line between the two lines of sight, occurs when the two elevation angles are such that
01= 02 = 56.0980.

Setting 01 = 02= 0 in equation'(18) establishes the following:

oh 1 + sin2 0 - sin4(

S- sin40 - sin6  
(19)

Therefore, equation (19) is the equation for the rms position error in the triangulation
solution of a point in space for two arbitrarily located observation stations, with the most
probable point in space taken as the midpoint of the shortest line between the two lines of
sight, when the two elevation angles are set equal.

Most probable point taken as point, on shortest line between lines of sight, which
subtends equal residual angles at stations.- A second choice for the most probable point
Ps in space is the point, on the shortest line between the two lines of sight, which sub-
tends equal residual angles at the two observation stations. This choice is used in ref-
erence 8. From figure 1 it is seen that
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AsPs AsN - AP
a2  al

Or,

a2
A5 Ps = A5 N(al + a2 )

Since dol is small,

ala2 dl 1  (20)
(a 1 + a 2 )

Hence,

-e ala2
8 1 (al.+ a2)

Using equations (5) and (6) results in

ae b sin 01 sin 02 (21)
801 (sin 01 + sin 02)sin(01 + 02)

Because of symmetry

8e b sin 01 sin 02 (22)
a02 (sin 01 + sin 02)sin(o1 + 02)

Changing the notation from e to E' in equation (4) and then substituting equa-

tions (7), (8), (21), and (22) into the equation for (E')2 result in

S + sn 2 sin2 0 1 sin2 02 sin2(0 1 + 02

2 = A2 b2 + (sin 01 + sin 02)2 (23)
sin4 (01 + 02)

Therefore, equation (23) is the equation which gives the rms position error in the triangu-

lation solution of a point in space for two arbitrarily located observation stations - with

the most probable point in space taken as the point, on the shortest line between the two

lines of sight, which subtends equal residual angles at the stations.
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Comparison of position errors for two choices of most probable point.- Taking the

ratio of equation (23) to equation (12) renders

(E,)2 1 sin2 (0 1 + 02)(sin2o1 + sin2 02)(sin 1 + sin 02)2 - 2 sin2o 1 sin22 (24)

E2  (sin 01 + sin 02 )2 (sin201 + sin2o2 )[ + 1 sin2(01+ 02 j

Hence,

' _ 1 for (sin20l + sin2 2 )(sin 01 + sin 02)2 - 2 sin2o 1 sin2 02  0 (25)

For convenience, the following change of variables can be made: X 1 = sin 01,

X2 = sin 02. Since the elevation angles 01 and 02 are positive, then the variables

X 1 and X2 are also positive. Making this change of variables in expression (25)

furnishes

E- l for X12+ X 2 2 X1 + 2  - 2X 1 2 2
2  0

If X 1 = X2 , then (X 1 2 + X2 2) = 2X 1X 2 and the following result can be established:

S=1, since X12+ X 22)X1 + X2 )2 - 2X 1
2 X 2 =0

If X 1 * X2 , then (X 1
2 + X2 2) > 2X 1X 2 and the following result can be proved:

S< 1, since 2+ X 2
2 )(X 1 + X22 2X 1

2 X2
2 > 0

Consequently,

E' = E (1 2) (26)

E' < (01 02) (27)

Hence, when the two elevation angles are equal, the rms position error e' is equal
to the rms position error E. However, when the two elevation angles are not equal, then
E' is less than E. Therefore, the choice of the most probable point in space as the point,

on the shortest line between the two lines of sight, which subtends equal residual angles

at the two observation stations, yields a smaller value of the rms position error than does
the choice of the most probable point as the midpoint of the aforementioned line, except
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in the special situation of equal elevation angles and then the two choices yield the same

value.

Optimum relative weighting factor for data from first of two arbitrarily located

stations.- Earlier in this analysis for two arbitrarily located observation stations, the

mean-square line-of-sight errors do 1
2 , d02 2, do 1

2 , and d 2
2 were assumed to be

all equal. The situation in which the mean-square line-of-sight errors from the station

S 1 differ from the mean-square line-of-sight errors from the station S2 are now con-

sidered. Hence,

do 1
2 = d1 2 a 1

2  (28)

d02
2 = do22 2= 22 (29)

where a1 and a 2 are the rms line-of-sight errors from the stations S1 and S2 ,
respectively. Substituting equations (28) and (29) where appropriate into equation (2)

gives

2 = a21 +ae 2 - + a22ae 8e (30)1 + i 2L\) oP2)J

Since the rms line-of-sight errors from the two observation stations are different,
the data from the two stations must be weighted differently. The relative weighting fac-

tor for the data from the station S1 can be denoted by w. The purpose of this section

is to determine the optimum value of the relative weighting factor c, which minimizes

the rms position error in the triangulation solution of a point in space.

For a line-of-sight error do 1 at the observation station S1, shown in figure 1,

the relative weighting factor w is

A P s

AsN - AsP s

Or,

AsP, = (- )AsN

Since do 1 is small,
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AsPs =(i ~ ald 1 (31)

Hence,

8e _
8c41 i+ 1g/l

Using equation (5) renders

b sin 02 (32)

a0 1  +) sin(0 1 02)

For an error d0 2 at the station S2 , the relative weighting factor w is

AN - AsP s
= Asps

Or,

Ass= PsAsN

Since d0 2 is small,

A5 Ps = a 2 d 2  (33)

Hence,

ae 1

Using equation (6) gives

e 1 b sin0 1  (34)
802 1+ w sin(01 + 02)

Substituting equations (7), (8), (32), and (34) into equation (30) furnishes

E2= b2 ( 1 2 sin2 02 + a2
2 sin201) (w2,12 sin2 02 + r22 sin2o) (35)

sin4(1 + 02) (1 + w) 2 sin2(1 2)
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In order to find the optimum relative weighting factor, the partial derivative of equa-

tion (35) with respect to w is taken and then this resulting expression is set equal to

zero. That is,

8 2 b21 + w)2 sin2(01 + 02)(2wa 1
2 sin2

2)
aw (1 + w)4 sin4 (O + 2)

L

(w2o 12 sin2 02 + 022 sin 201)(2 + 2w)sin2(0 1 + 02= 0 (36)

(1 + w) 4 sin4 (0 1 + 02)

Hence,

w(1 + c)c12 sin 2o2 = w2 , 1
2 sin 2 02 + 022 sin 201

Consequently,

022 sin 2el

.2 sin
2 02

Therefore, for the choice of the most probable point in space as the midpoint of

the shortest line between the two lines of sight, equation (37) is the equation for the

optimum relative weighting factor, which minimizes the rms position error in the tri-

angulation solution of a point in space, for the data from the observation station S1
when the data from one of the stations is degraded relative to that from the other. It is

noted from equation (37) that the optimum relative weighting factor for the data from the

station S1 is directly proportional to the square of the ratio of the rms line-of-sight

errors from the stations S2 and S1.

Position Error in Solution of Point for Symmetrical

Circular Configuration of n > 2 Stations

With Equal Elevation Angles

The configuration of n, where n _ 2, observation stations is now examined. The

n stations are equally spaced around the circumference of a circle, the center of which

is located at the foot of the perpendicular drawn from the actual point As in space, as

shown in figure 2. For this configuration an approach different from that of the preceding

section is used.
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The actual unit vector ip is in the direction from the pth observation station to the

actual point As in space. The distance between each of the n stations and the point

As is denoted by a. The most probable vector rp is the vector from the pth station

to the most probable point Ps in space. The point Ps is displaced from the point A s

by the position error vector Fr . The line of sight from the pth station is in the direction

of the line-of-sight unit vector 6p. The unit vector p is displaced from the unit vec-

tor ip by the difference vector Zp. Lastly, the line-of-sight error vector, the shortest

vector from the line of sight from the pth station to the point Ps, is denoted by p.

From figure 2 it is observed that the line-of-sight error vector 6p, the most

probable vector rp , and the line-of-sight unit vector ep, respectively, from the pth

observation station are

= P - . e6 (38)

ap = alip + 6 r (39)

6p = ip + Ap (40)

Substituting equations (39) and (40) into equation (38) renders

= aip + Er - (aip + r" (ip + p)(ip Zp)

Keeping only terms to first order and noting that ip - Ep = 0 to first order produce

6 = r -(iP *r)ip - a p (41)

Hence, again noticing that ip • p = 0 to first order leads to

p)2= (r)2- r)2 + a2(Zp)2 - 2a(sr p) (42)

Therefore, for the n stations equation (42) becomes

n-1 n-I n-1 n-I n-l

p= r ( 2  ( ) 2 +a2 1 (p) 2  2a I (r p)  (43)

p=O p=O p=O p=O p=0

where n 2 .
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The elevation angle from each of the n observation stations is the same, since the

n stations are located on the circumference of a circle with the actual point A s in

space being located on the perpendicular whose foot is at the center of the circle. The

elevation angle is denoted by 0 and is shown in figure 2. The angles dep and dop
are the line-of-sight errors in and out of the plane of the angle 8, respectively, from the

pth station. The angle ap is the angle between the x-axis and the pth station, and

S= 2np/n- where n = 0, 1. 2, n. - 1. as the n stations are equally spaced around

the circumference of the circle. The rectangular coordinate system of figure 2 has its

origin at the center of the circular configuration of stations, x-axis toward the Oth station,

z-axis toward the point As, and y-axis such as to form a right-hand orthogonal triad.

In order to determine the rms position error in the triangulation solution of a point in

space as a function of the angle 0 for this configuration, equation (43) must first be

written as a function of the angle 0, the errors d0p and dcP, the angle ap, and the

x-, y-, and z-components of the position error vector 6p.

The actual unit vector 'p from the pth observation station corresponds to the sit-

uation in which no line-of-sight errors exist in the line of sight from the pth station (i.e.,

when d0p = dop = 0). The unit vector ip from the pth station is

S= -i cos 0 cos a n - y cos 0 sin ap + i sin 0 (44)

where i, y, and 2 are the unit vectors in the directions of increasing x, y, and z,

respectively. From figure 2 it is observed that the difference vector Zp from the pth

station is

Ap = ep - ip (45)

where ep is the line-of-sight unit vector from the pth station. Hence,

Ap = (dOp sin 0 cos ap - dp sin op) + ^(dop sin 0 sin p + dop cos ap) + 2 dOp cos

(46)

The position error vector br can be expressed as

r = x6x + Y6Y + iSz (47)

where 6x, 6y, and 6
z are its x-, y-, and z-components, respectively.

Using equations (44), (46), and (47) establishes the desired functional dependence of

each term in equation (43). Hence,
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n-i n-I

S((r) 2  (6x2 + 2 +6,) = n(82 +6 2 + 6z2 ) (48)

p=O p=O

n-i n-1

I (iP I 2 6x cos 0 cos ap - cos 0 sin ap + 6. sin 0)
p=O p--O

n-i n-1

= x2 cos 2 0 1 cos 2 a p + 5y2 cos 2 0 sin2 ap + n6z 2 sin20

p=O p=O

n-1 n-1

- 2y6z cos 0 sin 0 sin up - 2x6z cos 0 sin 0 cos Up

p=O p=O

n-1

+ x6y cos 2 0 sin(2a) (49)

p=O

n-1 n-1

a2 I (p)2 =a 2 C (dOp sin 0 cos op- dp sin ap 2

p=O p=O

+ (dop sin sin up + dop cos a)2 + (dOp cos 0)2] (50)

n-1 n-i

2a I (Zr p)= 2a6x (dOp sin cos p - dcp sin op)
p=O p=O

n-1

+ 2a6 (dop sin 0 sin ap + dp cos a)

p=O

n-1

+ 2 a6z cos 60 dp (51)

p=0

Substituting equations (Al), (A2), (A3), (A4), and (A5), which are derived in the appendix,

into equation (49) produces
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n-l ! 6 2 cos20 + 1 6y2 cos20 + nz2 sin 2O (n > 2)

i r)2 = 2 2 (52)
p= 2 6x2 cos 2 0 + 26z 2 sin2e (n = 2) 1

The substitution of equation (52) into equation (43) yields two different results, one

for n > 2 and one for n = 2. Hence, these two situations must be examined separately.

Symmetrical circular configuration of n > 2 stations with equal elevation angles.-

Substituting equation (52) for n > 2 along with equations (48), (50), and (51) into equa-
n-1

tion (43) leads to an expression for 2 for n > 2 as a function of the elevation

p=O
angle 0, the line-of-sight errors dop and dop, the angle ap, and the x-, y-, and

z-components of the position error vector 6
r . That is,

n-1
S = n(6x 2 + 6 2 + 6z2)

p=0

- 5x2 cos20 + R 2 cos 2 0 + n 2 sin2g)

+ a2 I 0dep sin 0 cos ap - dcp sin p )2

p=O

+ (dp sin 0 sin a + dp cos +p)2 + (dp cos 0)2]

n-1

- 2 a6x I (dop sin 0 cos p - dp sin ap)
p=O

n-1

- 2a6y I (dep sin 0 sin ap + dp cos ap)
p=O

n-1

-2a6z cos dp (n > 2) (53)

p=O

n-1

In this form, 1 ()2 can be minimized with respect to the x-, y-, and

p=O
z-components of the vector 3r .
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To obtain the minimum with respect to 5x, the partial derivative of equation (53)

with respect to 6x is taken and then this resulting expression is set equal to zero. That

is,

n-1a n-1

- (2 = 2 n6x - n6x cos2o- 2a (d0p sin B cos ap - dp sin ap)= 0

xp=0 p=0

Or,

n-1

(l + sin2o)nbx = 2a (dp sin 0 cos ap - dp sin ap) (54)

p=0

Thus,

n-1 n-1

(l+ sin2) 2 n2 2 = 4a 2 I (dp sin 0 cos p - dpsin ap)(dq sin 0 cos aq - dbq sin aq)

p=O q=O

(55)

where the bars denote the mean values.

It can be assumed that all of the line-of-sight errors dep and dop are uncorre-

lated. Also, since the errors dop and dop are all perpendicular to their respective

lines of sight, it can be assumed that

depdq = u2 6pq (56)

dcpd q = 2 6pq (57)

dpd(q = dqd p = 0 (58)

where 6pq is the Kronecker delta and a is the rms line-of-sight error.

Substituting equations (56) to (58) where appropriate into equation (55) results in

n-1 n-1
(1 + sin2)2x2 = 4a2 2 sin2o0 cos2ap+ sin2a) (59)

p=0 p=0

Substituting equations (A4) and (A5) for n > 2 into equation (59) gives

(1 + sin20) 2 n2--x = 4a2a2(! sin 2 +

19



Therefore,

x2 2a 2 02  (60)

n(l + sin2 0)

Minimizing equation (53) with respect to 6y and bz, respectively, results in the

following twno equations:

n-1

(l + sin29)n = 2a (dep sin 0 sin ap + dp cos.p) (61)

p=0

n-1

n6z cos 0=a do (62)

p=0

Using equations (61) and (62), respectively, and procedures analogous to those used for

obtaining equation (60) for 6x 2 yields the following equations for 6 y2 and 6,2:

6y2 2a 2 2  (63)

n(1 + sin2 0)

62= a2 u2  (64)
n cos 2

The rms position error E in the triangulation solution of a point in space for the

circular configuration of n observation stations with equal elevation angles is given by

2 ax2 + y2 + 6z2 (65)

Substituting equations (60), (63), and (64) into equation (65) furnishes

2 a2 2 5 - 3 sin2(66)
n 4

1- sin /

From figure 2 it is seen that the distance a from each of the n stations to the actual

point As in space is

= h (67)
sin 0
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Substituting equation (67) into equation (66) renders

h2 =2 / 5 - 3 sin2 oe2- (68)n 2Sin 2 - sin6

Therefore, the rms position error E in the triangulation solution of a point in

space for the symmetrical circular configuration of n > 2 observation stations with

equal elevation angles is

ha 5 - 3 sin2 /2
= - sin6 (n > 2) (69)

nsin2e - sin6 /

The rms position error from equation (69) is directly proportional to the rms line-of-

sight error and inversely proportional to the square root of the total number of stations

of interest. For elevation angles of 900 the rms position error is infinite. For an ele-

vation angle of 900 the lines of sight from the different stations could not intersect. Fig-

ure 3 is a plot of e/ha for n > 2 as a function of the elevation angle 0, for n = 3, 4,
5, 6, 7, and 8.

The optimum elevation angle, which minimizes the rms position error in the triangu-

lation solution of a point in space, for the symmetrical circular configuration of n > 2

observation stations with equal elevation angles can be determined by minimizing equa-

tion (68) with respect to the elevation angle 0. That is,

aE2 _ 2h 2
02 sin & cos O -6 sin68 + 15 sin4O - = 0 (70)

n0 n (sin20 - sin60) 2

Hence,

-6 sin6 o + 15 sin4 e - 5 = 0 (71)

Making the change of variables X = sin2 e in equation (71) gives

X3
-_ 2 + = 0 (72)

The three roots of this equation are

X = 0.675905; -0.524875; 2.348970
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Since X = sin2 0, the root corresponding to the physical solution must be positive and

must be between zero and unity. Hence, the root corresponding to the physical solution

is X = 0.675905. Therefore,

0 = sin-1X1/2 = 55.3000 (n > 2) (73)

Thus, the optimum elevation angle, which minimizes the rms position error in the solution

of a point, for the symmetrical circular configuration of n > 2 stations with equal ele-

vation angles is 55.3000. This result is also seen from figure 3. In addition, for

0 = 55.3000 ± 50 (see fig. 3), the difference in the rms position error for n = 3 is

2.5 percent, while for n = 8 it is 0.9 percent.

The optimum elevation angle (55.3000) is within a fraction of a degree of the angle

(54.6670) which the sloping edge of a tetrahedron makes with its base. Therefore, the

optimum configuration of three observation stations for triangulating on a point in space

is the configuration of the three stations plus the point which closely approximates a

tetrahedron.

Given the altitude of the point in space, the value of the optimum elevation angle for

n > 2 can be used to compute the value of the optimum radius of the symmetrical circular

co---nfiuratn of n > 2 observation stations with equal elevation angles- The radius R

of the circular configuration (see fig. 2) is

R = h cot 0 (74)

Hence, substituting 8 = 55.3000 into equation (74) produces

R = (0.69243)h (n > 2) (75)

Therefore, equation (75) furnishes the value of the optimum radius of the symmetrical

circular configuration of n > 2 stations with equal elevation angles, for a given altitude

of the point.

Symnmetrical circular configuration of n = 2 stations with equal elevation angles.-

Noticing that ap = 7p for n = 2 and substituting equations (48), (50), (51), and (52) for
1

n = 2 into equation (43) establish an expression for ( as a function of the ele-

p=0

vation angle 0, the line-of-sight errors dop and dop, the angle p = 7p, and the x-,

y-, and z-components of the position error vector 6
r . That is,

22



()2 2(6 2 + 2 5 z2) - 2(x2 cos 2 9 + 26 2 sin2)

p=O 1

+ a 2  dp sin 0 cos(ip) - d4p sin(Tp)) 2

p=O

+ (dOp sin 0 sin(irp) + dop cos(7p)) 2 + (dOp cos 0)2]

1

- 2a6 ~ dp sin 0 cos(wp) - dop sin(iTPj

p=O

- 2a6 [d0p sin 0 sin(wp) + dP cos(

p=0

1

- 2a6, cos 0 dp (n = 2) (76)

p=O

Using procedures analogous to those used in arriving at equation (68) from equation (53)

yields

2 = h2 + sin2 - sin4 (77)

sin4& - sin6

Therefore, the rms position error e in the triangulation solution of a point in

space for the symmetrical circular configuration of n = 2 observation stations with

equal elevation angles is

hU ( + sin2 O - sin4 1/ 2  (n = 2) (78)
fF sin49 - sin6 0

This equation is identical to equation (19), which gives the rms position error in the solu-

tion of a point for two arbitrarily located stations, with the most probable point taken as

the midpoint of the shortest line between the two lines of sight, when the two elevation

angles are set equal.
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From equation (78) it is noticed that the rms position error in the triangulation

solution of a point in space for the symmetrical circular configuration of n = 2, as for

n > 2, observation stations with equal elevation angles is directly proportional to the rms

line-of-sight error and infinite for elevation angles of 90 0 . Figure 4 is a plot of e/hu

for n = 2 as a function of the elevation angle 0.

The optimum elevation angle, which minimizes the rms position error in the trian-

gulation solution of a point in space, for the symmetrical circular configuration of n = 2

observation stations with equal elevation angles can be determined by minimizing equa-

tion (77) with respect to the elevation angle 0. That is,

'6 2 h sn3e cos 0 Lsin2o - sin4 o)(1 - 2 sin2 0)- (1 + sin2 0 - sin4 0)(2 - 3 sin2o5] =0

(sin49 - sin6o)

(79)
Hence,

(sin2e - sin4e)(1 - 2 sin20) - (1 + sin2 0 - sin4 0)(2 - 3 sin2 0) = 0 (80)

Making the change of variables X = sin2 0 in equation (80) renders

X3 - 2X 2 - 2X + 2 = 0 (81)

The root corresponding to the physical solution is X = 0.688892. Therefore,

0 = sin- X1/ 2 = 56.0980 (n = 2) (82)

Thus, the optimum elevation angle, which minimizes the rms position error in the solu-

tion of a point, for the symmetrical circular configuration of n = 2 stations with equal

elevation angles is 56.0980. This result is also seen from figure 4. In addition, for

0 = 56.0980 + 50 (see fig. 4), the difference in the rms position error for n = 2 is
1.5 percent.

It is recalled that the minimum rms position error in the triangulation solution of
a point in space for two arbitrarily located observation stations, with the most probable

point taken as the midpoint of the shortest line between the two lines of sight, occurs
when the two elevation angles 01 and 02 are such that 01 = 02 = 56.0980. Hence, a
necessary and sufficient condition for a minimum rms position error in the solution of a
point for two arbitrarily located stations is that the two elevation angles be equal, and
equal to 56.0980.

Substituting 8 = 56.0980 into equation (74) renders

R = (0.67200)h (n = 2) (83)
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Therefore, equation (83) furnishes the value of the optimum radius of the symmetrical
circular configuration of n = 2 observation stations with equal elevation angles, given
the altitude of the point in space. Since the distance b between the two stations is twice
the radius R of the circular configuration, then

b = 2R = (1.3440)h (84)

Therefore, equation (84) produces the value of the optimum distance between two stations
with equal elevation angles, given the altitude of the point.

Variation in Position Error in Solution of Point for Circular Configuration

of n > 2 Stations with Equal Elevation Angles, When One

Station is Permitted to Drift Around the Circle

For this part of the analysis, the Oth observation station (i.e., the one, in the previ-
ous part, that was located on the x-axis and, hence, for which ap = a 0 = 0) is permitted
to drift around the circle. The variable angle which this drifting station makes with
the x-axis is denoted by y. The angle y can take on either positive or negative val-

ues. As the drifting station moves around the circle, for values of y equal to

al' a 2, . . ., an-1, it coincides with the 1st, 2d, . . ., (n-1)th stations, respectively.
Each time such a coincidence occurs the number of stations is effectively reduced by
one. For this reason, only the situation of n > 2 stations is considered in this part of
the analysis, as a minimum of two stations must be present for triangulation.

Substituting equations (A6), (A7), (A8), (A9), and (A10), which are derived in the
appendix, into equation (49) leads to

n-i

(i'p 2- 2 = ) x2 2 cos2( - 1+ cos2) + 6y2 cos2o(2 + sin2)
p=0

+ n6z2 sin20 - 26 y z sin 0 cos 0 sin y

+ 2 6x 6
z sin 0 cos 0(1 - cos y)

+ ,6y cos 2 0 sin(2.) (n > 2) (85)

Substituting equations (48), (50), (51), and (85) into equation (43) results in an expression
n=l

for I (e)2 for n > 2 as a function of the elevation angle 0, the line-of-sight errors

p=0
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dop and dop, the angle ap, and the x-, y-, and z-components of the position error

vector i r . That is,

n-1

2 = (6x2 + 62 + 6z2) x2 cos2( - 1+ cos2C )

p=O
- y2 cos2 0  + siny) - n6z 2 sin"2 + 26y1 z sin 0 cos 0 sin y

- 26x6z sin 0 cos e(1 - cos y) - 6x6y cos 2 O sin 2y

+ (do sin 0 sinap + dp cos ap) 2 + (de cos 0)2]

n-1

- 2a6x I (dop sin 0 cos ap - dp sin ap)

p=O

n-i

- 2a6y I (dep sin 0 sin up + dop cos p

- 2a6z cos 0 dop (n >2) (86)

p=O

n-1

In this form, I can be minimized with respect to the x-, y-, and z-components

p=O

of the vector r.r

Minimizing equation (86) with respect to 6x, 6y, and gz, furnishes the following

three equations, respectively:

[n - cos2e( - 1 + cos2) 6x + (-cos20 sin y cos Y)y

n-1

+ [in e cos e(cos y - 1i6z = a (dep sin cos up - dp sin ap) (87)

p=0
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-cos 2 0 sin y cos y)x + n - cos20e( + sin2y 6

n-I

+ (sin 0 cos 9 sin y)z= a (dep sin 0 sin up + dp cos a ) (88)

p=O

n-I

sin 0 cos O(cos y - 1)6x + (sin 0 cos 0 sin y)6y + (n cos 2 0)6 z = a cos dop (89)

p=O

Equations (87), (88), and (89) can be rewritten in the following forms, respectively:

A6x + B6y + C6 z = ( (90)

B6x + D6y + E6z = 7 (91)

C 6
x + E6y + F6z = ( (92)

where

A = n - cos20- 1 + cos2) (93)

B = -cos 2 0 sin y cos y (94)

C = sin 0 cos e(cos y - 1) (95)

D = n - cos20 n+ sin2) (96)

E = sin 0 cos 0 sin y (97)

F = n cos 2 0 (98)

n-i

= a (dOp sin 0 cos ap - dop sin ap) (99)

p=0

n-I

= a I psin sin ap + dp Cos ap) (100)

p=0
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and
n-1

= acos 0 n-i dOp (101)

p=0

The problem is now reduced to solving equations (90), (91), and (92) simultaneously

for 5x, 5y, and 5z . Hence,

B C

x = B D E

SE F

= DF - E 2 ) + (CE - BF) + C(BE - CD] (102)

A B C

= y B D E

C F

A B (

6z = - B D q

C E (

S (BE - CD) + q(BCA - AE) + (AD - B2 (104)

where f is the symmetrical determinant

=B D E (105)

C E F
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Equations (102), (103), and (104) can be rewritten in the following forms,
respectively:

6x = G + Hq + IC (106)

6y = H + J + K (107)

6, = I + K1 + LC (108)

where

G = (DF - E2) (109)

H = 1(CE - BF) (110)

I= 1(BE - CD) (111)

J= (AF - C2) (112)

K = -(BC - AE) (113)

L = (AD- B2) (114)

The coefficients G, H, I, J, K, and L are functions only of n, y, and 0.

From equations (106), (107), and (108), respectively, it is recognized that the quan-
tities 6x2, 6y2, and 6,2 are

6x2 = G2 2 + H2
7

2 + 12C + 2GHq- + 2GI- + 2HI7-C (115)

6y 2 = H2 + j2 2 + K2 2 + 2HJj- + 2HK + 2JK,-q (116)

6,2 = I2 2 + K2 772 + L2 2 + 2IK- + 2ILT- + 2KL '- (117)

The quantities j2, t 2 , -, T, , and T7" - which are functions, not only of 0 and
a, but also of aup, dop, and d4p - need to be evaluated. From equation (99) it can be
established that the quantity j2 is
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n-1 n-1

=2a 2 I I (dOp sin n cos up - dp sin a )(dq Sin 0 Cos aq - dq sin aq)

p=O q=O

Using equations (56), (57), and (58) yields

= a2U2 sin2O L cos2 p + I sin2ap
p=0 p=0

Using equations (A9) and (A10) renders

= a22 sin2 - 1 + cos2y) + + sin2)

Using equation (67) results in

= h22 V -1+ cos2 + esc20(r + sin2,] (118)
L/ "

Similarly,

2 = h2r2 + sin2y)+ csc20 - 1 + cos27 (119)

2 = h22(n cot2o) (120)

T7 = h22(-1 cot2 0 sin 2y) (121)

= h20 2 [cot O(cos y - 1)] (122)

= h2 02 cot 0 sin y- (123)

If the expressions (118), (119), (120), (121), (122), and (123) are substituted into

equations (115), (116), and (117) and then these three resulting expressions are substi-

tuted into equation (65), the rms position error e in the triangulation solution of a point

in space for the circular configuration of n > 2 observation stations with equal elevation

angles, when one of the stations is permitted to drift around the circle, can be computed.
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The expression for E/h for n = 3 was programed for a high-speed computer to get

numerical values.

The quantity e/ho was evaluated for values of y = 00 to 3600, at 50 intervals, for

each of the values of 0-= 50 to 850, at 50 intervals. For each particular value of 0

examined, the quantity E/ha was the smallest when y = 00 (and 3600). Table III is

a table of values of E/h as a function of both 0 and y. For convenience, the values

listed in the table are only those for 0 and y at 200 intervals. It is observed from

table Il that for each particular value of 0, the smallest value of E/ha occurs when

y = 00 (and 3600).

Figure 5 is a plot of e/hu as a function of y for 0 = 50 to 850. Again, for con-

venience, 200 intervals in 0 were used. It is again seen from figure 5 that for each

particular value of 0 the quantity E/h is a minimum when y = 00 (and 3600), which

represents the symmetrical arrangement of the circular configuration of observation sta-

tions with equal elevation angles.

It can be seen from table III and figure 5 that when y = 1800 (i.e., when the drifting

observation station is again equidistant from the two fixed stations), then E/ha is either

a relative minimum or a maximum, depending on the value of the elevation angle 0. It

is a relative minimum for 0 equal to 50 and 250; and it is a maximum for 0 equal to

450, 650, and 850. For 0 equal to 50 and 250, the quantity E/ha is a maximum when

y is equal to 900 and 2700.

Figure 6 is a plot of E/hu as a function of the elevation angle 0 for y = 00, 6 00,
1200, and 1800. The quantity e/ha was examined for y only through 1800, as E/hu

is symmetrical with respect to y = 1800, which can be seen from table III. It is observed

from figure 6 that for each particular value of y the quantity e/ha is a minimum for

0 = 55.3000. It is remembered that for the symmetrical circular configuration of n > 2

observation stations with equal elevation angles the optimum elevation angle, which min-

imizes the rms position error in the triangulation solution of a point in space, is 55.3000.

Therefore, the symmetrical arrangement for n = 3 observation stations with equal

elevation angles in a circular configuration gives the minimum rms position error in the

triangulation solution of a point in space. It may be plausibly assumed, then, that the

symmetrical arrangement is also the best arrangement for n > 3 stations with equal

elevation angles in a circular configuration.

CONCLUSIONS

The purpose of this paper was to derive, to first order, analytical expressions for

the rms position error in the triangulation solution of a point object in space for several
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ideal observation-station configurations to provide insights into the nature of the depend-

ence of the rms position error on certain of the experimental parameters involved.

For two arbitrarily located observation stations, the rms position error in the tri-

angulation solution of a point in space is directly proportional to the rms line-of-sight

error. The minimum rms position error occurs when the two elevation angles are both

equal to 56.0980. For the configuration of the two arbitrarily located stations, two choices

of the most probable point in space - the midpoint of the shortest line between the two

lines of sight, and the point, on the aforementioned line, which subtends equal residual

angles at the two stations - were used. The latter choice of the most probable point

yields the smaller value of the rms position error, except in the special situation of

equal elevation angles and then the two choices yield the same value. For the first choice

of the most probable point, the optimum relative weighting factor, which minimizes the

rms position error, for the data from the first station when the data from one of the sta-

tions is degraded relative to that from the other, is directly proportional to the square of

the ratio of the rms line-of-sight errors from the second and first stations, respectively.

For the symmetrical circular configuration where the number n of observation

stations with equal elevation angles is two or more, the rms position error in the trian-

gulation solution of a point in space is directly proportional to the rms line-of-sight

error. For n > 2 the rms position error is inversely proportional to the square root

of the total number of stations of interest. For n = 2 the optimum elevation angle,

which minimizes the rms position error, is 56.0980. For elevation angles of 56.0980 ± 50,

the difference in the rms position error for n = 2 is 1.5 percent. For n > 2 the

optimum elevation angle, which minimizes the rms position error, is 55.3000 regard-

less of how many (greater than two) stations are present. For elevation angles of

55.3000 ± 50, the percent difference in the rms position error for n = 3 is 2.5 percent,

while for n = 8 it is 0.9 percent. The value of the optimum elevation angle for n > 2

is within a fraction of a degree of the angle (54.6670) which the sloping edge of a tetra-

hedron makes with its base. Therefore, the optimum configuration of three stations for

triangulating on a point in space is the configuration of the three stations plus the point

which closely approximates a tetrahedron.

When one of the stations in the circular configuration of n = 3 observation stations

with equal elevation angles is permitted to drift around the circle from its position of

symmetry, the rms position error in the triangulation solution of a point in space is a

minimum when the variable angle of the drifting station equals zero degrees, which repre-

sents the symmetrical arrangement. For each value of the variable angle of the drifting

station, the rms position error is a minimum when the elevation angle equals 55.3000.

Based on the assumptions used in this study, a necessary and sufficient condition

for a minimum rms position error in the triangulation solution of a point in space for two
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arbitrarily located observation stations is that the two elevation angles be equal, and equal

to 56.0980. A necessary and sufficient condition for a minimum rms position error in

the solution of a point for three stations with equal elevation angles in a circular con-

figuration is that the three stations be symmetrically arranged around the circle. It

may be plausibly assumed, then, that the symmetrical arrangement of the circular con-

figuration of n > 3 stations-with equal elevation angles is the arrangement of this con-

figuration which yields the minimum rms position error.

Langley Research Center,
National Aeronautics and Space Administration,

Hampton, Va., March 14, 1974.
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APPENDIX

DERIVATION OF CERTAIN TRIGONOMETRIC SERIES USED FOR

CIRCULAR CONFIGURATION OF n - 2 STATIONS

WITH EQUAL ELEVATION ANGLES

For the symmetrical circular configuration of n - 2 observation stations with

equal elevation angles, the angle between the x-axis and the pth station is ap = 2wp/n,

as shown in figure 2. Now,

n-1 n-1

cos a = Re exp(Ln - Rep=0c =n ex(i -

Therefore,

n-1

os =0 (n > 2) (Al)

p=0

Similarly,

n-1

I sin ap = 0 (n e 2) (A2)
p=O

Also,

n-1 n-1
Ssin 2ap =Im exp = I exp(14 ) =- 0 (n > 2)

p=0 p=0ex 1

For n =2,

n-1 1

sin 2ap= sin(2ap) = 0

p=0  p=0
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APPENDIX - Continued

Therefore,

n-1

sin 2ap = 0 (n - 2) (A3)

p=O

In addition,

n-l n-1
cos 2a= Re exp Re xp(4- 1) (n > 2)

p=O p=O expi- 1

For n = 2,

n-I 1

cos 2p = cos(27p)= 2

p=O p=O

Hence,

n-1 0(n > 2)
cos 2ap =

p=0 2 (n = 2)

Since

n-1 n-i

cos2ap = (1+ cos 2ap)

p=O p=O

then

n-1 n (n > 2)
Scos 2a = (A4)

p=0  2 (n = 2)
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APPENDIX - Continued

Since

n-1 n-1

sin2ap = 1 j1 - cos 2ap)

p=0 p=0

then

n-1 (n > 2)

sin2ap = 2 (A)

p={ 0 (n = 2)

If, for n > 2 observation stations, the Oth station (i.e., the one previously located

on the x-axis and for which ap = a0 = 0) is permitted to drift around the circle, making

the variable angle y with the x-axis, then equations (Al), (A2), (A3), (A4), and (A5) must

be modified. Now,

n-1 n-1

Scos 0p = cos 0 o+ cos a p

p=O P=1

Therefore,

n-1

os p =cosy - 1 (n > 2) (A6)

p=O

Also,

n-1 n-1

Isinap=sina +u sinap

p=O p=l

Therefore,

n-1

sin a siny (n > 2) (A7)

p=O

In addition,

n-1 n-1

sin 2ap= sin 2a0 + sin 2ap
p=O p=1
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APPENDIX - Concluded

Therefore,

n-1

sin 2ap = sin 2 y (n > 2) (A8)

p=0

Furthermore,

n-1 n-1

cos 2ap = cos 2 a 0 + cos 2ap

p=o p=1

Therefore,

n-1

coS2ap= cos2 + 1 (n > 2) (A9)
p=0

Finally,

n-1 n-1

I sin2ap sin2a 0 + I sin2a p
p=O p=1

Therefore,

n-1

sin2ap = sin2 + n (n > 2) (A10)p 2
p=O
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TABLE I.- THE QUANTITY e/ho- IN SOLUTION OF POINT FOR TWO ARBITRARILY

LOCATED STATIONS, WITH MOST PROBABLE POINT TAKEN AS MIDPOINT OF

SHORTEST LINE BETWEEN LINES OF SIGHT, AS A FUNCTION OF THE

TWO ELEVATION ANGLES IN INTERVALS OF 100

01 8 2 , deg

deg 5 15 25 35 45 55 65 75 85

5 93.79 35.91 24.15 18.96 16.16 14.52 13.55 13.04 12.88

15 35.91 11.26 7.40 5.93 5.18 4.76 4.55 4.47 4.52

25 24.15 7.40 4.68 3.70 3.24 3.01 2.92 2.92 3.02

35 18.96 5.93 3.70 2.90 2.54 2.38 2.34 2.38 2.53

45 16.16 5.18 3.24 2.54 2.24 2.11 2.11 2.21 2.42

55 14.52 4.76 3.01 2.38 2.11 2.03 2.07 2.24 2.58

65 13.55 4.55 2.92 2.34 2.11 2.07 2.18 2.47 3.08

75 13.04 4.47 2.92 2.38 2.21 2.24 2.47 3.02 4.28

85 12.88 4.52 3.02 2.53 2.42 2.58 3.08 4.28 8.21
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TABLE II.- THE QUANTITY e/ha IN SOLUTION OF POINT FOR TWO ARBITRARILY

LOCATED STATIONS, WITH MOST PROBABLE POINT TAKEN AS MIDPOINT OF

SHORTEST LINE BETWEEN LINES OF SIGHT, AS A FUNCTION OF THE

TWO ELEVATION ANGLES IN INCREMENTS OF 0.0010

S802, 
deg

deg 56.096 56.097 56.098 56.099 56.100

56.096 2.0278919610 2.0278919578 2.0278919558 2.0278919550 2.0278919554

56.097 2.0278919578 2.0278919550 2.0278919535 2.0278919532 2.0278919541

56.098 2.0278919558 2.0278919535 2.0278919525 2.0278919527 2.0278919540

56.099 2.0278919550 2.0278919532 2.0278919527 2.0278919533 2.0278919552

56.100 2.0278919554 2.0278919541 2.0278919540 2.0278919552 2.0278919575
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TABLE III.- THE QUANTITY e/hr IN SOLUTION OF POINT FOR CIRCULAR

CONFIGURATION OF n = 3 STATIONS WITH EQUAL ELEVATION ANGLES,

WHEN ONE STATION IS PERMITTED TO DRIFT AROUND

THE CIRCLE, AS A FUNCTION OF THE ELEVATION

ANGLE AND THE VARIABLE ANGLE

8, deg

deg 5 25 45 65 85

0 14.77913 2.93361 1.76383 1.77858 6.70017

20 15.08990 2.96540 1.77248 1.78803 6.74501

40 16.01071 3.05499 1.79750 1.81630 6.87938

60 17.38405 3.17939 1.83586 1.86287 7.10196

80 18.56983 3.28970 1.88192 1.92612 7.40728

100 18.58380 3.32772 1.92795 2.00217 7.78023

120 17.41489 3.27762 1.96638 2.08354 8.18797

140 16.04393 3.18378 1.99285 2.15846 8.57282

160 15.12098 3.10440 2.00725 2.21226 8.85561

180 14.80908 3.07453 2.01166 2.23197 8.96061

200 15.12098 3.10440 2.00725 2.21226 8.85561

220 16.04393 3.18378 1.99285 2.15846 8.57282

240 17.41489 3.27762 1.96638 2.08354 8.18797

260 18.58380 3.32772 1.92795 2.00217 7.78023

280 18.56983 3.28970 1.88192 1.92612 7.40728

300 17.38405 3.17939 1.83586 1.86287 7.10196

320 16.01071 3.05499 1.79750 1.81630 6.87938

340 15.08990 2.96540 1.77248 1.78803 6.74501

360 14.77913 2.93361 1.76383 1.77858 6.70017

41



Figure 1.- Two arbitrarily located stations.
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Figure 2.- Symmetrical circular configuration of n 2 stations
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Figure 2.- Symmetrical circular configuration of n 2 2 stations

with equal elevation angles.
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Figure 3.- The quantity E/h o in solution of point for symmetrical circular
configuration of n > 2 stations with equal elevation angles as a function

of the elevation angle, for n = 3, 4, 5, 6, 7, and 8.
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Figure 4.- The quantity e/ho in solution of point for symmetrical circular

configuration of n = 2 stations with equal elevation angles as a function

of the elevation angle.
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Figure 6.- The quantity E/h in solution of point for circular configuration

of n = 3 stations with equal elevation angles, when one station is per-

mitted to drift around the circle, as a function of the elevation angle for

different values of the variable angle.
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