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AN ASSESSMENT OF AlRFOlL DESIGN BY NGMERIiAL OPTL!UATlON 

Raymond M. Hicks, Earl1 M. Murman, and Garret N. Vanderplaats 

Ames Research Center 

SUMMARY 

A practical procedure for optimum design of aerodynamic shapes is demonstrated. The 
proposed procedure uses optimization program based on the method of feasible directions 
coupled with an analysis program that uses a relaxation solutiorl of the inviscid, transonic, small- 
disturbance equations. Results are presented for lowdrag, nonlifting transonic airfoils. Extension of 
the method to lifting airfoils, other speed regimes, and to three dimensions is feasible. 

At present, there is substantial interest in the design and optimization of airfoil sections for 
improved aerodynamic characteristics in compressible and incompressible flows. Applications 
include the development of shock-free sections for maximum supercritical performance, the design 
of high-lift, lowspeed airfoil shapes, and the development ~f high efficiency aerodynamic bodies. 

Many methods have been developed to aid the designer in attaining optimum airfoil sections. 
Examplcs include the hodograph ,method (refs. 1 and 2), an inverse method applied in the physical 
plane (ref. 3), a combined inversedirect method (ref. 4), and a numerical optimization method that 
uses linear theory for supemnic flow and Newtonian theory for hypersonic flow (ref. 5) .  However, 
all these methods have limitations. The hodograp? proced~re is complicated: it requires extensive 
experience in applied mathematics and theoretical fluid mechanics; it is limited to the development 
of subcritical or supercritical shoc'k-free, twdimensional sections; it cannot be readily extended to 
flows with shocks or three dimensions; and constraints cannot be easily imposd. The inverse 
method requires a priori knowledge of the desirable form of the pressure or velocity distribution 
and constraints are not readily imposed. The combination inversedirect method is complicated and 
requires a designer in the "loop" to monitor and enhance the convergence of the optimization 
process to a realistic airfoil shape. The numerical optimization method that uses linear or 
Newtonian theory is not suitable for subsonic- or transonic-flotv problems. 

'This report presents a new application sf ilumerical op+hization to the design of airfoil 
sections. The p-dure is not complicated and has none of the above-mentioned limitations. The 
new procedure uses two existing computer programs - an optimization program b;sed on the 
method of feasible directions (ref. 6) and an aerodynamic analysis pnqgarn based on a relaxation 
solution of the transonic, smalldisturbance equations (ref. 7). A brief discussion of both theoretical 
techniques is given in the appendix. The optimization procedure can be used to design airfoil 
sections for any speed regime from low speed through supersonic, with realistic constraints. Several 
examples of the application of this procedure to the design of lowdrg, transonic airfoils are 
presented here. It is feasible to extend the method to other speed regimes and to three-dimensional 



design. The results presented here must be considered preliminary ,nd we intended only to illus- 
trate the usefulness and simplicity of the technique. 

DESIGN RESULTS AND DISCUSSION 

The following numerical optimization problems were considered: 

(1) Drag minimization at M = 0.8 with geometric andlor flow constraints 

(2) Airfoil volume maximization at M = 0.8 with drag and geometric constraints 

(3) Drag minimization at M = 0.85 with geometric constraints 

(4) Drag minimization at M = 1.3 with geometric constraints 

All problems considered are for a nonlifting, symmetric airfoil in inviscid flow.The thickness 
-Ir - distributions of the airfoils used are given by either a fourth- or seventhdegree polynomial with 2 

squar, root leading term (the square root term allows for a blunt leading edge). The coefficients of 
the polynomials were the design variables perturbed by the optimization program to achieve opti- 
mum design. All airfoils are const., ined to have no negative thickness. 

The first problem considered was to determine whether the optimization procedure could 
"recognize" a minimum drag contour if a known optimum airfoil were used to start the optimiza- 
tion program. The initial airfoil selected for this problem was a shock-free profile developed by the 
hodograph method (ref. 1). A least meansquare, sebentharder polynomial was fit to the exact 
body ordinates. After three perturbations of the geometry, the optimization program returned 
precisely the same airioil and pressure distribution as were input (fig. 1). 

Case 1 : Drag Minimization at M = 0.8 

. - 
An arbitrary airfoil was selected as initial input for this series of optimization problems The a 

coordinates of the &foil were given by a seventh4egree polynomial with a square root leading b 

term. The eff2ct of imposing volume constraints ranging from 0 (unconstrained) to 0.7 is shown in i 
figures 2 through 5. For the unconstrained, V > 0.4 and V > Odproblems (figs. 2-4), the optimiza- j 
tion program decreased the volume and thickness of the airfoil until minimum wave drag (CD - 0) I 

2 
was achieved. Note that minimum wave drag was attained without eliminating supercritical pres- 
sures wer the airfoil surface. The volumes of the fmal airfoils for the constraints V > 0.4 and 
V >  0.6 (fm. 3 and 4) are somewhat larger than that for the unconstrained case (fig. 2), which 
indicates that the volume constraint had an effect on the fmal shape even though the final volume 
was alwayr greater than the constraint vd..e. When the volume constraint was increased to 0.7 
(frg. S), drag was reduced by recontourin, : airfoil more, and tht fmal volume was increased over 
the initial value. ?or the smaller values of volume constraint, drag was reduced mainly by decreasing 
the airfoil thickness. The final pressure distributinn resulting from a volume constraint of 0.7 
exhibits a shock near the 40-percent chord station and thenfore a higher drag coefficient than those 

2 



cases with smaller vol~me constraints. Hence, for this class of airfoils, the value of the volume 
constraint must be considered carefully. 

The effect of including a constraint on the local curvature, K, of the airfoil surface along with 
a volume constraint of 0.7 is s h ~ w n  in figures 6 and 7. Constraining the absolute. value of the 
curvature to less than or equal to 3.5 (fig. 6) zppears too restrictive since the drag coefficient of the 
final airfoil is about 50 percent of the starting value rather than near zero (a< qhown for the: previous 
cases when only a volume constraint was imposed). When the curvature constraint is increased to 
3.9 (fig. 7), the drag is reduced more, but the final value is still greater than that achieved with only 
a volume constraint. Note that for either value of curvature constraint the shock that occurred at 
the 40-percent chord station for the volume constraint of 0.7 was eliminated. 

Figure 8 shows the addition of a thickness constraint with a slightly "relaxed" curvature 
constraint and a volume constraint of 0.7. This combinsltion of constraints and starting conditions 
produced the best result of this study. The final airfoil is practically shock-free, it has essentially 
zero wave drag, it exhibits an isentropic rzcompression, and it has greater volume than the initial 
airfoil. It is not y2t possible to specify a combination of constraints that will ensure this type of 
result for any given starting conditions. However, the method is still very u:eful since most optimim- 
tion problems undertaken here resulted in substantial drag reductions and realistic airfoil shapes. 
The design space appears to be either "flat" or to  have local minimums. Therefore, the constraints 
and starting conditions that produce an absolute minimum or a fmal airfoil with all the desirable 
features of the airfoil section shown in f w r e  8 may be generally difficult to achieve until more is 
learned about the optimization process. The case shown in figure 9 was included to determine the 
effect of the curvature constraint on the attainment of the shock-free airfoil in figure 8. (The value 
r ' the constraint was increased to 100, which is effectively no constraint on curvature.) Clearly, the 
curvature constraint in figure 8 was not a predominate factor in the optimization process since the 
final airfoils of figures 8 and 9 are identical. 

When the thickness is constrained at 5 1 percent of the chord instead of 41 percent, with the 
same volume and curnature constraints as in the preceding case, the final airfoil is not shock-free 
(fig. 10). Here, the wave drag coefficient was reduced by a factor of nearly 3 and the volume 
increased by almost 9 percent. In this case, the fmal airfoil is not shock-free, but it may be an 
attractive shape to consider in a design problem because of the increased volume. 

The effect of imposing constraints on volun~e and thickness along with a constraint on pressure 
coefficient is shown in figure 11. The pressure coefficient was constrained to be less than or equal 
to 0.2 for chordwise s:ations that correspond to the subsonic region on the aft portion of the 
airfoil. (The value of 0.2 was chosen because experimental observation has shown this to be a 
practical upper limit fcr the trailingedge pressure coefficient with attached flow.) In addition, the 
airfoil was allowed to have a blunt, trailingedge height greater than or equal to 0.046. In this case, 
the optimization program changed the airfoil geometry in such a way that supercritical pressures 
over the surface of the airfoil were almost eliminated. Note that the airfoil was modified entirely 
over the rear 55 percent of the chord whereas, with the shock-free case in figure 8. most of the 
geometric change occurred over the forward 50 percent of the chcrd. Again, the drag coefficient 
was reduced substantially along with an increase in volume. Almost the entire value of CD shown 
in the figure results from the slightly blunted trailing edge. 



The offdesign characteristics of the shock-free airfoil (fig. 8) are shown in figure 12. Note the 
small drag "creep" beginning at about M = 0.76 and the rapid drag rise above M = 0.8 (design 
condition). Because of the rapid rise in drag beginning at the design Mach number, an additional 
constraint on dCD/dM was imposed. The drag rise betwecn M = 0.8 and 0.81 was required to be 
less than 15 counts (i.e., (CD 

M = o . ~  1- '~!=0.8 
) < 0.00 15). The re~ulting improved drag character- 

istics are shown in figure 13. Figure 14 compares the new airfoil geometry and pressure distribution 
with the original shock-free section. Note the development of a weak shock near the Sopercent 
chord station of the new airfoil. Despite the weak shock, the drag coefficient is identical for both 
airfoils at the design Mach number. 

Since the shock-free airfoil in figure 8 was developed by use of smalldisturbance theory, it was 
deemed appropriate to calculate the pressure distribution by full potential theory to evaluate the 
usefulness of the result. A comparison of the two pressure distributions is shown in figure 15. ( A  

i 
description of the full potential theory used for this calculation can be found in ref. 8.) The 
agreement between the two theories is good, except the full potential thecry indicates the develop- 
ment of a weak shock near the 65-percent chord station. 

The effect of mesh refinement for the smalldisturbance calculation on the pressure distribu- 
tion and drag coefficient for the shock-free airfoil is shown in figure 16. The difference in the 
pressure distributions is small and the drag coefficients are identical. 

Different initial airfoil sections were used to  start the optimization process for two of the next 
three cases. The NACA 001 2 was used for the two dwq minimization results shown in figures 17 
and i8. Four design variables were used for these cases because the thickness distribution for the 
NACA fourdigit airfoils is given by a fourthdegree polynomial with a square-root term. The final 
section in figure 17 exhibits a drag reduction of about 50 percent accompanied by a small increase 
in volume. Because of the relatively small change in airfoil geometry and pressure distribution 
realized, a constraint tolerance (see the appendix) used in the optimization program was changed 
and the solution was recalculated (fig. 18). With the new tolerance, a greater change in the airfoil 
geometry was achieved, which resulted in a greater drag reduction but without a shock-free shape. 
Note that the final volune is the same as the constraint value. 

Another arbitrary airfoil was used to  start the optirnlzati~on process for the next case (fig. 19). 
The thickness distribution is given by a fourthdegree po1yno:nial with a square-root term. In this i . case, the drag was reduced considerably with little loss in volume. The results of the three preceding .J 

I 

cases indicate that reducing the number of design variables from seven to four yields less attractive ",, 

final airfoil sections. 

Case 2: Volume Maximization at M = 0.8 

The problem of maximizing volume subject to constraints on drag and geometry is more 
difficult for the optimization algorithm for three reasons. First, the drag of the initial airfoil is more 
than eight times larger than the constraint value (see fig. 20). Second, the drag constraint is a 
nonlinm function of the design variables (the coefficients of the polynomial used to describe the 
airfoil geometry). Finally, the constraint on drag coefficient severely restricts the number -f accept- 
able airfoils, which makes a feasible solution more difficult to attain. The result of imposing 



constraints on drag coefficient and curvature is shown in figure 20. The initiel airfoil is the same as 
that used in the drag minimization problem. For this problem, the constraint on the dlag coefficient 
was precisely satisfied by reducing the airfoil thickness and volume. This result shows the difficulty 
in maximizing the volume since, with the same initial airfoil, the drag minimization effort (case 1) 
resulted in airfoils with more volume and less drag. A thickness constraint at 5 1 percent of the 
chord has been added in figure 21. This result is more useful since a reduction in dr*g coefficient 
was accompanied by an increase in volume and thickness. Again, a better result is obtained by 
imposing more constraints. This effect was observed in the development of the shock-free airfoil in 
figure 8 (i.e., the final airfoil developed without a thickness constraint (fig. 7) was less attractive 
than the final airfoil developed with a thickness constraint (fig. 8)). However, it is impossible to 
offer general rules concerning the required magnitude or location of a given constraint since chang- 
ing the thickness constraint to  the 41-percent chord station with all other conditions the same as 
those in figure 21 resulted in a divergence of the optimization process. This is the only problem to 
date for which this occurred. 

Case 3: Lrag Minimization at M = 0.85 

Drag minimization at M = 0.85 was investigated by starting the optimization process with the 
NACA 0012 airfoil, again defined with four design variables. The effect of imposing a volume 
constraint only is shown in figure 22. In this case, the drag was reduced substantially by recontour- 
ing the airfoil considerably while reducing the thickness and volume. The final pressure distribution 
indicates the beginning of an isentropic recompression followed by a shock wave near the 
75-percent chord station. Because of the reduction in thickness noted, an additional constraint on 
airfoil thickness was imposed in an effort to reduce the drag without decreasing the thickness. The 
thicknesslchord ratio was constrained to be greater than or equal to 0.125 at the 41-percent chord 
station with the same- volume constraint as for the previous case. Figure 23 shows the result of this 
calculation. After several iterations, the optimization program showed that (within the stated con- 
straints, starting airfoil and flow conditions) the drag could only increase. The final pressure distri- 
bution is nearly identical to  the starting distribution except for a slightly stronger shock near the 
trailing edge of the airfoil (which accounts for the increase in drag). 

Since previous experimental work has shown that wave drsd can be reduced at low lift by use 
of a blunt trailing edge, tf.; Ez.9 airfoil from the preceding case (fig. 23) was modified to permit a 
0.0024~ open trailing edge; the modified s h a y  was used to  start the next optimization problem. 
The volume and thickness constraints cscd in the preceding problem were again imposed. The final 
airfoil and pressure distribution are shown in figure 24. Here the change in both airfoil geometry 
and pressure distribution is larger than in figure 23 and the drag coefficient is reduced by 47 per- 
cent. The drag coefficient shown in figure 24 includes a bluntness drag resulting from the open 
trailing edge. This result is interesting because it shows that, for small increases in trailingedge 
bluntness, the wave drag can be made to  decrease more rapidly than the bluntness drag increases if 
the airfoil is appropriately recontoured. This suggests that an optimum trailingedge bluntness 
should be sought to minimize the total drag for a given supercritical flow. 



Case 4: Drag Minimization at M = 1.3 

Drag minimization at low supersonic Mach numbers was the final problem investigated. As 
with the subsonic phase, it was deemed appropriate to establish whether the optimization program 
would recognize a known optimlun contour when the optimum shape was used as initial input. 
Linear theory shows that minimum wave drag for a given volume is achieved with a paratolic arc 
(biconvex) airfoil. Hence this shape was used as the starting airfoil for the fust supersonic case 
(fig. 25). After three perturbations of the geometry, the optimization program returned identically 
the same shape as the starting airfoil. The wave drag coefficient given by the current theory is 
0.0242, which compares favorably wirh 0.023 1 from linear theory. Note, however, that the solution 
indicates a detached bow s h o c ~  wave, hence the linear theory solution is not valid at this Mach 
number and thickness ratio. When the nonlinear terms were suppressed in the calculation, the 
resulting drag coefficient agreed with the linear theory value to  within 1 percent. 

The NACA 0006 airfoil and another arbitrary airfoil were selected as initial geometry for the 
next two supersonic optimizatim problems (figs. 26 and 27). The geometry of the final airfoils was 
very different, but the drag coefficients were almost identical and aiffered little from the value 
given for the parabolic arc airfoil. This result is interesting in that it shows there may be many 
different lirfoils (with blunt or sharp leading edges) that have wave drag coefficients as low as the 
biconvex airfoil at low supersonic Mach numbers. 

CONCLUDING REMARKS 

A procedure for the optimum design of airfoils was demonstrated. A principal attraction of 
the method is its generality. The results presented here are {or nonlifting airfoils at transonic and 
low supersonic speeds. Extension of the technique to other speed regimes, lifting airfoils, and 
threedimensional bodies is straightforward, depending on the availability of suitable aerodynamic 
progams that describe these flow fields. 

The following conclusions are made: 

(1) The procedure offers a practical means of airfoil design. 

(2) The method is efficient and I:a:y to use. Combining the two computer programs and ! t 

solvhg the initial test case required less than 4 man hours. , 

(3) Significa.:? design inrprovemer+ts may be achieved with only moderate geometric changes. 

(4) Cons3eration of offdesign conditions is possible. An optimal airfoil with improved 1 , 
efficiency at an off design condition was obtaked with little degradation of performance at the . 
design conditions. I 

Several arws for further work are identified: 
i 

(1) Other representations of the body geometry should be explored, including orthogonal 
polynomials or other orthogonal sets and, possibly, discrete ordinates with smoot!!ess constraints. 

6 



(2) The topology of the design space chould be analyzed further to  determine wheth ihe 
space is flat or composed of many local minimums. 

(3) Other optimization algorithms particularly well suited to airfoil design should be 
developed. 

(4) Combined structural-aerodynamic optimization should be explored for synthesizing prac- 
W tical vehicles. 

Arne.: Research Center 
National Aeronautics and Space Administration 

Moffett Field, Calif., 94035, May 2, 1974 



APPENDIX 

THEORETICAL CONSIDERATIONS 

Aerodynamic Analysis 

The aerodynamic analysis program uses a relaxatior. method to solve the partial differential 
equation that governs the inviscid, transonic, smalldisturbance fluid flow. The problem is solved in 
the physical plane with appropriate boundary conditions specified for the body and the far field. 
The governing equations are nonlinear and are of mixed elliptic-hyperbolic type. They admit solu- 
tions in which the flow is completely subsonic, completely supersonic, or transonic (mixed sub- 
sonic, supersonic). Both shock-frez flows and embedded-shock flows are possible. The governing 
partial differential zquation is solved by a fully conservative, mixed-finitedifference, line relaxation 
algorithm. Complete details of the theory and solution procedure are given in references 7 and 9.' 

The aerodynamic program was modified to fit the requirements of the optimization program, 
and the two programs were coupled to produce a single optimum design progrpm The airfoil 
thickness, t ,  is described by 

The square-root tern. yields a parabolic leading edge and S is the thicl..ness/chord : for the 
initial airfoil. Values for n of 4 and 7 were used during the study. The cot:fficients (A. a , ,  *. an) 
are the unknown design variables perturbed by the optimization program to determine a solution 
that minimizes drag without violatkg any constraints (e.g., airfoil thicknessj. This particular repre- 
sentation of the airfoil geometry is not unique, and otner fonns such as Fourier series, piecewise 
polynomials, or orthogonal polynomials are certainly possible choices. Selecting the above para- 
metric form for the airfoil geometry allows fewer design variables to  be used and assures that the 
airfoil shape wil! be continuous. 

During the optimization process, the aerodynamics of many different airfoils must be calcu- 
lated. However, each airfoil is a sn~all perturbation on the preceding airfoil and hence the flow 
characteristics of one airfoil provide a good initial estimate to start the calculatim for the next 
airfoil. This process reduces the number of iterations required for convergence of the relaxation 1 
technique used to solve the transonic equation, thereby providing an efficient computational r 
process. ; 

1 

The proposed procedure is not limited to symmetric, nonlifting, twodimensional airfoils in 
transonic flow. Lifting airfoils, axisymmetric bodies, or threedimensional configurations operating 1 
in speed regimes ofher than transonic should be admissible problenls to the p~oposed method if an j ' 
appropriate aerodynamic program that describes the flow around the bodies is substituted for the 
present transonic, small4isturbance program. 

- 1. 
' ~ l s o  i i ~  Murmai, E. M.: and Cole, J. D.: Inviscid Drag at Transonic Speeds. Paper to be presented at thc 4 

AIM 7th Fluid and Plasma Dynamics Conference, Palo Alto, Calif., June 1974. .3T 
. il; 
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Optimization Process 

Numerous optimization algorithms are available in the literature, each with its own special 
mathematical characteristics. The basic concept c-  nmon to each is that a sequence of improving 
designs is obtained, which leads to a final optirn~,a solution that satisfies all imposed constraints 
unless such a design does not exist. 

Mathematically stated, the optimization problem is of the form: 

Minimize OBJ = ~ ( 2 )  

Subject to GI(;) < 0 , j = 1 ,NCON 

where x is a vector containing the design variables - in this case, f coefficients of the airfoil 
thickness function. When drag is to  be minimized, OBJ is the value of the drag coefficient, a hghly 
nonlinear implicit function of the design variables. The term Gj(i) def ies  the linear and nonli..ear 
constraints on the desigii and NCON is the total number of such constraints. For example, if the 
enclosed volume of the airfoil is required to  be greater than or equal to a specified value, Vriin, the 
corresponding constraint may be written in normalized form as 

For the polynomial representation used for the airfoil shape, the above constraint is a !!near 
functior, cf the design variables. Other constraints considered include minimum thickness and 
curvature limits at various chordwise stations on the airfoil, maximum pressure coefficient, and 
offdesign drag rise limits. 

The optimization program iteratively updates the design so that at iteration q,xq = 2q-I + cua 
where s is a vector direction in the ndimensional design space and the parameter cu defines the 
distance of movement in the direction s. At iteration q,: is determined so that, for an arbitrarily 
small a, the objective function is decreased (usable direction) and no constraints are violated 
(fensible direction). If the initial design is not feasible (if it violates one or more constraints), a 
direction s is found that will overcome this constraint violation with minimal increase in the 
objective function. At any iteration, if one or more constraints are active or vio!ated, the ;vector is 
determined by the method of feasible directions (refs. 10-13). If no constraints are active, either a 
steepest descent or conjugate direction determined using the Fletcher-Reeves algorithm (rcfs. 14 
and 1 S), is taken as the move direction. A constraint is defined as a c t i ~ e  if 

where CT is a small negative number used to  identify near zero values of Gi(x). This is required 
because precise zero is seldom attainable numerically. A constraint is considered inactive if its value 
is less than CT and violated if it is greater than ICY: CT is the "constraint tolerance." 

The opt;mization algorithms are described in detail in references 10 through 15 and only a 
brief geometric interpretation is given here to identify the program requirements. 



Considcr the twwariable design space shown in f i  28 where ;in initial u~~constrained 
design is prescribed at point A. At this point, the gradient of the objective function is calculated by 
a finitedifference computation. The initiai direction of movement from '-nis point is the direction 
of steepest descent, 5 = -VOBJ. The pixmeter a is now determined so that OBI is minimized or 
s constraint d a c e  is encountered (~p) = 0)  by moving in thk direction. If the objective is 
nonlir .w, subsequent directions are determined by the conjugate direction method (ref. 14) until a 
constraint surface is encountered (point B. in fig. 28). At B, the gradient of t Ah the objective 
function and the active cons:raint(s) is required, again calculated by fmite-difference computation. 
The feasible direction algorithm is used to determine E h this case, a is determined so that OBJ is 
minimized in direction F, a new constraint is encountered, or a currently active constraint is again 
encouniered. If one or more constraints ark violated (poLt C in fs. 28), as is often true for €he 
initia! design, a direction is determined that will point toward the feasible region with minimal 
increase in O N ,  based on gradients of the objective fmction and all active and violated constraints. 

The optimum design pragram is segmented into three parts: the main program that initializes 
all design hformaticn; CONMIN, which performs the optimization; and the aerodynamic analysis 
routines to  provide function and constraint evaluations. F i  29 is a block diagram organization. 
Optimization usually requires less than 15 design iterations. Gradient calculations using finite differ- 
ence require n aerodynamic analyses per design iteration (n is the number of design variables). The 
move (onedimensional search) irl direction ? requires an average of three analyses Therefore, the 
maxir.rum total number of aerodynamic analyses should seldom exceed 15n + 45. The calculations 
described under Design Results and Discussion were carried out on a CDC 7600 computer. The 
majority of the results required from 1 to 3 min of B U  time, which corresponds to 50 to  150 sepa- 
rate transonic flow calculations. Most of the transonic relaxation cduilations converged in 10 to 
30 iterations. 
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-4 P INITIAL AND FINAL AIRFOILS ARE IDENTltAL 

Figure 1 .- Drag minimization with known optimum airfoil as h .tid input. 
Constraint: V>0.6. n = 7,M = 0.8,CL = 0,CD=0.G007, V =  0.715. 

n - INITIAL URFOIL (ARBITRARY). C p m O m .  V8am - - FINAL AIRFOIL. Co~QOOOO1.VgO.WI 

.4 1 I I I I 1 I I 
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X/C, percent chord 

Figure 2.- Drag minimization; unconstrained; n 7, M = 0.8, CL = 0. 



- INITIAL AIRFOIL (ARBITRARYI, C D = O m .  V.0721 -- FINAL AIRFOIL. C g . O m 3 ,  V.0.644 
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Figure 3.- Drag minimization; constraint: V > 0.4. n = 7,M = 0.8, CL = 0. 

- INITIAL AIRFOIL ( ~ I T R * R T ) ,  CQ= omas, V-a721 -- FINAL AIRFOIL, Co*0.W03. V.0.645 
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Figure 4.- Drag minimization; constraint: Y > 0.6. n = 7 , M  = 0.8, CL = 0. 
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Figure 5.- Drag minimization; constraint: V > 0.7. n = 7,Y = 0.8, CL = 0. 

n/c percent chord 

Figure 6.- Drag minimization; constraints. V > 0.7, Ki < 3.5. n = 7,M = 0.8, CL = 0. 
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Figure 7.- 

\\ d i0 i L .b A do 40 1b0 
X/C, percent chord 

Drag minimization; constraints: V > 0.7, $1 < 3.9. n = 7, M = 0.8, CL = 0. 

- - FINAL AIRFOIL, CpmQ0002. V. 0.m 
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Figure 8.- Drag minimization; constraints: ;'> 0.7, lKl< 4.0, (tic) > 12.5 at (xlc) = 0.41. 
n =7,M=0.8,CL = 0 .  
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Figure 9.- Drag minimizatiun: constraints: V 3 0.7, IKi < 100, (tlc) > 12.5 at (x/c) = 0.41. 
n = 7, f t l=  0.8,CL = 0. 

1 - INITIAL AIRFOIL (ARBITRARY), O.OO83.V=O.7Zl \ . 
C 

*4 t - - FINAL AIRFOIL. Cpm0.0028. V= 0.789 

X/C, percent chord 

Figure 10.- Drag minimization; constraints: V > 0.7, IKI < 100, (tlc) > 12.5 at (x/c) = 0.5 1 .  
n = 7,M = 0.8, CL = 0. 



- INITIAL URFOlL (rlLWUTRARY). Cp=QOOB3, V .021  - - FINAL AIRFOIL. CD*0.0008. VmO.782 
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Figure 1 1 .- Drag minimization; constraints: V > 0.65, ( t /c)  2 12.5 at (x/c) = 0.41, 
C, < 0.2 for (x/c) > ( X / C ) ~ *  . n = 7, M = 0.8, CL = 0. 

P 

Figure 12.- Drag rise characteristics at shock-free airfoil. 
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.0050 t * MODIFIED 

Figure 13.- Drag rise characteristics of shock-Free airfoil modified to reduce drag rise. 
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Figure 1 4.- Drag rise reduction; constraints: V > 0 -7, IX 1 < 1 00, (tlc) > 1 2.5 at (xlc) = 0.4 1 . - 
( c ~ ~ = o . a  i 

c ~ ~ = ~ ~  )<o.oo~s. n = 7,cL = 0. 
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Figure 15.- Comparison of smalldisturbance theory with full potential theory for shock-free airfoil, 
M=0 .8 ,CL=0 .  
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Figure 16.- Effect of mesh spacing on pressure distribution and drag for shock-free airfoil, 
smalldisturbance theory; M = 0.8. 
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Figure 17.- Drag minimization; constraint: V 2 0.65. n = 4, M = 0.8, CL = 0. 

I -- INITIAL AIRFOIL (NACA OOl2l CD= O.OOSl. WO.680 -- FINAL AIRFOIL, Cg*0.0007, Va0.65 
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Figure 18.- Drag minimization; constraint: V > 0.65. n = 4, M = 0.8, Ct = 0. 
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Figure 19.- Drag minimization; constraint: V > 0.6. n = 4 , M  = 0.8, CL = 0. 
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Figure 20.- Volume maximization; constraints: CD < 0.001, IKi C 100. n = 7,M = 0.8, CL = 0. 
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Figure 2 1 .- Volume maximization; constraints: C' < 0.001, jKI < 100, ( t ic)  > 12.5 at (x/c? - 0.5 1 .  
n = 7,M = 0.8, CL = 0 .  
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Figure 22.- Drag minimization; constraint: V > 0.65. n = 4 ,  M = 0.85, CL = 0 .  
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Figure 23.- Drag minimization; constraints: V 3 0.65, (t/c) > 12.5 at (x/c) = 0.4 1 
n = 4, M = 0.85, CL = 0. 
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Figure 24.- Drag minimization; constrciints: V 3 0.65, ( t lc)  3 12.5 pt <x,'c) = 0.41. 
n = 4,M = 0.85, CL = 0. 
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F i e  25.- Drag mmimization with known optimum airfoil as initial input. Constraint: V > 0.665. 
n = 4 , M =  13 ,CL=0.  

B - INITIAL AIRCML (rrlllllfRUI*), wmw, Vga- -- F l d L  AIRTUL. CgsQW#. V s Q w  
L o  
: 

Figure 26.- Drag minimization with detached shod;. Constraint: V > 0.6665. 
n = 4 , M =  13 ,CL=0.  
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Figure 27.- Drag miilimization with detached shock. Con-t: V > 0.665. 
n = 4,M = 13,CL = C. 

OBJ = CONSTANT 

Figure 28.- TWO variable design space. 


