-

FENNY

. oy . \ . N
. o g PR 3
"
r ., .
L]
‘s '
r' -
' L) i * v
P , .
Vol
f
. \
“~
- . .
'
o
K o
. o . .
. . L =
- F] .
A N
" . 3

.
-, b

e

¥
v

FOT . N+ 9%
TR, e

H

syt
4‘

&
o

e ;,52:

A

MR

“ohge ¢,
XL

.'&'-,,
T

sy
T

- « :“':1.'»_

'Y

mmq"‘;‘ . ,

‘Eﬁ

" (NASA)

R DT TR A

(NASA-TM-X-3092) AN ASSESSMEKT OF
AIRFOIL LESIGN BY NUMERICEL OPTI*IZATION
33 p HZ $3.25

.

CSCL 01a

E1/01

NTu-28482

kS ‘ .
v
N . N
"y -
- ¥
¢
“+
% - ’ s 3
: R
B &’ ] s
. , - .
f & «
. . -
A - ¢
* ~
v
Ll
) .
.t
. »
.
b .
1
L4 .
N «
o N \ ,
*
a s
. - -
]
4 LS
-
— R 1 ~

=
LY
Y
.
L
A}
-
*
a

LEN



LY

— T

Al el e e

vt cemil % v WAL

ayrgn s 8

s

C s Y

v

1. Report Nc. 2. Governmen: Accession No. 3. Recapient’s Cataloa No.
T™M X-3092
4. Titte and Subtitie 5. Report Date
AN ASSESSMENT OF AIRFOIL DESIGN BY NUMERICAL JULY 197k
6. Perforrmg Orgamization Code

OPTIMIZATION

7. Author(s) 8. Perfo. mirg Organization Report No.
Raymond M. Hicks. Earll M. Murman, und Garret N. Vanderplaats C A-5505
1. Work Umt No.
9. Performing Organization Name and Address 501- 06--01
NASA Ames Research Center 11. Contract or Grant No.

Moffett Field, Calif. 94035

13. Type of Report avGr riod Covered
12. Sponsoring Agency Naie and Address Technical Memorandum
National Aemnal‘ntics and Space Administration 18, Sponsoning Agency Code
Washington, D. €. 20546
15. Suppiementary Notes
16. Abstract
A practical procedure for optimum design of aerodynamic shapes is demonstrated. The proposed procedure uses an
optimization program based on the method of feasible directions coupled with an analysis program that uses a relaxation
solution of the inviscid, transonic, small-disturbance equations. Results are presented for low-drag. nonlifting transonic
zirfoils. Extension of the method to lifting airfois, other speed regimes, and to three dimensions is feasible.
17. Key Wort . (Suggysted by Author(s)) 18. Distribution Statement
Optimization .
Airfe Unclassified — Unlimited
CAT. 01
18, Secwrity Classif. (of this report) 20. Security Classif. (of this page) 1. No. of Pages 22. Price’
Unclassified Unclassified 31 $3.25

*For sale by the Mational Technical Information Service, Springfield, Virginia 22151

[

.ﬂ
| A——

%
3
i
31
]
2
-
%
had
%



)

S ¥ S

LT .

T e ey

GO.)

NCON

OBJ

|

A-5506

NOTATION
chord
section drag coefficient
section lift coefficient
pressure coefficient ,fl—q:—g-

pressure coefficient corresponding to M, = 1
tolerance for nonlinear constraints
tolerance for linear constraints
constraint function

d?(¢/5) [d(z/s)]’ 2
curvature ’ dx2 I + dx

Mach number

local Mach number

degree of polynomial that describes airfoil geometry
number of constraint functions
objective function

free-stream static pressure

local static pressure

free-stream dynamic pressure

move direction vector

thickness

area within airfoil contour divided by &
chordwise dista.ice

vector of design variables

vertical distance
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AN ASSESSMENT OF AIRFOIL DESIGN BY NUMERICAL OPTIMIZATION
Raymond M. Hicks, Earll M. Murman, and Garret N. Vanderplaats

Ames Research Center

SUMMARY

A practical procedure for optimum design of aerodynamic shapes is demonstrated. The
proposed procedure uses an optimization program based on the method of feasible directions
coupled with an analysis program that uses a relaxation solution of the inviscid, transonic, small-
disturbance equations. Results are presented for low-drag, nonlifting transonic airfoils. Extension of
the method to lifting airfoils, other speed regimes, and to three dimensions is feasible.

INTRODUCTION

At present, there is substantial interest in the design and optimization of airfoil sections for
improved aerodynamic characteristics in compressible and incompressible flows. Applications
include the development of shock-free sections for maximum supercritical performance, the design
of high-lift, low-speed airfoil shapes, and the development of high efficiency aerodynamic bodies.

Many methods have been developed to aid the designer in attaining optimum airfoil sections.
Examples include the hodograph method (refs. 1 and 2), an inverse method applied in the physical
plane (ref. 3), a combined inverse-direct method (ref. 4), and a numerical optimization method that
uses linear theory for supersonic flow and Newtonian theory for hypersonic flow (ref. 5). However,
all these methods have limitations. The hodograp® procedure is complicated: it requires extensive
experience in applied mathematics and theoretical fluid mechanics; it is limited to the development
of subcritical or supercritical shock-fres, two-dimensional sections; it cannot be readily extended to
flows with shocks or three dimensions; and constraints cannot be easily imposed. The inverse
method requires a priori knowledge of the desirable form of the pressure or velocity distribution
and constraints are not readily imposed. The combination inverse-direct method is complicated and
requires a designer in the “loop™ to monitor and enhance the convergence of the optimization
process to a realistic airfoil shape. The numerical optimization method that uses linear or
Newtonian theory is not suitable for subsonic- or transonic-flow problems.

This report presents a new application of numerical optimization to the design of airfoil
sections. The procedure is not complicated and has none of the above-mentioned limitations. The
new procedure uses two existing computer programs — an optimization program based on the
method of feasible directions (ref. 6) and an aerodynamic analysis progiam based on a relaxation
solution of the transonic, small-disturbance equations (ref. 7). A brief discussion of both theoretical
techniques is given in the appendix. The optimization procedure can be used to design airfoil
sections for any speed regime from low speed through supersonic, with realistic constraints. Several
examples of the application of this procedure to the design of low<drag, transonic airfoils are
presented here. It is feasible to extend the method to other speed regimes and to three-dimensional

"l

. " e s
muwm‘.wuwﬂw
. . '
"_.::;r"v‘:: N :
A e -



h !

B

———

.l

design. The results presented here must be considered preliminary ond are intended only to illus-
trate the usefulness and simplicity of the technique.

DESIGN RESULTS AND DISCUSSION

The following numerical optimization problems were considered:

(1) Drag minimization at M = 0.8 with geometric and/or flow constraints

(2) Airfoil volume maximization at M = 0.8 with drag and geometric constraints
(3) Drag minimization at M = 0.85 with geometric constraints

(4) Drag minimization at A = 1.3 with geometric constraints

All problems considered are for a nonlifting, symmetric airfoil in inviscid flow. The thickness
distributions of the airfoils used are given by either a fourth- or seventh-degree polynomial with 2
squarz root leading term (the square root term allows for a blunt leading edge). The coefficients of
the polynomials were the design variables perturbed by the optimization program to achieve opti-
mum desizn. All airfoils are constr. ined to have no negative thickness.

The first problem considered was to determine whether the optimization procedure couvld
“recognize™ a minimum drag contour if a known optimum airfoil were used to start the optimiza-
tion program. The initial airfoil selected for this problem was a shock-free profile developed by the
hodograph method (ref. 1). A least mean-square, seventh-order polynomial was fit to the exact
body ordinates. After three perturbations of the geometry, the optimization program returned
precisely the same airioil and pressure distribution as were input (fig. 1).

Case 1: Drag Minimization at M = 0.8

An arbitrary airfoil was selected as initial input for this series of optimization problems. The
coordinates of the zirfoil were given by a seventh-degree polynomial with a square root leading
term. The effect of imposing volume constraints ranging from 0 (unconstrained) to 0.7 is shown in
figures 2 through 5. For the unconstrained, V » 0.4 and ¥V 2 0.6 problems (figs. 2—4), the optimiza-
tion program decreased the volume and thickness of the airfoil until minimum wave drag (Cp ~ 0)
was achieved. Note that minimum wave drag was attained without eliminating supercritical pres-
sures over the airfoil surface. The volumes of the final airfoils for the constraints V' 2> 0.4 and
V0.6 (figs. 3 and 4) are somewhat larger than that for the unconstrained case (fig. 2), which
indicates that the volume constraint had an effect on the final shapc even though the final volume
was alwaye greater than the constraint val:e, When the volume constraint was increased to 0.7
(fig. 5), drag was reduced by recontourin, : airfoil more, and the¢ final volume was increased over
the initial value. For the smaller values of volume constraint, drag was reduced mainly by decreasing
the airfoil thickness. The final pressurc distribution resulting from a volume constraint of 0.7
exhibits a siiock near the: 40-percent chord station and therefore a higher drag cocfficient than those
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cases with smaller volume constraints. Hence, for this class of airfoils, the value of the volume
constraint must be considered carefully.

The effect of including a constraint on the local curvature, K, of the airfoil surface along with
a volume constraint of 0.7 is shown in figures 6 and 7. Constraining the absclute value of the
curvature to less than or equal to 3.5 (fig. 6) appears too restrictive since the drag coefficient of the
final airfoil is about 50 percent of the starting value rather than near zero (a< shown for the previous
cases when only a volume constraint was imposed). When the curvature constraint is increased to
3.9 (fig. 7), the drag is reduced more, but the final value is still greater than that achieved with only
a volume constraint. Note that for either value of curvature constraint the shock that occurred at
the 40-percent chord station for the volume constraint of 0.7 was eliminated.

Figure 8 shows the addition of a thickness constraint with a slightly “relaxed” curvature
constraint and a volume constraint of 0.7. This combination of constraints and starting conditions
produccd the best result of this study. The final airfoil is practically shock-free, it has essentially
zero wave drag, it exhibits an isentropic recompression, and it has greater volume than the initial
airfoil. It is not y:t possible to specify a combination of constraints that will ensure this type of
result for any given starting conditions. However, the method is still very u-eful since most optimiza-
tion problems undertaken here resulted in substantial drag reductions and realistic airfoil shapes.
The design space appears to be either “flat” or to have local minimums. Therefore, the constraints
and starting conditions that produce an absolute minimum or a final airfoil with all the desirable
features of the airfoil section shown in figure 8 may be generally difficult to achieve until more is
learned about the optimization process. The case shown in figure 9 was included to determine the
effect of the curvature constraint on the attainment of the shock-free airfoil in figure 8. (The value
¢ " the constraint was increased to 100, which is effectively no constraint on curvature.) Clearly, the
curvature constraint in figure 8 was not a predominate factor in the optimization process since the
final airfoils of figures 8 and 9 are identical.

When the thickness is constrained at 51 percent of the chord instead of 41 percent, with the
same volume and curvature constraints as in the preceding case, the final airfoil is not shock-free
(fig. 10). Here, the wave drag coefficient was reduced by a factor of nearly 3 and the volume
increased by almost 9 percent. In this case, the final airfoil is not shock-free, but it may be an
attractive shape to consider in a design problem because of the increased volume.

The effect of imposing constraints on volume and thickness along with a constraint on pressure
coefficient is shown in figure 11. The pressure coefficient was constrained to be less than or equal
to 0.2 for chordwise s:ations that correspond to the subsonic region on the aft portion of the
airfoil. (The value of 0.2 was chosen because experimental observation has shown this to be a
practical upper limit for the trailing-edge pressure coefficient with attached flow.) In addition, the
airfoil was allowed to have a blunt, trailing-edge height greater than or equal to 0.045. In this case,
the optimization program changed the airfoil geometry in such a way that supercritical pressures
over the surface of the airfoil were almost eliminated. Note that the airfoil was modified entirely
over the rear 55 percent of the chord whereas, with the shock-free case in figure 8, most of the
geometric change occurred over the forward 50 percent of the cherd. Again, the drag coefficient
was reduced substantially along with an increase in volume. Almost the entire value of Cp shown
in the figure resuits from the slightly blunted trailing edge.
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The off-design characteristics of the shock-free airfoil (fig. 8) are shown in figure 12. Note the
small drag ‘‘creep” beginning at about M = 0.76 and the rapid drag rise above M = 0.8 (design
condition). Because of the rapid rise in drag beginning at the design Mach number, an additional
constraint on dCp/dM was imposed. The drag rise between M = 0.8 and 0.81 was required to be
less than 15 counts (ie., (Cp M=0.8 1— CDM=0 8) < 0.0015). The resulting improved drag character-

istics are shown in figure 13. Figu're 14 compares the new airfoil geometry and pressure distribution
with the original shock-free section. Note the development of a weak shock near the 50-percent
chord station of the new airfoil. Despite the weak shock, the drag coefficient is identical for both

airfoils at the design Mach number.

Since the shock-free airfoil in figure 8 was developed by use of small-disturbance theory, it was
deemed appropriate to calculate the pressure distribution by full potential theory to evaluate the
usefulness of the result. A comparison of the two pressure distributions is shown in figure 15. (A
description of the full potential theory used for this calculation can be found in ref.8.) The
agreement between the two theories is good, except the full potential thecry indicates the develop-
ment of a weak shock near the 65-percent chord station.

The effect of mesh refinement for the small-disturbance calculation on the pressure distribu-
tion and drag coefficient for the shock-free airfoil is shown in figure 16. The difference in the
pressure distributions is small and the drag coefficients are identical.

Different initial airfoil sections were used to start the optimization process for two of the next
three cases. The NACA 0012 was used for the two drog minimizatien results shown in figures 17
and 18. Fuur design variables were used for these cases because the thickness distribution for the
NACA four-digit airfoils is given by a fourth-degree polynomial with a square-root term. The final
section in figure 17 exhibits a drag reduction of about 50 percent accompanied by a small increase
in volume. Because of the relatively small change in airfoil geometry and pressure distribution
realized, a constraint tolerance (see the appendix) used in the optimization program was changed
and the solution was recalculated (fig. 18). With the new tolerance, a greater change in the airfoil
geometry was achieved, which resulted in a greater drag reduction but without a shock-free shape.
Note that the final volu:ne is the same as the constraint value.

Arnother arbitrary airfoil was used to start the optimization process for the next case (fig. 19).
The thickness distribution is given by a fourth-degree polync.aial with a square-root term. In this
case, the drag was reduced considerably with little loss in volume. The results of the three preceding
cases indicate that reducing the number of design variables from seven to four yields less attractive

final airfoil sections.

Case 2: Volume Maximizationat M =0.8

The problem of maximizing volume subject to constraints on drag and geometry is more
difficult for the optimization algorithm for three reasons. First, the drag of the initial airfoil is more
than eight times larger than the constraint value (see fig. 20). Second, the drag constraint is a
nonlinear function of the design variables (the coefficients of the polynomial used to describe the
airfoil geometry). Finally, the constraint on drag coefficient severely restricts the number ~f accept-
able airfoils, which makes a feasible solution more difficult to attain. The result of imposing
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constraints on drag coefficient and curvature is shown in figure 20. The initial airfoil is the same as
that used in the drag minimization problem. For this problem, the constraint on the diag coefficient
was precisely satisfied by reducing the airfoil thickness and volume. This result shows the difficuity
in maximizing the volume since, with the same initial airfoil, the drag minimization effort (case 1)
resulted in airfoils with more volume and less drag. A thickness constraint at 51 percent of the
chord has been added in figure 21. This result is more useful since a reduction in dr.g coefficient
was accompanied by an increase in volume and thickness. Again, a better result is obtained by
imposing more constraints. This effect was observed in the development of the shock-free airfoil in
figure 8 (i.e., the final airfoil developed without a thickness constraint (fig. 7) was less attractive
than the final airfoil developed with a thickness constraint (fig. 8)). However, it is impossible to
offer general rules concerning the required magnitude or location of a given constraint since chang-
ing the thickness constraint to the 41-percent chord station with all other conditions the same as
those in figure 21 resulted in a divergence of the optimization process. This is the only problem to

date for which this occurred.

Case 3. Drag Minimization at M = 0.85

Drag minimization at M = 0.85 was investigated by starting the optimization process with the
NACA 0012 airfoil, again defined with four design variables. The effect of imposing a volume
constraint only is shown in figure 22. In this case, the drag was reduced substantially by recontour-
ing the airfoil considerably while reducing the thickness and volume. The final pressure distribution
indicates the beginning of an isentropic recompression followed by a shock wave near the
75-percent chord station. Because of the reduction in thickness noted, an additional constraint on
airfoil thickness was imposed in an effort to reduce the drag without decreasing the thickness. The
thickness/chord ratio was constrained to be greater than or equal to 0.125 at the 41-percent chord
station with the same volume constraint as for the previous case. Figure 23 shows the result of this
calculation. After several iterations, the optimization program showed that (within the stated con-
straints, starting airfoil and flow conditions) the drag could only increase. The final pressure distri-
bution is nearly identical to the starting distribution except for a slightly stronger shock near the
trailing edge of the airfcil (which accounts for the increase in drag).

Since previous experimental work has shown that wave drug can be reduced at low lift by use
of a blunt trailing edge, thc {nal airfoil from the preceding case (fig. 23) was modified to permit a
0.0024c open trailing edge; the modified shape was used to start the next optimization problem.
The volume and thickness constraints 1s¢d in the preceding problem were again imposed. The final
airfoil and pressure distribution are shown in figure 24, Here the change in both airfoil geometry
and pressure distribution is larger than in figure 23 and the drag coefficient is reduced by 47 per-
cent. The drag coefficient shown in figure 24 includes a bluntness drag resulting from the open
trailing edge. This result is interesting because it shows that, for small increases in trailing-edge
bluntness, the wave drag can be made to decrease more rapidly than the bluntness drag increases if
the airfoil is appropriately recontoured. This suggests that an optimum trailing-edge bluntness

should be sought to minimize the total drag for a given supercritical flow.
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Case 4: Drag Minimization at M= 1.3

Drag minimization at low supersonic Mach numbers was the final problem investigated. As
with the subsonic phase, it was deemed appropriate to establish whether the optimization program
would recognize a known optimum contour when the optimum shape was used as initial input.
Linear theory shows that minimum wave drag for a given volume is achieved with a paratolic arc
(biconvex) airfoil. Hence this shape was used as the starting airfoil for the first supersonic case
(fig. 25). After three perturbations of the geometry, the optimization program returned identically
the same shape as the starting airfoil. The wave drag coefficient given by the current theory is
0.0242, whichk compares favorably with 0.0231 from linear theory. Note, however, that the solution
indicates a detached bow shock wave, hence the linear theory solution is not valid at this Mach
number and thickness ratio. When the nonlinear terms were suppressed in the calculation, the
resulting drag coefficient agreed with the linear theory value to within 1 percent.

The NACA 0006 airfoil and another arbitrary airfoil were selected as initial geometry for the
next two supersonic optimization problems (figs. 26 and 27). The geometry of the final airfoils was
very different, but the drag coefficients were almost identical and differed little from the value
given for the parabolic arc airfoil. This result is interesting in that it shows there may be many
different airfoils (with blunt or sharp leading edges) that have wave drag coefficients as low as the
biconvex airfoil at low supersonic Mach numbers.

CONCLUDING REMARKS

A procedure for the optimum design of airfoils was demonstrated. A principal attraction of
the method is its generality. The results presented here are tor nonlifting airfoils at transonic and
low supersonic speeds. Extension of the technique to other speed regimes, lifting airfoils, and
three-dimensional bodies is straightforward, depending on the availability of suitable aerodynamic
prog-ams that describe these flow fields.

The following conclusions are made:

(1) The procedure offers a practical means of airfoil design.

(2) The method is efficient and =acy to use. Combining the two computer programs and
solving the initial test case required less than 4 man hours.

(3) Significa.:t design improvemer.tc may be achieved with only moderate geometric changes.

(4) Consideration of off-design conditions is possible. An optimal airfoil with improved
efficiency at an off design condition was obtained with little degradation of performance at the
design conditions.

Several arers for further work are identified:

(1) Other representations of the body geometry should be explored, including orthogonal
polynomials or other orthogonal sets and, possibly, discrete ordinates with smoothness constraints.

6
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(2) The topology of the design space chould be analyzed further to determine wheth ihe
space is flat or composed of many local minimums.

(3) Other optimization algorithms particularly well suited to airfoil design should be
developed.

(4) Combined structural-aerodynamic optimization should be explored for synthesizing prac-
tical vehicles.

Ame= Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., 94035, May 2, 1974
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APPENDIX
THEORETICAL CONSIDERATIONS

Aerodynamic Analysis

The aerodynamic analysis program uses a relaxation method to solve the partial differential
equation that governs the inviscid, transonic, small-disturbance fluid flow. The problem is solved in
the physical plane with appropriate boundary conditions specified for the body and the far field.
The governing equations are nonlinear and are of mixed elliptic-hyperbolic type. They admit solu-
tions in which the flow is completely subsonic, completely supersonic, or transonic (mixed sub-
sonic, supersonic). Both shock-frez flows and embedded-shock flows are possible. The governing
partial differential equation is solved by a fully conservative, mixed-finite-difference, line relaxation
algorithm. Complete details of the theory and solution procedure are given in references 7 and 9.!

The aerodynamic program was modified to fit the requirements of the optimization program,
and the two programs were coupled to produce a single optimum design program The airfoil
thickness, ¢, is described by

t=8(Ayx tayx taxt +- -, ax™)

The square-root term yields a parabolic leading edge and & is the thickness/chord . for the
initial airfoil. Values for n of 4 and 7 were used during the study. The coefficients (4, a,, * * *, a,)
are the unknown design variables perturbed by the optimization program to determine a solution
that minimizes drag without violatirg any constraints (e.g., airfoil thickness). This particular repre-
sentation of the airfoil geometry is not unique, and otner forms such as Fourier series, piecewise
polynomials, or orthogonal polynomials are certainly possible choices. Selecting the above para-
metric form for the airfoil geometry allows fewer design variables to be used and assures that the
airfoil shape wil! be continuous.

During the optimization process, the aerodynamics of many different airfoils must be calcu-
lated. However, each airfoil is a small perturbation on the preceding airfoil and hence the flow
characteristics of one airfoil provide a good initial estimate to start the calculation for the next
airfoil. This process reduces the number of iterations required for convergence of the relaxation
technique used to solve the transonic equation, thereby providing an efficient computational
process.

The proposed procedure is not limited to symmetric, nonlifting, two-dimensional airfoils in
transonic flow. Lifting airfoils, axisymmetric bodies, or three-dimensional configurations operating
in speed regimes o*her than transonic should be admissible problems to the proposed method if an
appropriate aerodynamic program that describes the flow around the bodies is substituted for the
present transonic, small-disturbance program.

! Also i Murmau, E. M.: and Cole, J. D.: Inviscid Drag at Transonic Speeds. Paper to be presented at the
AIAA 7th Fluid and Plasma Dynamics Conference, Palo Alto, Calif., June 1974.
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Optimization Process

Numerous optimization algorithms are available in the literature, each with its own special
mathematical characteristics. The basic concept ¢~ umon to each is that a sequence of improving
designs is obtained, which leads to a final optiinu.n solution that satisfies all imposed constraints
unless such a design does not exist.

Mathematically stated, the optimization problem is of the form:
Minimize OBJ = F(x)
Subject to Gj()—c) <0, j=1,NCON

where X is a vector containing the design variables — in this case, t coefficients of the airfoil
thickness function. When drag is to be minimized, OB/J is the value of the drag coefficient, a highly
nonlinear implicit function of the design variables. The term G;(x) defines the linear and nonli..car
constraints on the design and NCON is the total number of such constraints. For example, if the
enclosed volume of the airfoil is required to be greater than or equal to a specified value, V.., the
corresponding constraint may be written in normalized form as

Gx)=1- V(J_c)/Vmirl <0

For the polynomial representation used for the airfoil shape, the above constraint is a linear
functiorn cf the design variables. Other constraints considered include minimum thickness and
curvature limits at various chordwise stations on the airfoil, maximum pressure coefficient, and
off-design drag rise limits.

The optimization program iteratively updates the design so that at iteration q,x9 = x4"! + asq
where § is a vector direction in the n-dimensional design space and the parameter a defines the
distance of movement in the direction 5. At iteration g,s is determined so that, for an arbitrarily
small a, the objective function is decreased (usable direction) and no constraints are violated
(feasible direction). If the initial design is not feasible (if it violates one or more constraints), a
direction s is found that will overcome this constraint violation with minimal increase in the
objective function. At any iteration, if one or more constraints are active or violated, the s vector is
determined by the method of feasible directions (refs. 10—13). If no constraints are active, either a
steepest descent or conjugate direction determined using the Fletcher-Reeves algorithm (refs. 14
and 195), is taken as the move direction. A constraint is defined as active if

CT< Gj()_c) < ICT)
where CT is a small negative number used to identifv near zero values of G;(x). This is required
because precise zero is seldom attainable numerically. A constraint is considered inactive if its value

is less than CT and violated if it is greater than |CIl; CT is the “constraint tolerance.”

The optimization algorithms are described in detail in references 10 through 15 and only a
brief geometric interpretation is given here to identify the program requirements.
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Consider the two-variable design space shown in figure 28 where un initial unconstrained
design is prescribed at point A. At this point, the gradient of the objective function is calculated by
a finite-difference computation. The initial direction of movement from ‘his point is the direction
of steepest descent, s = —VOB/J. The parameter a is now determiined so that OBJ is minimized or
a constraint surface is encountered (G,(J'E)= 0) by moving in thic direction. If the objective is
nonlir. . 1r, subsequent directions are determined by the conjugate direction method (ref. 14) until a
constraint surface is encountered (point B in fig. 28). At B, the gradient of t )th the objective
function and the active constraini(s) is required, again calculated by finite-difference computation.
The feasible direction algorithm is used to determine s. In this case, & is determined so that OBJ is
minimized in direction §, a new constraint is encountered, or a currently active constraint is again
encountered. Jf one or more constraints are violated (poiut C in fig. 28), as is often true for the
initia! design, a direction is determined that will point toward the feasible region with minimal
increase in OBJ, based on gradients of the objective function and all active and violated constraints.

The optimum design program is segmented into three parts: the main program that initializes
all design information; CONMIN, which performs the optimization; and the aerodynamic analysis
routines to provide function and constraint evaluations. Figure 29 is a block diagram organization.
Optimization usually requires less than 15 design iterations. Gradient calculations using finite differ-
ence require n aerodynamic analyses per design iteration (n is the number of design variables). The
move (one-dimensional search) in direction 5 requires an average of three analyses. Therefore, the
maxirsum total number of aerodynamic analyses shiould seldom exceed 157 + 45. The calculations
described under Design Results and Discussion were carried out on a CDC 7600 computer. The
majority of the results required from 1 to 3 min of CPU time, which corresponds to 50 to 150 sepa-
rate transonic flow calculations. Most of the transonic relaxation calculations converged in 10 to
30 iterations.
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' Figure 11.— Drag minimization; constraints: ¥ 2 0.65, (¢t/c) = 12.5 at (x/c) = 0.41,
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