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1.0 SUMMARY

This report describes the work accomplished under the development phase of

NASA Contract NAS8-28270. The objective of this program was to develop a

laboratory demonstration model (LDM) of an active cleaning technique (ACT)

device for space use. The principle of this device is based primarily on the

technique for removing contaminants from optical surfaces which was developed

under NASA Contract NAS8-26385. This technique utilizes exposure to a plasma

to remove contaminants from a surface. The laboratory demonstration model

incorporates both plasma cleaning and ion sputtering modes of operation.

During the design study phase of the present program a prototype device was

developed and a preliminary design was established based on tests of the

prototype device. One major problem remained unsolved after completion of

the design study phase. The plasma tube development was based on the earlier

assumption that plasma cleaning was caused by atomic oxygen reacting with

the contaminant to form volatile products. This assumption proved to be

erroneous since the plasma tubes, developed for operation at high vacuum

(<10- 5 torr) conditions, produced atomic oxygen but did not produce measur-

able contaminant cleaning. Plasma cleaning under the companion contract
-3

(NAS8-26385) was accomplished at relatively high chamber pressures (10
- 3 to

10- 2 torr) which resulted in a plasma discharge throughout the vacuum

chamber.

Since the problem of producing active cleaning species at high vacuum (<10- 5

torr) conditions remained unsolved after completion of the design study phase,

a major effort of the present program was to develop a suitable plasma tube

for the laboratory demonstration model. After considerable experimental

effort a plasma tube was developed which provides the active cleaning species

at.high vacuum conditions. It was shown that plasma cleaning occurs in the

region of a visible plume which extends from the end of the plasma tube.
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With the exception of the plasma tube, only minor modifications to the labora-

tory demonstration model design were required. The ACT device consists of a

control console, cable bundles, plasma generator enclosure (which houses the

plasma tube assembly), and an ion accelerator. The device can be operated at

gas flow rates of 0.03 to 0.5 std cc/min and RF power inputs of 5 to 25 watts.

The ion accelerator voltage can be varied from 1-3 KV in the sputtering mode

of operation. Tests in the plasma cleaning mode show that carbon can be

removed at a rate of 5 x 10 to 3 x 10 atoms/cm2-sec 5-cm away from the

plasma tube. In the ion sputtering mode, ion fluxes of 10 13-1014 ions/cm -sec

are achieved 5-cm away from the accelerator.

2



D180-18031-1

2.0 INTRODUCTION

Spacecraft contamination problems have shown the need for developing an in-situ

or active cleaning technique (ACT) for use in both space and vacuum chambers.

Manned spacecraft contamination problems include deposition of volatile organic

compounds onto windows, and light scattering from particulate contaminants

surrounding the spacecraft. Sources of this contamination include outgassing

of organic compounds, waste and water dumps, rocket plumes, and leakage from

the life support system. Contaminant film deposition also occurs on unmanned

spacecraft. This has been verified with quartz-crystal thin film monitors

on Skylab (Reference 1) and on OGO-6 (Reference 2). A review of the space-

craft contamination problem has been published in Reference 3. Contamination

can also occur during spacecraft testing in high vacuum chambers. For example,

a film of back-streamed diffusion pump oil was apparently deposited on surfaces

during thermal/vacuum testing of the extreme-UV spectroheliometer experiment

for the Apollo Telescope Mount (ATM) vehicle (Reference 4). Another example

of contaminant film deposition during environmental testing is discussed in

Reference 5. In this case an extremely stable organic film was deposited onto

telescope mirror surfaces during irradiation with low energy protons in a

relatively clean vacuum environment.

Based on existing knowledge, contamination problems anticipated for future

spacecraft include: (1) deposition of non-volatile substances onto optical

components, sensing elements, and temperature control surfaces; (2) particulate

and gaseous contamination near the spacecraft (resulting in light scattering

and absorption); and (3) chemical contamination which can interface with upper

atmosphere studies, analysis of interplanetary or planetary matter, and

material processing experiments. Even though contamination effects can be

reduced by changes in design, materials and operating procedures, the use of

more sensitive surfaces and longer term missions will probably offset these

improvements. Consequently an ACT is needed for space use.

:3
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Experiments reported in Reference 5 showed that exposure to a plasma is an

effective means of removing hydrocarbon contaminant films from optical surfaces

in a vacuum. Based on these experimental results two NASA funded investiga-

tions were conducted. One program (NASA Contract NAS8-26385) was aimed at

developing an ACT for removing contaminants from optical surfaces in space.

This effort concentrated on establishing the feasibility of using plasma for

in-situ cleaning. The results of this effort are reported in References 6 and

7. The other program (NASA Contract NAS8-28270) was aimed at developing a

laboratory demonstration model of an ACT device which incorporates both plasma

cleaning and ion sputtering. The design study phase of this development

program is reported in Reference 8. The present report covers the completion

of the development program and describes the resultant laboratory demonstration

model (LDM) ACT device.

4
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3.0 PLASMA TUBE DEVELOPMENT

3.1 Background

Figure 1 shows the plasma tube configuration used for most of the plasma

cleaning experiments reported in References 6 and 7. This plasma tube con-

sisted of a 10 mm I.D. outer quartz tube, a 4 mm I.D. inner quartz tube, and

diametrically opposed tungsten wire electrodes in the annulus. A 13.6 MHz RF

power supply was used to produce the plasma discharge in the inner tube. A

nominal pressure of about 4 torr (upstream of the plasma tube) was required

for the discharge to be maintained. This resulted in an oxygen flow rate of

about 50 std cc/min and a vacuum chamber pressure of 10
- 3 to 10- 2 torr. Under

these conditions there was a plasma discharge throughout the vacuum chamber in

addition to that in the plasma tube. During these early cleaning experiments

it was assumed that atomic oxygen was responsible for the plasma cleaning

effects.

The development of an LDM ACT device required plasma tube operating conditions

compatible with the NASA LDM test facility. The proposed NASA test facility

used a 400 liter/sec Varian noble ion pump. This limited the oxygen flow rate
-5

to 0.18 std cc/min at a maximum vacuum chamber pressure of 10 torr. During

the design study phase of the present contract (NAS8-28270) a plasma tube con-

figuration was developed which would allow operation at low flow rates while

supplying atomic oxygen to a surface at high vacuum conditions. Figure 2

shows this plasma tube configuration. The plasma tube pressure and gas flow

rate are controlled by the flow restriction (capillary) at the downstream end

of the tube. The capillary sizing was based on consideration of atomic oxygen

recombination on the capillary wall in addition to flow rate and pressure

considerations. Experimental results showed that this plasma tube configura-

tion produced atomic oxygen. However, no plasma cleaning effects were pro-

duced. Consequently, it was concluded that the active cleaning species (not

atomic oxygen) were destroyed by wall collisions during passage through the

capillary. The details of this investigation.are reported in Reference 8.

5
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3.2 Further Development Experiments

Since the plasma tube configuration developed during the design study phase

did not produce the active cleaning species at low chamber pressures, further

development experiments were required. The initial experiments were aimed at

determining: (1) the feasibility of establishing a DC discharge through the

existing plasma-tube capillary; and (2) whether or not surface cleaning could

be accomplished at low chamber pressures with an axial DC discharge. A plasma

tube with a 0.1 cm dia. by 0.4 cm length capillary, fabricated during the

design phase, was installed in the plasma cleaning facility with a grounded

brass screen placed against the downstream end of the capillary. This screen

was used as the anode, and a tungsten wire probe, located inside the plasma

tube, was used as the cathode for a DC discharge Initial tests showed that a

DC discharge could be established, and that a glow (similar to the 'ignited

plume' phenomena observed in earlier experiments at higher chamber pressures)

was present downstream of the capillary even at chamber pressures less than
-4

10 torr. This glow suggested that the active cleaning species were present

downstream of the capillary.

To determine whether cleaning could be accomplished with this mode of

operation, cleaning experiments were conducted using a MgF 2/Al-coated

mirror contaminated with polymerized butadiene. Tests with this sample

showed increased reflectance degradation with successive plasma exposures.

Post-test examination showed a diffuse spot, about 1.5 cm in diameter, on

the mirror. Apparently some electrode material had been deposited on the

sample. It was also found that the brass screen material had coated the

quartz around the capillary. Consequently it was decided that a DC discharge

would be unsuited for the ACT device.

Experiments were then conducted to determine: (1) the feasibility of estab-

lishing an RF axial discharge through the existing plasma tube capillary; and

(2) whether or not surface cleaning could be accomplished at low chamber pres-

sures with an RF.axial discharge. The plasma tube used in the DC discharge

tests was installed in the test chamber with a grounded molybdenum electrode

located in the downstream end of the capillary. Several RF electrode

8
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configurations were evaluated including: (1) a wire probe in contact with

the plasma gas upstream of the capillary; (2) same as item (1) except pro-

tected with a glass sheath; and (3) parallel plate electrodes located outside

the plasma tube upstream of the capillary. Results of these tests showed

that a satisfactory axial discharge in the capillary could only be produced

using RF applied to both a wire probe in the plasma and parallel plate elec-

trodes. Operation with this arrangement provided a visible gas plume in the
-5

vacuum chamber at pressures as low as 5 x 10- 5 torr. Furthermore the axial

discharge could be sustained over a range of pressures and RF power levels.

Both molybdenum and tungsten wire probes were evaluated, with the former pro-

viding the most satisfactory results from the standpoint of minimizing con-

tamination on the walls of the plasma discharge tube.

To determine whether cleaning could be accomplished with the axial RF discharge,

a MgF2/Al-coated mirror was installed in the chamber and coated with polym-

erized butadiene. Reflectance measurements were performed after various

exposure periods in an oxygen plasma. Results showed that the diffuse

appearance of the mirror, visible after contamination, gradually disappeared

as the exposure time increased. Reflectance data showed a large increase in

reflectance in the region less than about 230 nanometers (e.g., 28 to 64 per-

cent at 120 nm), and a relatively small increase in the region longer than

230 nm (e.g., 56.5 to 63 at 250 nm). Post-test examination of the specimen

revealed that the exposed area was slightly darker than the protected surface

area, although both areas were highly specular. This suggests that electrode

material may have been deposited on the specimen during exposure as the con-

taminant film was removed. An examination of the other apparatus showed that

a dark coating was deposited on the plasma tube walls adjacent to the molyb-

denum wire electrode, and that the molybdenum aperture on the downstream end

of the capillary showed no signs of sputtering. It was concluded from the

test that plasma cleaning could be accomplished at low chamber pressures using

an axial RF discharge. However, additional work was needed to develop a

design wherein an axial discharge could be sustained without exposing elec-

trodes to the plasma gas.

9
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A plasma tube was then constructed which allowed experimentation with various

electrode configurations outside the vacuum environment. This plasma tube

configuration is shown in Figure 3. Tests with this tube showed that an axial

RF discharge through the capillary and visible gas plume could be obtained

with electrodes located outside the glass walls. Based on these results a

plasma tube was built for the LDM ACT device (see Figure 4). However, opera-

tion of this tube failed to produce either a discharge through the capillary

or a visible plume. These negative results may have been caused by: (1)

adverse electric fields arising from the electrode leads; (2) the fact that

the grounded chamber surrounded the plasma tube, whereas, in the tests out-

side the chamber the grounded chamber was downstream of the discharge region;

or (3) the high vacuum conditions immediately downstream of the capillary,

whereas, in tests outside the chamber the downstream pressure (in the 30 mm

ID tube) would not be as low as the chamber pressure. The results of later

plasma tube development tests indicate that item (1) was probably the cause

of the negative results.

Tests were then conducted using a 4 mm ID quartz plasma tube with no capillary

at the end and with external axial RF electrodes. The RF power was brought

into the chamber through a separate feedthrough and the electrode leads were

connected using soft solder. This configuration is shown in Figure 5.

Results of these tests showed that: (1) an axial discharge and visible plume

could be established; (2) the chamber pressure and flow rate could be main-

tained at the desirable low values; (3) the shape and position of the discharge

were dependent on the gas flow (or plasma tube pressure) and the relative

positions of ground and RF electrodes; and (4) the axial symmetry of the

visible plume appeared to be dependent on the symmetry of fields produced by

the electrodes.

Subsequent to the above experiments, a cleaning test was conducted using a

carbon-coated quartz crystal microbalance (QCM). The QCM was mounted on a

rod such that it could either be axially translated or be rotated through

the visible plume. It was found that: (1) carbon removal occurred when the

QCM was located in the visible plume; (2) carbon removal did not occur when

located outside the visible plume; and (3) the cleaning rate decreased as

distance between the QCM and plasma tube increased.

10
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Further experiments using this plasma tube configuration (Figure 5) were made

in conjunction with the companion contract NAS8-26385. Detailed results of

these experiments are reported in Reference 7. In general, the results demon-

strated that: (1) the plasma tube/electrode design allowed operation in a

high vacuum environment; (2) electrodes could be located outside the quartz

plasma tube walls, thus eliminating electrode contamination problems; and (3)

the cleaning pattern produced is highly dependent on a number of variables,

as discussed above.

3.3 LDM Plasma Tube Development

Further plasma tube development was required to establish a suitable design

for the LDM ACT device. Successful operation of a single-wall quartz plasma

tube (discussed above in Section 3.2) was achieved utilizing RF electrodes

located in the high vacuum environment adjacent to the tube. Hence, lead-in

conductors were not confined to the annular region between two quartz tubes as

dictated by the ACT plasma tube design. Also the RF power requirements for

this plasma tube were too large for the LDM ACT device.

The plasma tube configuration used in the development experiments consisted

of a 4 mm ID inner quartz tube and a 30 mm ID outer quartz tube. Axial RF

electrodes placed in the annulus consisted of a length of brass tubing as

the upstream ground electrode, and a copper washer as the downstream 'high

voltage' electrode. A semiflexible coaxial cable was used to conduct the RF

power to the electrodes. The outer conductor was connected to the upstream

ground electrode, and the inner conductor to the downstream RF electrode.

Satisfactory operation of the plasma tube depends on the connection between

the RF lead (inner conductor of coaxial cable) and the downstream electrode.

Initially this connection was made with a wire that was routed.as far away

from the plasma discharge region (inner quartz tube) as possible. The

asymmetry of this configuration caused difficulty in establishing a plasma

discharge and a visible plume. Also the visible plume, when obtained, was

deflected at an angle of about 450 to the plasma tube axis. Subsequently,

the connection between the RF lead and downstream electrode was made with a

cylindrical wire screen that extended over the plasma discharge region. This

14
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configuration resulted in a symmetrical visible plume. Tests also showed

that the plasma discharge and plume characteristics are dependent on the

distance between the electrodes and the downstream end of the plasma tube.

The establishment of a plasma discharge and a visible plume was also accom-

plished with the plasma tube installed inside the grounded RF shield tube as

planned for the ACT device.

In an attempt to reduce the RF power requirements, experiments were conducted

using various modifications to the impedance matching network. This network

coupled the 13.6 MHz power supply to the plasma tube. Efficient RF coupling

should allow a reduction in power requirements. The results of these experi-

ments showed that, with the best coupling achieved, initiation of the plasma

discharge required 100 watts at 13.6 MHz. The discharge could be sustained

with 80 watts forward (30 watts reflected) power. From these results it was

concluded that a relatively large amount of power (about 100 watts) is

required for plasma discharge operation at a frequency of 13.6 MIz.

Since the plasma discharge occurs in the low pressure region at the downstream

end of the plasma tube, it was reasoned that higher RF frequencies would pro-

duce a discharge at lower power inputs. Consequently, experiments were ini-

tiated using a 'Microdot Model 406A' power oscillator which has a 50-200 MHz

frequency range. The initial experiments showed that the higher frequency

discharge greatly improved the plasma tube performance. The visible plume

was brighter and could be produced at very low plasma-tube flow rates (less

than about 0.05 std cc/min). Instrumentation was not available to measure

the power input but the maximum available from the Microdot power supply is

on the order of 50 watts.

An improved electrode system was then developed which consisted of a series

of metal disks centered along the plasma tube axis. The upstream disk was

used as the ground electrode, and the downstream disk as the RF electrode. The

remaining disks (two or three) were electrically insulated and equally spaced

between the two electrodes. The purpose of these disks was to help provide

a uniform axial field between the electrodes. A metal tube was attached to

the ground electrode to shield the upstream region from the RF field. A

coaxial cable was used to conduct the RF power to the electrodes. The shield

15
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braid was connected to the ground electrode, and the insulated center con-

ductor was routed axially through the ground electrode and insulated disks

to the RF electrode. Another lead was similarly routed, but diametrically

opposed, to provide symmetry of the electric field.

Experiments using the improved electrode configuration resulted in the follow-

ing observations: (1) the production of a visible plasma plume is enhanced by

having a discharge downstream of the RF electrode; (2) production of a visible

plume is inhibited when a discharge occurs upstream of the electrode system;

(3) extension of the tube attached to the upstream electrode inhibits the

formation of an upstream discharge; (4) the effectiveness of the insulated

disks, positioned between the electrodes, is uncertain; and (5) a visible

plume could be produced with the RF shield tube in place over the plasma tube.

Based on experiments with the improved electrode system, a plasma tube/

electrode system was designed for the LDM ACT device. This design is described

in the following section.

3.4 LDM Plasma Tube Design

The LDM plasma tube was designed to provide adjustable electrode positions, RF

shielding of the upstream gas, and light pipes to transmit the light from the

plasma discharge to the outside of the plasma tube assembly. The basic design

configuration is shown in Figure 6. Two disks are used for the electrodes.

The upstream ground electrode is brazed to a tube which acts to shield the

upstream gas from the RF field and provides the ground lead. The downstream

RF electrode is connected to the RF power by means of two diametrically

opposed leads. These leads are insulated by routing them through lengths of

quartz tubing which pass through clearance holes in the ground electrode. Two

light-pipes, made from quartz rod, are used to transmit light from the

plasma discharge to the outside of the plasma tube. Diametrically opposed

clearance holes in the electrodes allow the light pipes to be positioned to

view either the region between the electrodes, or that downstream of the RF

electrode. Figure 6 shows the light pipes positioned to view both regions.

This plasma tube/electrode configuration allows independent adjustment of the

distance between electrodes and the distance between the RF electrode and the

downstream end of the plasma tube.

16
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Figure 7 shows a picture of the basic electrode assembly parts. The two light

pipes, ground electrode assembly, RF electrode, RF leads and insulators are

shown along with the RF connector block. The RF connector block is a split

teflon block that clamps onto the RF lead insulators. This block has clear-

ance holes for the ground electrode tube and the light pipes. Also seen in

Figure 7 are the pin connectors which are brazed onto the ends of the RF leads

and the threaded end of the disassembled RF lead which screws into the RF

electrode. The completed basic electrode assembly is shown in Figure 8.

Figure 9 shows the remaining components of the plasma tube assembly. The RF

connector assembly provides the connection between the semi-flexible coaxial

cable center-conductor and the two RF leads. The copper clamping block and

body provide the ground connection between the semi-flexible coaxial cable

shield and the ground electrode tube. This clamping also fixes the relative

electrode positions. Clearance holes are provided in the clamping block/body

for the light pipes. The teflon retainer and spacer are used to mount the

electrode assembly in the plasma tube which has a lip for this purpose.

Figure 10 shows the completed electrode assembly. Screws are used to fasten

the RF connector block to the RF connector assembly. All of the copper parts

in the electrode assembly were electroplated with gold to prevent corrosion

and to enhance electrical conductance.

The complete plasma tube assembly is shown in Figure 11. All connections are

made at the upstream end of the assembly. The RF power lead is connected to

the semi-flexible coaxial cable, the gas supply line to the center quartz

tube, and the light sensors to the exposed ends of the light pipes. The

plasma tube assembly is shown mounted in the LDM vacuum flange in Figure 12.

An '0' ring seal is used between the vacuum flange and the outside of the

plasma tube.

18
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Figure 10: RF ELECTRODE ASSEMBL Y
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Figure 11: PLASMA TUBEASSEMBL Y
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4.0 LDM ACT DEVICE DESIGN

4.1 General Description

The LDM ACT device consists of control console, cable bundles, plasma generator

enclosure, plasma tube assembly, and ion accelerator assembly. The LDM design

was based on the following specifications:

(1) The device was to be capable of operating in a plasma cleaning mode

with an optional ion sputtering mode.

(2) Device must be compatible with operation in NASA test facility

(a) Nominal oxygen flow rate of 0.18 std cc/min (based on 400 liter/sec

Varian-type noble ion pump at 10- 5 torr pressure).

(b) Plasma generator enclosure must mount with Varian-type vacuum

flange on a 6-inch (15.2 cm) diameter port.

(c) RF shielding must be provided.

(3) Plasma generator enclosure must be capable of remote mounting inside a

vacuum chamber.

(4) Plasma tube extension length must be adjustable from 9.7 to 17.3 cm

with respect to mounting flange.

(5) Remote operation of device from a control console required.

The control console contains the gas supply, RF power generator, high voltage

power supply, plasma discharge sensor meters, and gas supply and plasma tube

pressure gauges. These components allow the LDM to be operated from the

control console. A photograph of the control console is shown in Figure 13.

Figure 14 shows an interior rear view of the control console. Connections

to the control console are made at the bottom rear of the rack (see Figure 15).

The plasma generator enclosure houses the plasma tube assembly and provides

the required RF shielding. The enclosure also houses the light sensors, Pirani

vacuum gauge tube, and variable leak valve. A photograph of the plasma genera-

tor enclosure is shown in Figure 16. Connections are made to feedthrough fit-

tings and access to the interior is provided by a hinged door. Figure 17 shows

a photograph of the plasma generator enclosure with the ion accelerator attached

to provide the optional ion sputtering mode of operation.

25
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Figure 13: CONTROL CONSOLE
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Figure 15: CONTROL CONSOLE CONNECTIONS
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Figure 16: PLASMA GENERATOR ENCLOSURE
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ION
ACCELERATOR

Figure 17: PLASIA GENERA TOR ENCLOSURE WITH ION ACCELERA TOR A TTACHED

30



D180-18031-1

Normally, a single cable bundle connects the control console to the plasma

generator enclosure. However, the optional mounting of the plasma generator

enclosure inside a vacuum chamber requires an additional cable bundle and a

vacuum feedthrough flange. Figure 18 shows a photograph of this optional vacuum

flange/cable bundle assembly. Both cable bundles are 12 feet (3.66 meters)

in length.

A general gas/electrical diagram of the LDM ACT device is shown in Figure 19.

The following sections describe the various systems depicted in this diagram.

4.2 Main Power/Plasma Discharge Sensors

The main power and plasma discharge sensor controls are located in the top

panel of the control console. Figure 20 shows a close up view of this panel.

The main power switch provides power to the plasma discharge sensor system

directly and to the control console electrical plug-in-strip through an

interlock relay/reset switch. As a safety feature, the relay may be reset

only if the plasma generator enclosure door is closed (see Figure 19). The

door switch may be seen in Figure 21 which shows an interior view of the plasma

generator enclosure.

The plasma discharge sensors are light sensitive diode mounted on the ends of

the plasma tube light pipes. The mounted light sensitive diode assemblies can

be seen in Figures 21 and 22.

The plasma sensor power supply provides a fixed voltage across the light

sensitive diodes and the plasma discharge intensity is indicated by the

current flow through the ammeters (see Figure 19). These meters are labeled

upstream and downstream intensity on the control console panel, and a range

switch is provided for each meter (see Figure 20).

4.3 RF Power System

The RF power generator is pictured at the bottom of Figure 20. It is a

commercial unit, manufactured by MCL Inc., of La Grange, Illinois, capable

of generating 65 watts (or more) of power in the 50-200 MHz frequency range.
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Figure 18: VACUUM FLANGE/CABLE BUNDLE ASSEMBL Y
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A minor modification of this unit was made to adapt it for use with the LDM.

As delivered, the power generator has a protection circuit that turns off the

power when the reflected (RFL) power exceeds a pre-set level (nominally 10

watts but re-set to 15 watts). To ensure initiation of the plasma discharge,

an override circuit was installed which can be used to temporarily reduce

the 'apparent' RFL power by a factor of 2.5. This override circuit is acti-

vated by the momentary contact switch labeled 'RFL/2.5' (see Figure 20).

The RF power output from the front of the generator is routed through the

next lower panel to the rear of the control console. The RF power connection

to the plasma tube assembly can be seen in Figure 21 and 22. Six coaxial 90'

elbows are used to provide an adjustable coupling between the enclosure

fitting and the plasma tube assembly.

4.4 Gas Supply System

The general diagram of the gas supply system is shown in Figure 19. For

normal operation the gas is supplied from a lecture bottle, with pressure

regulator, located in the control console. This gas supply panel is shown

in the lower part of Figure 23. The pressure regulator controls the pressure

supplied to the variable leak valve located inside the plasma generator

enclosure. This leak valve may be seen in Figures 21 and 22. The combination

of gas-supply pressure and leak-valve setting controls the gas flow rate

through the plasma tube. This flow rate is related to the upstream plasma

tube pressure which is measured with a Pirani gauge tube. The Pirani gauge

tube installation is shown in Figure 21. A grounded RF shield protects the

tube from burn-out. The gas supply pressure gauge and the Pirani gauge readout

(AUTOVAC GAUGE type 3294B) of the plasma tube pressure are contained in the

control console panel above the gas supply (see Figure 23). This panel also

contains the vent valve which connects to a vacuum pumping system so that the

system may be pumped and purged. An external gas supply connection is pro-

vided in case an external gas source is used. This connection is normally

plugged.

37



D
1
8
0
-1

8
0
3
1
-1

0-~
~

~
dt 

B
0 : 

: 
:- 

~ .

*:: 
:: i ~-~.i~'~:::~ I': 

~
.~

~
::~

~
~

 s:8~~
I~

irraI~
q 

:-a~:;::~:::::'.:9C
.~~z

-Q
i 

: 
~ i: 

i
0.:I:~

 
::: 

: 
: 

:-

00i
e 

~,6~~~1 
si~~:~:: 

:i 
-0.

U
 

I:

C
 )::i~

-::i::i-:~
: 

-:~

z:- 
0
:

a- ~ 
~

 
~::: 

::::: 
~:

U
~

:I 
Figur 

23:~
 

~ 
G

as S
u
p
l 

S
ystem

 Pane

C
): 

38 
::::::: -~



D180-18031-1

4.5 Ion Accelerator System

The ion accelerator is a Gap-Einzel lens assembly which mounts as a unit to

the plasma generator enclosure (see Figure 17). The basic accelerator lens

design is identical to that developed in the design study phase (Reference 8).

A high positive voltage on the anode extracts the electrons from the plasma

and the ions are accelerated through the grounded extractor (see Figure 19).

The ions are decelerated and focused as they pass through the focus lens

which is at a high positive voltage. Finally the ion beam is accelerated

out of the lens system by the grounded accelerator lens.

The high voltage DC power supply for the ion accelerator is located in the

control console. Figure 24 shows a closeup view of this power supply panel.

The power supply design was based on the design study results reported in

Reference 8. Figure 19 shows that the high voltage is provided by a single

5 KV DC power supply and three sets of voltage dividers which allow fine

voltage control for focus, anode and probe. The overall voltage level is

set by the variac control of the power supply. Tests of the LDM showed that

the probe (this probe is discussed in Reference 8) was not required for proper

operation of the ion accelerator. Consequently no connections are made to

this lead inside the plasma generator enclosure.
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5.0 PERFORMANCE TESTS

5.1 Gas Flow Rate Calibration

The LDM ACT device was delivered with one Pirani gauge tube installed in the

plasma generator enclosure, and with two spare tubes. The installed tube is

labeled as '4-ohm' and the spare tubes as '6-ohm'. A comparison of the pres-

sure readouts on these tubes showed the 6-ohm tubes read about 15 percent

higher than the 4-ohm tube.

The installed 4-ohm Pirani gauge tube was used to calibrate the oxygen flow

rate as a function of plasma tube pressure. The calibration was accomplished

by measuring the rate of pressure decay in a reservoir of known volume located

upstream of the variable leak-valve. The plasma generator enclosure was
-5

mounted on a vacuum chamber in which the pressure was kept at about 10 torr

during the measurements.

Figure 25 shows the results of this calibration along with the corrected

calibration curve for use with the 6-ohm Pirani gauge tubes. The theoretical

oxygen flow rate curve is also shown in Figure 25. (The gas flow rate analy-

sis is the same as that used in Reference 8.) The agreement between theoret-

ical and experimental values is quite good.

5.2 Preliminary Tests

Preliminary tests were made to determine the general operational characteris-

tics of the LDM. Figure 26 shows the control console and the plasma generator

enclosure during testing. Figure 27 shows the visible plume produced by the

plasma generator at high vacuum conditions.

These preliminary tests resulted in the following observations:

(1) An electrode spacing of about 0.5 inch (1.27 cm) and a spacing between

the RF electrode and the end of the plasma tube of about 0.5 inch (1.27

cm), produced the brightest visible plume at the desired oxygen flow rate.
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(2) The establishment and optimization of a visible plume could be correlated

with the readings on the plasma discharge sensors. Figure 28 shows the

correlation between downstream and upstream discharge intensity for

proper operation.

(3) The initiation of the plasma discharge was difficult at times due to the

protection circuit in the RF power generator which limited the maximum

reflected power. This led to the installation of the override circuit

discussed previously.

(4) With proper tuning of the RF power generator, the plasma discharge and

visible plume could be maintained at power levels as low as 3 watts for-

ward, and 1 watt reflected.

(5) The ion accelerator operated adequately without the added complexity of

having a probe installed in the plasma tube.

5.3 Carbon Cleaning Tests

A carbon coated quartz-crystal-microbalance (QCM) was used to determine the

carbon removal rate produced by the LDM ACT device. The QCM was mounted

approximately on centerline 5 cm downstream of the plasma tube. The carbon

removal rate was determined by measuring the rate of QCM frequency change for

various oxygen flow rates and RF power levels. Table 1 presents the data

taken during these tests. For the limited amount of data taken, the carbon

removal rate appears to be primarily dependent on the forward RF power input.

Figure 29 shows the correlation between carbon removal rate and forward RF

power. The gas flow does not appear to have a significant effect on the

cleaning rate. It was expected that the higher flow rates would provide a

higher cleaning rate. This might still be the case if the plasma tube con-

figuration be optimized for each flow rate.

5.4 Ion Accelerator Tests

A Faraday cup, mounted on centerline approximately 5-cm downstream of the

accelerator, was used to measure the ion flux produced by the LDM ACT device.

The ion current to the Faraday cup was measured for various oxygen flow rates,

RF power levels, and accelerating voltages. During these tests the anode and

focus voltages were set to the same level. In most cases only a slightly
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TABLE 1

CARBON CLEANING TESTS

PLASMA RF RF POWER CARBON REMOVAL RATETUBE DISCHARGE INTENSITY Watts *(QCM DATA)
PRESSURE FREQUENCY RATE OF FREQ. CHANGE 1014 Atoms/
Torr UPSTREAM DOWNSTREAM Megahertz FORWARD REFLECTED Hz/Mn cm 2 - sec.

0.050 3 50 84 6 2 4.80 0.80
0.075 4 50 86 6 2 3.67 0.61

10 90 86 12 5 9.0 1.50
0.075 20 120 86 15 7 10.2 1.70
0.10- 3 50 84 4.5 1.6 2.53 0.42

10 84 85 12 5 10.2 1.70
26 120 86 15 7 7.2 1.20 o

0.10 23 130 83 19 7.5 13.0 2.18
0.20 7 50 83 6 1.8 1.0 0.17

0.20 14 90 83 18 5 6.33 1.06
0.075 18 120 84 14 5.8 10.7 1.79
0.075 14 78 80 15 0.5 8.15 1.36
0.050 5 50 84 13 3.5 9.88 1.65
0.030 4 50 84.5 13.5 5.5 16.5 2.76
0.015 3 50 85 15 7 5.47 0.92

*Carbon coated QCM centered about 5-cm from plasma tube
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larger ion flux could be achieved by optimizing the focus voltage for a given

anode voltage. The data taken during these tests are given in Table 2. The

maximum accelerating voltage that could be used was about 3KV. At higher

voltages the plasma discharge was adversely affected and was sometimes extin-

guished. After attempts to operate at voltages higher than 3KV, the plasma

discharge was difficult to reinitiate. The reason for this is not known.

As was the case for the carbon removal rate, the ion flux appears to be pri-

marily dependent on the forward RF power input level. Figure 30 shows the

correlation between ion flux and RF forward power. The ion flux is not

greatly affected by either gas flow rate or accelerating voltage in the 1-3

KV range. At lower accelerating voltage the ion flux increases with increas-

ing voltage.
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TABLE 2

ION ACCELERATOR TESTS

PLASMA DISCHARGE INTENSITY RF POWER RF ACCELERATOR VOLTAGE *FARADAYTUBE Watts FREQUENCY Kilovolts CUPPRESSURE 
CURRENTTorr UPSTREAM DOWNSTREAM FORWARD REFLECTED Megahertz ANODE FOCUS 10-6 Amp

0.050 0 10 5. 1.5 81-83 1. 1. 0.25
0 20 7.2 2.5 0.77
0 30 11.5 4.1 0.94
0.5 40 17. 5.4 1.07
2.5 50 23. 7.5 1.15** 9.5 60 14 1.8 1. 1. 0.62

0 10 5.5 2. 2. 2. 0.60
0 20 10.0 3.8 0.85
0 30 14.5 5.8 1.33 =S2 40 16. 5.1.55

3 45 20. 1.9
** 10.5 60 12 1.7 2. 2. 0.64

0 10 5.1 0.8 3. 3. 0.450 20 7.5 2.5 0.87
0.5 30 11. 4. 1.05
1. 40 15. 5.8 1.25
3 50 19. 6.4 1.03

** 9.5 60 13 1.2 3. 3. 0.82

0 10 5.2 1.8 0.5 0.5 0.27
0 20 9. 3 0.35
0 30 13.5 5 0.36
1.5 40 17 5.5 0.36
2.5 50 24 7.5 0.37

0.050 ** 9.5 60 12 0.8 81-83 0.5 0.5 0.32

** Mode of discharge changed-power increase reduces ion current

* Faraday cup centered about 5-cm from accelerator



TABLE 2 (Continued)

PLASMA DISCHARGE INTENSITY RF POWER RF ACCELERATOR VOLTAGE *FARADAY
TUBE Watts FREQUENCY Kilovolts CUP

PRESSURE CURRENT
Torr UPSTREAM DOWNSTREAM FORWARD REFLECTED Megahertz ANODE FOCUS 10-6 Amp

0.10 0 10 4.1 1.5 85 0.5 0.5 0.08
0 20 5. 2.2 0.125
0.5 30 5.8 2.9 0.22
1 40 9.0 4.0 0.31
1.8 50 10.2 4.8 85 0.29
2.5 60 20 9.5 86 0.5 0.5 0.38

0 10 4.0 1.6 1.0 1.0 0.16
0 20 5.5 2.2 0.23
0.5 30 6.5 2.9 0.29
1.0 40 9. 4. 0.38
1.5 50 11.6 5.4 0.70
2.5 60 21. 9.5 1.0 1.0 1.15

0 10 3.5 1.5 2.0 2.0 0.17
0 20 5 2 0.29

.5 30 6.5 2.8 0.44 00
1.0 40 8.5 3.8 0.60
1.5 50 12. 5.5 0.82
2.5 60 25. 11.3 86 2.0 2.0 1.88

0 10 4.5 1.8 87 3.0 3.0 0.12
0 20 6.0 2.2 0.22
0.6 30 7.2 3.2 0.36
1.2 40 9.4 4.2 0.54
2.0 50 12.4 5.8 0.88

0.10 3.2 60 20 9.6 87 3.0 3.0 1.30

0.030 0 10 7 3 88 2 2 0.71
0 20 10 4.5 0.93
0 30 16 7 1.30

0.030 0.5 40 27 12. 1.92

0.020 0 10 8.5 3.9 0.56
0 20 10 3.5 0.72
0.8 30 12.5 5 0.56
1.2 40 18 7.2 0.99

0.020 2. 50 28 11 88 2 2 1.50



TABLE 2 (Continued)

PLASMA DISCHARGE INTENSITY RF POWER RF ACCELERATOR VOLTAGE *FARADAY
TUBE Watts FREQUENCY Kilovolts CUP

PRESSURE 
CURRENT

Torr UPSTREAM DOWNSTREAM FORWARD REFLECTED Megahertz ANODE FOCUS 10-6 Amp

0.075 0 10 5 2 81-83 0.5 0.5 0.12
0 20 7.1 4 0.28
0 30 16. 7.5 0.36
0.5 40 23 11 81-83 0.37
1. 50 19 8.2 86 0.40
1.5 60 22 11 88 0.5 0.5 0.40

0 10 4 1.5 85 1. 1. 0.22
0 20 5.9 2.2 0.28
0.5 30 8 3.5 0.48
0.8 40 12. 5.1 0.85
1. 50 17. 7.8 1.05 0
2. 60 24 9.8 1. 1. 1.27 1

00
0 10 3.5 1.2 2. 2. 0.22
0 20 5 1.9 0.38
0.5 30 7.1 3. 0.60
1.0 40 10.2 4.5 0.77
1.5 50 13 6.2 1.00
3.8 60 20 8.5 1.45

11. 90 27. 11. 2. 2. 3.2

0 10 6.2 2.3 3. 3. 0.15
0 20 8.5 3.8 0.34
0 30 12.2 5.8 0.64
.5 40 19 8.5 85 0.94

0.075 1. 50 25 8. 86 3. 3. 1.10
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6.0 CONCLUSIONS AND RECOMMENDATIONS

A laboratory demonstration model ACT device has been developed for use at

high vacuum (<10- 5 torr) conditions. This device operates in either a plasma

cleaning mode or an ion sputtering mode. A control console and cable bundle

allows the device to be operated at distance of up to 12 feet (3.66 m) from

the vacuum chamber installation. The plasma generator enclosure can be

either hard mounted on a vacuum chamber port or mounted inside a vacuum

chamber. An additional cable bundle and vacuum flange feedthrough allows

this inside chamber mounting at distances of up to 12 feet (3.66 m) from the

vacuum feedthrough port.

The ACT device can be operated at gas flow rates of 0.03 to 0.5 std cc/min

and. RF power input levels of 5 to 25 watts. In the ion sputtering mode of

operation the accelerating voltage can be varied from 1 to 3 KV. Tests in

the plasma cleaning mode show that vacuum deposited carbon can be removed

from a surface 5 cm away at rates of 5 x 1013 to 3 x 1014 atoms/cm 2-sec. The

cleaning rate is primarily dependent on the RF power input to the plasma

generator. Tests in the ion sputtering mode show that ion fluxes of 1013 to

1014 ions/cm -sec are achieved, 5 cm away from the accelerator, with acceler-

ating voltage between 1 and 3KV. The ion flux is primarily dependent of the

RF power input to the plasma generator.

An operational manual (Reference 9) has been prepared for the laboratory

demonstration model ACT device. This manual provides: a detailed description

of the device; operational procedures; assembly, installation and adjustment

procedures; and a complete parts list. A complete set of engineering drawings

has also been prepared.

In addition to demonstrating the plasma cleaning phenomena investigated under

Contract NAS8-26385 (References 6 and 7), the device can serve as a useful

tool for further investigation of plasma cleaning and ion sputtering. The

device also establishes a base for further hardware development related to

space flight or vacuum chamber uses.
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It is recommended that further research, development, and applications

studies be made on the ACT device. Further research is required to deter-

mine the plasma species responsible for cleaning and to determine the plasma

cleaning mechanism. This determination could provide an explanation of the

overcleaning effect noted in earlier studies, show the limitations on the

type of contaminants that can be removed; and possibly provide guidelines as

to the type of gas and operational mode required for different contaminants.

This research would probably be general and long-termed involving basic con-

siderations of the interaction between excited atoms and/or ions and the con-

taminant film. More specific and shorter-term research could be conducted to

further investigate plasma exposure effects on silicon contaminants and typi-

cal spacecraft white paints.

Further development of the ACT device is also needed to complete its char-

acterization and optimization. For example, a more complete characterization

of the cleaning rate as a function of operating parameters is needed, and

means of achieving the optimal plasma discharge mode need to be determined.

The capabilities of the LDM ACT device may have significant use in commercial

applications. Appropriate commercial-application experiments need to be

defined and conducted. This would allow the commercial applications of the

plasma cleaning technique to be determined.
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