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Abstract: Some preliminary results concerning the experimental testa-

bility of the free-space constitutive relations are discussed

r- in connection with some recent theoretical developments.

S A recent paper by T. C. Mo on the electrodynamics of accelerated

systems seems to make it desirable to recall some early experimentation

that is relevant to free-space constitutive behavior.

There are few experimental tests on record which may be considered

, as a direct verification of the constitutive behavior observed on
U

SU accelerated systems in free-space. The only experiments known to the

authors of.this note are the experiments performed some fifty years

2 3
SV ago by Kennard and by Pegram ; they constitute experimental tests for

rotational motion.

The equipment that was used in both experiments consisted of a

L tubular cylindrical condensor which was being rotated in a coaxial

magnetic field. Kennard found a potential to exist on the condensor

(NH W when rotated, while Pegram's observation showed that a charge developed

on the condensor when it is being shorted by a corotating short.

1 C4 For both experiments it was found that the observations were

independent of whether the solenoid generating the coaxial B field

was stationary or rotating at the same angular velocity as the cylin-

drical condensor.

+Work supported by NASA Grant NGR 30-002-061
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.There has been some controversy surrounding these observations.

Questions have been raised whether the observations were correct, and

if so, how should they be interpreted in the light of the circumstance

that the effects still exist even when the solenoid generating the co-

axial B field rotates with the same angular velocity as the cylindrical

condensor. It is the latter fact which in our opinion makes it desirable

to consider these effects as observations of a constitutive nature con-

cerning a frame of reference rotating in free-space.

To dispel any uncertainty concerning the reality of the mentioned

observations, the authors of the present note constructed a piece of

equipment similar to that of Kennard and Pegram. Our as yet preliminary

observations show a qualitative agreement with those of Kennard and

Pegram. The conditions of our observations were between those of Kennard

and Pegram in the sense that our observations were made with an electro-

meter that had an impedance range intermediate between open circuit

(Kennard) and complete short (Pegram).

To the extent that experimental results are available it seems

that the observations can be consistently described by a constitutive

relation of the following form (MKS units)

D = E + Eo(Q X r) X B (1)0 0

in which D, E, B and.r, defined on the rotating frame, have the

usual meaning, Ec is the free-space permittivity and n is the angular

velocity of the system with respect to inertial space.

For cylindrical symmetry and when using cylinder coordinates, one

may write eq. (1) in the form

D = E +E 0 r B (2)
r o r o z



It is a well-known riddle of E.M. theory that the second term of (1)

[or (2) for that matter] has all by itself a nonvanishing divergence

div(Q x r) x B.= 20 B # 0 (see for instance Sommerfeld - last page).

It would then appear as if an observation made from a rotating frame

would record a space-charge where none was to begin with. We will make

the elimination of this absurdity a cornerstone of the next following

considerations; the basic idea being that divergences of individual

electric field components E contributing to a total electric displacement

D are not physically meaningful.

Let us instead take the divergence of the "surface" vector D

and let us insist that its divergence vanishes also on the rotating

system. We obtain then for conditions of cylindrical symmetry

1 a
rD = 0 (3)r Dr r

Solving this equation, we have

D = A/r (4)

with A as a constant of integration.

The ideal Kennard case (open circuit - no displacement) is now

characterized by A = 0. The Kennard potential can then be obtained

from (2) as

1 2 2Vk Edr = - Bz(r 2 - rl) (5).

rl and r2 being the radii of the inner and outer cylinder of the

tubular condensor.

In *the ideal Pegram case A # 0. Its value can be calculated from

the condition that the potential E dr = 0. One then finds for
Sr
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the integration constant

A Eo  (r2 - r )/n r2/rl (6)

The Pegram charge Q on the condensor is obtained by integrating D over

the surface of the cylinder of length k say,

p = 2r At (7)

Substitution of (6) gives

p = 6 0 Bz(r2 - r )/Zn r2/r (8)

One easily verifies that the ratio of the Pegram charge (8) and the

Kennard potential (5) yields (in absolute value) the standard 
expression

for the capacitance of a cylindrical capacitor

Qp 2n E 1(9)

Vk n r2/rl

In the light of the mentioned experimental observations 
and the

simple interpretation of these observations 
in terms of a constitutive

relation of the form (1), we summarize the following points as abso-

lutely germane to any theoretical discussion involving 
accelerated

systems in electrodynamics:

1. The Pegram and Kennard effects are realistic observations

that cannot be discounted or disregarded.

2. A very simple constitutive relation of the form D 
= D(E, B)

(see 1) directly accounts for these observations, 
rather than

the customary relations D = c E or D = E which only hold for

inertial systems in matter-f-ree space.

3. A constitutive relation of the form (1) for a rotating system
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resolves the difficulty recorded by Sommerfeld that a rotation

could give rise to an apparent space-charge div(C x r) x B =

20 " B # 0.

In the recent paper by T. C. Mo we find that the existence of a

free-space constitutive dependance of D on B is considered as a mistaken

notion (last paragraph section 4). We feel that this statement is at

variance with the experimental evidence presented by Kennard and Pegram

as well as with our own observations. In fact a discussion of the con-

stitutive nature of this evidence appears on p. 490 of reference 5

cited by Mo.

The fundamental issues touched upon here go well beyond Mo's

paper. The question is not whether the method of "local" inertial

tetrads, as used by Mo, can be made equivalent to a method of "global"

noninertial references, as used in his reference 5. One would expect

such an equivalence to exist, at least locally. Remarks to the con-

trary by Mo are out of context.

The fundamental issue is rather whether or not the method of

local tetrads is a suitable mathematical expedient that enhances phy-

sical perspicuity such as claimed by its proponents. The presented

evidence hardly supports such claims.
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Introduction

It is a well-known and a well-established fact that 
accelerated

charges radiate in all conceivable classical 
configurations, while

uniformly moving charges do not partake in this 
phenomenon of radiative

energy emission. This fundamental observation then leads 
to a rather

basic distinction between the fields surrounding a uniformly 
moving

charge as contrasted with the fields surrounding 
an accelerated charge.

For a co-moving observer accompanying a uniformly 
moving (point)

charge solely a centrally symmetric electric 
field would be noticeable,

while no reason can be found for an accompanying 
magnetic field result-

ing from the motion.

For a co-moving and co-accelerated observer accompanying an

accelerated moving charge one would have to assume 
that, in addition

to the centrally symmetric electric field, also 
a magnetic field would

have to appear; if only to account for the nonvanishing 
integral of

the Pointing vector representing the power radiated 
by the accelerated

charge.

It would be unreasonable to expect that the power radiated by the

accelerated charge would depend on whether 
the observer finds himself

in an inertial frame or in the accelerated 
frame itself. The radiation

of energy brings about a change in the radiating 
system which could

not possibly be a figment of the observer's 
imagination related to his

choice of a co-accelerated reference.
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Where the Pointing vector collects the rediative far-field

contributions of the E and H'fields generated by the accelerated

charge, it would also be reasonable to inquire into the near-field

situation of the accelerated charge, specifically for the co-acceler-

ated observer. The following thought experiment clearly illustrates

the nature of the near-field situation.

A Thought Experiment

Let us consider a circular disk condensor which can be spun

around its axis of symmetry (see fig. 1). The condensor is charged to

a high potential. It is then known that the surface charge on the con-

densor plates represents a convection current which generates a magnetic

Sfield for the stationary (inertial)

observer. This fact was unambigu-

ously established around the

* turn of the century through a

long series of experiments by

S Rontgen, Wilson and Eichenwald.

Now consider the same experi-
ment except that the observer,

instead of being in a stationary

Fig. 1: Rotating charged disk (inertial) frame, is now on the
condensor showing magnetic

rotating system itself. Does thefield lines generated by con-

vected surface charges. Both co-rotating observer still see a

plates rotate with same angu- magnetic field? Or should the
lar velocity~.,

co-rotating observer conclude that

the magnetic field vanishes, be-

cause with respect to the rotating system the convection current vanishes?



One may submit this question to any number of reputable and
competent physicists and one can be sure to get a diversity of con-
flicting answers. In fact, they range from: there will be no mag-
netic field (because there is no current) - the field will be modified -

the field will be the same as for the stationary observer.

There are a number of reasons to account for this disagreement
among experts. The most important would probably be that people have
to give themselves enough time to come up with a meaningful answer. A

poll-taking is not very conducive to promote the right atmosphere for
a more incisive discussion. If one takes the time for a thorough
examination, the following two points seem to emerge as deserving fur-
ther scrutiny.

1) Problems related to accelerated systems are only partly
covered by the standard methods of the general theory of
relativity. The general theory does not give unambiguous
information about the induced transformation behavior of
fields. Secondly, there is no general agreement about the
"inducing" space-time transformation relating inertial and
noninertial frames.

2) Questions arise what it means to measure a magnetic field.
Does one measure the line-vector H or the surface-vector B.
It seems necessary, even in free-space, to confront the
possibility that H can vanish while B is different from
zero. In the following discussion B and its associated

magnetic flux will be regarded as the primary quantity
that is measurable.
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Where it does not seem conclusive to call on sophisticated theory

to resolve the question presented by the thought experiment; one might

take recourse to the alternative of attempting to obtain appropriate

information through experimentation. Yet before doing so, one would

like to have, at least, a preliminary indication of what to expect

from such experimentation. For that purpose, I will present a simole

argument, based on first principles, which indicates that a rotating

observer in the configuration of Fig. 1 will measure the same B as the

stationary observer.

Consider the rotationally symmetric B field of Fig. 1 and assume

that we want to measure the nonuniformity of this field by an E M F loop

vibrating up and down in the direction of the symmetry axis (see fig. 2).

The E M F appearing on the

, test coil is taken out at the

point P and then measured by an

a-propriate instrument. Accord-

ing to Faradayt s law, the E MF

solely depends on the change of

flux through the coil. There is

no indication whatsoever that the

Fig. 2: Measuring the B E M F would depend on a rotational
field by a (vertically)

motion of the coil "in itself",
vibrating test coil.

because the standard formulation

of the induction law does not

specify anything of this nature.

The rotation of the coil "in itself" (P going around in the circle

indicated in fig. 2) does not affect the flux through the coil. It

1c<
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appears that we can now state the following lemma as ensuing from the

standard formulation of the induction law.

Lemma: The E M F developed on a test coil does not depend on a

rotational motion of the coil in itself. Hence, the con-

clusions concerning the B field are not affected by this

rotational motion in itsel . (P traveling around the

circle in fig. 2).

Let us apply this lemma to the configuration of the thought

experiment of fig. 1. It then follows that the E M F, and consequently

the B field, would be the same, regardless whether the point P (where

the lead wires are extracted) is at rest in an inertial frame or co-

rotating with the charged condensor. This observation would be unex-

plainable if the B field on the rotating system would vanish. It follows

that the co-rotating observer measures the same B field as the stationary

(inertial) observer q. e. d.

One can now conclude that the charged rotating disk condensor of

fig. 1 plus its attached co-rotating test coil and measuring instrument

is an absolute rotation sensor. It provides a purely electrical

criterion to decide whether or not the total instrument is in an

inertial frame.

In an earlier proposal, which led to an investigation supported by

NASA Grant NGR 30-002-061, it was pointed out that an effect of this

nature could be expected on the basis of its dual relation to the

Kennard-Pegram effect. The latter effect was reconfirmed (see forth-

coming publication in J. of Math. Physics by E. J. Post and D. Bahulikar).

The two effects together are intimately related to a deeper understanding

of the ring-laser effect.
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However, apart from the, for the time being, weak potential of

these effects for guidance and control., a deeper understanding of them

would be consequential for a reassessment of observations concerning

terrestrial, planetary and solar magnetism. Hence, an experimental

pursuit that can help to delineate the true nature of the mentioned

acceleration effects would be quite germane for a:meaningful data

evaluation in the space sciences.

Preliminary Design Sketch for an Experiment

There are several possible physical realizations of the thought

experiment. For a constant rotation one would have a constant magnetic

induction which would require a test-coil performing a motion super-

imposed on the already existing rotational motion. One can avoid this

complexity by choosing a nonuniform rotation--for instance, a torsional

vibration. A torsional vibration of the charged condensor then generates

an alternating convection current and a corresponding alternating flux

in the inertial frame as well as in the co-accelerated frame.

Fig. 3 shows a schematic of such a torsionally vibrating arrange-

ment. One may close the field-lines by mounting the condensor inside

a ferrox-cube pot-core. The input is provided by a high voltage source

to charge the condensor and a mechanical excitation device for the tor-

sional motion. The output reading is obtained from a coil wound on the

central leg of the pot-core. The output is an a. c. voltage with a

frequency that equals the frequency of the torsional pendulum arrange-

ment. A low-noise narrow band amplifier will be necessary to prevent

the small output signal from being immersed in the thermal noise level.

The E M F that can be extracted from the test-coil on the central leg

should obey the following relation.
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3 2 2
4r n r2 - rl 2

output E M F = n(0v (volts)

c In(r2/rl)

where

n = number of turns of the coil

c = light velocity (Meters/sec)

r2 = outer radius of disk condensor (meters)

r, = inner radius of disk condensor (meters)

v = 0/2T = torsional vibration frequency (sec
- )

0 = angular amplitude of vibration (radians)

V = potential of the condensor in 
volts

This expression for the output E M F can 
be calculated in two

different ways:

1) For the stationary observer one can calculate 
the total

sinusoidal convection current which then gives 
the line inte-

gral H.d. The total flux can then be obtained 
as

4= B S = p0HS where S is a cylindrical surface 
of radius r

and height d equal to the distance of the condensor plates.

One finds that r drops out of the end result, 
hence the flux

is the same at rl and r 2 (no magnetic sources inside the

condensor space).

2) For the co-accelerated observer the 
convection current

vanishes. The expression for the finite flux is then ob-

tained from the modified constitutive relation 
(cylindrical

coordinates).

H1 = B + eor E
r =0 r z

in which .q= 40 the amplitude of the angular velocity of
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the torsion pendulum. It follows from div B = 0 that B = C/r with C

a constant of integration which can be determined from the condition

SH dl = 0 (no current). The alternating flux can thus be calculated

and the expression for the output E M F results.

The two calculations lead to identical results as already suggested by

the conclusion of the thought-experiment discussed in the previous

section.

Inserting numbers in the given formula for the output E M F

one finds that the experiment is not easy, yet with the help of modern

facilities it should be possible to obtain a conclusive answer one way

or the other.

15'<



I Possible Solution to Sommerfeld's Riddle

E. J. Post
University of New Hampshire

Durham, New Hampshire

Abstract: An application of standard electromagnetic theory to non-

inertial systems leads to fundamental problems that culminate

in a riddle concerning space charges that cannot possibly

exist. A solution is proposed by adapting the constitutive

relations so that they become also applicable to noninertial

frames. The adaption has been constructed to be consistent

with a number of classical experiments and with more recent

ring laser experiments. New experimentation is proposed

that can further substantiate or refute the p-roposed adapta-

tion.

+ Supported by NASA Grant NGR 30-002-061. 4ft
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Sommerfeld's Riddle

After an unusually rich career as scientist and teacher, Sommerfeld

bequeathed to the world of physics a monumental treatise covering a

major part of theoretical physics. One of the five volumes is devoted

to what may well be the most-well-rounded of physical theories: the

theory of the electromagnetic field. The book draws on the author's

wide experience in both applied and pure aspects of the theory. It

differs in a few remarkable respects from the traditional presentation

of E.M. theory by physicists.

First of all Sommerfeld aligned himself with the engineers. He

reversed his position with respect to the touchy question of units;

a change of heart that was resented by several of his fellow physi-

cists.

Then secondly, after expounding the beauty and consistency of

relativity he confronts the reader (on the last page of his book) with

a harmless looking but nevertheless disturbing difficulty occurring

in the theory of rotating systems.1

Although it is unlikely that Sommerfeld first noticed this

beauty defect, for the purpose of this article we will call it the

Sommerfeld riddle, because Sommerfeld elevated the problem to a more

prominent position in the textbook literature. In commemoration and

honor of this healthy precedent of not evading obscure passages of

well-established theory, the content of this riddle shall now be

discussed.

Consider a rectangular (inertial) frame of reference in a matter

and charge free region of space. Assume a uniform magnetic field of

induction B in the z direction. Now rotate the frame around the z

A17
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axis with an angular velocity Q. In the rotating frame one will then

observe an electric field of magnitude E = (Q x r) x B, in which r is

the position vector of the point of observation.

The riddle comes about if we take the divergence of E = (P x r) x B:

div E = 20 ' B # 0. It seems as if the rotation produces a charge den-

sity in a region of space that was assumed to be free of matter and

charge. The conclusion is obviously absurd, yet the formula for E is

known to be valid for regions of space filled with conducting matter

(e.g. electric machinery).

The major objective of this article is: 1) to propose a possible

resolution of this apparent contradiction, 2) to show how the proposed

resolution interrelates a number of otherwise disconnected classical

experiments, 3) to discuss new experimentation that can further sub-

stantiate or refute the proposed resolution.

18<J
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The Theoretical Nature of the Riddle

In diagnosing the nature of the problem one can firstly take cog-

nizance of the fact that the apparent space charge does not appear if

one makes a transition from one inertial frame to another inertial

frame. The velocity term Q x r can then be replaced by a constant

velocity V. The divergence of E vanishes in the new frame if it

vanishes in the original frame; in fact div E = 0 in the whole family

of inertial frames. Hence one concludes that the occurrence of the

apparent space charge is typically associated with a noninertial situa-

tion.

The mentioning of moving systems immediately brings to bear the

question whether or not the contradiction can be resolved within the

realm of the theory of relativity.

Traditionally the theory of relativity separates into two parts:

the special theory of relativity and the general theory of relativity.

These two theories are also known under the misnomers: theory of

special relativity and theory of general relativity.+

The special theory of relativity is restricted to the description

of physical phenomena with respect to inertial frames only. One may

consider accelerations of objects with respect to these inertial

frames. However, the description of phenomena as seen from noninertial

frames is not covered by the special theory of relativity!

The general theory of relativity is, by contrast, a theory in

which the physical phenomenon of gravitation is related to a conceivable

German is more permissive with compound nouns than English e.g. Rela-
tivitatstheorie = theory of relativity. It follows that an adjective
(e.g. general) applying to such a compound noun is affected by an
ambiguity in translation. This language technicality still creates
much confusion in writing and discussion. 19~
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non-Euclidian structure of the space-time manifold.

It thus appears that the special theory of relativity is not

suited to approach the problem-at hand while the general theory seems

irrelevant. What is needed is a theory that permits a description of

physical phenomena as seen from noninertial frames.

Fortunately, there is a principle which permits us to relate

gravity and accelerated frames of reference. It is known as the prin-

ciple of "local" equivalence. It expresses the "local" indistinguish-

ability of gravitational and kinematic acceleration.

The term local, in this context, is meant to convey the idea that

the observational indistinguishability only holds if one refrains from

exploring the environment of the point of acceleration. Putting it

in less abstract terms: looking out of the window of one's confinement

one would soon be able to tell whether or not one is affected by gra-

vitational acceleration, kinematic acceleration or by both accelerations

simultaneously. The principle of equivalence has been a key point in

the development of the general theory.

One thus sees that the general theory of relativity is relevant.

The mathematical formalism that accommodates gravitation also accommo-

dates accelerated systems of reference. There is the added advantage

that the description of kinematic acceleration does not require the

validity of the gravitational field equations.

The mathematical implementation of the principle of equivalence

draws on another principle that was also instrumental for the develop-

ment of the general theory. This principle is known as the general

principle of covariance or the principle of general covariance. Again,

the position of the adjective "general" causes some confusion about

the precise content of the principle. It suffices to mention that
20'



the name was obviously meant to create a contrast with the more restricted

concepts of Lorentz covariance and Lorentz invariance.

The conceptual obscurity surrounding these principles has unfortu-

nately led to a situation in physics where the word general covariance

is hardly respectable. Nevertheless the initial attempts to understand

and to describe coherently physical observations in accelerated systems

mostly start in some way or another as applications of the principle

of general covariance.

It is not difficult to remove formally the Sommerfeld riddle by

defining an invariant divergence that vanishes in inertial frames as

well as in noninertial frames. 2

A discussion of relevant experimentation performed in rotating

systems and a review of attempts at correlating these observations in

the spirit of some principle of general covariance has been given by

the author in a recent article.3 Probably the principal conclusion

of the latter study is the conceivable existence of a generic relation

between the optical Sagnac effect (now better known as ringlaser effect)

and some little known effects pertaining to the phenomenon of unipolar

induction. The latter have been studied elaborately by Barnett,

Bateman, Kennard, Pegram, Swann, Tate and several others. 4

Notwithstanding the somewhat discredited position of the prin-

ciple of general covariance in physics it can hardly be denied that

some version of general covariance will have to be the tool for

approaching problems in accelerated systems. The present author

retains a personal confidence in appropriate discussions based on such

principles.

However, considering the controversy surrounding these principles

there is also a real need for a physically more deductive method of

21<
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understanding basic phenomena in accelerated systems. The next section

is devoted to such an approach. The salient features of accelerated

systems are delineated in a manner that is as much as possible indepen-

dent of the controversial aspects of covariance. The discussion will

be restricted to uniformly rotating systems.

A further central point in the following considerations is that

physical observables such as potential differences, charges and

currents appear in the theory as the result of integrations. The so-

called field quantities are the integrants of these integrals. These

integrants are not necessarily uniquely determined by those integrals

representing the observations. It is then reasonable to give a pri-

mary operational role to the integrals rather than to the integrants.

Yet one can at least retain in the field quantity as much as possible

the original operational qualities pertaining to the integrals they

come from. The latter point is basic in the following discussions.

22'
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E.M. Relations in Rotating Systems

A few points of major concern for the developments to be presented

now will appear to be rather formal in nature. It may thus be difficult

to escape an impression that covariance related concepts are still

coming in through the back door. But even so, if that happens, should

there be any objection against a reminder of a handwriting that has

been on the wall for some time?

For almost a century it has been common practice in textbook lit-

erature to have curls and divergences operate on the same vector fields.

It is known that this peculiarity is a unique feature of vector analy-

sis in three-space. A by-product of this coincidental situation is that

one and the same vector field can be considered as the integrant of a

line integral as well as the integrant of a surface integral.

If one searches the literature for opinions of leading physicists

about this subject matter, one finds that Maxwell was among the first

to have pangs of conscience about the possibly deceptive consequences

of a too freely used mathematical opportunism offered by the tradi-

tional system of vector analysis. In an article specially devoted to

this subject Maxwell insisted on the existence of four different

vector-species in three-space. His arguments, although mathematical

in nature, were motivated by physical needs.

Maxwell introduced the names force and flux vectors to corres-

pond to the notions of line vector and surface vector. Each of these

vectors can have the property of being polar or axial. A pairwise

combination of these properties leads to four basic vector species

in three-space. A classification of the fundamental field vectors

of electromagnetic theory then leads to the following diagram.

23<
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< Space
Vectors Polar Axial

force E H

flux D B

in which E and D are the electric field and electric displacement while

H and B are the magnetic field and the magnetic induction.

For matter-free space, it is known that there is a very simple

relation between these field vectors. In fact by choosing a somewhat

ad-hoc system of mixed units one can further promote the simplicity

of the relation and bring about an actual identification of the elec-

tric and magnetic 'field vectors respectively: E = D and H = B. It is

not normally explicitly stated whether this identification is good for

inertial as well as for noninertial frames of reference. Standard

texts are usually tacitly restricted to an inertial frame treatment

of E.M. theory. To substantiate this statement I refer to a particu-

larly authoritative text in which this obscurity is not swept under

the rug. Feynman simply declares E.M. theory not to be valid out-

side the family of inertial frames ; a drastic point of view which

surely guarantees the avoidance of Sommerfeld's riddle.

However, in this article we address ourselves to the problem

of presenting a possible solution, not an avoidance, of the Sommerfeld

riddle. Hence the position taken by Feynman is of no help, in fact

it is unnecessarily restrictive if we consider the classical applica-

tions of E.M. theory in rotating machinery. Feynman rejects the

+ A more elaborate discussion of the four vector species in three-
space and their relation to transformational properties in three-
space and four-space is given in chapters II and III of ref. 5.

++ I quote from Feynman, ref. 6, section 14.4: "We must be sure to use
equations of electromagnetism only with respect to inertial coor-
dinate systems."
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problem out of iand, Sommerfeld takes a more constructive position.

Proceeding in the spirit of Sommerfeld by applying E.M. relations

to rotating systems, we may now make the observation that there is no

ground whatsoever for assuming the field identification E = D and H = B

to hold and to be meaningful outside the realm of inertial frames. In

fact unless we want to bereave ourselves from the onset of any possible

solution, we do well in maintaining the distinction of vector species

as originally indicated by Maxwell. The latter statement is not only

meant to apply to macrophysical situations concerning material media.

It will also-be necessary to maintain the distinction in matter-free

space if the system of reference is noninertial.

Having thus eliminated the most obvious inertial frame character-

istics from the commonly presented form of E.M. theory, we can now turn

to the question how an accelerated frame, and a rotating frame in par-

ticular, affects the fundamental E.M. relations. Does a rotation

affect the Maxwell equations, does it affect the constitutive equations

or does it affect both simultaneously?

The position taken in the present attempt at resolving the Sommer-

feld riddle is the following:

1. The Maxwell equations retain their form on accelerated

frames, provided they are expressed in terms of the four

distinct field quantities E, B and D, H.

2. The criterion, whether or not a frame is accelerated depends

completely on the constitutive relations between E, B and

D, H.

The choice presented here is not arbitrary, because nothing in the

fundamental observations leading to the Maxwell equation restricts

them to inertial frames. The first set of equations follows from the

25 <



Faraday inductibn law and from the absence of magnetic charge. There

is nothing in Faraday's observation that restricts the law to be

valid in inertial frames only! Furthermore one would not expect the

absence of magnetic charge to depend on whether or not one observes

from an inertial or from a noninertial frame! Similar conclusions can

also be extracted from the equations denoting continuity of charge and

the Biot-Savart relations.

It was necessary to waste some time in combat against established

inertial frame habits in order to set the stage for meaningful non-

inertial work. We can now concentrate on how to modify the constitu-

tive relations so as to include the treatment of rotating frames.

Let us examine the consistency of the following set of constitutive

equations for a frame rotating with angular velocity T with respect to

inertial space. Note that all field vectors are referred to one and

the same noninertial frame; these equations are not transformational

relations!

D = E + 0 (Q x r) x B (a)o o

I
- 1-
H = B + E (Q x r) x E (b)

o oPO 0

Retaining the Maxwell distinction of four field vectors, it was only an

appropriate expedient to use MKS units; co and po are the usual free-

space permittivity and permeability. One may consider eo and Vo as

operators needed to convert force-vectors into flux-vectors.

The following observations can be made about these proposed con-

stitutive equations:

+ The equations I and II can be obtained by a transformational proce-
dure - see ref. 3, formulae 74 and 76.
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a. They veduce to the familiar relations D = E and B = i H
o o

for an inertial frame if Q = 0.

b. The second term in the righthand member of equation Ia

resembles the induction field that led to the Sommerfeld

riddle. The total displacement D is generated by the sum of

two electric fields: a source related field and an emf. The

divergence of D does not lead to a contradiction now.

c. The existence of the second term in the equation Ib can be

inferred from the assumption that the Lagrangian should be

a total differential in the field variables E and B. The

term has,the characteristics of an H field generated by a

convection current.

It may be mentioned that the constitutive equations I bear some

resemblance to the constitutive equations of a uniformly translating

material medium. The extra terms in the latter vanish if the product

of relative permittivity cr and the relative permeability Vr approach

unity.

Let us next consider the assignment of extending the equations I

for a corotating dielectric of relative permeability c . It is then

obvious how the first terms in the righthand member of equation I will

be affected. To arrive at a conclusion of what happens to the second

terms it is useful to consider the following thought experiment.

For a rotating system it is natural to examine a coaxial capaci-

tor that is being rotated about its axis of symmetry. First consider

the case without a comoving dielectric. Assume the capacitor to be

charged, say the outer cylinder is positive and the inner cylinder is

negative (see Figure i).

2?t
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Figure 1. Rotating charged coaxial condensor.

When examined from an inertial frame of reference one will notice

that the convected surface charges represent closed current loops that

will result in a residual magnetic moment as seen by the inertial

observer. The surface charge per unit area (on the outer cylinder,

say r = r ) is c E. A calculation of the total current enclosed by

the line integral of H (see Figure 1) leads to the expression

= r2  o E 4 Hd = Brd (1)

£ is the length of the tubular condensor. Primed symbols refer to

quantities in the.inertial frame.

Let us now consider an observation on the rotating frame. The

convection current as seen from the rotating frame vanishes. Hence

the line integral HdZ when taken on the rotating system also

vanishes, because the Maxwell equations, in this case the Biot-Savart

Sintegral law, is not affected by going to a rotating system (consult

the set of underlying assumptions). It then follows from Ib that

S B d1 = -r ( x r) x E-d (2)

28'
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The righthand n iber of (2) reduces for the case of the cylindrical

arrangement of Figure 1 to

- 1  di = - 2 E e Ek (2a)

A comparison with (1) shows that the B' in the primed system is equal

in magnitude to the B in the unprimed system if E = E'. The E and E'

would only be different if there had been a strong B field to begin

with (E' = E + (Q x r) x B). Generated by E itself the B in this case

is already higher order small. Hence the assumption that E = E' is

well justified ipso facto B' = B.

The only field variable that changes drastically in transformation

is H'. Indeed H = H' - (R x r) x D' = 0, follows in essence from (1).

The change in sign is properly resolved by a consistent convention for

the sign of Q i.e. Q' = -0.

We are thus confronted with the remarkable situation that B is

unaffected but H goes to zero when going from the inertial frame to the

rotating frame. Of course, locally one can always define an H equal to

B/Po provided its closed loop line integral vanishes. This local H is

derivable from a potential and has at most an ad hoc physical meaning.

It is now a simple matter to see what happens to what may be

appropriately called the (non) inertial terms in I if the capacitor

is being filled with a corotating dielectric. There is now the addi-

tional surface charge of polarization, P rotating along with the

surface charge D of the capacitor. It follows that the net charge

per unit area carried around is still e E, because c E = D - P (see
o o

Figure 2). Hence the inertial term in Ib is not affected. The usual

thermodynamic type argument can then be invoked to argue that also the

inertial term in Ia is not affected. The constitutive equations for

29<
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a corotating dilectric may thus be written:

D r E E + E ( x r) x B (a)
r o o

II

-1-
- + (xr) xE (b)

Figure 2. Convected charges in a coaxial condensor
filled with a corotating dielectric.

A further, not yet mentioned, assumption underlying the equations II is

that c is not significantly affected by the rotational accelerations.
r

This assumption is well supported for most practical purposes, because

the inter-molecular binding forces of the polarization charges prevail

over the acceleration forces.

w<7 C
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A Cal ulation of the Kennard and Pegram Effects

The most striking experiments that support, at least in the sense

of a compatibility, the constitutive equations la are probably the

Kennard 7 and Pegram experiments.

Both experiments utilize a coaxial rotating capacitor as in Figure

1. A strong axial magnetic field is generated by an energized coil co-

axial with the capacitor.

In the Kennard experiment one measures a potential difference

between the plates of the capacitor when the capacitor is rotating.

In the Pegram experiment one measures a charge on the capacitor

when the capacitbr is being shorted by a corotating short during the

rotation.

For both experiments it seems to be immaterial whether the coil

generating the B field is stationary or corotating with the capacitor.

The two effects thus depend solely on the rotation of the capacitor

with respect to inertial space. The mutual motion of coil and capaci-

tor does not affect the observation.

So far the experiments have been performed without a corotating

dielectric (air dielectric). A beauty defect of the Kennard experi-

ment is that the potential difference is measured in the stationary

frame via a pair of sliprings.

The early explanation of these effects have been a point of much

theoretical discussion . The interpretations tended to be oriented

towards an e.m.f. effect asymptotically relatedto Faraday's induction

law.

Let us now calculate the effects on the basis of the constitutive

equations I and II. We may consider right away the case of a corotating
3IC L
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dielectric. The result should reduce to the free-space case for E = i.

We then use the relation IIa

D = E E E + E+ ( X r) X B IIar o o

For cylindrical symmetry it is natural to use cylindrical coordinates

and to consider only the radial components of E and D and the z compo-

nent of B. The expression IIa then becomes

D = r E E + E r2 B z2 (3)r r o r o z

The absence of a free charge in the dielectric shall now be made the

cornerstone of the discussion. (For matter-free space that is the

absence of the Sommerfeld riddle). Hence

1 a
div D = rD = 0. (4)r Dr r

Solving this equation we find

D = A/r, (5)

in which A is a constant of integration.

In the (ideal) Kennard case the constant of integration A is zero,

because D = 0. It then follows from (3) that

-1
=- r B (6)r E z

r

The potential difference V between the plates of the coaxial capacitor

becomes if rl and r2 are the radii of the inner and outer conductor

r2 Bz (r22 - rl2V = E dr = 2(r E 2 (7)
r

r
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In the (ideal) Pegram case D # 0 but the potential between the

plates of the capacitor is zero. It then follows from (3) and (5)

that

1 A
E =- r B (8)

r c z o £r r
r o r

The potential difference V is now zero. Hence from (8) we have that

the constant of integration A is

2 2
r - r r

A = E r B / 1 n (9)0 z 2 r

From (5) and (9) one obtains as the total charge'Q on the capacitor

2 2
r2 - r1

Q = 2
o r Bz 2  1  / £n(r 2 /rl) (10)

where a is the length of the cylinder.

The capacitance C of a tubular cylindrical capacitor of length a

is given by the expression

28 E E R

C = (11)£n(r2/r)

It follows from (7) and (10) that the ratio of the Pegram charge and

the Kennard potential still reproduces the conventional capacitance

of a cylindrical capacitor (11).

However, in marked contrast with an emf based interpretation of

the Kennard and Pegram effects, we find that the Pegram charge Q is

independent of the relative permittivity Er of the corotating dielectric,

while the Kennard potential decreases in the ratio 1/6 ; see equations

(10) and (7). For an emf based interpretation one would obtain a

Kennard potential independent of Er while the Pegram charge Q would

increase in the ratio rc Hence here is a point susceptible to

experimental check.
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A Survey of Relevant Experimentation

The Kennard and the Pegram experiments discussed in the previous

section are among the important and crucial ones that can be considered

to test the proposed solution of the Sommerfeld riddle. However, the

experiments that have been performed so far all utilized a tubular

capacitor with a free-space (air) dielectric. A simple comparison with

the earlier emf based explanations of these effects shows that the pre-

dicted result is exactly the same as the ones obtained in the previous

section, because the relative permittivity equals unity; e = 1. It
r

would be a different matter if c # 1.

In order to stipulate precisely what experimentation would be

indicated to resolve the matter more conclusively, let us reiterate

the basic premises of the presently proposed approach for noninertial

frames:. 1) the Maxwell equations retain their usual form in noninertial

frames provided we retain the distinction of four basic field quanti-

ties; the reduction to two field quantities was found to impose an

unmentioned hidden restriction to inertial frames. 2) The behavior

in noninertial frames is solely and completely describable by an

appropriate modification of the constitutive equation with so-called

"inertial terms" (see eq. I and II). Note that the modification also

occurs in matter-free space.

It follows that the burden of experimental proof must be sought

in experimentation testing constitutive behavior in noninertial

frames. These experiments may include. static constitutive behavior

(Kennard and Pegram) as well as dynamic constitutive behavior (Sagnac

and ring laser effects). It has been shown in a previous study (see

ref. 3) that the inertial terms in the constitutive equations are
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indeed essential for describing the Sagnac effect.

Summarizing, the following three points can then be cited as

directly supporting the salient features of the proposed procedure for

treating noninertial systems:

1. The Sommerfeld riddle can be resolved.

2. Within experimental precision, the correct values for the

free-space Kennard and Pegram experiments can be calculated.

3. The inertial terms in the constitutive equations yield a con-

nection between the static Kennard and Pegram effects and the

dynamic Sagnac or ring-laser effect. This latter relation

also holds for E i1.

The point (2) at this stage is at most a compatibility check, because

the Kennard and Pegram experiments have not been performed as yet with

a corotating dielectric. Sagnac experiments have been performed with

the light beam traversing a comoving refracting medium, so here is a

positive but not yet unique support for the equations II.

To obtain more conclusive evidence to support or refute the pro-

posed procedure of treating noninertial systems, the following three

points may be considered. They contain suggestions for further experi-

mentation that conceivably could swing the evidence more clearly pro

or con.

1. An improved Kennard experiment should be performed with the

potential measuring probe on the rotating system itself.

2. The (improved) Kennard experiment and the Pegram experiment

should then be repeated with a corotating dielectric (Er i).

3. Then, for the sake of completeness, here is the dual of the

Sommerfeld riddle: does the magnetic moment generated by a

convection current still exist for the .comoving observer?
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(Section III of this article). Some classical experiments

have confirmed that the magnetic moment indeed exists in the

inertial frame. So far there is no explicit experimental veri-

fication that this is still the case for the comoving observer.

Finally there is an indirect experimental check on the constitutive

relations I and II by virtue of the fact that Kennard and Pegram effects

are brother and sister to the so-called ring-laser effect. To see how

this family relation can be, note that the latter is related to the

resonance splitting of a closed optical circuit, when the mirrors and

beam splitter determining that circuit are at rest in a frame that is

rotating with respect to inertial space. The magnitude 6w of the

resonance splitting can be calculated from the Boltzmann-Ehrenfest

relation for an adiabatic change of state. The energy density changes

are obtainable from II and the corresponding energy changes in the

optical circuit are obtainable by integration over the light path.

One finds after some simple reductions, assuming energy conservation

in the light beam

6m ± x r • dr6W + Qxr r (12a)W c n ds

The integral in the denominator is the Fermat integral with n = lrE

the index of refraction in the light path. The path of integration
-I

is the closed optical circuit; c = E .
oo

From the invariance of phase (see ref. 3) one obtains a similar

relation

6 V dr (12)
- c 6 n ds

in which V is the velocity field denoting the motion (and possible

deformation) of the optical light path.

0-, -
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A comparison shows that eq. (12a) is contained in eq. (12). It

follows in addition from eq. (12) that the ring-laser effect is indepen-

dent of the center of rotation. A situation of potential experimental

interest occurs ehen the index of refraction approaches zero such as

in a wave guide near the cut-off frequency. Note also that 6w = 0 if

V = constant, relativity of uniform motion.

An interesting difficulty arises when we permit also magnetic

permeable media in the light path pr # 1. What happens experimentally

is a rhetoric question, because in the optical range the permeability

of all materials approaches unity except perhaps for the fourth or fifth

decimal place. The theoretical aspects, however, are of some interest.

The obvious extrapolation of the eq. II for pr # 1 yields the following

expression for the resonance splitting

6w i x r xr .dr
= i (12b)

S c cV#1r ds

It is still true that 6w = 0 for 0 = 0, however, the eq. (12b) is not

any longer contained in the "kinematical" result (12), such as was the

case for eq. (12a). It thus follows that the effect (12b) does not

in general share the property of being independent of the center of

rotation.

-The premise underlying all relations (12) but in particular (12b)

assumes that E, 1r and n are not subject to dynamical changes due to

acceleration forces experienced in noninertial frames. It is easy

to show that this assumption is well justified for Er, because gravi-

tational interaction is very weak compared to electric interaction.

It is more difficult to justify the same statement for pr; the well-

known Larmor theorem clearly illustrates the nature of that limitation.
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Summarizing one does well to conclude that the equations II are

not to be considered as the last word in constitutive behavior in

rotating frames. Their extrapolation to media with pr # 1 should be

considered with due caution.

9
The claim of some authors of having resolved this difficulty

purely through the use of transformational procedures concerning the

observer should be also considered with due reservation. Their result

hinges on their assumption - quote - that they do not see the experi-

mental need for considering derivatives of the four-velocity - unquote.

It is dangerous to infer a general conclusion from such a highly

specialized assumption. Moreover it is easy to think of realistic

experimental situations where the assumption does not hold.

Perhaps experimentation of the Kennard-Pegram type could help to

resolve this matter further, although the fact that almost all magnetic

media have an appreciable loss angle is a serious handicap in per-

forming such experimentation.

38<
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APPENDIX I

There exists a theoretical approach which is just about the oppo-

site of the one suggested in this article. Instead of using a single

global frame that is accelerated with the system, one uses a method

that is akin to one common in fluid dynamics (Lagrangian coordinates).

In every point of the system a local inertial tetrad is defined.

These tetrads move uniformly with the instantaneous velocity at that

point and at that time.

The constitutive relations with respect to such local inertial

tetrads are, of course, the same as in any inertial system. By con-

trast the Maxwell equations now change their form when going from an

inertial to a noninertial situation. The noninertial situation is

represented by the fact that the local inertial tetrads change their

orientation from space-time point to space-time point.

The mathematical implementation of this method of local inertial

tetrads is very cumbersome. The curl, divergence and gradient expres-

sions require additional terms related to the so-called linear

connection between the local tetrads.

Historically the method of local inertial tetrads is a natural

extension of the method of local cartesian triads. The latter is nor-

mally used when introducing curvilinear coordinates in three dimensional

space.

The method of local inertial tetrads does not lend itself to a

lucid discussion of the Sommerfeld riddle or the Pegram and Kennard

effects. In fact the chances are that one does not recognize and

identify these matters as realistic physical issues (see last para-

graph of section 4 of ref. 10).
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The physical advantages claimed for the method of local inertial

frames is that it enables one to work in a coordinate environment with

which one believes to be familiar. Indeed most of contemporary physics

emerged from inertial frame considerations. Many of its notions do

not permit a simple extrapolation to noninertial situations. Fortunately

noninertial situations can be frequently evaded in practice.

In cases where the noninertial situation cannot be circumvented

the method of local inertial tetrads seems to be the wrong mathematical

tool for the job. Its use is prompted by psychological rather than

practical considerations. Additional references concerning origin and

use of the method can be found in reference 10.
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APPENDIX II

Readers who may have taken the trouble of consulting reference 3

may have found that the definition of field quantities used in that

article differs in a perhaps disturbing manner from the conventional

definitions. The unconventional choice was made to open the possibility

of using mathematical methods related to the exterior differential cal-

culus. The unconventional field quantities are the pure coefficients

of differential forms. For the conventional definition one separates

out a scale factor to retain the dimensional homogeneity of the field

components. More details of this procedure can be found in references

2 and 5. For the purpose of translating the unconventional into the

conventional field quantities (and vice versa) for the case of cylin-

drical coordinates the following table is provided:

UNCON. CON. UNCON. CON.

E E D rD
r r r r

E E /r D D

E E D rD
z z z z

H H B rB
r r r r

H H /r B B

H H B rBz z z z

4~~ '
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