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SUMMARY

Analytic models are developed for computing the periodic sound pres-

sures of subsonic fans and compressors in an infinite, hardwall annular

duct with uniform flow. The basic sound-generating mechanism is the scat-

tering into sound waves of velocity disturbances appearing to the rotor or

stator blades as a series of harmonic gusts. The models include the sources

of velocity disturbances arising from the component interactions studied

by Kemp and Sears, and non-component-induced inlet distortions at a rotor.

The primary result of the models is the computation of the periodic sound

pressure mode amplitudes which can be used as inputs to a duct acoustic

program for computing the propagation through a finite, multisectioned

duct and the radiation to the far field outside the duct. Computer sub-

programs for the mode amplitude calculations are presented.
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1.0 INTRODUCTION

1.1 Background

Gutin (ref. 1) in 1936 published the first analytic model for the

tone noise generated by rotating machinery. His idea was to replace a

rotating propeller by a disc of applied acoustic dipoles, the strengths

of which were determined by the steady air forces acting on the propeller

blades and the frequencies of which were determined by the propeller shaft

frequency and the number of blades. Not until 1963, when Van de Vooren

and Zandbergen (ref. 2) published their work, did the problem receive an

essentially different formulation: The rotating and translating blades

were replaced by dipoles and monopoles, the strengths of which were to

be determined by solving a linear boundary value problem. They did not,

however, solve this problem, but returned, instead, to the momentum con-

siderations of Gutin for the strengths of these moving sources.

The advent of the turbofan engine gave a new impetus to the construc-

tion of analytic models for the generation of tone noise by rotating ma-

chinery. In 1961 Slutsky, et al. (ref. 3) developed analytic models for

the generation of tone noise by a turbofan stage assuming for the sources

of sound the steady, rotating vorticity of the rotor blades and the

unsteady vorticity of the rotor and stator blades induced by the two-

dimensional cascade aerodynamic interactions studied by Kemp and Sears

(refs. 4 and 5). These noise models were for a ducted fan stage and

included, in principle, the transmission and reflection at the termina-

tion of the duct. Tyler and Sofrin (ref. 6) reported upon similar,

althrough less detailed, work, e.g., no explicit source modeling, in

1962, and a year later Hetherington (ref. 7) reported upon a source

modeling scheme essentially the same as that used by Slutsky (whose

work did not receive general notice until much later). Griffith (1964,

ref. 8) added randomness to the phasing considerations in the blade row

interaction tone noise generation processes and Hulse, et al. (ref. 9)

added similar, although less detailed, considerations to the Gutin-type

of free-rotor tone noise mechanism. At this tine Lighthill's (ref. 10}

theory of aerodynamic noise, and Curie's (ref. 11) extended version,

began to be applied to the problem of the analytical modeling of the



tone noise generation by fans and compressors, particularly by Lowson

(refs. 12 and 13. Ffowcs Williams and Hawkins (ref. lU) advanced an

argument based on the Lighthill theory for a tone noise generating mech-

anism for a fan or compressor rotor that was neither a surface dipole or

monopole, but a fluid volume quadrupole. They did not, however, develop

the idea into a working analytic model. Wright (ref.15) and Morse and

Ingard (ref. 16) developed working models for tone noise generation by

free rotors in steady nonuniform flow using time-dependent Gutin-type

dipoles, and Lowson (ref. 17) added to these models the element of non-

steadiness in the nonuniform flow at the rotor (see Griffiths and Hulse).

Pfenninger (ref. 18) gave physical insight to the problem of tone noise

generation by turbofans in non-steady, non-uniform inflow conditions.

By employing an interesting combination of Griffith's and Pfenninger's

ideas, Hanson (ref. 19) has recently advanced a model (without explicit

source modeling) for computing the complete spectrum of sound radiated

by a free rotor with turbulent inflow, and a similar blade row inter-

action model (refs. 19 and 20, with explicit source modeling). Detailed

source modeling for the tone noise generation by a ducted rotor in uni-

form flow is being investigated by Lordi (ref. 21) while Drischler

(ref. 22) has computed pressures in the duct of a ducted propeller using

a Gutin-type dipole model for the blades. Schaut (ref. 23), in using the

Morse and Ingard radiation model for a free rotor, modeled the blade

pressures after the design profiles.

1.2 Present Work

It was the purpose of the present work to develop an analytical

procedure and a set of computer subprograms for computing the sound pres-

sure at the harmonics of the blade passing frequency which is radiated

from an axial flow compressor or fan stage in an infinite, hardwalled

annular duct. The problem is presented in the form of a boundary value

problem to which approximate solutions are adapted from the published

literature on the aerodynamics of thin airfoils. The radiated pressure

in the duct is most conveniently expressed in terms of an eigenfunction



expansion, with the coefficients of the expansion determined by the

pressure on the fan rotor and stator blades. By the familiar process

of linear analysis, these coefficients then can be used as inputs to

problems involving a large variety of ducts. Zorumski (ref. 24) has

recently proposed a very extensive and systematic scheme based on mode

matching techniques, which utilizes these infinite-duct coefficients

as the elements of an input, or known, vector in an inhomogeneous matrix

equation wherein the unknown vector is the set of coefficients for the

pressure expansion in the eigenfunctions appropriate to the section of

duct contiguous with the inlet or exit of a finite, multisectioned duct,

which, when known, allows the computation of the far-field pressure out-

side the duct (see, e.g., Slutsky [ref. 3], Lansing [ref. 25], and Clark

[ref. 26]). The inverse of the matrix multiplying the unknown vector

represents the multiple transformations which the pressure expansion

coefficients undergo between the duct section containing the compressor

or fan, and the section contiguous with either the inlet or the exit.

It was, in part, to supply computer subprograms for computing input

vectors to this matrix equation that the present work was performed.

Examples of this matrix equation in the present context can be found

in Zorumski's report and Lansing and Zorumski (ref. 27).

The models considered include the blade row interactions of Kemp and

Sears and the rotor alone in steady and quasi-steady nonuniform inflow.

The computer subprograms have been coded in standard FORTRAN for a CDC

6600 scientific computer. They have been designed to compute the non-

dimensionalized, infinite duct coefficients, or mode amplitudes, for

the eigenfunction expansion of the radiated pressure for each of the

models. Since these are subprograms and their outputs are intermediate

results in the computation of the radiated pressure, a user must supply

a main program for computing pressures from the expansion coefficients.



2.0 ACOUSTIC THEORY

This analysis is based upon the linearized theory of compressible

fluids, thus restricting the applicability of the results to lightly

loaded blades and to subsonic subcritical relative flow velocities.

Some of the tone noise characteristics of modern transonic fans, e.g.,

the "buzz saw" phenomenon, are, therefore, excluded from consideration.

It is assumed that under these conditions the most efficient discrete

frequency sound-generating mechanism is the scattering into outgoing

pressure waves of flow perturbations which appear to the turbomachinery

blades as unsteady velocity disturbances. Since a perturbation-free

flow is difficult to achieve under the best of conditions, this mechanism,

it seems, will persist into the flow regimes in which, presently, dynamic

calculations cannot be made. Under linear conditions, the strengths of

the outgoing pressure waves are proportional to the strengths of the

velocity disturbances at the fan rotor and/or stator faces. The analysis

consists of determining the transfer function for general velocity dis-

turbances and then identifying and describing the velocity disturbances

which occur in the operation of ducted turbomachines. Although little

work has been done in the determination of the transfer function, even

less has been done in analyzing and describing these velocity disturbances.

To obtain the transfer function requires doing two things: solving

the convective wave equation with a dipole singularity as an inhomo-

geneous term, and then solving for the induced dipole distribution that

is required to cancel out the incident velocity perturbations that are

normal to the rotor and/or stator blades, which are taken to be thin

airfoils. These are discussed in this section, leaving to the next

section the details of the tone noise models that result when the

incident velocities are specified.

2.1 The Acoustic Propagator

The geometry of the problem is depicted in figure 1. The mathemat-

ical conventions and the nondimensionalized form of the linearized fluid

4
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equations are presented in appendix A. The governing equation for the

linear pressure variations in a fluid with uniform mean flow velocity,

M, parallel to the positive z-axis of the coordinate system, that results

from the presence of a dipole of strength -F(t), orientation

e = and position rs=y s' *s,zs? is

-D_P(r,t) = F(t)e-vr 6 (r - r )c s s

(2.1.1)

whereD is the convective D'Alembertian,

_/_! 4*1 _1\2 1 _i - _i _1
~lat azl p 9p p ap p2

(2.1.2)

,2 .2

2 2

and V is the gradient with respect to the s-subscripted coordinates.
S

If a solution to the simpler equation

-D r(r,r ,t-t ) - 5(r-r )6(t-t )
C ° ° 0 0

is found, then the solution to equation (2.1.1) is

(2.1.4)

In this report r will be referred to as the acoustic "propagator,"

a descriptive word often used in similar contexts in elementary particle

physics, e.g., Feynman (ref. 28). It satisfies causality but, in this



case, not reciprocity, so that it is not a Green's function in the com-

monly accepted sense, e.g., Morse and Feshbach, chapter 7 (ref. 29).

For equation (2.1.4) to hold, T must satisfy the same boundary conditions

as does p. These conditions are that the normal gradient of p at the

inner and outer duct walls should vanish,

p-i, P=n,

and that only outgoing waves should exist. The problem is simplified

by defining the temporal Fourier transform of T by

A co

T (r,lco,w) = / T (r,ro,T)e
la)TdT (2.1.6)

and the "generalized Prandtl-Glauert" transformation by

_i Mo)(z-zQ)

(2.1.7)

where to* = .—VL

(2.1.8)

and 7* = |p,(*),z*}

* z

with z =

(2.1.9)



Then the equation y must satisfy is

V2Y + u,"Y- 6 <?"-?;)

(2.1.10)

with the boundary conditions that

A

-*• « o at p«i, p«n,

(2.1.11)

and for |z-z -»• «°, a » constant,s

(2.1.12)

This last condition is the statement that if the fluid is considered

to have a small absorptivity, equivalent to letting o>* have a small

imaginary part, then the pressure decays exponentially away along the

axis. However, when the absorptivity is neglected, Im(u>*) » 0, then at

least a part of the pressure does not decay for Jz-z [•»• <*> (neglecting,

of course, all other absorption mechanisms). It is convenient to solve

for Y as the sum of a particular integral to the inhomogeneous equation

neglecting the presence of the duct walls, with the general solution to

the homogeneous equation, and then adjust the undetermined parameters in

the general solution to satisfy the hardwall duct boundary conditions.

This is done in appendix B, from which equation (B42) is found:

Br t po« <z* -
m=-ao nan

8



with the definitions as given in appendix B. This result could be re-

ferred to appropriately as the Prandtl-Glauert space Green's function.

The acoustic propagator is, then, from equation (2.1.7):

m
(v P)<« (v P )-»0 m nn m ran o

with

(2.1.14)

1-M

/
2(z-z

/1-M2
j / * * *\
dmn(z ~z o*u

- e

"*u Z—Z
i 2 °
e 1-M
2i$

mn (2.1.15)

where

3 = \(i)2-(l-M2)p2mn ran
(2.1.16)

and 8 has the same properties as a function of to that s has a func-
mn mn

tion of u* (see appendix B), but with different branch points.

An alternative way of expressing D is
mn

D = D+ + Dmn mn mn (2.1.17)



with +
~+ lKmn(z-z )
D~ - E(±(Z-Z )) — - °— (2.1.18)

mn o 2ig
nm

e(X) =
to,X<o (2.1.19)

, + mn
and K =

I'M (2.1.20)

This makes explicit the distinction between downstream (+) and upstream

(-) propagation.

Finally, the time-dependent propagator is given by

Hl>o)

n ~ ~m (2.1.21)

with

2TT
m

27T
—OO

D+ + D-
mn mn (2.1.22)

and

10



This result follows from the discussion in Morse and Feshbach, chap-

ter 2, (ref. 29), on the Klein-Gordon equation and the elastically braced

string. This reference also is useful for understanding how the chan-

neling by the duct walls results in the fluid being a dispersive medium

for acoustic propagation. Otherwise, this result for D can be found

by converting the Fourier inversion to a Laplace inversion for causal

functions, and looking up the result in a table of Laplace transforms

(e.g., equation [29.3.92], p. 1027 of Abramowitz and Stegun, ref. 30).

2.2 Radiation from Dipoles in Ducts

The solution to equation (2.1.1) for a stationary dipole (re

independent of time) is, from equations (2.1.4) and (2.1.14),

°°
p(r,T) = f P(r,o))e:Ui) duj

2it J

where

p(r,oj) = F(u))e-v" r(r,r ,

1

2lT

00 OO

m n=o
(2.2.1)

e(z -z)A-(u>)e
s mn

iKmnz 1 <R
m(ymnp)e

imij)

with

A±
mn = -F(u)

m• g ~f~K— e
"s <f mn z

mn
« (y P )e"i(

m mn s
m<t> + K± zYs mn s

(2.2.2)

11



These are the downstream or upstream mode amplitudes for a station-

ary dipole source. Since F(t) is a real function, it follows from the

definition of 3 (see the discussion of s in appendix B) that A~ (co)
mn mn mn

has the symmetry property

(2 2 T>+ m \ *••*.» j/
A ± (-0)) = (A± (to)) • (-1)
-mn mn

allowing negative frequency mode amplitudes to be known in terms of

positive frequency mode amplitudes. This symmetry guarantees that

p(r,t) is real, and

CO »- -i

P(r,t) = -i- f2 REAL p(r",u))e
iait du

. (2.2.4)

When the same dipole is rotating at the constant rotational fre-

quency fi while maintaining its orientation with respect to the local

cylindrical coordinate triad, its position vector, r , becomes time-
S

dependent,

r
s

with

j> (t) = nt+£-2lT,£, = -OOJ...Q,..., +00 (2.2.5)
s

where H is the revolution counter and !j> is the angle coordinate of the

dipole for £ = 0 and t = 0. Then,

(2.2.6)

12



and the pressure field of this rotating dipole is given by

P(r , t )
-»•-»• -*•->•
e-V F(r ,r ,t-t )o ' o' o dd) d tp« = P~ ° °

z = z
o s

oo oo

2TT
(y p)ft (y p )e

m mn mv mn oy
im<t)

m=-°° n=o

09 00 27T

* F-e, ^ D (z-Zc,,t) + ̂ .n^-'s'0

I * PS mn ~VZ
 ez]•"

(2.2.7)

The evaluation of this expression is performed in appendix C. The

result is, for the pressure spectral density downstream and upstream,

(±), respectively,

00 00

p ( r , w ) = mn mn

13



with

A± (u) = -F(u-mn)
mn

"m
p e<J> +K± e

s mn z
28

mn
fi (p p )ei(

m mn s'
[m(j> + K± z

mn s

(2.2.9)

The same symmetry property prevails, as it must, but there are two

differences from the mode amplitudes for a stationary dipole: <£ is the

angle coordinate for the dipole location in the reference frame rotating

with the dipole, and the dipole spectral density is shifted differently

for each spinning mode (m is the spinning mode index).

The pressure field of a stationary surface distribution of dipoles is

the sum of the individual dipoles associated with each infinitesimal

area of the surface. Letting

F(u)-F(p s» (2.2.10)

be the dipole surface density spectral density, where it is assumed that

the surface extends from the inner to the outer duct wall and for each

radius the lateral extent of the surface projection onto a duct cross

section is sufficiently small so that a straight line can replace the

arc (see fig. 2). The surface can then be taken to be made up of dif-

ferent straight line segments having projections on $ and z, but not

on p which are strung together from inner to outer duct radius, i.e.,

a fan blade whose surface is, at each span segment, approximated by its

chord line. If e = lo, e , e 1 is the unit vector normal to the surface

for a given radius, then the local rectangular coordinates are {, f ,

where (see fig. 2)

5 - -p <fi' e + z '
s z

^s <(>

p $ e
ST S <

+ z
8 Z (2.2.11)
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and

(2.2.12)

With M.C.

Zs = ZM.C.
(2.2.13)

where <j>
"

are the midchord coordinates at the radial station,

p . The phase factor in the expression for A~ in equation (2.2.2)
s inn

becomes

= e 1.2.14)

when evaluated at f = 0, i.e., on the chord line. Hence, the mode ampli-

tude to be used in the expansion for the pressure radiated by this dis-

tribution of dipoles is

A±
.. ., 4- K± z
M.C. mn M.C.

23ran

e. _E +• e K±. _
<)> p z mn <R Pjm mn s

c/2

/
-F(ps

-c/2

m .
b'PT ez >

s (2.2.15)

with c the lateral extent of the surface at the radius, p , i.e., the
S

chord of the equivalent blade segment. When there are N such surfaces

equispaced about the annulus with the same z „ but withr*i. L» •

(2.2.16)
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and

F — Fj>

then

N-l

-1 j-o

with 5 ' - e/c/2 and

Similarly, for a rotating set of surfaces

mn ' 26 ' ' '" * "^ 2 « m mn

mn

(2.2.17)

(2.2.18)
mn
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* £ 1 N-l . 2TTJ_
/• / -̂» -itn-ĵ - A

j=0

j. mn j f i j C ? 7 14")*e d£ dps \.f.,i.»i.j)

2.3 The Dipole Surface-Density Function

The dipole surface-density functions are the pressure difference

functions of thin airfoil theory and must be determined from the condition

that the normal velocities at the airfoil surfaces vanish. When the blades

comprising a fan or compressor blade row are unstaggered, flat plates, a

precise formulation in terms of a set of integral equations can be made

(see appendix D). A similar formulation for a blade row which performs

a net turning of the mean flow is as yet unavailable (see Atassi and

Goldstein, ref. 31, for a linear formulation for the unsteady lift with

finite camber and angle of attack of a single two-dimensional airfoil).

It was not, however, the intention of this work to develop this formula-

tion and seek solutions within it. The intention was to recognize the

basic requirements for such a formulation and seek means of approximately

satisfying these requirements. The basic requirement is that the incident

velocity perturbations normal to the blade surfaces should be cancelled

by the induced velocities of the ducted blade row. The approximations

to the satisfaction of this requirement are determined by the available

aerodynamic calculations and the form of the result of these calculations.

It is desired that the result be in the form of known mathematical func-

tions or numerical routines the evaluation of which is not much more

cumbersome than the evaluation of known functions. A further require-

ment is that the approximations should be consistently employed. The

approximation used in this work is that the incident normal velocities

are cancelled by the velocities induced in an incompressible fluid

neglecting three-dimensional effects, the presence of the other blades

in the row, and the duct walls (see appendix D). In particular, the

calculations of Sears (ref. 32), Kemp (ref. 33), Horlock (ref. 34),

Naumann and Yeh (ref. 35), and Filotas (ref. 36) are used. The mean

18



flow conditions are assumed to be those through the staggered row (see

fig. 3). The general form for the dipole surface-density function is,

then,

(2.3.1)

where:

ML, = mean nondimensionalized velocity through the row,

u. = spectral density of the normal velocity perturbation
t~v»

incident on the j blade

1 "
— H = nondimensional dipole surface-density response function

for convected, harmonic gusts

Of the models to be considered, only the potential field blade row

interaction model does not make use of the assumption that the incident

velocities can be taken to be "frozen-convected gusts." Under this
/«.

assumption, u. (p , z , u) is taken to be independent of £', i.e., its
j s s

variation over the chord of the airfoil is negligibly small and z - z ,
S M • 0 .

or some other appropriate value such as the axial coordinate of the

point on the airfoil one-quarter chord from the leading edge (see Sears,

ref. 32). The item L/ a is the slope of the steady lift versus angle

of attack curve, which for a flat, two-dimensional airfoil is 2ir. The

use of ̂ L/"01 instead of 2-rr arose from the quasi-steady lift consider-

ations : if low-frequency sound pressure is proportional to the section

unsteady lift, and

I I H (ps 5',u) d5' — 1,
•x

-1
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3

FIGURE 3. - MEAN FLOW THROUGH STAGGERED ROW

20



then

«..£

with -
6ct ** —

where :

<SL = section lift variation

<$a = angle of attack variation

21



3.0 MODELS FOR TONE NOISE GENERATION

The four models discussed in this section are referred to as the

viscous wake interaction model, the potential field interaction model,

the rotor in steady distortion model, and the rotor in nonsteady dis-

tortion model (or the "single eddy" model). A model consists of de-

fining the u in equation (2.3.1) along with appropriate H. Lifting-
i

line models result when the K~ in the chordwise integration is takenran &

to be zero. The potential field interaction model is a lifting-line

model, while the other models include the lifting-line assumption as

an option. Assuming a lifting line is equivalent to assuming the blade

is a chordwise compact acoustic source. It is felt, in turn, that a

first order model for a chordwise noncompact airfoil is achieved by net

setting K~ equal to zero. Higher order estimates will include com-

pressibility in the dipole surface-density function, which means

including the effects of the other blades in the row and the duct walls

as well as the propagation of pressure waves from one part of the air-

foil to another.

The specific results of each model will be an analytical procedure

for computing the mode amplitudes of the pressure radiated by a single

component of a fan stage, i.e., equation (2.2.17) or equation (2.2.19),

with a specification of the chordwise integral

(3.0.1)

or, in the lifting-line models,

4.1 J-

E N A

L (PS'") (3.0.2)
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where
j_

t AL (p (o) - Y / F, <P_,£',">) d?'
TI (3.0.3)

3.1 The Viscous Wake Interaction Model

In an ideal axial flow fan or compressor stage, the inlet flow and

exit flow are axial. To achieve this requires at least two components —

a rotor and a stator. Viscous wake interactions occur when a rotor cuts

through the viscous wakes from the blades of an upstream stator and when

the viscous wakes from an upstream rotor sweep by the blades of a stator.

These possibilities are given a two-dimensional cascade representation

in figures 4 and 5. Consider first the inlet stator-rotor configuration

(fig. 4). Since the wake defect will be known in the primed coordinate

system attached to the inlet stator blades, it is necessary to determine

the transformation from this coordinate system to the system attached to

the rotor blades (the "bar-primed" coordinates of fig. 4). This trans-

formation is (subscript 1 is for upstream row and subscript 2 is for

downstream row)

Z' = Z' COS 0 + Y' SIN B + d COS ip + UtSIN i|i

_ (3.1.1)
Y' = Z1 SIN B + 7' COS 6 - d SIN ty + UtCOS ip

Then the coordinates for the £ wake in the j rotor blade

coordinate system are

Z\ . = "Z" . COS 3 + Y1 . SIN 6 + d COS ip + UtSIN ifi + ( j b^-JlbJ SIN \|»
*3 3 3 ^ -1-

Y' . =-Z' . SIN 3 + Y' . COS 0 - d SIN ̂  + UtCOS iji + ( jb - £b,) COS ty
* 0 3 J ^ 1

(3.1.2)

where all the symbols correspond to those used in figure 4 and '•
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U = MTP

FIGURE 4. CASCADE REPRESENTATION OF INLET STATOR ROTOR COMBINATION

U = MTP

FIGURE 5. - CASCADE REPRESENTATION OF ROTOR OUTLET STATOR COMBINATION
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u =
rotor blade nondimensionalized speed equal to

rotor blade tip nondimensionalized speed

g = relative stagger angle, y + $>

Y = rotor blade row stagger angle,

ij, <= exit angle of the stator row.

If N, is the number of blades in the upstream row, the stator row, and

N_ is the number of blades in the downstream row, the rotor row, then

b1 = 2irp/N

and b2 = 2irp/N2 (3.1.3)

Representing the wake defect velocity behind the I stator blade

in the j rotor blade coordinates by W and assuming it can be
*J

developed in a double spatial Fourier integral, then

(KY 'IHJ

and the velocity due to all the stator blades is

Jl=-oo

(3.1.5)
<X> 00 . ,ro i fKY' 4- X7' )

dK = TT^ V £i £i;
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(3.1.5) cont,

IK -Z' . SINB + Y1 .COSg - dSINiJ; + UtCOSij
3 J

IX Fz' .COS0 + Y' .SINg + dCOSiJj +
*e L J J

i|KCOS* + ASINij; Jb
*e L J 2

it-i£b KCOSiJ) + ASINij

From the Poisson sum rule

Mid I
1

2TT

(3.1.6)

so that the velocity at the surface of the j rotor blade is

oo 7ff, - b2 7 ., dTANij;ZTrinj —- -Zirin ,

j j b COS*
n=_oo

(3.1.7)



(3.1.7) cont.

d + Z' . COSy

COS4,
a.

,X\e C°S*

_ If the stator wakes do not decay too rapidly along Z1 , then

W(K,A) will be concentrated in a narrow bandwidth about A = 0. Then,

if i|) is not close to ir/2 the tan <Jj term in the K-dependence of W can be

dropped, giving for the X integral,

d + Z~' . COSy

(3.1.8)

where Z1 is the same for all blades and is the distance from the stator

midchord to the axial plane cutting through the rotor blade quarter

chord (see the discussion after equation r.2.3.1]) as measured along the

mean streamlines from the stator row (see fig.4).
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Then, when b-. and b~ from equation (3.1.3) are used,

N

lnN

• u
Wlth SIN* (3.1.10)

This velocity perturbation on the j rotor blade is thus a sum of

frozen-convected harmonic gusts, with u. given by

Uj = SINS

uu

/ W.j fe = o.ZJ = o\

(3.1.11)

\pCOSij>'
n=-»

M



This form for W, justifies the use of the pressure difference

function induced by frozen-convected harmonic gusts given in

reference 35 (see equation [26 lof this reference) for the nondimen-

sional dipole surface-density response function (with £'= - cos 9)

H (p ,5',u>) = S(v) COT |- COTs[aCOT!e
ivCOS0

s i \_ 2 (3.1.12)

CO

ivcosG( 0 A V^ k-1 )1
+f <F(v)COT j + 2 SING e + ̂  ^ i Jfc(v) SINk0>J

k=l

with the reduced frequency defined by

a) C2
v = v 2~ (3.1.13)

and S (v) is the Sears function

S(v) = -
™ (-H (2;(v) + iH.^7 (v)) (3.1.14)
2 0 1

and F (v) is defined by

= T(v) |J*(v) - -^—J - J(v) -<- -i-

with

(3.1.15)

J(v) = JQ(V) + iJj^Cv) (3.1.16)

29



and (3.1.17)

H(2)(v)

(2) (2)
and Hn , H^ are the Hankel functions of the second kind. The

chordwise integration gives the acoustic response function of the air-

foil span section

/*- "ilc £'
- / H ( p S ' , a > ) e mn d£' = S(v) J (<*
try s, mn
-1

t* J(v + <*mh
2 J,(v + <± )

* J ( v + t c ~ ) + f <F(v) J ' " + v . l m n
mn' I N ' " mn' v + <±

mn

v ^^ ic- ' Tk+1 ' :mn^ + J- - (<—
k=l

(3.1.18)

The section lift response is from (equation [27] of ref.35):

_i- /H (p , C ' , o j ) d£* = S(v)-COT g aF (v) + f F,-(v)
tr J s' [a f J
-1

(3.1.19)
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with

= J(v)
(3.1.20)

and

J,(v)
Ff (v) = F(v) + 4 -^— (3.1.21)

In these formulas, c* is the small angle of attack (in radians) and

f is the ratio of maximum camber of a slightly cambered airfoil over the

half-chord length (see fig. 6).

Combining these results with equation (2.3.1), the chordwise inte-

gration in equation (2.2.19) becomes (with tt - M )

-iK± e-
a mn dC1

2 da 2M p COS,/, \ Ps s
n=

-inN ——™ i /* ̂
*e 1Ps - / H <P<|t5

f.»-
ir y s

N2 nN -m

(3.1.22)

(See appendix E for a discussion of the d-dependent phase).
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The sum on j can now be done:

N -1 nN.-m
£m f\ • -̂ -J -

!

N~, FOR nN - m = -aN a = o, ± !,*••
1 Z' (3.1.

o, otherwise
(3.1.23)

and gives new form for the right-hand side of equation (3.1.22), where

n •*- A to avoid confusion with the mode amplitude n index,

R.H.S. -
P 2 da 2M

SINg
COS* p COS*

S

(3.1.24)

-i£N
dTANij

1 Ps 6 (uj-aN M ) S(v mn

-cot 3
,

a J (v + <±
I 2J. (vo + K*

+ f JF(vA) J(K± ) + __! - * -
I * m n V O + K +

^ mn

, m-CTN2

with

v. = £N.a i (3.1.25)

where V is approximated by M9M, and 3 by the sum, Y + ^ (see fig. 3)
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There remains to be defined the wake defect in terms of the primed

coordinates of a typical stator blade, W(Y', Z') , in order to get

W (K,Z') =W(Y',Z?) e~iKY'dY' (3.1.26)

The choice is made to use the empirical formulas of Silverstein,

et al - (ref. 37):

W ( Y ' . Z ' ) = W Q (Z ' ) COS2 (TT II ) (3.1.27)

where

1.21
W (Z') = M,, _.

Cl

and Y (Z1) = 1.36JcTT C../Z' - 0.35 (3.1.29)
o \ Dl 1 v 7«

1

where."

C.
Dl = drag coefficient of the stator blade at p ,s

M
IE = exit velocity from the stator row at p

stator blade chord at p .
s



These formulas give for

KY
W Y SIN*

W ( K , Z ' ) = ° ° -.p- . ^___ (3.1.30)
TT O

2ir

with

1-/KM

\2T/

W Y = M1r,oo IE V I - 0.15

ILL - 0 . 2 / * L - 0 . 2 \
ci vci ;

(3.1.31)

and K Y
0 = £

2TT 2irp COSiJi/Ns
(3.1.32)

from K = £ N 1 /p cos
•i- S

This completes the specification of the mode amplitude calculation

for the viscous wake interaction model with a rotor downstream of an

inlet stator. The final formula is

1

/ [*_ e. + K± e 1
J Lp

s * mn ZJ

iKmnZM.C. NJ
\± (U) - - 5 JL̂ . I |B_ e j + K ± e | fl ( p o)
mnv ' R 8 /IP 41 mn z m x mn s7

pmn ^ I^- I

M2M M1E SIN6 A ( Z ' )
da p COS \1»

s

dps * <M-°M21S> (3.1.33)
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with

= m -

e = COSy (3.1.34)

e = SINyz

Ao = 1'65 CD1 t/ Z^ T^2 \2 (3-1'35)
U m / A _ _ 0 . 2 /I 0.2X/

SIN

Y / Y \ 2
O 1J_—

6

Y \
_° \
6 /

SIN B = W^T~ \'M2M - M2z + >M1E - M2Z / (3'1-38)
M2M IE \ ^Z lt< /Z /

(see fig. 3) and,

J (K± ) - COT B a J (v. + K1 )mn £ mn

mn vn + K±
i- mn

2
t

j=l

, c +1 .v. - J * ( J+1 mn7 J , <K± )}}-l mnMJ

(3.1.36)

2irp COS ijj
6 = (3.1.37)

(3.1.39)

+ f ! F V ) J <+ + 2 Jl (V£ + K"n)



The computer subprogram AAAAA (see section 3.1.1, volume II)

computes the factor multiplying the frequency spike,

6(to - 0 , for uj in the propagating region.

With subscript 1 referring to the upstream TOtor and subscript 2

to the downstream stator , the same development for the viscous wake

interaction model with a rotor and an outlet stator can be made, and

gives for the mode amplitude

"lKSn ZM.C. N.N.N. f
i-2 /
8 -/ i- s

(3.1.40)

M M2M 1E PsCOS

Gmnadps

where:

e. • - COS

e - SINz

and with the restriction that

o >
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AQis given by equation (3.1.35), A^ by equations (3.1.36) and (3.1.37),

with »o , and G is given by equation (3.1.38) with
nine

M
2M
 2 (3.1.42)

The computer subprogram AAAAA computes the factor multiplying the

frequency spike for w in the propagating region.

3.2 The Potential Field Interaction Model

In the close vicinity of a blade row, the potential flow field is

not uniform. This is due to the noncontinuous distribution of the aero-

dynamic forces that are exerted by the blades onto the medium. If an

airfoil moves through this nonuniform flow field, it will experience

unsteady lift forces. In this section, we are concerned with the inter-

action of a blade row with the potential flow field of another blade row.

The analysis is based on the formulas developed by Kemp and Sears

(ref. 4).

The following assumptions were made to compute the induced veloc-

ities at an airfoil resulting from the potential flow field of all the

blades of an adjacent blade row.

The flow through a rotor-stator combination is represented by

nonviscous, incompressible flow through a two-dimensional cascade.

The airfoils of both blade rows, the velocity inducing and the

lift producing, are represented by vortex sheets.
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The steady vorticity representing a blade is located on a straight

line, that is parallel to the mean flow velocity through the

cascade and that has the length of the local blade chord.

Only the unsteady lift forces resulting from the relative notion

of an airfoil through the potential flow field of the steady vort-

icity of a blade row are considered. All unsteady lift forces

resulting from secondary interactions are neglected.

Only the transverse component of the induced velocity is considered

in the computation of the unsteady lift.

Four different interactions are possible between the potential

flow fields of a rotor-stator combination:

1) Rotor downstream of stator, unsteady lift induced at stator

2) Rotor downstream of stator, unsteady lift induced at rotor

3) Stator downstream of rotor, unsteady lift induced at rotor

4) Stator downstream of rotor, unsteady lift induced at stator

The analysis will be summarized for the first case, then the

equations xtfill be generalized so that they can be used for all four

interactions. In reference 4 the following equation was derived for

the induced, unsteady velocities at a stator blade located upstream of

a moving rotor blade row:

J. -± e ioN0M t
L P e

1 o-l
(3.2.1)

'1 0=1
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with

C1N2 ~iYl Q= -£-+ e Q0,2e

-o

Qo.2 - Jo 2p 2

(3.2.2)

l(f-Y0

(3.2.3)

r2 - » c2 \ 2
2 2

Ao+Al (3.2.4)

N2 Mt (3.2.5)

U - = 0 N e
0,1 2 p (3.2.6)

where:

Y

c

d

"M

temporal frequency

complex frequency of the chordwise velocity

distribution

stagger angle

chord length

midchord plane separation

mean relative flow velocity
th

A = Glauert coefficients of n order
n
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Index 1 = stator parameter

Index 2 = rotor parameter

The Glauert coefficients are the coefficients used in the series repre-

sentation of the steady vorticity of an airfoil introduced by Glauert

(ref. 38).

The geometrical relationships upon which these equations are based

are shown in figure 7. The unsteady, induced velocities described by

equation (3.2.1) are characterized by two properties:

1) They decay exponentially with increasing distance from the source

2) They are not medium bound and can, therefore, move at speeds

different from the medium velocity.

For these reasons, they cannot be treated as frozen convected gusts.

Equation (3.2.1) defines the induced velocities only along the chord

of the zero stator blade. A small modification of the term g 1 will0,1
make it possible to compute W ( z , t ) at any point of the stator flow field.

C N

I
(1i

pM ? -ir C2 M P
tan Y -i cos y

i M< 2

(3.2.7)

The term g 1 can be modified using the following approximation
o, i

-tanY-, =tan Y91 2 M c 0 s YM,l

(3.2.8)
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b-| = 2ffp

K = 2
Inlet stator Rotor

FIGURE 7. - CASCADE REPRESENTATION FOR THE POTENTIAL FIELD INTERACTION
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— N, e
2p 2

Ho, 2 e (3.2.9)

For the computation of the unsteady section lift we need to knoxv

the induced velocities at the midchord point. For the zero stator it

is

ioN_M t
3 a f. t

(3.2.10)
o-l

The midchord plane is defined by the relationship

TAN (3.2.11)

and the induced velocities at its location are defined as follows:

8n 1 e0,0.

z' ,/!_ Y \
iaN I! e V2 X/ i(i)

a ifc

o-l

Y! e -zle
-* e

a=l

iaN2 L_^ iuj . t
' p cos Yi o,1

e -e
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W i t h the following definition of the. blndo separ.-it ion distance,

the induced velocity at the midchord of the .j blade can be computed

27r

cos Y,

O.2..H)

-iaN0 -r-

7TC,

0=1

(3.2.14)

In reference 4 it is shown that for the transverse gust velocities

described by equation (3.2.1), the lift response function 1C assumes

the following form:

v, =

(3.2.15)

(3.2.16)

M Cl Cl :

xi = TM~- = N2 IP" ° e

(3.2.17)
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where:

1 = reduced frequency

A. = reduced complex frequency of chordwise velocity

distribution

J^.J, = Bessel functions of the first kind

(2) (2)
H v ,H1

V ' = Hankel functions of the second kind

Knowing the lift response function and the transverse gust velocity

at the midchord point, the unsteady section lift can now be computed:

The Kemp-Sears lift response function is referred to as 1C . If the
J_t

imaginary part of \, is equal to zero, and if the real part is equal

to v,, then 1C becomes the Sears function. If the imaginary part of

A, is not equal to zero, it increases proportionally to a and IL ,

then diverges for large values a because of the character of the

Bessel functions. But, even then will the unsteady section lift assume

finite values. This is due to the exponential decrease of the term

g n with increasing values of a. It can be shown that the section lift
o, I
remains finite for large values of a, if the following restriction is

satisfied:

<d (3.2.19)

which indicates that the two interacting blade rows do not overlap, thus

allowing relative motion.
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If the amount of turning ±s small in each of two interacting blade

rows — that is, if the relative inflow and exit flow angles of a blade

row can be set equal to the stagger angle — then A., can be approximated

by the following equation:

1. + i cot

l. + tanY2 cot (3.2.20)

In this case, A., is, therefore, only a function of v, for a given

combination of stagger angles. In figure 8, Kemp-Sears lift response

functions are shown for three different combinations of stagger angles.

Due to the convention (see appendix A) used for the Fourier transforma-

tions, the complex conjugate of the section lift computed in equation

(3.2.18) will be used in this analysis and the summation over a is

modified to extend from -» to +°°. The new formula for the unsteady

section lift is therefore

L.

ioN,
(3.2.21)

G , K , e

with

K

FOR v , > o
0,1 -

FOR v , < o

(3.2.22)

FOR o > o

FOR a = o

FOR a < o

(3.2.23)
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Y

7R = 15'

K =

TR = 90

Inlet stator-rotor interaction

unsteady lift response/of rotor.

Tp = Rotor stagger angle

Tig = Inlet stator stagger angle - 45°

T(S = Inlet stator stagger angle — 45
7p = 90° gives Sears function

u = Reduced frequency

FIGURE 8. - KEMP-SEARS LIFT RESPONSE FUNCTION
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Since this is a lifting-line model, equations (3.0.2) and (2.2.17)

will be used to compute the mode amplitudes. Therefore, the temporal

Fourier transform of L.(p>t) has to be determined.

L (p,o 4ir \ da 1 a,l a,
f Mv-

J

dC
G , K , e
0" 1 O" J.» >

(3.2.24)

N.-l . 2n^
1 -ua — r2\l /dCT

j=o

N -1

j=o

.- . , „ V ̂ M
1 -x (m - ON2)-

1 _

(3.2.25)

= AN £ = o,±l,±2,'

o OTHERWISE

(3.2.26)

(3.2.27)

The duct mode amplitudes can now be computed using equation (2.2.17).

Nl~ -im-iK± Z.
mn r

A±
2g
mn

K± e
P mn z

1 ft
j

L.(p,u)dp
J

J-o
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-1K± Z
mn M.L.

A±
mn mn

+ K± ep mn z

•<R ('.M Pi 5 (w i~w 1 dpm I mnJ I a, 1 / (3.2.29)

with -i
C, -ON_ -

,-, _ 1 M _ i p
» i ~ "^— N^e

aN? i — tan
C2 Mt

"KA

(3.2.30)

K . - |Kfa,l

MtN2Cl

\ I
, 1H

(3.2.31)

X , =» N0 -r- a ea,l 2 2p

(3.2.32)

(3.2.33)

The equations for the other three potential flow field interactions

possible in a rotor-stator combination are summarized in appendix F.
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The computer subprogram AABAA (see section 3.1.2, volume II) computes the

factor multiplying the frequency spike in equation (3.2.29) with 03 in the

propagating region.

3.3 Rotor-Alone Models

A ducted fan will seldom, if ever, consist of a rotor alone, but the

velocity disturbances at the rotor can be separated, in principle, into

the component interactions and non-component-induced inflow distortions.

The latter are the disturbances considered in these models. An exit stator

will straighten out the flow so that upstream and downstream of the stage

the flow will be axial. The inflow disturbances can be categorized as

being either steady or nonsteady distortions. Steady distortion can

occur under different conditions including for the fan stage of aircraft

engines all conditions in which the air enters the duct inlet at a rel-

ative angle of attack, and the distortions which result from the inlet

and duct contours. Under static engine test conditions such distortions

can result from ingesting the persistent nonuniformities in the air

characteristic of the facility. Nonsteady distortions can be further

classified according to their duration at the rotor. The classification

parameter might be, for instance, the duration of the distortion times

the blade passing frequency of the rotor. Steady distortions then lie

at one end of this parametric scale, while small-scale turbulence lies

at the other end. To have well-defined tone noise resulting from the

distortion, the parameter must be, from purely intuitive reasoning,

greater than unity. One possibility for the occurrence of distortions

in this range is atmospheric turbulence, whose eddies can be stretched

as they accelerate into the duct (for low-speed flight or ground static

testing); see Pfenninger (ref. 18) and Hanson (ref. 19). It is a

particular representation of this possibility that is developed into the

model discussed in section 3.3.2.

Figure 9 illustrates the rotor blade section velocity triangles. As in

the component interaction models, the velocity disturbances must be

determined in the coordinates attached to the blades. This is done in
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appendix G for an unspecified distortion, use of which is then made in

sections 3.31 and 3.32 for the particular models.

3.3.1 Steady Distortion. — When the distortion is expressed as the

ratio of the deviation from the mean to the mean velocity,

M - M

M
W = -^ — - (3.3.1)

z

then, from equation (G19), with

iU
- K~"* M /• Nu. = MZ SIN Y > Wfc e

 J 6 (u + fcMU

Q —

Substituting this result into equation (2.3.1) gives, from equations

(3.0.1) and (2.2.19),

-iK± 2

mn M.C.
A± (to) = -

3 4mn
7 f [— e, + K± e 1
4 J [ps * mn ZJ

dC

V m n D ^ C

dCL - V^p > c -;-=• It, M SIN Y > W.G dps) da M z l_ j i mnx.

2 T T i ^ jN (3.3.3)
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The sum on j can be performed to give

if l-m = -aN,a=o,±l,±2,

o otherwise

(3.3.4)

The expression for the mode amplitude then becomes

Amn(w) ~ " B 4 / I p -A "mn-z| m^tan'

,_

c "dT "M \ SIN

with

£ = ra - a N
(3.3.6)

and

(3.3.7)

and G is given by equation (3.1.39) for this vp, M.. is used to approx-

imate V, i.e., y is taken as the mean stagger angle. All references to

subscripts 1 and 2 have been dropped since there is only the one compo-

nent under consideration, the rotor. The computer subprogram BCDAA
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computes the factor multiplying a frequency spike for 03 in the

propagating region.

This model is analytically similar in all respects but one to the

inlet stator-rotor mode of the viscous wake interaction model. The

exception is in the origin and specification of the velocity disturbances.

In the viscous wake model, studies had been made, data had been correlated,

and some theoretical ideas had been employed (Prandtl's mixing length

theory) to determine the empirical formulas for the wake defects of air-

foils (Silverstein, et al., ref. 37). Although much data has been gathered

on the steady distortion of fan duct inlets, no work known to the

authors has been published in which this data has been studied with the

view of deriving a general empirical formula for computing the velocity

distortion. In lieu of a sound theoretically or experimentally supported

procedure, acousticians have begun to develop rather crude empirical

models of their own in order to perform calculations. Wright (ref. 15),

Lowson (ref. 17), Lowson and Ollerhead (ref. 39), and Barry and Moore

(ref. 40) have investigated a "power law" for "blade loading harmonics."

That is, in the present language, they represented the velocity distortion

at a rotor disc in a Fourier series on the polar angle about the axis,

at some average radius, and assumed that the coefficients monotonically

decreased as Si , with £ the Fourier series index and q some positive

number [loading harmonics are actually velocity harmonics times lift

responses; see Hanson, chapter 6 of (ref. 19) for a discussion of this

"law"]. This model is included in the computational possibilities of

the computer subprogram BCDAA. It requires knowing besides the power,

q, the first harmonic coefficient of the cosine series, the determination

of which can possibly be determined from on axis microphone measurements

(see Barry and Moore), i.e.,

(3.3.8)

The other options in this subprogram include inputting the Fourier

cosine and sine series coefficients as determined by the user (a simple
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integration scheme Is supplied outside the subprogram for conputing these

coefficients frcin distortion data), and a simple analytical model, the

"ccne nodel.'! This model was part of a study intended tc clarify the

power lav.- discussed above and is given in terns of the fnr:.:ui:-

cos (?) - V(A P cos £-i)2-

(3.3.9)

where :

= ratio of maximum to minimum distortion. - i

A = span position of the maximum

When the coefficients of the cosine and sine series are input, then

(3.3.10)

and

w =_£ = W (3.3.11)

vrLth a.,, b the cosine and sine coefficients, respectively.

3.3.2 Nonsteady Distortion. — Reference is made to Pfenninger (ref,

18) for a discussion of the origin and occurrence of stretched eddies in

fan ducts. Hulse, et al. (ref. 9) put forth the idea of isolated

"patches" of distortion convecting through a rotor to explain some of

their results, and Hanson (ref. 19) has gathered some data relevant to

the occurrence of stretched eddies in fan ducts. This model puts into

an analytical form some of these ideas. In appendix G an expression for
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the velocity perturbation on a rotor blade due to the convection through

the rotor of a stretched eddy is developed; see equation (G23).

Substituting for u. from this equation into equation (2.3.1), there
J

results for the dipole surface density function the expression

dC

SIN Y W
zS, 2 TT M

COS Y W.

0) 4-
M

2 7T M

(3.3.12)

where W is the Z coefficient in the complex Fourier series represen-
Z/v

tation of the axial component of the eddy cross section at the radius p .
s

The cross-sectional profile of an eddy is time independent, the assump-

tion being that shape changes with z or z - M t are less significant

than magnitude changes. The term W is the £ coefficient in the ser-

ies for the circumferential component of the eddy cross section at the

radius p . Assuming the stretched eddy has cylindrical symmetry about
s

its own axis, then a reasonable choice for a cross-sectional profile is

the Gaussian (see fig. 10),

W W e
z

2a 2
+ R-2 p R COS - $\

(3.3.13)

and similarly for W.(p ,6 ) with W, and a,, where W ,W. and a ,a, are< p s s < J > ( p z s p z < j >
the maxima of the distortions and the "transverse length scales" of the

distortions, respectively. The location of the cross-sectional center
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(R, 4>

dc =

L, a

W (Z)

-dc) = location of eddy center C at t = 0

= axial position of C referenced to the rotor midchord plane

= eddy length scales

= axial eddy velocity distribution

FIGURE 10. - EDDY VELOCITY SPATIAL DISTRIBUTION AT TEMPORAL ORIGIN ( t = 0 )
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of the eddy is given by I R, $ I . This gives for W „(p )[ j zx. s

W , (
z i lV

p > = 2TTW e 2
a

z

(3.3.14)

with I the modified Bessel function of the first kind of order I.

Similarly,

Qv)

az

Expressions for A and A are developed in appendix G, equation (G22),

from which

+ £M_V 1 fu + "" x M 'C-

2ir M zV Mz V z

(3.3.16)

and

2irM diV Mz \ z

2M rM.C.

- I Tz
e 2 Z - (3.3.17)
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where:

T

L ,z'

= L / M
z/ z

= L,/M4>' z

= axial length scales of the eddy

= time at which the axial center of the eddy coincides

with the midchord plane of the rotor

Upon substituting these results into equation (3.0.1), the sum on

j gives

j=o

N if a-m = -oN, a = o,±l, ±2,

otherwise

(3.3.18)

Hence, from equation (3.0.1),

1 N-l 2ir

d?' -

I
2 c da

SIN cos

(3.3.19)
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with £ = m-aN. Substituting this result into equation (2.2.19) for the

mode amplitude gives

A± (ID) =
mn

-iK± z
mn M.C.

mn
(J=— 00

f [E_ e + K± e 1 fl /y p \
/ Jp <}i m n z j m I mn s i

dC. z V M
W „ SIN Y -r—-
zl 2irM

(3.3.20)

* V M
+ WA. COS Y ——-

<))£ 2TTM m-£,aN

j.

i J
-1

-1K± ^'
mn i ,1 d

This spectrum for the mode amplitude is two series of Gaussians

centered on the harmonics of blade passing frequency, with two-thirds of

the power of each bump within plus or minus 2ir/T and 2ir/T . For purposes
Z Q)

of computing a single mode amplitude for each harmonic, the Gaussian

"bumps" are replaced by weighted delta functions (see fig. ll).:

I (
z \ Mz
2-n M

3.3.21)
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f3M

id
-B B

(t) = e " i £ = T

2B = Filterbandwidth

FIGURE 11.- BANDPASS FILTER FOR TONES
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and
X

(3.3.22)

with

B a)'

E — I *•» T *" ' J . 1
, — \ —o—r: d uiz,d> / 2-n M_

(3.3.23)

1 /. A•̂ T T*-» / cos (-./ V z
-B

where 2B is the bandwidth of the filter used to define the tone and the

subscripts z and <j> refer to the z and $ components, respectively. The

frequency-dependent parts of A~ (ui) are then evaluated at harmonics of
mn

blade passing frequency, giving

1

,iKmnZM.C. r P I
=—s / — e, + K± e

P / I p A m n z I
mn J L s J

dCT
(R O p ^ c —ii M^ \ w SIN Y Ez

m Vmn sy da M

(3.2.2U)

! = / '+W.. COS Y E, \ -r / H ( P .^'.w-mH., 1 e<f a <f

-1 a*-
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with

= m - a N

Two methods are used to evaluate the chordwise integration of

equation (3.3.24). One is to employ the pressure difference function

of Naumann and Yeh (ref . 35) as was done in the steady distortion model

of section 3.3.1, giving

1

A± (u) = - 7-
mn 4

-iK± z
a mn M.C.

mn

„
— e. + K± e

<P mn z m

• c
1CL
da "M W . SIN -Y E • + W.

z£ z <} COS 7 E. „ran*.

CC-oo (3.3.25)

with G given by equation (3.1.39). The other method is to assume aniruc
lifting-line model with the lift response function developed by Filotas

(ref. 36) for oblique gusts, the assumption being that the radial varia-

tions of a compact eddy present to the blade oblique gusts made up of

harmonic gusts in the chordwise and radial directions. Following in

spirit the calculation "Distortion of Standing Wave by Strip" in

chapter 11 of Morse and Feshbach (ref. 29), for calculating the section

lift response of a three-dimensional gust, the blade is assumed to be a

two-dimensional airfoil. The radial variation of the incident gust is

decomposed into harmonics that travel up and down the span. These

harmonics combined with the chordwise harmonic gusts produce oblique

gusts at a given span position as required in the formulation of Filotas

(see fig. 12).
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FIGURE 12. - SCHEMATIC OF OBLIQUE HARMONIC GUST
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For this purpose the most significant radial variation in W and W
2 J6 y *f

is isolated, then the rectangular coordinate x is substituted for

p in this factor to derive the plane wave expansion. Since the most

significant radial variation resides in the Gaussian factor of equations

(3.3.15) and (3.3.16), the exponential and the modified Bessel function

tend to be inversely related; then

wz£(k)

oo
C
/

(x-R)2

~lkx
e dx

(3.3.26)

Similarly,

(3.3.27)

These results produce oblique gusts of the form

-ih (z' - Vt) SIN } - x COS ̂

(3.3.28)
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with

where, from appendix G,

v. = ^- — SIN Y£ 2 ps

(3.3.29)

and

\kc S (3.3.30)

Since the gust wave form used by Filotas is with T|> -»• -t|j and since

(see appendix H)

T f(h, ^),
(3.3.31)

it is the complex conjugate of the oblique gust response function that

is required here. Computing the section lift resulting from each k and

adding them up then gives

1

-1

_ psR

~ a2 /PgRv z h(-± )e~"V2:raz

1 2 2
-T a

z
k - (3.3.32)

^ Z T1 (h,ip) dk =
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REAL e
/•
/
y

2, 2

TT(h,ip)dk

Similarly, for W ^ J H (pg,5',a)-nM£)

with W, and a, in place of W a .<f> q> z, z

Substituting these results into equation (3.3.24) then gives the

mode amplitude by this method. Subprogram BBCAA computes the mode

amplitudes for to in the propagating region using one of two methods,

i.e., the factor multiplying the frequency spike in equation (3.3.25)

or that in equation (3.3.24) with the substitutions from equation

(3.3.32) and the u equivalent equation.

3.4 Numerical Considerations

Each of the models produce an expression for a mode amplitude which

can be written quite generally in the form

1

A±
mno

,-1K&A
28mn

/ I — e, + K± e IJ p ij) mn zj+ K± e ttmn z m mn

(3.4.1)

where a is the harmonic index specifying the frequency under considera-

tion. To compute all of the upstream- or downstream-propagating mode

amplitudes for this harmonic, the set of m's and n's for these modes

must be determined from the cut-on criterion,
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oj* = ... . ̂..A = E > y
B Hmn

(3.4.2)

where:

N = number of rotor blades
K.

E = a bound for the eigenvalues to be computed .is

Having determined the indexes for the propagating modes, the corresponding

set of y 's are computed. These preliminaries determine the set of

integrals that have to be computed. The integrand of each of the inte-

grals is then subjected to the following factorization: the factors that

are independent of the radial, or span, variable p , i.e., the constant
S

factors, are identified and placed outside the integral sign. Then the

integration interval is subdivided into a number of equal subintervals,

the number of subdivisions being determined by the number of oscillations

of the most oscillatory factor. The remaining p -dependent integrand is
S

then factored into a part that varies significantly, possibly changing

sign, within the subinterval, and a part that varies slowly, allowing its

average value to represent it within the subinterval. The calculation

can then be written symbolically in the form

N

A± = (CONSTANT)• / (AVE OF SLOWLY VARYING FACTOR)
mno ' ̂

aj+l (3.4.3)

• I (OSCILLATORY FACTOR) dps

"i.
J

with a. the left endpoint of the .th subinterval. The integration on

each subinterval is then performed using an 8-point Gaussian rule.
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U.O LEERS GUIDE TO COMPUTER SUBPROGRAMS

These subprograms compute all the mode amplitudes for a given harmon-

ic of blade passing frequency for either upstream- or downstream-propagating

modes. Subroutine AAAAA does this for the viscous wake interaction model,

subroutine AABAA for the potential field interaction model, subroutine

BCDAA for the rotor in steady distortion model, and subroutine BBCAA for

the rotor in nonsteady distortion model (see fig. 13).

4.1 Calling Sequence

All four primary subroutines have the same calling sequence and

are called as follows:

DIMENSION MUSE(MDIM),MAXN(MDIM),

* ARMUMN(NDIM,MDIM),ARMISC(40), AR(MAXDIM,MAXJ,3)

COMPLEX ALPHAMN(NDIM,MDIM)

CALL

AAAAA

AABAA

BCDAA

BBCAA

. (ARMISC,MAXDTM,MAXJ,AR,MDIM,NDIM,

ARMUMN,NOFM,MUSE,ALPHAMN,IERROR)

4.2 Input, Input — Output, Output

INPUT

ARMISC an array of dimension 40 used for input and fully

described in the section below.
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AAAAA - Viscous wake
interaction

AABAA - Potential field
interaction

BCDAA - Rotor in steady
distortion

BBCAA - Rotor in
non-steady
distortion

Blade-vane interaction
IGV - rotor, rotor - OGV

Rotor alone

Unsteady flow from
adjacent row

A

Coupling to the sound field in an infinite
duct produces acoustic source mode amplitudes

FIGURE 13. - PRIMARY SUBROUTINES
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MAXDIM The first variable dimension of the array AR, which

corresponds to the radial positions and must be

dimensioned at least 2 more than the largest number

of radial positions to be input for any component

(inlet stator, rotor, or outlet stator).

MAXJ The second variable dimension of the array AR, cor-

responding to the number of aerodynamic and geometric

variables input and, per package, must be at least

Package Value

1 (AAAAA) 11

2 (AABAA) 9 + max{ARMISC(I): 1=18,19,201

where:

max ARMISC(I) _> 3, 1=18,19,20

3 (BCDAA) 11 if ARMISC(22) = 0,1

12 if ARMISC(22) = 2

11+ARMISC(23) if ARMISC(22) = 3

4 (BBCAA) 9 if ARMISC(25) = 4

11 if ARMISC(25) = 3

AR A three-dimensional array of geometric and aerodynamic

variables, described in the section 4.4.

MDIM The variable dimension corresponding to the maximum

number of spinning mode indexes. MDIM should be at

least 2EL + 1 but need be no more than 201 to ensure

that all spinning mode indexes can be calculated

(ED = <D*; see equation [2.1.8]).
D

NDIM The variable dimension corresponding to the number of

radial mode indexes, limited to at most 40.
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INPUT/OUTPUT

ARMUMN The real array-dimensioned NDIM x MDIM-that contains

the eigenvalues calculated in the primary subroutine.

Upon subsequent calls to the primary subroutine the

eigenvalues from the previous case are reused if the

parameters used in calculating the eigenvalues remain

unchanged.

NOFM The number of spinning mode indexes computed by the

program; can be reused as discussed in ARMUMN.

MUSE An integer array-dimensioned MDIM-that contains the

NOFM spinning mode indexes and can be reused as

discussed under ARMUMN.

MAXN An integer array-dimensioned MDIM-containing the

maximum radial mode indexes corresponding to the

spinning mode indexes in array MUSE. Array MAXN can

be reused as discussed in ARMUMN.

OUTPUT

ALPHAMN The complex array-dimensioned NDIM x MDIM-containing

the calculated mode amplitudes. For any index IOFM

(IOFM = 1..., NOFM), M = MUSE (IOFM) is an available

spinning mode index. For this M, the available radial

mode indexes are N = 1, 2,..., MAXN (IOFM). Then the

corresponding mode amplitude is ALPHAMN (N, IOFM) and

the corresponding eigenvalue is AKMUMN (N, IOFM).
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ERROR RETURN

TERROR 0 = all calculations have been complete successfully

2 = an incomplete set of eigenvalues is calculated,

and the corresponding mode amplitudes are calculated

4 = there are no eigenvalues, hence, there are no mode

amplitudes

4.3 Input Array ARMISC

In this and following sections, the code given below is used to refer

to the subroutine packages:

Package Code

AAAAA 1

AABAA 2

BCDAA 3

BBCAA 4

In the following definitions, all variables referred to as non-

dimensional are nondimensionalized as prescribed in appendix A.

ARMISC

ARMISC
array Packages
index used in Definition

1 1, 2 Nondimensional average distance be-

tween the midchord planes of the

inlet-stator and the rotor; see

figure 4.
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ARMISC
array Packages
index used in Definition

1,2 Nondimensional average distance

between the midchord planes of the

rotor and the outlet-stator vanes;

see figure 5.

1,2,3,4 The hub-to-tip ratio of the duct

1,2,3,4 -1 for upstream sound propagation

1 for downstream sound propagation

1,2 1 indicates inlet stator-rotor inter-

action

2 indicates rotor-outlet stator inter-

action

1,2,3,4 Trace printout option, where

0 = no trace printout

1 = trace printout of major factors

in the primary subroutine

2 = detailed printout of the eigen-

value calculation in subroutine

ZEROS; see section 3.2.2 of

volume II

1,2,3,4 the rotor blade tip Mach number

1,2 , the number of inlet-stator vanes

1,2 NOSV
vanes

outlet-stator
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ARMISC
array Packages
index used in Definition

10 1,2,3,4 N , the number of rotor blades
Ko

11 Not used

12

13

<J>nc, in radians; phase angle for ad-Uo
justment of skewness of the incident

wakes on the outlet stator; see

appendix E.

<J> , in radians; phase angle for ad-
K
justment of skewness of the incident

wakes on the rotor; see appendix E.

14

15

1,2,3,4

1,2

The harmonic index

Z „, the axial position of the inlet
JLo

stator

16 1,2 Z , the axial position of the outlet

stator

17 1,2,3,4 Z , the axial position of the rotor
K

18 -1 means the upstream blade row is

the sound generator in a potential

flow field interaction

1 means the downstream blade row is

the sound generator in a potential

flow field interaction
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ARMISC
array Packages
index used in Definition

19 2 The number of inlet stator vane

Glauert coefficients, which is

0 if ARMISC(5) = 2 or

ARMISC (18) = -1

n where 3 <_ n f. 15

if ARMISC(5) = 1 and

ARMISC (18) = 1

(see sec. 3.2)

20 2 The number of rotor blade Glauert

coefficients, which is

0 if ARMISC(5) + ARMISC(18) = 1 or 2

n where 3 5 n £ 15

if ARMISC(5) + ARMISC(18) = 0 or 3

(see sec. 3.2)

21 2 The number of outlet stator Glauert

coefficients, which is

0 if ARMISC(5) = 1 or

ARMISC(18) = 1

n where 3 <_ n <_ 15

if ARMISC(5) = 2 and

ARMISC(18) = -1

(see sec. 3.2)

22 3 0 = no distortion

1 = distortion is represented by the

cone model
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ARMISC
array Packages
index used in Definition

2 = distortion is represented by the

power model

3 = distortion coefficients are input

23 3 VA/V1 if ARMISC(22) = 1

q if ARMISC(22) = 2

Total number of distortion coeffi-

cients if ARMISC(22) = 3

24 3 A if ARMISC(22) = 1

Skip factor used with distortion coef-

ficients if ARMISC(23) = 3

25 1,2,3,4 Defines the lift function to be used:

2 = LIFTFN2, the generalized Sears

lift response function; see equa-

tion (24) of appendix I; used in

package 2 only.

3 = LIFTFN3 or NONCPT; LIFTFN3 is the

combination of lift response func-

tions as developed in reference 6;

NONCPT is the lift response func-

tion for noncompact source theory,

see equation (22) of appendix I;

used in packages 1, 3, and 4.

4 = LIFTFN4, Filotas lift response

function; see equation (25) of

appendix I; used in package 4.
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ARMISC
array Package
index used in Definition

26 Not used

27 Not used

28 4 R, radial position of the eddy center

29 4 $f angular position of the eddy center

in radians

30 4 W , axial eddy velocity component at
z

the eddy center, nondimensionalized

with the average axial flow velocity;

see figure 10.

31 4 W , angular eddy velocity component

at the eddy center, nondimensionalized

with the average axial flow velocity;

see figure 10.

32 4 a , eddy length scale in the direc-
£4

tion normal to the average flow

velocity for the axial eddy velocity

component; see figure 10.

33 4 a , eddy length scale in the direc-

tion normal to the average flow

velocity for the angular eddy velocity

component; see figure 10.
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ARMISC
array Packages
index used in Definition

34 4 L , eddy length scale in the direc-
LJ

tion of the average flow velocity

for the axial eddy velocity compo-

nent; see figure 10.

35 4 L , eddy length scale in the direc-

tion of the average flow velocity for

the angular eddy velocity component;

see figure 10.

36 4 B, upper bound of the frequency band

considered in the generation of tone

duct mode amplitudes by nonsteady

distortion; see figure 11.

37 4 T, time when eddy center is located

in rotor plane

38 1,3,4 0 compact source (LIFTFN3 is used)

T^O noncompact source (NONCPT is used)

Note: ARMISC(38) can be used if and only if ARMISC(25) = 3.

39 Not used

40 Not used

4.4 Input Array AR

AR is an array of dimension MAXDIM x MAXJ x 3 which contains geometric

and aerodynamic data as either average values across the span or as values
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given at spanwise positions. The values of the array AR, AR(I,J,K), are

defined according to the use of each index I, J, and K.

AR
array
index

Package
used in Definition

K = 1 1,2 Refers to inlet stator data and is

used when ARMISC(5) = 1.

K = 2 1,2,3,4 Refers to rotor data, i.e.,

AR(I,J,2) contains the rotor data.

K = 3 1,2 Refers to outlet stator data and is

used when ARMISC(5) = 2.

1 = 1 1,2,3,4

1 = 2 1,2,3,4

AR(1,J,K)

if average value

of quantity cor-

responding to J

and K indexes is

to be used

n(K) if spanwise data

corresponding to

J and K indexes

is to be used

where n(K) = num-

ber of spanwise

positions for

index K

AR(2,J,K) refers to the average value

of the quantity corresponding to J

and K indexes.
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AR
array Package
index used in Definition

I = 3,4... 1,2,3,4 AR(I,J,K), I = 3,4 ... refers to

spanwise data corresponding to J and

K indexes. AR(3,J,K) refers to first

nondimensional duct radial position,

AR(4,J,K) refers to second nondimen-

sional duct radial position, and so

on, in monotonic increasing order.

J = 1 1,2,3,4 p, nondimensional duct radial position

J = 2 1,2,3,4 C, nondimensional chord

J = 3 Not used

J = 4 1 C , drag coefficient

J = 5 Not used

J = 6 1,2,3,4 dC /da, derivative of steady-state

lift coefficient,

incident angle, a

lift coefficient, CT, with respect to
Li

J = 7 1,2,3,4 M , relative inflow Mach number of a

blade row; see figure 3.

J=8 1,2,3,4 M, relative exit flow Mach number of

a blade row; see figure 3.

J = 9 1,2,3,4 M , axial flow Mach number; see fig-

ure 3. Note: the average value,

AR(2,9,K), must always be given.
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For the remaining definitions of J, the subroutine packages are dis-

cussed separately.

For package 1 (AAAAA):

AR
array
index Definition

J = 10 f, the ratio of maximum blade camber to the half-

chord

J = 11 a, the blade angle of attack

For package 2 (AABAA)

Let NGC = max JARMISC(18-HO: K = 1,2,3}

= number of Glauert coefficients (see sec. 3.2)

AR
array
index Definition

J = 10 A , Glauert coefficient of order 0

J = 11 A , Glauert coefficient of order 1

NCC—1
J = 9 + NGC A , Glauert coefficient of order NGC-1



For package 3 (BCDAA):

If ARMISC(22) = 0, 1:

AR
array
index Definition

J = 10 f, the ratio of maximum blade camber to the

half-chord

J = 11 a, the blade angle of attack

If ARMISC(22) = 2:

AR
array
index De fini ti on

J = 10 f, the ratio of maximum blade camber to the

half-chord

J = 11 a, the blade angle of attack

J = 12 a. , which is used in the power model; see

equation (3.3.8)

If ARMISCC22) = 3:

Let NDC = ARMISC(23) = total number of distortion coefficients and

let SF = ARMISC(24) = skip factor.
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AR
array
index Definition

J - 10 f, the ratio of maximum blade camber to the

haIf-chord

J = 11 a, the blade angle of attack

J = 12 acT?» distortion coefficient
or

J - 13 kr-» distortion coefficient

a2*SF' distortion coefficient

J = 15 2̂*SF' distortion coefficient

J = 10 + NDC aXTrir, , distortion coefficient

J - 11 + NDC b.__ , distortion coefficient
rt)Jl> . ___
~2~ *SF

For package 4 (BBCAA) :

If ARMISC(25) = 4, no further J's are required and array AR is

complete; if ARMISC(25) « 3:
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AR
array
index Definition

J = 10 f, the ratio of maximum blade camber to the

half-chord

J = 11 a, the blade angle of attack

4.5 Restrictions and Limitations

The use and restrictions on the input arrays ARMISC and AR and the

special input/output NOFM, MUSE, MAXN, and ARMUMN are given in the

previous section.

The maximum spinning mode index is limited (see subroutine EGNVAL2,

sec. 3.2.1 of vol. II) in absolute value to 100 and the maximum radial

mode index is at most 34.

4.6 Diagnostics

Diagnostic messages related to the computation of eigenvalues are

provided according to the printout control parameter ARMISC(6) and the

error return parameter TERROR.

When ARMISC(6) £ 0 and IERROR = 2, the following is printed:

A REDUCED SET OF EIGENVALUES IS AVAILABLE

COMPUTATIONS WILL PROCEED.

and when ARMISC(6) ̂  0 and IERROR = 4, the folloxd.ng is printed:

THERE ARE NO PROPAGATING RADIAL MODES

NO COMPUTATIONS CAN BE MADE.
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4.7 Storage

Each subroutine package with the subprograms listed in section 4.9

requires the following approximate storage (octal):

Package Storage

1 (AAAAA) 12,000

2 (AABAA) 15,000

3 (BCDAA) 12,100

4 (BBCAA) 20,100

4.8 Timing

The timing in general is dominated by the calculation of the eigen-

values . For the sample cases run, the average time per case is:

Subroutine Time in decimal
Package seconds

55

62

117

145
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U.9 Internal Subprogram Relationships

The following listing gives the subprograms required for each package

except the standard CDC - issued system routines such as SORT, SIN, etc.

An "X" indicates that the subprogram is used and a blank indicates

nonuse. The subprograms used are described either in this documentation

(vol. II), or NASA Langley Research Center library subprograms (refs.

41, 42, 43), which are marked by an asterisk.

Subprogram AAAAA AABAA BCDAA BBCAA

EGNVAL2

ZEROS

EQATION

UNEGNFN

EGNNORM

FACTINT

FACTIN2

FACTIN3

FACTIN4

LIFTFN2

LIFTFN3

LIFTFN4

DISINT

FUNIN4

NONCPT

APROX1

APROX2

JARRATT

GAUSS

GAUSS 2

BSSLS

BESNX

BESJLA

BESIE

BESIK

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
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Subprogram AAAAA AABAA BCDAA BBCAA

ROCABES X X

SICI X

GRTHFCN X

BF4F* X X X X

MTLUP* X X X X

ALGAMF* X X
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5.0 RESULTS AND CONCLUSIONS

Analytic models for computing the sound pressure at harmonics of the

blade passing frequency generated by a single stage of a fan or

compressor operating in an infinite, hardwall annular duct have been

developed and programmed to give numerical results on a CDC 6600

computer. The outputs of the programs are the hardwall, plug flow mode

amplitudes for those harmonics above cutoff—the propagating-mode

amplitudes. Using the mode function of section 2.2, the pressures at

field points in the duct on either side of the fan stage can be com-

puted by first adding up the product of the mode amplitudes times mode
/s

functions to get p and then using equation (2.2.4) to get the pressure.

Since the pressure is nondimensional, the appropriate reference pressure

will have to be used to get the correct SPL level. A simple procedure

is to compute the SPL from the computed pressure and add 197 dB, the SPL

level of standard atmospheric pressure. However, the more important use

to which the results of the programs can be put is as inputs to a duct

acoustic program such as the one envisioned by Zorumski (ref. 24).

No attempt has been made to seek out data to compare with the results

of this analysis. This should be done, but the data should be well

gathered. That is, the experiments should be performed under sufficiently

controlled conditions so that a determination can be made on which part

of the models—the incident velocity disturbances or the acoustic response

of the blade rows—gives the variance.

The interaction models produce the rotor-stator blade number ratio results

of Tyler and Sofrin, and Lowson, and they allow studies to be made of the

relative importance for sound generation of the potential fields versus

the viscous wakes and the fall-off of sound level with blade row spacing.

Among other possibilities, the rotor-alone models could be used to gain

a better understanding of the differences between static test data and

flight data by considering the different inflow conditions of the two

situations.
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It is felt that to improve these models, one would seek better definition

of the velocity disturbances and a less restrictive approximation to the

acoustic response function involving, perhaps, the carrying through of the

formulation of appendix D.

Boeing Commercial Airplane Company

P.O. Box 3707

Seattle, Washington 98124, May 31, 1974.
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APPENDIX A

In this report, the temporal Fourier transform of a real function f(t)

is referred to as the spectral density of f and is defined by

f(t) e

(Al)

so that

CO

"^ I
-ioit ,

f (t) = da)

(A2)

A function that is periodic has a spectral density that is a sum

of Dirac delta functions, or frequency spikes, i.e., if

n e

n=-» (A3)

then

f(o)) =
M̂K̂ f 4.1. " ti"

n=-» (A4)

All complex functions xrf.ll obey a symmetry principle in u (when

u)-*~w) so that only positive frequencies need to be considered in the

final calculations, i.e.,
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1 / /
±- / 2 Real f£(t) = ±- / 2 Real [ f (o>)e'1"* du>

(A5)

Spatial Fourier transforms are defined by

CO

/g(K) = / g(x) e~iKxdx

with

(A6)

1 I -ilf-v
g(x) » ̂  / g(K)e1KXdK

(A7)

and Fourier series, such as on the interval 0 to 2ir,

2ir

W£ = / W(<}>) e 1 d*

o (A8)

with

(A9)
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The linearized differential equations of an inviscid, compressible

fluid in which isentropic perturbations from equilibrium can take place

are assumed to be sufficient for the analysis. The speed of sound is

then taken to be a constant, with

P
speed of sound = a = V ~ (A10)

0 6

where p is the pressure perturbation and 6 is the density perturbation.

It is assumed that for computing the perturbation variables the mean

velocity can be taken uniform and constant. Since everything will take

place in a duct, the duct outer radius will occur often as a factor

multiplying an inverse length type quantity.

The choice is made then to nondimensionalize all quantities from

the beginning, choosing the duct outer radius, the speed of sound, and

the mean fluid density as the basic scale factors. Letting these be,

respectively, r , a , and d , and letting primed quantities be dimen-

sional, then the nondimensional quantities of interest are

6 = "S1/, density perturbation (All)
o

p = p'/j 2 pressure perturbation (A12)
Q 3.o o

v = v1 / velocity perturbation (A13)
Si
o

V'
V = M = / mean velocity (A14)

x = X /r length (A15)
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t = t'ao/r time (A16)
o

= ' o/a frequency (A17)

The nondiraensionalized basic equations are

- + p = 0 (A18)

+ y '"v" - 0 (A19)
Dt

(A20)

with

Dt at
(A21)

and M is a constant vector. For computing sound pressures, M is taken to

be axial and positive in the positive z direction, where the z-axis of

the coordinate system is coincident with the duct axis. Substituting

for 6 in equation (A19) and decoupling v from p by applying V»to equa-

tion (A18) and D/Dt to equation (A19), the convective wave equation for

p is arrived at:

2 " v

"acP P " ̂2

(A22)

This is the basic, nondiiaensionalized equation for this analysis.
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APPENDIX B

The required particular integral to the inhomogenous equation, equation

(2.1.10), is the familiar Helmholtz equation Green's function for out-

going waves:

3ito*R*

4 i r R * (Bl)

with

2 2
R* = V P +P -2pp COS ( d>-d> ) + ( Z*-Z* )

« O O TTo O

(B2)

It is more convenient in cylindrical coordinates to express this

solution in a combined Fourier series-Fourier transform form,

m~~°° — (B3)

(see, e.g., Levine and Schwinger, ref. 44)

V = ^ u * - s = s - u * (B4)

and

(B5)
>0

 IF ^ po
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IF p<

IF p> (R5)

and H is the Hankel function of the first kind, of order m, and
m

J is the Bessel function of order m. By separation of variables, the
m
general solution to the homogenous Helmholtz equation in cylindrical

coordinates can be similarly expressed,

is(ziz*)
s ° ds

(B6)

with Y the Neumann function of order m, with A and B undetermined,m n m m
and the subscript on y intended to convey the use to which the

B
general solution will be put, i.e., as a boundary effect. It is by

adding y to y -n-n anc* solving for A and B from the boundary conditionsB r r m ^m
that the boundary effects are included in j. Adding t!iem gives

im ( $-4 )

m=-»

I

J\

.

(B7)

* e
ds

Employing the boundary conditions of equation (2.1.11),

3 P
= o AT
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gives the simultaneous equations for A and B ,0 m m

Am J

Am J

where the prime denotes differentiation with respect to the argument.

The solutions to these equations are

and

J(pp ) Y'(y) - Y (pp ) J'(y)
B ^-iJ'Cyn)-2—-—m A f ,

 m—-—-—
Am(y) (BIO)

with

Substituting these results into equation (B7) and performing the
/\

algebra gives for y >

ime -<() ) ̂  /0/ p^'2*-2"2TT

m=-» ' ' (B12)
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where

ds
(B13)

and

X =
m

(B14)

Y and A , when analytically continued into the complex s-plane, are

regular functions of the complex variable s. This can be seen by con

sidering A and letting w* have a small positive imaginary part:

= U* + ie , e> o. (B15)

Then the branch points of p are raised off the real s-axis, as in fig-

ure lU. The phases of p are indicated in this figure as well. Across

the cut for u> the following relations hold:

= (-Dm Jm(y~)

Then, using the relationships

(817)
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100

(B17)

it follows that

- Jm+l

A(y~) (B18)m

from equation (B16). Similarly for Y .

Then, since the zeros of A are not coincident with the zeros ofm
Y , the integrand of the integral for I is meromorphic in the finite

complex s-plane. For z* - z* > 0, the contour can be closed in theo
upper half-plane to encircle the poles at the zeros of A . If these

zeros (an infinite number, since A is transcendental) occur at s .m ran
n = 0, 1, 2, ..., then

, . x . RES
m 2 <

n=o

T X
(s-s ) ^\ ^ run ' AI mu sm (B19)

The zeros in the lower half-plane occur at s = -s , n - 0, 1. 2,
mn

(see fig. 15), so that when z* - z* < 0, and the contour is closed

in the lower half-plane,



'm^ + ir
n=o

"(8+ smn) JL ê (Z*-Z*)'
m

s-̂ -s (B20)mn

Since A is a function of y, the zeros of A are y = y , n = 0 , 1, 2, ....ra m mn
real, nonnegative numbers, and since

m~ mn ~ -ran

This gives for s .mn

2 2
s = Wu* - ymn V ran

(B21)

See appendix J for a discussion of the numerical scheme used to

calculate these zeros.

Near a zero in the upper half-plane,

A (y) ss A (y )+(s-s ) ̂  I A1 (y )m m mn mn ds I mVKmns = s
mn

/ \ dy(s-s ) -r11
mn ds

s = smn

(B22)

RES
m i s (Z*-Z*)mn

dy
ds s=smn

(B23)
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Also,

(B28)
X { p \ = Y' f y JY' /ny \ R ( y p

m \ mn / m I mn I m I mn 1 m V mn
f /ny \

m I l f mn I

so that

isYf (M ^ Y' fny ^ R (y p^v R fy p ^ Omn
nL v T&nJ m v. mn^ m V. mny m vmn oy e

Cz*~Zo)

s
mn

y
mn t, "mn

(B29)

Dividing top and bottom of this expression by Y' (\i ~} Y' (r\\im v mny m v mn

gives

R (y. p\ R (v p "^ is
RES - 3

m ^^^ m ^ m n o ^
Cz*-zrO

R
m( y__ ' i / ™2 \ R

m ( MM^ ) | smn/. s.* \

"1! nV /mn ^ -' ' - 'mn

(B30)

Then,

R fy ^ R2 (\i \
m V mn> _ m y ran}

Y' C\i \ Y1 (v ^J AI "S-J1 fy ^ Y Aim v^ mn^ m V mny m ^ mnj m v mnj m
Ai
V.

2 mn iu v «m j CB31^
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and

n R
2 Mmn m V. ran

-N
.;

Thus,

(B32)

"
„ / \ _
R (y p) Rm \MmnK ' m

mn

is (Z*-Z*)
rnn * o'

is

mn

where

(B33)

(R
m

m v ran s Nmn

and

mn

(B34)

(B35)
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This is a convenient form for the result since N is the normaliz-
mn

ation of the R (y p) function, i.e..m mn

Then, for Z* - Z* > 0,
o

nSL

(B36)

I =
m

n=o
m mir

ise mn
2 ismn

For For z* - Z* < 0,

(B37)

dy
ds s=-s

J3

y
mn s=-s

mn
Jmn

mn
(B38)

So that, following the same algebra, from equation (B20),

I =
m E

n=o

(R fu p | (R f
m I mn ) m I

-is Cz* -s. niTi ^

2is
mn

(B39)
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• ' i n . i l l y , the resul t lor I is
in

I
in

(p,P , /•* ~ '/•*•> <*»*) = V* A{ (|i C | <K { li f ^ <1 (X.* -/.*\ o o / X .1 in \ inn / I inn a I inn \ °
n=o

wi th

is \Y.*-7*
f \ e mn I o

dmn C/*-/*« WV = 2ismn

Substituting this result into equation (1312) gives the final result,

the solution for y;

-xw rp p , z* _ z*u*
2ir -> -< m V mn _^ m v^ mn oj mn v o y

m=_oo n=o
(B42)

Considering co* to be a complex variable, then s as a function of
mn

the complex o>* has the branch line and phases as indicated in figure 15.

Hence, for w* > \i , s (-w*) = -s (w*), and when u* < u , s
mn mn mn mn mn =

V ? 9
y -to* when u* approaches the real axis from above it. The

region of the real axis outside the branch points at ±y is referred to
mn

as the propagation (or "cut-on") region. It is seen that

d fz* - Z*,-u)*~) = d"*" Cz* - Z*,to*)
mn^ o ^ mn V o J

where t means complex conjugation. This ensures that y (~w*) = Y ' (

Finally, just above the real axis in the propagating region, s has a
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S = -Smn
—ju mn

s- = -\
Real

FIGURE 15. - COMPLEX (a* PLANE

107



positive imaginary part greater than that of o>* so that for | z* - z*| •*• °°,

* . -a Inn (u*) Z* - Z* (B44)
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APPENDIX C

The evaluation of equation (2.2.7) is done using the transforms of F

and D . Letting
mn

-iut
o

F Ct ^ = 4- / F(w) e dw
V o^ 2iry

(ci)

and

00

-ioiT
do)'-/ in ) e•> "_ >U> I c

with T = t - t , then

OO 00

dta du1 fm , ,.± "1 ±., . ito't
-r--^— — e, + K e F((JO) e2n 2ir I p 4> mn z I

£=-<» -o

UU ^ ||

//•
2ir

- *

(C2)

m=-°° n=o

(C3)
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Considering the t and <ji integration, the delta function gives

H i(u)-w')t0 -
e e dtod<j>o

(C4)

2T7
oo

T i f*~L-J Q I
e d<}>0

Then, using Poisson's sum rule, and doing the <J> integration, gives

R.H.S. =
(J=—00

6 G"-(^'))eio* }" „ (e"27rl W "o + ""-].)
^- •/ o)-o) + mfi \ /

-2iri(a + m)
n - » - « e r^ V

a=-oo

.- -v io<f>
6 ( oJ5—(oo—a) )) e 2ii 0 0 J — m

a=-» (C5)
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P~(r,co) = _ i

~iK

n=0

K±

(C7)
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APPENDIX D

The geometry is shown in figure 16, assuming for this discussion a

stationary row. The blades are unstaggered, flat-plate, constant

chord airfoils, so that e, = 1 and e = 0. Letting z.. _ =0, then
<p z M.C.

when points within the blade row are to be considered, the pressure

spectral density resulting from the airfoils being dipole surfaces is

CO CO N~"l

" —*- C

m=-°° n=o j=o

.«•> (-00

(Dl)

with

— Z'
Z1 = —c

(D2)

and

c
K4- = — K±
mn 2 mn (D3)

The ^-component of the velocity spectral density associated with

this pressure field is, from equation (A18).
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FIGURE 16. - UNSTAGGERED BLADES IN ANNULUS
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with

1 i -

-^ / e M

1 3 <z-z '> , a ;1 9 p
P

m=-» n=o j=o

«-(*-¥)/-

(D5)

and

Cz1 H

(D6)

The boundary conditions at the airfoils are that this induced velocity

cancels the "incident" velocity normal to the airfoil,

u , FOR k = 0,1, ••• , N-l, <f>k ^

(D7)



with c < < c
n < p < 1 AND - - - Z - - ,

and that the pressure difference or dipole density vanishes at the trail-

ing edge (the Kutta condition). These conditions turn equation (D4) into

the system of equations for f

2 £ g; "2 fl
jji=—co n=o mn

-u, (p,Z,oj) =
jji=—co n=o mn

(D8)
N-l

j=o

f_ -i \

v^-»'
7

for k = 0, 1, ... N-l, and p,z on the k airfoil. The state of affairs

in solving this problem seems to be as follows: writing equation (Dl)

in the form

N-l

n

J-o

(D9)

with da a surface area element, and using T = !"„„ + F_ (see appendix B),
A S re ii

with T the free-field propagator and T the "duct wall effects" func-
rr D

tion, gives

P + P
FF B

(DID)

1 1 5



with p-.̂ , and pD given by equation (D9), with F̂ ,-, and T_ in place of F,r r B ^ f r o
respectively. The term p is then neglected for the purpose of solving

^ 13
for F.. Further, the three-dimensional problem remaining is converted

to a two-dimensional cascade problem by taking the airfoils to be

infinite and parallel (see Kaji and Okazaki, [ref. 45] and Mani [ref. 46]),
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APPENDIX E

The phase factor

-in Nn - TANe lp

(El)

in equation (3.1.9) accounts for the relative phase of the wake at the

downstream row for different span positions. If tan ip is not propor-

tional to p, then the wake will be skewed, i.e., nonradial, and the

relative phase will be different for different span positions. Three-

dimensional flow effects might also cause skewness in the wakes. A

crude model to account for some of this extra skewness is the following:

assume that the major three-dimensional correction will be in the tip

region and consider the linear adjustment

p P ""'r T 1-n

where <|> and this linear phase adjustment is illustrated in figure 17•

This correction is included in the computer subprogram "but has no

other Justification than that it was a part of a study to understand the

effects of wake skewness on tone noise. The correction was not itself

developed from theory.
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FIGURE 17. - VISCOUS WAKE SKEW NESS CORRECTION
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APPENDIX F

The equations for the mode amplitudes of the four potential flow field

interactions are very similar. They only differ in signs and indexes.

All four interactions are therefore represented by the same set of

equations. Modifications to the signs in the equations are done with

switches C3 to C14, defined in the table following the equations.

K
arc COS

Mz,K

(Fl)

K2

(F2)

(F3)

M C.

H ,,0K,K2 ((C12K IT

(F4)

"
l.KZ

1,K2 K2

\1

JJ

(F5)
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K
K,K1

[*L

K.K1

> o

< o

(F6)

C v . A ) - [jo(X) -d
(v) + 1H (v)

(F7)

-N .C
v „, = C K1

<,K1 "6 2 I,K1
(F8)

AK,K1 = C6 NK2
(i - v)

(F9)

N -1 .1 -im
2TT .

Kl K2
1
I K,K1

(F10)

-iK* Z,, „
mn M.C

mn

I f/^ I me,/v + N -i ,m 2irjKI L -™;r^-
7Z I m mn 3

(Fll)

,0)) dp
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The following table gives the values of the switches required in the

previous equations to make the equations represent a specific interaction.

For an interaction specified by a column in the upper box, the corres-

ponding column in the lower box gives the appropriate value of the

switches. The abbreviations and indexes used in the table are as

follows:

Component Index Abbreviation

Inlet stator

Rotor

Outlet stator

1

2

3

Velocity-inducing
component

Lift-producing
component

Subscript of velocity-
inducing component ,
K2

Subscript of sound-
producing component,
Kl

Sign of K

K

C3

C6

C7

C8

C9

Cll

IS

R

1

2

£

-1

_i

_i

1

1

1

R

OS

2

3

a

1

1

_i

-1

-1

1

OS

R

3

2

<o

a

1

-i

-i

-i

— 1

-i

R

IS

2

1

a

-1

1

-1

1

1

-1

IS

R

1

2

X.

1

-1

1

-1

1

-1

R

OS

2

3

>o

0

_T

1

1

1

-1

-1

OS

R

3

2

a

-i

-i

i

i

-i

i

R

IS

2

1

a

1

1

1

-1

1

1

IS

R

OS
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C12

C13

C14

-I

-I

I

-I

-I

-1

-I

-I

-1

-1

-1

1

1

1

1

1

1

-1

1

1

-1

1

1

1
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APPENDIX G

Figure 18 illustrates the rotor blades as a two-dimensional cascade and

defines the blade coordinates. It is seen that a point in the velocity

fie

by

field is given in terms of the blade-fixed coordinates of the j blade

Z = Z' COS y + Y! SIN Y + ZM _
J 3 M.C.

Y = - Z! SINY + Y.1 COS Y + jb + Ut - 12-np
(Gl)

where the £.2Trp term results from the periodicity on 2irp of the distortion

(this must be modified if there is preswirl to the rotor). Assuming the

two-dimensional representation of the distortion, then the magnitude of

the velocity disturbance at the j rotor blade on the £, revolution is,

at Y! = 0

w rv z u -I I I ^- ^- — w nc x ̂  e
i(KY +xz -^W £ ( Y , Z , t ) - I I I ^ ^ ^ W (K,A,o)) e

OO

fff

"JJJ

dX dK du = -2iriX.Kp i(KU -u»t) ijKb
27 27 W£

e-i(KSINY-XCOSY) Z j ei

(G2)
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ZM.C.

U = MTP

FIGURE 18. - CASCADE REPRESENTATION OF ROTOR ALONE
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The sum over all the periods gives the velocity

(G3)

From the Poisson sum rule,

H= -co n= -oo
(G4)

so that, using b = 2irp/N and U =

dA du = n . iAZe

(G5)

ei|"(XCOS Y- - SIN y) Z'-tnHj.-

Assuming the distortion is frozen convected with the mean axial

velocity in the duct, then

W(Y,Z,t) = W(Y,Z- Mt) (G6)

ff dX dK = .. iKY i X ( Z - M t )
= 11 -r— •=— W ( K , X ) e e V z /

/ / 2lT 2lT > /
•/ >/
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giving

" (F ' A ' W ) = *(?'A) 2lT4 ~XMz) (G7)

and, from equation (G5),

W = -— / e N I — W/ — , A ) e n I J « M - C '2-rrp Z_«^ J 2ir ' ~ ' L

n=-00

(G8)

SIN Y-X • COSy

and

o
2lT

P / w ( ( )> , ;
*^o

L ( x )»

_

1 iXZMJ e M'

with t1 = -- , Z" = --, AND
^ 4 (G9)

"A n SIN

v (A) = ~ 2 cn - v1 - 1 (G1°)

Finally, from the periodicity in y,

2TTP _ £

V) e X P YdY

(Gil)
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so that

n=—oo
(G12)

This gives for W, letting <j> . = 2irj/N,

n=-<» (G13)

with

\ (z - v)

so that

(G14)

When the distortion is steady,

W_ (A) =

n
(G16)
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with

nM,T c_
v 2 (G17)

and

V =
ITP

SINY (G18)

If the distortion is strictly axial, then the spectral density of

ormal component of the velc

required in equation (2.3.1) is

the normal component of the velocity perturbation on the j blade

u. - SIN y W(Z"=0) e+lut dt

(G19)

00

SIN

n=-oo

When the distortion is nonsteady, the assumption is that it is the

quasi-steady disturbance resulting from the convection with the flow of

stretched eddies. Thus, the factorization can be made

W = W(<j>)A(5-50) (G20)

where:

g = z - Mzt

£0
 = ZM.C. -V'

T = time at which the center of eddy is coincident with the midchord

plane of the rotor
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Choosing to represent A(£-£ ) by a Gaussian distribution,

a -go)2
A (5 - £0) = e 2L2

(G21)

with L the "axial length scale" of the eddy, then

2 2
_ iL *
e 2

L_^ ̂  • 2ir6(A)

(G22)

If the eddy velocity disturbance has both axial (W ) and circumfer-
z

ential (W.) components, then the spectral density of the normal component
m

of the velocity perturbation on the j blade is

u = / \ SINy W,(Z'=0) + COSy WA(Z=0)> e
la)t dt

J * " T /

n=-oo
(AMZ

+W COSy/^- A Q ) 6<j)n y 2ir <j> \
-oo

_/nMT +o)\
^ •̂•H^* 4 "*7\ M? /
X ^ ^3n<f li ?u "Ttl-- 1
2-r J | Zn SINY 2TT M7

 +

n=-oo ^ ^

AM - nM -a) l\
/I' /

_ ^ nMx +o)
A % M

W r»/~»r«^. L<uoy „
vn 2ir MraZ

(G23)
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From equations (G9) and (G10) it is seen that when the distortion

is nonsteady, the harmonic gusts at the blades have phase velocities

differing from the relative mean flow velocity, i.e., the harmonic

gusts are not "frozen" in the fluid. It is only when A /2irM andz z
A /2nM approach being delta functions that these gusts became frozen

tp Z

convected.
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APPENDIX H

Figure 12 illustrates the oblique gust geometry. Filotas (ref. 36)

developed an approximate solution for the lift response of a thin air-

foil to such a gust. His results were in a form containing an infinite

series,

T(h,*) =
h + FCh,*) Jo (h1-ih£)-fiJ1 (hrlh£)

(HI)

where h, = h sin ty and h« = h cos iji (equation [64] of ref. 36 with his

k -»• h and $ -> i|>) . In this equation, !_ and I, are modified Bessel

functions of the first kind, J_ and J.. are Bessel functions, and F is

given in terms of an infinite series involving modified Bessel functions

of the second kind (equations [21] and [22] of ref. 36). A generally

good approximate form to equation (HI) was also developed:

•- l+2Trh
e

(l+SIN2^ + irh

(H2)

Both equations (HI) and (H2) have been programmed for use in sub-

program BBCAA. Figure 19 is a plot of |T| versus h for different ^

values. When ty = n/2, the gust is no longer oblique and T then

approximates the Sears function.
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Filotas IT (h,\J/) I
Sears I S(h) I

.001

0.1 1.0 10 20

FIGURE 19. - MAGNITUDE OF OBLIQUE GUST LIFT RESPONSE FUNCTION
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APPENDIX I

This appendix contains the list of equations used in the analysis that

are referenced in the FORTRAN variable dictionary and the subprogram

descriptions.

2j
ran

Vl

\1-M

4. J' (nX)
.

Y (nX) m
m

Y'(X) = 0

m mn
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8. <R (p p) = R (y p)
m mn m mn ./ - mn

9.
SUB

mna { CONSTANT)
FACTOR > * (AVERAGE OF j

NON-OSCILLATORY
FACTOR !

bj

j

OSCILLATORY)
FACTOR /

10.
MM(P) -Vfc . +MZ(P)

11. y(p) = ARC COS
Mz(p)

Vp)

12< = COS
MM(P)

13. ez(p) = SIN

14' Kmna(p) =

15. S(v)
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16.
Jo(v)

17.

T(v) =

18. J(x) - jo(x) + i J

19.
F(X)

20.
F(V) + A J(V)

21.

F f(v)

22.

23. F>
•*• /•

MAX
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24.

J0(A) -

(v)

F j 0 ( A ) -i

1

H < 2 ) ( v )
- + iv/A J

IF vA =)= 0

IF \4 0,A = 0

IF v= 0, A+ 0

IF v= 0, A= 0

25.
T(v,0) =

r ire (1+ y cose ) "1
SING \ 2 / J

L i+2iTv I 1+ -| cosej J
-iv |SING -

e

T+TW l+SIN" G-hrv COSQ|2

Additional equations for the viscous wakes interaction model:

26.
M2Z(P)

MIE(P)

27' 3(P) = Y(P)

136



28. SIGOL • ¥ „ • N,
T, =

1 2 TipCOS

29.
Y0 = 1.36 - .35

30. SIN IT T
A =

a 1-T2

31.

A0 = 1.65 C .15

32.
V = SIGN •

a

SIGOL • N • C M

ISOROS

SIGOL

q
SIGN

1

£

-£

1

2

a

a

-1

33.
Constant!

factor I

M M +

^- e iKmnZ2
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34.
Average of

non oscillatory

factor

SIN BI. M • M """" " A • A
*M,2 E,l p-COSijj ° a

COMPACT
SOURCE

• S(va) -a COTg -Fa(va) - f- COT3' Ff(va) •]

35.
Average of

non oscillatory

factor

SIN g
1,2 ' WE,1 p-COSij; *flo*Ac

NON-COMPACT
SOURCE

- COTB -a' J

36. (Oscillatory

(factor
) ̂
)

. e± SIGOL -NI fl /

m V mn

Additional equations for the potential flow field interaction model:

37.
r K2(P) = MM,K2(P)

where A_ = Glauert coefficient of j order of component K2
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40.

, . NK2 -
a<,Kl (p) = 2~p e

39. n+1. n-1
AK2 (P) - AK2

8
I AK2 ( P ) + AK2 (P )

where

AK2 ( p ) ' AK2 ( p ) ' *" ' AK2 (p) ARE INPUT»

AND n=l,2,

. , , C12KNK2CK2(p> i C13|l-C14GK2 ( p)
K2

]

41. N+1

= Jo C\2(P>) +
n=l

42. r- _ M_C (p)
d<,Kl ( p ) - C86K1(P) +C9^K2

-1

J
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44.
XK,K1 (P ) = C6

45. Constant
factor

N +
Kl -iK~ Z ,

T^ *e mn Kl-2ir
mn

46,
\Non-oscillatory \
j, [ = 1.
(factor V

j

47, Oscillatory
factor

Kl me
2ir [me

p

Additional equations for the rotor-steady velocity distortion inter-

action model:

48.
2ir

= f W ( p '

where

^-^ l-Ap COS <|)- V (ApCOS*-l) 2 - (A2-l)(p2-l)
1-A L J
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49.
W£(p)

50.

W£(p)

| (a£(p)^ (p)) IF £>0

fc (p)) IF £<0

51.
C (p)- M

2MM(p)

52.
Mz(p)

(P) -

53.
„
Constant
factor

R̂
mn R

43mn

54.

Average of

non-oscillatory

factor

/
CR \da

COMPACT
SOURCE

dC \

d o / z S1N3 < emn Z

- d -COTg-F a (v £ ) - f COT6
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55.

[S(vj- J (K+ ) - COTS- a «J (v + K± \ + COTg- f- Fl(v
V ^ mna / • ^£ mno J fv

Average or

non-oscillatory

factor

(dC

da

_ \
L V M ./ "M- M • SINS-

me

P
NON COMPACT
SOURCE

mn Z

\ Oscillatory (
-

/factor )

Additional equations for the rotor nonsteady velocity distortion

interaction model:

57.

Average of

non-oscillatory

factor

V c (
dC \ me

<-zlmn ZJ

58.
( Constant

I factor

-IK* Z

mn

59.
^Oscillatory)
j factor .= FACTIN4

60.
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61.

1 /T

2ft)
EJ

IF BT. > 10.
J

IF .1 < BT.< 10,

2BT. SIN(BT)

2 TT • BT IF BT. < .1

. r
— J e 2 •

rT ~B

COS(wT) duo

If ARMISC(25) = 3:

62. FACTIN4 = <R
m

63. v,,(p) =£

64. = s(v ) - a ( P ) - COT(Y)- Fa(v ) - f ( P ) . C O T ( Y ) - F (v )

COMPACT
SOURCE

65. NON-COMPACT
SOURCE

S(V£}-J Kmna>f(p)-COT(Y)>Ff('V

66. [F2(P)1 COT(y)'S(v£) f(p)

COMPACT
SOURCE
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67. = COT(Y) .S(v£) -J d ( p ) - J (

'NON-COMPACT
SOURCE f ( p ) . F ( v

(P-R)'

2a
68. g. (p) = 2ir • P. • e

J
/MY
VJ

PR
2

a.

'

If ARMISC(25) = 4:

69. FACTIN4 = 2-\]~2iT ,0 / \ -i*<R I M Piem I mn I

SINY(p) P.lJ1^
ll

-Mz (p> p
2V 2 r ^2

70.

oo/ -i(p-R)k

.2 2
k a .

dk

« A
K"^ C t,A ? r

E -KP-R) f^ . Ml / KA , KA
3J -e 2 .T* P»I7,*P'

K=l I \ J J
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where A = l , KMAX = ̂  +1
K A

71. h (p ,k ) = ̂ - Vk2 + SIN(y)1
2

72. .j, (p,k) = TAN r±
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APPENDIX J

The zeros of A (y) are symmetric under a change in sign of m, i.e.,
ra

for

(y) = j;(y) Y; (yn) - j.

(JD

A (y) = A (y)
-m m VM' (J2)

Hence, the zeros are computed for A| |(y). All the zeros are nonnegative.

They are computed by first approximating the zeros for m = 0 as follows:

1) For n = 0, use formula (9.5.13) of reference 30

2) For .2 = n < 1, use formulas (9.5.28) and (9.5.31) of reference 30

3) For 0 < n < .2, use quadratic interpolation with the values for r\ = 0

in item 1 above and n = .2 and .3 in item 2

Using the approximation formulas in item 2 restricted to ri = .2

yeilds a one-to-one correspondence with the eigenvalues (zeros) where

the first several values are poor approximations. The approximations

in item 2 get worse as n decreases and for n < .2 no longer give a one-

to-one correspondence. For this reason, interpolation procedure 3 is

used to obtain better values. For more accurate values for the zeros,

an iteration method is applied with above approximations as starting

values. Reference 47 gives an iterative procedure for computing a real

zero of a real valued nonlinear function f(x) in which a rational

function is fitted through previously computed values. The interaction

formula is

r — Y _L
kn+l An ^

fx -x ,^
V. n n-ly
f*"\T Y ™\

C n n-l)

(?n~Xn-2}

Cfn-2-fr

n v n-1 u-2J

) f -t- /^Y — Y ^NI- -, i I A —A 0n-1 V n n-2^1 CEn-f ^n~l>

(J3)

) f n - 2
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where f if f(x ). Here, f is Ai i and x is u. One of the threen n [ m|
starting values required is chosen form the approximations discussed

above, with the other two that approximation ± e where e is chosen to

"surround" the zero.

Applying the iteration until f(x ) is small provides zeros with accuracy

limited by the evaluation of f itself. In this case this accuracy is

that of the Bessel and Neumann function evaluators. Do this for m = 0,

use the m = 0 zeros as starting values for the m = 1 zeros, etc.

Examples of the zeros used as eigenvalues in the analysis are plotted

in figures 20, 21, and 22, each figure corresponding to a different

value of n•
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