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ABSTRACT

A theoretical model is developed for determining the

diameter D such that the density of lunar craters exceeding
p

D constitutes a specified proportion p of the maximum number
p

that could be observed on a crater-saturated surface. It is

shown that this diameter is sensitive to the value of the exponent

in the fresh crater size distribution, and is much more informative

than the usual log-log plot intercept definition of saturation

diameter.
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ON THE DEFINITION OF CRATER SATURATION DIAMETER

by

Allan H. Marcus

Theory

In order to clarify the definition of a planetary surface

which is "saturated" by craters, we must consider unsaturated surfaces

as well. We start therefore with the expected number of craters of

diameter D to D + dD formed per unit area per unit time on a

surface, no(D)dD. If the crater centers are distributed at random

on the surface, and if the formation of a crater of diameter y will

destroy a crater of diameter D if the center of the y-crater falls

within an area A(D,y) centered on the center of the D-crater, then the

net average destruction rate of D-craters is A(D),

A(D) = o A(D,y) no(y)dy (1)

Hence the expected number n(D,t)dD of craters of diameter D to

D + dD, per unit area per unit time at time t, satisfies the

differential equation

-k- n(D,t) = n (D) - A(D)n(D,t) (2)

and with the initial condition

n(D,O) = 0
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we obtain

n(D,t) = n(D,-) [1-exp(- A(D)t)] (3)

where the equilibrium number density is

n(D,=) = no(D) / A(D) (4)

It can be shown (Marcus, 1970) that under a very broad range

of crater obliteration models, there is an equilibrium density C

such that if for some s > 2, Do > O, p > 0 ,

no(D) = sooDos D-s-l (5)

then

A(D) = k D2 - s

n(D,-) = 2 C D- 3  (7)

where

C = sc DoS/2k (8)

Eq. (3) can be recast into the form of a cumulative expected number

density N(D,t), using (4)-(8):

N(D,t) = r n(D,t)dD
D

C I r1 +i) ] (9)
D 21e IY3<E
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where

T(6+1) f exp(-u)du
0

S= 2/ (s -2 )

S= kt D-2 / 5 D = (kt / E)/2

P(-< 6 e = ~ uB - l exp(-u )du/r(B)
0

Hence: A SURFACE is 100p % SATURATED AT DIAMETER Dp IF

N(D ,T) = p N(D p )

i.e.

(l - p ) 5 / r( + 1) = Pf %f 3 E} (10)

Gault (1970) has used another definition. Some numerical examples

are instructive.

EXAMPLE 1. p O .

p must be small, so expanding the exponential in

PY¥ < y ) as a MacLaurin series in u, we obtain

~ (p + 1) p/5 (11)

Dp (fkt/(B + 1)p)B/2 = Cp (12)
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EXAMPLE 2. The usual definition of the diameter D at which a

surface is saturated (Gault et. al., 1970) is

N(D*, c ) = t S n (D)dD (13)

D

whence, from (5) and (7),

D = C

where C1 is defined by (12) with p = 1. However, it is evident

from (3) that no surface is ever 100io saturated.

EXAMPLE 3. P 1

p must be large, so Pp <y l } 1 and

~ p (r(B + 1)/ (l - p))1/0 (15)

Dp (kt)B/2(( - P) /T( + 1)) 1 / 2 = Bp (16)

EXAMPLE 4. As a preliminary estimate of D , use saturation ratio

for the incremental number density

p = n(A ,t) /n(A ,) (17)

whence from (3) and (6)

A = ( -kt/loge(1-p))B/2 (18)
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We obtain after some numerical calculations

Ss = 4  s = 3 s = 8/3
B = 1 =2 0 = 3

0.5 2.25 1.15 0.97
P

0.8 4.965 2.73 2.25

Thus:
Bi s = 4 s = 3 s = 8/3=2.67

p i 1 = 1 = 2 = 3
Cp/Dp 0.5! 1.50 1.53 1.75

0.81 1.74 2.28 3.06

D D 0.5s 1.06 j 0.767 0.620

0.811 1.55 1.82 2.18

Bp/Dp 0.5 1.06 1.15 1.65

0.811 0.996 0.862 0.616

A /D 0.5 1.80 1.66 1.65

0.81 1.75 1.70 1.65

Discussion

The results are rather sensitive to the choice of a

definition for crater saturation. D p, the diameter such that the

number of large craters exceeding this size is O0 p percent of the

total number that could be observed, is a well-defined, computable,

and intuitively satisfactory characterization of saturation. The same

could be said of the diameter A defined by incremental number

densities, and it can be shown that if s not too much larger
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than 2, then

A (log e2) D = 1.61 D (19)
p e p p

as the numerical example shows.

Both of these quantities must be estimated from an empirical

analysis of crater densities, based on the result

N(D,t) - C/D 2  if D < < D
p (20)

, 2Ckt/ sDs  if D > > D

We usually plot log N(D,t) vs. log D and define D as the

intersection of these two (approximately straight line segments.

The curved transition between the straight line segments covers a

large range of diameters and is obscured by the logarithmic plot.

It is interesting to compare crater counts from the

Apollo 11 and 12 crater count (Shoemaker, 1970), for D in meters:

s C 2Ckt/s D* DO.5 D. 8

Apollo 11 2.93 0.10/m2 8.m 2 189 m

Apollo 12 2.86 0.10/2 2.0/2 32.i 2.33 45.5 16.8

The D criterion is evidently more informative.
p
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