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Abstract:

A study was made of the formation of a shock wave by a solid

accelerating piston. No weak shock assumption was made. A theoret-

ical solution using the method of characteristics for a perfect gas

showed that a complex wave system exists and that the compressed gas

can have large gradients in temperature, density and entropy. Ex-

periments were performed with a piston tube where piston speed, shock

speed and pressure were measured. The comparison of theory and ex-

periment was good.
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CHAPTER I

INTRODUCTION

Background and Objective of This Study

The formation of a shock wave is. important in several

practical flow problems. Shock waves are formed in shock

tubes by breaking a diaphragm or by forming an accelerating

flame front which results in a detonation wave. In some

situations the shock formation may occur over a significant

portion of the total flow time and therefore have a signif-

ioant effect on the flow. In one type of hypersonic test

facility the test gas is created by an accelerating piston.

The manner in which the shock is ultimately formed, and

deviations from the desired process are very important in

creating an acceptable test flow. Hall1 and Stoddard2

discuss such a free-piston hypersonic wind tunnel. A third

application is the equivalence of unsteady one-dimensional

flows to steady two-dimensional flows. This equivalence has

a mathematical foundation for hypersonic small-disturbance

theory and can be used as an analogy for other flows.

Shock formation over some significant tube length is

not as elementary a problem as one might initially suppose.

The infinitesimal compression wavelets created by the piston

will merge together as they travel down the tube, since the

1
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absolute speed of each succeeding wavelet is greater than

that of the wavelets ahead of it (wavelets are distinguished

from waves in that a finite wave is imagined to be made up

of many infinitesimal wavelets). As the wavelets merge, the

gradients of temperature, pressure, and velocity steepen and

a shock wave forms. However, a shock wave does not compress

the gas to the same state as a series of compression wave-

lets does prior to merging since the latter is isentropic

whereas the shock is not. Thus an expansion wave must move

from the merging location in the opposite direction of the

shock motion.

A second feature which complicates the flow pattern is

the growth of the shock strength. This growth results in

shocked gas with an entropy gradient, and therefore temper-

ature and density gradients. The entropy gradient also

causes reflected waves when any wae system passes through

it.

The objective of this study is to determine the charac-

teristics of the flow field which result when a shock wave

forms in front of a continuously accelerating piston (though

the acceleration may vary with time). A solid piston is

assumed to accelerate from rest along a constant area tube

which is initially filled with a uniform nonreacting gas at

rest. The study is not restricted to weak shocks; however,

the flow downstream of the shock wave is considered fric-

tionless, adiabatic and one-dimensional. The gas is assumed
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to be a perfect gas, that is, thermally and calorically

perfect.

Both a theoretical and experimental study is made of

the shock wave formation problem. The theoretical and

experimental methods used will be described after the liter-

ature survey has been discussed.

Literature Survey

The first general solution to the shock formation

problem, for a weak or "moderate strength" shock wave, was

given by Friedrichs.3  The basis of this treatment is the

assumption that the entropy and appropriate Riemann variable

do not change across the shock, so that the region behind

the shock contains a simple wave. The solution gives the

shock path and the shock strength in terms of pressure,

velocity and speed of sound increase. Pillow5 gave a

similar treatment for a weak shock. Laponsky and Emrich

performed experiments which reasonably well verified the

weak shock theory of Friedrichs. The shock path and veloc-

ity were measured and compared to the theoretical values.

Their maximum shock pressure ratio based on measured shock

velocities was 1.73.

Friedrichs also treated the case of an instantaneously

created shock followed by an expansion wave from the piston

which is decelerated to zero velocity. Although this

decaying shock problem is not the same as the shock
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formation problem, a verification of Friedrichs' treatment

by Lighthill7 gives additional insight into the shock forma-

tion problem. By a conservation of energy analysis,

Lighthill showed that Friedrichs' theory is sound, but that

higher order errors are due to the neglect of waves which

are reflected back from the shock wave. This energy

approach will be discussed in Chapter II.

Shunk8 has made the only attempt to study the nature of

the formation of a strong shock, that is a shock with an

entropy increase so large that it can not be neglected.

Shunk made some progress by showing that weak shock theory

did not compare favorably with experiment for a strong shock.

He also theoretically justified that an expansion wave must

be reflected from the shock as the compression waves merge

(Shapiro9 also justified the existence of this expansion

wave). However, Shunk's theory i~nvolvedso many approxima-

tions that the results are auestionable as to accuracy and

completeness. Further clarification is needed of the phys-

ical requirements for reflected waves, the entropy. gradient

effect on these reflected waves and the nature of the result-

ing flow.

Shunk's experimental verification of his theory is not

convincing. It involved just one case where only the dens-

ity was examined, and was based on the fact that his theory

compared more favorably with experiment than an isentropic

theory. The present author does'not feel that such a



comparison verifies the features of the flow since it is

expected that a theory involving a shock wave would always

be superior to an isentropic theory.

26Moretti 2 6 also studied shock formation due to an

accelerating piston. His emphasis was on the mathematical

techniques with minor attention paid to the physics of the

problem.

Several piston tube studies have been made where the

main objective has been to analyze the performance of a

facility and not to analyze shock formation.1 0 - 1 4 In Refer-

ences 11 and 12 isentropic flow was assumed while in 10 an

ingenious method equivalent to hypersonic tangent-wedge

theory was developed. In References 13 and 14 the flow

resulting from the multiple reflection of a shock between a

moving piston and an end wall was studied. Enkenhus1 3 used

the approximation mentioned for Reference 10 for the primary

and first reflected shocks, and Humphrey 1 4 utilized the

method of characteristics. Although Humphrey apparently

obtained an accurate solution of the shock formation, there

is no analysis of the results. Due to the step by step

nature of the method of characteristics, if care is not

taken, it is possible to obtain results which give an

incorrect physical picture. There is not enough detail in

the report or its references to assess whether or not the

solution is entirely correct. However, one experimental

shock path for a weak shock was compared with theory and



good agreement was obtained (maximum shock pressure ratio

in region of comparison was about 1.5).

In summary, a study of the literature shows that

although, the tools for analyzing shock wave formation have*

long been available, no rigorous analysis has been made for

a strong shock wave.

Theoretical Considerations

Two types of wavelet mergers will be examined. One is

a special case where all the wavelets merge at once and is

called a focused wave. The other is a more general case

where the wavelets merge one after the other and is called a

dispersed wave. An example problem is worked out for each

of these waves. These example problems are referred to as

Cases I and II for the focused wave and the dispersed wave

respectively.

When viscosity and heat conduction are neglected, the

one-dimensional unsteady flow created by an accelerating

piston is governed by the following equations for the con-

servation of mass, momentum and energy

+t -O (1)

+yu + -o (2)



where s = s(p,ly) is the entropy per unit mass, po , u are

pressure, density and flow or partical velocity, and x,t are

distance and time. These equations comprise a set of

coupled quasi-linear partial differential equations of the

first order.

The boundary conditions used in .this study are piston

position as a function of time, a uniform stationary gas

ahead of the piston at t = 0, and an impermeable piston.

For the special case of s = constant and disturbances

moving in only one direction, a closed form solution of

these equations is possible (an example is the focused wave

prior to merging). But for the general case of nonsteady

flow in a region where disturbances travel in both direc-

tions (dispersed wave), no exact closed form solution

exists; although approximate analytical solutions are poss-

ible, such as Lighthill's solution.

Two mathematical techniques have been applied by

various authors to obtain a general solution of the piston

problem. These techniques are self-similar solutions and

the method of characteristics. The self-similar approach

has been largely developed in the Russian literature (see

Hayes and Probstein 1 5 and Chernyil 6 ). When this approach is

used to study the continually accelerating piston case, a

strong shock must be assumed and certain approximations

introduced. But even in this case, the problem is

restricted to a power law piston path of the form
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C (4)
,+I

where C is a constant and n is any constant other than -1.

In order to investigate the usefulness of this power

law piston path, several piston paths were calculated by

using the method of characteristics with assumed driver and

driven tube pressures and piston mass. For each of the

resulting paths, an attempt was made to find a value of n

which would describe the path; however, it was found that

the value of n varied along the path. Due to this diffi-

culty, and the approximate nature of the solution, and the

greater flow detail provided by the method of characteris-

tics, the characteristic approach was chosen for the

theoretical analysis. Most of the development is based on

the techniques described by Rudinger, 1 7 -although Owczarek's

method1 8 was also used.

Experimental Considerations

An experimental program was undertaken in order to

obtain some verification of the theoretical analysis. A

piston tube was designed and built. It consisted of 40 feet

of stainless steel tubing divided into driver, driven and

brake tubes by Mylar diaphragms. The driver section was

pressurized with air until the diaphragm broke. Then this

high pressure air caused a piston to be accelerated into the



low pressure air of the driven tube. In this tube, measure-

ments were made of the pressure and of the time for the

piston to travel between certain stations. The'final sec-

tion of the tube was a high pressure brake tube used to

decelerate the piston.

Shock Mach numbers as high as 1.6 were achieved.

Experimental measurements of the pressure and the shock

path (in the time-distance plane) were compared to the

theoretical prediction of these quantities for two cases.

These cases are called Cases III and IV. The theoretical

solution used in these comparisons was based on an experi-

mentally measured piston path..



CHAPTER II

FOCUSED COMPRESSION WAVE

Although there are various ways in which the infini-

tesimal wavelets of a compression wave can merge, only the

special case when all wavelets merge at one point in the

tube will be discussed in this chapter. This focused wave

case is the logical starting point in a study of shock form-

ation since it has many of the basic features of the

dispersed case, but is much easier to solve. An example is

worked out to establish certain features of the shock forma-

tion process and to use as an approximate check on the

dispersed wave case which will be worked out in the hext

chapter. Then a closed form solution is found which demon-

strates certain features of the flow. This .so.ution is

followed by a discussion of shock formation from a conserva-

tion of energy viewooint. Finally, the various conclusions

are summarized and examined.

In all cases considered, the initial gas state is

motionless with a pressure and speed of sound of po , ao.

The tube is constant area. A thermally and calorically

perfect gas is assumed.

10



Possible Comoression Wave Patterns

As the piston accelerates from rest, infinitesimal

wavelets are sent into the gas ahead. Since these are

compression wavelets, each succeeding wavelet travels faster

than the preceding one, and thus all of the wavelets will

eventually. combine into a single thin region or front known

as a shock wave. However, the manner in which these wave-

lets merge depends on the piston path. In the most general

case, one or more individual shocks could form between the

piston and the front of the wave. Laponsky and Emrich

experimentally observed a case where a shock formed in the

interior of the wave. A theoretical analysis showed that a

second shock also formed at the head of the wave, but it was

too weak to be measured. Theoretical predictions of this

phenomena are reported in References 3, 5, and 19. Another

possibility for a dispersed wave is that the shock forms at

the head of the simple compression wave. This dispersed

wave is the subject of Chapter III and is shown in Figure

la.

The third possibility is that none of the wavelets

merge until they all merge at once. This is called a

focused or centered wave (References 9, 18, and 20) and is

particularly easy to analyze because prior to merging there

is no shock wave present to cause entropy changes. The

process prior to merging involves a simple wave and.can be

considered isentropic in the same way that a centered
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expansion wave can be considered isentropic. A focused wave

is shown in Figure lb.

Solution For Case I

Case I is an example of a focused wave where the piston

accelerates to a velocity of1L = 1.578 and continues
p

thereafter with a constant velocity. The solution for Case

I is shown in Figures 2-4. Before the solution for Case I

is discussed, however, certain physical features and new

viewpoints concerned with the focused wave will be consid-

ered.

During the -period before the wavelets have merged,

velocity, pressure and temperature gradients in a compres-

sion wave are usually low enough that, to a good approxima-

tion, there is no production of entropy. However, there may

be cases when the assumption of Ds/Dt = O'is not good.

Consider for example the case of mm-underground tubular

transportion system. Such a device will have a very low

acceleration, Ap. and therefore the distance necessary for

shock formation, xF, will be very large (proven in next

section). Thus it is not difficult to imagine that a

condition could arise where the wavelets could merge close

enough to each other to cause steep gradients but not close

enough together to form a steady shock wave, and that this

condition could exist for a significantly long time.

Therefore, a significant portion of the gas would have an



13

entropy intermediate between that of the earlier isentrop-

ically comuressed gas and the later shock compressed gas.

This intermediate flow is very difficult to analyze because

it is both unsteady and viscous and heat conducting.

Therefore, neither the isentropic unsteady simple wave

equations nor the steady shock wave equations apply.

Approaches to this problem are indicated by Liepmann and

Roshko,21 Shapiro, Owczarek,24,2 5 and Moretti. 2 7

In the above sense a compression wave differs from an

expansion wave because the steepest gradients exist in an

expansion wave for Ap = oo (centered wave), and even in this

case the wave can be assumed isentropic because the steep

gradient lasts such a short time. In this study the view

will be taken that previous to wave merging the changes

through the wave are isentropic.

Once the waves merge, an initial momentary "discontin-

uity" exists. The gas on one side of the discontinuity is

assumed to have been isentropically compressed and the gas

on the other side is in the initial state. However, the

conservation equations valid across a gasdynamic discontin-

uity show that there is an entropy increase. Thus an

"arbitrary discontinuity" exists. Zel'dovich and Raizer 2 0

show that the subsequent flow must consist of shock waves,

expansion waves and uniform flow regions. Since a shock

wave travels in the same direction as the piston, an

expansion will travel in the other direction, as can be
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determined from a pressure-velocity or , pL Dlane analysis

(9 and UL are dimensionless pressure and velocity).

The solution for Case I is obtained by use of the ,

il-plane shown in Figure 2. This figure shows very clearly

that the isentropic compression to a given point, 2, does

not satisfy the shock equations. Point 2 is located by

knowing the final piston speed. To satisfy the. boundary

condition across the entropy discontinuity of equal pres-

sure and velocity, a weak expansion will occur along the

line 2-3 (the expansion is weak compared to the compres-

sion). Figures 3 and 4 show that the shocked gas has a

higher speed of sound (therefore higher temperature and

higher entropy) and lower density than the isentropically

compressed and expanded gas. Thus a discontinuity in

density, temperature and entropy persists and travels down-

stream.

Thus the study of the focused wave made in the liter-

ature has demonstrated some important aspects of the shock

wave formation problem. First, when isentropic waves merge

into a nonisentropic shock, a weak expansion wave is

reflected back toward the piston. Secondly, even though

the pressure and velocity approach uniform values, gradients

in entropy, density and temperature will persist.
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Closed Form Solution

Due to the simplicity of the focused shock wave forma-

tion, it is possible to obtain closed form expressions for

the piston path and the energy equation. In this section

the piston path will be obtained and some conclusions drawn

from it. Glass and Hall2 2 have developed the equation for

the piston path in the x,t plane. Since their forms for

the piston velocity and acceleration are not convenient

ones, new forms are presented here. For the sake of

completeness, the derivation of the piston path will be

reproduced.

The physical characteristi'cs are the wavelet paths in

the x,t plane. In a simple wave the characteristics are

straight lines and all flow variables are constant along

them. Thus from Figure lb, the absolute speed of a wavelet

can be expressed as

S+xa -F (5)
tF -t

where xF,tF is the focus point. Also for a right traveling

simple wave the Q Riemann variable is constant giving

S"-U (6)

where the reference conditions are taken to be the undis-

turbed flow conditions and ' is the ratio of specific

heats. Solving Equations (5) and (6) for u
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Equation (7) is valid anywhere in the flow field. To obtain

the piston path or particle path, set

U,

t _+- t-to

This is a linear first order differential equation which can

be solved by changing variables to y = x - XF, = t - tF

and using an integrating factor. The solution for the

piston is obtained by applying its initial conditions

xi = t i = 0. The result is

where xF = aotF was used. The piston velocity and acceler-

ation are given by the first and second derivatives of

Equation (9)

Up 10) +
-- 0  - - I (11)

23

Ar ;
-P 

F -
( 1 ( 1

ao -- %+1 t Zl

Equation (10) can also be obtained by substituting Equation

(9) into (7). Equation (11) gives a value for both xF and
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tp when the initial piston acceleration, Ap,i, is specified:

zao

so, that

2.X5: .-- o _(12)
( + I) A-f,i

Equations (9), (10) and (11) demonstrate some of the

physical features of the flow. First, if the piston con-

tinued to accelerate past tF, obviously the wavelets could

not reach xF at tF. All eouations demonstrate this because

they are not valid for t > tF . Also it would be expected

that if a wavelet were sent out near tF, it would have to

travel very fast to reach the focus point along with the

earlier wavelets. Equations (10) and (11) show this because

both piston velocity and acceleration go to infinity as

t -- tF and

li 2 . -

Equation (9) is derived by Glass and Hall;2 2 however, their

forms for piston velocity and acceleration depend on x and

t instead of t alone. Hall1 correctly plots piston velocity

and acceleration for 1 = 1.4 but does not give any equations

for these quantities.

Equation (12) shows that the shock formation point

increases as the undisturbed speed of sound increases. This
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is logical since if it is imagined that the individual wave-

lets are initially separated by some Ax and move toward

each other with some Au, then there will be a &t before

they merge. If the waves move fast, they will travel a long

way in this At. Also the formation point increases as the

initial piston acceleration decreases. This also is logical

because it would be expected that the &x would be larger

for smaller Ap,i . Rudinger 1 7 has developed Equation (12)

for the case of a piston with a constant acceleration.

Energy Analysis

Some authors argue the existence of waves reflected

back toward the piston from the shock based on conservation

of energy. Although these studies are not of a focused

wave it is appropriate to mention the results here.

The conservation of energy provides a somewhat differ-

ent viewpoint of shook formatin. han is given by the pres-

sure-velocity plane and the speed of sound-velocity plane

analyses. It is clear that a simple compression wave can

be created in an initially motionless gas by an accelerating

piston. Therefore, in a simple wave, that is prior to the

merging of any wavelets, energy conservation shows that the

work done by the piston on the gas must equal the energy

gained by the gas due to the simple wave. A proof of this

energy conservation for a focused wave was obtained in this

study and is presented in Appendix A. Thus, it is clear
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that there is no requirement for reflected waves prior to

wavelet merging. Although the proof has been made for a

focused wave, this energy conservation must be true for any

type of simole compression wave.

Friedrichs 3 studied an instantaneously created shock

followed by a simple expansion wave as the piston was

slowed to a stop. The entire flow was assumed isentropic.

Lighthill7 verified Friedrichs' theory by an energy

analysis. Lighthill compared the piston work to the energy

of the simple wave and found that they differed by a

"residual energy". This is the energy in the region behind

the simple wave and is proportional to the entropy gain

there. In the Friedrichs theory the pressure and speed of

sound return to initial values. However, examination of the

residual energy showed that the average pressure behind the

simple wave is below the initial value and is due to a wave

which is a reflection of the original simple wave from the

shock.

In his study of the formation of a shock wave, Shunk8

states that Lighthill showed that the energy in a simple

wave is greater than the work done by the piston. There-

fore, Shunk concludes, an expansion wave must be formed so

that its energy plus the energy of the original wave equals

the work done by the piston. Although this statement is

correct it should be emphasized that only when the non-

isentropic process of a shock is present is a reflected
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expansion necessary to balance energy. In Lighthill's case

a shock is always present but in the shock formation case

there is always a period prior to wavelet coalescence when

the piston work equals the increase in energy due to a

simple wave. Only after coalescence do the conservation

laws of fluid flow require an expansion to be reflected as

shown earlier by the 2 ,U plane analysis.

An additional point needs to be made in connection with

Lighthill's conclusions. The original simple wave from the

piston is an expansion, and Lighthill says that the reflec-

tion of this wave from the shock drops the pressure behind

the simple wave. Thus the reflected waveis also an expan-

sion. But this is not possible since the shock reflection

coefficient (to be discussed in Chapter III) is negative so

that the simple expansion wave must be reflected from the

shock as a compression. The explanation :of the-pressure

drop behind the simple wave may be as follows. The reflec-

tion of the simple expansion wave from the entropy gradient

will be an expansion wave. These reflected expansions may

overpower the reflected compression waves (see Equation (39)

in Chapter III).

Summary of Conclusions

As a piston accelerates into initially motionless gas,

the gas next to the piston is compressed isentropically and

the gas some distance away is compressed nonisentropically,
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as the gradients in velocity, pressure and temperature

steepen and a shock wave forms. The fundamental difference

between these two compressions is the magnitude of the grad-

ients and the corresponding effect on the entropy.2 1 Based

on the solutions for the focused wave in this chapter, once

the nonisentropic process occurs, readjustments in the

isentropic flow occur in the form of a weak expansion wave

reflected from the shock back toward the piston. Also, as

a result of the two different processes, the compressed flow

will not have uniform temperature, density or entropy.

Equation (12) gives the point at which the shock first

forms and is valid for dispersed or focused waves, as long

as Ap is constant for the former.1 7 This equation gives an

idea of how large the isentropic region may be. In princ-

iple this region always exists; however, for a piston which

is instantaneously accelerated to a given speed the isen-

tropic region shrinks to zero. On the other hand, in a

transportation tube with a slowly accelerating vehicle this

region may be very large.

These same phenomena will occur in the dispersed wave

case to be studied in the next chapter. The different

compressions which occur in that case will not be isentropic

verses nonisentropic, but nonisentropic verses more non-

isentropic. The shock becomes more nonisentropic as it

continues to grow in strength and the width of the region

with an entropy gradient depends on the particular case.



CHAPTER III

DISPERSED COMPRESSION WAVE

As already mentioned, most of the basic physical

phenomena which occur in a general dispersed wave case have

already been observed in the focused wave problem. The

only phenomena not treated there is the effect of an entropy

gradient on traversing isentropic waves.

Since a focused wave is experimentally difficult to

produce1 ,2 ,2 3 and the dispersed wave is the one which occurs

naturally, it is frequently necessary to analyze a dispersed

or natural wave. The subject of this chapter is a dispersed

compression wave created by a piston whose acceleration is

always positive but decreases with time. A single shock

wave forms at the head of the compression wave.

The characteristic equations will be presented and the

technique of solution described. An example is worked out

and the various results are verified. Before the results

are verified, some additional viewpoints to the numerical

characteristic method are discussed. These include the ( ,

" plane analysis of the effect of an entropy gradient on a

wave and reflection coefficients. After the characteristic

results are checked, the nature of the resulting flow is

22
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examined and some ideas for simplifying the characteristic

method are suggested.

Method of Characteristic Solution

The set of Equations (1-3) are of the hyperbolic type

and the numerical method of characteristics can be used to

solve them. As indicated earlier, the characteristic tech-

nique was chosen since it is an essentially exact solution

of the equations. The only approximations are due to errors

in taking finite steps in the numerical procedure and in

assuming a perfect gas. Of course the equations themselves

contain the assumptions of adiabatic, frictionless, and one-

dimensional flow.

The technique used for solving the characteristic equa-

tions is described in the excellent book by Rudinger. 17

Except where noted, the equations and methods described in

this section are based on Rudinger's technique. Humphrey 1 4

presents a method of solution which is somewhat different,

possibly more appropriate for a computer solution.

The numerical computing method is based on changes in

the Riemann variables

2.".(13)
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along the respective physical characteristics which are

defined as curves with slopes

5 - TL-+CL f- P4 (15)
C1 C!J S

Here andLL are dimensionless speed of sound and flow

velocity and and T are dimensionless distance and time.

Dimensionless quantities are preferable to dimensional

quantities in the numerical analysis. Physically, Equa-

tions (15) and (16) define the paths of wavelets which move

in the positive and negative direction with respect to the

local flow. Equation (15) defines the P characteristic and

Equation (16) defines the Q characteristic. For the assump-

tions of this study, the only changes which occur in the

Riemann variables along the physica'l characteristics are due

to an entropy gradient. These changes are governed by the

compatability or state characteristic equations

(1?)d P ( S d
where S- s/ R is a dimensionless entropy and R is the

specific gas constant. Equation (17) is actually a wave

equation since it governs the changes in P and Q along the

path of a positively or negatively moving wavelet.

Since the shock grows continually in strength, there

will be a gradient in entropy from the piston up to the
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instantaneous shock location. This entropy gradient through

the shock layer (the compressed gas) 'is treated by dividing

the shock layer up into strips parallel to the particle

paths (in the , plane). Each strip is assigned a value

of the entropy which is an average of the highest and lowest

values in the strip. It was found in this study that for a

change in entropy, dS, along a P or Q characteristic, Equa-

tion (17) could be integrated by assuming dUL= 0 in the

region where dS occurs. This is justified by arguing that
AL is the same on both sides of the entropy discontinuity,

which is valid in a numerical approach. Using Equations

(13) and (14), integration of Equation (17) gives for either

P or Q characteristics

- (18)

where the subscripts R and L indicate right and left respec-

tively of the entropy discontinuity or "entropy interface."

The changes in P and Q are found from the definition Equa-

tions (13) and (14) and Equation (18) to be

Equation (19)shows that when all conditions are known on

Equation (19') shows-that when all conditions are known on
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the left of an entropy interface, the value of P on the

right side can be computed by knowing only the entropy

change across the interface. In this respect Equations (19)

and (20) are easier to use than the corresponding equations

given by Rudinger. His form of Equation (19) also requires

a knowledge of QR in order to compute PR. For

Equations (19) and (20) can be approximated by

P11- R . L(SR- L) (21)

QJ- Qa~ cQ[R(- R) (22)

Average values of 0, occur in these equations if Budinger's

form of Equations (19) and (20) is reduced, which probably

gives greater accuracy. That Equations (19) and (20) reduce

to a form similar to Equation (17?-) I:s some justification of

the assumption dIL = L R,

Briefly, the computation technique involves knowing two

of the four quantities in Equations (13) and (14) and solv-

ing for the other two. On the piston face oL and Q are

known. In the shock layer P and Q are known. When all four

quantities P, Q, CL,'L, are known at a point, the P

characteristic is drawn in at a slope of 'u + aQ and the Q
characteristic at a slope of j - (according to Equations

(15) and (16)). The characteristics are drawn in the ,
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plane on a large sheet of graph paper. When a character-

istic crosses an interface (slope of~. ) the change in P or

Q is found by Equations (19) and (20) or (21) and (22). For

all curves the slope drawn between two points was gradually

changed between the two known values.

Once the speed of sound and entropy are known at a

point in the shock layer, the static pressure can be com-

puted. The equation for the change in entropy is

S -S~ ~rIP n

Using the relationship between specific heat at constant

pressure, op, and Y and R

and the speed of sound relation

~a

TO

the entropy equation can be rewritten as

(23)

where So is set equal to zero, since only entropy differ-

ences are considered. Note that the undisturbed gas condi-

tions have been taken as the reference conditions po, ao,

SO . Even if various undisturbed gas conditions are used,

So = 0 is still valid because the various conditions just
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have a different base for the entropy values.

Now that the general computation scheme for the shock

layer has been described, consider what happens when wave-

lets merge into the shock, that is when P characteristics

intersect the shock. The beginning of the shock occurs

when the first two P characteristics *intersect. The shock

strength at any point on its path is determined by the

difference between the value of P behind the shock at the

given point and P ahead of the shock, divided by.A ahead

of the shock. Thus when a P characteristic is plotted

through the shock layer, the value of P being constant

except when an entropy interface is crossed, the character-

istic will eventually intersect the shock. The shock

strength at this point is computed'using the final Value of

P on this characteristic.

The equation governing shock strength Is obtained by -

taking the difference between the P variable definition

ahead of and behind the shock. Using a single prime to

indicate conditions ahead of the shock and a double prime

behind, the result is

-. ) (24 Y

Equation (24) is given by Rudinger. However, a form which

contains a more familiar combination of variables was

obtained in this study in the following manner. The
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absolute shock speed for a P shock (a shock moving in the

direction of positive velocity which is to the right) is the

sum of the flow velocity and the shock velocity with respect

to the local flow. This is written

C A V -UI= > \N' -L L W (25)

The continuity equation for the shock wave is

, II (26)

Equations (25) and (26) can be combined to evaluate the last

term in (24), giving the final result for shock strength as

S- ) +MW1 )(27)

where MW , is the Mach number of the shock wave

WI

All variables on the right hand side of Equation (27) are a

function of M , and a standard normal shock table can be

used to evaluate them. Rudinger's book contains tables of

(P"-P')/CL as a function of MWW, S" - S' and other flow

variables. Since P' and CLI' are known from the initial gas

state and P" is known from the intersecting characteristic,

the shock strength is always readily calculated.
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Earlier it was said that in the shock layer Q is knomwn.

Now that the shock has been discussed this point can be made

clear. Prior to any wavelet merging, a simple wave exists.

In characteristic terminology this means that all Q charac-

teristics have the same value of Q and this value is the one

in the undisturbed flow. After the shock forms, Q just

behind-the shock can be computed since LL" and 6" are

known. Then the Q characteristic can be drawn in as

described above.

A very important point concerning finding Q at the

shock should be mentioned. Since finite steps are taken in

a numerical procedure, accuracy is increased if quantities

between two points are taken as an average of the two

points. The entropy strips were defined byparticle paths

from.adjacent computed shock points. Therefore a correct

entropy for a given strip must be an average of the entropy

at adjacent shock points. Since the value of Q throughout

the shock layer depends on the entropy gradient, the correct

initial value of Q must also be an average of the Q values

at adjacent shock points. The Q characteristic is drawn by

starting at the midpoint of the shock increment. Since

interpretation of reflected wave phenomena is based on Q

values, not using these averages can result in an erroneous

interpretation of reflected waves (using an average entropy

but not using an average Q value for example).
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The order in which computations were made was to work

along a P characteristic all the way from the piston path

to the shock. Then all existing Q characteristics and

particle paths were extended from the preceding P charac-

teristic up to the one just calculated. The slopes are

gradually changed between the two known values by use of a

French curve. Similarly the shock is extended from the

previous point to the one just computed. Appendix B gives

a detailed example to clarify the scheme.

The boundary conditions on the problem are an imperme-

able piston moving along a given path in the , plane

and initially undisturbed uniform gas ahead of the piston.

The piston path can be prescribed as a path determined from

experiment, or can be a computed path. A computed piston

path is obtained by a simultaneous characteristic solution

of the driver and driven tube gases. The resulting pres-

sures give the force on the piston, which is then substi-

tuted into Newton's second law of motion. Integration of

Newton's second law gives the piston velocity and position

as functions of time.

The undisturbed driven gas conditions were always used

as the reference conditions in dimensionless quantities.

When graphical procedures are used, it is necessary to use

the same reference conditions for both the driver and driven

gas and for the piston motion.
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As indicated earlier, graphical techniques were

employed in the characteristic solution by plotting wavelet

or characteristic paths, and piston, particle and shock

paths in the S , plane. This procedure is much faster

than numerical calculation of the points of intersection;

of course, these points would have to be found numerically

if a computer solution were used. Note that the spacing of

the P characteristics emanating from the piston path deter-

mines the size of the mesh. Decreasing the mesh size was

found to have a significant effect on only the shock and

only during its period of initial growth. The shock

strength at later times and the shock layer flow variable

distributions were unaffected within the accuracy of the

hand computations. The insensitivity of the-flow variables

to mesh size is due to the primary dependence of pressure

and flow velocity on the piston path and the relative

constancy of these quantities along the P characteristics.

Once the P characteristic intersects the shock, the new

shock strength is then established by the flow velocity on

that characteristic (the shock strength is fixed by
(ILI' - X "U-' li ).

Another great time saver was a graphical method due to

Schmidt for obtaining the slope of P and Q characteristics

18
and particle paths. Also, Equations (13) and (14) for the

Riemann variables can be used to plot an £ ,'L. state plane;

however, it takes about the same time to solve Equations (13)
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and (14) on the state plane as it does by use of a hand

calculator. With a specified piston path, an accurate solu-

tion required about 12 man-hours, whereas Shunk's technique

required 10 days.

An example problem labeled Case II has been worked out

according to this theory. A piston is accelerated from

rest ta the same final speed and into the same gas as the

focused wave example in Chapter II (Case I). The wave is a

dispersed wave and the wavelets merge into each other one

after the other. A single shock wave forms at the front of

the compression wave. The piston path up to 1= 0.5 is one
which had been previously calculated for a frictionless

piston of 0.4 lbm, with an initial driver tube pressure of

100 atm and an initial driven tube pressure of 0.01 atm.

The driver gas was hydrogen and the driven gas was argon,

both initially at room temperature. Both the driver tube

and the driven tube inside diameter was 1.5 inches. At

T= 0.5 the acceleration was abruptly brought to zero and
maintained there. Tables 1-4 give the results of the

calculations, the piston path and the initial gas condi-

tions (only the driven gas is of interest). Figure 5 is

the graphical wave diagram solution.

Before the results of the characteristic solution of

Case II are examined, some additional viewpoints will be

developed. These will be used in verifying and interpreting

the characteristic solution. First, the ,0LL plane is
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used to examine the effect of an entropy gradient on a wave,

followed by a discussion of the reflection coefficient

concept.

, 1 Plane Analysis of Entropy Gradient Effect on Waves

Some objectives of this study are to determine just

what types of waves are passing through the shock layer, how

strong they are, what effect the entropy gradient has on

them, how they die out, and so on. As explained previously,

the entropy gradient is treated by dividing the shock layer

into strips of constant entropy. A tool which can assist in

clarifying the nature of the shock layer wave system, and

also serve as some check on the characteristic results, is

the effect of a single entropy interface on an isentropic

simple wave. The question arises, of course, whether

results from a simple wave analysis apply in a nonsimple

wave region (a region where waves travel in both directions

simultaneously). A reasonable justification of such an

application is to imagine that the right and left moving

wave can each be represented by a series of small waves.

These small waves are selected so that the entropy interface

is crossed alternately by one from the left and then one

from the right. Thus the problem reduces to that of analyz-

ing a simple wave as it crosses the entropy interface. A

further justification of this application of simple wave

theory is that the conclusions drawn from a simple wave
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analysis do agree with the method of characteristics

analysis of a nonsimple wave. This will be demonstrated in

the section Analysis of Case II Results.

The effect of an entropy interface on a simple wave is

determined by use of the , t- plane. Since no reference

was found which satisfactorily discussed the 6 , plane,

a brief analysis is made in Appendix C. For the ,_

plane shown in Figure 6 the pressure and velocity are made

dimensionless with po and ao determined by the initial

conditions. For a wave moving in the direction of positive

velocity (to the right, i.e. a P wave), changes occur along

the curves with a positive slope. For a Q wave, changes

occur along the curves with a negative slope. Unlike the

it,'L plane, lines of constant P or Q are curved and inter-

sect. Which curve is traversed depends basically on the

value of the entropy of the gas (therefore on the temper-

ature or speed of sound since the initial pressure is the

same).

The , plane is not the only method of analyzing

the effect of an entropy discontinuity on a simple wave.

Application of the general principles of the method of

characteristics, without use of any numbers, very quickly

gives the same results. However, use of the , - plane is

something of an independent check on the characteristic

solution.
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The flow situation to be analyzed is a flowing gas of

uniform velocity, pressure and specific heat. The gas is

separated into two parts by an entropy or temperature

"discontinuity", each part having its own but uniform

entropy and temperature. Incident upon this discontinuity

is a simple wave. Assume that the discontinuity is moving

to the right initially and the wave approaches from the

left. Four possible situations exist then: a compression

wave moving from low to high entropy or high to low entropy;

and the same two possibilities for an expansion wave. As in

the solution of the focused wave, the basic boundary condi-

tion to be satisfied is that the final pressure and velocity

are the same on both sides of the discontinuity. An example

of a compression wave moving from a region of low to high

entropy is given in Figure 7. When the compression wave

hits the entropy discontinuity, a compression -wave is trans-

mitted and an expansion wave is reflected.

Note that left moving waves would not be different than

the ones considered above because if right moving waves are

viewed from the other side of the tube, they will be left

moving waves. Likewise, the direction of the initial gas

velocity is unimportant as long as the wave crosses the

discontinuity.

From the analysis of the above four situations for a

simple wave crossing an entropy discontinuity or interface,

the following useful rules are concluded:
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(1) Regardless of the type of wave (expansion or

compression) or direction of entropy change

(increase or decrease), the transmitted wave is

always of the same type as the incident wave.

(ii) When the incident wave moves from a low to high

entropy region, the reflected wave is of the

opposite type to the incident wave; the trans-

mitted wave is weaker pressure wise but stronger

velocity wise than the incident wave.

(iii) When the incident wave moves from a high to low

entropy region, the reflected wave is of the

same type as the incident wave; the transmitted

wave is stronger pressure wise but weaker

velocity wise than the incident-wave.

Reflection Coefficient

The treatment of the focused wave in Chapter II indi-

cated that when an isentropic wave overtakes a shock wave,

the isentropic wave is partly reflected. The ,- plane

analysis of the previous section showed that when an isen-

tropic wave crossed an entropy interface, it is partly

reflected. Although bothanalyses showed what type of wave

is reflected, neither analysis gave any general rule for the

strength of the reflected wave. The purpose of this section

is to present expressions by which the strength of the

reflected wave compared to the incident wave can be
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calculated. Such an expression is called a reflection

coefficient. Reflection coefficients for both an entropy

interface and for a shock wave will be discussed.

Knowledge of the strength of reflected waves is very

useful. If the reflected wave is much weaker than the

incident wave (small reflection coefficient), then the wave

system will die out quickly after the piston reaches a

constant velocity. Also, if the reflected waves are weak,

certain simplifying approximations can be made in the calcu-

lations, as will be discussed in the last section of this,

chapter. The sign of the reflection coefficient indicates

what type of wave is reflected. In this sense, the reflec-

tion coefficient serves as a check on conclusions from

alternate viewpoints. -

The entropy reflection coefficient will be derived

first. Consider what happens when an sentrTopic wave

suddenly hits an entropy interface. The P ,L plane

analysis showed that both a transmitted and a reflected

wave were required to maintain the boundary conditions of

equal pressure and equal velocity on both sides of the

interface. The basis of the reflection coefficient approach

is to ratio the pressure change of the reflected wave along

one characteristic to the pressure change of the incident

wave along the opposite. characteristic. From Equations (13)

and (14) the compatability equations for isentropic flow are
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O -lP - C-3=a +CuU (28)

a a- U (29)

Since the boundary conditions are in terms of pressure and

velocity and the reflection coefficient involves pressure

changes, Equations (28) and (29) must be transformed into

dp and du. Using the isentropic relation

S constant

and' the speed of sound relationship

it is found that

Thus Equations (28) and (29) become

. cU (or x - U+a (30)

8u aloncl =u-a (31)

Consider the incidence of a P wavelet or characteristic on

an entropy interface such as occurs between points 18 and 19

in Figure 5b. The strength of the incident, reflected and
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transmitted waves are, by Equations (30) and (31) (the

reflected wave is not shown in Figure 5b)

.U- - ; u (32)

CA -(33)

Ap ~ ~ (cA +cU)) (34)

where the pressure and velocity boundary conditions have

already been applied. The reflection coefficient is defined

as

-_e- .(35)

where Equations (32) and (33) have bee--substItuted. In

order to evaluate dur/dui the pressure boundary condition is

again applied

Substituting Equations (32), (33) and (34) it is found that

T t rl i C ai
Thh r+i c c3t

...Thus the reflection coefficient can be written as
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aLLa

e- - (36)

1+ +L ,..T

where (i,t) have been replaced by (L,R). Therefore, the

reflected wave strength depends on R/L. If R L ,

that is the wave travels from a region of low to high

entropy, the reflection coefficient is negative and the wave

is reflected in the opposite sense. This agrees with the

s"L- plane analysis. Other convenient forms for the

reflection coefficient can be found. Substituting the speed

of sound ratio across the entropy interface from Equation

(18) into Equation (36), the reflection coefficient takes

the form

By use of Equations (18), (19) and (37) and the definition

of PL and QR' the reflection coefficient can also be written

as

(s:= ) (38).
P, + Q

Properties of the hyperbolic tangent show that approximate

forms of Equation (37) are
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when (39)

I SLI < 0.4-

and

when (40)

Equation (40) gives the condition for almost total reflec-

tion of the incident wave. Such a condition could exist for

a flow where MW, varied from 1 to oo. On the other hand,

Equation (37) shows that as ' approaches 1, re approaches

0. Note that all the above expressions for the reflection

coefficient are valid for P waves only. The reflection

coefficient for Q waves is just the negative of that for P

waves.

An expression for the shock reflection coefficient is

given by Equation (48) of Lighthill. In the present nota-

tion it is

4- -- (41) . .
,' ',ao

-- I fJs
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Where (du/dp) '- (du"/dp") is for the shock wave (this

quantity appears in the derivation in place of a trans-

mitted wave effect). Using Equation (25) for the absolute

shock speed and .- Lt' = 0, the first term in Equation (41)

can be rewritten as

S" + a"- vW _ I - Mw ,,

Now Equation (41) can be written in a more convenient form

(42)

When the relation between flow velocity u" and pressure

p" for a moving shock wave is differentiated, the expression

in the second bracket of Equation (42) can be evaluated.

The result is (where u' = 0 has been used)

,l I,

ph- (A"ug ) + "( ,

(43)

J+ _ -'

Equation (43) is most easily evaluated by approximating

(dI/d P )s by use of shock tables such as Table 1 of



44

17Rudinger's book.1 From Equations (42) and (43) it is seen

that r s is a function of only MW, and ' . Figure 8 shows

the variation of r. with MW, for ( = 1.667. It is seen

that the magnitude of r. increases as MW, increases and

that rs is always negative. Since r. is negative, a com-

pression wave will reflect from the shock as an expansion

wave, which is the same result that was found for the

focused wave.

Some additional insight is provided by the limiting

form of rs for large MW. First, for large MW s (therefore

p"/p'>> 1), Equation (43) reduces to

I  Y 1>> (44)

For large.MW, the normal shock wave equations (written in a

coordinate system attached to the shock) yield the fdllowing

limiting values for the density ratio across the shock and

the downstream Mach number
I,

P - _+__

MW/ (45)

%261

When Equations (44), (45), and (46) are substituted into

Equation (42), the resulting expression for rs is a simple
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J-- ! (47)
I ++-

MWI 400

Table 5 shows the variation of r s with 6 according to

Equation (47). It is seen that as % approaches 1, the

value of rs approaches -1, which is total reflection of the

wave at the shock.

Very little previous work on reflection coefficients

has been done for one-dimensional unsteady flow. Lighthill

has a very limited analysis of Equation (41) and no refer-

ence has been found which discusses re. Hayes and Probstein

(Reference 15, Section 7.2) discuss both coefficients for

two-dimensional flow, where analogous results occur.

It is not sufficient to discuss the effects of

reflected waves from entropy interfaces and the shock wave

separately since in general they occur simultaneously. For

the case of an entropy decrease from the piston to the shock

(decaying shock), re is postive for P waves. Since r. is

always negative, in this case the primary or first reflected

waves will tend to cancel. For an entropy increase from the

piston to the shock (shock formation), re is negative for P

waves. Thus, in this case the primary reflected waves will
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reinforce each other. This reinforcement is demonstrated by

some calculations for Case II. Based on the characteristic

results, Table 6 gives an estimated value of rs + 2re at

the piston for the entire initial compression wave. To

obtain the total reflected wave strength a single entropy

strip next to the piston must be used. The incident wave

strength was the pressure change between points 1 and 18 of

Figure 5 and the reflected wave strength was estimated by

assuming an average P = 6 and using the drop in Q from

points 1 to 34 (the result is not sensitive to P). The

result is r. + 2re = - 0.044. Alternately, by use of

Equations (42) and (43), it is.found that rs = - 0.0035

assuming an average MW = 2 of shock point 11. Across the

entropy interface between strips 3 and 4, it is found that

re = - 0.0167 by use of Equation (39). Therefore, assuming

an averag4 of two to three entropy interfraes (some

reflected waves cross one Interface and some cross four),

the value of r s + 2re is approximately - 0.045, which

agrees with the characteristic estimate.

Analysis of Case II Results

Since the ( ,1L polane and reflection coefficient

concepts have now been discussed, these techniques can be

used to aid in the analysis of the characteristic solution

for Case II. The method of analysis of the Case II wave

diagram solution will be to follow one wave for three
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features of the flow will be discussed.

The distribution of flow variables and wave phenomena

are best revealed by viewing the flow in different ways.

Four illuminating ways of viewing the flow which have been

used in this study are:

(i) along a particle path or entropy strip

(ii) in direction at constant

(ill) in direction at constant

(iv) along a P characteristic

Method (i) is used in this section to study wave phenomena.

Methods (ii) and (iv) are used in the next section to

describe the nature of the resulting flow. (Method (iv) has

already been used in discussing the effect of variation in

mesh size.) Methods (11ii) and (ill) are used in Chapter V

for the comparison of the theoretical and experimental

results. The advantages of the particular method used will

become clear at the time of its use.

Figure 5 and Tables 1-4 give the results of the graph-

ical solution for Case II. Figure 5 is called a wave

diagram since it shows the paths of sound waves and shock

waves in the dimensionless , or time-distance plane.

It is seen that the piston velocity (slope of the piston

path) increases from = 0 to 0.5 and is constant from then

on. Likewise, the shock wave forms at = 0.24 and has a

subsequent increase in velocity until the final compression
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wavelet created by the piston at = 0.5 merges into the

shock (a finer characteristic mesh would alter the shock

formation point). Small variations in shock strength occur

after this final wavelet merges; however, they are too small

to be detected on the diagram. Using Equation (12) and an

average value of Ap = 4.21 for the time interval ' = 0 to

0.10, an approximate value of the shock formation point is

found to be = 0.178. This value is an approximate check

on the characteristic value. In Figure 5 the solid lines in

the shock layer are characteristics or wavelet paths, and

the dashed lines are fluid particle paths which define the

entropy interfaces.

Previously, the entire disturbance created by the

piston from 'Y= 0 to 0.5 was called a wave and each indiv-

idual disturbance such as 2-3 was termed a wavelet. Now,

however, since no confusion can arise, and tobe in con-

formity with usual terminology, the individual disturbances

will be called waves.

The analysis will be initiated by considering the P

waves (or characteristics) 12-16, 18-23 and a portion of

their reflection, the average Q wave (or characteristic) 22-

34. In the interest of simplicity, reflections from the

entropy interfaces will be ignored for the moment. The

rules obtained from the P ,LL plane analysis require that

at an entropy interface the transmitted wave always be the

same type as the incident wave. Therefore, since the piston
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sends out (primary) compression waves as it accelerates, the

P waves 12-16 and 18-23 (and others such as 4-6) should be

compression waves. Also, according to the focused wave

analysis, the merging of compression waves causes an

isentropic process to become a nonisentropic process. The

readjustments in the isentropic flow are made by an expan-

sion wave reflected back towards the piston from the shock.

A similar situation exists in the case of a dispersed wave.

The gas particle initially at = 0.422 is compressed by

the shock at point 6 and is further compressed by the

gradual compression wave 8-10. However, the gas particle

at i = 0.63 is subject to the combined effects of these

two compressions as a single shock at point 11. Therefore,

the latter particle has a greater entropy increase than the

former and it would be expected that readjustments in the

former-particle would occur by a weak reflected expansion

wave. Thus the Q wave 22-34 (and others such as 5-12, 10-

17) should be an expansion wave. That the shock reflection

coefficient, rs , is negative is also an indication that the

compression waves from the piston should be reflected from

the shock as expansion waves. Since rs is small in absolute

value, the reflected expansion waves should be weak compared

to the primary compression waves.

That the P waves 12-16 and 18-23 are compressions and

that the Q wave 22-34 is an expansion can be seen in Figures

9a,b which shows the interaction between right moving
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isentropic compression waves and left moving isentropic

expansion waves. Since the flow is isentropic, Q is

constant on Q characteristics and P is constant on P charac-

teristics. It is seen that in the region of mixed compres-

sion and expansion waves the value of P increases and the

value of Q decreases along a particle path. From Figure 5

and Table 1 it is likewise seen that for the isentropic flow

along a particle path such as along points 5, 13, 19 that P

increases and Q decreases (these points are all in the same

entropy strip and DS/DY = 0). Therefore, it is proven that

the characteristic analysis has given the correct type of

wave system in the region of the shock layer below the P

wave 18-23 (the piston stops accelerating at point 18). The

fact that the shock strength increases also shows that the P

waves 12-16 and 18-23 are compression waves.

Before continuing, consider the reflections of the

above P and Q waves at the entropy interfaces. Since the

expansion Q waves are much weaker than the compression P

waves, reflections of the Q waves will be ignored. The

results of the p ,IL plane analysis and the entropy reflec-

tion coefficient, re, show that reflections of the compres-

sion P waves will be weaker expansion waves. Hence, the

weak expansion Q waves from the shock will be slightly

reinforced by weak expansion Q waves from the entropy inter-

faces. Therefore none of the above conclusions are affected

by reflections at the entropy interfaces.



51

That the total reflected expansion is weak compared to

the primary compression was proven in the preceding section

where r. + 1re was determined. The value of this summa-

tion is further supported below where Cases I and II are

compared.

It should also be mentioned that the terms right and

left moving waves mean with respect to the local gas. Waves

moving along a Q characteristic can actually obtain a right-

ward motion with respect to the laboratory frame. Rightward

moving Q waves occur when L1. so that t-t. is positive

(see Equation (16)). Points 25 and 34 are two examples of

such a motion.

Next consider the reflection of the expansion Q wave

22-34 as a P wave 34-41. These waves are typical of the

region above the P wave 18-23. Again the wave type must

not change in a single traverse of the shock layer. Since

the Q wave is an expansion, the boundary condition at the

piston of constant velocity requires that the reflected P

wave also be an expansion. Hence, the region above the P

wave 18-23 should contain expansion waves traveling to the

left and to the right. Figures 9c and d show the inter-

action of left and right moving isentropic expansions. It

is seen that along a particle path in the nonsimple flow

region that both P and Q values drop. Likewise Figure 5

and Table 1 show that along a particle path such as 18, 25,

34, that both P and Q drop. Therefore, it is also proven



52

that the characteristic solution has given the correct wave

system in the region above the P wave 18-23. As the P wave

34-41 intersects the shock, the shock is slightly weakened

as seen from Table 2. This weakening of the shock also

demonstrates that the wave 34-41 is an expansion wave. (The

P wave 25-31 is also an expansion but makes the shock

slightly stronger due to small numerical errors and the weak

nature of the wave.) Since both reflection coefficients are

small in absolute value, reflections of waves such as 22-34

and 34-41 will not alter the foregoing conclusions.

A numerical verification of the characteristic solution

can be made by comparing Cases I and II. As mentioned

earlier, both cases have the same initial gas state and the

same final piston speed. Since the two techniques of solu-

tion are quite different, a comparison of them is a good

verification of Case II. The two cases are not the same

since the entropy gradients are much different; however,

since the reflection coefficients are small, the cases

should agree fairly well. The comparison is made in Table

6.

The primary comoression from the piston is compared at

the piston face, and is smaller in Case II due to expansion

waves reflected back from the shock and entropy interfaces.

The reflections of the primary compressions are compared.

For Case I all the reflection occurs at the shock, but for

Case II the reflections occur at the entropy interfaces as
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well as the shock. Since in both cases the flow is adjusted

between approximately the same two end points, isentrop-

ically compressed gas and gas downstream of the final shock,

the reflections at the entropy interfaces should be included

for Case II. The comparison is close. The final shock

strength is also compared and is weaker for Case II due to

expansion Q waves reflecting back off the piston and weak-

ening the shock. In each of the foregoing comparisons the

agreement is close enough to support the numerical results

of the characteristic solution.

In conclusion, both the general flow features and the

major numerical values of the characteristic solution have

been verified. The wave phenomena in the shock layer have

been verified by use of focused wave concepts, results of

the ?,cL plane analysis, and reflection coefficients. The

magnitude of the pressure and velocity changes caused by

various phases of the shock formation process have been

supported by the focused wave solution of Case I. Hence, it

is concluded that the methods described in this chapter give

an accurate and detailed theoretical solution for the forma-

tion of a shock wave from a dispersed compression wave.

Determination of how well the theoretical model agrees with

experimental results will be the objective of the following

chapters.
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Nature of Resulting Flow

The flow variables for Case II have been presented

graphically for two times during the piston acceleration,

and for a time long after the piston has reached a constant

velocity. Figures 10-14 give the distribution of pressure,

temperature, density, velocity and entropy during the piston

acceleration at Y of 0.4 and 0.5. In each case the vari-

able is divided by its value just downstream of the shock.

If the curves for the distribution of a given variable at

different ' had exactly coincided, the flow would be self-

similar. Then the flow would be described by a constant

value of n in the exponential piston path used by Chernyi1 6

(Equation (4) in Chapter I). It is seen from the curves

that the flow is only approximately self-similar.

Figure-s 15 and 16 give distributions of the same quant-

ities as above for a T long after the piston has reached a

constant velocity. The last significant wave is the Q wave

22-34 which reflects from the piston as a P wave and inter-

sects the shock at point 41. To plot the figures it was

assumed that the flow variables were constant in the entropy

strips after this P wave had crossed. Then the distribu-

tions were plotted for V = 1.22 which intersects the shock

between points 31 and 41. The region of the shock layer

compressed by the strongly varying shock and the primary

compression waves from the piston has the unique feature of

a flow in which a shock wave forms or decays. Gas initially
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uniform in all properties has been compressed to a uniform

pressure and velocity but with strong gradients in temper-

ature, density and entropy. The focused wave was a simole

example which demonstrated that such gradients would appear

due to the increasing nonisentropicity of the compression

process. It is also evident that the wave system did die

out quickly once the piston reached a constant velocity.

This rapid disappearance of the wave system was predicted

on the basis of the fact that both reflection coefficients,

re and rs, have an absolute value much less than 1.

A particularly interesting facet of this compression

process is that in spite of the eventual development of a

strong shock wave, the gas next to the piston has been com-

pressed isentropically. Also, when the reflected waves are

weak, the pressure here can be quite accurately calculated

from simple wave theory. It will be shown in Chapter V that

the theoretical and experimental pressures agree within a

few percent in this region.

The region of Figures 15 and 16 where the strong grad-

ients exist is similar to the flow distribution along a P

characteristic. This similarity can be understood by noting

that if any primary P wave were the last one to be sent out

by the piston, only small variations in flow properties

would occur after its passage. Along a P characteristic

from the accelerating piston of Case II, the pressure drops

by about 1% and the flow velocity increases by about 1% due
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to reflected expansion waves; however, much larger varia-

tions in T, , and S occur. In a simple wave, all flow

quantities p,'11, T,9 , and S would be constant along the

characteri stic.

The gradients in T,p and S explain some of the appli-

cations of the study of shock wave formation which were

mentioned in Chapter I. Gas which is isentropically com-

pressed to a given pressure rather than compressed by a

shock wave to the same pressure, has a higher density and

would have a lower dissociation if dissociation occurred.

Therefore, isentropic compression produces a more realistic

test gas for high speed, low altitude aerodynamic simula-

tion.1 ,2 In another application, consider the compression

of a combustible gas by an accelerating piston. Due to the

lower temperature in the isentropically compressed regions,

the gas Tight not burn until the compression waves merged.

This would cause combustion to occur far from the face of
20

the piston. 2 0

Simolifications in the Characteristic Technioue

The method of characteristics gives a very detailed and

accurate theoretical solution to the problem of shock wave

formation, but it is very time consuming to obtain the final

results. A few approximations will be mentioned which would

speed up the solution and give approximate answers. The

accuracy would deoend on the particular flow.
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If it is necessary to calculate only the shock strength

and shock path, the changes in the Riemann variable P across

the entire shock layer can be exactly computed in one step

by Equation (19). Then the P characteristics can be approx-

imately drawn in as straight lines. The accuracy of this

approximation depends on the degree of variation in the

slope of the P characteristics. This slope is U + L. As

the shock strength increases, the approximation becomes less

accurate. The accuracy was investigated for Case III, which

will be discussed in Chapter V. There was no error in shock

strength during the early stages of growth. The maximum

error in pressure rise through the shock at later times was

about 1%.

When complete flow detail is desired, tw simplifica-

tions could be made. One is to assume that Q is constant in

each entropy strip which is equivalent to assuming zero

shock and entropy reflection coefficients. The two-dimen-

sional steady flow counterpart of this problem is the shock

expansion method, but would be more properly termed the

"shock compression method" for unsteady one-dimensional

shock wave formation. This approximation would be espec-

ially accurate in the case of a decaying shock as discussed

previously (which would truly be a "shock-expansion method").

The second possible simplification would be to assume

self-similar flow. Once enough detail was available to

calculate the dimensionless flow variable distributions at
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some constant V, only the shock strength and path would

have to be computed from then on. Knowing the shock

strength at any subsequent 1, the calculated dimensionless

distributions could be used to estimate the distributions of

TY, p, 'L at the subsequent 'T.



CHAPTER IV

EXPERIMENTAL EQUIPMENT AND PROCEDURE

The method of characteristics has been utilized to

obtain a theoretical solution to the problem of formation .of

a shock wave from a dispersed compression wave. An experi-

mental program was designed and carried out with the objec-

tive of verifying this theoretical solution for a strong

shock wave. In the present chapter the experimental equip-

ment and procedure is described, while in the following

chapter the experimental result's are compared with the

theoretical predictions.

Experimental Eouiment

The piston tube used in these experiments consisted of

sections of constant area circular tubing bolted together to

form a 40 foot length. Mylar diaphragms were used to divide

this tube into three sections. The first section, called

the driver, was filled with air to a very high pressure.

When this pressure became great enough to break the

diaphragm, a small piston initially placed on the downstream

side of the diaphragm was driven into the low pressure air

of the second section (called the driven tube). As the

piston accelerated into the low pressure air, it formed the

59
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shock wave which was to be studied. A short section called

the brake tube was provided at the end of the driven tube in

order to decelerate the piston. The only gas used in this

study was air.

The description of the piston tube will be divided into

three principal parts. The tube design, the instrumenta-

tion, and the piston design will each be discussed.

Tube Design

Figure 17 is a diagram of the piston tube and the

instrumentation. As mentioned above, the tube was divided

by Mylar diaphragms into three sections, driver, driven and

brake tubes. With the exception of the brake blind flange

bolts, all tubing, flanges, and bolts were made of stainless

steel in order to withstand the high gas pressures. High

strength chrome-molybdenum bolts with an ultimate tensile

strength of 125000 psi were used on the brake blind flange.

All flanges were welded to the tubes (except the brake

blind flange which was removeable for cleaning the tube).

A circular cross section was used for all tubes since it has

the greatest structural strength.

The driven tube was made of five sections 39 1/4 inches

long, honed to an inside diameter (ID) of 3.100 + .009 or

- .002 inches. The wall thickness was approximately 3/4

inch. The brake tube was made from one section of this size.

The driver tube was a single tube 20 feet 4 inches long with
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a 3.360 inch ID and a 5/16 inch wall thickness. One end of

the driver had a flange for attachment to the driven tube

and the other end had a plug welded in it to seal it.

All flanges were 12 inches in diameter with a bolt

circle diameter of 9 inches. Bolts with a 1 inch major

diameter were used. Each joint had 9 bolts except the

diaphragm joints where only 7 bolts were used to allow

insertion of the diaphragms. Three C-clamps were used on

the brake-driven joint to help strengthen it. With the

exception of the blind flange assembly, the flanges were at

least 1 3/8 inches thick. The brake blind flange assembly

had one 2 1/2 inch thick flange and two 1 3/8 inch thick

blind flanges. 0-ring seals were used on all joints.

The driven sections were aligned during assembly by

use of an expandable piston. The piston was inserted at

each joint and expanded against the tube walls while the

flange bolts were tightened. The driver and brake tubes

were mounted on moveable carts to permit diaphragm insertion

and cleaning of the tubes. The brake tube alignment was

achieved by two pins inserted through both flanges at the

brake-driven joint.

The driven tube was bolted to five stands each of which

was in turn bolted to a track in the concrete floor by a

single 3/8 inch diameter bolt. One bolt was used to attach

the extreme end of the driver tube to the floor. This

method of securing the piston tube permitted movement of
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about 1 inch of the entire tube during an experiment.

Permitting this movement avoided any attempt to rigidly tie

down the tube while it was subjected to the extremely large

deceleration forces of the piston (over 9000 psi on the

brake blind flange).

The purpose of the brake tube was to permit decelera-

tion of the piston without the occurrence of extremely high

pressures on the brake blind flange. To illustrate the

operation of the brake, the results of an approximate calcu-

lation will be given.- The calculation determined the peak

pressure on the brake blind flange for two tube configura-

tions. In one configuration the brake and driven tubes

formed one continuous tube filled to a pressure of 1 atm.

In the other configuration, the brake tube was sealed from

the driven tube with a diaphragm. The brake tube was filled

to a pressure of 50 atm and the dri-ven tube was again at 1

atm.

The calculation assumed that as the shock reflected

back and forth between the piston and the blind flange, the

regions on both sides of the shock were uniform.. A perfect

gas was assumed. The peak pressure on the blind flange in

the former case was found to be 57,000 psi; but in the

latter case the peak pressure was only 12,000 psi. The

physical difference between the two cases is that in the

case when the brake was at 50 atm, the piston experienced a

high pressure much sooner than it did in the other case. As
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a result, the piston was slowed down over a longer distance

with a lower pressure. Thus, it is seen that from a

structural viewpoint it was desirable to employ the brake

tube.

Pressures on the order of 9000 psi were repeatedly

measured on the blind flange for a piston with about the

same acceleration characteristics and maximum velocity as

the above mentioned case. The occurrence of these pressures

is an approximate verification of the above calculations and

therefore indicates that the driver gas leakage past the

piston was not excessive (a further verification of the

absence of gas leakage is the agreement between theory and

experiment discussed in the next chapter).

An additional requirement for the brake tube was dis-

covered when the piston was driven with a moderately high

driver pressure of 860 psi in the non-brake configuration

(the brake-driven diaphragm was in place but both tubes were

at 1 atm). The pressure and temperature of the gas in the

brake tube become so great during piston deceleration that

hot gas leaked back between the piston and the tube wall and

caused the Teflon sleeve of the piston to expand. The

expansion caused the piston to become jammed inside the

brake tube and the Teflon sleeve was ruined. The calcula-

tions of the deceleration process showed that much lower

temperatures occurred when the brake tube was used.
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An estimate of the boundary layer growth in the shock

layer was made by use of the reference temperature method of

Eckert. 2 8 Increasing the inside diameter and the initial
pressure of the driven tube reduce both the boundary layer

growth and heat transfer to the tube wall (Stoddard2 ). The

inside diameter of 3.1 inches and initial pressure of 1 atm

were felt to be sufficient. It was also found that if the

non-brake configuration had a very low initial driven pres-

sure, the piston came very close to the blind flange.

The brake tube was designed with a safety factor of 3

for a pressure of 12,000 psi. The driven tube was designed

for 4500 psi with a safety factor of 6 and the driver tube

was designed for 3000 psi with a safety factor of 5. These

safety factors may not apply to the flanges of the driver

and driven tubes; however, these flanges do satisfy the

American Standard criterion,-for the above -pressures. It

should be mentioned, however, that these safety factors are

based on static loads and may not apply for dynamic loads.

The driver tube was filled to pressures up to 2000 psi and

the brake tube was filled to one half the driver pressure.

The initial driven tube pressure was always atmospheric.

The maximum pressure on the brake blind flange was approxi-

mately 9500 psi.

The diaphragm material found most useful was 0.005 inch

thick Mylar sheet. It was found that approximately one

sheet was necessary for every 100 psi of pressure
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differential. Multilayered diaphragms with up to 20 layers

were used to withstand pressure differentials up to 2000

psi. The clamping technique used was simply to insert the

diaphragm between the flanges (both flanges had an 0-ring)

and uniformly tighten the bolts.

The air supply and control system is shown in Figure

18. The air supply for the driven tube was room temperature

and pressure air. The 10,000 psi valve on the brake tube

was closed after the tube was filled. Closing this valve

prevented the high pressures which occurred during piston

deceleration from damaging the tubing and pressure gauges.

Numerious other piston tubes have been built and

operated. See for example References 2, 13, 14, 29, 30,

and 31.

Instrumentation

The instrumentation used during the motion of the

piston consisted of magnetic pickups to measure the piston

path and quartz pressure transducers. Data from these

devices were recorded on Polaroid film by use of an oscillo-

scope and camera. In addition, the tube pressures prior to

rupture of the driver-driven diaphragm were measured by

pressure gauges. Some components of the brake blind flange

assembly were monitored for permanent strain by the use of

strain gauges. Each of these items is briefly described

below.
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The piston path in the , plane was determined by

use of five type 3055-A subminiature magnetic pickups pro-

duced by Electro Products Laboratories. The pickup is 1/4

inch in diameter. When a magnetic material moves near the

pole piece at the end of the pickup a voltage output is

produced. Hence as the piston passed each pickup a pulse

was generated on the oscilloscope trace. Two pickups were

placed in the first section of the driven tube because the

slope of the piston path changes most rapidly in this

region. The other three pickups were spaced at approxim-

ately three foot intervals (see Figure 17).

Since voltage output depends, among other factors, on

-the gap width between the piston and the pole piece, the

pickups were inserted flush to the inside diameter of the

driven tube- (this was accomplished by visual sighting from

one end of the driven tube). The voltage output was gener-

ally satisfactory with a vertical gain on the oscilloscope

of 1 volt per division. Each pickup should have given a

pulse for both the front and rear of the piston. Occasion-

ally, however, a pickup would give only one pulse instead of

two. The pulse which did appear could always be identified

as coming from the front or rear of the piston by comparison

of the data with data from an experiment with approximately

the same driver pressure. Since the principle of operation

of the pickup is electric, the response time should be in

the nanoseconds.



67

Quartz piezoelectric pressure transducers were mounted

in the wall of the driven tube and the brake blind flange.

This type of pressure detector was chosen because of its

very fast response. Three Kistler Model 601 L transducers

were mounted in the driven tube (see Figure 17) to measure

the shock path and the pressure distribution through the

shock layer. They were placed as far downstream as possible

in order to measure the shock near its peak strength.

However, the last transducer was kept back about 31 inches

from the brake-driven joint in order to avoid interference

of the reflected shock with the shock layer pressure trace.

Furthermore, it was necessary to avoid exposing this trans-

ducer to the very high pressures developed in this region

due to piston deceleration. These transducers will be

referred to- as first, second and third transducer since they

are arranged in that order, the first one being nearest the

driver tube.

Calibration curves for these transducers were obtained

from the Kistler Instrument Corporation. These curves were

checked by operating the piston tube as a shock tube and

measuring the shock wave speed for various driver pressures

(driven pressure always at 1 atm). The wave speed was used

to calculate the pressure downstream of the shock wave.

This calculated pressure was compared to the measured pres-

sure based on the Kistler calibration curves. The agreement
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between the calculated and measured pressures was satis-

factory.

An attempt was made to use another type of quartz

pressure transducer produced by Esprit Enterprises. These

were to be used to measure the shock path during the early

stages of shock growth. However, their sensitivity was so

low that they did not respond to the shock wave.

A single Kistler Model 607 L transducer was installed

on the brake blind flange in order to measure the peak pres-

sure there. This measurement not only served as a safety

measure but also gave some confidence to the sealing quality

of the piston. The face of the transducer was coated with

Dow Corning RTV rubber sealant to protect the transducer

from the high temperature gas.

A Kistler Model 566 Multi-Range Charge Amplifier was

used with 'each transducer.

The rise time of the transducers was 1,5 to 3 micro-

seconds which was completely adequate since the flow times

were on the order of 10 milliseconds (msec).

The output from the magnetic pickups and pressure trans-

ducers was recorded on Tektronix, Inc. oscilloscopes and

photographed by type C-12 Tektronix oscilloscope cameras.

All connections were made with shielded cables. The output

of the first and third transducers was recorded on a Type

555 Dual-Beam Oscilloscope and the output of the second

transducer and the blind flange transducer was recorded on a
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Type 564 Storage Oscilloscope. The 564 oscilloscope was

operated in the storage mode and the output was photographed

after the experiment. Both of these oscilloscopes are of

the single sweep type. The output from the magnetic pickups

was recorded on a Type 547 Oscilloscope with a Raster modi-

fication. The Raster modification increased the accuracy

of the time readings by use of a multiple sweep beam. A

sample output is shown in Figure 19a. The beam sweep began

in the lower left corner of the screen. Samples of the out-

put of the other oscilloscopes are given in Figures 19b-d.

For all the traces of Figure 19, time is measured hori-

zontally and voltage is measured vertically. The beam sweep

is initiated at the left of the grid. For Figures 19b-d the

vertical voltage deflection is proportional to pressure.

Operation of the storage oscilloscope in the storage

mode was unsatisfactory for the magnetic pickups. The two

pulses from each probe were blurred into one pulse.

The accuracy with which the pressure trace times could

be read was + 0.03 msec and the accuracy for the piston path

trace was + 0.01 msec. The oscilloscopes did not introduce

significant error into the sweep times since their rise

times are in the nanoseconds. The voltage deflection on the

oscilloscopes was calibrated by use of the voltage calib-

rator on each oscilloscope. The sweep rate of each oscillo-

scope was calibrated by use of a Tektronix Type 180A Time-

Mark Generator. Photographs of the calibration traces were
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made in order to include corrections for the parallax of the

cameras.

The oscilloscopes were triggered simultaneously by the

electrical circuit shown in Figure 20. A slight delay in

trigger sometimes occurred on the order of 0.1 msec. This

delay was caused by looseness in the triggering wire

attached to the piston. The delay was determined by match-

ing the output from the first magnetic pickup with the

theoretical solution for the piston path. Before this

trigger system was developed the oscilloscopes were trig-

gered by the first magnetic pickup. However, the first

complete comparison between the theoretical analysis and the

experimental results brought to light significant uncertain-

ties in the time at which the piston motion began. Hence,

the trigger system of Figure 20 was developed. Figure 19d

is the only data reported where the ocTlloscope was not

triggered by the circuit of Figure 20.

Pressure gauges were used on each of the three tubes

to measure pressure prior to each run. All of these gauges

were calibrated. The driven tube gauge read absolute pres-

sure to an accuracy of + 0.01 psi. The driver and brake

tube gauges read gauge pressure (above atmospheric) to an

accuracy of + 10 psi. The readings of these gauges and all

other pressure instrumentation have been converted to

absolute pressure. The driven tube temperature was room air
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temperature and was determined by use of a mercury thermo-

meter.

SR-4 type strain gauges were attached to several loca-

tions on the brake blind flange. The resistance of each of

these gauges was measured after each experiment to see if

any permanent deformation in the tube had occurred. No

permanent change in the resistance was ever detected.

The instrumentation used in this experiment was similar

to that used on many.pi.ston tube facilities. However, some

experimenters have employed alternate techniques. For

example, Belcher 3 2 developed a microwave resonance technique

which gave an almost continuous determination of piston

6path. Optical methods were used by Laponsky and Emrich to

measure both piston path and shock path. They used Lucite

tubing to transmit the light beams.

The use of transparent material for instrumentation

purposes demonstrates one of the design problems of a piston

tube. Transparent sections in a piston tube are not prac-

tical when high pressures and large deceleration forces

occur as in the present facility. However, in order to

study a strong shock wave, high piston velocities and accel-

erations are necessary. These high velocities and accelera-

tions require a structurally strong piston which makes the

piston mass increase. Then the deceleration pressures

become large, requiring a very high strength tube. Hence,

the key to greater flexibility in the use of a piston tube
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is ingenuity in both piston design and the development of

piston deceleration technioues. The piston design effort of

this study is discussed in the next section. The decelera-

tion method used has already been discussed; however, some

additional approaches to decelerating the-piston are discus-

sed under the Conclusions in Chapter VI.

Piston Desin

The piston design was based on a design used by

Humphrey.14 Figures 21 to 23 show the various parts of the

piston. The body was made of high strength aluminum with

holes drilled in it to lighten the piston but still maintain

structural strength. Keeping the piston light is important

since this gives higher accelerations (which in turn creates

a stronger shock) without increasing the peak pressure on

the brake blind flange. The peak pressure in the brake is

the limiting factor in this facility. (Figure 19d shows a

typical pressure trace for this flange.)

A Teflon sleeve was used to lower friction and help

seal the driver gas behind the piston. The Teflon was force

fitted over the body and between the end plates to aid seal-

ing between the various parts of the piston. One sleeve was

used on 18 high speed experiments (driver pressure on the

order of 1700 psi) and showed some tearing but was still

usable. The lower speed experiments did not cause much

sleeve wear. The majority of the wear may have been caused
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by passage of the piston through the brake-driven diaphragm.

This diaphragm was burst in the middle due to gas pressure

and then "punched out" by the piston. In most cases, the

piston had to pass over small flaps which were not punched

out. The higher piston speeds also caused the sleeve to

expand somewhat, apparently due to the higher gas tempera-

tures..

The face plate was originally made from steel in order

to trigger the magnetic pickups. However, it was found that

both the front and rear of the piston gave an output pulse

(Figure 19a); hence, the steel face plate was replaced with

an aluminum face plate which lightened the piston by about

2 1/2 ounces. For an initial driver pressure of 1720 psi,

the effect of this change in mass was to increase the final

piston velocity by about 100 fps and lower the peak blind

flange prdssure by 1300 psi.

The original piston was 2.851 inches long and weighed

1 lbm 7.3 oz. The length was chosen approximately equal to

the diameter because it was felt that this would be a stable

configuration. After this piston had been tested over a

wide range of speeds, the body was shortened by almost an

inch to the present configuration. The present.configura-

tion weighs 14.73 oz. At an initial driver pressure of

about 1800 psi, the original piston had a shock pressure

ratio of 2.0 at the third transducer. For the same driver

pressure, the present piston had a shock pressure ratio of
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2.8 at the third transducer. Comparing these pistons for an

initial driver pressure of about 1700 psi, the lighter

piston had a peak deceleration pressure which was 1200 psi

lower than the heavier piston. Hence, decreasing the piston

mass by approximately 8 1/2 ounces had a very significant

effect on increasing shock strength and at the same time

lowering the peak deceleration pressure.

In its present configuration, the piston may be as

short as possible to maintain stability in this driven tube.

The tube sections "bell" outward somewhat at their ends.

One additional feature utilized on one piston of this study

was a small boss on the inside of the face plate. The boss

fit tightly inside the center hole of the body and kept the

face plate precisely concentric with the body. Precise

concentricity cannot be maintained by machine screws. Such

a feature would probably be important if a still shorter

piston were used in a tube with a more uniform inside

diameter. It may also be possible to lighten the present

configuration even more by removing more metal from the

interior. The effect on piston speed of a given mass change

is very easily determined by a theoretical solution for the

piston path. Alternate piston designs are discussed by

Stoddard2 and Knoos. 3 0
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Exoerimental Procedure

Preparation for an experiment required inserting the

diaphragms and the piston, bolting the flanges together,

closing the pressure release valves, and preparing the

instrumentation. After the tube had been fired, the pres-

sure was released, data recorded, a safety inspection made,

and the tube was cleaned.

Due to the high pressures and high piston speeds

involved (piston speeds reached 1400 .fps), safety measures

had to be continually adhered to. It became evident early

in the experimental program that memory alone could not be

relied upon to perform the many steps necessary for complet-

ing a safe and successful experiment. Thus a check list was

developed and used for every experiment. When the facility

was under high pressure, the author, who acted as the sole

operator, stood behind a sturdy wood barrier eight feet

tall.

The step-by-step procedure for conducting an experi-

ment ill now be given. Prior to each day of opertion, an

inspection was made to see if all safety checks had been

made and the tube cleaned since the last run. A check was

also made to see if the air supply tanks were at the neces-

sary pressure. Then the oscilloscopes and charge amplifiers

were turned on so that they had at least a thirty minute

warm-up period.
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Next, the diaphragm was inserted into the brake-driven

joint and this joint and the blind flange joint were bolted'

shut. The brake tube air-inlet valve was closed. Closing

this valve prevented an accidental filling of the brake,

A check was made to see if the driver release valve was

open (see Figure 18) and if all control panel valves were

closed. The piston was inserted into the driven tube one

inch from the flange outer face and was immediately blocked

with the driver tube. The one inch insertion distance

prevented movement of the piston due to bulging of the

diaphragm as the driver tube was pressurized. The trigger

circuit was tied to one of the machine screws of the piston.

Then the driver-driven diaphragm was inserted and this joint

bolted shut. The driven tube release valve was shut. The

driver tube was bolted to the floor and the floor bolts on

the driven tube stands were tightened.

Next the instrumentation was made ready. A check was

made to see if all the magnetic pickups and pressure trans-

ducers were connected to the oscilloscopes. The oscillo-

scopes and charge amplifiers were readied for operation.

The driver release valve was closed. The brake tube was

filled and given a two minute leak check. The brake air-

inlet valve was then closed again. Then the driver tube was

pressurized until the diaphragm ruptured.

Following the rupture of the diaphragm, the pressure

was released and each tube was checked for atmospheric
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pressure. The data were recorded and a safety check of the

facility was made. The safety check included checking the

strain gauges, inspecting the blind flange weld for cracks,

and examining the piston. Finally, the interior of all

tubes was cleaned with a rag soaked with methanol.

The complete turn-around time on the facility was two

or more hours depending upon the particular problems

involved.

This completes the description of the experimental

equipment and procedure. In the following chapter the

results obtained from this facility are compared with the

theoretical analysis.



CHAPTER V

COMPARISON OF EXPERIIMENTAL RESULTS
WITH THEORETICAL PREDICTIONS

The piston tube was operated for 61 experiments using

the piston and 60 experiments as a shock tube. All of these

exoeriments were used to establish the operating character-

istics of the facility, check out the instrumentation,

develop operating procedures, and obtain useful data.

Of the experiments in which the piston was used, two

experiments were selected for comparison with the theory.

The theory is the method of characteristics which was

described in Chapter III. These comparisons have been

labeled Cases III and IV. Figures 24 through 29 are for

Case III and Figures 30 through 35 are for Case IV. These

figures are discussed below. The initial driver pressures

for Cases III and IV are 1555 psi and 1875 psi respectively.

The remaining initial conditions and the reference conditions

are given on the wave diagram solutions in Figures 25 and 31.

The data for each of the two cases were obtained on a

single experiment with the exception of the second wall trans-

ducer. An earlier experiment with approximately the same

driver pressure was used to provide data for the second

transducer. Using data from an earlier experiment was

78
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necessary because on the later experiments the second

transducer was not available. Some of the oscilloscope

traces for Cases III and IV are shown in Figure 19.

It was generally possible to duplicate a given driver

pressure by only + 30 psi due to the method of diaphragm

rupture. In spite of this variation in driver pressure, it

was possible to obtain excellent data repeatability from

one experiment to the next. This repeatability lends confi-

dence to the accuracy of the measurements. The time

intervals between magnetic pickup pulses agreed within the

accuracy with which they could be read. Likewise, the

difference between the shock layer pressures from one experi-

ment to thenext was less than 5%. The time interval on the

pressure traces between the passage of the shock and the

passage of the piston had less than 3% variation. Time

intervals obtained with the storage mode of the storage

oscilloscope showed a somewhat greater difference due to the

blurring of the trace.

Since the objective of this study is to understand the

formation of a strong shock wave in front of a constantly

accelerating piston, the piston tube was operated to as high

a driver pressure as possible. As mentioned earlier, the

limiting factor in this facility was the peak pressure on

the brake blind flange. It was felt that 9000 psi was a

reasonable limit which would permit both safe operation and

accomplishment of the objective of the study.
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A strong shock wave is distinguished from a weak shock

wave in that an accurate prediction of flow properties

behind a strong shock wave must account for the entropy

increase across the wave. The strongest shock wave experi-

mentally measured in this study had a pressure ratio of 2.8.

A weak shock calculation (assuming arr isentropic compres-

sion), with the same velocity change as this strong shock,

gives a pressure ratio which is a little over 1% higher.

Thus it must be said that the experimental shocks developed

in this study were only moderately strong. However, the

theoretical analysis of this study made no weak shock

assumptions; furthermore, the experimental program achieved

pressure ratios larger than Laponsky and Emrich or

Humphrey.1 4  An additional advancement over previous studies

has been the comparison of measured pressures with theoret-

ical pressures.

In the following sections a comparison is made between

the experimental and theoretical results for Cases III and

IV. First, the method of establishing the experimental

piston path is described. This path serves as one of the

boundary conditions for the method of characteristics solu-

tion. Then the method of finding the experimental shock

path and its comparison with the theoretical path are dis-

cussed. Next, the experimental and theoretical shock layer

pressure distributions are compared. Finally, the sources
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of discrepancy between the theoretical and experimental

results are identified.

Piston Path

The theoretical and experimental piston paths are shown

in Figures 24 and 30. The output from the five magnetic

pickups is shown. The time delay between the beginning of

the piston motion and the triggering of the oscilloscope was

determined by requiring that the output from the first

pickup fall on the theoretical path.

The theoretical path was determined by integrating

Newton's second law of motion., The driver pressure on the

piston was found by the pressure-velocity relation for a

simple wave, Equation (58). It was assumed that the piston

was frictionless, the driven pressure was zero, the driver

speed of sound was ao = 1130 fps, and the driven and driver

tube inside diameters were equal. The assumptions of a

simple wave, frictionless piston and zero driven pressure

are very good in the early portl, ons of pston motn whre

the driver pressure is high. The assumption of aDH,i = 1130

fps, which is the room temperature speed of sound of air, is

felt to be a good approximation when the driver tube is

filled to a pressure near the air supply tank pressure.

Assuming equal driver and driven tube inside diameters is

an approximation consistent with the other approximations.

This approximation is equivalent to neglecting the
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chamberage correction given by Enkenhus and Parazzoli.13

The initial conditions for the front of the piston

(side toward driven gas) are p = 0.016 and Up =-0 at

0= . The origin of the axes is always one inch inside

the driven tube end flange (outer face) since this was the

initial position of the rear of the piston.

The equations governing the piston motion were solved

by an iteration technique which involved assuming constant

driver pressure for AT increments of 0.2. The effect of

cutting A l to 0.1 was negligible. Stephenson 33 presents a

closed form solution to the piston path for the same assump-

tions used in this study. It would probably be faster to

use his results than to use an iterative technique.

The final experimental piston path, an impermeable

piston, and the undisturbed driven gas conditions were the

boundary conditions for the method of characteristics solu-

tion of the shock layer flow.

Shock Path

The experimental shock path in the , plane was

determined from the three side wall pressure transducers.

Figures 19b, c show the shock layer pressure traces for

Case III. The undeflected beam sweeps in from the left and

the first sudden jump (vertically) is due to the shock wave.

The beam deflection in the vertical direction continues to

increase as the pressure increases through the shock layer
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until a second sudden deflection occurs. This second sudden

deflection is due to the passage of the piston (the deflec-

tion at the rear of the piston was used since it was due to

the driver gas and was easily identified). Figure 19c also

shows the trace of the driver gas pressure which has a grad-

ual decrease due to the expansion waves from the rear of the

accelerating piston. The magnitude of the driver gas pres-

sure checks approximately with the values computed during t

the theoretical piston path calculation.

The time interval between the passage of the shock and

the passage of the piston was used in conjunction with the

experimental piston path to give the experimental shock

path. Using this procedure, rather than using absolute

times from the pressure traces, eliminated small errbrs in

determining trace origin and errors due to non-simultaneous

triggering of the oscilloscopes.

The comparisons of the theoretical and experimental

shock paths are given in Figures 25 and 31. The agreement

is seen to be fairly good with the maximum discrepancy occur-

ring at the first transducer. Case III shows a crossing of

the two paths. A similar "crossing" of the theoretical and

experimental pressures also occurred, as will be discussed

in the next section. The wave diagram solutions shown in

these figures are reductions of the original graphical solu-

tions which were done on large sheets of graph paper.



84

It is interesting to note that for both cases the

theory indicates a growth in shock layer "thickness." This

growth occurs in both the direction at constant ' and in

the direction at constant . Experimentally, Case III

shows an increase in the shock layer thickness in the

direction but a constant thickness in the T direction.

Shock Layer Pressure Distributions

The variation of pressure at each side wall transducer

is shown in Figures 26-28 for Case III and Figures 32-34 for

Case IV. These curves give the pressure distribution along

a line of constant in the , plane. The solid lines

are theory and the dashed lines are experiment. For each

curve, the far left is the pressure just downstream of the

shock wave and the far right is the pressure at the front of

the piston. The percent difference between the theoretical

and experimental pressures at the shock and at the piston

are given on each figure. For Case III, a similar effect

to the crossing of the theoretical and experimental shock

paths is seen in these figures. The experimental pressure

curve lies above the theoretical curve in Figure 26. Then

as the shock progresses on down the tube in Figures 27 and

28, the experimental curve drops down on and then below the

theoretical curve.

Figures 29 and 35 give dimensionless shock layer pres-

sure distributions at constant . It will be recalled that
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the flow is self-similar when distributions of this type

coincide. The flow seems to have a closer approximation to

a self-similar nature experimentally than it does theoret-

ically.

The discrepancy between theory and experiment for the

shock path and shock layer pressures *can be accounted for.

A major source of error for the theoretical solution is the

determination of the piston path. This path was determined

by drawing a curve between the magnetic pickup data points.

On one occasion, the piston path was drawn on two different

sheets of graph paper for the same set of data. The slope

of the path gave the piston velocity at any desired point.

It was found that differences in the piston velocity between

the two curves gave differences in calculated pressures of

up to 3%. Additional small errors occur in the theory due

to mesh size and P characteristics drawn at the wrong slope

(recall discussions on these topics in Chapter III). These

sources of error, coupled with experimental measurement

errors, are felt to account for the discrepancies between

theory and experiment. The only exception to this state-

ment is the shock location and shock pressure at the first

transducer. These rather large errors are felt to be caused

by uncertainties in the initial portion of the piston path.

How the piston path is shaped here depends on such factors

as how the diaphragm breaks, initial dynamic instabilities

of the piston and so on. Laponsky and Emrich came to a
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similar conclusion. They found that uncertainties in the

initial portion of the oiston motion caused deviations in

only the early stages of shock growth.



CHAPTER VI

CONCLUSIONS

The numerical method of characteristics for one-dimen-

sional unsteady flow has been shown to predict the experi-

mental shook path and shock layer pressures. The prediction

is within a few percent in the downstream flow regions.

Some of the results of the method of characteristics

have also been verified by alternate theoretical techniques.

The shock layer wave phenomena predicted by the character-

istic solution has been verified by the focused wave solu-

tion, a P,IJ.plane analysis and reflection coefficient

concepts. The pressure and velocity changes were approxi-

mately verified by a focused wave solution.

It was found that the compression process changed from

an isentropic one to a nonisentropic one. The result of

this change is a shock layer with strong gradients in temp-

erature, density and entropy and a very complex wave system.

These gradients persist even when the piston velocity

becomes constant and pressure and velocity approach uniform

values in the shock layer. The wave system consists not

only of the primary or initial compression waves from the

piston, but also includes expansion waves reflected from the

87
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entropy interfaces and from the shock wave. These expansion

waves then reflect from the piston, the entropy interfaces

and the shock wave. For most problems, the reflected waves

are weak compared to the primary waves and the reflections

quickly vanish. In cases where either the Mach number is

very large or the ratio of specific heats approaches one,

the reflected waves can become very strong. The complex

nature of this unsteady one-dimensional flow is analogous to

many steady two-dimensional or axially symmetric flows.

Simplifications in the method of characteristics are

sometimes possible. The simplifications include straight P

characteristics, neglecting reflected waves, and assuming

self-similar flow. The assumption of straight P character-

istics becomes less accurate as the shock strength increases.

The assumption of neglecting reflected waves was mentioned

above. The accuracy of the self-similar assumption depends

on how well the piston path agrees with an exponential path.

Pressure measurements indicated that the flows of this study

were approximately self-similar.

The characteristic mesh size was found to be critical

only for the shock during its period of initial growth.

In the operation of a piston tube facility, it was

found that a high pressure section at the end of the driven

tube was very useful. Such a section reduces peak tempera-

tures and pressures during piston deceleration.
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As a result of the work carried out during this period,

additional studies in the following four principal areas are

suggested:

(1) Since the theoretical model has been verified

experimentally, the theory can be used for analyzing various

flows. These analyses would best be performed by means of a

computer program. Areas which should be studied include:

(a) The sensitivity of the resultant flow to the

piston path for an identical final piston

velocity

(b) Whether a piston path with an acceleration

which increases with time causes shocks to

form within the compression wave (References 6

and 19)

(c) Under what conditions the simplifying assump-

tions for the characteristic solution are

accurate

(d) The effect of specific heat ratio

In making such investigations, areas for the practical

appDlication of the results should be sought.

(2) Another useful extension would be the study of

stronger shock waves. With a properly designed facility it

would be interesting to see how well the theory of this

study compared with experimental results for strong shock

waves. If a monatomic gas were used instead of a diatomic

gas, the effects of chemical reactions could be delayed to
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higher Mach numbers. Argon is preferable to helium because

the speed of sound of helium is so large that the driven

tube lengths reouired to form a shock wave (see Equation

(12)) are unreasonable. In addition, the theory could be

extended to the study of shock formation when chemically

reacting gases are involved so that the effects of non-

equilibrium in the gas can be studied.

(3) A piston tube facility may be useful in studying

intermolecular forces in the high pressure gas created dur-

ing piston deceleration. Enkenhus and Parazzoli1 3 have

taken intermolecular forces into account in computing the

conditions of their test gas.

The piston tube may also offer advantages in studying

shock-ignited detonations since the piston acceleration can

be selected whereas the acceleration of the flame front is

inherent in the system. The piston face is a plane surface

at all times, which cannot be said for the flame. The

piston also maintains an excellent isolation of the driver

and driven gases. For example, even though expansion waves

exist on the rear of the piston, the front of the piston

will continue to send out compression waves as long as the

piston accelerates. On the other hand, in a shock tube, the

expansion waves can catch up with the shock wave.

(4) Additional studies should be performed to deter-

mine means for decelerating the piston without the occur-

rence of very high pressures and temperatures. Possible
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approaches include an open-ended driven tube which would

permit deceleration of the piston by means of an external

device. It might be possible to use a heavy cart filled

with a foam such that both the foam and movement of the

cart would absorb the kinetic energy of the piston. The

foam would also-prevent damage to the piston. Another

approach might be use of expendable pistons which were

decelerated in such a device. In this case an inexpensive

piston made of paper or plastic could be used.
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APPENDIX A

FOCUSED WAVE CONSERVATION OF ENERGY

By use of the closed form solution for the focused wave

piston path it is also possible to obtain a closed form

expression for the conservation of energy. The piston work

done on the gas from t = o to t = tF, focus time, is

• w4= F dx = (AT-if+] d

0 0

The piston will in general accelerate from t = 0 to t = tA

and maintain a constant velocity uf from then on (see Figure

lb). Since a simple wave is assumed, the pressure on the

piston is constant after tA at he value pf. Thus, the work

per unit eross sectional area of the tube, AT, is

A
" t- (t + (4)

AT

where

8tLt

so that the above integrand is an easily determined function

of time. The velocity up(t) for a focused wave is given by
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Equation (10), and the pressure on the piston face is just

the pressure behind the isentropic simple compression wave

and is therefore a function of the velocity

p~U.?) +o (49)4~

where the sign in front of the velocity is positive because

the wave moves in the direction of positive velocities (to

the right). The initial gas state is po' o and uo = 0.

Substituting Equation (10) into Equation (49), the pressure

on the piston face becomes

-2% (50)
164o

Substituting Equations (10) and (50) into (48) results in

two integrals which are evaluated by the use of standard

integral tables. The final result for the piston work is,

after rearrangement and use of Equation (12)

A-T ~y - tA +

(I t)

a t (51)

This is the piston work per unit of flow cross sectional

area, done on the gas from t = o to t = tF. The piston accel-

erates from t = o to t = tA up to velocity uf, and moves at
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constant velocity from t = tA to t = tF. The work can be

computed by selecting the gas and its initial state, initial

piston acceleration Ap,i and final piston velocity uf. The

acceleration Ap,i determines xF and tF from Equation (12),

and the velocity uf determines tA by Equation (10) and pf by

Equation (49). The condition tA < tF must be satisfied or a

new Ap i or uf must be selected.

The next step in the energy analysis is to compute the

change in energy of the gas between x = 0 and x = xF at tF.

The total energy of the gas is the sum of its internal

energy and the ordered kinetic energy of motion

where m is the mass of the gas. For a perfect gas the

internal energy per unit mass is

and the equation for the speed of sound gives

_ (52)5F

Thus, the change in total energy between states uo, Po0 ,o

and u, pg is:

AN - + UYn 2J
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For a simple wave the density distribution is given by

(L) 2 -

+ %(- (53)

So the total energy increase becomes

E- -3u + 2v (54)
'In 4-

The mass of gas under consideration is conveniently found

-from its initial state

S= yO AT XF (55)

So by use of Equations (55) and (52), Equation (54) gives

the total energy change in the focused wave as

A EF u + () (56)

The final step is to equate the piston work, Equation (51),

and the energy change in the gas, Equation (56). Note that

both equations have the same dimensions. When these equa-

tions are equated and Pf/po is replaced by its function of

uf/ao from Equation (49), the result becomes

+I tAN 5

K .. = (f .- __+

+Q+~L U\go l(7o + (57)
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The result is a relation between tA/tF and uf/a o . Equation

(10) is a known correct relation between these same quanti-

ties. If Equation (10) is used to eliminate tA/tF from the

left side of Equation (57), then the left side becomes

identical to the right side. This completes the proof that

the piston work done on the gas between t = 0 and t = tF

equals the energy increase in the gas caused by a simple

wave only in the same time (the only gas affected lies

between x = 0 and x = xF).



APPENDIX B

EXAMPLE CHARACTERISTIC COMPUTATION

Some detailed notes for constructing a typical P

characteristic are given in this appendix. The character-

istic 18-23 of Figure 5 will be discussed.

First, point 18 is computed. The piston velocity is

known. Q is found by interpolating between points 12 and 17

where the Q at 17 must be found first from known conditions

at 13.

Second, to aid in the interpolation of Q values, an

estimate of the entire P characteristic is sketched in.

Estimated particle paths are also sketched in from the

preceding P characteristic up to the present one. After all

calculations are complete for the P characteristic, these

sketches are replaced by accurate lines.

Next find P at 19 by crossing the entropy interface

from 18. Q can be estimated by noting the drop in Q in

other entropy strips: Q Q1 3 - .01. This value can be

checked later in the calculations. The best accuracy seems

to be obtained by basing all Q values on the average Q

values. Thus it is better here to interpolate for Q rather

than take Qll and cross the entropy interface.
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Find P at 20 by coming along the P characteristic from

19. Get Q at 20 by coming along the Q characteristic from

15. In both cases an entropy interface is crossed.

Compute point 21 similarly to point 19.

Points 22 and 23 are computed 
simultaneously by itera-

tion. First, estimate P2 2. Then compute the shock strength

at 23. Then average the entropy at 
23 and 16 to get the

entropy for the strip between 
these two shock points. Then

compute P22 by crossing the 
entropy interface from 21. 

If

the computed value of P2 2 is not close enough 
to the esti-

mated value, try a new value 
of P2 2 . Next, as explained in

the text, compute an average 
Q. The average Q can be com-

puted by either of two methods, 
which agree + 0.008 in the

-value of Q. One method is to average the 
Q values at 16 and

23. The other method is to use the average entropy computed

for the strip and use the shock tables. Then, point 22 can

be completed since both P and 
Q (the average Q) are known.

Point 23 is completed once the shock strength is determined.

Note that as the particle paths 
and Q characteristics

are extended from the previous 
P characteristic to the one

just computed, more interpolation 
is necessary. Take for

example the particle path which crosses the P characteristic

between points 19 and 20. The slope of the particle path 
at

this intersection is an average of the velocities 
at these

two Doints.
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After the piston has come to a steady velocity at

= 0.5, no more strong P compression waves come from the

piston. Thus at a point such as 24 where only Q is known,

Scan be estimated by assuming the value for point 19. If

it is desired to know only the effect of a characteristic

from the piston on the shock, without computing all the

intermediate points, the change in P across the whole shock

layer can be computed in one step. Then draw the P charac-

teristic in as a straight line with the slope it has at the

piston. This approximate slope is even good in the strong

compression region, however it is not good there for a Q

characteristic. The change in Q can similarly be computed

across the whole shock layer. Such a computation also

serves as a good verification of the step-by-step calcula-

tions. These verifications were made for Case II.



APPENDIX C

ISENTROPIC P,aU. PLANE

For isentropic compression or expansion between states

p, u and pl, Ul the simple wave analysis gives

1-E :() (58)

,where P p/po. The slope of the ', curve is given by

the derivative of the above equation

"P ' (, Y -1 cu-
" .1 - t , CI (1 (59)

In both of the above equations, the plus sign is for P waves

(right moving, i.,e. in direction of positive velocity) and

the minus sign is for Q waves (left moving). The P and Q

waves may be either compression or expansion waves. Expan-

sion into a vacuum, = 3, gives the extreme values on the

velocity. From Equation (58) these are

a -- a,+ wave (60)
S-- Y wave.
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Consideration of the bracket in Equation (59) (and

making use of Equation (60) for the case of an expansion)

shows that the bracket is always positive. Thus the slope

in the , plane is always positive for P waves andinega-

tive for Q waves. Also, for higher initial temperatures and

the same initial pressure (therefore .higher entropy), the

absolute value of the slope decreases.

For isentropic simple waves, one Riemann variable is

always constant throughout the whole flow. For P waves, Q

is constant and for Q waves, P is constant. The constancy

of a Riemann variable can be verified by plotting Equation

(58) for a given S-S o . Fixing S-S o and Pl determines

by Equation (23) (with S-So in place of S). Then can be

computed at each point on the curve of Equation (58) by

isentropic relations and then Q or P found from the defini-

tion of Q and P, Equations (13) and (14). Figure 6 gives the

results of a sample calculation.

The effect of initial conditions, ', L.1 , on the

curves can be eliminated by always choosing the reference

conditions, po, a0o, to be equal to the initial p and u (i.e.

S 1 = 1). Then a given S-S o will always plot the same

curve. Thus choosing =? l1 = 1 has no fundamental

effect on the , . plane and it can be made universal in

nature similar to the ,L plane. However, the ,'LL

plane does differ in that P and Q are defined functions of

& andL so that any ao can be chosen. When both a ,
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and Z,- plane are being used simultaneously, care must be

exercised with respect to the reference conditions.

In a given flow problem, pl, ul, and a1 are known. If

I =a 1 = 1 are chosen, then po and ao are fixed. Since

Sis then fixed, S-S0 is fixed by Equation (23).

The effect of entropy on the curves enters as an

entropy difference between that for the particular curve and

the reference value, So . In working a particular problem,

the value of S-So for each region of gas must be known. The

value So = 0 can be used only if entropy tables have been

prepared with a base of So = 0 at the pc, aso chosen. If an

analysis were made of the gas in the shock layer and po, ao

were chosen as the local p, u, then po, ao would not equal

the values in the undisturbed gas ahead of the shock. There-

fore So / 0 since So = 0 is true only in the undisturbed gas

according to the procedure used in this study (So = 0 in the

undisturbed gas is convenient because shock tables such as

in Reference 17 give the entropy increase across the shock).

Thus, it would be easiest to keep 1 =~l 1 = 1 (and there-

fore use a universal set of P ,LL plane curves) and compute

S-So by Equation (23) as discussed above.

If new initial conditions are chosen, such as1.5

S= 2.5, the same Q and S-So or P and S-So will not occur

together on the same curve as for 1I - 1 = 1. Also,

irregardless of whether Q (or P) or S-S is maintained

constant, if new initial conditions are chosen and L1
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changes, theh the shape of the curves will change. See

Figure 6. However, if onlyo1 changes, the curves will

simply translate to a new location.



TABLE 1

Method of Characteristic Solution of Shock Layer for Case II a

(1) (2) p= (1) (2) (14.7)
Pointb P Q 5 e-S psi

1 3.000 3.000 0 1.000 1.000 1.000 14.7
2 3.842 3.000 0.42 1.140 1.926 1.000 28.3
4 4.583 3.000 0.791 1.264 3.22 1.000 47.3
5 4.635 3.045 0.797 1.280 3.44 0.9355 47.4
7 5.225 3.000 1.113 1.371 4.85 1.000 71.2
8 5.282 3.039 1.122 1.388 5.15 0.9355 71.0
9 4.904 2.991 .956 1.317 3.96 1.000 58.1

10 5.381 3.132 1.123 1.419 5.75 0.8322 70.4
12 5.753 2.991 1.379 1.458 6.60 1.000 97.0
13 5.812 3.033 1.390 1.475 7.00 0.9355 96.5
14 5.917 3.124 1.395 1.508 7.80 0.8322 95.5
15 6.056 3.253 1.401 1.552 9.00 0.7165 94.9
17 5.943 2.972 1.486 1.486 7.26 1.000 106.9
18 6.126 2.975 1.578 1.517 8.01 1.000 117.9
19 6.187 3.02 1.583 1.534 8.48 0.9355 116.8
20 6.296 3.115 1.590 1.568 9.49 0.8322 116.1
21 6.439 3.245 1.598 1.614 10.95 0.7165 115.5
22 6.581 3.382 1.600 1.661 12.62 0.619 115.0
24 3.006
25 6.102 2.945 1.578 1.508 7.80 1.000 114.6
26 6.163 2.970 1.600 1.523 8.20 0.9355 113.0
27 6.271 3.102 1.582 1.562 9.30 0.8322 114.0
28 6.415 3.238 1.588 1.609 10.8 0.7165 114.0
29 6.557 3.377 1.590 1.655 12.4 0.619 112.9
30 6.629 3.446 1.591 1.679 13.3 0.580 113.2
32 6.43 3.241
33 2.994



Table 1 (Continued)

= (1) (2) p=()(2)(14.7)
Pointb p Q -,e S  psi

34 6.091 2.933 1.578 1.504 7.68 1.000 112.9
35 6.152 2.991 1.581 1.524 8.20 0.9355 113.0
36 6.260 3.098 1.582 1.559 9.20 0.8322 112.5
37 6.403 3.234 1.582 1.607 10.7 0.7165 112.8
38 6.545 3.374 1.587 1.653 12.4 0.619 112.8'
39 6.617 3.445 1.588 1.677 13.2 0.58 112.6
40 6.624 3.451 1.587 1.680
45 2.918 1.578
46 5.649 3.124 1.262 1.462 6.70 0.8322 82.0
47 5.85 3.028 1.410 1.480 7.10 0.9355 97.7
48 5.282 3.039 1.122 1.387 5.14 0.9355 70.6

a) Table computed with the following gas:

Argon, Y = 1.667

Initial Conditions: Ti = 534.70R, aO = a1 = 1052 ft/sec

pi = 14.7 psi , u i = 0, SO = Si = 0

Therefore = 1, 0 11 = 0, Pi = i = 3

b) Points and strips in Tables 1-3 are located on the wave diagram in Figure 5.

IC



TABLE 2

Method of Characteristic Solution of Shock Wave for Case IIa

(1)
Point p.'S Lit".~ W- .', t

Point " 'P"-3 Mw=F=() " p"=(1)(14.7) S"-S'=S" Q"
d1asL --  P psi

3 3.842 0.842 1.314 0.414 1.143 1.91 28.1 0.013 3.015

6 4.635 1.635 1.645 0.778 1.286 3.14 46.1 0.0675 3.080

11 5.381 2.381 1.969 1.096 1.428 4.60 67.5 0.153 3.188

16 6.056 3.056 2.265 1.367 1.562 6.16 90.5 0.248 3.323

23 6.581 3.581 2.494 1.570 1.670 7.53 110.8 0.327 3.440

31 6.629 3.629 2.516 1.589 1.680 7.66 112.8 0.335 3.451

41 6.624 3.624 2.513 1.587 1.679 7.64 112.1 0.3345 3.450

a) Conditions ahead of shock are Initial Gas Conditions: P' = Q' = 3, u. = 0, C_' = 1,
S' = So = 0, p' = 14.7 psi ,

= 1.667

0IO
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TABLE 3

Entropy Strip Results for Case II

Strip S SR-SL (R-L)

1 0.006 0.034 (2-1)
2 0.040 0.0703 (3-2)
3 0.1103 0.0902 (4-3)
4 0.2005 0.087 (5-4)
5 0.2880 0.043 (6-5)
6 0.3310 0.004 (7-6)
7 0.3350
8 0.3345

TABLE 4

Piston Path in Time-Distance Plane, Including
Velocity and Acceleration, for Case II a

o-o oL

0 0 0
0.0 0.00526 0.210 4.21
0.10 0.021 0.420
0.15 0.0466 0.605 3.71
0.20 0.0815 0.791
0.25 0.1251 0.952 3.22
0.30 0.1767 1.113
0.35 0.2359 1.246 2.66
0.40 0.3016 1.379
0.45 0.373 1.478 1.985
0.50 0.450 1.578

a) dip = 1.578 for -0.50
Ap = 0 for T -0.50



TABLE 5

Shock Reflection Coefficient for MW, =oo

1.667 1.4 1.3 1.2 1.1 1.05 1

r s -0.0213 -0.0628 -0.0938 -0.148 --0.261 -0.388 -1.0



TABLE 6

Comparison of Cases I and II a

Expansion due to Reflection
Primary of Primary Compression From

Compressi n Shock (and Entropy Inter- Final Sho k
Strength faces for Case II) Strength

P P 4 APReflected f- i p
P1  i APInitial Compression Li Pl Pi

Case I 8.30 1.578 rs = -0.0549 2.85% 7.90 1.623(2) (2) (2-3) (2-3) (4) (4)

rs +are = - 0.044
Case II 8.01 1.578 (Incident: 1-18) 2.20% 7.53 1.570(18) (18) (Reflected: 2-34, -(2-34) (23) (23)

Pavg =6)

a) Points on wave diagrams are in parenthesis

b) For Primary Compressions and Final Shocks: c1 = 0; p/pl is for Case I;

p/pi is for Case II

I-I
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Fig. 1. Various Compression Wave Patterns
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for Fig. 2-4 are numbered.
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Fig. 5b. Wave Diagram Solution for Case II.
CO



P = 4.2, S-So = 0.2 2.0, S-So =0 Q = 0.76, S-S o = 0
P = 4.0, S-S o = 0 = 2.2, S-S o 0 = 0.2 = 2.0, S-S o = 0.972

Q Waves (Left Movihg / P Waves (Right P Waves

//3 - Waves) Moving Waves)

2 //
, 2

0

) 4Compression Compression
1 ~Expansion Expansion

Initial Conditions
= 1.5, L= 2.5

Initial Conditions 1, L= 1
o I I I I

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Dihensionless Velocity, L.

Fig. 6. ,OLL Plane for Isentropic One-Dimensional.
Wave Motion. Y = 1.667.

10
"H



120

Reflected
Expansion

3

r Incident4
Comression

02 a
0 2

0 Transmitted
Coopression0 

-T1 5 Entropy Interface

Dimensionless Distance,

S Reflected Expansion

SS2 1
Incident 2 inal
Compression State

tates

0 3,4 b
r-

Transmitted
1,5 Compression

Initial State

Dimensionless Velocity, I

Fig. 7. Compression Wave Moving From
Region of Low to High Entrooy.
Numbers Indicate Flow Regions.

a. ", Plane
b. IL Plane



121

Shock Wave Mach Number, MW,

1 2 3 4' 5 6 7 8 9 10 11 12 13
O

111-o1o011

-0.00

-0.008-
o

o
O

S-0.012 -

0

o

' -o.o16

0

0 "

r- -0.020

Asymptote -

-0. 024>

Fig. i. Shock Reflection Coefficient as
a Function of Mach Number.

= 1.667.



122

Q3 Particle Path
Q2

P 3 3 P2W-•
SP2 P2 "P 1

3
3 P Pa

P1 1

P 2 7

r. 1 3 Q3 2

E Q2

P Q22 < 1Q

o 1

co

P 30P

e 26

48
0

Dimensionless Velocity, 0-

Fig. 9. Interaction of Isentropic Waves
Moving in Opposite Directions.

a. S,T Plane for Compression
and Expansion Wave Inter-
action

b. CL,OL- Plane for Comoression
and Expansion Wave Interaction



123

Q3 P3

Particle Path

Co2
PC

9 / 2 P

P3 < P2

•0p

E-4

rt P 92 k

0

Co

r- 4

0P2

SQ3

P1/ Q2 Q3 Q2

oQ

N 'a Q2 <. Q1

9r

Dimensionless V elocity,L

- Fig. 9. Interaction of Isentropic Waves
M!oving in Opposite Directions.

c. ~,T Plane for Interaction
ot Two Expansion Waves

d. I ,i Plane for Interaction
of Two Expansion Waves

% 'P2 Q2.

2° 4
P 

d

Dimensionless Velocity, IU

Fig. 9. Interaction of Isentropic Waves
Moving In Opposite Directions.

c. ,* Plane for Interaction
of Two •Expansion Waves

d. , -Plane for Interaction
of Two Expansion Waves



124
1. ,

1.-

^(= 0.4 AP 1. 985

1.7 -- - 0.5 A= 1.565

106

0 1. -

'4
0)

1.

1.1 -

0.6 0.7 0.8 0.9 1.0

Distance Ratio,

Fig. 10. Shock Layer Pressure Distributions
During Piston Acceleration at Twol
Fixed Times for Case II. The Left
End of Each Curve is at the Piston.



125

1.2C

IE 1.160

0
S= -- = 0.5

: 1.12-

1.04-

.100

0.6 0.7 0.8 0.9 1.0

Distance Ratio, 3/"

Fig. 11 Shock Layer Temoerature
Distributions During Piston
Acceleration at Two Fixed
Times for Case II. The
Left End of Each Curve is
at the Piston.



126

1.6

1.5-

" • .= 0.4
1 . -.. • "T = 0.5

O

1.4 -

0
64

to

1,2

0.6 0.7 0.8 0.9 1.0

Distance Ratio, "

Fig. 12. Shock Layer Density Distributions
During Piston Acceleration at
Two Fixed Times for Case II. The
Left End of Each Curve is at the
Piston.
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Pig. 13. Shock Layer Velocity Distributions
During Piston Acceleration at Two
Fixed Times for Case II. The Left
End of Each Curve is at the Piston.
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Fig. 14. Shock Layer EntroDy Distributions
During Piston Acceleration at Two
Fixed Times For Case II. The
Left End of Each Curve is at the
Piston.
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Fig. 15. Shock Layer Flow Variable Distri-
butions After Piston Reaches
Constant Velocity, at Fixed Time
for Case II. The Left End of Each
Curve is at the Piston. '= 1.22,
(Mw) = 2.51. Region Between
Dashed Lines was Compressed by the
Primary or Initial Compression Waves
and the Variable Strength'Shock.
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Fig. 16. Shock Layer Flow Variable Distributions
After Piston Reaches Constant Velocity,
at Fixed Time for Case II. The Left
End of Each Curve is at the Piston.
.= 1.22, (MW)r= 2.51. Region
Between Dashed ines Was Compressed by
the Primary or Initial Compression
Waves and the Variable Strength Shock.
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PC. No. Name

1 Driver Tube

2 Driven Tube (5 Sections)

3 Brake Tube

4 Diaphragm

5 Magnetic Pickup

6 Pressure Transducer

Fig. 17. Piston Tube. Arrangement and Instrumentation.
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Fig. 18. Air Supply and Control System. Numbers Adjacent to Valves
and Gauges Give Maximum Allowable Pressure in psi.
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a. 1 msec/div hori-
zontal sweep rate

1 v/div vertical
gain

b. 2 msec/div hori-
zontal sweep rate

2 v/div vertical
gain

Fig. 19. Typical Magnetic Pickup and
Pressure Transducer Traces

a. Magnetic Pickup Output,
Case IV

b. First (top) and Third
(bottom) Side Wall Pres-
sure Transducer Output,
Case III
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Fig. 19. Typical Magnetic Pickup and
Pressure Transducer Traces

c. Second (top) and Third
(bottom - not used) Side
Wall Pressure Transducer
Output, Case III

d. Brake Blind Flange Pres-
sure Transducer Output.
First Peak 9200 psi,
Second Peak 6700 Dsi
Piston Mass 1 lb 1l oz,
PDR,1 = 1735 psi
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Fig. 20. Oscilloscope Trigger Circuit.
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Fig. 21. Piston Body
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Fig. 22. Piston Sleeve
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Fig. 24. Theoretical and Experimental Piston
Paths for Case III.
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Fig. 25. Wave Diagram Solution for Case III and Comoarison With
Experimental Shock Path. aDN,i = a = 1130 fps, Lo = 10 ft,
to = 8.85 msec, ' = 1.4, PDN,i = 1.35 psi, TDN,i = 73 0 F,
UDN,i = 0, SDN,i = So = 0.
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Shock 26.00%SPiston 2.04%
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Fig. 26. Theoretical and Experimental Shock Layer
Pressure Distributions at First Pressure
Transducer for Case III. The Left End of
Each Curve is Just Downstream of the Shock,
The Right End is at the Front of the Piston.
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Fig. 27. Theoretical and Experimental Shock Layer
Pressure Distributions at Second Pres-
sure Transducer for Case III. The Left
End of Each Curve is Just Downstream of
the Shock, The Right End is at the Front
of the Piston.
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Fig. 28. Theoretical and Experimental Shock Layer
Pressure Distributions at Third Pressure
Transducer for Case III. The Left End
of Each Curve is Just Downstream of the
Shock, The Right End is at the Front of
the Piston.
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Fig. 29. Theoretical and Experimental Shock
Layer Pressure Distributions at
Two Fixed Times for Case III. The
Left End of Each Theoretical Curve
is at the Piston.
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Fig. 30. Theoretical and Exoerimental Piston
Paths for Case IV.
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Fig. 31. Wave Diagram Solution for Case IV and Comparison With
Experimental Shock Path. aDN,i = a = 1130 fps, Lo = 10 ft,
t o = 8.85 msec, " = 1.4, PDN,i = 1 .13 psi, TDN,i = 720 F,
UDN,i = 0, SDN,i So = 0.
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Pressure Distributions at First Pressure

Transducer for Case IV. The Left End of
Each Curve is Just Downstream of the
Shock, the Right End is at the Front of
the Piston.
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Fig. 33. Theoretical and Experimental Shock
Layer Pressure Distributions at
Second Pressure Transducer for Case
IV. The Left End of Each Curve is
Just Downstream of the Shock, The
Right End is at the Front of the
Piston.
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Fig. 34. Theoretical and Experimental Shock
Layer Pressure Distributions at
Third Pressure Transducer for Case
IV. The Left End of Each Curve is
Just Downstream of the Shock, the
Right End is at the Front of the
Piston.
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Fig. 35. Theoretical and Experimental Shock Layer
Pressure Distributions at Two Fixed
Times for Case IV. The Left End of Each
Theoretical Curve is at the Piston.




