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Abstract

A green line intensity variation is associated with the inter-

planetary and photospheric magnetic sector structure. This effect depends

on the solar cycle and occurs with the same amplitude in the latitude

range 600 N - 600 S. Extended longitudinal coronal structures are sug-

gested, which indicate the existence of closedmagnetic field lines over

the neutral line, separating adjacent regions of opposite polarities on

the photospheric surface.
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Solar Cycle Variation of Large-Scale Coronal Structures

The density structure of the corona on the large-scale is prob-

ably determined by the geometry of coronal magnetic fields. High density

regions in the lower corona are usually associated with regions of strong

photospheric magnetic field, But probably, more than the strength, the

geometry of the field is important. Closedmagnetic configurations can be

the source of enhancements in coronal density, even over weak photospheric

fields. In fact the magnetic field might modulate the energy transport

processes in the following way: coronal expansion and thermal conduction

take place along open magnetic field lines, with consequent energy losses,

which are not suffered by regions contained in closed field lines

(Pneuman, 1972). Therefore the magnetic configuration of the corona

might strongly influence the distribution of temperature and even more the

distribution of density, because of the different energy balance mechanisms

operating in regions of closed and open field lines.

At the present the information about coronal magnetic fields

depends almost exclusively on their computation from the magnetic field

observed on the photospheric surface. Nevertheless, there is a good

agreement, at least in first approximation, between the computed coronal

fields and the shapes of bright coronal emission regions. Coronal struc-

tures, such as loops and arches, are associated with an unusual high den-

sity of the coronal material.

It is important to point out that large-scale, weak photospheric

fields are most influential in shaping the coronal magnetic fields.

Coronal streamers, which are the broadest features of the corona, are
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commonly accepted to develop above magnetic coronal arcades, which connect

large-scale unipolar regions of opposite polarities (Newkirk, 1972).

Therefore adjacent large-scale photospheric regions of opposite magnetic

polarities can support large-scale closedalmagnetic configurations in the

corona, which may play an important role in the density distribution of

the coronal gas and consequently on the brightness distribution.

The relationship between coronal enhancements and large-scale

photospheric fields is also suggested by the fact that coronal bright

regions rotate with the large-scale magnetic structures on the surface,

rather than with active regions (Wilcox and Howard, 1970; Antonucci and

Svalgaard, 1974a).

The spacial association in the corona of high magnetic arcades

and streamers confirms the picture of the helmet streamer as consisting of

a region of closed magnetic loops (helmet), with open field lines adjacent

to and above the loops. The open field lines extend far away in the

interplanetary space and give origin to a current sheet, which separates

the two regions of opposite polarities of the streamer. These neutral

sheets constitute sector boundaries in the interplanetary magnetic field.

Therefore the large-scale unipolar regions of the photosphere, which

originate an interplanetary sector boundary, are likely to be the foot

of closedfield lines (closedimagnetic region of a streamer) up to about

2 R (Pneuman and Kopp, 1970, 1971; Schatten, 1971; Newkirk, 1972). The

coronal gas is confined magnetostatically in the closedamagnetic loops, with

an increase in temperature and density (Pneuman, 1972). Even if every

high magnetic arcade system might form a coronal streamer with the assoc-

iated current sheet, only the systems with axes lying near a meridian can
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produce a sector boundary in the interplanetary field at 1 A.U. In this

case they are unlikely to be seen as coronal streamers at the limb, as in

the case of arcade systems with horizontal axes (Newkirk, 1972). A

clear example of association of computed magnetic arcades in the corona and

interplanetary sector structure has been discussed by Wilcox and Sval-

gaard (1974).

Interplanetary magnetic sector boundaries detected at 1 A.U.

can be therefore interpreted as manifestations of current sheets connec-

ted with coronal streamers, which appear essentially as closediloops inside

2 R . This suggests that interplanetary magnetic sector boundaries shoulde

be related to enhancements in the coronal brightness, due to coronal con-

densations in regions of closedmagnetic configuration. This relation-

ship should hold at least for the coronal brightness at low heliolati-

tudes.

Associations of coronal enhanced features and interplanetary

sector boundaries have been indeed observed. Martres et al (1970) suggest

that interplanetary sector boundary, traced back to the solar surface,

0originates 14 W of a coronal condensation, from an analysis of radio

observations. A peak of solar radio emission, preceding the inferred

central meridian passage of the interplanetary sector boundary, has been

found by Scherrer and El-Raey (1974) for the period 1962-1970. Also the

green line intensity seems to be affected by the large-scale solar mag-

netism. Guldbrasen (1973) notes that during the period 1962-64 the green

line emission peaks in a region west of the solar sector boundaries.

The association of photospheric sector boundaries, as inferred

from the interplanetary magnetic field polarity data, with coronal enhance-
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ments is more complicated than might appear from the previous analyses.

In fact from an analysis of the green line intensity (Antonucci, 1974) it

seems to depend both on the kind of sector boundary considered, separating

(+,-) or (-,+) polarities, and on the solar hemisphere. Moreover the

relationship of coronal features and magnetic sector boundaries displays a

solar cycle variation. During a given sunspot cycle, green line inten-

sity maxima are closely related to the solar magnetic boundaries, which

separate polarities coinciding with the leading and following polarities

of bipolar sunspot groups of the solar hemisphere considered. Therefore

when a (+,-) sector boundary in the northern hemisphere is associated

with enhanced green coronal emission, in the southern hemisphere a (-,+)

sector boundary is near a coronal condensation. Because this effect is

independent of latitude from 0 up to 600 in latitude, persistent

northern and southern coronal features, extending up to high latitudes,

should exist. Their relationship with the magnetic sector structure

implies a longitudinal separation of northern and southern features at

least at high latitudes, of roughly 900 or 180 0, respectively in the case

of a 4-sector or 2-sector structure. This hypothesis has been verified

by Antonucci and Svalgaard (1974b).

A solar cycle dependence of the variation of the green line

intensity, in the frame of the magnetic sector structure, (Antonucci,

1974) has been found by means of cross-correlations of green line intensity

data and interplanetary polarity data for the period 1947 - 1970. The green

line intensity data have been prepared by Sykora (1973) in the form

of synoptic tables. The Pic du Midi photometric scale has been

used to normalize the intensity data. The observations
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are referred to central meridian by averaging the intensities measured

at the limbs seven days before and seven days after. The original

tables report the data as three-day averages for six latitude zones, 200

0 0
wide, from 57.5 South to 57.5 North. In order to compare these data

with the daily interplanetary polarity data, daily values have been

interpolated from Sykora's tables. Moreover a 27-day running mean has been

subtracted from the green line intensity data, in order to remove long-term

variations of the coronal emission, related to the sunspot cycle. The

polarity data of the interplanetary mpgne+ic field are inferred from

high latitude geomagnetic observations (Svalgaard, 1972). They can be

expressed in a time-series of +1 and -1 daily values, respectively for

days in which the polarity of the interplanetary magnetic field is posi-

tive (away from the Sun) or negative (toward the Sun).

The cross-correlations between green corona emission and inter-

planetary magnetic field polarity have been performed for consecutive

periods, two-years long, for each latitude zone. From the interpreta-

tion of the cross-correlation functions the time-lag between the center

of the positive interplanetary magnetic sector and the coronal enhance-

ment was deduced for each latitude and period, through the interval

1947 - 1970. Then, assuming the size of the sector of roughly 7 days, in

the hypothesis of a 4-sector structure, the,relative time-lag between

sector boundary and coronal enhancement was inferred. But the size of

interplanetary sectors is slowly changing, moreover, during the active

part of a sunspot cycle, the sector structure of the interplanetary mag-

netic field consists of two sectors (Wilcox et al, 1972). Therefore the
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cross-correlation analysis, discussed before, gives correct results for

the individuation of the kind of boundaries which are associated with

coronal enhancements and the solar cycle dependence of the effect. But

this method is not ideal for a very precise determination of the temporal

and spacial relationship between magnetic boundaries and coronal intensity.

An improved and more detailed analysis can be done if the

coronal variations associated with the magnetic sector structure are

directly computed, in the frame of the sector boundaries; provided that

the two kinds of sector boundaries are analyzed separately. This kind

of study confirms all the characteristics of the effect deduced from the

cross-correlation analysis and at the same time gives a clearer picture

of the effect at the different latitudes.

Superposed epoch analyses of the green line intensity around

the interplanetary sector boundaries have been performed for consecutive

periods, two-years long, centered in each year of the interval 1948 - 1969.

The days in which the derivative of the polarity data time series is

different from zero have been selected as sector boundaries of the inter-

planetary magnetic field. The polarity data have been previously correc-

ted in order to avoid contributions from short-term polarity changes to

the number of sector boundaries, i.e. we have reversed the polarity of each

day followed and preceded by two consecutive days of polarity opposite to

that day. The two kinds of sector boundaries, separating (+,-) or (-,+)

polarities, are distinguishable by the sign of the derivative, indicating

the change of magnetic polarity.
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In Figure 1 the superposed epoch analyses relative to the year

1952 (from the middle of 1951 to the middle of 1953) are reported for each

latitude zone, respectively for the (+,-) and the (-,+) sector boundary.

The zero day is the time of the interplanetary sector boundary at 1 A.U.

The vertical lines mark the day of the solar sector boundaries, at

central meridian approximately 4.5 days before the interplanetary bounda-

ries are detected, in order to account for the sun-earth transit time

(Wilcox et al., 1969). For the period considered, 36 (+,-) boundaries

and 33 (-,+) boundaries are taken into account in computing the superposed

epoch analyses of the green line intensity.

Each plot of Figure 1 represents the average variation in per-

centage of the green line intensity associated with a (+,-) or (-,+)

sector boundary, at each latitude zone. The Zero level of the variation

is due to the fact that a 27-day running mean has been subtracted first

from the intensity data, in order to remove the solar cycle modulation,

as explained earlier. The uncertainty of the average coronal intensity,

around the boundary, has been computed by dividing the standard deviation

by the square root of one less than the number of boundaries used. The

error bars, reported in Figure 1, represent twice the uncertainty com-

puted for the maximum or minimum value of the average intensity in each

plot.

The variations of the green line intensity, in the frame of the

solar magnetic sector structure, are statistically significant. Their

amplitudes, of the order of 10% or more, are independent of latitude in

0 0
the range considered 57.5 N - 57.5 S. Therefore, the percentage of
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coronal emission involved in this effect is approximately the same at

each heliolatitude.

For a given latitude, one kind of boundary is associated with

an enhancement in coronal emission, while the other kind is associateiwith

a dip in emission. Moreover in the northern hemisphere (top half of

Figure 1) the emission peak is associated with the (-i+) boundary, while

in the southern hemisphere (bottom part of Figure 1) it is associated

with the (+,-) boundary.

The information provided by the 22 sets of superposed epoch

analyses (analogous to the set shown in Figure 1) relative to the whole

period 1948 - 1969, can be represented in a rather simple way. For each

intensity variation, for a given latitude and a given boundary, we con-

sider just the days in which the average intensity differs from the zero

level more than the uncertainty. Such selected days correspond to

the maxima and minima of the intensity variations. In Figure 2, for

each year of the interval 1948 - 1969, the maxima (dark areas) and minima

(dashed areas) of the coronal emission have been plotted in the interval

±3 days around the time of the inferred sector boundaries at central meri-

0 0
dian, for the low latitudes of the northern hemisphere (17.5 N - 2.5 S).

The two kinds of sector boundaries are represented separately. The hori-

zontal dashed lines separate one solar cycle from the other.

Even a quick look at Figure 2 can convince that the effect of a

coronal intensity variation with maximum and minimum at different kinds of

boundaries is confirmed for the whole period considered, with very few

exceptions. Another interesting aspect of the coronal modulation is evi-

dent immediately: the pattern of the green line intensity variation reverses
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with respect to the solar magnetic sector structure at each sunspot

minimum.

The solar cycle variation of the coronal modulation suggests a

correspondence between the polarities of leading and following sectors,

which form a boundary close to a coronal enhancements, and the leading

and following polarities of sunspot groups. In fact Figure 2 shows that

in the northern hemisphere the boundary associated with coronal enhance-

ments is separating (-,+), (+,-) and again (-,+) polarities, respectively

in cycle 18, 19 and 20. For each solar cycle, the boundary polarities

are in the right sequence representing the preceding and following polar-

ities of sunspot groups in the northern hemisphere.

This correspondence in polarity can still be found analyzing

the latitudinal dependence of the solar cycle variation of the effect

that we are studying. In Figure 3 for each latitude the maxima and minima

of the coronal intensity variations are reported. Only the (+,-) sector

boundary is considered, because the (-,+) boundary displays simply the

reversed situation of maxima and minima, as seen in Figure 2.

The first three plots refer to the northern hemisphere and

indicate clearly the same patterns. Therefore from the equator up to

0
57.5 N, the solar cycle dependence of the coronal modulation is the same

as we have discussed for the low latitudes represented in Figure 2. The

0 0
first part of cycle 20 is anomalous at high latitudes (57.5 - 37.5 N).

The last three plots refer to the southern hemisphere. For this

hemisphere, the green line intensity variations are irregular at low

latitudes. In fact, for this latitude zone, cycles 19 and 20 show patterns
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that resemble the northern ones more than the southern ones, when the

variations of the green line intensity are significant. However high

0 0
and middle latitudes (17.5 - 57.5 S) show the same solar cycle variation

of coronal emission.

Comparing the two hemispheres, in the cycles in which minima of

intensity are present at the (+,-) boundary at North, at South we find coro-

nal enhancements and vice versa. This reversal of the pattern of green

line intensity maxima and minima with the hemisphere is consistent with

the suggestion that the boundary associated with coronal enhancements

separates polarities corresponding to the sunspot group polarities (in the

East-West sequence). Preceding and following polarities of sunspot

groups are (+,-) in the southern hemisphere during cycle 18 and 20, and in

the northern hemisphere during cycle 19. The (+,-) sector boundary is

associated with peaks in coronal emission, in the southern hemisphere

during cycle 18 and 20, and in the northern hemisphere during cycle 19,

as shown in Figure 3.

The butterfly diagram for sunspots (Stenflo, 1972) indicates

that, during solar cycle 20, sunspots show up at the beginning of 1965

in the northern hemisphere, while in the southern hemisphere their appear-

ance is delayed until the beginning of 1966. In Figure 3 the dashed line,

separating cycles 19 and 20 at the beginning of 1965, marks the reversal

of the effect, expected at sunspot minimum, only at northern latitudes.

At South the reversal takes place one year later in 1966, at middle and

high latitudes, in coincidence with the appearance of sunspots in that

hemisphere.
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Another peculiarity occurs in 1961. At this time a disappear-

ance or reversal of the effect takes place at every latitude. Stenflo

(1972) shows, in a butterfly diagram of the photospheric magnetic field

detected at Mt. Wilson, that a unique abrupt reversal of the photospheric

field occurs in the same year at least at middle and low latitudes.

In conclusion this analysis of the green coronal emission, in

regions close to magnetic sector boundaries, clearly indicates that the

large-scale solar magnetism modulates the coronal brightness distribution.

This modulation is solar cycle dependent in a way which suggests a link

between large-scale and sunspot magnetism, because of the correspondence

of polarities of magnetic boundaries and sunspot groups in a given hemis-

phere.

Moreover, because the green line intensity variations in a given

hemisphere are present up to 600 latitude, we suggest longitudinal northern

and southern coronal structures, corotating with the large-scale magnetic

pattern and not taking part in differential rotation. In case of differ-

ential rotation, middle and high latitudes would not present a variation

with respect to an interplanetary time reference such as sector boundaries

on a time-scale of two years. If southern and northern features are linked

or not on the solar surface remains unclear because of the difficulty of

interpreting the behaviour of low southern latitudes. However, a connec-

tion between southern and northern features cannot be excluded.

These extended coronal condensations on the solar disk are

probably a manifestation of the real photospheric boundary or neutral

line separating opposite polarity regions, over which closed field lines

develop.
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Figure Captions

Figure 1. The average variations of the green line intensity relative

to the period middle 1951 - middle of 1953 are plotted

around the (+,-) and (-,+) sector boundaries of the solar

magnetic field at central meridian (vertical lines). The

variations are expressed in percentage; the mean values of

the green line intensity for the six latitude zones, from

the North to the South, are respectively 21, 36, 53, 46, 26,

16 in absolute coronal units (millionths of energy radiated

from the center of the Sun's disk in 1 strip of the spectrum

near the corona emission line).

Figure 2. Maxima (dark areas) and minima (dashed areas) of the average

green line intensity variations around the (+,-) and (-,+)

solar boundaries. The intensity variations are computed by

means of superposed epoch analysis for periods two-years

long, centered in each year of the internal 1948 - 1969, and

for the northern low latitudes.

Figure 3. For each latitude zone, in the range 57.5 N - 57.5 S, the

maxima (dark areas) and minima (dashed areas) of the green

line intensity variations around the (+,-) solar boundary are

reported, for the interval 1948 - 1969.
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