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FOREWORD

This compilation of papers and reports is the final report for

Contract ME-(NGR-Ol-OO3-O08), "Computer Techniques for Multivariant

Function Model Generation Emphasizing Programs Applicable to Space

Vehicle Guidance". The work was perfomed by those listed as authors

of the papers and reports, for the National Aeronautics and Space

Administration, Electronics Research Center, Cambridge, Massachusetts.
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_- A METHODFOR DETERI,IINING OPTIMUMRE-ENTRY TRAJECTORIES

__ By

William P. Reiter

Grady R. llarmon
;- ._oe W. Reece
#

- SUNN_RY

. The Pontryagin Maximum Principle is used to formulate the prob-

lem of finding optimum atmospheric vehicular re-entry trajectories.
<

The optimization problem _s that of minimizing an integral which is

'_ a function of the state and control variables. The vehicle's motion

is assumed to be influenced only by a gravitational force and anaerodynamic force. The problem is formulated and the necessary equa-

tions are developed simultaneously for three sets of Euler angles.

Computational procedures are suggested so that numerical trajectories

may be generated.
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I. INTRODUCTION

This paper is an extension of previous work done by Grady Harmon

and W. A. Shm¢, presented in NASA TM X-55024, March 14, 1964.

The objectives of this paper are (i) to present a method for

treating optimum re-entry problems in a simplified manner and (2) to

generalize the computational scheme outlined in the aforementioned

paper. The computational scheme given allows for the op£imization of

any functional subje:t to the specified constraints. Atmospheric data,

vehicle configuration and aerodynamic coefficients are incorporated in
r

the computational scheme in tabular form. Thus, different vehicles

and/or atmospheres may be considered by changing the appropriate'tables.

The governing equations are developed for three different gimbal sets.

A computational scheme is outlined for each case.

No numerical results are available at present, but development of

the computer deck is underway at the Electronics Research Center.

This work is sponsored, in part, by a grant, NGR-OI-O03-O08, from

the Electronics Research Center. '

..._. . ....
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II. STATEMENT OF TIE PROBL_

The problem is that of finding the optimum control process, ay(t),

that will transfer a vehicle from an initial state, at time to, in an

atmosphere to a terminal state, at time tl, in the same atmosphere

so that the value of the functional
o

t 1 '

- is a minimum. The trajectory associated with this optimum control
P

, process is the optimum trajectory.

The rotational motion of the vehicle is treated in a simplified

manner. The equations governing the vehicle's rotational motion are

considered as a steady-state problem with only one component of the

angular velocity vector present for any given gimbal set. A gimbal set

iS used to measure the Euler angles, _r' _y' and _p. The equations of

, motion are developed simultaneously for three different gimbal sets.

' Ti,e problem is formulated as a Pontryagin initial value problem.

The relative velocity equations appear as algebraic constraints. The
t

,_ yaw angle of attack, ay(t), is the control variable.

,: Addition_l assumptions are made as follows:

• '1. The motion of the vehicle is influenced by an aerodynamic

force that acts through the vehicle's center of pressure.

, 2. The attracting body is a rotating sphere with homogeneous mass.
° # /'i

L '' t o 'I
/

we
J , . ,
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3. _e vchicie's centroid of mass and centroid of volume are

not coincident.

4. The vehicle's center of _ss is invarian_ with respect co

_he vehicle.

5. _he center of pressure of the vehicle is invariant with

respect to the vehicle.

6. A sT_%cm of roll control jets is available on the vehicle

that produce a pure roll couple as required by the optimum
i

control process.

l

w

f-
°,

f •

•. .. .

." , •
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: III. COORDINATE SYSTEMS

Three rectangulor coordinate systems will be used in this paper.

"They are:

I. The plumbline space fixed coordinate system!

! 2. The vehicle fixed missile ccordinate system,

3. The aerodynmmic coordinate system.

A. Plumbline System

The plumbline system, Figure I, has its origi_ at the earth's

center with the Y-axis parallel to the gravity gradient at the launch
P

point. The X-axis is parallel to the earth fixed launch azimuth and

the Z-axis is chosen to form _ right-handed system.

B. Missile S[.s___

The missile system, Figure I, is located with its origin at the

center of mass of the vehicle and its Ym axis parallel to the longitudinal

' axis of the vehicle. Yhe xm and zm axes are chosen zo form a right-

handed system which is parallel to the plumbline system at the launch

i point.

As the vehicle moves algng its trajectory, the missile system under-

goes a displacement with resp<ct to the plumbline system. This dis-

pl&cement is given by three Euler angles as measured by a gimbal set.

The Euler angles uniquely specify the orientation of the vehicle at any

zime. Any particular orienzation of the vehicle may be described by

4

• I

l
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.'Ig,i. £1umbline and,,mlssilecoordlna_e systems .
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different sets of Euler angles depending solely on the sequence in which

the angles are measured. _erefore, it is mandatory that a specific
l

sequence be followed in measuring the Eul_r angles. The three Euler

angles are referred to as the yaw angle, _y, the roll angle, _r' and

_: : the pitch angle, %_ The yaw angle is measured with respect to an

X axis. The _oll angle is measured with respect to a Y axis, and the

pitch angle is measured with respect to a Z axis. An angle is considered

positive counterclockwise when viewed from the positive end of the axis

about _ich the rotation is taken. The angles are measured by a set

of gimbals on the vehicle. A gimbal set measures the Euler angles in
%

a specific sequence such as pitch, yaw, and roll.. In this paper,

equations that involve the angles yaw, roll, or pitch are developed
t •

simultaneously for three different sets o£ Euler angles. The angles are

obtained from three gimbal sets. They will be referred to as follows:

i. A gimbal set which meaaures in the order of pitch, yaw,

roll.
f

2. A gimbal sen which measures in the order of pitch, roll,

yaw.

5. A gimbal set which measures in the order of roll, yaw,

pitch.

The Euler angles are shown in Figures 2, 5, and 4.

A position vector in the missile coordinate system may be written

in terms of a position vector in the plumbiine coordinate system.
• •

Q

i
ml --.-'--'"-_ - _
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The equations o£ transformation are given by _he orthogonal rotation

matrices

- 1' 0 0

[ _y] = 0 CY SY ,

' 0 -SY CY
-- L

: C 0 SR

_. L-SR 0 CR

_ .

. - -
, CP SP 0

i [_p] _ -sp cp o .
0 0 _ 1

The particular combination of the above rotation matrices that relate

: _ a vector in the two coordinate systems is dependent on the gimbal setused. The relationship for gimbal set i is
i

_m .= ['_r]%1 [_p] g (la)
Or

J

g = [Ad] _ (Ib)
5

i
i

.... , , u rr ._
I

I
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where

t

CRCP+SPSRSY CRSP-SRSYCP SRC

:_" [AdlI . | -_sp cYcP Scyj c1_)_. LSRCP+CRSYSP =SPSR-CRCPSY CR

tE

is the combined product of the rotation matrices in equation (la).

I l_%en0y = 90° gimbal set I is oriented so that _r and _p are measured

I in the same direction, refer to Figure 2. This condition is referred

i to as gimb_l lock.
f_ The relationship for gimbal set (2) is

i "
Ym : [_y]['_r][_p]g (2a)

or

_m = [Ad]2 _ [2b)

where

lAd]2 = ]-CYSP-SYSRCP CYCP-SYSRSP SYC _2c)

_S_SP-CYSRCP -SYCP-CYSRSP CYCRJ

is the combined product of the rotation matrices in equation (2a).

Gimbal set 2 is locked shen _r = 90°' At this orientation, refer to

Figure 3, _y and _p are measured in the same direction.

J
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' Fig. 3. Eule_'lanangles fo_ gimbal ae_ 2 _
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The relationship for gimbal set (3) is

or
!

i I _ = [Ad]3g (3b)

" where

r -I_CPCR-SPSRSY SPCY CPSR+SPSYCR '_

:_ _,- = I-SPCR-CPSRSY CPCY =SPSR+CPSYCR (3c) ,,

[Ad]3 L =SRCY -SY CYCR ]

is the combined product of the rotation matrices in equation (3a).i

!. Gimbal set 3 is locked when _y = 90°. At this orientation, refer ?
T

to Figure 4, _p and #r are measured in the same direction.

The transformation matrices (le), (2c), and (3c) will be referred •

to as

L

where i = ij 2, 3.[Ad]a

Equations (Ib), (2b), and (3b) are restated as

_m "= [Ad]i 7. ([4) .
J

.............. t

1974023186-021
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: i The aerodynamic coordinate system is located as shmm in Figure S

with its origin at the center of pressure of the vehicle. The Ya axis

lies in the plane con=aining the vehicle longitudinal axis of sy=_etry

f and the relative veloczty vector. 'fherelative velocity vector, _ ,
R

;. is defined as the velocity of the air with respect to the vehicle as

? measured from the irertial reference. The X and Z axes are chosen
a a

to form a right-handed system. As the vehicle moves along its tra-z

i jectory, there will be a relative displacement between the missile
}

fixed coordinate system and the aerodynamic coordinate system• The

diredtion of the Ya axis is defined by the followi_g rotations as shown
F

! in Figure S:
; "

i i• Rotate the vehicle fixed reference frame about the Ym

_ axis so that the x axis lies in a plane parallel to
_ m

[ the plane formed by the vehicle's lo_gitudinal axis of

i symmetry and the relative velocity vector. The angle
traversed is referred to as the yaw angle of attack, ay.

2. Rotate about the new Z axis by the true angle of attack, a*.

This specifies the orientation of =he aerodynamic coordinate

system.

The true angle of attack, _*,will be expressed in terms of :he

aerodynamic force in the next section.

|. .
L

°l

# a

Im

| :

1974023186-023



., Fig. 5. Aerodyna_ic and missile coordinate systems *
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A posi:ion vec=or in :he aerodynamic coordinate sys:em max be
r

written in terms of a posi=ion vector in =he missile fixed coordina:e

_ system. Tho orthogonal,transformation matrices are

L

" . ? i
a* -Sa* 0

i CO.o
and

I:y o. .s:l[%] = - 1 .

L_ o c% ,

A positive vector in =he aerodynmmic coordinate system is expressed

in terms of a position vector in the missile fixgd reference as

xa = [Aa] x_ . (Sb)

where

. -C=*C=y -S=* -CcL*Sq

' I[Aa] = S.*S_ C.* -So'Soy {So)

Ls_ o c_ j

-Li

1974023186-025
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is the co:Tbined p_oduct of the ro=_tion matrices in equation C5a).

_e a_rodynamic coordinate system _ransformation matrix (Sc) =s inde-

pende;_t off the sequence used in _easur%ng the angles yaw, roll, and
[

pi_ch.

!

1974023186-026
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IV. MECHANICS

A. Forces

'D,¢Oforces are assu_ed to act on _he vehicle as it moves along

its trajectory. I: was assumed zhgz the a_tracZing body is a homo-z_

;I gcncous sphere. _nus, an inverse square gravitational force is

i! written in terms of the plu=bline coordinates aS
!

%,

.= -e M _ x " . C6)

_ .
\

}
%:e vehicle's aotion is also influenced by an aerodynamic force. The

' force lies in the plane fer_ed by the vehicle longitudinal axis of

[
syr_etry and the relative velocity vector and passes through the cen-

ter of pressure of :he vehicle, as shown in Figure 6.

The co;,ponen=s of the aerodynamic force are defined by the

i equations

Fx - A q Cx (=*) , (Ta)

and \

Fz - A q Cz Ca') , (Yb)

17 _
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F_g. 6. Ae_odynamic force components _x and Fz .
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i

;. 19
[-
: A is the projected cross-section area of the vehicle and q is the

dyT,amlc orcssure, Cx azd C. a_'aexperimentally determined factcrs

k
that arc dependen¢ on :h.evehicle's shape and the angle of attack.

-p

g it is assumed that Cz _nd Cx are knm_. The aerodynamic force is

:' _ expressed in the aezodynamlc system as

?.[

Fa •

,_ - . I-.">:c_*l " FzSaI (a)i o
_ .

_: Tae aerodynamic force is ekpressed in terms of the missile fixed!,
[ reference as
F

t

! _q_--lAD__a . (9.)

(Xote: The symbol [A]T is used to denote the transpose of matrix A.)
£

: _ Equation (ga) can be written in component form as

ila=zj ILC,,*S%,-S_,*S%,._ o

_%en si_._piified,equation (9bj becomes

,a 1
_ |

]974023]86-029
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_- 20

i where =he r.agni=udeof _he acrodyn._._.,icforce is

[

_ 7Fx2Fa = + FZ2 , (i01

_nd e is expressed in ;eras of the components of the aerodynamic

- I force _arough -J,eequa=ions
L

| s= = _ , _zza)

!
I F..
! C. = -- "---- (llb)

tan a = Sa _ Fz = _ . (iIc)
Ca Fx Cx(a*)

The magr.i=udeof zhe aerodyn_..icforce is related zo t.herelative

veloci;y ;hrough ;he dynamic pressure by _he equation

q '= 1/2 p VR2 . (12_

i

1974023186-030
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It is ass'._._:ed_na= _n= atmosphere norr,ally moves with the attracting

body {6). Hence, at all zir..esthere is an air mass movement with

+ rospec= =o =he p.u.,,b_..ecoordina=e system. _qis _ vector that represents

any abnornal air movement. An equation expressing the velocity of _he

" wind may be writ:on as

Vwi._d" _e x _ • w . (13)

_ The relative velocity equation is

- - _R (14)X = Vwind �•@

hT.enequation (13) is substituted into equation (14), the result

is r

- - - - - iT , (zsa)
VR : X �Xx _ e

or, in componen_ for_,,, .

)( X _ IV
VRX ex x

_ VRy = .i' * Y x _ey " Wy . (15b)
!

VRZ _ Z Z _ eZ WZ

The relative velocity tax be expressed in _erms of _he aerodynm_ic,

_.issile,or plur.blinecoordinate system variables. The rela:ive velocity

,o

• Q

1974023186-031
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a

7 vector is written in the missize coordinate system as

%

7.

V = [ad] V = [A IT _ (16)_ - R a ,r

k where
¢

I -
I V x
f

% _ Vrmy
f

v

i is =he relativ, veloci;y vecgor in the missile system and
! .

m

i o
= Vr "

i "
_ 0

} a _
i is the reia;ive velocity vector in the aerodynamic system. (Note that
g

equation (16) represents three possible equations depending on i.)

The resultant force ac_ing on zhe vehicle written in the plumbline

coordina=es is

F'R = Fg * [Ad]_i Faro • (17)

• d
r

: P- - .....

J
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B. Coun!es znd Ho._:cnts

The _' ""_ ".,,o_.o,.of tae vehicle is influenced by a momen_ and a couple.

It is assu=ed ";ha'_ "_i_e cenzcr of pressure and the center of mass are

izvariar.'_wi=h r.;speczto _he vehicle. Thus, the center of pressure

; is ioca;ed by a constant posi=ion vector, Xcp, in the missile fixed

reference. The aerodynamic moment is given by the vector produc= of

the posi;ion vector, Xcp, and the aerodyn"_micforce, From. The aero-

[ dynes.itn:omenzis wri=zen in the _,.issilefixed reference as

e

Or
|

! '"= + 1 "
Y,oSaSay FaZcpCa

I gamy -., ZcpS;Cay - PaXcpSaSay , (18b)

, !) ' F XcpCa + FaYcpSaCay
L .1

A sys=em of roll jets is used :o produce a pure roll control couple

about the Y axis° Th_ jets are located with respect :o _he missil_

fixed coordinate system so that

Fr 0

F' =. 0 located at _ = 0
rl r

i

i

1974023186-033
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azd

4 m m

-_ 0 '= I
r = 0 loca_cd a_ -Zr = 0
r2 I

0 -Zrj

yield a roll couple

,_,,,

which zay be expressed as

F _ o
"i 0
!

= I 2ZrFr . (lOb)rm

l ° -
The resultan= zcment about the center of mass of the vehicle in the

zissii_ fixed coordinate system is the sum of the roll couple and

aerodynamic momen:

h?.onequations (ISb) and (19b) are substituted into equation C20), the

resul= is

F . p_ FaYc_2_Say �FaZcpCa0 ]

-FaxcpCa �FaycpSaC_y"-

1

]974023]86-034



2S

which cnn be =educed to

raYcpSaSaY I

" . - �FaZcpCa

'%_.m = 2ZrF r - FazcpSa CSy - FaXcpSaScy . (21b)

L -FaxcpCa FaYcpSaC_y .

C. Equations of Notion

i_ is possible ¢o interpret the motion of a rigid body as the sum

i of t_o independent effects--the _otion of the center of mass of the
vehicle with respect to an inertial coordinate system and the roeational

n:otion of the vehicle shout its center of mass. The me:ion of a rigid

bogy in general requires six independent coordinates to specify its
r

orientation a_ any _im_. The six independent coordinates used in this

problem are the three p!_bline coordinates and three Eulerian angles.

The translational equations of motion are written for the center

of mass in the iner;ial reference as

LL

" _K = m X (22a)

f

F d]i Fan. m X , (22b)
_, g

i where

X

•. .)X " •

*t

Z

t .
a _ .........
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"_',..._.,'-cx-)rcssion(6) is subszizuzed into cc;_ation(22b), the second order

...._,.,_o.._,cqua_zons of z:o_ionbecome

"" - T :am
x = - c._x . [ad] __ . (22c)igI5 i m

The zhree second ordor differontial equations, C22c), may be reduced

zo six firs: order differential equations by a change of variables.

Lez

X
U I .

u , = v =_ - X . (23)
" i

W ' Z I "

l_en zhe above .... = ....:.....s_or...=_.onis used, _he second order differential

equa:ions of mc_ion, (22c), reduce to

_ GM[ T =

u = + [Adj. _a__m . (24)

Fo_ convenience, the following definizions are made:

g = _ c M (2_)
1_-13

g

[A]TF F _ _r.._._m= aN = Fa N. , (26)
di m m i z

i
i
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where

a m

and

%.
I

t

where

(SaC_y}(CRCP+SRSYSP) + CaCYSP + (SaS'ay)(-SRCP+CRSYSP

L'J,L<='%'"=='-==="">'"*" i
q -(SaC_y){SRCY) - CeSY + (CRCYS_Sc_y) _J

and

LQJ2
where

(SaCo],){CROP) , Ca (CYSP+SYSRCP) + SaSay (SYSP-CYSRCO)

i
I

I -(SaCay) {SR) - Ca (SYCR) J

I and

gS "
o

L "

] g7402318a-0._7
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where

ICc c'-s sRs''c 'pcRcP'R'-'''= -(Sc(CC(y) (SPCY) - Cc_ (CPCY) - ,,_Say (SY) I (27c)

LQ_Js (saCay)(CPSR+SPSYCR) - Cot (=SPSR+CPSYCR) + (S,aScxy)(CYCR)_

i

When these definitions are used in equation (24), it may be written as
t

"-- * % {2s)_" u =- gX'+ Fa

• It is convenient to write the rotational 9quations of motion in
.[

the Lagrangian form. When the Eulerian angles Cpitch, roll) yaw) are

generalized coordinates, the rotational equations of motion take the

form r

T is the rotational kinetic energy of the vehicle and M_j is the

moment associated with the Oj rotation. Based on the assumption of an

offset center of mass, all components of the ine_'tia matrix are assumed

to be non-zero. The inertia matrix is

F Ixx "Ixy "Ixz_

[_L] = [-Iyx Iyy -_yzl (30)

.., L-Izx ."Izy IZZJ

imwQqm__ -- ' " ..............
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. The rotc.=ionsl kinetic energy _._aybe expressed wi%h respect to the missile

fixed coordi.ta_e sys_c;n as

f

= . [_]; . (._l)

wher_ u is _l',e o._ -anou.a, velocity of the vehicle in the missile fixed

coordinate system.

h"zen expressions (30) and (31) are substituted into equation (29),

the result is

_ 7-

liThe angular- veiccity vector, _ , is obtained frc_ a coordina=e

transfer:ration of the an_ular velocity components Oy, _r) and _p into

the r:.issilefixed reference. The transferma=ion is dependent on the

_._ns_o,,n_t_on matrix is developed for gir,.balset i.gi=::o&lso_ used. The ..... _"_" _ _

<u_.._. so_ 1 measu_es ,_:_,_ Euler anZ!es in the order pitch, yaw, roll.)

A coordin&te transformation is no_ required for _r since iZ is measured

. wi_h respect "_o _.,omissile coordinate system, The an_ular velocity

1974023186-039
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: "_%

co;..ponenz_y is expressed in the missile fixed reference by use of the

rotation matrix [-_rIT The zra:_sformazionis

<

' I: _ -- i T I

I
i missile •

; I 0 '_ I

Ti:eangular velocity comoonenz _ is expressed in the missile fixed
_ } " p

;" reference by ase of two rotation matrices as follows
}

! .
i ' 0
} _

_Pi = [-_r][_']T 0 ' "missile ' .

_ _PJ

Thus, the angular velocity vector

_ _ _ I "--

" Imissile missile

or, in component form,

°x: I o ; | oi Y T T

', = _ '+ [-_r IT 0 I , [-Or ] [_y] 0 (3361

j o o i _p.
_OZm J ' !

_,_

| '. 2
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which may be expressed as

,, W = j j
I

, whore

, F ;y"

r

CR 0 SRCY I[A_] = 0 -1 SY . (34a)

, ]-SR 0 CRCY

A similar arlament is used to develop :ran.o_ormationmatrices for gimbal

se:s 2 and 3:

F I 0 SR"

[_] : j 0 -CY CRSY (J4b)
, 2 j

L 0 SY CRCY

p,J

-s2 -cpcY o J (34¢)

[A_]s " _ J "
0 SY i

L ....

J
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7i_o_;_i_l vcloclty <cc_or, U, is rcststcd for tho throo _imbal sets as

• f

It should be no_ed th&_ tze ;ransforza:ion manrices LAw] are noZ

or;holon&l.

By use of ;he expressions ob_ai;,edabove, the rotational e_ations

of z¢:_on become
L

9

L_JzL_jNC._3 z _ + 76>

w;:ere

-J

_JZ

,'_g l -i T

• "-_j:<k, ' <_'_>
<_<i_.t

i
I

! i

li, .... i

I
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Oi " i

Yl Y
•, o.

,J

: _ __a

i = 1,2,3 j " p,y,r

Definitionsfor _ and _ are introducedthat conformto the simpli-

, ficationsreferred=o in the problemstatement. These defini=ionswill
- { p

i be used throughout =he 1-er,ainder of the paper. For gimbal set I:

'; m _ -

/i 0 0
t

ii=: _I = .Oi0 _[ and #i " . #tO. '

_. for gimbalset 2:

o . , _y

_2 " 0 I and _2 " 0I
o i o

i

|
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_,_ for ~'-_-_

it is noted that each of the matrices in the matrix product of

equation (37a) is non-singular. THUS, the product is non-singular,

and _he rotational equations of motion, (56), can be reduced to the

following form for each gimbai set.
e

_ - [A_]i; [A_]i [_][A_]i •

i Three rotational equations of motion are obtained for each gimbal

: se_ from equation (38). The three equations may be solved for three

unknowns. Because a particular computa=ional procedure is anticipated,

the equations for each gimbal set are solved for the roll force, Fr,

the angle, _, and the angular velocity component that appears.

i
mml''*i'_" -_ 1
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Gimbal Set i

The three rotational equations of motion are:

-6r 2Izy " FaYcpSaSay �FaZcpCa

0 - -FaZcpSaCay - FaXcpSaSay * 2Frz r . (3g)

6=2Ixy - -FaXcpC_ * FaYcpSaCay

The first and third of equations (59) are solved for

- .arctan Ycp(IzyCay + ixySOy)j

The second of equations (39) is solved for

FaS_ (XcpSay * ZcpCay)
Fr - , (4Sa)

2z
r

and the _hird is solved for

• _ Fa (YcpSaCa y - XcoCa)• _r " ' ' . (44a)
Ixy

i
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: Gimbal Set 2

The rotational equations of motion are:

0 = F Y SaSa Z Ca
: a cp y a cp

: ' 2

i @y Ixz - -FaZcpSaCa7.- FaXcpSaSay + 2FrZr (40)
: •

i .%2 ixy . _FaXcpCa + FaYcpSaCay

• The first of equations (40) is solved for '

-Z

a - arctan cp
. (42b)

Y Sa
cp y

The third., of equations (40) is solved for

_- _y - +__/Fa(Xcp Ca" YcPS_Z) j (4Sb)
: Ixy

and the second is solwd _or

6,2I + FaSa(Zcp_y + XcpSay)
F . y xz . (44b)

r 2Z
r

%.

|
t i
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Gimbal Sct 3

The three rotational equations of motion are:

_ 2 Z - F Y SaSa + F Z Ca
p yz a cp y a cp

, ._p2 ix z = .FaZcpSaCa 7 . FaXcpSaSay �2FrZr .C41)

0 = -FaXcpCa + FaYcpS_Cay

The third of equations (41) is solved for

Xcp
= = arctan . (42c)

Y C_
cp F:

The first of equations (41) is solved for

_./F (Y S_Sa + Z Ca)• a cp 7 cp (43c)
P I

yz

and the second is solved for

I

.FaS(Zc C¢=y+ XcpSCt7). _p2 Ix z
" I l r Ill • ' ( 44c )

r ' 2Zr • '

,, i
i

J

, 1
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V. THE RELATIVE VELOCITY CONSTRAINTS
I

The fact that the relative velocity vector may be written in terms

of the thre_ coordinate systems constitutes an algebraic constraint

give_ by

i

where Vrm is the relative velocity vector expressed in the missile

coordinate system. Vector equation (16) yields three equations for

each gimbal set. The three equations of each set are not independent_

Hence, they may not be solved for three unknowns. For each gimbal set,

the three equations are solved for two angular displacements. The

uniqueness of these angular displacements is discussed in Appendix B.

Gimbal Set i

/

The constraint equations are:

,_ (CRCP+SRSYSP) VRx + (CRSP-SRSYCP) VRy + SRSYVRz - Vrmx

(-CYSP) VRx * CYCP VRy �S_RZ- Vrmy (45)

!._ (-SRCP+CRSYSP) VRx " (SRSP+CRCPSY) VRy _ 'CYVRz - Vrmz

t
I ' 38

._ ,.
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/ The first and third of equations (45) .aresolved for

SP = VRy VRX (46a)• ' ' 0

cv .v#

-.and

'"J V �VRV2 . j2 + V2RX RX RY
CP = - - C46b)

2
• (_ + VRy)

"i °
p.

where

: J = CR V - SR V ;
rmx l_mz , -

SP
• I

' = arctan -- . (46C)

CP

As shown in Appendix B, equations (46) maybe solved £or a unique value

of % only i£
P

• -n _ 9p _ _ .

i

The second set o£ equations (45) i_ solved for

___,, |

" V VRZ - K _/V2 . V2 + K2
SY = .... - (47a)2

(VRz + Z21

,, * m
t d i ,

•; ', o
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and

V 2 . V2 K2
CY = -.VrmyK VRZ rmy +

2 : , (47b)
(VRz + K2)

where

K • CP VRy - $P VRX

_y SY . (47c)- arctan C--Y

As shown in Appendix B, equations (47) may be solved for a unique value

of _y only if r

I

-n _ _y _ _

Gimbal Set 2

The constraint equations are:
o (,

_ VRxCRCP + VRyCRSP �VRzSR• Vrmx

_! -VRxCPSRSY - VRxCYSP +. VRy(CYCP-SYSRSP) + VRzSYCR - Vrmy (48)

i VRX (SYSP-CYSRCPi - VRy (SYCP+CYSRSP) +' VRzCRCY = Vrmz

4
t
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The second and third o£ equations (48) are combined to give

v.xV-'"$P - Vpj(CP = - Vrmy CY + Vrmz $Y

which is solved for

2 . F2 �2
F VRX VRX VRy

sr = , (49a)
2

(V_ �VRy)

and:-:

• • r J|

2 . F2 2 •

RXVRX - VRy

CP' " (49b)
2

(V2 �VRy)r

where

F = -V CY + V SY
_.ny l_nz

_p = arctan cpS_P . (49c)

As shown in Appendix B, equations (49) may be solved £or a unique value

of_p only ££

. -ll =< _p •< _ •

\

I
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The first of equations (48) is solved for

, J

V 2 . V2 G2
4-

$R - -VRz....v_x " G VRZ rmx , C50a)2
(VRz - G2)

and

G V 4- V V2RZ " V2 + G2'
SR - rmx VRZ rmx (SOb)

2
(VRz 2)

where

G = _RX CP 4. VRy SP
r

_r = arctan SR . (SOc)CR

As shown in Appendix B, equations (50) may be solved for a unique value

of _r only if

-n _ Dr _ n

Gimbal Set 3

The constraint equations are:

VRx(CPCR-SPSRSY) +. VRySPCY '4. VRz(CPSR+SPSYCR) = Vrmx

i "VRx(SPCRd.CPSRSY) _ VRyCPCY 4- VRz('SPSR+CPSYCR)= Vrmy (51)[ -

-VRxCYSR - VRySY �VRzCYCR- Vrmz

f &'

i .._

J

I
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The first and second of equations (51) are solved for

-_ 2 . A2 • 2
SR . ,VRzA - VRX VRZ + VRX (52a)

(V2z * V2X)

and

V 2 . A2 �2
CR - VRX A + VRZ VRZ VRX (52b)

2 2_ •
(VRz * VRXJ

o,

where

A - CP Vrmx - SP Vrmy
r

= arctan SR_R. . (52c)
r CR

As shown in Appendix B, equations (52) may be solved for a unique value

of _r only if ,

= r =

The third of equations (51) is solved for

SY = -VRy V + B "%/ Z . V2 + B2rmz VRy _ rmz , , (53a)

2 B2)(VRy +

o
t,.. ,

; t

" i I

i
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and

B V �V2 V2 _ B2
CY u rmz VRy VRy rraz (53b)2

(VRy �B2)

where

B = VRzCR - VRxSR , ..t

_y = arctan _cySY _ . (53c)

r

As shown in Appendix B, equazions (55) may be solved for a unique value

of _y only if

o

!,

I i-

2

1974023186-054



VI. FOP_V,ULATION OF THE OP.IMIZAT ....PROBLEM

!_ Theoptimization problem is that of finding the optimum c_ntrol

process, _yCt), _hat will transfer a vehicle from an initial state

to a terminal state in an atmosphere in a manner so that the

functional

t1

a = _ fog,),_,_r'_y'_p'_'"y'Fr)dt

is a minimum. Since the Pontryaginformulationis to be used, it is
r

necessaryto write the PontryaginH functionfor each gimbalse_ (5).

Gimbal Set 1

The Pontryagin H function is

-- _ • •

H1 q ' xll• CSS)= X + h + XT_ + XSJ a
5

which may be expressedas

' _ )'7 cp �x.ec_',x. ,_'._,, o),,Fr) CSSb)
: Ixy

! 45. ,.'

i

/
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where

X1 X_

XI _ X2 , and XII -- 15 •

• X3 L _6

The I(t) are auxiliary variables used in a manner analogous to Lagrangian

multipliers in the classical calculus of variations•

Gimb_l Set 2

The Pontryagin H function is

XlV " 6y "H2 = _III " *-- " F ! k15.�A16J , _56a)

i

which may be expressed as

• /Fa(XcpCa SaCay) • .
!h15__ - " Ycp f(X, X, 02,0 ,a , ay, Fr) • (56b)

Ixy •

l

where

. !
.- x9 112 1 ..
-- _ -- 113XliI _ XLO and 11_, .

', ¢

/ I

J _ d J
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Gimbal Se_ 3

• The Pontryagin H rune=ion is

..

which may be expressed as
i

H3 " _V" X�A"VI" (g X" �F_A)

23_/Fs(YcpS_Sa/+ ZcpCa) • ,•x .... . x fCX,x, p3,_ , a , ay,Fr) CS_b)2_ . "
IYz r

where

k I
17 , m '"

!

i,.. _ I18
I

• jXl9
t

and

m m

i ),
; 20

_I m %21

22
. -I

Q
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: The expressions for the auxiliary'variables are obtainod _ro=

the H functions as follows:

6imbul Se= 1 .

8D _- (58a)

9

, t k
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4g

-_-_-_j=°. c°,,,
}

Gi_:aal Set 2

The e):2ressions for zhe auxiliary variables are: '

t

q

?

: l
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z oo_7'

4. /6_-j (sgb)



51

Equations (61a), (61b) and C61c) imply that _8' 116' and k2_ are

constant. The constant in each case is taken equal to plus c_._. This

insures thaz a minimization of _he H function is also a minimization

of the payoff functien.

F

i:I
!
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The necessary c0ndi=ion for a cri=ical value of J is

_H.
. 0 (62)

_a
Y

where

i - i, 2, 3

The inequality

P

a2E.

must also be satisfied to insure a minimum of the payoff function.

(Note: The criteria expressed in (62) and (63) are valid only if the

H function is differen_iable at each point on the _rajectory.) Partial

differentiation of the H functions as indicated in (62) and (63) pro-

. duces the equations given on the following page.

! i . _<

io
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I"

e,

¢

..... _ F, _ ,',," .,,.-. '
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_%e algebraic and differential constraint equations (28) o (42),

(43), (44), (46c), (47c), (49c), (50c), (52c), and (53c), and the

characteristic equa:ions (58), (59), (60), (61), and _64) form a

complete set of equations for the problem. To insure :hat the payoff

functien has been minimized, _he inequality (65) mus_ also be satisfied.
i

t
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VII. CO_;PUTATIONAL PROCEDURE

_o....ulate_ is of a oCnC_al nature a_ the equationsThe problem = ...... _ _

involved are quite coraplcx. I: is h._hly improbable zhat a closed

_o....soluZion can bo found Therefore, no _ime has been spen% in

search of zhis %ype solution. A compuza:ional scheme is suggested

in order zhat trajeczories may be generated on a digi=al computer.

For convenience in zhe discussion of =he computational scheme, the

principle equazions are writ:ten in functional notation.

Gimbal So= I

The impor_.an_ e£ua_ions expressed in functional no_a:ion are:

a = _(_ ) (66a)
Y

_r = A _r (_'_y' _' x-J
(67a)

_p = _p(_._,.. X, ;,, a,C,y) (68a)

_y = @yelp, X, X, a,ay) (69a)

- (70a)x = x.

F = Fr(_,_y ) (71a)

aI . H1C_',_, g, ...y, Xi) Cna)

%_,_-

55
o,
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_H1 S , __ (74a)

._a--_ Say HI(X' X, f_ , a, _),, Xi) 0

Gin:ha!Set 2

The impor=an= equations expressed in func:ional no=a=ion are:

"[6Sb)
= _C _ •

Y

• -- = (67b)

pC 6_)

(6gb)

•._ "" (70b)
X(X, X, _ , a, _y)X

(71b)
Fr = Fr(_y , a, ay)

H2 = H2(y' _. _, _, _y' xi ) (rib)

• = x. (L x, _, a,_y. xi) CTSb)Xi

BH2
---- = H2(_" ' _, _, _, Xi) = 0 (74b)
Say ay,

.... 1974023186-066



Gi;;:balSet 3

The impel=an= equations expressed in func=ional notation are:

Y

_P -" + _P(_'aY'x,x) (67c)

_r = _r(_p' _' C_y,Xo X) (68c)

x : x(x, x, _ , _, ay) (7oc)
r

Fr = Fr(_y, _, _7) (71c)
i

Hs = H3(_, x, _, _, %, xi ) (72c)

_H5 a _ _ _
-- = --H.(X X, _ _, _ , 0 (74c)

a_y a_y _ ' ' Y _i):

A comple=e set of equations has been developed for each gimbal set.

Therefore, three independent, but similar, computational procedures are

I ,
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wri_tcn. All throo compuzational proccdurcs rcquire the following

initial da_a:

Atmospheric tabics for 0 as a function of position

At=ospheric tablcs for !_as a funczion of position

^ * (a*) as a func=ion of =*Ao_odyna=ic _ables for _x(a ) an4 Cz

Values for:

A R
0

%

G
cp

_ Z
I"

M
r

Piumbline position, Xo, and veloci=y, Xo, vectors at the initial

poinZ on zhe op;imum trajectory

J
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Computazional _-'occ_.'_:rc. fo:'. C!._.L,a] Sez I

..:.:_, • , Xi,...._ v._iucsfor _hc auxiliary var'_a_)Ics, and she roll angle,

_r" arc rcquircl, iZ is assumed that zhese values are known. _uese

initial data are referred to as:

XI o X4o
I

= _ 3T = X50 ,XIo "20 , II0

X3o X60

o

X70
P

X_ = I #
_a

0

_r "
0

Preioad Como::tazioni

Use _he _-;-'_.,,._l_ daZa given Zo compuze =he following quan=i:ies

in the vrder indicazod.

I. Cheese _y = -ISO°

2. Choose :he posi:ive sign in equa:ion C67a) and compute:

a. _ from C66a); i_era_¢ (llc) for a*

b. _ from (67a)
ak

c. _ from (6Sa)
P
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d. f3 fro::.. (69a)
Y

22.
e. X fro=, e ^.J_,.,)

f. :-I.fro=',(72a)

0'" 1

-- from [74a)

Y

3. Choose a = _ + $° and repeat step 2. Continue until u = +ISO°.
Y Y Y

4. Re2aat s_eps i -hrough 5 ,:sing_be negative sign in equation (67a).

•.._results of Praioad Comuu=ation.I s?_uld be --_,,_--^=_=._=_=_as follows:e

_" ! ZH1°HI ! I

Eon. + (67a) ay H1 --
• _ay I Eqn. - (67a) _y H1 ___Y

[

A plot of HlVS _ should yield insigh: as zo zhe number of solu=ions
i v

"_'" exist in addiZlon, zhis ' -
2, _..... ay

p.o_ should yield a slatting value of

; fo_ the irate;ion of equation (74a).

-

i
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Pre!onl Co-::zut::tien"7

5. U_ _hc oo:_J_ivc sign in equation (67a) and the results of

Pro_'o._dCon.pupation i :o ire'tare equation (74_) for
Y

6. Use :he _y computed in s_ep 5 ;o compute

$2H 1

I
7. If _he inee:aaii.'.y i

e

_2H 1
_-- > 0
_a 2 P

y -

_s satisfied, a minim_7, exists. Proceed to step 12. U_e

the posi=ive sign in equation (67a) in all remaining cal-

culations, if the inequality is not satisfied, proceed

to step S.

8. Use the negative si_ in oouazion (67a) and =he results from

Preioad Compu=a=io: i re i_ora:e equation (74a) for _ .
Y

9. Use the Sy found in step $ to compute I

I
_211! 1

Y
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10. Check =o assure ....

"_2'"
0 ;;

1 > 0 .

ii. Proceed =o s=cp 12. Use the noga=iv_ sign in equation (67a)

in all ....._..._,,._.._-_-_calcula=ions.

"N" line cc-.:n_:T:'zion

12. Use "_I:oini=ial data and the correct sign (as de=ermined in

Prolo&d Com,;utazion ii) in equation (67a) to itera=e (74a)

P

for ay.

13. Use =he _ co::,pu=cdin s=e? 12 _,._-"'the ini=ial da=a to compu=e:
Y

a. a from cqua=ion (66a); itera=o(llc) for a*

<o7a_b. i_ from equation '"

C. _p f_'om ccua=ion (6Sa)

d. _y from oqua=ion (590)r

Jt

e. X from equation (70a)

f. F from equation (71a)

" g. II, from equa=ion (72a)

h. _ from equation (73a)
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i

t Gs

i. _II fro;;_equazion [73a)

j. _ f_-o;nequation (73a)7

14. Use a nume=ical in=ezra=ion _echnique to intezraze

e,

forX forY ,

_r for _r

for
II II '

1 for 1
7 7

15. Use _he in=e_rated values fro_ _tcp 14 for the new initial

values in the "X + i" line computation.

Co:.-_u=azion_inroceiure for Gi.:bc.!So= 2

Iniuial values for =he auxiliary variables and the yaw angle are

required, i= is assu_ed =h&= these values _ :hewn. These initial

data re reforzed _o as:

I9 }2
0 0

_I = )'IV0ii0 XiO , = X

13 1

0 0

Ii0 140

, i
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4. Ropoat sZcps 1 zh-:ough 3 but use the negative sign in equation

C6ro).

"i_oresults of Preload Computation I should be tabulated as follows:

i " 4

c,,_ 0. 9

J Eon. �(6To)ay H2 _ Eqn. - C67b) Sy H2
• I _a .eL/: 1 Y

: b

I
I
I
I

I .J .

I 'o

1 '

I ,
I I i " I

A plot of H2 v£ _y should yield insight as to the nurber of solutions

tha_ exist, in addition, this plot should aid in selecting an initial

value foz a to be usel in _he i:grzzion of equation (74b).Y

Pre!oad "-- ",....

5. Use the p3sitive sign in equation (67b) and the results

of Preload Compu_&;ion I to iterate equation (74b) for a ,
,Y

6. Use the value of a found in step 5 zo compute
Y

_2H2

Y
2

P_'_DING PAOW,RLANTTNOT F/_,_D

-. --- - D,,
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_ 7. If the inequality

_i a2H2, • 0

'i Y

is satisfied a minimum exists. Proceed to ,tep 12. Use the

positive sign in equation (67b) in all remaining calculations.
£

If the inequality is not satisfied, proceed to step 8.
L

8. Use the negative sign in equation (67b) and the results from

Preload Computation I to iterate equation (74b) for a .
Y

9. Use the value of a found in step 8 to compute
Y

I

: _2H2

Y

' 10. Check to assure that

;2H 2
_ -- u .

_a 2

II. Proceed to step 12, Use the negative sign in equation (67b)

in all remaining calculations.

L
,N" I,ine computation

12. Use the initia_ data and the correct sign (as determined in

Oreload Computation II) in equation (67b) to itezate equation

(74b) for ay.
l

|
r_
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15. Uso _h¢ valu¢ of _y co_:puzedin s:cp 12 and =he ini=ial data

zo compute:

a. = from ecfaa=ion(66b); izera:e (llc)for e*

b. _y from ccua:ion (67b)

c. _r from equation (6gb)

d. _p from ecfaa=ion(69b)

.,

e. X fro_eecua:ion (70b)

f. F from cqua=ion (71b)
r

g. H2 from ecua_ion (72b) r

h. XlI I from equa=ion (75b)

i. X from equation (75b)
IV

j. l from equa:ion (7Sb)

14. Use a numerical in=egra=ion =echnique :o in_egra=e

X for X for X ,

t

• _y for _y
t

, X!llfOr XllI ,

_IV for XlV ,

for _ •
15 15

--7 ........
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15. Usa the in'ccgratcd valucs co_:pu_cd in stcp 14 for the new

initial values in thc "N + i" line computation.

ComDu,-_tlonal .... _.....n......... for Gi-..balSet 3

Initial values for the auxiliary variables and the pitch angle are

recuired. It is assu:.ea zha¢ these values are known. These initial

data are referred to as:

[ 170 200

- I -X X^ = = X [

V0 18 ' VI 0 21 1 '[ o ok ;_ "

i9 22 J[ o..j . o

j

23
0

),, = 1 ,
24

0

0
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_0.,3......._.. [

Use :he l.,_. _,_ g_vcn =o co=pure :he following quanti_ies

in the order indicated.

i. Choose _ = -180°
Y

22 Choose tho positive sign in equation (67c) and compute:

a. _ from (66c); iterate (llc) for a*

: b. _p fro= (67c)

c. _ fro.-.,(6so)
r

d. Gy from (69c)

e. X fro;r, (70c)

f. H from (72c)
3

g. ?,H.&

_a from (74c)
Y

i

3. Choose ay = ay ° and repeat s_ep 2. Continue until

= + 180°
ay

4. Repea_ steps 1 _hrough 3_bu: use :he negative sign in equation

(67c).

\

i

[
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The results of Prcload Computation I should bc tabulated as follows:

• Eqn. + (67c) _y H3 -- Eqn. - (67c) _ H3 _H--_3

A plot of H3 vs _y should give insight as to the number of solutions

that exist. In addition, this plot should aid in selecting an initi_l

value for oN to be use_ in the itera=ion of equation (74c). _

Preload ComDutation II

5. Use the positive sign in equation (67c) and the results of

Preload Computation I to i:erate equation (74c) for a .
Y

6. Use the value of Uy found in step 5 :o compute

82H 3

_2 ""
Y _

7. If the inequality
£

_2H 3 ,
• -- > 0

j t
i
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is sa=isfiod, a minimum exists. Proceed to stop 12. Use the

positive sizn in oqua=ion C67¢) in all rcnminin Z calculations.

If the incquali=y is not satisfied pzocced to step 8.

8. Use =he ncga=ivo sign in u_-_cq _,on (67c) and the results from

Proload Computation I to i=cra=e equation (74c) for _y.

9. Use the value of a found in step 8 to compute
• Y

82H,i

I0_ Check to assure Zha=

a2H 3
-- > 0 .
aa_

Y

ii. Proceed to s=_p 12. Use the nega=ive sign , equation (74c)

in all remaining calculations.

"N" line comoutazion

12. Use the ini=ial data and the coffee= sign (as determined in

Preload Computation If) in equation (67c) to iterate equation

(74c) for ay.

13. Use the value of _y computed in step 12 and the initial data

to compute:

a. _ from equation C66c); iterate (llc) for _* "

e

i • b. _p from equation (67c) :_/

/-

,=ira----- ......... I _.

_ i ,' i
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¢. _ from equation (6Sc)
r

d. _y from equation (69c)

,,

• i e. X from equation (70c)

: f. F from equation (71c)
r

' g. H5 fro_ equation (72c)
o

h. _V from equation (73c)

i. l from equation (73c) )
VI

j. X from equation (73c)
23

t"

14. Use a numerical integration technique to integrate

, "" •
X for X for X ,

#p for _p

AV for _V ' L

_VIfor XVI ,

for
23 23

I

15. Use the integrated values computed in step 14 for the new

initial values in the "N + i" line computation.

(
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VIII. DISCUSSION

Th_ problem studied has application to cases involving the flight of

any "unpowered" vehicle through any arm)sphere--subject to the assumptions

• given in the problem statement• For example any space vehicle returning

to the earth's surface must pass through the earth's atmosphere. Tkis

paper provides a me,hod for determining an optimum trajectory for the

transfer cf the vehicle through the atmosp'.Lere.The p:'y-offfunction to

be minimized over the atmospheric trajectory is a function of the state

and control variables. For example, it may be desirable to minimize
r

quantities such as the accumulative aerodynamic drag or the _: odynamic

heating.

In order to solve the rotational equations of motion for three

unknowns, "t was necessary to introduce particular definitions for the
•- . !

angular acceleration, _, and the angular velocity, _, of the ;ehicle.

The definitions essentially eliminate all angular acceleration and two

of the three components of the angular velocity for any given gimbal set.

Thus, response of equipment and/or crew on the vehicle to a particular

angular velocity may dictate choice of gimbal sets.

In the numerical generation of a trajectory, it is possible that

mu Euler angle will be computed that produces gimbal lock. A trajectory

that produces gimbal lock is not admissible since gimbals will not func-

tion when in the gimb_l lock orientation. Should the situation of gimbal

' " lock arise, a new set of initial values for the _uxiliarj variables may

73

#

I

T'

p

J
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be selected and a new trajectory generated. A particular set o.

auxiliary variables will yield an optimum t_ajectory for each gimbal

set. _e trajectory generated will _ be the s_e for each gimbal set

even though the same initial values of =he auxiliary variables are

chosen. No a_tempt has been made in _his paper To de_er_,inethe initial

values of The auxiliary variables for any of zhe gimbal _ets.

¢ 9

N

%

- <
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APPENDIX A

Ex?erimentallv Determined Values of C and C for a Typical
X _ Z ---

Space Vehicle

a'Degrees Cz Cx

± 0 ± 0 + i.828

± 5 ± .014 + 1.812

• ± i0 ± .028 + 1.772

t 15 Z .040 + 1.710

t 20 z .052 + 1.626

± 25 ± .063 + 1.520

: + 30 ± .074 + 1.388

± 35 ± .084 +.i.246
± 40 Z .096 + 1.092

± 45 ± .i18 + .932
± 50 Z .146 + .768 .

± 55 ± .182 + ._88

Z 60 _ .224 + .416

± 65 Z .268 + .256

± 70 ± .318 + •112

± 75 t .372 - .020

z 80 z .426 - .134

± 85 _ .486 - .236

± 90 ± '".5.0 - .322

* 95 Z .596 - .394

± i00 ± .628 - .444

-_ ± IC5 ± .690 - .486

± ii0 z .728 - .516

t 115 ± •756 - •542

± 120 _ .?72 - .566

± 125 ± .776 - •582

± 130 ± ._72 - .586

± 135 ± •756 - .584

± 140 ± .730 - .576

± 145 ± .686 - .560

+ 150 * 628 544

± 155 ± •554 - .524

± 160 ± .468 ,- 510

± 165 ± .366 - .498

± 170 Z .248 - .490

± 175 ± .130 - .484
: _ _ 180 ± 0 - .480

76

I
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APPENDIX B

Onioueness of Solution for the Euler Angles,

The relative velocity constraint equations are solved for _wo

• i Euler angles in each giffoal set. The identity

sin 2 _ * .cos2 _ = i

; is used. Thus, the question arises as to which sign should be used

with the radical that app_-rs. • This question is answered for each

gimbal set by considering the way in which the coordinate systems -

are defined.

Gimbal Set 1

t

A first algebraic solution of equations (45) for _p and .Oy yields

J VRy + VRX V X
i sP = (BI)

2

' i' a,ng
e

a/' 2 . j2 2
I _'VRx_- vR_ VRx * vRYcP . ........ (s2)

i '_- CV_y+ vRy)

• 7.7 J

e

, !

'!
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where

J = CR V - SR V
l_lX I_Z

• VrlnyVRZ + K V_Z . Vl_n,y2 �K2SY (B3)U

(V_z �K2) ,

and
i

Vrmy K +_ VRZ-_ V_Z - V2rmy + K2
CY " "Kz.rV_'- �K2)(B4)

where

K = "CP VRy - SP VRX
t

r

The identity

SP2 + CP2 = 1

is satisfied only if opposite signs appear with the radical in (BI) and

(B2). Let _r = a = O. Then equations (BI) and (B2) reduce to

+__VR×
SP = , (BS)

-_/V_x + V_y
a_d '.

+_ ray
: CP - . (B6)

1974023186-087
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Consider =he positive pi=ch angle, _p, shown in Appendix Figure I.

Now restrict _p, -_ =< _? <
= II .

0

,y

: • Vp,y _ ".
_X< .-

Coordinate System Showing A Positive Pitch Angle

Appendix Figure 1

Thus, the correct signs for the sine and cosine are

- V

SP = _X (B7)
t

RY

_d

.CP = + VR7 . (SS)

!.

t

i
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The idenzity

SY2 + CY2 �1

is satisfied only if opposze signs appear wi:h the radical in (B3) and

: (B4). L_._ a = 90 and _p = 0.- Then equations (B5) and (B4) reduceY

_o

+ VRysY = , (Bg)

-_/'2 2VRZ �VRy

and

._
= . (lo)

VV2 + V2
RZ RY

Consider she positive yaw angle, #y, shown in Appendix Figure 2. Now
i

restrict _y, -_ _ _y _ g; 0
Z

VRZ __

"VRy

' ii l.ii

" Coordinate System Showing A Positive Yaw An.gle _.

Appendix Figure 2

m
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THUS, tho correcz signs for the sine and cosine are

-V y
sY = , (Bll)

VV . 2RZ VRY

and

+VRZ
cY = . (B12)

"%ffV2 + V2RZ RY

Gimbal Set 2
P

A first algebraic solution of equations (48) for _p and @r yields

2 F2 2F VRX + VRy-_ VRX - + VRy
- sv = .... , (3)

2
(V2 + VRy)

and

_/ - _ F2 2-F VRy + VRX VRX + VRy
CV = (B14)

2 2
(VRx �VRy)

where

F = -v_>. c',' �Vr_z SY .

_ •

] 974023 ] 86-090
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_f 2 2 G2VRZ Vrmx +_ G VRZ - Vrmx +
sR = 2 (BlS)

(VRz + G2)

and

G Vrnx + VR7 _/V._7- V2 G2..... I_T.X +

cR _ (V_z_ �G2) (B16)

where

G = VRX CP SP

The iden_i_y

SP2 + CP2 = I

is satisfied only if the smme sign appears with the radical in (BIS)

_nd (BI4). Let s = 0 and Oy = 90°. Then equations (BI3) andP

(BI4) reduce to

l VRy
SP - , (BI7)

and

+ VRX
cP . . (sis)

t

'll
I
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Consider _he positive pi_ch angle, _p, shown in Appendix Figure 3.

Now res_ric_ _p,-_q -< _p __ E. 0
X

VRX I_ •

Y VRy

, Coordinate System Showing A Posizive Pitch Angle

Appendix Figure 3

Thus, the positive sign is chosen for both the sine and cosine.

* VRV
SP = , (BIg)

and

• + VR_
"CP ' . (S2O)

_ VV_x, V_x

(

i,

._

b .I. . k
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The identity

SR2 + CR2 = 1

is satis$ied onlZ if opposite signs appear with the radical in (BI5) and

(BI6). Lot _ - _p = 0. _nen equations (BI5) and (BI6) reduce :o

. + VRX
SR = , (B21)

and

+_ VRZ
CR-- . (B221

RZ + V X

: F

Consider the positive roll _ " ._"_'_, #r, shog_ _n Appendix Figure 4 Now

restrict _r, "g =< #r --< g'

0

ir _

VRX i

J

Z

-VRz

II -1I
g

Coordinate System Showing A Positive Ro_ Angle

Appendix Figure 4

1
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Thus, the correct signs for the sine _nd cosine are

- VRZ
SR = , (B23)

and

+ VRX
CR = (B24)

Z + V

Gimbal Set 3

P

A first algebraic solutic . of equations (51) for @y and _r yields

VRZ A + VRX _,;%I_Z - A2 + V_XSR = '
(V_x+ V_z) , C_2s)

where'

VRX A + VRZ V_z - A2 + V_xCR =

(V_x , V,_z) (B26)

Where

_ A - CP Vrmx - SP Vrm7

i
!
{

L
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_',_yVrnz + 3 i/ V_<y V2 B2" -- - Yl.,qZSY = _"Ry'V2 + g2) , (B'.7)

and

B Vrmz + VRY "_ - V-2zmz + Ba

CY _ ' (B28) "
. (v_y �B2)

where

B - VRZ CR - VRX SR .

The identity
r

SR 2 + CR 2 = 1

is sazisfied only if oppesi:e signs appear with the radical in (B2<) and

QB26). Let s = _p = 0. Then equal:ions (B25) and (B26) reduce to

+ VRX- 5SR = , (B29

. V_x + _RZ

and

+ VRZ
c_ = . (B30)

z

Note, equa_u+,_ (g_9) and (B30) are _he same as (B21) and (B22). The.

iden%ity

" SR2 "+" CR2 " i' +
?

,<

i
T
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sa_Is_._ in _ho same way in o: h 'case. Hence, the signs re:-the

%

". sine and cosine are c,,osen _;,e s_;ne as in equations CB23) and (B24).
\

The iden;i:y

SY2 + CY2 = 1

is sa:isfied only if _ho same sign appears wi;h the radical in (B27) and

(B2S). Le_ _ = _r = 0. Then equations (B21) and (B28) r_duce to
i

+ VRZ
sY = , (s31)

: VV y +
and

, , + VRyr w

CY = . (B32)

VRy * V_Z

Consider _he positive yaw angle, _y, shown in &ppendix Figur¢S. Now

resgric= _y, -g < _y < 0

< ,

z VRz

i

E -E

Coordinate System Showing A Posizive Yaw AnglQ

.... Appendix _igure $

|

a,
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Thus, the posi:ivc sign is chosen for both the silo and cosln:_.

+ VRZ
SY = , (B33)

_ V z + Vy

< and

, + VRY
CY : . (B34)

i

r

!
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Semi-Annual Report on NASA Grant 1_GR-01-003-008

RESEARCH ON

DECELOPMENT OF EQUATIONS FOR PERFONtb_CE TRAJECTORY Ca',IPtrrATIONS

K

During the period November 1, 1967, to Nay 1, 1£6;,, at the suggestion

of Nr. i_'. E. lqiner of NASA, F.RC, Cambridge, Nassachusets, n.ajor emphasis
o

, was placed on investigating the analytical foundation of the H_milton-Jacobi

, theory from the standpoint of its possible applications of space flight.

Severa_l references were obtained, as listed in the back of this report, and

a study of previous work by several authors was undertaken.

As of Nay 1, 1968, a specific problem area had been defined as follows.

To attempt to utilize the first order perturbatin theory, which has

: been developed for the motion of a uniaxial satellite in a gravitational

field (reference 8) in studying the metion of a triaxial satellite in a
2_

gravity field. Also to expand the theory for the uniaxial case to higher

order.

\

2 J

b
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: VEHICLECONTROLFOR FUEL OPTIHIZATION

; Klaus D. Dannenberg and Grady R. Harmon

Department of Nechanical Engineering
Auburn University

ABSTRACT

The problem considered in this report is that of predicting a
; minimum fuel trajectory for a six degree of freedom vehicle which has r

a motion characterized by the first order differential e_uations of
translational and rotational dynamics. The thrust direction and cen-
ter of gravity of the vehicle are assumed to be fixed with respect to
the vehicle. Thrust magnitude and the control moment are used as con-
trol variables and appear linearly in the equations of motion.

Pontryagin's Naximum Principle is used to solve the variational
problem. With this formulation, the extremal controls are bang-bang
with the exception of the singular case. A unique feature of this
problem is a combination of nonlinear state and linear control will
allow the computation of the initial values of the Lagrange multipliers
by an appropriate choice of some of the initial states. Initial values
of the multipliers are always necessary for the complete solution, but
no process is generally available for their determination.
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F NOMENCLATURE

AD Matrix transformation from plumbline system
to vehicle system

• Aj _xit area of vehicle engines

Am Matrix transformatic- or_vector into vehicle
system

c Abbreviation for cosine

+ _ Control variable vector

i CD Coefficient of drag

CL Coefficient of lift

Force vector P

G Gravitational constant

H Hamiltonian
+

m Total mass of vehicle

ma Mass flow rate of air through vehicle engines

mf Mass of vehicle's fuel

M Mass of earth

Moment vector

pj Exit pressure of vehicle engines

- Po Freestreampressure

Arbitrary vector

s Abbreviation for sine

t Time

T Rotational kinetic energy of vehicle

i_ r- -................

i
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w
u Translational velocity of vehicle

vj Exit velocity of air and fuel of vehicle engines

vo Freestream velocity

Translational position of vehicle

X--cp Position vector of center of pressure in vehicle
system

State variable vector

a Angle between y-axis and relative velocity vector

_i Angle measured in xz-plane from x-axis, locating
plane containing relative velocity vector and
y-axis

Lagrange multiplier vector
r

Inertia tensor of vehicle in vehicle coordinate
system

p Freestream air density

Eulerian angular position of vehicle

Time rate of change of

Angular velocity vector in vehicle coordinate
, system
?

Subscripts

! a Relating to aerodynamic force

p Relating to pitching motion about vehicle's z-axis

r Relating to rolling motion about vehicle's y-axis

t Relating to thrust force

v Relating to vehicle coordinate system

y Relating to yawing motion about vehicleOs x-axis
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INTRODUCTION

[ The Maximum Principle is a mathematical optimization process,
yielding a continuous set of controls, as contrasted with the computer
search technique of optimization. One of the primary drawbacks of the
Maximum Principle is the necessity for determining the initial values
of the Lagrange multipliers. Since no physical significance is attached
to the Lagrange multipliers, a system of assumed initial values is com-

• monly used with the hope that a maximum can be found.

In the problem formulated in this paper, a unique situation
arises: the Hamiltonian is linear in the control variables and nonlinear
in the state variables. If these nonlinearities are used with appro-

priate nonrestrictive initial values for some of the states, a set of
equations is produced which can be solved for the initial Lagrange
multipliers. Thus, a complete extremal solution can be found for the
optimization problem presented in this report.

i

_f

1
,j
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COORDINATE SYSTEMS

i Two coordinate systcms are used to describe the motion of the
vehicle. One of these, the plumbline system, is fixed to the earthts
center and is assumed to be a primary inertial system. The other is
fixed to the vehicle at the center of gravity and moves with the

• vehicle. The directions of the vehicle axes are shown in Figure I.
The position o2 the center of gravity of the vehicle is given by its
Cartesian coordinates relative to the plumbline system. The angular
orientation is given by a series of three consecutive rotations, which

• are i11ustrated in Figure 2. From an initial position in which all
axes of the vehicle and plumbline systems are parallel, the following
rotations are made about the vehicle's center of gravity:

[

1) Yawing rotation Cy about the x axis
" 2) Pitching rotation ¢9 about the z axis
• I 3) Rolling rotation -¢_ about tile-y axis

Consequently,

r--v= [=¢r][_p][_Y]_ = [As]r
or

, o CPSR =SPSRCY = SYCR -SRSPSY + CYCR_

0

,
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PROBLEM FORMULATION

The minimization of the performance index

f.
0

_ill be accomplished through utilization of tileMaximum Principle.

Thus, for a minimum of

f_fdt

q

j

0

_ a maximum of the Hamiltonian H is desired, where H is defined as

;- where I is the state variable vector and A is the Lagrange multiplier
vector.

The state variables chosen £cr this problem are the transla-

tional and rotational position and velocity x, u, _, and _, respec-

tively. From a knowledge of mechanics, the state equations are as
follows:

X ffi U

u - ]_/m - _/m

. [cl ,[FID"
a

g ,?a,
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,,, Thus, the Hamiltonian becomes

H : kom f + r I • _+ rii • - �_III

" g + _IV " ([Big+ [C]g+ [FID) [.

{,
After substitution of the forces and moments discussed in the appendix, i

,, the Hamiltonian takes the following fore: .!

° _ �X--II

;_ Fa gt GM

• _--+ [AD]T _-- - _

+ ma(vj - Vo) +vjmAi(pi -_o).- Ft E}
r

+ _-III " _ " {[B]M �IF]D}

From the Hamiltonian, the necessary conditions can be obtained as

aH

Expanding into scalar form, these equations become:

'= _II " mR. + [AD]" _"_
:

" ma[vi- Vo) ,+A'.'[Pi- Po) - Ft 7}

• }'I = "-- " _ + GM -m. I ax

I

-o

i{
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J

-. _ 7

' Xo 8Vo _II _ _a (v
_ • _ , u_O_

! _4 = - vj a'-G--Xl " m au + vim o;, _U ]g _

• x___(_ __ya_! )'S vj _w - - m 8w vim o

' I "

" i k7 = "_'II * 8]/ Faro + _[AD]Ts*y - X-IV
t

.,_ . a "[Blg+ _ rc]_-+_ ([F]N P

_ . _ [_ _ ____} -_8 = -XII " _r m + -• a_r XIV

}[B]M+ 8 [C]._ �8• -_ _ _ ([-_]_

_9" .-'I " II_Fa + 8[AD]T_--t}"_IVin _,.

t[B]M + 8

_'10 '" "_' " XIV ' Cil �_ ([FID_

t

i

/
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The solution of these equations for _ depends on the initial values of
-; A. Since ao physical significance can be given to the Lagrange multi-

pliers, some method must be developed to determine their i-=itial values.
; When one realizes that the Hamiltonian is of the form

H = fCL )
ort

the possibility arises that the nonlinear function of state can be
: made zero at the initial time by an appropriate choice of initial

state without the necessity of all states being zero. Consequently,
since on an o_timal path H = O, the remainder of the Hamiltonian must
be zero; i.e.,

aH aH M = 0 r
. aTtrt

y Since Ft and H, in general, are not zero,

_H @H --

aF'-_ = 0 and a-_ = 0

This is the normal necessary condition used for the case of nonlinear
controls.

; If one chooses the initial state to be a position of rest, i.e.,
$ = 0 and u = O, and if one selects an initial thrust which satisfies
the equation

: _+ X _0 + Ai[Pi " P _ = 0
5

the coefficients of the controls are zero at the initial time step,
allowing _ analytic solution for the unknown initial values of the

> twelve variable Lagrange multipliers. If one uses these initial values,
the given differential equations can be solved for the time history of
A. Similarly, the state equations can be solved for a time history of
the state variables.

f 1
I
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Extremal control is determined by the coefficients of the con-
trol variables. Since the Hamiltonian is linear in all controls, the
extremal control is bang-bangunless the control coef£icient is zero;
i.e., if

_H

_C--_l> O, Ci = CiMAX i = Ft,M

_H

_C---_<O, Ci = CiMIN i - Ft,M

For the singular control case of a zero coe££icient over a non-
zero time interval, the equation(s)

_H

_Ci - 0 i = Ft or Mx or My or Mz

can be added to the differenti%l multiplier equations over the appropri-
ate time period to _olve for the extremal control.

P
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CONCLUSIONS

A set of initial values of the Lagrange multipliers for the
state problem can be found analytically through a choice of appro-
priate initial velocities. This is b), no means a unique solution
to the problem, but it is a method of making a feasible choice of
initial multipliers for a certain realizable initial state. The
actual numerical solution of the equations should present no major
difficulties if the intial values are no longer a problem.

This method of solving for the initial Lagrange multipliers
will not be applicable to most problems. With the selection of an
appropriate number of initial states, the problem becomes too
restrictive to be of any great general value.

10

i .................. ]
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i APPENDIX: HATHEMATICAL _DEL
. i

. _ A mathematical model for the basic mechanics of the problem
' ! will be deduced using the separability of the rotational and trans-

i lational motions of a rigid body. The ferces and moments will be
discussed first.l

A. Forces

An aePod_ncur_efoPee Fa is assumed to act at the vehicle's
center of pressure. The orientation of the aerodynamic force is
determined by two rotations from the vehicle system to a new coor-
dinate system denoted by r-a. The rotations align the aerodynamic
force with the -Ya axis. The maneuvers necessary for this align-

' ment (Appendix Figure I) are:

• 1) Ro11 ay about the y axis.
2) Pitch h about the z axis to align the y axis with

the relative velocity vector.

Thus,r-a = [-.1[_y]7.
i Y

CENTER OF PRESSURE x

i:

I,

Z

!

Appendix Figure I. Aerodynamic FoTce System

12

?

: i

J !
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_ The magnitude of Fa is given by

l al= _ vo2A[CD2 * CL2)I/2

: A thrust force FT is assumed to act along the longitudinal axis
i of the aircraft. The magnitude of this force is given by

lwl=  a(vj-re)+Afvj �Aj(pj- Po)

where ma, vj, and pj are known functions of [_TI for a given engine.

The gravitational force of a spherical earth acting at the center
of gravity of the vehicle is

= -_ °
I

B. Moments

An aerodynamic moment and a thrust moment are present as a
result of the nonconcurrency of the center of pressure and the center
of gravity. Collectively, the moments are

i Xcpx -ay][a]

where'__ is the position vector of the center of pressure in the
veh_cleU_ystem.

The control surface moment H-F is a control of the optimization
problem. These are the collective moments resulting from the £1aps,

_ ailerons, and all other vehicle control surfaces.

Clasle_s theorem for rigid body motion states that the motion
may be divided into a pure translation of the center of gravity and a

_. pure rotation about the center of gravity. Therefore, for the trans-
lational motion, the following equation results from Newton's law:

-- mu
m m

i
I
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or
5

mdv_ - Vo]+ A_Ip_- po) - FT
vjm

where

and

[AD] = [-_r] [_p] [+_y]

• The rotational motion equation is obtained from energy consider-
ations. The rotational kinetic, energy in matrix _orm is

T = _ _T [_,]_

where _ is the vehicle-fixed angular velocity vector and [u]' is the
inertia tensor for motion about the vehicle axes. The Lagrangian form
for generalized coordinates of angalar character is

t

d f_T_ _T
-/

_ When one carries out the indicated operations, the Lagrangian equations
become:

_t _T [1,']_" _T d_ _T__(-_T) + [,4 - [_,]_
,]

: After substitution of the angular velocity components of _p, _y, and _r
for _ in the vehicle system and simplification, the resulting equation
is

- [s]Y+ [c]T+ [P]5

L

'7
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"i Semi-Annual Report on NASA Grant NGR-01-003-008

I RESEARCI_.ON
DEVELOP_IENTOF EQUATIONS FOR PERFORMANCE TRAJECTORY COMPUTATION

. !-_ St_IARY

4

the second six months cf the originalDuring one-year period

" ! of the grant work has progressed on two projects:

i 1. Development of a c_,mputer program for the study formulated r

i earlier, as discussed in the last report, and

! 2. An analytical study of a minimum fuel flight for high

speed aircraft.

Included in this report are a listing of the program to compute

a minimum time re-entry into the atmosphere for an Apollo-type cap-

sule, and a technical summary of the minimt_ fuel problem. A detailed

report on item two is to be presented to the Guidance Laboratory of

Electronics Research Center in Cambridge, Nassachusetts, on April 19 !:i

:t an 20. A full report will be forwarded to you after this presentation.

J
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_m UF37aT WALKER TIME:]D0 PAGE:200

_oQ_ _GROO8

_;FTC WALKFP DECK
2

A _AXIMU_ DRIN('IPLF RF-FNTPY 5TUr)y BY GRAr)Y R. HARt_ON :,

'_S EDITED BY FRANK J. ',"AL_CER9.JR. - FFBRUARY 1967
-'i

I

INPUT CAR t) 5 JUMP = I PARTS I ANr_ 2
¢

COL NO "_5 = 2 PART I ONLY

IS JUMP : 3 PART 2 ONLY

SYMBOLS USED IN PROGRA,',I

' PLANET DATA

r,,,_ = GPAVITATIONAI. CO_ISTAr'IT OF PLAYLET

I_t" = I_^r_ltlS O_ PLhNrT
PHO = DFNFITY OF PL.At_FT AT:_OSPHERE

OHOr) =PAPTIAL OF RH,")W.R.T. ALTITU._E

_. O,.PEGA = A"_GULAR VELOCITY OF PLANET ABOUT ROTATION AXlb

(WFX,WEY,W_.Z) : ANGULAR VFLOCITY CONPONENTS OF THE PLANET IN THE
I_,ERT I._L FR h'Ar-

VEHICLE DATA ,.

CX = AEROOYNAMIC COEFFICIENT (LONGITUDINAL AXIS)

CX._ID = PAPTI/_I. OF rx W,,R.I', ALPHA

CZ = AFP.q[)YN_,;_IC COFFFICILNT (PE_PEr'_')ICULAR TO LONGITUDINAL

AXIS)

• rZr.,tl = P_r_TIAL OF rZ _:'.R.T, ALPHA
A = CRC)SS-S_CTIO'_I OF VFHICLF

V_ = M/_SS nF V_HICLF

GENERAL DATA

C
(X_Y,Z) = CARTESIAN COORDINATES (INERTIAL FRA_.'E)
(U,VgW) = VFLOCITY COMPOt'IPNTS (INFPTIAL FRA',4,r.)

: R = t,4AGNIIUDF OF RADIUS VECTOR TO VEHICI. E
HGT = ALT ITllr')=

,. (VRX,V_Y,VPZ) = R_'LATIVF ;VINf_ VFLOCITY CO.',IPONFNTS(INERTIAL FRA,ME) :

(VR.vX,VRt,_.Y,VRVZ) : RFLAIIVE WIN.") VELOCITY CO!,IPONEHTS (HISSILE-
FIXED FRAuF) :"
VR - :4AC,NITUF)E OF V_IICLE VELOCITY RELATIVE TO AIR

FPA : A__QOr)YNA_41C ._CCFLERATION .:
:_ GGG .: GRAVITATIONAL ACCELFRATION

H : PONTRYAGIN H FUNCTION
PHA : PARTIAL OF H W,R.T, ALPHA

PHAY -- PARTIAL OF H w.r_,T, ALPHA Y

XL^.V.(I.) = L_G_."'G r- N.ULTIPI.IF_ (])

' XI.AP,aI_I : LAGRA_"GF MtJLTIOLIE.R (2)
:- XL./_M(_) = LAGPAHGF ._ULTI.r)LIE_ I31

'_ Xl./_MiA) I: LAGPAH(%r. N'ULTIOL.IFR (_)

, XLAN(._) " LAGr_ANGr • MULTIPLIER I51
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t 4
F,I,UIVAL_N."F (XLt,IIr)(I ),XLA,_-I]D), (XLMI D (2), XLM.12D), (XLMID (3) ,XLAM3D)
FQUIVALFNCE (XLt/IID(II,XLAM¢D),(XLMIID(2)gXLA>iSD),(XLMIID(.3)_XLAM6

I0)
_OUIVALrNCF (U_ {I),U) ,(UP.(P) ,V) ,(UR( "_},',',.}

CO",',qN '_'A_Cq'.:
L-

bl vFNSIPN '_'',SCO"(60_ )
" r)i,,F;JSiOq 0."_m¢(I00_ ;T_A_S(r_SRI ,VrX(25)

:' r_I,.'_'_!SIONALT(RBI,pRrss.'.R._.},K(R.R)

: r_I'/_F'NSION ALPHAT ("_8)9TCZ (_R ),TCZP (38 ),TCZPP (3B ),T(.X(38 ),TCXP (38 ),

ITrXPO( "_.),J( _.8)

DIr,'EhSION Unr)OT('_),XN(3),Xp, AR(3),XLAMI('_),XLAMII(3),XLMID(3},

]XLI':IIf)(3},U_('_ }

DI,VENS ION OUTD( L,9]00 }

DOUBLE PRE£1SION FA,AST

:' DOUBLE PRECISION NASCU_,;,ODDSgIABS,VEX,ALF,RALF,CRALF_,SR, ALF_LF'Yt

;_- ,1 RAI.FY ,CRA.LFY, SPALFY, P_I 0 ,bCPH[O,_PHI O, _0, PHIP_CP,SP,PHIY
: 2 ,CY,SY,PHI r',CR.SR,Or'EGA,WFX,;_FY,_'FZ_VR.VpX,VpY,VRZ,VRMX,VR,_YgVR;_Z

9VP._.'Pn],VP'.'Yr_I_VO,._Rr)l,CX_rXMn ,CZ_,CZMI') _Cr,R_O_RHO_R,RO,HGT,A,
'_ ALT _PRrSS __.I.PHAT, TCZ _

_.TrZp,TCZPP, TCX, TCXP, TCXPP,XN,IJn_OT _XBAR, XL _,'ol[ _XLAN! I _XL;,I[ D,XLN'I ID
6 Un_XL4_,_7_XNX,XNY_X",IZ,UO,vr_O,X, Y,Z,XL_I,XLA,M2,XLA_3_XLA_/+_
7 XL_IS,XLA:'.I6_XLA"I]D,XLA:_PF)_XLA_D,XLAM4F)_XLAMSD_XLAMSD_U,V,W_
,RSP_LrP _CR _LPP

_OU_LE PRECISIOn' ARCC)S,COL_T,CRIT_DEL_TESP_TIREC_TLINIT_TPR!.NT_
] TSTEP,TY,_'O_

- , P VO_VLAT_VLONC,,WO_XO,XLA.'qIC)_XLA_,I20,XLAM30_XLAM40_XLANSO_XLAM60_

3ZC).

I]OL'_LF PRFCISION SRAOg,CRAOg,RPHIO,RAD ,,.

r'I_.'FNSIc)NSTX('_),STY('_},STAY(3),RIb(?)

r).ot"_LmmQcCISIO. _,_STX,STY,STAY,_LOPF_STALF
r_p!.mLm oRccISIOK, CnN._,rOK, m,CONC,YO,Y2,YOP,Y?2,DFL2
r_Ot'RLF PR_'CISIO_" HH

' DI'._PNSInN HH{2 4)
mI_'_PSION 0._(] _),OUT._(4_),OUTr(20_)
r_._TA O'JTC 2) ,OUTC 3} _OUTC(4} ,OUT(" 5) ,OUT(.(7) ,OdTC 8) ,

11 OUTr(q} ,¢)U'I'C101,ObTC "2),OUTC I_ ,OUTC 14 ,OUTC(15),uUTC 17 ,

? OUTC{18),OUTr IO)_C_UT."T.20),OUTC _2 ,OUTC 23 ,OUTC(24),OUTC 25

'_ OUTC(27),OUTr 28),,")UTF Pm_,CUTt" "_0 ,OUTC "_2 ,OUTC('_I),OUTC 34. ,

40UTC'(_,5),OUTC _7),OUTC 3R)_OUTC "_q ,OUTC 4C ,OUT(.'(42),OUTC 4.3 ,
50UTC(44),OUTr 45),OUTC 4"/) ' "_ ,_OJ.C 4B OUTC 49 _OUIC(50) _OUTr 52
6 _hLJTr(r,_)_OLITr 5_),OLJT r _.r,)_OUTc 57 ,OUTC 5,R ,OUTC(Sg)_OUTC 60

.. 7 nUTC(6:_),OUTr &_),OUTr r_4),OUTc 65 ,OUI¢" A7 _OUTC(K_9),OUTC. 6q
_UTr(70),r)L!Tr "_,_)_OUTr 7_)_C)UT" "/4 _OLJTC 75 _OUTC'('/7) _(pUTC(?R

'_ ") OUTC{7q),OUT" _O},OUT'(_)p),OUTr 93 ,OUTC P4 / 67_6HBLANKS/
' I_AT,_ ntJTr(fl_.1 ,OUTr(87) ,OUTC' 88} ,,qUT( Bg) _OUT£ 90)

,, ] nUTr(gp) ,nUTC..(91) ,OUTr(t)/,) ,OUTr 0_,} ,OUTC 97) _ObTC 9.8)

" _' _UTr(oq) ,_UT£(IOOI,OUTr lOP _c,.UTr ]01 ,CUTC IOC),OUTC 105

; _ OUTC(I07,0UT£(]OB),OUT£ 10o ,CUTr ]10,0UTC !I2),OUTC 113 ,
OUTC(II_ _O'JTC(]15},OUTC 11"/ ,OUTC I].8 ,OUTC 119},OUIC 120 ,

• 5 0UTC(122 ,,')'JTC(123),OUTC 124 ,OUTC 12.5 ,OUTC 127),OUTC 128

6 0UTC(129 ,OUTC(I"tO),OUTC 1_2 ,OUTC 133 ,OUT£ 134),0UTC ]35
._ _ 70UTC(]_.."t ,OL.'TC(I'_._I,OUTC _.3._,OUTC ]40 ,OUTC !42),OUTC 143 ,

_' P.._.UTC(14" ,OiJTC(]_r_I,C).I;Tr 147 ,OdTr ]z,R ,OUTC 149),OUTC 150 _

c: r_L'TC(]_ _CUTC(I'_'_),OJTC ]54 _OtlTC 155 1 57*6HBLANKS/

i IhATA OUTCI]._7),OI!Tr 158 ,(3L;TC 1.59,0UTC(]60),OUTC(]62 ,
_ ] hUTCI]B_)_OUTC(I(54),_OUT£ 165 ,OUTC 1_.7 ,OUTC(]68)_OUI"C(169

? (3,UT£(170)_OUTC(17_),OUTC 17_ ,OUTC 174 ,OUTC(].75),OUTC(177 ,
; _ r_UTC(17RI,nUT("(!Tg)_OUIr 180 ,r_UTC IR2 ,(3UTCIIR_)_OUTC(I. 8_ ,

' 40UTrII_5),C_UTcIIR?},OUTc 188 _OUTC IB9 _OUTC(190},OUTC(192

Z " 50UTC(IggI,OUTCIIg4)tOUT£ 195,0UTC 197,0UTC(198),OUTC(199 ,

1974023186-121



I

9"'

60UTCI2OOI,OUTC(202_,O'J[CIPOa),OUTCI204),OUTC 2051 /40*6HBLANKS/ 6

r)ATA OF(2) ,OE(3) ,CF(/_) ,0_(5) ,0_(7) ,OE 8) ,OF(9) _OF(]O},
] OF 12},OF(11),Orllz_ ,'2Fl15),,0--(]7 ,O=(.18)_,OE 1.o),OE(20190F(22),

=. _ 2 0'; P_),cr:(P4),OF(25 ,OF(P7),OF(2,Q ,OrC2q),OF _C},Or'(q21,OF('_)_._: I or. "al,,),Oc-l'_=l_nr:-(_7 ,nFl'*o),_l'aq _.OF(hO),OF &?l,OC(43),OFl.',&)t
_' 4 -':" tl=),"_c(471,Or(b .£ _'('_F(t_°),O='(5(] _'Or(q2} 'JOF 9"_)'JO[(r"-41'O_'(65) 1' :

'; "f" .r,7),C_FI_OF(S9 ,OEI(-,O),OE(69 ,Oc((,q},OE 64),OE(fi5},OEI67},
# 6 nr kP._,Ori6e),o_-(70 ,r.VI7*_).OF(7_ .-Or(7&),-O r 7=):3F(77),OE(78)9
¢ 7 Or" 7"_1_0c(p01,CC(87 ,Ol-'(n_},or:-[_a ,CF(PS):O c £7},0=(F8),0=(_9)_

8 _)F qOl,Orto21,or(o_ ,OE(q',)',O::(c'5 ,OE(C'7),OF 9£),0_'(991,
! o _E lO0),OF(10? ,OF(10_),OF(IO4},OE(105)/ 84-_6HRLANKS/

DATA OUTC 11 ,OUTC(61 ,OUTC(Ii) ,OUTC(16} ,OUTC(21) ,

i 10UTC(26) ,OUTC 31) ,OUTC(36) ,OUTC(41) ,OUTC(46) ,CUTC(51)
; 20UTC(56) ,OUTC 611 ,OUTC(56) ,OJTC(7]) _OUfC(761 ,O_JfC{81) ,

_ OLJTr{66) ,OUIC 91) ,OUTC(96) ,OUTC(IO]I,OUTC(IO6),ObTC(ll]),
t, OUTCI]16),C_UTC 121),OUTC(126),OUTC(]?]),.OUTC(136)/
=,&Hf l'._c ,6HX ,6HY ,6HZ ,6HU ,6HV ,6HW ,

-_ 66H LAt,"I ,6HI_A',_2 ,6HI. AV.3 ,6HLA'_t_ ,6H L/,".'15 ,6HLAi,'6 ,6HALF _,
"/6H-*- L FY ,6HPNTR ,6HPHIY ,6HPHTP ,6HC-r:G _,6HVP ,6H;4 _,

_- R6HRH,q ,,.6Hn ._6HFA ,,6HN ,6HP _6HO _,6HH I

"- ' r_ATA r)UTC( I_I ),OUTC(146) ,OUTC{ 151 ),OUTC(156) ,O_JTC(16] ),

I CUTC(166)'OUTC(17])'OOTC(I fb)'OUTC(]8])'OUTC(186)'0UTC(19]}'
20UTC(]96),f?UTC(201),Oe(1),OE(6)'OE(I])'O_(16}'OF(21)'O=.-(26)_

i 30_(_|),O_('_6),OF{4]),CE(Z_6)_OF.(51. ),OE(£6},OE(6]),O.F(66},OE(71)_
', I_ OF(7b|,O_(PI),OF(S6),CF(e,I. ),OE(96),OE(]Ol),OE(]O6)/

_36HPHAY ,6HOH£ ,6HU DOT ,6HV DOT ,6HW DOT ,6HLAh}ID ,6HLAhI2D ,
66HLM.13D ,6NLA'.IZ+D ,6Hl.A:45D ,6HL,%'.;6D ,6HDRAG ,6HHGT ,6HVM ,
76_4/_ ,,614C."" ,6,4r'40 ,614XO ,6HYO ,6HZO ,6HUO , ,.

i 86uVO ,_,H',';o ,6HI ,'_'110 ,6H1._-,".'_20 ,6HI._P'_0 ,6HLAV_0 ,6HLA_'_50 ,

O6_tL'_'-'60 ,6HI_'_'A7 ,6HTSTEP .,6HTPr_INT,6HrLI_:IT,6HALF ,6HALFY /
: r)ATA OEI1C7),OE(]08) '_=(I09) ,OF(IIO ),OE( ]12) ,OE(II3) ,OE(114) ,

' ] O.¢'(115),,']r(111) / 8-_614BLANKS,GH')'4EGA /
.... ARCOS(X) = DATAN2(DSQRT(I X'X) )_C.S_'; _,T, _.,,-,:,,_, v,,.v, v, - X.

! TFSP = 666.0

i R_AD IN DATA

#
, PFAD IN HYDFPSONIC D_.TA TABLE

,mr' _OOl l:l,'_

•: P_'AI3( _., 1000) Pr_( 1 ) ,,Rn( _} ,R_(! ) _,RO(_ } ,Rr)(6) ,Rr_(6) ,R9(71 ,J( I )
' ^I.PHATIf) : m.nL_'lR.r)(_))
: TCZ(f) = nRL_'(R"(2))

T"ZP(I) : Dml _(Rr_(3))
; T,-7.pp(l ) : r,_tF(Pn(_))
}

TCX(I} = pr_L_'(.qr_(_))
TCXP(1) = D_L_'(Pr)(o))

1 TCXPP( I) = _.'_LE(Rn(7) )

F)O _OP.UAT (F] C,O,F]O,_,FIO,5,FIO,6,FIO,?,F] 0,5,F10o6,12 )
r)c._120 I-I,3B

I_(J(l}-I) I01,]20,I01 ,

_0 CONTIt,!U_
(30 TO 1t.n

L aI WmITE(=_,_O__
'}_ For_.'AT(IHI,I_X_!uDATA CAer)S OUT OF ORDFR}

C G" TO 888 }
x: _r:./_r_ 1_ ALTITU_F VS DENSITY TABLE :

r_rAD(,_,lOOl } Rr)c1 |,Re( 2 ),K (I) YI_,.IdC,.Lt_J.LNI(__&L_.'-',_1.1.,&,_a..N(JT'¥I.L_4blD
ALTII) = _SLI=IRI3.(1))

_' 2 PRESS(1) =" DgLEIRD(2))
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- ' I( .;..

REPRODUCIBILITYOF THE ORIGINAL PAGE IS POOR. " 1

• I :2
31 FO_r4AT {FIO,O _El 1,4,4P, X, 131

IF(K(1)-I} I01_122,10] ' 7

?_ C_mT Im!JF

r_E_D INPUT D^,O_'FTFRS *_

: 99 C.nNT 1_UC

C. RFAD(_,]O02) Rn(] )_Rr)(2) 9Rr)(._)_RD(/,} fRO(5) 9LI

; P,O = ORLE(Rr)(2))

i- OV_G_ : D_:Lr(Rh(3}} .!

AO - r)RLEIRr)IA))
PHIO = OBLE(RD(5))

)2 F_PMAT( _.E?O,_ •2FA, Ot?x'I2} 4
I_(LI-I )I0]_124t101

_)_ c.r)NT IqUF

2 _Ar)(_100 _) Pr_{I)_RPI;))_pr)I_)_Rr)I6)gL?:. ALF = r)r_Lr(Pr)(]1)

ALFY -- DRL.E(Rn(2)) _
'- ",, a : r)_LE(Or_(_l) ._

b'_ _R_'*AT (Z_F_.O, _ __OX _I2 )

.6 CONT I_'UT
GO TO I0"_

: "_ qc_r_lS,!OOA) pn(l;_Rn12)_qhl'_l_Rr)lz,)_Rr)lSl_Rr)(6)_L'_

C ; Xf).= I_r_LE(PI_(1)I

I Yq - nnLF(Rn(P) I
" _ .7'I= DOl _(Pr_(_)}I

i,_ ,':0 = nr't_c(pr)(_)}
"i t, F_P'._ATI'_rIO,O_'_FIO,'_,]OX_I))

i IFIL3-3)101,128_lO!

' ! _ CONT TqUa"
PFAC_(_IO05) RD(I}_RD_._)_RO(3}_RDI41'*RO(5)_RD(6)_RD(?) _ka,
XLAt/.IO = .r)BLF(Rr_(I}}

XL AM20 = r')RLF ( ;_ ( 2 ) }
, XLA,_30 = DBLF(Rr_{!))

!'_ Xl AMI+O -- '_qLC(Pn(4))

.: _ Xl.._t_60= hpL_tr_{6))

_ _._ Fr_P_ATITFIO.'_,I?)

' _ I _ (Lt_'t_) 1O1 ' 130_ 101i 0 Cn_:'T T_'.!UF ".:
! GO TO 1.35 i

_5 RF^DtS,IOIO) R.r)III_RDI?)_RDI3I_JU_P_IFF_L5
TPPlmT = ORLF(Or)(1)) !

TLT_4IT = nRLF(Rn(2)) ,

" TSTEP = r)r_LF__(RD(._)) !

,ii TPRINT vUST _. C_RrAT_R THAH OR EQUAL TO TSTEP

', Ir(LS-S} 101,1t7,101.
; _7 ¢ONT l_'_Ul:" t
" IFIIJU'4P,_Q,_I,ORo(JUMP,_O, _)) GO TO 1"_8

JU_'P= I
' 4
: B CONT INUF
°, Wo ITF16tl_,93) v
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8

POINT INPUT

," Ot.ITA(1) = SNGL(V_4)
': c)UTA(2} = S"GL(A)

;' _UTA('_) = S'.r.L(r_.,'}
r_UTA(4) = S*'IGL(PO)

OUTA(5) = S_tGL(XO)

OUTA(6) = SNGL(YO)

OUTA(7) = SNGL(ZO}

O'tTA(R) = SNGL(UO)

OtlTA(q) = SNGL(VO)

OLITA( ]0 = SN_L (!,.'n}

PUTA (I_I = Fr,TC.L(XL_A 10 )

ou'r'_(1? = ¢_tr_l_(XlA_;PFI)
C),UTA(I'_ = .cN.r-L(XLA'._'_0 )

:. _UTA(}A = F._mq.(XL A':40)

OtJTA(IR = sNr.L(Xl A_."50)

: .,t.,TA(]6 = SNnL (XLA.".'60)

OUTA( 17 = S._!GL(XLAM7)

L OUTA(18 =_-"IC.L(TSTFP}..,

OUTA(]9 =S_IGL(TPRI,"IT)
_UTA (?0 = S_!C_L(TL I_.'IT )

• OUTA(21 =SNGL(ALF}
,3UTA (?P = S".IGI.(^LFY }

r)LIT A (2"). = e_Nnl. ( 0',I:'(; A )

',qqITF(6., 6R54 )

_t, For)t;^T(IX_,PTHIr,,PUT V,_L_JES ^RF AS FOLLOWS)
'^"_ITE (6 _6R.5=.} (OE(LLI,I.L=] 91 ]_)

b
, IN!TIALIZ_ PROGPA'_

n l fONT INU c"
CALL TRAP

., , U=! IO
; V=VC)
, h,w=4H'_, °

X=XO
Y=YO

_ Z =Zf).
" : Xt.A_l]=XLAUtO

Xl..aP,_?--XL A_',420
,' t

XLA_;_=XLA._130
: XL A_= XL A_.,L_C)

_. XL AMS= XLA _"Sh
Xl AM_)=XLA_h

CALL JhCeB (NH _-_..0 _,-5. O )

rAt.L I',_vr=-oS(H_,TNnX_,In,_,b,_,4_KFQR)
nin ?qO T=1,2

r_n 200 _"=I,2 i

_n Hu(T,N) :-_H( T ,_N) !1

I Wr_TTEI6tS09 )
_ 9 FO,RMAT(IHO_'_IHTHF FOLLOWINr, ARE VALUFS FOR HH)
: wr_TTF.(6,31) ((HHIN, T), I=I _2) _N=I_2)
*" I_1 FORMATI2F_O,5)

I IF(JUUP,FC)',3) GO TO 4002 _'
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" iTHr _'OLL_WI._,G IS PAINT I AS CAI.tFD FOR RY JUr.,P

[ .ST - .Lr i) aST]=ALFY
! ALFY=-I _0.0

: _ r)m 451)i)NN=ItT]

i ""
,t

ALFY=ALFY+5,O ._
, ALI_=-] 8f),O

, !I 13.04500 JX=ltTl
I aLF = ALF + S,

HC !l CALL ALC
" h=JTh(]_JX) = c_I_L(ALF)

' iOIJTr_[2tJX) = ¢,Nr,LIH)
! nlJTD(?tJX) = c._'GL(PHAY)

_ _,_ mUTDI4)JX) = S_nL(PH^) i

IP ; IFF)A52?t4_'a_'4_2P !3 "!°ITE(6)4511) ALFY _

"._1 cORt"AT (79H1 ALF H PHAY

t '1 PHA ALFY=tF6.I//) : 1
'^'RITE t6 t/_5]O) ((OUTD(KKK,LLL I_KKK=I)4 )tLLL=] t7] ) ._

_0 F_R.'.IAT(I_0 :F i0,2 t'_E_.O, 8 )
_'_ £.,_>TINUF " !

• _'._ITr (_.,1_q'_) i
I iF(jtt,,D,c'n,2) Gn TO 888
i j_l_/p = -_, _"

i _LF = ^ST ._

,i A'.FY=ASTI .jI I

GO TO _001 I
_? CONT INU r "

}

' TH = FOLLOWI_G IS PART II AS CALLED FOR BY JU.'-IP i

•.,_r_!T_ (&, 4 =,._4)I

_. FORV,AT[IHOI/tI6HITERATIONS BEGIN/) !

Frl Tt.prc= '_, [
,'- ; TY = TPr_I_'T I

I JZ =0

TTFRATF FOR ALPHAY

_0 Cr_'TINL)F

IF(TIR¢C,,'=F.,TLIt_IT) GO TO 888

rOLAT = _RCOS(r_nS(Z)/r_S.3RT(X_X + YwY +Z,Z))

VL_T = r)SIGN((!,r_70796 - COLAT),Z}*ST,2958

VLO_G = (r3ATAN_.(YtX)- O.vI'G_*TIR_C)*57,2QSR.
C/_LL SLVNL (ALF )ALFY)HH,PHA )FH_Y) ], F-14 _28 _T IRF'C)

_ rhNT I_.')IF 1

' CALL PbHY [
I_(Tl_r.r,_q,O,O) _0 TO 8008 I

" TY=TY+TS TrP

IFITY,LT,TPPINT) GO TO 6_8
5 CONTINUE i

• TY=C,,

"_: PRINT OUTPUT |
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" . ,REPR.ODUCIBILITYOF THE ORIGINAL PAGE !S POOR. 4
,. _ • |

Gr) T_, 8nf_ 6 10 .:

,.,c, (.-O,ITI_,,Uc

;" i_B CONT I F'!U_"
rXIT IF PHASE II IS COMPLFTE

" | CHEC{ FOR SPEED LESS THAN TESP

IF(VR.Lc,,,TESP) GO TO 6900

TIR_r = TIRF(" �TSTFP

:+ _7 JZ=JZ+!
- C&I.L TGQATE (JZ_T_TFP}
._ GO Th 680n ._

'_0 It(K = ?

').?rr,NT INL,I_"

GP TO 888"

R TY = 0,0
; IKK = I

6 CO/'_TTNUE
r)UTAI I ) = SN,._LlT IREE) _'

O'ITA(2) = SNC_L (X)

.r).!;TA(_) = St,t_L (Y) ,

i _L'T/_IA) - S'r-L l?..) ':

r_'}T_(5) = _mGL (IJ)
OUTA(6} = S'UGL (V) ,,.I

: _ r)'JTA(7) = SNF,L ( '_.')
e',JT/_ ( 81 = sNr, L (XLA'A1)

: r)!jTA(g) = SNGL(XLA:4?)
C)UT^(IO) = _,,(",L(XL^;,13)

OUTA(]I} = SN-r,L(XLAM_)

OUTA(12) = $'v("-L(Xt_AHS}

OUTA(13) = SN,_L(XLM.'6)

OUTA(I_} = S_r,L(^LF}
- _,'JT/_(15) = SNr_L(AL_Y}

_UTA(16) = S,',:GI.(PHIR) j
;; _'.ITA(17) = ¢-','r_LiPHlV)

qUTA(18) = S','.'"L(PHIP}

_UT/_(Iq) = SN('-L.(G_G)

; t')'JTA(20) = S_".GL(VR)

nLJTA(?]) = O,
: OUTA(22) = SNGLIRHO)

OL'TA(23) = O.
' OUTA(2_) = Em.r-L(F^I

OUTA(25) = SmGL(XN(1))

OUTAI?&) = SI',lr-LIXI'I(2))

'i f_!JTA(_T) = St,Jr_L(XN(X))

C),JTAIPR) = S_'AI.IH)

,O).)Th(29) = _Nr-t. IPHAY)
-_' n!JTA(30) = SN(':L(PH^) _,

, O_TA(?]) = SNAL(UPr)C;T(I))

"" OLITA(_.) = SNGL(U.=r)OT('_) i

1.; f)UTA{3/_) = SNGL(XLMID(I))
OUTAI35) = SNC,LIXLMID(2))
OUTA(36) = SNGL(XLMID(3|)
OUTA(37) : .¢,.NGLIXLMIID(1))

:' OUTA(3B) = SNC,LIXLHIIDI2)) _
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nl"l'^('_r_l = 5P"r'L(XLVltP_(3II 11
_lIT^(_r} ) = O.
QUTA(41 ) =.c.Nc-I. [ HGT I

• CALL CnNV(r).:'TC,mUTa,_,II
'.,!PI TC ( .A.,6r_55 ) (OUTCIII 9]=1 :P05l

55 Fn.P'z,'XT{ -r"( 2X 9A6, ] X 9AZ _F10,8 ,'A] , I 2 } )
'._:P]TF(6,68561

S6 F,,R.",,^,TIIHOII)

GO TO (80r)5,Bno71,lKK
_,R STOP

_T(" °P_LO n

sun_UTTNF Pr_LOr_

cO U IVA LFNC F ('_ASCC)..v.,(II,013,'3S(] I),(MASCO N'(l01 I, TAP.S (1 )), (;,IASCO N'(669 )

I,VEX{ 1 II

_'eU[VALENrE {ODSS( I.I ,ALF I, (ODDS(2) ,RALF },(ODDS( "_'),CRALF) ,(ODr)S(4) ,

"- I S.°.ALFI_(O_n.S(5),/'.Ll:'Y},(Or_S(61,RALFY),(ORr_S(TI,CQALFY)_,{ODDS(S),

2 SRALFY),(Or'nS(oI,PH!OI,IO"),")S(]O),cPI-IIOI,(On.mS(II I,SPHIOI,(Onr)S(12

"_I,A01, (r')_r)S(!31 _rRAO_),(OnDS(1419SRAOg) •(cr'),'bS(l_)•PHIPI _(or)ps( 16},

4 CPl ,(or'mS( ]"t}ISP I_ (or3"_S(IR ),PHIY) ,(Opr).s(]-'-91,CYI ,(ODDS(20) ,SYI ,
,_ (onr'_s{711 ,P_J;R) ,(Cr)PS( 2P ),CR ),(CDnS( 27 I,SP.),(Or)nb(74) ,TJ;.IEGA},

6 (or'mS(751 ,v,":'X),(o_nS (."6},',#_.Y I,(Omr)S (2"t}'_';_Z)'(09r)s(2_) 'VR I'(On.r)S
7 (2o) ,V;_X) ,(onr_s ("_01,VPY ),,{or)n.S(_I },VRZ },(r)r')r)s("_2),VR'4X I•{Or'mS (_3 }

9Vp':y),(On_S('_A),Vp,_Z),I"_nnS(_'-')_,VR_'p_I I,(OnnS(IBI_,VR,vIyr)II_(OrH'_S
o (_71_VO'.!ODl I

F_tlIV^Lr-°,:rE (.'3'h_S(":_._),cX I,(OnnS (39 ),.r'xr._oI,(ODr)S(401 ,CZ) ,

I {"n_S(z,!),"Z"r__ ),(or,_'SI,,,?I,cCI,(ODDS(4"._,),RHOI,(or'_S(44),RHODI,
: 2 (on_.S(Ar',;,"),(On.'b$IAf))•'_OI•(or_nsI47),IICT),(O'bDS(48)_,A)_(Or)DS(A91_ , ,-

"_ Vt,'),(onr's("O }•C:-'}•{Cr'),n3(_1 },GG_), (ODDS( 52} ,FP'_) ,(O.r>.t')S(53) ,X"_DOT ),

• 4 (O_I_S (r,",I•_ ), (CI"TS (r'.51 ,P_-_A),,(or"DS (56 }, PI-IAY)

EQUIVALENCE (0D.'3S(57) _FA)

, F.'?UIVALCNrE (TA_'._(l),ALT (] }), (1A_5(89) ,PRESS(1) ),
I(T__S( 2_-_),.'_LPHAT(II ), (Th_,S(o..0"_)_TCZ (I.}) _ (TAqS( _4 ]I_'"rczp'(] )I,

_)(TAPS( '3",'r_},I'rZpP (I) },(TAnS (41 ? )_TCX (lI)'_(TAnS (z_'t),TCXP (! I)

_(T._P._.(_.c_5).,TCXOP(I I )

cQUIVALcN,"c (Vr..'X(I,,_X.',!(1)I•(VI:'X(_.)•UDnOT{]I),(V_'X(?),XqAR(]))•
I(VcX(_O) •XI._"_ (I 11,(VCX(I"_} ,XLAVII (1) }•(V_X(161 •XL_,III3(].}I,(V_X(I')I

2,XLr.'IIn( ] }),,{VFX(22) ;Un( I)), (VrX(25} ,XLA_.?)
¢"_U_.VAL rt,lrF (XN( I),XNX}, (X" (;)),XNY) ,(X_'._("_I,XNZ)

cQUIVALCNrf_ (UnDC_T (1 ),U_} •('..;=nOT(:)I,Vnl •('J_.")OT(3) ,WD}

" F,")U I VAI.FNCE (XS/'.R(I )•X), (XnAR(2) ,Y ), (Xi=^R (',_),Z)

FOUIVALENCE {XLA_[(II,XLA.ql),(XLAt41(2) _XLA:42),(XLA;'III3),XLA;.13)

FQUIVALFNCE (XLt_"4II(1 ),XL^N41, (XLA;ql I(2 ),XLA,,15}, (XLA;411 (3) ,XLAr46)
_OUIVALFNCF.. (XL>IID(1),XLA>IlD),(XL;41D(2),XLA:,42DI,(XLNID(31,XLAM3DI

F_UIV^LFNrE (XL'_IIr)(I),XLAM_D),(XLNIID(2),XLA:45DI,IXLr,',IID(31,XLA,V,6
1.91

_QU IVAI.._NrF (Url(]),U) _(Uq(:)) _V I_,(UB( _ I_V;)

I'_FI'_SIC)N VIASrO v(69_I
_I-F,_SION r_r_s(lO01 ,,TA_S(568),_,VCX(;)_51

D.IvF.','SIONALTIBB),PRFS_,(8BI

DI.UF_'SION AI.PL,ATI_BI,T('LI_RI,TCZPI'_F_),TCLPPI_.8),TCX(381,TCXP(3B..I,
I TCXPl) ( "_1_)
r)l'4EKESION UP_OT (31 ,X_'_(31 ,X_AR (31 ,XLA_I ('_I,XLANI I{3 ),XLNID( 31

]X[._.IIn( _ ),'.,r-.("_)

DC,bBL_ PRFCISION _ASCO,.I,Or)DS,T_BS,VEX,ALF,RALF,CRALF,_SRALF,ALFY_ : ;
1 P^LFY,CR_LFY, SRALFY,PHI O,CPHI O,SPH IO, AO, PHIP,CP,SP,PHI Y

,CY ,SY ,PHIP ,rR ,SR ,O;4EGA ,WCX ,,_FY,_EZ ,VR ,VRX ,VRY ,VRZ ,VR;4X,VReY ,VR;4Z

"_ ,VR_,'Ph],VRvyr_I,VR_.'Rr)I,CX,CX.',_O ,CZ,CZ'4m ,CC,RHO,RHOr_,R,RO,HGT,A,

V_'_GH,GG._,FPA _Xv,_OT,H,PltA _PHAY,ALT,PRESS_ALPHAT ,TCZ_

1974023186-127



I

| .I

Ii 12 ::
5TrZP,TrZPP,TCX,IcXP,TCXPP,X._,UK_nOT,XgAR,XLA_41 ,XLAMI ItXL_Ir)_XLMI I.r)t

. 6 UQ gXL-_v7 _X'_X,X.NY_XNZ ,0(_,V.r).,,,D_x, Y ,Z _XL At.t1,XL AM2 tXLA:43 9XLM._/__ _

7 XLA'.IS_XLA;:&_XL^N]D_XLA,,12D_XLA;.I_D,XLAt14DtXLA:.ISDtXLA;,tbDtJ_VgW_8Sm_.LFp _CqA ' :p

DO,..L_LFpR¢(.I SIO._' RA09 -_

,.O.BLE PRFCISIO_,I FA >
r)OLJBLF PRFCISION STALF,ALPHA1, C,CX_ADI,CZr/DI,DALF,B ._
DOL'BL_" PRECISION APC['SgCOL'_T_CRIT,DEL,TFSP,TIREC,TLI,V, IT,TPRINT,

ITgTEP,TY,UO_ C
-_ 2 VO,VL&T,VLOHC,,_:O,XO,XLA._IO,XLAMPh,XLA_30_XLA_40_XLAMSO_XLAM60_ :_

D.'3t_L c PR_CTSIOU SRAO.9_CRAn9_RPMIO.RAD }

_pOURLE PRFCISION CONA,CONa,CONC,YO,Y2, Y_O2,1_A_j_D_2
3

"; ARCOS (X) = RT(1. - X*X),X.)RAD = 3.1_15q26535897932 IIBO. .

RPI_IO = _10 _ Ran __

RALF =ALF'_O _ _
_/_LFY=ALFY-_PA D

CALCULATE SINES AND COSINES FOR ALPHA_ALPHA Y_AND PHI _
CqALF = DCOS(qAI_F)

SQAL _ = DSI_'I_.ALF} '_"

; I CqhLFY = r)C.f).S{_.ALFY)
sr_^LFY = r)SIN(_'_LFY) :.

i. C°Hlg = _'ros(°P_4IO)
_ _,nHlr). = ngIN(RPHIO} .;

C_^Oq = r)C051_^_91 l
. SRAOO = r_Sl_,'(r)A_9)

CALCULAT _. O;._--G_.-FR&R ,,

_. V:FX = CPHIO_S_AO9_O:4EGA
._ ,A_y = SPHIO_O'_Fr, A

: ! '^_FZ :-CPHIf_*CR_Oq*O'_EGA

; i CALCULATr VR
( VPX =Y_;_cZ-Z'_NcY+U

- (

: i VPY =Z* _'_-X-X*WFZ+V

VPZ :X_;':_Y-Y*WPX+W

I V: = r_gqRT(V._XWVRX + VI_Y*VRY + VRZ*VRZ)R=VPY

I P = f3=OPT(X_X + Y_'Y + Z_Z)
_ r = _S_qT(VOX,V_X + VRZ_VRZ)

rALCULATF ALTITUDF

HGT =R-RO

fiC.G=-GM/1_,_.3
CALEULATF VRM-BAR

VR_"X=VR_ SPALF_ EPALFY
Vq_'y= VR.wC_ALF
VR;_Z = -V_*SRaLV_SRALFY
ST-_LF=&LF

0 _F(ALF,t.T,O,) ALF=-ALF
_F(ALF,LT.180.) GO TO 1390
M. F= ALF-_60, . '_
Go. TO 1_.80

0 c.r)uTINU:

C J=I+?
IF(ALPHAT(J),GF,,ALF) GO TO 141

_0 C..O_"T I NU F iW_ITE(6_I_3)

_ FOR_ATI]Hl_lSX_42HPROGRAM DUMPEr') BECAUSF ALPHAT IS LESS THAN/16X_ !

I_TNALF A¢, COMPUTFn PY S'J=_ROUTI/'! c PRF.'LO0.)

STOP i
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I

REPRQDUCIBILITY OF" THE ORIGINALs, ""u- | '
P

, , ml iJ - i |

41 (hEL:IALF-ALPHATiJ-1})/5. ]3DEL2=DFL*DEL
_, CX=TCX( J-1 }+. 5_ ( Trx(JI-TCX ( J-2 ) I_DFL+. 5_ ( ICX( J)-2,_TCX (J-1I+TCX(J -

I 121 ) _DEL2

r Z:TCZ (J-!) +. 5_ ( TCZ ( JI-TCZ ( d-2 ) }*OFL+, 5_( TCZ(.J)-2,_TCZ ( d-I ) +TCZ( J- :

] 2 I ) *DEL2
rXV._=TCXP(J-1 }+,5_(TCXP(J)-TCXP(J-2) )WDFL+oSw(TCXP(JI-2.wTC.XP(J-])

] +TCZP(J-2.) )_FL2
rZ'-'n:TrZP(J-1)+.5_(TCZP(J)-T('ZP(J-P)I_DCL+ 5_(TCZP(J)-2 _TCZPIJ-]) _

] +TCXP(J-2) ) _D_'L2 '_,
O_ 202 l:1_P.6 " ;

J=I+2
IF(ALTIJI,G_,I4G.T) GO TO 203 _;

04 FOR,MATI1H]_lSXt39HPROGRA,M DUMPED BECAUSE ALT IS LESS THAN/I6XP
#

i 137HHGT AS COMPUTED BY SUBROUTINE PRELOD,) _
STeP ]

: _1_ yn = ALT(J-?)-ALTIJ-]) I
! Y2=ALT (J)-ALT (J-])

t.O_=yr), y2_. ( y?_yo } ,_
! y¢)2 =yo_y ,_. .;

y?2:y2_y 2 ,,
{ CO'V,P_:Y22"_,DR_SS(J-2)+(YO2-YP_i_PRESS(J-1)-YO2_PRESS(J}
f rO_'C=-YP*PRcSSIJ-2I+IYP-YO)_P_ESS(J-] )+YO_PRESSCJ) .

! CONC=C_NC/COt_^

DrL:HGT-ALT (J-])

( _HO:PRC- SS (J- 1)+CONP..*DEL+COKC_DEL*DEL
RHOD=CON ._+2. _rONC _DEL

( ALF=STALF i

.' CC = r)s_r_T(rX. C.X + CZ*CZ}

SO/_LFP=CZ/CC

I CPALFP=CX/C("

rALr.UL^ TC P_I-PVR_,'PD] = nSCRT(VRMX*VR:.IX �VRMY*VR_Y)

SP=VR,'4XIVR'Ipr_]
C P:VR_:Y/VR'.'P_ 1

t PHIP=DATAN2(5P_CP)

i CALCULATF PHI-Y
vr_"_YD] : nSORT(VR_VR-VP,AZ_VR_Z)
SY- (-m_VR_,Z+C_VR'-_Yr)I)/vq_2

CY= (r_VR_IZ+_VR,'_Y_.I }/VR_w2
_)_IY = nATA_I2(SYtCY}

CALC.ULAT r" PHI-R

V_,Rr_] = _S_.RT(VRX.VRX + VRZ*VRZ)
SR=VRXIVP_/,qr)I

rp=VRZ/V,_M_r_I

l_HIP = _ATA _2 (SR,CR)

XhX=-(CP_R+S_eSYWSIY )_SRALFP_CRALFY+ (SP=CR-CP*SY*SR)*CRALFP+CY*SRW

: ]S_ALFP*SRALFY
XNY=-( 3P_£Y_CRALcY_SRALFP,t- (CP_CYWCRALFP)-(SY_SRALFP_SRALFY)C.

:' XNZ=ICP_SR-SP*SY*rR) _CRALFY*SRALFP-( SP*SR+CP*SY_CR )*CRALFP
I+,rY_CR_SRALFt_ SPALFY

_FTURN

', TC G_TH !
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;T
_. ._' Ha._U T I _l_ GFTH 14
; _'QUIVAL_NrF (;-'ASCO.M ( ] ) ,OO")S ( ] ) ), (,V,ASCO;4 ( 101 }, 1 ASS ( 1 ) ) _ (,'iASCO'4(669)

I,VFX(1) 1

• ECbIVALFNCE (Or)_5(I),ALFi,(r , ..ODD.:,(2 )_F_ALF )_(ODDS (3 J,CRALF ),(OD'_S (z_)

:" ] SRALF),(ODnS(5)_LFY),(";_'. '_...J(6),R_LFY},(c)r)Ds(?),CRALFY)_(ODDS(6',.

2 SRALFY )_(or'r'_s(Q ),PHI 0 )_(C.'_S (10 )_CPH I0 )_,(' "3DD.-,(]])_SPHIQ)_(ODDS(12

: : _ ),^0 )_{r)r_S (1"x}9r_.t_O_}•(O_.S (1_ __SF'AO° },(Or)r)S(I5) _Pl_IP) _'Ol_r)S(16) t

z_ CP },(r)r_ps(l"zI,SP) ,(or_Sl !_ ),pHI Y I_(r)r_ns(1_ )_r-Y1_(Or_r')S(20) _Sy) _

A (.")r_r_S(__ 1,V..'_X)_(O")r_s(;,6),..;_'Y)_,(Or_S (p7 ),V._cZ)_(Onr_S (p q },VR ),(Or)nS

-z (2o )_VRX l•(or'H_S(_0 }_VRY ), (o_r)S (_i) ,VRZ i, (Or)DS(?2) _VR'.IX1_(onr')S(33)

•_ 0 ('_71_VPV_] )

_- _OU IVALa_.!C_ (or')"_S(3B 1_CX )_(or)r_S(_0 }_CX:4D 1, (ODDS(40} _CZ) _
] (or).l_S(A] )_f'Z.Vr_)_(OF,r_3(z4P I_,C(')_(O_"?S (4 _ I_RHO )_(O_OS( z_4)_RHOr)) _

2 (OD.')S(A_ ),Q 1, (Or)r)S(46 )_RO) ,(ODDS (471 _HGT )',(o.r?DS(z_8)_A )_(ODDS (z_9)_

! _ Vl/I_IODDS(_OI_G,vI_(Or)Ds(_.l),C-GGI_(ODDS(52)_FPaI,(ODDS(53}_XMOOT),
}

4 (C'.DD$(54 )_u) _(or)r_S{_51 _P_^ 1_(Or)DS (5A I_PHAY }
chl _IVAL_'_,ICF (Cr_P.S(57 )__-A)

. F..UIVAL. NC.. (TA'_S(1),_LTII}),,TA_.S(B91:PRFSS(1))_
_ _ t _" . .

i -_(T_'P'S( _?_ ! 'TCZPP(1 I I _ ( T__S(_*_ ?1"TRY ' _ I ) ' ( TA_S( A_?I_TCXP( l I 1 _

i _3U IVAL_'N.rF (VFX( I I,XN( I)1_(VFX(A) _UBF)OT( 1)),(VFX(?I _XRAR( I )I_
i ] (V_X(lO) _XLA"_'I(1))_(VrX( ]° )_XL_"_I I(I ))'(v_X(16) 'XL_Z']D(] )I_ {VFX(] 9)

P_XI."I it.(I ))_ (VEX(7P) ,L;.R{i)), (VEX(P_ }.XLA".'.7)

_QUI VAL_'Nr_ (XN( 11 ,XNXI ,(XNr _1 ,XNY )_(XN(3} ,XNZ )z

i FOUIVALaNCE (URDOT (] I_'r'))'(b_r)OT (2) _VD) ' (U_DOT (3) _"_D) •
, EOUIVALF;!CE (XB_R( ]}_X) _,(XnAR(2 )_Y), (X[;AR(3) ,Z )

i _QU IVA LF"\_CF (XL/_W I(I )'XLA":I )_(XLAr:'I(2 )_XLA'42 )_(XLA_II (3 )_XLA;43)
, FOU IVAL_-[,CF (XLAHI I(]),XLA_,'z,),(XLhMI I(p) _X_.ANS) _(XLANI I(3) ,XL_'.I6)

POUIVALFNC c (XLI"I_ (I )_XL_.'._ID) _(XLM ID( _ }.,XL^;XI2D),(XL_.!ID (3 },XLAN_D)
_'OUIVALFNr"F (XL.'V!IID(]I_XLA_Ar_)_{XLNIID(P)_XLA_SD),(XLr._IID(_}_XLAM6

,A,.-r,.,(A_)_): nI'._F'.!SIC_N_' _- n, .

DI.VENSION ALT(8B),PR_S-%(._R)

r)II,:ENSIGN ALPHAT(381 _lrZ(_9) ,TCZP(_8 I,TCZPP(38) ,T(.X(381 ,TCXP(381
ITCXPP(38)

DI_'E.NSION UF_.r)OTI_),XN(B),XqAR(.31,XLA_41(3),XLAMII(BI,XLMID(31,
]XL_'I ir)(_l,_u_(_ 1 ._

._ DOU_L_. PR_("ISIO;,_ ._Ascg'I,O")r)S,TARS_VFX_ALF_RALF_CRALF_SRALF_ALFY_ !

" I RALFY _CRALFY, S°ALFY,PHI 0 _CPHI O,_SPHI 0 _A9 _ PHIP_CP,SP_PHIY :

_,CY,SY _PF_.!r__rR _SR _O,v=n __WF X ,:,;._Y_HFZ, VP,VRX ,VRY _VRZ _VR_X,VRMY _VRP,Z
.3 ,VR_,_Pml,VR'.!Yr_I,VP_RnI,CX,CX,_ID ,CZ_CZ_D ,rC,RHO,RHOD,R,RO_HGT,A_ ;

.. A V_/,G_4_GGG,FPA,X'ADOT,H,PHA,PFIAY,ALT_,PR_SS,ALPHAT_TCZ_

&TCZP, TCZ PP _TCX, TCXP, TCXPP, XIH,UB,')OT,XBAR, XLA_41 _XL At.'I I,XL;_ID, XLM IID _ ._

6 U_XLA_?,X.XlX,XNY,XNZ_Ur),vI_,WD_X,Y_Z,XLAM]_XLAM2,XLAN_XLAM4_ ,[
7 X LAI45,XLAIr6, XLA,'.IID,XLA_.;2D,XLAH_D, XLAN4D, XLAMSD _XLAM6D _U _V _W _ i
BSr_ALFP_CRALFP -_

' DOUBLE'. Pr_cISIO_ _A. ]
DOURLE PRECISION SRAO9,CPaO9,RPHIO,RAD

: DO loon I--l,_.
_ )1%t.tmPOT(I):FPA_XN(TI+_r,G_XnaR(T ) ]
,.: H=XL A_CT*FPAw,W _

DO ]lO0 I=1,'_ i_

I0 H=H+XLAR!(!)wUB(!)+XLAM!I(!)WUBDOT(!)

RRTU_'N ._.
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j i|i , J

15
FND

FTC !ICALC

.Jn_,,_JTINF HC-_LC

i EQUIVALENCE (;._ASCOM( 1 ) ,ODDS I 1I I, (NASCOM1101 ), TABSI ] } ), (_,,iASCOM( 669 ) <.

.: ] _VEX( I ) I
t' E_UIVt_LFNCF (or_ns( ] } ,ALF I , (ODDS(2) ,RALF) ,'(OD_S(3 ) ,CRALF) , (or_s( 41 ,

] SRaLF } 9 (ODnSI 5 I i,/_LFY ) , IO'n$ ( 5 } ,RALFY ) _ (Or)F)5(7) ,rRALFY } , (Or)r_s(8) _t •

,.' 2 SP^LFYI,(O-'r_r_SI(lI,P_IOI_(ohr_S(lOl_('P_IO},(Or_nS(]]I,SPHTO),IOr_f_S112
".l}, ^0), (or)ns( "l ", } ,rR_On)., IOn-S( 1_ I ,SRAO C_}, (onr_s( 1_ ) ,PpIP ), (or)ns(l&) ,

I z, CP), lOr_,_S(!71 _Sp) ,{or)r,S(18 }_pHIy ),(Ol_r,S(10 },ry), (OnDS(20) ,Sy },

! _ (oI_r)s(_I),PHIR),(O")nS(p?),CR),(OF_DS(2"_),SRI,(ODDSI?4I,Ott.EGA},
i
:. 6 _C)'_S(_5_Vr_X)'_r)nS_._)6_FY)_(_r)p_(p7_V;FZ)_(_bS_2_}_VR)'_'_`)r)_

"7 {_O },Vr,X), (O_nS{ "_0),VRY) ,(or,_3 (_i },VRZ), (ODr)S('_2) ,VRV.X), (oDr)s {33 }

i FI ,VRta.Y},(OD.').S(_A),VR>'.Z},IOr)_S(3r,)_VRt.IPr)I},(ODnSI36),VRNYr)I},(ODDS

9 ('_7)_Vni,'Pnl}

[ FOUIVALFNCF IOOr'.S(38 ),CX ), (or)D5 (_9 ),CXMD ), (ODDS(40} _CZ) ,
1 (ODr).S(_I)_CZ '_r)),(or)r_3(4?},CC),(ODDS(A.'3},RHO},(ODDSI44),RHOr)),
2 (OD')S(AS) ,P )•{cr)'_S{_6} ,RO), (O.')DS(A7) ,HC-T}_(ODDS( A8 ),A }_(ODDS(z_q) ,

t, _ Vt.,)_(nn_S(_O_,G,,,.),lnnqS(_l,r.r_r_},(.,3r)pS(SP_FPA)_(OPbS(53),xMr)OT) ,

! E_UIV_LFNC.E (or),P,S(57 ),FA )

F_L'IVAL_NCF. (T_nS( ])_ALT(1) ),(T_PS(80) ,pRFss( I})_

, ] (T ABS(2&_) _.LPHAT (I )}, (T._S( _0_ ,TCZ(I )),(TARS("441 )_,TCZp( ] )),

i 2( T AI_SI'_Tg}'TCZPP( !))"(TA_:_S(417 }'TCX( ])}'(TARS(Z_5?) 'TCXP (]) }'
t 3(T^oSIA.Q5),TC'XPP(]})

' F'_U I VA clX'r cL ...... (VrX( l ),XN( ],1, (VEX{4) ,U__POT (I)),(VFX(T) ,XF3AR( I )),

IIVEXIIO),XLA"I(I)},{VEX(I "_),xLA;._II{I)),(VEX(16),XI_MID(l )),IVFX(19)

2_XLt_.IIn(I) ),(VEX(22),U_II)),(VEX(25),XLA.'471 ,.
=_ U IV AL c'_!,'E(XN(I) ,XNX} _{XN(2) ,XNY), (XN(3) ,XNZI
Fr._UI VAI_ _'N("_" (uqr'OT (I ),Un ),(uF_r)OT(? ),Vn) , (U,',DOT(_) ,W .D)

F_tJIV_Lr I_:CE (X_AP( I),X) ,(X_AR( 2} ,YI ,(X'_AR(3) ,Z)

rQUIVALr- NrF (XLA_,II(l },XLh_t_ },(XLA_._I(? ),XL,'_'42},(XLA_I (3 ),XLA.'vI'_}
EOL_IV_LF.."!rE (XLA'411(]),XLh._AI,(XLAV, II(2),XLAt,! _.}_iXLAt'i,III3),XLA_6)

F3UIVAL_.NCE (XL.',"IO(1),XLA._'ID},(XLt41D(2),XL_M2D),(XLMID(3I,XLAM?D}

FOUIVALENCE (XLt"I ID( I),XLAN4D}, (XL,";IID( 2 ),XLA,._5D), (XLF;IID(3) ,XLA,'I6

FOtJIVA LE_.C._ (UI3(] ),U) _(US(?) ,V) _(UR(S) ,V;)

Cr_"_.'_N'_ASC _'._
& /"DII,_ENSION _I,,S,..0_,(693)

DI;._F.:_SIO_IObDSIIOO),TABSI568),VEX(25)

DIVERSION AI.T(SB},PRF. S$(_._}

I_I_¢NSION ALP_AT('_BI,T_'ZI_i_TCZP(3B),TCZpP(3RI,TCX(38}_TCXP(38),
1TCXPP(3_)

I t_!_.,_.,_Sir.N UnnOTl3 )_,XN(_) ,Xn._R(3) _XLAMI ('_i_XL^_I i(31 _XLMIn( 31 _

• 1Xl.." I In( _ ) ,U_ ("_)
' r)O!_RL_ PPECTSION nFLA_ r)FLA2_H2

DOUBLE PRFCISIOK_ FA

r_OL'91.FPR_'CISIC'N r)FL,SrOqF_DC,DA,DR

DOUBLE Pr_EC'SION _¢ASCO_,I,0DDS,TAIIS,VFX,ALF,RALF,CRALF,SRALF,ALFY,

7 I RALFY ICRALFY, SRAI__'Y,PH Io,rPl41 O, SPH IO, _0 i PHIP,CP,SPlRHIY
;' _ _CY,SY, PHI P,,CR,3R,O_._EC,A ,;VEX__/EY,WEZ ,VR, VRX, VRY _VRZ,VR_X _VRMY _VRi'4Z

_VR"_PDI,VR_,'.YDI,VR_IRD]_CX,CX_D ,CZ_CZ_4D _CC_RHO_RHOI)_R_RO_I-IGT_A,

.-, 4 VV,GM,GGG_FP_X_r).OT_,H_,PI4A_PHAY_ALT,PRESS,_.,LPHAT,TCZ_

5TrZP, TCZ PP, TCX, TCXP, TCXPI_,XN ,U_DOT, X,n.AR, XLAM I,XLA:K II, XLM ID _XLM IID,
; 6 Un _XLa_7 _XNX, XNY,XNZ,bD,Vr_WI_ _X,Y,Z _XLAMI, XLAM2 _XLAM3 _YLAN_ _

7 XLAMS_XLaH6,XL_HID_XL_:,I2._XLAM_r)_XLAM_n_XLAMSD_XLAM6D, _V_W_
8SmALFP_CRALFP

DO'IB..L_PRECISION SRAOg,CI:'_O9_RPHIO,RAD

DFL=.I
STmRE • ALF

i
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ALP : + DFL

STOPE
CALL PRELOD 16

• | CALL GETH

IDA=H

ALF = ALF + DFL

CALL PnTLOD

CALL qCTH

D_=H

ALF = ALF + DEL
CALL PRFLOD

CALL GFTH °

DC=H
ALF = STORE - DFL
CALL PR_LOD
CALL GFTH
DA=DA-H
ALF = ALF-DEL
CALL PRFLOD

CALL GCTH

D_=DB-H
ALF = ALF-DFL
CALL PRFL_D
CALL GCTH

=

DC=DC-H

, PHA=I,75_A-,IS_DB+DCI60,)/DEL
SDA = SNGL(DA}

SnB = SNGL(DB)

SDC = SNGL(DC)

WRITF(6,]O00) SDA,SDB_SDC

_0 FORt_AT(_6_* VALUFS DA,DBtDC USED TO COMPUTE PHA/IOX,3(EI4,8*5X))
ALF = STOP c

STORE=ALFY

AL_Y=STORF+_FLCALL PRELOD

CALL GETH

t DA=H
ALFY=ALFY+_FL
CALL PRFLOD
CALL GCTH
D_=H
ALFY=ALFY+DFL
CALL PnFLOD
CALL GFTH
DC=H
ALFY=STOR_-D_L
CAlL P_CLOD
CAt.L GFTH
DA=D^-_
ALFY=ALFY-DCL
CALL P_EL_D
CALL GETH
DR=D_-H

ALFY=ALFY-DCL

CALL P_CL_D
CALL G_TH

PHAY=(,75_DA-,15*DB+DC/BO,)/DEL
SDA = SNGLIDA)
Sn= = SNGL(_)

; SDC • S_GLI_C| t
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WOITF(6,2000) SOA,SDP,SOC 17
00 FORr_ATI37H VALUES DA_DB,DC USED TO COMPUTE PHAY/10X,3(E]4,B,SX))

ALFY=STORE

C#LL PRELOD

CAL k GETH
RcTUqN

_TC nDHY

SLIPROUTINF P_MY
_QUIV_LFNCF (t_ASCOMI'),OODS(ll),(MASCOMI]O1),TARSI])I,(_ASCO_(669)

I,VFX(III :

EQUIVALENCE {ODmS(]),ALF},((.DDb(2I,RALF},(O_DS{3),CRALF),(ODDS(4}'

1 SRALF),IODnS(5},ALFYI,(ODDS{6),RALFY),{ODDS{?),CRALFY),(ODDS(8),

2 SRALFYI,(O_DS(q),PHIOI,(OnDS(101,CPHIOI,(ODDS(I]I,SPHIOI,(ODDS(12 •

3),AOI,IO_SII_I,CRAOO),(O_nSIIz_I,SRAOg),IO_SIIS},PHIP},(ODDS(16}_

4 CP),IOmDS(I?1,SP),(O_SI!_I,PHIY),(ObmS(]eI,CY},{C_DS(24},SY),

6 (O_S(P_),w_X},I_mmSIP6),wEY),(Om_SIPTI,WFZI,ICmDSI2_I'VR) _{O_S
? (p_I,V_X),{h_OSI_O},VRYI,{onDsI_]I,VRZ),IO_hS{_P),VRMX},(O_nS(_1I

R ,VRMY),(O_S(mAl,VRVZI,IOmDS(35},VRVPDII,(OODS(36},VR_Ynl),(OOD S

9 (3?),VRM_DI) i

F_UIV_L_NCF (On_SI_B),cXI,(O_mSI_9),CXI4_ }_(O_S(40},CZ},

V_),(O_DS(_O),G_/},(ObOS{51),GGG},(ODnS(52)_FPA),(UDDS(53),X_DOT),
(ODDS(5_)_H),(OD_S(55},PHA),(ODDS(Sb)_PHAY)

FOUIVALF,!CE (OO_S(5?),_A}

i _OL!TVALrNCP (T_S(I_ALTI!I),(TA_S_B_),PRESS{I)},
_(TARS(A95)_TCXPO(l))

FQU'V_LFNCF (VcX(1),XN(_)),(VFX{_},UP_CT(]}),(VEX(7),XgAR(I}),

I(VFX(IO),XLA_I{I)),IV_X(l_},XLAMII(1)),(V=X(16),XLMID(})),(VFX(IQ)
2,XI_.'IIn(1)),(VFX(22},J_(1)),(VFX(P_l,XLA"17)

_QUIVAL_RrF {X?_(1),XNX),(XM(21,XNY)_(XN(31,XNZ)

FQUIVALFNCE IX_ARII),XI,IX_¢RI2},Y},IXpAR(3),Z)

EC_UIVALENCE (XLA.'II(I},XL_H]I_(XLAMI(2),XLAi42),(XLAI41(3}'XLA_I3)

FQUIVALENCF (XLA_II(]},XL.A_4_},(XLA'_II(2I,XLAMS),IXL_MII(3),XLA_I6) .;
FOUIVALENCE (XL_ID(1),XL_MID},(XLMID(?),XLAM_D},(XLMID(3},×LAN_D)

_OUIV_LFNCE (XLMIID(II,XLA_4DI,(XLMIIDI2),XLAM5D}_(XLMIID(_),XLAM6

In)
r_LIIVAI._NC_ (U_II) _UItlU_12l,VI,(U_l_l,W)

COMMON _ ASCO'._ i
DI_'FNSInN MASCO_."(69_)

nI"_¢NSInN O_nSIIOO),T^R$I568),VFX{?5)

DIvFNSI_N At.TIB@},PRESSISB)

" DI_'FNSION ALPHATI3B),TrZI3R),TCLP(3B),TCZPPI3_),ILXI38),TCXP(38),

ITCXPP(_8)

_ _IVENSION U_DOT(3),XNI3),XBAR(3),XLA_41(3I,XLA_II(3),XL_ID(3),

IXLMIIDI3I,U_(_)
DI _'E_JSION STOQE(3;
hmt'nLr Pm_CISION nrI.U2,hrt.U_nFLX_rLXP,_2,STORF .>

D_UBLF PmFCISI_ _ _tASC_W,_DDS_TABS_VFX,ALF,RALF_CRALF_SR&L.F_ALFY_
I RAL_Y_FRAL_Y,SRAI-FY,PuIO,rPHIO,SPH[O,_O, PHIP_CP,SP,PHIY

,CY, SY,P_I R,CR,SR,OM_GA ,W_× ,WFY,W_Z,VR ,VRX,VRY,VRZ,VR_X,VRMY,VR_Z

_VRMPDI_VR_YnI_VR_RDI,CX,CXMD 9CZ_CZMD _CC,RHO,RHOD,R,RO_HGT,A,

_ V_,GM,GGG,FPA,X'43OT,H,_HA,PHAY,ALT,PRESS,ALPHAT,TCZ,

5TCZP,TCZPP, IcX,TCXP,TCXPP,XN,UHOOT,XBAR,XLA_I,XLA:'_II,XL,qID,XL_IID, ':
6 UB_XLAUT_XNX_XNY'XNZ_UD'VD_WD'X'Y_Z'XLAMI'XLAM2_XLAt_3_XL AM_ '_

i
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!

}-

. _ 2'_XL_4] lr')( ] } ) 9 (VEX(22) ,U:_( } ) ) , (VFX (25) ,XLAMT} 19
. _-'0U TV t_L_'IvrF" (XN (1) ,Xt,IX), (XP.!(2 ),X_,_y), (XN( _ ),Xt_Z)
_. r-_',.PTVA LF_!r_ (l.,'pr_OT(] },ljn),(UqDN r(2) ,V_) , (unn.OT (_.),'_ID)

EgUTVAL_NrF ( XRAR( I ) ,,X) , ( X,_AR( ? ) ,Y) , (X_/'.R( _ ) ,Z ) ._

:, _. _UTVALCNrF (XLAt..'I(i)gXL'_;,'I)_(XI At,'I(2)_,XLA',,'2)4,(XLA;_II{3)_XLA,V,_) .\
E,.UIVA_ENCE {XLAt4II(I.),XLA_'.'.4I,IXLA,'41TI2),XLA./,5),IXLAHTII3),XLA_6)
F_QUIVALCNrE (XLMIIh( I ),XLAt.'ID), (XL_ TDi 2 ),XLA,_I2D), (XLI'._TD (3 ),XLAM_D)

;. EOU! VALFNCE (XL_'IID(II,XL_r,:4D},IXL_;IIDI2),XLAi"SD),(XL>IIIDI2.},XLAH6

;-_uI VALC_!CF (U_(1) ,U), (UB(2) ,V} ,(Ue(3) ,V.')

£OM_,'ON ._.IASC_',I :
DI t,*ENSION HASCOV(693)

DIt,'FNSION ODnS(1OO),TABSI568),VFX(25)
DIMENSION AI_T(BB)_,PRESS(B8) ._

; DTUCNSTON ALP_AT(_RI,TrZI3R),TCZP(3R),TCZPP(_.P,),Tc'X(_R),TCXP(3B)_ ,_:
l TrXPP('_, ) _;

DIVFNSION Upr)OT (_) ,XN( _ ),Xn.AR(3) ,XLAt_.I(_.),XLAMI I(3 ),XL_Ir)( 3 )_ :_
IXL',_I lot 3 ),Un( 3 )

L , DI.VFNS ION DFRIV(14) .,
Dr_UBI E PRFC. ISIr). _ I_F.RIV }

" DOUBLE PRFCISION r_ASCO:.I,0DDS,TA_S,VEX,ALF,RALF,CRALF,SRALF,ALFY,

I RALFY,CRALFY _SRALF Y,I'HIO,CPHI O,SPH IC,AO, bAog,cAOg,PH IP,CP,SP,PH| Y
.' ,-2 _CY,SY_P_IR,CP_bq,O'.IF.(;A,',vFX_WEY,WEZ_VR_VRX,VRY,V:_Z_VR'4X_VR_'Y,VRI'_Z

_. 3 _VR."IPD],VR"'YD],VR;_IRDI_CX,CX;V'D ,CZ,CLh'D ,CC,RHU,RHOD,I_,RG,HGT,A,
4 V_4,GM,rJGG, FPA _X_':DOT,H,PHA _PHAY _AL T,PRESS _ALPHAT, TC_,

%TCZP,TCZPP, T('X,TCXP,TCXPP,XN,U.P,r)OT ,XBAR,XL_._;I ,XLAV,II,XL.,IID,XLHI ID

6 Ur__XLA_"17,X'NX,XNY, XNZ ,'D, VD _v'ID,X, Y _Z, XLAMI ,XLAM2, XLAF'3, XLAH4 :

7 _L_5_LA_L_L_;D_xLAt`_`_D_LAt_1_r)_XLAt_'5D_LAt_6_U_ ,.
8SP ALFP,C_PAI.FP
DOUPLE PRECISIO_ FA

DOUBLE PRFCISION SRAOg,CRAO9,RPHIO,RAD

n,_ ]000 T=l,'_
DFRIV( I)=U_.(l)

D_RIV(I+_)=U_nC)T(1)

PrRIV( I+6} =XL_.'Ir_(I)

'0 DFRIV(I+9) =XL_il ID( I )
PETURN

: ENr_
: TC _.TF]

SI_POUTIN_ STFI(XV_L)

, _UIVAL_NrF (_.'^scr)_1(I),or_r)s(I ))_ (MASCO_A( 101 ),TABS(I) ), (MASCOM(669)
],VFX(I})

FQU IVALFNCF- (ODDS( ] ),ALF ), (ODDS (2 ),RALF ), (ODDS (3), CRAL F ), (OODS (z,),

_. I _RALF) _(C)DF_SI_),ALFY),IOD_SI6)_RALFY) _(OD_S(7),CRALFY) _(ODDS(_.)
2 SRALFY), (OnnS(Q) ,PHIO), (OnDS(I0) ,(*PHIO} _(ODDS(I I _,SPHIO), (Or_DS( ]2

', '_)_AO) _(Ol3r)S(1_ )_CRAO c))_(O_DL) (14) _SRA09) , (ODDS( ]5) ,PHI P), (ODDS(16)

t_ ('p),(orateS(i?_ ,Sp) ,(ODDS (iq )_pHIY },(or)r)s(lq} _Cv) ,(or_D,.,(20} ,Sy },

5 (ODDS( 21 ),DHIR) ,(OD.n5( 2? ),CR) _(ODDS(23) ,3R) _(ODDb(2k) _u_IEGA ),

"7 (_t_)_VRX},(ODDS(10),VRY) _(OD._S(_I ),VRZ},(oDr_s(32)_VR;.;X)_ (OD_S(_3)

,VRI.;Y), (O_nS(!A) ,VRVZ ), (Onf_S( _._.),VR_4Pr_I), (OnnS( 36} ,VR _'Ynl )_(ODDS

q (_7) _VqMpr31 )

1 (C,r)nS(_l)_,rZ'_n),(Or)r)S(t_.':,)_CC),(ODDr-(a'_I_,RHO),(ODDS(_),,RI_O_'_)_

"_ V_)_(OnnS(_O) _G_)_(or)r_s(_I),G(SG},(ODnS(52},FPA),(ODDS(53),x_4r),3T)_

4 (t)br)s(_ )_H), (ODDS( 5_ )_PHA )_(ODDS (56 )_PHAY) _ ';
EO,UIVALENCE (ODDSI57),FA)

: E'qUI VALFN.r.F (TABS(1) ,ALT( I))_(TABS(89) ,PRESS(1) )_

] ( TABS( 26 _,) ; ALPHA T ( ] ) ), ( T &FS ( 303 ), TCZ( I ) ), ( TABS ( 341 ) _TCZP ( ] ) )

'* "-"f', ................... T--
!
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_,(T^mS(3-tnI,TrZpp(l $I,(T'_nS(41?).TcX(I I),(I._F_S(4_.?),TCXP(I}}, 20
(TAI:IS{ 14q5 ) ,PTt"XPP ( ] ) )

; cQt.'TV4LEN "_" (V_'X(I },X"!(I )I,(VrX(41 ,U.RnOT( I) ),(VcX(Ti ,XqhR( I)I,
I (VI:'X(10),XLAMI {I )),(VF'X(I'_) _XLA_'T.I'(1)),(V_'X(16),XLM. ID(I )),(VFX(19}

;',XLt".TIn.(1)),(V_X(2?l,tJr_(1) _,(VF'X(25)_XLAr471

_'_U lV'_LE'k'rr" (XN (I},XNX) , (X',:(;)),XNY ),(X;"(3"),XNZ )

.¢'eUIVAt.cN'F (Un_O.T(1),tJ_),(U.qnOT(?),VF.I,(ur_r)OT(3),'._D)
Fg U TVt'.L_'_':cE (X.R_R( I ),X), (XP,AR(2) ,Y) ,(XBAR(3) ,Z )

EQUIVALENCE (XLANI (I},XLAr.',I),(XL/',;'.II(2),XLA'._2I,(XLAMI(3),XLA.',I3)
FGUIVALENCE (XLA.'4II(l),XLA_,'4)_(XLAI,:II(2),XLA;45),(XLA,',i|I(3),XLA',16)
E_LJI VALENCE (XL,'41D(1),XL.'XN1D),(XLNID{2),XLA;',12D)_,(XLiV, ID(3),.XLA_43D)
FQUIVAL'#"NCF (XL_4IID(])_,XL_t,'i4D),(XL._4I [F;(2),XLAt45D),(XLMIID(3) tXLAH6

1D)
='QLITVAL_Nr'F (UP.{]),U),(UB(?),_V} _{UP{_} _W)

". £O','_z,..'3'_'.'t A.£C'R,v,

DIt,'_ENSION ODDS{100),TAr_,S_568),_,VFX(2.5)
DI,_ENSION ALT(88),PRESS(88)

; DI'_F'._SION ALPHAT(_8),TCZI_9),TCZP{38),I('ZPP(=8),ICX(3B),TCXP(38}

ITCXPP( 38 )
.t

DI_'ENSION U_.DOT(3),Xh{3),XRAR(3),XLANI(3),XLAtZII{3),XL.V, ID(3),
IXL.'-_III_{_) ,U_{ _.)

DI VENSION XVAL(]_)

Dc_[._RLE PR__CISION XVAL

f_OUqLF PRECISION MASCO\;,ODDS,T._S_VF_X,ALF,RALF,CRALF _SRALF_AL_Y,

I r_ALFY,CRALFY, SPALFY,P_I O,CPH IO.SPHI O, AO, S_.Oo _CAOq,PH IP,CP,SP,_HI Y
,CY, SY, Pl{I_, rR, SR ,O.VFC_A,;-'FX,_;FY,WEZ, VR, VRX, VRY, VRZ ._VR:4X ,VR_'Y,VR,V.Z

_VR_PDI,VR.'Yr)I,VRVR_.I,CX_CX'_._ ,CZ,CZ'_F_ _CC,RHO_RHOD_R,RO,HGT_A_
_, V_'_G'4,GC,C-,,_PA,X"._f_OT,H_P'.-IA_PHAY,ALT,PRFSS,ALPHAT ,TCZ,

: 5TCZP _TCZPP _TCX _TCXP, TCxPP _XN ,UBDOT ,XRAR, XL A,\II,XL _._-'II,XLH ID ,XLM IID,

6 UB_XLAF'7,XNX.,XNY,XNZ,UD,Vr_,'_tD,X,Y,Z,XLA_II,XLA_2_XLAN3,XLAtV4_
7 XL.AMS, XLAV6, XI.AHID, XLAM2D, XLAM3D, XLAM4D _XLA_SD, XLAN6D,U _V,W _

" 8.SRALFP,CRALFP
DOUBLE PRECISION FA
DOI;RLE PRFCISION SP.AO9,CRAO.9,B,RPHIO
DO I000 I=l,_

XVAL( I)=XmAR(I )

XVAL(I+_}=Um(T)

XV_L(I+6) =XLA_T (I)

_0 XVAL( I+_)--XL_I I(I )
R_TURN

rNl_
'TC S TF'_

" SURPOUT INF STF_I {XVAL)

_. EQUIVALENCE (,_,IASCOM(]),Or)DS{] }),(T4ASCO_I{10] )_IABS(I}),(,_IASCOM{669)
_. ]_VE'X{I) )

_" EQUIVAL_NCF (ODD_{I) _ALF):IUDDS(2) _RALF) _(ODDS{3),CRALF) _(ODDS{t+),

I SPALF) _IOD_.S{5),ALFY),IO_DS(6)_.'.ALFY),IODr_S(7) _CRALFY),{ODIhS(8),

? SRALFY),IO_._S(O)_PHIO},(OnI_S{10)_CPHIO),(QODS(]]),SPHIO),(O_r)S(]2

A rl}),{_l_nS{1"t_,Sp) _{¢'nnS(11_)_PHfY1 _{On_S{l_) _rYI_(ODDS(pO),SY)
(t31_S{._l),PHTR),IOD_S{2_),CR),Ior)r_SI2_),SP),IO_DSI24),O_._EGA),

(_ _V_X ), IhnnS{ _0 ),VRY}, (ODr_s( _1 ),VRZ) ,(or)ns( 32 ),VR_X }, (Ol_r)S(33 )

8 ,_V 'MY ) _{ ODnS { '_& ) ,_VRt'.:Z ) , (ODDS ( "_. ), VR',.lPr_1 ) , { ODDS ( 36 ), VR.",IYn 1 ) ,, ( ODDS
9 (37) ,vr_,:r_Dl)

_Obl VAL_Nr_ (O!_m,S(_18)_rX )_{or)ns (39 )_CXt,1_ ),(ODDS(_O) ,CZ), ; ;

I {ODD$IAI),CZ_D )_(ODD-,I_2)_£C.),IODDb{k3),RHO}_{ODDS(_4),RHOD},

2 (ODIhS(_5),R)_{ODDS(_6_RO),(ODIhS(A?),H(3I),(ODDS{t_B)_A)_IODDS(_9),

• ; "4 V,'Vl), {or'_r_s{ =,,0) _(';") ,(ODDS(51 },GGG), (ODDb(52) ,FPA) ,{ODD,5(53) ,X,VlDOT ) ,

-T .....
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: ;- REPRODUCIBILITY OP THE ORIGINAL PAGE IS ".to:oj
.... _'_ Ig'

_t

4 (_DOS( r"_ 19H ) 9 ( On_S( r"_. ) , PNA } _,(O_DS ( 561 _PI'tAY ) 21
"-. r_ _Ol._IVAI _NrF (nr).rbS( 57 ) ,FA )

f pOU IVALPNC'p (TA_S(]) ,ALl ( 1 } I , (TARS(8g) ,DR_SS(] ) ) ,
I(TARS(_,t, 5),ALPHAT(]) I,(I_nSI_O_I,TCZ(]))9(rAqS(341),TCZP(].)),

_ _,(TAmSI'afo),_I_Zr)P(1)I_,iTAqS(,'.lf)_,TC'X(1 )),(T._,RS(4ST),TCXP('J.))_,
_ (TAr_s(4q=.) ,Tr×PP( 1 ) 1

. _-QLj i V _L _,-,lr p (VPX(1) ,XN( 1 ) I , (VPX(4) ,ur_r_OT (1 t ) , (V+.X(7) ,XRAR(1) ) ,
1 ( VPX ( 10 ) ,XLA'4T ( 1 ) ) , ( VEX ( I "JI ,XLANI I ( 1 ) ) , ( vrx ( ] 6 ) _XL_4] D( ] ) } , ( VEX ( 19 )
29XLUlIr')(11 )*(VFX(22),U_{(]) },(VEX(2'i),XLAi'47)

: I=QUIVALPN, ''_ { XN ( I ) _XNX) _,{ XN (2) ,XNY ) , (XI_:( 3'_ _XNZ )
: I:QUTVALF'NCF (URmOT( ].),dO),(LJDDOT(:)} _Vr)) • {U=RO'[ (3) _WD)

EQUTVAL=NCF (X_AO(ll,X),(X"4hR{2},Y},(XR^R(3),Z)
FOUl v'AL_'NC __ ( XLAi,'IT ( ]. ), XL.A'v_I ), ( Xl._A,'41(2) ,XLA,42) _ (XLA"4 ! (3) _,XLAY3 )

EQUIVALCN t'F (XL_MI I(I),XLArA_,1,(XLA_II I(21 ,Xl_Al,'_),(XLa,IV_II(3 )_XLAM6 )
- rOUIVALFNCF (XL_ID( I ),XLA'41 r))_(XL_ID( 21 ,XLt_NPD), (XL,_41D(3)_XLAt41D)

EQU IVALPNCF (XL v IID (I), XL A._I4D), (XL[41 Ir_(2 ),XLAMSD ), (XLI,¢,IID (3 ),XLAH6

In} '
-- rC).UIVAL_.NrF (U_(II,U),IUR(2),V),(UBI3),W)

CO;"MON _'ASCO _/
DIUEN.$10N 'AASC0'_(6931

, DI:,IENSInN ODDS(IOO),TAB.b(568},VEX(25)
Ol _.'ErI$ION ALT( 881 ,PRESb(.981

rIIU.cNSION ALPHAT(_B),TCZ('_8),TCZP(.38) _TCZPP(38)_T(.X(38),TCXP(38}

,: ]Tcxr)p(_._)

r)IIvFNSION umr_OT(3),X.N('a),X_AR('_I,XLAI_I(3},XLA,_III(3},XLNID(3),

]XI.*.'fIt),(_ ),UP ('_)

n I"r=-.'qS Ir).,_!XVAL(I_)

Ih_{'BLF ')P_C IS IC)",'XVAL ,.
r).OUF_Lc FRFCISION MASrO:.I,OoDS,TAPIS,VFX,#.LF,RALF,CRALF,SRALF,ALFY,

I RALPY,CI_ALFY, SRAL_:Y,PHI O,CPHI 0 _SPH I0 _AO,S,_,09 ,CA09 _PH IP,CP _SP _PHI Y

2 ,CY, bY, PHI i_,,,"R_bR _OI.'EC.,̂','iFX _wFY, _FZ, VI,_,VRX, v"RY, VI'!Z,VRtAX,Vi'_r'IY,VR ,_IZ

"4 ,vp.r4Pr_I,VI_..'Yr)I,,,V'_4RDI,,CX,CX_Ar) ,CZ,CZ'_r_ ,CC,RHO,RHOD,R,RO,HGT_A,
4 V:.',GN_,GGG_FPA,Xr4DOT,F;_PHA_PHAY_ALT_PRESS_ALPI-IAT,TCZ_
bTCZP, "[rZPP : fC× _ TCXP, TCXPP ,XN, UI-_DOT_XBAR, XLAt41 _XLA:/,I I _XL;41 D, XLr41ID,

LIP_,KLAt.'?,X',_X,xr,iY_XNZ _'JP,,v.r)_;_'D_X _ ( ,Z _XLAN] , XL hNi2, XLAXI3 ,XLAN4 _

7 XL A'_15,XL A;'i6,XL A_,1D, XLA_V,2D *ML A_'43D,XLA."4qF),XL Ai45D, XLAMED, U, V _W _

8¢,OALFP,CRALF_

_r_l,.nl.Fpr_:cISIr)_ FA

nOtlmL¢" PR_C'TSIOK, SRAOB,CRAOB_RPHIO,RAD

r_,qI000 I=I,'_

Xr_AR(I )=XVAL(1)

lJq(I):XVAL(I+_)
XL.A_I(1)=XVAL.(I+6}

iO XLA*IIIII}=XVAL( I+9}
_._TLJRN

t

! F Nf)
I_TC SHIFT

' .£1.JaROt.ITINF SHIFT (a,mBK)
" DIMENSION A( 16),..q(]4)

r)r_ImL_" mr_CI_,l(h_, A,r_

r,h 1nO0 I:l, K

n a(I):_( I}
_C'TLImN

_. _ St.mROUTIN c T'GRATFIN_F)T);.' DI_ENSION XVALII4),STDRV(34,41,STORX(14),PEN(141
: _ DOUBLE PRFCISION STDPV,bTORX,PCN,XVAL

IF(N.GI,31 (30 TO 1000
#, CALL PDHY

i
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._• CALL G_'TH 22
_ C^tL R_cINT (r')T)

_-'. CALL STF2(STP, RV( ItN} }

r4_'TURN

•: _")0 Cn',tTIMIIr
;I CALL STF] (XVAL)
{: CALL PDHY

! ;_ CALL G_'TH

• _ CALL STF2 (STL)RV(I,4))

, ! CaLL SHIFT(STORX,XVAL, 14)

. PR_DICTOP - ADA:4S PASHFOPTH

: _ O0 I100 T=I,1_

,, _ XVAL( I )=STORX( I)+n,T* (-9. _-STDRV( I, 1 )+'37.wSTDRV (I,2 )-59. _-STDRV( I, _)

_. I+_...STnRV( f_,4))/24.

,").OCONT INUFDr) 1200 J=]_!

_: _0.0 CALL SHIFT(STDRV(ltJ),bTDF_V(I_,J+I) _14)

}
CORRECTOR - ADAt,4S 8ASHFORTH

! CALL STF3(XVAI.)

t CALL POH',"

CALL GCTHCALL STFP(STnO. V(] 94) )

! no 1S00 I=I,]4

I STORXI I}=ST,";RX(I)+r)l* (5T,'_RV(I, 1 )-5.*STr)RV( I_2 ) RV(I, 3 ) ,.
, ]_-O.*STDRV( I_4 ) )/24.

ino PcN(I)=STORX(I)-XVAL(1)

: _ CALL STF3(STO_X)

_qO RETURN
_'NP

: .TC CONV
S!J_ROUTINF" CONV(B_,AghC)

DIUENSIhN A(A) _,R(2)
._ _r_L MI NtJ-q

r)ATA PLtJR/I_I+/,MINUS/]H-/
_OU!VALF:NrE ( FX, rEX)
r)O lO00 I=I,K

l';X=O

JJA = 5,1-3
X=A(l)
IF"(X) 100_,]001,1010

_- nl R( JJA)=PLUS
R(JJ/_+2} = PLLIS

_(JJA t= O.C)

6n TO In on

X-- -× .

Gn TO l_20 .--

0 I_(jjA] = PI.US
"i )0 Cn_,'TfMUF"

P(.JJA+?) = _INUS ,_

IF(X.LT.I.) GO TO 1035 i,
i =t(JJA+2)= PLU,_

IF(X,LT,].) GO TO 10_0
I¢'X"l_X+l

_ X=XllO.

,i Gn TO In25

" I -- ]
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I TcX=lrX. 1X=X*lO,
+ _0 TO I035

•_" [0 n(jj^._) = X
_(J B(.tJA+3 ) = FX

PPTU_N
_mD[ o

i SL'nR_UTTNE PKINT(OT)
_TPFNSION XK(14_4),STORX(l_},XVALI]4)s_FRTV(]4)_C(3)_D(4)

_qI'PL c P_cCISIO_ Ct_cRIV+D,STO_X_XKgXVAL
i r(1)=,¢

C(?):,_
:' t C(3)=1, +

i D(])=,166666667

7

D(_)=.3_3_3_3_
O14):,166666667
DO ]000 J:l,_

C_LL STF](XVAL)
CaLL SHIFTI_TORX,XV_L,14)

CALL PDHY
+: r&LL GrTH

CALL STFP(O=_IV)
n_ ]nOO I:],14

X<(I,J)=nT_mPlV(1)

IFIJ.NF.I) XVAL(1)=STORX(I)+C(J-I)*XK(I,J)
0 CO_TIN'JF

no 1100 I:1,14

XVhL(1)=SIOPX(1)

O0 II00 J:l,4

:0 XVAL(1):XVAL(1)+XK(I,J)*n(J)
CALL STF3(XVAI.)

RETUmN

"T¢ ,jACn_

SIIp_nUTINC ,JACO_(_H,nCLI,nFL?2)

. POUIVALPNFF ('+ASCO_( ]),OhmS(1) ),(_AASCO_+(]OI ),TARS(I)),(MASCO_'(669)
l,VrXll)}

] SRALF),(OD_S(5},ALFY),(OmDS(6),RALFY),(O_n_(7),CRALFY),(OODS(8),

2 SRALFYI,(OODS(q),PHIO),IODqS(IO),CP_IIO),(O_DbII1),SPHIO}_(ODDS(12
3),AO),(O_e(]_},CRAOq},(on_b(I_),SRAOq),(OODS(]5),PHIP),(ODDS(]6|_

4 CP),(O_DSiI_I,SP),(O_OS(IR},PHIY}_(O;)DSi]o},CY),(ODDS(?O),by)_

= (OmnS(P1},P_IR),IO_mS(2_),CR),(O_S(2?I,SR),(O_gS(24),O',IEGA},

6 lOD_SIPS),WFX},(O_SIp&),aFY),IO_S(PT),WEZ},(ODDS(28),VR),(OODS

• ? (_QI,VPX),(omnS(_OI,VRy),(OnDS(11 },VRZ},(OD_S(Sp),VRMX),(OnmS(_3)

,VPPAYI,(_nnS(_4I,VP_Z)_(O_S(_¢),VR_,_pnlI,(OnPS(_6),VRMYm|),(OP_S

(OD_S(A&),R),IOq_S(46)_RO),(O_S(47),HCT),(ODDS(AB)_A),(ODqS(Aq),

3 Vv),((jnr,S(_OI,AHI,(O_SI_l),GGGI,(O_S(SP),FPA),IODDS(53),XV_OT),
'_ I _ (ODDS(R_),H),iOOqS(55),PHA),(O_DS(56)_PHAY)

I Ft)UIVALFNCE (ODnS(57),FA)

" _ "'_tJIVALCNCF ({_S(])_ALI(l)),IIABSI89),PR_SS(1)}_

+ ' S(?&5),ALPHATII)),ITAmS(_Om}_TcZ(1)),(TAPS(341),TCZP(])),

I 9_TA_4q5_T_pp__(_?n_'Tr_pp_t_'_nS_1_'T_X_]))'_T^BS_}_T_Xp_'

""--_ ..... __,,..=.
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:_ _QUIV_LrNrI: (VIFXI I _ ,X_( i ) ) _ (VEX(t8) ,u-_r, OT (i) ) , (VEX(7) ,XI_R (I) ) _ 24
._ l (VFX(IO) _XL_,ii {_)},(VFX(i-_) ,XL_,_pli (1) _,(VFX( 16} ,Xcr_lD( i)),(V_X( :91

•XL M| IIr_( I ) ) _ (V;'X{ 7_) '_l-lq(I ) ) _ (VFX { 7_ ')_XLAMT}

- =.QUIVALCNCC IUQm(L;I(]1•'JF;I,(_,nF'.C.TIF},V_'),{Un_C:I(_),v;.r))
c

FQUI VALFNCE (XBAR( i ),X), IXnAR (2 ),Y ),(X;3AIC,'(3 ),Z )

' EQUIVALENCE (XLA'41 (I ),XL._,'_.I),(XLA',I (2 _,XLt,";2],(XLt,MI (3 ),XLAM3 }

_- EQUI VALFNC. F (XLA 4i I (] ),XLA_-'C}• (XL^Vl I(2) _XLA"_5 ), (XLA,V.II(3) ,XLA,"6 )

rF.'UIVALCNrE (XL_..'ID(]},/,LAt.']D)_(XL_,IIDI2}_XL_',I2D),(XL;"_ID('])gXLAI_'_D)

, :-gUI VALENCE (XL_ IIO (I ),XI.At,'C,F.,}_(XL;.'I!r_(? )_XLA,_,SD)_(XL:'iII,_(3 )_XLA[46

ir_)

_"_.t_IVal.CNrF (U_(I}•U)_(Un(P),V)_ (UP-',_)_,,':)

: : C¢'}V_._I_ PA SEn.,'

DI ':FNSIhN MA_,_-p_,,(6q_ )

nl_'_'S1n_., O_nS(lO01 _T_S(5681 _V_'X(251
r_I'_'_SION ALT(BB}_PRFS3(BR) _K(88)

. DI:,ENSION ALPNAT(3B)_TC(-|_SI_TCZP;38)_ICLPP(38),TcX(38),lC×P(38}

ITCXPP( 3_.)_J( ?F.)
• Ol '.'EN51 (.,r_JI,DUT (3)_XN( 3 ),X:)AR (3 },XLANI (3 I,XLAVl I(3 ),XL;,ilD( 3 )•

1XL,_I Ir_(_)_uP.('_)
n i'.'_,]SInN n_llr'(_,1 CO)

I_.OLIPLFPR_CISIn _' c_ _^ST

1 I',OLI_.L_ Pr_FCI.SIC),_I_;ASCO;.:_r:'_r)s_I_S_VFX,_LF,RALF,CRALF_SRALF_'.LPY_

] r_ALcy _CRAL_'y •SPAt.FY, PHI O _rPH I0 -..SPH IO, ._C,_ PHIP_CP,SP_PHIY

) _CY_SY_P_II_'_rP_3P_.'3"_FCA_'XFX,;':FY__,FZ_V{_VRX_V ._Y_Vr:_Z_Vp'_x_VRMY_vr_'Z

,VR;._PnI_VRvYr_] _VR'.'Rn]_CX_CX.','D _CL,CZ;.;D _CC_iRilU_RrIOD,R,,;,O_I-IGT_A_
V';_GvI,GF..G,FI-)A_X'._nOT _Fi_PHA _PH:,¥ •ALT _pF_c._,_ALptlAT _TCZ_

_TCZP_TCZ_p'Trx_TCxP_TCxP!_/`N_`,_r_t)T_XF_AR_xLA;.1I_xLA_:I_xL_ID_xL_,II_ ,.

6 UR _XLA,V_7_X'_IX_X_Y 'XNZ 'UD' Vr_,_D _X, Y _Z _XLAI_.I,XLA'_12--_XLA:':3_XLAI'_4'
7 XLA,_I5•XL,_'.I6,XLAI" ID _XLAtR2D _XL A_._3D, XLA;_4D, XL AXbD, XLA_"OD, d _V, 6 _

PSPALFP_CPAI_rP

IIOUBLr PRFCIS!Or! ARC_;S,CC)LAI,CRI I,DEL,IC_P,TIREC,ILI{;IT_TPRINT_

P V_VLAT,VL_Nr'.,_._'O_Xh_XLA"_XLAV2C_,XLAM'_O_XLAV/_O_XLA_50_XLAM60

r)r)l'RL=" pr_'CISIr)N SPAOg)CPAng•RPHIO,R,'_D

nl v_ISIn_ STX ("_})STY (_) _.",TAY (").)

nOU_t._ PRcrISI(3.._,STX_STY,F.TAY_SLOPr:
I')O"BI_E PPFCIS!f _' STAL_

nr_UI_LF PP,FCISION CONA,cF1N_,CONC•Y0,Y2_YO2_Y22_DFL2
DI _'FNSION RL)(7)

nI,VF._,'SIO'_O_( ]!0) _(3.UTA(40) ,OUTC(200)

DIVENSION HH(2_)_PA(3) _PAY(_}

DOUP.LF PRECISIC . PA_PAY_HH_DELI•DEL22_L_AVEI_SAVE2

SAV_'i:_LF
SAVF?=ALFY

CALL HEAL("

P^ ( I ) =DHA

R_,Y(] ):PHAY

ALr=r_AV_ I+DFLI

CALL HC_LC
PA ( 2.) =PHA

• PAY (2) =PHAY
' HH ( ] _1) =(PA(2)-PA(1) )/DFL1

HH ( 2 _ 1 ) = (PA_' (2)-PAY ( 1 ) )/[.)EL1
ALF=SAV¢I
At.FY=SAVP2+DI_L22

' C.ALL H,"ALC

PAY(3) =PHAY

T ........
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_VmlT_(6_2Qq) 25
or F_P_AT(IHO,_OHTHC FOLLOWING VALHES ARE PHA AND PHAY RESPECTIVELY)

W_ITC(6_OO} (PA(1),PAY(1).I:I_ _)
O0 FP_AT(_PO.R_XtC20.P)

HI_(]tZ)=IPAI3)-PAI]}}/_EL22

HH(Z,2}=IPAY(3)-PAYII})IDFL22

AIFY=SAVE2

eFTURN

=TC £1_VNL

SU_ROUII_!C SLVNLIXXl,XX2_FF.FFY_CRIT.'iTOPtTIRFC)

PUPP_£ c

SOLVF A SVSTFM OF N NO_ILINEAR FQdATIONS

D_SCRIPTION OF INPUT PARA'_FIrRS
X - I_ITIAL VALUE OF VECICR X
H - APPROXI_ZATION OF THE INVERZ JACO31AN YAIRIX_ H=I/A

: N - NUMBER OF VARIARLES AND EOUATIONS
EVALF - FOeTPA_! SURROUTIe;E TO COvPUTE VECIOR F

rRIT - PR_SCRI-EO ACCURACY LI_IIT OF NORN(F)

#FSCeIDTIO_ mF OLITD.IT oAPA_TTF_

X - FINAL VALUE OF VECTOR X
H - APPROXIVATION OF ThE INVERZ JACOBIAN _ATRIX, H=I/A

F - V_CTOR OF N FUNCTIONS

ITFR - NUMBER OF ITERATIONS

SUBRqUTIN_S RFOUIRED r
VAT_PY

LINCO_

FNO_M
G_TT

SHI_T

_VALF

_IUrNSI_N XI2},H(P_2}_F(2)

_I_'c_SIqN PIIh)tY(]O)tPNI_)_XN(Ih)

POU_L _ PR_CISIO *' P_Y_F_',XN,H_F_VAL_VALO_X,AXI,XX2_FF_FFY_SCALF

N2:N_N
ITFR=O
X(])=XX1
X(2)=XX2
FI])=FF
F(_)=FFY

_ r_LL _VALF(X,F,N)

START NEW IT=RATION
_VALUATc VFrTnR P=H*_

.0 CALL MATUPY(H,_P_N_N_I)

ITFR=ITFR+I

CALL FN_RVIF,N_VALO)

CALL G_TT(0,T.VALO)

FI_Im A VALUr OF T SUCH TqAT THF 'NORN OF F(X+T*P) IS LFSS

THAN T_ NOoM _ FIX}
XN IS TH_ N=W TRIAL VALU_ OF X_ O_TAINr_ AS XN=X+T*P

-VAL- AN_ -VALO- ARE THE NORIA OF F(XN) ANb FIX) R_SPECTIVELY

r
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| I Hi, I Ill |
iI

DO 7075 T:l,lO
: C_LL LTN£O:_t].,X,TtP,X_'t_-]) 26

• CALL FVALF (XN,FN,'_)
CALL FNOR_(FN,N,VAL)E

_ I_(VAL.LT.VaLO_ GO TO 1080
t

CALL G_TT(I,T,VAL!
_75 C_NT I_tJ_

GO TO 2no_

e_'CF a SATSFACTOPY T WAS FOUND, X IS RFPLACD 8Y XN_ c

T F T_ RrPL.AC rn _Y ¢N
r IF REQUIRED ACCURACY IS OSTAINE_ OR ALLO_ED NUMBER OF INTERATIONS

_XHAUSTF_ 9=TUPN TO CAt.LING PROGRam:

; A NEW APPPOXI'4_TION OF _ITPlX H IS COMPUTED

NEW H IS OBTAINED AS H=H-(H*Y+T*P}*(P*HISCALE}
•

_30 CONTINUr
IFIITER.GT._TOP| GO TO 200n

' CALL 5HIFTItX.X_},N)

' i CnMPUTE Y==_-F }
!

CALL LINCOM( 1, ,FN,-|, _F,Y,N, ] )

_DLACE F _Y FN

CALL SHIFTIIF_FN_N)

COVPUTE H*Y

( CALL MATMPY(H.Y,F_!,N,N,II

: COuPUT_ H*Y+T_P

CALL LINCO_4(].,FN,T,P,FN,N,I}

C_uPUTF P_H

{ C_LL MATMPY(P,H_XN_I_N*N)
i

COPPUTE SCALE=(P*H)_Y

: i
; ; CALL _ATMPYIXN_Y,SCALE_I,N,II

: ! cO_P,JTC p,H/_CAL_
{

n_ ]I00 I=I,N

_0 X_,{II=XMIT}/_rAL_

nn l?OO I=],N i

DO 1200 J=I,N '0 HtI,J)=H(I,J)-FN(1)*XN(J) i
IFIV_L.LF,CRIT) GO TO 2000

GO TO 1050 .
W_ITE(6,3300) ITERtTIREC

0 F_PMAT(I2H ITERATIONS=,I6,SX,2HT=,EI_,B)

" XXI=X(]) '

. XX_=X(_) !

i F_=FIJ)
i FCY=_(2)

I "FTURN 4
": | ............ .
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_ 27" FHn '
_TC _AT_'PY

SURROUTINF VATMPY(A,RtC,NItN2,N3)

i DIMENSION A(N]oN2))B(N2,N3),C(N]tN3)
DOUBLE PRECISION A)B)CtTEMP

: DO 3 I=I,NI

DO 2 K=I,N3

TFr/P=O.

Dn I J=I)_2

TFMP=TEMP+A(I,JI*B(J,K)
CIItK)=TE_P

CONTINU =

! CONTINU_
: RPTURN
r

END
"C LINCO_

: SUBROUTINE LINCOH(S,A,T,R)C)MtN)

_IMENSION A(_,NI,R(M)N))C(M)N)
DOUBLE PRECISION A)B,C

nn ? l=l,V

DO 1 J=ItN
CII)J)=S*AiltJI+TtR[I)J)
CONTINUE

' CONTINU_
RETURN

FND

"C F NOR_
SUBROUTINE FNOR_[FqN)VAL)
OI_ENSION F(N)
DOUBLE PRFCISION F,VAL
VAL=O.

O0 1 I=I,N
V^L=VAL+F(1)_F(1)

.,V_ = SNGL(VAL)

WRITE(6,1000) SVAL

FCPMAT(_H VAL=)EI_.8)
PF'fURN

i END

GETT
|

! SUBROUTINE GFTT(IT)T)F)

: ! IF(IT.NE.O) GO TO I

] T=I,

: ) FO=_
_TUR_
IF(IT.Nr,1) GO TO ?
F]=F
TH=F ]/PO
T=(SORT(I.+6._TH)-].)/_./TH

: RFTUPN

T=-T/2,
\.

RFTURN
END

SHIFT1
- SU_ROUTINF SHIFTI(A,R)K)

DIVENSION A(]), B(1)

nOI.)BL r PRFCISION A)R
_0 lo00 1=1) K
6(I)=_(I)
RrTURN

FND
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i

TC CVALF 28
SLjQRD,UT i NF _V a LI: ,' XX ,_F,,,N __)
FOUI VALENCE (,',1ASCOt4( | ) ,ODDS I 1 ) ), ("_ASC(_;M( 10] i t TABS ( 1 ) ), (i4A5CO'4(669 ]

],VFX(]) )
_'_U l VA LFNC'F (oI)r_s( 1 ) , ^I_F ) _,(rjr)ps ( 2 } ,R_LF ) _ (or)..r)s( ? ) 9CP,ALF } , ( or_s (4) ,

;" 1 SRALF) ,{or_'bS[r,)_fLFY ),(o'_r_sl6 )_'2'_LFY),(Orates(7 ),CRALFY )t(or)r_s[n )9

SP^L_'( }, (_r_r,_(t'),l'l-I0 },(Or_"S( 10 ),cP_IIO) ,(O_S (11 )tSPH IO) , {c)r_r_s(I?

"_),_O)_(o.r_bll "J),r;AOn) ,(or_s(I(,},SRAOnl 9(0")_S(1 _),PHIP) 9(0D_S(16)

4 rP) _(Or'r)S(I?_ 9SP1 _[.")'_r_S(_R }_PHIY) _[("r_r_5(19},rY), (Or)D5(20) ,SYI,

? (2a) _VRX) _(O_DS( _0 ),VRY )_(()n.qS(31) ,VRZ )_(OD.OS( ?? }_VR',:X)_(oDr_S ("_3)

R _VR,V.Y}_(or)'_S(_4 }_VR_'Z )_ (Or_DS( }._)_VRFIPD I), (or)DS(_(_},VRI4Yr)I)_(Or)DS

9 ("_7),VR.'v'RD1)

FQU IVALI'NC.E {or)Ds{ 38 ),CX ],(ODDS(_9) _cxMr) I,(OP,DS(40) _CZ] _

1 [Or).r)S[41}_t'Z'.'r_)_(O_D_(z_p}_CCI,(ODDS(4_)_RHO),(ODDS(44),RHOr)),
2 [PDr)S(4_) ,:))•{o._r_5(46 },RO ), (OF')DS{47) ,HC_T),(ODDS (48 )_A ),(ODDS(40) _

"_ V_.'),(.'h_r_5(_0 _,r,'.;),((3,_;)L,[51 ),GGG) _ (,')r)r_s(52} _FPA) ,( OI).DS(5_) _xvr)OT)

Fr)_!IVAI_PN"F (C'_P.S(57) _FA)
FCU IVAL _N("E (TALC.( ]),ALT( I )], (TAPS(Bq) ,PRESS(_-) ),

l[TA_S[2&5)''_LPHAT(1) },(T^t_S('_O'_}_TrZ(I )) _(TA'_S('_I )_TCZP(] }}

2 (T/_nS('_fr_);TrZPP( I )),(TAnS(A17) _TCX( I )), (TAI_S(4&7 ),TCXP (]) ),
'_(TeF_S(Z,951 _TCXPP(]) )

_UIVAL_Nrp (VF.X (] i,X'_I(I }1:_(V_'X(4 )_U_."OT (! )), (W-X(7) ,X_AR (] ))_

] (V_X(IO),XL^;.'I (])),(VFX(I'_)_XL_'_I! (1))_(VFX(16)_xLr"ID(]))_(VEX(19)
2, xL'-IIID (])), VFX (22 )_Url(I)},(VEX (25 !_XLA_7 )

FqL'IVALCNrF XN(I) ,X.NX), (XN(2) ,X;|Y) _(XN(_.) ,XNZ )

cqUIVeLrNrc L.'nnOT(] ),,lr_)_(unr)OT () ),VR )_(u'_r)OT(3 ),WD)
cO.UIV_LFt,lrF XPAR( I ),X) _[X_.t:R(2)_Y ), [XR_.R(0.)_Z)

F_U IV'_L_.NCF XL '_'t.I(l ),XL._t._I)_(XL._t'.I(2 ),XLA'42 ),(XLA',II(_ ),XL:,t"_)

FQU IV_.I._NrF XLA'.'.II{I)_XLA._'A), [XL^_.'II(2 )_XLAM5 )_(XLAt._II{3 ),XLA_,6)

nQUIVALFNCF XL','ID (I), XL _'.']D), (XL,_IID (2 ),XLh"42D }, (XLF:ID (3 },XL&_'I3r))

FOUIVAL¢NrF XL',:IIt)(I),XLa_44D} _(XL_'!IID( 2 },XLA_ASD}, (XLI'iIID(3) _XLA,'16

I_)

CO'.';'ONVA SCO_.'

r_lPENS IO,.Ni.IAS.'c)_'((_(_3 )

DI,'._ENSION ODF)S(]OOI,TABS(568I_VFX(25)
DI',_ENSION ALT(8B)_PRESS(88),K(88)

DIVFNSION ALP_4AT {_8) ,ICZ(_n }_TCZP(38) _T£ZPP( 3B }_T_X(38 }_TCXP( 38 }_

IXI _IIr_( '_),U°("_)
r_Ir,'F..N.SIqN .(.'tTr_(A, I,00)

DOUBLE PRC'CISION FA_AST

POU(;LF PRECISION NASCOH_ODDS_TAnS_VF.X_ALF_RALF,CRALF_SRALF_ALFY_

I RALLY _C.qALFY, SteALFY, PI!IO,CPHI O, SPH i(),A()_ PHIP_CP,SP,PHIY

2 _CY_bY_PIIIR_CR,L_I-_,O_FGA_W.rA,_.,_FY_ti_Z,VR,VRX_VRY,VRZ,VR;4X_VRMY,VRN',Z

3 _VR_ZPD]_VR'.IYr_I,VR.V.RDI,CX,CX_ID ,CZ_CZ,"ID _CC,RHO_RHO.r)._R,RO,HGT,A_ i

4 V:I,G,_.I,GGG,FPA, XN;DOT, H, PHA,PHAY, 4L T, PRESS, ALPHAT, TCZ,

: 5TCZP,TCZPP,TCX,TCXP,TCXPP,XN,UBDOT,XBAR,XLAMI,XLAMII'XL;'I!D,XLMIID,

" 6 UP_XLA_:'?,XNX_XNY_XNZ,:J.r),vt)_v,r)_x,Y_Z,XLAM1_XLAI_2_XLA."I3_XLA _'_' ;_
7 XLAv,5, XLA:.'6_XL A:A)O _XL '_"2r__XL At.I"_.D_XL A_4D _XL A._.ISD_XLAN6D _U _V _W _ }

; 8 T,t_ALFP _¢'PALFO ,

• P.OLII_IF PRECISION ARCO$_COLAT_CRIT_DFL_TFSP,TIREC_TLI,"IIT_TPRINT* i
1 T_TEP, TY tUO,

' 2 VO_VL_T_VLON.t.-,WO_XO_XI._IO,XLA_2t')_XLA_'_O,XLA_V.40_XLAt_50_XLA_I60_

DOUIILF PRrCISION SRAO9,CRAt)9,RPHIO_RAD
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t

IF((MV-K)°EO,O) GO TO 26 30
DO 28 JJ=IP,J2

$

'_ _ A(K,JJ)=AIK�JJI-AIK,J)_AIMM,JJ) i
; CO_'T f NUE

COURTI_UF

i O_ 2° J=I,N
L:J+N _

AII,J):AIIRE,L)
- , RFTURN

, F_'D

'_ KP TRAP DECK

FNTRY TRAP

TPA _

_XA TQAP-I,4

CIA R
£T_ qFSCT+1

rLA FIX
TSX S.qrCR,4
£TO 8
TRA TRAP-I

CLA 0
: °

APS 20

LoT

TQA _+2
; TRA_ _CCCT+]

SXA OUT 94
: T_X £ ,t'!P I T,4

i

ZAC i

- L_S a5 '

! TPA* O
{' TRA RESET |> mCl 3, ***_ UNDFRFLOW' ti E_,D

:' tY !
5 ml_ _282 -nOOOl_ 1_2 -_n122 -nOoo_ 2

1_ _7_ moP_n -nno_p .1772 -_q4n -_2&118 _
, !5 P_n mo2_2 -Ooom_ _Im -o2t,32 -mong_

20 _=7 _O2=4 -0n_48 16P6 -027_6 -000_76 5

25 06 _ 00214 -onon_6 IB20 -02880 -000328 6
?0 nT_ 002n8 _00023 1_88 -n3P14 -00m052
_5 084 00244 000]24 lP_6 -03]36 -0002_8 8
_0 qq6 00336 0n0238 1092 -0323_ -000184 9
45 )18 00490 00027& 0932 -03320 -00n15210
50 _A6 006_2 m0027_ 07fiR -03380 -_OOOR811
_ 18_ 00768 nno25_ O=R8 -_3_06 OOnO_12

" 6_ 216 _087_ 0002_# 0416 -0_52 00m2221!

, 70 _18 01052 000_68 0l!2 -02922 00056815
7_ _72 0112_ r_O_08 -Onto -o26o0 nOn6_616

_ 80 _26 0117_ 00004_ -0134 -02264 00067017
85 _6 01128 -00003 _ -0236 -01934 00_6&618
qO _6 01138 -000108 -0322 -01622 OOm6nO19

: 95 596 01056 -000182 -0394 -01340 00056020

,}, ........ __

4
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I , t
IPO 62R moo44 -mOOP46 -0_44 -01078 0R051621
105 6gn On_14 -°00=06 -0_86 -00834 000z,6622

' 110 778 nO6AP -OOn_6m -P516 -0n620 0004]623
I_5 _A 004_6 -nOn4n_ -0_ -00432 nnnq6_24

: 12o 77p oop_6 -o00_5_ -0566 -00262 non_182 _
IP_ 77_ nO0_6 -0n0404 -o5_? -OhiO8 0nn27_76

i ImO 777 -OOP_2 -o00=26 -0_6 00020 oOoPAPP7

I_ 766 -OO4AO -O00_2P -05_4 00154 000|6428 ,

140 7_o -007=6 -oo056B -0576 00264 00011029

II,5 6R6 -01022 -000_76 -0560 00_36 00_n4_30

l_O 62_ -01108 -Oem_74 -0544 00368 -nOnoln31

155 _4 -015_8 -000668 -0524 00348 -00006632
160 469 -01872 -000650 -05]0 90290 -0001_833

165 _66 -0_!40 -000_08 -049R 00216 -000]4034

i 170 _ -0_46 -_0C760 -0400 00]_? -000]_35
_7_ ]_0 -OP_I& -norm56 -0484 00068 -OOn14n36
_n no_ -o24P_ nonnnn -04_ n nonoo -o n12837

; 38

: , OooO _2_n 1
POrl !n065 2
_003 PlOI6=-o1 3

6C06 6_973_-nI 4

P010 5251q_-01 5
10016 412_2E-01 6

' " 7

i 12023 31082F-01 8

140_ ] _26V_F_¢l 9

, ]6nit 0 ]65Ale_n1 10
• ImPel I_n_7=-oI II

P0063 n_O_-P? 12

?_no! _,6P_=-rR 1

761n7 =_6_7E-R? ]5
_ 2B] 24 2459aE-02 16

_0142 1_0_ 1E-02 17

32162 ]3225_-02 18

34183 960_6_-03 19

_6P05 7n_P=-n_ 20
_729 51_67E-0_ 21

4?770 _7_nr-n _ 23
,4_07 21645E-03 24
4_5 16_76F-_ 25

4R_65 ]p_2c_O_ 27
' 50796 97747m-04 28
:' 52429 759_9_-04 29

.: 5446_ 507_0_-_4 30
564n8 _6_73E-0_ 31

5q5_4 _6622_-0_ 32

( A_572 _R_O_¢-n_ 33
,61_I _IO_-n_ 34

_ 6_611 22261=-m4 35

6_65| _7306F-0_ 36
- 6_6o2 I_6R2=-06 37

7077q _7_PF-05 39

77m_5 _9_2_-05 _0
7_72 6_176_-05 41

76920 _2 50_F-O5 _2 i
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t
t !

70 _o& ?0009_-05 4_

_72 l|_aGc-n5 46

q=125 77729c-_ 47

e_ _717q _32_Dc-06 4B
• _ _O?a5 _4S0=-_6

a9

oeOnO _16oF_-06 50

.58_-06 ._

_ 94 1_89=-n6 52
: 06 lO080F-n6 53

o8 7N4?_F-07 54

• 1_0 &97_]r-C7 55

!,
i_6 1PO_Sr-_7 58

" _]qq 1_2_3r-m7 59

! _110 0_277_-n8 60

_ _]l_ _le6C-08 62 o
?

: 116 40_E-08 63
- _]1_ 31109=-°8 6_

_!20 2a3_SF-qfl 65
_122 l_5_-0_ 66

llP4 l&_6=-n8 : 67

, - ,

_1_ OP2 _4r-_O 69

_1a2 _2_?r_no 71

!_40 _3929F-09 75

la2 2964_-n9 761,4 2607lF-09 "" 77

_146 7,067_-09 " 78
4_ 2OSPSF-OO 79

Ii_0 ,_,_OF-Oq 80, _p ]66h4_-Oq 81

lia ]_l&lC-Oq 82: ]56 13812_-09 83 i

|15# ,,
,_ _lAO 115_4_-09 85
; _167 lnT_flp-Oq 86

6_ 99669_-I0 87

88 :

'_ 3,986016E+14 6o378145E+06 7,292116E-05 90, O, i '
" -0_0 6%, _00 ]2002 2
; O, 6_qOOnO, O, P87R,28_ -620,864 O, 3

'!_ S.n_12. ]O0,°°°_ oO_]]. 3_OO_'l ]OOOn. InO_O. l, 45
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1_e procedure for solving the problem of flying a minlmom fuel

point-to-point transfer with a high speed aircraft ia as follows.

; Ilinimize the integral

, L t

! - _f(t)dt

to

: where mr(t) is the time variable fuel burning rate, subject to the

differential constraints

e

x - u (I)

m m m Vem

¢ - g Cs)

! and ¥ = [B2]'I {Me + (A)_ �B3}(4)

which are the equations of motion, and the al_,ebralc constraints

• vR .
The Hamiltonian is formed as

H - "i"z • x �TZZ• u z • 4, �XZV" '_ �XZ3';'f{e)

The control variables will be FT and_ F where PT is the thrust magni-

tude and Mp is the moment generated about the C.P. by the aircrafe

flaps.

l
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_ The canonical and control equations become

_I _H (7)

_H (9)

_I aH (10)V a'_

' i . _II (zz)
13 amf

• o

_H (12)
_ - o

_aH = 0 (15)

There are four control variables FT, H-'F, fourteen state variables,

x, x _, _ a, ay, and thirteen multlpliers. Equations (I-13) provide

thirty-one scalar equations from which to determine thirty-one unknowns.

' From Equation (13)

_H__._
_rF . o -,. Xzv- o (z4)

" o . :,,, (is)
'-- _H --

hu " "_ " e (:,,, rT, +, ,, _,, :,_) (z6)

. o . f3c_' 7,z) (17)

:, Solve Equations (16) and (17) sir_ultaneously tot XII and FT.u

]

[
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$5

PT • VTC*,o, _, 7.

Compute Xll m fsC_, I, x, u,

Solve for _I " "_II " _"

t •

Compute_"z f?C_',7, _'," lp U9 I1. _)

• 4B
t • • .p

_ ; From(7) _"/. = . _"_H= foC_" _', v, x, u, u,
Q

Solve for _.

Plug ¥ into Equation C4) and solve for _F"

J

i

i

i

!,

1974023186-151



" "" eju,1;AUll;Jiqllk_o._ . • • ,, - • • • • • • .',
D

: Technical Report ME-(NGR-01-003-0(

• SOME SUGGESTED APPROACHES

TO SOLVING THE HAMILTON-JACOBI EQUATION
• i

i :_, ASSOCIATiO WITH CONSTRAINED RIGID BODY MOTION
L

L

i Prepared by#,

i PhilipM. Fitzpatrick, Grady R. Harmon, John E. Cochran
+ and W. A. _aw
i

• _
+

Six Months Report to

,-
+ Computational Theory and Techniques Branch
,: Computer Research Laboratory r

Electronics Research Center

NationalAeronautics and Space Administration

i On

_. NASA Grant NGR-01-003-008-_-2
+ (May 1 -- November 1, 1968)i

,...,..,' ::,." _ : .. .,, ....

, "_*: ,L '....... ".... -- ---"

l "i; : : ', January 1969

, ..... _ ,.',., ..... ..... ' _:_ --:-_:,
School o[ Engl.ceri.g

ENGINEERING EXPER_4ENT STATION

• Auburn, Alobom©

\. , _ i
' ,, :_ ++ , + +_ + : 1 ...... L " ' _I

974023 86- 52



AUBURN UNI_ERSITY

Technical Report M E-(NGR-01-003-008)-5

SOME SUGGESTED APPROACHES

TO SOLVING THE HAMILTON-JACOB, EQUATION

ASSOCIATED WITH CONSTRAINED RIGID BODY MOTION

Prepared by

Philip M. Fitzpatrick, Grady R. Harmon, John E. Cochran
and W. A. Shaw

P

Six Months Report to

Computational Theory and Techniques Branch
Computer Research Laboratory

Electronics Research Center

National Aeronautics and Space Administration

On

NASA Grant NGR-01-O03-00B-S-2

(May 1 -- November 1, 1968)

January 1969

ENGINEERING EXPERIMENT STATION
AUBURN UNIVERS,TY

AUBURN, ALABAMA 36830

l

1974023186-153



/
ABSTRACT

;1
Some methods of approaching a solution to the ltamilton-Jacobi

!

,[ equation are outlined and examples are given to illustrate particu-

lar methods. These methods ma:' be used for cases where the !!amiiton-

t
' Jacobi equation is not separabze and have been particularly useful

in solving the rigid body motion of an earth satellite subjected to

gravity torques. It is felt that these general methods may also

have applications in studying the motion of satellites with nero-
_' p

dynamic torque and in studying space vehicle motion where thrusting

is involved.

ii
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• INTRODUCTION

During the six months included in this reporting period (May
to November 1968), _¢ork has continued on an investigation of the
analytical foundation of the IIamilton-Jacobi theory and its appli-
cation to space flight problems.

In studying the literature, many questions arose. An attempt
was made to formulate these questions and then find satisfactory
answers to them. The first work during this reporting period was
directed toward comparing the different methods available for solving
the Hamilton-Jacobi partial differential equation. Five different
methods for obtaining a generator S were studied:

1. S = I- Ldt, _¢here L Is the Lagrangian

2. Liouville's Theorem for Obtaining S I-

, 3. Jacobi's Method of Integration of Partial
Differential Equatious

4. Separation of Variables

5. Hethod of Characteristics

The following questions arose during the discussions of the
different methods available for solving the ilamilton-Jacobi equation.

1. Can a solution be obtained by Jacobi's method; i.e., by

obtaining half the integrals for Pi and then building S
from

dS = Pldql + P2dq2 + • • • + Pndqn

that cannot be obtained by quadratures

dt -aldq __dq_a_.
T 811/@Pn

• dp dp

which result from llamilton's equations?
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2. Same question as one except separation of variables
versus Jacobi's method?

5. Same question except quadratures versus separation
I

of variables?

4. All three of the above questions with the ilamiltonian i

given as an explicit function of time? !

In discussing Jacobi's method, the follo_,'ing quest ion and
answcr was developed. Given one complete integral, is there wzV
technique for constructing another distinct complete integral?
Yes, an infinite number of other distinct complete integrals can
be constructed. C,i_,en a complete integral containing t_,'o arbitrary
constants a and 6, another complete integral can be constructed by
replacing a and 6 as arbitrary functions of t_,'o other axq_itrary con-
stants A and B. 11ms, the integration constants associated with

• each distinct complete integral of the I!amilton-Jacobi equation can
be functionally related. 1here is a question as to Mlether any of

these constants are canonical. Also, if the same problem t,'ere solved
by integrating Ilami I ton' s equat ions by quadratures, then tLere I,'ould
be other constants of integration. One I,'ould _,'ant to know how these -
constants are related to those obtained from the Ilamilton-Jacobi

equation. Also, are they canonical?

Some of these questions are answered in subsequent sections

of this report. (_e paper (see Appendix) has grown out of this work
and has been submitted to the ,One.:,f.ecm ,rein,ha? c.f Vhv.nies for pos-
sible publication.

k
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-i

The angles e, ¢-¢,, e', ¢*, e*, and ¢-¢* are defined by their

_;l geometry in the spherical tmangle (see Figure 1)"

],. R 0
1 r

l Figure 1

I

= cos e' :os O* - sin O' sin O* cos ¢*
!

i
= cx3 - u 2 C05 0 = COS O* - COS 0 _ COS 0

[ cos(¢-_') ¢h 2 - a2z Sin-e sin O' Sin 0
t

sin 9" sin O*
sin(_-_') - sin e

a_L
cos 0' = h

= h

3

, 7- ....
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!, COS _* = c¢2ct3 - h2 cos O h
7(h2 -" _2"Z)(hZ '-" _3z) = cos _(t - 81)

: COS O* = " _h

V_2 _ (,2i sin O* = h

_. - c£tcos e _ cos 0' - cos O* cos Ocos (_-_*) _2 -(,3z sin 0 sin O* sin 0

sin #* sin Osin(_-_*) = sin O
e

The angles OH, ¢}!, and CH are defined by their geometry. P

!

L ' -
I _*-a r

i ,
_ X o

COS 8H = COS i cos O* + sin i sin O* COS(#* - fl)

COS i sin 8* - sin i cos 8" cos(@* - n)
c°t(#*'#H)'= sin i sin(_* - fl)

cos i sin O* cos(_* - fl) - sin i cos O*
cOt _ m sin O* sin(_* - flj
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L

Functional Re1at ions

i h = h(_1,_2)
?

; r

: ** **C",)
g
!

*H = _H(** ' o* ;i 'a) = _H["l'"a'_''a3;i'a)
[
1
f
|

o = o(.l,-2,.3,Bl,t)
I

_ o. = o.C,:,;.,°_,_)

o, = o,C**.o*;i.a)= o,(_.,_._._3;i.a)

, = ,C,:,_,_2,_,:,,B2,o3= ,C,:,;.,,:,2,_3,_,_,,(3

__ _ = ,.(**,o.,**;i,a) = ,HC_,._,_3,B_,h,t;i,a)

- -- lipm i
T ....

_, li. i
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_j

Canonical Transformations

The motion of the body is such that 0 oscillates between Oo

and el, where O0 =- O' + O* and O1 - [O' - O*[. Let t o denote an
instant at which 0 = 00. Let 001 refer to 0 at the instant to, ell
refer to e at the first instant after t O that O = el, e0z refer to
e at the first instant after 011 that 0 = 00, 012 refer to e at the
first instant after 002 that 0 = el, and so forth.

A generator, S, of a canonical transformation is given by

S = -_1 t + a2_ + a3'P .fO Q(O)dO,
_001

where
P

i [ fCr_, Oon -_ 0 �Oln,
Q(o)-i_¢r_-_, Oln -_ O0(n+l),

and

. f(O) -: 2Aa I _ aO2 - cse2O(a_ - a 2 cos 012 .

The symbol Oon means that 0 has passed through Oon and is
•going toward Oln.

In terms of the variables _', _*, and _*,

S' = -alt + ct2¢' + a3¢* + he*

Q(o)= h sin e* sin(¢ - _O*)

When 8 = O0, it can be shown that ¢*, ¢-¢', and ¢-_* must be multi-
_* , ¢*pies of 2_. To avoid ambiguity, ffi¢ - ¢ = ¢ - = 0 is defined

when 0 = O01.

_L.__ I I ii_ ..... i

i ,
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P_ = a3

P_ = a2

Po = -Ql:o) = -h sin O* sin(:¢ ¢,)

" B1 = t A _*: -_"

?

! 8a = -¢*

: h
¢* -- _(t - B_)

: $* = "83

Alternatively:

0

_z = t+ de
Qfo)

Ol

A
= t -_. cos'l -7 _2a3 - h 2 cos e Ie

,,(h . _ _h_--:-_3_Ioo_
A

= t - _-cos-1 _- h 2 cos 0

/
i



1
\

: 7"I

:l 0

L, = _¢ + COS-1 a3 " _ cos e

-h _,_Jc°s-1,/(h2"a2)(h2-_a21Ooi

a 3 - c¢2 cos e
= -¢ + cos" _z _ a22 sin O

i co," - COS- I

, i/(h2 - (122) (h2"- o,32 )-

L

B

• B3 = -9 a3 - a2 cos O_ de
sin2e Jq(e)

/ 01

a2 - _3 cos e IB "
= "_ + COS'I w/(h2 - _3 2) sin 0 O01

= __ + COS- I _2 - c_3 cos 0 ,
¢[h2 - a32) sin 6)

The multi-valued cos -1 functions appearing above are to be
interpreted as follows :

cos'ig(e) _=/2(n - 1)_ + Cos-lg(e), COn_ 0 �eln

t 2nTr - Cos" Ig(e), Bin "_"e -* eO(n+l)

where Cos"I denotes the principal value (that is, the value between
_r O and _) of the cos-I function.

w
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7 _'

3"a _,_2: cos'l _ a_a3 " h2 cos O I
: 4'(h z - a2Z) (h _ a'3Z) -_

•_ 2_ ] )+002

: ly- I
. _ P���Ô�I

'- _" I " Ke°_ ,
01 Oo O

• Hisce 11aneous

P

: _,2_,s- ,/-(h-2. :,22)(h2_ _,s_)'co, _(t - ,_)
COS 0 =

: h2

= Cos 0' cos O* - sin O' sin e* cos ¢*
i

= -82 + COS-I .l0_3 -- a2 IC OS 0
sin 0 /h2 a2 a

A)cos. 1 aZa) - h 2 cos O" ¢(_2:2_2a) (ha - _3z)'

¢ = -g3 + COS-I a2 " a3 COS .O
sin O d_z a3z'

t
,i | .,
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, I
; _ A NOTE ON DISTINCTCOMPLETEINTEGRALS*•

' {
• _ ProbZe.m: Show that the differential equation

'_ _ 4XZQ2 + P = O, P = aZ/_}X, Q = _Z/aY

" _ possessesthe distinctcompleteintegrals

Z2 = _Y - a2X2 + 6
_" i and

i Z2(4X2 + a) = (Y + b) 2

: _ Find a functional relation between a, B, a, and b; hence, find the "
• t second solution as a particular case of the general integral obtained

_ from the first.

" _ Solution: First, transform to new variables according to

: ! the scheme

.. X Y + X2, Z 3

p = .P_a. Q = ._z P_- _uP3' P3' _x3

See Frederic H. Miller, Partial Differential Equation8 (New York:
John Wiley _ Sons, 1949), Chapter V, for details on transformation.
The differential equation

F(X,Z,Q,P) = 4XZQ 2 + P = 0 (1)

now becomes 1

F{Xl)X3,Pl,P2, P3) = 4xlx3P22 = PIP3 = 0 (i')

?

Jacobi's method will be used to solve Eq (1'), First, write

m_la u----'_-'--_ _-- " i
!
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'I 11

;- Explicitly,

dp _ - dp___ = d.d.xxL
_ = 0 4XlP2z . ,

dx2 _ dxs (2')
= " 8XlX 3192 Pl

, Using the second ratio,

FI = P2 = al = constant (3)

Using the first and sixth ratios,

PldPl = 4al2x3dx3

and

F2 - pl 2 - 4a12x32 = a2 = constant (4)

P

Using the third and fourth ratios,

p3dP3 = 4al2XldXl

and

,, F2* = p32 - 4a12xl2 = a2* = consl t (S)

(F1,F2) = O; also, (F1,F2*) = O, as is readily verified. Using

FI = P2 al, and F2 = pl2 - 4a12x32 = a2, take

Pl = _a2 + 4a12x3 2

" Substitute into Eq (I') and solve far P3

?

4XlX3at 2 - _/a2 * 4a'12x3 2 P3 = 0

4x_lx_al 2

p3 = Ca-q-4al x3

Hse FI and F2 in conjunction with F to obtain a complete integral.
One has (FI,F2) = 0

, %
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du = pldX 1 + P2dx_ �P3dx3

_)u

_u

%X2 - P2

_u

_x3 - P3

_u

- _I + " = alx2+ fLx_,x3]'"_x2

_u 8f
- Pl + f- PlXl+ g[x3)axI

9- _xI

_u _f __P-1. g,
_)x'--3= _x3 - xl._x3 + [x3)

= P3 + g'Cx3) = P3" Xl _ "

But,

:_x3 P3 - Xl. 4a12x32) "1/2

= P3" P3 = 0 .+ _[x3) = aa = constant

u = alx2 + xlPI + a3 = 0

PX = Ja2 + 4a12x3 2

xlP l = -a.] - alx 2

(__...+ alx2)2
pl2 = a2 + 4a12x32 = x12

4,_z_+"_ = (_ +_,c)_= x_-_,_'_(_+J_

( ,)'4X2Z2 + a--z- X2 a-.3.+
al2 = a t
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[ Set A equal to a,/al 2 ._J:d B equ:_l to a3/a 1. Then,

X2(4Z :) * A) = tY + B) 2 (6)

and Eq (6) is a complete integral of Eq (1).

If Eqs (3) and (5) are used in conjtmction with Eq (1'),
observing that Eq (l') is unchanged if Pl 4 Pa and x 1 * xa are

interchanged, one has

u = alx 2 + x3p 3 + a3* = 0

p32 = (a3 + alx?) 2x32

X32(4a12xl 2 + a2* ) = (a 3 * alx2) 2 = a12/a3+_a1 x2) 2

• ai2 ) = _,aI * ¥

Set a equal to a2*/al 2 and b equal to a3/a l

z2C4x=+ a) = (v . b)2 (7)

' Eq (7) is a complete integral of Fo (1).

Still another distinct compl':te integral of I!q (1) can be

obtained by separating the variables in Eq (1'). Since 4xlxaP2 2 - PIP._
= 0 is free of x 2, P2 = au/ax2 = al, a constant, and

4XlX3al 2 - PlP3 = 0 = 4XlX3al z - at--L-=• at...j.l_ (8)aXl .ax3

; Assume a solution of Eq (8) of the form
I

r

_: U' = fl(Xl) + f2(X2) + fa(X3)

_ = alx 2 + fl(Xl) + f3(x_l) (9)

Substitute Eq (9) into Eq (8) to obtain

i-
J
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, ,..Ixlal 2 _ I df_ = C1 (10)
dfl/dX i x3 dx3

fl = 2--_12x12+ C2
C1

f3 = C--L + C32 x32

U = 2a12 + C1 + C2 + C3 + alx2 0
CI x12 2 x32 =

where x3 = Z_ xI = X, and X2 = Y.
t

C1

2 2___.y _4__2x2z2= - Cc2+c,)- ci ci

Set a equal to -2al/C1 and B equal to -2(C2 + C3)/Cl

72 = sY-a2X 2 + B (11)

#
and Eq (11) is a con,plete integral of Eq (1).

Consider the distinct integrals Eqs (7) and (11), and renum-
ber them I and II

z2C4X2 + a) = (y + b)2 (I)

Z2 = aY - a2X2 _ B (II)

@I
ZP(4X2 + a) + 4XZ2 = 0 (III)me

@X'

: _-; Z_rdXz + a) -.(Y �8�=0 (IV)

i &II. ZP + a2X = 0 (V)

a---_. 2zq- a = 0 (VI)

7

}

/
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X, Y, Z, P, and Q must be eliminated from the six equations above.
From Eq (III) and (Y), eliminate P:

4Z2 = a2(4X 2 + a)

UseEq (Ii):

4c¢Y- 4a2X2 + 46 = a2(4X 2 + a)

Solve for Y to obtain

y = 2aX2 + aa B (VII)4 a

From Eqs (IV} and (Vl), eliminate zq:

= a (4x2 . a)Y+b

Sohe for Y to obtain

y = 2aX2 + a_aa. b (VIII)2

Equating Eqs (VII) and (VIII), one obtains

2
= _b - a_ (Ix)4

• Substitute F.q (IX) into Eq (II) to obtain

Z2 = aY - a2X2 + o,b aa2 (X)4

Y- 2aX2 + b 2aa _ 0
4

2('o +Y)a = (xl)
i a + 4XZr
(

I
i =

+

I

I
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Substitute Eq (XI) into gq (X):

Z2 = _(b + Y) - _2(¼+ X21

_ 2(b + Y)2 4(b + Y) 2 (a +44X2 )a + 4X 2 (a' + 4X2) 2 -

_ (b + y)2
a + 4X2

Z2(4X 2 + a) = (b + y)2

"A Further Note:

G = Z2(4X 2 + a) - (Y + b) 2 = 0 �GeneralIntegral

F mad G are two distinct complete integrals. Let

A_2
r81 = aB 4

Note that BI is one possible functional form of 8 = f(a). For all
possible choices A mid B in Bl, only a subset of tile elements for
the arbitrary choice B = f(a) is obtained. Better said: Let H be
the set of functions of a

B = B_ Aa2
4

for fixed A and B. il is a proper subset of the set Q of all possible
functions B = f(a). By inserting _ = Ba - Aa2/4 into F and forming

@F/Ba for fixed A and B, a can be eliminated, and the two-parameter
family of surfaces G can be obtained, qhus, the surfaces G are part
of the totality of envelopes which go to make up the general integral.

t
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k NOTE ON OBTAINING A CO_WLETE iNTEGRAL

OF _IE IIAMILTON-JACOBI EQUATION

On page 324 of A Treatise on the Analytical Dynamics of
ParadoXes and Hi_d Bodies (Cambridge: The University Press, 1937),

: E.T. Whittaker st_tes--without proof--the following lemma.

Lentna: If dW is the perfect different_ai of some function
W(qi,_i,t) , then the first Pfaff's system of the differential form

I1

dW - I
i=l a_i

is

_a-_i ] 0, d_ i = 0 (i=l,2,,..,n) ,

Let W(qi,_i,t) be in C1 but otherwise arbitrary, and consider
the differential form

n

I Pidqi " }i[qi,Pi,t)dt (I)
i=I

and the transformation

Pi -- fi(qi,_i,t), qi -- qn (i=l,2,...,n) (2)

The following theorem is established.

Theorem1: If the transformation Eq (2) transform_ Eq (i)
into the differential form

n

dW- X @t_

17
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_ where
n n

i--I i=l _ dai

n n

= "= _q--?dqi + i=l _ dsi + _ dt

: is a perfect differential of some function W(qi,ai,t) of the vari-
ables (qi,ai,t), which contains n independent constants a i, then W
is a complete integral of the ttamilton-Jacobi equation.

Proof: By equating coefficients, the necessary conditions
can be obtained

_W

H1 [qi,fi,t ) BW t) = 0+ _- (qi,ai,

Thus,

HI i,B-_i,t) + _- qi,ai, = 0

which establishes the theorem.

Note: This result agrees with a statement in Pars, p. 450,
if it is assumed that a typvgraphical error has been made there and
that he means equation 16.5-4 rather than 16.5-6. This would be
consistent with his earlier reference to 16.5-4 as "the modified
partial differential equation."

ExQ_ple--Central Orbit, Polar Coordinates:

2i2)(a) H = _Pr +_PO + V(r) --h

(1>) PO = a = constant

Solve (a) for Pr" One has*

"See next page.
b

......... !
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.-. a2
Pz = 2h - 2V r_ r = r

Pr = _ h - 2V r2 = tf(_r_ O = O

where

u2
f(r) = 2h - 2V - r-_-.

dW = Prdr + PodO - hdt

(c) W = -ht * a O _ _dr

Either _ yields a complete integral of the llamilton-Jacobiequation.

The Hamil'ton-Jacobi equation is:
I"

aW 1/.;3W_2 1 /.3W_2

a--O =

_W
a"t" = -h

Br

Substituting into (d), one finds

I a2 * V = -h + i h - 2V -
-h + f(r) + _r---,I _.

1 a2+V = 0

*A theorem on page 323 of Whittaker's A Treatise on the
AnaZytical lhdnamics of Particles and Rigid Bodies assures the
reader that the transformation

i

1
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Po = ct r=r

Pr = _V'_ 6= 0

trans forms

n

X Pidqi " H(qi,Pi,t)dt
i=l

into the differential form

n

i=l _ dai

It is a simple matter to show that the functions

I ,
(a) _pr2 + _-_po 2 + V(r) = 01

(b)[ PO = a = ¢2

are in involution; i.e., [@l,_b2] = O. Poisson brackets are zero,
so that the theorem just cited may be applied.

It may be that there are n distinct integrals (in involution)

¢i(qi,Pi,t} = ai (i=l,2,...,n) (3)

where [al, a2, • • • , _) are arbxtrary constants, for the dynamical
system

}

: qi = qi,Pi

(4)

-- " --qi'Pi ,n)
_i @_i[ ,t) (i=1,2,...

It may be that all of these integrals cannot be solved for {Pl,
P2, • • • , Pn) so that they can be obtained in the form

/

• ,)'
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J 21

' 1 Pi - fiIqi'_i 't) (i=l,2,...,n) (5)

1• However, it may be possible to solve £(_ < n) of these integrals for

the p's and express them in the form of E_ (5). Suppose further that
the remaining can be solved in integrals (m < n, £ + m = n) for the

iI q's and express them in terms of Pi, ai, and-t. Relabel the coor-
:| dinates, setting P-, (j=1,2,...,£), in one-to-one correspondence with

the £p's which hav_ been solved for explicitly, taken in any order,

and qk, (k=l,2,... ,m), in one-to-one correspondence with the mq's_ which have beer solved for explicitly, taken in an),order, thus, the

n integrals may be written in tile formi

pj = Fj(qi, i ,tl (j=l,2,. ..
? (6)

I qk = Hk_i'ai 't) (k=l,2, ,m)J
%

: Suppose now that in Eqs (6) none of the PJ appear in the right-hand

; sides of the expressions for Qk and that fione of the Qk appear in

the right-hand sides of the expressions for Pj.

Introduce the following canonical transformation ofcoordinates

zI pj = Pj, (j=1,2,.,.,£) P£+k = "qk' [k=l,2,...,m) (7)

* , (k=l,2 .,m) *

i qk = P£+k "" qm+j = Qm+j' (j=l,2,..,£)J

[ Equations (6) may now be written in the form
} Pi = fi(q;'ui't) (i=l,2,...,n) (8)

Since Eq (8) is in the form of Eq (2), Theorem 1 may be applied, in
conjunction with Whittaker's theorem, to obtain a complete integral
of the Hamilton-Jacobi equation expressea in the 8tom_d coordinates.
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A NOTE ON DISTINCT INTEGRALS FOR A PARTICLE

IN A UNIFORM GP&VITY FIELD IN A PLANE

H = _x 2 + ph21 + gh

apx Px

h = _ =
. aph Ph

Ho = _(px 2 + ph2)

l_x= 0 + Px = a
P

Ph- aH_ = 0 + Ph = b_h

Direct integration of canonical equations:

%

:, x = a, x = at + c /

(1)

h = b, h = bt + d

Unperturbed problem (Hamilton-JacobiEquation):

! (as 12 2
_, 2_kax) , = o

Assume

: S = -%t + Sl(x) * S2oh)

22
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j _dx] = 2al- = a22

I S1 = O,2X

._)2 = 2_1 _ u2 2

s2 = _1 - _2_ h

S = -_It + _2x + /2_1 - u22 h (2)

3S
t

as

_s h _3)
81 - _¢tl = t - vr_Ctl_ _2_

_S _ hcf2

Bz = " _-'-2= ¢_I- _2_ - x "

A comparison of solution (3) with Eq (I) yields

a 2 = a, 131 = t- _.-= - _-

a2 + b2 ad (4)
al = '" 2 ' 82 = -c + "b--

Substitute into Eq (2) to get

t

_" S* = - -(a2 + b2) 1: + ax + bh/ 2 C5)

@s* @s* ')

Px = _ = a, Bl*= - _--_--fat .it
;_ as* _ bt (6)Ph = _ = b, 82*= " @b

I! It appears that 81" = -c and 82" = -d.

J
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" Perturbation:

, = - @a I

(7)

= @82 ' = . @a2

where, since h = /2"sI - s22 (t - 81), HI = Hl(al,S2,81,t).

= 881., _ . 8_,

C8)

= @82'' = " @b

where, since h = bt - 82", HI = Hl_b,B2*,t).

P

Variation of Pa_'ameters:

Assume

x = at + c, Px = a

h = bt + d, Ph = b

is a transformation of variables from the canonical set,of equations

@H @H

- @Px' Px "-"" @-'_"

fi @H @H
- ' Ph = " @-_

@Ph

to new coordinates a, b, c, and d. _us,

_( = a �at�c(i) c + &t = 0 c = cI

_ b 'Pd (2) d + bt = 0 a = aI

Px = _ (3) _ = 0 b =-gt + b l

bh - 6 (4) 6 = g d - _ + d_

,%
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X = alt + Cl

h = -_-+ Oft + dl

Re._urnto _q (81 Hz = gibe.- B2*)
C

= 381" = O, 81" = - ;)a

• _dl " _HI -gt
b = _)B2* = "g' 82" = " ;)b = '

= a* 81" = 81"D

b = -gt + b* 82" = . _¢2 + 132.1 ,_' 2

X = art - 81.1 P

h = _ + t2't - I_2" :*"2

Return to Eq (7) H1 = gv'2a) - _: (t - B1)

•= -g/2=l - a22 B1 = _ = g[t -
_'1 = BI_! ' " _al v/2c¢I " '

= = _/2c,i - _2z -

Conclusion: _le constants which appear in the solution :_

Hamilton's equations obtained by quadratures are noL in general
canonical even though in some problems it .ppears so.

,i
%

C

I

k

1974023186-180



HANILTON FUNCTION FOK TRIAXIAL BODY (NO FORCES)

L_t

(sin2, c0s2_
f(¢) _ k2--T--+ _-

,C+) - (_-_-i_ ce.os ¢

'I"I -'T"_ VO 2 (C0S20 sin2¢__ 2_..,.-o + \_ +-'TC-)Po

f I ,,

+ _ cos2ep02 + _-_ p¢.-

+ _ PcPO - _ PoPe cos 8sin 0 r

f
- _ 2p,_p¢ cos e

H .= _ _ - pc cos +._¢2

+ ._A__ Po(", - P¢ cos o)sin 0

2A + 2B

:._ If A = B, f(¢) = 1/2A and g()) = 0. and one has
x + l

1 {P¢ " P* cos 0) 2 + _P¢2 _p02" ' 2-g-_n-_o
!

ii , Let

cos2¢ + sin2¢
q(¢) - 2A 2B

26

, #
) k
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j and rewrite the general £o_, of 1!. Note that q{_) = A+B/2AB - f(_).

] " = f(._K_[p,-p, _ossin26[' _' 2"C'1p2

] + _sin 0 Po(P¢ - P, cos O) + q(,)p9 2

The Hamilton-Jacobi equation may be written: aS/3t + H = O, where
H = al, a constant.

] as
_"_"= -al

_ - _rn_Z_0+ zcv,J sin 0 a-_z + q_j

where
as as

z = p, - p_ cos O - a_ " a-_ cos e

Assume

S = slct) + s2(_) + S3(_) + s4_o)

Then

aS _ dS1 = "alat _t

S I - -alt

f z2 1/dS,_2 + __X__fdS_ dS_ 2

i_ where

z - _%---d%--coso

Using the quadratic formula, one may write:

i] sin29/dS2_ 2 _ q sin2e/dS_ 2 . sin2e al

i1 -
L
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l 2s

P

$3 = a3*

- f_dO ; = _dO ; Tz(g- 4qf]

Q3
d_ = de cos O + .... f_dO }

+ _dO J + f " 2Cf_d¢ J

, (z 2 )g_ = A-T- _ + sin2¢ c°s2J

I
4qf " 4_--2"_"-_'+ 2B Jk 2A + 2B ;

I
sin29 co$20 sin2¢ cos2¢ .sin4q �cos4¢• �+

! A2 B2 AB

I

I
f

I k
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i g2 . 4qf = - At_

t _ "Ag j AB

!

' _s _i oL _fdS,,/= _cos e* "_-4--.
de 2 L f_dO /

i

+ - ,_---Fzfkdo/ - _\d_ /
f
I

There does not appear to be any way to separate the right-hand side
of the precedi _g equation.

__EL" l 2'_ 2 c,c o(_s- p, coso) = - _fpo+ _ e - A-_p0"- _ %2
P

I The explicit dependence on 0 can be eliminated by us'.'ng the relation-
ship

f

1 1)02 = h2 _ p¢2 _ csc2O(a3 _ pc cos 0) 2

!

which is valid for the tr; xi31 problem with no forces if h is
constant.

!

, c,c2o(_ p, coso]2 _- 1 2- = " _ Po 2 - C-f Pqb2 + f2 Po 2

" PoJ-f " _P62 " c'fp¢2

4(h2 - p4)2 - po21 4al l (g2 _-) 2 2= f + _/ PO . ___p¢2

" Po/'f " _Po 2 " _'_P¢2

- o

I
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Cfp¢2 p¢2 _ ___ = �_g_ p 2

Let

._ - p¢2 _ p¢2

1

T
_ --- __

rl = - 2_g.
f_

_ 1 2 _
n/-f - _po 2 - C'-fP¢"Pe = _ - Pe2

- _Po 2 - c-_p¢2 = _2 _ 2_p02 + i_0_

pe_+ (A__f _ 2EIp02 = _2_ n21._/._ 2C...fP¢21
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}., RELATIONSHIP BETI_'EENCONJUGATE NONENTA AND ANGULAR NOHENTUN{
I

'. Let
i

where the Euler angles 0, e, and _ are shown below, relating the
body-fixed axes Ox'y'z _ to the space-fixed axes Ox*y*z t.

Z _ t

zt [ yt P

X w

y*

X*

The matrix

• 0

and P represents the conjugate momenta matrix izhile H and Ht represent

} the angular momenttunvector referenced to space-fixed and _ody-fixed
axes, respectively.

31

I

I
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! P = _ C1)!

Explicitly,

Po )"
P,

(A - B)sin , cos ¢ sin O, A cos21 + B sin2_,, 0

C cos O, 0, C

The kinetic energy for a force free triaxial riggd body is given by

i + Ih2 (2)i h2, +T - 2A _ ZC -

where

hx, = A_x, = A8 cos , + A_ sin 0 sin { l

hy, = B_/, = -B0 sin , _ B_ sin e cos , (3)

h z, = C_z, = C, + C_ cos 0

Also,

H = TH' (4)

Explicitly,

hy* =

fCOS,COS l-sin,sin@cos B, -cos,sin ,- sin, cos ,cos B, sin ,sin Bl/hx,_

sin,cos,+cos ,sin ,cos 8, -si_,,sin¢ +cos_cos,cos e,-cos _sin 8_hy,}
Ill

sin , sin O, cos @ sin e, COS O J\hz,I
/\I

k
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: _TH' Cs)

Explicitly,

/sin ¢ sin 0 cos ¢ sin 0 cos 8 /h x,

P0 = cos ¢ -sin # 0 hy,

0 0 1 \hz,'

p _- _TH (6)

Explicitly,

Pl : cos 0 sin 0 0 hy,

sin _ sin 8 -cos _ sin b cos 8 \hz, /

Also,

si,, ¢. o] 1hx' : PO cos ¢ + _{,p_ - pc cos

cos¢, o]I (7)

hy, : -Po sin ¢ + _[p_ - PO cos

hz' = pc : h cos O'

Consider the case in which the direction of the angular momen-
tum vector is fixed in space. Choose this direction as an axis and

redesignate it by the letter _. Let the line of nodes of the angular

momentum plane (a plane through the center of mass of the body per-

pendiculnz to the _ axis) with the space-fixed plane x'y* be desig-

nated by _. Consider the figure below.

(;(along angular momentum vector)

zl

y'

_ body-fixed plane

_X' .__r}

" X ___ _;n is angular momentum planenodes)\ \y*(below _n plane)

b

l
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H__may be represented in the form

()
0

E = o (8)

h

. If Eq (6) is used with _ and e replaced by ¢* and O', respectively,

i,./(o o0'I = COS C* sin C* 0 (9)
I

@,/ sin ¢* sin O' -cos ¢* sin O' cos O'

p¢. = h

PC' = 0

PC' = h cos e'

Since PS' = O,

hx' = sin s' [Pc* " Pc' cos 0')
cos ¢'

hy, - sin _r{P¢* - PC' cos o') (10)

hz' = PC'

By utilizing the fact that pc,= h cos O', one can write T in theform

1 2 1 l
T = _ hx' + 2b hY '2 + _hz'2

T = _ 2A + 2B ")_.P¢*" p¢,2. + 2-cPc'

,, Hamilton Function (11)
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Designate H = Hamilton function = at, a constant of motion.

_P_,

_. = _H

_P** (12)

_, = _H_,- 0 _ h = constant = p_.

3H

Also,

cose' - P_it
h

e

and

Po' = 0

Suppose _', _*, p_*, pC,, and PC' are known. Are 8, _, _, PS, P_,
and p@ referenced-to some space-fixed system 0x*y*z* known?

o -- eC_',e*,_*)

_, - ,_C_',e*,_,*,_,')
C13)

p_ = h cos e' = p_,

p_ = h cos 8* = p_. cos O*

Pe = cos _, hx, + sin _, hy,

Z*

(;

i

n

,y*

x* ,,_
i

f_--- ]
I

I
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Using Eq (4) with ¢, e, and _ replaced by #*, 0", and O,

hy_ = \[Sino_* cos _,* cos O* -cos _* sin O 0hz, sin O* cos O* h

hx. = h sin $* sin 8*

hy. = h cos _* sin O* I (14)hz. = h cos e*

Po = cos _(h sin _* Siq O*) + sin _(-cos _* sin O*)

= -h sin O*.sin(Q - _*J (15)

P

If p_, is known, 8' is also known. Also, O* and ¢* are prescribed
consfants, independent of ea n other and independent of _', _*, p_,,

and p_.. Hence, _, e, _, pc, P0, and p_ are kn,_wn. Thus, the inoe-

pendent variables _', _*, p_,, p_., 0", and _* serve to describe the
motion of the triaxial body with respect to the space-fixed system

Ox*y _Z*.

If Eq_ (6) and (14) are used, p_ = h cos 8* is obtained. Since

p# does not depend on _, p@. = h cos O* may be written where _ and @*
lie in the same plane. If p_. is known, _* is known; hence, the

independent variables (_', _*, _*, p_,, p_., and pc.) will serve to
describe the triaxial motion with reSpect-to the space-fixed system

Ox*y*z*. Kinetic energy T = H (for this extended problem) is expressed

in terms oF (#', _*, @*, p_,, p_., and p_.) and still given by Eq (ii).
The canonical equations , 'fibe extended fo include

• _H - 0p_,* = _,.

' i 06)
_ __o

._P_,*

since Eqs (16) are consistent with the facts that p_. and _* are
constants of motion.
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I

Thus, H can be interpJ'eted, as given by Eq (11), as the
Hamilton function for the motion of a triaxi_i body with respect to
the space-fixed system under no forces, _ae corresponding canonical
equations are

• 0H _, OH
P_' = - _ - ap_,

• aH _. aH (17)
: Pc* = _ _)¢---; - _)p¢.

• H _. H
P_* - a_* - _P_* i

The differential equations are explicitly:

o

#_, = [p¢.2 . p_a 2) (A AB"B) sin ¢' cos ¢'

P

1;¢ = o

1_, = 0
(18)

+ i_ ij'-¢,

", Thon, )
",' ,2,

c. p¢, = or2, a constant (19a)

,7

'_ PO* = as, a constant (19b) ,,

; i _* = -83, a constant (19c)
L

t
i

b

. i
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TILe differential equations for pc,, @', aud 4,*may now be written:

_, = (a22 - p¢,2)(AA-_)sin _' cos ¢' (20a)

From Eqs (20a) and (20b),

dw du (21)
W u

where

W = 0.22 - per 2

U = _. - +

Integration of Eq (21) yields

wu = <, a constant (22)

To evaluate K, it is z_otedfrom Eq (ii) that

0.1 = u+2 _ A "+

and fzom Eq (22), it is found that

2

wu = K = 0.2.____2o.1 (23)C

Equation (23) permits the expression of p_, in terms of ¢'. Onefirst writes

C' + d' sin2_ '
: u = ABC

C' -= A(B-C)

, d' - C(A-B)

, !i-

/ I
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T_en,
L

(022 - aCal)
P_ t2 = a22 - CU

This last equation reduces to

• 2 C ra' + b' sin2#'/
PC' = _c' + d' sin2¢ ']

a' = A(2B=I- =22)

: b' = a22(A- B)

(24)
: c' _ A(B - C)

d, = C(A- B) j
Whence,

: ¢ c' + d_ sin2¢ '- [25)

S

_L
Y
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_' APPENDIX

ON A HETHODOF OBTAINING A COMPLETEINTEGRAL
O: THE HAHILTON-JACOBIEQUATIONASSOCIATEDWITHA DYNAMICALSYSTEH

i Philip M. Fitzpatrick and John E. Cochran
: _ Consider a dynamical s/stem whose equations of motion are

c

_ qi = @//(qJ ;PJ ;tl 1_ @Pi

; l @//(qJ;Pi ;t) f i=1,2,...,n; j=l,2,...,n (1)Pi = " 3qi

• i w'ne-e the Hamiltonian, H(qj ;pj;t), is understood to be a function "
of the generalized coordinate_, q_., and their conjugate momenta, Pi,

• j=l,2,...,n, and possibly the timg, t. If one-half of the integrals
of Eq (1) have been obtained in a suitable form, there is a well-known
theorem, due to hiouville, 1 which may be used to find the remai.ling
integrals. The purpose of this note is to point up the related, but

•. perhaps not so well-kr,own fact that a method of obtaining a complete
integral of the Hamilton-Jacobi partial diffcrential equation asso-
ciateo with (I) is implicitly contained in the theorem. Since a

": complete integral of (1) will permit us to express the solution of
(1) in terms of canonical constants of integration, recognition of
this fact is of importance in studying perturbations of the original

c system. The method will be discussed and applied in what follows.
, f

Suppose that n integrals of a dynamical system with 2n degrees

• of freedom are known in the form :

_i{qj ;Pj ;t) = ai, i=1,2,... ,n; jffil,2,...,n (2) :

IF., T. Whittaker, A T'eea_,.se on t.he Analy_..,aZ l_na_cs of i
PaxCioZcs and Rind Bodges (New York: Cambridge University Press,
1959), pp, 323-325.

r

:. 40
O)

t
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k :'

where the a i form a set of n independent constants of integration.
If the Poisson bracket expression, (_i,_jl, vanishes for each i and
j and if the 0i are solvable for the Pi In the form

Pi = fi(qj;aj;t), i=l,2,...,n; j=l,2,...,n (5)

the Liouville theorem states that the difference between
7

n

i. __fidq i
i=l

: ;', and 8(q_;ai;t)dt is the perfect differential of a function W[o." ;t} :
_ and thal t_e remaining n integrals of the system are given by ]'aj

, _WW_ = _i, i=l,2,...,n" (4)
1

where the _- form a set of n constants of in:egratio1_which are
r A

independent of each other and of the set formed by the ai.

_- To say that

dqi - // qj;aj;t dt, j=l,2,...,n (5)i=l

;! is the perfect differential of a function W[qj ;aj;t) means that

-- = fi = Pi, i=l,2,...,n (61

3

_W = 4t (7)

: Thus, implicit in the Liouville theorem is the fact that the func- j
! tion W is a complete integral of (7) which is the Hamilton-Jacobi :

partial differential equation associated with the sys_emo

When the n integrals of (2) can be solved for the instead
of the Pi, i=l,2,...,n, the theorem may also be applied, q_ the
canonical transformation

'_

o
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4z

_ I Oi = Pi }(8)
_ Pi = "qi

to new variables (qi,Pi) is first introduced. Even if we are not

able to solve the n integrals (2) explicitly for the Pi" or for the
qi, a complete integral may still be obtained in certazn important

= cases now to be discussed.

Suppose we are able to solve the integrals (2) explicitly for
£(_ < n) momenta and n-_ coordinates. Suppose further that, after

i reordering the subscripts, the expressions for the £ momenta and n-£
coordinates can be written in the restricted form

}Pi = fiCqk;Pm;aj;t) i-1,2,..., ; k<t;• ' m>£; j=l,2,...,--n

. C9)
: qi = hiCqm;Pk;aj_,t) i=_ +2,... ,n; k>_;• ' m<_; j=l,2,..._n

: By introducing the canonical transformation

Pi* = Pi' qi* = qi' i=l,2,...,g _ C10)

Pi* = "qi' qi* = Pi' i=_ 2,...,nJ
Eqs (9) may be written in the form

, pi * = fi*[qj*;_j;t), i=l,2,...,n; jfl,2,. .. ,n (11)

Equations (11) are in the form (3) and the theorem may be applied. :

i

: Example 1: Central Orbit in the Plane , _Polar Coordinates !

, For a particle moving in a plane under a central force deriv-
" able from the potential VCr), the Hamiltonian function is a constant .!

a..1 If. we designate by CpT'p ) , the momenta conjugate to the polar
; coordinates (r,e), respectzve_y, see Figure I, the system has the

well-known integrals
L

.i P8 = a2, a constant (12) ,.I
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y

_ r _
!

X

!

z Figure 1

L Pr = ± [a I * V(r)] - _ (i3)

, From (5), we write ;.

dW -- Prdr + p6de - aldt (14)
r !

! If r o is chosen so that no new independent constant is introduced,{
', th_ function

• ! ?

! ?"

! W = rdr + a26 - alt (IS)

_ ,IL"0

_r obtained by integrating (14), satisfies (7). Also, W is a complete
integral of (7) since it contains two non-additive independent con-

L_

stants aI and a2.

Example 2: Free Notion of a Triaxial Rigid Bod_

For the free rotation of a triaxial, rigid body about a fixed
point 0, the Hamiltonian function, which is a constant of the _otion, •:

) _ may be written in terms.of the Euler angles (9,_,_), which specif_/ _'i position of principal axes at 0 relative to space-fixed axes O_nC

_ and their conjugate momenta (pe_p_,po). See Figure 2. :
T

k
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Z

/
Figure 2

Three known integrals for this dynamical system are 2 P

p_ = a3, a constant (16) _

f t '. tan" z /_'2z "p_z , pea (17)
Pl

+ tan'! " (2Aa 1 a22)C + CC A)ptzj (18) _?_'

where A, B, and C are the principal moments o£ inertie a c 0 and a2
is the constant magnitude o£ the ,angular momentum _out O.

2See Whittaker_ p. 325.

I
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Although it is not possible to solve (17) and (18) so that
p_ and PB are expressed in the form (3), the set o£ equations (16),

i (17), and (18) is of the form (9); hence, the canonical transforma-
" tion

" Pl = -O ql = PO

._ P2 = -e q2 = Po (19)

_: P3 = PC q3 = ¢

allows us to write (16), (17), and (18) in the form (I1). Then,
from (5), we _rite

_ dW = pldq 1 + P2dq 2 + P3dq3 - _ldt (20)

I£ qlO and q20 are chosen in a manner so that no new independent
constants are introduced, the .function

: /a2Z _ 'a3z'"'--XZ , dx
W = "_1 t + _3q3 + tan'l _3

q20

_ 2

_' tan.1 /_Z 2 '.ql 2 - x_ '- - - -- dx ?

q20

(2Ba I - a22)C+ (C- B)x 2

:: + tan'1 (2A ,I +(C A)x:'S dx (Zl)
qlo

)

obtained by integrating (20), is a complete integral of (7). )

(

)

.,_
,; _'

t

_ 4

J, ,,

g
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HAMILTON/JACOBI PERTURBATION METHODS

APPLIED TO THE FOTATIONAL MOTION OF A RIGID BODY

IN A GRAVITATIONAL FIELD

by

Philip M. Fitzpatrick, Grady R. Harmon, Joseph J. F. Liu
._ and John E. Cochran

ABSTRACT

The formalism for studying perturbations of a triaxial rigid

body within the }tamilton-Jacobi framework is set up. In particular, :

the motion of a triaxial artificial earth satellite about its center

of _ass is studied. Variables are found which permit separation, and

the Euler angles and associated conjugate momenta are obtained as

functions of canonical constants and time.

!
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" INTRODUCTION

: This report summarizes the results obtained on Grant NGR-01-
003-008-S-2(_) between November 1o68 and May 1969.* These studies
are aimed at applying the perturL,_ion methods of celestial mechanics
to the rigid body problem with particular emphasis on the problem of

-: motion of an artificial earth satellite about its center of mass.

• During this reporting period, the investigators were able to express
;_ the Itamiltonian for the triaxial rigid body in terms of variables in
_- which it is readily separable. This, in turn, permits introduction
• of a canonical transfornation to new parameters which are constants

in the torque-free motion. The equations of transformation are then
', inverted to allow the investigators to express the original Euler
: angles and associated conjugate momenta in terms of the canonical

constants and the time. Thus, they are able to set up the formalism
for studying perturbations of a triaxial rigid body within the Hamilton-
Jacobi framework.

p

_ RECTANGULAR COORDINATE SYSTEM AND EULER ANGLES

: Let 0 represent the center of mass of the rigid body. Choose
a space-fixed rectangular system O_r,_ such that the positive _ axis
lies along the angular momentum vector H and in the sense of H. Con- i
sider a plane through the center of mass and perpendicular to the g
axis. This plane intersects the fundamental plane of the space-fixed, _
but otherwise arbitrary, rectangular frame Ox*y*z* in a line of nodes
ON, shown in the figure. _e _ axis is chosen to lie along the line :
of nodes, its positive sense being arbitrarily chosen. Then, the n
axis is chosen to form a right-handed system.

Let Ox'y'z" be a body-fixed (principal axes) rectangular frame
and let ¢*, 0", and _" represent the Euler angles relating the Ox'y'z"
and O_n_ systems. The x'y" plane will be called the body-fixed plane.
The angle _* is the angle between the x* and the _ axes, measured in
the x'y* plane while the angle e* is the angle between the positive z*
and _ axes.

, *Work co-sp,_:msored by Contract NAS8-20175 with the _eorge C. i
Marshall Space Fligh, Center. ,_

K

i
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i SOLUTION OF THE HANILTON/JACOBI EQUATION

ASSOCIATED WITIt A TR!AXIAL BODYPROBLEM_II'Itt NO EXTERNALFORCES

_{a.illtonFunction and Canonical Equations _

Although the eventual goal is to give a complete discriFtion :
of the motion in the Ox*y*z* system, the description of the motion

i will first be given in the O_n_ system. In this manner, a straight- :
forward, coherent approach to the prolem and its solution can be "

_ presented.

Let

P_

P- = Po - (la) ,

Po _
P

= (lb) !..

(,
hx*

H* = (lc) _-- hy*

hz_

II* = (]d} ;-
.m £

hz ;

where P represents the conjugate momenta matrix and H _nd H' repre-
sent the angular _mentum w.r.t, space-fixed and body'-fixe_ axes_ i:
respectively. A recapitualation of some of the formulas from an il

v

r'-....
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; earlier report (Some Suggested Approaches to Solving the Hamilton-
., Jacobi Equation Associated with Constrained Bi_d Body Motion, January

1969, pp. 31-35) is given below to help the reader follow the subse-
quent discussion. It should be pointed out for anyone who has a copy
of the referenced rep__'t that H should read H* through Eq (6); the
other notatioh is correct.

One has

P = x_ C2)
l

(P0

PO =

" PO

L A sin21 + B cos2,) sin2O + C. cos28 CA-B)sin¢ cosl sin 8 C cos

I JliCA - B)sin @ cos @ sin 8 A cos2_ + B sin2@ 0

C cos e 0 C

H* = TH* C3)

or

( hx'

; hy' =

- hz'

! #t

_ sin (_ sin e cos, sin o cos o /_h,

P " NTH" C4) ,
m

1974023186-208
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{ or

( ),,e

Pe = cos _ -sin _ 0 hy.

; p, 0 O 1 \hz* /

v . MTH" CS)
or

i

PO 0 0 1 /hx*
Pe = cos 0 sin _. 0 y.

p, sin , sin o -cos , sin o cos o \hz*
ff

and £rom Eq (5),

H* = TIH* (6)

or explicitly, __

i_ __._..._r_ o)

(hx = Pe cos _ + sin O_ " P_ cos

hy = "PO sin _ + sin elP, " P* cos?

;_ _hz-_ = p_ = h cos e"

: In the O_n_ system the angular momentum can be written as

- C71

If Eq C5) is used and O, e, and _ are replaced by _*, e °, and _',
respectively, then

I-2
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' i6

pc 0 0 1 0

Y

\pc./ sin ¢* sin O" -cos 1" sin O" cos ¢" h

or

J

p_. = h ,
!

PO" = 0 i

• pc.- • h cos O"

Similarly, after Eq (8) is used and with ,, 6, and ¢ replaced by ¢*,
0", and ¢', respectively, from Eq (6) one has

Fhx _r_ .= cos O'U,'¢ - pc.. cos 0")
P

Cos 0" r

', hy -_- _ * cos O") (9)sin 0 (PC Pc"

_hz PC"

" Using Eq (9), coupled with (S), the kinetic energy (the Hamiltonian
; function) of the rigid body can be written in the form

1
T = _-_hx 2 * 2_hY 2 + _c'hz_ = H

or

.- T-- i 2A + 2B )(p¢.2_ p¢_)+ _ (10)

; wl_ere A, B, and C are the moments of inertia of the rigid body
referenced to the principal axes Ox'y'z'. It is assumed that

¢.

:_ A>B>C

The associated canonical equations are
/

,..i _- h + (lla)

°.
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ap_-

alt = o Olc)

aH = h2({ _)sin,'cos,"sin2e"--hsinO'_" (lld)

PO" = 0 (lle)

cos e" = _ (Ill)

.Description of the Hotion in the Ox*7*z* System

k set of relationships is given which allqws the description

of the motion in the space-fixed system (_, e, _, p_, Pe, and p_)
to be obtained completely from the description of the motion in the

body-fixed system (_*, e', _', p_*, Pe', and p_-).

From elementary trigonometry,

cos e = cos e _ cos e* - sin e" sin e* cos _*
(12a)

sin 6 = fl'- cos2e

sin e* sin e coz(_ - _*) = cos 6" - cos e* cos e
(12b)

sin e sin(_ - _*) - sin _* sin e"

sin e" cos O" cos(_ - _') = cos e* - cos O" cos e
(Z2c)

sin e sin(_ - _') = sir _* sin e*

Wtt_ Eqs C3), C4), and C5), the variables p_, Pe, and p_ can be
related to the variables p_-, p_,, O*, _*, and _*. Explicitly,
these relationships can be written as

• Pe = - p_, sin e* sin(_ - _°) (13a)

p_ • h cos e* (15b)

P_ = p_o

1974023186-211



Since e* and $* are prescribed constants, independent of each
other and independent of _*, ¢', p_,, and p_-, the independent quan-
tities (¢*, _', 0", _*, p_*, and p_-) serve-to describe the motion
of the triaxial body in the Ox*y*z* system.

Generator and Equations of Transformation*

: The llamilton-Jacobiequation associated with Eq (I0) is

from which the generator S of a canonical transformation is to be
" determined. A complete integral S of Eq (14) can be obtained by
"_ separation of variables. It is found that

S = -alt * h4_* + aS_* + SI(_') (IS)
@

where

: aI = H

OS (16)
h = p_. = _--T

_S

: are independent canonical variables. The function SI(O') is related
to a I and h through the expression

i SI(O" ) .-- po.d," (17)

_: where

-- + sin2¢"J

)

"t *The variables (_*, _', O*, p_,, PO*' P_*) in which O* is
: replaced by cos'l(p_,/h) are introduced here (see "Perturbation of

the Force Free Motion of the Triaxial Rigid Body, page 20, for
" justification). ._:

-2

'_ ' '2

" ][- i
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and

a* = A(2Ba z - h2)

b" = h2(A- B)
(19)

c" = A(B - C)

d" = C(A- B)

The co_nplete set of transformation equations £rom (_*, ¢*,

Eq ( equations are:

61 = . @S__.= t - L(¢') (20a)
:, 8a 1

B2 = _ @S = H(¢*) - ¢* (20b)Bh
t

_S
B3 = -_ = -_* (2Oc)

; Ba3

:. _S - a 3 (20d)
: P_* = _.

PC* = @S_S.._= h (20e)a¢*

' Pc" = @¢---_= + d" sinZ¢*/ (20f)

where

L(¢") = ±ABV_"12(¢*}
(21)

M(¢') = *_a2I_(¢')
i and

" de _ : ....

12(¢') = J'(a" + b" sinZ¢*)(c* + d" sinZ-¢")
(22a)

IrA - Blsin2¢* -Ald¢"

IS(C*) • lea* + b* sinZ'¢')(c"+ d'*sinZ¢*) (22b) '

C

C

_.-
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In three of the six Eqs (20), the right-hand sides are pre-
ceded by _ symbols. The choice of the sign in these equations is

determined by the choice of sign for p_.. Also,

P = MTH
or

/ o o 1)(o/_Po = cos 1" sin _* 0 0 (23}
pc sin _* sin B" -cos ¢* sin O" cos O" h

_ hence, I: pc- = h cos e"

_ Thus, the sign of p_* depends upon whether cos O" is vositive or
-: negative, it is asgumed that 0 < O" < _/2. Therefore, Eqs (20)

and (21) become

• p

t - Bl = L(¢") (24a1

¢* �S2 = S(O') (24b) ,

b

_ S3 = -_* (24c)

" PC" = + d sinZO / (24d)

_ = h (24e),: PC*

p_* = a 3 (24£)

,_ where

; L(_') = ABV_"12(_*) (25a) }

M(¢") = -h,/'C I s (¢") (2Sb)

,l

4 _

/
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_ INVERSION OF TIIESOLUTION FOR THE TRIAXIAL RIGID BODY PROBLEM

WITH NO EXTERNAL FORCES

Equation (24) must be inverted to express the variables (_*,

¢', 9*, Pc*, P_', P¢*) in terms of the canonical constants (al, h,
a3, $1, B2, B3) and time t. The inversion is shown below.

Inversion of the Equation t - B_ = L(¢')

Since it is assumed that A > B • e, the quantities b', c', and
_- d', given in Eqs (19), are positive. The quantity a" may be either
: positive or negative. In what follows, it is assumed that a" • O.

From Eq (8), it is noted that

a _ c _
b--r < a-r (26)

• since

2C_Q_ AC_x2- + BC_vg + C2_z _

. hz = A2mxg + B2_ 2 + CZ_z2..

. where Ux.. , _/.., and toz. are components of the angular velocity w.r.t.
the primed system.

. For convenience the following parameters are defined:

n21 _ b" (27a)a* +b*
i

2 d _
n2 _ (27b)C" + d"

(, _ --"_a": _-"b'*_(c"+ d') - B¢(A - C)(2Aal - h_2) (27c)

k = (B C) (2Aal - _ (27d)

1 /'BCA- C_) C27e): g --- " c)

k" --" /1 - k z . ,(_, ,'-','C_)(2Ba1 - h2 *_
_(B - C) (2Aai h z (27£)

i

ii
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2 2 i
Clearly, 1 _ n 1 > n 2 > 0; thus, 0 < k < 1, and k" is real since
a'/b" < c_/d ".

2

To cast Eq (22a) into a more convenient form, a new variable
is introduced by the equation

l

a = 0" + _/2 (28)

:_ It follows inunediately, by substituting a and the parameters

in Eq (16) into (22a), that

"_ I2(,') = _ r(a)ds (29)

SO

where

SO = 4)0+ _/2

lid

1

rCa) = vie1 n_'s'in_'a) (1 = n_ $inZs) (30)

Since the lower limit of integration of Eq (29) may be taken to be

an absolute constant, _o = -_/2 is chosen; hence, So = 0. Therefore,

I2(_" ) = _ ofr(s)ds (31)

In what follows, the formulas which appear in Byrd and
Friedman [1] will be referenced. Such formula numbers will be

indicated by prefixing the numbers with the designation B-F.

Using B-F (284.00) and Eq (24a),

f _L_ Ct - B_) (_2)
rCa)da • gu = _AB4_-

, i

:: u • _t + r (331 :
z !

.!
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i

:- where 1

¢ '1 (2AaI - h2)(g - C) (34a) ;
X - g_ABCr_ = ABC i

i g - "_81 (34b)

Also from Byrd-Friedman, i

I
sn2u = [sin(amu)]2 _l - nl)sinaa (55) 1

= I n_ sin2a 1

Solving the above equation for sin a, one writes

snu

sin a = ¢ _. (36a), 1 n CN2U

and

cnu
COS a _. /1-= n_cn2_ (36b)

where
cnu = cos(ainu)

and
sn2u + cn2u = 1

Since a = 0" + _/2,

I/1 - n_ cnu

sin 0" = i/1_- n_cn2u-- (37a1

snu

cos ,'= _/1 -'n_cn2u (37b1

tan ,'- cnu (37c1
r g snu

i The quadrant o£ 0" is uniquely determined by studying the signs of
cnu and snu.

Equation (37) is not in a convenient form for calculation since
powers of t appear in the expressions for cnu and snu. This difficulty
can be avoided by introducing theta functions. From 8-F (907.011,

(907.02), (907.031, (900.041, and (901.011, for lul < K', _

u3 us ;{
snu = u - (I + k21 _-+ (I + 14k2 + k_1 _-

u ?
- (I �135k2 �13Sk_ �k61_' , • (38a1

1974023186-217
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: U 2 U h" U 6 i

cnu = 1 - 2T + (1 + 4k21 _- - (1 + 44k2 + 16k_1 _- -_

+ (1 + 408k2 + 912k _ + 64k61 u88_ .... (38b1

dnu = 1 - k2 u2 k2 uk
_-+ (4 + )k2 4-T

- (16 + 44k2 + k_)k 2 us + • • • (38c)
where

'; K" ---K(k") (39a)

K + 4 m d_

0

q - _k 1 + 2 + 15 + 150

+ + • • • (39c)

1-
k2 1) (39d1k" _= 1+ k]< <

If B-F (1050.01), (1052.01), and (1052.02) are used, then

V__ cos _ + q2 cos S_ + q6 cos S_ + • • • (40)
tan _" = g sin v- q2 sin 3_ + qb sin S_' • • •

where
IT

'--" _-_U

The series (c1 o£ (39) for computing q converges rapidly. Hence,
the angle _" can be expressed in terms o£ canonical parameters and
time through Eq (371 and can be computed by using expression (401.

Inversion o£ the Equation _* + 81 = M(_') ..

By using P.qs(271, (281, and (301 and recalling that ao • O,
Eq (24b1 can be rewritten as _,,

q-

1974023186-218
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¢* + B2 = -hvrC_ [CA - B)cos2¢- A]z'(a)da (41) :

From Eq (52),

h _'
- B) cos2a r(Q) da (42)¢* + B2 g Ct - B1) -hv_CA -

Using B-F (284.08) and (432.05), Eq (42) becomes _

¢* + B2 = g (t - 81) - [05 - uAoC6,k)] (43)

where

1 (44a)
B _ sin-I _

y2 _ n__ (1 < _y2 < ®) (44b) ,)_.- '
1 - n 2

and the functions 0s and Ao are defiaed in B-F, Sections 450 and
150, respectively. Since u = _(t - BZ), it can be written

1T

¢* + 62 = H*Ct - 8Z) - _" (f15- u) (45) ,_
where

M* h _
= B 2K [1 - AoCB,k)]X (46) -_

Expressions for p_- and 8"

By applying Eqs (27) and (57), Eq (24d) can he written as

i/c '(a + b'_.l - n_2) (k,2 + k2cn2u)_ (47)
Pc" " ¢C"

From B-F (121.00), one has _'_

dn2u ,, k "2 + k2cn2u (48)

g

i

1974023186-219



]
i

"- 16

'- Hence. Eq (47) takes the form
°_

P¢" = ._(a,"+ b')(1 = n221 _:C_ dnu

= C(2A Ih2)- c dnu (49) i

and since pC* ffih cos 8",

cose" = -_ = °/C(2A_I " h21 i_Z(A = C) dnu (50)

Inverted Solution for the Triaxial Rigid Body Problem
,_ with No External Forces

, The general solution for the triaxial rigid bo,_yproblem with
no external forces can then be summarized as follows:

cnu
tan ¢" =

g snu

= _cos v + q2 cos 3_ + q6 cos ._v + _ . • (51a)g sin v - q2 sin 3v + q_ sin 5v - • •/

: = = u) (51b)0" + 132 = M*{t - B1) - _-_-{t35

¢* = e3 (Slc)

P,-= _C'(2A_'j'ch2)dnu (51d)

pc, - h (51e)

P_* = a3 (Slf)

This solution coupled with Eqs (12) and (13) gives a complete des-
cription of the motion of the triexial body in the space-fixed system

: Ox*y*z* in terms of the canonical constants and time.

t
i

' i ........ ]
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UNIAXIAL SOI,UTION

By letting A equal B, _he triaxial solution (51) can be reduced '

to the corresponding uni_,xial _olution. To distinguich between the
canonical parameters which appear in the triaxial solution and the
reduced solution, the lat*er will be labeled with the subscript u;
that is, _lu, hu, a3u, 81u, 82u, and B3u.

_, For the c_se A = B, one has

: n_ = n22 = O, k = 0,

k _ = I, g = I,

snu = sin u, enu _ cos u,

and

i
), = _ A2C _.

P

Thus, from Eq (37e), one obtains

A2C

When A = B,

1S = _-, Ao , = 1,

M* = hu £_S = u;A'

2

therefore, F.q (45) reduces to

Furthermore, for A = .', dn(u,O) = 1, and Eq (49) reduces to

P_' ,, .(2 lu C

.0

_ •
i

,/

?
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: In summary, the uniaxial solution is given as follows:

• ./(2A_u""h_)(A- C) (t - B_u) (SSa), ¢'" *; = _, ^ac

)* = -B,u+ - ,,J (SSb)

_* = -_u (SSc)

%

P," . {2A_u_h_) (SSa)
- _

PO* = hu (SSe)

: p9. = a3u (SSf)

t

_ and the corresponding generator is

Through the use of Eqs (12) and (13), the complete solution of the
force-free uniaxial motion can be obtained in the space-fixed system

t Ox*y*z*.

-i The parameters which appear in the treatment of the force-free
uniaxial problem, given in [2] will be labeled with superscript

' * * * and * :_asterisks; that is, _lu, a2_, a3u, 81u) 32u) B3u. It has been
1 shown that

• /C - A'_a *2

h2 = 2Aalu + /_'_-- ) 2u ($7)

,_ The corresponding generator, in which hu is interpreted as a function :
of alu and a2u through Eq (57), takes the form

• : S = -al_t + .Aalu + ot2 + U3u _ :

1
?

_ 4

2 I

2

._ i ,, ............. _
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Afte." inversioq, the associated equations of transformation are

O* = -B3u (59C)

* (59d)pc- = a2u
|

P** = a3u (59f1

If Eqs (59) and (60) are compared, the parameters (al_, a2_, _3_,
BI_, 82_, and 83_) and (_lu, hu, _3u, B1u, 82u, and 83u) are related
as follows

* (60a)(Ilu ffi (IIU ._.

. c_2U = '' (60b)

* (60C)a3U ffi a3U

* A

BXU = 81u + _uu 82u (60d)

6su- Bsu (6of)

/
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PERTURBATIONOF THE FORCEFREE MOTIONOF THE TRIAXIAL RIGID BODY

•_.. Recalling the section entitled "Generator and Equations of __
; Transformation," page eight, 0* must be replaced with an equivalent !

parameter, p¢., the momentum conjugate to ¢*, to use the canonical 1
perturbation equations of Hamilton-Jacobi theory in studying the
perturbations of the force free motion of the triaxial rigid body.

:_ It follows from Eq (13b) that either O* cr pc. will give an equivalent
I description of the motion. I_ is clear from this equation that the

! momentum conjugate to any angle ¢ which lies in the x'y* plane is
independent of the angle ¢ and depends only on h and 0". Therefore, I

I Po = Po* = h cos O* = p¢. cos O* (61} i

Thus, the six independent quantities (¢*, ¢', ¢*, pc., pc-, and pc.)
will completely describe the motion of the triaxial-rigid body with
respect to the Ox*y*z* system. Tne Hamilton function from which ¢*,

¢', pc,, and pc- are to be obtained is, of course, still _%ven by Eq
(10). Furthermore, H, as given in Eq (I0), can be considered to be
the Hamilton function of an extended system of variables (¢*, ¢', _*,

P¢*' P¢*' P0*' which satisfy the canonical equations of motion.

a. (62a)
- ap_.

aH

¢" - up0. (62b) i

a.
- 3po, (62c) _

aH
}¢, = - a¢---_ • (62d) ,

aH
PC" = - a¢--'; (62e)

aH

i

subject to the constra'nts

¢* = constant (63a)

p¢, = h cos O* = constant (63b)

This follows from the fact that the twn ___fe.__ntlal _qua_x_ns
(62c) and (62f), which ha_ been added _o the system, are entirely
consistent with (63), the equations of constraint.

i '
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GRAVITYGRADIENTPOTENTIAL FOR TiiE TRIAXIAL BODY

The gravity gradient potential V for the triaxial body is
given by

3
V = - F K[(A - C) Cos2x + (A - B) cos2B] (64)

where K = n "2 and n" is the mean motion o£ the Earth about the tri-

axial body. A circular orbit will be considered for hhich K is a
constant. The angles a, B, and X are the direction angles of the

:_ line segment from the center of mass of the body to the center of

mass o£ the Earth with respect to Ox_y'z', the principal axes o£
the body. Since COS2_ + COS2B+ COS'y = l, Eq (64) can by rewritten
as

3
v = _(B - A) +w (6S)

where

B-C_
W = (_-L--_),i + W2 (66)

and
P

WI ffi _-K'3 (B - C)cos2x

(67)

W2 = 3..KCA - B) COS2a2

The expression for cos X in te_ns of canonical constants and
time t is deduced in [1] and can be written in the form

cos X = D1 cos O* + D2 sin O" sin _* + D3 sin O* cos _* (68)

where

DI = sin i sin & cos O* - [cos i sin & cos(fl+ 63)

+ cos & sin(_ + 83)]sin 0* *

D2 = -cosi sin ¢ sin(_+ 63) + cos_ cos(_+ 63) (69)

D3 • -sin i sin Z sin O* - [cos i sin & cos(fl+ 63)

+ cns _ sin(_ + 63)]cos e*

Note that DI, D2, and D3 ate functions of three canonical constants
only, namely, a2 = h, a3, and 6 3 and contain t explicitly only through
t and fl, which are both linear in t.

q
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A su!table expresion for cos a can be derived similarly. From
spherical trigonometry,

cos s = cos ¢" cos #H - sin _" sin ¢H cos 8" // (70)
and

cos 8,|= cos i cos 6 - sin i sin 8* cos(fl+ 83) (71)

Introducing

EI - cos(_* - _H) = cos i - cos eH cos 8* (72)
sin 8H sin 8*

E2 - sin(c* - _H) =.sin i sin(n + 63) (73)
sin 8H

Equation (7) can be written in the form

cos e = El(cos _" cos _* - cos e" sin _" sin _*)

- E2(cos _" sin _*
I"

+ cos e" sin _" cos _*) (74)

Note that E1 and E2 are functions of only three canonical constants,
namely, _2, a3, and B3 and contain t explicitly only through _ and _.
It is important to note that D1, b2, D3, El, and E2 do not contain
the moments of intertia A, B, and C. _us, these coefficients can be
treated as constants when cos × and cos a are expanded in Taylor's
series about their values at B = A. The reason for the expansion is
the angles _*, _', and 8 _ for the unperturbed triaxial body are no
longer eith_,r constant or simple linear functions of time (as was the
case in the uniaxial problem). Thus, since difficulties are anticipated
in the integration of the perturbation equations, attempts are made to
linearize the arguments of the trigonometric functions which will appear
in the integration.

Introducing the notation

f(X) -= cos X
(7s)

= cosa

fCx) and g(_) are treated as functions of B and are expanded about
the value B = A. Using prime notation to indicate derivatives with
respect to B, one has

fCx) = fCB) - f'(B)(A - B) + _f"CB)(A - B)2 + OCA - B)3] C76)
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; where

feB) = DI[COS8"]B= A + D2[sin O* sin _*]B=A

+ D3[sin O* cos _*]B=A

f*(B) = Dl cos e + D2 sin e" sin I*
_" B=A B=A

+ D3 (sin 6" cos _*) (77)
B=A

t_CB) = D1 cos 6 + D2 (sin 8" sin ¢*)
: B=A B=A

+ O3 (sin O* cos _*
B=A

and

gCa) = gOB) _'(_LA - B) + 0[(._ - B) 2] (_8)

where

g(e) = ez[cos O* cos _* - cos O" sin ¢" sin _*]B=A

+ E2[cos _* sin ¢*

+ COS O" sin ¢" cos _*]B=A

_._ ¢* ¢" )] (79)g*(B) = E1 (cos¢*cos - cos sin_*sin _*
B=A

+ E2 i_"B (cos ¢" sin ¢*

+ cos O*sin_* sin _*)l£ B=A

In Eq (78), only two terms are carried since gCa) is multiplied by
the £act r(A - B) in W.

Equations (66), (67), (76), and (78) yield

(s- c'_,. o[(A-_),]i w . _A-_)-lu*w2t* c8o) ,

; !
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where

3K
•W_u = -_-(A- C)[f(S)]2

W2t - 2 (A- B){2(B -C)f(B)f'(B) + [g(B)2]}

3_

:_ - _-(A- B)2{(B- C)[f'(B)]2

+ f(B)f"(B)] + 2g(B)g'CB)}

These expressions for WlU and W2t c_r_ be used to study the perturba-
tions of the variables (al, h, a3, gl, 82, and 83) which are given by
the following relations

" (i=1,2,3), (a 2 = h) (81)

L

t

?

t

_ _. - ......... I_-_
!
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ABSTRACT I

" 1

Asymptotic _-olutionstO Novozhilov's equations of shells of revo- {I

lutlon are dez'ivedfor ._xisNetric and first l_uonio loadin_s. The !

-.-.. solutions obtained are valid throughout the shallo_fand nons_llow 1

reglons. 1Stresses in dome-shape4 shells of revolution wlth a d_scontinuity

}

in the form of a circular hole I or a circular rigid Insert! or a nozzle, i

, a% the apex haw been investi_tod. Numerical results are obtaine_ for

spheres, elli._oIds, and paraboloids, containln_ a discontinuity under i

an internal pressure and a _o_.ent. Good correlation between theoretical 1

' 1an_ experimental stresses is obta_nod for the spherical shell, Curves

depicting stress distributions are given, The influence of three types i "

of dle_ontinuity on the stresses of the shells is also Investlgated,

• iv
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i I, INTRODUCTION
f

}
Background

(A) General Theory

The basic equations of the linear theo_ of thin elastic shells

__ have been well developed[I-5]*, These equations involve the deformation-

displacement relations t the equations of equilibrium and relations

4 between forces, momeuts and the deformation l_rameterso The derivation

of these equations and methods for effectin6 solutions, especially the

• deduction by means of complex transformations to a fourth order system

of _Ifferentlal equations, are briefly outlined in the Appendix.

(2) Shells of Revolution

The basic equations for shells of revolution can be deduced from
?

those of the general theory of thin elastic shells by proper choice of a

coordinate system and Lame' parameters. There are several methods of

reduction of tl_ basic equations to a system of e%uations fred which

solutions can be readily derlvel.

! Axts ymmetrio Doformation

i Reduction of the basic equations to a set of two equations which •

: relate the rotation _ and the transverse shear N1 was firs_ obtained by

Reissnerl6Ifor spherical shells and 6enemlized by Meisaner|?) for shells :_

of revolutions The procedure of this derivation is also siren in reference

|_), By similar procedure, Naghdi and DeSilva 18] extended the work of
_ I_Lt !

• ; ..bere.sid. the to thereere.cs..

i ,

?
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Meissner and obtained two equations which, for uniform thickness and for

some classes of variable thickness, can be combined to give a s_ngle

complex differential equation. Novozhilov_2|, from the approach of the

complex transfomation, obtainzd a 8ingle differential equation, which is

valid only for shells of' uniform thickness.

:- |

_:_ Exact solutions to these equations have been derived for some parti-

cular classes of shells of revolution, such as circular cylindrical shells,

conical shells and spherical shells_2,3,5|, of which the curvatures of the

generators 0£ the middle surfaces are either zero or a constant. When the

• curvatures of the 6oneratom are functions of position, as is the case in

ellip_oidal, l_raboloidal and other shells of revolution, the exact solu-

tion _comes prohibitively difficult. Development of approxim_te solutions

such as asymptotic solutions is indispensable to the analysis.

The method of asymptotic integratlon has been widely applied to

obtaining approximate solutions for shell eqt_tions, which for shells of

revolution may be transformed into the form

7# "{ p' * (l-l)

j where A is & le_ p_maetere The asymptotic characte_ of the solutions
l

I of F4.(1-1) as A approaches infinity can take many different formsdependL_ oa_ the _opertiea of p(e) and q{e). However, three cases are
1

usuall_ encountered in She equations 3f shells of revolution. The first

case, the so-called classical type, is an asymptotic solution of' Eq.(l-l)

in which, on,some interval ol_e_2,p(O) and q(O) are _oth _ounded and

p(O) is also bounded from uro. The second case is an asymptotic solution

of _L.(I-I) containing a turnl._ point. In this came, _(0) vanishes at a
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point 80 within the interval 81.<8 .<821such a point is called a turning

point, The +hird case is an asymptotic solution of Eq,(l-l) containing

a sln_ular point, In such a case, tPere exists a Po_,_t8o in %he interval.

:- 814 8 .<82 at which q(8) may have a pole of first or second order and p(8)

contains as a factor (8 - go )a where a is a real nonne_ative constant,

and p(e) and q(8) are both bounded in the rest of the interval, The solu-

:_ tions of these three cases have been investigated extensively by LangerLg|

and Olver Ii0,11]. The first case occurs in the differential equation for

shells of revolution with two open edges .here the region o£ interest lies

in the nonshallow region (large _lues of 8). The second case occurs in

the differential equation for toroidal shells, and the third case is encoun.

tered in t_ differential equation for dome-shaped shells of revolution

where the region of interest lles in the shallow region (small values of

8) including a sln_ular point at the apex.

..... Asymptotic integration of the third case has _een applied to the

investi_tion of ellipsoid&l, l_UCaboloidaland other dcme-shaped _hells

of revolution. Naghdl and DeSilva _2] applied this method to the study

o_ deformations of ellIpsoldal shells of revolutionof uniform thickness

under axisymmetric loadin_. Solutions valid in the shallow region were

o_ained in terms of Kelvin functions, Clark _nd Reissner [13]ob+_ined

' the solution based on the bendlng theory for complete ellipsoidal shells

of revolution subjected to _iternal pressure by the use of small-parameter

_, expansion, Deformation of par_bolo_d_l shells of uniform thickness

subjected %0 & load uniformly distributed over a sm&ll region about the

} apex and el&aped at the open edge was studied by DeSilva and Ar_r [14],
a

: Study 0£ d_ae-shaped shells of revolution subjected to axisy_aetric loading
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Application of the first case of asymp_otlc solution which is valid

:. only in the nonsl_l!ow region _-lasmade byNovozhilovinthe study of non-

" _h_llow shells of revolution under axisy_mett-ioloads,

_ Defoz_.ation

There are three basic procedures in reducing the basic equations of

shells of revolution subjected to arbitrary loads, In the first of these,

the basic equations are reduced to three differential equations which relate

the displacements u, v and w. This procedure was employed bj Vlasov [1]

and Donnell I17]_ deriving the gove_n_ingequations for circular cylin.

drical shells. Stslle 1181also used the same procedure for reduction of

_. the basic equations of shells of revolution under nonsymmetric edge loads,

and obtained, by neglecting the transverse shear terms in the first two

equations of equilibrium, throe differential equatiuns which relate the

- ..... displacements u, v and w, The membrane and bending solutions that are

valid throughout the shallow and nonshallow regions were obtained by means

of asymptotic integration. In the second, a stress function is introduced

and the governing equations are reduced to two differential equations which

: relate the stress function F and the normal displacement w, Reissner [19]

"- employed this method and obtained a set of two equations for _mall defor-

matlon of shallow spherical shells. In the third, the basic eql_ttlons

'_ are reduce_ by means of o_aplex trans_c._ation developed by Novozhilov_]

to two differential equation which relate to two _om: _ functions, The

IEocedure of derivation is given in the Appendix and in Chapter II,

As_mp%otlo solutions to Novozhilov"s equations valid in in the nonshallow

re6ion were derived by 8ohile [20Jfor exterr_l loads Inoludlng (a) sinusoi- ,

j'

I- ...... -7
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-_ dal loading and (b) higher harmonic load dls_rlbution. No literature on

solutions to Novozhilov's equations that are wlld in the shallow region

is _mmm to the author.

(C) Application

Numerous investigations have been made on the application of the

solutions mentioned previously to engineering structures. Attention here

will be limited to dome-shaped shells of revolution having a discontinuity
l

of thetypes,(a)a hole!(b)a rigidinsert!(c)a nozzleattachment.

The problem o£ the stress distribution around holes in shells has

been investigated by a n_qber of workers. Hemisphe_-icalshells with a

circular opening at the vertex subjected %o axisymmetric self-equilibrating

forces were studied by Calletly [2_ . An elliptical opening in a sp}_ric_l

_hell under integral pressure was Investigated by Leckie and Payne[22] who

expressed the equation in elllptic_l coordinates and obtained the solution

in terms of Mathieu functions. For a more general case, Savin [23] investi-

gated the stress distribution around an arbitrnry hole with smooth con-

%our in thln shells and obtained solutions %o the sh_ll equations which

had been transformed by the use of conformal mapping into a coordinate

system such that along the contour of the hole one of the coordinates is

constant. The 6_neral method was described and applied %o a cylindrical

shell with a oircul_r hole and to a spher%c_l shell wlth either a circular

or an elliptical hole. Further studies t243 were made of a spherlcal shell

under internal pressure woakened by an elliptical hole, square and %rl-

e_4_ular holes with rounded corners,

Spherical shells with a oircula_ rigid insert have _een oonsidered

by"BiJlaard|25] and, with an elliptical riKid insert, by Leokie and Payne _
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i

I [221, and Foster _26J.
/

The effect of local loading on spherical sholls in which external

loads are transmitted from a nozzle radiaIly attached to the shells has

been investigated extensi_ly by Bijlaard[27] _.nd Leck_e and Pa_e [28].

Studies of the c_se in which the nozzle is obliquely attached to a

spherical shell were made by Jolmson [29] _ud Yu, Chen and Shaw [301•

:_ All the investigations mentioned here are restricted to shallow shells

with a hole Or a rigid insert, the size of which is small compared to the

radii of curvatures of the shells so that shallow shell equations hold

for the problems under consideration. The _se of a nozzle attachment has

been also l_mited to nozzle-to-spherlcal shells.

As far as the author knows, little attention l_s been given to

systematic studies of stress distribution in nonshallow shells of dome

shape around a discontinuity of a size which is not necessarily small

compared to the radius of curvature of the shells.

Statement --°f--.-theProblems
e

Investigation offthe following problems is suggested upon the review

made in the preceding sectionss

(i) Derivation of solutions to Novozhilov's equations for shells

of revolution which are valid in the shallow oad nonshallow regions under

axlsymmetric and first hamonlc loess, This extends the work of Novozhilov
,]

' who derivod the equations and obtained solutions valid only in the non-

shallow region. The development here also differs from that of Steele in

that it does not neglect the transverse shear terms in the fire_ two

equations of equilibrium, _

f
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.v (2) Application of the 6olution derived in (I) to the study of the

stresses in lhe vicinity of a discontinuity at the apex of do,_e-shaped

shells of revolution under external loads Includ4,_6 (a) internal pressure

and (b) a couple applied to the discontinuity. The discontinuity is in

the form of a circular hole, or a circular rigid insert, or a nozzle. No

restriction is placed on the size of the discontinuity in relation to the

zadius of the shells. Application to discontinuities is embedded in a

uniform treatment and includes discontinities in geometries on which

little information is available.

; (3) Analysis of the influence of the different types of discontinui-

ty on the stresses of the shells.

For systematic study of th_se problems, the procedures for the reduc-

tion of the basic shell equations to a fourth order system of three equations

are briefly outlined in the Appendix. F_rther reductions to a second

order differential equation in terms of a complex force are derived in

Chay_er II. Solutions to this equation valid in the shallow region are

derived in Chapter llI using the method of asymptotic in_egr_ti,m..

Applications of these solutions to the study o_ pro,_iem (2) are

_ investigated in Chapter IV in which the boundary conditions for each of

the appropriate cases are derived. The study of problea _3) is given in

Chapter Vo

- J t
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: If, COVERNIG DIFFERENTIAL EQUATIONS

A second order differential equation governing the deformation of

dome-shaped shells of revolution and of circular cylindrical shells will

; be deduced from the system of differential equations (A-27) for both

axlsymmetric and first haraonlc loads.

Shells of Revolution
_-_ - - m | | ,

' The coozdinate system chosen for shells of revolution will be 0 and

_ which determine the position of a point on the"middle surface (Fig. 2-1a).
2

Let RI be the radius of curvature of the meridian (_ = constant) and R2

be the length along the normal to the middle surface between the axis of

revolution and the middle _u_face. R2 is sometimes referred to as the

second radius of curvature. Thus, the first fundamental form of the

surface iS (Fig, 2-1b)

(ds)2 = (RldO)2+ (R2sine d_)2 (2-1)

By comparison of Eq.(2-1) with F4.(A-I) for shells of arbitrary shhlm

one sees that

4, .e, as= #

• A1 = aI A2 - R2 sin O
l

The last two of the conditions of Causs-Codazzi, Eq.(A-2), are identically

satisfied, since R1 and R2 are functions of 8 only. The first condition
%

reduces to

(azsine)'.R1co,e
8

=.

[

/

{
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• Z

al, radius of curvature of the line _ = constant.
e

R21 length _tween the axis of revolution and the
middle surface,

(a) ":_"

, (b)

Fig, 2-1, Coordinate system of a shell of x_voiution

i

I

i I °

. >,i .'
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i0
++

where the primeindicatesdifferentiationwith respectto _. By use of

_ these relations,Eqs.(A-27)and (A-29)as given in the Appendixare

expressesby

,: _ +,o- .,+,, R,,*,,o-+,_ Wz_o='J+,

+ e_,+ +, +..m---_,-_ ++:+..,;T : - & (,--+a)

R, R. +
i

O,
I+,E,- "_ Q = ( _ -#?+ ) ++ ".-3+ 7_-

, +,*-'_W+++.to +_, .-_-_(P+-_u_,)
t

_'" R,,_I (_;-o_j= +--7+-¢e,-T,") (2.._,)

R,.+._.+o+(;;;';,";""¥/-_,,T+"'+)=+'_"te''T,')

R,+o _"-"_'_"_: +h

_', _ '+r '(...J-.__'_ + _--(_#-O,:o_e),,- ; " s""N_N _.oW-_)J R,R,,,._"_ TkT(s- )

where _, _i' T2' and g are complexforcesdefinedby gqs.(A-26)lql' q2'

and qn are components of surface loading in the directions of _1' _2' and

_n, respeotivelyl g,. @a 3. _,. _ and +_are the complex deformation

. parameters of che middle surfaco _nd _, 9, and g are the complex displace-

mentsI and

___.i) t_ '/_'l 9r ). , t _'() (z-S). a, ,-+ +(_ m,+Z.,-_._+#_.+,e,,--..T;+

,+ . (A) AxlsNetrlc I)efozmati_on

s
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: Because of tho assumed symmegry all quantities are independent of
• !

¢. If, in addition, ,:

_ _ ql " q2 " 0 and qn " P " oorstant •

then, Eqs.(2-_ta) reduce to the form

• "g'. 2 _,,eo,__-o (z-6) !
,_ ... x, R,

• i + _._T,_;_,,(f). p
R, Rt

where

coz"O !A, ) - _ ;+l R,R, R; R,')c ,' (z-7)

and the primo indicates differentiation with respeo_ to 9. By use of th6 ,

__: first Gauss-Cod.azzlcondition, Eq.(2-3), the sec_n_ of _,q8.(2-6)may be

written in the form

..... d _ d f /?.z$,.0 )
----- + 2 _O

3 R, _/nO

: which, upon integration, has the oolutlon
#

: el _'d
where _i is a complex constant of ir.;sgration. Since , due to 8ymm,_try_

vanishes on an ed6e of 0 . constant _i must be set to zero.

Next, the solution for the auxiliary function8 _1 and _ (see _qs.

(A-26) in the Appendix) will be obtained _.roi_the first and the third of

: Eqs.(2-_). By use of Eq.(2-3) the first of Eqs.(2-6) may be written in

the form

. . I _R,,.o f,)' - .r_, _, ._,,._ "_'-o (a-9) .

• i
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Eliminating 92 frolaEq. (2-9) by multiplying the third of Eqs,(2-6) by

cot8 and adding it to Eq.(2-9), and multiplying the result by RiRzsin 8,

there results
/

(Rz,,.eP,)'.Rzco_8_. ;cR,R_s,.e(_ "P'--cotsa(-[))"R,R._+ep (2-10)

The first two terms of Eq.(2-10) say be combined to give

[R....eZ)'+R,:++o#,--'_'P..,.'o_,fstno

and the third term of Eq.(2-10) can be shown to be equal to

_ ;: I R._,.e_seT,),st,;8 t-_t

Thus, Eq.+(2-10) reduces to

Rz
(R..,.'.#,f-;+[-E,,.o_of';=p_._,-o_.o (2-n)

NOW, introduce a function U defined by

R,

EC+,(_-II) becomes

0' = _R,Sz_,-eco,e

q

It follows upon Integration that

,+

The fourth of F_s. (A-26),i.e.,
i

- Z + % (a-14) -.

tea be substituted into the third of Eqs.(2-6) to eliminate T2" Also, _i

can _ eliminated _y using Eq.(2-12). The final result of this manipula-

tion is a second order differential equation on T which can be written as

];

, I
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(_L..JL) 0 +ic I_otof')+5/" i<_(.._):,pR, R, (R,,,,,----_o_,, N-
" or after rearrangement

" ¢'. irz R, R;. R; -V - ;___R"/:c_)(2-i_)E- 1)_oto-_, 1?"* i/z,'-T R,_
where

• Ffe) = PRz-(1..._j_) _. (z-z6)' #, R, s,--;'C_-.

Thus, the axizymmetrtc defcrmatir,n of shells of revolution under internal

pressure reduces to the solution of the second order diffez_ntial equatlo_

(2-15), F_,qs,(2-12) and (2-1G) carlI:_written as .

= + R,:,,-'d . (2_z?)

\

,q

.'- m

l

b
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_ _' (2-z9)
, I ' i;',1' ; ---g,l-g c_ - -.- --_-(T,- T/)

. e._oeee(_,_ g) = ;- ;R,R, _ ( #, - 7,'i

The last one of Eqs.(2-19).ay be wrlttenin the fore

I ; R, �X�|�o_f, - T,*) (2-20)- R_(_'-_) " ,e-"_"

Comparingthis equationwith the third of F/Is.(2-19),one observesthat
4

these two equationsare compatibleonly if

.._,[_,,to,,o_'_,-r,*)l'_ r,- T,*

Is identicallysatisfied. Eq.(2-21),upon substitutlonfor T1 and T2 by

theirexpressionsfromEqs.(2-17)and with the considerationof Eq.(2-15),

..... _ecoaes ..,

_-_-_,.,o_'._ I., ,o._c.,_-_T,'_1_,_----_-_,--_ _o,,_'
This equation is satisEiedif

q

R,=,n'a

_ (a.n)

R.,,.'_= 7"/* g"

Coalsrieonof the first of Eqs.(2-22)with the third of Eqs.(2-18)yielda

froawhich it £ollous %bAt

" _'2 " C2 " real constant
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(B) Non-s_metric Defor_,.,ation- _ Loads only

In that which follows, equatlons will be developed for the non-

symmetric deformation of sh_ll_ of revolution due to edge effects only.

In addition, deduction to a single second-order differential equation

will be obtained for the special case where the resultant edge loads

consist only of moaent.

Since the surface loads ql' q2' and qn are zero, Eqs.(2-L_)become

"_, "_" + Re R_,._:,,o9¢ 4. i c . . o (2-a3)

R, R,

Followlng the procedure of reduction to a single second-order differential

equation for symmetric deformation, one may introduoe, on the basis of

Eqs,(2-8) and (2-12), two auxiliary functions

R, -?.,

P = e:.,.'o_ ' ,

• Eqs.(2-23), through certain manipulations with the help o£ Eq8.(2-3) and

(2-24), may be reduced to the following ayatem of three partial dlfferen-

t_l equatlons[2] of which the first two involve two unknowns 0 and _,

_,_ccrc_)+ 'f. _.e_t.;;..--__L#_,,,,,,,o" o (2_,_)

+ y...OO_;_ e_co,O ----_f. o

i
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where

_c _. #,Rzs,,,a90 _, _ e , + R=s,,,"o _qz

Thus e the analysts of shells of revolution subject to any ty_e of edge

loadinK has been reduced to the solution of the system of Eqs.(2-25),

• However, the following will be restricted to the case where the resultant
?

edge load at 0 = 90 (near the apex) of a shell of revolution is equivalent

to a moment. For th£s l_rticular case the auxiliary functions Tj 0 and

_= _ may be expressed as

: _ = "F'¢e_ co=¢

0 = 0"_.)co=O (2-27)

Substitution of Eqs.(2-2?) into Eqs.(2-25) yields

t __.} Ie,cO'). [r-,d _,. R, =,-;_1f" " o

--._c_,r'T'_+ "T"+(-_;, I t O'

_. . R;_,.,O0". _=e,,_osO¢" - o• R e

• _here

c cr,¢ ).. t fR.=,,,,O

The first two of Eqs. (2-28) may be uncoupled by subt_cting the second

e_uation from the first and then Introducing the new function

Into the result° In this way there results
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Expanding this equation with the help of Eq,(2-29) one arrives at

.R/_,,o_, ),. _._R.__ _.o (2-_2)' Rt sI.O

- It may he verified tNt ono of %he solutions of Eq,(2-32) is

Rzs,.0

- The seoon_ solution may be obtained by assumln 6

_. AR.,,._ (z-33) :.

where A is a function of 0, Eq,(2-32) upon substitution for _ from Eq. :

(2-33) reduces to the form

1 A' )'=O
• : ( R,s,.O

! from which it follows

Thus

i

Ellmlnatil_ 0° in the second of Eqs.(2-28)by Its expressionfrom_q.(2-30),

L
: I one arrlvesat the followingdifferentialequationin a sINle unknown_o

c - -6,' _" "" 7"""_, R. s,'io

which may 'be written in expanded forx_

where
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Onc_ _o and _o have been found the auxiliary function _o can be

found from the thilxlof Eqs.(2-28). It is noted that, by letting c . 0

in the third of Eqs.(2-23), the first of Eqs.(2-2g) and Eq.(2-30), one

arrives at th_ membrane th,_orysolution.

O" - w. T," .. wR,.,,,'i
_v' (2-37)W

And Eq.(2-36) becomes

F,to)"_-r,'"• T;"

There remains the evaluation of the dlsplaceNent8 which fo_%his iTacCl- ;

oular problem are assured to bs -_.

Q

. _ ,, _,ce) cosO

= g,Ce) s,.# (2-38)

On substituting these expressions into gqs.(2-4), a system of equations

relating the complex displacements _i, fl' _i to the complex forces is

- o'otained , :

• ,_,,+_, .-_h (f,'-,._._

R, :too Fh (2-39)

_," _, " _i_ ('_;- T"'_
' (--L' _,,V,)-_(_v,'-O,),

_"_.!',1._. +o,1}" _ " '_,R,_,,.O(o,• _,c_el--_T/{_"- s")

;
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This completes the reduction of the basic equations of the 6_neral theory

to the governln6 equations for shells of r_volution pertaining to Investl-

gation stated in Chapter I.

Circular Cylindrical Sholl_

.: The coordinates identifying the position of points on the middle

! surface are a and _ (Fi6.2-2) and r0 is the radius of a circular cross _.

section. Thus, the first fundamental form of the surface is

(ds)" .. _[r.d, )me• (r..,/z)' (z.,,_o)

from this one may verify that

ag m CI, _il zm /3

. (z-_z) J

:_ A, - Aa = r. .

Hence, the differential equations (A-27) for complex forces may _ written

..... in the form

-2

4. 'a_ z_,";_"_"" "_'.r.

" where

464,, 12 (/-_ua 1(._1 a _

I _',, s'r) (-_3)! 4( )- -----t ----- 2

' ? i ,I, _
e

The oomplex.forces in these equations are rela_d ,_,o the forces and
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Fig. 2-2s CylindrLcal Coordinate syste=
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moments by the following expressions

: T,_ ._,.tz_-,oM,

- r, i-,,_

.S - S + ; 2hz H

Also ql' q2 and qn are the componen-_ of the surface loading in the direc-

tions of _1' e2 and _n' respectively.

The relations (A-29) between complex displacements and complex forces

for circular cylindrical shells (taking into account Eq.(2-41) and PI "'_,

R2 • to) may be expressed in the fore

r. "ap +'_)=Fi (_-/"
2¢1+_u)

(z.45)

e t o_ =i zba

_, -_.-_ - -..--K ( _- s,._

(A.) Axis_metrlc Deformation

On accoun% of the assumed symmetry all qu_ntitles are Independen_ of

-/

, and q2 • O. Thus, Eqs.(2-@2) reduce to

%' - - J_,r.

•, The prime indicates the derivatiw with _espeot to _, From %he second of

t
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_ °

=_ Eqs.(2-46) one ob_ins, in view of s_etry

• _ - _l - o (2_)
; The.first of Eqs.(2-_6) gives

: El_inatir_ T in the third of Eqs.(2-_6) by its expression in teras of

_1 and t_king into consideration Eq.(2-_8) one arrives at a second order

differential equation for a single unknown T2

The displacements can be obtained from Eqs,(2J_5) whloh_ for this

case, reduce to the for&

t /_,= ;?T (f,-_ _ .
(z-50)_, _--'.

r,

(B) Non-symmetric Deformation

Eli=in&ring 8 from the first two of Eqs. (2-42), there results

• ZL'__.,_,_" *'_ =r.(_,-gJ '
Substitution in Eq,(2-51) for T2 by its expression fro_ the third of Eqs,

: (t=_2) yields & fourth order _rtial differential equation In a single

unkno.n

=_(_), _ ,__,_ I__&_

: = Thus_ the analysis of the non-s31_aetric deformation of & circular oylin=- .

drical shell ha_ been reduced to the solution of this equation. Once T

has been obtained the complex forces _ay be fo_md from the following

equations _
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i

,?
i

As was done in the non-symmetric deformation for shells of revolution

0 the problem will be restricted to that of pure bendlng. For such a case
g

qI n q2 " qn " 0

and the complex forces can be assumed to be

(2-_)
_=_.(.)co_# , _ = _.(.) s,.:;

On substitution in _q.(2-52) for T by its expression from the first of

_ Eqs.(2-54)...there results an ordinary differential equation for _o

f'" + (;z6z- z) ?'" = o (2-55)

where the prime denotes differentiation with respect to d,

The complex displacements for the given case are assumed to be of

the form :
,#

On substitut._ngthese expressions into the first three of Eqs.(2-45) the

follow_ng equations are o_talned for the determination of the complex

displacements El, _i' and W I.

; >

[
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I III. SOLUTIONS OF THE COYE_ING DIFFERENTIAL EQUATIONS

:_ In this Chapter solutions are obtained to the governing differential

equations derived in Chapter II, In addition, formulas for forces,

'momentsand displacements are listed in tables,

Shells of Revolution -. _|_ ,

(A) Axisymmetrlc Deformation - Internal Pressure

The analysis of shells of revolution under internal pressure has

_een reduced to the solution of the second order differential equation
e

(Z-lS)

_'.|,,_-,_cot_-_'],_.¢,.____R,'R,_ ¢'J--aR';:'°'e,c(2-15) .
where

, :.)6 . T,'.7/ (z-16)Fte)=R,p-_R, _, s,-_e

It is noticed that the coefficient iR_R2c of T is a"magnitude of order

R/h, For convenience of analysis this coefficient will be expressed in

terms of a l_raaeter A

; ,,_; R; 0-_)

where
J

and Ro is the_in_um radius of ourvature of a shell of revolution, For

thin shells Az is a large l_ameter,

! ,

.i i
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(a) Homogeneous Solution

It is well known that a second order differential equation of the

type

rr

,) .

may be reduced to the fora

"4 m_ = o 0-3)

_ by the transforaation

where

f = $ e/J,/2dx

P' p, (3-_) _

Now, let Y be the solution of the homogeneous equation

(z_'-l)co¢o- _"'_' i,zA',_ '-R, T,} . ,, =o (3-5)

Applying the zasults shown above to Eq.(3-5) one obtains

where

i

, mto_=_,'_---_"z+eo='o+ R, e' R," sA,_(3-,") :
R_R, 4 sm_o O_,s.,_a ZR, e R, 4 Rl

The condition of Codazzl has _een used in the above gransfor_ation.

Nt i_ noted that the coefficient m(@) contains a singul_r point at

e . O, which characterizes solutions of _q.(3-6) as two complo+_ly dif-

ferent types. The first type is an asymptotic solution of clasalc ty\_ ,-_

which is valid only in the nonsh_,llowregion, i.e. large ";_'_c_of @+ "_

- _ I
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T_ other type is an as)_a_otic solution valid in all regionsincluding

th_ singular point 0 = 0. Attention here will be directed more to the

second than the first, since the problem of interest is that of the stress

distribution near the anex which belongs to the second type.

As regards the first type of solution, comparison of the magnitude

of each term in re(e)shows that, if the region of interest lles in the non-

shallow region, the first term is 0(."-z)and the remaining terms are 0(I),

provided the shell is sufficiently smooth so ths_ the derivatives of R1

and R2 have the same order of magnitudes as RI an_ q2" Thus, Eq.(3-6)

may be written in the form

• ,_"R'_ o,A-,,)]_ o (_-8)["" [ " RtR.( I-, =

Through the use of the transformations

a #

..... and by neglecting terms of order _=in comparison with unityp Eq.,(3-8)aay

be reduced to a familiar form

aa& + _, = o
de;

which has the solution

e " e_;e'

Expressing this solution in terms of the original variables ( and 0, one

obtains the solution of Eq,(3-8)

= i*',." R;- e" (_.9)
where

: R# dO
111_)= A

• ! ,; .'.
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Hence

• I ¢-_(I-;)tI t

"7" _:'_,,-",o[ e',e . ?,e-_ _'';'' ] O-lo)

in" which CI and _2 are complex constants of integration.

As re6ards the second typo of solution which is valid in the entire

reEion includin6 a singular point O = O, it is necessary to rewrite

_.O-6)Inthefore
5

[" * [ ; A'_'co) • _.o)] _ = o O-ll)
where

R.e, O1z)

^ - _,.'a( R, "4" " .,_,

It was shown by t_nngor{9] Lhat there exists, correspondl_ to Eq,(3-11),

a relatcd dlfforenti&l equ&tlon whose solution is asymptotic with respect
/

to the solution of Eq.(3-11). Tho do,aainof validity of thls as_ptotlc

solution depends on the function in the cofficient of _ , l.e., _l(O) and

J, which meet the following roquiremcntsl

(i) Within the inter_al I@ which includes a singu_r point 9o, _t(@)

Is of tl_ form

_'(o) " (o-e.)"'@,'_o_ : (0-o.) [ t..,_e-o.)+ez(e-o.)% .... ) T

with d _etn_ any reol positive constant.

(1i) Within I@, ^(b) Is o£ the form

A, S,
^(o) - to"---o.--_+ -to-e.i + C,(o)

i with Al and B1 any constant8 an_ Cl(O ) is analytic and _ounded

• uniforal7 with respect to A in I O,

f
/

A
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If the constants _, and B1 are both zero, the differential eq_tlon will

_e defined to be norm_l. Thus the normal form of the differential equa-

tion which reflects the foregoing requirements can be represented by

d-z -z A,
("._ [ _#(o-o.) 0���"+co-o,c,¢e)]_ = o (3-13)

If % and Bl a_e not zero, the differential equation may always be nora&-

llzed _ substitution

Then, accordin_ to Lan_er the functions

are the solutions of the related differential equation

A, n(e)1 O-15)_'., [ _x'_' *ie-e.)' + _ = o

where4_(O) is an_lytlo and bounded with respect to A in Is! Je(0) and

Yp(_) are Bessel functions of the first and second kinds and

P = c/d, c =(/-4A,) _

.¢ , 0-16)

I2
It will be shown that the f,,uctlonsin the ccefflcient of _ in gq.

(2-11) satisfy the requirements stipulated above, provided the shells ax_

saooth at the apex, i.e., if
i

i RI, R2_R* as 9 h)c

or aore spec'.flcally,if

i n;,/_z = _., f(e) _29 (:_47) ,

i where f(e) is analytic and bounded in I e. For such a shelll

T
I

, k
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By use of tho co,_titlon of Cc_tazzl _nd Eq,(3-17) tho preced__ng eq_t_on

may he _rltten in the form

: R,

R;_ ,_,.'e[_.,.o_o_o,(_,,.'e/] (3-18)

As an example, shells of revolution 6enerated by rotation of the second

order curves

R"
Ri = ( t _ rs,.ae)'/z

R- O-_W
Rz = (I + ;-_/.'e3'a

e

satisfy the condition given by Eq,(3-17). In fact, these curves generato

the clas_es of surfaces Includln_ (i) sphere for _. O! (ii) Imrabololds

for r = -ii (ill) ellipsoids for _>ll and (iv) hyl_rbolotds for r<-l.

Byuseof_s.(3-I'/)and(3-z8)A(e)inthesecon¢o__4s.(_-_)

reduces t;o

1 I- Sp,t_ A,<o) 0-2o)Ale) " 4 _,4_e

and is bo_ed in I_, and Eq.(3.-_l) hecoaes

, ,_ _-s,..,- .,. ^,_o)J_ ,, o (3-z_.)

To _ake this equation fit tb_ fora of S%,(3-13)_ a new independent

variable x wlll he Introduced

Thus, F4.(3-21)_ocomos
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: "'_ _" "_ -,.r4ĵ '--_ ., ' ,-_x,[ _ -. ' ,-^,)}_.-o
:_ (3-22)
, Now, by aeano of tho transformation

{ = f'c'- _,'_¢'_ O..a3)

_1.(3-22) =educes to the desired form

dxZ t - :<_

I .._ q I^' : ,-_, __^'" * i ,__r) (:345)
)

is boundedin ixl < 1, t.e,, 04g<x. From tht_ one finds
:

C = (t-4A,)VZ=o, t" • c/d : 0

where

: R, ,.• _CO)= _ _ d8 (3-26)

Thus the asymptotl_ _!-,,_onsof F_,(3-24) are glven by
e

y.(.;41

which, in texas of IE, becomes

II' I :]i, e; '1 Y,¢;4

Jo(i_) and Yo(/tq) are Bessel functions of the first and second kinds

whlnh are the solutionsof the differentialequation

. y-., ..L y, + _.y = o 0-29) _,,::
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Since these solutions are not tabulated for complex arguments, they will

be transformed to modified Bessel functions which are well tabulate_ in
z

terms of Thompson functions, To do this, let

q ,, i'Iz "x

Equation (3-29) is thus transformed to

_-_- �__-_-- _ = o
d Xz _ d_r

which has solution

where Io and Ko are modified Bessel functions of the first and second

kinds and are related to Thc,_psonfunctions by

I

I.(;'7.)= Bar_ - ; eelq
, O-3o)

Using the relation between _ and Y given by Eq,(3-?) one finally obtains

thesolutionofEq.(3-5)tobe

2 - x.d'#,)] (:)-:)l)

It was shown in [9] tl_t for A ) i, Eq.(3-31) furnishes asymptotic

solution of Eq.(3-5) to within terms of relative order I/A uniformly on

an interval 0_"%<wprovlded the function _%_@)= 0(1) on the interval,

(b) Remarks on the Char&cteristlcs of th.__Solution

The following observations on the characteristics of the function

are of Importance.

(i) The coefficient outside the bracket of Eq.(3-31) is a non-zero slowly

varying function of @ while the terms in the bracket vary rapidly with
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respect to 9. In view of this fact, this coefficlent may be regarded as

a constant in performing differentiation, admitting the same order of

error as the asymptotic solution. This consideration results in a great

algebraic slmpllficatlon.

(ii) The order of magnitude between _ and its derivatives obeys the

: relation

+ Thus, the differential equation, Eq.(3-5), is essentially equivalent to

the following in the non-shallow region.

.p- z +,•,, ,+'_'p "P =o
++

(lii)_t
Ro"J+ ,.I ,/z

+, = (--_) (+s,.-----o) +

By _gardlng hI as constant in performing differentiation i+ may be shown +

from the property of Bessel function that the solution _ given by Eq.(3-31)

satisfies the differential equation :-

Transition to this equ_tlon from Eq.(3-5), i.e.,

5"" = ;"+"+ o

is made possible by the assumption that the shell is smooth near the apex.
$

Thus, in the _' term, one may approximate RI/R2 by unity and neglect the

terms of 0(9) in com_arlson with I/8, since th'_ term is signlfi._nt only

in the shallow region+ However, it should be noted that one can not make ;_

the ssae approximation on the .IAstterm, which is of the order At_IO(Y;.,
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Since in the expression for _z i.e.,

Ro R=

R1/R2 may be far zemoved from unity in the non-shallow region,

(c) Reduction to the Solution of Spherio%l Shel___

; The solution for the spherical shell is ob%ained from Eq.(3-31) by

letting

RI - R2 - Ro

and _ =AO

Thus, Eq.(3-31) reduces to ".J

_.__ { A)( e ._ loci'.)K.ci" ) O-3z) :
If attention iS restricted to shallow spherical shells,then, one may write

_I.8= e ( / + _ Oz+...)= e(/+ o(A"))3: '

which may be approximate by 8 within an error of 0(A") if O L_ restricted

!

to the interval 0 .<g._81 = 0(_). Thus, the standard solution for shallow

spherical shell is obtained [19],

(d) C_om_ Forces

With the solution for 9 , the complex forces _re ready to compute, _

In the following the manzpulation will be performed only for the solution _

associated with B, The other solution may be simply obtained from that _

associated with _ by replacing Ko with I0 and Ko with IO,

(
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Upon separating the real and i_aglna_ part of Eqs.(3-34) and (3-35)and

applying the definition of complex forces and also Eq.(3-30), the forces

and moments are obtained which are listed in Table 3-1,

(e) Particular Solution

Let t be. the particular solution of the equation :_

where

, , u . (2-16)F,O_- R,e -( _, #. )-Z_ = 7",+ _"

u . c, + e:,,,'o (2- 31

7" _ . R,p- _,s,,,._ (3-36)" leas.,'a _" U

• The constant C2 will be determined prior to finding the solution _, The

equilibrium of the forces (Fig.3-1) :.

in the vertical direction requires

that

_.,,,a _,_o= _,.s,,,a (3-37)- 1!

It m&y be shown that the left hand / J /_' 0

side Of this equation is the real T1 _2 T1
part of the complex force Vz ._

'_-?'_,o (3-38) ,
= _$t.O-aR+ Fig..3-11 Equilibrium of the

Ii forces in _ shell J"

_ The second tena on the right hand of revolution i
side is deduced froa _-

: i

i

i '
, _ ',.

i .... / -'

1974023186-272



_+

• 35

I I dr4 =R,(_'c #f

whichisthef_t of _qs.(A-Z4)._u_titut_ for_l inm_,(3-38),by its
L

expression from the first of Eqs.(2-17) one obtains

It follo_.+,from Zq.(3-37) that
': ++

f

_" Cz =.0

.... P •
+ F(e)= RrP-(R, RzC

If there were a vertical force V applied at the apex,then, 02 = V/2Vr.

Now, return to the IRrticular solution of Eq.(2-15), In view of

the assumption that RI and q2 are sufficiently smooth so that F(@) is a

slowly varying function, the particular solution may be assumed to be :.

. P" + _ +_+ • ... 0-39)

On substituting this expression into Eq.(2-15) and equating to zero the

coefficients,of each power of A , there results the following equations
%

fOr d@%,erminationof t+*__c,_..•

•

_.co,,, FIO,) ' '
(>_o)

i:.-,,]P*'',,' _ t +I - K,,
n : l, 2• 3, ''"

Having determined t*°'fromthe first equation, t(';_;('),,. may be successively

found from the second of Eqs.(3-40), However, for consistency in the de-

gree of accuracy with the homcget,eoussolution on]_ the first term of

Eq.(3-39) will be xwtalned as the particular solution of ER.(.2-15). In

' %hls way one simply identifies the particular Integral as the solution of
l

<
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= TABLE 3-i

BENDING SOLUTIONS OF A SHELL OF REVOLUTION UNDER INTERNAL PRESSURE

- ) --
u, g_l m

E$ "

! [_ Ker'q

d

Mz: c t,. I g f/_;¢e:_- cI-/.,_l/_z,oro/:,r'q )

+ Bz (-,uKeeq- l_-_)J_& c,_O/¢eiq )J

TABLE 3-2 ,

MEMBRANE SOLUTIONS OF A SHELL OF REVOLUTION UNDER INTERNAL PRESSURE

%

' _ lt-g'- t_] _o ""

, &

I .

1974023186-274



37

membrane _heory, and the homogeneous solution as the solution oZ be_<Ins

theory, Thus, the complex forces {I and t2 are found from the expressions

U e

_'= R,+,,,o+_N _to i"_-.r," O-+z)

; i

They are also listed in Table 3-2.

(

(f) Displacements

The displacements for symmetric deformation may be found from the

: first two of Eqs.(2al9)

(3-42)
cot'O-_N = E--h"l

Eliminating W by subtracting the second from the first equation and taking

into considers%ion tlm relations between co;,_plexforces, one obtains

, ),:¢,._,u) R, i Rz+,_R, _I (3"I+3)s,,o(.y;,_.-) = e,_ I(/ ��)_t_¢'_/*_ "

in which
t

-T=Y°{ 1_

: is the general solution of the governing equation (i-15). Within the
m

admissible ez_or, it has been concluded that tkls solution is the sum of!

the solution of membrane theory and bending theory.

i (i) Membrane solution'

" "..,,.,_ Let c = O, Eq,(3-43) reduces to

s'.o =- ./.,n,)t ,.=L

u. V/,--J s,,,_ _" z JdO (3.._) :_
. and ,:_

1974023186-275



J

38

p • , , r_.)].ucota 0._5)

(ii) ,.-endingsolution

Upon substitution of T by Y Eq.(3-43) becomes

_,.e(5,-T_)=- E-T--[('_ T l.,u

Exact integration of this equation is difficult, however, it is possible

to determine an approximate solution within the admissible error.

Observing the characteristics of the solution mentioned in the prevloV_

section one may write this equation in the form ,

s_.o(T;;-F)= --_ [zcoto_'+"t+,_ R,

,e._.to ( R, r _ i

. = _.J_(R.._)(_',y,,.o
" EA R, g"_, _,.--'-6- :
: It follows that :,

R- ;¢ R,
- f-E,._}#'6 = E_ R,

and (3.',_7)

The real parts of Eqs.(3 :F?)are also listed in Table 3-]..

()B Non-sy_metrlc Deformation - under __Moment +

L

The analysis of shells of revola:,lonsubject to a moment has been

reduced to the integration of the s__ond order differential equation (2-35)

+ -_'--_Z-_'F,+++(z-35) ,where e. Rz ,-

J

L
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F,:ol-_( t___/

-- I

T". _ D

(a) _OUSS SOlutlon

Let 3" be the homogeneous _olution of Eq.(2-35). By use of the

transformation given in Eq.(3-4) the homogeneous p_rt of Eq.(2-35) becumes '

where
l

I""_)' (3-50)( - _'k,, a,

R," _-s,,,9 E, R,
"_'"SA'R--;Z,+ ,7,_,t_;( ' -_,, _'1 _'

• _'+ p, , _;' s t_&')' C,-sz)
+_ee_-_-_,ki,,,}+/i,- "_' R,

The assumption that shells are smooth near the apex gives the relation

(3-17), from which re(e)may be reducedto the form

x.Xz ,;sm,e+ A(e) ' 0-52) ;.

and. Eqo(3-49) becomes

+ I;*'_' - _ +Are)]_ _o (:)-53) ;
' !

where ,i

._; 0-._) :
e.e,

and A (8) is analytic and small with respect to A _u 0 # 8 < w . Them,

wlth the procedure establlshed in the previous section, it is found that

i
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¢ = _ 1-4AI) z = • _ t'= c/d = /

, (3-55)
, J,e =i_A _ae i_

,here

/:= A R, d8

Thus, the as_ptotic solutions of _. (3-53) are given by

" _,d'1,; (3-57)

where 11, KI are ....f.__t e.ndsecond kinds of modified Bessel f_ctlon

of order o_-. Usl,g the _tion between _ and Y" given b_ _,_3-50) one

fl_lly flnds the homogeneous solution of Eq,(2-35)

i _,to, 0-58)
r, d'4 }J

_vr A_ _ F_t.(3-58) funzlshes as_ptoti, solution to within 0(_) on

;_ ".._i 0.<0< _, The foregoing statements on the characteristics

of the solution In Section (A-b) also apply to this solution, which in

this case maj be regarded as the solution of the diffe.._entialequation

- _ _ =o (3-_)

T_ %ez_s with e_fftetente cot@ and ../_tn2e are significant only in the

shallow z_gton,

Theco_le_ for_ e,"is com_d fro_ _._.(Z-_) _nd _,"_ro._Z_,(_-_

, _,.,'o_' )

Prom the tht_ cf Eq_.(2-28) anl the second of Eqs.(2-2h) one obtains ;_

I I
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* = R,s-"_nO(" cotO,_* �_g)

-;;7 g [A,,'- _ _t #K,1 (3-6,,)

Sel_z_tton of the real and t.maginazT _ of Eqs.(3-60)and (3-61) yields

the expressions for the forces and moments which axe listed in Table 3-3.

(b) PartieuL%r Solution

Let t bo the Im_ticulaz solution of Eq.(2-35). Prom the assumption

given by Eq.(3-lT) it may be shown that

' .-C.t )_ J (3-62)c-4",-e, ,,.'e " -R-i"

Hence, the expression for Pl(8) bocoaes

_ (3_3)_,,.,--_

Thus, t will bs assumed in the form

t t'" I to,,t . t'" + -_ , _ +... (3.-6_)

Substituting this expression into Eq,(2-35) and _.quating to zero the coef-

fiolents of each _ower of A one obtains for the determination o£ t '_ , _. ,,

the system of equations _
"4.

; t t*' = F, (e_

t.'"'. -_-,[ t''._'_ _,-,),ote-R'_:''("'"A,, (3_)
_' ' t""_

/t" I. 2, 3, .....

Notice that g satisfies Eq.(2-32), which, in the expanded form, is

,_ t _-o
p++

;I
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TABU:3-3

BF,NDI_;GSOLUTIONS OF A SH_LL OF REVOLUTION U_DER A MO:_.E_IT

e, Rz ))_=u : " e'-_( "R,-,'X, _,(p, ,,'_'Z;,/-_'a,_et;9) co,,¢

v : _R=t(z,_. Rz c tE,} _ )_ _'_ (o, ,,'eJ,q- Dz,,,,,,o) ,,-

W : _ _,(D e /¢e&q + Dz /_ei,q) cos¢

+ Oz (- ¢a_O k'er,',l + s,,,zO 'l

"_Rz = I k_,,/ )_ : _,IP,(_','I =oto,_es;q+ R,.,..8

+o_,.,,.7,_(,-,,o,-TL_+=';'_I)="+'. _t-.,,,,,',,'_-_,-.,,_,_, ""

N,: _,,/_[_, '<,_;_-P, _',_,'_] _o,_
| |

," f
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- Through the use of this equation the expression for comFatlng t is obtained

in the fore

t" i= (cz'_,-')_°eo-F,)_T, ,-g-%; a

It is noted that the terms containing _' and cotG W in the above equation

involve a singularity (e = O) of one order higher than _, For the solu-

tion given by Eq.(3-65) to be applicable in th" shallow re_ion, a restric-

tion must be imposed on the function f such that the o.-xlerof magnitude

of these terms is at most the order of W. The condition which is suffi-

cient for this F _rpose is • (

f/R 2 = k = constant

Thus, the expression for t'" reduces to

'" =-zi #' R. _ (3--66) .:

Houever, this restriction is not necessary if the solution sought is in

the non-shallow region.

For consistency i,__?_ degree of accuracy with the homogeneous

solution, only the firs_ t_ ._f£_.(3-64) will be r_tained , In doing

this _ one essentially identifies the i_rticuiar intesral of Eq.(2-35)

with the solution of membrane theory. Accordingly, one may write

_, = T/" W W= t,= r;'. R,s,_O :, 0-6 )
$ : $0_ =. _V"

R,s/aO

which are listed in Table 3-A.

.?

(C) Displncements.

Nith the solution for _ and complex forces, the displacements may .:-
q

LI l
"L,. , ,, _
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TA_I._3.,.b,

"-. MEMBRAN_ SOLJJTIO_S OF A Sh_LI OF REVOLUTION Uh_DERA MOMENT

: ,, JR,,,,o(/ _/,,.,o dO) do _,._

.. R,(_21-,_+<o,o,#/,,., ) - R,,,._,.oJ ._1,,.,o_
- ,,.OJR,,,._<.[e/ _,_#o)_o ,o__

*

_', -W/( R,*,,,'e) ,o=e

, S* " W'/'_R,s,,,_) _"0
, )

..... i_ i i ii = --
\

#.
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_ be found from tP_ system of Eqs.(2-39). The first three are

_,' + _, -r,_"

_- _,+_,cote+_, - e,_," (3-_8)J/nO

e,- ' _=e._.

. where _', g_ and _* are related to the complex strain component_ by the :

:re",a.tlon

[ g. _ c)I "-.{ _.;'+o)_.,,_._'Ico)='.,_.._.co>.s,..,_:]+_ •

+ Elimlnat£on of _i from the first t.o o_"Eqs.(3-68) by subtmctln_ the

second from the first gives

s/nO( 5, _'_ _,
.s,.o- +-7_.+=e, _=,'-e. 0-_9)

The third of Eqs,(3-68), upon using _he relatlon of Codazzl_ may be written 5

in the form

&=-,,,a/,,_' _';- _ _, =R,_- (3-?o)"_a s,nO" Rz _mO

Elimination of _i/sin9 from Eqs.(3-69) an_ (3-70) ylelds after some rearran-

gement

.._ .,+.,',,,,o,,_,_,_,_ .--m"-"':-6"+_+ (',,+',_'>'(3-?_)R, [ R, "#_,,.+" - R+,,.o = e,

, NOW, letting

!

,R¢_;//'/0

- . SmOlp
@ = _+"-+;+ e, "",_')" "

- eo,uation (3-71) z_duces to :
/

_- #, R,
•) -

which t_kes e'_enLiail7 the same for_ as Eq.(2-32), Hence, the transfor-

; ! i
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- m_tlon
_t

Z-"
Rasl.O

reduceszq.(3-_)to theform

5tn_O Rl_m 0

from which it follows that

_,=,, =c,. c,SR,_,,oo.o..,.IR,_,,,o_.J",_/,,_oo'o),o O-'n)

The 8olution associated with CI and C2 are Lhe solutions of the homogeneous
7_

systemof_s.(3-68),i.e.,_olutionsof _Is.(3-68)wlth e-,° - , • _'= o.

Hence, t.hesetwo sOlutior,s are rigid body displacements and will be discarded

in the following computation.

The displacement _l,Whicn may be obtained from Eq.(3-70), _.s

_,:& ,,,,,oJ_/_,,_'o,J,_-_of ,,_,,,o_,f_/s,,,'o,_o)-e,_,,,o_"0-_4)

-_ and _i' which is found from the first of E,s.(3-68),takes the form

0-75)

(i) Membrane solution

The strain components are related to _he solation W by the exprR.ssions

e; ,. _,_s,,,'o e_ e,

_o" . - 2(1+_) ., , IV"
,e',_ R,._;,,e

where

' [_,. e,/_,,,,,o,_ojW = &_.'----_

Substitution of these relations into the expression for _ yields ,_

/
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_. I w I _ p ,,.e_ R. w'

which are then substi'_uted into Eqs,(3-?3) to E_s.(3-?5) %o obtain the

displacements due to the particular solution t, These displ_eements are

also lis_ed in Table 3-4.

. (_.i) _nc',ing solution

Apl_._ximate integration of Eq.C3-71 ) is possible, however) it involves

considerable alghr_ic manipul_tion. Only some In%ermedla%o step_ are shown

_elow, Ohsezvln6 the properties of the functionY') and the _oothness

of the shell near the apex) one may .rite the deformation l_ra_eter_ in

the followL_ form

- ,, I ic
e," _ [.E.c,+,.)_=_e,_o"- ',,.--_o5"") -,u_"]

_; "_'T [ _ c,,/,x _,to._-'--z-',,,,,o-m°)] 0 =78)

Su_tltution of' these equations into the expression for _ yields

, - ) .
_ith the obser_'ation that _ satisfies the differential equal.ion

the expression for # reduces to the form
%

,,-*o_"] (3-79) :

from which it follows that -.

and /,,
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•,..o _ J`¢"',"-'_")_ (3-8ob)

Thus, the disp_ceaent _I is obtained

an_ _1 ano. _1 are fou_ from Fqs. (3-74) and (3-75), _s_ctlve_,

T,
_,- _ Y" 043) :_h

It is noticed from Eqs.(3-81) to (3-83) that the magnitudca of dls_lace-

aents o_ey the following order of magnitude relationships

° ,

and

dO"

where I denotes one of 91, Vl' and Wl' With these relaticns at the outset,

the displacement gl could have been easily obtained from the fourth of Eqs,

(z-_9), ._ch is

i _;/-,;,)' / -"--e,('e, = _-#-F('r/- T,")

Neglecting _1 in comparison with gl from the above equation, there results

o,, ,,(--_,)--_- -_ _- It- _ _,)]

By virtue of F-,q.o(3-59) the preceding equation reduces to

It follows that ":
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CircuS_r C_lindrical Shell_.___s

(A) Axisl_metric Deformation - Internal Pressure

The analysis of cylindrical shells under internal pressure has heen

reduced to the solution of Eqs. (2-48) and (2-49), which after dropping

the terms containing ql give

-- TI _ B5

T; + i2b 2 T2 - 12b2 pro

The last equation has the solution

¢l-i)b_ e. _t.£,)b_t,

The displacements may be obtained from Eqs.(2-50), which, upon substitution

for 71 and 92 by their expressions from the first of Eq.(3-8_) and (3-85),

It is noted that the fifth of Eqs.(2-#5)is oompatible only if

: _i " Ti

from which it follows t'_t
0

_i " B5 " real censtant
f

Lettln_

sepumting the real and imaginary parts of Eqa.(3-85) to (3-87), then,

uslng %he definition of the complex forces given by Eqs.(2-4@) one obtains

• the forces, _oments, and displacements as sho.n in Table 3-5, in which the "

, 1 I 1 _
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solution associated with _ has been dropped by virtue of the _rop rty

that it becomes unbounded when a increases.

(B) Non-s_metrlc Deformation - under a Mo,_ent

The analysis of circular cylindrical shells due to a moment loading

" has been reduced to the solution of the differential equation (2-55)

7"" + ,i_b'- 2_ ?-" = o (2-55)

It folloxs that upon integration

7_" ., (zz6"-z) _° = ,_=_.'-z)(_,. -,"_4,=) (988)

which ham solution

/

where

o -_ (izb'-2_;_-bl,,._)-;_,-_)) 0-9o)

The complex forces obtained from Eqs.(2-53) _,ke the form !

r,"..,_ e. ._. _, 0-_) 'A,/_' + t ¢ )( . _,,,t)

r. - ( t., _ ) _, (9.-93) ,

_ith the complex forces _xpzes_ed in "_rms of _x) =ncl. its derivatives, i

the displacements are obtainable from Eqs.(2-_8) i

F

:, ._
¢

1
1
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TABLE3-5

SOLUTIONS OF A CYLII_DRICALSHELL UNDER INT_._AL PRESSURE
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Substituting in the first of E_s.(2-58) for TI' T2 by their expressions

from Eqs.(3-91) and (3-92) and taklng into consideration that _o satisfies

Eq.(3-88), one has, after neglecting terms of order i/b2 compared with i

Integration of this equation yields

The third of Zqs.(2-58)gi_s

which yieMs the solution for 91' upon integration

Finally,% is obtainedfromthesecondof Zqs.(2-58)

#,
°-%

It may be shown that tl_e ccnstants D7 and D8 are real. This follows

the fi.:thof _s.(2-_53 that it is co_tlble only if

T_* • D_ �D_. real value

The forces, moments and d.splacements are o'_alne_ upon substitution

for _o into Eq,(3-91) through Eq.(3-963 by its expression from Eq.(3-893 -

and then separation of ,%heLzealand ._,,,aZtnary _rts. The results of

these manipulations are shown in Table 3-6, }

/

,,£

[.
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TABLm3-6

SOLUTIONSOFA CYLINDRICALSHELLUNDERA MOMENT

o,a,z
V: _ [ _ +'+,'(-_$,++a- £)6++++&a_+ +

• +o,(-+,,++._o-+-__')) "_

w • Z+"{p.+,o(_,. +-+
+=, ( ,z-,.._)+,- _ ,,' )J "'_'

II ;
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IV. BOUNDARY CONDITIONS AND DETERMINATION OF CONSTANTS

As an application of the solutions derived in the previous C_pters,

the stresses of a snell of revolution due to the presence of a discontl-

nulty in ter_s of either a circular hole, a circular rigid insert, or

a nozzle will be studied. The externa.1loa_Lug is an internal pressure

Or a moment°

Axls_metric Dcforaatlon - Internal Pressure

Case a! _ clrcular hole at the a___

The discontinuity presented in thls case i"_a small circular hole

discribed by e . eo. The boundary of the hole is free from stresses.

However, the internal pressure must bo equilih_ated with a vertical she_r

uniformly distributed along 0 . Co. T_ boundary conditions are (Fig._-l) _

HI=O
at o. oo

qx-O

_, .".hloh Qx is the c_ponentof force

in the direction perpendicular to the P

axis of the shell, i.e.,

Qx " TIC°S e + NlStn e

Su_titutlon in Eqs.(_-i) for MI

and (tx by their expressions from Table rls, _.I,

_-1 yields, for the determination' of the Internal pressur.e equilibrated.
with vertical shear acting

_ along the hole

r
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two constants B1 and B2, the follow_ equations

AllB 1 +AI2B 2 ., 0
(_-2) ..

A21BI +A22 B2 _ U2

wheze

A,,•+,[#,,+.,,-_,_ _o_,,_],,o
• .

•.. A,,.*,[-_,,_,(1-p_/_#zc_e_"/_Jo,

A,,. ;,_ '---_"'_l,. ¢+-3): Stn8

• A,, "-_#,_Rt l Ke,tl !

H, = - _* ,o,OJo.
?

_4_ determined B1 and B2 %h3 direc% stress op and the bending stress cs

are obta_ued by the formulas

'-- i-,.,. (_-_)
_i'"_@'/hz

Case bl a circular _ £nse_.___a._.%%he

Since %he r_4_td insert, by t%s defint%ton, does no% deform dur_mg

' the deform%ton of %l,e shell, ,,he z'o%atton X2 of "the shell, abou% the line '

e . eo and #,he s%zzziu % o£" the she]/, alop.g +,he lnsez-% e . go should be

Izezoo Thus

4Ft m 0

_ at e. eo (_.5)
.;_ Xl.O

wlm_

. e,. _7.,.,o7,)lx_ p,-6)
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andX2 isthezeal_ ofEq.(2-20)

. , -i_,+o-o_, _R_, .x..-_¢.,'-.).#,,l+--_ 1._ _, -FFy

Substitution for X2 and _ in Eqs.(4-5) by their expressions free Tables

3-1 and 3-2 results in a aystea of two equationa for tI'_detemination

of the constants B1 and B2

A31BI +A32 B2 = H3

-- (_-7) -.
A_I Bl + Aq.2 B2 . 0

where

A,, - h, { _'e,.¢-,/_z_ • A,_;__).,,u)]o.

: Ajt.h,[#ea_+/_,ft*,_)_oee,_Jo, ..

A.,. "'+Io. (+-8) :

°

Case 01 a nozzle --at---theapex

The discontinuity in this case is & nozzle attached %o the apex of

a shell of revolution (Flg,g-2). The conditions of equilihcium and

continuity &cross the j_nction of the nozzle with the shell of revolution

&% • _ 0 and 8 - Oo re%ulre %h_t the followlr_ corAitlon8 be e_tiefled

I •

(_-9)

The quantities on the left of ";he e_ual signs of Eqs,(_-9) represent the _
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moment, .force, straln, and ro_tion of the

shell of z_.volution, _hile those on t_

r_ht hand s.tde with superscript e denote _p

the corresponding quantities for nozzle

(or cylinder), in which _: and X_ are M_ _jjX[,

given by _ l_p_

c T.

X,' . -1 _--_w"
I', #-

, Fig._-2,

Substitution for those q_tities in
For_es and deformations at

Eqs.(_-9) by their expressions froa Tables the Junction of a nozzle
and a shell of revolution

5-1, 3-2 and 3-5) with B5 set equal to }pro "

yields a systea of four equations for

determlnation of the four constants BI, B2,

All B] 4, A12 B2 • A14 B4, ,,,, 0

A21 BI -_ A22 B2 .o A23 B3 + A2/,I' B_,.

A31B1 +A32 B2 *A33 B3 = G3

A_I S 1 4 A42 B2 + A43 B_..+.',A44 B8 ,. 0

in whioh Ajk (k . I, 2l'J - I, 2, 3, _) and H2 have been given by Eqa.(4-8)

and (_-3). The rest are defined by

A_ =o*/o

• A25 " " A2_, " o*b/Z' 0 (_-lZil.,b,c)
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A_3- Az_._- bh/h*

C3 - H3oh/h*z_oCZ- _/2)

Non.-s_metric Deformation - under a Mome_t

A couple is applied in the plane _ , 0 either at t_e apex oi a

shell of revolution or at the far end of a nozzle -hen it is attached

to the shell. The constants 3' D4 and DT, D8 which assoc._ate with the

membrane solutions of the shell of revolution and the cylindrical ._hell,

respectively shown in Tables 3-@ and 3-6 will be first determined from

the condition of equilibrium. Notice the properties of the functions

ker, kei, which diminish rapidly when their argument becomes l_rge_

Hence, the bending solutions are insignificant in the range of large values

of e, The state of stress in this region is, in fact, of the membz_ne

type. The equillbri_n of moment ,boutthe plane _ - _w (Fig.4-3) gives

_T

Te = _*+ .7l _e for large O

_uation (_-_) u_n _tro_ucinsthe ex_ rz - -_z

,- resslon for TI and performing integration _h

•educes to . _ - 0

-I' ,re_W_f ImO d/dP | 8_
• w(o, o4f . M (_z:D

• Tlco

The equilibrl_ of the forces in the

direction of _ = 0 gives _ a _w
Fig._'31_f

_a _# - $ _ )R7 #,he d@ • _t_.l_ ) of revolu'_,ion under a moaent _
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Substitution for TI and S in Eq.(4-14) by their exuressions f_m l'a_le3-5

and then integration give the result that
-

"_ D_.O

from which Eq.(4-1_) yields M !

D:t. ,/T _(_

I '+Similarly, wl_n the moment is applied

at the far end of the nozzle (Flg._-4), i

the equilibrium of mement about the
I

plane _,-/2 and sum of the forces in - TI_ t _l

tT;,r._,Prr.d_) MM ..: :_

(_-15)
11[

o (Ss,._ - W,c_sls )r, _/_=o

Equatiov_ (4-15) upon substitution for T1
"-'" Free _ody diagram of a

and S from Table 3-6 and then integration cylindrical shell under
a moment

reduce to

7rGz__, + os or) -M

De=o

Hence,

t_T . M/t zrr; ) ,_
t

Case al a circula__.____rhol.__e--at..--theapex

A couple H is applied by _eans of a vertica.L force distribution ._

along the hole 8 . % with the magnitude of M cos_ /( R22sln2G), The

_ boundary condttton_ are _,

xz . o, %. o at o. eo (_-z61 _
• #
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in which _ is "the component of force in the direction psrpendicu_r_o

the _xls o£ the shell, i.e.,

l eM,,
_, ,, 7,_.o.c_,*R,5,.o_ )s,.o

Su?_ti%utlonfor M1 and _ from Ta%les3-3 and 3-4 intoEqs.(4-16)lesulte

in & systemof %we equatlonsfor the two constantsD1 an_ D2

ElID 1 4 El2 D2 - 0 (_-l_)
E21 D1 + E22 D2 - F2
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e, .. o, Y., :. --/r, at o = eo (_-19)

: 8ul_tltutlon for _,,Xz and w from Tables 3-3 and 3-4 into Eqs.(_-lg) yields :

a systea of two equatlom for the determination of the two constants D1 and

+ D2

E31 DI + E32 D2 . F_
(4-20)

"_ E_I"i+E_2D2"0
Whel_

_.,-.h,c,_,,,,,-,,-,,_I-'o";',-__'":,_IJ..

_'4! - _! [" k'C'/',°t/,e_ Jl'e_//]Oe (/k,_'l) .'.".
r"

r, . ¢-"r,*-:,_T,,,)/_,,_

Case os a nozzle at the _ M

The heun_ conditions _r_ the I/,d _/_

sam as those in the case o for the o

axisymmetric derogation, except | -_ ..... / X_

the ro_tlon which, for this case, /'_-_ "__" ___ r

t

is showninFig. _-6 2 i,

"i • MI°, _, • "I ns. ,-6, i
Defor_atlon of a shell of

m - qx O, X2 * X20 m - W/rO revolution with& nozzleunder a ao_ent

at,... 0 a_ e - eo,
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= These conditlous upon substitution for the %uantlties MI, _, _a_ X2

by their exIEessions from Tables 3-3 a.nd. 3.-6 result in a _,ystem of fOUr

eq;_tlons for de%ermin&tlon of %h_ four cons%ante Dlt D2, D5 an_D 6,

Ell D1 + E12 D2 �d6 -F 1

: E21 D1 + E22 D2 + E25 D5 �E26D6 " ]'2

B31Dl + E32 D2 + E35 D5 + E36D6 - G3

- E41D 1+E42 D2 4-E45 D5 +E_6 D6J,O

Ln which E_k for J . i, 2, 3, 4 and k p i, 2 and F2 _ave been define_ in

Eq8.(4-16) an_ (4-21). The remainder are given "I_+

.,

E_.6 . o*/c

E2.5"" E26 "" _2 e*/ro

E35. - h/h*

Eft5 - b 1 h/h*

--- (._)
8_36 " (h/h*) p/(2b 2)

_6 .-_h/h* .-

l,1 . - (i- #)/(2_,'-)M/C-go)

c3 "P3 " Ch/h*)_/C _,,_2o)

% . _ ,i_ eleo
|

,

.... .-y

1
i
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V. ANALYSIS OF N_.IERICA5RESULTS

Numeric_l results are obtained for spherical shells, ellipsoids,

and parabololds, which sre of common interest in engineerin6 structures,

Of which the generating curves (Fig.5-1) are defined _y the equations

•

R1 . R'/(I �J'sln'-O)12

R2 -R*/(1 * Ysin20 )_

The results are coa_:._d with the limited experimental data which am

available only for the spherical shell attached to a cylindrical nozzle.

For each class of shells stresses e_e computed for three different types

of di_oontinulty. Physical interpretation as to the effects on the

stres,ses due to the _resence of a discontinuity is given with the spheri-

cal shell under internal pressure. A study of the optimum ratio to/h* of

the nozzle which makes the stresses of a given spherical shell a minimum

has _een determined. Determination of a favorable ratio a/_ among'

ellipsoidu with a nozzle attachaent, which contain the same volume anl

use the same amount of material, is also studied. A computer prograa

feasible for all these st,_ies has been written in Fortran IV langua_

%o accomplish all the necessary COalmtation.

Cgmparison of Theoretical and _ Stresses

Let _ = 0 and R* • R in Eqs.(5-1) froa which one obtains the equ_-

tions for the spherical shill

..................... i
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6_

L

!'
R1 ., R*/(1 + rs_2e) 3/2

F_, 5-.10 C,enemting ourves of shells of revolution

I
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: RI = R2 . R _,constant

The dimensions of the experimental model tested by Maxwell _ Holland[31)

the external loads are as followsj

n. 15.255_. h = 0.38in.

ro = 1.281 in. h* . 0,0625 i-..

p = 200 psi M . 2,_00 In-lb.

In all cases Polsson r_tio _ is set equal to 0.3. Comparisons of theore-

tical and experimental stresses are shown in Fig.5-2 for the presdure

loading and in Fig. 5-3 for the moment lcading. In gener_l, good _Tee-

ment is obtained except for _, of the outer surface of the sphere (Fig.

5-2) which Shows a different trend between theoreticaland experimental

stress r.earthe Junction. Howevec, this disc__epencyis rather inslgl,ifl-

cant because of its smallness in m_gnltude in comp_rinon with the m_gnltu_e

of ez . It is seen that better agreement is obtalne#,in the screen%

Pressure Loadlng
r.

(A) s__p22__.! shel1___es

Effeo______to_ a Discontinuity o_.nnStresses an__ddI.__P,hyslca!Interl_wtation'

To study the effect of the different types of discontinuity on the

stresses, the numerical results were obtained for the following set of

d_a

R/h ., Ioo, :o/h* = 20

and were shown in Fi_.5-@ for _ ._ssu_ loading.

Study of Fig.5-_ :ew&Is that the stress concentration in the case

, I
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20 ' ....
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, outer surface L_er surface
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: i _ '

....' 0 "

°' _°ol .i
__ TheoretieA!

m 8 ....
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of the hol_ is much higher th_n that in the case of the rigid insert.

Presence of the hole causes large values of hoop stress _2, while presence

of the rigid insert induces significant meridian stress dz.

These results can be deduced from the consideration of the defer-

nation. Suppose ti_t the shell does not have any discontinuity, then_

due to the application of internal I_WSsure, the shell is essentially in

the state of membrane stresses for which T1 - T2 . _-I_. Let Qx, _z be

the horizontal and vertical components of TI, reSl_ctively. The radius

r O before deformation is stretched into r: after deformation (Fig.5-5),

and the strain e# in the circumferential direction is equal to (1-p)pR/2Eh.

When a discor+tinuity in terms of a circular hole of radius r ° is present

the boundary conditions iaply that

Mlh = O, Qxh _ Tlh • 0

along the hole (where subscript h is associated with the hole). The hole

* (Fig.5-6) whlch because""_- of radius r 0 deforms into a hole of radius roh , ,

of the zero value of Qxh, will be larger than r O. Consequently, the strain

_t_ will be also larger than ez . From this it follows that the hoop ,

tension T2h(= Eh_#_ ) is also larger than T2.

To show there exists a moment M2h in the clrcumferent'_ldirection,

: tt is noticed that

/Wl_• -,'A','+,_'z) ,,ot ;e(l'..,_a)

From this it follows that

kl--u _

and

/l'flk = Izt_-_,_ "t2_ x,= -----
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Deformation of a spherical shell DeforutiQc of a sl_erical shell
: with a cir_._l_r hole

(a)

o

(hi (o1

Fl_. 5-7e Defomation of a spherical 8hell with a rigid insert

I :
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In which X2 Is the rotation about ths line 0 = e0. It can be seen from

Fig. 5-_ thet _-_ Is a negative quantity0 hence, M2h Ls a positive value.

Thls _z_es wlth the stress shown In Fig. 5-_o The stress on the su_ace

of _he shell is computed using the formula
o-

6Mz

Hence p oz of the outer surface is a significant stress in the case of the

circular hole discontinuity,

When a discontinuity in _ezms of a rigid insert is present in a

shellp the strain _zand rotation X2 vanish along the rigid insert, T_e

deformation .of the shell:is shown in Fig, 5-7 in two steps, Because of the

_ero strain, ro_ ( the subscript R is associated with rigid insert )

must _e equal to its original length too To fulfil this condition, the

horizontal force QxH has to be larger than _ of the. membrane stats, As

a ¢¢n_¢qusitceol this _ger QxR a zo'atlon is produced as sho.n In Flg,

5-_'0o Since the s_ll has to retain zero rotatlon alor_ the insert, a

ne6_Ltivemoment is required to compensate t_s rotation. The f::_l con-..

figuration is shown in Fig, 5-7o° The zero value of 8train along the in-

sert implies that

: T2R -/_ TIR

, To show the relative magnitude between M1 and M2 it is necessary %o

; evaluate the change of curvature _,

t

#,.. tof_ce o
) R' (_,'.-u). R

, _ltme
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Notice that M1R is a negative _lue, hence, H2R is also a negative value,

This agree with the stress shown in Fig. 5-_. Both the ratios T2R/TIR

a_/ N2R_I R equal _, which is less than } for most of the _terlals.

:_-ce, 0, of the inner surTaoe is a significant stress in the case oZ'

rl_id insert. :

Next, when the shell is connected by a nozzle, with a rigidity

?'etweenthat of a rigid inser_ and that of a circular hole, one woul_

anticipate that the stresses of the shell would fall in _etween these

_ses. The rigidity of a nozzle of rdh _ t 20 _eing used for
two extreme

ooaputlng the numerical results is 1_ther close to the flexibility of

a circular hole, in which case cz is of si6nlficance. Consequently, the

stress _2 of the shell should close to that in th_ case of a clrculLr

hole. This result &gal. a6rees wlth the stress _zshown in Fig. _.

However, the stress G, does not follow tbts conclusion at and near the

_unction. The physical interpretation of this _ehavior is possible,

however, it Is complicated by the fact that four conditions are required

to _e fulfilled across the Junction. Besides, the _a_nltude of _t is

loss important. No attempt is made to analyze this _ehavior, ."

----re:i°re/h* -- --------°fa  ozzle

Froa the previous _lysis it is understood that a discontinuity

of & circular hole causes a higher stress concentration than that of a

rigid insert, With a noz_lo attached to a shell the st_o.ss _ri_tions of

the shell %etween these two extreme casss can _o studied _ chan6ing the

m%io r_h_ of the nozzle. It is belie_td that a proper oh,ice of a

nozzle could niniaize the;stress concentration in the shell, The stresses

, i
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of a shell w.Lth.q/h. 1,000 have been computed foz various values of

rJh* of a nozzle and the nondL_ensional stresseJ _,/pand az/p at the

Junction (9 . 5°) are plotted in Fig. 5-8. The stress _ on both the

outer aJ_lthe imter surface attains its maxlaua values at ro/h_ aroun:',

as rJh* increases and finally apIEoches zero as rJh*8O,and decre,,,.ses

goes to tnflnit-, (which is the case of the circular hole), a t of the

inner and the outer surface increases as the nozzle hecoaes thinner and

thinner and finally approches the values of the stresses for the case of

& oicular discontinui_7 as the ratio r_h* reaches infinity. The stresses

of %he shell with a discontinuity of rigid insert are shown on the left

hand side of the figure. The curves shown in solid lines are terminated

at to/h* . 20 since below th:s value the accuracy of thin shell theory is

questionable, Nevertheless, the curves showing the stresses in the region

between ro/h* m 20 and rigld insert are connected in a manner with stresses

"'"- obtained from thin shell theory as a guide, It is quite interestlng to

see that all curves meet at a point where the stress ¢/p is appcoxlmatsly

equal to 500, which is the membrane stress, At this point Ol ,.._ n ato.p_

and the moment M1 m 0, For this optimum value the z_tlo r_h* is located

around 8.

J

', When the value of r is 6Teat than -i, F4s.(5-1) represen_ 6enemtlng

' curves of ellipsoids. _ is relatod to the ratio of somiaxes by •1

i '_o eLlil_olds with r • 0.2 m_d -0.2 , whioh are equivalent to hsving the ,:
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square ratio of sealaxes a2/_2 equal to 1.2 ar_i0.8 (Fi6, 5-i), respectively,

are chosen for computin_ the stres_e_. Other paraaeters used are J/h=100,

' and r_h* = 20, The len_._hof semlaxls | remains the same for the two

ei._'.Ipeoldsand equals the radius R of the sphere,

Coal_rison of the stresses due to the effects of three types of

dtscor, tinulty are shown in Fig. 5-9 and Fig. 5-i0. The stress variations

alon_ the aeridl&n reveal a similar pattern tc, those of the spherical shell

shown in Fig. 5-4, The ellipsoid with a2/g2 . 1.2 appears to have higher

stresses and another one with a2/Q2 o0o8 has luwer stresses than the

spherical ahell° The effec_ of the discontinuity on the stresses _lso

show that a "circular hole ty_e of discontinuity gives higher stresses

than a r_ld type and that the stresses for the shell with a nozzle fall

in between,

When _'. -1, Eqs.(5-1) represent genera_in6 curves of para_oloids

and _re reduced to

nI . cos:o

I R2 = R*/ oo8 @t -
R* is chosen to be equal to a2/2t such that the _neratix_ curve passes

through the end points of the major axis of the ellipsoid with a2/t 2 - 1,2 '-

as shown in F_, }-I, The stresses a_e shown in Fig, 5-iI for three types :

Of discontinuity, Similar conclusions 'tO the sp_rical shell are obtained ! _.

except t_at the ma6nitudes are lower than those of the spherical shell°

i
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(D) Optimum Ratio a/_ o_fElllp_oids w:th a Nozzle under Internal P_ssure

It is .the attempt of this section to find, among ellipsoids whlch

contain the same volume and use the sa_e amount of ma the one which

has minimum stress due to the effect of a nozzle attacheen_ under inter-

nal pressure.

Let V and S be the volume and surface area , respectively, For a

spherical shell having thickness h, its volume and surface area are given

v._,_:.3 / 3

S -, b,._ R2

For an elli_oid with its major axis as the axis of revolu_lon, and Its

semi-major t , semi-minor a, thickness he, the _olume and surf_ce area

are given

a! -"
,, 2wa I -_- e,n"_S

where • is the eccentricity defined by

(.a a !- _z/_t

The condition that all elli.woids have the same volume as the spherical

shell of radius R gives

,' •R , , R

Ano.ther condition that they use tl_ aa_e amount of material as the spheri-

cal shell gives

a/,,,,,"e )/,,,

fx_a whioh one o_lns, after certain manipulation
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The data chosen for this study are

* _:0R/h = I00, r h _ ?_0, and eo = •

The stresses are computed for various values of the ratio a/i , and are

shown in Fig. 5-12 for _zon the outer surface, which gives the maximum

stress. For these ellipsoids the correpondlng ratios I/he are

" a/, '/he

1 100

0.8 ll?.0_
o

0.6 146.59 _

o.5 17o,92

As shown in Fig. _-12 when the value of a/_ decreases the stress 6z _
_j

the Junction (e0 . 5°) decre._.ses,however, it increases at @ , 90° where

the effect due to discontinuity disaplsars. The ellipsoid which acquires

:, the minimum stress falls somewhere between a/! = 0.6 and 0.5.

Nomen__.__tLoading ,

The stresses of spherical shells due to the effect of three types _

of discontinuity under moment loadin6 are plotted in Fig. 5-13. It can

_e se_n from this figure that high hoop tensile stress (oz) occurs in the "

discontinuity of a circular hole, while the meridian stress (_I) is "_

significant in the discontinuity of a rigid insert, _nd that _z in the

former case is higher than _, in the latter case. In other wnrd, a cir-

oula_ hole causes a higher stress concentration than doe_ a rigid insert

in the seas spherical shell. The stresses of the sphere with a nozzle /_
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&ttachunt fall In between these two extreme cases. The sane conclusions

were also true in _he c_e o£ In'essure lOa_llngo

f The stress distribution alon_ the meridian for ellil_oids under

i moment loadfn_ shows a l_tern sfatlar to _hat o£ a spherical shell
t

i except for a slight Otfference In the magnitude o£ the stre6sea. In

i the case of nozzle at_ac_ent, there _s little difference in s, aaong the
1
i

elllpsoMs off the ratio a.2/t 2 = 0,8, i, and 1,2 vtthi re_Ltntng constant

(Fig, 5-1#). However, the difference in % Is pronounced, vhtch Increases

mptdl_ as the ratio a2/l 2 decre_es, This result is contrary to the

one obtained in the pressuze loading, where the st_sses decrease as

, ,a/z2decreases,
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VI, StRMAR'"AND CONgLUSIONS

Co_rnlng differential equations for shells of revolution pertaining

to axisymaetri.- and moment loadings have been reduced from the basic

eqw_'__ons of _he general theory of thln shells in teras of _plex forces.

For tl : axisymmetrlc case, the _ualysis of shells of revolution has

been reduce4 %o the integration of a second order differential equation.

Method of asymptotic integration is employed. The solution valid in the

region 0 &8. _ is'obtained in terms of Thompson f_ction of order zero,

provided the shell is sufficiently smooth near the apex.

For moment loading applied at the apex the problem has been further

reduced to the integration of a second order differential equation.

Asyaptotlc solutions valid la the re _ion 0 ._Q _ x are also obtained In

teras of Thompson function of order one.

Formulas for displacements, f_rces, an_ Aoments for both axlsy,uaetrlo

i and moment loadtngs are also ohtaired a_t listed. Side by side wit_ the

i shell of revolution the governing differential equations for circular

cylindrical shells are also derived. Solutions in terms of exponential

functions are obtained for both axisymmetric sad moment: loadin_s.

As an application of the solutions derived previously, three cases

of discontinuity at the apex of shells of revolution have been st _ited!

a circular hole, a circular rigid insert, and a nozzle. The boundary

conditions and the determination of the constants for each of the

85
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appropriate cases have been derived.

Numerical results in terms of dimensionles_ stresses are obtained

for shells cf revolution h_vin6 the shapes of spheres, ellipsoids, and

paraboloids in which _,ach of the three types of discontinuity is present

Cood a_reement between theoretical and experimental stresses has been

obtained for a sp,_erical pressure vessel with a nozzle. Careful studies

of these results reveal s_qtlftcant phenomena from which the following

conclusions can he drawns

(1) A circular hole present at the apex of & _hell of revolution weakens

the shell more than doe_ a zlgid insert on the same shell, that is,

the stress concentration in the former is higher than that in the latter.

I (2) For the case _f a circular hole, the hoop stress _=is higher than
the meridian stress ol , and t_ maximum stre_s (_=) occurs on the outer

I
I surTace of the hole. On the other hand, in the case of a ri6id insert,

U, is larger than uz ! the aaximum stress (_,) also occurs on the

outer surfer's of the Insert.

(3) The s_resse_ of a shell of revolution with a nozzle attached at the

apex fall in _etween the stresses of the case of a circular hole and the

case of a rigid insert. When %he radius to thickness ratio r/h* of the

nozzle becomes large the stress distribution of the shell tends toward

the case of a circular hole.
o

(_) The stress concentration due to the attac_ent of a nozzle may be

alleviated, to a certain extent, by proper choice of the value _o/h*
OE

the nozzle.

(5) By proper adjustment of the ratio of aeaimxes of ellipsoid, it is

i
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possible +.._ obtain, amonE ellilsoid_l pressure vessels containing the"

same volume and ush_ the same aaolmt of materials, _he one which

the aininua stx_ss concentration d,.le to %he effect of a nozzle at%ached

at the apex.

The solutions obtained in this dissertation can _ easil_ extended

to include the s_udy of the problems _n which the external loads are

one of the followings, (a) a vertical load! (b) a torsion! (e) a horizon-

tal force, applied at the apex of a shell of revolution. The same

computer _ with a slight modification can _ used :_ obtaining

the stresses for these three cases of loadlnKs,

|

L
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SuB 41u41

i

where P is a solution of the equation

. (uz" e )OdZa
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APPE_IX

A BRIEF REVIEW(Me Tile GENERALTHEORYOF _ ELASTIC SHELI_

The derivation of the _asic equations for thin elastic shells has

t been well established and can be found in host of the books on thin shells,

for example, in |1,2,3]. For completeness of the text and conven_,nce

of applicaticn, a general procedures as to the deduction of these _asic

equations to a system of _ifferenti_l eq,_tions which may be readily

applied to _he problems studied here, will be outlined. The l_sic assump-

tions and their consequences will be pointed cut wherever they are intro-

du,ed.

The fundamental assumptions in shell theory ares

(a) Straight fibers nozmal to the middle surface of a shell before dsfor-

_tion remain so after deformation and do not change their len_h.

(b) The normal stress acting on surfaces l_rallel to the mi_dla surface

lay be neglected in comI_rison with the other stresses.

_c) The relative thic_less of the shell is sufficiently small in COml_ri-

son with unity.

(d) The displacements a_e small competed to the thickness of the sh_ll.

In _h_t which follows, the notation and procedures use_ are those

introduced by Novozhilov|2|,
J ,

Coordlnate _ and Conditions ---c_•Causs'C°dazsl

' 95

e
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Let e,. constant, at= consxant be the coo_tnate lines of the

prtncil_l curvature of the middle su_ace of a shell ar_l R1 and _ be the

correspondtn_ radii of curvature

(F_. A-I), Sincethe ].laleeof

prtncil_l curvature am ortho_onal,

the first fundamental form of a

surface m&y _e written, in the

fcna

_,,'. qA,4_.)',r_,_,_ CA-Z)
;n

whe._ ds is the length of the s

dtffe_nttal segment of a line
_#

on the middle surface and A1, A2

are called Lame' parsaeters.

The israme_ers AI, A2, R1 and R2 a_-e

ze_ted by the conditions of C_uss-
Flg. A-Ira

Codazmi Coonttnate lines of a surface

•_ IA,_ _
_,' RaeI = "_, ea,

I ,4,_ -..' _ (A-Z)

The first two conditions may be obtained from the identity

_e,, e.

: and ttm tht_ one

"_ .- ;_'_

where _.l is & _mit vector tangent to +.hs line _, - constant and _ Is & '_
n

o

i
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unit normal to the middle surface (Fig, A-I), A surface is uniquely de--

fined if the iz_rameters Alt A2, R1 and R2 satisfy the condition (A-2).

Hence, these conditions axe usuai_ referred to as the CCml_tlblllty

conditions of a surface.

Btra_.-Displacement Rolations and Co_Intibi]_tt_Equations

Let u, v, w be the displacements of a point A on the r,,iddle surface

in the directions of _i, 3'2' _n, respectively, and uz, vs, ws be the

displacements of a point B on the normal through A, at a distance z from

the middle surface (Fi_, A-l), The assumption (a) implies that

e31 a e32 w e33 = 0

_xpressing these relations in terms of the displacements one obtains

- 9(.._ I _Wz

in which _ z

HI " A, ( I ., z/R,)

. _4, . ,,4+ It .I, z/Rz ) (A-3b)

E_t_tlons (A-_) upon integration with respect to _.over (0, z) and

use of the relation (uz,' vs, ws) _ (u, v, w) at u = O, ytelR

l,/jl • @ • •

v, . v + :_, (a-_o)
+

Wz -W

where

1974023186-335
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j,, I aw + _._u.u
,4, '_o', R,

I 9W v

Equations (A-3c) show that the variation of the displacements through

5he thickness is linear and we. is independent of z,

The reBatning three stra_l components are related to the displace-

lents by

..._H;) ! vz,_ H, u

Substitution of Eqs, (A-3b) and (A-3c) into Eqs,(A-4) and use 0£ conditions

of Codaz_.i yisld m after certain aanipulation_ the following explicit

expressions

I

eel . l.z/_ (e, -_xx,)

'
eal" "t +=/_ t e,_+ Jra'z )

t !

e,.. j +x/e,t_,+z_) + -t+x/Rz(,oz .+ar_)
ehe_'e

I _u �!;M_ W

A,A,

A,A_ 9a_
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A, - u
9u - I _,Az__Z n

7t " A'-"; "aol A,Az aaz

-• A, Ai _a,

It is poss_ ble to reduce the last of Eqs.(X-5) to a foz= involvin8 on]7

two pazluaetem. In doing this, o_serving the identity

R, " R=
!

and £utroduci_ th_ new notations -

•r =_,-._, - 7z* "_'R,

one reduces the last of _.qs. (k-5) to the following foz_

l Zl

whex,e

I". _L. I _'w. _..__ t __=_v
",_,A,-=,,,_, %, _,,, _ _0,,-_, ) (_-9)

• e_-_-_._'u) .,.-L v)
Thus t the defoz_ation of the aiddZe surface is co_pletel_ descrt_ed _y

the six pa_aeter_ #,, e_, _, _,, k'_ and 7 , which m usuallM referred to

-" u the deforaation Iamaeters of a aiddle surface.

Negleotlng the tezaa =/R 1 and =_2 in gqs.(A-_) in CO_l_rlson _lth

unity one obtains the e_ _reselons given in 13_ .hlch differ onlM in 7

{

I
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from Novozhilov*s expressions, i,e,,

+,. ,.. ¢,
. :,_x_ma_t_ _ctor-_(l + ,/,I) "I m_(i +-./R2)'I_ m_s.(A-_)_ t_

fo_ of a series in the va_ab!e z and collecting the terns in %he coef-

• fioients of z 0 and zl, one obtains Vlasov'e expzessiona |1| which relate

Novozhtlov's expressions by

_.*-m-,./_, ,,;. ,,.- _,1_. (A-n)

The alx Imzmnetem z_tin_ to the d_splacemen_ must eatlsfy the
I

oompxtibility conditions of the strains, which _e 6iven be.lo, t23

_,, x, __a. _,_. _ _.-_',_ _-_'

_ [ _-_. _ ,, o (A-_)

+ _ '" ++._,.+.+.,,-,.+,._-_.,jj.°l + _t",_, + ,o, ++, ao,

The relations (A-12) play _n the _wory of eheL_ +,.hesm_e role as the

OOml_t£bill_7 equ_tions in %he %heory of elas%icity, %he £ulf£laent of

which ensuze8 the poss£bi_5%y of detez_ining disp3_cemente from %he

S£ven defox_a%ton 1_-'_eter8 of a shell.

@

i

+

%
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_quationso.ffEquilib_iu_

_e equations of equili'oriua of a shell element aay be derived in

a similar manner as those which are derived in the _heory of elasticity,

except in the theoryof shell,the stressesare replacedby .statically

e_uivalent forces and moments (Pig. A-2), which are defined by the fol-

lowing expressions

0

J#' " \l"'
s,,cI +zlRj ) az "r.

"-*/a N,

Ni : i _/" _,( l , z/Rz) #z a,

"r,.I'" o.,,(, +,/R,>J, ;",AJ
"k',,

7;, #,, c, + z/,,) d, .N Nr

• (A=l:)) _",_-" --_,,/-M,,
= ot_( I * z/R, ) #x
.kla +), .

o. z ¢s+ x/g a) dz "+ :-
;.h \...

M,j,. -'-.aj..__'l,,z( ! -,.z/R,,) #z ri(;, A-2
l

.I+/, Posltlvedirectionsof ,_la o_,,(t ")r/R,) #z fo=ces and momenta

e,, zf a+z/R,) dz
"-kll

The oo_ttton t_t tho ea.utllt_t_ of _ shell ,_le=ent requ_-_-esthat

the resultant force and aoHnt vanish yields the following equations .-,

t k+
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o'Az ] N,

' _°, a=, "_, " _+,, _ +I, " o

I ;_J,^,.,.+A:v,{."r, "r,+l,, " oA,Az'+=. +,,.• _; "-_+ (,-z_)

l__ I=Az_,.9A,i'v+@A,M,_ aA,ML
A, AI "'_JT _o, _=---'l - _ zJ JVI " 0

aA=M 9A'M I
.I..L..I+___,+_,_,,+_ ,,"_ ,I"_,"oA,Az '+ aal ae,=

_,- T+,+ _ ..M'-'Rz =°

The last of Eqs.(A-14) is Identically satisfied, T_,i,_ can be verified

upon substitution Into the equation the forces _ moments by their

expressions from Eqs,(A-13),

Relations bet_,oenthe Forces, Moments an.._t_._._
Defoz_T._tion PUrameter_ +

• mJ i

The relations between the forces, moments and the deformation

pare.metszs (froa now on callet constitutive equations) can be obtained

froa gqe,(A-13), For this+ purpose, the stress components in these +

equations are replaced by the e'_rain coaponent_ through the use of
{

i Hookek law (neglecting _m In COalXU_ison with e,, and sam)

i

i ,e' ,,e,,+_ e,. }

++ _} e;;=. __L..: _¢++,_+ e+a .+,

i 'i

f
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s_Idthen, the strain components are replaced by the deformation _arameters

from Eqs.(A-5) at,d(A-8). 0n carrying out integration on the result of

these manipulations and then, neglecting terms of the order h_R in com-

parl_on with unity, Eqs,(A-13) finally yield the following re_.tions

r,,- w,,:_)z _' _,= X t_,__ x,) (A-16)

M,. XC'_,,_ _.). M,,.;%,= gU-_;

where

Adopting these relations one is essentially disregarding the difference_

between TI2 and T21, and MI2 and M21. On substituting these relations

into the last of Eqs.(A-14) it may be verified that this equation is not

-'--- satisfied identically. As mentioned previously, the fact that this

equation is identically satisfied secures the syrmetry of the stress

tensor (_l,= ozl)from which it follows that Eqs.(A-16) contradict the

symmetric properties of the stress tensor.

This contradiction can be avoided if the constitutive equations are

developed from the variational principle of the potential energy by

neglecting temms of order h/R in comlm_ison with unity. This approach

_rie_ m_
7;, =Die, +,,e,). 'Ta .Or e,. .,. ," e',) .

Am /,_

M,. l( Cx,,__,x_) . _ • K ( x, . _,x,)

All,=M_e = l( ( _- ,.) W

m

L
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_'htroduoln_the new notations

$ • 7",,- M,,IR_ = )',l " M,,//_,
(A-lS)

N" M,=- M_.

m_l substltutin6 from Eqs.(,_-l?)in Eqs.(A-18), one obtains

: 2

• For _ter use the inverse relation of Eqs.(A-17) is obtained as follows!

t /

_, s _,._, (_,-_M,) (A_O)

&= #, (/%- "J/w,) "r=/,tt_,) 14L,J,#&.@-

Reduction of the _-.slcEp_uationsto a Fourt____hOrder S____

SO far, a system of nineteen equations including six strain-displace-

ment relations, five equations of equilibrium and eight constitutive equs-

ttons, hea been introduced. These equations in'.'olve the same number of

unknownsj t.e,, six forces, four moments, six deformation parameters

and three displacements, One now faces the proble_ o._ solving t_sse eq_a-

tions subject to appropriate boundary conditions, A,_ in the theory of

elastlolty_ there exist two methods Of solving _robler,_sof thin .l_la',_tlc

shella - in terms of %he displacements of the mid lle s_Tace or ia terms

of the forces and moments, Befo.'eproceedin6te furthez' ,discussionof

%hess methods t the equatlon._of equilibrium wlll _ first simplified,

To d_ %his, the forces N1 and N2 in the first three of Eqs,(A-l_) will be

eliain_ted 1%Fsubstituting for them their expressions as given by the
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lOSfourth and fifth o£ Eqs.(A-14). Then, takln_ into conslder_tion the

notations given in Eqs. (A-18) and the conditions of Cod&zzi, the first

three of Eqs.(A-14) may be written in the form

_Az$ +-- + S --- _ (A-2I)"ae, "a_'1, _ _o,..

e [gA,__,,_ 9A,M aAzH.+ 2 S, aAz HJ =-A,Az_=+ -_, _ e+,=- W,'" + Z 9=, -i,9=--;

+ "r= t a , {_oA_,_,+aA,#+eA,_ aA,M,]

+, 9.. _ [ 9AL.H aA,_9 9A=t4 - 9A, MI] }"a=, A,'-_;, * a="--.+ "_, -_, _.

Now, return to methods of obtaining solutions. The first method

involves replacement in Eqs,(A-21) the forces and moments by their exp-

ressions in terms of the strains of the middle surface. Then, one obtains,

upon substitution for the strain,_ by their expressions in terms of the

displacements as given in Eqs.(A-6) and (A-P) a system _f three partial

differential equations in terms of the throe displacements of the middle

surface.

The second meth_ _.consists in supplementing the equations o£ equi-

llbrlum (A-21) by the comlxttibilltyequations (A-12), which , for this

purpose, must be expressed in terms of the forces and moments. Then,

one obtains a system of six partial differential equations for the deter-

mlmttlon 'of un]mowns TI, T2, S, Mi, M2 and H.

In that which follows, attention will be limited to the second method

of solution; Subs?itutin_ in Eqs.(A-12) the stralns from Eqs.(A-20) one
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ordains the com1_tibility equations in terms of the forces a_1 moments

_, M,-_uM,+.J_.__C.lJ_ I r_Azr_',"7,)
R, Rz ' /_ A, Asl'O_'_ L- ;_,

" _ _ [_A_(-/;-,,,.._',)...{,,.,,_A,s ___.A,_SA,.'-

The fulfilment of Eqs.(A-22) ensures the possibility of determining the

displacements from the given forces and moments. Eqs.(A-22), _fter trans-

formation employln_ the equatio_ of equilibrlu: _ then noglecting a

n_er of terms of the order h/R compared with unity, can _e reduced to

the form

(I+_)Ne " "_ "_e - iZ RoA, _)at

• k"
Ra R, _z A_A_ [ ae, _a _

in whJ.o_

M " M, "_M, . T . "r, +
(A-_z)

t
A( ),,

The 8eao_ teza on the right hand si_e of the first two of F4s.(A-23) 18

i likewise of negli6ible _agnitu_o. Thus, the _irst two of the co_patibl- /

i
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li%y equations can be written in the following simple form

(I,P)Nz _r_ _M
_s

TI_ c_patibility equations have been simplified in the form of Eqs.(A-23)

or (A-24), which will be employed to eliminate N1 and N2 in the equations

:_ of equilibrium. Eliminatin6 f_om t._ first three of Eqs.(A-14), letting

TI2 • T21, the normal s_arlng forces NI and N2 by use of Eqs.(A-2@),

and from the fourth and fifth of Eqs.(A-14) N1 and N2 by use of Eqs.(A-23),

one obtains a system of six equations with the last one coming from the

ofZqs.(A-23)

kz "_T

t_R_A__aa "
'_

These six equations constitute an eighth order system and can _e _educe_

to th_s equations of fourth order system by the use of coaplex transfor-
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marion. For this purpose, the auxiliary _uncttons

J M,-_ M,

T,= (A-26)
H

=$ 
t�t�,._

will be intrcduced, where

¢ I

Sul_tttuttn_ in Eqs,(A-25) the forces T1, T2, S by their exl_cSslons in

temms of _i, _2' _ &nd Nl, M2, H as defined in Eqs.(A-26). In this .ay

one obtains a system of six equations from which the quantities MI, M2,

H may be eliminated. T|_s process leads to the following system of

three _rtial differential equatlmm in terms cf three complex forces

_i'_2,and _.

(A-27)

E%uattons (A-27) include the equations of equilibrium of the shell element

and the equations of ccmp_tibility for _e strains of the middle surface.

It is a fourth order system with three unknowns, and is half the number
L

ef equ_tions, order and unknowns of ti_ system (A-_5).

m

,. ,j _o,
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Letting c = 0 and identifying TI' T2' _ by TI , T2, S , re_ectively

in Eqs.(A-27), this syste_ reduces to the equations of the membrane theory.

t Io_._" _A,s,.oA, _A,

f_,_.s*._A,'r;.___z,S'__ _A.__,%,]. j_,. 0 (A..28)

.ZZ.. _ . f,,: Ra R=

To set a complete solution t the displacements of the middle surface

have to be fo-_ud. Define the complex d_splacements _, 9, _ which relate

to the complex forces by six differential equations

_, - _-(_,-_,). _-=- _._,,,_)

=-z F_ ( _- r,,*), _ -- _- Z_k(g- s')

In these equations _-_, 3_, 7,,, _,, _,, _ are related to _z, 9, Tt in the
- °_,.

sa_e way as the strain-dlsplacement relations given in Eqs.(A-6) and

(A-9), and TI, T2, S are solutions of the membrane theory.,i.e., of the

system (A-28). The real l_rts of _, 9, W are the displacements u, v, w,

respectively.

Thus, the solution of problems of a shell -._ducesto the determLua-

tlon of the complex forces _i' TZ, _ from Eqs.(A-2?) and the complex

displacements u, v, w fro_ Eqs.(A-29) subject to appropriate boundary

conditions.

In conclusion it is noted that the era•or introduced in the system

(A-27) is of order h/R co_In_d with unt_y. Hence, the system of _qs.(

A-29) are only approximately Coml_tible with each other within an error

of _his order.
m

/
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