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FOREWORD

This compilation of papers and reports is the final report for
Contract ME-(NGR-01-003-008), "Computer Techniques for Multivariant
Function Model Generation Emphasizing Programs Applicable to Space
Vehicle Guidance". The work was performed by those listed as authors

of the papers and reports, for the National Aeronautics and Space

Administration, Electronics Research Center, Cambridge, Massachusetts.
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A METHOD FOR DETERMINING OPTIMUM RE-ENTRY TRAJECTURIES

By
William F. Reiter

Grady R. Harmon
Jne W. Reece

SUMMARY

The Pontryagin Maximum Principle is used to formulate the prob-
lem of finding optimum atmospheric vehicular re-entry trajectories.

The optimization problem is that of minimizing an integral which is

a function of the state and control variables. The vehicle's motion

is assumed to be influenced only by a gravitational force and an

aerodynamic force. The problem is formulated and the necessary equa-

tions are developed simultaneously for three sets of Euler angles.

Computational procedures are suggested so that numerical trajectories

may be generated.
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I. INTRODUCTION

This paper is an extension of previous work done by Grady Harmon
and W. A. Shaw, presented in NASA TM X-53024, March 14, 1964.
The objectives of this paper are (1) to present a method for

treating optimum re-entry probiems in a simplified manner and (2) to

_generalize the computational scheme outlined in the aforementioned

paper. The computational scheme given allows for the optimization of
any functional subje:t to the specified constraints. Atmospheric data,
vehicle configuration and aerod&namic coefficients are incorporated in
the computational scheme in tabular form. Thus, different vehicles "
and/or atmospheres may be considered by changing the appropriatetables.
The governing equations are developed for three different gimbal sets.l
A computational scheme is outlined for each case.

No numerical results are available at present, but development of
the computer deck is underway at the Electronics Research Center.

This work is sponsored, in paxt, by a grant, NGR-01-003-008, from

.

the Electronics Research Center.
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II. STATEMENT OF THE PROBLEM

The problem is that of finding the optimum control process, ay(t)f
that will transfer a vehicle from an initial state, at time t,s in an
atmosphere to a terminal state, at time t;, in the same atmosphere
so that the value of the functional - - ' o

tl'

J = CfRX, %, 0,0, 0

y’ ¢pn A“na s FI‘) dt'

4

%o

is a minimum. The trajectorxry associated with this optimum control
process is the optimum trajectory.

The rotational motion of the vehicle is treated in a simplified
manner. The equations governing the vehicle's rotational motion are
considered as a steady-state problem with only one cumponent of the
angular velocity vector present.for any given gimbal set. A gimbal set
is used to measure the Euler angles, ¢r, Qy, and wp' The equations of
motion are developed simultaneously for three different gimbal sets.

The problem is formu'ated as a Pontryagin initial value problem.
The relative velocity equations appear as algebraic constraints. The
yaw angle of attack, ay(t), is the control variable.

Additionsl assumptions are made as follows:

1. The motion of.the vehicle is influenced by an aerodynamic

force that acts through'the vehicle's center of pressure.

2. The attracting body is a rotating sphere with homogeneous mass.

-~

-
) . . L . -

o o . -
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4,

6.

3

The vehicle’s centroid of mass and centroid of volume are
not coincident.
The vehicle's center of riss is invarian*® with respect to

che vehiclea.

The center of pressure of the vehicle is invariant with

respect to the vehicle.

A syciem of roll control jets is available on the venicle

that produce a pure roll couple as required by the optimum

control process.

-~
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III. COORDINATE S{STEMS

Three rectangular coordinate systems will be used in this paper.
‘They are: '

1. The plumbline space fixed coordinate system,

2. The vehicle fixed missile ccordinate systenm,

3. The aerodynamic coordinate system.

A. Plumbline System

The plumbline system, Figure 1, has its origin st the earth's
center with the Y-axis parallel to the gravity gradient at the launch
-

point. The X-axis is parallel to the earth fixed launch aziuuth and

the Z-axis is chosen to form 3 right-handed system.

B. Missile System

The missile system, Figure 1, is located with its origin at the
center of mass of the vehicle and its y_ axis parallel to the longitudinal
axis ol the vehicle. The x and z, axes are chosen to form a right-
handed system which is parallel to the plumbline system at the launch
point.

As the vehicle moves along its trajectory, the missile system under-
goes a displacement with respcct to the plumbline system. This dis-
placement is given Ly three Euler angles as measured by a gimbal sét.

The Euler angles uniquely specify the orientation of the vehicle at any

time. Apny particular orientation of the vehicle may be described by

4
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different sets of Euler angles depending solely on the sequence in which
the anéies are measured. Thercfore, it is mandatory that a specific
sequence be followed in measuring the Euler angles, The three Euler
angles are referred to as the yaw angle, ¢y, the roll;angle, ¢r, and
the pitch angle, ¢p, The vaw angle is measured with respect to an
X axis. The woll angle is measured with respect to a Y axis, and the
pitch angle is measured with respect to a Z axis. An angle is considered
positive counterclockwise when viewed from the positive end of the axis
about which the rotation is taken. The angles are measured by a set’
of gimbals on the vehicle. A gimbal set measures the Euler angles in
a specific sequence such as pitch, yaw, and roll., In this paper,
equations ghat involve the anglés yaw, roll, or pitch are developed
simultaneously for three different sets of Euler angles. The angles ;re
obtained from three gimbal sets. They will be referred to as follows:
1, . A gimbal set which measures in the order of pitch, yaw,
roll. ¥
2. A gimbal set which measures in the order of pitch, roll,
yaw.
3. A gimbal set which measures in the order of roll, yaw,
pitch. | .
The Euler angles are shown in Figures 2, 3, and 4.

A position vector in the micsile coordinate system may be written

in terms of a position vector in the plumbline coordinate system.

e —— T ——— T A [
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The equations of transformation are given Dy the orthogonal zotation

matrices

~ -
1 0 0
( 9)),] L. 0 cY sY ,
' 0 -SY cY
e 1l -
CR 0 SR
{-¢r] = 0 1 0 . -t
-SR 0 CR [
- o
~ -
cp sp 0
1) = -SP cp ) .
( p]
0 0" 1
b -

The particular combination of the above rotation matrices that relate
a vector in the two coordinate systems is dependent on the gimbal set
used. The relationship for gimbal set 1 is

% = ed o) 9] X ‘ (1a)

P
or

X = (Al . X . (iv)
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" Fig. 2. Eulerian angles for gimbal set 1 - .
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where

CRCP+SPSRSY

(g}, = -CYSP

-SRCP+CRSYSP

is the combined product of the rotation matrices in equation (la).

When Qy = 90° gimbal set 1 is oriented so that . and ¢p are measured

in the same direction, refer to Figure 2.

to as gimbezl lock.

CRSP-SRSYCP
CYCP

-SPSR-CRCPSY

The relationship for gimbal set (2) is

CRSP

CYCP~-SYSRSP

X, = 8] [0 [9p] X
or
4 o= [Ag), X
where
CRCP
[Ad]2 = |-CYSP-SYSRCP
SYSP-CYSRCP

is the combined product of the rotation matrices in equation (2a).
Gimbal set 2 is locked when @, = 90°, At this orientation, rvefer to

Figure 3, ¢y and ¢p are measured in the same direction.

~SYCP-CYSRSP

This condition is referred

SRCY

SY (1c)

CRCY

(2a)
(2b)
SR
SYCR (2¢)
CYCR
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' Fig. 3. Eulerilan angles for gimbal set 2
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The relationship for gimbal set (3) is

X, = [0, [8] 21X

or

where

-

CPCR-SPSRSY ~ SPCY  CPSR+SPSYCR
[A4]

-SPCR-CPSRSY CPCY  -SPSR+CPSYCR

-SRCY -SY CYCR

is the combined product of the rotation matrices in equation (3a).
Gimbal set 3 is locked when ¢y = 90°, At this orientation, refer

to Figure 4, wp and @, are measured in the same direction.

(3a)

(3b)

(3¢)

The transformation matrices (1lc), (2¢), and (3c) will be referred

to as

[Ad]3 where i = 1, 2, 3.

Equations (1b), (2b), and (3b) are restated as

X, o~ g X%

(45

L
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' Fig. 4. Eulerian angles for gimbal set 3
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C. Acrodynamic Cocordinate System

The aerodynamic coordinate system is located as shown in Figure S
with its origin at the center of pressure of the vehicle. The Y, axis
lies in the plane containing the vehicle longitudinal axis of symmetry

and the relative velocity vector. %iie relative velocity vector, V ,
is defined as the velocity of the air with respect to the vehicle as
measured from the irertial reference. The Xa and Za axes are chosen

to form a right-handed system. As the vehicle moves along its tra-
jectory, there will be a relative displacement between the missile
fixed coordinate system and the aerodynamic coordinate system. The
direction of the Y, axis is defined by the following rotations as shown
in Figure S:

1. Rotate the vehicle fixed reference frame about the Ym.
axis so that the Xm axis lies in a plane parallel to
the plane formed by the vehicle's longitudinal axis of
symmetry and the felative velocity vector. The angle
traversed is referred to as the yaw angle of attack, “y'

2. " Rotate about the new Z axis by the true angle of attack, o*,
This specifies the orientation of the aerodynamic coordinate
system.

The true angle of attack, o, will be exﬁressed in terms of the

aerodynamic force in the next section.

b 8
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Aerodynarnic and missile coordinate systems
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A posit

[

on vector in the aerodynanic coordinate system may be

=
¢
rl
c}
rt
(¢}
o
[ 8
=

ct
o«

&1

£

W

(o]
1 37
1 2]

position vector in the missile fixed coordinate

system. The orthogonal transformation matrices are

Ca* ~Sa¥*
[~a*] = Sa* Ca*
0 0
and
Cay 0 ) -Say
= - 0 1 0 .
[ay]

A positive vector ia the aerodynamic coordinate system is expressed

in terms of a position vector in the missile fixgd reference as

X, = [0 % ., (sa)
or

X, = [AJ X, ., (sb)
where

) Ca*Cay ‘-Su* -Ca*Sa;‘ )

[Ag] = Sa*Say Ca* -Sa*Soay (5¢)
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is the combined procuct

o

£ the rotztion matrices in equation (5a).
The aerodynamic coordinate sysiem transformation matrix (5¢) :s inde-
pendeut o the sequence used in measuring the angles yaw, roll, and

pitca.
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Iv, MECHANICS

A. Forces
Two forces are assumed to act on the vehicle as it moves along
its trajectory. It was assumcd that the avtracting body is a homo-
gencous sphere. Taus, an inverse square gravitational force is

written in terms of the plumbline coordinates as

=

- -r
F .2 e
g R

X . :
W . (6

Tne venicle's wmotion is also influenced by an aerodynamic force. The
force lies in the plane formed by the vehicle longitudinal axis of
symmeiry and the relative velocity vector and passes through the cen-
ter of pressure of the vehicle, as shown in Figure 6.

The components of the aerodynamic force are defined ty the

eguations

F, = AqCy (a%) , (7a)

F, = AqC, (a%) . (7v)

17
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Fig. 6. Aerodynamic force compoﬁents Fy and F,
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; A is tie projected cross-section arca of the vchicle and q is the

¢

¢ cynamic prossure. €, and C, ave experimentally deteramined facters

R that arz dependent on the vehicle's shape and tiie angle of attack.

£ it is assumed that C; and Cy are kKnown. The aerodynamic force is

¢ exprassed in tae aeroGynamic Systicm as

¥ .

¥ - w *

§ [-FzCa + FySa :

: F, = l-ryCa* - FSa* «(8)

> .

g v

g The aerodynamic force is expressed in terms of tae missile fixed

; relerence as -

4 i

F

:

: = T = '

: Fam = [A]l" Fa - (8a)

§ (Note: Tae sywool [A]T is used to denote the transpose of matrix A.)

& -

§ Equatiocn (%9a) can be written in componeat form as

:

3

3 Fanx Ca*Cay  Sa*Coy Say r:FaSaCa* + FaCoSa*

v - v* w - * o w
Famy = Sa Ca 0 F,C~Ca F,SaSa*|. (9b)
n - % - * ~
Famz | Co*Say, Sa*Say Cay 0

Whea simplified, equation (9b) becomes

’

Famy -SaCuy
Fany| .~ = Fa -Ca ' . (9¢)
Fang SaSay
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where the magniltude oI the zerodynamic force is

*r3
®
(7}
N

N €19

and ¢ is expressed in terms of the componeats of the aerodynamic

force through the equations

The nmagnitude o the aerodynamic force is related to the

velocity through the dynamic pressure by the equation

q ‘= 1/2 p Vp?

» S

’ flla)
» (11b)
. (11c)
relative
. aa

1
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t is essumed that the atmospaere nornally moves with the attracting
bocy (8). Hemce, at all times there is an air mass movement with
rospect to the plumbline coordinate system. W is a vector that represents
any abaormal air movement. Aa eguation expressing the velocity of the

wind may be written as

Ving = Ye X X + W : . (3)

The relative velocity cquation .s

X = Vwind

<

A . a9

-

‘When eguation (13) is substituted into equation (14), the result
is ' r

V. = X + X xXwe =~ W »  (15a)

or, in component form, | .

r-t “—-— e R - ~— -1 — |- —-—
v X X w W
RX ex X
- - W . 15b
Vay Yole | Y} ox e Y (15b)
\Y yA yA w 1)
YA A Z
L- R — |- . - - loee ¢ - b -

The relative velocity may be expressed in texms of the aerodynanic,

missile, or plumbline coordinate system variables. The relative velocity
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v

vector is written 1n the missiie coordinate systeom as

g eep e

V = [A] V = 1w (16)
¢ o] d - R a T
§ b .
:

f where

+

H

[ — v

; v

; rmx

§ -

§ Ve = Vimy

£

i TR

g - o

!

is the relatives velocity vector in the missile system and

’ 0
v ={ Vv r
: r by
1
0
L -

D
~

ne relative velocity vector in the aerodynamic system. (Note that

.

equation (18) represents three possible ecuations depending on i.)

e
[77]
T

3 Tae resultant force acting on the vehicle written in the plumbline
coordinates is

pa— ——

p. : Rt Fpov [l Fam : (17)
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B, Counles and Moments

he wotion of tho vehicle is influenced by a moment and a couple.

It Is assumed that the ceater of pressure and the center of mass are
invariant with respecet to the venicle. Thus, the center of pressure
is located by a coastant position vector, §;p, in the missile fixed
reference. The zerodynamic wmoment is given by the vector product of

—
-
- N

the position vector, X, and thne acrodynamic force, F . The aero-
c am

dyncmic moment is written in the missile fixed reference as

v = X ¢« F
Tam cp * Fam ’
or °
- -
M -1 r r SaS + .
amx P Yo% FachCa
M = ':: . - X .
ary a chSc.Cuy FachSaSa
|
hYA ) ¢ + :
Mamz a xcpC“ Fa-ycps“c“y

(18a)

(18Y)

A system of roll jets is used to produce a pure roll control coupie

about the Y_ axis. The jets are located with respect to the missile

w

fixed coordinate system so that

o 1 - —
Fr 0
F =.] 0 located at Z_ = 0
Tl T
0 Zr
=3 ) iy ol

PR S P
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= | 0
T o= 0 located at -2, = 0
T2 T
0 -2
| L T
yield a roll couple
M= Z x F
. 2 ( . X Fr) . , (19a)
waich may be expressed as ”
. 0
M_ = 2 - .
M 2 F | . €19b)

The resultant mcment about the center of mass of the vehicle in the
aissile fixed coordinate system is tiae sum of the roll couple and

acrodynamic moment

V = -Z\l—: + :\;‘: . (20)

~ - - -
FaycpuaSay * FachCa 0
¥ ={-Fz § - ' S ' 2
. Fa - aCay FaxcpSaauy + ZZrFr , (21a)
-FaxcpCa + Fay cpSvay L 0
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whicih can e reduced o

raprSabay + FachCa

M = - -

M 2L_F.. FaszSaCay FaxcpSaSay . (21b)
-Faxcpca + FaycpSaCay

. C. Equations of Motion

: it is possible to interpret the motion of a rigid body as the sum
of two indenencent effects--the motion of the center of mass of the

vehicle with respect to an inertial coordinate system and the rotational

o

£

motion of the vehicle zabout its center of mass. The motion of a rigié

body in general reguircs six independent coordinates to specify its

orientation at any time. The six independent coordinates used in this

roolen are the three plumbline coordinates ana three Eulerian angles.

9,

Tae translaticnal equations oX motion are written for the center

-

¢ mass in tne inertial reference as

Fp = nX (22a)
g o
b
» oY
; ?g + [Ad]fl F, = mX , (22b)
E where .
3 , - .
X

=}*
n
-
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rotion become

-).: = - G ‘/'.i- + fa 1T ram
— LndJ —
RS 4

- - " -
u X
u = v . = Y =
w yA
— = — -

X .

Wnan the apove transformation is used, the second order differential
?

equations o mction, (22c), reduce to

T o= -

a

g = - G M

IRI3
T ¥ F -
A — 2 _&N = F* N,

2 61— 4 {170 e

»

(23)

(24)

(25)

(26)
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where

and

where

anAd

where

1

N

and
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F* = f.a.
a m
N
Nl =]|P
Q

-(SuCay)(CRCP+SRSYSP) + CaCYSP + (Sa§hy)(-SRCP+CRSYSP)
-(SaCay)(CRSP-SRSYCP) - CaCYCP - (SaSay)(SPSR+CRCPSY) (27a)

-(SaCay)(SRCY) - CoSY + (CRCYSuScy)

N

A
N

1]

]

QU

-(SaCay)(CRCP) + Ca (CYSP+SYSRCP) + SaSuy (SYSP-CYSRCP)
-(SaCay)(CRSP) - Ca (CYCP-SYSRSP) - (SaSay)(SYCP+CYSRSP) (27b)

-(SaCay)(SR) - Ca (SYCR) + (SaSuY)(CRCY)
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where
N | - (SaCay) (CPCR-SPSRSY) + Ca (SPCR+CPSRSY) - SoSa, (CYSR)
Pl = -(SaCay)(SPCY) - Ca (CPCY) - SaSay (sY) (27¢)

Q| ~(SaCay)(CPSR+SPSYCR) - Ca (-SPSR+CPSYCR) + (Sany)(CYCR)
3

When these definitions are used in equation (24), it may be written as

u = gX+F N (28)

It is convenient to write the rotational equations of motion in
the Lagrangian form. When the Eulerian angles (pitch, roll, yaw) are
generalized coordinates, the rotational equations of motion take the
form

d {oT oT .
e el T vl . j=p, Y, T (29)
dt( ‘”j) 5 "

T is the rotational kinetic energy of the vehicle and M¢_ is the
J

mement associated with the ¢j rotation. Based on the assumption of an
offset center of mass, all components of the ineitia matrix are assumed

to be non-zer:. The inertia matrix is
Ixx -Ixy 2

W o= |1, I, -1, (30)

“Iax | ~Izy Iz2
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a¢ rotational Kinetic energy may be expressed with respect to the missile

fixcd coordincte systeon as

wiere w is the angular velocity of the vehicle in the missile fixed
coordinate system.
When expressions (30) and (31) are substituted into equation (29),

the result is

—
~
v
)

ne angular velccity vector, w , is obtained frem a coordinate

.

transiormation ol the angular velocity components 5&, ﬂr, and ¢p into

[¢)

«
A
s

missile Jixed reference. The transformation is dependent on the

)

espect to the missile coordinate system. The angular velocity

- 4
P
ct
135
*
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.

component 9 1

Y

Totation matrix

gulaxr velocity component ¢

30

trausformation is

T
= [-0]

&

reference by ise of two rotation matrices as follows

.~ -
inus, tihe angular

14

v

p;missile

-

eloci

-
v

- 0"

y vector

missile

(o

]

|-

is expressed in the missile

fixed

the missile fixed reference by use of the

(33a)

(33b)

g



wiaich may be expresscd as

wiiere

and tae transformation matrix

(8]

A sinmilaxr arzument 1is used

-4

sets 2 aué 3

(A, ]

[Au]

w = [ 17 , (33¢)
1
T ¢ -
Yy
P = 6. ,
™ R 0 SRCY |
= ‘ 0 -1 3Y . (34a)
L-SR 0 CRCYJ

to develop tranciormation matrices for gimbal

[ 0 SR
= | 0 oY CcrsY (54b)
0 SY  CRCY
TP o-spCY 0|
= | -e» -cPCY 0 : (34¢)
0 sY 1
L. -
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The ansular velocity vector, w, is restated for the three gimbal sets as

=4

i=1,2,9 . (33)
It should be noted that the transiormation matrices {Aw] are nowv
orthogonil.

By use of the expressions obtaiied above, the rotational equations

o< motion bacome
= - [ r, - 9 -
. =]C] M, _(19’_1,4 1 Aol +
gpl !-—J‘:L /“: ’LJ‘-I'L Uw'_..l:)/‘_l[wb
w TSI + B
LwJ;%JILwi /Q'"L C ,(_36)
waere
-1
~ ("ﬂ,é —l—r -’lr “}
[\_. : :E_i" ;w‘Jz, LA L’L'w—,;_l » (37a)
T
= T 504 ] -
- _ d:__ UJ_,',: r—! ]
Dj = 975 L/AJL-A“U 564' (37
J

| .
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Srginres et 3

S s T R Y e Lt st e UL ]

_ T —
M a (A] M. . (37¢)
94 Wy A .
3 9
Yy Yy
Bi - Br , and ﬁi - (01. . (37d)
B 9
T
L pui b -
i = 1.2,3 j = P:)':r

Definitions for ¥ and ¥ are introduced that conform to the simpli-

fications roforved to in the problem statcment. These definitions will

"

be used throughout the vemainder of the paper. For gimbal set 1:

0 0

¢1 = 0 and ¢1 = ¢r ,
0 | 0

foxr gimval set 2:

0 \ éy

‘ﬁ. = a 3

2 0 and ¢2 0 ,
0 0
- o - o
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and for ginbal sct 3:
0 0
¢3 = | 0 and ¢3 = | 0 .
0 9

it is noted that each of the matrices in the mat#ix preduct of
ecuation (37a) is noa-singular. Thus, the product is non-singular,
and the rotational equations of motion, (36), can be reduced to the
following form for each gimbal set. .

M = TG DT 01 g ;

\

[Awlz [u] %‘E [A“’]i) 51 - Ys'ij . (38)

Three rotational equations of motion are obtained for each gimbal
set from equation (38). The thrce equations may be solved for three
unknowns. Because a particular computational procedure is anticipated,
the equations for each gimbal cet are solved for the roll force, F,

the angle, a, and the angular velocity component that appears.
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Gimbal Set 1

The three rotational equations of motion are:

- 2 -
-¢r IZ)' a ra)'cpSQqu + FachCQ
0 a -FachSaCcy - FaxcpSaqu + 2F.2,
é 21 F C F SaC
zxy T Tra¥ep v Fa¥ep®ty

The first and third of equations (39) are solved for

IzyxCD - Ixych

The second of equations (39) is solved for

. i : FaSa (xcpsay + chCuy)

27
T

and the third is solved for

0. = :\/ Fy (repSalay, - xcpCa)
r —

Ixy .

. (39)

. 2423)
., (43a)

. (44a)
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Gimbal Set 2

The rotational equations of motion are:

0 m FY SeSa <+ FZ Ca
a cp y a cp

+ 2

P L = FlpSeCay, - F X SaSay + 2P.Z, ~(40)
. -

62 1., FX.,Ca + FY SaCa

The first of equations (40) is solved for

-Z

¢ = arctan . _ ) (42b)

Y Sa
cp Yy

The third-. of equations (40) is solved for

. F (X C -~ Y_ SaCa ) -
o, = _Zya( cp cp™ 2y DL (43b)

Ixy

and thesecond is solved for

621 + FSa(Z G + X Sa)
F - y Xz a Cp y Cp )’ . (44b)

r 22

T

“~
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Gimbal Sect 3

The three rotational equations of motion are:

I = FY SaSa + FZ Ca
P Yz acp Y acp -

. ) )
P, L, - “FilepSala, - F X  SaSa, + 2FZ.. . (41)
0 = -FachCa + FachSaCay
The third of equations (41) is solved for
. X,
a = arctan —P « (42¢)
Y Ca : .
cp r

The first of equations (41) is solved for

_.\/F (Y SaSa + 2 Ca)
a c¢p y cp

=

- + - e (43c)
P - ‘I
y2
é .
and the second is solved for

S (Z Co + X S0 -02T

a cp Yy cp_ Y P X2
Fr - " -, . (44c)

X
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V. THE RELATIVE VELOCITY CONSTRAINTS

\
The fact that the relative velocity vector may be written in terms
of the three coordinate systems constitutes an algebraic constraint

given by

V = [A,] (16)

— T —
V =
m [Aa] ' Vr

i R )

where V}n is the relative velocity vector expressed in the missile
coordinate system. Vector equation (16) yields three equations for
each gimbal set. The three equations of each set are not independenty
Hence, they may not be solved for three unknowns. For each gimbal set,

the three equations are solved for two angular displacements. The

uniqueness of these angular displacements is discussed in Appendix B.

Gimbal Set 1

The constraint equations are:

(CRCP+SRSYSP) V

rx (CRSP-SRSYCP) VRy + SRSYVR = V

Z ™mx

(-CYSP) YRx + CYCPV + S\’VRZ =V (45)

Ry

(-SRCP+CRSYSP) V. =  (SRSP+CRCPSY) vRy s YW w ¥

- 38

. ooy o O s e £ T

/
)
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The first and third of equations (45) are solved for

IV, -V '\/ T P VL .
"Ry RX RX " "Ry

2 2 , (46a)
(VRx + VRY) ‘
+ and
TV% " iy Vix - 9% viY
CP = . > " (46b)
Rex * Vay
where
J s CR V - SR V ’
TMX ™M . r
Sp
' ¢p = arctan —— . (46¢)
Cp

-

As shown in Appendix B, equations (46) may be solved for a unique value

of § only if
P b4

The second set of equations (45) is solved for

' A 2 2 2
vV V. - K “V[v -V + K
) ™y RZ RZ m .
.Sy = =X - - 2 . (47a)
(VRz + K) :

—



aiad

and
2 2 2
V. K + V fv -V + K
m RZ RZ n
cY L Y J.. » (47b)
‘ : (vz N KZ) . S
RZ
where

K = CPV.. -~ SPV

RY RX ’
¢y = arctan %% . e (47¢)

As shown in Appendix B, equations (47) may be svlved for a unique value

of only if
P, only if

"

Gimbal Set 2

The constraint equations are:

CRCP + VRYCRSP + V,.SR =V

v RZ rmx

RX

-VRxCPSRSY - VRXCYSP +. VRY(CYCP-SYSRSP) + VRZSYCR = vrmy (48)

CRCY = V

VRX (SYSP-CYSRCP) - VRY (SYC?+CYSRSP) + VRz ' Vemz
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The second and third of equztions (48) are combined to give

VRX SP

which is solved for

SI' =

and.:

Cp: =

where

‘ 2 2 2
FVex t Vay -\[VRX - Fov Wiy

-V cY + V SY
my ™mz

2 2 2 .
FVey * Vx -\/_Vax F* - Vv

2 2
(VRx + VRY)

F

+ V2 )

2
(VRX RY

-V CYy +«+ V SY
Ty mz

¢p -

arctan SP
cp

, (49a)
(49b)
. (45¢)

\J

As shown in Appendix B, equations (49) may be solved for a unique value

of ¢p only if

© o va———

-

SA
=




o DA A e = R e

g e m
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The first of equations (48) is solved for

2 2 2
V..V - G -\/ VAR + G
SR - RZ 1mX 5 RZ 5 TIX , (soa)
(Vpz - €6 :
and
) 2 2 2"
GV ¢ V '\/ " -V + G
SR = mX RZ . RZ mX (50b)
2
(VRz + G“)
" where ,
G= Vo, CP + V, SP ,
- SR ‘
¢r arctan R . (50¢c)

As shown in Appendik B, equations (50) may be solved for a unique value

of ¢r only if

Gimbal Set 3

The constraint equations are:

VRX(CPCR-SPSRSY) + VRYSPCY * VRZ(CPSR+SPSYCR) = Vrmx

~Vpy (SPCR+CPSRSY) & Vp CPCY + Vp,(-SPSR+CPSYCR) = V (51)

Imy

~VpyCYSR - VRySY  + VpyCYCR -

-

Vrmz
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The first and second of equations (S1) are solved for

' - - 2 2 - 2
Voo A =V \/ v - A"+ V
Ve * VR
and
2 2 2
V. A + V '\/ v - A° + v
2 2 o .
ez * Vil -
where
A = (CP Vrmx - SP Vrmy | , .
= ta SR . 52
¢r arctan = (52¢)

As shown in Appendix B, equations (52) may be solved for a unique value

of ¢r only if , . ¢

The third of equations (51) is solved for

P 2 2
s o _mtVmz * B-\/ Yevy " Veme * B

2 2
(VRY + B“)

, (53a)
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and
Y = ’ Vémz ’ VRg ﬂvaéz ) Vimz " .32 (53b)
(VRY + B7)
where
B = VRZCR - VRXSR : ,
wy = arctan %; . . | (53c)

"

As shown in Appendix B, equations (53) may be solved for a unique value

of ¢y only if

U A AT St e e
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VI. FORMULATIUN OF THE OPTIMIZAT.C:. PROBLEM

The optimization problem is that of finding the optimum control
process, ay(t), that will transfer a vehicle from an initial state
to a terminal state in an atmosphere in 2 manner so that the

functional

Y

J = f(x; IX, g! ﬂr, ¢y; Qp, a, ay, Fr) dt

%o

is a minimum. Since the Pontryagin formulation is to be used, it is

necessary to write the Pontryagin H function for each gimbal set (5).

Gimbal Set 1

The Pontryagin H function is

1 1 X + A ° u £ AP+ AeJ , (55a)

H1 = Ay " X + )\II‘(g X + Fa 1)
F ()’ Sa Ca,, = X Cq) - e
* )‘7’\/- a‘cp 4 cp + Ag £(X, X, 61,¢: « ay, FI‘) {E5D)
IX}'

45 - .

can



where

>1

46

, and

>

II

The A(t) are auxiliary variables used in a manner analogous to Lagrangian

multipliers in the ¢lassical calculus of variations.

Gimbil Set 2

The Pontryagin H function is

H2 =

Air

which may be expressed as

+

. F. (x_. Ca
a
-"-’\fs\/ =+

where

Y
H2 I1I X
Yep SaCa,,)
Ixy
-
Ag
AIII - k1(’
Al
L

AIV

+ AIV ‘u o+ %15 ¢Y

- *
*(gX + F

N.

2)

* M6 f(.)-(.) i‘o 52:6_;0 s Q@

+ MgJ

yl

]

156a)

(56b)

o
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Gimbal Set 3

The Poatryagin H function is

x
w
|
>
<3
=<
+
>l

'T.f:x.-o-x..],.‘ﬂa
VI 23¢P 24 (57a)

= Ay - X o+ g 0 (gX F;NS)

F (y..SaSa, + z_Ca) .
) a4 °"¢p Y cp ; Y X 0 0 |
2'3\/ + 2, & X, P8, a0, F) (57))
IYZ r

where
= ~
A
17 ]
A, a- | A
v ' 18
X A
19
and
-
A n
20

o S Y

e
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The expressions for the auxiliary variables are obtained from

the H functions as follows

Ginbal Sez:

- I,
~Ar <5%
*0z-¥) .+ 7O
N/
A (Tn x)39 A Yo 9 Colly = XprCoY {;[,gd‘)/z}
I /5% J:QV a5
£ g
+ }8% : (58a)
% _ 9
T =57
T 3(/ /V) — aFﬁ'
= /T_A /e . Ilg
AI 4 Do + 0 ')&7
505 )’é}

(59a)

o~
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: H {5 ON
~ 2 _—_"i_'_—_f‘{) __/}
7 éa?éa. Q V74 5973-

_x =2 _ o
S a5

Gimobal Set 2

The expressions for the auxiliary variables are: '

i

X eo /) =  —\9E¥
¢ Tox (A 2)9— ,

+ 2% 9 +():2.A‘)<9§Y2

7. ax

£ \/;\z-,ocqz—- G S 5 {c’;(g*)%z
xy

x 257

7% 5%

P

“(61a)

(60a)

(58b)
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5 S,
-A =
T o7
T O M)  ,+ OEYF
= A -/—F‘x‘gt‘fz./_() M, )22
n >, = ‘)a&‘
+ Xop Cot = o S0 Loy a[gﬁ%
Il N EY;
Xy
+ 2, 267 o (59b)
) S, ,:-*f 2; 3@) .
- 45 = —= = / ek (60b)
Y _ OH
_)/6 _é.j_é = O, . (61b)
Gimbal Set 3
| The expressions for the auxiliary variables are:
X =2
Cer (Ror = ) X
¥O( Aoz - My AL A
=t 4 Tag
— %
Ty R29 4 o (IS5 7 2R (057
a 87 - 27 -—
Iyz APYS
.}( .
+ A Q@.—. ' " (58¢)

24 D%




-~
1

P
) N

S1
= DY
- A - 3
Z T oG
By ¥ )\r"’ 7 4/:_#(
W CICE SN AL
FAY72 ey

: N\\ Q

o 2 / yC‘P SO\’JQJ -/'Z(,)DCO( 725
= (7

23
Ly
594;_36 ‘ )
42245,(7 . | o (59¢)
s _ 94, F.;«{-— A }
— — —— - o = . 60
)23 Qgép a )JZZ &Sé’ ‘ ( rc)
Y _ ot
=g = 5\7-:— = O- . (61c)

Equations (61a), (61b) and (61c) imply that Aa, Als' and Azu are
constant. The constant in each case is taken equal to plus ¢ie. This
insures that a minimization of the H function is also a minimization

of the payoff function.
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The necessary condition for a critical value of J is

oH.
T.’-. ‘m 0 . (62)
og . .
y
whersa '
i = 1, 2, 3 .
The inequality
azxi
0 *(63)
e}

wmust also be satisfied to imsure a winimum of the pay~ff function.

(Note: The criteria expressed in (62) and (63) are valid only if the
function is difierentiable at each point om the trajectory.) Partial

differentiation of the H functions as indicated in (62) and (63) pro-

duces the equations given on the following page.
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S, _ 5wl 4 3 D [EleSCy-xp®)
Ja,  EC dw, ~ 70q
o J Vi -Z;y
+ Ay S AE R B )= O (et
4

1

7 ’1/6 ?‘ L6 %, 7Z; 72:%%_,&')'—"0. (64Y;

oo/y

2,‘{3 — _‘F)\{O’\AZ i )‘ 3 (_‘/CPSZJSQJ ‘)LZcp@
A« a R Z
Y Y J gz

F

. .//'{42_)_,[’(55;}){[;" y,q/,ff_') O. (64c)

2y




S %520 2 5,2
2 PA N 2 -
o S B

o, /_, f':>> O. (653"

& _ 7, 4 g @2 F? ACPC‘*"%P& 4)
i s =M

: z 4
2 L R
2 ¢ — o
i A LR Gty £) > O e85
89,2 J
o,
J
S _ 3. T 2 8% | B (4p5i Sty +22,Ca))
oz Tzl 52 T ‘235z
304’5, . o 9 Dddy V _Zéz

The algebraic and differential constraint equations (28), (42),
(43), (44), (46c), (47¢), (49¢), (50¢), (52c), and (53c), and the
characteristic equations (58), (59), (60), (61), and {64) form a
complete set of equations for the problem. To insure that the payoff

functicn has been minimized, the inequality (65) must also be satisfied.
[§



VII. COMPUTATIONAL PROCEDURE

The problea formulated is of a general nature and the equations
involvea are quite comnlex. It is highly improbable that a closed
form soiution can be found. Thewcefore, no time has been spent in
search of this type solution. A computational scheme is suggested
in oxrder that trajectories may be gencrated on a digital computer.
For convenience in the discussion of the computational scheme, the

principle equations are written in functional notation.

Gimbal Set 1

The important eguations expressed in functional notation are: r
a = a(ay? | (66a)
é’r =t ér (asays X, %) . (67a)
o, = 00T T a0) | (632)
o, = 0,0, %X, aa) (692)
X = XXX 7. ay) (70a)
Fr = Fr(a.a ) (71a)
Heoos RO T e ) (723)
55 -



Ginval Set 2

The importiant

= AKX B, 0, A) (73a)
i ‘ y’ i
8 — —
= =—HK X, 7, q, Oy A) =0 (74a)
Y
equations expressed in functional notation are:
= ala (66b)
= X, X 67b)
19)),(“. % ) (67Y;
= 9.0, a,X X ,(68b)
1‘( Yy b4 ) :
- X, X 69b
Qp(ﬁr’ a} ay) b} ) ( )
= XX, X, 8,8, 0) (70b)
= F 0, e a) (715)
= HE X 2.0, 0, 0) (720)
= )‘l(xp X: Q: a, ay: Al) (73b)
? - S
;}:Hz()\a X, ¢ ) &, aya Al) = 0 (74b)
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Gimbal Set 3
The important equations coxpressed in functional notation are:
o = afa ) . 66c¢)
(@ (
2 = = P (o, a , X, X 67¢
b p( y ) (87¢)
= ’ ] ’ Ya 3.:- 68C
0. ¢r(¢p e, o ) | (68¢)
. . X 69
¢y ¢y(¢r, 6, & , X, X) (69¢)
X = XX, X, 0, qa, ay} _ (70¢)
F. = Fr(¢y’ o, ay) (71c)
H3 = Hs(x‘; -X_, fo— y &, a)" )\1) (72¢)
A, = ANEXT A
i 1(>‘» X, 0, q, ayo i) (73(:)
BHS ) e -
o— = o Hs(x. X' ¢ » G, O, ;\‘)= 0 (74C)
3 da yool
Y 4

A complete set of eguations has been developed for each gimbal set,

Tnerefore, three independent, but similar, computational procedures are

PRI

PR .
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written. All tarece computational procedurcs require the following

initial data:

Atmospheric tables for p as a function of position

Atmospheric tables for W as a function of position

Acrodynamic tables for Cx(a*) and Cz(a*) as a functicn of a*
Values fox: .
A R
0
G X
cp
b} z,
M {ul

, and velocity, f;, vectors at the initial

Piusmbline position, X0

point on the optimum trajectory

-

PR
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Comvutational prococure for Cinval Sot

@_, arc recquired, It Is assumcd thiat these values are known. These

Preload Comnutation 1

Use the initial data given to compute the following quantities

in the order indicated.

1. Chcose «_ = -180°

2. Choose the positive sign in ecuation (67a) and compute:
a, o from (66a); iterate (llc) for a*
b. @ _from (67a)
ry

c. @ from (68a)
P




. amare assmaw

[t

from (74a)

3. Choose & = a + 5° and redeat stey 2. Continue until « = +180°,
Y y : = y

4. Repeat steps I through 3 using the negative sign in equation (67a).

-
o
(]
&)
[
(%]
c
[
et
tn
(]

£ Preload Computation I sr.uld be tabulated as follows:

¥ ‘ )
ot on
Ecn. + (67a) | « H Ean. - (67a) | « H 1

~
o
[
<

A plot of H vs o should yield insight as to the number of solutions
&

Y

that exist. Ia addition, this plot should yield a starting value of uy

for the iteration of eguation (74a).

¢ Gl £ ———— e



P et e A Y
Preload Counutation 12

. -

Use the positive sign in ecuation (674) and the results of

o
>4

Prcioad Computatio to itewrate cguation (74a) for a .

Use the ay computed in step 5 to compute

4§ satisiicd, a minimun exists. Proceed to step 12, U-e
the positive sign in ecuation (67a) in all remaining cal-

culations. Ii the ineguality is not satisfied, proceed

3
jo
=
[¢]

guation (67a) and the results from

-] 0

terate equa

o

Preload Computatior I tc tion (74a) for ay.

Use tne ay found in step § to compute

2
9 Hl

sal

. ek



+,

.

nd the

(67a)

€

orrect sign (as determined in

sutation 1I) in ecuation (67a) to iterate (74a)

(4]
3
e
j &
H
b
o
o

cguation

equation

equation

cquation

cquation

step 12 aud the initial data to compute:

(06a); iterate (11c) fox a™

(674}

(68a)

(89a)

(703)

(71a)
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14.

15.

Use tihie intearated values
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frow cquation (73a)

chnigue to integrate

for A .
7
r
from step 14 for the new initial

values in the "N + 1" line computation.

.
T Rt
TTOILIUTC

Computetional

- e
Zcy Gimbal Sor 2

-~
~e

Initial values for

@ auxil

reguired. It is assumed that
data re refexred to as:
A
9
. 0
X a A
IIIO 10 ’
0
A11
0
- -

| ek ARV s e s e -

S Aae
P X OPN

these value

y varishles and the yaw angle are

S @ mown. These initial

A
12
0
Y. = A
IV 13 :
0 0
Au.
0
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4., Repeat stcps 1 thwough 5 but use the negative sign in couation

(675).

The results of Preload Computation I should be tabulated as foilows:

oK
Ean. + (670) | &« | H, | —% Eon. - (67b) |'a | H. | -2

A plot oI HZ ve ay should yield insight as to the numdber oi solutions

that exist. 1In addition, this piot should aid in selecting an initial

value ov ay to be used in the itzration of equation (74D).

5. Use the positive sign in equation (67b) and the results

of Preload Computation I to iterate eguation (74b) for ay.

1
Y

6. Use the value of ay found in step 5 to compute

2
] Hz
da?

b4

PR
RRCPDING PACm BLANK NoT FITMEN

s e e e e ————— 1

|
i
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10. Check to assure that

g A P Ay g

EETTET IV T

1 "N" line computation

o e

(74b) for “y'

ok e

w

.1s satisfied a minimum exists.
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2
BHZ

G g 0

Proceed to _tep 12,

9. Use the value of “y found in step 8 to compute

2

3°H,

2 .
y .

Ja

2
) H2

> 0.

302
Yy

in 211 remaining calculations.

Use the

positive sign in equation (67b) in all remaining calculations.
If the inequality is not satisfied, proceed to step 8.
Use the negative sign in equation (67b) and the results from

Preload Computation I to iterate equation (74b) for o .

11. Proceed to step 12. Use the negative sign in equation (67b)

12, Use the initial data and the correct sign (as determined in

°reload Computation II) in equation (67b) to iterate equation
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of a
Yy

Us¢e <the value

to COT.‘.:)UT.C .

a. & Zrom eguation (6G6Y) ;
o, ¢ Srom ecuation (679)

c. ¢r from equation (&SH)
d. ¢p from ecuation (£9))
e. i' from‘gquation (705)
£. Fr from cquatién (71Yb)
g. Hz from ecuation (72%)
h. i' rom ecuation (73b)

(739)

735
s (75)

14, Use a numerical integration t

computed in step 12 znd the initial data

iterate (1lc) for a*

echnique to integrate

AprfoT App o
x for A,
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15, Usec the integrated values computed in step 14 for the new

initial vclues in the N + 1Y line computation.

Comnurational nrocodure for Gimbal Szt 3

Initial values for the auxilicry varizbles and the pitch angle are
recuired. It is assuned that these values are known. These initial

aata are rererred to as:

> 1
]
>
]
>
-

23

24
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tion I

ll

2.

a given to compute the foilowing cuantities

Choose o = =180°

o

Choose the positive sign in ecuation (67c) and compute:

a. a From (85¢c); itexrate (1llc) for a*
b. ¢ from (67c)

p .
e h VVees

(69¢)

(70¢c)

(72¢)

(748)

Pagirpigey
<300

)
a, =+ 65° Continue until

Y 4
+ 180°,

Choose a

and repeat step 2.

[+3 =
Y
Repeat

D)

steps 1 through 3 but use the negative sign in equation

(67c).
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The results of Prcload Computation I should be tabulated as follows:

3 "
Ecn. + (67¢) oy By | — Eqn. - (67¢) o, i Hy - 3
OQ), oay

A plot of Hy vs o should give insight as to the number of solutions
that exist. In addition. this plot should aid in selecting an initi4l
value for o, to be useu in the iteration of equation (74c¢).

Preload Computation II

S. Use the positive sign in equation (67¢) and the results of
Preload Computation I to iterate equation (74c) for ay.
6. Use the value of &y found in step 5 to compute
3%
da2
Y

3

7. 1If the inequaiity

>
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is satisficd, a mininum cxists. Procced to step 12. Use the
positive sign in cquation (67¢) in all remaining calculations.,

If the incquality is not satisfied procced to step 8.

8. Use the ncgative sign in equation (67c) and the results from
Prcload Computaticn I to itcrate ecuation (74c) for ay.
9. Use the value of ay found in step 8 to compute
52,
)
a 2 ¢
o
Yy
10. Check to assure that
2.
3%Hz '
> 0 . -
B
oa“
Y
11. Proceed to stzp 12. Use the negative sign _.. equation (74c)
in all remaining calculations.
"N'" line computation
12. Use the initial data and the correct sign (as determined in
Preload Computation II) in equation (67¢) to iterate equation
(74¢) for a,.
Y
13. Use the value of o, computed in step 12 and the initial data

Y
to compute:

’

a. & from equation (66¢); iterate (1lc) for a*

b. P from equation (67¢)

éi

S Aets e el
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c. ¢r from equation (68;)
i _ d. ¢y from equation (69¢)
, e. X from equation (70c)
? £, Fr from equation (71c)
g H3 from equation (72c)
: h. i& from equation (73c¢)
i, i&l from equation (73c¢)

j. i23 from equation (73c) )

14, Use a numerical integration technique to integrate

X for X for X ,
¢p for ¢p ,
Xv for iy ,

)\vI for AVI »

A for A
23 23

15. Use the integrhted values computed in step 14 for the new

initial values in the "N + 1" line computation.

? Ses e an
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VIII. DISCUSSION

Th2 problem studied has application to cases involving the flight of
any "unpowered" vehicle through any atmosphere--subject to the assumptions
given in the problem statement. For example any space vehicle rcturning
to the earth's surface must pass.thrqugh the earth's atmosphere. This
paper provides a method for determining an optimum trajectory for the
transfer of the vehicle through the atmospliere. The puy-off function to
be minimized over the atmospheric trajectory is a function of the state
and ccntrol variables. For exémpie, it may be desirable to minimize

-
quantities such as the accumulative aerodynamic drag or the a: ‘odynamic
heating.

In order to solve the rotational equations of motion Zor three
unknowng, it was necessary to introduce particular definitioas for the
angular acceleration, %} and the angular velocity, ﬁ, of the vehicle.

The definitions essentially eliminate all angular acceleration and two
of the three components of the angular velocity for any given gimbal set.
Thus, response of equipment and/or crew on the vehicle to a particular
angular velocity may dictate choice of gimbal sets.

In the numerical generation of a trajectory, it is possible that
an Euler angle will be computed that produces gimbal lock. A trajectory
that produces gimbal lock is not admissible since gimbals will not func-
tion when in the gimbzl lock orientation. Should the situation of gimbal
lock arise, a new set of initial values for the auxiliary variables may

~

73

R T I
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74
be selected and a new trajectory generated. Alparticular 5et Ou
auxiliary variables will yield an optimum trajectory for cach gimbal
set. The trajectory generated will n ° be the same for eack gimbal set
evea though the same initial values of the auxiliary variables are
chosen. No attempt has been made in this paper to determ.ne the initial

values of the auxiliary variables for any of the gimbal cets.



BIBLIOGRACHY

(1) Fox, Charles, An Introduction to the Calculus of Variatioms,
Oxford University Press, iLondon, 1954.

(2) Goidstein, Herbert, Classical Mcchanics, Addison-Wesley Publishing
Company, Inc., Rcading, Massachusetts, 1950.

(3) Halfman, R. L., Dynzmics: Systems, Variational Methods, and
Relativity, Add son-Wesley Publishing Company, Iac.,
Reading, Massachusetts, 1962,

(4) Harmon, - <y a ‘' Shaw, W. A., "An Investigation of Minimum Drag
Atmosyp. eric Re-catry Paths.'" Progress Report No. 5 on studies
in *we Flelds of Space Flight and Guidance Theory, NASA TM
A S5224, NASA-Marshall Space Flignt Center, Huntsville,
Alabana, March 17, 1964.

- (58) Kopp, Richard E., "Poniryagin Maximum Principle,' Chapter 7 of r
Optimization Techniocucs. Edite. by George Leitmann, Academic
) Press, Berkeley, California, 1961.

(6) Miner, W. E., "Methods for Trajectory Computation," NASA-Marshall
Srace Flight Center, Internal Note, May 10, 1961.

(7) Parzer, W. V., and Eaves, J. ., Matrices, The Ronald Press Company,
New Yoik, New York, 1960.

|

|

‘ (8) Pontryagin, V. G., The Mathematical Theory of Ootimal Processes,
‘ . Interscience Pubiisners, New York, New York, 1962.

75



o’ -,
H

Experimentally Determined Values of Qx n

*
@ Degrees
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0

5
10
15
20
25
30
35
40
45
50

[
4

60
65
70
75
80
85
90
95
100
1C5
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180

APPENDIX A

Space Vehicle
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¢,
0

.014
.028
.040
.052
.063
.074
.084
.056
.118
<148
.182
.224
.208
.318
.372
426
L4886
<545
.596
.628
.690
.728
. 756
.7172
.776
772
« 758
.730
.688
.628
<554
468
.366
« 248
«130

7

+ ++ 4+ +F

R S S A A

1.828
1.812
1.772
1.710
1.626
1.520
1.338
1.246
1.092
.932
.768
.588
416
.256
.112
.020
<134
.236

- 0322

.394
bk
486
.516
«542
+566
.582
.588
.584
.576
.560
.544
.524

10
498
.490
484
«480
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APPENDIX B

Unigueness of Solution for the Euler Angles

The relative velocity constraint equations are solved for two

Euler angles in each gimbal set. The identity
sin? e + .cos? p = 1

is used. Thus, the question arises as to which sign should be used
with the radical that app~-vs. This question is answered for each
gimbal set by considering the way in which the coordinate systems -

are defined.

Gimbal Set 1

A first algebraic solution of equations (45) for ¢p and Qy yields

2 . 12 2 ' )
I Var £ Vxx \F’Rx I iy
SP = » (Bl)
2 2
(VRx *+ iy
and
2 2 2
IVoy + V / Ve, - 3¢ s v
rRx + Vry RX RY
CP = A (82)
2 2
Gy ¢ Vay
77

—
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where
J = CR vrmx - SR Vrmz .
Vemy VRZ * X .\/ V§Z - ngy + K
SY = Vg, + KD » (B3)
and
Vemy X * Vrz -\/ ng - V%my + K
CY = ] (vﬁz + KZ) (54)
where
K = CP ka - SP VRx . .

The identity

sP2 + (CP2 = 1

is satisfied only if opposite signs appear with the radical in (Bl) and

(B2). Let @, = a = 0. Then equations (Bl) and (B2) reduce to

* Vpx
SP = » (BS)
2 2 ’ .
Vex * Vay
and
r Vry
CP = . (B6)
V2, + V2

RX RY
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Consider the positive pitch angle, ¢P, shown in Appendix Figure 1. -

Now restrict ¢p‘ -n £ 2, s,
0
AY .
o, |
/\ /J
— > X
“Vpx
n -1 :
Coordinate System Showing A Positive Pitch Angle
Appendix Figure 1
Thus, the correct signs for the sine and cosine are
p " x
M * " : ’ CB7)
‘ -\/;2- + V2
RX RY
and
+ V
cP = RY . (88)
vi 2
VRx + VRY
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The identity

SY2 + CY2 + 1

is satisfied only i opposte signs appear with the radical in (B3) and

(B4). Lzt %& = $0 and ¢p 0. - Then equations (B3) and (B4) recuce

1o

- RY
SY = ' » (Bg)

and

Y = . 210)

_\/VZ + V2
RZ RY

Consider the positive yaw angle, ¢y, shown in Appendix Figure 2. Now

restrict ¢y' N S ¢y s I

/
Y
o

nmi-n
Coordinate System Showing A Positive Yaw Angle qv

" Appendix Figure 2
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Thus, the correct signs for the sine and cosine are

[}

SY

and

Gimbal Set 2

A first algebraic solution of equations (48) for ﬂp and ﬂr yields

-V,

RY

2

+V

RZ

2
+ VRY

4
'\/Vz + V2
RZ RY

2 2 2
. FVax £ Vay 'V Y F VRY
~ S? =
2 2
(VRx + VRY)
and
3 2 2
o - “FVpy 2 Vix -\J[VRX - Fo+ Vpy
. ~ >
v‘-
Ve * YRy
where
Fom. Vo, O + Vo sY

(811)

(B12)

(¢ 3

(B14)
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SR = ? , (B1l5
Vi + 2 (B15)
and
G Vimx * Vpz -\/ V.%z - V?’mx + G
CR = Y (B16)
. (Vgz * 69
whexe
G = VRx cP «+ VRY SP o
The identity -
sPZ + (P2 = 1
is satisfied only if the same sign appears with the radical in (B13)
and (Bl4). Let &« = 0 and ¢y = 90°, Then equations (B13) and
(B814) recuce to
* Vry
SP = , (B17)
) v, &+ V2
' RX RY
: and
f : + VRx
' CP = . (B18)

o~

B st i e pe TN A = 72

ot

o —

2 2
VRx * VRy

:
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Consider the positive pitch angle, ¢p; shown in Appendix Figure 3.

Now restrict Gp, -n = ¢p s T
' 0
I X
; QP
AN
(\"|
"in ' ’
VRY
ni-u
, Coordinate System Showing A Positive Pitch Angle

Appendix Figure 3

Thus, the positive sign is chosen for both the sine and cosine.

* Vry

SP =

and

. , . + VRY
CP = . Y

QRIS B s

(Bi9)

(820)
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SR2 + (CR2 = 1

is satisZfied only if opposite signs appear with the radical in (B1S) and

(B16)., Let o = ¢p = 0. Then equations (B1S5) and (Bl6)

and

reduce to

¥ VRx
SR = ,  (B21)
2 2
\/VRz * Vix
¥ Vpz
CR = . (B22)

"

Consider the positive roll angle, @.., shown in Appendix Figure 4. Now

-1

nA

restrict f,

g, S I

N\
3

-Vrz

n)-n

Coordinate Systcem Showing A Positive Ro.. Angle

i A s < e

Appendix Figure 4
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Thus, the correct signs for the sine and cosine are

SR = ,

'and

CR = .

A first algebraic solutic. of equations (51) for ¢y and ¢r yields

VRz A * Vpy .\./_ Viz - A%+ vy

= (Vix *+ Vo)
where’
VRX A + Vg7 _\/ Viz - A%+ vy
- (VRx + Vi) |
where '

(B23)

(B24)

(B26)




et o = S e bt o n

[ B

86

. 2 2 2
=Ry Vg £ 03 —\/ Viv = Vigz + B

8Y = VL + 8D ‘ , (B.7)
aand
B Vrmz + VRY .\/rvﬁy - Vinz + B2 .
CY = (vﬁY v BY) (B28)
where

The identity
SRZ + CR? = 1
is satisfied only if oppesite signs appear with the radical in (BZS) and

(B26). let o = ¢p = 0. Then eguatioas (B25) and (B26) reduce to

* Vnx :
SR = , (329)
2 2
VRx ¥ YRz
and
* Vaz
Ck = : . (B30)

2 2
'V/;gx * VRz
Note, equativus (Bz9) and (B30) are the same as (B21) and (B22). The .

identity

SR2 + (R?2 & 1°
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is satisfied in the seme way in ¢¢ h ‘casc. Hence, the signs for the
sine and cosine are chosen tae same as in equations (B23) and (B24).
The identity
s¥?2 + cy? - 1
is satisfied only if the same sisn appears with the radical in (B27) and

(828)., Let a = @, = 0. Then equations (B2/) and (B28) rzduce to

and

Y = . : . (B32)
Viy + VRz

Consider the positive yaw angle, Qy, shown in Appendix Figure 5. Now

<

HA

H.

RY

- —
L

Ii{-0

Coordinate System Showing A Positive Vaw Angle

Aopendix Figuze 5
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Thus, the positive sign is cliosen for both the sinc and cosine,

+ Vxz
-\/V?‘zz + Viy
and
+ VRY
eY = p—— . (334)
- \2 2
\/ iz * VRY
r

C e ey
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RESEARCH ON

DEVELOPMENT OF EQUATIONS FOR PERFORMANCE TRAJECTORY COMPUTATIONS

During.the period November 1, 1967, to May 1, 1$6/, at the suggestion
of Mr. W. E. Miner of NASA, ERC, Cambridge, Massachusets, r.ajor emphasis
, was placed on investigating the analytical foundation ;f the Hamilton-Jacobi
theory from the standpoint of its possible applications of space flight.
! Severul references were obtained, as listed in the back of this report, and
a study of previous work by several authors was undcrtaken.
} As of May 1, 1968, a specific problem area had been defined as follows,
To attempt to utilize the first order perturbatin theory, which has
been developed for the motion of a uniaxial satellite in a gravitational
field (reference 8) in studying the metion of a triaxial satellite in a
gravity field. Also to expand the theory for the uniaxial case to higher

order.




10.

11,

12,

L1ST OF REFERENCES BEING STUDIED

Beletskii, V.V., "Motion of an Artificial Satellite About Its Center of
Mass', NASA TT F-429, 1966.

Miner, W.E., "The Equations of Motion for Optimized Propelled Flight
Expressed in Delunary and Poinearc Variables and Modifications of
These Variables', NASA TN D-4478, May, 1968.

Miner, W.E., B.D. Tapley, and W.F. Powers, 'The Hamilton-Jacobi Method
Applied to ‘he Low-Thrust Trajectory Problem", presented at the 18th
Congress of the International Astronautical Federation, Belgrade
Yugoslavia, September, 1967.

Powers, William Francis, "Hamiltonian Perturbation Theory for Optimal Tra-
jectory Analysis', EMRL TR 1003, Junec, 1966.

Powers, W.F., and B.D. Tapley, '"Canonical Transformation Theory and the
Optimal Trajectory Problem', EMRL TR 1C02, August, 1967.

Colombo, G., "Cassini's Second and Third Laws', Astronomical Journal 71,
No. 9, November, No. 1344, 1966,

Fitzpatrick, Philip M., and Jack W. Crenshaw, "Application of the Methods
of Celestial Mechanics to the Rigid Body Problem'*, Auburn Research
Foundation, June 1, 1966.

Crenshaw, Jack W., and Philip M. Firzpatrick, "Theoretical Determination
of Gravity Effects on the Rotational Motion of a Uniaxial Rigid Close
Earth Satellite', AIAA No. 67-125.

Cranford, Kenneth H., and Philip M. Fitzpatrick, "On the Influence of
Gravity on the Rotational Motion of Artificial Earth Satellites",
presented at the Environment Induced Orbital Dynamics Seminar Program
at George C. Marshall Space Flight Center, Huntsville, Alabama,

June 6-7, 1967. -

DeBra, D.B., "Altitude Stability and Motions of Passive Graviiy-Oriented
Satellites", LMSC/A047126, May, 1962.

Kane, T.R., "Altitude Stability of Earth Pointing Satellites, AIAA, pages
726-731, June 3, 1965.

Pars, L.A., A Treatisc on Analytical Dynamics, John Wiley § Somns, Inc., i
New York, New York, 1965, i

T



.

> <3

et Ae s

| ”/////f////,%’/wf -0,

AUBURN UNIVERSITY

VEHICLE CONTROL FOR FUEL OPTIMIZATION

. By
Klaus D. Dannenberg and Grady R. Harmon

Department of Mechanical Engineering

NASA Grant NGR-01-0063-008-S-1

Prepared For

GUIDANCE LABCRATORY
ELECTRONICS RESEARCH CENTER
NATIONAL AERONAUTICS AND SPACE ADMINISTRATICON
CAMBRIDGE, MASSACHUSETTS

November 1967

AUBURN, ALABAMA



P

N1y 37300

VEHICLE CONTROL FOR FUEL OPTIMIZATION

Klaus D. Dannenberg and Grady R. Harmon

Department of Mechanical Engineering
Auburn University

ABSTRACT

The problem considered in this report is that of predicting a
minimum fuel trajectory for a six degree of freedom vehicle which has
a motion characterized by the first order differential equations of
translational and rotational dynamics. The thrust direction and cen-
ter of gravity of the vehicle are assumed to be fixed with respect to
tne vehicle. Thrust magnitude and the control moment are used as con-
trol variables and appear linearly in the equations of motion.

Pontryagin's Maximum Principle is used to solve the variational
problem. With this formulation, the extremal controls are bang-bang
with the exception of the singular case. A unique feature of this
problem is a combination of nonlinear state and linear control will
allow the computation of the initial values of the Lagrange multipliers
by an appropriate choice of some of the initial states. Imitial values
of the multipliers are always necessary for the complete solution, but
no process is generally available for their determination.
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NOMENCLATURE
Matrix transformation from plumbline system
to vehicle system
£xit area of vehicle engines

Matrix transformatic- or ¥ vector into vehicle
system

Abbreviation for cosine

Control variable vector
Coefficient of drag

Coefficient of lift

Force vector

Gravitational constant
Hamiltonian

Total mass of vehicle

Mass flow rate of air through vehicle engines
Mass of vehicle's fuel

Mass of earth

Moment vector

Exit pressure of vehicle engines
Freestream pressure

Arbitrary vector

Abbreviation for sine

Time

Rotational kinetic energy of vehicle

e o e et i o et it o\ o s e oo
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Translational velocity of vehicle

Exit velocity of air and fuel of vehicle engines
Freestream velocity

Translational position of vehicle

Position vector of center of pressure in vehiclé
system

State variable vector

Angle between y-axis and relative velocity vector
Angle measured in xz-plane from x-axis, loéating
plane containing relative velocity vector and
y-axis

Lagrange multiplier vector

Inertia tensor of vehicle in vehicle coordinate
system

Freestream air density
Eulerian angular position of vehicle
Time rate of change of §
Angular velocity vector in vehicle coordinate
system
Subscripts
Relating to aerodynamic force
Relating to pitching motion about vehicle's z-axis
Relating to rolling motion about vehicle's y-axis
Relating to thrust force
Relating to vehicle coordinate system

Relating to yawing motion about vehicle's x-axis
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INTRODUCTION

The Maximum Principle is a mathematical optimization process,
yielding a continuous set of controls, as contrasted with the computer
search technique of optimization. One of the primary drawbacks of the
Maximum Principle is the necessity for deterrining the initial values
of the Lagrange multipliers. Since no physical significance is attached
to the Lagrange multipliers, a system of assumed initial values is com-
monly used with the hope that a maximum can be found.

In the problem formulated in this paper, a unique situation
arises: the Hamiltonian is linear in the control variables and nonlinear
in the state variables. If these nonlinearities are used with appro-
priate nonrestrictive initial values for some of the states, a set of
equations is produced which can be solved for the initial Lagrange
multipliers. Thus, a complete extremal solution can be found for the
optimization problem presented in this report.
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COORDINATE SYSTEMS

Two coordinate systems are used to describe the motion of the
vehicle. One of these, the plumbline system, is fixed to the earth's
center and is assumed to be a primary inertial system. The other is
fixed to the vehicle at the center of gravity and moves with the
vehicle., The directions of the vehicle axes are shown in Figure 1.
The position of the center of gravity of the vehicle is given by its
Cartesian coordinates relative to the plumbline system. The angular
orientation is given by a series of three consecutive rotations, which
are illustrated in Figure 2. From an initial position in which all
axes of the vehicle and plumbline systems are parallel, the following
rotations are made about the vehicle's center of gravity:

1) Yawing rotation ¢, abou*t the x axis
2) Pitching rotation’ ¢, about the z axis
3) Rolling rotation -¢, about the -y axis

Consequently,

Ty = [-6,]léplley)T = [AplT

or

CRCP CRSPCY - SRSY CRSPSY + SRCY

T, = | -SP CPCY CPSY T

-CPSR  -SPSRCY - SYCR  -SRSPSY + CYCR
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PROBLEM FORMULATION

The minimization of the performance index
t
med.
)

i'i11 be accomplished through utilization of the Maximum Principle.
Thus, for a minimum of

t
!ﬁfdt ,
(o]

a maximum of the Hamiltonian H is desired, where H is defined as

H z A+X

where X is the state variable vector and A is the Lagrange multiplier
vector.

The state variables chosen for this problem are the transla-
tional and rotational position and velocity X, u, ¢, and ¥, respec-
tively. From a knowledge of mechanics, the state equations are as
follows:

X =3

T = F/m - mu/m

§ =7

V = [BIM+ [C]F +[FID

R Y
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Thus, the Hamiltonian becomes

H=Aoﬁlf+rl-ﬁ+x11-(g-g‘!)+r

- ¥+ Xpy ¢ ([B]M + [C]¥ + [FID)

After substitution of the forces and moments discussed in the appendix,
the Hamiltonian takes the following form:

H = Ao[Ft - ma(vy - VoL- Ai(pi_- POJ.]+ .

Vj I * G+ II
T F. GM
* E_a+ [AD] 'rn_t"" IT'PX
.+ Ma(Vi - vo) *+ Aj(pj - Bo) - Fy
ij

+ XilI Y+ X&V « {[B]JM + [C)y + [F]D}

From the Hamiltonian, the necessary conditions can be obtained as

- _ ‘
A = -3¢

Expanding into scalar form, these equations become:

>
R

F T F.
0 Trr gt Lol g

+Malvi - vo) + Asfpy - po) - Fr g

ijz
X 1 = = oF 1 3x2
Mo - w B 'E)a_xa+GM(Ti'|'3"Tfr5)

T

e St
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A12 = 'A9 - AIV ¢ ; Ci3 + 'a‘b—p ([F]D)

The solution of these equations for K'depends on the initial values of
A. Since no physical significance can be given to the Lagrange multi-
pliers, some method must be developed to determine their initial values.
When one realizes that the Hamiltonian is of the form

- e . oM H o
H = f(X,A) + _a‘ﬁFt + W M,

the possibility arises that the nonlinear function of state can be
made zero at the initial time by an appropriate choice of imitial
state without the necessity of all states being zero. Consequently,

since on an 5, timal path H = 0, the remainder of the Hamiltonian must
be zero; i.e., .

oH 3H

73 r
ﬁ;pt'@';ﬁ M = 0

Since F; and ¥, in general, are not zero,

Q

H oH —
—_— = 0 ard = 0
" oM

P

This is the normal necessary condition used for the case of nonlinear
controls.

- If one chooses the initial state to be a position of rest, i.e.,

¥ =0and u =0, and if one selects an initial thrust which satisfies
the equation

~(Ayx + Agy + Ag2) T%¥? + Ao(ﬂﬁfvi - v,) ;in(Pi - Pal) = 0

the coefficients of the controls are zero at the initial time step,
allowing an analytic solution for the unknown initial values of the
twelve variable Lagrange multipliers. If one uses these initial values,

A.

———— S PN S Anoas e | et s e s i e 4

the given differential equaticns can be solved for the time history of

Similarly, the state equations can be solved for a time history of
the state variables.

e R
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Extremal control is determined by the coefficients of the con-
trol variables. Since the Hamiltonian is linear in all controls, the
extremal control is bang-bang unless the control coefficient is zero;
i.e., if

H —
%E;'> 0, C; = CiMAX i=F¢,M
oH . -
-BEI <0, C; = ciMIN i= F¢,M

For the singular control case of a zero coefficient over a non-
zero time intcrval, the equation(s)

%E;'= 0 i = Fg or My or My or M,

can be added to the differential multiplier equations over the appropri-
ate time period to solve for the extremal control.




CONCLUSIONS

A set of initial values of the Lagrange multipliers for the
state problem can be found analytically through a choice of appro-
priate initial velocities. This is by no means a unique solution
to the problem, but it is a method of making a feasible choice of
initial multipliers for a certain realizable initial state. The
actual numerical solution of the equations should present no major
difficulties if the intial values are no longer a problem.

This method of solving for the initial Lagrange multipliers
will not be applicable to most problems. With the selection of an

appropriate number of initial states, the problem becomes too
restrictive to be of any great general value.

10
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APPENDIX: MATHEMATICAL NTDEL

A mathematical model for the basic mechanics of the problem
will be deduced using the separability of the rotational and trans-

lational motions of a rigid body. The fcrces and moments will be
discussed first.

A. Forces

An aerodynamic force F, is assumed to act at the vehicle's
center of pressure. The orientation of the aerodynamic force is
determined by two rotations from the vehicle system to a new coor-
dinate system denoted by T,. The rotations align the aerodynamic

force with the -y, axis. The maneuvers necessary for this align-
ment (Appendix Figure 1) are:

1) Roll ay about the y axis.

2) Pitch a about the ¢ axis to align the y axis with r
the relative velocity vector.

Thus, ;; = [-c][ay];;

=<

* CENTER OF PRESSURE {

Appendix Figure 1. Aerodynamic Force System

12
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The magnitude of ?; is given by
IFal = § vo?A(cp? + ¢ 2)}/2

A thrust force ?} is assumed to act along the longitudinal axis
of the aircraft. The magnitude of this force is given by

[Frl = my(vy - vo) + mgvy + Aj(p; - po)

where ﬁa, vj, and p;j are known functions of I?&I for a given engine.

The gravitational force of a spherical earth acting at the center
of gravity of the vehicle is

F = - Sy
|x|3
B. Moments

An aerodynamic moment and a thrust moment are present as a
result of the nonconcurrency of the center of pressure and the center
of gravity. Collectively, the moments are

0 0

;cpx [-uy][a] Fal « | Fr
0 0

where ;; is the position vector of the center of pressure in the
vehicle gystem.

The control surface moment ﬁb is a control of the optimization
problem. These are the collective moments resulting from the flaps,
ailerons, and all other vehicle control surfaces.

Clasle's theorem for rigid body motion states that the motion
may be divided into a pure translation of the center of gravity and a
pure rotation about the center of gravity. Therefore, for the trans-
lational motion, the following equation results from Newton's law:

s F i
m n

b v

Bl ~Fansra
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or

ﬁ = E E& + [A ]T —I ‘r—rg' X

, malv; - vo) +v?f; (p; - po) - Fr ¢

where

E o= 147 07 007 {0)10a]
and

[Ap] = [-0x] 8] [+,]

The rotational motion equation is obtained from energy consider-
ations. The rotational kinetic energy in matrix form is

T = }w [ua

where w is the vehicle-fixed angular velocity vector and [u] is the
inertia tensor for motion about the vehicle axes. The Lagrangian form
for generalized coordinates of angular character is

dfor ) ar
at\se;) " 36 - My

When one carries out the indicated operations, the Lagrangian equations
become:

d 30T\, = %@ . . d@ @ , 4=
Sl « By v G- B v <

After substitution of the angular velocity components of ¢ R ¢ y, and ¢r
for U in the vehicle system and simplification, the resulting equation
is

v = [B]N + [C)V + [F]D

s vt %t ey e ot
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NIY-31303
Semi-Annual Report on NASA Grant NGR-01-003-008

RESEARCH ON

DEVELOPMENT OF EQUATIONS FOR PERFORMANCE TRAJECTORY COMPUTATION

SUMMARY

During the second six months cf the original one-year period
of the grant work has progressed on two projects:
1. Development of a cumputer program for the study formulated
earlier, as discussed in the last report, and |
2. An analytical study of a minimum fuel flight for high
speed aircraft,
Included in this report are a listing of the program to compute
a minimum time re-entry into the atmosphere for an Apollo-type cap-
sule, and a technical summary of the minimum fuel problem. A detailed
report on item two is to be presented to the Guidance Laboratory of
Electronics Research Center in Cambridge, Massachusetts, on April 19

an 20, A full report will be forwarded to you after this presentation.
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INPUT CARD 5§ JUMP = 1 PARTS 1 AND 2
coL NO 35 = 2 PART 1 ONLY
1S JUMP = 3 PART 2 ONLY

SYMBOLS USED IN PROGRAM
PLANET DATA

s GRAVITATIQNAL TOMSTAMT OF PLAMET

A" = RANTUS OF PLANFT
PHO = DFMSITY OF PLAMFT ATMOSPHERE
DHON =PARTIAL OF RHD WeRaTe ALTITUNE
OYEGA = ANGULAR VFLOCITY OF PLANET AROUT ROTATION AXIS

(WFXyWFYswEZ) = ANGULAR VFLOCITY COMPONENTS OF THE PLANET IN THE
INERTIAL FRAYFE

VEHICLE DATA

X = ACRODYNAMIC COEFFICIENT (LONGITUDINAL AXIS)

CXMD = PARPTIAL OF X WeReTs ALFHA

2 = AFRODYNAMIC COFFFICILNT (PHRPENDICULAR TO LONGITUDINAL
AXTS)

c2Mn = PARTIAL OF rZ WeReTa ALPHA

A = CROSS=-SFCTION OF VFHICLF
M = MASS OF VFHICLF

GENFRAL DATA

(XoYs2) = CARTESIAN COORDINATES (INERTIAL FRAME)
(UsVaeW) = VFLOCITY COMPOMFNTS (INFRTIAL FRAMVE)

R = MAGNITUDF OF RADIUS VECTOR TO VEHICLE
HGT = ALTITUDE

{VRXsVRYsVRZ) = RFLATIVF WIND VFLOCITY COMPONFNTS(INERTIAL FRAME)

(VRMX s VRMY 9 VRV¥Z) = RFLATIVFE WIND VELOCITY COMPONEMNTS (MISSILE-
FIXED FRAWMF)

VR = MAGNITUNDE OF VFHICLE VELOCITY RELATIVE TO AIR
FRA = AERCDYNAMIC ACCFLERATION
GGG = GRAVITATIONAL ACCELFRATION
H = PONTRYAGIN H FUNCTION

PHA = PARTIAL OF H WeReTs ALPHA
PHAY = PARTIAL OF H WeR4Ts ALPHA Y
XLAM{1) = LAGRAMGF MULTIPLIFR (1)
XLAM{D) = LAGRANMGE MULTIDLIER ()
XLAM(3) = LAGRAMGF MULTIPLIER (3)
XLAM(4) = LAGRAMGF MULTIOLIFR (4)
XLAM(5) = LAGRANGF MULTIPLIFR (5)
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XLAM(6)
XLAM(T)

LAGRAMGF MULTIPLIFR (6)
CONSTANT = +1

PREFIX OF R INDICATES ANGLE IS TN RADIANS., OTHERWISE IT IS ASSUMED
TO RE IN DEGRFES,

PHTIO = INFRTTAL FRAME QORIFNTATION ANGLF
AQ = JNFRTIAL FRAME ORJENTATION ANGLE
ANG = {(on = AD )

PHIR = ROLL ANMGLE

PHTY = YAYW  ANGLF

PHIP = PITCH AMGLF

ALFY = ROLL ANGLE OF VFHICLE (AFRODYNAMIC FRAME)
ALF = ANGLE OF ATTACK OF THE VEHICLE
CRALF = COS(RALF)

SRALF = SIN(RALF)

CRALFY = CHS(RALFY)

SRALFY = SIN(RALFY)

CPHIO = CNS(PPHTOD)

SPHIN = SIMIRPHIN)

CRAD9 = (CNS(RANQ)

CPHIR =. CNS(RPHIR)

SPHIR = STINI(RPHIR)

CPHIP = COS(RPHIP)

SPHIP = SIN(RPHIP)

CPHIY = COS(RPHLY)

SPH1Y = SIN(RPHIY)

FRAUIVALFNCF (”ASF”M(1)9ﬁDﬁS(1));(MASCOV(]01)yTﬂRS(l))s(MASCOV(ﬁﬁq)
14VFX(1))

FRQUIVALFNCF (ONNS{1) 9 ALF) 9 (ONNDS(2) 9RALF ) 9 (ODNS{3) 9CRALF I3 (ONNS(4) y
1 SRALF) s (NDNSIRYSALFY) s ({ONNS({H) sRALFY ) 9 (ONDSI 7)Y 9sCRALFY )2 (GNNS( QY s
7 SRALFY) o« (ONNSIC)+PHTIOY 2 (QONS(10)sCPUTI0) 9 (ONNS(11)9SPHIO)» (ONNS(12
3) 9 A0 (OPNS(12)9CRA0O) 9 (OPNS(14)9SRA0I) o (NNNS(15) sPHIP) 2 (ONNSI16)
& CPYs(OPRS(17195P) s (ONPS 18 ) sPHIY ) s (ONNSL10) 90Y )y (ODDS(2C) 9SY )

5 (ODDS(?});PHVR),(ODDS(?7),CR),(ODﬁb(?3)95R)’(0005(24)’UMEGA)’

6 (ODNS(25) 9uFX) s (ONDSI2£) ¢ wFY) s (ONDS(P2 7Y 9WFZ) s (ODDSI28)sVR} 9 (ODDS
7 {29)svRX)+(ONDS(20)9VRY )9 1ONNS(31)9VRLZ) s (ONNS(32) s VRMX)» (ODNS(33)
£ sVRNMY) s (ODNS(34) 9 VRMZ) 9 (ONNS(35) s VRMPDY ) 9 (ODNS(36) s VRMYD1 ) 5 (ODDS
S {(37)sVvRPYRDI)

COUTVALRNIE (OPNS (2215 X ) 9 (OPNS{29) 9 XMD ) 9o (ODNNSLL0) 92y
1 (ORNPSTA1) 920D Yo LONNSIL2) 90 ) 5 (ODNSLA2) 9yRHO ) 9 (ODNS (44 ) 9y RHON )Y »

2 (OPRGLA4R)sR) s {CPNSI4A) 2201 9 (CNPSLATIIHAT Y (ODNST4R) 9A) 9 (ONNS(49)
2BV INNNS (a0 s M) s [ORNSIR1 ) 9 GGG (ONNSIB2) s FPA) 9 (ONPDS(53) 9XMNOT ) s
4 (0005(‘&)9H)9(nﬁhS(FE)9DHA)9(Oh05(56)9PHAY)

EOITTVALENCE (DDNS(8T)sFA)

FRUIVALFNCE (TARS(TI)9ALTIY)) s (TABS(89)sPRFSSI1) )
1(TARS(2A5) s ALPHAT (1)) 2 (TARS(303)sTCLI11 )2 (TARS(341)9TCZP(1) )
2(TABS(279)9TCZPP{1)) o (TARS(4]1T7)sTCX{1)) o (TABSI45T)sTCXP(1) )
3(TARS(495) +TCXPP(1Y)

CAUIVALFNCF (er(1;;XH(I))o(VFX(A)oURDOT(l))’(VFX(7)9XQAR(1))’
TIVEXTI0 o XLAMT (1)) s (VEXUI2 ) o XLAMTT (1)) o (VFEXI16) o XLMID( ;1) 9 (VFXL19)
29XLMIINEI) ) o (VEXI22) s URT1 )19 (VEX (2R ) 9 XLAMT)Y
FAUTVALENZE (XM 9 XNX) 9 (XNMED) 9 XNY 1o {XMN(2)9XN2)

FOUIVALENAE (L1aROT (11 eUN) o (UPROT(2)9VN) o (UPDOT(2) 9 WD)

FAUIVALFNCE (XPRAR( I 9 X) o {XRAR(2)sY) s (XBAR(3)s2)

EQUIVALENCE (XLAMTCI) o XLAMT) o {XLAMTU2) o XLAM2 ) o (XLAMI(3) sXLAMD)
FQUIVALENCE (XULAMTTOI) s XLAMA) o (XLAMIT(2) 9 XLAMS) 9 (XLAMIT(3) 9XLAMS)
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XLAM3D)

FIUIVALENCE (XLMIN )9
(XLVI1 DE3) s XLAME

FQUIVALFNCE
1m)
FOUIVALFANAZE (UR{1)1sU)»(UR{2 )1V (UR() s

COVINON MASCAY

PIVENSTON MASCOM{4693)

NIVENSTION ONNS{I00)+ TARS(RAR 4 VIEX(25)

NIMEMSTION ALT(RR}+PRFSSIRA) K (88

NIYEHNSICN ALPHAT{38)sTCZ(38)sTCZP(38)sTCLPP(38)sTCX{38)sTCXP(38)»

1TEXPR(2R) 4 J(38)

DIMENSTON URDOT(3) o XN(3) 9 XRAR(3) s XLAMI(3) s XLAMITU3) s XLMID(3)
1IXLMIIND{3),UR(2)
DIVENSION QUTD(44100)
DOUBLE PRECISTION FASAST
NDOUBLE PRECISICN MASCUM»ODDSs TABSIVEX s ALF s RALF s CRALF s SRALF 9ALFY s

.1 RALFY»CRALFYsSPALFYsPHIOACPHTD«SPHIO A0 PHIPsCP9SPsPHIY
2 s CYsSYsPHIR SR ST aDEGAIWFX s WEYIWEZ s VR e VRX 3 VPY s VRZ s VRMX s VRMY 9 VRMZ
2 G VEMPNI s VRYNY s VPMANT s CX s XMN 902 9 CZMD 9 gRHO S PHON SR sROsHGT 9A
4 VMaNMgnGRaFPA s XMNOTaHsPHASPHAY yALToPRFSS WAL PHAT 9 TCZ s
CTrZP s TCZPP s TrX s TCXP s TCXPP o XNyURMOT o XRAR G XLAMT o XLAVI T o XLAID s XLMTIIDY
6 URSXLAMT o XNX 9o XNY o XNZaliDsVRawNs XY sZ s XLAM] s XLAM2 9 XLAMB s XLANM4
7 XLAMB s XLAMA s XLAMIN o XLAMIN o XLAMIN 9 XLAMED s XLAMED o XLAMSD sU sV aWy
ASPALFP W RALFP
NOLURLE PRECISTION ARCOSsCOLAT sCRITHIDELITESPsTIRECsTLIMIT»TPRINT
I1TSTEPSTYSUO,

2 VOsVLAT sVLONG o WO s XOQ s XLAMIO o XLAM2D o XLAM3D s XLAMA4O s XLAMSO 9 XLAMEOD s
az0

DOURLFE PRFCTISTION SRAQ9sCRANGHYRPHIO SRAD

ATEENSTION STX(2)eSTY(2)905TAY{32)«RDI(T)

NALALF PRECTISTION STXeSTYsSTAYSSLOPFSTALF

NOLIRLFE DRECISIOM CONMA NN GCONC YD Y29 Y02 9Y?22:NFL2

NALRLFE PRFCTISTON HH

DIYFNSINON HHI?94)

NIHENMNSTON OF(115)sDUTA{4L45),0UTA(205)

NATA CUTCL2)Y +»0UTCU3) sDUTClA4Y osOUTC(5) sQUTCLTY sOJTCH(BY)
OUTC{ay s0OUTC (10 s0UTCL 72y o0UTC(12)s0UTCIT14)s0UTCI15) 9UUTC(T1T) s
QUTCEIR) OUTAT19)s0UTAL201)9s0UTC(22)s0UTCI23)s0UTCI24)0UTC(25)
OUTCL2T7)12QUTA(28) 9 UTA (20 3CUTC(30)sQUTCI32)90UTC(32)s0UTC(34)
OUTC(35)s0LTC{3T7)s0UTC(32)sQUTC(39)s0UTCIAC) sOUTCI42)90UTCI43)
CUTCL44)+CUTALLS) sOUTCL4T) sCUTC(AR) sOUTC(AG) sOUTC(H0) sQUTC (B
OUTCE(E2) oDUTA(RL)Y 9 QUTAIRR Yy QUTC (B 7)) sQUTCIBR) sOUTC(E9)Y sQUTC(60)
NUTE(E2 ) 9sDUTR AR 2 OUTALAAYsQUTCLAR)sCUTC(ATYSOUTE(88) 2s0LTC (49
AUTACTO) s RUTA L2y s 0UTAL Ty s QUTAL T4 ) s QUTCLTR) s QUTC(T7T7) sOUTCLTRY
QUTALTO Y »0UTZ (RO +sQUTA{ 021 s0UTA(83)sQUTC(R4)Y/ 6T%KHBLANKS/

NATA NUTC(REY yQUTH(RTY +OUTCIRBY +sNUTCIB9) HSCUTCI90)Y »
AUTF(92) »0UTC(92)y »QUT(O4) sQUTCIO8)Y sQUTCIQT)Y sQUTC(ORY
AUTe(o9) +»7UTCL100)2yQUTA(102)s0UTCLIC3)sCUTA(104)2CQUTCILI0S)
AUTCI0T7)I»NUTCLI08) sQUTALT00)sCUTALT110)s0UTC(112)90UTCI113)
QUTCETI14)sQUTCI115)s0UTCI117)s0UTCLL118)90UTC(119)s0UTC(120)
QUTCEL122)9N3TE(123)90UTCI124)o0UTCLL125)90UTCI12T7)90UTC(128)
OUTC(129)2CUTC(130)sQUTC(132)H0UTCI133)s0UTC{134)QUTCLI35)
AUTCEIAT7)«OUTCLL2R)1HQUTAIY39)»QUTCLIL0 »NUTCL142)90UTCI143)
QUTCL14b ) »0UTCIGR) s QUTA(YIAT) s OUTCLT14RYSQUTCI149)9QUTC(150) s

T OUTCL182)9CUTCL1%2)90UTCI154)20UTCL155)/ STHEHRLANKS/

DATA AUTCLIBT7)YsOUTA158)4OUTCLISDV90UTC(160)sQUTCLTI62)

OUTCL162)sOUTCLI64)»OUTC(145)sQUTCITIAT)Y oNUTCI168)»CUTCI169)

CUTCLIT0)sSUTCO1T72)sQUTCII 723 sQUTCETITA)Y sQUTC(YT8)sQUTCIT1TT )

AJTCLITR)YNAUTCILIT79)0UTC(180)s0UTCI182)Y90UTC 1IR3 QUTCI184 )y

OUTC(IRE)sNUTCLLIRTIsQUTCLTIRB) sQUTCI189)90UTCL190)s0UTC(192)

OUTC(192)s0UTC(194)v0OUTCL195) 20UTCI197)90UTC(198)s0UTCI199)

(1) s XLAMID)Y s (XLMID(2) o XLAM2D) o (XLMID(3
DY) o XLAMGD) o (XLMEITID(2) s XLANMSD) 9 {XLMII

NN =
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6 QUTCIP0C)YsCUTCH{P021s0UTC(202)9DUTCI2C4)»0QUTC(205) /40#6HBLANKS/ 6
NATA OF(2) sOF(3) sCF(n) sLUE(S) +0F(7) +s0E(8) +CF(9) »OF(10)

1T OF(121s0F(12)sCF(14)97F(15)9CT({17)50%(18)9GE(10)sCE(20)190F (221
NE(22)3CF(24)sCF(25)e0F (271200 (22)90F(29)90F(2C)s0F(232)90F (27
NE(24)sOF 2Ry 3 OF (27 ) 9NF(20) s OF(29)3OF (40 9DF(42)50F(43)s0F (Lt
(L) NE (R TV IOF 4R IDF (400 (85N ) s0F (8293 QF ({8)s0F(E4)+0F (85
CELRTYSOFIRRYs0OF(832)9NELA0)s0FE(62) 905 (63)s0F(64)90E(55130F(47)
NELALY aNE(A2) 4 0C( TV sNF (77 0F(T23)eNF(T74)sO0F(TRY 22T (T7T)s0F(T78)
(7250 (pP0Y1aCE(BIINFIR2) D {4 ) s2F (P50 (RT)SOF(F/)»0F(RG)
DNEIO0I 0T L2) s0F (92 ) s0F (04 ) +0F(CH)s0F {07} s0F(98)s0F (GG
CE(100)s0F(102)sCF(103)90F(104)+sCF(105)/ BH4*GEHRLANKS/

PATA OUTC(1)Y sCUTCI(6) sCUTCI11) +0UTCL16) »0UTCI(21)

1 QUTC(24) »CUTCI31) +DUTC(26) »0UTCI41) »QUTC(46) HCUTCI5])

2 OUTC(58) +DUTC(H1) sQUTCI56) s0JTCIT1) »0OUTC(76) »OUTCI(R])

3 QUTCIRS) sNUTC(91) sOUTC(96) sOUTC(101)s0UTCI106)s0LTCI111)

4 QUTCL116)9NUTCI121)»0UTC(126)9s3UTC(121)s0UTC(136)/

CRAHTIYFE 4 AHX s BHY s 6HZ s 6EHU s 6HV s GHW

i 66HLAMT  $BHILLAMY?  S6HILAYI  46HLAMG  S6HLAMS  46HLAIE  +6AALF

COTBHALFY  9AHPHIR  46HPHIY  26HPHIP  96HAAG s GHVR » 6HM

R6HRHN s 6HN s 6HFA 2 6HN s 6HP s 6HQ s 6HH
NATA NUTCL141)90UTCL146)s0UTCL151)s0UTC(155)sQuUTCI161)

1 CUTC(186)s0OUTC(171)90QUTC(176)s0UTCIIRL)SOUTCI1R6)OUTCIIGT1Y,

? OUTCL196)s0UTC(201)905(1) 907 (6)s0E(11)9s0F(16)1sCF211905(26)

3 OF(31)s0F (A1 s0F (4] )sCELL6)90F(51)90F(56)90E(61)90F(66)s0E(T1) s

4 OF (761907 (21)30F(86)sCF(C1)s0E(96)s0E(101)s0E(200)/

i S6HPHAY s 6HPHA 2y 6HU DOT s6HV DOT +6HY NDOT +6HLAMID ¢ 6HLAMZD »

 B6BHLAM3AD +BHLAMAD 4 6HLAMSD »6HLAMED s6HDRAG 9 6HHGT s 6HVM ’

THHA s B0 + 61RO s HHXD 1 6HYO s 6HZ0 s 6HUO ’

RAEHVN s AHUN s GHI AMLIN $BHILAM2N S AHL AMN S AHLAYLD 2 GHL AMBND

QGHLAMEN $AHILAMT  46HTSTED JEHTPRINTS6HTLIMIT96HALF s GHALFY /
NATA DE(1CT7390F1108)9CE(109)e0E(110)sNE(112)sDE(L113)90E(114)

1 OF1119)e02F(111) /7 B#O6EHBLANKSOGHOMEGA /

AREO G N DA TAMA LD EL LT b} e XX s X ARCOS(X) = DATANZ(DSQRT(1., - X*X),X.)
TESP = 665.0

ok

DN DS AN
v » @ ® w e

N
e e s WK L EAETAR € D WY R AR .

14
’
’
L

P

Nw e e

e avm W

§

PN

READ IN DATA

o e ens

PEAD IN HYPFRSONIC DATA TARLE
NCCRODY I=1e29R
READ(51000) PN(1)sRN{2)1sRN(3)sRNI4)sRN(B)sRNDIB6)IRN(T) 9 J{T)
A PHAT(T)Y = DRLFIIN(T)) )
TCZ(1) = PRLE(RN(D))
TEZRP(T) = DRLF(RN(3))
TEIPP(T)Y = DRLFIRN{4))
TCX(T)Y = PRLFE(RIN(ARY)
TCXP(I) = DALF(PN(6))
TEXPP(1) = "BLE(RN(T))
N0 FOPMAT(FICe09F10629F10453F10469F10629F10,59F1066912)
| NO 120 1=1,3R
IF(JU(I)=1) 10191209101
0 CONTINUF
GO TO 100
Pl WP ITE(Re100) ~
Q FORMATIIHYI 918X 9 23HNATA CARDS OUT OF ORDFR)
. GN TH B88
L READ IN ALTITUNF VS DENSITY TARLE
N DO ARD?2 T =108
RFAD(S91001) RD(L)IRNI2)9K(T])
ALT(T) = DRALFIRDI(L1Y)
2 PRESS(I) = DBLE(RD(Z2))
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FORMAT(F10s09F11e4yGtBXs13)
DN 122 1=1+98

TFIK(IY -1 1061+122+101
CANTINUF

READ INPUT DARMFTERS
CONTINUF

RFADI&1002) RO(1IsRNI2)sRN(I3)9RDI&L)IsRND(5) 4L
G = DRLF(RN({1)Y))
RO = DRLE(RND(2))
OVEGA = DRLF(RN(3))
AD = NDRLE(RN(4))
PHIO = NDBLE(RD(S))
FOPMAT(2ED0,Re2Fb,092Xs12)
IF(L1-1)101+124,101
CONT IMUF
DTN 102
READ{G1002) RN(1)sRP{2)9PN(3)YsRD(4) 91?2
ALF = DRLF(PH(1))
ALFY = DRLE(RND(2))
Vi o= PRI C(RN({2))
A = NRLE(PN(4))
EORMATIA4FI0,4920X912)
[FIL2-2)101+126+101
CONTINUE
GN TH 1013
REAND(G1004) RN(Y1, eRN(2)9RNI3)sRND(4YIRN{SIsRD(6) 9L 3

X0 = NRLE(RD(1))
YA = NRLF(RN{2))
70 = NRLF(RN(2))
U = RARLE(RN{4))
VO = NDRLF(RN(K))
W0 = PRLE(PD(A))

FARYMAT(2F104032F10e3910Xs12)
[F{L3-3)101,128»101
CONTIMUF :
REAN(591005) RND(E1)9RN1:1sRN(3)9RDIA)SRDIS5)9RD(6) 9RDIT) oL 4

XLAMIO = NDBLF(RN(1))
XLAMPC = DRLF(RN(2))
XLAM3IQ = NDRLFIRN{2))
XI AMG4H = NILE(RN(4))
XL AVMSC = RRLT(RN(RY)
XI.AME(G = NRLF(RN(A))
XLAMT = nRLF(RN(T))

3 FARMAT(TF104%3412)

IF(L4=4)101+1309101
CONTINUE
GO TO 135
READ(5,1010) RD(1)sRNI2)9RD(3) s JUMP s IFF sL5

TRPRIMT = DALFI(PNI{1}Y)
TLTMIT = NDBLF(RN(2))
TSTEP = NDRLF(RNP(3))

TPRINT MUST RF GRFATFR THAM OR FQUAL TO TSTEP
FARMAT(AIF1IN,N42[R42NXe17)

IF(LS=%) 1015737+101

CONTIMUF

[FULIUMP o FQe2) e ORG (JUMPLFR,L,2)) GO TO 138
Jurp=1

CONTINUF

WRITF(6+1493)

L LU YRR

A s
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Do Rt e e iiandes )

PRINT INPUT

QUTA(1)Y = SNGL(VM)
NDUTA(2) = SNGL(A)
NUTA(2) = ShAL(AM)
NUTA(4L4) = SMGL(RD)
PUTAL(S) = SNGLI(IXO0)
QUTA(6) = SNALI(YD)
OQUTALT) = SNGL(20)
DITA(RY = SNGL({U0)
OUTA(9) = SNGL(VO)
OUTALIN) = SNAL(WN)
OUTALL11) = SNGL(XLAMIO)
NUTALTI?) = SNALLXLAMY20)
CUTA(13) = SNGLIXLAM20)
NUTA(TLY = SNAL(XLAMY4L0)
AUTACTISY = SMALIXILAMEN)
QUTAL16) = SMOL(XLAMGO)
QUTA(17) = SNGLIXLAMT)

QUTA(1R)=SNCLITSTFP)
OUTA{19)=SNGL{TPRINT)
AUTA201=SNGLITLIMIT)
NUTA(21)1=SNRL(ALF)
DUTAL22)=SNGIL(ALFY)
NUTA(?22)=SNAI {DMFGA)
CALL FONVOF4NUTA,23)
WRITF(6+6R54)

FOPMAT(1Xe?27THINPUT VALUES ARF AS FCLLOWS)

WRITE(E+6R55) (OF(LL)sLL=19115)

INTTIALIZE PROGRAM

CONTINUF
CALL TRA
=110
V=V
W=t
X=X0
Y=Y
2=20

p

D e s B e et e R

XLAMI=XLAMIQ
XI.AM2 =X AM20
XLAM3I=XLAM3N
XLAMG=XL AM4O
XLAMS=XLAMSN
XL AME=XLAMED
CALL JACNR(HHy=Ro09=5,0)
CALL TMVFRS{HH INNX s TNRN 2 444 XFRR)
DO 200 1=1,y? .
NO 200 N=1,2
HY (TyN} ==UH(T4N)
WRITE(6+299)
FORMAT(1HO»2IHTHF FOLLOWING ARE VALUFES FOR HH)
WRITE(6931) ((HH(NsT)s12)192)sN=142)
1 FORMAT(2F20,5)
IF(JUMP,FO,3) GO TO 4002
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THF FOLLOWING IS PART | AS CALLFD FOR RY JUwP

AST = ALF

8ST1=ALFY

ALFY=-130.0

DN 4522 NN=1,71

ALFY=ALFY+5.0

ALF==180,0

NO 4500 JX=1971
ALF = ALF + S,

CALL HZALT

OUTN(1+IX) SNGLIALF)

NUTD(29JX) = SNGL(H)
NUTN(24JX) = SNGLIPHAY)
ATRLL 9 XY = SNGL(PHA)

TFIIFF)A5229483294R2)

WOTTE(694511) ALFY

FORMAT(T79H1 ALF H
PHA - ALFY=9F6,177)

WRITEL694510) ((OUTD(XKK sLLL) oKKK=194)oLLL=19T71}

FORMAT(1HOF104,292F20.8)

T INUF

WRITF(6414672)

IF(JUD,FNn,a2) G0 TO 888

Juvp = 3

8L F = ASTY

AL FY=ASTY

GO TN 4001

CONT INUF

THE FOLLOWING IS PART I1 AS CALLED FOR BY JUvP

WOTTE(6e4534)
FORMAT(1HO//+16HITERATIONS BEGIN/Z)
TIPFC=n,

TY = TPRINT

J2=0

TTFRATF FOR ALPHAY

CONTINUF

IF(TIRFCLFELTLIMIT) GO TO 8/88

COLAT = ARCOS(NARS(Z)/NSART(X¥X 4+ Y®RY 4+2%7))
VLAT = NDSIGNI{14570796 = COLAT)+2)%87,2958
VLONG = (DATAN2(Yy9X)= OVFGAXTIREC)%#57,295A8
CALL SLVML{ALFoALFY sHHyPHA ST HAY 31 4F=14928»TIRFC)
COANTIMUF

CALL PORHY

IF(TIRFC,FN,0,0) AN TO 8008

TY=TY+TSTFP

IF{TYLTSTPRPINTY GO TO 6u48

CONTINUF

TY=Ce

PRINT QUTPUT

PHAY

e e st a5 e 03 et o G IS S ] M A SO ST 053  SRC  ASc e el  R SR
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GN TN 8Nnog
TonT INUE
CONT TNUF

FXIT IF PHASE I1 1S COMPLFTE
CHECK FOR SPEER LESS THAN TESP

IF(VR,LF,TESP) GO TO 6900
TIRFC = TIRFC + TSTFP

JZ2=J7+1

CALL TGRATE (JZ2+TSTFP)
GO TN 6800

IKK = 2

AN TO BN0G

CONT INUF

GO TO 888~

TY = 000

IXK = 1

COMT INYE

NUTA(]) SNAL(TIREC)
OUTAL(?) SMGL (X)
NUTA(2) SMAL{Y)
NITA(G) SMeL(7)
NITA(S) SNGL (1)
OUTAL(G)Y SNGLIV)
NUTA(T) SMGE ()
UTALR) SNAGL (XLAYY)
NUTA(9) SNGLIXLAM?)
NUTA(10) SNGLIXLAM3I)
CUTA(]11) SNGL (XLAMG)
OUTA(12) SNGL (XLAMS)
OUTA(13) SNGLIXLANMG)
NUTA(14) SMAL (ALF)

OUTALLS)
NUTA(14A)

SNAL(ALFY)
SNGL(PHIR)

llllllﬂlllilll!”llllllllllOllIlllIﬂ")l"llllllll!lllllllllllIlll!l"llll

OITALT T SKALIPHIY)Y
NUTA(18) SNEL(PHIP)Y
OUTA(19) SNELIGG6)
NITA(20) SNGLIVR)
NUTA(21) 0.

QUTA(22) SNGL (RHO)
OUTA(23) C.

QUTA(24) SNEL(FA)
NUTA(25) SMGLIXN(1))
NUTA(26) SMAELIXMNI2Y)
NUTA(27) SNALIXN(2)y)
NUTAL?28) SNGL(H) .
DUTAL29) SNELPHAY)
NUTA(30) SNGL (PHA)
ONTA(2]) SNALLUPDOT(1))
MITA(3?) SNGLIUANOT(2))
NJUTA(37) SNGL(URNOT(2))
OUTA{34) SNGL (XLMID(1))
OUTA(35) SNGL(XLMINC2))
OUTA(36) SNGLIXLMIN(3))
QUTAL3T) SNGLIXLMIIN(1))
ouTA(38) SNGL (XLMIIN(2))
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NMITALI9) = SMALIXLVTTIN(3)) 11
nUTA(an )y = 0O,
NUITA(AYTY=CNAL (HGT)
CALL CONVINIITC sNiTANL])
WRPITE(L£49E8558) (QUTC(TIYsl=1e205)

56 FARMAT(S(2X9A69)X9AYeF10.89814123)
WRITF(6+€6856)

56 FORMAT(1HO//)
GO TD (R0ON5.8n07)41KK

18 STOP
EMD

FYC ORELON
SURRNUTINF PRFLCD
FQUIVALENCF (2ASCOM{1)s0NNSLT1YV) sy (MASCOM(101)2TARS(1)) 9 (MASCOM(569)
JoVFXI(1))
EQUIVALEMAE (ONNDS(1)sALF) s LODDS(2) sRALF ) 9 (O2DDS(2)sCRALF) s (ODNS(4)
1 SRALFI»(ONNS(S)sALFY ) s (ONOS(HVyRALFY ) » (ORNS{ 7)Y s CRALFY ) s (ODNS(R) s
2 SRALFY) s (OPNS{Q)YsPHTIO) 2 (ONNSEID) s CPHICI» (ONNS(11)9SPHIO) S (ONNS(]2
23)9A0) s (NINNS{12)9rRADZ) s {OPNS( 141 sSRA0DG) S {CNANS(15)sPHIP Y (ODDS(158)

CPYI2(DONS(17)9SP ) (CNNEIIR)HPHIY ) (OTDL(19)sCY ) » (ODDS(20)sS5Y)

(OPNS{21)sPHIR) S ICHNSI22)9CA) s (CNNS(22)95R) o (ODNS(24) »UIEGAY o

(CPNSI2%5)9swWFX ) o (ONNS(2A)19WEY s (ONNS{2T7Y9wEZ) s (CNNSI25)VR) 9 (ONNS

(29)sVRX) s {ONRNS(20) s VRY ) o {ONNS {2119 VRZY s {ONNS(22) s VRUX ) s (OPNS (23

sVRUY ) 4 (NONNS (24 ) yVRMZ Y s (NNNS (28 ) s VRMDPNT ) 5 (OPNS (26 ) s VRMYNT Y 2 (ONNS

(27)sVRUONT) hd
FRAUIVALFYNCE (OONS(2R8) 97X ) o (ONNS(RF e CXMD Yo (ODNS(4HC)9CL) s
1 (OANSTATY 972D ) (OPNSU42Y Yy (CPNST43)9RHO) s (ODNS(44) s RHON)Y »

2 {oPRS{asY s ) (ONNS(LH) Q) (OONSLTYIHCTYI s (ONDS{ARYIA) 2 (ONNS(49)
2 VM) {ONRS(E0Y 9y LCNNS IR GGR Iy (OINHIS21sFPA) s (ONDS(53) $ XMDOT ) »
4 (ONNPS(R4)sH) s (CPNSIRE ) aPHA) s (ONPDS(56) s PHAY)

EQUIVALENCE (0ODNS(ST)sFA)

FRUIVALFNGE (TARGLIT1)1sALTI1)) s (TARS(89)sPRESS(1) ) .
1(TARS(2AR ) s ALPHAT( IV s(TARS(307)y s TCZ 119 (TARS{341)sTCZP(1) )
2(TAPS(370)1 9 TrZPP (1)) o (TARS(4YT) 9 TCXI1)) s (TARS(4L4RT) S TCXP(1) )
A(TARPS(406)TCXODP (1))

ERUIVALENAE (VEX(1 9 AMIY) Yo (VFX{Gy»URNOT 1Y) s IVEX(T7)sXaAR(1) )
TIVEXTIOY o XL AT (1Y) o (VEXTTI 2y o XLAMTIT (1)) o (VEX(16) s XLMIND(1Y Yo (VFX(TV)
PaXLNMTINIYIY )Y UVEX(22)sU (1)) s (VEX(25) 9 XLAMT)

EYUTVALENICE (XN(I)Y o XMX) s {XM (D)o XNY ) e (XM{3)sXNZ)

EAUTVALENAE (UARPOTI1YsUN) o (UanOT (2 )sVN) « (UEDOT(2) 9'aD)

FAUIVALFMCE (XAAR(1)sX) o {XPARI2V2Y )9 (XRAR(3)2)

FOQUIVALENCE (XLAMI(1)Y o ALAMI ) o {XLAMTI(2) s XLAM2) s IXLAMI(3) s XLAM3)
FQUIVALFENCE (XLAMITCOI) o XLAMA)Y s (XLASMIT(2) o XLAMS) o (XLAMTI(3) s XLAMS)
FOUIVALENCE (XLMIDCY) o XLAMIDY 9 (XLMID(2) o XLAMZD) o ( XLMID(3) 9 XLAM3D)
FQUIVALENCE (XLMTINDC)) o XLAMAD) o (XLMITID(2) 9 XLAMSOD )Y o (XLMTIID(3) o XLANMS
1)

FQUIVALFNAF (URTT1)Y U (UR(2) V) (UR() V)

COMMON MASCNAM
DIMFMSTON MASCOM(6913)

NIMENSION ONNS(1C0) o TARS(568 ) VFX(25)

NIYENSION ALT(RR)9yPRFSS(RR)

DIMFNSTINN ALPUAT(28)yTCZI2R) s TCZPI2R) s TCLPP(28) s TCX(38) s TCXP(38)
1TCXPR(2R) .

NDIMENSTON UPNOT(3) s XMN(3) o XQAR(I) o XLAMI () o XLAMIT(3) o XLMID(3)
IXLMTIN(3) 4L (3)

DGURLE PRFCISICN MASCCHsONDS»y TARSIVEX s ALF9yRALF 9CRALF sSRALF2ALFY,
RALFYsCRALFY +SRALFYsPHIQ9sCPHIOWSPHIOSAQY PHIPsCP+sSPsPHIY
sCYsSYsPHIRICRISRIOMEGAIWF Xy WFYIWFEZsVRIVRX sVRY sVRZ yVRMX 3y VRMY 3 VRIAZ

s VRMPN] yVRYN1 s VRMRABL1sCX 2o CXMN 9C29C2ZMN 9 CCoRHOIRHCDIRIROIHGT 9A
V¥ 3GMaGCRaFPAWXMNOT s HePHA sPHAY s ALT s PRESS9ALPHAT» TCZ s

29N> NP

LBV RN
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TR BN RO

-

6 U g XLAVT o XX e XMY 9 XMZstUUDa VDD XY o Z o XLAMY o XLAM2 s XLAMI o XLAMG s
T XLAME s XLAVA W XLAMIND s XLAMPD 9 XLAMAD o XLANAD o XLAMSD o XLAMOD s J sV ey
BEPALFPSCRA" ‘P

DOQURLF PRECTISION RAO9

DOUBLE PRFCISIOM FA

DOUBLF PRFCISION STALFSALPHALs CsCXMD19CZMD14+DALFHB

NOUBRLF PRFCISICM ARCUSICCLATSCRITHDFLITFSPSTIRECsTLIMITTPRINT,
ITSTEPSTY U

2 VOsVLAT g VLOMNG oW O 9 XC o XLAMIN o XLAMIN o XLAMIO0 9 XLAMGQ 9o XLAMS O s XLAMEO
azn

POURLE PRECISTION SRAQCOICRANG yRPHIO RAN

NOUBLE PRFCISiON CONAsCONRoCONC Y0 2Y25Y02sY22 9o DEL2
'RAD = 3.1415926535897932 /180, ARCOS (X) = DAzTANgFD‘sQRTU- - X*X),X.)

RPHIND = DPHIN * RAD

E

E RPANG = (G0 ,~AN)¥RAD
RALF =ALF#Pan

i RALFY=ALFY*RAD
CALCULATE SINES AND COSINES FOR ALPHA»ALPHA Y,AND PHI
CRALF = DCOS(RALF)

SRALF = DSIMIRALF)
CRALFY = NCOSIRALFY)

! SPALFY NSIN(RALFY)
FOHTN = DEOS(RPHIN)
SPHIN = NSIM(RPHIN)
CRAQQ = DCOS(RANG)

SRAQO = NSIN(RANG)
{ CALCULATE CMSGA-F RA&R
i WEY = CPHIO*SRPANQ¥OMEGA
WEY = SPHIO%*0YERA
WF2 = ~CPHIN*CRAQOO*OMEGA
CALCULATF yR
VRX =Y¥WEZ=2%WEY4Y
VRY =Z*uFX=X*WFZ+V
VRZ =X%#wEY.Y*WFX+W
VR = NSART(VRX#VRX + VRY#VRY 4+ VRZ*VRZ)
R=VPY
P = NSART(X*X + Y®Y 4 Z%7)
b 7 = nSAIMT(VPX*¥VRX &+ VRZ¥VRZ)
& CALCULATF ALTITUDF
{ HGT=R=RD
GOAG=-GM /R %3
CALCULATF VRM=RAR
VRMX=VR*SPALF%*CPALFY
VMY VR¥CRALF
VRMZ = —~VR¥SRALFXSRALFY
| STALF=ALF
B0 IF(ALF L. Te0W) ALF=<ALF
\FIALF4LTo180,.) GO TO 1390
KL F=ALF=360, .
GM 10 1280
0 CONTIMYF
NO 140 1=1+26
Je14?
IFCALPHAT(J) «GFeALF)Y GO TO 14)
‘0 COMTINUF
WRITE(6s1473)

P

2 FORMAT(IH1 915X +42HPROGRAM DUMPEN RECAUSF ALPHAT IS LESS THAN/16X»

137HALF AS CNOMPUTFN RY SURROUTIME PRELON,)
cTOP

1
STCZP s TCZPP s TCX s TEXP s TCXPP s AN yURPOT 9 XRAR s XLAM] o XLAMI T 9 XLMIN s XLMTI TN

oo i o WOBAVSL S ML a2 BRS04 L 5 forta B ¥ s oy e PR

po—

s o AL SCHE P« T 47

R s
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4 FORMAT(1H]915X939HPROGRAM DUMPED BECAUSE ALT IS LESS THAN/16X»
137HHGT AS COMPUTED BY SUBROUTINE PRELOD.)

2

O

T i

DEL2=0FL*NDEL

13

CX=TIX Y=+ e SRITOXLJ)=TEXUI=2) ) ¥DF L+ 8% (TCXIJ) =2 ¥TCX(J=1)1+TCX(J-

3
%91 DEL=(ALF-ALPHAT(J~1)1/5.
~
. 12))%DEL2

FZ=TCZ{J=1)4.5%(TCZ{IN)=TCZ(J=2) 1 *DFL+,8%(TCZ{J)=2.%TCL(J=-1)+TCZ(J-

12)1)1#DEL2

CXMA=TOXP(J=1)1+S*¥ITCXPIN =TCXP(J=2) ) ¥DFL+S*¥(TCXP(J)=2.*¥TCXP(J~1)

1+4TC2P(J=-2))%NFL2

FZMN=TCZP(J=1)1+,5%(TCZP(J)=TCZP(J=2) )1 %NEL+, 5% (TCZP(J)=2.,¥TCZP(J-1)

14TCXP(J=2))%DFL2

Ng 202 I=1+86 *
J=1+2

IF(ALTUJ)GFLHGT) GO TO 203
CNMTINUF

WRITF(69204)

STCP

YO = ALT(J=2)-ALT(J-])
Y2=ALT(UY=-ALT(J-1)
CONA=YN®Y2X(Y2-Y0D)
YNP=Y0XYD

Y22=Y2%Y?2

CONR=Y22*#PRFSS(J=2)+(Y(2-Y?22i*PRESS(J-1)=-YO2%PRESS(J)
FONC=<YD#PRESS(U=2)+(Y2=-YO)*¥PEESS(J=1)1+YO*PRFSS{J) .

CANR=CNANR/CNANA

CONC=CONC/CNNA

NEL=HGT-ALT(JU-1)

RHO=PRESS(J=-1) +CONR*NEL+CONC®DEL *DEL

RHOD=CNONR42 (X CONCEDEL

AL F=STALF

CC = NSORT(rX® X + CL*CZ)

FPA = [A/(2,0%VM))XRHOXVR®VRH#CC
FA = FPA x y™m
XMANT=FPA%%D

SPALFP=C2/CC

CRALFP=CX/CC
CALMULATFE PHI=P

VRMPNT = NSCRT{VRUX*¥YRMX + VRMY*VRMY)
SP=VRMX/VRMPN]
CP=VRVY/VRMPN]
PHIP=DATANZ2(SPCP)

CALCULATFE PHTI=Y

VRMYNY = NSART(VREVR-VPMZ#VRMZ)
SY=(~-REVRMZ4CRVRIYNT ) /VR®%2
CY=(r*VRMZ4+RXVRMYNY ) /VRER)

PHTY = NATAN2(SYs7Y)
CALCYLATE PHI=R

VRMRN] = NSART (VRX*VRX + VRZ*VRZ)
SR=VRX/VRP¥RN] .
FP=VRZ/vVaM¥RN]

PHIR = NATAMD? (SRsCR)

XNX=={CP*® R+ SORSYXSK ) *SRALFP*CRALFY+(SP¥CR-CPXSY*SR)*CRALFP+CY#SR#

1SRALFP®*SRALFY

XNY==(SP*CYRCRALEYRSRALFP Y= (CP*CY®CRALFP)~(SY*SRALFP*SRALFY)
XNZ=(CP*SR-SP*SY*CR)¥CRALFY*SRALFP-(SP#SR+CP*SY*CR)*CRALFP

14CYRCRESRALFP#SRALFY

9F TURN
ENR
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COUIVALFNCFE (MASCCM1)Ys0DNS(1)) 9 (MASCOM(101;59T7ARS(1)) 2 (mASCOM{669)
1eVFX(1))

ESUIVALPNCE (ONNS(1) s ALF)Y o (ODDL{2)Y s RALF )Y 2 (ODDS{3,9sCRALF Y {UDNS{4) s
] SRALF)I+{CDDS{H) s ALFY )Y s (ODD5(6) sKALFY )9 (ONDS(7)sCRALFY )Y (ODDSI(5)
2 SRALFY) s (OPNS({G)sPHTID) s {CONS(1CYsCPHIO) »(DNNSI11)95PHIQ) s (ONDSH1 2
2) 4 A0 {NONS( 13197 RAGAN{ONNSE( 14V sSPAC) S+ (ONNS{18)sPHIP )Y »'0ODNS(16)
CRPY 2 (NONNS (171 95P s (ONNSIEIR)PHIY Yo (NOANS{10) 9 Y )9 (OGPNS(20)9SY)
(ONES(21)sPHIR)IH (OPNS (221 9rRY) 9 (DNNS(22)95R) ¢ (OPNSI24) 9 IUEGAY
(OPNSI28) W EX) s (CANSIP6)1 s SFY ) s (ONNS(27)19WEZY s (ONNS{28)sVR) » (ONNS
{20)sVRX) s (OPNS(2CHIVRY IS (2NNS(31)9VRZ)» (DONNS(22) s VRMX) s {ONNS(373)
8 JVRMY) 3 (NDNS{24) s VRZ) 9 (ONDS(2E) s VRVPD 1) » (ONNS(3E) s VRMYD1) o (ONDS
9 (37)sVRPVED])

CQUIVALFMCF (ONNS(38) 92X )1 (ONNS{39) 9 CXMD 12 (0ODDSI4LCYCZ)

1 (ONNS{41) 928N ) (OMNS(4219CC) 9 (CNNS (42 sRHQY 2 (ODNST4L4) 9sRHON ) »

2 (OPNSU45)Y IR (NS 46) 9RO s (ONNS(LTIsHAT) o (ONNS(48) A} s (0ONDNS(4Q)
3 V) (OPPS(80)9GM) o LONNSIBYI )Y s GGG)Y s (ODNSI52) s FPAY 9 (ODDS(53) 9 XMDOT) »
4 (OPNSIS4)9) 9 (ONNS( RS ) 9PHA) s (ONNDS(5A) s PHAY)

FAUTVALFMCF (CPRS(5T7)FA)

FAUIVALENCE (TAQS(1) s ALT(1)) 9. TARS(RQ) +PRFESS(T) )
1{TARS(2AG )Y s ALPRAT( 1Y) {TANS(A02)ysTC7 (1)1 )19 (TARS(24T)Y»TCZP(1) )
2UTARS(2T70) s TCZPP (1)) o (TARS(HIYT)ATrY " 1)) 9o (TARSILET) s TCXP(1) )y
A(TAPS{LI9S ) s TCXPP(1))

FRUTVALFENCE (VYEX(1 1o XNCT )Y s {VFEX{4YysURNDOT (1YY o {VFX({T7)sXRAR(1) )
TOVEX(10) o XLAMT (1)) s LVFEXLI 2 s ZALAMIT LI ) o (v X(16) 9 XLMID(1) )9 (VFX(19)
2eXIMTIN{T ) s AVEXIZ21 90U 11 )2 VEXIDR) . ALAMTY)

CAUTVALENCE ([ XNME1Y o XNX) o IXNI )9 XNY )9 (XN{F) e XNZ)

ENUIVALENCE (URPOT(1)900)+(LANDDTI2)sVD) s (LURDOT(3)9WD)

FAQUIVALFMCE (XBAR(1) sX) o {XRAR(2)9Y) s {XHBAR(3)s2Z)

FQUIVALFENCE (XLAMTCYY s ALANMT )Y o IXLAMTI(2) o XLAM2 ) o (XLAMI(3)9sXLAM2)

FQUIVALENTE (XLAMITO1) o XLAMA) o (XLAMIT(2) s XL AMS )Y o (XLAMIT(3) 9XLAMG)

FOUTVALENCE (XLIINE1 Yo XLAMIDY s (XLMINI2 Y o XLAM2D) o {XLMIN(3) 9 XLAM3D)

FQUIVALFNCFE (XLMITDPL1 ) s XLAMAN) o (XLNMTIDI2 ) o XLAMSD) o (XLMTIID{3) 9 XLAMS
mn)

FAUTVALFNCFE (UR(1)Y U e (UR({2)1sV)Is(UR(3) )

CNMMON MASCNM
NIMEMSTION MASCNOM(/93)

NIYVFNSTON CONS(IN0)sTASRS(B568)sVEX(25)

NDIVENSION ALT(8R)sPRESLH{8R)

DIFENSTION ALPHAT(38)97r2(28)9sTCZP(38)sTCLPP(3R)sTCX(38)sTCXP(3R)
1TCXPP(38)

DIMYENSION URNDOT(3) o XN(3j s XRAR(I3) ¢ XLAMI(3) s XLAMIT{3) s XLMIND(3),
IXLMIID(2)4UB(3)

NOURLFE PRECISION MASCOMyONNDSsTARS o VFX s ALFoRALF 9 CRALF 9 SRALF 9ALFY
RALFYsCRALFY s SRALFYsPHIOsTPHIO«SPHIOAD PHIPsCPySPyPHIY
9CY sSYPHIRIReSRoIOMEAAYRF X9 AFY oW FZsVRsVRX o VRY s VRZ 9 VRMX s VRMY s VRMZ

s VRMPDY s VRMYNT s VRMRN]Y 9 CX s CXMD 9C2 9 CZMN 4 yRHOSRHODIRIROYHGT A
V¥ e GMaGGRsFPA s XYNQT s HePHASPHAY s ALTsPRESSALPHAT 2 TCZ
RTCZP o TCZPP s TCX s TCAP s TCXPP v ANSURNOT s XBAR s XLAMI o XLANMT To XLMID s XLMIID
6 URSXLAMT s XMX s XnY s XNZoUNsVD WD o X oY o Z 9 XLAMY s XLAM2 9 XLAM3 s XLAM4G »

7 XLAMSsXLAME 9 XLAMID s XL AM2D 9 XLAM3D s XLAM4D s XLAMSD s XLAMGD sU sV s s
RSRALFPsCRALFP

DOURBLE PRECISION FA

DOUBLE PRECISION SRA0D9,CRPAQ09+RPHIOSRAD
DO 100N [=142
URPOT(T)I=FPA%*XN(T)+GAGRXRAR(T)
H=XLAVT#FPAX %)

DO 1100 I=1,3

HeH+XLAMI (1) *UR(T)+XLAMIT(T)*UBDOT (1)
RFTURN
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FQUIVALENCE (MASCOM(U1)9s0DDS(1)) 9 (IMASCOMIL101)+sTABS(1)) 9 (MASCOMI(5669)
1sVEX(1))

EQUIVALFNCE (ONNSE1) 9 ALF) 9 (CDDS(2) sRALF) 9 (ODNS(3) sCRALF) » (ODPNS (4 s
1 SRBALF) s (ODNS(BI9ALFY ) o (ONNS(R) sRALFY ) o (ONNDSIT) s CRALFY Y (ONDNS(8)
7 SRALFY)Y» (ONNS{O)sPHTO)»y(OPNSIT1019CPHTIG) o (ONNS(TIT) sSPHIN) s (ONNS (12
2)9A0) 2 (ODNST172)9rRANM) S {ONNS (141 9SRADOY s (OPAS{IE ) HsPHIP ) (ONNS{16)

CPYs(OPNS(1T7)sSP)siONNSIIR)YsPHIY ) s (ONNS(19)9cY19(0ONDS(20) 9SY ) s

(ODNS(21)9PHIR)I s LONNS(22)sCR) s (ONNS(22)9SR) » {ODNSI24) yOIFEGA ) »
(ONNS(265)98CX) s {ONNSI26) 9saFT ) s (ODNSI2 TV 9WFZ) 2 (ONNS{28)3VR) s (OQDNS
(201 sVREX) s (ONNS(20) sVRY ) 2 (ONNS (21 )9 VRZ) s (ONRNS{32) 3 VRIZX) » (ONS(33)
s VRMY ) o (ONDDS (24 ) o VRMZ) s (ONNS( 361 s VRMPNTI ) » (ONDNS(38) s VRMYN1) 2 {ODDS
G (7)) VRPN

FOQUIVALFNCF (CNONS(38)+CX1o(ONNS(29) 9 CXMD 19 (ODDS(40)9CZ)

1 (ODNDS(4Y)YsCZMN Y9 (ONN3IA2Y9CCH) o (ONDS(42)sRHO) s {ODNSL 44 ) 9yRHON) »

2 (ODDSL45)sR)«{CNNS(4B)I 1RO 2 (ODDSIATIsHAETIH(ONDS(48)sAY 2 {ODDS(49)
2 VE)H (NANSIRDY 3GV ) s {ONNS{RI ) s 2AR s (DNNSTS21 9 FPA) s (OPDS(53) 1 XMNDOT ) s
4 (ORDS(RL4Y9HI S (ONNS{RR) yDHA) 9 (ONNS(B5A 9 PHAY)

CAUIVALFNCE (ORNRS(57)9FA)

FRUIVALFMAE (TARS(1)9ALT(1)) o (TARS(B9) sPRFSS(1) )

T(TARS(2AS )Y s ALPHAT(1 Y )2 {TARS{203V9TCZ(1)) s (TARS{A41)sTCZP(1) )
20TARS(279) s TCZPPIY)) o (TARS(4ITYsTCX(1)) 9 (TARSILETYsTCXP(1) )
A(TARS(495) s TCXPP(])) -

FOUIVALENSE (VEX(1) e XNI1Y) o (VEX{4)sURPOT(1)) s {VFX(T)9sXBAR(1) )
TOVEXC10) o XLAMTCI )Y o IVEXEL2) o XLAMIT(I) ) o (VEX(16) o XLMID(1)) s (VFX(19)
2oXLMTIINEY1)Y Yo (VEX{22)sUB(C1) ) s IVEX(25) s XLAMT)

SOUTVALENCE (XN(1) s XNX) o {XN(2) s XNY )9 (XN(3)9XNZ)

FAUTVALFNCE (URPDT(1)aUN s (URNOT(2)aVN) s (UanOT(2) +WD)

FRUIVALENZE (X2AR(1)eX)1 s iXRAR(2VsY ) s (XRAR(3) 92

COUIVALENAF (XLAMTUY )Y o XLAMY ) o (XLAMT U2 ) o XLAMD Y o (XLAMI(3) s XLAM3)

EQUIVALENCE (XLAMIT(1) «XLAMG)Y o {XLAMIT(2) o XLAMB) o IXLAMIT(3) s XLAMS)
FAUIVALFNCE (XLMIDC1) o XLAMIDY o (XLMID(2) o XLAM2D) 9 (XLMID(3) s XLAM2D)
FQUIVALENCE (XLMIIDC(T1) oXLAMAD) o (XLMTIID(2) 9 XLA-SD)Y s (XLMIID(3) s XLAMS
10
FOUIVALFENCFE (UR(1)92U) o (UBI2)9sV)s (UBRI3) 9w
CPrHON MASCNY
DIMENSTION MASCZOM(693)

DIMENSIOM ODDS(100) »TABS(568)+YEX(25)

DIVENSINN ALT(88)PRESS(27)

PIMENSTON ALPHAT(28)9T7Z(28)sTCZP(38)9TCZPP(3R)sTCX(38)sTCXP(38))
1TCXPP(3R) '

DIMENSTON URNNT(3) 9 XN(2) o XRAR(3) 9 XLAMT (2 ) 9 XLAMIT(3) o XLMIN(3)
IXLMIIN(3),UR(3)

DOURLF PPFECISTION DFLAy NELAZ24H2

DOURLE PRFCISINN FA

NOUAILF PRFCISICN NDFLsSTORFWNCeDASDA

NDOUBLE PRECTSION MASCOMsODDS s TARSIVEX s ALF9yRALF sCRALF ySRALF 2ALFY
1 RALFYSsCRALFY «SRALFYsPHIQsrPHIOISPHIOA0 PHIPsCPsSPsPHIY
2 sCYsSYIPHINsCRISRIOMEGA 9 wFE X s WEY s WEZ s VR VRX 9 VRY 9 VRZ 9 VRMX g VRMY 3 VRiAZ
2 JVRVPD]1 +VRMYN1 s VRMRN1 o CXsCXMD 9 CL 9 CZMD sCCyRHOIRHON IR IROSHGT 9A
4 VVIOGMaGGGIFPR 9y XMNOT oHePHASPHAY s ALT9PRESSHYALPHATSTC2
STCZP s TCZPP I TCX s TCXP s TCXPP 9 XNyURDOT 9 XBAR s XLAMT o XLAMI T o XLMID s XLMIID
6 URsXLAMT 4 XNX o XNY 9 XNZaUD VNN XY o Za XLAMYL s XLAM2 s XLAM3 oY A4
T XLAMS o XLAMB o XLAMIND o XLAM2IZN 9 XL AMAD g XLAMEGN 9 XLAMBD o XLAMEBD « sV oWy
BSPALFPLCRALFP

DOURLF PRSCISION SRAO0Z+CRANDI+RPHIOZRAD

NFEL=el

STNRE = ALF

DV NI AP

> st < e s s o =
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ALF = STORE + DFEL

CALL PRELOD
CALL GETH

NA=H

ALF = ALF + DFL
CALL PRFLOD
CALL GFTH

nR=H

ALF = ALF + DEL
CALL PRFLND
caLtL GETH

NC=H

ALF = STORE - DEL

caLL PRFLOD
caLL GFTH
NDA=DA-H

ALF = ALF-DEL
CalLL PRFLOD
caLl GFTH

N3 =DR-H

ALF = ALF-DFL
CALL PRFLOD

PHA=(475%NA-,15%DB+DC/60.1/DEL

CALL GFTH
DC=D(C-H

SDA = SNGL(DA)
SNPR = SNGL(DB)
SPC = SNGL(IDC)

WRITF(651000) SDAYSDRSDC
FORMAT (26 VALUES DAsDBsDC USED TO COMPUTE PHA/10X»3(E144895X))

ALF = STOQPF
STCRE=ALFY
ALFY=STORF+NFL
cALL PRELOD
CALL GETH
DA=H
ALFY=ALFY+DFL
CALL PRFLOD
CALL GFTH
NR=H
ALFY=ALFY+DFL
CALL PRFLOD
CALL GFTH
NC=H )
ALFY=STORF-=-NEL
CAlL PRELOD
CALL GFTH
NA=DA=M
ALFY=ALFY=-DFL
CALL PRELOD
CALL GRTH

PR =DR-H
ALFY=ALFY=DFL
CALL PPFLND
CALL GFTH
NC=NC-H

PHAY=(.75%#DA=-«15%NB+DC/604)/DEL

SDA = SNGL(DA)
she = SNGL(NR)
SDC = SNGLINC)
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WRITCE(A2000) SDALSDRLSDC 17
N0 FORMATI37H VALUFS DAsDRBDC USED TO COMPUTE PHAY/10Xs3{EJ4,8+5X))
ALFY=STORE
CALL PRELOD
CALL GETH
RETURN
FNR
EYC PDHY
SURRQUT INF POHY
FQUIVALENCFE {(MASCOME)sDNNSE]1) ) s (MASCOMI101) 2 TARS(1)) 2 {MASCOM(669)
1sVEX(1))
FQUIVALFNCE (ODNS(1) sALF) s (CDDS(2) sRALFIIODNNSI2) s CRALF) 2 (CDDS (4 )y
1 SRALF)Ys(ODDNS(BIsALFY )Y+ (ODNDLIG) sRALFY ) s (ODNSTT)YsCRALFY ) (ONDS(8)
2 SRALFY)s(ONNS(Q)sPHIO)I »(ONDS{101sCPHIO)I s {ODDSI1T 1 9SPHIOY s (CNDS(LY

23192019 (0NNS(13)sCRADN) s (ONNS( 141 9 SRAQI) 2 (CNDS(15) sPHIP) s (ODDS(16)

CPY s {ONDSEITYsSPY s (ONNSTIRY sPHIY ) o {ONNS(1GY Y19 (CPDS(2N)95Y) e

(ONNS(2114PHTR)Y S (ONNS(2219CRY 9 (ONNS(221sS5R) 9 (ONNS(24) OVEGAY »

(OPNS({28 ) swFX )9 {ANNSIIAY s WEY ) s (ONNS{DTYI9AFZ) s (CONS(28Y VR 5 (ONNS

(201 4VRX)s{OPNSL2A0) s VRY 15 {OPNS( 2119 VRA) s {ONNS(12) s VRMX) 9 (CPNS (33

sVRVMY ) s (NDNS(24) s VRYZ) s (ONNS(35) s VRYPNDT 1 o (ONDS(36) s VRHMYNIY 9 (CDHNS

{37)sVRMED)

FOU]VALCﬁ(F {ONNRS(2AR) ¢ XY o (ODNS(29) o CXMD ) 2 (ONNSL40) 9C2) s

1 (oOPRS(4Y1)ecZMn Yo (OPDS(a2 ) s (ONNS(42) 9RHO) 2 (ODNS(44) s RHONY »

2 (OPNS(45) 9P o {0PDS (46012 (ONNSI4TIsHAETIS(ODNNS (4R 9A) 2 (GNDNS(4GY
2 VMY (ONPDSIR0) sG¥) 9 (ODNSIHT1 ) 9 GGGRY s (ONNS(52) 9 FPA)Y s (ODDL{53) 9 XMDGT ) »
4 (CDDS({54) 9H) « (ODDS(H55)+PHA ) 9 (ODDS(56) s PHAY)

FAUIVALFMCE (ONDNS(5T)9FA)

EOUIVALENCF (TaaS{11v9ALTI1Y)» (TANSIRO)SPRESS(1) )
1(TARS(24A8) o ALCHAT( 1) )19 (TAPS(202y9TCZ (1)) 9 (TARS(241),TCZP (1))

S 1TARS{ 2701 TrZPP 1YY o (TARS{41 ) TCX (1Y) 2o (TARS(45 7y s TCXP LYY )
A{TARS(498) s TOXPP (1))

FOUVALFNCF (VEX(T) o XNC1IY) o (VFX{GYSURDCT(INY o (VEX(TY o XBAR( 1))
TAVEXTI0 Y o XLAMT L) ) s LVEX(TRY o XLAMIT O o (VEXL16) o XLMIDUY )Y o (VEX(19)
2eXEMIIN{IY ) o {VEXI22)9JBIT) ) o {VEX(28) s XLAMT)

FAUIVALENCF (XNCT) o XNXY o [XME2Y o XMNY Yo (XN{314XNZ)

FAUIVALFNAE (URARCTI1YsUNY S (LURNOTI(?2) VM) o {URNOI(3)suD)

FOUIVALFNCE (XRAR(1) X))o {XRAR(2) Y ) s (XPRAR(3)2)

FAUIVALFNCE (XLAMATC1 Y o XLAMY Yo (XLAMI(2) o XLAM2) o (XLAMT {3 ) o XLAM3)

FQUIVALENCE (XLAMITUY Y 9 ALAMLY s EXLAMIT(2) o XLAMS )Y o {XLAMIT{3) s XLAMS)

FOQUIVALENCE (XLMID{Y1 Yo XLAMID) s (XLMID(2) s XLAM2D) s (XLMID(3) s XLAMAD)

FQUIVALFNCF (XLMIID(1) o XLANMAD) 9 (LXLMITID(2) s XLAMSD) v (XLMTIID(3) 9 XLAMS
1M

FAUTVALENAE (Ur({Y1)sU)s(UR(2)aVIes(UR(3)eW)

COMMON MASCOM
DIMEFNSION MASCOM(6913)

NIMENSTINN ORNS{I100) s TARS(868)VFX(25)

NDIMFNSION ALT(88)+PRFESS(A8)

CIVENSTON ALPHAT(38)eTC2Z{3R) s TCLP(38)»TCZPPI3E) s TCX(38)sTCXP(38)
1TCXPP(38)

DIMENSTICON UaDOT(3) o XN(2) o XRAR(3) 9 XLAMTI (3) 9o XLAMIT(3) o XLMID(3)
IXLMTIIN(3)yUR(Q)

DIMEMSINN STNRE(2,
NEURLFE PRECISION NELUZWOAFLUsNFLXINFLX? 9H23STORF

NOURLF PRFCISINN MASCOMsnNNSy TARSsVFX s ALF o RALF o CRALF s SRALF2ALF Y

RALFEY srRALFY s SRALFY osPHTIQ9rPHIO»SPHIO A PHIPsCPsSPyPHLY

sCYsSYIPHIRICRISRIOMFEAIWFX g WEY sWFL9VRIVRX 3VRY s VRZ s VRMX g VRIY s VRMZ

s VRMPNT s VRMYN T s VRMRNL o CX 9 CXMD 9 CZ 9 CIMD s CCoRHOIRHONIR 1RO HGT A

VMyGMaGOGIFPA s XUDOT sHePHASPHAY s ALTaPRESSYALPHATTC2

Nolih RN e IS L RS

s —

i STCZP o TCZPP A TCXy TCXPy TCXPP o XN UBDOT s XBAR s XLAM T s XLAMT ToXLMID s XLMIID

& URIXLAMT o XNX o XNY s XNZsUDsVDoWD s X9 Y 02 s XLAML o XLAM2 9 XLAM3 9 XL AMG y

A b T =
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7 XLAMS 9 XLAME s XLAMID o XLAM2D 9 XLAM3D 9 XLAMSGD s XLAMSD 9 XLAMED sU sV oWy 18
BSRALFPsCRALFP

NDOUBLE PRECISION FA

DOURLF PRFCISION SRAO09sCRAO9+RPHIOSRAD
NELX=100,

h‘LU:TO.

DELX2=200,

DELUZ2=20.

Nno 1000 1=143

STORF(I1)=XBAR(I)

XRAR(I)=STORF(I)+DELX

CALL PRFLOD

CALL GEFH

H? =H

XRAR(IV=STORE(T)-DELX

CALL PRFLOD

CALL GFTH

XLMIN({T)=(H=H?)/DFIL X2

XRAR(1)1=STOPF(1)

STORE(T1)=U8B(T1)

UR{1)=STORE(1)+DFLU

CALL PRFLND

CALL GETH

H2=H

UR(T)=STORE(])=~NELU -
CALL PRELOD

CALL GFTH

XLMITR(TI)=(H=HD2)/NELU2

Ua({1)=STORE(1)

Lﬂ FOMTINYS

CALL PRELND
FALL GFTH
RFTURN

FND

“TC STF?

SURROUTINE STF2(NDFRIV)

EQUIVALENCE (MASCOM{1)+CDNS(1)) s (MASCOM{101)9TABS(1))» (MASCOM(669)
1HVEX(1))

FRQUIVALENCFE (OPNRST1)9ALF I 5 (ONNS(2) sRALF) s (ODNS (3 sCRALF ) » (ODNSTA)
1 SRALF) s (ODNSIEYsALFY ) o {ONNS(6)sRALFY) s (OPNS{T ) sCRALFY ) s (ONNS(R)
2 SRALFY) s (DNASI0)sPHIN) s LONNS(10)sCPHTOY s (ONNS(11)sSPHIM) 2 (ONPS(12
2) 9 A0) 9 (OPNS(12) 3 ARA0D) 9 {ONNS{14)9SRAVG) s (ONPNSI1R)sPHIP s (ONPS(16)
CP)Ys(OPNSI1713SP)I s (ONNSTIR)sPHIY) s (ODNS(19)9CY ) o (ODDS(20)9SY)
(OPNS(21)sPHIR) S (ONNS(272) s CRIALONNS{23)95R) s LONNS(24) »OMEGA) »
(ONNS(25) s wFX) s (ONNS(26) sWFY )2 (ONNSI2TYsWFZ) s (ONNS(28) s VR) 9 (ONDS
(291 sVRX)»(ONNS{20) sVRY ) 9 {ODPNS (319 VRZI o (ONNS(32) s VRMX) 9 (ODNS(373)
s VRMY ) 3 {ODPS 134 ) s VRMZL) 9 (ONBS(35) s VRMPN1) s (ONNS(36) 9 VRMYN1) 9 (ODDS
3 (37)sVRMRD1) .

EQUIVALFENCE (ONNS138)9CX) 2 (ODNSI3F)aCXMD 19 (ODDS(L0)CL)

1 (ONNSL4T1) 902D ) o (ONDS(42) 9GCY 9 (ONPDSI43) 9RHO) 9 (ODDS(H4) sRHON ) »

2 (ONNS{LG) IR« {ONNSLLB)IRD) 2 (ODNSI4T)IsHAT)Y 9 (OPDE(A4B)sA) 2 (ODNS(49)
3 VM) o (OPNSIEN) s M) s {CPNSIRY ) 9 AGEAYT s (ODNSI52) s FPAY s (ONDS(53) 9 XMNOT ) »
H (OPNSIR4)sH) o (ODPNSIRRI P PHA Y 9 (ONNSIS6) s PHAY)

FALUT LENCF (ONNS(&T)4FA)

FAUL  LENCFE {(TARS(1)sALT(Y)) o (TARS(RO)YIPRESS(1) )
1(TARS(266) s ALPHAT(1))9(TARS(202)sTC2(1) o (TARS(341)9TCZP(Y) )y
2(TARS(279) s TCLZPPUIY) o (TARSILIT) s TCX{1) ) o LTARS(45T) o TCXP (1) )y
A(TARS(495) s TCXPP(1))

FOUIVALFNCF (VEXUI) o XML ) ) o (VFX(4)sURDOT(1) ) e (VEX(T)sXBAR(1) )
TUVEX(10) o XLAMI (1)) o (VEX(13) o XLAMIT (1)) o (VEX(16) s XLMID(1) )9 (VEX(19)

D VI » P




R

e, e DR TR DTN

t

2aXLMIIN(IY ) o (VEX(22)9UB( 1Y) o (VFEX(25) s XLAMT)Y 19
FOUIVALENAE (XN(1) o XMX) o {XMN(2) o XNY ) o (XN(2)4XNZ)

FOUTVALFMCFR (URNOT(11sUN) s (LBNOT(2 )9 VN) s LURNOT (2) 9 WD)

FAUIVALFNCFEF (XRAR(1) X)) s {XNAR(2)sY ) s (XRAR(2) s Z)

FQUIVALENAT (XLAMICT)Y o XLAMT Y o (XILAMT(2) o XLAMZ) o (XLAMI{3)aXLAMY)
FQUIVALENCE (XLAMIT(1) o XLAMG) s (XLAMIT(2) o XLAME)Y 9 (XLAMIT(3) s XLAME)
FQUIVALENAE (XLMID(1 ) o XLAMIDY s IXLMIDI2) o XLAM2D) o (XLMID(3) o XLAM2ZD)
EQUIVALFNCE (XLMITIDOT1) s XLAMAD ) o (XLMTIID(2) o XLAMSD) s (XLMIID(2) s XLAME
T

SAUIVALENZE (UR(T1)sU)Y o (UB(2)sVIes(URL(3) W)

COMMOMN MASCO™M

DIMENSION MASCOV{693)

DIMENSIOM ONNS{100) s TARS{E68)sVFX(25)

NIMENSTINN ALT{8R)sPRESS(ARA)

NIYFNSTON ALPHAT(28)9T72(38)9TCZP(3R) s TrZPP(28)sTCX(38)YsTCXP(38)
1TCXPP(38)

NIVFNSTION UPNOT(3) e XN({3) s XRAR(3) o XLAMTI(2) o XLAMIT{3)sALMIN(3 )
IXLUIINE3) yUR(3)
DIMENSICON DERIVILDS)
DOUBIE PRFCISINN DERITV

DOUBLE PRFCISION MASCOAsONDSs TARSIVEYX s ALF sRALF+«CRALF9SRALF 9ALFY
RALFYsCRALFY s SRALFYsPHIOsCPHIOSSPHIC A0 HA099sCAO9IPHIPICPoSPsPHIY
sCY oSYsPHIRWCP s SRIOMEGAIWFRIWEY sWEZoVRSVRAIVRY sVRZ 9 VRMA9VRMY s VRIMZ

s VRMPD) s VR™MYNRT s VRVMRN1 s CA 9 CXMD 9 CLsCLMD s CCoRHUIRHOD IR 9RC o HGT oA
VVisGMaGGGaFPA o XisDOT sHePHASPHAY ¢ ALT 9 PRESSsALPHAT 9 TC2
STCIPsTCZPP s TCXsTCXP o TCXPP o XNoUPNIOT 9 XBAR S XLAMI o XLAMIToXLAIDSXLMIIDy
6 URGXLAMT o XMX e XNY 9 XNZ o DoVNowDoXsY s Z s XLAMT o XLAM2 o XLAMT 9 XLAMSG »

T XLAMB o XLAME o XLAMIN e XLANMIN 9 XLAVAD s XLAMLD s ALAMSD s XLAMED sU sV ol
BSRALFPCRALFP

DOURLFE PRECISINNM FA

DOURLE PRFCISION SRAQ9sCRAQDIIRPHIOSRAD

NN 1000 1=1+3
I, DFRIVID)Y=UR(D)

I DFRIV(I+3)=UanOT(1)

DFRIVII+6)1=XLMIN(T) ‘
DFRIVITI+9)=XLMIIN(])

RETURN

END

ITC STF1

SURROUTINF STF1(XVaAL)

FQUIVALFNCFE (MASCOMEY1)Y»ONDS (1)) 9 (MASCOVY(101) s TARS(1)) s (MASCOM(4K9)
ToVEX(1))

FQUIVALFNCF (ODDS(1)2ALF) s (ODNS{2)sRALF)I 2 (CONDS(3) s CRALF I {ORNS(4)
1 SRALFI»(ONNSIR)sALFY ) o (ONDNS{E)YIRALFY ) s {ONRSTIT)YsCRALFY I (ONNS(R)
2 SRALFY)slONPNS(Q)sPHTIO) s (DOPNSI10) s CPHIO s (ONNS(11V9SPHIO) o (ONNS(Y2
‘ 3)2A0) 2 {ONNS(12)9CRACA) o (ONNS(14)9SRAVQ) « (ONNSTIEYsPHIP) s (ODNS(16)
i

E R

t g g P A o i s

gt iy oL
o)

4 CPY»(OPPSE1ITYeSPY o (ONPE(12) sPHTIY ) o (ONNLI19)9CY ) o (OPDC(20) 95Y )y
(ODNS(21) 9 CHIR)I S LODNL(22)19CRI(ODDS(23155R) 2 (ONDL(24) sUMEGA Y
(OPNSI26)Y s WFX ) (OPNNS{26) oviFEY Yo (ODDSI2 T 192y o (ONDS(28)Y5VR) 2 LODDS
(20)VRXY s (ONNST20) s VRY) s (ODDSTAT ) s VRZ I 9 (ODNS{32)1 9 VRIMX ) (CDNS(23)
} sVRIEY )Y o (NNNS {24 ) o VRYZ Y s (ONNS(26) s VRMPN ] ) 9 (OPNS(26) 9 VRMYNT) 9 (ONNS
(27)eVRMPNT)
\ FOQUIVALENCF (OPRNS(28)9CX) s (NPNS(23) s XMD ) 9 LODNS(40)Y s CZ ) o

1 (OPNSL41) o240 15 (ONNSI4a2) 2 CCHy (ONDS 431V IRHO) » (ODNS 44 ) +RHONY »
2 (ONNS(451eR) (ONPSLAB)I RO {ONNSI4TYsHAT)IH(ODNDSLLBY2AY» (ODDS(4G) s
2 UMYy (ONNS(R0) oMY 9 (ODNSI81 Y o GGG (ODPNS(H5Z2)1 2 FPA)Y s {ONDS(53) o XMDIT ) »
4 (ONNSLRL)sH) s (ODDNSIKR)sPHA) 9 (ONDS{58) 9 PHAY)

EQUIVALENCE (ODNDS(57)sFA)

FAUIVALFNGE (TARS(1)+ALTI1)) o (TABS(89)sPRESS{1) )

I 1(TARS(265) sALPHAT(1)) s (TARS(303)9TCZ(1) ) (TARSI341)+sTCZP(1) )y

i

DX dOWD,

,' N  —
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2(TARS(370) 9 TEZPP( 1Y) o (TARS{AT 7)Y« TCX(1) ) s (TARS(LST)9TCXP(]1) ) s 20
A(TARS{495)sTOXPP (1))

FAUIVALENAE (VEX(1y o XN 9 (VEX{4Y)Y sURNOTL{TIY ) o (VEX(TjoXRAR{T) ) s
VAVEX(I0)Y o XLAMT (1)) o EVEXT 12y s XLAVYIT (1)) o (VEX(16) s XLMID(TY )9 (VFEX(19)
29XLMTIINCIYI Y (VEX(22)sURETIY ) o (VFX(D2R) o XLAMT)

EQUIVALENAFE (XNCT)Y o XMX)Y s (XNI2) o XNY ) s (XM (3) s XNZ)

FCUIVALFNAFE (URNOT(1)9UN) o (URNAT(2) VM) s {URNDT(3) 9wN)

FRAUTIVALFENCE (XRAR( 1) 9X) o (XRAR(?2) oY) s (XRBAR(3)9Z)

FQUIVALENCE (XLAMI(1)oXLAMY )Y o (XLAME(2) o XLAM2)Y o (XLAMI(3) s XLAM2)

FGUIVALENCE (XLAMITUO1) o XLAMLG) o (XLANMITE2) oXLANMS) s (XLAMIT(3) 9 XLAME)

EQUIVALENCE (XLMINC1) o XLAMID)Y o {XLMID(2) s XLAM2D) o {XLIZID(3) o XLAM3D)

FQUIVALFNCFE (XLMIID(1) o XLAMAD) 9 (ALMTIIR{2) o XLAISD) o (XLMIIDI3) 9 XLAMSG
1D)

CQUIVALFNAF (UR(1YsUY o (UR(2)YsV)Is{UP(2)9Y)

COVMON MASENM

DINMFNSIAN MASCON(601)

DIMENSTON ONNS(100) s TARSI568)sVFX(Z5)

NDIMEFNSION ALT(88)sPRESS(88)

DIMYFNSTION ALPHATI(3R)YsTCL(28 )9 TCZP(38)+TCZPP(28) s TCX(38)YsTCXP(38)
1TCXPP(38)

DIMENSICN URNCT(3) 9 XN{3) s XBAR(3) s XLAMI(3) o XLAMIT(3) 4XLMID{3),
IXLMIINE3) s UR()

DIVENSION XVAL(14)

DOURLE PRFECTISION  XVAL

NOURLF PRECTISTION MASCOMsODDS» TARSWVEAXsALF+sRALF 9 CRALF 9 SRALF s ALFY,
Y RALFYsCRALFY 4SRALFY sPHIOSCPHIO«SPHINIAQsSA09sCAOQsPHIP sCPoSP4PHIY
? sCYsSYsPHIRIMReSReOMFGAIWF KXo WFYsWEZ s VReVRX s VRY 9 VRZ s VRMX 9y VRMY s VRMZ
2 g VRMPDT s VRUYNT 9VRVRNT 9 CX s CXUN 3 C29CZ2MN 2 CCIRHD9RHOD IR sROIHGT 9 A
O VYMyGMyQOLCE s FPASXUNDT s HePHA sPHAY s ALT9PRESSsALPHAT s TC2»
STCLP s TCZPPyTCXaTCAP s TCXPP o XNsURNOT 9 XRAR s XLAMT o XLAMI T XLMID s XLMIID
6 URyXLANMT 9 XNX e XNY 9 XNZ oUDsVN oD s XY 9 Z s XLAMI o XLAM2 s XLAMS3 o XLANG
T XLAMS o XLAVE o XLLAMID s XLAM2D o XLAM3D s XLAMAD s XLAMSD o XLAMED sUsV aW o
SRALFPSCRALFP

DOUBLF PRFCISION FA

DOURLE PRECISIOM SRAO9sCRANIBIRPHIO

NO 100N (=197

XVAL{1)=XRAR(T])

XVAL(T43)y=UR(T)

XVAL(T+6)=XLAMTI(])

WOXVAL(T+9)=XLAMTITI(])

RFTURN

. FND
ITC STF12

SURROUT INF STFa{XVAL)

EQUIVALENCE (MASCOM(1)+0DDS(1)) s (MASCOM(10))9TABS(1) )9 {MASCOM(669)
TeVEX(1))

EQUIVALFNCE (ODDS(Y1)sALF) « LODDS12) sRALF )Y o LUDDS{3) s CRALF) 2 LODNS (L) »
1 SPALFY»LODNS{SH)sALFY ) 9 LOPNS(6) v JALFY ) s (UNNS(T)9CRALFY ) s (ODDS(8B)
2 SRALFY )+ (ONNS(Q)sPHTO) » (ONPNS(10)9CPHIN)I» (ONNS(11) s SPHIO) » (CANS(12

; )2 A s (ONNAS(12) 9rRADA) S (ONNS L1411V 9sSRAOQ) s (OPNSI1B )9 PHIP) 9 (ONNS(16)
: FO)s(ONNS{17)eS5PY s (OANRSIIR)9PHTIY ) 5 (ONRS(12) 7Y ) s (OPNSI20)95Y )y

) & (ONRSI21)9sPHIRI s LONNSI22)97RY 2 (ONNSI22) 1SR » (ONNLI24) yOMEGA Y »

j & (OPNSI28) s WEX Y9 (ANNS 26 ) s WFY ) s (ONNSID 7Yy WF 22 (ODPNSI28) 9sVR) 9 (ONNS

T {203 9VRX) 9 (NADNS(20) 9y VRY ) s (ONNSE3T 1 VRZI W (ONNS{32) s VRM X} 9 (ONNS(33)
R
: ;

L

VMY ) s (CDNS(34) s VRML) 9 (ODNS(38) 9 VRMPNT ) 9 (ONNS(36) s VRMYN]) » (GDDS
(37)sVRVRDY)
FOQUIVALFENrF (ONNS(38) s X ) 2 (ONNSI39) 9 CXMN ) o (ODNSLILO) 9C2 Y s
1 (ODNSE41)sCZMD 1o (ODD(42)9CC) s (ODDSL43) sRHO) » (ODDS(44) yRHOD) »
2 (ODNSEA5) IR »{ONNSI4HY 9R0) 9 (ODNS(LT)IIHGT I 9 (ODNS(4B)I1A) 9 (ODNS(LU9)
b3 VM) (OPNSIB0) sGM v (ONNSIBT1 )1 9GGG) 9 (ONNSI5219FPA) » LODDS(53) s XMDOT )

{
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ERLIVALENCE (ONDS{5T)eFA)

FQUIVALFNCF (TARS{1)YsALT(Y1 )Y s (TARS(BO)sPRFSS(13)
1(TARS{248) s ALPHAT({ 1)) o (TARS(A02)9TCZ(1))a(TARS(341)sTCZP{1))
2(TARS(3T70) o 1P o {TAAS(LIT)Y o TCX(11) s {TARS(45T)»TCXP{1Y )

3(TARS(4GR)Y s TAXPP(1))

FQUIVALENAF (VFX(T1) o XNIT)) o (VEXL4)YsURDOT (1) s {VEX{T7)sXBAR(1)) s

REPRODUCIBILITY OF THE ORIGINAL PAGE 1S ueze;

—l

.
D ;
4

21

TCVEXC10)Y s XLAMT U)o (VEX( 12y s XULAMIT(1Y )2 (VEX(16)+XLMID(1)) s (VEX(19)

2oXLMIINEIN ) o (VEX(22)sUBT1) ) o (VEXI25) o XLAMT)
FQUIVALFNCF (XNCEY) o XNX) o IXNED) o XY ) o (XN(3) 9 XNZ)

FAUIVALFRNCT (URNDT 1) 9uN ) o (URNDOT(2)sVN)«(URNOT(3) 9WD)

FOUIVALENCF (XRAR(1)9X) s (XRAR(2) Y ) s (XRAR(3)s2)

FAOULIVALENCE (XLAMT (1) o XLAMY Yo (XL AMTI(2) o XLA2) o {XLAMI(3) s XLAM3)

FAUIVALENCFE (XLAMITOV) o XLAMAY o (XLAMIT (DY o XLAMA) s (XLAMTIT () o XLAMSE)
FAUIVALFNCFE (XLMID(1) o XLAMIN) o (XLMIND{2) o XLAMZD )Y o (XLMID(3) s XLAMAD)
FQUIVALFENCE (XLMITID(1) o XLAMAD )Y s (ALMTIN(2) s XLAMSD) o (XLMIID(3) s XLAME

1n)

FOUIVALFNAF (UR{T1YsU)s{UR{2)sVIes(URI3) %)
COMMNN MASCOVM

DIMENSION MASCOM(693)

PIMEMSTION ODRNSE100) s TABS(568)sVEXLI25)
DIMEMSION ALTIBB)9sPRESH{88)

DIMEMSTON ALPUAT(38)sTCL(38)sTCZP(3R) s TCLPP(38)sTCX(38)sTCXP(38))

17CXPPR(28)

DIMENSTON URNNT () o XN(2) s XRAR(3) o XLAMI (3 ) s XLAMIT (3) o XLMID( 3

IXIHTIN(2) 4 UR(2)
NIMENSTON XVAL(14)
NOURBLF 2PFCTISION  XVAL

NOURLE FRFCISICN MASCOMsONNSs TARSsVEX s ALF9RALF s CRALF 9 SRALF 9ALFY s

1 RALFYsCRALFY sSRALFY sPHIOsCPHIOsSPHIUIACISAOOsCAQO9sPHIPICP ISP sPHIY
2 s CYsHYIPHIR e ReSReOMECA s wFAsWFY s wWFZ s VR aVRIX 9 VRAY s VRZsVRMX s VIRMY s VRMZ

3 GVRMPNIsVRIYNT W VRIMRDT s CX 9 CRMAD 9 CLsCLYN s CCIRHOIRHOD IR 9RO s HGT s A
6 VMeGMaGOGsFPAsAMDCT s ks PHA s PHAY sALT 9y PRESSsALPHAT 9 TCZ s

STCZP o TrLPPaTOX e TCXP s TCAPP 3 ANSURBNDOT o XBAR ¢ XLAMY o XLAMT T o XLMID o XLMIID

6 UP s XLANMT o XNX o XNY o XNZ ouUDsVN WD e X e v 9L o XLAMT s XLAMZ2 s XLAMI o XLAM4
T XLAMS o XLAME o XLAMID o XLAMZ2D s XLAMAD o XLAMUGD y XLAIASD s XLAMSD sUsV eWo

: BSRALFPSCRALFD

|
|

NAURLE PRECISINN FA

NOURLF PRECTSTON SRAQ9SCRANG SRPHIOSRAD
NN 1000 I=14%

XRAR(T)=XVAL(T)

URET)I=XVAL(T+2)

XLAMICTI ) =XVAL(I+6)

10 XLAMTT(T)=XVAL(149)

! RETURN

LFND

!TC SHIFT
SURROUTINFE SHIFT (AsnyK)
NDIMENSION A(14)+8(14)
nOtiRLF PRECTISION  AyR .
nO IN0D T=1e K

0O A{T)Y=R(T)
RETUPN

{ [ .\La

TC TGRATFE
SURROUTINE TORATF(NINDT)

DIMENSION XVALU14)9STORV(1494)sSTORX(14)yPCNI14)
DOUBLFE PRFCISTION STDRVILTORXPCNsXVAL

IF(N.HT,3) GO TO 1000

CALL PODHY

—— -

e w.——-—.—-—v‘v——r '




~ sy e 5

e 1V

CALL GFTH 22
CALL RXINT(NT)

CALL STF2(STNRV{1sN}))

RFETURN

L0 CNMTINUF

CALL STF1(XVAL)

CALL PDHY

CALL GFTH

CALL STF2 (STDRVI(1s4))

CALL SHIFT{STORXsXVALs14)

ARy T

PRFDICTOR ~ ADAMS RASHFCRTH

NN 1100 T=1414

XVALITI)=STORX{ ) 4DT# (=9 *¥STDRV(191)+37e¥STDRV(192)=89¢%STDRV(13)
. 1+5C4%STPRY(T194))/24,

00 CONT INUF

NN 1200 JU=1,13

00 CALL SHIFT(STDRVI1sJ)9STDRV(1sJ+1)14)

S A R T

CORRECTCR -~ ADAMS BASHFORTH

CALL STF3(Xval)

CALL PDHY

CALL GFTH

CALL STE2(STPRV(144))
NO 1300 I=1s14
STORX(T)1=STOARX(TI)+NTH#(STNRVIIs1)=5*%¥STNRVIT921+19.¥STNDRVIT93)
i 1+G#STRRVII4)) /24,

N0 PCN(T)=STORX(1)=-XVALI(T)
CALL STF3(STORX)

N0 RETURN

END

FTC COMV

SURROUTINF CONV(RsAyK)
DIVMENSTINAN A(2)R{2)
REAL MINUS

NATA PLUS/1H+/ sMINUS/ 1K~/
FOUIVALFNCE(FX9TEX)

NO 1000 [=1sK

1FX=0

JJA = 5#[-3

X=A(])

IF(X) 1005+1001,1010

N1 RIJJIAY=PLUS

{ RIJJA+2) = PLUS

i RIJJA+T) = 0,40

© ENE I YNG4

"

R Tt ATt RO

6o TO 1000
he a(Jyr)sMINUS
X= =X

GO TN 1020
bo Reuum = pLUS
CONT INUF
R{JJA+2) = MINUS
[IF{XetTele) GO TO 10135
RlJIJA+2)Y= PLUS
5 TF(XaLTela) GO TO 1040
IFX=T1FX+1
X=X/10.
6N T0 1025

o
OO




8 IE(X.FF,el) £O TO 1040 23

3
3
%
%
&
3
E
k2
¥

TEX=1FX+1
X=X*¥10,
GO 1O 1035

£y R{JUA+ 1) = X

¢
:
:
§

i

Eo R(:JA+3) = FX

r

§
§

RFETURN

£ aD

“ QKINT

SURRAUTINE RPKINT(NT)

NIMFNSTICN XK{1494) ¢+ STORX(Y4) o XVALU1&L)sNFRIVI14)sC(3)eD(4)

NAVRLFE PRITCISTION CoNFRIVINISTORX s XK s XVAL

C(1)=eF

C(?2)=e5

Ci3)=1,

NI1)=e16H6ERK6T

N(2)=4333332222

N(3)=e3232323273

NDI4)=,16666666K7

DO 1000 J=1.4

CALL STF1(XVAL)

CALL SHIFT(STORXsXVALs14)

CALL PDHY

CALL GFTH

CALL STF2(D=1V)

NC 100D T=1e14

XX (T3 J)=DNTENFRIV(])

TF(JNFLT)  XVALITI)=STORX(T)+C(J=-11%XK{(IsJ)
0 CONTINUF

PO 1100 I=1s14

XYALITI)Y=ST0RX(1])

DO 1100 J=le4

0OXVALIT)I=XVAL(T)+XKIT9J) %D ()

© SIS I Dy A S YT

CALL STF3(XVAL)
RETUPN
FaD
TC JBACNRA
SHRRAUTINF  JACOR(HHeNFL ] ,NFL2?)
FQUIVALFENCE (AASCOM{1)90NNS (1)) 9 (MASCOMITI01)9TARS{ 1)) 2 (MASCOM(66G)
T2aVEX(1))
FQUIVALENCE (ODNRS 1) sALF) s (ODNS(2) sRALF ) s (ONNS(3) sCRALF ) » (ODNS(4)
1 SRALF)»(ONNSIS)sALFY )9 (OPNS(6) sRALFY) s (ONNS{T)sCRALFY )2 (ONNS(R)
2 SRALFY )+ (0ODDS(Q) 9PHID) s LONNSI10)sCPHIO) s (ODNLI11 )Y sSPHIO) s (ONDS{12
)9 AD 2 (ONNSI12) 9 CRADG) 9 (CPNS{ 143 9SRACO) « (ONDSIIS) s PHIP) s LGDODNS(16)
CPYs(ONDSTITY sSSP s (ONDSIIR) $PHIY I s (ODDSL10) s CY )2 (ODDSI20)95Y )y
(ONNS(21)9PHTIR) 9 {CNNSI22) s CRI 2 (ONNSI22)195R) 2 (OPDS(24) s OUEGA) »
(OPNSI28) sWFX 3o {ONISI26) s aiFY) s (ONNSIDTYIWEZY s {ONDNS(28)sYR) s (ONDS
(2215 VPX) s (OANS(20) s VRY ) s (OPNS (2133 VRZ) 9 (ONNS (22 ) 3 VRMX ) 9 (ONNS(23)
sVRMY ) 9 (NANS{ A4 ) s VRMZY s (ONNSTAR ) 3 VRMPNT 19 (ONPST36) o VRMYN T ) 5 (OPNS
(27) 4 VRMRNDY) ’
FOUIVALFNCFE (OOMNSE2AR) 9/ X ) 9y (ONNS(20) s CXMN )5 (CDNSIL0YsCZ)
1 (OPNSLAaT)srZMD )9 {ONNSI42) 9 s ICNNS(43) sRHO) 9 (ONDNS(44) sRHON Y »
2 (OPNSTLR)IIR) s LONNST46) 9RO+ {ONNSI4TIIHET I (ONNS(4B)2A) » (ONNS(49) s
3 VM) (ONNSIR0) 9 GMY 9 (OPNSTRY ) 9 GGG (OGNDSIR2 ) s FPA) 2 {OPDS(53) o XMNOT)
¢ (ODNSURL)sH) s (ONNS(RE) s PHA) s (ONNS (56 ) s PHAY)
FQUIVALFENCE (ONNPS(ST)sFA)
TAIVALENCFE (TARS(1)1+ALTI1)) 9 {TARS(BI)sPRESS(1) )
1 *SI265) s ALPHAT(1) )19 (TARS(302)9TCLI1) )9 (TARS(341)19TCZP(]) )y
2 TARS(2T0)H» TrZPP (M) ) o (TARS{LYT)IsTCX(Y1)) s iTARSILET) s TCXP(1) )
2(TARS{495) s TrXPP(1))

Lo e - IR e T (I 5

- e awny
N )
-




pvgrrete T

FAUIVALFNAF (VEX(1 ) s XNME1) )0 (VEX () sUAPOT L1 ) o (VEX({T) 9 XRAR( 1)) 24

TOVEXCI0) o XLAMT{Y Y Yo (VEXL T2 o XULAMTITUI Y Yo (VEXE16) o XLMID(T) )0 (VEX(19)
2oXLMTINTIN ) s (VFAXIZ22) oA ) ) s (VFX(IDE) o XULAVT)

ENUTIVALENCE (XN o XMX) o (XN ) o XY ) o (XE(3) 9 XNZ)

FQUIVALENCE (URNCT (1) edN ) s {urRTSTIZ 1oV o (URRCT(2) 50N

FAUIVALFNCE (XBAR(]1) o X))o (XBARI2V Y19 (XBAR(2)s2)

EQUIVALENCE (XLAMI{1) o XLAMY ) o LXLAMI U2V o XLAMZ ) 9 {XLAMI(2) s XLAM3)
EAUIVALENCE (XLAATTCOYY o XLAMGLY o (XLAMTTI2) s XUAMS Y 9 LXLAMATT(3) 9 XLANMG)
COUIVALENTFE (XLMIDCT Yo ALAMIDY s IXLMED(2) o XLAM2D) s [XLNMID(2) 9 ALANM2D)
SAUTVALENCE (XLMIINE1 ) o XL ANGD Y s (XLEMTINC2 ) 9 XLAMSD) o {XLMIID(3) o XLAME
AR

FAVIVALFNAFE (UR((1YsUYs{UR(2)sV)YslURI2) 9w

CONVMOM VA QCn

NTYENSINN MASCON(£92)

NEMNMENSTINAN OPNS(100) s TARSIHAR) SVYFX(25)

PTMEMSTION ALT(8R)PRFSS(BR)IK(E8)

DIVENSION ALPHATI(28)2TCLI28)9TCZP 38)s1CLPPI38)»TCX{38)»TCXP(38)>
1TCXPP(38)4,J(28)

DIMEMNSION JlDOT(3) s XNE3) 9 X3AR(3) o XLAMI (3 )9 XLAVIT(3)sXLMID(3),

IXLMTINER) SUP ()

2 ———

DIYFNSTION OUTR (4100
NOUPLE PRTCTISINN FALAST

POURLE PRFCISTIONN MASCO e NNS s TARS S VEX s ALF »yRALFICRALF s SRALF 9 ALF Y,
RALEY s CRALFY «SPRALFY sPHID o PHTIDSPHINOAC PHIPICPsSPsPHTY
s CY sSY aPHIR o R ILP o NVMFCAS'WF R WFY 9t FZaVRaVRX sVRY s VRZZVRMX JVRMY 9y VRMZ
s VRMPD s VRYVYN]T s VRURN]T 9 CX 9 CXID o CL o CLM s CCIRITOIRHODIRsKCaHGT s A
VE aCMaGOO s EPA s X N0 T s H o PHASPHAY 9 ALTyPRELSHALPHAT o TCZ
EYCZPyTCZPP s Tr X s TCXP s TCXPO s ANIURNDOT 9 XBAR s XLAMT o ALAMT T o XL ID o XLMTIDy
6 URSXLAMT o XMAaXNY s XNZoUDaVN AN s XY s Z o XLAML s XLAM2 s XLAM3 9 XL AN
7 XLAMS o XLA MBS s XLANMID s XLAMZD o XLAMRDy XLAAD s XLAMOD s XLANOD sJ sV wy
RSRALFPCPALFP

DOURLE PRECTISTOM ARCOSsCOLATSCRITIDELTFLUP S TIRECILIMITsTPRINT
JTSTERSTY 9110,
2 VO OVLAT g VLNNG s WO e XN 3 XLAMIN o XLAV2O o XLAMAIO s XLAVGO 9 XLAMEQ 9 XLAMGBOD s
EVAY

NOURLF PRFCISINN SRADGSCRANG4RPHIND yRAD

DIVFNSTINON STX(3)Y9sSTY(2)eLTAY(3)

NOURLF PRECISTION STXeSTYSSTAYSSILGPF

NDOURLE PRFCTISION STALF

DOURLF PRFCISTIOM COMASCONRZCONCoY02Y29Y029Y229DELZ

DIMENSION RDI(T)

NIVMEMSION OF{110)sQUTA(40)s0UTC(200)

NIVENSION HH{294)9PA(3) s PAY(3)

DOURLFE PRECISIC . PASPAYHHIDELL+DEL2295AVEL1 9 SAVEZ2

SAVE 1=ALF

SAVF2=ALFY

CALL HCALC

PA(Y)=PHA

PAY(1)=PHAY

ALF=SAVET4DFLY .

CALL HCALC

PA(2)=PHA

PAY(2)=PHAY .

HH{1s1)=(PA(2)-PA(]1))/DFL]

HH(291)=(PAY(2)=PAY(1))/DEL]

A_F=54avVF]

ALFY=SAVF24NFL22

CALL HEALC

PA(R) =PHA

PAY (3)=PHAY

[N




WP TTF(hy209)
99 FRAvAT(1HO9&OKHTHE FOLLOWING VALUES ARE PHA AND PHAY RESPECTIVELY)
WRITF(55300) (PACT)sPAY([)s1=157)
00 FORMATIFD20,895XsF20,R)
HHE12) S (PA(3)=PAL]) ) /PELD?
HH(2+2)=(PAY(3)=-PAY(1))/DEL22
Al FY=SAVE?
RF TURN
Fan
TTC SLVNL
SURRCUTIME SLVNLIXX19XX2sHsFFoFFYsCRITHTOP s TIRFC)
PURPNOSE
SOLVF A SYSTFM OF N ROMULIMEAR FQUATIONS

DFSCRIPTION COF INMPUT PARAMFTFRS
X ~ INITIAL VALUE GF VECICR X
H - APPROXIMATION OF THE INVERZ JACOBIAN MATIRIXs H=1/A
N - NUMRER OF VARIARLES AND EQUATIONS
EVALF = FORTFAM SURBROUTIME TO COVPUTE VECIOR F
CRIT = PRFSCRIREDR ACCURACY LIMIT OF NORM(F)

PESCRIPTION NF OUTOHT DARAMETFDS
X - FINAL VALUF OF VECTCR X
H - APPROXIVATION OF THE INVERZ JACOBIAN MATRIXs H=1/A
F = VECTOR OF N FUNCTIONS
ITFR - NUMRFR OF [TERATIONS

SUBRNUTINES RFQUIRED
MATMPY
LINCOM
FNGRM
GFTT
SHIFT
FVALF

NINMFNSTON X{219H(292)9F(2)
NIYENSTINN PEIN) s Y({T10)sFN{TIN) o XN(10)
NOURLF DRFCISION PoaYoFNoeXNoHIFosVALIVALDIX9AX1 9XX29FF sFFY9sSCALF
N=2
N2 =N®N
ITFR=0
X(1)=Xx1
X(2)=XX2
F1)=FF
F(2)=FFY
0 FALL FVALF(XsFyN)

START NEW ITERATION
FVALUATE VFCTNAR PzH*F

‘O CALL MATMPY(HsF s PyNyN»1)
ITFR=ITFR+1

CALL FNOQVM(F oNeVALOD)
CALL GETT(OsTWeVALO)

i FINP A VALUF OF T SUZH THAT THF NORM OF F(X+V#P) IS LFSS

. THAN THF NOOM OF F(X)

XN 1S THE NEW TRTAL VALUF OF Xy ORTAINFD AS XN=X+T*P

~VAL-~ ANN -VALO- ARE THE MORM OF F(XN) AND F(X) RESPECTIVELY

————

25



o met

PO 1075 I=1410
COLL LINCNY(]1.9XsTePaXNyN1) 26
CALL FVALF(XNsFMs™)
CALL FNORM(FNyNsVAL)
IF(VAL.LT.VALO} GO TO 1080
CALL GFTT(IsTeVAL)
7% CONTINUF

sANEN R Y oyt

¢ 6o 11 nne

i

! ANCF A SATSFACTORY T WAS FNUMDs X IS RFPLACD RY XN,
i F IS RFPLACEN Ay FN

*  IF REQUIRSD ACCURACY 15 ORTAINEL CR ALLCWED NUMBER OF INTERATIONS
: EXHAUSTFN RETUPM T CALLING PROGRAM

i A NEW APPROXIYATION OF MATRIX H IS COMPUTED
¢ NEW H IS OBTAINED AS H=H-(H*Y+T*P )% (P*H/SCALF)
20 CONTINUF

i IFUITERLGT.NTOP) GO TO 2000

© . CALL SHIFT1(XeXNsN)

; COMPIJTE  Y=EN=F

;. CALL LINCOM(149FNs=149FsYsNs1)

3

' QFDLACE F RY FN

© CALL SHIFTI(FsFNsN)

L COMPUTE  HxY

H

b CALL MATHPY (MY FNINsNYD)

3

Y CONPUTF  HxY+T2p

§

{

© CALL LINCOM(149FNsTsPsFNsNs1)

% COVPUTF  PxH

I

{ CALL MATMPY(PsHyXNs1sNsN)

H

4

©  COMPUTE  SCALF=(P¥*H)*Y

E CALL MATMPY(XN2YsSCALEs19Ns1)

i

% COMPYUTE  PXH/SCALF

¢

PO 110N T=14N
XNIT)=XN(T)Y/SCALF

nO 1200 I=isN

NO 1200 J=1sN
HToJd)=H{Ts»JI=-FNIT)RXN(J)
IFIVALLFLCRIT)Y GO TO 2000
GO TO 1050 :

Y WRITF(A93300) ITERITIRFC
FOPMAT(12H TTERATIONS=91695X92HT=9E1448)
XX1=X(1)

XX2=X(2)

FF=F(}])

FFY=F(2)

RFTURN

o

o
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N

H
i

g

C

C

FND

MATMPY

SURROUTINF MATMPY(AsRsCoeN1sN2sN3)
DIMENSTION A(N1oN2)sBI{N2sN3)sCI(N1sN3)
DOUBLFE PRECISION AsBsCoeTEMP

DD 3 I=1N1

DO 2 K=1sN3

TF¥P=0,

NO 1 J=1.N2
TEMP=TEMP+A(] s JI*¥R(JeK)
ClIsx)=TEMP

CONT INUF
CONTINUF

RFTURN

END

LINCOM

SUBROUTINFE L_LINCOM(SsAsTsRsCosMeN)
DIMENSION A(VMaN)sRB(MeN)»C(MIN)
DOURLE PRECISION AsBsC

NN 2 I=1yv

NO 1 J=1N
CUloJ)=SHA(T+J)+T*B(19J)

CONT INUE

CONT INUF

RFTURN

FND

F NORM

SUBROUTINE FNORM(F«NyVAL)
DIMENSION F(N)

DOURBRLE PRFCISIOM FeVAL

© VAL=0,

p——atna WA Ls .

'

e i ot oo

IC

PO 1 T1=1,N
VAL=VAL+F(1)%F (1)

SVAL = SNGL(VAL)
WRITE(651000) SVAL
FORMAT(SH VAL=9¢F14.8)
RFTURN

END

GETT

SURROUTINE GETT(IT»ToF)
IF{ITNE.O) GO 170 1
T=1,

FO=F

RFTURN

IF({ITeNFo1) GO TO 2 .
Fl=F

- TH=F1/F0

T=(SORT(1e4+6e*TH)=14)/3.,/TH
RETURN

==T/2,
RFTURN
END

SHIFT]1
SURRQUTINF SHIFT1(AsRsK)
DIVENSION A(13s B(1)
NOURLF PRFCTISION AR
DO 1000 I=1y K
A(I)=R(T)
RFTURN
FND

T

27




KER 21

1

TTC EVALF 28

SUAROUTINE FVALF{XXsFeN!)
FGUIVALENCE {(MASCOM(1)s0DP5(1) 3 9 (MASCOMI10119TABS(1)) s (IAASCOM(669)

S e VEX(]D))

FRUIVALFNCE (ODNS(1Y s ALF) 9 (ONDS(21sRALF) s (ODNS{2) 9 CRALF ) » {ODNS(4)

1 SRALF) s {OPOSIR) s FLEY )2 (ONNLIA) s RALFY ) o {ONNSI 7)Y 9 CRALFY ) s (ODNS(RY
9 SRALEY )1 (NS () o PIRT0Y s (OPST10) e PHTI0) s (ONNSIT1) o SPHETIOY s LOPNS{T?
T2 80 (ONNS(12)90RA0N) S (CPNS (141 9SRACOY L {ONNSIT15) s PHIP I 9 (CORS(16) s

G rPYy(OPDSITI TSP ) o (NNS(18) s PRTIY I (ORPSTTINY oY) s LODDSTI20)95Y )

& (OPNS{21)sPHIR)I s (ONPSI22)19CRYI S (IPPSEDP2Y 9SSR 9 (ODDS(24) 9 OMEGA)

6 (ONDSI8)saEX) s (ORNSI24)sWEY )9 (INDSI2TIawFZ) s (CNNS{2E) +VR} + (ONNDS
7 (20)19VRX) s (ONNS{20)sVRY )5 {ONPNSIE371 ) VRZ) 2 (DINNS{32) s VRVX ) (ONNS5(23)
R sVRMY) 9 (3SANS(24) ¢ VRMZ)» (ONDS( 319 VRMPD1 )2 (ONDS(26) s VRMYN1)» (ONDDS
Q (27)sVRVRDT)

FQUIVALFINCE (ONNS{38)+CX) o (ODNS(239) 9 CXMN 2o (ODDS(40) 9CZ) s
1 (ONRSI41) 024D )2 (ODDO{42)9CC) o (ODDS(42)9sRHO) 2 (ODDST44) s RHOD ) »

2 (OPNSI45)sR)+ {OANS{4E)sRCHI 1 (ONDSLATIIHGT Yo LODDS(48)9A) - {ODDS(49)
2 VR (DNANRS(IR0Y s ) o (CODLIBT )Y 956G 2 (IDNSIE2) s FPAY s (ONDS(52) s XVNOT )
4 (ONPRS(a4 sV IONNS{ERY aPHA ) 3 (ONDS(66) 9 PHAY Y

FAUIVALFNTF (CNRRS(IKBT)4FA)

FOUIVALFNCE (TARSTIYSALTI11) s (TARSI(89)9sPRESS(2) )
1(TARS(PAB) s ALPHAT{1) )2 (TAPS (20219 TAZ({1) 19 {TARS(241)sTCZP(1) )y
2ITARS(IT70)« TrZPP 1)) s {TARSIAT T s TCX(1) ) o {TARS(ILRT)sTCXP LT ) )y
A(TAAS(42%)Y-TCXPPLY)Y) .

CRUIVALFNAE (VEX(E1 1o XNI1Y Yo IVEX(4) 2URPOTEI) ) o (VEX(T) s XARAR( 1))y
TAVEXCI0) o XLATEYI ) o (VEXEL 2 o XLAMYTTI LI s (VFX(16) s XLVMIDET )Y (VEX(19)
2eXLHYTIN(I Yo LVEXI22) U011 s (VEX(25) 9 XLAMT)

CAUTVALFENCFE (XNI1) o XNX) o (XNI2) o XiIY ) o {XN{3) 4 XNZ)

CAUTVALENAE {(URAOT 1) Ny s (LANDOT{ 21 9VR) s (UNDCT{3) s WD)

COUIVALINCF (XRAR(I) o X) s (XPRARI?)sY ) s [(XRAR(2) )

FAUIVALEMOE (XLAYMT 1) o XLAMY ) o (XLAMT(2) o XLAM2 ) o { XLAMI (3 ) o XL A2

FQUIVALENTFE (XLAATTOY) o XLANMA)Y o (XLAMTTL2) o XLAMA Y o (XLAMIT(3) s XL AMA)

CQUIVALFNCE (XLYINCYI Y o XLAMID) o IXEMID{2) o XLAMPD ) s (XLMID(3) o XLAMIND)

~ FQUIVALFNrF (XLMTINCT Y o XLAMED) o (XLMIID(2Y o XLAMSED ) s (XLEFTIDE3) o XLANME
1n)

FRUTVALENZF (Jall)ysUrslUna(2)sV)s(UR(3) o)

COMMQON VASCOM

NIMENSTION ASTON693)

DIMENSTION ODNS(100)sTARS(568)9VEX(25)

NIYMENSTON ALTIBB)+PRESS(88)9K(88)

S DIMFNSTON ALPHAT(28)9TCZ(28)sTCZP(38)9TCZPPI3R)»TCX(38)2TCXP(38)
S1TEXPP(2R) 4 J(28) )

P PIVMENSTAN URNNAT () o XN{A) 9 XRAR( Ay XLAMT {3 ) o XLAMIT (3) o XLMIN(3)
CIXEMITRRY 4UP ()

[ PTMENSTAN GUTR(44100)

DOURLFE PRFECISION FAsAST

|

! DOUPLFE PRECISION MASCOMONPDSsTARS s VFX s ALFsRALF 9CRALF s SRALF2ALFY
{1 RALFYsCRALFY+SRALFY sPHIOsCPHTIOSPH{OWADY PHIPsCPsSPsPHIY
1 2 SCYsSYIPHIRSCRILRIONIFGAIWEALsWEY 9 iFZ s VRIVRXIVRY s VRZ 9 VRMAX 9 VRMY s VRMZ
{3 sVRMPD] o VRHYD T o VRMRDL s CX o CXMD o C29CLMD s CCoRHOIRHONIRIROIHGT A
14 V'1eGMIQGGGaFPA W XNDOT sHePHASPHAY s AL T s PRESS o ALPHAT o TCZy
{STCZPoTCZPPQT(xoTCXPoTCXPPvXNoUHDOToXHARoXLAMIQXLAMI‘OXLMIDOXLMIID’

6 URGXLAMT o XNX o XNY s XMZ oD oVNswDeXoY s Z o XLAML 9 XLAM2 9 XLAM3 s XLAMG

7 XLAMS o XLANGs XLAMID s XLAM2D o XLAMAD 9 XLAMGD s XLAMED 9 XLAMOD s UV e Wy

[ 8SRALFP,CPALFP

POUR! F PRECISTON ARCOSsCOLATHCRIToDFLITESPoTIRECsTLIMIToTPRINT,
JTGSTEPsTY LD

2 VOsVLATsVLONZ s WO s XO o XELAVIO o XLAMOIN 9o XLAMAO o XLANMGO s XLAMSO 9 XLAMEO
220

NDOURLE PRFCISION SRAQ9+CRANIIRPHIOWRAD

]
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... man

NTMFNSTION STX(2)s3TY(3)195TAY(3)
NNURLF PRECISINN STXsSTY9STAY s SLOPF
nCLALE PRECISION STALF

DOURLF PRFCISIOM CONASCONRSCONCsYOsY29Y02+9Y224+DELZ2
NOURILF PRECTISIOCN XXoF

NIVFMSTON RNO(T)

NIYENSTNAN OF(l10)90UTA(40),OUT((?”0)
ATYENSTINAN XX(NY)sF(NY)

ALF=XX{1)

ALFY=XX(?2)

CALL HCALC

F{1)=PHA

F(2)=PHAY

RETURN

EMN
( IMVERS

SUPROUTINE INVFRS(ASINDXs TORDsNeNNH»KERR)
NOVRLE PRECISTON AuR

DIMFMSTON A(NJNN)

NI“ENSTION TNDX(IN) o IORND(N)

kFRPR=0

J1=N+1

J?2=2%N

NN 23 1=1,N

J3a=1+N

DO 24 J=JlsJ2

A{l-J))=0n,0

AlT+J3)=2,0

NN 10 J=1,N

IMAX(TY=P

M=M=}

N0 11 J=1,N

nn 12 T=14N0

TFLINPX{T)LTN,0) GO TO 13

CONTIMUYF

P==q1D+36

K=1

IL=1

17=1

NN 14 “=K oN

IFCINDX (MY GNMFL,0) GO TO 14

IL=1L+1

TF(A(M3J)NFNeN) GO TN 17

IT=1T+1

GO TN 14
IF((R=-NARS(A({My))))eGTe0s0) GO TO 16
R=A(¥y ))

MMz M

CONT [NUF

IF(UIT=TL)«NF.0) GO TO 19
WRITE(6+21)

FORMAT (/77304 MATRIX INVFRSION NOT POSSIBLF///)
¥FRR=1

PETLIRN

TRAX (MM =)

IORD(J) =M

1P=J+1

NO 25 JJ=1PyJ2
A(MMJUY=A MMy JJ) /A TMMJ)

NO 26 K=]l 4N

29

X




PR

P

?

Ap

IF((MM=K) EQe0) GO TG 26
NN 28 JJ=1PsJ2
AlKsJJ)=A(KoJJ)-A(KsJ)*A(MMsJJ)

CONT TNUFE
COMT INUF

NN 29 T=1,N
[RF=I0ORNI(T)
NN 29 J=1 N

L=J+N

AlTesJ)=A(IRE L)

RF TURN
FND
TRAP
FNTRY
aAXxXT
TRA
SXA
FLA
STA
CLA
TSX
STO
TRA
CLA
™
ARS
LRT
TRA
TRA®
SXA
TeX
P7F
AXT
ZAC
LRS
TRA%
TRA
RCT
END

n

&
1n
16
20
25
20
25
40
45
50
&5
&n
&R
70
75
a0
L)
90
95

NECK
TRAP

L XY}

® ¥
TRAP-1+4
A
RESFT+1
FIX
SeSCCR4
8

TRAP=]

0

* 3%

20

*4+
NECET 4
NUT e 4
Se"RTITob
g 4 MES
*% o4

25
n
RESFT

3s %x%¥% UNDFRFLOW

0~ nn
N4
N2R
run
f\R?
0A2
ANE
084
N9k
118
146
182
224
26R
218
272
426
488
K46
896

738
nnaaz
nno2 N
NO2RKY
nNn22y
0eceie
oneng
0N244
0336
00420
0nN642
NOTAR
NOR7H
NOORK
N10%2
061124
01174
N1178
01138
01056

aYalaYa¥ala)
-nOneL
-NANANLD
«“NNNONRAL
=ANNNYR
-NNON26
nNNNn23
000124
nnnN2138
0nNn274
non2in
nnnas%5a
nnNO23an
ronznn
000168
NONINR
nonNn4a
-n0nn2"?
-000108
~-000182

1828
1812
772
171n
1676
1520
1388
17246
1002
0922
N76R8
OFRA
NL16
t2%6
0112
~tN20
-C134
~0236
-0322
~0394

nnrnn
-nNn122
Y LT
-n2432
-N278%6
-N?2880
-N3014
-03136
-N217234
-03320
-031380
=-N3406
-N22§9
-N3178
-02%922
=-N2600
-N2264
-01934
-N1622
-01340

30

n
-nnnngy
~0N2L4LR
-NNNQQAK
-N0N4T74
-NON328
-nNON2%52
-00N208
-000184
-0NN15210
-30NNRRB1L1

nnnNn412

nnNn22217

NeNKRIARYTYG

non56815

NONG4LB1 A

00neTN17

nONn64618
00NENN19
o0ns5602n
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I ! I - >y
Soo1en €28 ANoL4y  =n0DY4L6 ~0%4b4 -n1078 nnNs51621
- 105 69N NNR1LG4  =nNNang -N47R6 ~NNR34 nNoNL6EL2?
SN0 728 ANGLR  =NNN26N ~r816 -nn62n nNONG1622

118 784 NOLAE  =NONLNR -064 -Nn4y3? NCN36R2Y
S0 772 ne2se =NNCASG -05666 =0N262 neN331R2%
, 108 776 WALET -NNNLOYL ~-NGRID -NN1NR" nNNN271n26
Yoo1aQ 772 -nn2n2 -NNNE&26 -N&8R4 nON23 NONPAPDT
S 118 756 -N04nn -0NNR2? -0584 nn154 nON16428

140 720 -0N776 -NNN%68 -05756 NN264 non1in29
148 686 -N1n722 -0CQN&T76 -N56n nn336 onan4e3n

: 160 2P -N11n8 -0NNST4 ~0544 nn3es -nnnninil
© 155 864 -015%8 -000568 -0524 00348 -00NN6632
© 160 468 -N1872 -N00550 -0510 nO290  -0NN1N833

165 266 -n2140  -0005NB -0498 nn216  -N0N14034

{170 249 -N2246  =NOC?60 -0490 N0142  =0n0N14235
. 178 120 -N2414  =nONN5E -0484 NON68 ~NNN14N36
! yan nnn -N24728R N alalala) -ryp8n o Yalalals] -n Nn12837

38
oneO 12280 1
2001 10045 2
L0N3 R19165-N] 3
£C06 65973F=-N) 4
P010 %2519F-0C1 5

10016 41282F-01 6
11019 356302F-01 . 7
112023 131082F-0) 8
L1402 2267T4F-01 9
V16040 15841F-m1 10
j.\nnrq 12nAT7F =N 11
, 20063 RANIIF-C? 12
122076 ATIAE-N) 13
V24001 KAPRAE=r) 14
126107  225RTE-07 15
Y 28124 2459RE-02 16

20142 180V1F-07 17
132162 13225F=02 18

34183 960R6F-N3 19
YARI2NE TN2LPF~NT 20
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The procedure for solving the problem of flying a minimum fuel
point-to-point transfer with a high speed aircraft is as follows.

Minimize the integral

I = me(t)dt

to

vhere ﬁf(t) is the time variable fuel burning rate, subject to the

differential constraints

X =3 )

.I:l- " ﬂgl+m%ﬁﬁa+;§g-€'§% (2

§ =¥ )
and v s (8,J° (M, + (MY + B} (4)
which are the equations of motion, and the algebraic constraints

VR = [a.ay]vr. {5)

The Hamiltonian is formed as

H - .i-l';*TII'E*illl'zﬁ'ilv'-‘i*llaﬁif (6)
The control variables will be Fp and ﬁf where Fr is the thrust magni-
tude and ﬁb is the moment generated about the C.P. by the aircraft

flaps.

33
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The canonical and control equations become

N - -2 ©
'iil = - %ﬁ% (®
iilr = %% ) (9
Yy - '%% (10)
iia . - gg; (11)
-g—% - o: . 12)

There are four control variables FT, ﬁé, fourteen state variables,

X, x % i} @, ay, and thirteen multipliers. Equations (1-13) provide

thirty-one scalar equations from which to determine thirty-one unknowns.
Fron Equation (13)

a

v = 0 Aqnp (15)

H - - =
" " L0 Fp b e X0 (16)

M1t
o
aFy

0 = £G T (17)

Solve Equations (i6) and (17) simultaneously for X}I and F.
'}
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1

Fp
Compute %II
From (8) py
Solve for TI
Compute -;‘-I
From (7)

Solve for V.

= App(s,
b PT(¢’
= £,06,
.
ou
= -AII -
= £,0,
X

a, uyn X, E)

a, ay, X, X)

é; §; G; a)

. - _3Xp - u
.:I 1

. .
— - - wew  we e

= fa(On Y, ¥, x,u,u

Plug ¥ into Equation (4) and solve for Mp.

"
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ABSTRACT

Some methods of appreaching a solution to the Hamilton-Jacobi
equation are outlined and examples are given to illustrate particu-
lar methods. These methods ma:* be used for cases where the Hamiiton-
Jacobi equation is not separabise and have been particularly useful
in solving the rigid body motion of an ecarth satellite subjected to
gravity torques. It is felt that these general methods may also
have applications in studying the motion of satellites with aero-
dynamic torque and in studying space vechicle motion where thrusting

is involved.
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INTRODUCTION

During the six months included in this reporting period (May
to November 1968), work has continued on an investigation of the
analytical foundation of the Hamilton-Jacobi theory aud its appli-
cation to space flight problems.

In studying the literature, many questions arose. An attempt
was made to formulate these questions and then find satisfactory
answers to them. The first work during this reporting period was
directed toward comparing the different methods available for solving
the Hamilton-Jacobi partial differential equation. Five different
methods for obtaining a generator S were studied:

1. S = jf- Ldt, Where L Is the Lagrangian

2. Liouville's Thcorem for Obtaining S

3. Jacobi's Method of Integration of Partial
Differential Equatious

4. Separation of Variables
5. Method of Characteristics

The following questions arose during the discussions of the
different methods available for solving the Hamilton-Jacobi equation.

1. Can a solution be obtained by Jaccbi's method; i.e., by
obtaining half the integrals for p; and then building §
from

dS = pydq; + ppdq; + = ¢« « + ppdq,

that cannot be cbtained by quadratures

dt dq n
T % W/, T T W/,
d

© o dp p

which result from Hamilton's equations?

:
¢
i
t
i
¥
|
4
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2. Same question us one except separation of variables
versus Jacobi's method?

J. Same question except quadratures versus separation
of variables?

4, All threec of the above questions with the Hamiltonian
given as an cxplicit function of time?

In discussing Jacobi's method, the following question and
answer was developed. Given one complete intcgral, is there any
technique for constructing another distinct complete integral?

Yes, an infinite number of other distinct complete integrals can

be constructed. Given a complete integral containing two arbitrary
constants a and 8, another complete integral can be constructed by
replacing a and B as arbitrary functions of two other arbitrary con-
stants A and B. 1Thus, the integration constants associated with

. each distinct complete integral of the Hamilton-Jacobi equation can

be functionally related. There is a question as to whether any of
these constants arc canonical. "Also, if the same problem were solved
by integrating Hamilton's cquations by quadratures, then there would
be other constants of integration. One would want to know how these
constants are related to those obtained from the Hamilton-Jacobi
equation. Also, are they canonical?

Some of these questions are answered in subsequent scctions
of this report. One paper (see Appendix) has grown out of this work
and has been submitted to the dmertean Journal c¢f Fhysics for pos-
sible publication.

"
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DEFINITIONS OF ANGLES

The angles 8, ¢-¢', 6', ¢*, 0*, and Y-y* are defined by their
geometry in the spherical triangle (see Figure 1):

cos 6

cos(¢-¢')

sin(¢-¢')

cos 6!

sin 0'

T e ) (h? - a2
4283 _ Y(h? - ap %gh a37) cos %{t - 8,)

cos 0' zos 6* - sin O' sin 6* cos ¢*

a3 - ap cos 6 _ cos 6" - cos 6' cos @
hZ - o,2 sin 6 sin 6' sin 6

sin ¢* sin 6*
sin 6




s

L]

cos ¢*

7E

cos 0¥

{ sin 6*

cos (y-y*)

sin(y-y*)

The angles 6H, ¢}

cos GH

cot(¢*-¢y) =

cot WH

a,a3 - h? cos 9
Y(hZ - a2} (h? - a3?)

= cos %{t - 81)

ay - a3 cos 8 _ cos 8' - cos O* cos B
vhZ2 - az% sin ® - sin 6* sin @

sin ¢* sin 6

sin @

, and Y4 are defined by their geometry.

NRT=—~~_ _s
AN
N
\ YH
i o*-dy
e*
T
v
xo

cos i cos o0* + sin i sin €* cos(y* - )

cos i sin 8* - sin i cos 8* cos(y* - Q)
sin 1 sin(y* - Q)

cos i sin 0* cos(y* - Q) - sin i cos 8%
sin 6% sin(y* - Q)
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h =
v =
Vo=
W o=
8 =
gt =
0 =

$' =

Functional Relations

n(ag,a2)

v(a1,02,03,83,8) = v(o1,32,03,81,83,t)
v (83)

wy(v*,6%51,0) = Wﬂ(“lauz.ﬂa,sazi,ﬂ)
9[“1.02»03»61»t)

o' (ay,02) r
6* (a1, 02,03)

o (v*,6%51,9) = 8y (o1,02,093,83;1,9)

¢ (a1,02,093,82,0) = ¢ (01,a2,03,61,82,t)
o' (a1,02,03,82,0) = o' (a1,02,93,81,82,t)
¢*(01,02,03,8) = ¢* (a1,02,73,81,t)

¢H(W*ne*n¢*;ion) = ¢H(d1.02,u3,81,83,t;i,ﬂ)
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Canonical Transformations

The motion of the body is such that 8 oscillates between @
and 0), where 65 = 0' + 0* and 6, = [6' - 6*|. Let t, denote an
instant at which 6 = 063. Let 8g; refer to 6 at the instant ty, 6;)
refer to 6 at the first instant after ty that 8 = 9;, 6o, refer to
6 at the first instant after 6;) that 6 = 6;, 6,, refer to 6 at the
first instant after 8y, that 6 = §;, and so forth.

A generator, S, of a canonical transformation is given by

0
S = -t + 0,4 + gy -.’. Q(e)ds,
. 801
where
/E®,  6on > 0 + 61,
Q(e) =
EE), 8y > 8% 8gmay)s
and
£(6) = 2Aa; - % a02 - csc26{a3 - ap COs 6]2.

The symbol 8oy + 6 ~ 63 means that 6 has passed through 6p, and is

-going toward 6)y,.

~ In terms of the variables ¢', ¢*, and y*,

S' = o)t + az¢' + agy* + he*

Q(8) = h sin o* sin(y - y*)

and y-y* must be multi-

When 6 = 6y, it can be shown that %, ¢-9°',
$-9¢' =y - 9p* =0 is defined

ples of 2n. To avoid ambiguity, ¢* =
when 0 = 04,.
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¢*
¢|
w*

Alternatively,

By

a3

t2

-Q(e)

ot
1
&>
-
*

-h sin 8* sin(y - ¢*)

|6

)
dé
t+ A —
(8)
901
A - apaz - h? cos 6
t - = cos™! 7AK
h /(h? - a32) (he - aszjleo
A - h2 cos 6
t - 1 82083 - N° _COS O
RS T - Dt - ad)
6
P (o3 - ap cos §)cos 6 _
sin<g
601




-1 G3“G;C059|
vh2 - ;2 sin 6|

= =-¢ + coS
01

0
(_!2_((: - A COS-I o0y - hz cos © l
h Y2 - a;2) (0% - w32l

- a3 - o, Cos @
vhe - @22 sin 6

= -¢ + cos

_@fC - A cos-] arsa; - h? cos A
h C /(h2 - a,2) (h2 - a32)

0
_ 03 - ap cos 8} db
B3 = -V ‘J; 1( sinZo )Q(B)

0
0
-1 0o - o3 COS 8 |
= -y + coS -
P 2
Y(h ®3<2) sin 9|901
-1 Oy - Q3 COS O
= -y + CcOs -
v V(h2 - a32) sin @

The multi-valued cos-! functions appearing above are to be

interpreted as follows:

where
0 and

2(n - 1)m + Cos~lg(e), 8on * 0 > 85
cos~lg(e) =

2nw - Cos"g(e). 8in > 9~ e0("”)

Cos-1 denotes the principal value (that is, the value between
m) of the cos~! function.

———
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l |
3“ -+ <0
arQs - h? cos 0 F\\if I
cos” =
v(h¢ - a24) (h* - a3®) | \l
2" L d /4-902
|
/
T 4= |+6“ l
| o
83 8p
|
Miscellaneous
r
h? =

cos 6

2Aa; + (C - A)aZZ

aya3 - Y(h2 - ay2) (h% - a3?) cos %(t - B,)

h2

cos 8' cos 6% - sin 8' sin &* cos ¢*

@3 - 0y cos 6

Sil‘. 6 Viiz - uzz

-8, + cos-l

- “_2.((3 - A)cos-l @03 - hZ cos 6

¢ VhZ - a22) (hZ - agZ)

' - Oy - O3 cOS O
~Ba + cos~) —& = 3 COS 9
3 sin @ Vi\z - 032

v e .

e
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A NOTE ON DISTINCT COMPLETE INTEGRALS*

Problem: Show that the differential equation
4XZQ2 + P = 0, P = 3Z/3X, Q = az/aY
possesses the distinct complete integrals
22 = oY - a2X2 + 8
and
22(4X2 + a) = (Y +b)2?
Find a functional relation between ¢, g, a, and b; hence, find the

second solution as a particular case of the general integral obtained
from the first.

Solution: First, transform to new variables according to
the scheme

X +» xp, Y + X, Z -+ x4
Pl P2 Ju
P = - s - =

See Frederic H. Miller, Partial Differential Equations (New York:
John Wiley & Sons, 1949), Chapter V, for details on transformation.
The differential equation

F(X,2,Q,P) = 4X2Q2 +P = 0 (1)

now becomes

F(xy,X3,P),P3, P3) = 4X1X3P22-P1P3 = 0 a"n

Jacobi's method will be used to solve Eq (1'). First, write

oW g @
X, ax, Xy ?; M P
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Explicitly,
___I.po = SPZ. = ___...3.dp = E.JEL
4x3p; 0 ax1pp? s
= dX2 = dx3 2'
8x1x3p2 P1 2"
Using the second ratio,
F1 = p» = a; = constant (3)
Using the first and sixth ratios,
pidp; = 4a;%xydxg
and
F, = p,2 - 4a,;2x32 = a, = constant (4)
Using the third and fourth ratios, '
p3dp; = 4a12x1dx1
and
Fo* = p3% - da;?x;2 = a,* = const t (5)
(Fy,F2) = 0; also, (Fy,Fp*) = 0, as is readily verified. Using
Fy =p, =a,, and F, = p;? - 4a;2x;%2 = a,, take

py = Ya, + 4a;2xy?

Substitute into Eq (1') and solve for P3

4XIX3812 - )/az + 4312X32 p3 0

ax,xqa,%
= —-—-..__.--—_L__-a._—_li—_—-_?-
P3 /82 + 431 X3

Jse F) and F, in conjunction with F to obtain a complete integral.
One has (F;,F2) = 0

Pamieovemg e



du

KE3Y

du
9X2

Ju
3X3

m
sz

ou
axl

Ju
3X3

But,

- X
P3 1 3X3

P1

X1P1

P1

4a1222 + a,

272 4 32 y2
4x 2z

12
pydx; + padx, + P;dxa
P1
P2

P3

Qo>
% h
1l
g~
—

+
Hh

= pix; + g(Xa)

g
w
+
m-
—
b
w
~—
|
J
w
»
—
%)
>
w

-1/2¢g, =
py - x (4 (35 + 4a%x3%) 7" (821 7xy)
py ~p3 = 0 ~+ g(xa) = ay = constant
ayx; + x;pp +ag = 0

4 da2xa?
/az + 431 X3
-a3 - a1Xy
2. 2 (ag + a;x,)2
az+4al X3 = _l.ﬂzl__L-—
(ag+ a? | ayffag )2
X X< \a3

2
a
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Set A equal to ay/a;? and B equal to az/ay. Then,
X2(422 + A) = (Y + B)? (€)
and Eq (6) is a complete integral of Eq (1).
I1f Eqs (3) and (5) arc used in conjunction with Eq (1'),

observing that Eq (1') is unchanged if p; = P3 and x; *+ X3 are
interchanged, one has

u = ajxp +xgpyrazt =0
2 _ (a3 + a1xp)?
P3 X32
2(4 2,.2 * T 2 - 2{23 2
X3 ( a7 xy + a ) = La3 + 81X2) = a) KT + X,

[ a.*
2 2 o2
Z \4X + a;2

2
a, .
Set a equal to a;*/a;2 and b cqual to ag/a;

Z2(4X* + a) = (Y +b)? M

~ *Eq (7) is a complete intcgral of Fe (1).
Still another distinct complete intcgral of Eq (1) can be

obtained by scparating the variables in Eq (1'). Since 4x1x3p22 - P1P3
= 0 is free of x,, pp = 3u/dx, = a;, a constant, and

u_, du_ (8)

axyxg? - pipy = 0 = AxXam® - gt o

Assume a solution of Eq (8) of the form

u = fl(xl) + fz(Xz) + f3(X3)

= 31X, + £)(xy) + f3(x3) 9)

Substitute Eq (9) into Eq (8) to obtain
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dxja)? 1 df

14

ad i = C
df)/dxl X3 dX3 1
90.2¢.2
> fl = _Z_a..L_J_x + C2
G
_ C 2
£f3 = hx3° + Gy
2
u = 2—31‘——X12+-2(2LX32+C2+C3+31xZ = 0
where x3 = 2, x; = X, and x; = Y.
Cy .2 _ 23,2 2
'Z-L Z - -(CZ + C3) - alY - -—Ci— X
2 2a 4a,2 2
722 = - 2-[C, + C3) - =21 Y - _lz_ Y
cl( z 3) G, (o

Set a equal to -2a,/C

72 = oY-a2X2 + 8

and B equal to -2(C, + C3)/C;

and Eq (11) is a complete integral of Eq (1).

(10)

(11)

Consider the distinct integrals Eqs (7) and (11), and renum-
ber them I and II

22(4%X2 + a) (Y + b)?

ZZ

ZP(4X2 + a) + 4Xz?
2Q(4X2 + a) - (Y + b)
ZP + a?X

22Q -~ a

1

aY - a?X? + 8

(D

(11)

(I11)

(1v)

4}

(V1)
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X, Y, Z, P, and Q must be eliminated from the six equations above.

From Eq (III) and (V), eliminate P:

422

a?(4X2 + a)
Use Eq (I1):

4aY - 4a2X? + 48 a?(4X? + a)

Solve for Y to obtain

-<
[}

2ax2 + 32 _ B
4 o

From Eqs (IV) and (VI), eliminate ZQ:

Y+b %-(4x2 + a)

Solve for Y to obtain

<
]

2 , ac |
2aX< + 2 b
Equating Eqs (VII) and (VIII), one obtains

8=ab-a—°——

- Substitute Eq (IX) into Eq (II) to obtain

22 = oY - a?X2 + ob -
Y - 20X2 + b - 3%9- = 0
a(§3+ 2x2) = b+Y
¢ 2§b++4§%

aa?

4

(VII)

(VIII)

(1X)

(09

(X1)




L -

16

Substitute Eq (XI) into Eq (X):

22

a(b +Y) - 02(% + XZ)

"

2(b + Y)2 a4 + Y)? a + 4x2
a + 4X< (a + AXO)YZ ~ 4

b +Y)?
a + 4X2

22(4x2 + a)

b +Y)?

*A Further Note:
F o= 22-aY +a®X? -8 = 0 B=fla), 3E=o0

G

22(4X2 + a) - (Y +Db)2 =0 + General Integral

-

F and G are two distinct complete integrals. Let

Note that B is one possible functional form of B = f(a). For all
possible choices A and B in B;, only a subset of the elements for
the arbitrary choice B = f(a) is obtained. Better said: Let H be
the set of functions of «

- By - A
B = Ba 7

for fixed A and B. H is a proper subset of the set Q of all possible
functions 8 = f(a). By inserting 8 = Ba - Aa/4 into F and forming
3F/3a for fixed A and B, a can be eliminated, and the two-parameter
family of surfaces G can be obtained. Thus, the surfaces G are part
of the totality of envelopes which go to make up the general integral.
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A NOTE ON OBTAINING A COMPLETE INTEGRAL
OF THE HAMILTON-JACOBI EQUATION
On page 324 of A Treatise on the Analytical Dynamies of
Particles and Rigid Bodies (Cambridge: The University Press, 1937), ;

E. T. Whittaker stztes--without proof--the following lemma.

Lemma: 1f dW is the perfect differentiai of some function
W(qj,a;,t), then the first Pfaff's system of the differential form

n
oW
av - - Z—-d
i=1 %% ?
is
oW _ . o= iz
d(—r‘{) = 0, d(!l 0 (1 1,2,...,“) "

Let W(qj,a;,t) be in C, but otherwise arbitrary, and consider
the differential form

n
Z piin = H(qi:pi»t)dt (1)
i=

and the transformation

p; = fi(qi,ui,t), q = q, (i=1,2,...,n) (2)

The following thecorem is established.

Theorem1: 1f the transformation Eq (2) transforms Eq (1)
into the differential form

n

D

i=1 %4

17
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where
n n
W
dw = Z f.dq; - Hy(q;,f;,t)dt + Z — da;
i=1 T is1 %
n n
Ll W oW
= 2 — dq; + z = da. + —dt
;1% ot gt b

is a perfect differential of some function W(q;,q;,t) of the vari-
ables (q;,05,t), which contains n independent constants aj, then W
is a complete integral of the Hamilton-Jacobi equation.

Proof: By equating coefficients, the necessary conditions
can »e cbtained

LU
§ = i
oW
Hl(qj_:fi:t) + 3t (Qi,(li,t] = 0

t
o

,
{ W W

Hl(‘h ,s—q—i—’t) + -aT (ql,al rt)
which establishes the theorem,

Note: This result agrees with a statement in Pars, p. 450,
if it is assumed that a typougraphical error has been made there and
that he means equation 16.5-4 rather than 16.5-6. This would be
consistent with his earlier reference tc 16.5-4 as 'the modified

partial differential equation."

Example--Central Orbit, Polur Coordinates:

(a) H

y 1
2{er® + Jreg?) + V) =

() pg a = constant

Solve (a2) for P, One has*

. .

"See next page.
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pZ. = 2h - 2V - rT r=rT
t /2 a’ t /7).
P, = */th-2v-5 = /E(x) 0=
where
o
f(l') = 2h - 2y - ;2-.
av = prdr *+ pgdd - hdt

(c) W = -ht +a8 *f Yf(r) dr

r

Either t yields a complete integral of the Hamilton-Jacobi equation.
The Hamilton-Jacobi equation is:

a2 1 faw\?
5r) t2r2\sg) vV '
oW

% - ¢

al
(d) —é? +

8]
"
o

oW
3 < R

kLl
ar

tyf ()
Substituting into (d), one finds
1 1 2 . 1 a?
-h+§.f(r) +..2_£2.a +V = -h+§.(2h - 2V~;-§-)
L a2+v = 0

tazr e

*A theorem on page 323 of Whittaker's A Treatise on the
Analytical Dynamics of Particles and Rigid Bodies assures the
reader that the transformation
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Pg = & r=r
P, = E(X) 6= 6
transforms
n
izl pida; - H(q;,p;,t)dt
into the differential form
n
W - z LY
i=1 %%
It is a simple matter to show that the functions
(@) %prz + %:Z-Pez +V(r) = ¢ r
(b) Pg = o = ¢,
are in involution; i.e., [¢;,¢,] = 0. Poisson brackets are zero,

so that the theorem just cited may be applied.

It may be that there are n distinct integrals (in involution)

¢i(ai,pi,t) = o (i=1,2,...,n) (3)

where (al, U2, o o o, “n) are arbitrary constants, for the dynamical
system

. H s
i = :pi(Qi»Pi-t) (i=1,2,...,n)

(4)
Py = -Eﬂ__(qi,pi,t) (i=1,2,...,n)

It may be that all of these integrals cannot be solved for (p;,
P2, + « - , py) so that they can be obtained in the form
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P v flaget) (=1,2,...,m) 5)

However, it may be possible to solve £(2 < n) of these integrals for
the p's and express them in the form of Eq (5). Suppose further that
the remaining can be solved in integrals (m <n, £ + m = n) for the
q's and express them in terms of p;, o;, and t. Relabel the coor-
dinates, setting Pj, (j=1,2,...,%), in one-to-one correspondence with
the £p's which have been solved for explicitly, taken in any order,
and Q, (k=1,2,...,m), in one-to-one correspondence with the mq's

" which have bee~ solved for explicitly, taken in any order. Thus, the

n integrals may be written in the form

Py

Q

Fj{ai>oi,t) (5=1,2,...,%)

“kai’Gi:t) (k=1,2,...,m)

(6)

Suppose now that in Eqs (6) none of the P. appear in the right-hand
sides of the expressions for Qg and that fione of the Qg appear in
the right-hand sides of the expressions for Pj. r

Introduce the following canonical transformation of
coordinates

* .
Pj = P (=1,2,...,0) Poak = Qo (k=1,2,...,m) o
* * .
a = Pryge (k=1,2,...,m) Unei = Qg (3=1,2,...,2)
Equations (6) may now be written in the form
* .
p; = fi(q;,ai,t] (i=1,2,...,n) (8)

Since Eq (8) is in the form of Eq (2), Theorem 1 may be applied, in
conjunction with Whittaker's theorem, to obtain a complete integral
of the Hamilton-Jacobi equation expressea in the starred coordinates.
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A NOTE ON DISTINCT INTEGRALS FOR A PARTICLE

IN A UNIFORM GRAVITY FIELD IN A PLANE
H = %(p,2 + pp?) + gh
i Me oo
SR
Hy, = %(pxz * th)

0 -~ Py = a

o
%
u

. oH, _ =
Ph= > = 0P =P

Direct integration of canonical equations:

X = a, x at + ¢

h = b, h

bt +d

Unperturbed problem (Hamilton-Jacobi Equation):

38 1[fes)? + 35 2\
t " 2 (ax) (SH) }

(]
L]

-t + 5, (x) + S, (h)

ds.\2 ds,\ 2
B () - o

(1)



"

T~

Sl = uzx
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2
ig'z) -

Zal-(

dh

2
(%LSTZ') = 20.1 - 022

Sz = /2(11 - G22 h

S = -Glt + anX + /2(!1 - 022 h

Py ® % 7 %

Py A U A SR
- T S

Bl - 3“1 ~ VZ(II - (122

3s __Nap
Bz - E - v2a1 - Gzz - X

A comparison of solution (3) with Eq (1) yields

h d
o, = a, 31 = t - Y = - oy
a? + b? ad
oy = By = =-c + 5
Substitute into Eq (2) to get
2 2
S* = - L-a-—-;—l)—l- t + ax + bh
asS* as*
Px = 3 ¢ & By* = - a_ - &t -
as¥ oS*
ph = oh = b. 82*“ -ﬁ)"" = bt ~ h

It appears that 8;*

-c and Bo* = -d.

(2)

(3)

(4)

(5)

(6)
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Perturbation:
G = oHy 8. = - oHy
1 38, 1 3%,
)]
2 382’ 2 3&2
where, since h = v2a; - 022 (t - By), Hy = Hj(ay,07,8;,t).
. _ oH * a_Hl
a = B By = -
(8)
_ 8, % 3H
b 38, B2 = - %
where, since h = bt - B,*, H; = H;(b,B,*%,t).
Variation of Parameters:
Assume
X = at + ¢, p, = 8
h = bt+d, p, = b

is a transformation of variables from the canonical set of equations

. _ oH . H

X = 3o Py ® =%
X

= oH < oH

- P, ’ Ppb = - %R

to new coordinates a, b, ¢, and d. Thus,

-
X = a+at+e| Q) é+at = 0]c = ¢
' h =« be+bt+d| (2 d+bt = 0fa = a
i > } !
‘ P = & (3) A= 0]b =-gte+b
A = b ) = = tz
D = ® J@ b= g)d = B

¥ - R «—:-I’—
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ait + ¢
42
-§f~ + bt + dy

Return to Eq (8) H, =

(o - 827)

. H .
A By
. " .
b = 33;* = -8 Ba*
a = a*, 31*
b = -gt+b*, Ba*
X = a't - Bl*l

gt? . .
h = -5 + o't - By

¢ ——————

Return to Eq (7) Hy = gviay; - as"

. oH o

Gl = 5—6{- = -gv/20.1 - 022’ Bl

&2 = 0, 62
Conclusion:

_8Hy g(t - 31)
3a) V2ap - a‘

guZ!t - 62\
da;  Y2a) - o2

The constants which appear in the solution o

Hamilton's equations obtained by quadratures are not in general
canonical even though in some problems it .ppears so.




HAMILTON FUNCTION FOR TRIAXIAL BODY (NO FORCES)

Lat
£(4) (51n cosz¢\
1 Y
g(4) (; s ir ¢ cos ¢
2. 202
e - 2 cost¢  sIn“¢
1 A (ZA * 78 )Pe
+ 29 ...1_
sinZg €057 P¢ C Py

H = £ - cos e.2+—— 2
sinZe|Pv " Po 3¢ Fé
sin pe(“w - Py CO8 9)
( cos Q 1u )
I A =B, £f(¢) = 1/2A and g(¢) = 0. and one has
. 1 - 2 L2
H + 2x<in%e (py - Py cos 8) + g Py *
Let
2
cos2¢ . sin®¢
q(®) = =—* =3
26
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and revrite the general form of !I. Note that q(¢) = A+B/2AB - £(¢).

2
H = ._fﬂ)_[pw-p'tcos()] +.ip¢2

sinZg 2C

g(¢) - 9 2
“sine Po(Py - Py cos 8) + alé)pg

The Hamilton-Jacobi equation may be written: 235/3t + H = 0, where
H = @), a constant.

3S

3 - %

a) = §T§7§ 22 & 7%(%%)2 + ng—g-%%-z + q(%%)z
vhere

2 =pw-p¢cose=’g%-%cose r
Assume

§ = S51(t) + S,(¢) + S3(v) + 5,(6)
Then

at it 1
and

5, = -aqt

a = ?fifTE 2%+ f?l:'(::?)z * T e/:?)z * "‘('g'g,ei)2
where

z = g-ii - g—;;z— cos 6

Using the jquadratic formula, one may write:

in2 2 i in2 2 in2
2 , sin“6(dSy sin 8 g/(dS, q sin“@ [dS, . Sin‘e a)
1 (d¢) YT (de R S T ;




-

4 sin?e[ 1/[ds,)? (@L 2
T Tf Lz‘c‘(d¢) *qde) -

ds; _ dS, sin 61 g[dS,
dv. = dp cos € |:' f(deQ)
1c \2 2 2
) s 4oy - {8527 4 (85
+\/t4 A f[“l } 2c(d¢. ) * q(de
g
S3 = a3y
2(3s,\2  4q[ds,\? ds,\?
oy ™ _ 2q([Coy = [&24 2 _

%T(de ) f(de ) (de z(8? - 4af)

dS ds sin 6 ds

. 923 _ Q22 LU0y
a3z = dy = ds cos 6 + 5 [} f(de )
. g2 - 4qf (as., 40y 4 [ds,
£2 de f " 2CE\ds
2 1 2 1 <2 o]
g2 = (a7 - A * B7JSiM ¢ cos~y¢
2 ) 02 2
cos¢ sin‘4)fsin‘e ~COoS“¢

dqf = 4( 2A ' 7B )( 2 * 2B )

sin%¢ cos?¢ sin?¢ cos?¢  sin"¢ + cos“d
AZ * BZ * AB




o Y, ..24 ~n ZA " Q“A]
2 . = _ kbln + o Si6T% cs co 41
& 4q£ AB
- sin?¢ + ces?e)? 1
AB /] ~ T AB
dS sin o AL
= —2 _ B [Coy
a3 d¢ cos 6 + > f(dg )

40 1 [ds.\2 2 [us,\?
30y w)® o & _[4Sn
* / f T\Bf"z’(aT) Cf(d¢)

There does not appear to be any way to separate the right-hand side
of the preceding cquation.

) 4a 1 ., 2

"

The explicit depcendence on 8 can be eliminated by using the relation-
ship

2

pg? = hZ - p¢2 - csc?8(a3 - py cos 0)?

which is valid for the tri wal problem with no forces if h is
constant.

4a 1 2 2
2 } 2 _ 4oy 2 .2 5.2 . B 2
4 csc e(aj Py COS 8)2 = —§- - xgFz pe® - TF Po’ * §7 Po
2g ‘/’_0_1_ 3 _ 2.2 2
~TfPe/ f " ABf2 Pe" " Cf Py
’ 2 2 _ da3 .1 [ 1 2
4(h - Pp° - Pp ) R I ?z(g - Kﬁ)Pez " Cf P¢2

_ 2 4a); _ 1 2 _ 2 2
?&pe/f asrz P T TE Py
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RELATIONSHIP BETWEEN CONJUGATE MOMENTA AND ANGULAR MOMENTUM

Let
p‘p hx* hxl
i’ = pe ) _l_‘l_ = hy* > ﬂ' = h)"
p¢ hz* hzl

where the Euler angles ¢, 8, and ¢ are shown below, relating the
body-fixed axes 6x'y'z' to the space-fixed axes Ox*y*z*.

x*

The matrix

ec

S+ D

and P represents the conjugate momenta matrix while H and H' represent
the angular momentum vector referenced to space-fixed and body-fixed

axes, respectively.
31
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P = x¢ ‘ 1)

Explicitly,

(A sin2¢+ B cos?4)sin?6+ C cos?8, (A- B)sin ¢ cos ¢ sin 8, C cos e-l "
(A - B)sin ¢ cos ¢ sin 8, A o052 + B sin?s, 0 0

C cos 6, 0, C ¢

The kinetic energy for a force free triaxial rigid body is given by

T = oxhd + =3 b3+ 5t b3 @
where

hyr = Awgr = Aé cos ¢ + A& sin 6 sin ¢

hyt = Buyt = -Bé sin ¢ + B@ sin 6 ccs ¢ (3)

hyr = Cugr = Cé + CY cos 8
Also,

Hoo= T “
Explicitly,

hys

hy» |5

hys

cos P cos ¢ - sin psin ¢cos 6, -cos ysin ¢ - sinyp cos $cos 6, sin Pysin 6\ [hys

sin Ycos ¢ + cos Psin ¢cos 6, -sin Ysin¢ + cos y cos ¢ cos 9, -cos Yysin 6 h),v

sin ¢ sin 0, cos ¢ sin @, cos 6

hzl
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P = NTH' (5)
Explicitly,
Py sin ¢ sin 6 cos ¢ sin 8 cos 6 hyr
Pg |= cos ¢ -sin ¢ 0 hyu
Py 0 0 1 \hz'
P = MTH (6)
Explicitly,
Ppl = cos VY sin ¢ 0 h),*
Py sin ¢ sin 8 -cos Y sin & cos 6 hy»
Also, r
sin ¢
hyt = pg cos ¢ + g;;—g{pw - Py cos e} )
. cos ¢
h),| = -pg Sin ¢ + sin 6 e(plb - pg cos 9] > (7
hz' = py = hcos 6 J

Consider the case in which the direction of the angular momen-
tum vector is fixed in space. Choose this direction as an axis and
redesignate it by the letter . Let the line of nodes of the angular
momentum plane (a plane thrcugh the center of mass of the body per-
pendicular to the ¢ axis) with the space-fixed plane x*y* be desig-
nated by £. Consider the figure below.

A t(along angular momentum vector)
]
z g

body-fixed plane

xl

=Tl

En is angular momentum plane

~
E/(line of nodes) N y*(below &n plane)

oy
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H may be represented in the form

0
H ={0 ®)
h
. If Eq (6) is used with y and 6 replaced by ¢* and 8', respectively,
/
Pe* 0 0 1 0
Pg | = cos ¢* sin ¢* 0 01
Py sin ¢* sin 8' -cos ¢* sin 8' cos @' \h
Py = h
pec = 0
Pyt = h cos 6'
Since pgr = 0,
sin ¢'
he = Sinar(per - Byt cos )
cos ¢'
h),' = sin B¢ (p¢* - p¢| cos ' ) (10)
hzr = p¢|

By utilizing the fact that p¢,=}1cos 8', one can write T in the
form

A1 ~1 2 1 2

sine’ cosz¢ 1
T = ( 2A + )(p¢* - pq’tz) + -2_51)4"2

Hamilton Function (11)




Designate H = Hamilton function = a;, a constant of motion.

-
»
n

Also,

"

cos 6!

and

pe' =

Suppose ¢', ¢*, Pg

and Py referenced

o~
< ©
0 [}

o
(-]
1}

*, Pg's and pgt are known.
to some space-fixed system Ox*y*z* known?

0(0',0%,¢%)
p(e,0%,6%,9*)
¢(8',0%,0%,0')

Py cos o

cos Y hyw + sin ¢ hy*

(12)

Are 9, lP, 4” Pe; P‘px

(13)
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Using Eq (4) with ¢, 6, and ¢ replaced by ¢*, 8%, and O,

hy* cos y* -sin yY* cos 6* sin yY* sin @*| /1 0

hy* = {sin y* cos Y* cos 8* -cos Y* sin 6*|f O

hy» 0 sin 0* cos o* h

hex = h sin ¢* sin &*

hy* = h cos y* sin 8* (14)
hze = h cos 8* .

cos w(h sin yY* sia 6*] + sin w(-cos Y* sin e*)

o)
(-]
"

-h sin e*.sin(y - y*) (15)

If p,» is known, @' is also known. Also, 6* and y* are prescribed
cons%ants, independent of ea n other and independent of ¢', ¢*, pyr,
and py. Hence, ¥, 8, ¢, py, pPg, and py are known, Thus, the inde-
pendent variables ¢', ¢*, pyr, Pgax, 0%, and Y* serve to describe the
motion of the triaxial body with respect to the space-fixed system
Ox*y+z*,

If Eqc (6) and (14) are used, p? = h cos 6* is obtained. Since
py does not depend on ¥, Py« = h cos 6* may be written where y and ¢*
lie in the same plane. If p** is known, €* 1s known; hence, the
independent variables (¢', ¢*, V¥*, Pyts Py*s and p¢*) will serve to
describe the triaxial motion with respect to the space-fixed system
Ox*y*z*. Kinetic energy T = H (for this extended problem) is expressed
in terms of (¢', ¢*, ¢*, put, Pg*s and py+) and still given by Eq (11).
The canonical equations (‘X be extended to include

> = -oH_
pw* = a‘p* 0
(16)
- sH .
‘1’* " ,apw* =0

since Eqs (16) are consistent with the facts that Py* and ¢y* are
constants of motion.
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Thus, H can be interpsreted, as given by Eq (11), as the
Hamilton function for the motion of a triaxi«l bcdy with respect to
the space-fixed system under no forces. The corresponding canonical
equations are

"SR . I o= o A
p¢' = - a¢l ¢ = apq’,
. oH . oH
Poe = - 35% ¢* = e L (17)
. H . H
: P‘p* = - aw* lIJ* = apw* J
The differential equations are explicitly:
S o2 n(A-B) g ]
P (p¢* Py )T sin ¢' cos ¢'
By = O
Bye = 0
. o
v = |1 _ [sinfd' . cos‘é!
¢ [C (et v =2y )]"4:'
s 2 2
ix o [sin®e! LIS
0 ( A + B )p¢*
o= 0
o
Then,
o pw = a,, a constant (19a)
pw* = a3, a constant (19b)
Y y* = -B3, a constant (19¢)

S g ¢ n s mon ¢

“ o e
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The differential equations for P!> ¢', and ¢* may now be written:

f)¢' = (0‘22 - P¢,2) (AA;; B)sin ¢' cos ¢' (20a)

aoos [% i (sini@v . cos;¢v)]p¢' (20b)

o= (sinzgj . cosz¢')cl (20¢)
A B 2

From Eqs (20a) and (20b),

dw du
- — = — 21
- 3 (21)
where
wooo= a2 - p¢'2.
1 sin?¢'  cos?¢'
u =T ( A *tT B

Integration of Eq (21) yields
wu = g, a constant (22)

To evaluate «, it is noted from Eq (11) that

99'2 wodfsin2¢'  cos?¢’
“ = 7 urt 72( A Y TTB
and from Eq (22), it is found that
_ . 2, 23)
wu = K = T- Gl (

Equation (23) permits the expression of p
first writes

o' in terms of ¢'. One

c' + d' sin?¢’

: u = ABC
% ¢' = A(B -C)
Iy

% d' = C(A -B)
&
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Then,

This last equation reduces to

2 _ CTla' +b' sin?¢']

Por” = e+ d' sinZ¢']
al = A(ZBGI - (!22)
b = QZZ(A - B)
L (24)
c! = AB -0C)
d' = CA - B
| o
, Wheace,
C(a' + b' sina') , '
P¢' t ct + d Sin2¢| (25)

AP Ny

i
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APPENDIX

ON A METHOD OF OBTAINING A COMPLETE INTEGRAL
0 ¢ THE HAMILTON-JACOBI EQUATION ASSOCIATED WITH A DYNAMICAL SYSTEM

Philip M. Fitzpatrick and John E. Cochran

Consider a dynamical s’stem whose equations of motion are

X 3 (q5;p45t
q = H{q53py5t)

api

) BH]qj;pj;t)
Pj =< .

aqi

i=1,2,...,n; j=1,2,...,n (1)

wheve the Hamiltonian, H(qj;p-;t], is understood to be a function
of the generalized coordinateg, q;, and their conjugate momenta, p:,
j=1,2,...,n, and possibly the tim&, t. If one-half of the integrals
of Eq (1) have been obtained in a suitable form, there is a well-known
theorem, due to Liouville,! which may be used to find the remai.ing
integrals. The purpose of this note is to point up the related, but
perhaps not so well-known fact that a method of obtaining a complete
integral of the Hamilton-Jacobi partial diffcrential equation asso-
ciatea with (1) is implicitly contained in the theorem. Since a
complete integral of (1) will permit us to express the solution of
(1) in terms of canonical constants of integration, recognition of

. this fact is of importance in studying perturbations of the original

system. The method will be discussed and applied in what follows.

Suppose that n integrals of a dynamical system with 2n degrees
of freedom are known in the form

°i(Qj;Pj$t) = a, i=1,2,...,n; j=1,2,...,n (2)

1E, T, Whittaker, A Treatise on the Analuti:al Dynamies of

Particlcs and Rigid Bodies (New York: Cambridge University Press,
1959), pp. 323-325.

40
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where the a. form a set of n independent constants of integration.
If the Poisson bracket expression, (¢i,¢°), vanishes for each i and
j and if the ¢; are solvable for the p; in the form

p; = fi[qj;aj;t], i=1,2,...,n; j=1,2,...,n  (3)

the Liouville theorem states that the difference between

n
:E:f.dq.
ji=3 *

and H{q;;a;;t)dt is the perfect differential of a function W(v;;0;;t)
and tha@ ﬂe remaining n integrals of the system are given by

.gg.... = Bi.’ . i=1,2,...,n' (4)
1

where the B form a set of n constants of in:tegration which are
independent of each other and of the set formed by the a;.

To say that

izlfldqi - H(qJ;Qj ;t)dt, j=1,2,...,n (5)

is the perfect differential of a function W(qj;uj;t) means that

a—w.._ = fi pi » i=1 ’2 g ,n (6)
1

W

w = A €]

Thus, implicit in the Liouville theorem is the fact that the func-
tion W is a complete integral of (7) which is the Hamilton-Jacobi
partial differential equation associated with the sysiem.

When the n integrals of (2) can be solved for the q; instead
of the pj, i=1,2,...,n, the theorem may also be applied, 1% the
canonical transformation

. e .
R
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G =

i - Yy

(8)

o)
[

to new variables (Q;j,P;j) is first introduced. Even if we are not
able to solve the n integrals (2) explicitly for the Py, or for the
Q;, a complete integral may still be obtained in certain important
cases now to be discussed.

Suppose we are able to solve the integrals (2) explicitly for
£(£ < n) momenta and n-% coordinates. Suppose further that, after
reordering the subscripts, the expressions for the £ momenta and n-g
coordinates can be written in the restricted form

i=1,2,..., ; k<g;

Pi = filaysppiogit), m>£; j=1,2,...,n

. (9)
S S i=g+1,242,...,n; k>2;
q; = hl (Qm»pk:u ,t)’ m<g; 5:1,2,..:,11
By introducing the canonical transformation
P;*= p:, q;* = q., i=1,2,...,2
pi* = -qi’ qi* = pi, i=£+1 ’2'.'2’. .. ,n

t

Eqs (9) may be written in the form

pi* = fi*(Qj*;uj;t], i=1,2,...,n; j=1,2,...,n (11)
Equations (11) are in the form (3) and the theorem may be applied.

~ Example 1: Central Orbit in the Plane, Polar Coordinates

For a particle moving in a plane under a central force deriv-
able from the potential V(r), the Hamiltonian function is a constant
a;. If we designate by (pr,p ), the momenta conjugate to the polar
coordinates (r,8), respectively, see Figure 1, the system has the
well-known integrals '

Pg = 4, a constant (12)

BN ot el
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A .
0 x

z Figure 1

Pr = */2[a1 + V()] - —%—2- (13)

Lo ]

From (5), we write

df = pydr + pgde - adt (14)

If ry is chosen so that no new independent constant is introduced,
the function

T
N = prdr + 026 - ot (15)

To

obtained by integrating (14), satisfies (7). Also, W is a complete
integral of (7) since it contains two non-additive independent con-

stants q, and a,.

Example 2: Free Motion of a Triaxial Rigid Body

For the free rotation of a triaxial, rigid body about a fixed
point 0, the Hamiltonian function, which is a constant of the wotion,
oy, may be written in terms.of the Euler angles (6,¢,y), which specify
the position of principal axes at 0 relative to space-fixed axes 0&ng

and their conjugate momenta (pe,p¢,p¢). See Figure 2,
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Figure 2

Three known integrals for this dynamical system are?

Py

a3, a constant (16)
tan-1 4 Y%2° - “32 fTPﬁ?
tan-] { /2% - M 9° (17
tan"l{—f'ﬁ_di_"’"‘f'

_—
| e el an

where A, B, and C are the principal moments of inertie at 0 and a,
is the constant magnitude of the angular momentum sbout 0.

25ee Whittaker, p. 325.
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Although it is not possible to solve (17) and (18) so that
ps and pg are expressed in the form (3), the set of equations (16),
(T?), and (18) is of the form (9); hence, the canonical transforma-
tion

p1 = -¢ ar = Py
p2 = -8 92 = Pe (19)
P3 = Py Q3 = ¥

allows us to write (16), (17), and (18) in the form (11). Then,
from (5), we write

d¥ = pjdq; + padqy + p3dq3 -~ odt (20)

If qiq and qz¢ are chosen in a manner so that no new independent
constants are introduced, the function °

q2 r
o2 2 2
W = -ajt + a3q3 + tan~! P 23 ~ X dx
3
q20
Q2
2 2 _ 2
- tan-! Yopt -4 X dx
a4
920
Q1
~1) (A (2Bay - 9,2)C+ (C-B)x2 * ,
B Ul e e S

a0

obtained by integrating (20), is a complete integral of (7).

e
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HAMILTON/JACOBI PERTURBATION METHODS
APPLIED TC THE FOTATIONAL MOTION OF A RIGID BODY

IN A GRAVITATIONAL FIELD

by

Philip M. Fitzpatrick, Grady R. Harmon, Joseph J. F. Liu
and John E. Cochran

ABSTRACT

The formalism for studying perturbations of a triaxial rigid

body within the Hamilton-Jacobi framework is set up. In particular, »

the motion of a triaxial artificial earth satellite about its center

of wass is studied. Variables are found which permit separation, and

the Euler angles and associated conjugate momenta are obtained as

functions of canonical constants and time.
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INTRODUCTION

This report summarizes the results obtained on Grant NGR-01-
003-008-5-2(ME) between November 1968 and May 1969.* These studies
are aimed at applying the perturb..ion methods of celestial mechanics
to the rigid body problem with particular emphasis on the problem of
motion of an artificial earth satellite about its center of mass.
During this reporting period, the investigators were able to express
the Hamiltonian for the triaxial rigid body in terms of variables in
which it is readily separable. This, in turn, permits introduction
of a canonical transfornation to new parameters which are constants
in the torque-free motion. The equations of transformation are then
inverted to allow the investigators to express the original Euler
angles and associated conjugate momenta in terms of the canonical
constants and the time. Thus, they are able to set up the formalism

for studying perturbations of a triaxial rigid body within the Hamilton-
Jacobi framework.

RECTANGULAR COORDINATE SYSTEM AND EULER ANGLES

Let O represent the center of mass of the rigid body. Choose
a space-fixed rectangular system Ofn; such that the positive f axis
lies along the angular momentum vector H and in the sense of H. Con-
sider a plane through the center of mass and perpendicular to the ¢
axis. This plane intersects the fundamental plane of the space-fixed,
but otherwise arbitrary, rectangular frame Ox*y*z* in a line of nodes
ON, shown in the figure. The £ axis is chosen to lie along the line
of nodes, its positive sense being arbitrarily chosen. Then, the n

. axis is chosen to form a right-handed system.

Let Ox“y“z” be a body-fixed (principal axes) rectangular frame
and let ¢*, 6°, and ¢* represent the Euler angles relating the Ox“y“z”
and Ogng systems. The x“y” plane will be called the body-fixed plane.
The angle y* is the angle between the x* and the { axes, measured in

the x*y* plane while the angle 6* is the angle between the positive z*
and ¢ axes.

*Work co-sp~isored by Contract NAS8-20175 with the George C.
Marshall Space Fligh. Center.

LN
]
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SOLUTION OF THE HAMILTON/JACOBI EQUATION

ASSOCIATED WITH A TRIAXIAL BODY PROBLEM WITH NO EXTERNAL FORCES

ham lton Function and Canonical Equations

Although the eventual goal is to give a complete discription
of the motion in the Ox*y*z* system, the description of the motion
will first be given in the Ofng system. In this manner, a straight-
forward, coherent approach to the prolem and its solution can be
presented.

Let

(1a)

|©
n
o
<@
e

<.

(1b)

T
1
Lo ]

“©-.

H = [ b (1)

Howa| h” (14

=
»
P

where P represents the conjugate momenta matrix and H and H’ repre- -
sent the angular momentum w.r.t. space-fixed and body-fixed axes,
respectively. A recapitualation of some of the formulas from an
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earlier report (Some Suggested Approaches to Solving the Hamilton-
Jacobi Equation Associcted with Constrained Rigid Body Motion, January
1969, pp. 31-35) is given below to help the reader follow the subse-
quent discussion. It should be pointed out for anyone who has a copy
of the referenced rep..-t that H should read H* through Eq (6); the

other notation is correct.

One has

(A sin2¢ + B cos?¢) sin?p + C.cos26 (A-B)sin¢ cos¢ sin 6 C cos ¢

|*a

(A - B)sin ¢ cos ¢ sin ©

C cos @

or

cosycos¢ - sinysingcose
siny.os¢ + cosysingcosd

sin ¢ sin @

-cosysin¢ - sinycos¢coso

-sinysing + cosycos¢$cosd

L4

A cos?¢ + B sin?¢ 0

2

cos ¢ sin §

- NTw

0

)

o \

. . .
sin y sin 6} /h,

-Cc0s ¥ sin O hy‘

cos 6§ h, -

()
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or
\ . . . \
Py sin ¢ sin 0 cos ¢ sin @ cos 0 hy-
Pg | = cos ¢ -sin ¢ 0 hy,
p¢ 0 0 1 hz’
P = Mp* (5)
or
Py 0 (] 1 hyw
Pg | = cos sin ¢ 0 hy*
Py sin y sin 8 ° -cos ¢ sin @ cos 6 hz*
-
and from Eq (3),
ﬁ' = TIl,i* (6)

or explicitly,

sin ¢
hx?\ = pg cos ¢ + sin e(P'P - Py cos 6)
. cos
hys | = -pg sin ¢ + ?iT%(p‘l’ - p¢ cos e)

h,-/ = Py = h cos b”

In the OEng system the angular momentum can be writiun as
%\
H =10 (7
h

1f Eq (5) is used and y, 6, and ¢ are replaced by ¢*, 6°, and ¢°,
respectively, then

D Y R R i TR PR PN
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Py 0 0 1 0
Pg-| = cos ¢* sin ¢* 0 0 (8) .
Py- sin ¢* sin 8~ -cos ¢* sin 0~ cos ¢~ h
or
Py = h
Pg- = 0

P¢- = h cos 67

Similarly, after Eq (8) is used and with y, 0, and ¢ replaced by ¢*,
0°, and ¢“, respectively, from Eq (6) one has

sin ¢~ .
he\ = Soste(per - Py- cos 07

cos ¢~
y g%-%={p¢* - pg¢* cos 8°) : 9)

=
\
n

hza = p¢‘

Using Eq (9), coupled with (8), the kinetic energy (the Hamiltonian
function) of the rigid body can be written in the form

.2, 1.2 1 -
T = 3xhed + gghy® ¢ 5eh% = H

or

. : 2
sin2¢” cos?4°), Py~
Ho=T-= ( A * 28 )(P¢* - 0%) * (10)

where A, B, and C are the moments of inertia of the rigid body

referenced to the principal axes Ox“y“z“. It is assumed that
A>B>¢C

The associated canonical equations are

. 3 sin?¢’ cos?¢” ‘
¢ = 3P¢* o h( A + B (11a)




S e A

e ST e, TR AR

7
"2 L4 2 Ld »
- = __g§¢‘ = -h cos e'(s”“«‘> + °°SB4’)+28.. (11b)
bgr = - gf:, = 0 (11¢)

b B e 2 = zl_l' P a‘2¢=_ - Y.
Py~ T h (B A)sm ¢$° cos ¢° sin“e h sin 8°6° (11d)

P = O (11e)
cos 6° = Rﬁii (11£)

Description of the Motion in the Ox*y*z* System

A set of relationships is given which allqws the description
of the motion in the space-fixed system (y, 6, ¢, Py, Pg, and pgy)
to be obtained completely from the description of the motion in the
body-fixed system (¢*, 6, ¢°, P¢*» Pg’, and Py} -

From elementary trigonometry,

cos 8 = cos 0 cos O* - sin @~ sin @* cos ¢*

(12a)
sin 8 = V1 - cos?g
sin 6* sin 6 cos(y - y*) = oS 6° - cos 8% cos O
(12b)
sin 6 sin(y - ¢y*) = sin ¢* sin 0~
sin 8° cos 8° cos(¢p - ¢°) = cos B* - cos 6” cos ©
(12c)
sin @ sin(¢ - ¢°) = sir ¢* sin o*
Wit Eqs (3), (4), and (5), the variables Py» pe, and pg can be
related to the variables p,-, pa», 0%, o*, and *. Exp?1c1t1y,
these relationships can be written as
Pe = - P¢+ sin 8” sin(¢ - ¢°) (13a)
Py = h cos e* (13b)

Py = Py
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Since 6* and y* are prescribed constants, independent of each
other and independent of ¢*, ¢°, Py*> and py-, the independent quan-
tities (¢*, ¢°, 8*, y*, pg~, and pQ') serve to describe the motion
of the triaxial body in the Ox*y*z* system.

Generator and Equations of Transformation*

The Hamilton-Jacobi equation associated with Eq (10) is

1{sin2¢” cos2¢-\|/3s \2 3S \? 135 \2 35S
E(A * 8 (a¢*) '(a¢‘ * 26\ 3t = 0 (14)

from which the generator S of a canonical transformation is to be
determined. A complete integral S of Eq (14) can be obtained by
separation of variables. It is found that

S = -ajt + h¢* + azp* + S,(¢7) (15)
where )
a; = H -
_ _ 39S '
h - p¢* - a¢* (16)

35
%37 Pyt T G

are independent canonical variables. The function $;(¢°) is related
to a; and h through the expression

¢J
$147 = | py-de” 17)

%o

- a’ + b’ sin¢g”
p¢ tJC(C‘ + d; SinZQ’)

where

*The variables (¢*, ¢~°, o%, Pg*s Pos pw*) in which 6+ is
replaced by cos‘l(pwwlh) are introduced here (see "Perturbation of
the Force Free Motion of the Triaxial Rigid Body, page 20, for
justification).
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_..__._[...



The complete set of transformation equations from (y*, ¢*,
P¢*» Pp-) to (a3, h, a3, B;, B,, B3) is obtained from
The equations are:

and

A
C3}
B2
B3
Py
Pé*
Py~

where

and

301

aS

aS

EXS

s

3u3

3S

w*

9S

%"

s
T

L(¢")
M(¢7)

A(2Ba, - h?)
n2(A - B)
A(B - C)

C(A - B)

t - L(¢7)

= M($7) - ¢* .

"4’*

a3

= h

s gfcfa b’ sin®¢$”
¢’ + d° sin¢¢”’

= *AB/C I3(¢")

= +/C aI3(¢")

¢’
» —W
I2(¢7) = Y(a” + b sinZ¢°)(c” + d° sin”)
%

0‘
. A - in2¢* - Ald”
Is(¢) = /(a- + b° sin%w) (c’ + d- sing’)
%

(19)

(20a)

(20b)

(20c)

(20d)

(20e)

(20£)

(21)

(22a)

(22b)

Lo -
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In three of the six Eqs (20), the right-hand sides are pre-
ceded by * symbols. The choice of the sign in these equations is
determined by the choice of sign for Py-- Also,

Po= MM
or
Pys 0 0 1 0
pe-| = cos ¢* sin ¢* 0 0 | (23)
P sin ¢* sin ¢* -cos ¢* sin §° cos 0 h
hence,

pP¢- = h cos @°

Thus, the sign of p,- depends upon whether cos 8“ is positive or
negative. It is assumed that 0 < 8° < n/2. Therefore, Eqs (20)
and (21) become .

t-8, = L) (24a)
o* +By, = M(4”) (24b)
By = -y* (24c)

» » . 2 »,
T (24
Pgr = h (24e)
Pyt = oy (241)

where

L(s7) = AB/C I,($") (25a)
M(47) = -h/C I3(37) (25b)

e SV
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INVERSION OF THE SOLUTION FOR THE TRIAXIAL RIGID BODY PROBLEM
WITH NO EXTERNAL FORCES

Equation (24) must be inverted to express the variables (¢*,
¢, Vv*, Pg*s Py~» Py*) in terms of the canonical constants (aj, h,
@3, By, Bz, B3) and time t. The inversion is shown below.

Inversion of the Equation t - By = L(¢”)

Since it is assumed that A > B > C, the quantities b”, ¢“, and
d“, given in Eqs (19), are positive. The quantity a” may be either
positive or negative. In what follows, it is assumed that a“ > 0.

From Eq (8), it is noted that

al c‘
since r
2Ca)  _ ACug? + BCwy3 + C2u;3
h = A mx + B U)Y‘ + C wzf
where Wx» -, and w,. are components of the angular velocity w.r.t.

the primed syster.

For convenience the following parameters are dafined:

n o2 (27a)
T (27b)
] — ! . S— 27
¢ Ja- s b (e +d9 - BIA - OC2ha; = 1) (27¢)
= nl-n%7 _ (A - B)(h? - 2Cay)
ko= y7 % (8~ C)(2ZAay - h2) (274)
. 1 . [T
B R [ @7e)
. s i . [ O0E -
ko2 A=k J (5= C)(2A8, - h?) (276)
) T —————
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Clearly, 1 :_n% > ng > 0; thus, 0 <k <1, and k” is real since
a’/b’ < c’/d”.

To cast Eq (22a) into a more convenient form, a new variable
is introduced by the equation

a = ¢+ n/2 (28)

It follows immediately, by substituting a and the parameters
in Eq (16) into (22a), that

a
1,47 = ¢ | rla)da (29)
%o
where
0 = ¢o * /2

L (30)

/(1 - n{ sin?q) (1 - n§ sin‘a)

r(a)

Since the lower limit of integration of Eq (29) may be taken to be
an absolute constant, ¢5 = -7/2 is chosen; hence,ag = 0. Therefore,

a
I,(6) = & r(a)da (31)
()
In what follows, the formulas which appear in Byrd and
Friedman [1] will be referenced. Such formula numbers will be
indicated by prefixing the numbers with the designation B-F,
Using B-F (284.00) and Eq (24a),

a

r(a)da = gu = E—AgTE(t- 8,) (32)

or

U = At + ¢ (33)

T i e e s
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where

_ 1 _ (2Aq; - h3)(B - ©) ,
T R ABC (34a)
£ = -AB (34b)

Also from Byrd-Friedman,

2 .

sn2u = [sin(amu)]? = = nd)sina (35)

1 - n$ sin2a

Solving the above equation for sin a, one writes

.. snu
sin ¢ = 77 nZenZu (36a)
and
cos & =, L _.nz cnu (36b)
1 - ngcn4u
where v
cnu = cos(amu) “
and
sn?u + cn2u = 1
Since a = ¢° + /2,
sin ¢~ = éi.;;L%‘,- (37a)
1 - ngcnu
. snu
©08 4" = e (370)
., _ _Cnu
tan ¢° = enu (37¢)

The quadrant of ¢~ is uniquely determined by studying the signs of
chu and snu.

Equation (37) is not in a convenient form for calculation since
powers of t appear in the expressions for cnu and snu. This difficulty
can be avoided by introducing theta functions. From B-F (907.01),
(907.02), (907.03), (900.04), and (901.01), for |u] < K-,

3 S
snu = u - (1+k2) %T'* (1 +14k2 + k%) ET

7
- (1 + 135k2 + 135kY% + k6) T+ + « o (38a)

i Faha A S aaid € odekan e M AR L as Teme genf 4

s o nann, Lo e
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cnu = 1

1

U, 1+ 4k?) W1+ 44k2 4 16kY) L

21 41 - 61
8
+ (1 + 408k? + 912k* + 64k5) %T - e e e (38b)
2 y
dnu = 1-k2§—l—+(4+k2)k29—l-
2, 42 ul
- (16 + 44kc + kYk ET-+ o v e (38¢c)
vhere
K° = K(k) (39a)
ad /2 .
K = X 1+4§ :._g!.“_z_ = ?%T— (39b)
T2 =T 1 + q" 1 - k® sinév ‘
. o
U] 8 12
q = k% [1 . 2(’5‘#) R 15(’%) R 150(’5“1) -
16
+ 1707(1-2&-1-) + 0 '] (39¢)
P - 1 - F 2 . .
k = '1—1-'-7-!(—.‘.(](1 < k? < 1) ) (39d)

If B-F (1050.01), (1052.01), and (1052.02) are used, then

_ vk cos v + q% cos 3y + g6 cos 5y 4+ ¢ o . (40)

tan 97 = g Sinv -q< sin 3v + q° sin Sy = + «

where
2 o
v x!"
The series (c) of (39) for computing q converges rapidly. Hence,
the angle ¢~ can be expressed in terms of canonical parameters and
time through Eq (37) and can be computed by using expression (40).

Inversion of the Equation ¢* + B, = M(¢")

By using Eqs (27), (28), and (30) and recalling that ag = 0,
Eq (24b) can be rewritten as

e

it m»thm:ma

atA wma G
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a
¢* + B, = -h/Cgf [(A - B)cosZa - Alr(a)da
0
From Eq (32),
a
o+ By = %-(t - 8,) - h/Ce(A - B) J cosZa r(a)da
0

Using B-F (284.08) and (432.03), Eq (42) becomes

¢ + By = %‘(t By) - (%%)[95 - UAo(B,k)]

where
g = .sin'1 1
n - Y2
v2= - __23_5. (1 < -y2 < =)
l-ﬂz

and the functions Qg and A, are defiaed in B-F, Sections 430 and
150, respectively. Since u = A(t - By), it can be written

¢* + By = M*(t - B1) - 5¢ (A5 - )

where
h L
M*=%- 7% [1 - Ap(B,K)]A

Expressions for pg- and 6~

By applying Eqs (27) and (37), Eq (24d)‘can be written as

> ; ]
Py- = Jc(a hs b/%:élk' n3) (k*2 + kzcnzu)l‘

From B-F (121.00), one has

dn2u = k2 + k2en?u

(41)

(42)

(43)

(44a)

"

(44b) ? 4

(45)

(46)

(47)

(48)

PR
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Hence. Eq (47) takes the form

/C(a” + b - .

p¢‘ = /6._
C(2Aa; - h?
- Lleny -t/
= ( s ) dnu (49)
and since Pg- = h cos 87,
. - C(2Aa, - h?
cos 8° = p_g_ = ‘/}E(K-C)) dnu (50)

Inverted Solution for the Triaxial Rigid Body Problem
with No External Forces

The general solution for the triaxial rigid body problem with
no external forces can then be summarized as follows:

tan ¢° = - <MY
g snu
. _Yk" cos v+ q?cos 3v+q® cos S+ e e * (51a)
g Sinv - q2 sin 3v + q° sin S5v - ¢ « ¢
o+ 8, = Mt -8) - -{-(95 - u) (51b)
y* = By (51c)
- h2
Pyr = VC(ZAxx_ ch ) 4nu (51d)
Pe» = h (51e)
Pyr = a3 (511)

This solution coupled with Eqs (12) and (13) gives a complete des-
cription of the motion of the triasxial body in the space-fixed system
Ox*y*z* in terms of the canonical constants and time.

[P,
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UNTAXTAL SOIUTION

By letting A equal B, ‘he triaxial solution (51) can be reduced

to the corresponding uniaxiul <clution. To distingui<h between the
canonical parameters which appear in the triaxial solution and the

reduced solution, the latter will be labeled with the subseript u;

that is, Gius hu, A3us BIU’ Boaus and Bay-

For the case A = B, one has

ni = n3 = 0, k = 0,
k® = 1, g = 1,
snu = sin u, cnu = Ccos u,
and
X = (2Aay,, - h3)(A - C)
A%C
Thus, from Eq (37e¢), one obtains
. (ZAayy, = h3)(A - @)
¢ - ¢° = J L. AZE (t - Blu) (52)
When A = B,
n
8 = 53 Ao(gﬁé) 1,
M* = %ﬂ, s = u;
therefore, Eq (45) reduces to
RTINS WO 53

Furthermore, for A = 2, dn(u,0) = 1, and Eq (49) reduces to

2 - h2
Py " ‘/EE._A_ZJL_LTL‘H)_ (54)
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In summary, the uniaxial sclution is given as follows:

6" - 45 = J(ZA““‘ 'A*z‘%) (A -0 (¢ - B1y) (55a)
o s Ny (s50)
¥v* = -B3u (S5¢)
P¢* = h, (55e)
Pyr = ogy (55£)
and the corresponding generaior is r
Sy = -amt + hyo* + ag* + ‘/C(”‘Xn_x - hi) (4- - ¢¢ (56)

Through the use of Eqs (12) and (13), the complete solution of the
force-free uniaxial motion can be obtained in the space-fixed system
Ox*y*z*,

The parameters which appear in the treatment of the force-free
uniaxial problem, g1ven in [2], w111 be labeled w1th superscript

. asterisks; that is, o)y, azy, 03y, Biy, 32ys and Bay. It has been

shown that

h2 = 2ha, (C - é)uz;;z 57)

The correspondlng generator, in which h, is interpreted as a function
of °1u and azu through Eq (57), takes the form

S; = -al:;t + V‘.’Aal; + (C E A)amz ¢" + °3u‘1’*

+ azg (67 - 43) (58)

At sk i b



SRECE ] SNl SN TN

19

After inversion, the associated equations of transformation are
* amfA - C *
¢° - ¢ = -Bay+ ‘%?( C ) (t - 8a) (59a)

¢* = J;Aql; + (A é c)uzaz (t - Bn*]) {59b)

v o= -Bay (59¢)
Py- = Gou (59d)
Ppe = J2Acq; + (C E A)uz:', . (59e)
Py* = a3 (59)

If*Eqs (S9) and (60) are compared, the parameters (016, azﬁ, uaﬁ,
Blu, B2u, and B3y) and (aju, hu, a3u, Blu, Bz2u, and B3y) are related .
as follows

el = oy ~ | (602)
C(2Aa,, - h2)
a2u = J R (60b)
. .
a3y = a3y (60(:)
* A
Biu = Biu * - Bau (60d)
u
2 - h3) (A -
Bons = 'ﬁ\/( Aay ~hD(A-O) o (60e)
Bsu = B3u (60£)
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PERTURBATION OF THE FORCE FREE MOTION OF THE TRIAXIAL RIGID BODY

Recalling the section entitled "Generator and Equations of
Transformation," page eight, 6* must be replaced with an equivalent
parameter p,«, the momentum conjugate to ¢*, to use the canonical
perturbation equations of Hamilton-Jacobi theory in studying the
perturbations of the force free motion of the triaxial rigid body.

It follows from Eq (13b) that either 6* cr Py» will give an equivalent

description of the motion. It is cilear from this equation that the
momentum conjugate to any angle y which lies in the x*y* plane is
independent of the angle y and depends only on h and 6*. Therefore

p¢ = p¢* = h cos 8* = p¢* cos 0*

»

(61)

Thus, the six independent quantities (¢*, ¢~, ¥*, Pg*, pg—, and pw*)
bo

will completely describe the motion of the triaxial rigi

dy with

respect ta the Ox*y*z* system. The Hamilton function from which ¢*,
$”5 Po*> and Py~ are to be obtained is, of course, still given by Eq

(10). Furthermore, H, as given in Eq (10), can be considered to be

the Hamilton function of an extended system of variables (¢*, ¢°, ¥*,

Pg*s Py’s Py*» which satisfy the canonical equations of motion.

. o

¢* = pg*
i. o _oH
¢ = ap¢,
3H
o= Wy
. oH
By = - 5"
. aH_
Py = " %¢°
[ aH
Pyr = - %

subject to the constraints
y* = constant

Py* = h cos 8* = constant

(62a)
(62b)
(62c)
(62d)
(62¢)

(62f)

(63a)
(63b)

This follows from the fact that the two differentiszl cquatiuns

(62c) and (62f), which have been added to the system, are entirely
consistent with (63), the equations of constraint.
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GRAVITY GRADIENT POTENTIAL FOR THE TRIAXIAL BODY

The gravity gradient potential V for the triaxial body is
given by

A

- g_g[(A - C) cos?y + (A - B) cos?B] (64)

where ¢« = n”2 and n” is the mean motion of the Earth about the tri-
axial bodv. A circular orbit will be considered for which x is a
constant. The angles a, B, and x are the direction angles of the
line segment from the center of mass of the body to the center of
mass of the Earth with respect to Ox“y“z”, the principal axes of

the body. Since cosa + cos?B + cos?y = 1, Eq (64) can be rewritten
as

Vo= k@A) W (65)
where
N (2-: g)wl . W, (66)
and
3 2 r
N = - i-K(B - C)cos<y
(67)
Wy = 3x(A- Beos%

The expression for cos y in terms of canonical constants and
time t is deduced in [1] and can be written in the form

cos x = D, cos 8“ + D, sin 6” sin ¢* + Dy sin 6° cos ¢* (68)
where
D, = sin i sin & cos 6% - [cos i sin & cos(Q + B,)

+ cos & sin(Q + ss)lsin o*
D, = -cos i sin £ sin(@ + B3) + cos £ cos{Q + Bj) (69)

Dy = -sin i sin £ sin 6* - [cos i sin & cos(Q + B3)
+ cos ¢ sin{§ + B3)]cos 6%
Note that D;, Dy, and D3 are functions of three canonical constants

only, namely, a = h, a3, and B3 and contain t explicitly only through
% and Q, which are both linear in t.
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A suitable expresion for cos a can be derived similarly. From
spherical trigonometry,

e fr,n«"}‘(
cos a = cos ¢” cos ¢y - sin ¢~ sin ¢y cos 6~ -~ (70)
and
cos 6;; = cos i cos { - sin i sin 6* cos(Q + B3) (71)
Introducing
= . _ = €0s i - cos 6y cos &% 72
By = cos(y 1) sin 6y sin 6* (72)
B. = sin(e* - - _sin i sin(Q + Ba) 7
9 sin(¢ ¢n) sin 6 (73)
Equation (7) can be written in the form
cos a = E;(cos ¢° cos ¢* - cos 8° sin ¢~ sin ¢*)
- E;(cos ¢* sin ¢*
+ cos 6” sin ¢ cos ¢*) (74)

Note that E, and E, are functions of only three canonical constants,
namely, ap, a3, and 85 and contain t explicitly only through % and Q.

It is important to note that D;, Dy, D3, E;, and E; do not contain

the moments of intertia A, B, and C. Thus, these coefficients can be
treated as constants when cos x and cos a are expanded in Taylor's
series about their values at B = A. The reason for the expansion is

the angles ¢*, ¢”, and 6” for the unperturbed triaxial body are no
ionger either constant or simple linear functions of time (as was the
case in the uniaxial problem). Thus, since difficulties are anticipated
in the integration of the perturbation equations, attempts are made to
linearize the arguments of the trigonumetric functions which will appear
in the integration.

Introducing the notation
£(x)

gla) = cos a

cos X (75)

f(x) and g(a) are treated as functions of B and are expanded about
the value B = A. Using prime notation to indicate derivatives with
respect to B, one has

f(x) = £(B) - £°(B)(A - B) + %f““(B)(A - B)2 + O(A - B)3]  (76)

e
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where

and

where

£(B)

£°(B)

£1B)

g(a)

g(8)

g"(B)
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Dy {cos 67]g=p + Dy[sin 8~ sin ¢*Jp=p

+ Dy[sin 8~ cos ¢*]g.a

Dl[%é-cos e‘]B A + Dz[%ﬁ(sin 8° sin ¢*)]

. 03[%5(sin 8” cos ¢*}] ("
B=A

B=A

32 ” az 3 - 3 *]
Dx[;gz' cos e]B=A + 02[5'57 (sin 8~ sin ¢*) Bea

2
+ [)3[%-52- (sin 6° cos ¢*)] BeA

g(B) - g (B)\A - B) + O[(A - B)?] (78)

Eplcos 8” cos ¢* - cos 0° sin ¢” sin ¢*]p
+ Ezfcos ¢* sin ¢*

+ cos 8” sin ¢” cos ¢*]p_,

s (79)
El[ﬁ;‘ (cos¢” cos ¢* - cos ¢” sin¢” sin 4"')]B A

+ EZ[%E (cos ¢~ sin ¢*

+ cos 8°sin¢” sin ¢*)]
B=A

In Eq (78), only two terms are carried since g(a) is multiplied by
the fact r(A - B) in W,

Equations (66), (67), (76), and (78) yield

W o= (i = ‘c’)wm + Wy + O[(A - B)9] (80)
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where

W = - (A - OEB))?
Wt = 3 (A- B){2(B - OEBIEB) + [g(B)2]]
- 35 (A - B2Z{(B - O)[£°(B)}?
+ £(B)£(B)] + 2g(B)g”(B}}

These expressions for Wjy and Wt can be used to study the perturba-
tions of the variables (ay, h, a3, B;, B, and B3) which are given by
the following relations

A (B-c)awm oW,y .

i A - CJaR:. * 3B
¥ Y @=1,2,3), (ap=h)  (81)

Be = - B - C\aW,,, Wyt .
1 A - CJag; aay

o o e e ———— Vi ————————_
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STRESSES IN DCOME-SHAPED SHELLS OF REVOLUTION WITH
DISCONTINUITIES AT THE APEX

C. H. Chen, J. C. M. Yu, W. A. Shaw

ABSTRACT
Asymptotic =olutions to Novoshilov's cquations of shells of revo~
lution are derived for axisyameiric and first harmonic loadings, The
solutions obtained are valid throughout the shallow and nonshal}oﬁ
regions, .
Stresses in dome~-shaped shells of revolution with a discontinuity

in the form of a circular hole; or a circular rigid insert; or a nozzle,’

at the apex have been investigated, Numerical resulis are obtained for

spheres, ellipsoids, and paraboloids, containing a discontinuity under
an internal pressure and a moment, Good correlation between thecretical

and experimental stresses is obtainsd for ths spherical shell, Curves

depleting stress distributions are given, The influence of three types |

of discontinuity on the stresses of the shells is also investigated,
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'_ solutions can Ye readily derived,

I, INTRODUCTION

Background
(A) General Theory

The basic equations of the linear theory of thin elastic shells
have teen well developed (1-5)*, These equations involve the deformation=-
displacement relations, the equations of equilibrium and relations
between forces, moments and the de-fomation rarameters, The derivation
of these c¢quations and methods for effecting solutions, especially the
deduction by means of complex transformations to a fourth oxder system
of Gifferential equations, are briefly outlined in the Appendix,

(B) Shells of Revolution

The btasic equations for shells of revolution can be deduced froa
thoss of the general theory of thin elastic shells by proper choice of a
coordinate system and Lame' parameters. There are several methods of
reduction of the basic equations to a system of equations from which

Al

Axisymmetrioc Dofoxmation

Reduction of the basic equations to a set of two equations which
relate the rotation § and the transverse shear Ny was first obtained by
Reissner(6) for sphexical shells and generalized by Meissner(?) for shells

of rovolution, The procedure of this derivation is also given in reference

{3). By similar procedure, Naghdi and DeSilva{8) extended the work of

* Numbers inside the brackets refer to the references,
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Meissner and obtained two equations which, for unifom tnickness and for
some classes of variable thickness, can be combined to give a single
complex differential equation. Novozhilov(2), from the approach of the
conplex transformation, obtained a single differential equation, which is
valid only for sholls of uniforn thickness,

_ Exact solutions to these equations have bteen derived for some parti-
cular classes of shells of revolution, such as circular cylindrical shells,
conical shells and spherical shellsi2,3,5), of which the curvatures of the
gonerutors of the middle surfaces axre either zero or a constant, When the
curvatures of the generators are functions of position, as is the case in
u«llipsoidal, paraboloidal and other shells of revolution, the exact solu-
tion becomea; prohibitively difficult, Doveloment of approximate solutions
such as asympiotic solutions is indispensable to the analysis,

. The method of asymptotic integration has been widely applied to
obtaining approximate solutions for shell equations, which for shells of
revolution may be transformed into the form

LN a[apto) 2 Loy w (1-1)
where A is a large parameter, The asymptotic character of the solutions
of Eq.(1-1) as A approaches infinity can take many diffexrent forms
depending on the roperties of p(8) and q{€)., However, three cases are
usually encountered in tho equatione 9f shells of revolution. The first
case, the so-called classical typs, is an asymptotic solution of Eq.(1-l)
in which, on some interval 6,4049,, p(9) and q(0) are both bounded and
p(6) is also bounded from sero. The second cass is an asyaptotic solution

of EQ.(1-1) containing a tuming point, In this case, p(0) vanishes at a

et
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point 8, within the interval 6,<8 5923 such a point is called a turning
point, The *hird case is an asymptotic solution of Eq,.(1-1l) containing
& singular point, In such a case, there exists a point 6, in the interval.
91.6 0507 at which q(6) may have a pole of first or second order and p(®)
contains as a factor (6 - Oo)a' where a is a real nonnegative constant,
and p(8) and q(0) are both bounded in the rest of the 1nterva1; The solu-
tions of these three cases have been investigated extensively by lLanger(9)
and Olver 10,11}, The first case occurs in the differential equation for
snells of revolution with two open edges where the region of interest lies
in the nonshallow region (large values of ), The second case occurs in
the differential equation for toroidal shells, and the third case is encoun«
tered in the differential equation for dome-shaped shells of revolution
where the region of interest lies in the shallow reglon (small values of
8) including a singular point at the apex,

Asymplotic integration of the third case has teen applied to the
investigation of ellipsoidal, paraboloidal and other dcme-shaped shells
of revolution, Naghdl and DeSilva (12] applied this method to the study
of deformations of ellipsoidal shells of revolution.of uniform thickness
under axisymmetric loading. Solutions valid in the shallow region were
obtained in terms of Kelvin functions, Clark and Reissner (13] ovrtained
the solution btased on the bending theory for complete ellipsoidal shells
of revolution subjected to .nternal pressure by the use of small-parameter
expansion, Deformation of paraboloidal shells of uniform thickness
subjected to0 a load uniformly distributed over a small region about the
apex and clanped at the opsn edge was studied by DeSilva and Arvor (4],
Study of dou;e-stxapad shells of revolution subjected to axisymmetric loading
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was made by Baker and Cline [15] , and Steele and Hartung [16] .
Application of the first case of asymptotic solution which is valid
only in the nonshallow region was made by Novozhilovintihe study of non-
sh:a.llow shells of revolution under axisymmetric loads, .

Nonsymmetric Deformation

There are three basic procedures in reduc_:ing the basic equations of
shells of revolution subjected to arbitrary loads, In the first of these,
the tasic equations are reduced to three differential equations which relate
the displacements u, v and w, This procedure was employed b, Vlasov (1]
and Donnell [17] in deriving the gover:ilng equations for circular cylin.

drical shells, Stelle [18] also used the same procedure for reduction of
the tasic equations of shells of revolution under nonsymmetric edge loads,
and obtained, by neglecting the transverse shear terms in the first two
equatlions of equilibrium, three differential equations which relate the

displacenents u, v and w, The membrane and bending solutions that are

. valid throughout the shallow and nonshallow regions were obtained by means

of asymptotlic integration. In the second, a stress function is introduced
and the governing equations are reduced to two diffgmntia.l equations which
"relate the stress function F and the normal displacement w, Reissner (x9)
employed this method and obtained a set of two equations for small defor-
mation of shallow spherical shells, In the thinrd, the basic equatlons

are reduced by means of complex transfuvmation developed by Hovozhilov (2]

to tvwo differential equation which relate to two cuom’

x functions, The
procedure of derivation is given in the Appendix and 1n Chapter II, - i
Asymptotic solutions to Novozhilos's equations valid in in ths nonshallow
:'.:egion were derived by Schile [20) for external loads including (a) sinusoi-

]



5

" dal loading and (b) higher harmonic load distribution. HNo literature: on

solutions to Novozhilov's equations that are valid in the shallow region
is known to the author, |
(C) Application

Numerous investigations have been made on the application of the
solutions mentioned previously to englneering structures, Attention here
will be limited to dome-shaped shells of revolution having a discontinuity
of the typesx. (a) a hole; (b) a rigid insert; (c¢) a nozzle attachment.,

The problem of the stress distribution around holes in shells has
been investigated by a number of workers, Hemisphexrical shells with a
circular o;;ehing at the vertex subjected to axisymmetric self-equilibrating
forces were studied by Galletly (21 « An elliptical opening in a spherical
shell under internal pressure was investigated by Leckie and Payne (22) who
expressed the equation in elliptical coordinates and obitained the solution
in terms of Mathieu functions, For a more general case, Savin(23) investi-
gated the stress distribution around an arbitrary hole with smooth con=
tour in thin shells and obtained solutions to the shell equations which
had been transformed by the use of conformal mapping into a coordinate
system such that along the contour ¢f the hole one of the coordinates is
constant, The general method was described and applied to a cylindrical
shell with a circular hole and to a spherical shell with either a circular
or an elliptical hole, Further studies (24) were made of a spherical shell
under internal pressure weakened by an elliptical hole, square and tri-
angulaxr holes with rounded coxmers,

Spherical shells with a cixcular rigid insert have been considered
by Bijlaard[25) and, with an elliptical rigid insert, by leckis and Payne




{22), and Fosteri(26),

The effect of local loading on spnerical shells in which external
loads are transmitted from & nozzle radially attached to the shells has
been investigated extensively by Bijlaardlé?)and leckie and Payne (28),
Studies of the case in which the nozzle is obliquely attached to a
spherical shell were made by Johnson(29] and Yu, Chen and Shaw (30} .

All the investigations mentloned here are restricted to shallow shells
with a hole or a rigid insert, the size of which is small compared to the
radil of curvatures of the shells so that shallow shell equations hold
for the problems under consideration, The nase of a nozzle attachment has
been also limited to nozzle-to-spherical shells,

As far as the author knows, little attention has been given to
systematic studies of stress distribution in nonshallow shells of dome
shape around a discontinuity of a size which is not necessarily small

compared to the radius of curvature of the shells,

Statement of the Problems

Investigation of the following problems is suggested ﬁpon the review
made in the preceding sections:

(1) Derivation of solutions to Novozhilov's equations for shells
of revolution which are'valid in the shallow and nonshallow regions under
axisymmetric and first hammonic loads, This extends the work of Novozhilov
who derived the equations and obtained solutions valid only in the non=- |
shallow region, The develoment here also differs from that of Stesle in
that it does not neglect the transverse shear temms in the firat two

equations of equilibrium,

i;_
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(2) Application of the solution derived in (1) to the study of the
stresses in “he vicinity of a discontinuity at the apex of dome-shaped
shells of revolution under external loads including (a) internal pressure
and (b) a couple applied to the discontinuity. The discontinuity is in
the form of a circular hole, or a circular rigid insert, or a nozzle., No
restriction is placed on the size of the discontinuity in relation to the
1adius of the shells, _Application to discontinuitles is embedded in a
uniforn treafment and includes discontinities in geometries on which

little information is availabdble,

(3) Analysis of the influence of the different types of discéntinui-
ty on the stresses of the shells, .

For systematic study of thgse problems, the procedures for the reduc-
tion of the basic shell equations to a fourth order system of threec equations
are briefly outlined in the Appendix, Further reductions to a second
order differential equation in terms of a complex force are derived in
Chanter II, Solutions to this equatiocn valid in the shallow region are
derived in Chapter III using the method of asymptotic integratinn,’,

Applications of these solutions to the study ot'jrob;eﬁ (2) are
investigated in Chapter IV in which the boundary conditions for each of

the appropriate cases are derived, The study of problem {3) is given in
Chapter V, .
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II. GOVERNIG DIFFERENTIAL EQUATIONS

A second order diffes3ntlal equation governing the deformation of
dome-shaped shells of revolution and of circular cylindrical shells will
be deduced from the system of differential equations (A-27) for both

axisymmetric and first harmonic loads,

Shells of Revolution

The coordinate system chosen for shells of revolution will be 6 and
¢, which deternine the position of a point on the middle surface (Fig. 2-1a),
Iet Ry be the radius of curvature of the meridian (¢ = constant) and Ry
be the length along the nomal to the middle surface between the axis of
revolution and the middle surface, R, is sometimes referred to as the
second radius of curvature, Thus, the first fundamental form of the
surface is (Fig, 2-1b) .

(43)? = (Ry40)2 + (BRysind d9)2 2-1)
By comparison of Eq,(2-1) with Eq,(A-1) for shells of arbitrary shaps
one sees that ‘
d w9, LN )

(2-2)

1 AzuRz sin 9

The last two of the condltions of Causs-Codawzi, £q.(A-2), are identically

Ay = R

satisfied, since Ry and R, are functions of © only, The first condition
reduces to
(Rz sin )" = Ry cos 6 - (2-3)
8
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Rlx radius of curvature of ths line ¢ a constant,

RZ' length between the axis of revolution and the
niddle surface, )
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- (b)

Fig, 2-11 Coordinate system of a shell of revolution
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where the prime indicates dirfferentiation with respect to b, By use of

these relations, Eqs.(A-27) and (A-29) as glven in the Appendix are

expresses by

1 9Ty @0, = _ 3 1 ®5 .c
XTI Rz(T' E')*stmo °¢ Ha R, % =-}’
g & I_. 97, ¢
488 Ll . % < 87 .
R; 96 +2 RZ s Rg Sing ¢ + R: Sin@ ¢ }z (2—"}&)

& ‘blg)h

_.TL + .r‘ ~4ica(T)s },

and

Roa B 1 L3 - 4 =
A -ART) @)= (T
Kpgwodl ® I_3W oy _cold W -
: R:Smo 9#(5100 90 ~¥) R,Rz('a

R,&= B0 _ L34 _ 203MR
10 R o0 veotd e ee ° A s

I 9 ?ﬁ 8‘7 3 l. -
20 - jeosg) = o (3-5%)

Faold V) 4 ———
R, 20 Rz{me o9 v)) R,R,sma(a?

where T, 'i‘l. 'I‘z, and § are complex forces defined by Eqs.(A-26); qq, 95,
and q, are components of surface loading in the directions of 'e'l, 'a’z. and

8, respectively; ¢, €, &, K, % and ¥ are the complex deformation

rarameters of the middle surface and i, ¥, and # are the complex displace=

ments; and
19y, cote _ _1 dRy () I e
R'OO' (R’R: R,’ d8’ 96 *R"JM"O ? ¢t (2-5)

. (A) Axisymmetric Deformation
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Bocause of the assumed symmeciry all quantities are indepen&ent of
¢, 1f, in addition,
) 91 =9, = 0 and 1y = Pw corstant
then, Eqs,(2-4a) reduce to the form

_’_7—;1* tol‘G{.".’ _i;)+;_f_7‘.a=o

Re R y
3"5'-&2-5’7;705 =0 (2-6)
—g‘; + —R-:--icd('f) = p
where
AC )=-—,§;,-( )'+(-,‘—\.,‘"—’Ef---é;&')( ¥ (2-7)

and the prime indicates differentiation with respeot to 8. By use of the
first Gauss-Codazzi condition, Eq.(2-3), the second of Eqs.(2-6) may be

written in the fom

-i_-‘i + 2 Allesme)
g Re Sing

which, upon integration, has the solution

§ "k?'?%?a' (2-8)
where (‘,1 is a complex constant of irisgration, Since , due to symm:try,
S vanishes on an edge of 8 = constant &, must be set to zero,

Next, the solution for the auxiliary functlons "1‘1 and Tz (sce 2gqs,
(A<26) in the Appendix) will bte obtained from the first and the third of

Eqs.(2-€), By use of Eq,(2-3) the first of Eqs,(2-6) may bs written in

the form
--—.L..._. R, sm -7 ’ - ___CO?O 7‘. A ‘7'- -
R, I?,ma( 13107;) R, 2 4 R} 9 (2-9)
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Eliminating ’I‘z from £q.(2-9) by multiplying the third of Egs,(2-6) by

cotd and adding it to Eq.(2-9), and multiplying the result by RyRpsin 8,

there results
(R, smeT, )'+ Rycos8 T +ic RiR, s:na(-,—\,’-‘} T~ cot 9 a( 7)) 2R, Ry c080 P
The first two terms of Eq.(2-10) nay be combined to give
(R:sma 7’; Y + Rycose Ty = ?;'-,!; (Rysmig Ty

and the third term of Bq.(2-10) can be shown to be equal to

__;_C__ _& o 4!
mf R, 3’”0“‘9 T )

Thus, Eq.(2-10) reduces to
(R, sim?e T, Y-icf —gf 5m0 30 T’) = pR‘}:?, Ino ¢co3§
Now, introduce a function U defined by

J =R sm’e Ty -ic -[-?& 5@ oS8 T’
'
Er.(2-11) becomes

[’ = PRiRy sind cos@
It follows upon integration that

U =C; + -g; R;sm"e
The fourth of Eqs.(A-26), i.e.,

‘?:‘7’,4-:["3

can be substituted into the third of Eqs,.(2-6) to eliminate Tz. Also, T:

(2-10)

(2-11)

(2-12)

(2-13)

(2-1t)

1

can b eliminated by usiag Eq,(2-12), The final result of this manipula-

tion is a second oxrder differential equation on T which can be written as




]

= B e R

o

et v R A RGN PTRTES STV T O s T 8 8
ot & o s JRNEPT——

1

.

13
Aoty ict o T ) e -L - ica(T) =
{R, Rz)(ﬁ’gs'fl’0+‘c R'coteT )+ R ico(T)=p,
or after rearrangement
- R' R' > ' Rz R‘
to - — —L L 2-1
T" ez -ncoto- ) F 4 it T me FO (2-15)
whare
; 1. U :
Fle) =PR,-(---——)3;;3-. (2-16)

Thus, the a.xisymmetric defcrmaticn of shells of revolution under internal

pressure veduces to the so"ution of the second order differential equation

(2-15), Eqs.(2-12) and (2-14) can te writien as .
T, :.-.«'-—,%caz‘aT' % Uz
230 ) ' (217)
_T_ — .,-,-. _ - —— € L, .tAaZ, _’j R



7 (Geterimy a big uz) .
' J (2-19)
- T Y | @« ot T _ T
7R (9= 00) = (- 1)
ol ;o - i, =
- -U) = - T
R R, (w ) cEh (7 )
The last one of Eqs,.(2-19) may be written in the form
L wegy - LR -7 2-20
R.(w"“ Fh tand ( Ty - T;*) ( )

Comparing this equation with the third of Eqs.(2-19), one observes that

these two equations are compatible only if

= [ Ratand (T -7*)) = %= 1° (2-21)

is identically satisfied, Eq.(2-21), upon substitution for i'l and T, by

their expressions from Eqs.(2-17) and with the consideration of Eq.(2-15).

becomes

f-p-?ut9T+—[szme(R o -7;)]57-—-— A “cta'r

R sy 2
This equation is satisfied if
.. 0
7; - Rz 3””0
am

»
F o= T+ R:’;:a‘d =7;'* e

(2-22)

Comparison of the first of Eqs.(2-22) with the thixd of Eqs,(2-18) yields
U =y
from which it follows that

az - Cz = real constant

SR e
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(B) Non-svmmetric Deformation - Edge Loads only

In that which follows, equations will be developed for the non-
synmetric deformation of shells of revolution due to edge effects only.
In addition, deduction to a single second-order differential equation
will b2 obtained for the special case where the resultant edge loads
consist only of moment.,

Since the surface loads q,, q,, and q, are zero, Eqs.(2-4) become

1 e"l" coto, F T, 1 95 ,.¢ oT
R, 90 R, (7 73’ Ry sing ey 4 R,‘ 20
1 35 ko = 1 9% . ¢ _9oF
+2 S + 2ajmee——l a0 (2-23)
R e TRy Rysmo 99 ' Riumg of

-E-r-—--—ca( ) =0
R, TR, TRC(T

Following the procedure of reduction to a single second-order differential

equation for symmetric deformation, one may introduce, on the basis of

Eqs.(2-8) and (2-12), two auxiliary functions
U #= Rgs?e T, - ic _R:@‘ smne ces T’

(2-24)
V = R} sme §

Eqs.(2-23), through certain manipulations with the help of Eqs./{2-3) and
(2-24), may be reduced to the following system of three partial differen=-

tial equations(2) of which the first two involve two unknowns U and T -

- Y ! ! o7
G(u»-lwd—"k:’:,,.ral o " 0

Lty . 44
~ie@(T)+ T+ (F- R, Tl =0 (2-25) :
.;’Z '&_RTQT-”R"“SG %32:- - 0 #
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where
[ 9 [Rismo 8¢ ERCEUR) 2.26
Gt I(oR, sing 30 l R, 90 Ry sin?g 9 92 ( )

Thus, the analysis of shells of revolution subject to any type of edge
loading has been reduced to the solution of the system of Eqs.(2-25).
However, the following will be restricted to the case where the resultant
edge load at 6 = 8, (near the apex) of a shell of revolution is equivalent

to a moment, For this particular case the auxiliary functions T, § and

¥ may Yo expressed as

To) cos ¢

~i
]

U%e) cosg i (2-27)

e
]

Vo) simg -

<i
n

Substitution of Eqs.(2-27) into Eqs,(2-25) ylelds

G,rl]‘H[l-ic(?f-'-—-k':)-;ml;;] Fo = 0

T T siofen )l 20

bt ‘ - -
Ve + &FS':'_'_QU.‘,, AeR,cos6T® = 0

.

where
) (2-29)

Gt )m (ﬁ,_.\‘ma‘ ),).'_

!
(
R, 5?‘ 3mo Ry sin’p

The firat two of Eqs,(2-28) may bs uncoupled by subtracting the second
equation from the first and then introducing the new function

W =0 +icT* ' (2-30)
! into the result, In this way there results

w ! ! 4 'y
@M -t~ %) saig W RO . (2-31)
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Expanding this equation with the help of Eq.(2-29) one arrives at

Rlsine - R
( -J—-——R' w' ) - -—,-'.;o W = 0 (2‘32)

It nay be verified that one of the solutions of Eq.(2-32) is

Rzs m'b.

The second solution may be obtained by assuming

~ A

R3 Sind (2-33)

where A 1s a function of 8, Eq.(2-32) upon substitution for W from Eq.
(2~33) reduces to the form

(_’__._
R' e

from which it follows

A')'a o

A= é, + §,}R, smnede

Thus

Yy B, 6d8o
W= Ry sine + Ra 3m0 jR s (2-3'4)

Eliminating U° in the second of Eqs.(2-28) by its expression from ¥q.(2-30),

one arrives at the following differential equation in a single unknown ™

LI N by W
Gl”‘)* 7 ‘ R :)Sln ¢ R Ry sinfe

which may be written in expanded form

To" R‘l ___R’ 2o’y R R Te
T+ [(2 5= Ncelt BTt R‘u—zﬁ),——-m,,
iy , (2-35)
——l, e ;
. Brc T nlk'cF;(O)
Ftore (<L Ly L3 (2-36)

R R =) Sindg

aveh
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Once U° and T° have been found the auxiliary function VO can be

found from the third of Egs,.(2-28), It is noted that, by letting ¢ » 0

in the thind of Egs.(2-23), the first of Eqs.(2-24) and Eq.(2-30), one

arrives at the membrane theory solution,

r]e 4 w

vt = w, 1" = Ry s1n%)

T.. - - W S. » - w ’ (2.3?)
e R, sin*g * - R, sm@

And Eq,(2-36) becomes
Fieoo~ T+ T3°

There remains the evaluation of the displacements which for~this parti-

cular problém are assumed to be

U = U,(0) Cos ¢
Fou V,(6) sing (2-38)

N w W,i0) Co3g

On substituting these expressions into Eqs.(2-4), a system of equations

relating the complex displacements i, Vl. Wl to the complex forces is

b ]

obtained

ﬁ,'#\'&o = EI’ (Tl “/“T.)

3,:,0 ;'c *5,¢¢t'0+v'\'h ™ EI, AT P T‘ 'u.i;.)
£ 7 -y, coro- m G, 2L g
-y - 2-
oL (= y (Fo- o) (2-39)
R’ R' ‘EI' 2
-—-;—-—-’ ! néa
Ry simng ( YY) W + ) ) £ CW/-t)n _z:.};.( T . T,")

('—" ano*%)}-ml—m(ﬁ + ¥ MO).-;E_“T‘S‘Q_ $**)
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This completes the reduction of the tasic equations of the general theory
to the governing equations for shells of revolution pertaining to investi-

gatlon stated in Chapter I,

Circular Cylindrical Shells

The coordinates identifying the position of points on the middle
surface are @ and 8 (Fig.2-2) and r, is the radius of a clrcular cross

section, Thus, the first fundamental form of the surface is
(ds? aihda) + (nda ) (2-40)

from this one may verify that
oy w @, 0, = f3
. (2-41)
A = Ag =0,

Hence, the differential equations (A-27) for complex forces may be written

in the fomm
9T, 95
amed, L I
ou + ] - 3’!’;
% o :
RS, 8%, i Aaf . ‘ (242)

whexre

4b*= :2(:-,«:;(-{!)‘

B, 8% '
a0re St o (2-43)
T « 7 47

The complex forces in these equations are related «o the forces and

b ey
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Fig. 2-2;: Cylindrical Coordinate system
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moments by the following expressions

- . 20 MM,

7; b 7; -4 -;: _l—_’at .

- . 262 M -p M,

7; n T' -4 A I-(U‘ (2"““)
S = : _g__é_‘____H

S = S

Also 9, 9 and q, are the components of the surface loading in the direc-
tions of 81, 8, and ¥ , respectively,

The relations (A-29) between complex displacements and complex forces
for circular cylindrical shells (taking into account Eq.(2-41) and P} wee,

Rz = x,) may be expressed in the fomm

g = (2 s L(FuTy)

€rm (2L 4 i) = e (F-p )

248
! ,90 , 9V 201+4) =
= —r—(-é-—— -}——a"): -—E-———S
= :L f::u'f . 2bh% ' (2-45)
bmmgiow YOR(TRTTY '
%, m ol B 0W o 26 5
ot eales )G (00T

Foael 590 gy int o
W owtas ) gy (58

(A) Axisymmetric Deformation

On account of the assumed symmotry all quantities are independent of

B, and g3 = O, Thus, Eqs,(2-42) reduce to

T -1
§ =20 ' (2-46)

T T =g

The prime indicates the derivative with respect to ¢, From the second of
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Eqs,(2-46) one obtains, in view of symmetry
Saly=0 " (247)

The first of Egs,(2-45) gives
= G-hfgd (2-48)

Eliminating T in the third of Egs.(2-46) by its expression in terms of

"1‘1 and taking into consideration Eq,(2-48) one arrives at a second order

differential equation for a single unknown Té
TS+ izt Ty =dzbi g, n 4 g (2-49)
The displacements can be obtained from Egs.(2-45) which, for this

case, reduce to the form

(2-50)

(B) Non-symmetric Deformation

Eliminating § from the first two of Eqs.(2-42), thers results

caty - 5 2T L 222 (2-51)

9“'
Substitutlion in Eq.(2-51) for T, by its expression from the third of Egs,

(2-42) yields a fourth order partial differential equation in a single

unknown T
44(T)+—j+ 26 =L ”, = i2b', [ —3— +a8tfhi] (2-52)

Thus, the analysis of the non-symmetric deformation of a circular cylin--

drical shell has been reduced to the solution of this equation, Once P
has been obtained the complex forces may be found from tho following

equations:

L e
" e M e e ae . ”
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T = L + Zb‘ a(T)

:” 7- Tz T - "Z}‘“T) ,‘;n

2% ' 7 (2-53)
;;--;;-s[awm'"—) n 2 ag,) -

85 . _»T
’y 34 + — 2b‘ A(T) +f. ;,

As was done in the non-symmetric deformation for shells of revolution
the problem will be restricted to that of pure bend.ng. For such a case
q:L =mQy = qn e 0

and the complex forces can be assumed to be

" T2 Toar cosgp Ty = T te) cos 3
T ’ , (2-54)
T 2T cosB s § = S%a)smpB

On substitution in .q.(2-52) for T by its expression from the first of

Eqs,.(2-54), there results an ordinary differential equation for i

T™ +ti2b*-2) 7" =0 (2-55)
where the prime denotes differentlation with respect to d,
The complex displacements for the given case are assumed to be of
the form

J = ayercoss, 7 =V SimB, W W) cosg (2=56)

On substituting these expressions into the first three of Egqs.(2-45) the
following equations are obtained for the determination of the complex

displacements ﬁ'l, Vl, and 's?l.
- h, = =
u = 'T‘ T =-aTP)

T Wy e (T m D) | (2-57)

‘-f, -017.": "z(_;.id")-& s.

—————s




III.  SOLUTIONS OF THE GOVERNING DIFFERENTIAL EQUATIONS

In this Chapter solutions are obtained to the governing differential
equations derived in Chapter II. In addition, formulas for forces,

‘moments and displacements are listed in tables,

Shells of Revolution

(A) Axisymmetric Deformation - Internal Pressure

The analysis of shells of revolution under internal pressure has
been reduced to the solution of the second order differential equation
(2-15)

- Rr?
T (2 ---i)coto--—-l]'r +1--E-'- Taipe FO  (55)
where
Ftg) = Rp pp = { = R, -—) s:nlg - T T (2-16)
G = ¢ +-L RrEsms (2-13)

It is noticed that the coefficlent 1R§/R20 of T 1s a'magnitude of oxder
R/h, For convenience of analysis this coefficient will be expressed in
tems of a parameter A

; 'Rt: . Rl‘

(3-1)

‘ . SR z emmrn———
R; ¢ wiA R, R,
where
— R
= Jrzei=a%) 3 (3-2)

and Ry is the minimun radius of curvature of a shell of revolution, For

thin shells A' is a large paramoter.
‘ 24
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(a) Homogeneous Solution

It is well known that a second order differential equation of the

type .
y" + pexry’ +4(x)y = o

may be reduced to the form

[ mix)§ = o (3-3)

by the transformation

4 = §ex)n(x)

where
§ =y 6,!A"/z dx
= -2
mix)= ¢ - F 2
Now, let T be the solution of the homogeneous equation
70 O LRy = R
T+ 2 ~1)coto- 5 ) T* + iN g5 T =0 , (3-5)
Applying the 1asults shown above to Eq.(3-5) one oltains
£ + me)§ =0 (3-6)
where
- ! R ___E,v' = yz
E =7 exp{gﬂ(z-,;‘-l)fofa % 1do = 7‘&(_:’.;_?’.:;4)
1 R _ 2+c05% R R/ R* 3t -7)
mo)= iN " - e LR _R"_ 3R
(o 4 R Ry 4 sin’o Rysincg 2R, cots + 2R, 4_/"'5'

The condition of Codazzi has teen used in the above transformation, |

Tt 13 nuted that the coefficient m(®) contains a singular point at
6 = 0, which chaiacterizes solutions of Eq,(3-6) as two completely dif-
ferent types, The first type is an asympto.ic solution of classic tyue
which is valid only in the nonshollow region, i.,e, large vciucs of €,

BRI T R
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The other type is an asynptotic solution valld in all regions including
th2 singular point 6 = 0, Attention here will be directed more to the
second than the first, since the problem of interest is that of the stress
di.stribution near the avex which belongs to the second type.

As regerds the first typs of solution, comparison of the magnitude
of each term in m(0) shows that, if the reglon of interest lies in the nen-
shallow region, the first term is 0(.-!) and the remaining terms are 0(1),
provided the shell is sufficlently smooth so tha* the derivatives of Ry .
and R, have the same order of magnitudes as R, and ", Thus, Eq.(3-6)

may be written in the form

£ 4[4 A‘E’—?R'-‘: (1+0A)]§ =0 (3-8)

Through the use of the transformations

iar REGE 2 R 3
f.: RxR e 40, ={4iA ?TR.) do

and by neglecting terms of order A*in comparison with unity, Eq.(3-8) may
be reduced to a familiar form

d’s,
467

which has the solution

£, = o

s‘= e*;ol

Expressing this solution in terms of the oviginal variables § and 6, one
obtains the solution of Eq.(3-8)
1]
+4%p
£ = ( _@a_t.) e (3-9)
where

o [? B e
'NB)-AI. Vs
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Hence

= ! - e-,—i?rn-im

- -';é-(l-im
T - ‘_—-_—-—R;/" preyA [ ¢, + (e ] (3-10)

in which C, and 52 are complex constants of integration,
As regards the second type of solution which is valid in the entire
region including a singular point 6 = 0, it is necessary to rewrite

Eq.(3-6) in the form

£ + (iNYUe + A )] § =0 (3-1)
where
2
pr o R
R. Ry
. 2 ’ " ’ (3-12)
I Ry_2%cos8y R R 3R
A= TR )T RN TR

It was shown by Langer {9) that there exists, corresponding to Eq,(3-11),
a related difforential equation whose solution is asymptiotic with respect
to the solution of Eq,(3-11). The domain of validity of this asymptotic
solution depends on the function in the cofficient of § , 1.e., \P'(G) and
1y which meet the following roquirements: .
(1) Within the interval I, which includes a singular point 8, v¥0)

i= of the fom

- o-2
y*o) = (6-0, )‘ ‘4‘,‘(0) =(6-6,) {1+ a,(e-o,).q.a,(e-e,)'-o----)

with d being any real positive constant,
(11) Within Ig, A(8) is of the fomm

._A' + 8
(6- 6, (6-86,)

A(G) = + C,(0)

with A; and B, any constants and C,(8) is analytic and bounded

uniformly with respsoct to A in IO'

v
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If the constants oy and B1 are Ytoth zero, the differential equation will
e defined to be noxmal, Thus the nomal form of the differential equa-

tion which reflects the foregoing requirements can be represented by

£+ [u‘(e-e.f"'tl’,’ + ‘0’3'9 =2 +C(e)§ =0 (3-13)

If a, and B, are not zero, the differential equation may always be norma=-

liged Ly substitution
6-6,= 7Y/4, § =7

Then, accoxrding to Langer the functions

F4 2t Je(c)
' = ¢ 28 O‘% (3-14)
: &2 e(”)

are the solutions of the related differential equation

A

" s 32 12
g" [iNYT 4oy

Qe g = o (3-15)

where (1(8) is analytic and bounded with respect to A in Ig; Je(0) and

Yo(0) are Bessel functions of the first and second kinds and

Y
’=t/da Ca(}-4A')‘

° d (3-16)
o =f (i y(o)de _
o

It will ve shown that the finctions in the ccefficient of § in Eq,
(3-11) satisfy the requirements stipulated above, provided the shells arv
smooth at ths apex, i.e,, if

Ry, Ry»R" as 00
or more specifically, if

Ry/Ry = 1 + £(8) 8in%0 (3-17)
where £(0) is analytic and bounded in Ige For such a shell



I —

29
Ry = By( 1+ fsin®e) s Ry( £ sin%0 )"
By use of the condition of Codazzl and £q.(3-17) the preceding equatlon
may be written in the form

R,

Ty [ fsm@eose +( £sin’e )'l (3-18)

R, =
As an example, shells of revolutlon generated by rotation of the second

order curves
»

Ri= 7+ rsmigy’?

Rl
1 + rsme)”2

(3-19)

Rz'

satisfy the condition glven by EqQ.(3-17). In fact, these curves generatoe

the classes of surfaces including (1) sphere for ra 0j (11) paraboloids

for ra =13 (iii) ellipsoids for ¥>1; and (iv) hyperboloids for r<-l,
By use of Eqs.(3-17) and (3-18) A(8) in the second of Eqs.(3-12)

reduces to
t 4 .
Alo) s <= -’-s%f + A(O) (3-20)
wherye
! R 3, R\ ! T ¢
-l 2 . s 8)
MO = 3 som = g (R sy (s 2 Fine

and 1s bowiaed 1n Iy, and Eq.(3--sl) becomss

2
0 et L ERD @) € no o O

To make this equation fit the form of EQ.(3-13), a nev indepsndent
variable x will ba introduced
x » 3in 6/2, dx = #(1 - 2)t ae

Thus, Egq.(3-21) becomes
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A‘i" I I v

%€ _ _ x
.’[4 x? 421*,__X1\—

dxt  1-x* dx
Now, by means of the transformation

£ = g1~ xn)*

Eq,(3-22) educes to the desired fomm

£ L [in_a¥ , 1 3
-—-‘-4[14\ '_x‘+4x‘+ A) % =0

whare

! 9 . 9 1
Ar = T (A v )

1 1 -x3

is bounded in x| <1, i.,e,, 0£0<w, From this one finds

[/
Ca('-4A,)/l=o, r xc/d =0

3
4

4(:- g
(3-22)

(3-23)

(3-24)

(3-25)

C= I‘A[ -‘-'—_-’%-’7,-‘17: ax”L / ——tedB ad q

2

where
ne)= A R v
(4 JR.R‘
Thus the asymptoti. =~lutions of Eq,(3-24) are given by
£ apr 4 3 [Tt
1 = l,_x, ) 1 4
g! Yg(‘ n)
which, in terms of § , becomes
.F
l
RoR! rlf J‘u‘l i
E: Y.U'*n)

(3-26)

(3-27)

(3-28)

Jo(c‘n) and Y (4 n) are Bessel functions of the first and second kinds

which are the solutions of the differential equation

y'#—'-:—y.'#ib’ 20

(3-29)

+Ag=o0
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ince these solutions are not tabulated for complex arguments, they will
be transformed to modified Bessel functions which are well {abulated in
te.ms of Thompson functions, To do this, let
- /2

N =2 x

2quation (3-29) is thus transformed to

2 y
LZ;...Ld —yao

dx* X dx
which has solution

Y= ATotxy+ B Kotx) cdI.i"in)+ § K.(l.“}q)

where I, and Ko are modified Bessel functions of the first and second

kinds and are related to Thompsun functions by

1]
I.0/°3n) = Bern - 4 Bel
! . (3"30)
Kti'&y) = Kern -4 Kein

Using the relation between § and 7 given by Eq,.(3-7) one finally obtains
the solution of Eq.(3-5) to be '

- A R.% " /2 I,(i"ilq)
J = P "7;3;) (m) X, (‘..}Lq : (3-31)

It was shown in(9) that for A»1, Eq.(3-31) furnishes asymptotic
solution of Eq,(3-5) to within terms of relative order 1/A unifomly on
an interval 0¢0<w provided the function \(6) = 0(1) on the interval.

(v) Remarks on the Characteristics of ths Solution

The following observations on the characteristics of the function
are of importance, '
(1) The coéfficient outside the bracket of Eq.(3-31) is a non~zero slowly

varying function oS @ while the texms in the bracket vary rapidly with
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respect to 8, In view of this fact, this coefficlent may be regarded as
a constant in performing differentiation, zdmitting the same order of
error as the asymptotic solution, This co;xsidera.tion results in a great
é.lgebraic simplification,

(11) The order of magnitude between 7 and its derivatives obeys the

relation

T% a2 a0(T) = N o

Thus, the differential equation, Eq.(3~5), is essentially equivalent to

the following in the non-shallcw region,
T"+iN¢?T =0

(111) 1et 34

'
L4

By wegarding hy as constant in performing differentiation i* may be shown
from the property of Bessel function that the solution F given by Eq.(3-31)
satisfies the differential equation ‘

T 7} T+ AI‘PZ jF =0

L]

Transition to this equation from Eq.(3-5), i.e.,
] R ___R_:‘ S0 2a2.0,2 o o
T +[(z-§;-1)cof0 R, JT '+ i@t T =

is made possible by tha'assumption that the shell is smooth near the arex.
Thus, in the v ol term, one may approximate R:L/RZ by unity and neglect the

texms of 0(8) in comparison with 1/8, since th's temm is significant only
in the shallow region, However, it should be noted that one can not make

the same approximation cn the last term, which is of the oxder Rygtads,
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Since in the expression for ¥7, i.e.,

R, R
 SESSRAL SALN
W l?g Rl

Ry/Rz may be far removed from unity in the non-shallow region.

(c) Reduction to thz Solution of Spherical Shells

The solution for the spherical shell is obtained from Eq.(3-31) by

letting
Ry = Ry = Ry
and n =A0
Thus, Eq.(3-31) reduces to , .
| 7 (3) 5 Tt 0 (3-32)
IRy 5in6") K iim| -

If attention 18 restricted to shallow spherical shells,then, one may write

s = 9(;+-—-e= )= @Cr+0(A™"))

[

which may be approximate by 8 within an error of O(A") if 0 is restricted
to the interval 000y = O(zF), Thus, the standard solution for shallow

"spherical shell is obtained (19),
7 (3l

10(1 'l)

ko(l ) (3-33)

(d) cComplex Forces

With the solution for 7 » the complex forces ave ready to compute,
In the following the manipulation will be performed only for the solution
associated with B, The other solution may be simply obtained from that

associated with B by replacing K, with I, and K} with I,

j: = ik‘-; cot0F = §¢ /7‘?“ cot 6 h) K.' (3-34)

RN
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Upon separating the real and imaginary part of Eqs.(3-34) and (3-35) and
applying the definition of complex forces and also Eq.(3-30), the forces

and moments are obtained which are listed in Table 3-1,

(e) Particular Solution

Let T be. the prticular solution of the equation

T [z - nete-g) 7+ N = iy @ (2-5)

where .
Flo) = R, p - (-;% ---é—)-;%j;; < 7, + T (2-16)
u = €+ '28 /{: sin'o (2-13)
7t e gl e R oy (3-36)

The constant C, will be determined prior to finding the solution T. The
equilibriwn of the forces (Fig.3-1)

in the vertical direction requires

that
Tosm8 - Nywso = LRpsmo (3-37) N »
It may be shown that the left hand
T
side of this equation is the real 1
part of the complex force ¥,
= Tsme-iz Twse (3-38)
2 = L13MO=4p [ cos Fig. 3=11 Equilibrium of the
' forces in a shell
The second term on the right hand of revolution

slde 1s deduced from
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N, « L L 41 P e dF
1* A E de SRl 7 ag)

which is the first of £qs,(A-24). Substituting for T, in Eq.(3-38) by its
expression from the first of Eqs.(2-17) one obtains

V'z = U Ca

P
Rysmg = Rysind + g Rasme

It follows from Eq.(3-37) that

Cz =20
P o
Ftorz Rep-t37 -5 ) 5 R
If there were a vertical force V applied at the apex,then, Cy = v/2w,
Now, return to the particular solution of Eq.(2-15), In view of
the assumption that Rl and R, are sufficiently smooth so that F(8) is a

slowly varying function, the particular solution may be assumed to be

E o Em + 'j!'l t'.'m_'xi‘ E(n.’"‘ (3_39)

On substituting this expression into Eq.(2~15) and equating to zero the
coefficienti.. of each power of A , there results the following equations

for detemmination of 1 1) ,.,

< Fto) \

(3-40)

t"ai '8,'%% [ £ inen -&1(2%-))“«‘-’9--%;} {"”"’]

n = I.. 2, 3, '
Having determined ‘“from the first equation, t, t'¥,,, may be successively
found from the second of Egs,.(3-40). However, for consistency in the dg-
gree of accuracy with the homogeneous solution only the first term of
Eq.(3-39) will be retained as the particular solution of Eq.(2-15). In
this way one simply identifies the particular integral as the solution of
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TABIE 3-1

BENDING SOLUTIONS OF A SHELL OF REVOLUTION UNDER INTERNAL PRESSURE

: R. .
u B ,u)/—f,-2 A [ Bikei'n - By ker'n )
Wi 75% A, (8, kern * By kein )

Xz: Eﬁ J-{,‘IB,Kerq "’szelq]

A f—;—i cote A [ B kei'n - B, kerm ) |
Tz: .g. [ B, ( kern ‘FR: cot @ kei’ny + B, (Kein ’*/%z «t o kerq)]

M,: cf,lB,( Kein +(I—ﬂ)/-§- cat 6 kerp )
+ by (-ern+ - [F, ot ki)

Mz: Cﬁnpr (ﬂkc’l.ll-(/-—'y)/_?_ col ¢ k‘_,,.l’.,)

+ By (=4 Kern) ~ (1-41) /C cot 0 kein))

N [—% £, (8, kein - B, ker’;;]

TABLE 3~2 .
MEMBRANE SOLUTIONS OF A SHELL OF REVOLUTION UNDER INTERNAL PRESSURE

—
———

:m o

'E -—E-smejR: A (1-4¢ *-I)]da

Fa
Wi 7R?(---,u(l--—--—z)]-t-——eosafkf-—;%‘?- (7= .i,!. =1)) i
" -%PR:

) 2
AR TS
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meambrane iheory, and the homogencous solution as the sodution of ber.ling

theory., Thus, the complex forces {1 and %2 are found from the exiressions

n U
fe 2 4ilwted x T
] R: Sln’O Rl . ! (3 -li'l)
t=t-f = 7

They are also listed in Table 3-2,

(f) Displacements

The displacements for symmetric deformation may be found from the

first two of Eqs,(2~19)

5'*WI=;§'-(7;~#‘7‘:)
] o . (3-42)
ucote-&Wn—E—i‘l-(?;-,uT,)

Eliminating ¥ by subtracting the second from the first equation and taking

into consideration the relations between complex forces, one obtains

1m0 (sm) = 200 [ (14 2 R‘)wtai‘" L B3R 7y (343)

in which

T=F+t
1s the general solution of the governing equation (é~15). Within the
admissible error, it has been concluded that this solution is the sum of
the solution of membrane theory and bending theory,
(1) Membrane solution’
1ot ¢ = 0, Eq.(3-43) reduces to

510 (m5=) = El: (R, +/U/?,)t

v - - 220 [ TOAR (p,p- (—---—)f&]do (3-4)

and

———— .
3

T g e e s

T
IRV FE. S
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w=gz—k"[}l__ﬂ(,-.%-,%‘)]-u.:ota (3-45)
(i1) .ending solution '

Upon substitution of T by J Eq.(3~43) becomes

Ry +AR,

sing (—5— )““*""Uu—&)catey +ZF] (346)

SII)G
Exact integration of this equation 1is difficult, however, 1t ls possible
to determine a. approximate solution within the admissible exror,
AObserving thé characteristics of the solution mentiored in the previouwsa
sectiocn one may write this equation in the form

lC(

g /
smels57) =

[zcotef»f,m f(] - cot87"))

% F/’ ’( 2 ) |- F '+ cotoT’)
Rz JC[ R3 7 s$me
A R e o)
It follows that
= Rz ic Rz ]
U = f’l R'{ + M) T
and » Re = (3-47)
W = 2_-7'5 F—puF)-dcte = 2 T

The real parts of Eqs.(3-47) are also listed in Table 3-).

(B) Non-symmetric Deformation - under a Moment

The analysis of shells of revolu'ion subject to a moment has been

reduced to the integration of the se-ond order differential equation (2-35)

R
o 2= - 39--— o I_ Fo, A _L
T+ [tz 1eo Jr +5 )S”,GT R.n, Fo

- 4 l.__R_l:' 2_‘
where ~iA A F(0) (2-35)
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oy = ~(do Ly W
Fitor = (R: R, 5029 T“ T
- - .
W = Rzma[ , + 8, [ Ry sma do ) (3-48)
o, W W
T Ry sin%g Lr=- R, sin%p

(a) Homogerzous Solution

Iet 7* te the homogeneous solution of Eq,(2-35)s By use of the

transformation given in Eq.(3-4) the homogeneous purt of Ec,(2-35) becumes

£+ mor § =0 (3-49)
where
- #
§ = TR (S£2) (3-50)
’
= IAE Rr 3-5"’° RI
mE = IN R e R T fx’z 71
. 2
+coz‘s(-2—%+ AR Ry -.g.(-%'-) (5-51)

The assumption that shells are smooth near the apex gives the reiation

(3-17), from which m(©) may be reduced to the form
RE 3

mere iN " oyt MO - (3-52)
and Eq,(3-49) becounes
£+ [N v“ 4‘”,,9 +A®) € ~o (3-53)
where .
pr o .k:&;?‘_ (3-54)

and A (9) is analytic and small with respect to A in G€0<w, Then,

with the proceduve established in the previous sectlion, it is found that
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_!
z

CH("4A[) . =c/J=’
’i! [ 1 (3"55)
o =4 Alod’da = 4%y
where
R,
s A
1o [0 e do (3-56)
Thus, the asymptotic soldtions of Eq,(3-53) are given by
1 ot
R‘,R‘ 7 | 1,0 ")
[ (5 0 . (3-57)
‘5.] kl{‘.}Q)

where il’ Ky are '™* f! st znd second kinds of modified Bessel function
of order on:, Using the relation between § and 7° given by Eq.\3~50) one
finally finds the homogeneous solution of Eq,(2-35)

I (" )
[ l 2.(0) X (3-58)
K/ "I)

wor A . Eq.(3~58) furnishes asymptoti. solution to within O(x ) on
e ~..7al 0¢€6<ar, The forepoing statements on the characteristics
of the solution in Section (A-b) also apply to this sclution, which in

this case may; be regarded as the solution of the differential equation

' T*+cot0 7' +(/AY?- )T =0 (3-59)

Sm's
Ths terms with coefficients cot® and - ,’sinze are significant only in the

shallow region,
The comple. force J*is computed from Eq.(2-24) and J;° from Eq,.(2-14)

.'7; ' B/_ﬂ(cotak, A:s”,a

(3-60?
7‘. = E#' [c'(l "'i(/';;; 66&’9/(," "R‘c: —L"’k’)I

Swndy

From the thim <f Eqs,(2-28) and the second of Eqs,(2-24) one obtains
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§* R:sma {- Re cot0Tt + T¥)
’ <
Fhs E LK - f wto ki) (3-61)

Separation of the reul and imaginary parts of Egs.(3-60) and (3-61) yields

tho expressions for the forces and moments which are listed in Table 3-3.

(v) Particular Solution

Let t bo the particular solution of Eq.(2-35). From the assumption

given by Eq.(3-17) it may be shown that

1 =5
(-E ):m"a ® R (3-62)
Hence, the expression for F,(8) becomes
For =~ W (3-63)
Thus, t will be assumed in the form
s L =% t“"' _:\{_’ e, (3-64)

Substituting this expression into Eq,.(2-35) and :quating to zerr the coef-

ficlents of each power of A one obtains fcr the determination of @, ¥,

the system of equations
t‘., - F, {9’

$™a 2._:_‘ “?a-v),.{(ag'-y)cote--E@'}f'(n-n
. (3-65)

— g tn=-1
R (1 ZR;)sm'a ¢ 1
hwmi, 2,3, o0

Notice that W satisfies Eq.(2-32), which, in the expanded form, is

——-o t --—J l?". /
[(2 neete~ 2 W' Fisa W =o

JREN
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TABLE 3-3

BENDING SOLUTIONS OF A SHELL OF REVOLUTION UNDER A MOMENT

My

__%,(_I%z_,ﬂ)/%.‘ b, (D) Keii - Dy Ker/ g )

R
_R.z (2+0- 5 t, 505 (D1 Keii/1= Dy Keryn)

R .
Eﬁa #( D, kerip + D, Kkeipy )

2y [B k(o ety + 0y i)

3 oo e 1 .
51 {’[D’(‘Otoke‘lq R :’”2. KPJ,I’)

+ Dz(-catal(er,l] *F}; P "I")]

. ' .
“[D'( Kef;l]-ﬁ;‘ cot 0 f\el,,'] + ‘-c,'?;m Kel,[’)

+ D, ( keipny + ./E:z col ® Ker,'r] A’ sra'o Kenn )]
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Through the use of this equation the expression for computing t 4is obtained
in the fom

t” 7‘.,. {-aLy W= (£ («zk"i:’-,jweo- ,-;;f")({; )+ z%{k’-:-f]w ]
It is noted that the texms containing 7' and cot® W in the above equation
involve a singularity (8 = 0) of one order higher than #, For the solu-
tion given by Eq.(3-65) to be applicable in th- shallow region, a restric-
tion nmust be imposed on the function f such that the oxder of magnitude
of these terms is at most the order of W, The condition which is suffi- |
cient for this purpose is '

£/Ry = k = constant

Thus, the expression for t reduces to
30 _ 20 K2R, W (3-66) .

However, this restriction is not necessary if the solution sought is in
the non-~-shallow region,

For consistency i» tre degree of accuracy with the homogeneous
solution, only the firsi texme <& Ey,(3-64) will be rctained . In doing
this , one essentially identifies the particular integral of Eq.(2-35)

with the solution of membrane theory. Accordingly, one may write

B T e, et TR

W
fram (3-67)
S = §¥ a. _ﬁV_’_
R' Sin@

which are listed in Table 3-4,

(c) Displacements

Vith the solution for T and complex forces, the displacements may

— e
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TABLE 3-4

MEMBRANE SOLYUTIONS OF A SHELL OF REVOLUTION UNDER A MOMENT

"

s“

(Do + quR, smo do )

Ry sm@

g N ( dos A )

ER n?p Ry Ry
LW ( AN,

EH " Sin29 Ry R,
_zusay WY
ER Ry sinp
._.’...[——.—W {—L(I-}-&z)-f—-—-z'“ ’
Eﬁ‘ smig \ R, R: R i
201+ L wry Sm9 Rz
){ R'w* RZ(R'S”'O)W}]

R, s:n'aj ¢/.s'm?a dé -casofR, sin @ ( f¢/m’a de) deé

~R; sine w/ang

JRismo( [ ¢/sm20do ) de

R ( f:/cos¢ + €039 WY/sing) = Ry sn ces e/ _95/5””0 T

W/( R, sinte)
-W/( R, 51m%9 )

- W,/( R,S"’ 6)

-smO/R, s:na(f ¢/smzad9) de
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Sin @

cos

cosg

Cos

sin @

L .
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be found from the system of Eqs.(2-39). The first three are

-

”” + ;’l s RI ‘:;.
T
5 9 V. + ot + W, = R,; &’ (3-68)

Re

- U =Ry &
R, 2

- - ’
v -y ete-mn

where €°, c:;and w* are relatcd to the complex strain components by the
relation :
L&, &, &) = (Eorcosg, Eorcosp eI}

Elimination of %, from the first two of Eqs.(3-68) by subtracting the

1
second from the first glves .

siné ( Sm’a ) Sn‘:la =R & - R, é'; (3-69)

The thind of Egs,(3-68), upon using the relatlon of Codazzi, may be written
in the fom

b y_R_ -
/"2""9(&,,”,)--/—?;‘ e SR@° (3-70)

Elimination of G,/5in® from Eqs.(3-69) and (3-70) yields after some rearran-

gement

R:SMG v "’ ¥y R e ge ., md
l R, st,,,,)] T =Rl E-§ v (Re@*  (3-71)

Now, letting

Ve
R 230

é e ‘ e - é + ‘lﬂO(R -.)
equation (3-71) reduces to
,gmg [ zs:ne :} - Y (3-72)

which takes ecuentially the same form as Bq,.(2-32), Hence, the transfor-



mation
2y
Rg smo

reduces Eq.(3-72) to the form

’

z! y
R,s:ne) =¢

sin?g (

from which it follows that

=2 5C, + G fR smedo + [Rsmal [ $/si'e do)de  (3-73)

The solution.associated with C. and (‘-2 are the solutions of the homogeneous

1
system of Eqs.(3-68), 1.e., solutions of Eqs.(3-68) with & = 7, = &%= O,
Hence, these two solutions are rigid body displacements and will be discarded
in the following computation,

The displacement ii,,whicn may be obtained from Eq,.(3-70}, is

1
U, =R, sm’e/gi/sm’a do - casefl?,smé(f gﬁ/sm"a d8)-R,sin6 @° (3-74)

and il, which is found from the first of E,s.(3-68),takes the form

W, =Ry (€3 + 050 &%)~ Ry 51905 / 3/s1n*6 dO -sme j ysn( [ $/siree )d6
(3-75)

(1) Membrane solution

The strain components are related to ithe solution W by the expressions

& o LW _( 1, A

C e Bt R

owm LW .1 A -
€27 Eh sm‘a( R P ) (3-76)

W o < 20138 W
Eh R sme

where
/
W= s (B B[ Risme o]

Substitution of these relations into the expression for $ ylelds

-
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b7

! w A R sSind R ’ -
P =zl {R,“ *"'L } 2‘“"”1 W ‘R.n:o)w ] G-7)
which are then substiiuted into Eqs,(3-73) to Eqs.(3-75) to obtain the
displacements due to the particular solution t. These displacements are

also listed in Table 3-¢,

(11) Bending solution

. Approximate integration of Eq.(3-71) is possible, however, it involves
considerable algbraic manipulation. Only some intermediate steps are shown
below, Observing the properties of the function7*, and the smoothness
of the shell near the apex, one may write the deformation parameters in
the following form

LA Elv ( Al cdﬂf";;;; ) -p7*)
g . ?%. [ & -’k‘f (13pu)coto 5o Lo F°)) (3-78)

ae "_‘ { 2¢ 14 lf( s:r{a AR s/nlae 7]
Suvstitution of these equations into the expression for ¢ yields

¢'E%'lkf(“/‘)lzio"2“tai“ :m?ar] F(r+u '). .

With the cbservation that 7* satisfies the differential equa’ion

T4 ot 76 +(,‘,\’¢'-m% YT =o

the expression for ¢ reduces to the form

P x 27'7'%5' (2 +ﬂ--——>l.7--3aro.-r‘+
1

from which it fellows that

5 7°) (3-79)

& L Le,, Fo
/ Sin' 96 gf» A’ 2Ip- R )(SM'B sin'6 )

(3-80a)

and
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fR,:mo(f SIntd d0)do = 7 Ac(zo,u- ) s;Z; (3-80v)
Thus, the displacement w'il is obtained
h - EII?: :?: (24p--2) sZO (3-81)
and @) and ¥ are found from Eqs.(3-7‘+) and (3-75), respectively,
G -t 22 (op) 5 (3-82)
W, = .._R.l o
. - T (3-83)

It is noticed from Eqs.(3-81) to (3-83) that the magnitudecs of displace-

ments obey the following order of magnitude relationships

1 - - -
=z 0(W,) , a = 5L o)
and

d"g -
7o ° A" 0tg)

where g denotes one of T, ‘7’1, and v’tl. With these relaticns at the outset,

the displacement ”y could have been easily obtained from the fourth of Eqs,
(2-39), which is

__( Wy 'Ut)g ‘;I' (7';0_ 7;

Negleoting 0, in comparison with ﬂi from the above equation, there resulis

‘ﬁt - ' iR = e l”l{f.__%{“ta- 7.))

TR m‘o

By virtue of £q.(3-59) the preceding equatlon reduces to

“k") - -—- -—'{ 7
It follows that

R -
t -——! (]
", Eh 7
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Circular Cylindrical Shells

(A) Axisymmetric Deformation - Internal Pressure

The analysis of cylindrical shells under internal pressure has been
reduced to the solution of Eqs,(2-48) and (2-49), which after dropping

the terms containing qy give

\ s (3-6)
T + 1202 Tp w 120 r,
The last equation has the solution
- ~ (1=Hrba - =C(1=i)bQ
T:=Ae + Be™ "™, by (3-85)

The displacements may be obtained from Eqs,(2-50), which, upon substitution

for T, and T, by their expressions from the first of Eg. (3~-84) and (3-85),

yleld . s
- - "'J', ~(1=4 -
Ge g a2l (X" ™ g ) upra + Bya) (3-86)
n o (1= Leqoidbo - \
ﬂl-z.T[Ae + 8e *PI‘.-B;,&] (3‘87)

It is noted that the fifth of Bqs.(2-45) s compatible only if
T

*

from which it follows that

T e .35 = real constant
Letting

BaBy+1iB,
and separating the real and imaginary parts of Eqs.(3-85) to (3-87), then,
using the definition of the complex foxces given by Eqs.(2-44) one obtains
" tha forces, moments, and displacements as shown in Table 3=5, in which the
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solution assoclated with A has been dropped by virtue of the yrop rty

that it vecomes unbounded when @ increases,

(B) Non-symmeiric Deformation - under a Moment

The analysis of circular cylindrical shells due to a moment loading

has been reduced to the solution of the differential equation (2-~55)
F e 2B-2) T 4 e (2-55)

It follows that upon integration .
T 2 i2b2-2)T° =, 240 2D, + Dya) (3-88)

which has solution

T a5e™ ., ge*™s B, +5,a (3-89)
¥where
a =i (I'Zb’-z)fx -5{(142—’5,)-4'(/-2—‘%-,)] (3-90)
The complex forces obtained from Eqs.(2-53) toke the form
M 3(";':';)7"-“*{5)(5,-#5,0) (3-92) -
T ~ -5 f‘-»ll-éf-;)(b',-bﬁ,a) (3-92)
(3-93)

0 l - f ! -
s --ZT'T"‘("’Z‘?)DJ
With the complex forces expressed in terms of T° and its derivatives,

the displacements are obtainaﬁle from _Eqs.(2-58)

U = ﬁ‘(ﬁ"-/‘i‘)
Voo o= BTy (2-58)

A ?’3- 201%4) §°
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TABLE 3-5

SOLUTIONS OF A CYLINDRICAL SHELL UNDER INTERNAL PRESSURE

u: -E%.[ -5'% e'“{B, (Cosba-sinbQ) ~By(smba+ cosbd)}
+(Bg-uPh )]

we L let g, cosba - By smba } + P14 B ]

T: By |

T e’b'.'IB,.tosba =By smba) + Pl

Mg -* o [ By s1nbx + By cosba} )

My ~c*u e-—hﬂ[ B; sinb& + By cosb® )

N;: _;.: b 9'“153‘ cmba - cosbd ) + 8y ( cosba + simnpa))

c*u 4%/ [Tz
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Substituting in the first of Egqs,(2-58) for "rl. T, by their expressions
from Bqs.(3-91) and (3-92) and taking into consideraticn that T° satisfies

Eq,.(3-88), one has, after neglecting terms of order 1/b2 compared with 1

- [ A Y =, -
U, = g'f,'{"“;%: T" 4 (5, + Bge))

Integration of this equation yields
a, -E%[—”'z-ﬁs 7é +E),a +-215,a'] (3-9%)
The third of Eqs.{2-58) gives

A F
W' = ;‘2‘ {(24/')5%, T +D,0 4 53{-2(“;4)4-21&2)]

which ylelds the solutlon for w'r'l, upon 1ntegra.tion.

- A i = B - 3
Vy o o l(zeap T +-ze’c'+oa(-a!l*ﬂ)d+-é°' )] (3-95)

Finally, #, is obtained from the second of Egs.(2-58)

Wy a E—’;'{T"‘-ﬁ,u-woi,’-a’) + Byl t14ma--La®))  (3-96)
It may be shown that the ccnstants 57 and '58 are real, This follows
from the fi.'th of Eqs.(ZJbS) that it is compatible only if
0" « Dy + Dy = real valus
The forces, moments and displacements are outained upon substitution
for T° into Eq.(3-91) through £q.(3-96) by its expression from Eq.(3-89)

and then separation of the.real and ‘uaginary parts, The results of

these manipulations are shown in Table 3-6,
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TABLE 3-6

SOLUTIONS OF A CYLINDRICAL SHELL UNDER A MOMENT

—amese

————

Y:

Eﬁ' [- e {D,(b,smb:a - bycosbya) + Oy ( bycosba+b S'Hbﬂ)}
+p,a -+ -ga‘ ] cosp

o [ 22 -bG( ~Dgsmb,a - D‘co;bza)...ng

TN
+Dg(-2t11ura+ 4 a%)] b
_!i'.. ¢ g-bla - 1
rdk ( Dg 055,00~ Dg 31nbyct) ~ Dy (M 4 -3 *) '
+gy (tzemya - L ad)]  cosd
;’;z e“""( Dy Sinbao + Dg cos b)) +D, +Dgu . . cusf
e ( Py cosb.q = Dg Smbad ) cos f
..a(ew ( D5 smba + Dg €25b20) = -—-—-“, (D +0g0)) , cos‘ﬁ
b0t -
-c¥[ue™" ( Dg sinbyo » Dg cos byt ) + _'334_:..‘.07_'_0‘0)] cog
2b -b,a [ D5 (b, smbya-b,cosba) + Dy ( b, coshyat + by siviby c)] 3 smp
- ‘i:‘_z'i;ﬂ e“’*" { D, ( by cosbya + by 3inb, o)+ D (-b sunba byeosfl)
' ' c¥( 1~
- =55 T ol

¢ -
- ¢ b (0g (bz 23,0 - by 8mb; Q) 4 D, ("bx smb‘a-b,cosb‘d)) cos A

bymb(1+ -—2-’3;'), bH--—~ T), c*= I%/fiaci-us,

s



IV. BOUNDARY CONDITIONS AND DEZTERMINATION OF CONSTANTS

As an application of the solutions derived in the previous Chapters,
the stress2s of a snell of revolvtion due to the presence of a disconti-
nuity in terms of either a ~ircular hole, a circular rigid insert, or
a nozzle will be studied., The external loading is an internal pressure
or a moment,

Axisynmetric Deformation - Inteal Pressure

Case a; 3 circular hole at the apex

The discontinuity presented in this case ie a small circular hole
discribed by 6 = 6,, The boundary of the hole is free from stresses,

'However, the internal pressure must be equilibrated with a vertical shear

unifornly distributed along 8 = 0. The boundary conditions are (Fig.4-1)
My =0
4 = 0

i ¥hich Q is the componeni of force

at 0 « 6 (4-=1)

in the direction perpendicular to the P
axis of the shell, i.e,,

. . !
Qx - Tlcos @ + Nysin 8@ ' -{'

Substitution in Eqs.(#-1) for My

and Q, by their expressions from Table Fig. &3

3-1 ylelds, for the determination of the  Intemal pressure equilibrated-

with vertical shear acti.ng
. S along the hole
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two constants B1 and Bz, the following equations

An Bl +A12 Bz = 0
AZ].B]-*AZZBZ-HZ .

where
Au = by (Ketn +(1-,a;//'§ cot o ker'q J,o

Az » by ['l(erfl*(l'ﬂllg ot Keiq)g,
Ao = ,"F sma ke"’la (“-3)

G / ’
Az = ﬁ,/;z T A’erqle.
Hy = - ﬂ'co:ele.

Having determined B, and B, th3 direct stress g, and the bending stress o

are obtained by the formulas
o = Ti/h .
I=1 2, (44s)
s = 6M; /i?

Case bs a circular rigid insert at the apex

Since the rigid insert, by its definition, does not deform during
the deformetion of tle shell, the rotation X, of the shell about the line -
0 « O and the strain € of the shell along the insert 0 90 should be

gero, Thus

€ =0
at 0 » 90 (‘P—S)

Xg = O

Whexre '
L & m (T -uT)/Eh (4-6)
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and X, is the real part of Eq.(2-20)

X,---—(w’a) = Re fanaJ’].-...' I’y

l £h
Substitution for X, and € in Eqs.(l~5) by their exlmessions from Tables
3-1 and 3-2 results in a system of two equations for the detemmination

of the constants Bl and B,

A}l Bl + A32 Bz = H3

(=7)
whare
Ass = h, [ kerq.% cot 8 Kei'y (1+a0) o,
Asz = hy [ kein +/?—f-; (1+p)cot @ kerh ) g,
Ag =2 by J@ ker'n , o (4+-8)

Asz =}, -‘-@' kﬂ'q,e.

Hy = - 73"'"’7;“lo

Case c: a nozzle at the apex

The discontinuity in this case is a nozzle attached to the apex of
a shell of revolution (Fig.4~2). The conditions of equilib.oium and
oontinuity across the junction of the nozzle with the shell of revolution
at e O0and 6 » Oo require that the following conditions be satisfied
€ :
Ml - ‘v, "‘ ™ ‘:

. (4-9)
Qy =- Q:' X, = X:

The quantities on the left of -~he vqual signs of Eqs,(4=9) represent the
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noment, fofce, strain, and rotation of the
shell of revolution, while those on the
right hand side with superscript c denote
the corresponding quantities for nozzle
(or cylinder), in which ¢ and X5 are

given by My x(z
_ & = (T -uT)/eh" /((\,‘-&l M
) P

< IW,
L L%
X = To da

Fiso 4-2'

Substitution for those quantities in Forces and deformations at

- . the junction of a nozzle
Eqs.(%-9) by their expressions from Tables and & sheil of revelution

3-1, 3-2 and 3-5, with B_ set equal to %pro

5

ylelds a system of four equations for

determination of the four coastants B,, B

1’ 72!

A21 By 4+ A2 B + A3 B3 +A,, B =

383 44y ) (5-20)

Ayq By + Ay By + A“’3 Bé-. A By « 0
in which A g (kal 2;'Jel, 2, 3 4) and H, have been given by Eqs,(4-8)
and (4=3), The rest are defined by

Ay, = ct/o

Azy = = Ay, = o*b/r° (4=112,b,¢)

A33 ] h/h"
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Ay, = Ayl = ~ bh/h*
+3 (b-1240)
Gy = Hy - h/b* pr (1 - u/2)

Non-symnetric Deformation - under a Moment

A couple is applied in the plane ¢ = 0 either at the apex of a

shell of revolution or at the far end of a nozzle when it is attached

4
membrane solutions of the shell of revolution and the cylindrical shell,

to the shell, The constants 3 D, and D7, D8 which assocjate with the

respectively shown in Tables 3-4 and 3-6 will be first determined from

the condition of equilibrium, Notice the properties of the functions
ker, kel, which diminish rapidly when their argument tecomes large.

Hence, the bending solutions are insignificant in the range of large values
of 8, The state of stress in this region is, in fact, of the membrane

type. The equilibrium of moment bout the plane ¢ a 47 (Fig.t-3) gives

n
] T; $in0(Rysmpcos@)IR, 8o d¢ =M (4-12) I’-\“
[
in which
i = T,*+ 7, = 7* for large 6 \6\
Equation (4-12) upon introducing the exp- T{ ‘rl
ression for T, and perforning integration /
reduces to . =0 /
[
n or0
3
WO +0y[ pameder= M (4-13) 2008
’ S
The equilibrium of the forces in the
direction of ¢ & 0 gives ¥ udn
Fig. “‘3'

‘ Free body diagram of a shell
]. ( Tycos8¢cosd~Samp)Ryomodde o(lb-ll&) of revolitriongznder a moment
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Substitution for T; and S in Eq.(4-1%) by thair exnvessions from Ta“le 3-5

and then integration give the resuli that

D,

from which Eq,(4-13) ylelds

=0

Dy = M/x

Similarly, when the moment is applied

at the far end of the nozzle (Fig.s-4),
the equilibrium of moment abouf the
Plane f#sn/2 and sum of the forces in

the direction Az0 gives

2%
o Tilocos Bl dB) = M

. (4-15)
L (Ssmnp - )\, cosB)r,dB s 0
Equations (4-15) upon substitution for T,
and S from Table 3-6 and then integration

reduce to

*'5'¢D,+Dga) = M
D‘ 2 0

Hence,

Oy =M/tmr?)

Case a3 a circular hole _g_ the apex

N\ =
v

T& 4

AR
/

L’

Fiso lydyy

Free body diagram of a
cylindrical shell under
a moment

A couple M is applied by means of a vertical force distritution

" along the'hole 0= Go with the magnitude of M cos? /( RzzsinZO). The

boundary conditions are

Hye0 Qu0 atfab, (4-16)
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in which Qx is the component of force in the direction perpendicular to

the axis of the shell, 1.e.,

1 QM
Q’ = T,co56 + (N, + m '-G—¢'£z)$1n0

Substitution for M; and Q from Tables 3-3 and 3<% into Eqs.(4-16) results

in a system of %wo equations for the two constants D, and D,

EuDl-OElzDZ-O E

| (4=17)
Ez1 D] +Exp D2 = Fa2
whexe
. (3 . e !
Ey = b [k"’.'l‘*""/"/zfa {“’ta ket n ‘/,:1’: sinig k”"’”a.
’cb - Ker, - £ ! ! ,
Eg «h(-Kerns+s m‘/%{cowkm,q-'%mka,q”g.
- —‘- ————’ o’
En = b Jg srg (Keiln - [ oto keiyn ) o, (+-18)
Ep = h./’% -;;,',—; (= Ker;'n "/C;;z col @ kern )‘90
Fl s -~ T¥eosefcasy ’9.
M
Case b1 a olrcular rigid insert at the apex /‘L\ '
~< )

As shown in Fig.h-5 the rigid

P o .-?.,w/ro

insert does not deform but rotates ‘ r, \~%,:

through an angle when thle moment M X,

is arplied, The shell has to rotate

through the same angle to keep lts Fig. 4=51

original angle btotween the insert Deformation of a shell of revo=

lution with a rigid insert

are
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€ =0, Y = -w/r, at @ =@ (4-19)
Substitution for &, X, and w from Tables 3-3 and 3-4 into Eq§.(4-19) yields

a system of two equations for the determination of the two constants Dy and
)
(4=-20)
where
- - _c' ' o JC __l__. o
E,, = ," (kffp’l ‘l*ﬂ)/R: ‘ cotOl(N,') &z 3”'20 kﬁ"’ l) o.
" e [c N (3 L
En‘ s by [Keiyn +( l-o,ll)/;z { cot @ Ker/'n /R;, e A I(cr,q” 0

Egt = by [-/@ Ker'n + 3-”-:—-0 Kern Jo, (4-21)
Egq2 = by [-/—?l Kei/n + ;;;!; ke, n ],
F, e (- 7;' __‘,a-,;ﬂ )/¢0$¢

Case ¢: a nozzle at the apex

The boundary conditions are the

same as those in the case ¢ for the

axisymmetric deformation, except

the rotation which, for this case, ~

is shown in Fig., 4-6

o o Deformation of a shell of
- X, X - W/r revolution with a nogzzle
2%y X2 2 *® / ° under & moment

atG-Oa.nda-OO.

~—
o~ B
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These conditions upon substitution for the quantities Hl’ Qx' €, and x2
by their expressions from Tables 3-3 and 3-6 result in e system of four
equations for determination of th: four constants Dl’ Dy, DS and Dgo

By D) #Epp Dy #3y Dg w Fy

Ep) Dy + Ep D2 + Ezq Dg *+ Ez6 Dg = F2
(#-23)

E31 Dl + 332 Dz + E35 Ds + 336 D6 - G3
inwhicthkfur j=1,2,3, band k x1, 2 and F, bave been defined in
Eqs,(4-16) and (4-21), The remainder are given by

Eig = c*/c

325 - - E26 - Lz c*/ro
Byg = - h/h#

Eus « b h/h*

o 2 (4=21)

Byg = (W/h¥) p/(26%)

Eyg = by h/h* : .
Fy == (2= n)/(27) M/(xx5)

Gy = Fy = (b/hw) /(w2 )

ro - Rz sin eleo
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Ve ANALYSIS QF NUMERICAT, RESULTS

Numerical results are obtained for spherical shells, ellipsoids,
and paraboloids, which are of common interest in engineering structures,
of which the generating curves (Fig.5-1) are defined by the equations

Ry = R*/(1 + rsm‘"-e )3/2
(5-1)

R, = R*/(1 + vsine )2
The results are compa:ed with the limited experimental data which are
available or;Iy for the spherical shell attached to a cylindrical nozzle,
For each class of shells stresses axe computed for three different types
of discontinuity, Physical interpretation as to the effects on the
stresises due to the presence of a discontinuity is given with the spheri-
cal shell under internal pressure, A study of the optimum ratio ro/h* of
the nozzle which makes the stresses of a given spherical shell a minimum
has been determined, Detemmination of a favorable ratio a/! among’
ellipsoids with a nozzle attachment, which contain the same volume and
use the same amount of material, is also studied, A computer program
feasible for all these studies has been writien in Fortran IV language

to accomplish all the necessary computation,

Comparison of Theoretical and Experimental Stresses

let 7 0and R* « R in Egs.(5-1) from which one obtains the equa=
tions for the spherical sha‘ll
63
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Rl = Rz » R = constant
The dimensions of the experimental model tested by Maxwell and Holland (31)
and the external loads are as follows:

R L] 15.255 L’l. h = 0. 38 mo
To = 1.281 in, h* = C,0625 in,
P = 200 psi M = 2,400 in-1bs,

In all cases Poisson ratio m is set equal to 0,3, Comparisons of theore-
tical and experimental stresses are shown in Fig,5-2 for the pressure
ioading and in Fig, 5-3 for the moment loading. In general, good agree-
ment is obtained except for o of the outer surface of the sphere (Fig,
5-2) which shows a different trend between theoretical and experimental
stress rear the junction, However, this discrepency is rather insignifi-
cant because of its smallness in magnitude ‘n comparison with the mugnitude
of e, , It is seen that bvetter agreement is obtainecd in the moment
loading (Fig. 5-3).

Pressure Loading

(A) Spherical Shells

Effect of a Discontinulty on Stresses and Its Physical Interpretation

To study the effect of the different types of discontinuity on the
stresses, the numerical results were obtained for the following set of
data

*
R/h = 100, r,/h = 20
and were shown in Fig.5-4 for ,.essure loading.

Study of Fig.5-4 reveals that the stress concentration in the case
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of the hols is much higher thon that in the case of the rigid insert,
Presence of the hole causes large values of hoop stress 6;, while presex;ce
of the rigid insert induces significant meridian stress &,

These results can be deduced from the consideration of the defor-
mation, Suppose that the shell does not have any discontinuity, then,
dus to the application of internal pressure, the shell is essentially in
the state of membrane stresses for which T =Ty =} B Lot Qy Qb
the horizontal and vertical components of Tl’ respectively, The radius
r, before deformation is stretched into r: after deformation (Fig.5-5),
and the strain & in the circumferential direction is equal to (1-p) pR/2Eh,
When a discor:tinuity in terms of a circular hole of radius r, is present
the boundary conditions imply that

Mh=0, Qp#Ty, =0

along the hole (where subscript h is associated with the hole), The hole
of radius rj deforms into a hole of radius rO;: (Fig, 5-6), which , because
of the zero value of Qun, will be larger than r*. Consequently, the strain

°
€z, %ill be also larger than €z , From this it follows that the hoop

-

tension To(nEhé&, ) is also larger than Tse

To show there exists a moment Mop in the circunferent‘al direction,

it is noticed that
’

M = srtiaay (1A% =0

Froa this it follows that

kl w2 kz
and
FYARES . _Eh’ ERY oxy
M = 76 an (Kpspiwn) == b m “124 R9a
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in which xz is the rotation about ths line @ = 6,, It can be seen from
Fig. 5-6 that % 1s a negative quantity, hence, M, is a positive value,
This agrees with the stress shown in Fig, 5—4. The stress on the surface

of the shell is computed using the formula

' T 6M,
633 -~ * —=
=% I3 |
Hence, 6; of the outer surface 1s a significant stress in the case of the
circular hole discontinuity,
When a discontinuity in terms of a rigid insert is present in a

shell, the strain €;and rotation xz vanish along the rigid insert, The

deformation of the shellis shown in Fig, 5-7 in two steps, Because of the

wero strain, rok ( the subscript R is associated with rigid insert )
nust bte equal to its original length r,e To fulfil this condition, the
horizontal force Q. has to be larger than Qx of the membrane state, As
& consequence of inis larger Qup a ro'ation is produced as shown in Fig.
5-7b., Since the shell has to retain zero rotation along the insert, a .
negative moment is required to compensate this rotation, The f;;nal. con=
figuration is shown in Fig. 5-7¢c. The zero value of &frain élon.g ths ine-
sert implies that

Topwip 'rm
To show the relatiwve magnitude between Kl and M, it is necessary to
evaluate the change of curvature kz.

.xgg-..‘i’ﬁ‘:‘g(w'-u)- 52,%9’}{: 20

M‘ - ”M,.
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Notice that Mip is a negative value, hence, "ZR is also a negative value,
This agres uith the stress shown in Fig. 5-%. Both the ratlos Tpp/T .
and "ZR/“m equal a1, which is less than } for most of the materials,
iwace, 6, of the inner surface is a significant stress in the case of
rigid insert,

Next, when ihe sheil 1s connected by a nozzle, with a rigidity
tetween that of a rigid insertc and that of a circular hole, one would
anticipate that the stresses of the shell would fall in between these
two extreme cases, The rigidity of a nozzle of ro/h* = 20 being used for
computing the numerical results is rather close to the flexibility of
& circular hole, in which case ¢; is of significance, Consequently, the
stress 6; of the shell should close to that in the case of a circular
hole, This result agaln agrees with the stress 9;shown in Fig, 5=,
However, the stress o, does not follow this conclusion at and near the
Junction, The physical interpretation of this behavior is possible,
however, it is complicated by the fact that four conditions are required
to be .fulfilled across the junction. Besides, the magnitude of o, is
less important, No attempt is made to analyze this behavior.

Optimum ratio ro/h* of a Nozzle

From the previous analysis it is understcod that a discontinuity
of a circular hole causes a higher stress concentration than that of a
rigid insert, With a nozzle attached to a shell the stress variations of
the shell between these two extreme cases can te studied Ly changing the
ratio ro/h* of the nozele, It is believed that a proper cheice of a
nozzle could minimize the:stress concentration in the shell., The stresses

P
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of a shell with R/h = 1,000 have been computed for various values of

r,/h* of a nozzle and the nondimensional stresses ¢y/p and 0/p at the
Junction (0 = 5°) are plotted in Fig. 5-8. The stress o,on both the

outer ard the lmier surface attains its maximum values at r,/h’ aroun

80, and decreises as ro/h* increases and finally approches zero as ro/h'
goes to infinity (which is the case of the circular hole). O, of the
inner and the outor surface increases as the nozzle becomes thinner and
thinner and finally approches the values of the stresses for the case of

a clicular discontinuiiy as the ratio r,/h" reaches infinity. The stresses
of the shell with a discontinuity of rigid insert are shown on the left
hand side of the figure, The curves shown in solid lines are terminated
at ro/h* = 20 since below this value ths accuracy of thin shell theory is
questionable, Nevertheless, the curves showing the stresses in the region
between ro/h* w 20 and rigid insert are connected in a manner with stresses
obtained from thin shell theory as a gulde, It is quite interesting to
see that all curves meet at a point where the stress ¢/p is approximately
equal to 500, which is the membrane stress, At this point O, ,uner ®* 9 out
and the moment M; w O, For this optimum value the ratio ro/h* is located

around 8,

(B) Ellipsoids

When the value of r is great than =1, Eqs.(5-1) represent generating
curves of ellipsoids, ¥ is related to the ratio of somiaxes by

Two‘ellipséids with ¥ = 0,2 and «0,2 , which are equivalent to having the

3
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square ratio of semiaxes a2/¢2 equal to 1.2 and 0,8 (Fig. 5-1), respectively,
are chosen for computing the stresces, Other parameters used are f/n=100,
and ro/h* = 20, The length of semiaxis ! temains the same for the two
ei'ipsoids and equals the radius R of the sjphere,

Comparison of the stresses due to the effects of three types of
discontinuity are shown in Fig. 5-9 and Fig. 5-10, The stress variations
along the meridian reveal a similar rattern to those of the spherical shell
shown in Fig., 52+, The sllipsoid with a2/f> = 1.2 appears to have higher
stresses and snother one with a,z/ﬂz o0.8 has lower stresses than the
spterical shell, The effects of the discontinulty on the stresses also
show that a ‘circular hole type of discontinuity gives higher stiresses
than a rigid type and that the stresses for the shell with a nozzle fall

in between,
(C) Paraboloids

When r = -1, Eqs,(5-1) represent generaiing ourves of paraboloids

and ars reduced to . . .

R, » R/ cosd 0

R -R*/OOBQ

2
R* 18 chosen to be equal to a2/2{ such that the generating curve passes

through the end points of the major uxis of the ellipsoid with a2/s% 1.2
ag shown in Fig. 5-1. The stresses axe shown in Fig, 5-11 for three types
of discontinuity, Similar conclusions to the spherical shall are obtained

except that the magnitudes arec lower than those of the apherical shell,
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(D) Optimum Ratio a/@ of Ellipsoids with a Nozzle under Internal Pressure

It is the attempt of this section to find, among ellipsoids which |
contain the same volume and use the same amount of material, the one which
has minimum stress due to the effect of a nozzle attachmeni under inter-
nal pressure,

Iet Vand S be the volume and surface area , respectively, For a

spherical shell having thickness h, its volume and surface area are given
by
: Vel =x R3 / 3
S &4 7 R? .
For an elliﬁsoid with its major axis as the axis of revolutlon, and its

semi-ma jor ¢ , semi-minor a, thickness he’ the volume and surfuce area

are given by 2
Velbmxa 2/3

al
S e2wat -o-zu'-z-wn"é

where & 1s the eccentricity defined by
€t =g - aYpt

The condition that all ellipsoids have the same volume as the spherical
shell of radius R gives

2 /3 Vs
FNET, R (F)

Another condition that they use thic same amcunt of material as the spheri-
cal shell gives

4RY) = 27 (43t ~ .“i_i sn”'e ) he

from which one obtains, after certain manipulation

e e e - =
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The data chosen for this study are
R/h w100, x /o 220, and 6, = 5°
The stresses are computed for various values of the ratio a/f , and are
shown in Fig. 5-12 for 6 on the outer surface, which gives the maximum

stress, For these ellipsoids the correponding ratios l/he are

- a/i l/he
) 200
0.8 117,03
0.6 146,59 |
0.5 170,92

As shown in Fig, 7~12 when the value of a/f decreases the stress ¢; at
the Junction (eo = 5°) decre~ses, however, it increases at 8 » 90° where
the effect due to discontinuity disapisars. The ellipsoid which acquires

the mininum stress falls somewhere between a/f = 0.6 and 0,5, ‘ -

Moment Loading

The stresses of spherical shells due to the effect of three types
of discontinuity under moment loading are plotted in Fig. 5-13. It can
be seen from this figure that high hoop tensile stress (6;) cccurs in the
discontinuity of a circuia.r hole, while the meridian stress (¢,) ie
significant in the discontinuity of a rigid insert, and that ¢, in the
former case 1s higher than o, in the latter case, In other word, a cir-
ocular hole causes a higher stresa concentration than does a rigid insexrt

in the same spherical shell., The stresses of the sphere with a nozszle
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attachment fall in between these two extreme cases, The sane conclusions

wNoxe also true in the case of pressure leading,

The stress distribution along the meridian for ellipsoids under

moment loading shows a pattern similar to that of a spherical shell

except for a slight é.ifferance in the magnitude of the stresses, In
the case of nozzle attachment, there 1s little difference in 6; among the
ell1psolds of the ratio a2/t2 2 0.8, 1, and 1.2 with £ remaining constant
(Fig. 5-14). However, the difference in ¢; is pronounced, which increases
rapidly as the ratio a2/f> decreases, This result is contrary to the

one obtained in the pressure loading, where the stresses decrease as

a/1? decreases,

O
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VI. SUMMARY AN CONCLUSIONS

Governing differential equations for shells of revolution pertaining
to axisymmetric and moment loadings have been reduced from the basic
equii ions of the general theory of thin shells in terms of zomplex forces,

For tl : axisymmetric case, the analysis of shells of revolution has
been reduced to the integration of a second order differential eqguation,
Method of asymptctic integration is employed. The solution valid in the
region 0£¢0< 1 is-obtained in terms of Thompson f\;nction of order zero,
provided thé shell is sufficliently smooth neaxr the apex,

For moment loading applied at the apex the problem has been furtﬁer
reduced to the integration of a second order differential equation,
Asymptotic solutions valid in the rejion 0¢ © < X are also obtained in
tems of Thompson function of order cone.

Formulas for displacements, furces, and aoments for both axisymmetric
and moment loadings are also obtaired and 1listed, Side by side with the
shell of revolution the governing differential equations for circular
¢ylindrical shells are also derived, Solutions in texms of exponential
functions are obtained for both axisymmetric and moment loadings,

As an application 'of the solutions derived previously, three cases
of discontinuity at the apex of shells of revoiution have been st .died;

a circular hole, a circular rigid insert, and a nozzle. The boundary
conditions and the determination of the c.nstants for each of- the
85
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appropriate cases have been derived, ;
Numerical resulis in terms of dimensionless stresses are obtained
fo? shells cf revolution having the shapes of spheres, ellipsoids, and
paraboloids in which :ach of the three types of discontinuity is present,
Good agreement batween theoreticcl and experimental stresses has ‘be.en
obtained for a spherical 'pressure vassel with a nozzle, Careful studles
of these results reveal signlificant phenomena from which ths following
conclusions can be drawng
(1) A circular hole present at ihe apex of a shell of revolutlon weakens
the shell more than does a rigid insert on the same shell, that is,
the stress concentration in the former is higher t};an that in the latter,
(2) For the case ~f a circular hole, the hoop stress o,is higher than
the meridian stress s, , and the maximum stress (0;) occurs on the outer
surface of the hole, /n the other hand, in the case of a rigid insert,
¢, is larger than ¢; ; the maximum stress (,) also occurs on the
outer surf:cs of the insert,
(3) The s.ressc3 of a shell of revolut;ion with a nozzle attached at the
apex fall in tetween the stresses of the case of a circular hole and the ‘
case of a rigid insert, When the radius to thickness ratio r /h* of the '
nozzle becomes large the stress distribution of the shell tends toward
the case of a circular hols,
(4) The stress concentz:ation due to the attachment of a nozzle may be
alleviated, to & certain extent, by proper choice of the value ro/h* of
the nozsle,
(5) By proper sd justment of the ratio of semiaxss of ollipsoid, it is
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possible 4, obtain, among ellipsoidal pressure vessels containing the
same volume and using the same amount of materials, the one which has
thf ninimum stress concentration due to the effect of a nozzle attached
at the apex, .

The solutions obtained in this dissertation can bs easily extended
to include the siudy of the problems in which the externzl loads are
ons of the followings: (a) a vertical load; (b) a torsioni (c) a horizon-
tal force, applied at the apex of a shell of revolution, The sames
computer program with a slight modification can be used in obtaining
the stresses for thesc three casc¢s of loadings,
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series, and that the expansions are uniformly valid with respect to

the complex variabdle gz,

Olver, F. W, J., "The Asymptotic Solution of Linear Differential
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The diiferential equaiion .

2 r
Lo Lpuare fagodw
whexre n is an integer(3 -1), u a parameter and r a constant, has the
fomal solution

As(2) P(z) Z 5:‘”

“
W= Pt ’3 v ey

where P is a solution of the equation

.s.'.’.’. z(e2" -!i- )P
The coefficients Ag(z) and B.(z) are given by rscurrence relations,
It is shown that they are anglytic at z = 0 if, and only if, the
differential equation for w can bte transformed into a amilar equation
withn w0, *x e 0, 0rnwewl, re, orne=-l, The first two cases
have been treated in (10) of this reference, The third case, for




90

which P is a Bessel function of order #(1 +4 l&r)‘}, is examined in
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APPENDIX
A BRIEF REVIEW OF THE GENERAL THEORY OF THIN EIASTIC SHELLS

The derivation of ti'xe basic equations for thinelastic shells has
been well established and can be found in most of the books on thin shells,
for example, in (1,2,3), For completeness of the text and convenisnce
of applicaticn, a general procedures as to the deduction of these tasic

s . equations to a system of differential equations which may be xeadily
applied to the problems studied here, will be outlined, The tasic assump-
tions and their consequences will be pointed cut wherever they are intro-
duced,

% The fundamental assumptions in shell theory are:

EEPEYS SR

(a) Straight fivers noimal to the middle surface of a shell before defor-
mation remain so after derormation and do not change their length,

(b) The nommal stress acting on surfaces parallel to the micdle surface

AR Biepn 15 AT Y AV Ay

nay be neglected in comparison with the other stresses,
ic) The relative thickness of the shell is sufficiently small in compari-
| son with unity,
(d) The displacements are small compared to the thickness of the shsll,
In that which follows, the notation and procedures used are those
E introduced by Novozhilovi(Z2),

Coordinate System and Conditions cf Gauss-Codazzi
95

-~
———
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~let 0, w constant, a,= constant be the cooxrdinate lines of the
principal curvature of the middle surface of a shell and Rl and R, be the

corresponding radii of curvature
(Fig, A~.), Since the lines of
principal curvature are orthogonal,
the first fundamental form of a
surface may be written in the

forn

(ds )’ = (As do, )'1' (A; dag )I (A"l)

whexe ds is'the length of the
differential segment of a line

on the middle surface and A,, Az
are called Iame' parameters,

The parametexrs Al, A,y Rl and R, aTe

rolated by the conditions of Gauss-

Fis. A"l'
Codazzl Coordinate 1lines of a surface
2 (A1), L DA
[ ] R‘ R, oa,
2 Ay L 94
90:( R.) ® Ry a4 (a-2)

/i OA P 11 JA AlA
Sl vt Tabh w6 = AR
The first two conditions may be obtained from the identity

9&, o'e,
94,00z = 9300

" and the third one from

'8 9§,
9% 90; 9% o7

where ¥, is a wnit vector tangent to the iine % = constant and tn is a
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unit normal to the middle surface (Fig. A-1), A surface is uniquely de-

fined if the parameters A, A,, R, and R, satisfy the condition (A-2),

1 1 2
Honce, these conditions are usuaily referred to as the compativility

conditiong of a surfacs,

Strain-Displacement Relations and Competibility Equations

Let u, v, W b the displacements of a point A on the niddle surface
in the directions of €,, ©,, &,, respectively, and u,, v,, W, bo the
displacenents of a point B on the nomal through A, at a distance 2 from
the middle surface (Fig, A~1). The assumption (a) implies that

63 = 83, = 933 a0
Expressing these relations in terms of the displacements one ob*.tains

o Wy
aa

4 Y% 1
"':-97(7,,;)" A = 0

v « 0
rl/

Hyoe )+ 1 (A=3a)

L/ PN

. - ¥ 4
in which

Hy =A (1 +2/R,)

HZ 2 Az {7+ z/Rg) (A.Bb)

Equations (A-3a) upon integration with respect to z over (0, ) and

use of the relation (ug, v,, W;) = (u, v, ¥) at 5 = 0, yield

u.'”*lg’

Vg = Vv + 2P (A-BC)

Nz u w

where
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- -l oW u
J Al 3 a’ + R []
(A-3d)

oW 4

-l W ¥V
$o-xwaw

Equations (A-3c) show that the variation of the displacements through

the tnickness is linear and w, is independent of 2.

The remaining three strain components are related to the displace-

ments by

€3 =

Ql;lg ' H, oM,
Filoa* o *ox )

ez‘-_ﬁ_‘ayx _1 QIJU‘ + 2:’1.9‘ (A-lb)

9y H, oM

Hy 9",{”2) H, 34,(

Substitution of Eqs,(A-3b) and (A-3c) into Ejs.(A-l+) and use of conditions

of Codazzi yield, after certain manipulation, the foliowing explicit

expressions

where

!
e —— -t .
nE TR, (rET) S 1 +%/R, (W, +x7%)

e". “.*’:R,)

!
1+ z/R,

!
en'm(é: + 2K,) (a-5)

1 u ! 94 w
én — + !
Ll M T oA N

(A-6)

x e Ll 9 ¢ 94
' A9 * KA 90

K, » -l 2% g A
¢ ]: L] + A Ag aa:

© vamat s e g
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A 99 AA; 99

9" -1 3A
Al .aaﬁ A,Ag 3‘0 ¥ .
A”
L3¢ 1 BAy (a-7)

Ay 9% AA; 39;

e - l 9J - ! 3ﬁz¢
t Al 9, - A'A' o9a,

It 18 possible to reduce the last of Eqs.(A-5) to a form involving only

two parameters, In doing this, observing the identity

T .22, ot
(3R J —R—,. ‘f: -+ _R—gL

and introducing the new notations
W s W+ W,

1’-,-0-—-’-1" Rz

one reduces the last of Eqs,(A-5) to the following form

e, ! zt ! x '
‘2= uu/k,x,,,,,,:;!(!-Am)w2(Hl;; *-é)-i,-]z'r‘ (A-8)

where ‘

.-""""l' ﬁ..?..

9 (v
() A (47)
Tao L [ w __t 3w__1 34ow -
‘ ‘lAglﬂqoadg A, 99, A; 90, 3a; ) (A 9)

OU A a‘! ) ( ! 942 )
b Ay 9"3 PRI R,A, 99, Az 9%

Thus, the deformation of the middle surface is completely described by

+

the six parameters ¢, &, w, x,, &, and 7 , which are usually referred to

a8 the deformation parameters of a middles surface,
Negleoting the temma z/Rl and z/R, in Eqs.(A~5) in comparison with

unity one obtains the exressions given in(3) which differ only in 7
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from Novozhilov's expressions, 1i.e,,
' Ay 9, ¥
T e ne 2 E G 4 aa.l-;r)
‘Ixpanding the factors (1 + z/R;)™L and (1 + 2/R,)™ 1n Eqs.(A-5) in the
fom of a series in the variable z and collecting the tems in the coef-

(A-10)

. ficients of 2 and zl, one obtains Viasov's expressions (1] which relate

Novozhilov's expressions by
e’ ”
'-(-'. t‘-e':. wn-“.

%"« %,~ /R, X = ¥y~ & /Ry (A-11)

27 LY Lot
“hen-gi-m maT-lfeg)e

The aix parameters relating to the displacements must satisfy the

compatibllity conditions of the strains, which wre glven b2lowl2}

? @At @A OA _l_d_ 2_{’_&
Ta""‘A! X))~ K‘ o4, 90, 903 * R, oay
- 4 (BAG _ 2AW
y Al T N 6‘3%).0

-- -;% aA'? - @Al _9_’. —9_4_0
A T A T al i TR A T

96  DAW A
o ARy Al Tl S mo (A1)

X, 2%, %A . U L. TP
Ry * 7 A,A,{ * A [Aa aa, FITAR I e M T T )
_9_ 1 rp 3% dp 3u | 34
* [ ' 903 %) - ? 94 90, w)}-o

The relations (A-12) play in the theory of shells the same rols as ihe
oompatibility equations in ithe theory of elasticity, ths fulfilment of
which ensures the possibility of determining displacements from the

given dofo:qntion paranetexs of a shell,

TN ey i+ |
¢
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Equations of Equilibiium

. The equations of equilibrium of a shell element may be derived in
& 3imilar manner as those which are derived in the theory of elasticity,
except in the theory.of shell, the stiresses are replaced by statically
equivalent forces and moments (Fig. A-2), which are defined by the fol~
lowing expressions

A2
7;:] Oy (1+2/R,)dz
=h/s

h/2
Tia '} G (1+%/R,) dx
~h/2 .

e :
~, =l d’,,( 1+ Z/Rg) dz
7]

M2
7;.}” Opa(1+2/R)dz
N Y ]

Nz
Tor ’/ Gai (1 + X/R,) dx

-h/s

173
Nz=} C23() +3/R,) dx
M2

MI ’J Gp.zll-nr/ka)dx

Fig. A"z

M2
Mix -/m Guzl1+2/R))dz

| M, = [ Positive dirsctions of
s ; O 201 2 Z/R,) dx forces and moments

M
My, =/ 0, 2(1+2/R,) dz
-h/z
The condition that the equilibrium of a shell ~lement requires that
the resultant force and moment vanish ylelds the following equations
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1 [24:T | 3ATy , 34 24,
AA\l 2 + 2% % Ta - °q T]

——4;,-0

! 3A:7;: 9/1:7;' aAgT 9A T} s Ny Je =0

AAg !\ Ba, 9, 9, ¥ " a,
[ QA:N 3/4-”,] - 7;
AnAg r X I Rp -R—- o

(A-1%)

9‘1“’: 9/'!':\\ OA: 94!
A.Agl N 30; Y™ 20z ’z 9‘¥:MJ— Ny =o

9 LMI M"MI 2_‘;_! QAI

M, M,
Tia ~ Ty '0—5:-‘--'”—:'::0

The last of Eqs.(A-14) is identically satisfied. Tii3s can be verified
upon substitution into the equation the forces and moments by thelr
expressions from Eqs.(A-13),

Relations betwcen the Forces, Moments und the
Deformation Farameters

The relations between the forces, moments and the deformation
paranmeters (from now on called constitutive equations) can be obtained
from Eqs,(A-13). For this purpose, the stress components in these
equations are replaced by ihe strain components through the use of
HookeB law (neglecting o,, in comparison with oy, and ¢,,)

E
Ty = '7:';‘-;""0 M O,)

Caz= -T-E'/Tl' (e, + ~ e, ) ‘(A-15)

Crg m m‘%&; €2
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aiid then, the strain components are replaced by the deformation parameters
from Eqs,(A-5) and (A-8). On carrying out integration on the result of
these manipulations and then, neglecting terms of the order h/R in com-
pa.;‘ison with unity, Eqs,(A-13) finaily yleld the following relaticns

T, =Dl € +p &), 22D & +u &)
TanTye 2520, Mukin sun) (A-16)
Mya K(x, sp0 &1, MiespMy= Ker-u)r
where
b= f-.-/;ﬂ ’ k”Tz'j_-/'.a"ﬂ

Adopting these relations one is essentially disregarding the differenceu
Yetween T, and Ty, and My, and My, On Substituting these relations
into the last of Eqs,(A-14) 1t may be verified that this equation is not
satisfied identically, As mentioned pre;riously, the fact that this
equatlion 1s identically satisfied secures the syrmetry of the stress
tensor (0), = @;,) from which it follows that Eqs.(A-16) contradict the
symmetric properties of the stress tensor,

This contradiction can be avoided if the constitutive equations are
developed from the varlational principle of the potential energy by

neglecting tems of order h/R in comparison with unity, This approach
yield (2)

T mD(e& +pé&;), TamDi b, o A &y)
1=k At . z
Y/ -______D(z )(Nim')’)' 7;,.0"2’0)((0-0 ‘hn' 7)
(A=17)
M K(x +Ang), Mym K3 om0 x)

M= My = KC1=40 T
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Jntroducing the new notations

S TI: - Mn/R‘ = 7;[ - MII/R,

(A-18)
H' Ml] = Mn:
and substituting from Eqs.(n-1?) in Eqs.(A-18), ons obtains
S = .EL’Z:L‘-" w, Ha Kt1-a)T (A-19)

" For later use the inverse relation of Eqs.(A-17) 1is obtained as follows:

!
Gm g (T =AY, G (T-AT)

20144 '

”‘ E‘ s kl'?IZ%(M’-”Ml) {A“ZO)
J2 . 1207 3A1)

fa= g (M- M) T M

Reduction of the Basic Equations to a Fourth Oxrder System

So far, a system of nineteen equations including six strain-displace=
ment relations, five equations of equilibrium and eight constitutive equa~
tions, has been introduced., These equations involve the same number of
unknowns, i.e., six forces, four momerts, sin deformation parameters
and three displacements, One now faces the problem of solving these equa=
tions subject to appropriate boundary conditions, As in the theoxy of
elasticity, there exist two methods of solving probdlems of thin vlastie
shells - in tems of the displacements of the mid 1le surface or in terms
of the forces and moments, Before proceeding to further discussion of
these methoda, the equations of equilibrium will be first simplified,

To dc this, the forces Ny and N, in the first three of Eqs.(A-14) will be
eliminated hy substituting for them their expressions as giv;n by the
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fourth and fifth of Egs.(A-14), Then, taking into consideration ths
notations given in Eqs,(A-18) and the conditions of Codazzi, the first

three of Eqs,(A-1%) may be written in the fom

9A21;+_aﬁ'..‘g.¢-a-—'4's .._9.4.‘ TZ

oay Q4az 7 oM
1 QAxNI 2/ 9A,H R, 9A
* Rl[ 9y ‘601M +2 “oaz *z -'—?-;EE;H] =~Asg,
9A2$ QA'TZ 9Az - _Q_A_' -
a0, | 98, * Sa S oo ! (A-21)
MM _ A OAzH X LIGY) R
+—k:[ ?dy 3¢¢M'+ 2 Gt ? Ry 9% H] = A s
T _ 1 (3 1 (OAM, BAH 94, 3
Re ' Ra A.A,iad. A.l oa, T a0 aagH 2o Vi)
| BAMH | BAM;, DAy :M,
AT R Es Ak LA A48

Now, return to methods of obtaining solutions, The first method
involves replacement in Eqs,(A-21) the forces and moments by their exp-
ressions in tems of the strains of the middle surface, Then, one obtains,
upon substitution fcr the straine by their expressions in temms of the
displacements as given in Eqs.(A-6) and (A-9) a system »f three partial
differential equations in terms of the threce displacements of the middle
surface.

The second metho! consists in supplementing the equations of equie
librium (A-21) by the compatibility equations (A-12), which , for this
purpose, must be expressed in torms of the forces and moments, Then,
one obtains a system of six partial differential equations for the deter=
mination of unknowns Ty, Ty, S, Mys Mg and H,

In that which follows, attention will be limited to the second method |
of solution, Subsiituting in Eqs,(A-12) the strains from Eqs,(A=-20) one
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obtains the compatibility equations in terms of the forces and moments

R 24 s]

z - M
b [ 2AalTaouh) SA'H; ﬂ?;.-z{t-»ﬂ)‘ ,s -2(1 MR‘ 20,

- 12R 94 ao

SA (Mi-pM3) _“.,p)(.gﬁi’.’ + .a_'aﬁH) - .9../_’! (Mg ~Apy)
9«, | Y

AT -AT)_ A 9/1:3 Ry 94z
- it [.__.r__z__zl '(T ATy ) =200 ) S22 < 2() ,a)-}-‘,-! o S)= o0 (A-22)

My-pMy  Mi-pMs_ . BT 1 _a___,_[aA,m-ﬂ'rn
R, Rz 12 A, Az 1 9y A, 0y

- roa St ) - 3 1,

? 1 124 (Ti-uTs) CLrOgn QA2 A
B G EMTATY s S9)- Seram o)) 0

The fulfilment of Eqs.(A-22) ensures the possibility of determining the
displacements from the given forces and moments, Egs.(A-22), after trans-
formation employing the equationsof equilibrium and then neglecting a

nunber of terms of the order h/R compared with unity, can be reduced to

the fom
(1+pIN, = -,%—2%‘- 7éz:n,'A, aa:: .
(1o mINg = A,-O'ﬁ 7@'5,‘;;"3"5,‘ (A-23)
Mkl o Moot K Aatry --%%—[%ﬁ?’* %‘f"]

in which '

Mz M +M,g, Te7,+ T
' : . (A-23a)
20 ) () '
al —'x;[ ao (-Zn! 9 ) 9’:‘ Az 9@, )]

The second tem on the right hand side of tls first two of Eqs,(A-23) is

likewise of negligible magnitude, Thus, the first two of the compatibi-
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1ity equations can bLe written in the following simple fomm

1AM
(1+AM)N, = y W TT

"'O'.u,Ng ® i— 90:

T™he compatibility equations have been simplified in the form of Egs.(A=23)

(A=2k)

or (A-24), which will be employed to eliminate N. and N, in the equations

1
of equilibrium. Eliminating from the first three of Eqs,(A-14), letting
Typ = Tp;, the normal shearing forces N, and N, by use of Eqs.(A-24),

and from the fourth and fifth of Egs.(A-1%) 5, and N, by use of Eqs.(A-23),
one obtains a system of six equations with the last one coming from the

third of Eqs,(A-23)

9‘:7' A rS BAr S -

A.A, o * YT 99,

aa. YT R o0, rhmo

1 [~ 2AuMzoAM) oA H | 94y LI
."A'( 3a, +(l+ﬂ)(W+mH)¢ o (M, .aM‘)]
| NECA ¥

*'?R:Ac Y 0

DA;S | Az, 3As 9Ar [ _1_3M
Aolg[ CY T 4z aa:s T] 1+M B A; 993 +9,20

(a-25)

' MM, -p M) 94 H A A .
y 4.[ T *(rep ZE g;fu 4-6%;(/9!, AM))

3 ar

+ TRy 903 = 0

7 %
= —ﬁtt-,mum gm0

.&i_; Mp~uMy . HE LY RE )
0—-L§—-—3-0 AMT) ma y WP [90‘(04:34)“3'5;(41’:’]

These 8ix equations constitute an eighth oxder system and can be reduced

to thres equations of fourth oxrder system by the use of complex transfore

St st s s
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mation, Foxr this purpcse, the auxiliary functions

-r'-7;__£'_ M;"ﬂM’

< - ut
T‘ ) 7'z _.ci_ /";I"fazMg
A (A-26)
i ~
S =S+ G
T =T+
will be intrcduced, where
.
JIZH"#‘)

Substituting in Zqs.(A-25) the forces Tl' ’1'2. S by their exprcssions in
texms of Tl; ., S and My, M, H as defined in Eqs.(A-26), In this way
one obtains a system of six equations from which the quantities Ml’ Mz,
H may bo eliminated, This process leads to tne following system of
three partial differential equations in terms cf three complex forces

Tl. '-1‘2, a-nd g.

1 (AT, OME ok Mgy, e OF
7 S T 9d;  90; o) T)+< RA, 2a +Gimo
1_ 1948 | 3AT, A 9A, . ¢ oF
A A I 90, | “oa; T ‘pa o0 7,} '*Jm'-a-—‘ + g,= 0 (A=27)
& o AL -dsalh o,
whexe *

4 Y Ly )Y
me g, ric s | oa. !4 9'0.‘ ]

Eqﬁations (A-27) include the equations of equilibrium of the shell element
and the equations of compatinility for the stralns of the middle surface,
It is a fourth order system with three unknowns, and is half the number

of equations, oxder and unknoins of the system (A-25).
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Ietting ¢ = ¢ and ldentifying Tl’ '1‘2, S vy Tl ’ T;, S , repectively

in Eqs.(A-27), this system reduces to the equations of the membrane theory.

&1.!_! QA'S. DA 9Az -
At‘z[ 23 © a0 99 s’ % )+ f: 0

9A!$ aAlTl A2 A1 - i
A (B« Lh, L& - ST fam 0 (a28)

7
L e g

To get a complete solution, the displacements of the middle surface
have to be found, Define the complex d:splacements &, ¥, ® which relate

to the complex forces by six differentlal equations

o g T-aly, & e gp (h-at)

- 201vH) = - i -

&= =585, ""':LE’ (- 7)  (A-29)
)-(zc-z‘:-z_—’);-(:’-'o"ﬂ'), 'T’:--{-E.'I;-(f- ")

In these equations &, &, &, %,, %, 7 are related to i, ¥, ¥ in the
samo way as the strain-displacement relatlons given in Eqs.{A~6) and
(A-9), and Ty, Tp, S ere solutlons of the membrane theory, i.e., of the
systen (A-28), The real parts of §, ¥, # are the displacements u, v, ¥,

respactively,
Thus, the solution of problems of a shell reduces to ths determina-

tion of the complex forces Tl, T,y S from Eqs.(A-27) and the complex
displacements @i, ¥, # from Eqs.(A-29) subject to appropriate boundaxry
conditions,

In conclusion it is noted that the error introduced in the system
(A-27) s of order h/R compared with unity, Hence, the system of Egs.\ .

A-29) are only approximately compatible with each other within an error
of this oxder,




