

SPACE SHUTTLE PHASE B" FINAL REPORT

Volume II. Technical Summary ADDENDUM "A"

Booster

Contract NAS9-10960 DRL T-751, DRL Line Item 6 DRD SE-420T SD 72-SH-0012-2 15 March 1971 SD 72-SH-0012-2 (MSC-03332)

15 March 1972

SPACE SHUTTLE PHASE B" FINAL REPORT VOLUME II TECHNICAL SUMMARY

Addendum "A" Booster

Approved by

H.F. Rogers Program Director Space Shuttle Program Convair Division of General Dynamics

Contract NAS9-10960 DRL T-751, DRL Item 6 DRD SE-420T

t

Space Division • North American Rockwell 12214 Lakewood BOULEVARD • DOWNEY, CALIFORNIA 90241

FOREWORD

This addendum is comprised of characteristics and performance data for the booster vehicles studied and evaluated by Convair Aerospace Division of General Dynamics Corporation under a Phase B contract extension with the Space Division of North American-Rockwell Corporation, Downey, California. These studies also included Convair Aerospace Division of General Dynamics Corporation sponsored activities covering Advanced Technology effort related to reusable Space Transportation Systems and concurrent bidding and proposal activities.

The studies and evaluations were accomplished with assistance from IBM. American Airlines, the Aerospace Division of Honeywell, Inc., Chyrsler Corporation Space Division, and North American-Rockwell Division.

PRECEDING PACE BLANK NOT FILMED

CONTENTS

Section				Page
1.0			•	• 1-1
2.0	CONCLUSIONS	• •		. 2-1
	2.1 FLYBACK BOOSTER VERSUS PRESSUE	₹E-FF	D	
	BOOSTER STUDIES	• •	•	• 2-1
	2.2 PRESSURE-FED, PUMP-FED, AND SC	LID		
	ROCKET MOTORS (156-INCH) BOOSTE	R		•
	$STUDIES \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot $	• •	•	• 2-3
3.0	SUPPORTING DATA			• 3-1
	3.1 PRIMARY STUDIES · · · · · ·		•	• 3-1
	3.1.1 Booster Description - Series	-		
	Pressure-Fed · · · · · ·	• •	•	• 3-1
	3.1.2 Booster Description - SRM (19	56 in.).	3-39
	3.1.3 Booster Description - Series I	^{>} ump-	-	
	Fed - Four Engines	• •		. 3-39
	3.1.4 Booster Descrip tion - Series	i		
	Pump-Fed - Five Engines	• •	•	.3-39
	3.2 OTHER STUDIES	• •	•	. 3-45
	3.2.1 Pressure-Fed Booster – Paral	lel .	•	. 3-45
	3.2.2 SRM Parametric Study	• •	•	. 3-51
4.0	COMPARISON OF ISSUES			. 4-1
	4.1 ASSESSMENT OF BOOSTER ISSUES .	• •	•	• 4-1
	4.2 APPROACH TO MINIMIZE RISK	• •		• 4-1
	4.3 COST IMPACT OF PROGRAM ASSUMPT	FIONS	; .	. 4-1

PRECEDING PAGE BLANK NOT FILMED

ILLUSTRATIONS

Figure	Page
3-1	Configuration Study Matrix
3 - 2	B19B8-1 Single Pressure Fed LO ₂ /RP Booster-Series
	Burn
3-3	Inboard Profile Single Pressure Fed Booster B-19 B8-1 . 3-4
3-4	Mission Flight Profile, SPFB
3 - 5	Ascent Trajectory Parameters, SPFB
3-6	Abort Mode/Mission Completion Approach, SPFB 3-9
3-7	Structural Configuration, SPFB
3-8	Intertank Structure, SPFB
3-9	Thrust Structure, SPFB
3-10	Basic Heat Shield, SPFB
3-11	Fin and Drag Flap, SPFB \ldots \ldots \ldots \ldots \ldots \ldots $3-14$
3-12	Hydraulic Drag Flap Actuation, SPFB
3-13	Recovery Concept, SPFB
3-14	Recovery System Installation, SPFB
3-15	Mating/Separation System Installation, SPFB 3-18
3-16	Separation Trajectory and Thrust History, SPFB 3-19
3-17	Propulsion System Configuration, SPFB
3-18	Engine Characteristics, SPFB · · · · · · · · · · · · · · · · · · ·
3-19	Pressurization System, SPFB · · · · · · · · · · · · · · · · · · ·
3-20	PFB Avionics System, SPFB · · · · · · · · · · · · · · · · · · ·
3-21	Avionics System Installation, SPFB · · · · · · · · · · · · · · · · · · ·
3-22	Summary Timeline, SPFB • • • • • • • • • • • • • • • • • • •
3-23	KSC Retrieval Concept, SPFB · · · · · · · · · · · · · · · · · · ·
3-24	KSC Maintenance/Refurbish Concept, SPFB • • • • • 3-27
3-25	KSC Mate/Erect/Launch Concept, SPFB · · · · · · 3-28
3-26	Launch Pad Configuration, SPFB · · · · · · · · · · · · · · · · · · ·
3-27	VAB Vertical Erection and Mate, SPFB • • • • • • • 3-30
3-28	Booster Test Program, SPFB
3-29	Major Ground Tests, SPFB · · · · · · · · · · · · · · · · · · ·
3-30	Vertical Flight Test Program, SPFB
3-31	Maintainability Design Goals and Major Features, SPFB . 3-34
3-32	Operational Spares Requirements
3-33	Manufacturing and Sequence Flow, SPFB B-19B8 3-36
3-34	Graphic Dispersion of Manufacturing Tasks, SPFB 3-37
3 - 35	B-27C Parallel Booster 156 in. Diameter SRM Parallel
	$P_{\text{varm}} = 40 \text{ tr } \text{Di } \text{Dalar} = 15 \text{ by } 60 \text{ ft } \text{ Pi } \text{Bay} = 3-41$

PRECEDING PAGE BLANK NOT FILMED

vii

3-36	B24-B General Arrangement F-1 Ballistic
	Recoverable Pump Fed Booster
3-37	B-24C Ballistic Recoverable Pump Fed Booster
	(5) $F-1$ Engines · · · · · · · · · · · · · · · · · · ·
3-38	B-22A Twin Pressure Fed Booster – Parallel
	Burn NR LO ₂ /LH ₂ External Tank Orbiter
3-39	Series Burn 156-Inch SRM System GLOW and Dry Weight
	Versus Staging Velocity and Flight Path Angle
3-40	B-2_B Tandem Booster 156 Inch Diameter SRM - Series
	Burn 40k PL Polar - 15 × 60 ft PL Bay
3-41	B-23B Tandem Booster 156 Inch Diameter SRM - Series
	Burn 45k PL East - 14 × 45 ft PL Bay • • • • • • • 3-66
3-42	B-27A Parallel Booster 156 Inch Diameter SRM -
	Parallel Burn 40k PL Polar - 15 × 60 ft PL Bav 3-67
3-43	B-27B Parallel Booster 156 Inch Diameter SRM -
	Parallel Burn 45k PL East - 14 x 45 ft PL Bay 3-68
3-44	B-28 Tandem Booster 120 Inch Diameter SRM -
	Series Burn 40k PL Polar - 15 × 60 ft PL Bay 3-71
3-45	B-25 Tandem Booster 120 Inch Diameter SRM - Series
• 10	Burn 45k PL East - 14 x 45 ft PL Bay
3-46	B-26 Parallel Booster 120 Inch Diameter SRM -
5 10	Parallel Burn 40k PI Polar - 15 × 60 ft PI Bar 3-73
3-47	B-29 Parallel Booster 120 Inch Diameter SDM
3-11	Darallal Burn 45h DI Fact 14 V 45 ft DI Part 2 74
	ratatier Durin TOK EL East - 14 ^ 45 IL EL Day

Figure

Page

TABLES

Fable		Page
2-1	Pressure-Fed Booster Capability and Cost · · · ·	• 2-4
2-2	Pump-Fed Boo ter Comparison • • • • • • • •	• 2-5
2 - 3	Solid-Rocket-Motor Booster Details • • • • • •	. 2-6
3 -1	System Summary	• 3-5
3-2	Pressure-Fed Booster, LO ₂ /RP Weight Summary · ·	• 3-6
3-3	System Summary \cdot	• 3-43
3-4	Effect of Growth on 156-Inch SRM Parallel-Burn System	• 3-45
3 - 5	156-Inch SRM Booster, Parallel - Two Elements,	
	Weight Summary • • • • • • • • • • • • • •	• 3-46
3 - 6	System Summary • • • • • • • • • • • • • • • • • • •	.3-49
3-7	Effect of Growth on Four F-l Pump-Fed System • • •	• 3-51
3-8	F-l Pump-Fed Ballistic Weight Summary • • • • •	• 3 - 52
3-9	System Summary • • • • • • • • • • • • • • •	• 3 <i>-</i> 55
3-10	F-l Pump-Fed, Ballistic Weight Summary	• 3-56
3-11	System Summary • • • • • • • • • • • • • • •	• 3-59
3-12	SRM Booster Sizing • • • • • • • • • • • •	• 3-62
3-13	SRM Booster Shuttle System Selected System Summary.	• 3 - 63
3-14	156 Inch Diameter SRM - Configuration Comparison •	.3-64
4~1	Assessment of Series Pressure-Fed Booster Issues	. 4-2
4-2	Assessment of Series Pump-Fed Booster (F-1	
	Engine) Issues	. 4-4
4-3	Parallel, Solid-Rocket-Motor Booster (156 in.) Issues.	• 4-6
4-4	Approach to Minimize Risk Series Pressure-Fed Booster	• 4-8
4-5	Approach to Minimize Series Pump-Fed Booster	
	$(\mathbf{F}-\mathbf{l} \ \mathbf{Engine}) \ \mathbf{Risk} \cdot \cdot$	• 4-10
4-6	Approach to Minimize Parallel Solid Rocket Motor	
	Booster (156 in.) Risk $\cdot \cdot \cdot$	· 4-12
4-7	Cost Impact of Program Assumptions • • • • • •	• 4-13

Table

 $\mathbf{i}\mathbf{x}$

l C

1.0 INTRODUCTION

.

1.0 INTRODUCTION

The Phase B' study concluded with a definition of a space transportation system that could be designed, developed, and operated with significantly lower RDT&E program costs and reduced peak annual funding than had been defined for the fully reusable flyback LO_2/LH_2 system during the initial Phase B studies. The baseline recommended was a series pressure fed/LO₂ Propane, single-stage booster vehicle.

The costs for this vehicle, however, exceeded both the acceptable RDT&E costs and the peak annual rates; thus, studies were continued into Phase B['] to explore alternatives leading to lower costs. The Phase B['] extension covered a period from 1 November 1971 through 15 March 1972. Studies during this period encompassed both solid- and liquid-propelled booster vehicles with both 14- by 45-foot and 15- by 60-foot payload orbiters; however, the major emphasis was on the pressure-fed booster.

The program reviews were presented by a series of briefing meetings.

1. Washington, D.C., 15 December 1971

This program review was a discussion of the external tank orbiter for both pressure-fed and flyback boosters, a summary of the pressure-fed system versus \vec{F} -1 flyback system, and alternate configurations of the pressure-fed booster.

This presentation was published in three documents, SV 71-59, Vol. 1, Executive Summary Report; Vol. II, Presentation; and Vol. III, Supporting Data.

2. MSFC - Huntsville, Alabama, 3 February 1972

This presentation consisted principally of subsystem splinter meetings and covered the various booster configurations under study and included the vehicle performance characteristics, operations, checkout, ground handling, attrition, and cost comparisons. The presentation was documented with briefing charts of the subject material.

3. Huntsville, Alabama, 15 February 1972

This program review covered the series pressure-fed and series F-1 liquid-rocket-motor boosters, and the parallel burn 120- and

and 156-inch solid-rocket-motor propelled boosters. A review of the subsystem basic issues included flight control evaluation, separation, abort, and structures, propulsion, recovery, avionics, and test and operations.

The review was documented with briefing charts of the subject material.

4. Houston, Texas, 16 February 1972

This presentation covered series versus parallel burn, and liquid versus solid-rocket motors. The technical discriminators, technical and cost drivers, and program and cost evaluation material was the primary content of this review. Convair provided booster support data for this North American-Rockwell presentation.

5. Washington, D.C., 22 February 1972

This presentation covered the performance characteristics and assessment of the series pressure-fed, series pump-fed (F-1), and 156-inch solid-rocket-motor boosters.

The presentation was documented with briefing charts of the subject material.

2.0 CONCLUSIONS

2.0 CONCLUSIONS

Ŀ

·

,

.

.

·

.

.

.

2.1 FLYBACK VS PFB

2.1 FLYBACK VS PFB

2.0 CONCLUSIONS

2.1 FLYBACK BOOSTER VERSUS PRESSURE-FED BOOSTER STUDIES

The flyback booster was evaluated with the pressure-fed booster to determine differences and effects on program funding. The conclusions of this evaluation are:

- 1. The single pressure-fed booster offered the lowest program cost per flight of the pressure-fed booster arrangements studied.
- 2. The flyback booster (F-1) required the highest peak annual funding and highest program cost.

It was recommended that the pressure-fed booster, series burn with LO₂/propane, be continued for further study. The flyback booster study was discontinued. These conclusions and recommendations were presented at the 15 December 1971 Program Review briefings at NASA Headquarters in Washington, D.C.

2.2 PFB, F-1, SRM (156 IN.)

.

`

,

2.2 PRESSURE-FED, PUMP-FED, AND SOLID ROCKET MOTORS (156-INCH) BOOSTER STUDIES

The pressure-fed, pump-fed, and solid-rocket-motor were evaluated to determine differences and effects on program funding. The conclusions of this evaluation are:

- 1. The pressure-fed booster meets all program goals. Table 2-1 provides the details of vehicle capabilities and cost. This configuration provides the lowest cost per flight of all candidate vehicles.
 - 2. The pump-fed (F-1) booster offers one potential approach to a recoverable booster. Table 2-2 provides comparison details with identification of related risk, capabilities, and cost. This configuration is sensitive to recovery concept but offers cost per flight comparable to the pressure-fed booster.
 - 3. The solid-rocket-motor booster offers a program compromise. Table 2-3 defines the development risk, cost, and areas of concern These configurations provide potential of lowest DDT&E cost but high cost per flight.

These conclusions were presented 22 February 1972 at the Program Review briefings at NASA Headquarters in Washington, D.C.

Table 2-2. Pump-Fed Booster Comparison

Pump-Fed (F-1) Booster Offers Potential Compromise Approach to Recoverable Booster

REDUCED DEVELOPMENT RISK

• LIGHTER WEIGHT SYSTEM

• COMPROMISE IN REUSABILITY & TURNAROUND

• VERY SENSITIVE TO RECOVERY CONCEPT

• REDUCED BOOSTER DDT&E COSTS (\$0.98 B)

• COMPARABLE BOOSTER COST/FLIGHT (\$2.5 M)

Table 2-3. Solid-Rocket-Motor Booster Details

3.0 SUPPORTING DATA

3.1.1 PFB SERIES BURN

3.1. 1-PFB SERIES BURN

3.0 SUPPORTING DATA

3.1 PRIMARY STUDIES

Primary booster studies have been prepared for the following:

1. Pressure-fed booster - series burn.

2. Solid-rocket-motor (156 in.) booster - parallel burn.

3. Pump-fed booster - series burn.

Subsystem details have been presented to the NASA centers and headquarters during Program Reviews defined in Section 1. The study emphasis was directed per NASA study directive of 4 February 1972. See Figure 3-1 for illustration of the study effort.

3.1.1 Booster Description - Series Pressure-Fed

The pressure-fed booster is a reusable vehicle configured in a tandem arrangement with the orbiter and its external oxygen/hydrogen tank. The vehicle system is a series-burn type featuring a booster liftoff weight of 4,446,000 pounds, a staging velocity of 4800 fps and a subsonicaly deployed parachute recovery system for controlling the impact to 150 fps with a recovery weight of 655,000 pounds,

The booster arrangement consists of a nose element, a forward LO_2 tank of 718 inconel; interstage, aft RP-1 fuel tank, and thrust structure of 6A1-4V titanium. Four fins are provided with 718 inconel leading edges and flaps, and titanium main box structure. Recovery parachutes are provided and stowed in the fin. The material chosen is compatible with the recovery retrieval concept.

The main propulsion system uses seven pressure-fed engines. Each is rated at 1,035,000 pounds thrust (sea level) with an LITVC system (liquid oxygen, five-degree effective angle maximum). The propulsion pressurization uses LN_2/N_2 H₄ pressurants to transfer propellants from the tanks to engines. The propellants are LO_2/RP . Figures 3-2 and 3-3 illustrate the configuration. Table 3-1 defines the system summary. Table 3-2 defines the system weights. Figures 3-4 through 3-34 illustrate system details.

*NASA STUDY DIRECTIVE 2/4/72

1 ~ PRIMARY

2 ~ SECONDARY 3 ~ OTHER

3 - 2

.

3-3

Page intentionally left blank

Series Burn (LO ₂ /RP) Pa Item Units	yload Bay Size 15 ft diameter by 60 ft Design Point 5.791	
Item Units	Design Point 5.791	
	5, 791	
Gross Liftoff Weight M lb	· ·	
Booster Gross Weight M lb	4.446	
Booster Ascent Propellant M lb	3.735	
Orbiter Gross Weight** M lb	1.345	
Orbiter Weight at Staging M lb	1.345	
Orbiter Ascent Propellant M lb	0.975	
Orbiter Spacecraft Weight k lb	176	
Orbiter Tank Weight (Burnout) k lb	64.1	
Relative Staging Velocity fps	4817	
Staging Flight Path Angle deg	22.6	
Staging Dynamic Pressure psf	73	
Staging Altitude k ft	136.8	
Maximum Dynamic Pressure psf	646	
SI. Thrust/Booster Engine M lb	1.035	
Vac Thrust/Orbiter Engine k lb	470	
No Engines Booster -	7	
No. Engines Orbiter -	3	
	1 25	
T/W Orbiter at Staging*	1.49	
	(1.05 w/o abort rockets)	
Booster Burn Time sec	137.2	
Center Engine Cutoff sec	32.5	
(To limit maximum q)		
*Includes abort rocket thrust Re **Includes abort rocket weight gr an	emarks: has approximately 8% extra owth capability in orbiter spacecraft ad booster dry weights.	
Synthesis Ref: SS-16-1T7		

Three-view drawing 76Z0873, inboard drawing 76Z0865

Weight (1b)

Table 3-2. Pressure-Fed Booster, LO2/RP Weight Summary

Fins, Flaps, Mechanisms	46,040
Flap Actuation (hydraulics) (dry)	3,140
Impact and Retrieval	4,925
Fuel Tank, (including LO ₂ line)	82,924
LO ₂ Tank	152,250
Intertank Structure	31,800
Base Heat Protection	9,220
Thrust Structure, Skirt	74,636
Interstage Attach. Separation	500
Fairings	3,800
Parachute System	19,429
Main Engines (including LITVC)	78,982
Pressurant System (drv)	19,690
Engine Installation	1,797
Feed Systems	5,506
PII System	750
Avionics Electrical	3,402
FCS	334
Growth	53,913
Giowin	•
Dry Weight	593,038
Pressurants	64,570
Residual Fuel	27,615
Residual Oxidizer	18,188
Hydraulic Fluid, Ice/Frost	1,176
Burnout Weight (entry)	704,587
Ascent Propellants	(3,735,503)
Main Impulse	3,675,909
Thrust Decay	779
TVC Oxidizer	58,815
Liftoff Weight, Booster	4,440,090
Weight at Parachute Deployment	660,000
Weight at Water Impact	655,000
Adapter and Fin (including contingency)	6,000
Orbiter and Tanks	1,345,004
Gross Liftoff Weight	5,791,094

3 - 7

LO2/RP PRESSURE-FED BOOSTER

Figure 3-5. Ascent Trajectory Parameters, SPFB

3-8

Figure 3-6. Abort Mode/Mission Completion Approach, SPFB

3-9

Figure 3-7. Structural Configuration, SPFB

Figure 3-8. Intertank Structure, SPFB

3-11

Figure 3-9. Thrust Structure, SPFB

Figure 3-11. Fin and Drag Flap, SPFB

3-14

3-15

Figure 3-13. Recovery Concept, SPFB

Figure 3-14. Recovery System Installation, SPFB

Figure 3-15. Mating/Separation System Installation, SPFB

Figure 3-16. Separation Trajectory and Thrust History, SPFB

3-19

Figure 3-17. Propulsion System Configuration, SPFB

Figure 3-18. Engine Characteristics, SPFB

3-21

Figure 3-19. Pressurization System, SPFB

Figure 3-20. PFB Avionics System, SPFB

Figure 3-21. Avionics System Installation, SPFB

Figure 3-22. Summary Timeline, SPFB

Figure 3-23. KSC Retrieval Concept, SPFB

Figure 3-24. KSC Maintenance/Refurbish Concept, SPFB

Figure 3-25. KSC Mate/Erect/Launch Concept, SPFB

Figure 3-26. Launch Pad Configuration, SPFB

3-29

Figure 3-28. Booster Test Program, SPFB

3-31

Figure 3-29. Major Ground Tests, SPFB

MISSION OPERATIONAL OPERATIONAL MISSIONS CAPABILITY RECOVER RECOVER MOD. TO REFURBISH OPER NOV 1978 DEC 1978 DEC 1977 MAR 1978 MAY 1978 JULY 1978 4th MANNED 5TH MANNED 2ND MANNED 3RD MANNED UNMANNED **IST MANNED** TEST TEST TEST TEST TEST TEST FLIGHT FLIGHT FLIGHT FLIGHT FLIGHT FLIGHT RECOVER REFURBISH RECOVER RECOVER REFURBISH REFURBISH END OF SUPPORT DEDICATED EQUIPMENT TEST TEST VEHICLE **ACTIVATION**

Figure 3-30. Vertical Flight Test Program, SPFB

3 33

SD

Figure 3-31. Maintainability Design Goals and Major Features, SPFB

WBS DESCRIPTION	COST \$M	PLANNING FACTORS
NOSE	137.58	100% LOSS FRANGIBLE NOSE, 50% REPLACEMENT DEPLOYMENT SYSTEM
BASE HEAT SHIELD	127,36	ABLATIVE PANEL REPLACED EACH MISSION
MAIN ENGINE	56.59	NO RESTRICTIVE LIFE LIMIT , ONE UNSCHEDULED REMOVAL EVERY OTHER FLIGHT
PARACHUTES	40.83	15 TO 20% LOSS CHUTES
PROPELLANT UTILIZATION	19.78	20% REMOVAL ELECTRONIC CONTROL
INSTRUMENT	19.28	SIGNAL CONDITIONERS KEY ITEM AT 60% REMOVAL
THRUST STRUCTURE	15.13	SKIN PANELS 3% REMOVAL & 50% REPLACEMENT
GROUND SUPPORT EQUIPMENT	13.06	10% OF DEVELOPMENT & PRODUCTION COST
FAIRING	10.79	5% REMOVAL & 60% REPLACEMENT
OTHER	41.54	LARGELY PROPELLANT FEED, ELECTRICAL POWER & GN&C

KEY ASSUMPTIONS

•12-MONTH SHELF STOCK OF REPAIR PARTS PROVIDED

• REMOVED UNITS WILL BE REPAIRED

•MAJOR STRUCTURAL ASSEMBLIES (FINS, TANKS, ETC.) DESIGNED FOR 100 MISSIONS THEREFORE, LOW SPARES NEED

•SPARES QUANTIFICATION WILL BE DETERMINED AS DESIGN PROGRESSES

Figure 3-32. Operational Spares Requirements

3-35

Figure 3-33. Manufacturing and Sequence Flow, SPFB B-19B8

Figure 3-34. Graphic Dispersion of Manufacturing Tasks, SPFB

3-37,3-38

3.1.2 SRM (156 IN.) PARALLEL BURN

. .

3.1.3 F-1 SERIES BURN - 4 ENG

3.1.3 F-1 SERIES BURN

,

3.1.4 F-1 SERIES BURN - 5 ENG

.

3.1.4 F-1 SERIES BURN – 5 ENG

3.1.2 Booster Description - SRM (156 in.)

The solid-rocket-motor (156 in.) booster is an expendable vehicle configured for a parallel arrangement with the orbiter and its external oxygen/ hydrogen tank. The vehicle system is a parallel-burn type featuring a booster liftoff weight of 3,112,000 pounds with a staging velocity of 5,333 fps. Both normal separation and abort considerations drive the configuration arrangement.

The booster arrangement features two SRMs (156 in.) attached to the external oxygen/hydrogen tank. A nose enclosure structure, attachment, and separation system are provided for the SRM booster system. Gimbaled nozzles are provided for control. Aft thrust termination ports are provided to reduce the thrust for abort capabilities. A malfunction detection system is also provided for motor monitoring. Figure 3-35 illustrates this configuration. Table 3-3 defines system summary. Table 3-4 defines system growth comparison. Table 3-5 defines system weights.

3.1.3 Booster Description - Series Pump-Fed - Four Engines

The pump-fed booster is a reusable vehicle configured for a tandem arrangement with the orbiter and its external oxygen/hydrogen tank. The vehicle system is a series-burn type featuring a booster liftoff weight of 4,032,000 pounds, a staging velocity of 5889 fps, and a subsonically deployed parachute recovery system. The recovery weight is 460,000 pounds. The booster arrangement features sizing and configuration for commonality with Saturn S-1C to utilize existing technologies, tooling, and components. The after end features an engine protection closure and four fins. The main propulsion system uses four uprated F-1 engines with gimbaled nozzles. The propellant is LO_2/RP .

Figure 3-36 illustrates the configuration. Table 3-6 defines system summary. Table 3-7 defines growth comparison. Table 3-8 defines system weights.

3.1.4 Booster Description - Series Pump-Fed - Five Engines

The pump-fed booster is a reusable vehicle configured for a tandem arrangement with the orbiter and its external oxygen/hydrogen tank. The vehicle system is a series burn type featuring a booster liftoff weight of 4,187,000 pounds, a staging velocity of 5890 fps, and a subsonically deployed parachute recovery system. The recovery weight is 500,000 pounds. The series pump-fed booster study using five engines was accomplished to define a configuration capable of liftoff with one engine out with present F-1 engines.

3-39,3-40

System	156 inch SRM Parallel Burn (Final Configuration)		Payload Weight 40 k lb Polar Payload BaySize 15 ft diameter by 60 ft		
	Item	U	nits	Design Point	
Gross Lift	toff Weight	M	b	4.898	
Booster G	ross Weight	M lb		3,112	
Booster A	scent Propellant	M	lb	2.740	
Orbiter G	ross Weight**	M	lb	1.785	
Orbiter W	eight at Staging	Μ	Ъ	1.400	
Orbiter A	scent Propellant	M	Ъ	1.392	
Orbiter Sp	bacecraft Weight	k ll	2	176	
Orbiter Ta	ank Weight (burnout)	k 11	.	90.0	
Relative S	taging Velocity	fps		5333	
Staging Fl	ight Path Angle	deg		26	
Staging Dy	namic Pressure	psf		· 43	
Staging Al	titude	kft		154.6	
Maximum	Dynamic Pressure	\mathbf{psf}		653	
SL Thrust	/Booster Engine	Μ	lb	2.939	
Vac Thrus	st/Orbiter Engine	k 1	D	470	
No. Engin	es Booster	-		2 Elements	
No. Engin	es Orbiter			3	
T/W at Li	ftoff			1.423	
T/W Orbi	ter at Staging*	-		1.44	
Booster B	urn Time	sec		130.1	
Maximum Grain Sha	q Limited by				
*Includes **Includes	s abort rocket thrust s abort rocket weight		Remarks: Has 10% extra growth capability in orbiter spacecraft weights		
Synthesis	Ref: SS-20-3T15	``			

Table 3-3. System Summary

Three-view drawing 76Z0864

3-43,3-44

3.2.1 PFB PARALLEL BURN

.

Table 3-4.	Effect of Growth on 156-Inch
	SRM Parallel-Burn System

40k PL 40k Down	Units	Base Impending*	No Growth	
15- by 60-foot PL Bay		Growth	Growth	Provisions
Overall Contingency (B - B _{Attach} - O _{Tank} - O _{RV})	%	10-10-2-10	-20-2-20	10-10-2-10
Staging Velocity	fps	5333	4610	4747
GLOW	M lb	4.898	5.123	4.765
BLOW	М ІЪ	3,112	3.116	2.899
OLOW	M lb	1,785	2.007	1.866
W _{Booster Dry}	k lb	342	345	324
^W Orbiter Tank (BO)	k lb	90.0	99 . 7	92.8
FSL/Boost Element	M lb	2.939	3.074	2.852

*Current design point.

The booster arrangement features sizing and configuration for commonality with Saturn S-1C to utilize existing technologies, tooling, and components. The aft end features an engine protection closure and four fins.

The main propulsion system uses five F-l engines with gimbaled nozzles. The propellants are LO_2/RP .

Figure 3-37 illustrates the configuration. Table 3-9 defines system summary, and Table 3-10 defines the weight.

3.2 OTHER STUDIES

3.2.1 Pressure-Fed Booster - Parallel

Figure 3-38 illustrates this configuration. Table 3-11 presents the system summary.

Weight (1b) Motor Cases (including reinforcing rings) 182,878 TVC System (gimbal, including actuator 7,620 fairings) 39,139 Nozzles 24,766 Liner and Insulation 2,804 External Insulation 2,611 Thrust Termination 1,165 Igniters 2,196 Electrical and Instrumentation 3,600 Nose Cones 16,840 Forward Skirt 22,700 Aft Skirt and Pad Supports 2,346 Attach/Separation Links and Mechanisms, fwd Attach/Separation Links and Mechanisms, 2,244 aft 31,091 Growth (10% of above) 342,000 Dry Weight 500 Igniter Charges 200 APU Propellant 500 Hydraulic Fluid 28,800 **Residual Propellant** 2,740,000 Ascent Propellant 3,112,000 Booster Liftoff Weight

Table 3-5. 156-Inch SRM Booster, Parallel -Two Elements, Weight Summary

3-46

System	stem F-l Pump-Fed, Ballistic Recoverable (4 eng)		Payload Weight 40k lb Polar Payload Bay Size 15 ft diameter by 60 ft		
	Item	U	nits	Design Point	
Gross L	iftoff Weight	Μ	1b	5.274	
Booster	Gross Weight	\mathbf{M}	1Ь	4.032	
Booster	Ascent Propellant	Μ	1b	3.517	
Orbiter	Gross Weight**	M	1 b	1.242	
Orbiter	Weight at Staging	Μ	1b	1.242	
Orbiter	Ascent Propellant	\mathbf{M}	1Ъ	0.867	
O rbiter	Spacecraft Weight	k	lb	176	
Orbiter	Tank Weight (burnout)	k	1b	70.1	
Relative	Staging Velocity	fŗ	S -	5889	
Staging 1	Flight Path Angle	$\mathbf{d}\mathbf{e}$	eg .	25	
Staging I	Dynamic Pressure	psf		5	
Staging .	Altitude	ki	it	219.5	
Maximu	m Dynamic Pressure	p	∍f	648	
SL Thru	st/Booster Engine	M	(1Ъ	1.648	
Vac Thr	ust/Orbiter Engine	k	lb	470	
No. Eng	ines Booster		-	4	
No. Eng	ines Orbiter		- '	3	
T/W at	Liftoff		~	1.25	
T/W Or	biter at Staging*		-	1.62	
				(1.13 w/o abort rockets)	
Booster	Burn Time	S	ec,	166	
*Includ **Includ	les abort rocket thrust les abort rocket weight		Remarks: Has 10% extra growth capability in orbiter spacecraft and booster dry weights		
Synthesi	s Ref: SS-24-0T31				
Three-v	view drawing 76Z0862			· · ·	

Table 3-6. System Summary

3.2.2 SRM PARAMETRIC STUDY

.

.

.

.

Table 3-7. Effect of Growth on Four F-1 Pump-Fed System

40k PL		Base		
40k Down	Units	Impending	Including	No Growth
15 - by 60-foot PL Bay		Growth [*]	Growth	Provisions
Overall Contingency (B - B _{Attach} - O _{Tank} - O _{RV})	%	10-10-2-10	-20-2-20	10 - 10 - 2 - 10
Staging Velocity	fps	5889	4655	4563
GLOW	M lb	5.274	5.617	4.878
BLOW	M lb	4.032	4.062	3,393
OLOW	M lb	1.242	1.555	1.485
W _{Booster} Dry	k lb	430	457	380
W Orbiter Tank (BO)	k lb	70.1	87.7	84.3
^F SL/Boost Element	M lb	1.65	1.68	1.52

*Current Design Point

3.2.2 SRM Parametric Study

The configurations shown in this section were developed for comparison of 156-inch SRM versus 120-inch SRM, parallel versus series burn, and 40k pound Polar versus 45k East Launch missions. The parallel systems are similar in general concept to the 156-inch SRM described previously. The tandem systems consist of clustered SRM elements with an adapter attaching to the end-loaded orbiter tank. The effect of fins versus no-fins was explored on some of the series-burn, tandem-stage candidates for the effect on performance. In general the cost in gross liftoff weight (GLOW) is about +2%(for adding fins to give neutral upflight stability at all times) and about +7%in booster system dry weight.

The use of 120-inch SRMs leads to a large number of elements that appear to be unwieldy, especially in the parallel-staged case where separation from the orbiter tank becomes a problem. This is one of the major reasons for selection of the 156-inch SRM systems as ongoing candidates.

3-51

Table 3-8. F-1 Pump-Fed Ballistic Weight Summary

	4 Engine
Fins, Drag Flaps, Actuation	39,647
Fuel Tank	32,755
Oxidizer Tank	46,948
Nose Structure and Retrieval System	13,563
Intertank	12,952
Thrust Structure, Hold-Downs	18,845
Aft Skirt	31,728
Raceways, Fairings, Separation System	1,500
Base Heat Protection	9,554
Aft Closure System	12,759
Parachutes, Landing Rockets	51,000
Engines, Accessories, TVC	78,608
Propellant Systems	39,852
ACS	2,334
Electronics, Avionics, ECS	5,800
Growth (10%, excluding bare engines)	31,923
Dry Weight	429,768
Residual Fuel	23,842
Residual Oxidizer	28,308
Hydraulic Fluid	876
ACS Propellants	2,500
Thrust Decay Propellants	20,376
Main Impulse Propellants	3,516,504
Booster Liftoff Weight	4,022,174
Adapter	10,100
Booster, Including Adapter	4,032,274
Water Impact Weight	460,000

System F-l Pump-Fed, Ballis Recoverable (5 Eng.)	stic Pay Pay	load Weight 40k lb Polar load Bay Size 15 ft diameter by 50 ft
Item	Units	Design Point
Gross Liftoff Weight	M lb	5.429
Booster Gross Weight	M 1b	4.187
Booster Ascent Propellant	M lb	3.626
Orbiter Gross Weight**	M lb	1.242
Orbiter Weight at Staging	M lb	1.242
Orbiter Ascent Propellant	М 1Ь	0.867
Orbiter Spacecraft Weight	k 1b	176
Orbiter Tank Weight (burnout)	k lb	70.1
Relative Staging Velocity	fps	5890
Staging Flight Path Angle	deg	25
Staging Dynamic Pressure	psf	5
Staging Altitude	kft	219.5
Maximum Dynamic Pressure	\mathbf{psf}	650
SL Thrust/Booster Engine	M lb	1.455
Vac Thrust/Orbiter Engine	k lb	470
No. Engines Booster		5
No. Engines Orbiter	-	3
T/W at Liftoff	~	1.34
T/W Orbiter at Staging*	-	1.62
		(1.13 w/o abort rockets)

Table 3-9. System Summary

*Includes abort rocket thrust
**Includes abort rocket weight

Remarks: Has 10% extra growth capability in orbiter spacecraft and booster dry weights

Synthesis Ref: 02/17/72

Three-view drawing 76Z0871

	Weight (lb) (5 Engine)
Fins, Drag Flaps, Actuation	40,000
Fuel Tank	33,000
Oxidizer Tank	47.000
Nose Structure and Retrieval System	15,000
Intertank	13,000
Thrust Structure, Hold-Downs	20,000
Aft Skirt	45,000
Raceways, Fairings, Separation System	1.500
Base Heat Protection	10.000
Aft Closure System	15,000
Parachutes, Landing Rockets	55,000
Engines, Accessories, TVC	93,000
Propellant Systems	42,000
ACS	2,500
Electronics, Avionics, ECS	6,000
Growth (10%, excluding bare engines)	35,000
Dry Weight	473,000
Residual Fuel	24,000
Residual Oxidizer	29,000
Hydraulic Fluid	1,000
ACS Propellants	2,500
Thrust Decay Propellants	21,900
Main Impulse Propellants	3,625,500
Booster Liftoff Weight	4,176,900
Adapter	10,100
Booster, Including Adapter	4,187,000
Water Impact Weight	500,000

Table 3-10. F-1 Pump-Fed, Ballistic Weight Summary

System Pressure Fed Booster Series	Payload Payload	l Weight 40k lb Polar l Bay Size 15 ft diameter by 60 ft
Item	Units	Design Point
Gross Liftoff Weight	M 1b	6.560
Booster Gross Weight	M lb	4.797
Booster Ascent Propellant	M lb	3.999
Orbiter Gross Weight**	M lb	1.763
Orbiter Weight at Staging	M lb	1.370
Orbiter Ascent Propellant	M lb	1.372
Orbiter Spacecraft Weight	k lb	176
Orbiter Tank Weight (burnou	t) klb	89
Relative Staging Velocity	fps	5570
Staging Flight Path Angle	deg	19,1
Staging Dynamic Pressure	\mathbf{psf}	38
Staging Altitude	kft	160
Maximum Dynamic Pressure	e psf	650
SL Thrust/Booster Engine	M lb	0.890
Vac Thrust/Orbiter Engine	k lb	470
No. Engines Booster	-	2 × 4
No. Engines Orbiter	-	3
T/W at Liftoff		1.25
T/W Orbiter at Staging*	-	1.517
1, if Orbiter at oraging.		

Table 3-11. System Summary

(1.06 w/o abort rockets)

*Includes abort rocket thrust **Includes abort rocket weight Remarks:

Synthesis Ref: NR 01/28/72

Three-view drawing 76Z0861

The selected design points were based on minimum system GLOW and dry weights after surveying the staging flightpath angle and system staging velocity ranges. The maximum dynamic pressure was constrained to 650 psf by grain shaping and proper selection of T/W at liftoff. Figure 3-39 shows an example.

The study matrix, system summary results, and layouts are contained in Tables 3-12 through 3-15 and Figures 3-40 through 3-47.

Figure 3-39. Series Burn 156-Inch SRM System GLOW and Dry Weight Versus Staging Velocity and Flight Path Angle

Table 3-12. SRM Booster Sizing

Ground Rules

40k Polar is critical mission

45k PL East is alternative mission

			Series I	Burn		,	Parallel I	Burn	
	401	GLOW	5.541 M	v_s	4888 fps	GLOW	5.254M lb	vs	5214 fps
	40k Polar	BLOW	4.134 M	γ_{s}	25 deg	BLOW	3.438M lb	γ_s	30 deg
120-	. 	OLOW	1.407 M	Eler	ments* 6/7	OLOW	1.816M lb	Eler	ments 5/7
Inch Diameter	4 5 1-	GLOW	4.674 M	v_s	4654 fps	GLOW	4.357M	vs	5198 fps
	East	BLOW	3.462 M	$\gamma_{_{\mathbf{S}}}$	30 deg	BLOW	2.750M	γ_s	26 deg
		OLOW	1.212 M	Eler	ments*5/7	OLOW	1.607M	Eler	nents 4/7
	40k Polar 45k East	GLOW	5.158 M	vs	4663 fps	GLOW	4.765М 1Ъ	vs	4747 fps
		BLOW	3.673 M	γ_{s}	25 deg	BLOW	2.899M Ib	γ_{s}	30 deg ^
156-		OLOW	1.485 M	Eler	nents 3/3	OLOW	1.866M 1b	Eler	nents 2/4
Inch Diameter		GLOW	4.365 M	vs	4564 fps	GLOW	4.096M lb	Vs	5,051 fps
		BLOW	3.128 M	γ_{s}	25 deg	BLOW	2.500M 1b	γ _s	30 deg
		OLOW	1.237 M	Eler	nents 3/3	OLOW	1.596M lb	Eler	nents 2/3
·		<u> </u>							

*Number of booster solid rocket elements/segment

SRM Diameter			156	Inch			120 Inch			
PL Wt, Mission, Bay Size		40k Pola	r 15×60 ft	45k Eas	t 14×45 ft	40k Pola	r	45k East	: 14×45 ft	
Burn Mode		Series	Parallel	Series	Parallel	Series	Parallel	Series	Parallel	
GLOW BLOW OLOW _{LO} Wp Ascent Booster Wp Ascent Orbiter WDry Booster* WOrbiter Spacecraft**	M lb M lb M lb M lb M lb k lb k lb	5.158 3.673 1.484 3.218 1.097 453 176	4.765 2.899 1.866 2.549 1.557 324 176	4.365 3.128 1.237 2.724 0.869 403 166	4.096 2.500 1.596 2.191 1.217 286 166	5.541 4.134 1.407 3.511 1.024 593 176	5. 254 3. 438 1. 816 2. 932 1. 422 481 176	4.675 3.462 1.212 2.943 0.845 494 166	4. 357 2. 750 1. 607 2. 345 1. 228 385 166	
^V STAGE REL ^V STAGE REL ^γ STAGE ^h STAGE ^q STAGE ^t STAGE	fps deg kft psf sec	4663 25 117 162 122	92.8 4747 30 142 56 123.1	4564 25 117 153 123.5	5051 30 151 45 123.5	4888 25 142 62 128.3	5214 30 162 31 128.3	4654 30 146 46 127.3	5198 26 150 49 128.3	
No.Elements Booster FSL per Boost Element q _{Max} F/W _{LO}	M lb psf Total System	3×3 seg 2.235 650 1.300	2×4 seg 2.852 645 1.427	3×3 seg 1.891 651 1.300	2×3 seg 2.457 669 1.467	6×7 seg 1.29 7 674 1.404	5×7 seg 1.308 651 1.453	5×7 seg 1.404 650 1.404	4×7 seg 1.307 651 1.451	
OLOW Staging*** F/W Orb w Abort Rocket F/W Orb w/o Abort Rocket	M lb At Staging	1.484 1.355 0.95	1.500 1.34 0.94	1.237 1.63 1.15	1.230 1.63 1.15	1.407 1.43 1.03	1.422 1.41 0.99	1.212 1.86 1.16	1.214 1.86 1.16	
λ Booster* λ Orbiter Tank Synthesis Run No.		0.875 0.927 SS-20-	0.881 0.940 SS-20	0.873 0.925 SS-20-	0.877 0.939 SS-20-	0.852 0.927 SS-20-	0.855 0.940 SS-20-	0.852 0.925 SS-20-	0.855 0.939 SS-20-	

Table 3-13. SRM Booster Shuttle System Selected System Summary

* Including Adaptor, ** Less Abort Rockets, ***Including Abort Rockets. (All orbitors have 3×470 k vac H_LP_C plus 87,500 lb abort rockets)

0T30

3T8

1T8

2T8

1T11

2T12

3<u>T11</u>

0 T 2 1

3 - 63

Table 3-14. 156 Inch Diameter SRM - Configuration Comparison

3 - 64

BURN	SERIES	SERIES	PARALLEL	PARALLEL
PAYLOAD (1b)	40k	45k	40k	45k
MISSION	POLAR	EAST	POLAR	EAST
NO. SRM ELEMENTS	3	3	2	2
GLOW (1b)	5. 159M	4.365M	4.765M	4.096M
BLOW (1b)	3. 674M	3.128M	2.899M	2.500M
OLOW (1b)	1. 485M	1.237M	1.866M	1.596M
V _{STAGE} fps	4,663	4,564	4,747	5,051

2

.

5.254M

3.438M

1.816M

5,214

4.357M

2.750M

1.607M

5,198

4.675M

3.462M

1.212M

4,654

GLOW (1b)

BLOW (1b)

OLOW (1b)

V_{STAGE} fps

5.541M

4,134M

1.407M

4,888

4.0 COMPARISON OF ISSUES

ŝ.

4.0 COMPARISON OF ISSUES

4.1 ASSESSMENT OF BOOSTER ISSUES

The booster basic issues, area of concern, and assessments are defined by Table 4-1 for series pressure-fed boosters, Table 4-2 for series pump-fed boosters, and Table 4-3 for parallel solid-rocket motor (156 in.). These items are considered to be the important issues for each booster with the key issues outlined in the blocks. The assessments provide the approaches to be taken, current technologies available, and areas requiring further development.

4.2 APPROACH TO MINIMIZE RISK

The approach to minimize the risks attendant to the booster issues previously identified are defined by Table 4-4 for series pressure-fed booster, Table 4-5 for series pump-fed booster, Table 4-6 for parallel solid-rocket motor (156 inch).

The solutions described for each booster define state-of-the-art technologies, conservative performance estimate utilization, element testing, and model testing to avoid major program impacts. In the solid-rocketmotor (156 inch) booster program the solutions also require early development testing for starting sequence, thrust termination, and malfunction detection.

4.3 COST IMPACT OF PROGRAM ASSUMPTIONS

Comparison of cost due to requirements imposed on the pressure-fed booster and those imposed on the pump-fed booster are shown in Table 4-7. The proposed modification of the pressure-fed booster requirements and associated cost are provided for program consideration. The proposed modifications to requirements will align the pressure-fed booster development to be minimum type program matching the capabilities of the pump-fed booster.

BC	OSTER ISSUES	AREAS OF CONCERN	ASSESSMENT
1	PRESSURE-FED ENGINES • Weight • Isp	 Confidence in weight estimates Impact on performance 	Weight Estimate Spread 11,952 14,678 16,483 Selected • 0.91 theoretical lsp is accented practice
	Combustion	• Stability	 Successful firings on smaller engines. Characteristics of larger engines uncertain.
6	Pressurization System ENTRY	 High flow rate heat exchangers (N₂H₄/LN₂) 	 New development Design criteria available
	• Stability & Cont.	 Ability to damp separation disturbances 	 SOA aerodynamics (no active control system) Separation disturbances uncertain

4-2

AREAS OF CONCERN	ASSESSMENT
• Terminal conditions for recovery sensitive to W/C _D A	 SOA aerodynamics Degree of potential weight growth
 Deployment & staged reefing of clustered, large-diameter chutes at subsonic speed (M ≤ 0.7) Initial impact loads Slapdown loads 	 Individual chute design – SOA Multiple chute deployment demonstrated on lower speed systems. Scale-model tests being conducted No comparable full-scale operation
Number of vehicles, spares & maintenance personnel required	 Extensive aircraft, ship & submarine data bank Must extrapolate to PFB environment.
	AREAS OF CONCERN • Terminal conditions for recovery sensitive to W/CDA • Deployment & staged reefing of clustered, large-diameter chutes at subsonic speed (M≤0.7) • Initial impact loads • Slapdown loads • Number of vehicles, spares & maintenance personnel required

Table 4-2. Assessment of Series Pump-Fed Booster (F-1 Engine) Issues

BOOSTER ISSUES	AREAS OF CONCERN	ASSESSMENT
1 PUMP-FED ENGINE		
• F-1 Reusability	Ability of proven F-1 to take impact loads & repeated use	 F-1 engine designed & qualified for specified loads, duration F-1 test history indicates multiple reuse feasible F-1 not designed for impact loads, maintainability
2 ENTRY • Stability & Control	• Ability to damp separation disturbances	 SOA aerodynamics Separation disturbances uncertain

*

Table 4-2. Assessment of Series Pump-Fed Booster (F-1 Engine) Issues (Cont)

ASSESSMENT	BOOSTER ISSUES	AREAS OF CONCERN
③RECOVERY	 Terminal conditions for recovery sensitive to W/C_DA 	 SOA aerodynamics Degree of potential weight growth
Chute Deployment • Retro System Operation • Water Impact	 t • Deployment & staged reefing of clustered, large-diameter chutes at subsonic speed M≤0.5 • Final vehicle orientation with respect to water at impact • Initial impact loads 	 Individual chute design – SOA Multiple-chute deployment demonstrated on lower speed systems Avionics for orientation system – SOA Effects of tolerances & single failures must be accounted for in design Scale-model tests being conducted Correlation of data difficult No comparable full-scale operation
(4) RETRIEVAL & REFURBISHMENT		
• Retrieval • Turnaround/spare	 Effect of retrieval on component life/structure No. of vehicles, spares & maintenance personnel req. 	 Establishment of retrieval environmental criteria Evaluation of qualified Saturn S-IC components Extensive aircraft, ship & submarine data bank Experience with S-IC checkout, static firings Extrapolation to new environment & use

.

4 -5

,

BOOSTER ISSUES	AREAS OF CONCERN	ASSESSMENT
 (1) SRM • Simultaneous Ignition 	 Asymmetrical conditions during start sequence 	• TINC ignites two large solids
 Hold-down requirement 	 Malfunction detection with adequate reaction time Effects of "on pad" thrust termination 	 New development — presents test difficulties
• Environment	• Effects of air pollution & acoustic noise on surrounding areas	 Environment acceptable – to Federal Standards
• TVC	• Lack of operational gimbal experience in large SRM	 SOA designs exist. Can be sized to booster application

Table 4-3. Parallel, Solid-Rocket-Motor Booster (156 in.) Issues (Cont)

AS	SSESSMENT	BOOSTER ISSUES	AREAS OF CONCERN
2 A	BORT		
	• SRM Separation	Ability of parallel staged SRMs to clear orbiter	 New development – difficulties due to thrust termination, asymmetrical thrust decay of 2 SRMs & booster/orbiter aero & dynamics
	• Thrust Termination	 Burning of solid propellant continues Ability to balance thrust rapidly without damaging orbiter. 	 Booster/orbiter configuration arrangement driven by SRM abort concept New development TT port to avoid plume or projectile damage to orbiter New-development MDS with adequate reaction time
3) si	EPARATION • Separation	• Ability of parallel SRM to	• New development expect difficulties due to
·	 Separation 	Ability of parallel SRM to stage from orbiter	 New development — expect difficulties due to asymmetrical thrust decay of 2 SRMs.

Table 4-4. Approach to Minimize Risk Series Pressure-Fed Booster

() PFE	
• Weight	 Select midpoint of current estimates
	Include 10% factor in engine weight
• İsp	 Minimum guaranteed lsp to be used
·	 Tank volume based on minimum lsp
 Combustion Stability 	 Early development testing of
	l∕ Injector
	r∕ Single engine firing
Pressurization system	 Modular design for confident scale-up & redundancy
	 Early testing of system elements
Stability & Control	 Select staging conditions (q = 73) and fins for aerodamping
	 Straight-forward ballistic entry used
	Predictable aerodynamics
	✓ Early wind tunnel verification tests

.

3	RECOVERY	
	 Ballistic Coefficient 	• Early wind tunnel verification tests
		 Design for drag growth
		✓Increased drag flap area/deflection
	Parachute deployment	Design for subsonic chutes only
		•Early test program
		✓ Scale model
		Full-scale — single chute/cluster of 3/cluster of 6 reefed
	Water Impact	 Scale-model tests of rebound attenuators
		 Early large scale-model testing
		 Continue with design alternatives (soft landing with retros)
	RETRIEVAL &	
٩	REFURBISHMENT	
	 Turnaround & 	 Early verification of impact design criteria
	Spares	 Rugged design for impact & sea environment
		•Design for maintainability

1

D PUMP FED ENGINE	
• F-1 Reusability	 Support engine against inertia loads at impact & retrieval
	 Modify selected F-1 components
(2) ENTRY	
Stability & Control	 Provide reaction control system
	 Straight-forward ballistic entry used
	Predictable aerodynamics

V Early wind tunnel verification tests

4-10

Table 4-5. Approach to Minimize Series Pump-Fed Booster (F-1 Engine) Risk (Cont)

③ RECOVERY	
Ballistic Coefficient	 Early wind tunnel verification tests
	Design for drag growth
	✓ Increased drag flap area/deflection
Parachute Deployment	Design for subsonic chutes only
	• Early test program
	✓ Scale model
· ·	✓ Full-scale – Single chute/cluster of 3/cluster of 6 reefed
• Retro System Operation	•Minimize spread of impact attitudes & velocities & account for in design
Water Impact Scale-model tests of impact attenuators	
	Early large-scale model testing
RETRIEVAL &	
(4) REFURBISHMENT	
•Retrieval	• Early verification of design criteria
• Turnaround & Spares	 Consider retrieval alternatives (sea pickup/barge return)
	Design structure for impact & sea environment
	Design for maintainability
	 Modify selected S-IC components for extended life, maintainability.

Table 4-6. Approach to Minimize Parallel Solid Rocket Motor Booster (156 in.) Risk

	• Early testing necessary to develop start sequence, termination sequence
2 ABORT	(normal & abort) & maitunction detection system
3 SEPARATION	• Performance characteristics of SRMs must be fully analyzed for effects on booster/orbiter configuration arrangement & environment.

4-12

Table 4-7. Cost Impact of Program Assumptions

¥-13

SD 72-SH-0012

1

Ň