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I. Introduction

The present technical report is concerned with the viscosity and thermal

conductivity of oxygen over a wide range of temperatures and pressures

including temperatures and pressures close to that of the critical point.

The experimental information available for the transport properties of

oxygen is summarized in Section II. Unfortunately, this experimental

information is of limited scope and reliability. As a result it is

difficult to produce authorative tables of the transport properties of

oxygen covering a wide range of temperatures and pressures. Therefore,

any tabulation of the transport properties of oxygen at this time must

be based on estimated values and will be subject to revisions as further

experimental data and better methods for predicting and correlating

transport properties will become available.
i

For most technological applications it is desirable to represent the

transport properties as a function of the pressure P and the temperature T

of the fluid and we shall indeed present tables of transport properties in

terms of these variables. However, in order to produce such tables it is

convenient, if not necessary, to analyze the transport properties in terms

of the density p and the temperature T of the fluid [1]. In doing so we

decompose the viscosity, T}, and the thermal conductivity, A, into three

separate contributions:

T| = n(P/T) = no(T) + Ari(P) + Acn(p,T) , (la)

X = A(p,T) = A0(T) + AA(p) + A A(p,T) , (Ib)
c

Here, no (T) and X0(T) are the values of the transport coefficient at the

temperature T in the limit of low pressures, Ar|(P) and AA (P) are the so-

called excess values which measure the enhancement of the viscosity and

thermal conductivity, respectively, at a given temperature T and density

1



p over its dilute gas value, while A n(PfT) and A X(P,Tl represent the
c c

additional anomalous contribution in the region around the critical point.

To an approximation, adequate for the purpose of this report, the excess

values Ari(p) and AX(p) will be treated as a function of the density only.

The procedure is illustrated in Fig. 1 which shows schematically

the thermal conductivity X(p,T) as a function of the density p at three

temperatures T < T < T above the critical temperature T . In an appre-

ciable range of supercritical temperatures the thermal conductivity is

known to exhibit an anomalous increase in a range of densities around the

critical density p . The dilute gas value X0(T) in (Ib) is the value ofo

X(P,T) in the limit p -> 0, the excess value AX (p) in (Ib) is the differ-

ence between the values represented by the dashed curves in Fig. 1 and

X0(T), and the term A X(p,T) represent the additional contribution to be
C

added to account for the effect of the vicinity of the critical point.

In Fig. 1 we have indicated explicitly these three contributions at

p=p and T=T,.
c 1

Our method for calculating the dilute gas values r)0 (T) and X0 (T) is

based on the kinetic theory of gases and is described in Section III.

The excess values Ar)(p) and AX (p) will be represented by an empirical

equation discussed in Section IV. A method for estimating the critical

enhancement A X(p,T) in the thermal conductivity is described in Section V.

This method is based on an empirical extension of the ideas presented in a

preceding NASA Contractor Report [2]. Although a critical enhancement

A r|(p,T) in the viscosity does exist, it is much smaller than the corre-

sponding effect in the thermal conductivity and it will be neglected for

the purpose of this report.



Figure 1. Schematic representation of the thermal conductivity A(p,T)
as a function of the density p at three supercritical temp-
eratures T <T,<T <T .

c 1 2 3



In Appendices A and B we present some additional information in

support of the calculation procedures used in this report.

Tables of estimated values for the viscosity and thermal conductivity

of oxygen are presented in Section VI. Except for the data in the

immediate vicinity of the critical point, we assign to these values an

accuracy of 10-15%.



II. Experimental information.

2.1 Dilute gas

Experimental data for the viscosity of oxygen at low pressures have

been reported by several authors, specifically Wobser and Miiller [3],

Kestin and Leidenfrost [4], Andrussow [5], Van Lierde [6], Johnston and

McCloskey [7], Trautz et al. [8], Raw and Ellis [9] and Van Itterbeek

and Claes [10]. The data from these sources are numerous and cover a

wide temperature range. Unfortunately, an analysis of available vis-

cosity data for many common gases other than oxygen indicates that most

of this work must be considered out of date. The state of the art for

measuring the viscosity has improved significantly since about 1967

[11-14] and it is now generally accepted that most of the earlier data

are systematically in error at temperatures below 250 K. and above 400 K.

At temperatures between 400 K and 2000 K modern experiments give vis-

cosity coefficients that tend to be 1-10% larger than their older equiv-

alents, the difference increasing with tenperature. At low temperatures

the discrepancy is less pronounced but the modern data are generally

1/2 - 2% below the older data, the difference increasing as the temperature

decreases.

The difference between the old and the modern data is plotted in

Fig. 2 as a function of temperature. It turns out that this difference

is almost independent of the nature of the gas and Fig. 2 is based on

available measurements for helium, argon, krypton, methane, nitrogen and

air. In order to construct this figure the older data were taken from

Trautz [15] and Johnston et al. [7,16] and the modern data from Kestin
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et al. [11], Smith et al. [12] and Guevara et al. [13]. For further

discussions concerning this discrepancy the reader is referred to the

literature [11-14].

In view of this discrepancy the viscosity data for oxygen below

250 K and above 400 K are expected to be subject to similar errors. We

estimated these errors by assuming them to be the same as for the other

gases and we adjusted the viscosity data of references [7~9] by the

amount shown in Fig. 2. The adjusted viscosity values are listed in

Table I.

Values for the thermal conductivity of oxygen have been reported by

various authors [17-27]. However, due to basic difficulties in measuring

the thermal conductivity coefficient, the data are imprecise and agreement

between different authors is not good; even results from a single author

may frequently scatter by 5% or more. However, it will be shown that

kinetic theory can be used to predict the thermal conductivity and the

data are required only to check our calculated values.

2.2 Dense gas and liquid

Viscosity data for the saturated liquid are reported in references

[28-30]• At a given temperature the data sets agree to within 5-15% with

the discrepancies becoming more apparent as the critical temperature is

approached. Viscosity data for oxygen at liquid densities and temperatures

off the saturation boundary are reported only by Grevendonk et al. [30].

Viscosity data for dense oxygen at temperatures above the critical

temperature are scarce and appear to be given only in references [4] and

[31] . One must conclude that, in the experimental coverage of the viscosity,

gaps exist between the dilute gas and the liquid state.



Table I

Adjusted experimental viscosities for oxygen at low pressures.

Temperature

K

90.3

118.8

131.3

144.9

158.5

172.6

184.6

400.8

500.1

550.1

556.1

675.1

769.1

881.1

963.1

1102.1

Viscosi

milligram/

0.0679

0.0890

0,0979

0,108

0.117

0,128

0,137

0,258

0,305

0,327

0.328

0.377

0.411

0.450

0.477

0,521



Experimental data for the thermal conductivity of oxygen are

reported by Ziebland and Burton £32], Ivanova, Tsederberg and Popov I33J

and Tsederberg and Timrot 124] . The different data sets agree to within

about 10%.

It has been demonstrated that the thermal conductivity of many

gases exhibits an anomalous increase in a wide range of densities and

temperatures around the critical point 11,2]. However, no experimental

data for the thermal conductivity of oxygen in the critical region are

currently available.

Some additional experimental sources are mentioned in the compilations

of Childs and Hanley [34], Ho et al. [35J, Maitland and Smith I36J and

Vasserman et al. [37].

The many applications of oxygen in science and engineering notwith-

standing, the data coverage for the viscosity and thermal conductivity

coefficients of oxygen is poor. This lack of reliable data hampers the

production of authorative tables of transport properties of oxygen

covering a wide range of temperatures and pressures.



III. Transport properties of the dilute gas.

3.1 Equation for viscosity

In the kinetic theory of gases the viscosity coefficient r)0(T) in

equation (la) is given by [38,39].

, % 5
"•«' - 16 - <2)-

where m is the weight of a molecule, k is Boltzmann's constant, and T the

( J J ̂  *
temperature in Kelvin. The quantity Q ' • is a dimensionless collision

integral which takes into account the dynamics of a binary collision and

is characteristic of the intermolecular potential of the colliding mol-

ecules. For a given potential, $ (r) , with an energy parameter e [defined

(2 2) *
as the value of $ (r) at the maximum energy of attraction] SI ' can be

determined as a function of the reduced temperature

T* = T/(e/k) (3)

The parameter a is a distance parameter, also characteristic of the

intermolecular potential, and is the value of r when $ (r) = 0.

For the purposes of this report we use collision integrals based on

an intermolecular potential $ (r) that is spherically symmetric. This

procedure applies strictly to the noble gases only and not to a polyatomic

gas like oxygen. However, it is possible to use a spherically symmetric

potential to correlate the transport properties of single polyatomic gases,

if one is satisfied with a precision of about 5% [40] .

The specific relationship between the collision integrals fi '

and $ (r) is as follows. A variable g* is defined as the reduced relative

10



2 2
kinetic energy of two colliding molecules: g* = yg /2£, where y is the

reduced mass and g the relative velocity. An impact parameter b is defined

as the distance of one molecule from the direction of approach of another

before collision.

With r the intermolecular separation and r the distance of closest

approach, the angle of scatter, x> after a collision is related to the

potential by [39]

„.... dr* n b* $* .
X = TT-2b*/ — 1 ~ - —r C4)

r*c

where the variables are reduced according to the relations: b* = b/a,

r* = r/a, r* ~ r /a, $* = $/E. Integration of y over all values of b*
c c

yields the cross section, Q*f

£
- cos x)b*db* C5)

1 (1 + (-1)*)
2 1 +

(£)*
£Q is dimensionless and has been reduced by the corresponding value

for molecules interacting with a hard sphere potential .J Finally, integration

of Q*over all values of g* gives

/ f C6)
'

/ ̂  O ̂ *and n ' follows when £,s are both set equal to 2.

11



3.2 Equation for thermal conductivity.

In order to calculate the thermal conductivity coefficient X0 (T) in

equation (Ib) for a polyatomic gas we use the kinetic theory expression

derived by Mason and Monchick [41]

^ 0 (T ) = ~~7 ~ H0 + PD0c"O V ' A frt 'O ~ O .- TTZ

where c " is the internal specific heat per molecule of the dilute gas,

Z the rotational collision number (defined as the number of collisions

needed to relax the rotational energy to within 1/e of its-equilibrium

value, where e is the natural logarithm base), and D0 a diffusion co-

efficient for internal energy. In practice, D0 is approximated by the

self diffusion coefficient to be obtained from

= 3 (mnkT)
1/2 . (8)

°"-8 mrV1'1'*

Here S7 ' is the collision integral for diffusion, given by equation (6)

with £,s set equal to 1. It is also noted that equation (7) has been

linearized by neglecting terms in the denominator of the third term that

depend on the rotational collision number Z.

3.3 Intermolecular potential function.

It is apparent from equations (2-8) that, given c " and Z, the cal-

culations for the viscosity and thermal conductivity coefficients are

straight forward once the function $(r) is known. Unfortunately, obtaining

<Hr) for a fluid presenta a problem: except for the very simplest systems,

•Hr) has to be based on a model of the intermolecular interaction and so

uncertainty is inevitably introduced into kinetic theory or statistical

mechanical calculations. Nevertheless, model functions are often all

12



that one requires if they are employed carefully. For example, a

recent function, proposed by Klein and Hanley [ 40, 421 has been found to

be very useful . The function is called an m-6-8 potential and has the

form:

where r* = r/CJ, d = r /a, r being the distance corresponding to the
m m

minimum of the potential: $(r ) = -e. The potential function (9) has
m

four parameters; in addition to £ and 0 (or r ) , the potential function

contains a parameter m determining the strength of the repulsive part

and a parameter y representing an attraction due to the presence of

_p
the r* term.

The basic equations (2) , (7) and (9) involve several approximations

when applied to a polyatomic gas such as oxygen, the most serious of which

is that the potential function (9) is spherically symmetric. However,

we have demonstrated in earlier papers that the potential function (9)

can nevertheless be used to correlate the transport properties of simple poly-

atomic gases to within experimental error [40,43,44] . Therefore, since our

objective here is indeed to correlate transport properties, we 'feel

justified to employ the m-6-8 potential (9) with equations (2) and (7)

as given. Some additional information in support of this procedure is

presented in Appendix A.

13



3.4 Application to oxygen.

Following a procedure described in earlier publications 140,43J

the adjusted experimental viscosities listed in Table I lead to the

following parameters of the m-6-8 potential function t9):

m = 10, Y = 1.0, a = 3.437A (r = 3.8896A), eA = 113.OK. CIO)

(2 2) * (1 1) *
Tables of the collision integrals fi ' and fi ' as a function of T*

are available for several values of the parameters m and y [45]. In order

to calculate the thermal conductivity coefficient X0(T) we need in addition

the internal specific heat c " and the rotational collision number. The
v

internal specific heat c " is well known and was taken from ref. [46] .

The rotational collision number is less certain, but Sandier has surveyed

the methods for determining Z and concluded that, for oxygen, Z ~ 2 at

100 K and varies smoothly to Z=7 at 1000 K [47]. Therefore, between 100 K

and 1000 K the value of Z as a function of temperature was obtained by

interpolating between these values, while for temperatures above 1000 K

Z was set equal to 7.5. It was verified that the calculated thermal

conductivities were insensitive to the precise value assigned to Z.

Having values for c ", Z, e, a and the collision integrals, the

viscosity and thermal conductivity coefficients of dilute gaseous oxygen

were calculated from equations (2) and C7) as a function of temperature. The

differences between experimental and calculated transport coefficients

are shown in Figs. 3 and 4 for the viscosity T10(T) arid the thermal

conductivity~A0(T),respectively. We regard the agreement between ex-

perimental and calculated values as satisfactory and used, therefore, this

14
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method to generate a table of values for T\ (T) and A (T) (Table III in

Section VI).

The uncertainty in the data and the . approximations in the calculations

make it difficult to assign an accuracy to the tabulated coefficients. On

the basis of the deviation curves, however, we attribute an estimated

uncertainty of 3% to the viscosity values at temperatures up to 1000 K,

while the error could be as large as 5% at temperatures between 1000 K

and 2000 K. The possible uncertainty in the thermal conductivity values

is estimated to be 5% at all temperatures.



IV. Transport properties of the dense gas and liquid.

4.1 Excess functions

As a next step we need to estimate the excess functions Ari(p) and

AA(p), introduced in equations (1), which account for the behavior of

the transport coefficients of the dense gas and liquid at temperatures

and densities away from the critical point. Many investigators have

noted that these excess functions for fluids other than helium and

hydrogen are nearly independent of temperature when plotted as a function

of density [1,48]. Thus a considerable amount of data obtained at

different densities and temperatures can be represented to a first approx-

imation by a single curve as a function of density, including data for the

saturated vapor and liquid. Conversely, use of the excess functions Ar|(p)

and AX(p) enables us to estimate values for the transport coefficients

over a wide range of experimental conditions from experimental data in

a narrow range of conditions.f

4.2 Application to oxygen.

.The correlation technique used in this report is to fit selected

experimental data with the assumption that outside the critical region

The empirical rule that the excess functions are independent of the
temperature is only approximately true. A small temperature
dependence of the excess functions does exist which becomes more
pronounced at large densities such as densities twice the critical
densities. It turns out that at large densities C3An/3T) is negative
[1,48]. The rule breaks down for the thermal conductivity in the
critical region where an additional anomalous contribution must be
taken into account as discussed in Section V. In this latter case
the more detailed equations (la),Qb) have to be considered.

18



the excess functions An(P) and AA(p) are independent of the temperature.

The excess viscosity Ari(p) was represented by the following two

equations

For p ̂ 0.932 g/cm

A n ( P ) = 0.47293P - 0.17410P2 + 0.59995P (11)

and for p > 0.932 g/cm

A n ( P ) = 0.6539P + 0.000029886exp(9.25p-1.0)

where p is expressed in g/cm and ri in milligram/cm.s. These functions

were chosen on the basis of the excess viscosity values deduced from the

data of Grevendonk [30] and presented in Fig. 5. Data from ref. [4] and

[31] were also used to check that in the limit of low densities Ai~|(p)

approached zero in a consistent manner. The excess viscosity was

represented by the two equations in (11), because of the sharp increase

of the slope at a density twice the critical density.

An equation for the excess thermal conductivity AA(p) was obtained

by fitting a polynomial to the excess values deduced from the experimental

data of Ziebland and Burton [32].

AA(p) = 62.808p - 49.337p2 + 252.43p3 - 515.28p4

+ 544.61p5 - 189.91p6 (12)

where p is expressed in g/cm and A in milliwatt/m.K. The excess

thermal conductivity is shown in Fig. 6.

I should be emphasized that equations (11) and (12) are empirical

19
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representations for interpolating the experimental data. The kinetic

theory of gases predicts that the transport properties are nonanalytic

functions of the density and that the density expansions for viscosity

2
and thermal conductivity should contain terms such as p Inp. However,

the questions of how important such terms are in practice is presently

unresolved [49,50].

The excess values, Ari(p) and AA (p), calculated from equations (11)

and (12) were added to the dilute gas values, )10 (T) and A0 (T) , res-

pectively, obtained in Section III. The densities were converted into

pressures and vice versa using the equation of state. A discussion of

the equation of state of oxygen is beyond the scope of this report.

All calculations of the equilibrium properties in this report are

based on the equation of state developed by Stewart, Jacobsen and

Myers [51].
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V. Thermal conductivity in the critical region.

5.1 Behavior of the transport properties near the critical point.

A survey of the behavior of the transport properties of fluids in

the critical region was presented by one of us in a preceding technical

report [2]. In order to account for this behavior we introduced in

equations (1) anomalous contributions A l"|(p,T) and A A(p,T) defined as
c c

Acn(p,T) = n(P,T) - n0(T) - An(p) , U3a)

AcX(p,T) = X(p,T) - X0(T) - AX(p) , (I3b)

where Ari(p) and AX(p) are the temperature independent excess functions

discussed in Section IV.

The viscosity appears to exhibit a weak anomaly and A n increases

logarithmically as the critical point is approached [52]. However, the

effect can only be noticed very close to the critical point and may be

neglected for most engineering purposes [53]. The thermal conductivity,

however, exhibits a strongly anomalous behavior which can be noticed in

a large range of densities and temperatures around the critical point [53J,

In a previous technical report we have argued that on approaching

the critical point the asymptotic behavior of A X (p,T) may be represented
c

by

kT
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where c and c are the specific heats at constant pressure and volume
p v

and £ is a length parameter known as the long range correlation length

[2/54]- Equation (14) is based on the idea that the anomalous contribution

to the thermal conductivity is determined by the mobility kT/6TiT|C of

clusters with an effective radius £. Using the thermodynamic relation

cp - c_ = -I — I J^ US)

where K = p (3p/3P) is the isothermal compressibility, equation (14) can

be rewritten as

5.2 Equation for A X(p,T)

In order to discuss the critical enhancement in the thermal conductivity

it is most convenient to consider the reduced variables

~ T - T _ p - p
AT = —j-Z Ap = —2- (17)

c c

where T , p are the temperature and density of the critical point. It
c c

should be emphasized that equations (14) and (16) represent the asymptotic

behavior of A A(p,T) in the limit AT -»• 0 and Ap -»- 0. In practice, thec

validity of these equations is limited to the approximate range

|AT| ^ 3% and |Ap| £ 25%. However, experiments for carbon dioxide and

steam indicate that the region of the actual anomalous behavior extends
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as far as |AT| ~ 20% at p = pc and as far as JAp.| - 50% at T = TC [55].

It is, therefore, necessary to develop a more general equation in order

to represent the entire thermal conductivity anomaly.

A previous attempt to estimate the anomalous thermal conductivity

ACA(P,T) was made by Hendricks and Baron [56]. Their approach was based on

some theoretical considerations of Brokaw [57J,but required the intro-

duction of empirical adjustments. In this report we try to represent the

anomalous thermal conductivity by a phenomenological equation which

does reduce to the asymptotic behavior (16) in the limit AT -»• 0 and

Ap ->• 0 and vanishes for large values of AT and Ap. Specifically, we

consider

o

AcA(p,T) = JS^ f|Ĵ  "KT exp{-a|AT|2}exp{-B|Ap|4} ' (18)

The parameters a and $ are related to the range of temperatures and

pressures at which the anomalous thermal conductivity is observed.

Experiment indicates that this range is the same for different gases [54] .

The actual values for the parameters a and 3 were selected from an anal-

ysis of the observed thermal conductivity anomaly for CO_[2], namely

a = 18.66 , 6 = 4.25 119)

Equation (18) represents a preliminary empirical attempt to describe

the anomalous thermal conductivity and will be subject to revision in the

future. However, in Appendix B we provide evidence that equation (18) does

approximate the observed anomalous thermal conductivity for a variety of

fluids.
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5.3 Correlation length

•' Equation (18) contains the length- £ which is the range of the

pair correlation function of the fluid. This range becomes very large

near the critical point. The Ornstein-Zernike theory relates this long

range correlation length to a short range correlation length R by the

equation [58]

C = R/nkTK , (20)

where n is the number density. The number density n in (20) is related

to the mass density p by

where N is Avogadro's number and M the molar weight. In the approximation

\
of the Ornstein-Zernike theory, £ diverges as /K~ when the critical point

is approached, while R remains a finite parameter whose magnitude is of

the order of the range of the intermolecular potential function. The

long range correlation length g , and thus also the short range correlation

length R, can be determined experimentally from light scattering or

X-ray scattering data. Substitution of (20) and (21) into (18) yields

In a previous technical report the parameter R was treated as a
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constant independent of density and temperature £2J, However, as

discussed in Appendix B, R appears more closely proportional to /rf.

Since at a given temperature n K is a function of p symmetric with respect

to the critical density p [59/60] , it follows from equation (20) that the
c

assumption R * /n is equivalent to the assumption that the correlation

length £ is symmetric around the critical density p ,

Experimental data for the parameter R of fluids are scarce and

imprecise, and nonexistent for oxygen. Therefore, we make an attempt to

estimate R from the intermolecular potential function $(r) . For this

purpose we note that R may be written as [58]

r C(r)dr , (23)

which is the second moment of the so-called short range correlation

function C(r). Under certain simplifying assumptions the behavior of C(r)

for large values of r, (r » a)1, may be approximated by C(r) - $(r)/kT [61]
\

Accordingly we make the ansatz

fJ (24)

r
m

where $ (r) is the attractive part of the intermolecular potential
cLttlT

function $ (r) and r the distance corresponding to the potential minimum,

Using the potential function (.9), introduced in Section 3.3f we obtain

mV T* / I 3 L m - 6 '3
+ jj

JJ
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where T* = kT/e is the reduced temperature defined in (J3) and n*

is a reduced number density defined as

n* = nr . (26)
m

5.4 Application to oxygen

Our approach is to calculate A A(p,T) from equation (22) with AT and

Ap expressed in terms of the critical parameters of oxygen [51]

T = 154.581 K , p = 0.4361 g/cm • (21}
c c

The short range correlation length R is calculated from equation (25)

using the potential parameters (10) for oxygen.

Equation (22) relates the anomalous thermal conductivity A X(p,T)

to the calculated viscosities and the thermodynamic derivatives (3P/9T)

and K . These thermodynamic derivatives are to be obtained from the

equation of state.

Th6 thermodynamic behavior of fluids near the critical point can

be described in terms of scaling laws [59,60,62]. Recently, we have

indeed formulated a scaled equation of state for oxygen, but further

•research is desirable before it can be used for extensive thermodynamic

calculations [63]. Moreover, the validity of the scaling law equation of

state is limited to the same range near the critical point, where the

asymptotic equation (14) applies. In order to calculate A X(p,T) from (18) we

need an equation of state which not only covers the asymptotic range near

the critical point, but also connects this range with the P - p - T surface

further away from the critical point. Since such an equation of state is
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not yet available, we have, for the purpose of this report, calculated

(8P/3T) and K in (22) from the equation of state of Stewart, Jacobsen

and Myers [51]. This procedure has the advantage that all calculated

transport properties in this report are consistent with a single equation

of state and any discontinuities which might arise from the transition of

one equation of state to another are avoided. The procedure has the

disadvantage, however, that near the critical point the predicted thermal

conductivities are subject to errors because any analytic equation of

state, such as that of Stewart et al., will not yield accurate compress-

ibilities in the immediate vicinity of the critical point.̂

The total excess thermal conductivity, defined as X(p,T) - A0(T)=

AA(p) + A A-(p,T) is obtained by adding the contributions calculated from

equations (12) and (22). The behavior of the total excess thermal conduc-

tivity, thus calculated for oxygen in the critical region as a function

of density and temperature, is illustrated in Fig. 7-

It is difficult to estimate the reliability of the calculated thermal

conductivities in the vicinity of the critical point: it is influenced by

the use of the semi-empirical equation (22), by errors in the estimated

values for the parameter R and by errors in the compressibilities calculated

from the equation of state. An idea of the reliability of the procedure

may be obtained by investigating to what extent equation (22) represents

the thermal conductivities observed for other fluids, as discussed in

Appendix B. As a general rule the reliability of predicted thermal con-

We plan to remedy this situation in our future research as discussed
in Section VII.
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ductivities in the vicinity of the critical point will always depend on

how well one predicts the compressibility. For oxygen such an assessment

can be made by comparing the equation of state of Stewart et al. [51]
i

with a scaling law equation of state such as that obtained by Levelt

Sengers, Greer and Sengers [63]. From such considerations we conclude

that the errors may be larger than the overall estimated error of 15%

in the region indicated by the dashed portions of the curves in Fig. 7.



VI. Results.

The values of the parameters used in the calculation of the

transport coefficients of oxygen are summarized in Table II.

The transport coefficients of gaseous oxygen at low pressures were

calculated at temperatures from 80 K to 2000 K by the method described in

Section III. The results are presented in Table III. The estimated

uncertainty of these values was also discussed in Section III and varies

from 2% to 5% depending on the property and temperature considered.

The values are presented to four decimals in order to facilitate inter-

polation. The shaded values at temperatures above 1000 K were obtained by

extrapolation from information available at temperatures below 1000K.

The transport coefficients of compressed oxygen were calculated at

temperatures from 80 K to 400 K and at pressures from 1 atm to 200 atm.

These values were obtained by adding to the dilute gas values the excess

functions as calculated form equations (11) and (12) and, for the thermal

conductivity, a critical enhancement calculated from equations (22) and

(25). The necessary equilibrium properties were calculated from the

equation of state in ref. [51J.

The resulting values for the viscosity and thermal conductivity are

presented, respectively, in Tables IV and V as a function of temperature

and pressure. In view of the rapid variation of the thermal conductivity

in the critical region we have also generated Table VI which contains

the thermal conductivity at small intervals of temperature and pressure
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in the region of interest. In Table VII we present the values calculated

for the transport coefficients of the saturated vapor and liquid. In all

tables temperatures are expressed in K, pressures in international

atmospheres, viscosities in milligram/cm.s and thermal conductivities

in milliwatt/m.k. Conversion factors to other units are presented in

Table VIII for the benefit of the user.

The reliability of the calculated values is limited by a number of

factors, an important one being that only one source of data with uncertain

accuracy was available to determine the excess functions (11) and (12).

Near the critical point additional complications arise from the absence of

experimental data for the correlation length and the use of an analytic

equation of state as discussed earlier. Nevertheless, except for a region

in the vicinity of the critical point we estimate that the tabulated

values are reliable to within about 15%.

Previously estimated values for the transport coefficients of oxygen

are included in compilations prepared by the National Bureau of Standards

[64,65]. The values for the transport coefficients presented in this

report are based on a better and more systematic correlation procedure

for the viscosity and thermal conductivity of the dilute gas and for the

thermal conductivity anomaly in the critical region.

Computer programs that generate the tabulated values are obtainable,
upon request, from the Cryogenic Data Center, National Bureau of
Standards, Boulder, Colorado 80302.
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Table II

Parameters for oxygen used in this report.

Potential parameters: (jn - 6 - 8 potential). [40 ]

m=10, y = 1.0, a = 3.437A, r = 3.8896A, e/k = 113.0 K

Critical parameters [51]

T = 154.581 K p = 0.4361 g/cm P =49.77 atm
c c c

Conversion factor from mass density p to number density n

- = 0.1882 x 10~23 g"1
M

Equation of state parameters: see ref. [51].



Table III

Viscosity r)0(T) and thermal conductivity A0(T) of gaseous oxygen as a

function of temperature.

Temperature

K

80
85
90
95
100

105
110
115
120
125
130
135
140
145
150

155
160
165
170
175
180
185
190
195
200

205
210
215
220
225
230
235
240
245
250

Viscosity

g/cm.s

103H0

0.0585
0.0624
0.0663
0.0701
0.0740

0.0779
0.0818
0.0856
0.0894
0.0932
0.0970
0.1007
0.1045
0.1082
0.1118

.
0.1155
0.1191
0.1226
0.1261
0.1296
0.1331
0.1365
0.1399
0.1432
0.1465

0.1498
0.1530
0.1563
0.1595
0.1626
0.1658
0.1689
0.1719
0.1750
0.1780

Thermal
Conductivity

W/m.K

103X0

6.94
7.44
7.95
8.45
8.96

9.46
9.96
10.45
10.94
11.43
11.92
12.41
12.89
13.37
13.85

'
14.32
14.78
15.24
15.70
16.15
16.60
17.04
17.48
17.92
18.35

18.78
19.21
19.63
20.05
20.47
20.88
21.28
21.69
22.09
22.49

Temperature

K

255
260
265
270
275
280
285
290
295
300

305
310
315
320
325
330
335
340
345
350

355
360
365
370
375
380
385
390
395
400

405
410
415
420
425

Viscosity

g/cm.s
103n0

0.1810
0.184,0
0.1869
0.1898
0.1927
0.1955
0.1984
0.2012
0.2040
0.2068

0.2095
0.2122
0.2150
0.2176
0.2203.
0.2230
0.2256
0.2282
0.2308
0.2334"

0.2359
0.2385
0.2410
0.2435
0.2460

' 0.2485
0.2510
0.2534
0.2559
0.2583

0.2607
0.2631
0.2655
0.2678
0.2702

Thermal
Conductivity

W/m.K

103X0

22.89
23.29
23.69
24.08
24.47
24.86
25.24
25.62
26.00
26.38

26.76
27.14
27.52
27.89
28.25
28.62
28.99
29.36
29.76
30.10

30.48
30.85
31.22
31.58
31.95
32.32
32.69
33.06
33.42
33.79

34.16
34.54
34.91
35.28
35.65
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Table III (continued)

Temperature

K

430
435
440
445
450

455
460
465
470
475
480
485
490
495
500

510
520
530
540
556
560
570
580
590
600

610
620
630
640
650
660
670
680
690
700

710
720
730
740
750
760
770
780
790
800

Viscosity

g/cm.s

0.2725
0.2748
0.2772
0.2795
0.2818

0.2840
0.2863
0.2886
0.2908
0.2931
0.2953
0.2975
0.2997
0.3019
0.3041

0.3085
0.3128
0.3170
0.3213
0.3255
0.3297
0.3338
0.3379
0.3420
0.3460

0.3501
0.3541
0.3580
0.3619
0.3659
0.3697
0.3736
3774

0.3813
0.3851

0

0.3888
0.3926
0.3963
0.4000
0.4037
0.4074
0.4110
4147

0.4183
0.4218

0

Thermal
Conductivity

W/m.K
103X0

3 6". 02
36.38
36.75
37.12
37.49

37.85
38.22
38.59
38.95
39.32 .
39.68
40.05
40.41
40.77
41.14

41.86
42.58
43.29
44.01
44.72
45.44
46.14
46.86
47.56
48.27

48.97
49.68
50.37
51.08
51.77
52.46
53.16
53.85
54.54
55.22

55.89
56.57
57.25
57.92
58.59
59.24
59.90
60.57
61.22
61.87

Temperature

K

810
820
830
840
850
860
870
880
890
900

910
920
930
940
950
960
970
980
990
1000

1010
1020
1030
1040
1050
1060
1070
1080
1090
1100

1110
1120
1130
1140
1150
1160
1170
1180
1190
1200

1210
1220
1230
1240
1250

Viscosity

g/cm.s
I03n

0.4255
0.4290
0.4326
0.4361
0.4396
0.4430
0.4466
0.4500
0.4535
0.4569

0.4603
0.4637
0.4671
0.4705
0.4738
0.4772
0.4805
0.4838
0.4872
0.4905

Thermal
Conductivity

W/m.K
103X

O

62.51
63.16
63.81
64.45
65.09
65.71
66.35
66.98
67.61
68.23

68.89
69.50
70.11

, 70.72
71.33
71.93
72.52
73.12
73.73
74.32
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Table III (continued)

Temperature Viscosity

g/cm.s

1260
1270
1280
1290
1300

1310
1320
1330
1340
1350
1360
1370
1380
1390
1400

1410
1420
1430
1440
1450
1460
1470
1480
1490
1500

1510
1520
1530
1540
1550
1560
1570
1580
1590
1600

1610
1620
1630
1640
1650

Thermal
Conductivity

W/m.K

Temperature Viscosity

K

1660
1670
1680
1690
1700

1710
1720
1730
1740
1750
1760
1770
1780
1790
1800

1810
1820
1830
1840
1850
1860
1870
1880
1890
1900

1910
1920
1930
1940
1950
1960
1970
1980
1990
2000

g/cm.s

Thermal
Conductivity

W/m.K
103X0

/

Note: Shaded data are extrapolated data.
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Table VII

Transport Coefficients of Oxygen at Saturation

Temperature

K

Pressure

atm

Viscosity

vap. liq.

milligram/ cm . s

80

90

100

110

120

130

140

142

144

146

148

150

152

154

0.30

0.98

2.51

5.36

10.09

17.26

27.52

30.00

32.64

35.45

38.44

41.61

45.00

48.65

0.059

0.068

0.079

0.092

0.108

0.129

0.158

0.166

0.175

0.185

0.197

0.211

0.231

0.269

2.652

1.971

1.504

1.188

0.971

0.824

0.696

0,668

0.638

0.607

0.574

0.537

0.494

0.424

Thermal

vap.

Conductivity

liq.

milliwatt/m.K

7.4

8,5

9.9

11.5

13.6

16.3

20.1

21.1

22.3

23.6

25.2

27.2

29.9

35.2

164,7

151.8

138.2

124.3

110.3

95.9

80.6

77.4

74.0

70.6

67.0

63.2

58.7

52.0



Table VIII

Conversion factors

T,K - ^> T,°F: multiply by C9/5) then subtract 459.67

T,K - ^> T,°C: subtract 273,15

T,K - >- T,°R: multiply by C9/5)

P,atm - > P,psia: multiply by 14.69595

\ 2 5
P,atm - ^> P,N/m : multiply by 1.01325 x 10

n/g/cm.s - 5*> rifNs/ro : multiply by 10

n,g/cm.s - ^>n/lb /ft.s: multiply by 0,0671969
•̂  m

A,W/m.K - ^> X,cal/cm.s,K: multiply by tl/418.4 )

X,W/m.K - >̂X,BTU/ft.hr.°R: multiply by 0.578176



VII. Remarks.

With the exception of the immediate vicinity of the critical point,

the tables of transport coefficients presented in this report should be

adequate for those engineering applications where a 15% accuracy is

sufficient. In this section we mention some research items that need to

be considered in order to improve the accuracy of tabulated values for the

transport coefficients of oxygen. However, it should be emphasized

that the tabulation is severely hampered by the lack of reliable data

for oxygen. Until this situation is rectified, tables of transport

coefficients must be considered to be of a provisional nature.

The present tabulation is based on the following approximations:

a. The dilute gas properties were calculated using a spherically

symmetric approximation to the intermolecular potential function.

For a more accurate representation of the dilute gas properties

of oxygen one should consider an angular dependent potential

function.

b. The excess functions (11) and (12) were determined from a very

limited set of data and were assumed to be independent of

temperature. However, the excess functions are known to have a

small temperature dependence which should be taken into account

for a more accurate tabulation.

c. The critical enhancement in the thermal conductivity was

calculated from a semi-theoretical equation which, at this time,

Dr. W. M. Haynes of the Cryogenics Division of the National Bureau of
Standards is currently measuring the viscosity of oxygen over a wide
range of temperatures and pressures.



cannot be tested against any experimental data for oxygen. Moreover, the

critical enhancement in the thermal conductivity is related to the

square root of the compressibility which was calculated from an analytic

equation of state. For a more accurate representation near the critical

point the compressibility should be deduced from an equation of state

that satisfies the scaling laws [63].

Work is in progress at the National Bureau of Standards and at

the University of Maryland to improve upon these approximations. In

the mean time we recommend use of the values presented in this report.



Appendix A

Dilute gas properties of oxygen

A.I Introduction.

In Section III we calculated the viscosity and thermal conductivity

of gaseous oxygen using the potential function (9) with parameters (10).

"Kinetic theory enables us to calculate a variety of gas properties from

the potential function $(r). The adequacy of the potential function

used to calculate the transport coefficients may be checked by investigat-

ing to what extent the same potential function reproduces other measured

properties of oxygen. Data for the second virial coefficient and the

thermal diffusion factor of oxygen are available for this purpose.

A.2 Second virial coefficient.

The second virial coefficient of a monatomic gas is given by the

expression

uu/B = ™a r*3 ^-- exp{-<I>*/T*}dr* = -|irNa3B* (T*) (Al)
3 J dr* 3

0

where $* = $/£. Strictly speaking, this equation does not apply to a

polyatomic gas such as oxygen. Nevertheless, from tabulated values of

B*(T*) for the m - 6 - 8 potential [45], we calculated the second virial

coefficient as a function of temperature using the potential parameters

(10) for oxygen. In Fig. 8 we have plotted the difference between the

experimental second virial coefficient data [66] and the values thus
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calculated. Although there is evidence of a definite systematic error,

the result should be considered satisfactory, because it has been

shown that the addition of nonspherical terms in (Al) will lead to an

improvement in the representation of B [44] . Conversely, it is known

that nonspherical contributions to the viscosity coefficient are small.

A. 3 Thermal diffusion factor.

The thermal diffusion factor is known to be very sensitive to the

potential function used to calculate the collision integrals. Conversely,

if experimental data for the thermal diffusion factor are available, an

important test of the validity of a chosen potential function is obtained

by comparing experimental and calculated thermal diffusion factors.

The kinetic x theory of gases yields the following expression for the

thermal diffusion factor [38,39,67]

ao = a;(l + 6) , (A2)

where

. - 15 (6C* - 5) (2A* + 5)

and

2A*(16A* - 12D* + 55)

. = (7-8E*) (175/4)-15D*-30C* 5-6C* _3(7-8E*)
9 7(6C*'-5) 5+2A* 14

2A* I (35/4)-5D*-6C*
(35/4+7A*+4F* 1 5-6C*

+ 28A*-6F* I
21A* /_

7(5-6C*) + A*(7-8E*) (35/8) . ̂~ ^ , .
2(5+2A*) ' •"-•" ' ( '



The quantities A*, C*, D*, E*, and F* are related to the collision

integrals S7 's . defined in (6) by

4n(1'3)*]/n(1'1)* ' (AS)

E* -

F* -

In Fig. 9 a comparison is made between the experimental data for

the thermal diffusion factor of oxygen obtained by Mathur and Watson [68]

and the values calculated from (A2) using our potential function. The

agreement is very satisfactory. We note especially that a0 is correctly

predicted to change its sign at T ~ 120K.

We conclude that the m - 6-8 potential (9) with parameters (10)

does yield a satisfactory representation of the transport properties

of gaseous oxygen.
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Figure 9 Isotopic thermal diffusion factor of oxygen as a function of
temperature. The experimental data are taken from ref. [68]
and the curve is calculated from equation (A2).

51



Appendix B

Critical enhancement of thermal conductivity.

B.I Introduction.

In Section V we calculated the critical enhancement of the thermal

conductivity for oxygen from equation (22). In order to justify the

procedure we investigate in this Appendix to what extent this equation

describes the thermal conductivity observed experimentally in the

critical region of other fluids. The major source of information for

this purpose is the set of thermal conductivity data for carbon dioxide

in the critical region [69]. In addition we shall consider some limited

information available for argon [70-72] nitrogen [70] and methane [73].

Some properties of these gases are listed in Table IX,

B.2 Carbon dioxide.

The thermal conductivity of compressed gases is written in this

report as

X(P,T)= X0(T) + AA(p) + A A(p,T) , (3D
c

where the critical enhancement A X(P,T) is described by equation (22).
c

This equation contains the short range correlation length R. For carbon

dioxide this short range correlation length can be deduced from available

light scattering [74] and X-ray scattering data [75]. From the X-ray

scattering data of Chu and Lin we infer [2,54]

/,c\
1/2

R = (4.0 ± 0.2)A -̂ .. (B2)
c /
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Parameters

Table IX

Properties of CCy Ar, N2 and

of m _ 6 _ 8 potential function [40 ]

Eluid m y

CO 14 1
2.

Ar 11 3

N 1 2 - 2
2

CH 11 3
4

Critical parameters

fluid Tc

CO 304.19 K

Ar 150.73 K

N 126.20 K

CH 190.77 K
4

e/k

282 K

153 K

118 K

168 K

Pc

0 . 468 g/cm

0.533 g/cm3

0.314 g/cm3

0.162 g/cm3

a - \
0

3,680 A 4.066

O

3.292 A 3.669

O

3.54 A 3.933

0

3,680 A 4.101

T?
C

72,785 atm

47.983 atm

33,56 atm

45,66 atm

o
A

O

A

0

A

O

A
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In earlier publications we have referred to X0(Tl + AX I, in (Bl)

as the background thermal conductivity. An equation for AX(p) was

presented in ref. [54]. The critical enhancement A X(p,T) of CO can be
c ^

calculated from equation (22) using the experimental value of R given in

(B2), using the viscosity data of Kestin et al. [76J and using C3P/9T)
P

and K values deduced from the compressibility isotherms of Michels et al,

[77].

Fig.10 shows the thermal conductivity of CO in the critical region

as a function of density and temperature. The various symbols represent

experimental data points [69] and the curves represent the calculated

values. A critical comparison very close to the critical point is

hampered by some uncertainty in the knowledge of the critical temperature

which was not measured during the thermal conductivity experiments. The

agreement between experiment and theory at 31.2°C and 32.1°C can be

improved by an appropriate adjustment of the value assumed for the

critical temperature as was done in the previous technical report.

Although the equation does not reproduce the observed in anomaly in complete

detail, it yields a reasonable approximation and we prefer to use equation

(22), because of its relative simplicity and its semi-theoretical connection

with the mode coupling theory.

B.3 Other gases.

Detailed and reliable thermal conductivity data in the immediate

vicinity of the critical point are presently limited to carbon dioxide.

However, since the anomalous behavior of the thermal conductivity extends

over a wide range of temperatures some experimental thermal conductivity

data for other gases give also partial information concerning the
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Figure 10- Thermal conductivity of carbon dioxide in the critical region
as a function of density and temperature. The curves represent
estimated values with the critical enhancement calculated from
equations (22) and (B2).
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anomaly [53,78] .

Experimental data for the short range correlation length R of

fluids as a function of density are scarce and of limited accuracy, the

major source of information being the X-ray scattering data of Schmidt

et al. for argon and nitrogen [79-81]. Therefore, we estimated the

parameter R from the potential function via equation (25) proposed in the

main text.

For the gases CO , Ar, N and CH , R was thus calculated as a function
^ ^ *i

of p/p using the potential function (9) with the appropriate parameters
c

listed in Table IX. In Fig. 11 a' comparison is made between the

calculated values for R and experimental data reported for argon [79],

nitrogen [80] and carbon dioxide [75] near the critical temperature.

In view of the limited precision as exemplified by the scatter in the

experimental data, we consider equation (25) to yield a very satisfactory

estimate of R. As mentioned in Section V, the assumption that the long

range correlation length H is symmetric around the critical density, implies

R values proportional to /p~

Having thus obtained estimated values for R we calculated the

critical enhancement in the thermal conductivity from eq. 122) for CH ,

Ar and N . In selecting these gases we are guided by the condition that

not only experimental thermal conductivity data but also reliable

The short range correlation length SL reported by Schmidt et al. [79-81]
is related to our parameter R by R = 1/-/1Q.

We are indebted to J. S. Lin and P. W. Schmidt for informing us that
their latest experimental X-ray scattering data near the critical point
are consistent with this assumption.
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of ^P/f>c- The circles represent experimental data [75,79-81]
and the line represents equation (25).
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parameters for the potential function should be available [40] .

We combine the critical enhancement A A(p,T) with the temperature
c

independent part AX(p) of the excess background thermal conductivity to

obtain the total excess thermal conductivity

X(p,T) - X0(T) =AX(p) + AcA(p,T) (B3)

The excess function AA(p) of these gases, as well as the viscosity to be

substituted into (22) was obtained from an earlier report [82]. The

equilibrium properties in (22) were calculated from Bender's equation of

state [83]. The thermal conductivity was calculated at those temperatures

where some experimental thermal conductivity data are available for com-

parison. Since these temperatures are not in the immediate vicinity of

the critical point, use of Bender's equation should be adequate for the

purpose at hand.

In Figs. 12 and 13 the total excess thermal conductivity is plotted

as a function of density. The solid curve represents the excess back-

ground thermal conductivity AA(P) and the dotted curves are obtained by

adding the critical enhancement A X(p,T) as calculated from equations

(22) and (25). For methane a comparison can be made with experimental

thermal conductivity cf Mani and Venart [73]and with a few data

points of Ikenberry and Rice [71]. A similar'comparison for argon is

complicated by the fact that the available experimental data [70-72]

show appreciable scatter. The corresponding information for nitrogen

is presented in Table X, where only three experimental data points of

Ziebland and Burton [70,78] are available for comparison. From the
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Figure 13. Total excess thermal conductivity X(pfTl <•• \0 (Tl of argon in
the critical region, The solid line represents the back-^
ground thermal conductivity and the dashed'lines represent the
anomalous thermal conductivity as predicted from equation (22),
Data: LI 151K [72], O152K [70], 0 165K [70J, • 165K [71],
A 165K [72].
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information in Figs. 11, 12, 13 and in Table x we conclude that our

equation does yield an adequate representation of the thermal conduc-

tivity in the critical region of fluids.

Table X.

Comparison between experimental and calculated values for the total

excess thermal conductivity X(p,T) - X (T) of nitrogen in the critical
o

region. Experimental data from ref. [70] .

Density Temperature AX(p) AX (p) + A X(p,T)

g/cm K milliwatt/m.K milliwatt/m.K

exp calc

0.255 139.0 14.9 21.8 21.9

0.291 136.9 18.2 24.4 26.7

0.314 136.2 20.2 32.4 30.2
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