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DESIGN AND EVALUATION

OF A FILTER SPECTROMETER CONCEPT

FOR FACSIMILE CAMERAS

By W. Lane Kelly IV, Daniel J. Jobson,

and Carroll W. Rowland

Langley Research Center

SUMMARY

The facsimile camera is an optical-mechanical scanning device which has been

selected as the imaging system for the Viking '75 lander missions to Mars. A concept

which uses an interference filter-photosensor array to integrate a spectrometric capa-

bility with the basic imagery function of this camera has been proposed for possible

application to future missions. This paper is concerned with the design and evaluation

of critical electronic circuits and components that are required to implement this concept.

The feasibility of obtaining spectroradiometric data is demonstrated, and the performance

of a laboratory model is described in terms of spectral range, angular and spectral

resolution, and noise-equivalent radiance.

INTRODUCTION

The facsimile camera has been selected to provide imagery data for the Viking '75

lander missions to Mars (ref. 1), primarily for reasons of size, weight, power, and;

radiometric and photogrammatic accuracy. The Viking facsimile cameras use silicon

photodiode detectors and, in addition to black and white imagery, have the ability to image

in six spectral channels over the silicon-response range from 0.4 to 1.0 im. Reference 2

proposed a filter-photodiode array concept in order to increase spectral resolution and,

hence, augment the facsimile camera with a spectrometric capability. This technique

utilizes individual interference filters positioned over elements of a photodiode array

which, in turn, is alined along the line of the camera scanning mirror. Any picture

element (pixel) in the scene can be electronically sampled on command as it is scanned

along the array; thus a spectral signature of that pixel is provided. This approach

utilizes the existing scanning mirror servosystem of the facsimile camera and, there-

fore, offers mechanical simplicity over the commonly used rotating wedge filter. (See

refs. 3 and 4.)



Reference 5 predicted the potential performance capabilities and constraints of this
concept using silicon and lead sulfide detectors to cover the spectral range from 0.4 to
2.7 Am. The performance trade-offs between spectral and spatial resolution, spectral
range, and sensitivity were defined, and performance predictions were made for the Viking
camera design parameters and the Martian environment. This paper presents the design
and evaluation of a laboratory model of this concept. The model uses a silicon photodiode
array to provide 29 spectral channels over the spectral range from 0.53 to 0.96 pm. The
performance of this laboratory model is described in terms of angular and spectral res-
olution and noise-equivalent radiance to verify performance predictions and to define
system performance limits.

SYMBOLS

A detector area, m 2

Cf feedback capacitance, F

D lens diameter, m

f frequency, Hz

H spectral irradiance, W

Idc photodiode dark current, A

IN  root mean square (rms) noise current, A

1jn rms Johnson noise current, A

isn rms shot noise current, A

Km filter-detector calibration constant, A/W

k Boltzmann's constant

N spectral radiance, W
m2-pm-sr

NER noise equivalent radiance, W
m 2 -sr
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n number of samples

q electronic charge, C

Rf feedback resistance, O

RX spectral responsivity of detector, AW-Am

S/N average ratio of signal to rms noise

S solar irradiance above atmosphere,
m2-pm

T absolute temperature, K

V voltage, V

angular resolution, rad

Af bandwidth

X wavelength, tim

PX spectral reflectivity of surface (normal albedo)

Tf peak transmissivity of optical filter

TX  spectral transmissivity of atmosphere

TXf spectral transmissivity of optical filters

" X, l  spectral transmissivity of optics

0 illumination scattering function

DESIGN

This section presents the electronic design for the integrated imagery and spec-

trometry concept and an analysis of the expected spectrometry performance.



Concept

The basic operation of a facsimile camera as imager and spectrometer is illustrated

in figures 1(a) and 1(b), respectively. (See also ref. 6.)

The imagery function is accomplished as follows: radiation from the scene is

reflected by the scanning mirror, captured by the objective lens, and projected onto a plane

which contains the photosensor aperture. The radiation falling on the aperture is con-

verted into an electrical signal which is amplified and sampled for data transmission.

As the mirror rotates, the imaged scene moves past the aperture and permits the aper-

ture to scan vertical strips (elevation scan). The entire camera is rotated slowly in

azimuth until the complete scene of interest is scanned.

A spectrometer capability can be added to the facsimile camera, as shown in

figure l(b), by placing an array of photodetectors, in addition to the imaging detector, in

the aperture plane alined along the direction of image motion. Individual narrow-band

interference filters mounted over the separate photodetectors allow a pixel to be spec-

trally resolved as it moves down the filter-detector array. Electronic pulses derived

from the servo which controls the scanning mirror position are used to provide proper

synchronization for multiplexing the detector array outputs.

Pixel Selection and Tracking

The general operation of the facsimile camera-spectrometer is based on first

obtaining an image of the scene and then selecting particular pixels in the image for spec-

tral investigation, one pixel at a time. The azimuth coordinate for the selected pixel is

determined from the camera azimuth position information. (The Viking lander cameras,
described in ref. 7, transmit this information every line scan.) This digital coordinate

then defines the azimuth location of the selected image pixel relative to the imaging detec-

tor, which may or may not be positioned along the filter-detector array.

The vertical coordinate of the pixel of interest is determined from the imagery

data by counting the image elements along the scan line. The absolute vertical position,

relative to the imaging detector, is determined as a function of the imaging data sample

pulses, provided that the imaging detector and the first element of the filter-detector

array are properly spaced at a multiple interval of a pixel. More specifically, if the
spacing corresponds to a mirror rotation angle which is an integral number of encoder

bits, then the encoder output can be counted to the predetermined value at which the spec-

trometry data acquisition is to be initiated.

The implementation of this technique is shown in figure 2. Information on both
vertical and azimuth position is compared with the selected pixel position information.
When the image of the selected pixel reaches the first spectral channel, a binary counter
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is enabled. Pulses are then counted to address the proper channel of the multiplexer to

sequence down the filter-detector array in synchronism with the motion of the selected

pixel.

As noted in reference 5, equal spacing of detector elements results in a pixel

tracking error since the axis of mirror rotation and the principal point of the lens are

displaced. This pixel tracking error can be eliminated by altering the video sampling

pulse train from a constant interval to a variable interval or by varying the spacing

between detectors. This latter approach should not require a complex fabrication proce-

dure, because a photomask technique is generally used to define detector array geometry.

The electronic solution offers more flexibility if camera geometry is not fixed.

Generation of Video Data

Each of the successively sampled photodiodes generates a photocurrent proportional

to the incident radiant flux. This photocurrent develops a voltage across the feedback

resistor of an operational amplifier; this voltage is then applied to the input of the multi-

plexer. As the imaged scene moves down the filter-detector array, the proper multi-

plexer switch is closed to apply the voltage output of the desired channel to the buffer

amplifier as shown in figure 3. The final summing amplifier provides signal amplifi-

cation prior to digitization.

The important characteristics of the photodiode and preamplifier have been pre-

sented in reference 8. Both the photodiode and preamplifier should have low leakage

currents, and the preamplifier feedback capacitance should be minimized; thus the

largest feedback resistance for a given bandwidth application is allowed. To obtain the

highest possible- signal-noise ratios necessitates preamplification prior to multiplexing.

This otherwise undesirable complexity avoids two problems. First, the leakage current

of the field effect transistor (FET) switch in the multiplexer is of the order of the signal

current and a large offset would be produced. Second, the gate-source capacitance of the

FET switch allows switching transients to couple into the video signal and subsequent

amplification would result in amplifier saturation. In the electronic design presented

here, some transients of reduced amplitude are present; however, a timing delay is pro-

vided to allow these transients to diminish before data is sampled for digitization.

The technique used for acquiring spectral information and calibration includes the

following steps: First, the output produced by the dark current in each channel is sam-

pled, either while the vertical scanning mirror is turned toward the darkened interior

of the camera or, as in the Viking lander cameras, while a flag is inserted into the opti-

cal path. This dark sample of each channel is stored in the camera-spectrometer for

subsequent subtraction from the calibration and spectral data to remove offsets. Next,

the spectrometer is directed to scan a calibration target of known spectral reflectance
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mounted on the lander, for example, and the information is stored. Finally, the selected

pixel is scanned and the data are stored.

Data processing consists of subtracting the stored value of dark current offset from

each channel and, if desired, a commandable offset may also be subtracted to better uti-

lize the encoding range. Data taken from the calibration target may be transmitted in
addition to the raw spectral data or used for onboard normalization of the raw data prior

to transmission.

Sensitivity

Since one objective of the spectrometer concept is not to interfere with the imaging
mode, many major camera design variables will be determined chiefly by the imaging
requirements. Consequently, the spectrometric capability can be optimized primarily by
concentrating design efforts on the detector-preamplifier signal-noise ratio and optimi-
zation of filter characteristics.

A performance trade-off analysis of the filter-detector array concept, which has
been presented in reference 5, accounts for signal-noise ratio, angular resolution, and
spectral range. The signal-noise ratio for any channel in the facsimile camera-
spectrometer configuration is given by

= 2D2 S N d (1)
N 16

where NA is the spectral radiance of the object.

The camera performance and design parameters are the ratio of signal to rms noise
S/N, instantaneous field of view or angular resolution 0/, the objective lens diameter D,
the lens transmittance T, , the filter transmittance T ,f, the photosensor spectral
responsivity R., the system noise current IN, and the number of repeated samples n.
The lens diameter is determined by the angular resolution and the depth of field require-
ment for the imagery mode. (See refs. 5 and 6.) The number of repeated samples is
determined by the time available to acquire information on each pixel.

A related performance parameter is the noise-equivalent radiance (NER)

NER = N N dX N (2)
S 0 00', T fR dk

The approximation assumes narrow band filtering and provides a more convenient meas-
ure of instrument sensitivity because it is independent of the scene spectral radiance.
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An analysis of system noise in reference 5 has shown that two noise sources are

dominant: shot noise and Johnson noise. Shot noise is generated by the leakage cur-

rents of the photodiode and the field effect transistor (FET) amplifier input according to

isn = (2qIdcAf)l/ 2  (3)

where Idc is the leakage current. The small area photodiodes necessary for the

spectrometer-detector array have leakage currents on the order of 10 pA and thus are

low noise devices. Input leakage currents of a few picoamperes are attainable for the

preamplifier; therefore the preamplifier does not contribute significantly to the system

noise. The feedback resistor generates Johnson noise

n = 4kTAf)/ 2  (4)

which may become significant since the preamplifier bandwidth is also a function of Rf.

For bandwidths on the order of 20 Hz (which corresponds to the slow-scan rate of the

Viking lander camera), a feedback resistance of 1 GO can be used with the resulting

Johnson noise dominating the photodiode shot noise by a factor of approximately two.

The filter-detector array is fabricated by dicing the interference filters to the

desired size, mounting them over the detector elements, and positioning an array of

apertures over the filter elements to reduce the possibility of optical crosstalk. This

procedure allows pretesting and selection of optimum filters for each channel prior to

mounting so that, for example, regions of poor detector spectral response can be com-

pensated for by increasing the spectral bandwidth. Also, the position along the detec-

tor array of each spectral filter can be altered according to the off-axis performance

of the optics.

EXPERIMENTAL EVALUATION

This section presents the evaluation of an experimental laboratory model facsimile

camera-spectrometer which was fabricated to demonstrate the feasibility of the technique

and to determine performance characteristics.

Laboratory Model

The laboratory model facsimile camera-spectrometer is illustrated in figure 4 and

its characteristics are listed in table I. General design considerations were based on the

analysis performed in reference 3, which resulted in 29 spectral channels, each consisting

of an interference filter-silicon photodiode. The spectral resolution is approximately
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0.025 im; the spectral range is 0.53 to 0.96 jm; and the angular resolution is 0.20. The
remaining performance parameter is signal-noise ratio or noise-equivalent radiance.

TABLE I. - LABORATORY MODEL CHARACTERISTICS

Angular resolution, deg ............ .......................... 0.2
Spectral channels ............................................ 29
Spectral range, Am .............................. 0.53 to 0.96
Half-power spectral bandwidth (typical), Am .......... . . . . . . . . . . . 0.025
Peak transmission of interference filters (typical) . . . . . . . . . . . . . . . . . 0.60
Lens aperture, cm ............ . . . .. ....................... 1
Lens focal length, cm .. ........................................ 7.5
Lens transmission .................................. 0.92

Angle off axis of extreme detector, deg . . . .. . . . . . . . . . . . . . . . 5.1
Mirror position information ........ . . . . . . . . . . 14-bit optical shaft encoder
Photodiode leakage current, pA ............ 3. .................... 3
Preamplifier ............ . . . . . . . . . . . . . ... . Teledyne model 2740
Feedback resistance, G2 .... ........................ 0.5
Multiplexer .......................... ................... Siliconix DG-125
Detector -preamplifier bandwidth, Hz . ..... . . . . . . . . . . . . . . . . 70

An optical shaft encoder is used to monitor the vertical mirror position to provide
servo information similar to that of the Viking lander cameras. The selection of the
vertical location of a particular imaging pixel is performed with switch inputs to the ver-
tical comparator.

A linear photodiode array with equally spaced elements, shown in figure 5, was
used with a predictable pixel tracking error of approximately one pixel at each end of
the array. Each spectral filter was designed for 0.025-Am half-power bandwidth; as a
result, the performance in each channel was not optimized by the selection of specific
filter characteristics.

Detector Preamplifier

Dark leakage currents of 3 pA obtained from the manufacturer's data on the photo-
diode array result in calculated detectivity values of 17 Gm-Hzl/2/W, a factor of approx-
imately three higher than the values assumed in analytical predictions of system perform-
ance. (See ref. 3.) A feedback resistance of 0.5 G62 was used to provide low Johnson
noise, but allowed a bandwidth of approximately 70 Hz. This bandwidth is sufficiently
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wide for the present Viking slow scan rate and thus requires no change in servo-

mechanical design. This feedback resistance yields a Johnson noise current of approx-

imately 5 fA/Hzl/ 2 , about five times the contribution of the photodiode shot noise. The

system's rms noise voltage was measured over the entire video bandwidth and agreed

with the calculated value where Johnson noise was used as the dominant source.

Acquisition of Spectral Data

In order to evaluate the performance in each spectral channel and to account for

differences in filter transmission characteristics and detector spectral response, a

calibration factor was determined for each spectral channel. The entire array was illu-

minated with a calibrated National Bureau of Standards (NBS) tungsten lamp, and the out-

put signal voltage for each element is given by

V= ARf 0 H XT'fR dx = ARfKm H d (5)

where Km is the calibration factor corresponding to the narrow band filter-detector

response

Km X= 0 ,fRX dk (6)

The calibration factor Km agrees with anticipated values based on the spectral response

of silicon and the manufacturer's filter characteristics.

To test the facsimile camera-spectrometer under operating conditions, a test target

of known reflectance illuminated with the NBS lamp was scanned a single time with the

spectrometer. The signal-noise ratio expression was used to predict the signal voltage

in each channel for comparison with the experimental results; this was done in order to

test the ability of the spectrometer to obtain absolute radiometric data under conditions

of known illumination. Predicted values of voltage output, calculated with the respective

values of Km for each channel, are shown in figure 6 along with measured data. Two

channels (at 0.75 and 0.94 Am) showed less agreement with predicted values, and exami-

nation revealed that noise was introduced by switching transients, which were due to the

arrangement of circuit components. In all other cases, measured values agreed with

calculated values to within 11 percent.
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Spectroradiometric Performance

Calculated values of noise-equivalent radiance are plotted in figure 7 for a single
scan of the laboratory model by using the system characteristics listed in table I and
the values of the calibration constant Km  for the filter-detector response in each chan-
nel. Variations in filter characteristics and the wavelength dependence of the detector
response account for the different NER values in each channel, which range in value from
6to12 nW6 to 12 sr The sensitivity of the laboratory model is a factor of approximately two

lower than that predicted in reference 3. The lower sensitivity results from the Johnson
noise contribution to the system noise current. Performance in all channels can be
improved by broadening spatial resolution, increasing the number of samples, or
decreasing the video bandwidth requirement.

CONCLUDING REMARKS

This paper has presented the electronic design of a technique which utilizes inter-
ference filters and a solid-state photodiode array to integrate a spectrometry capability
with the basic imagery function of facsimile cameras. The electronic design for select-
ing and tracking a picture element was described along with the technique for acquiring
and processing spectral data. The design was implemented and evaluated in a laboratory
model facsimile camera by using a silicon photodiode array with 29 spectral channels
covering the range from 0.53 to 0.96 tim.

Spectroradiometric data were acquired from a calibration target, and results
showed good agreement with predicted values. The angular resolution of the laboratory
model was 0.20 and the spectral resolution was approximately 0.025 gm. For a lens
aperture diameter of 1.0 cm, the resulting NER (noise equivalent radiance) ranged from
6 to 12 nW, depending on variations of silicon response with wavelength and filter

m 2 -sr
transmission characteristics.

It must be noted that the sensitivity of the laboratory model as presented here does
not represent any particular limitation of the performance capability of the facsimile
camera-spectrometer concept. Instead, it confirms a specific result for the trade-offs
(spatial and spectral resolution, spectral range, and signal-noise ratio) which must be
made for any specific application of this concept.

Langley Research Center,
National Aeronautics and Space Administration,

Hampton, Va., June 20, 1974.
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Figure 1.- A basic configuration of the facsimile camera as an imager and a spectrometer.
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Figure 5.- Facsimile camera-spectrometer filter-detector array.
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