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'_ ACRONYMS AND ABBREVIATIONS

A ampere
analog

abA abampere

AC alternating current

A/C Atlas/Centaur

ADA avalanche diode amplifier

ADCS attitude determination .and control subsystem

ADPE automatic data processing equipment

AEHS advanced entry heating simulator

AEO aureole/extinction detector

AEDC Arnold Engineering Development Corporation

AF audio frequency -

AGC automatic gain control '!

AgCd silver-cadmlum

AgO silver oxide

AgZn silver zinc

ALU authorized limited usage

AM amplitude modulation

a.m. ante meridian

AMP amplifier

APM assistant project manager

ARC Ames Research Center

AgO after receipt of order

ASK amplitude shift key

at. wt atomic weight

ATM atmosphere

ATRS attenuated total refractance spectrometer

AU astronomical unit

AWG Ame, ican wire gauge

AWGN additive white gaussian noise

B bilevel

B bus (probe bus)

BED bus entry degradation
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ACRONYMS AND ABBREVIATIONS (CONTINUED) t

BEY bit error rate

BLIMP boundary layer integral matr[7 procedure

BPIS bus-probe interface simulator

BPL bandpass limiter

BIN boron potassium nitrate

bps bits per second

BTU British thermal unit

C Canberra tracking station- NA_,A DSN

CADM configuration administration and data n_anagement

C&CO calibration and checkout

CCU central control unit

CDU command distribution unit

CEA control electronics assembly

CFA crossed field amplifier

cg centigram

c.g. center of gravlt_ .......

• CIA counting/integration assembly

CKAFS Cape Kennedy Air Force Station

cm centimeter

C. rn. center of mass

C/M current monitor

CMD command

CMO configuration management office

C-MOS complementary metal oxide silicon

CMS configuration management system

cons t cons rant
construction

COSMOS complementary metal oxide silicon

c.p. center of pressure

CPSA cloud particle size analyzer

CPSS cloud particle size spectrometer

xxiv
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I j ACRONYMS AND ABBREVIATIONS (CONTINUED)

CPU central processing unit

CRT cathode ,'ay tube

CSU Colorado State University

CTRF central transformer rectifier filter

D digital

DACS data and command subsystem

DCE despin control electronics

DDA despin drive assembly

DDE despin drive electronics

DDU digital decoder unit

DDULBI doubly differenced very long baseline in_erferometry

DEA despin electronics assembly

DEHP di-2-ethylhexyl phthalate

DFG ___ta format generator

DGB disk gap band
DHC data ha1_dling and command

DIe direct input/output

DIOC direct input/output channel

DIP dual in-line package

DISS REG dissipative regulator

DLA declination of the launch azimuth

DLBI doubly differenced very long baseline interferometry

DMA despin mechanical assembly

DO_" degree of freedom

DR design review

DSCS II Defe_se System Communications Satellite II

DSrI" Deep Spac_ InetrumeL,ation Facility

DSL duration and steering logic

DSN NASA Deep Space Network

DSP Defense Support Program

DSU digital storage unit

DTC design to cost

..... ' DTM decelerator test model
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ACRONYMS AND ABBREVIATIONS (CONTINUED) [

DTP de_cent timer/programmer

DTU digital tolemetry 'dnit

DVU design verification unit

E encounter

entry

EDA electronically despun antenna

EGSE electrical ground support equipment

EIRP effectS.re isotropic radiated power

E MC el ec t romagnetic compatibility

EMI electromagnetic interference

EO engineering order

EOF end of frame

EOM end of mission

E P earth pointer

ESA elastomeric silicone ablator [

ESLE equivalent station error level

ESRO European Space Research Organization

ETM electrical test model

ETR Eastern Test Range

EXP experiment

FFT fast Fourier transform

FIPP fabrication/inspection process procedure

FMEA failure mode and effects analysis

FOV field of vie-or

FP fix_'d pr ic,:,
fran_e purse (telemetry)

FS federal stock

FSK frequency shift keying

FTA fixed time of arrival

i
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t ACRONYMS AND ABBREVIATIONS (CONTINUED)

G Goldstone Tracking Station - NASA DSN
gravitational acceleration

g gravity

G_A general and administrative

GCC ground control console

GFE government furnished equipment

GHE ground handling equipment

GMT Greenwich mean time

GSE ground support equipmenL

GSFC Goddard Space Flight Center

H Haystack Tracking Station - NASA DSN

HFFB Ame¢ Hypersonic Free Flight Ballistic Range

HPBW half-power beamwidth

htr heater

_, _TT heat transfer tunnel

!

I current

IA inverter as sernbiy

IC integrated circuit

ICD interface control document

IEEE Institute of Electric_l and Electronics Engineering

IFC interface control document

IFJ in-flight jumper

IMP interplanetary monitoring platform

I/0 input/output

lOP input/output proc es _ or

11t infrared

IRAD independent research and development

I_IS infrared interferometer spectrometer

IST integrated system test

I&T integration and test

"_ I-V current-voltage

xxvii
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ACRONYMS AND AI_RREVIATIONS (CONTINUED) 1

JPL Jet Propulsion Laboratory

KSC Kennedy Space Center

L launch

LD/AD launch date/arrival date

LP large probe

LPM lines per minute

LPTTL low power transistor-transistor logic
MSI medium scale integration

LRC Langley Research Center

M Madrid tracking station - NASA DSN

MAG magnetometer

max maximum

MEOP maximum expected operating pressure I
MFSK M'ary frequency shift keying

MGSE mechanical ground support equipment

MH mechanical handling

MIC microwave integrated circuit

rain minimum

MJS Mariner Jupiter-Saturn

MMBPS multi.mission bipropellant propulsion su_,system

MMC Martin Marietta Corporation

MN Mach number

rood modulation

MOI moment of inertia

MOS LSI metal over silicone iarge scale integration

MP maximum power

MSFC Marshall Space Flight Center

MPSK M'_!. _, phase shift keying

MSI medium scale integration
t_

MUX multiplexer [
MVM Marlrer Venus-Mars
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J ACRONY MS AND ABBREVIATIONS (CONTINUED) I

NAD Naval Ammunition Depot, Crane, Indiana

N/A not available

NiCd nickel cadmiurn

NM/IM neutral mass spectrometer and ion mass spectrometer

NRZ non-return to zero

NVOP normal to Venus orbital plane

OEM other equipment manufacturers

OGO Orbiting Geophysical Observatory

OIM orbit insertion motor

P power

IPAM pulse amplitude modu;atlon ..............

PC printed circuit !

PCM pulse code modulation !

PCM- pulse code modulatlon-ph'ase shift keying- ,IPSK-PM phase modulation

PCU power control unit

PDA platform drive assembly

PDM pulse duration modulation

Pl principal investigator
proposed instrument

PSU Pioneer Jupiter-Uranus

PLL phase-locked loop

PM phase modulation

p.m. post meridian

P-MOS positive channel metal oxide silicon

PMP parts, materials, processes

PMS probe mission spacecraft

PMT photomultiplier tube

PPM parts per million
pulse position modulation

PR process requirements

._ _ PROM programmable read-only memory

PSE program storage and execution assembly ,
lr_

xxix
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ACRONYMS AND ABBREVIATIONS (CONTINUED)

PSIA pounds per square inch absolute

PSK phase shift key

PSU Pioneer Saturn-Uranus

PTE probe test equipment

QOI quality operation instructions

QTM qualification test model

RCS reaction control subsystem

REF reference

RF radio frequency

RHCP right hand circularly polari:;ed

RHS reflecting heat shield

RMP-B Reentry Measurements Program, Phase B

RMS root mean square I
I

RMU remote multiplexer unit

ROM read only memory
rough order of magnitude

RSS root sum square

RT retargeting

RTU remote terminal unit

S separation

SBASI single bridgewire Apollo standard initiator

SCP stored command programmer

SCR silic on c ontrolted rectifier

SCT spin control thrusters

SEA shunt electronics assembly

SFOF Space Flight Operations Facility

SGLS space ground link subsystem

S[IIV shock i1_duced vorticity

SLR shock layer radiometer ._ I

SLRC shock }ayer radiometer calibration [
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i_'_"_ ACRONYMS AND ABBREVIATIONS (CONTINUED)

SMAA semimajor axis

SMIA semiminor axis

SNR signal to noise ratio

SP small probe

SPC sensor and power control

SPSG spin sector generator

SR shunt radiator

SRM solid rocket motor

SSG Science Steering Group

SSI small scale integration

STM structural test model

ST_J/TTM structu'ral test model/thermal test model

STS system test set

sync synch ronous

TBD to be determined

TCC test conductor's console

T/D Thor/Delta

TDC telemetry data console

TEMP temperature

TS test set

TTL MSI transistor-translator logic medium scale integration

TLM telemetry

TOF time of flight

TRF tuned radio frequency

TTM _,nermal test model

T/V thermo vacuum

TWT travelling wave tube

TWTA travelling wave tube amplifier

UHF ultrahigh frequency

UV ultraviolet

xxxi
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ACRONYMS AND ABBREVIATIONS _CONTINUED)

VAC volts alternating current

VCM vacuum condensable matter .,

VCO voltage controlled oscillator

VDC volts direct current

VLBI very iong baseline interferometry

VOI Venus orbit insertion

VOP Venus orbital plane

VSI Viking standard initiator

VTA variable time of arrival

XDS Xerox Data Systems _
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D' 8. PROBE BUS AND ORBITER SUBSYSTEM
W DEFINITION AND TRADEOFFS

8.,  LECTRICALPOWEsubSYSTEM
A/C Iv

The electrical power subsystem consists of the solar array, power

controls, power conditioning, and battery plus the associated command

and telemetry provisions. Design of this subsystem was guided by the

desirability of using common hardware for the orbiter and the probe bus

to the maximum extent feasible. For the Atlas/Centaur version, empha-

sis was on low cost and low development risk, unconstrained by weight or

volume cons ide rations.

Figure 8. l-! presents all the essential data on the preferred power

subsystem designs for the orbiter and probe bus. This preferred design

was selected primarily on the basis of low total cost, achieved by making

extensive use of Pioneers i0 and li hardware. Design features include

the following (letters indicate the relevant parts of Figure 8.1-1):
• A power control unit controls the shunt, charge, and discharge

regulators to provide ±2 percent regulation of the Z8-volt bus.
(See Figur _- 8. l-IB).

• The CTRF (central transformer rectifier filter) receives a I
61-volt AC input from the inverter and provides secondary I

voltage outpats for most subsystem loads. Both the inverter
and the CTRF are Pioneers i0 and II designs. (See

Figure 8. i-iB).

• The orbiter uses a low-cost and risk nickel-cadmium battery.

The probe bus uses a silver-zinc battery with an nonredundant

discharge regulator, because battery power is required during
launch and probe checkout only and the weight and cost savings

are significant. (See Figure 8. l-IB).

• The battery chargers are consequently different for the probe
bus and orbiter; the charger for the probe bus is designed to
float the battery as was done for the silver-zinc battery of
Pioneers 6 through 9. The orbiter charger supplies a maxi-
mum of Z amperes during Venus orbit eclipse seasons, and is
in a trickle charge mode during cruise. (See Figure 8. i-IC).

• The CTRF for the probe _us uses Pioneers 10 and II slices
_* ":ithout modification; the orbiter needs only minimal modifica-

tions for the DSU and DTU power regulators. (See Figure
8. I-1D).

8. t-t

00000001-TSC08



• The inverter is a Pioneers 10 and 11 desirln modified to accept
the 2,_-vott input. The two inverters normally share the load,
but either is capable of handling the full CTRF load if neces-
sary. (See Figure 8.1-tE).

• The nickel-cadmium battery for the orbiter uses cells that were
flight-proven on the D.SP. the 60 percent maximum depth of
discharge is conservative, considering that only 125 charge/
discharge cycles are needed and only a few of which are at the
maximum depth. (See Figure 8. i-IF).

• The probe bus battery uses cells identical in design to those
used in the large and small probes, reducing development and
test costs. (See Figure 8. i-iF).

• The 0.39 radian (22. 5-degree) cone angle solar arrays provide
nearly constant power over sun aspect angles from 0 to J. 57
radians (0 to 90 degrees). Load requirements are met or ex-
ceeded under all conditions, including maximum array degra-
dation. {See Figures 8. l-iF through 8. i-lI).

• The Pioneers t0 and ti shunt driver is used unchanged for the
probe bus; for the orbiter, two additional shunt power trans- {
istor strings in separate packages are added. The supplemental
transistor strings are identical to those used in the Pioneers i0
and ii PCU. (See Figure 8.1-1J).

• The orbiter power profile during periapsis passage shows that the
battery shares the load with the radar altimeter turned on, pro-
viding a total of 9 watt-hours. This does m)t result in a depth
of discharge beyond the 60 percent occurring during eclipse
operation. (See Figure 8. l-iI,_).

Tradeoff studies and initial subsystem definition were based on the

orbiter Version III science payh)ad with a Thor/Delta booster. This

was the most stringent design because of weight linaitations. The probe

bus subsystem was derived from the orbitt_r to maintain maximum com-

monality. The low cost Atlas/Centaur versions were derived from the

Thor/Delta orbiter and probe bus subsystems, without the weight con-

straints.

Details of the effects onthese designs of the Version IV science

payload are given in Appendices 8. iD and 8. IE, wltich sutH)lement

Figure 8. t-t. Appendix 8. 1-F c(mtains detailed pt_wer budgets.

The complete power profiles for the ftntr Vt_l'sion Ill st'lento payload

missions analyzed (Thor/Delta orbiter and prt)be bus, and Atlas/Centaur

orbiter and probe bus} are shown in Figures 8. t-2 through 8. t-5.
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Fi9ure8, 1-4. PioneerVenusPeter Profile. RecommendedI'horl0eltaProDeBus

I:ir_ure8.1-5. PioneerVenusPo_erPmlile, All_slCenlaurProbeBus

Section 8. i-Z presents the results of tradeoff studies leading to

definition of the selected Thor/Delta subsystem. Sections 8. I-3 through

8. I-6 p:esent details of the orbiter designs and design studies for the

Version III 8cienc_ payload. Section 8. _. 7 discusses the changes in

_hese designs required/or the probe bus, Version Ill science payload.

8. _. Z ,Power Subsystem Tradeof£s, Version I.H Science..Pay.load

= _ Two major tradeoff studies were made to establish the recommen-
Z -J
O_ ded Version [II science payload subsystem configuration .and solar array

,t_ designs. The result_ apply to the orbiter and probe bus. The require-tuO
>Z

t .a__ mes_t:_ serving as a basis for tradeoff studies a_ summarized in

_ Tal,lt_, 8. l-I.
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I

"tabI_, 8. 1-1. Subuysten_ [)l_Sign Requ,r,,m_,nts, V_.rsion TiT Sci(,nc'o ])ayloarl !

OP.Bi_R PROBEBUS
REQUIREMENT

THOR/ ATLA$/ THOR,/ A lLAS/
DELTA CENTAUR DELTA CENIAtJR

i

MISSION DUC,ATION, DAYS 42,5 i 425 133 133

lIME PERIOD,YEAi¢S 1978-_9 1978-79 1977 1977

ORIENTATIOt'_iOF bPIN AXIS , TO EARIH LINE EARTHPOINTING

MAGNETIC CLEANLINESS, <5 nT <5 nT <S nT <5 nT

LAUNCH POWER,WATTS 90.6 107.2 45.7 59.3

Cf_UISEPONER,WATTS 100.7/i57.91 118.4/194.72 56.4/64.33 70.5

ORBITALOPERATION/
ENCOUNTER POWER,WATTS 225.7 276.6 78.2 93 5

VOLTAGE TO USERS

SUBSYSTEMS,VDC _:16, _12, +5 ._16, :t12...t5 ._!_, _12, �d�+16_-12,+5

COM/_AUNICATIONS, VDC 28 �2%28_ 5% 28 _*5% 28 _ 2%-16,

SCIENCEVOLTAGE INPUT NOT SPECIFIED

BATTERYUSAGF LAUNCH AND VENUS ORBIT J LAUNCH AND PEAKLOADS

J

ECLIPSE (SHORTDURATION) 1

1DUALPOWERLEVELSINI.)!CATETRANSMITTERPOWEROUTPUTSWITCHING FROM 16 TO 31 WATTS

2TiLANSMITTE_,_POWERSWITCHFROM8.8 TO 35WATTS

3TkANSMITTERPOWERS_I'vITCHFROM3 i"O 6 WATTS

8. i.2. i Power Subs_rstem Configuration Tradeof_,

Version IllScience lPa_load

Fi£tcen different subsystem configurations were evaluated in

_rrtving _t the recommended Thor/Delta design a_ shown in Figure 8. I-6.

The orbit_r configu ration was used as the basis for the tradeoif since it

requires more power and is mote complex than the probe bus. The probe .....

bus subsyf, tem was then derived from the orbiter to obtain the desired com-

monality with minimum redesign.

Orbite r T radeo££ Configurations

Con_._gurations i through 4, 8, and 13 use series buck, buckboost,

or shunt/boost regulators to limit array voltage to 33 VDC or regulate

the bus voltage to _-8 VDC ± 2 percent. Systems using 22-33 VDC are

equipped with an off-the-shelf ZZ-cell nickel-cadmium battery, a DC/DC

8. t-6
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convertt, r which I)r,,vides secondary voltage t,, the subsystems and a

convert¢,r which suppties 28 VDC ±5 percent to the communication loads.

The battery is discharged directly to the bus. The 2B VDC ±2 percent

systems use a 16-cell battery which discharges to the bus through a

boost regulator. A DC/DC converter provides subsystem secondary

voltages and the communicati_,n loads operate directly from the bus.

C,,:_figurations 5, 6, tl and t5 use a shunted array to limit the

bus voltage to 33 VDC or regulate the bus voltage to 28 VDC ±2 percent.

Configurations 5 and 6 employ nickel cadimum batteries and secondary

power conditioning as above. Configuration ti employs an AC bus to the

science instruments, while t5 uses the Pioneers i0 and t1 inverter/

central transformer rectiiier filter (CTRF) to supply t. subsystems

with secondary voltages.

'_ Shunt array control provides minimum array size because of high 1
efficiency at end of life when shunt current is minimum. This method of

controlling the bus voltage is identical to that used on Pioneers 10 and 11.

The shunt driver in the power control unit drives either a shunt eler_-nt

assembly (electronic) or a shunt radiator (resistive) to dissipate a portion

of array power in excess of load requirements. The remainder is dis-

sipated in the array as heat due to operating point control on the array I-V

curve (constant voltage).

Configuration 7 is a silver-cadmium battery version of configura-

tion 6. Similarly, 12 and 14 are silver-cadmium versions of I1 and 15,

respectively.

All of the above configurations employ some type of array regula-

tion which reduces the bus impedance, and results in minimum voltage

transients on the bus during load changes or pulse load activation.

The remaining configurations {9 and I0) have no array voltage con-

trols and the loads operate directly from the high impedance array. Bus

voltage ranges from 22 to 70 VDC with the upper limit established by the

array operating point at eclipse exit with a low temperature array. Con-

figuration 9 uses a nickel=cadmium battery and Configuration 10 a silver-

cadmium. Secondary power conditioning consists of two DCIDC con-

verters for the subsystems and communication loads. The batteries are

discharged directly to the bus,

8. 1-8



Configuration i4, _l_e study proi)osal base line subsystem, is a modified

Pioneere I0 and I1 type subsystem with a CTR1 r, silver-cadmium battery,

and inw, rtcr to convert |he 28 VDC bus to a square wave AC input for the

CTRF. This configuration (Figure 8. !-8), is too heavv for lhr Thor/Drlta

...... n_issit)n because it prox: ides

_$7-] ,('_*_''_'_'*'';'_`''''_'_ i_o_.,,-,_se.-o.d_,'y,,o_,a_..s

k _r " _ J : I IINAI_I('*MIII I It"

"......;...................." .......'" I'""' J*, requirem_,nlsof Pioneers10
and 1t (currenl_ in pliHform

liq:_re._.I ._. £0ntiq_rali01t1_ I'ionrerslOandI1 l_pcSohs,sh,m t'lilllillill¢'d).

Configur,Hiot_ O, Figurv 8. l-q, has ¢_shm_t tom,coted across 1he

array lerminals whicl_ controls ',he bus upl,cr voltage limit. The I)allvr_

8. I-n
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is discharged through a regulator to maintain the bus voltage a_,ow, the

lower limit. A nickel-cadmium battery provides high reliability and long

cycle life with high depth of discharge. Science and communication loads

_ 2_ VDC r_'t, tRl_

-_ _,_l I i I i _._] bus. A DC/DC converter provides

-,,' ',,._ __ d oc pc [ _,,i._Ic,

'\'_"_ _ 3 C°N_'""I" '"J""'"" aeparate isolated windings for highcurrent loads to minimize magnetic

_tltcrtn _o_ rHL,_ t_ttra _t_tON_ -ItfGHIy SUCCISSftII. field generation due to ground
'_Cltl'_Ct INi*.R_',_CL Pgt'_:t 1_ _1_4PI('_NLLA'5l0 AND _1, NtAg
OP[l_dkIM _OK 8OIH PRt_ [RJ_ AN[) OR61ItR flow COS!

,_,_.r..t,,,_,,_ loops. This is the selected Thor/

De!ta orbiter configuration.
Figure 8, [-9. C0n/iqurati0n _ Re_ulate_Bus

Three other systems, characterized by low cost and weight were

considered for the Thor/Delta missions. Configuration 11, which sup- i

plies an AC bus to the science instruments, was eliminated because the

nonstandard science power interface was judged to be high risk. Config-

uration 5, based on Intelsat III hardware, was suitable for the orbiter,

but required extensive PCU modifications for the probe bus. Configura-

tion 9, which supplied a completely unregulated bus of 22 to 70 VDC to the

science loads, was eliminated because of high risk and it was too heavy

for the probe version. (Configuratitnis 7, 10, and _2 which were lightest

in weight were eliminated because of high cost).

The Atlas/Centaur subsystem was setected for low cost and high

reliability, unconstrained by weight or w_lume considerations. This

allowed extensiw, use of existing hardware, eliminating many develop-

ment risks.

Configuration t5, Figure
$CI[ NC[, COMMUNICAIION

. - . 8.1-10, was selected for low cost

Atlas/Centaur versions. Derived

___ ,c,_,,.tl,_,,c _'" -,.' fron. Configuration 14, it substitutesIt_*ss_o_tq.=..,, re a nickel-cadmium battery, resulting
IFItltll I ll,-11

I F_'+s in substantial cost savings, prinaar-
StttCltt_ -tO_ COS,L _ov_N sClt NC_ INltA_t,

MAXI_LIMUSIOFtXlSIINGHAIDW_It ily due to the deletion of the cell

ftgureg,l-10. C0nligurati0nlS:Pl0neersl0an_lllvp_Subsvs_em bypass circuits and silllple charge
(Nickel-CadmiumI_ltter_)

colit rol.

8. i-iO
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Probe Bus Tradeoff Confi[[urations and Tradeoff Results

Configurations 6 and 15, selected from the orbiter trade stud_,,

were then configured for the probe bus mission and further weight/

tradeoffs performed. Four probe bus _ubsys_,ems based on the Iowt,,_!

cost and weight orbiter configurations were defined (Figure 8.1-11).

These are distinguished by the voltage characteristics of the main DC bus

(i. e., regulated, voltage -limited and unregulated). In Configuration 1,

the PCU includes a battery discharge regulator to maintain the bus at

28 volts ± 2 percent. In Configuration 2 the battery discharges directlv

to the main bus. In Configuration 3, the shunt voltage limiter function is

deleted and bus voltage i8 determined only by solar array and battery

voltage characteristics. Configuration 4 is similar to Configuration 1,

but uses an inverter/CTR.F to generate secondary voltages.

In each configuration a silver-zinc battery is used due to the limited

discharge requirements for the probe bus. The selection of 14 series

celia in Configuration 1 permits battery charging from the main bus since

the battery full charge voltage is less '."han 28 volts. In Configurations 2

and 3, more series cells are used to raise the bus voltage on discharge,

but this requires a voltage greater than 28 volta for charging from lhe

equipment converter. In each case a aimpte ground command controlled

charging capability may be included to provide operational flexibility in

contingency modes should power demands exceed the solar array capa-

bility. In normal operation, the battery is used only during the first

several days of the mission to support eclipse loads and peak power

requirements.

Configurations 1 and 7- are nearly equal in cost and weight. Con-

figuration 3 is highest in coat and weight, and was eliminated. Configura-

tion 4 is lowest in cost, but heavier than 1 and 2.

Configuration 1, the probe bus version of orbiter Configuration 6,

was selected for the Thor/Delta missions. It provides maximum com-

monality between the orbiter and probe bus subsystems. Configura-

tion 4, the probe bus version of orbiter Configuration 15, was selected

for the Atlas/Cenlaur missions. The lowest cos! configuration, it also

provides maximut_ commonalily beiween orbiler and probe bus subsys-

it, ms, including the use o[ proven, off-the-she, If hardware.

8.1-11
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Sl.JI,SYS|I_M('L_NflGU_I(_)N | I1<|M t lli(i'|GHi i'-_i_(kl

[ IIL--_._ I I I-_ ,,,,,,,', ,., ,,
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8. I.Z.Z Secondary Power Conditioning Tradeoffs,

Version Ill Science Payload ....

Requirements

Secondary loads comprise a mixture of active redundant, standby

redundant, and internally redundant configurations. All are required for

the orbiter. The major power users require S-volt regulated power and

resulting high currents. Each load is internally grounded and return cur-

rent fb'_w in the spacecraft structure is prevented by a_parate transformer

windings where resultant magnetic fields could degrade performance of

the magnetometer. Secondary voltage generation and distribution provide

8. 1-12
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protection against any component or wiring failure through the use of

redundancy, current limiting, and fault isolation for Q&ch load. The sec-

ondary load requirements are summarized in Table 8. l=Z.

Table 8. l-Z. Secondary Load Requirements, Version III Science Payload

MAXIMUM AVERAGE
VOLTAGE EQUIPMENT POWER POV_ER

(WATTS) (WATTS)

+5 _;5% CDU ACTIVECHANNEL 1.83 1.34

CDU STANDBYCHANNEL 0.50 0.50

DSU, THREEACTIVECHANNELSt 4.50 4.50

DTU, ACTIVECHANNEL 2.99 2.83

DTU, STANDBYCHANNEL 0.28 0.27 1
DDU, TWO ACTIVECHANNELS 0.04 0.04

CEA, INTERNAL REDUNDANCY 3.00 3.00

CONSCAN, NONREDUNDANTt 1.00 0.8 1

+12 _:5% DTU, TWO ACTIVECHANNELS 0.22 0.22

+12 :_1.5% CEA, INTERNALREDUNDANCY 0.12 0.12

_-12± 3% CONSCAN, NONREDUNDANT* 0.35 0.25

-12 _ 5% DTU, TWO ACTIVECHANNELS 0.14 0.12

-12 + 1.5% CEA, INTERNALREDUNDANCY 0.07 0.07

-12 _:3% CONSCAN, NONREDUNDANT* 0.35 0.26

+I6 _ _)% DDU, TWO ACTIVECHANNELS 0.14 0.12

-16 _:5% DTU, TWO ACTIVECHANNELS 0.30 0.30

DDU, TWO ACTIVE CHANNELS 0.14 0.14

ORBITERONLY

Experiments and command receivers require regulated multiple

secondary voltages. These units (which will be powered from the main

bus) will provide their own power conditioning.

Tradeoff Designs

Candidate power conditioning designs are shown in Figure 8. I-IZ.

The tradeoff study is based upon the interface with science instruments,

communication loads and user subsystem power requirements.

Science Power. Configuration i iistributes regulated square wave

AC power to transformcr-recti£iers in each experiments which centralizes

th_ experiment power conditioning inversion functions. This saves weight

8.1-13
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Ct i'4_I(_LJRATIC)N I CClNflCoUIIA[IL_N IA i

21tVO_ t2"_ AC -'_.1_KG Z8 vDC *,_'_, [ _5.fl KG

i 1

i udlJIPM[NI j , ;tiB_y_ Tt_S _ t#AI',I_,/_)#MI'R 11_SUfiSys It M
I CL_t,JVl"R|[ I_ Ill| GULAILD lu.C |11"ILg fIlTER

"I}C

i IP C(/MMLINICAIIONS _ (ll C¢_MMIJNII_ATION_
•V! !GH[ 2.J KG, COSI _IOK Wl IGItI 4,95 k(;, (_ _1 _/_ll_ll.

C('11_,11IOtlRAh_,_J 2A

,',q!Gltl 2.41_I(_, C1_%| - _14201L, WFtOHT 7.4 I_O, COST ,ll_k

LI.)i'll IOLIRATION J IlNRLGLILATLD I)C COl_If IoUI_AIIOIN 3A

122T{) _" O1(22 T("_70 %'_ Ib su'IL I'dC[ _ _1' ',(ll N{.'[

T - ; UNRIGULATiD D(.

COM_'_UNICATIONS I_ CO_MUNICAIIOt4S J J I_ GULATC)R J | TRANSFORMERf CONVLRT[R

i [QLIIPME NT

CONVERTER J_o_c°uLMeD SUBSYSTEMS IL_'J|I INVIRT[R J- J-J R[CTIFIERFILTf.RIRANSFORMI:fl IPSUBSY'_Tt:MS

,Vl.IOHT e,.6 KG, COST $941K J WLIOHT 'tl.27 KG, COST _70K

Figurer. 1-12.CandidateP_er ConditioningDesigns.VersionI I I SdencePayload

in comparison to Configurations Z and 3 which use DC/DC converters in J

each experiment. The major disadvantages of the square wave AC inter-

fa('e is thu difficulty in specifying transient characteristics of the power

bus early enough to minimize program risk in experiment design and inte-

gration, and the lack of accurate AC power measurement instrumentation.

Also, the AC interface requires control of load power factor and waveform

rise time to limit radiated EMI. In Configuration 3, the experiment con-

verters require additional parts to regulate the wider bus voltage

variations.

Communications Power. Configuration 3 requires a separate DC/

DC conversion function to e ,_ply regulated _8 volts to the S-band ampli-

fiers. In Configurations ! and 2, this function is provided by the bus

regulation control directly.

Suhsystems Power. Configurations A, Z and 3 use a centraIDC/DC

converter to supply the regulated DC voltages required by the spacecraft

subsyst(,tns. In Configurations IA, 2A and 3A, a central transformer-

rectifit, r filter (CTRF) fed from an inverter performs this function. [

8. i-t4
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Although heavier, the inverter/CTRF approach utilizes modified Pioneers

I0 and l I equipment to minimize development coat and risk, facilitating I

inter'faces with other elements of the subsystem _ such as lhe Pioneers lO 4:

and 11 inverter, i
J

Tradeoff Results

The power conditioning weights and coats, listed for each config-

uration, were used for subsystem lcvclweight/cost tradeoffs. Configura-

tion Z, the selected Thor/Delta subsystem, is simple and lightweight.

Configuration 2Ae selected for Atlas/Centaur missions, is the most

cost-effective approach. It combines minimum develo_m_cnt cost and

risk, through the u_e of Pioneers i0 and ii designs and hardware.

8.1._.3 Conical Versus Cylindrical Array Tradeoff,

Version III Science Payloads

For the Version ITI science payloads, the recommended orbiter spin

axis is perpendicular to the earth lines ,hile the recommended probe bus

spin axis orientation is earth pointing. . owever, during orbiter _V and

: periapsis maintenance maneuvers, the angle between the sun and spin axis

maybe as small as 0.35 to 0.5Z radian (20 to 30 degrees). The probe bus

spin orieniation varies between 0. 17 and 0. 555 radian (10 and 3Z degrees)

from the sun line normally, with angles as large as 1.487 radians

(85 degrees) possible during probe release maneuvers. A comparison of

conical and cylindrical arrays was made because of this wide variation

in sun angles present during both missions.

Figure 8. 1-13 shows the relative power output capability as a func-

tion of angle for conical and cylindrical arrays sized to produce approxi-

mately equal power at 1.658 radians (95 degrees} sun angle. The conical

array power output is relatively flat for sun angles from 0 to t.6b radi-

ans (0 to 95 degrees}, while the cylindrical array power approximates a

cosine function and requires battery discharge to support the required

load with small sun angles. The cone permits performance of_V, peri-

apsis maintenance, and probe release maneuvers in a leisurely fashion

independent of battery capacity limitations. Large probe thermal control

is achieved through orientation of the bus to Ihe desired sun angle. Fartll

pointing and spin axis perpendicular options are retained withoui signifi-

cant impact on design.

_:. 1-15
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Figure_.! .% OrbiterArrayPowerVersusSunAngle,72_,T-WaftRecommencleclThorlOell_

Table 8.1-3 contains quantitative comparison data for the cone and

cylinder. Note that weight and cost deltas are quite low. TRW has exten-

.ire design, manufacturing, and flight experience with conical arrays used

on the DSP. This flight-proven technology is a resource directly appli-

cable to the Pionee_ Venus conical array design. Consideration of the

operational advantages, flight*proven design, and modest weight and cost

increases led to the selection of the conical array for Pioneer Venus.

The Thor/Delta orbiter array is sized to provide battery indepen-

dent operation near Venus when oriented with the spin axis perpendicular

to the earth line. The minimum sun angle near Venus is O. 5Z radian (30

degrees) for periapsis maintenance. The array power decreanes for sun

angles near 0.52 radian (30 degrees). Load reduction is permissible

during periapsis maintenance which is performed at apoapsis (radar off).

The probe bus array for the 1977 la_nch is sized to preclude battery

discharge for all possible sun angles from 0 to t.65 radJans (0 to 95

degrees) at earth and Venus. The minimum cone angle which satisfies

this requirement is 0.33 radian(19 degrees), (See Appendix 8. iE).

8. i-16
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_ _:__r_ T/DIll Tahle 8. t-3. Thor/Delta Orbiter and Probe Bus Comparison of Ctmical
and Cylindrical Arrays for Vernion III Seienc,, Payload

SIZING CONDITIONS: 106.96 GIGAMETERS (0315 A'di, SUN ANGLE 1.66 RAD 195 DEG), PLOAD 225.7 WAllS
2 _ 2 CM CELLS, 7 x 1014 [QUIVAL[NT t MeV _L_CTRONS (ORBITER_,7-OHM=CM C[tt_

J LI

I. ORBITER

106.96 GIGAMETERS SLUMBEROf NUMBER Of TOTAL WEIC_HT
CONFIGURATION (0.715 AU) PARALLEL SERIES CELLS tKG (LB)I

POWER CELLS CELLS(WATT)

0.33 RAD (19 DEG)CONE 227 150 77 II 550 14.8 (32.6)

CYLINDER 226 138 77 10 626 t3.6 t30.01,

ACELLS : 924 AW _ 1.2 12.6)

COST OF 924 CELLS = 13.8.5 Ie

COST OF TOOLING + LAYUP = 5.¢1 K

,'*-COST$ 18.85 K

E. PROBEBUSUSES4960 CELLS; CELLSCONE VERSUSCYLINDER = 402 CELLS

PLOAD :56"4W CRUISE COST OF 402 CELLS = 6.05 K
78.2W ENCOUNTER

COST OF TOOLING * LAYUP = 2.5 K

ACOST $ 8,55 K ,!

TOTAL COST S 27.4 K

I

A cone angle of 0.33 radian (19 degrees) (common to both the orbiter

and probe) was selected to minimize array substrat= tooling costs while

rueeting the power requirements of both missions over the required sun

angles.

8.1.3 Orbiter Power Subsystem Tradeoffs, .__:w .__tw
Version _I _cience Payload _ A/C III _ T/D III

IS I

Two study areas concerrted solely with the orbiter are the orbiter

battery and the sunlit periapsis pass array sizing.

8_ 1.3. i Orbiter Battery Tradeoff,
Version III Science Payload
ms ti

The orbiter battery supplies power to the loads during launch, solar

eclipses at Venus and whenever load requirements exceed array capability.

The battery is sized by the eclipse loads and profile shown in Figure

8. l-t40 There are two eclipse seasons; a long season of short eclipses

(0.48 hour maximum), z,nd a short season of long eclipses (1.4 _-hour

8. i-i?
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-",aF ' ' _ _ maxin:,_,n). There is only one eclipse

Z ',' ..... , ....... during each 24-hour orbit. Between

!-_t ', eclipse seasons the spacecraft is in t00
t

o ,:; : : percent sunli_..ht an,l battery discharge:

u.z :;'"_ ' . i is n,_t required. The total number of

" i i _ :..... " lips.s iS ILg.

tu o. t i ; i

V- _ / i ] The cycle life and wet stand <:spa-
tl0 ,; : i

O.__0.4 '':" bility of three types of rechargeable

I)attery cells are compared in Table 8.1o _..

" 11i0't......... Cycle life data for silver-cadn_ium,
3 e,,; 120 180 240

h_.,t OW_ silver-zinc (secondary), and nickel-

Fiqure8.1-I4. OroiterOayloadtclipsetoaO_andProfile cadmium cells are in Appendix 8. lB.

Table 8. 1-4. Orbiter Battery Selection Summary, Version III Science Payload

T/D III _ AG-CD WITHBYPA;S AO-ZN (,_ECONDARYI

CYCLELIFE JPREDICTABLE TESTDA1ASCATTERED TESTDATASCATTERED

TIMEDEP_,NDENT APPROXIMATELY10% 70TO 50% HIGHERTHAN AG-CD
CAPACITYLOSS

_.125DAYS_ i
RECOMMEblDED 80'_, 6(7',_(WITHBYPASSI 30% i
MAXIMUM DEPTH !
OF DISCHARGE !

-- .o i?E)k,tPERAtUPERz,,-4GE f_TO 3,C 5 TO 25°C 5 TO 25°C ,
I

STATUS FLIGHTPRO\tENCELLS FLIGtiT PROVENDESIGN NOT PROVENIN t

(PIONEERS10AND li/ PLANETARYCYCLIC IjDISCHARGEOPE?,ATION

RIS_', LOW MOI.)ERATE HIGH

MAGNETICPROPERTIESAPPROXI.MAI_LY3000 17 AT 30.5 CM COMPARABLETO
AT 30.5 CM {5 AMP, (OPENCIRCUIT) AG-CD
DISCHARCING

CON!:IOIJRATION 1624A-HR CELLS 1630A-HRCELLS 1260A-HR CELLS
I

wEIGHT J 17.5 _'O ill.6 LBl 13.9kG _30.7LB_ 11.6KG (25.6LB)

CO'J $5BSk --

- i

Silver- Zinc

Data for silver-zinc cells show a cycle lift' of 100 to 200 days for ]

24-hour cycles at 2_°C and depths of discharge ranging from 20 to 60 pcr- t
ccnt. Undt r the tl"lOSt favoi table circumstances a silver-nine secondary ]

!

battery would probably compltto this mission. The cycle life data is ]

widely scattered, indicaling an apparent lack of understanding and control j

00000001-TSD14
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of the causes of wide variability in silver-zinc cell performance. This

unpredictability leads to reduc_-d depths of discharge resulting in higl',er

weight. Another factor is the paucity of flight exrerience for silver-zlnc

batteries operated it] charge[discharge cycling regimes. Silver-zinc

cells, applied to the orbiter mission, would re#ult in a design of unac-

ceptably high risk and they were rejected,

Silver -Cadmium

Silver-cadmium ccUs have a theoretical energy density considerably

greater than that for nickel-cadmium cells and are magnetically clean.

However, a number of factors act to reduce the usable energy density for

the orbiter mission. ]'hose include time dependent capacity loss, tendenc+y,

toward leakage and cell shorting, Appendix 8. IB shows data for capacity

loss az a function of time. For this analysis a capacity loss of 20 percent

was assumed {float charge method used) and an additional 20 percent was

allowed for capacity loss due to cycling. The maximum depth of discharge

allowable is approximately 60 percent.

Silver-cadmium cells have substantial flight experience, but there

have been notable in-flight failures due mainly to high temperature sus-

ceptibility and inability to accept high charge rates. Cycling data pre- ]

sented in Appendix 8.1B shows scattered performance similar to silver-

zinc cells although tbe cycle life is somewhat better.

Because overcharge current is highly sensitive to applied voltage 1
limit in these cells, and because the I-V characteristic of each cell is dif-

ferent, the cell voltage dispersion tends to become larger with operating 1

trine. For this reason individual cell overcharge limiting was used.

Additionallyj the 60-percent depth of discharge was made possible by using

cell bypass circuits which protect against cell reversal. This is the tech-

nique employed on Pioneers 10 and 11. The requirement for cell bypass

protection r-_sults in substantially higher battery costs. The cost data shown

in Table 8. 1-4 also includes allowance for a life test which is necessary

because of the lack ot data for silver-cadmium batteries used in planetary

missions having tor,_cruLse ti.,_esfollowed by charge=discharge cycling.

Nickel-Cadmium

The relaxed magnetic cleanliness requirements of Pioneer Venus

vis a vis Pioneers 10 and l i made nickel-cadmlum batteries a viable

8. i-19
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_JC III candidate. A discussion of the magnetic field impact on magnetometer boom

_31WT/DIIIlength is provided in Section 3.2.2. Nickel-cadmium batteries are char-

acterized by superior cycle life at high depths of discharge, simple charge

control, low cost, and extensive flight experience. Most recently, a

single nickel-cadmium battery was successfully employed during the 9

months or orbital operation on the Mariner Mars t7t mission (70 percent

maximum depth of discharge, t26 cycles). Manu/acturer process controls
i

and materials usage have improved to the point performance predictability ,i

is far superior to silver-cadmium and silver-zinc cells Appendix 8. iB

shows that cycle lifeeven at 80 percent depth of discharge fs considerably

in excess of the orbiter mission requirem_,nt of 125 charge/discharge

cycles. Conservative cycle liferating together with careIul cell matching
'o

procedures eliminates the need for cell bypass circuits. The battery re-

liabilityis calculated to be 0. 998 for d25 days.

While battery _ell Open circuit failure would cause loss of power

during eclipse, the likelihood of such a failure is virtually nil. Battery

redundancy (two batteries in parallel) would increase orbiter weight by

approximately 18.2 kilograms and would cost _75K including charge

corr_ol and cabling, Cell bypass circuits would add 3.63 kilograms and

198K to the weight and cost of the orbiter battery.

The cost of the nickel-cadmium battery is approximately one-half

that of the silver-cadmlum battery. It is 3.6 kilograms heavier. The

low xLsk, low cost nickel-cadmium batte_-y is the recommended Thor/

Delta and Atlas/Centaur orbiter design.

8.1.3 2 Sunlit perlapsis Pass Array Sizin 8 Tradeof_s .__lw• , , _ TID III

Approximately 0.,65 hour _'_fter the 1.42-hour eclipse, the space-

craft will pass close to Venuu on the sunlit side. The added light intensity

due to planetary albed_ c_uscs array heating which reduces the array

voltage. Figure 8. i-15 depicts the periapsis pass situation. It should be

noted that this condition exists for only a few orbits during the mission.

The Thor/Delta array has been sized to provide 226 watts at 28 volts at

a temperature of 50°C and sun angle of i. 657 radians (95 degrees}.

The increased array temperature reduces the power available at

28 VDC. The shaded area above the array power versus time curve

8. i-20
1
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flute 8. l-I_. OrbiterPerlilpsisPals Situation, VersionIII SciencePaylo_l

shows that the array capability falls below the load requirements [or a

short period. The battery Ls discharged to support the load. The total

battery energy used is 49 W-hr or only t0 percent of the battery capacity.

uring the time after the t. 4Z-hour eclipse and before periapsis, the

battery is charged with t5 W-hr. The Section 8. t.4.5 shows that the

battery depth o£ discharge is 66 percent during the t. 4Z-hour eclipse.

Hence, using the _ _,ttery to supplement the array results in a maxLmum

depth of discharge of 73.5 percent.

Increasing the number of series cells on the array would preclude

battery discharge at hitch array temperatures, but thl_ would add weight

and cost. Since the batter_" is easily capable of supplementing the array

during the periapsis hot pass condition and discharge is required only

during a few orbit c. Battery discharge during the hot pass is the selected

approach.

8.1,4 Recommended Thor/Del.ta Orbiter Subsystem

Design, Version III Science.Payload

I_. i.4, i Configuration

The Thor/Delta power subsystem was selected for low weight with

reasonably low cost. A detailed block diagram of the Thor/Delta orbiter

8. l-Zl
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power subsyslem is sh.'wn in Figure 8. l-ltd, q'ht_ rt, conln_t, nded sul)sys-

lem uses a highly successful bus voilagt, control my!hod pr,w,+,u on

Pioneers 10 and 11. Appendix H. IC provides a descriptitm of tile various

operaling modes. The power coal rol unil contains a el,lit ral t'tmlrol unil

(CCU) which senses the bus voll,tgt, Io t, nable lilt, shunt wht, n ills al'l';_v

power ex_.t,eds load powt.r. A shunl driver ilcls t'ts ;i vari,lblt, load to c,m-

trol shunt radiator current and dissipation. The charge rcgttlator is

enabled whtncver array powt.r t,xc;,t,d_ load power° Wht, ll the, bus voltage

decreases _lightly due It) load dt.mand exct.vcthl_ arra_ Cal.,141hv, lhc dis-

charge regulator is t'llahlt'd and Iht, 1);tIlt, ry sttpl)Ol'iS l}lt, I,u,_;. Tht. CCU

logic precludes shunting and discl:arging simullant.oualy. (.+ommands and

telentetry are processed i. lht _ PCU0 The nickel-cadmium balterv pro-

rides a highly reliable energy source for eclipse power. The DC/DC con-

•¢erter provides secondary voltages to the subsystems.

Ii • aal uaiiiiIi iliI_iimi •iiiI • el ° • •t • Illm•ililii_

i_ 2t+ \'ILL+ ,2", _I" ",Crl NCI

!

| oe.oc I • ,:,

i,+++o,+!, i
Ct!NI_('I I i [

L,= ' 1! , , i
' i I 'I ! - Ct ,,"_IANll
e I t &_PI_,_,It 'Ml [ Il'q"

• l i I i i iiii Ii i i i i i III I III_IIIIIII llil I III III ll,ll III l II

I, NlfkLt-

L ¢+AD.MIUMIIAII t I_'_
16CIIIS

FigureB.I-lO. Recommend_Thor/DeltaOrbiterSubsyslelrBlockDiagram
I_ VDC.t ZPe¢centRegol,}t_ B'J$)

Rt+'dundancy has been incorporated in critical areas to preclude

sing,e poit_t failures. The central conirol unit employs two oflhree major-

ily voting c_rcuilry. Tilt, shuu! driver is quad redundanl to prevent toss of

shun! cot;;rol due 1o open or short failure modes in the power amplifit,rs.

The charge and discharge rvgulalors are redundant to prevent lose of ill(,

batiery. The DC/DC converter supplies rodunda,fl secondary voltages Io

redu_:dant riser subsystems, t_:ach secondary outpui is currenl-limiled to



T/D III

prevent fault propagation. The shunt power capability has been sized to

allow for single failures in the strip resistors (open-circuited resistive

clement} of the shunt r_.diator+ Possible fatalta _ the solar array are

isolated by blocking diodes in the arra._ l+arness.

l_. 1.4.2 Power Control Unit

The powt, r t'ontro| unit for the Thor/Delta orbiter (Figure 8. |-17)

uses existing Pione_,rs t0 and tl designs wi_erever possible to minimize

costs. The central colltrol unit_ shunt driver, and overload sensor

off-the-shelf Pioneers i0 and l! designs. Because of the change from

RTGts (radioisotope thermoelectric generators) to a solar array and the

use of a nickel o=admium battery in a cycling mode new designs arc required

for the battery charger, bus filter, and discharge regulator slict s. Telem-

etry and command circuitry will be m_nimatly modified Pioneers t0 and 11

designs.
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The shunt dissipation as a function of shunt current is also shown in

Figure 8. 1-17. Peak PCU dissipation withinth_ equipment compartment

due to the shunt driver losses is 40 watts. Tile shunt radiator is simply a

resistive load (5.9 ohms) and its dissipation varies as the square of the

current. A maximum shunt current of 4, 5 amperes is possible at Venus if

the array degradation and load are minimum. The peak current capability

of the shunt driver with one power transistor inoperative is 4.5 amperes.

Therefore, the shunt driver capability is adequate even for failure mode

conditions. A discussion of shunt sizing is in Appendix 8. ID.

The shunt radiator maximum dissipation is 119 watts. The location

and size of the shunt radiator has been selected to accommodate a tempera-

lure range of -156.5 to +121.5°C (-_.50to+250°F). The shunt radiator

size is 38 by 32 by 3.3 cm (15 by 12 by 1.3 inches).

The nickel-cadmium battery charger is located in the PCU. The

charge control method selected has been flight-proven on eGO, Intelsat Ill,

and Mariner Mars _71. The battery voltage is limited as a function of

temperature by a series dissipative regulator to prevent battery thermal

runaway. The maximum charge current is limited to B amperes with

switch to trickle charge when the voltage limit is reached. The 0.15-

ampere trickle charge rate can be selected by ground command to limit

battery dissipation during cruise. During the orbital phase of the mission

the 0.3-ampere trickle charge rate can be used to increase the battery

state of charge.

Battery charging power is derived from turning off science instru-

ments which only desire data near periapsis. This provides a minimum

of 22 hours battery charging capability during orbits with a maximum

eclipse.

The PCU contains a redundant discharge regulator (nondissipative

switching type) which boosts the 16- to _'4-voltbattery to ?8 VDC. The

discharger efficiency is greater thvn t_5percent at _30 watts load. Redun-

dancy is provided to preclude single part failures. Six pounds have been

allocated for the redundant discharge regulator. The discharger dissipa-

tion of 35 watts for maximum load conditions requires a good thermal path iv
I

to the spacecraft platform through the shunt slice.

8. t-24
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8. 1,4,3 Equipment Converter

Parallel redundant DC/DC converters in a single package are used

(Figure 8. t-18). Each converter input is fused to protect tile main DC

bus against converter faults. Output power switching is by command fo

select converter channels for internal.ly redundant loads (DSU, switched j

5 volts for DTU, CEA) and to provide- complete fault isolation for each load !
I

fed from a common output. Only compatible loads requiring low currelts

are supplied from common outputs to assure noninterference and elimindte

magnetic fields generated hy return currents in tile structure which could

affect the magnetometer.

Each converter channel supplies 11 isolated, regulated outputs. All

secondary power grounds are located in the load equipment. The dissipa-

tive type output regulators provide excellent dynan ic response to load

variations and also provide current limiting in the event of overload to

protect the converter. Overvoltage protection is provided for each output.

Each channel is capable of supporting the total secondary load. The loads

are approximately equally divided between channels during normal opera-

tion to maximize converter efficiency.

This approach we,s selected for the recommended Thor/Delta sub-

system because of weight savings achieved by combining transformers

into one multiple-secondary power transformer per channel.

8. t.4.4 Solar Array

The Thor/Delta orbiter array was sized to provide at least 225.7

watts at Venus with a t. 657-radian {95-degree) sun angle. There are

many interrelated factors which affect the size of the solar array, The

temperatures predicted for a 0._3-radtan (19-degree) cone angle vary

with solar aspect angle and distance from the sun. and range from -4 to

7 l°C, while the light intensity varies from 0.87 to 1.96 times the mean

intensity at earth.

The most efficient combination of series and parallel cells was

determined by an iterative computer analysls considering the required

range of solar intensity and temperature after radiation degradation. The

different sun angle requirements for the orbiter and probe lead to differ-

ent numbers of cells in series as well as parallel for tile two missions.

8. I-Z5
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The cell characteristics were determined from measured proper-

ties of JPL cells at high intensity adjusted for the confzguration and

thickness best suited to these missions (Reference i).

Radiatio_ Environment

The dominant factor in radiation degradation for the Pionce:' Venus

solar array is solar flare protons. Passage through the earthls trapped

radiation belts has a negligible effect.

The radiation factors used are based upon NASA predictions for the

time period of interest, apd over 20 percent of the orbiter array is

required to make up for anticipated radiation losses.

The radiation model used throughout the analysis was based upon

NASAfs predictions for the peak of tile 21st solar cycle. Three NASA

_,+:.......... documents (References 2, 3, and 4) i
...... ,\ ,._,,_,,_,L_,,, were reviewed describing space .1

I 5+,.l .. _+ C%Cl _ PL,\k !Pq 2161

_,,_,,,,,...... , ..... _,,_,_,, ,+,_,-, environment criteria guidelines for

, 1Y [At { _dC, IG,%&t11_S 1 AI_'..... ' ] use in space vehicle development for

. the time period between 1077 and 1082..... _,,,_,_.._._ t,u..,.,,,.,,s All agree with the Curved line shown
:" t'tAk D,"_40

5 ,_ in Figure 8. l-lq. An independent 3PL

:" analysis (Reference 5) intended for th...t

:: 20th solar cycle is ahownas a strz;.ght
k' kL'. _,', _'': WI

There is more than an order of

magnitude difference between the

i :,_,,...._,_+-_, observed peak of the 20th solar cycle

(i_+i,_i:_','i'_,,_i_i_-I and the predicted peak for the _-lst

:_,I_".:_'_:.':,i':,',:.... cycle. The data for the 21st cyclc is

,, "'"" ........ " based upon the cycle 1o (105o) peak

,._,.,,...,n,_,..,_ =_,,,_ which was the worst event in 188 years

Oiqure8 t L+ St,I,,, R+rer,,dmt,0,_Invi,tm,m,nt of measured data. Cycle ?.0 (lqbS-lt)b0)

data shows that it was a typical mediun_ peak. Basing the soi,tr ,trray

degradation on cycle 21 data results in a conservative array design which

increases array weight and cost.

8, 1-'7
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A less conservative approach might be to use tile maximum pre-

dicted poLnt got the 20th cycle. JPL is currently using the low point (1975)

of this cycle for the Mariner Venus Mercury mission. Assuming use of

the predicted 20th cycle would reduce the size and cost of the solar array.

It was assumed that the 425-day orbiter mission would incur 425/

365 times the annual 150 gigameters (1 AU) fluence, adjusted for l/r 2

during its mission to Venus in 1978-1979. Solar flares are discrete

events, and there may be two to four in a year with random spacing. For

approximately 60 days the orbiter will be over 150 gigameters (l AU) from

the sun and the proton fluence used was 60/365 times the annual 150 giga-

meters (1 /.U) fluence. The proton fluence was converted to equivalent

1 MeV electrons as shown in Table 8.1-5.

Table 8. t-5. 21st Cycle Used for Thor/Delta Array Design,
20th versus 21st Solar Cycles (Peak)

I

20TH 21ST

PEAK YEAR 1969 1980

60 DAYS, EARTH 2.7 x 1012 I1 MEV_ 5.8 x 10t3 _,IMEVI

DEGRADATION 0 5.3 PERCENT

365 DAYS, VENUS 3.2. x 1013tl MEVI 7 x 10TMLI MEV)

DEGRADATION 2.6 PERCENT 22.5 PERCENT

Solar Cell and Cover_lass Selection

The cost of solar ceils decreases with thickness due to breakage of

thinner cells. Added material cost above about I0 mils is negligible, but

thicker ceils have somewhat higher power output. After a moderately

heavy.,'adiation dosej however, the output of ceils is independent of

thickness.

Similar conditions hold for fused silica covers, except that m_.terial

cost is ahigher fraction of terM cost, with 20-rail fused silica covers

least expensive. Microsheet is generally used only in 6-rail thickness, !

which is considerably cheaper than fused silica. For the intended ,a_is-

sion, microsheet darkening will not be significant. I_

8. 1-28
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In order to make a selection (Figure 8.1-20), it was assumed that

5000 cells of l0 _cm base resistivity l0 mils thick, with b-rail micro-

sheet at 150 gigameters (l AU) from the sun, 28°C and I year of radia-

tion were used. Thi_; formed an arbitrary baseline for comparison,

considering cost, weir;hi, and number of cells, holding output power con-

slant. Cost includrs instatlalion on the sul)slrate.

The 10 _-cm cell_ were slightly preferred over 2 _-cm, but since

reliable data was not available on 10 _-cm cells at high intensity and the

cost difference was small, the 2 _-cm cell was selected. With 12- or

20-rail fused silica covers the cost is slightly less, but the weigh! is

increased by a pow,,d or two, which imposes an even higher penalty and

negates the cost improvement.

Array Temperature

The solar array temperature, varies as a function of solar distance

and distance from Venus near periapsis. Appendix 8. IE shows the array

temperature data upon which tile design is based. Temperature variation

as a function of solar distance, cone angle and sun angle was included in

tile array siz{ng calculations. !

Array Sizin_ Summary

The sizing factors are presented in Table 8.1-b.

The array conststs tq" s_x equal-sized panels arranged to form a

cone with a 0.33 radian (lt)-degree) half ;ingle. The packing factor is

0.84 pert'enl. The strings ;ire con_t)rised of modules containin_ 3 parall_,l

by (, series J x 2 cm cells. The selected Thor/Delta array coid'iguration

is shown in Figure 8. 1-21.

8. I. 4.5 Butte ry

The recommended "l'h,_r/Delta orbitt, r h(ns a load of t82.(, watts

during the maximunl eclipse time of t.42 hours. This is a total energy d

of t_ql. 5 x |.4J 2_8 W-hr (303 W-hr including discharger loss). I
i

Sixteen 24-A-hr cells provide 462 w-hr asstu,fing an avera_r dis-

charge volta_(- of lq.2 rolls (1.2 volts/cell). Each eel 1 wril!hs 0.¢)1 kih)-

_)';)m t2 l)ou,ds) which results ill a total I)a((ery weigh! of 17. 5 kih)_ran_s

8. I-2')
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T/1311! Table 8. t-6. Thor/Delta Orbiter Solar Array Sizing Factors

I
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Figure8. 1-21. ll_orll)ella Orbil_r $_ar Array

(38.6 pounds) including case, terminals, wiring, and connectors. The

depth of discharge is 66 percent during the maximum eclipse.

8. i. 5 Atlas/Centa_r Orbiter Subsystem, _wVersion III Science Payload MC III

8. t.5. t Configuration

The Atlas/Centaur power subsystem block diagram ia shown in

Figure 8. t-Z3. The mothod of controlling the bus voltage to 28 VDC + 2

percent within the PCU is id_:ntical to that of Section 8. !. 3. 1. The major

difference involves use of _he more cost-effective Pioneer i0 and IiCTRF

a_d inw, rter in place of the DC/DC converter. The battury, solar arrny,

and shunt radiator design approach is id_,ntical to fl_e Thor/Delta version.
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Redundancy and fault isolation have been included to eliminate single

point failure modes. The inverter and CTR[:" are parallel redundant. For

details of the PCU design and operation see Section 8.1.3.2.

8. 1.5.2 laver+or and Central Transfo,,.mer
Rectif:.,r Filter (CTRF)

The inverter {F_,gure 8. I-Z3) is a modified Pioneers I0 and II

assembly. Two 2.4 kHz inserters each having a maximum power capa-

bility ot'4b watts are operated in parallel. Fault isolation at the inputs

is provided by fusing. Rela_,s ;',re used to cross-strap ti_e AC T)us input

to the CTRF power regulalors.

• _........................................,

+' ..... I,¢.,,..,+, I i
i u+. _ "_0-4-_ lOC/rl-ll_llClSI i

II.oo ..... .. ......... . ...... ... ............ .aI

INVLRILIt A_StNI6L_ (HANGt5 FI¢L_M I_ION[{I_ tO AND II

le [_FLETf I_TO IttlMETq_ CIIICUITS_,i'lll%1_.%.10%(IlIAIL_II

• t }IANGI I°0',_,tll TAANSISTL_I_ FO_ _8 %-D(

• I_{tTONI_GIH(I WI_.IWSI _JL!KRt MT r_tl_'_,l(_

• gL_L_ tNPL)I fILT[_?NL%

|lkltlft' _ 11 .' l . All,lx {'l+lllallf llt_,l'l_t'l 4._t+lllLilv OlOlZ_. l_idtllJltl

vt'l_iOll II I _' tul_ t + t+,)_,iiO,It?
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A/C Ill !

Deletion of lho Pioneers 10 and 11 RTG telemetry circuit board

permits installation of a redundant oscillator board. The main power

switching transistors and transformer are modified for 2p VDC input.

Characteristics of the inverter output waveform are identical to the I

Pioneers 10 and 11 AC bus to minimize CTRF redesign. The illverter

size is II.4 x 15.2 x 17.8 centimeters (4.5 x6 x 7 inches) and the weight

is 2.3Z kilograms {5. i pounds).

The CTRF provides r¢.dundant, multiple secondary output voltages

to each subslstem load which is redundant. A typical CTRF slice block

diagram is shown in Figure _.l-Z4. The Pioneers 10 and li CTRF is

used with only minor modifications: the DTU A and B circuit boards are

repackaged into a base slice replacing the transmitter driver slice, a

slice is added for DSU Z and 3, and the +5-volt switched CTU circuit

board is repackaged.

i__- +5 VDC

TO USER i

SUBSYSTEM

TRAt4SFORMEJ _ +16 VDC REDUNDANCY
RE'CT|F|ER

J " __J_E'C_ -16 VDC A

AC INPUT "--_4 _] FILIER J _ _ '

lb.._5 VDC !

ToUSER Yi

TRANSFORMER +16 VI_ $UBS_'STEM
R[tJUNOANCY
8

-16 VDC

FicJure8.1-_4.AtlaUCentaurTypicalParallelRedundantCTRF

Series dissipative regulators provide current limiting and over-

voltage protection at each output. The common AC bus input is protected

against low impedance faults in the TRF by fuses. The total power output

is approximately Z0 watts. All slices are flight-proven designs. Fig=

ure 8. I-Z5 shows the orbiter CTRF weight and size.

The inverter/CTRF overall efficiency is 60 percent.

8.1.5.3 Solar Array

The Atlas/Centaur orbiter solar array, Figure 8. i-Z6s was sized

to supply 276.6 watts at Venus with a i. 66-radian (95- _egree) sun angle.

Sizing factors used are ident:" _I to those of Section 8. I. 3.4. The same

solar cells and coverglass t_:icxness are used as for the Thor/Delta ver-

sion. The major diHerence in array sizing is due to the spacecraft

diameter increase to Z. 6Z meters (|03 inches).

-=.',q._
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"_-_LIIIilh_ ..I !I I _, • AIII_D_II_'ANI) I'ii111

t _ _ • kll)&c_ I, GI DILl ,k AI'JI) I_ Ik ARIY,

l)',L' ,'AIII) I _ I DIIITI _ICIIVII.' ',II('I

DII' A A_JLI {} I . I i Alil)ll I(_N ANI)|)t i t i i, ,N (,1 _ 'ql( I" t ASIIYI

! _ CII4| St1(_|g _R| INDI PI NIJI NI '¢wlIll Ni.'l
I II flklCq ClJ. 'NICIION5 BI I'W[ [ I'l "_LI(: t 5

'l_lIle I_II|RNA, TO r_l| 't(11}5 N ", I

• ',ll(;lll ',.I _(. ll,;'|_,

Figu_,. a. | 25. Allas/Cenlaur lltl itel _',,ntral lransloH_er Reclifier Fllter

_----_ ARIA _,6 M '_,70.9 112' ,'i
0.8,_ _ It:i-, :_ NO. el CII[S 14 J22 I

N(I. el PA_ALLIL CELLS 186

| NO. el PANII') 6]

' 2.62M ] CC)NI ANGI[ 0,}J gAD _19 DLO_
i _ _" D[3tGN PO'_tI_ 276.6 WAllS

,lO] IN. i I
£

Fiuure _. 1 26. Atlas/Centaur Orbiter Solar Array Sunlmanl,
Version III Science Payload

The array temperatures were e.ss_m_ed to be the same as for the

Thor/DeJta orbiter0 This assumption is conservalive since the Atlas/

Centaur array is shorter, providing a larger radiating area at the top of

the spacecraft,
i '

R. 1. 5.4 Battery t

The Atlas/Centaur orbiter has a load of 219.4 watt_ di_ring the j

maximum eclipse time of 1.4Z hours. This is a tolal energy of Z10.4 x !]
1.42 = 312 watt-hr. The discharger efficien(:y is 85 percent so the battery

must supply 366 watt-! r. An 18-cc11, 2_4 A-hr battery supplies thi,_ load

at a depth of discharge of 70 percenl. Th,., battery wei,_ht is estimated at

19.6 kilograms including wiring, cast:, terminals, and connectors.

8. l.6 Orbiler Options, Version III Science Payload

Solar array and battery sizing arc main areas of difference between :

the recommended Thor/Delta and Atlas/Centaur power subsystems, and

lhose in the optional missions. Power c_ntrol unit design variations are

minimal. The array design power varies from 156.2 watts for Thor]

Delt,t e,trth=pointer to 276.6 watts for the Atlas/Centaur. The range of

battery sizing power req_lire.ment.,* is from Ill. O to 219.4 ,.'.,ttts during tat,

1.4Z-hour eclipse.

8. I-_-I
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,-T/DIII Table 8. 1-7 suTnrnarizes the solar array t:ize and weight for the
Version llI science payload recommev:led and op[ional colffigurations.

___ A/C III Tile,_e sizes and weights arc, based upon the load power requirements of

T/D IIISecli°n 8. 1. Z.

____aw Table 8. 1-7. Orbiter Solar Array Sizing Sum,nary,
A/C II! Version ILl Science Payload

_-_v_jD Ill c.l,'ltJo COi'qDITIOIJS: 7., M,,V [()LJI\'ALI NT F[ [Ctl,',(_t4S 0.327 RAD _19 DEG)CONE ANC_LE,
1014 CM 2,

(,I.;'[D [O PROVIDE rl _UIRED POWER At 1,057 RAD (v:, DEG_ SUN ANGLE

...f_1w

A_'!tA
U A/C III _ovi_ I'..IUMBfP, r_U/'ABLR :INCLUDING ARRAY ARRAY

AtE _( IENC[ Of Of TOTAL PACKING DIAMETER HIIGHI
._._..I W CC)t,4EIC.LIRATIOt-J L'rl A1 , VARALLL L SERIFS CELLS,

TID III . LI'_IP_, I ACIO_! A1 BASE ;M ilN. i,WATIS i C[LLg CELL', .[ M _II" [M ,'IN. !

""_A ILAS CENTAUR ! !
, 31-WATT" 276.6 ! IB6 77 14 ,_'22 6.L_ r70,871 2.67 II03_ 0,856 33,7

EANBEA/_'FANSCAN

RECOMMENDED 22_.7 1:30 77 11 _:_(1 5.31 ,57.17, 2.13 _84_ 0.874 134.4_
THOR DELTt
rANBEAM FANSCAN

ATLAS/CENT,fUR 173.4 114 77 8 778 4.03 ,43.4, 2.62 ,103 0.50 _19.8i
ORBITER 12-WATT

i

THOR/DELTA 15o.2 108 77 8 310 3.82 _41.16! 2.13 184, 0.60 Q3 64, i]

12-WATT ]

THOR DELLA 156.2 108 87 9 39_ 4.36 46.5 2.13 _8,I, 0,.686 ;27.0) 1

EARTH POINTER j

ATLAS/CENfAUR 18d.4 126 77 q 702 4.46 ,48.02 2.62:103 0.50 t21.96 ]
DESPUN

THOR DELTA 10o.3 114 77 8 778 4.04 43.4 2.13 _84 0.(,4 _25.I,

AI 28 ','DC

Yk I '\""°"
---t-F

Table 8. 1-8 summarizes the battery weight and cell si_.e for the

Version III science payload recommended and optional missions. The

maximum eclipse depth of discharge is less than 80 percent for all

versions.

The secondary power conditioning requirements are invariant except

for versions which require additional secondary voltages for the despun

reflector motor and electronics. This results in a net increase in weight

of 1.8 kilograms for the CTRF or 0.45 kilograms for the DCIDC converter.

8. l. 7 Probe Bus ALL VERSION III SCIENCEPAYLOAD

The probe bus power subsystem configurations recommended in

Figure g. I-I I for the Thoz/Delta and Atlas/Centaur missions are

8. t-35
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discussed in the following sections, Descriptions of the dnits cox',_prising

the subsystem are presented where the'/ differ significantly f_'om the

orbiter versions. The probe bus design is based on the requirements

preseuted in Table 8.1-2.

Table 8. i-8. Orbiter Battery Sizing Summary, Version III Science Payload

_A/CIi! I " " ' "1.42 HOUR ECLIPSEENERGY BATTERYCELLINCLUDING 15°o QUANTITY BATTERY DEPTH OF

[_ CAPACITY DISCHARGET/D III CONFIGURATION ECLIPSELOAD DISCHARGER LOSS SIZE (A-HR _,AND _W-HR) I%)(WATTS} ,W-HR) WEIGHT _KG)

ill ATLAS/CENTAUR 219.4 356 18 CELLS 520 70
3t-WATT J i 24 A- HR

_T/D FAN BEA_'/C'^"_tc'CAN l 19,6 KG
III

RECOMMENDED r 181.5 303 16CELLS 462 66

Z_ _ll_tC THOR/DELTA 24III FANSEAM/FANSCANJ 17.5

_12W ATLAS/CENTAUR t16.2 194 16 CELLS 346 56/o,,, TA.OEARTHPO,NT R '3.'
NC lU THUg/DELTA r 111.9 186 16 CELLS 346 5,_ ]

12-WATT AND 18 !

IO III EARTH POINTER 13.1 !_
ATLAS/CENTAUR 127.2 212 16 CELLS 346 61
DESPUN : 18

i 13.1

i i

THOR/DELTA 122 204 16 CELLS 346 59
DESPUN 18 ",!

13.1

Probe Bug S_rstem [_ T/l')III
8. 1.7. I Rec ommell_ed Thor/Delta

A block diagram of the Thor/Delta probe bus power subsystem is

shcwn in Figure 8.1-27. The commonality with the orbiter subsystem

(Figure 8. I-i6) is apparent.

Power Control Unit

The power control unit is identical to that of the orbiter with the

following exceptions:

$ The charge regulator is nonredundant and has been changed to be
compatible with silver=zinc battery charging

• One channel of the discharge regulator is deleted since the bus
battery is only required during launch and for peak loads.

The power control unit is shown in Figure 8. I°28. The weight and

size are less than the orbiter PCU because of deleLions of redundant

functions.

8. 1-36
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.. l 2_v_c,_O._TOSC_NC_

| . t

I CoNtrol. I l ------7 / _ /_ cOnvfrffrl " -

i,_o..o.N,l..... :'_
I CHARGI_ DISCHARGEI | i I _,r_-'l.l_..., I ,._OOLATO,.O°,.'O,../O_OC _ l_| IDI$_IPATIVEI fNONDISSIPAI IV[ II l L'-,II CdNVERTf _ I"-_ + 12

I_."_,_o,N-;--4 0,.v,. t _ i ] , _.,,u._.__,! i "'°"NO'N'I: L . L ] : L _-+"_T !.---o
IL0 0 II m ii II iiilloal iiii illlllllo II o II II mBomlm mo_ u la mmwmmee molo mm

i

[ ISILVER-ZINC
BATTERY
14 C_LL5
(5,1 A-HR i

[_T/D Figure8.1-27.Recommend_Thor/DeltaProbeBusConfiguration
II I

128VDC:1:2PercentRegulatedBus)

PROBE8US SHUNT DISSIPATION
RADIATOR RESISTANCE- 10.211

fL2 oCENTRAL _ 60 RADIATOR /

I . fi i CONTRC3L UNIT _N DIS7

(SILVER-ZINC_ Z

_ FUSESo TELEMETRY _ 30
FILTERS, COMMAND

DISCHARGE REGULATOR _ 20 SlPATION

0.5 l.O ;._ 2,0 2,$

SHUNT CURRENT (AMIqERES)

WEIGH1 = 4,.45 KG (9.11Le'_ CHARGER IAG-ZN) DISCHARGER
(INCLUDING 0.3 KG (0,7 LO)FOR
SHUNT RADIATOR

• SINGLE CHANNEL
SIZE = 20 X 17.6 X 22.2 CM (8 x 7 x 8.7 IN.') VERSION OF ORDITER

• VOLTAGE LIMIT 20 V_C DESIGN

THREECHARGE RESISTORS • PEAK POWER 200 wArTs
$ELECTABLEBY COMMAND

IU$ 2E-VOLT • EFFICIENCY 05 PERCENT. A A

II R2 R3 16 TO 24.$ VOLTS

t t t ',°.c-o.
_,' t' I' ?

SILVER-ZINC

BATTERY

[_A_C III Figure8.1-28. Recommend_lProbeBusPowerControlUnit,ThorlOelteend

- I_ 1'/O III AlleslCenlourMIsslo_$.VersionIll SciencePaylo_l
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_T/D III

The resistance of the shunt radiator is increased to 10.2 chins

which decreases the shunt current and reduces the peak shund driver

dissipation to 20 watts. This _,ases PCU th(:rmal interface with the

remainder of the _pacecraft.

The battery charger is a simple, low-cost design which provides

three current-limiting re_istors for control of charge, current. The bat-

tery voltage is limited lo 2E VDC by the shunt regulator. Selection of

current-limiting resi_tors during charging is by ground command wilh

telemetry monieoring of battery current, temperature and voltage pro-

vided. This method of ci_arging is used primarily after launch when depth

of discharge is deepest. Although returning the battery to full charge is

not possible, sufficient state of charge is maintained for pulse load sup--

port, probe checkout and possible contingency mode operation.

Power Conditioning
1

The DC/DC converter is identical to that of the orbiter (see Sec-

tion 8. 1.4.3). Redundancy is provided by dual windings and regulators •

for each voltage output to redundant loads.

Solar Array

The Thor/Delta probe bus array was sized to supply 56.4 watts near

earth and 78.2 watts at Venus. The sun angle for the earth-pointing probe

bus is normally 0. 17 to 0.56 radian (10 to 32 degrees). During probe

release maneuvers the sun angle may be as high as 1.48 radians (85

grees). Therefore, the array was sized to meet the load requirements

over a large range of sun angles from earth to Venus. The array sizing

factors are as shown in Section 8. t. 6.

The radiation environment differs from the orbiter because of the

decreased mission time. The probe mission was sized for 0.5 times " -t 11 t_.,

annual fluence with a l/r _- relationship as a function of AU::, assumed.

The array characteristics are sumn,arized in Figure 8.1-29.

1
:"One AU is 1.5 x t0 II meter_;

_. t..38
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I_T/D Ill

RRNfiE flu(',

0, ]7 }M I MI V [QUIVALE NI
rl4.7 IN.', [L[CTRON ELUENCI

I

_ LAR1rl VENU c, AREA 7.5M 2 GBJ tl 2,

NO. Of CII, LS :95_

5'0x1013 1"7×1014 NO. OF 5ERIIS Cll IS 87

NO. O| PARALL[| CELL_ _75,3% 12,6°.:, NO, OF PANELS 6
CONI ANGLE 0 E3BAD r19 EJEG*

56.4 WAIT LARTHDESIGN POW[P 7E.2 WAIT VENUS

Fiqure 8. i-29. Th0r/Della Pr_e Bus Array, Version |11 Science PdyI0aC

Battery

The probe bus battery supplies power during launch and possibly for

one eclipse while in a t85-kilometer parking orbit near earth. The biH-

tery supplies power for probe checkout approximately 104 days after

Launch. The battery sizing calculations are shown in Figure 8. 1-30.

During launch and earth-orbit eclipse the depth of discharge is 46.6 per-

cent. After insertion into the trans-Venus trajectory the battery is

recharged by ground command.

PRO_ CHECKOUT PROFILE
112,2 w

ENERGY FROM PROBEBU_ BATTERY

100 ,

9USR[QUIR EMI!NI'S
80 _./_m.L ARRAY CAPAetLIT_' -86 WAILS _104 DAYS!

LAUNCH LOAD 45.7 WATTS m

lAUNCH DURATION 0.52 HOURS _ / P_Cfig BUS ,

ENERGY (LAUNCH, 28.0 W-HR _ 60 " /v_Bi_1 SMALL PROBECHECKOUT °.O WATTS _" PROBELOAD
18_ I,,M EARTHOR0ff _- .... _ PROBEBUSLOAD : 56.4 WATTS
[CLIRSL LOAD _t.4 WArIS
185 KM NMI ECLIPSE _ 40
DUATION 0.58 HOURS _ i SMALL _ SMALl I: SMALL !

ENE_Y(FCEIPSE) 38.5 W-HR a. =+ LARGE T PROB£ 1 _.*- PROBE2 _ PROBE320 i'RL'3BE 3.6 MIN I 3,6 M_N 3,6 t_lNTOTAL ENERGY 66.$ W-HR

0 .............................

TIME (MINUTES,

PROBEBUS9AIILRY SIZING

USE S,_aALLPROBEBATTERYCELLS 6.82 A-HR SIEVEB-ZINC
IDIVALLNT RATING

CELL_UANIITY 14
CAPACI| Y 143W-HR
DEPTHOF DISCHARGE (LAUNCIq', 46.6 PERCINT
WEIGHT 1.59 KG i3.§ EB,

FiBure8.1-30.ThorlDeltaProbeBusBatterySizing,VersionIII SciencePdyl0ad

During large probe checkout the solar array and bus battery operate

in a sharing mode to supply power. Bus science loads are turned off to

maximize array power available to the probe and minitnize battery dis-

charge. The array capability is 86 watts at i04 days from launch. The

bus load is 56.4 watts which provides Z?.6 watts for four minutes of the

probe checkout prior to probe transmitter turn-on. The total energy

.... required from the bus battery is 70 W-hr.

8. t-39
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_. 1,7.2 Recommended ALias/Centaur Probe Bus Subsystem,

Version HI Science Payload .

A block diagram of the Atlas/Centaur probe bus power subsystem is

shown in Figure 8.1-31. Commonality with the orbiter power subsystem

(Figure 8, 1-22) is provided. The major difference between the orbiter

and bus subsystems is the PCU charge and discharge control for the silver-

zinc battery and use of the inverter/CTRF for generation of secondary

voltage s.

POWER CONTROL UNIT

SOLAR . _- ............. -_0 _ _ {PARALLEL |

!OL A¢_0PCUFOR /

CVmNT_N_TOm.A

_'E-CO-N_ SUPPLIES,1 6Iv RMS

I R.I,_.L " _ I CE.T.L I
SHUNT
RADIATOR 1 H GE | TRANSFORMER |

(PARALLEL OTING) OR AT ]1 RECTIF|ERFILTER||
REOUNOANT) [ (PARALLEL I

I REDUNDANtI I

• 16 =16+12 -12 +$VDC

L SILVER-ZINCRATrL_Y J

Figure8.I-3L AUaslCenlaurProbeBusPo#erSubsystemBlockOl_ram,
Versi_llII S¢ietlCePayl_d

Power Control Unit

The power control unit design is identical to the Thor/Delta bus

version except that AC power from the inverter is used to generate inter-

nal secondary voltages for PCU operational amplifiers and current moni-

tors. The descriptive data presented in Figure 8. i-28 apply to the Atlas/

Centaur bus PCU.

Inverter and Central Transformer
Rectifier Filter (CTRF)

i i i

The inverter design is identical to that of Section 8. I. 5.2, The

CTRF is modified as shown in Figure 8, i-3Z. Changes from the orbiter

include deletion of the conscan and DSU slices and the retention of the

receiver and transmitter driver slices, The remaining slices are corn-

mon with the orbiter and bus, Redundancy is provided for each output.

8. I-4O
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{_A/C lit

_OB[ BUS

POWE, If i,_u_A,o,,oDo il
POWER _[ GULAI'OR

_ ADi)ITIC)N AND DELETION OF SLICES
POW[e eEGULAIOR EASILY ACCOMPLISHED SINCE
AC$ A ,_.ND 8 _ t! PIONEERS 10AND II CTRFSLICES

L
_)IL_ AgE INDEPENDENT WITH NOow..OOL.,O,=it? ELEC,,,C.LCONNECT,O.SCDU IEIWEEN SLICESINTERNAL

POWERRLGULMOR, _ "-" 1 ! 10 |HE HOUSING
DI'U A AND II ,

POWERREGULATORn I f ....... _1_.J
TRAN_ITTER DRIVER/ i, i
AND ,SV PULSEDrU { j L

• DELETEDSU SLICE

• DELETECONSCAN SLICE

WEIGHT - 5.02 KG (11.02 LB)

._lTE = 20 X IT.8 X 23.7 CM (8 X 7 X 9.3 IN.)

Figure8.I.-32.Atlas/CentaurProbeBusCentraltransformerRectifierFilter,
Ve:sionIII SciencePayload

Solar Array

The Atlas/Centaur probe bus solar array is sized to supply 70, 5

watts near earth and 93.5 watts at Venus. The design sun angles and

radiation environment are presented in Section 8.1.7. |. Other sizing

factors are discussed in Section 8. i. 5. I. The array characteristics are

summarized in Figure 8.1-33.

0.37M
(14 5 N.)

AeEA 2.93/v_2 (30.9S FT2]NO. OF CELLS 6264

NO. OF SERIESCELLS 8'

-__ NO. OF PARALLELCELLS7'NO. OF PANEL 6CONE ANGLE 0.33 RAD (19 DEG)
DESIGN POWER 70.5 WATT EARTH

93.5 WATT VENUS

Figure8,1-33.AUaslCentaurProl3eBusSolarArray
VersionIII SciencePayload

Battery

The Atlas/Centaur bus load during launch exceeds that of the Thor/

Delta version by about 14 watts. Calculations of launch and power and

probe checkout load sharing profile is shown in Figure 8.1-34. The

silver-zinc battery for the Atlas/Centaur small probe uses cells rated at

10.6 A-hr. For commonality these cells have been selected for the probe

bus. Depth of discharge during the launch and earth orbit eclipse is

16.3 percent. The battery is charged after insertion into the trans-Venus

8. i-4i
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A/C !11trajectory by ground command. Operation during probe checkout is simi-

lar to that doacribed for the Tlmr/Delta version in Section 8, I, 7. 1,

1211.3WAI l

_+--'I

_lll';PIIJUIP[h_lNIS _------'- lj I0:I+:;AllmiCrA+(AF:qillII',.u:I)Af'.

= e_l +fit Itq;

. +-- ++L_ ;_ ,A| ! fl, P_IZP+I + A
I,'qd'4( H I('+AD _*q, I+VAIl%
LAI PICll Dld+A|lC+fJ 0/+2 I+OIIW% + BU_ l+ AI' ']+ , ¢+ATI

{f+i+{_ I tAI+tVZll Y, 2 t + i +,

T8'+t. +_I A_TH ORfiil - IN()i'II 8.B MIN +' "_.GP,_IN P 1,++>r%_lTl } _+h_ltJ
iCl IP%i ,ik Ib! t.,i m m _"

1( ,l,%l I P+JFPG," 16.? W-tlR ', I ++ +

L ......

PROBI RUt+@I_[HY SIZING

USt _ROBEBATIIRY C[II.S 10.6 A-HR IDIVALENT RATING
CELt QUANTITY 14
CAPACI|Y 222 W-HR
DEPTHOF DISCHARGL /LAUNCH) 1b.3 PERC[N1
WEIGHT 2.27 KG (5.0 LB!

Figure 8.1-34. Atlasll:entaur Probe Bus Battery Sizing, Version III ScieNce Payload

,_A/C Ill 8. 1.7.3 Power Interface with Probes (Umbilical)

A/C IV The power interface with the probes consists of power switching and
fault isolation in the probe bus power control unit. The block diagram

_T/D III Figure 8. 1-35, shows the buslprobe power interface. The bus PCU pro-

vides fusing for each of the four probes and a power on/off relay which

permits probe checkout by ground command. Bilevel telemetry status

points indicate the on/off position of the probe power control relays, The

fuse module is mounted external to the PCU for easy access.

MODUtE

PROB_ PO_|R ON'O_F -| _-
CONTROl 28 "4_ t2°-o....

OU_

I_It ,%+ SIATU% 41 _@+' -
It I I l+_tTRY _jS

_tji

Fkjure8.!-35. Pr_eBusPawerI,,tedace
VersionIll ScienctPayl_tl ......

B. I-4Z
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Scientific Rerearch Laboratories, Seattle, Washington.
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1
_.A COM MUNICATIONS SUIISYSTEIvl

_. 2. | ill' r,:,ducti,m and 5ms,l,;,l'_ _ AIC IV 0 _-A/CIV

ICJglll't, H,_-J. _LLIIIII/_LI'i_L'S tlt¢_' II,l_iU ILII4.! OIL tile t:_lllll_,lUlliCLttilJnl_

sul,:_yate,n th;tt h,,s l,_-'et; delined for the Ver,_ion IV science calffigura-

lion ,ff lbe probe b_Is _tlld orbiter: ;._ssmning Atlas/Centaur launches

ior both.

As tiletable'indic_ttcs,nearly all of the components are derived

from other programs and are ilight-proveu, off.-tht_.-shelfdesigns

with very low development cost and risk, The weight margip avitila-

bit with the Atlas/Centa, ur la.unch vehicle makes it possible to cl.oose

components prinlarilr on the basis of development cost and risk, with-

out the Jmcessity for new designs with maximua_ use of advanced

lightweight technology. The only component identified as new is the

b-watt power amplifier; in this case, two existing units have been

identified that may be suitable, but require some modification and a

flight qualification program. As will be discussed in detail in later

subsections, some of the existi,_lg units are not only existing designs,

but physically existing residual units from the Pioneers 10 and 11 pro-

gram that can be used without modification.

Points of particular in_erest are:

o The communications subsystem allows for adequate link mar-
gins and bit rates under all conditions, including spacecraft
attitudes and attitude maneuvers that are required for thermal
reasons, probe deployment, entry flight path angle, science
instrmnent pointing, and orbit insertion. This has been
achieved without constraining mission or subsystem perfor-
mance or placing severe requirements on other subsystems°

• The 64-meter grouno stations are required for only briel
periods during the probe mission, intermittently over a

9-day period during probe release and retargeting, and again
for about 3 hours at the time of probe and bus entry.

• The entire orbiter mission cart be handled by the _6-meter
stations except for the second flip maneuver and orbit inser-
tiou. if _horter readout times are desired before and after

periapsis passage, the 64-,neter station:_ ca,_ be used to
increase the data rate for these readout periods, at a mini-
mmn bit rate of t024 bits/s.

8.Z-I
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!

_A/CIV • occult,__tim_ cxpcrimc.t r,-quires ,_nly p_,_'po_jti,mit_
tJ_

lht, _i++L_:c_r.ft mpil_ +txi_. +
It

Lt_i+'AJCIUI PruvJbi+Jt J+ ll_+c|+ _u+ + _+|-!++i+/s T#_tl+t++ !+,Ale +up th. tJllJj-

terj ¢+vett th+ttgh thl_ IttJ++i()li +ouJd be +cco,_+l)Ji+hcd with .
JZ..bit/s ,m+xhlmm Lelemctry r,+tc +st .+ slit, hi savJag in
+tnttJnlxa co_t. 1he t,4-bit/s a._p_thility is p_'_vided to reduce
the anxount of ground statiozxperso_mel and equipmeltt tied
up ilxrcadiug out the stored d_tta, At 32--bit]sreadout ratcj

nearly _4-hour coverage would be ixeuded at the three
26+meter stations, while _t the 04 bit/s rate only two sta-
tions are needed. Over the mission li.fetillte,this amounts

to a considerable saving in program costs,

• The occultation experhnent makes use of the two aft-mounted
horn antennas, which are pointed toward earth during ghe

first 35 days in Venus orbit. Horn antenz,,_beamwidths allow
for offsettingthe spin axis 0. Zl radi_n (i2 degrees) from the
earth-pointing direction while stillmaintaining communica-
tions up to the point of occultation; the offset is necessary to
provide for near-maximum antenna gain at the point of ma_:_-
mum defocusing by the Vemmian atmosphere. ._

• After 35 days in Venus orbit, the spacecraft is reversed to

point the high-6ain antenna at the earthj providing maximm_1
data rate capability (64 bit/s with the Y6-meter stations)up
to the end o£ the mission, Tlle occultation experi_nents w£11
have been completed before this reorientatJono

8. Z. 2. Requirements ALL CONFIGURAflONS

Table 8, Z-i lists the communications subsystem requirements

used to derive subsystem designs based on the various spacecraft con=

figurations considered throughout the study, These requirements

were either given by the study guidelines_ derived from interface

requirements with other spacecraft subsystems and science experi-

ments, or were imposed and/or interpreted from operational constrainls

on the mission and existing spacecraft hardware.

Notice that two requirements_ bit rate and X-band occultation_

were affected by the Version IV update of tilescience payload, Prior

to this upd_tte, various interpretations of the desire for orbiter real-

time versus nonrcal-ti_ne science data led to variations i_,the reaL-

time daterrate from 8 to I£8 bits/s. This in turn led to different

combi£_,_tion_ of t_'a_++,amitt_:r power and antenna gain for the various

spacecraft co_ffiguration_ and also in tilesame co_ffiguration,

4) •
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" " , , "4_,_ ' : • MINIMUM USE OF 64-METER GROUND TRACKING ST, TIONS 'I

• OCCULTATION EXPERIMENT DOES NOT REQUIRE PRECESSION
OR GIMBALS

• ALL SOLID STAI"EDESIGN

t AFT

OMNI

COMPONENTSUMMARY (osp)

NUMBER WEIGHT POWER DERIVATION NOTES _11
USED (KG) (WATTS)
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OMNI* _0 AND 11
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1

ALL CONFIGURATIONS

:fable 8. g-t, Communications Subsystem Requirements

II • II I I II

• LOW COST {MAXIMUM USEOF EXISTING HARDWARE, COMMONALITY BETWEEN BUS/ORBITER/PROBES)

- THOR/DELTA, LIGHTWEIGHT

- ATLAS/CENTAUR: LOWEST COST WITHOUT REGARD TO WEIGET

• OMNI DIRECTIONAL COVERAGE FOR SPACECRAFTMANEUVERS AND ORBIT INSERTION

• PROVIDE TELEMETRY, TRACKING, AND COMMAND FUNCTIONS TO 64.33 GIGAM_ERS (BUS)AND
254.32 GIGAMETERS (ORBITER)10.43 AU (BUS) AND 1.7 AU (ORBITER)I

- TELEMETRY: BIT RATES(BITS/S)
(PCM/PSK/PM) -- BUS ORBITER

ENTRY _.RUISE IN-ORBIT CRUISE

P_'E- 13 APRIL 1973 ._12 Io B-128 16
POST- 13 APRIL 1973 1024 16 _64 16

ERRORRATE: _'10"3 FRAME DELETION RAT,=

- TRACKING: COHERENT (TWO-WAY) DOPPLERTRACKrNG (NO (ANGIhlG)

- COMMAND: PCM/FSK//PM (l BIT/S)
BIT ERRORRATE: 10""' "

• DSN COMPATIBLE: UPLINK FREQUENCY: 2115 -+.5MHZ

DOWNLINK FREQUENCY: 2295 _S MH:,' S-B,'_,ID
~8400 X-BAND (VERSION IV SCIENCE

PAYLCAD)

TURNAROUND RATIO: 240/221 S-BAND
880/221 X-BAN:)

26-METER xlETWORK: ROUTINE TRACKING

64-METER NETWORK: CRITICAL MANEUVERS AND OCCASIONAL HIGH
DATA RATEREADOUTS

• S-BAND OCCULTATION EXPERIMENT
X-BAND OCCULTATION EXPERIMENT

• ENVIROI,:_ENT_ 160.0" TO 104.71 GIGAMETERS (1.07 TO 0.7 AU)
MAGNETICS: FACTOR OF 5 LESSSEVERETI4AN PIONEERS 10 AND II

• DOPPI.ERRATES: BUS -35 HZ/S AT ENTRY
ORBITER-45 HZ/S AT PERIAPSIS

• MIS_.ION DURATION: BUS - ~I 14 DAYS
ORBITER-,,425 DAYS (225 DAYS IN ORBIT)

• ACQUISITION THRESHOLD (LOOP SNR = 6 DB): -148 DBM, OMNI AT END OF MISSION WITH 26-METER
COMMAND

I

Preferred subsystem designs for both the Thor/Delta and Atlas/

Centaur launch vehicles wcze chosen. The Version IV science pay-

load directive specified the Atlas/Centaur vehicle, increased the sci-

ence data, and added an X-band occultation experiment. The Atlas/

Centaur recommended subsystem design was then changed and updated

to the final preferred vezsion. Zt is described in Section 8.2.4, along

E_. 2-4
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with the recommended Thor/Delta design which does not reflect the

new (Version IV) science requirements. The various options that

were considered in this study as a result of the varying science

requirements _re pr¢ _nted in Se_,tion 8.2.5.

8. Z. 3 Tradeoffs ALL CONFIGURATIONS

The following tradeoffs present cost0 weight, power, and risk

comparisons for various antennas, transponders, and power amplifi-

ers that were considered in arriving at the r_zany spacecraft configura-

tions examined during the study. Based on these and other spacecraft

and DSN tradeoffs_ final preferred Atlas/Centaur and recommended

Thor/Delta spacecraIL and subsystem configurations were chosen.

(These are presented in Section 8.2.4. )

8. Z. 3. ! High-Gain Antennas -- Orbiter ALL ORBITERCONFIGURATIONS

The high-gain antenna for the orbiter spacecraft was required

to be compatible with each candidate spacecraft configuration in size,

weight, mass properties, and pointing mode, i.e., spinning and point- i

ing along the spacecraft spin axis (earth-pointers), despun and point-

ing perpendicular to the spin axis (despun antennas), or spinning and

pointing perpendicular to the spin axis (fanbeam _ntennas). Perfor-

mance requirements for the antennas were established by system

EIRP _nd radiation pattern coverage requirements d;_ringtrans'.t,

orbit insertion, and orbit phases of the mission.

Tradeoff studies _ere made of antenna designs capable of meet-

ing the following basic cornznunication system RF performance

r equir ements,

• Earth-pointer with conscan and systen _ EIRP greater than
62 dBm.

• Despun antenna with system EI_P greater th_n 62 dBm.

• Fa_lbcam antenna with system ELRP greater than 55 dBm.

Since weight, primary power, and costs were critical tradeoff para-

meters, subsystem tradeoff studies were made to establish parame-

ter characteristics which, when combined with other interfacing sys-

tem parameters, could lead to the selection of an optimum system.

8.2-5
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ALL ORBITER CONFIGURATIONS

The antenna weights and gains (as a function of aperture size), show]_

in Figuru, 8, 2-Z, were used in system le_,'el tz'adeoffs that included

power aunplifiers and _oLar arrays. The antenna alL'signs selected for

thes_ tr,_deoffs represented proven designs requiring minimum devel-

opn_ent (Lxinianu_n cost and risk). From systen_ level tradeo£fs, Lhe

nominal subsystcnl performance and d_.sign requiren-_ents were esLab

lished for further tradeoffs involving cost and detailed designs.

rOIGt II_L:

PA_hgOtIC CISH , 40 0.70

PIC'I_4[.ERS10AND tl FEE0 3_,J APERTURE

I [ FFF_CIENL'Y
J n=

i / .__ _I ABOLIC _-

l / CVtiNOees z _ _ _) __ -.!_

COMPONENTS: _ 10 [- 0.17 t
REFLEOOR O
rEeo
SUPPC_I" STRLIC;URE

I. I z¢ . I I I oL. o,.. .I I I
o _ z _ o : 2 J o,o5 Lo _.s I

APERTUREAREA (M2: A_EtUR[ ARIA 'M7 APERTUREDIMENSIC'tN (M_ I
Figure8.2-Z. OrbiterHkjh-6ainAntennaTr_eJifCharacteristics

As indicated by the curves, antenna weight is a function of the

design concept and aperture area, while antenna gain is a functie_: of

the efficiencyand aperture area. Beamwidths are also a function of

aperture gain at coverage angles of interest, bearnwidths were not

critical tradeo£f parameters. From the detailed design and cost trade-

offs. preferred antenna co_£igurations for _ach spacecraft pointing

mode were seiected. The antenna designs vere not directly affected

by the type of launch vehicle, Thor/Delta versus Atlas/Centaur.

Candidate earth-pointing antenna designs were all parabolic

anterma configurations of different diameters and feed designs because

peak gain requirements exceeded Z8 dBi with 6-watt transmitters as a

baseline. The orbiter configurations were all spin stabilized; there-

fore. the high-gain antenna requirements included an offset beam and

a first pattern null position greater than 0.17 radian (t0 degrees ) off
I

the spin axis for conecan attitude determination and acquisition.

8.Z-6

00000001-TSG05



ALL ORBITER CONFIGURATIONS

8.2-7

00000001-TSG06



ALL ORBITER CONFIGURAIIONS !

The results of the design and cost tradeof_s indicated tl_at tile in°e -

£crred earth pointing high-gabs antenna configuration is a 1.53-tneter dish,

_huilar in cortstruction to designs flown on the DSCS-II spacecraft, of

_thuninuan honeycomb construction with fiberglass facesheets and vacutun

deposited almninurn reflecting surface, with the Pioneers 10 and 11 high-

gain antenna feed. The cost of parabolic reflectors that are from 2 to 3

meters in dimneter such as those used on the MVM 1973, Viking 1975,

and the selected Pioneer Venus earth pointing orbiter are essentially the

same. If reflector tooling or residual reflectors are available Item the

MVM or Viking programs, the only development costs will be those for

incorporating the conscan capability. Based upon Pioneers 10 and It

experience, the development effort should be rain hal. The selected earth

pointing design is a simple, lightweight, lowest cost design which .n_eets

system requirements and is based upon flight-qualified design concepts.

The candidate despun orbiter high-gain antennas shown in Figure

8.2-4 represented preferred configurations derived from suhtrades within

the same class of similar design configurations. Aperture size, gain,

weight, despin mechanical assembly/despun electronics assembly (DMA/

DEAl configuration, omni antenna impact, and cost were st£btrade para-

,neters for mechanically despun antennas; gain, weight, despin technique,

and development status were primary subtrade paran_eters for elec-

tronically despun antennas. Antenna gain, pri_nary power, weight, and

progr_uax costs were determined from the combination of antenna, power

amplifier, and solar array sizes required to meet a Jninirnurn syster__

I_.IRPof 6Z dBm. Relative program costs included nonredundant and

2:edundant costs for two flight systems. ReliabL_.ityis based upon standby

electronic assenlblies for rnechanically despun antennas and a redundant

driver amplifier for the electronically despun antenna.

Redundancy and spares were not included in the cost and weight

tradeoffs, since each type of system (earth pointer, rlechanically or elec-

tronically despun antennas) requires a unique redundancy and cotnponent

spares scheme. Cost and weight does include essential system-associated

equipment such as rotary couplers, caging equipment, special test equip-

merit, and forward on]hi antenna. Also shown for the despun parabolic I

cylinder _tntenna arc cost and weights associated with the use of the Ih;lios

.... ' ......"° 00000001 -TSG07
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ALL ORBITERCONFIGURATIONS

antenna, Detailed weight and cost estimates used in the tradeoH study a_e

shown in Tables 8.2-2 and 8.2-3. For comparison, the earth-pointing

antenna subsysten, characteristics are included in the detailed evaluation.

As each major subsystem component such as the antennaj the DMAj

and power amplifier was being evaluated, it was clear that the greatest

design and cost uncertainties were associ£ted with unqualified design con-

cepts. The electronically despun antenna system performance character-

istics were attractive; however0 costs were high and performance predic-

tions were thought to be optimistic in view o2 producing a space-qual_ied

design. Performance degradation due to mantdacturing tolerances and

environmental exposures are critical to the design, and are the areas of

greatest performance uncertainty and/or cost uncertainty for assurance of

qualification. The requirement for additional power amplifLers for omni-

directional antennas or the increased design complexity required to incor-

porate an omni mode into the desp_m array were significant factors against

the electronically despun antenna.
1

Since the largest weight and cost item in the mechanically despun !

antenna system is the DMA/DEA, candidate mechanically despun antennas

were designed for use with flight-quali£ied DMAIs. These were the Skynet

DMA, the Atmospheric Explorer DMA, the Helios DI_A, and the DSCS-II

DMA. Each DMA/DEA considered requires modifications for low spin

rate operations; however, other problems such as caging requirements,

magnetic eleanline_sa weight, pippers for position in_ormationj slip ringsj

redundancy, and diameter of despun shaft were considered in the selection

of the antenna configuration for each DMA and in the cost of the DMA/DEA.

DMA subtrades have indicated that the Helios DIvL_ may be the only exist-

ing unit suitable for use with Pioneer Venus mission mechanically despun

antennas o

Because of the development status of the Helios DMA/DEA and the

possibility of using the qualified Helios antenna inte_changeably, _'_e pre-

ferred despun antenna for the Thor/Delta Version _ science payload and

Atlas/Centaur Version Ill science payload is the despun parabolic cylinder

reflector. TRW_s design would use the qualified Helios DIVIA/DEA with

minor modilications for low spin rate operations_ and a shortened Pioneer

6 through 9 Franklin array as the feed for the despun reflector.

8.2-I0
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ALL ORBITERCONFIGURATIONS

1

Cztn(lidate orbiter antenna designs for the reduced ELRP spacecraft

cogiguratiozl were the flight-qtmlified Pioneers 6 through 9 fanbeana

antenna and a reduced ELRP electro:aicall¥ despun antQnna_ as shown in

Figure 8.g-5. TradeoLf parameters include the system i_npact of required

power amplifiers_ solar array sizess and omni antennas, Program c_s_b

includenonredundant and redundant costs for two systems,
|i

_'_ CHA_ACI_RI_[IC 1 RELATIVE W[IGHE PENA| Iv
_"- _EQUIRtD REQUIRED ¢KC,I

_- EIRPAT tRAINS-

"_ _, e.3 GHZ MIT|ER PRIMARYpowER _-'POWEII PROGRAM DEV|l ¢_PM[ r_1
_,_, (OBM) POWER (WAITS) ANTENNAS A/V_3 AN0 COSTS $IA|II_

CONCEPT _ (WATTS) SOLAR TO[At _ O0¢j)
"_ ARRAY

! -_- AN[ENNASAR_spAo-
= OUALIFIE0 eIONtt_S 0

: i THRC?UGHO _RANKIIN

" 1.2M (47; ARRAYAND PIOIN([RS |0
: i 55.00 31.0 I'_.0 1,44 I1,1 I?,_1 439 AND 11 CMNI. POWER

_L_ AMRL,FIERSARE
PARALIEl ID ;)0-WAI T

FION|ER A-E FRANi_LIN ARRAY UNITS

ADDI| IONAL OMfll AN-
al

1 RING: $5.7_ 13.0 4,7"J 13.28 1044 TENNA WITH 10-WATI

"_4 +4.++_.4 0.SM ;_RINGS: 59. |2 1"1.0 5.25 13.110 1066 POWER A/,_PLIFIER5
'_ �Ð�¼�L�I]3.0I}.55 • ASSUMED PIONLLRS 10 i

.t.+ �4�è�°�_L.3 RING$_ 61.95 |3.0 5,77 14.32 1069 AND 110tVNI AIMD

0.76M DIA INC. 6-WAI! POWER

ELECTRONICALLY_D|SPUN ARRA_/ AMPLiFIER_ .... t

Figure8,2-,_.CandidateOrbiterReduced£!RPAntennaTrad_ffCharacteristics 1As indicatedfrom Figures 8,2-4 and 8,2-5, the cost saving is mini- '
realfor the reduced EIRP electronicallydespun antenna_ since ELRP

reduction is accomplished only by reducing the number of array elerneuts.

The only cost saving is in material costs for array elements and power

dividersj which may be eliminated. A reduction in the number o£ active

columns in the array would not reduce costs signfficantly_since there

would be no reduction in the nm_ber o£ components required for the com-

plete array design, A reductionin the array diameter was considered;

however_ the expected reduction in _-LRI_ was excessive and/or spirtampli-

tude and phas_ ripple were considered to be major problemn if the array

diameter or the number of columns in the circular array were reduced,

The requirement for additional power amplifiers for an omnidirectional

antenna was also an unattractive feature of the electronically despun
antenna,

8.2-13
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Four fanbeam colffigurations: the Atlas/Centaur and Thor/D,.;lta

Version ILI science payload (l_-watt) and the Atlas/Gentattr a:xd Thor/

Delta Vcrnion I_I sa:_rmo payload (3t-watt) were considered tor use with :_

the flight-qualified Pioneers 6 through 9 Franklin array. 3?he low power

versions are compatibl=, at the lon_:er ranges, only with the 64-meter

DSN stations. The 31-watt version is, howe.ver, compatible with the

Z6-meter DSN stations (Version III science payload requirements)and

uses identical power amplifiers with the large probe, resulting in procure-

ment savings. A fanscan (uplink) and omni antezma would replace the two

omni antennas of the existing Pioneer antenna pacl_age. This is the loweJt

cost of all the antennas considered. Since minimurrL conductor spacing in

the existing design is on the order of O. 2 centimeter, the design is capa-

ble of handling RF power levels greater than 100 watts.

Rotar), Joints

Rotary joints were investigated for mechanically despun antenna

co_/iguration_ which could have required both an S- and X-band capability.

If the spacecraft antenna configuration has a rotary jolnt requirement, the

use of a sin¢_,le-channel S-band, noneontacting coaxial type design could be

the recommended approach, The single-channel design which uses fre-

quency up-conversion equipmeu_ on r.he despun side o£ the rotary coupler

represent,.1 the lowest risk, lowest cost rotary joint approach. If the

bandwidth of the single-channel design can be made broad enough to

accommodate both S- and X-band without significantly increasing the

design complexity and cost, then this design would be preferred for hand-

ling both S- and X-band. Unless the despun motor assembly has slip rings

to provide power and eomman_:a to a switch, a minhnum of two S-band

chal,nela are requi :ed to feed a forward omni antenna and the despun high-

gain antenna. Shown in Figure 8.Z-6 are the characteristics and status of

1, 2, and 3 channel coaxial rotary joints. The results of the rotary joint

survey indicates that, although single and multiple channel S-band rotary

joints have been developed by a number o_ companies, i.e., SAGE, Philco-

Ford, and TRW, none of these to our knowledge have been flown. Circu-

lar waveguide designs were flown on the Intelsat III and the Skynet space-

craft, but these designs would be undesirable because of the excessive

size and weight of an equivalent S-band system, Until mult!ple-channel

8.2-14
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i

_:o;._xiLH roL:_ry couI_l,_,r designs ;Ere qualiiied, thc;y repres_ul.t hJ.gh design

rj._k _'quipment with ;_,_ociated developnleiat cost uncertainties.

I

_',A, ,| {_AC,[ i lhAt.,E I qPHILL U I L)_I_

:_lf_(Jl t ,7 liAI'4Ni | IJtlAI LIl/tl'4t_l I 5tt'4bl{ t:llAl'lNt[ IH_:[[ (II_XN_| I

_flhrlLli I'_ flArdP ttNp ) {_t_lll ib-t_hb4[9 AND _.-_ANE_I [Jtlht _-_N[' _ftl) _.-fiAN{))

BAb41

_RL'_U(tqt _ ?jt TC1 /.,t (;H_ F_t(_ tl I'1, V I I_|_AIILNI

Ir41'gl bMA _-b_x_i H " 11' tl "tIC;HI' '._*H/_I[" .'ll !_'! ,", t ('_1|," • -gAlqt_ _t. _ , |_'_ 8. ,,I _ .H_'
_,-BAND ft.,ISI_ 3.50 GH,"

'_.)UTPI!1 O..,]O_/_C'.')AY _.,J'IflECitJK:" _k_tqNtLl(_ ' ,
• E C_NN[CTORb

55Z[ INPUT 5MA INPUI SffiA _l_ INk.

L[NL,|_t: tU_.M L)UIPU! 5-gAND: SMA IN'U| bMA LtUIPUI, b_AOK INL
X-BAND: OUIPUI 0.JO CM _ L'A_,

L)IAMETiK: 4._CM 0,30CMCOAA 5tft: IBD
SI_[;

¢.E.IGHT, 0._.2 KG :d,;L i¢. II(JHT tBb
LENGI_ Io C &',

D_lk3r,,I 5_ATLIS LENL,1H 11.5C_ 01A,MEI(_: 4..qCM L'_[blk_;N bEAIUS

._IMILAR I|_.M DEVELOPED DIAN_[T[R 6,3 CM

BUT NOT FLO_'_N WEIGHT tJ.22 k('; UND|"LL_')PI(_
k_EIGHI: O,J5 KG

D[VtLOPMENT COSTS. DESIGN SI_,TU5 DEVELUPMENI LtD_lb: IBD

DESIGN STATUS: D[SIGN RISK: MAY BE LO_,_, l
$40000 UNDEVELOPED L),NIDEVLIOPED SINCE A _.CHANf|I:L >,-BANL, J(JNIT HAS BEEN bI-_,,E|.Z, PI D

DESIGN RISK LOt,|ST DL%tL_PMLNT COSIS DEV[IOPMEN| COSTS. BEll NOT IEOWN.

$6b 500 S'9 tR}O

DESIGN RI$1(: tlIGH[ST DESIGN RISK HIGH

Figure8.2-6. RotaryJoints(NoncontactingInnerandOuterConductors_

S-band Electronically Despun Antennas

Electronicall 7 despun anten_as (EDA) were investigated £or possi-

ble applications as the orbiter despun high-gain a_atenna. Shown in Table

8.Z-4 are characteristics o£ three S-band systems which represented

designs which had progressed beyond the analytical phase of antenna

development, The antenna designs by Texas Instruments and Radiation

Systems were the only ones which were sized for the Venus mission fre-

quency ol Z300 MHz.

The Texas lnstrmnents (TI) I_DA system was selected £or further

txadeoffs because ithas the highest gain and ligbtest weight_ a,_dcost

estianates were available. The basic difference between the TI concept

and the others is the use o£ TI power amplifiers between the inhermxt

lossy beam steering circuits and the antenna array. In this configuration

the power ampli£iers are switched on and o££ at the DC power supply level

8.2-15
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Table 8. 2-4. S-Band Electronically Despun Antermas
(Transmit Only Capability)

I
ANTENNA

SYNCHRONOUS. f - 'i

PARAMETER METEOROLOGICAL TEXAS INSTRUMENT (If) [RADIAl'ION SYSIEMS INC. (RSI) ISATELLITE (SMS) STUDY FOR AMES J DEVELOPMENT FOR GODDARD

PHILCO FORD . , J 'i

tRANSMITTER FREQUENCY 1700* 2300 2300 :
(GHZ) (RECEIVEON 2030)

RF SWITCHING YES NO YES

GAIN (PEAK, DB) 18.7 22 16
(19 PREDICTED)

:3-DB BEAMWIDTH [RAD(DEG)]

AZIMUTH 0.19 (-11.0) 0.19 (10.5) 0.17 (10)

ELEVATION 0.29 (16.6) 0.28 (16.3) 0.31 (18i .

EFFECTIVE POWER AMPLI- 20" (30) 13 (SO-WATTTRANSMITTERREQUIRED
:FIEROUTlet (WATT) (CAN ONLY HANDLE 20)

LOSSES (DB) 1.7 0.4 1.2

EIRP (PEAK, DIEM) 60" (62) 62.3 62

WEIGHT (KGM) 12,5S* 7.79 28,0S
(I 1.3 PROPOSED)

(INCLUUES POWER AMPLI- (INCLUDES POWER AMPLI- (INCLUDES BEAM STEERING
FIERS, RECEIVEPHASE FIERSAND BEEMSTEERING CONTROL UNITS)
SHIFTERSAND COMBINER/ CONTROL UNITS)

Sw)
SIZE:

DIAMETER (CM) 142,0* 76.1 91.4

HEIGHT (CM) 53,4* 58.4 38. I j

DE tELOPMEN| STATUS D' ,:.LOPED (TO BEF!"Wt', UNDEVELOPED PROTOTYPE (NO FURTHER
IN 19747) DEVELOPMENT SINCE 1970)

COSt: i
DEVELOPMENT (SK) PHILCO-FORD DECLINED 510 1
RECURRING (3 UNITS) TO QUOTE
($K) 570

i

*MODIFICATION REQUIREDFOR PIONEER VENUS TO PROVIDE 128 BITS/S AT 1.7 AU (EIRPOF 62 DBM)

eliminating the need for RF switching, a major advantage. With this

arrangement, where beam steering circuit losses are absorbed at low

R P power levels, lower power final amplifiers can be used to obtain the

required EIRP, This results in lower prime power requirements with
;

associated cost and weight savings. I

The rI d_ign has a unique disadvantage. Since low power (i-watt) +i

modular ampl_iers are used in the array, a separate higher power arnpli- ii
fief (~6 watts) is still required to transmit with the omni antennas during

third rnidcourse and orbit insertion, i_ a downlink is desired at those
time s.

8.Z*i6
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i

8, )-. 3. _. Med_uan-Gai,l Atltemla ]

Mediu;u-gain ante,ma co,_igEtrations, shown in Figure 8.2-7, were

considered for use on tlle rFhor/Delta and Atlas/Centaur-launched probe

bus and orbiter spacecraft. These co1_[igurations 1"epresent existing

flight-quallfied or breadboard antennas which were considered for use on

the earth-pointing and spin axis normal-to-the-ecliptic spacecraft ,hiS-

signs, The dish and horn antennas provide a bealn along the axis of the

antenna while the Frank/in array and the biconc array each provide fan-

bealn normal to tlle array axis.

PIONEERS 10 AND 11 i PIONEERS 6.0 i BICONE ARRAY

CHARACTERISTICS _ _ .6M [ IStl MEDILIM C.AIN HORN i FRANKLIN ARRAY

ANTENNA GAIN Idl_D 20.0 15.5 i Lq I 8

HAlF POWER 0.24t13.5_ 0.4o128 _ 0°17X6.28 I 0.17X6.28

8EAMWIDTH, RAD(DEGI (10x 360_ i t10,,,t60_

POLARIZATION RIICP RHCP LINEAR 1 LINEAR

WEIGHT, KG (LBI O._ _2_ 1.67 13.7_ 0.45 11_ ! 2.3 151

DEVELOPMENT SPACE QUA[ IFIED SPACE QUALIFIED SHORTENED PIONEERS 1 NiW DESIGN

(

STATUS 6 THROUGH o WITH t
OMNI S REMOVED

I
PROGRAM COSTS ($K) 30 )0 70 100

RI MARKS ENTRY AND ENTRY AND TRANSIT TRANSIT
TRANSIT TI,IANSIT APPLICATION APPLICATION
APPLICATION APPLICATION OI',ILY j ON|Y

I

l iquh, _ / / l'amliddh,/Vh,dlum (_,)in Antt, rtrh| Cor',hluration

Bofl_ types of antemxas are required/or the spin axis normal-to-

the-ecliptic probe bus naission, where higher gain along the spacecraft

axis is required during probe entry and coverage normal to the _;pinaxis

is requir,:d during transit. Since the baseline probe bus is earth-poJ,:ting,

the medimn-gain antenna ca,xdidatc narrowed to a tradeo£f between the

dish and the horu. Both candidates are flight-qualifieddesigns; available

hardware bacludcs engineering models and ttflighthorn antezma. The'

00000002-TSA03
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horn was selected over the dish for the probe bur because of: 1) the wider

beamwidth needed for the 1978 bus evtry and 2) lower program ¢o_t¢ _or /:

three units (including cost savings for available Pioneers tO and ii :i i_;2:'

hard,vats),

Medimn-gain antennas were considered for the orbiter spacecraft

for a number of different applications:

• As a backup antenna for the despun high-gain antenna

• As a primary communication antenna

• As a conscan antenna for attitude determination

• As an S-band occultation antenna.

For the earth-pointing missions, the primary can,_iidates are the dish and

the horn. The dish is preferred over the horn on configurations which _1

require higher gains and where weight is critical. The major advantage i

of the horn is its coverage gain; where maximum gain over a broad i

[<0, 35 radian (<20 degrees)] coverage angle is required, the horn would i

be preferred over the dish, Various horn designs were evaluated to estab-

lish an optimum design for the baseline spacecraft configurations, As

'sU-"-_ -_ou_c_o_._%_---z
r"....._ ! i i shown in Figure 8.2-8, a tradeoff between
i I ---.xl I 0.3ORAO the gain and pattern coverage for new16_--.... -_ - -',Ik...... +-, ilzDEG_

I ]'k | OCCULIAT ION

I _ i X I ,EOU,_ME,rl/---design optimum conical horns and the _i

z ,;-. J L =.i \_7-- ,, horns shows the corrugated horn best for
o.211Ao.zom_ _ _x ] t_
=usENr_v---4-I _] i_ both the probe bus and the orbiter. The
REQUIRE_eNt _ \_ I

ic.... t t ...._ ......_,f ....... use of an existing qualified design and

s J J I i_', commonality between bus and orbiter is
0 , _ _ ,_ _¢v_o_ the lowest cost medium-gai_ antennaANGLE

t _ _ I L _ approach for the earth-pointing space-o o.0_ o._4 0.zt o.m o.3s(_D_

Figure8,2-8.HornGainv_.PatternAngle craft configurations.

The fanbeam antenna is required for the spacecraft mission which

has its spin axis normal to the earth line. The preferred fanbeam antenna

:isthe flight-qualified Pioneers 6 through 9 design. The Pioneers 6 through

9 a,_tenna is a lightweight antenna which provides antenna gains efL_cientI7

up it, approximately lZ d_i with an addition or reduction in the number of

_le_r.entsin the array. Modifications to the ex/sting design to reduce the

00000002-TSA04
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nmnber of array elements oz" to remove integral omni antem_as are con-

sidered minor modifications. Removal of the ___[sting ot,,_i antennas

would significantly reduce the desig_ ¢o_n_plexityand manu;fe_cturing costs. ......:

The existing design utilizes concentric coaxial transmissio,t lines to _c:-

used to service a high-gain lI dBi array, a shortened array for fanscan, i
and an omni antenna. To minflnize the feed system complexity, miniature

coaxial cables would be used to iced the fanscan and omni antenna. Pro-

gram costs shown in Figure 8.2-7 are for the shortened array with omni

antennas removed. Utilization o£ the fullarray to obtain the ll-dBi gain

measured on Pioneers 6 through 9 units would not significantly increase

costs.

8.2.3.3 Low Gall).(CM:ni) Aa_termas

Onlni antcnl:a colffiguratio_s considered for use on the bus alldorbi-

ter are shown in Figure 8.2-9. The horn, which is used as a pattern fill

in antenna, and the other candidate antenna coRfigurations are existing

flight-proven designs which provide the two basic types of broad radiation

pattern coverage obtainable from spacecraft omni antenna elements. Each

omni antenna provides approximately half the spherical radiation pattern

coverage required for the orbiter and probe missions. The rcquiz'ed near-

spherical coverage and gain is achievable with combinations of two or

more of the candidate antenna configurations. Primary tradeof£ considera-

tions were: l) coverage and gain during critical phases of the missions) "

2) weight, and 3) program costs, which included the cost of three units

with cost savings for available hardware (engineering models o£ some con-

figurations are available). Also considered in the tradeo/f was polariza-

tion compatibility with other spacecraft antennas for tninianmn DSN opera-

tional impact and equipment commonality betweeu the orbiter and probe

spacecraft.

Except for tl',,e rcdttced EIRP orbiter spacecraft configurationj the

two conical log spiral antennas were the selected omni antennas for all

probe bus _uld orbiters because of their good ovcrl_tp, proven designs pcr-

fornaance_ altd low cost. With a log conical spiral on Ihe l'orw,trd ,tnd nft

ends of the spacecraft) near spherical covero,,,c is obtained, Pattern

x,2-1q

i

..e---- _,",";_- -- .j

00000002-TSA05



P.LL CONFIGURATIONS

CHARACTERISTICS_ CONICAL LOG SPIRAL]CONICAL LOG SPIRALI SLOT ARRAY LINDENBLAD HORN

I'f "

i

PEAK GAIN (dB _ 2.0 4.0 0.0 0.0 7.5 j

POLARIZ._,TION RHCP RHCP LINEAR RHCP RHCP

WEIGHT KG (LBI 0.4(0.9_ 0.14 (0.3) 0.1 (0.2/ 0.1 (0.2_ 0.45 /1.0)

I
DEVELOPMENT FLOWN ON DSP FLOWN ON FLOWN ON FLOWN ON FLOWN ON
STATUS PIONEERS PIONEERS PARTICLESAND PIONEERS

10 AND ]I 6 THROUGH 9 FIELD (APOLLO I0 AND 11
PROGRAM_

RELATIVE PROGRAM 24 20 30 18 18
COSTS (SK)

I I

Figure 8.2.0. Candidate Probe Bus and Orbiter tow-Gain _Omni) Antenna

interference between antennas is minimized by connecting each antenna to

dlCferent transmitters and receivers. For the reduced EIRP spacecraft

configuration, the slot array and horn were selected to provide near

spherical coverage except for a pattern null along the forward axis o£ the

spacecraft. The slot array was selected because of its linear polariza-

tion) which is orthogonal to the linear polarization of the fanbeam antenna.

With orthogonal polarizations_ maxirnuan isolation is obtained between the

omni antenna and fanbeam antennas. The aft horn was selected to comple-

ment the slot array and provide aft coverage for entry. The spinning cir-

cularl 7 polarized horn provides full a£t coverage to a linearly polarized

ground antenna.

Antenna Spin Doppler Considerations

For spinning spacecraft, the location of antennas with respect to

spin-doppler effects must be considered. The sinusoidal doppler rate (D)

as se_n by a tracking station depends on spacecraft spin frequency (_0,

r._d/s)) location of antenna from spin axis (r, meters)) conununication

angle (O, de_r_es) off the spin axis; and the carrier frequency (F, Hz); )

Z
I_ -- (# r F sing Hzls

C

_.2-20
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where c i_ the speed of light in m/s. The tracking loop bandwidth

(2 [_L' Hz) required is approxiJnately

(Z BE )z _" Z_tI_/a@, Hz

whet,-Z_p is the al.:->wed loop static phase ezror in radians0 The loop sta-

tic phase error is a function of receiver signal-to-noise ratio in Z B L,

These relationships are plotted as a family of curves in _igure 8,2-t0,

showing the allowable spacecraft spin speed as a function of antenna dis-

tance from spin axis, tracking loop threshold bandwidth, and received

signal-to-noise ratio in that bandwidth. A worst-case communication

angle of I.57 radish (90 degrees) and an allowable static phase error of

0.4 radian is assumed°

kAD'S !RPM,

NOTES: WHERE

I) (2fiLJ* - 2WO/_I _ - 211 t ° (RAD/S,

_._2_ ,-RADIUS ¢METFRS_

2_ V#OR_TC_[ ASSUMVIIONS F - 2.3 X 109 _Z) t

# (1.57 RAD_(90 DEG) C - 3 X tO8 _M/SEC)
A@ 0.4 RAD

@ - ANCCLEFROM SPIN AXIS (DEC,_

Li41+LOOP STAT' PHASE IRF_OR,RAD

OBABOVE

8. ::'--g! i
I

i

j
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The _'_SLL[LS _how that_ _q_ the pre£e1"r_d |t_oD___j_aJe1"uJse spill spt2cd

o£ about 0.52 rad/s {5 rpm), there_ is no problent with l0 IIz _ ]"L b,tttd-

width tracking, ttowcvcr, _or high spin rates like 6.28 r;td/s (60 rpm),

for special mission cvcnt_ like bus er+,ry or orbit insertion, either a

30 ttz loop baudwidth or an antenna mounted near the spin axis nlust be

used. For the preferred Atlas/CeJ_taur orbiter cortfiguration, the Pioneers

I0 and II forward omni is mounted on the axis and there is no doppler

problem for orbit insertion. However, ifwe desired, for doppler tracking

attitude control reasons, to mount the omni at the edge o£ the I.52-muter

{5-foot dish), there is enough margin to perform the insertion tracking at

6.28 rad/s (b0 rpm) with a 30 Hz loop. The margin is provided by using

a 0.54 radian modulation index (i.e. moxe power in the carrier).

8.2.3.4 Solid State Versus TWTA Power 2Ma.apliiiers

The tradeoff studies of the various S-band power amplifiers required i

for the different missions, launch vehicles, and options covered both i

solid-state amplifiers and traveling wave tube amplifiers (TWTA's) at !}
RF power levels from 3 to 36 watts. Each particular requirement was

reviewed and potentially usable hardware was considcr_,d for size, weight,

cost, efficiency, development risk, and availability. The power ampli-

fiers sized for the various orbiter and probe bus options are:

• 3/O-watt amplifier (d,_._l mode}

• 3/IZ-watt amplifier (ou _ mode}

• 8-watt amplifier J

• 9/36.-watt amplifier (dual mode) ._ j

• 16/36-watt amplifier (dual mode}. -_

In addition to these there are large and small probe options with output

powers in this range. The tradeoffs have considered the commonality o£

requirements and its potential effect in reducing unit costs.

Survey of S-band Power Aanp1ifiers

A survey was made of available solid-atate and TWTAts (inchtding

power supply and control circuitry} with emphasis on lightweight charac-

teristics for the Thor/Delta application and minh,unn cost and develop-

ment risk for the Atlas/G,,ntaur configur'ttion.,

t
V. 2-_Z I

J

t

00000002-TSA08



ALL CONFIGURATION_

I. The sourcL, of ._q),_.ce-clualifi_d TWT's for S-band is principally

limited to two con.lpaniea, i.e., Wa.tkin_ dohnso,_ =.nd Hughes Aircr,__ft

Gon,p_%y (}{AG). An analysis of previeus progran__ cost histories alertly

h%dieat_ that bot.hnet%=TWT development and the integration of tubes with

power supplies (particularly when supplied by different vendors) are risky

and costly endeavors. It was therefore decided to restrict our attention

to qualified rWTA units now under 4evelopment to= similar space applica-

tions, nr a combination of an existing TWT and a _ower supply requiring

onJy minor modifications. These survey criteria g2 _atly reduced the num-

ber of candidates for consideration and highlighted the fact that the TWTA

rnxrket (and TWT's also) is essentially divided by freqLency, with Watkins

Johnson controlling the S-band market and HAC controlling the X-band

market. Although HAG was a leader in the development of TWT's for

space cornrnunications, the S-band development work ¢:one by Watkins

Johnson has clearly rr,adeitthe leading supplier of space-qualified S-band

TWTA's. The notable exception is the dual mode TWTA used on Ma.iner,

i where the 10/Z0-watt tube is provided by HAC and the power supply byWatkins Johnson, A recent change in this program has replaced the HAG

i0/Z0-watt TWT with a more efficient i6/36-watt tube from Watkins

Johnson.

A summary of the characteristics for the TWTA's considered for

Pioneer Venus is given in Table 8. Z-5. Three designs are clearly much

lighter and more efficient than all the others, i.e., the 8-watt 1171-| ser-

ies flown on Pioneers 10 and II, the 10/Z0-watt 1171-3 series qualified

for the Helios program, and the i6/36-watt unit being supplied to MVM _

1973. Since these units cover the power range of interest, they are the

leading contenders for the TWTA application.

The results of the solid-state amplifier survey are also given _n

Table 8o Z-6 for comparison purposes. Although only four suppliers are

listed, it is anticipated that firm bids will be received from a number of

other sources with space hardware experience. Note on Table 8.2-6 that

even the lightest TV_TA on the list (Pioneers 10 and 11, li71-1) is much

heavier than the heaviest solid-state unit, and that cost considerations

I also make th_ solid-state amplifier
attractive.

8.2-23
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Table 8.2-5. Survey of S-Band Power Amplifiers

II IIIII .

MANUFACTURER PHOGRAM STATUS WEll,HI DC _OWI.R [ RE POWKR COMMENTS
|_G d,B'l[ I (WATT) | IWAIII

....................4-

_ADI ATIC)N INC TECHNOLOGY DELIVERLD 0,14 (0.3)" t8 j 6 MUST MC)DII'Y [JESIGN (NEW POWER
I t RANSISTORS i | O REDUCI: JUWCi ION

)_OGR.AM TEMI_RATIIRF
GSFC

iR_ MODEL 3S ENGINEERING 0.36 if} P) 15 4 30 DO GAIN
MODEL

WATKINS JOHNSON PIOI'qEi_RSIOANO I FLIGItI I .8 (4) 28 8 WAIKINS JOHNSON II]1-1

_AtKINS JOHNSON [RT_ f LIGHt 4. I (9) 85 20 WATKINS JOHNSON 1178

WATKIN$ JOHNSON APOLLO - (..C'_ FLIGHT 6.4 _ |4) 95 I_

YvATK,IN5 JOItNSOI% NASA HIJt41SVILL[ LAB/TEST 5.4 (|2) 132 50 DLLIVERED fOUl _ UNIT5

WATKIN$ JOHNSOIN _,CA FLIGItT 3.9 (8.5) 85 20 CLASSIFIED PROGRAM

WATKIN$ JOHNSON VIKING LANDER QUALIFIED 4.4 (.9.6) rio 20 WATKIN5 JOHNSON 1185
AUGUST 1973

WATKINS JOHNSON" MARINER FLIGHT 4.5 (,10) 40/80 | 0/';Z0
NAC
_'_ATKfN_ JOHNSON MVM 73 OcVELOPMEN| 4.5 (10) 52/10_ :6/31 r_Ew tUBE,/_ODJFIED/V.ARINER P,$,

_ATKINS JOHNSON PROPOSED DEVELOPMENt 2.3 (.5) 55/I;gz 10/'31 NEW TUBE/MODIFIED HELLOS P.S.

v_ATKIN$ JOHNSON HELIOS QUAL 2.2 (4.81 45, /0 10/20 WATKINS JOHNSON II71-3

ME COMMERCIAL MUST QUALIFY 0.14 (0.3)* IS. 6 CUSTOMER MAY HAVE QUALIFIED
OFF SHELF

MSC COMMERCIAL MUST QUALIFY 0.3 (0.6) I 44 12 CUSTOMER MAY HAVF QUALIFIED
or_ SHELF

MSC COMMERCIAL MuST QUALIFY 0.3 (0.0)" 80 20 CUSTOMER MAY HAVE QUALIFIED
OFF SHELF

PHI[CO FORD PROPOSED 0.45 it) 27 I 5 5-WATT UNI| QUALIFIED ON ATS

0.9 (`2) 40 l 10

1.5 (3.3) 105 20

_OTOROLA PROPOSED 0.63 (1,4) 25 5
NA _ 10

NA 100 I 20
ii J I i

LOW.GAIN VERSION _)

Table 8. Z-6. Solid-StaLe versus TWTA Tradeoffs for 6 Watts

TWTA _OLIOStAtE
PIONEERS 10&I I HELIOS MSC RADIATIOH INC. TAW

RF POWER (WATT) 8 10/20 " 6 6

WEIGHT, KO (LB) 1.8 (4) 2.2 (`4.R) 0,2 (0.5) ° 0.2 (0.5)* 0.2 (0.S)*

EFFICfENCY (%_ 26 2Z/'2_ 32 33 33

RELIABILITY (,BITS) _3B2 4000 |ES1) } 115 (EST) I 115 (EST) J115 (,EST)

STATUS PLIGHT PROVEN QUALIFIED COMMERCIAL LIMITED QUALIFICATION DUAL 3.5 W tN 1973

RF POWER ADJUSTMENt NONE DUAL LEVEL l_VT VOLTAGE VOLTAGE VOLTAGE

UNIt COST (`6 EACH)
(SKI 72"" 80"* HA 23 20

MODIFICATIONS NONE INCREASED SPACECRAft REPACKAGED FOR REDESIGN 10 REDUCE I REDESIGN tO 6 _ATi._
REQUIRED PRIME POWER SPACE USE JUNCTION TEMPERATURE J

I

INCREASE GAIN I
I

i
HIGH-GAIN VERSION

VENDOR COST LEVEL

Solid StaLe Versus TWTA Tradeo_fs ;for, 6 W_tts

l) TWTAfs. While Lhere are many TWT's available for S-b_nd use_

_ere are few lightweight TWTA_s (including the powez supply), At the

8-watt levelj the most e££icient and lightweight unlt available is the

8. Z-Z4
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Pimm_rs 10 and 11 trait. For higher powcr_ the dual lltod_ TWTA dcw_'l-
" I

oped t'or IILqios is th_ light.st weight m_,it available, _t'h_ ¢o__tol both _nit8 ; >:.:

ia snn_lar. Table 8.2-6 shows that the weight and co_t off the TWTA is

considerably greater than the solid state units shown.

)-) Solid State Power Nnplifi_rso A cost analysis leads to the con-

clusion that it is cheaper to qualify solid state uttits than to use the quail .......fled TWTA_s presently available. In addition to the three sources o£ solid

state units given in Table 8.2-6, Motorola, Philco-Ford, and Teledyne

are capable of providing the required units; however, at present the three

sources shown are preferred because of existing and ongoing programs.

Due to the anticipated number of sources availablej it is not necessary to

limit the selection at this time. Since all available sources presently use

Microwave Semiconductor's (MSC) transistors, it might stem obvious that

the MSC power amplifier should be chosen; but the company's limited

experience with space-qualified hardware will require then: to be critically

reviewed. Based on ongoing efiorts both MSC and TRW are expected to

have qualified solid state power amplifiers in time for use on Pioneer

Venus. Radiation, inc. has done limited qualificatio,_ testing on a low-

gain amplifier for NASA/GSFC_ but the unit must be redssigned to ._ncrease

its gain and to reduce junction temperatures; no efforts are presently being

expended toward this.

Solid State Versus TWTA Tradeoff for 36-Watt. There is a require-

ment for 36-watt nominal (31 watts minimum)for some configurations.

Slightly modified TWTA's have been compared to solid state units for this

application.

1) TWTA's. As mentioned earlier, the high efficiency S-band

TWTA market is dominated by Watkins Johnson. Although HAC has

experimental tubes at 50 watts, the most logical choice for this power

level is the TWT being suuplied to MVM 1973. Watkins Johnson is under

contract now to replace the existing 10/20-watt tube with a 14/31-watt

(minirr, um) tube with much greater efficiency. Unfortunately, the power

supply used on Mariner is heavy_ resulting in a TWTA weight o£ approxi-

mately 4.5 kilograms (10 pounds). For Pioneer Venus the best choice

would appear to be to use the new MVM 1973 TWT with a modified Helios

power supply. These modifications wouJd be slight, limited to a few com-

ponent parts,

_.2-25
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Z) Solid-State Power _p!ificy.s. The requir{;ment for a Mngh'

36-watt unit (31 watts miniJnmn) c_nnot be satisfi_(l with existing hard-

ware. Microwave Sen_iconductors has a 90, 000 _uriea unit which can

provide an output power of 30 watts. TIle low atlvertin(;d efficiency

(ZZ percent) of the unit makes it unattractive,

if new transistor's Item the 4000 sol'los ale substitul_;d, thL_ _olid

state unit becollit;s Iliore competitive. A TRW proposed design shows an

efficiency of 28 perccnl ai about 20 waits. For purposes of this study, i!

is proposed !hat two nominal 20-watt amplifiers b_, parall(,led to prey!dr

the 36 watts. This approach is less costly since only one de, sign is rc,quircd

for both the orbitt, r and the large and small probes. A preliminary cos!

estimate shows a saving ot approxi_nately SZ00, 000 if a parallel approach

is chosen over a new 36-watt solid state design.

3) Tradeof£s. Table 8. Z-7 summarizes pertinent data ior the MVM

1973 TWTA and a solid state approach using parallel Z0-watt units. Note

that the TWTA is more ef£icient, but heavier and more costly. The pres-

ent baseline uses the MVM 1973 TWTA for the Thor/Delta orbiter because [
!

its greater efficimlcy is con/pat!hie with the solar array capabilit_ of the

Thor/Delta design. On the Atlas/Centaur Version iI/orbiter, where

more solar cell output is available, the parallel Zf,-watt solid state units

are baselined because of reducc;d cost.

Table 8. Z-7 Solid-State versus TWTA Tradcoffs for 36 Watts

_TA so_,DsiAu
14005 IRANSISIORS) COMMENI5

MVM73,'HEl lOS _PARA|.I,LI 2U-WA tI UNII IS

(F POWI,R (WATIM 16 3b _NOM) 9 36 (NOM)

14,,3l (MINI 7.8'al (MINI

DC POWfR IWAITS_ 55/106 6& 13b

EFFICII.NCY (%) 2?/34 14 28 ASSUMES ONI, ,_0-w&tl ON -
ONE OFF

_EIGHT, KG (tB) 2.] (6! 1.0 _2.2| SS INCLUDES P,vo IIYBRID5

RElIABIlITY (Brisk, _,_ (Is_.I} 6450 fist)

51AIU5 IWl To BE QUALll_II.I._ LOMM[RLIAi - MUSI

P.S. 15 ML)DHI[D V|WSION QLIAIItY
k)l-'_,I)A[II-I[D UNII

Kf P()WI_R A,DJUMk'd_NI iT'IIAI tEVI-I lv,l Illi.tNL)tf t){-t{ 2U-WAIII)NI

UI41 [ Ct)bI I$1'.l ill/ B6 A%_I, IMI S {.'OMMONAI IIY ¢,'1111
(2Jll(,ll| , 5PAI'(_ _ QUA[ (4 lilt,Ill ,':,PAR[ , L_IJAI LAR{.,I, AN[) '.',MALl I't.Ct}b(5

RII,IIIlRI I I/ Rt L;ll IIl(I lit [ "-

/M()UII'I(..AIIt)I45 <iN IKII} CFIAII_.[ I'._,, VUIIA£;I R[PALIkAL,{- ItJR SPACI -
At4L/ L, URRI,I'll CtIAI,IL;I IRANSISIOR IYPI

_.Z-Z6
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Power Amplifier Combining Technicluc___

We lhnited _he ntunber of power amplifiers thai n3ust b<__dcwuola(_d ,'ii{

and qualified by continuously considering commonality _f de,_i:;nrcqui_:,._ ii

nmnts between the bus, orbiter, and probca. A £urther cf£,).i.'t wa,_ ,_,a.(i,-_ ]
to reduce the new designs by using Jnodular combining t,_chmq t._,,s. ;,,

i,'Jgure 8.2-1 1 shows four techniquea which allow the us,.. of on. ba,;,_ic _i
6-w;_tt design to servv the dual purpose of providing 10 to t t w._;:ts fc, r th,_ ,

orbiter and 6 watts for the probe (nonrodundltnt). Four m.cChods of doing

this are shown in Figure 8.2=IIB, C, D, and E, along with i,,Hut (::t'ch._.r-, iili
acteristics. A 12-watt amplifier is also included for compar:,.-_or_il, ii!

Figure 8.2- 1 IA. _"_

IThe method shown in Figure 8.2-! iB utilizes redundant paraJ2,e.I.

6-watt power amplifiers combined with hybrids to provide approxi.ma.tely

11 watta of output power.

,!The method _hown in Figure 8._.-IIC allows the genera.t:.'.onof t.he

required II watts using only three power amplifiers for a redundo.:-_U_ree- il

for-two system using five additional transfer switches. Th_s a_proa,ch :is :I

heavy, as space-qualiKied relays weigh 0.3 kilogram (0.6 pound) each. ::

The method shown in Figure 8. _--iID utilizes diode switched q_ta_-ter i

wave transmission lines to provide three-for-two redundancy without the
I

use of transfer relays. An alternate version o£ this approach, shown, in

Figure 8._--IIE_ uses a diode-switched Wilkinson hybrid combine:. They

differ in that the Wilkinson approach does not require isolators to reduce

interaction bet_veen amplifiers. Although this approach has been used on

communication transponders where numerous power levels must be

accomplished, its complexity (including telemetry and-cm-nmand inter-

faces) does not make it attractive for the Pioneer Venus. application.

Alter reviewing all the data in Figure 8.2- Il,,the method in Figure 8.2- iIB

has been chosen. When firm cost estimates are available from each of the

vendors, and the baseline transmitters powers have been selected, the

nmnber of po,ver amplifier designs will again be considered.

Although not illustrated, the same techniques can be used to pro-

vide 36 watts nominal from a _0-watt design. The exact values i,, the

smmnary table w£U change, but the relative values are still useful in

making the tradeoff decision.

8.2-27
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8. Z. 3.5 Liglltwei_ht Versus Standard Weisht Transponders

The survey of transponders ha_ shown that only three companies

are actively engaged in the manufacture of coherent DSN-compatible

(240/221 turnaround) transponders, i.e., Philco-Ford, Motorola, and

TRW. Ava_able and developmental hardware can be further segregated

into lightweight and standard designs. A summary o£ candidate hardware

is given in Table 8.2-8.

Table 8.2-8. DSN Compatible Transponders

DC RF
WEIGHT ] POWER [POWER COSt" MODIFICATIONS REQUIRED

MAi'4UFACTLIKEK PROGRAM SIAIUS [KG (LB)I [ (WATTS [(WATTS) ($K)

I .....i

At LAS/CENTAUR ORBITER
I

LIGtIIWEIGHI IRANSPONDERS

CONSCAN AGC' " " OUTPUTPHILCOIOf",_ i VIKING INQUAL 1,7 (3.8) 7.0 i 0.125 150-200 COhFRENt INHIBIT CONTROL
LANDER MODULATION CIRCUIT

INTERFACE FACTORS

IR_ COMPANY- ENGINEERING 1.5 (3.4) 7.5 O,125 153 COHERENCE RATIO
FUNDED MODEL REDUCELOOP BANDWIDTH

MODULATION CIRCUIT

MOTOKOLA COMPANY- ENGINEERING | ,6 (3.5) I 7.0 0.125 --- EARLYDEVELOPMENT
FUNDED

MOIOROLA COMPANY- DEVELOPMENT 2.4 (5.3) 7,0 0.125 --- WILL SELLMID-1973
FUNDED

ATLAS/CENTAUR PROBEBUS

STANDARD TRAN3PONDERS 3. I JTRW PIONEERS 10&ll FLIGH1 (6 81 3,5 0.06 194 NONE !

TRW P&F FLIGHT 4.3 (9.51 15.2 0.7 80' REDUCELOOP BANDWIDTH !

j IMPROVE NOISE FIGURE ]

MOIOROLA ERTS FLIGHT 5 (11) 2_1 1.0 65" REDUCELOOP BANDWIDTH !
IMPROVE NOISE FIGURE !

J MARINER FLIGHT 8.2 (18) 27 0.2 II0 POWERSUPPLY|MOTOROLA Ii F-__

-_"/'_UDE$ MODIFICATION COSTS
V,h';DOR COST LEVEL

*" *_\utDMAtlC GAiN CONTROL

Lightweight Transponders

Thor/Delta-launched payloads require the use of lightweight hard-

ware. Only one company presently is supplying lightweight transponders,

i.e., Philco-Ford. For deep-space applications, the Viking Lander

presently being qualified meets the Pioneer Venus requirements with

certain modifications. Nlotorola is in the early development of a 1.6-kilo-

gram (3.5-pound) unit, but expects to sell a somewhat heavier design

[2.4 kilograms (5.3 pounds)] by mid-1973. TRW is continuing the develop-

ment of a microminiature transponder with the goal of developing a DSN

8.2-2q
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I
compatible unit by lat_. 1973. A Defense Support Program (DSP) th.sign

is presently being test_,d.

Although it is expected that all three suppliers will be ;d)le to supply

DSN compatible units to the Pioneer Venus schedule, the Viking Lander

unit has been selected for the Tho_:/Delta pz'obo bus sad orbiter configura-

tions and for the Atlas/Centaur orbiters. The stability o£ the auxiliary

oscillator must be improved, or as an alternate, the Pioneers tO and II

oscillator could be included in the package. These modifications are con=

sidered minor and should have minimal cost impact on the Viking Lander

design.

Standard Transponder s

The Atlas/Centaur-launched payloads are not severely weight !

limited, and heavier transponders can be considered where there is a

cost or development risk reduction. Only TRW and Motorola have pro- ii

vided standard weight DSN-compatible hardware in recent years, The J

Motorola ERTS equipment is not designed for deep space and would _

require both an increased threshold sensitivityand a reduced loop noise

bandwidth to be usable. The Motorola Mariner equipment is adaptable

with only minor changes, but is extremely heavy and is being phased out

as the lightweight designs become available.

A TaW transponder, supplied to the NASA Particles and Fields

Program, is designed for near-space applications and would require

modifications to increase the sensitivityand reduce the loop noise i

bandwidth. J

The Pioneers 10 and li hardware is usable as is and requires no

modification. Moreover, residual units aze available as spares, proto-

types, and qualification items which afford a significant program cost

savings 11 assigned to Pioneer Venus. Based on the availability o£ the

Pioneers 10 and il residuals, the present baseline system will use the

Pioneers i0 and il _'eceiver, transmitter driver, and +_6-watt solid-state

amplifier for the Atlas/Centaur probe bus. The Atlas/Centaur orbiter

will use the modified Viking La.nder hardware.

S. 2-30
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.:: 8, 2, 3,6 I{,anging Versus Combination S- _tnd X-band

Tr.tdeoffs were uaade between adding either a ranging or a combina-

tion S- and X-band capability to the spacecraft° Corresponding capabili-

ties; ease of SFaCecr_tft implementation; power= weight= and cost factors :: ....

w_-,re compared. Neither ranging nor X-band is required for spacecraft

tracking and the preferred coixfigurations do not include eiflmr capability

explicitly.

The section _irst presents a stmam.ary o£ the tradeof£, then the

detailed antenna and transponder tradeoffs, and finally the ranging and

S-band perfor,nance capabilities, asstuning they were to be i,nple,nented

ill the spacecraft. This section does ,lot deal with tile X-band occultation

para,netel's and capabilities. The preferred S- and X-band occultation

implen%entation is described in Section 8. Z.4. I.

Table 8. Z-9 sun%l_arizes _he advantages and disadvantages of add-

in_ either a ranging capabil_ty or an X-band downlink (880/221 coherency

ratio with the S-band uplink) to the spacecraft. Weight, power, and cost i

penalties are also shown for the Atlas/Centaur and Thor/Delta Version

Ill science payloads. !

Table 8. 2-0 l_anging vs. CoLubination S- and X-Band q'radeoff Sununary

(Spacecraft Spin Axis Perpendicular to Earth Line)

RANGING !

VIKING PIONEERS t0 AND I I X-BAND
TRANSPONDER tRANSPONDER

FEATURES • NO MODIFICATIONS • EXTENSIVE • REQUIRES X-BAND TRANS-

MODIFICATIONS MITTER AND ANTENNA 1

• DEGRADED DOWN- • DEGRADED DOWN- • NO S-BAND DEGRADATION
LINK TELEMETRY LINK TELEMETRY

• ADDITIONAL EXPERIMENT

CAPABILITY IX-BAND
OCCULTATION)

POWER PENALTY NONE 0.5 WATTS 63 WATTS (20-WATT TWTA)

WEIC4_T PENALTY NONE 2.4 kG (b.3 tB_ 4.6 KG _I0.I LBI

PR(_GRAM C_ISl FION| ' 5320 _ $130 K - ANTi rqNA
._)66 k - TRANSMtETER

IDRIVER 4 I_%,i$}

J t2 FLIGIII, I SPAR[} _I FLIGHT, I 5PAR[_

'MOS1 I.I(T_H'TWEIGIIT CANDIDATE TRAI'4SPr'H'4DLRS 8LINL) DI.VELLWt:[) PROVIDE A RANCqNG
CAPABILITY AND ONt.Y A SMAL[ COST SAVIt-JOS Ml(=ltl BI REALIZE[) BY PROCURING A
TRANSPONDIrR WITHOUT A RANOIN(_, RE(,_UIREMENT.

8. Z-31
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One of the reasons for adding either a ranging or all X-band capa-

bility to the spacecraft is to hnprove trajectory and orbit tracking

accuracy. One ,,f the largest errors in doppler trackin:g is introduced by

the frequency shifting ct/ects of interplanetary charged particies. These

eHects can effectively be calibrated out by the use of either ranging or a

combination og two widely separated frequencies, e.g., S- aud X-band,

Mission analysis (Task 4132-08) has shown that neither is required to

accomplish the basic mission objectives. However, if desired, an

improvement in tri,_cking by calibrating out the effects oI charged particles

is possible to the following accuracies (see JPL Technical Report 32-1526,

Volume XI, page 4Z): Charged Particle

Calibration Range Error (tcr)

Combination S- and X-band downlink 0.5 m

Ranging (differenced range versus 1.0 m
integrated doppler, DRVID)

Table 8. Z- i0 shows that the ranging capability exists on the orbiter

baseline and costs little to implement. The telemetry degradation

depends on thle chosen telemetry and ranging modulation indices and could

rance from a fraction of a dB to many dD's. However, since for almost i

the entire mission ranging would be performed with the 64-meter DSN

with about t0 dB greater sensitivity, G/T, the normal cruise telemetry

rate would be sustained while ranging. The Pioneers 10 and It transpon-

der circuitry does not have the necessary wideband response for ranging i

and would require extensive modHications.

X-band, on the other hand, even though more expensive to imple-

ment, has the added attraction of providing an additional experiment,

X-band occultation. For weight, power, and cost comparisons, a TRW

X-band transmitter driver and a 20-watt Hughes TWTA were used. The

MVM 1973 200-mW transmitter by Motorola is included in the following

tradeoffs. For Thor/Delta an 8- to 10-watt TWTA would be preferred to

save on DC power. However, some development would be required fox" a

10-watt tube. The X-band at.terms used in Table 8.2-t0 is an ll-dB

X-band version of the Franklin fanbcam array, abou t. O. 36 meter (14 inches)

long, and corresponds to spacecraft configurations perpendicular to the

8.2-.32

00000002-TSB04



AL t. CONF IGLJflATIONS

earth lira,. For an earth-pointing c..n%figuration _ 20-watt TWTA would

not be required (a .)O0=mW driver x_otdd be _t_fficieat), as an aft horn

(p.t'obe bus and orbiter) and a forward 1.5 meter antenna (orbiter) would

be u_utl. The X-band cost._ wouhl tlxerefol'e be somewhat lower than lhose

shown in Table 8.2-').

Combinatioa_ S/X -band Ant cram De sign_

Each candidate spacecraft ante,ms subsystem de,_ign was evaluated

for the possible addition of an X=band capability. 'rhe ant.,nna colffigur,,-

,ions described below represent the best candidate designs compatible

with earth=pointing and spin-axis-perpendicula:: orbiter spacecraft con-

figurations. Figure 8.2-12 shows various E/X=band antenna designs.

EarUi=Pointing Aaxtcima Co,x_igt,_rations. X-band antennas for t/xe

probe bus and aft end of the orbiter can be a sixuple horn and do not have

a significant impact on the design. X-band antemxas on the forwa,'d end

of rite orbiter, where higher gain is needed, do have all imp,tat. For this I

case, the X-band antenn:t was to have tuaximtuu gain and was to be corn- !
i

patible with forward looking S=band dish antennas. Tile S-band feed was

laterally defoeused fox' c,)nscan and, to miniauiau costs, no feud moven]ent

mecha.nism was added. Three approaches to the S- and X-balxd antelL,.la

system which used the S=band dish for T'l',t'C and con,can are shown in

Figure 8.2-12. Tht,._,. ,ire the dish with a dual frequency S- and X-band

feed, the dish with separate S- and X-band feeds, and the dish with a

separate X-band horn antenna. The preferred design for these orbiters

w;ts the S=band dish with separate S= and X-band feeds. This design was

seh, ctod because of its lighter weight, lXl!,,,tla_ttll developtuent, dlld tuaxi-

'- llltU*l X-bttnd gain without any del'ocu_sing penalty.

The occultation experiment:, per the Version IV science payload) is

conducted frOlli tile aft end of the baselil_e Atlas/Gentaur earth-pointing
i

orbiter ntis,ion. I_t, cattse of tilt' revised n,ission requirements and more

elllpllasis oil K-[)_tllt| v OVel',tge gain, lower gaill alltellnds with broader 1

beamwidths imply horn designs for situplicity and It)west cost. The ]

tnedJunt-g,tin antennd I:t',t(h, offb of Section 8.2.3.2 ,_llowt, d the Piouet,rs ]

I0 illxd 1 l lit)fit t,o I_," tat, I)re[t'rretl S-baltt{ Q, tl[t_lilIt) based II|)Oll bejltg ,1

i

qua lificd tlesign t with optinluul ,'overage _t,thI and IIlitlillltttll t'OSta. ']'|It' t

!

J
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ALL CONFIGURATIONS i

same maxinlmn coverage gain requirenlents are applicable to the X-band

antenua; therefore, an existiaxg X-band meditun gain horn design would be

the preferrcd X-band _ntenna because of minim uan costs. New designs or

scaled S-band horns ,_ere considered, but new development rcpresent_ a

sign£ficant cost increase. The preferred X-band horn for the aft looking

orbiter is the existing qual£fied DSCS-II earth coverage receive horn.

Figure 8. g- 13 describes the existing design and radiation pattern at

8.4 GHz.

o

10 .

20

3o
1

CHARACTERISTICS
I

FREQUENCY: 8.4 GHZ }.
!

POLARIZATION: RHCP

PEAK GAIN= 20.0 DBI 401
i

HALF-POWER 0EAMWIDI"H: 0,30 RAD (17,0 DEG) 72 36 0 36 72 (DEG_
ANGLE

VSWR: 1.2:1 q _ i i J

AXIAl. RATIO [:t 0,17 RAD (tl0 DEG_}_ I,$ DB 1.26 0,63 0 0,63 |,26 (RAD'J A

WEIGHT (INCLUDING POLARIZERh 1.2 KG (2,6 L_I)

DESCRIPTION

• FIN COMPENS_,TED OPTIMUM HORN, 13 CM2 AI_:RTURE

• LIGHTWEIGHT NONEYCOMBCONSTRUCIION

• FLOWN ON DS:S-II PROGRAM

Figure 8. ?-13. X-Band Occultation ExperimentAntenna

Mechanically Despun Antenna Corffigurations. The pri_ary design

problem in adding an X-band capability to the n_eehanieally despun antenna

(DMA) system is that an added despun channel must be accomnlodated by

either the feed system in the despun reflector approach or in the rot;ary (

coupler/DMA system in the despun antenna appr(x_ch (see Figure 5.8-12).
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Separate channels are required for the omni antenna, the S-band high-

gain antenna, and the X-band antem_a. The despun antenna approach using

a dual frequency S- and X-band feed is the shnplest antenna design; how-

everj this concept requires a three-channel rotary coupler or a DMA with

slip rings for switching and frequency multipliers, A rotary coupler

increases the system co,nplexity and cost. A multiple coaxial feed sys-

tem simi/ar to the Pioneers 6 through 9 antenna can be used for the despun

reflector approach. Since the dual reflector system has been flown on the
1

ATS-LII program, this approach has been shown to be feasible. The dual I

reflector system is the preferred S- and X-band approach for the MDA for

the Atlas/Centaur and Thor/Delta Vezslon ILlscience payload con/igurations.

Yanbearn Antenna Configurations. The candidate fanbeam X-band

antenna configurations considered were the same ones considered for the

S-band fanbeam entente%: collinear arrays and biconical horn aperturez, 1

Because of size, weight, and cost advantages, the proven Pioneers 6

through 9 Franklin array design, scaled for X-band, is the preferred

approach. Fanbeam antennas having Mxins ,nuch greater th_n 12 dBi are

not considered to be cost effective because the relative size and feed sys-

tenl inefficiency increases significantly for s,na]l increases in gaiD- With

three S-band antennas located on the forward side of the spacecraft, the

X-band antenna would be separately fed and located on the aft side of the

spacecraft to minimize the complexity of the S-band antenna stack. The

scaled X-band array [about 0.36 meter (14 inches) long] would provide the

sanle perforlnance as the S-band antenna.

X- Band Trans,nitter

As part of this study, various methods were considered for generat-

ing RF power at X-band (8400 MHz). For the earth-pointing and n%echani-

call),despun options, 200 nIW is su/ficient and the MV_V[ 1973 unit is a

logical choise. For the fanbeam antenna options (if dB gain), 6 watts is

required for real-thne tracking out to Z54o 32 gigarneters (1.7 AU).

With a power requirenmnt of 6 watts the system needs a TWTA. A

solid-state design which is an extension of a TRW IR,£,Ddevclop,nent of a

ZOO mW design has been considered for tradeoff purposes, and it appears

reasonable to con_ider a solid-state design up to a 1.5-watt rcquircu_ent, I

i
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A b-watt r,:quil"cmcllt i_ not colmidered possible at this tiane wifll solid-

state, dcvi¢,;_ at reasonable clticicncy. Bulk effect ampl_iers such as the

4val.nLchc diode amplifier (ADA) can produce file required power in a

i: taboratory envirolmlent, but at very low cfficie,xcy (<5 pcrc,:nt). :kDA'_

:: operatilxg i'ath,'. TltAPAT ,,,ode have shown greatrr t'fficiency (40 percent)

tl_illg gall m, al'Senide diodes, but these units nlu_t b,: co,_sider,:d labor,t-

• tory curiosities at this time. It is also possible to use a crossed field

anq)lilier (CL,'A)f,Jrthese powers for efficiencies of 30 to 40 percent, but

these amplifiers (linear field)are stilldevelopmental items.

For higher powers and increased efficiency, the TWTA must still

be considered the most promising, if not the oifly,candidate. As men-

tioned previously, Hughes Aircraft Company (HAC) supplies most of the

X-band TWTA's. Watkins Johnson built the IDCSP amplifier at Z-I/2-watt

output, butthis unit must be considered obsolete. HAC has built TWTA's i

for ATS-F and DSCS-II and has provided TWT's from I to _0 watts to

nmncrous spacecraft programs. The DSCS-II TWTA is the latest built by

HAC for TRW. The HAC Model ig02H is a space-qualified TWTA utilizing

the 265 TWT. It produces an output power of 22 watts re:" a maxi_lu_n

input power of 98 watts. Other TWT's, such as the 219H developed by

::( NASA/Langley or the g40H developed for TACSAT and Skynet II_ could

also be utilized in this amplifier, However, the TWTA is relatively heavy,

4.3 kilograms (9.5 pounds}, and somewhat inefficient (_-_0 percent).

NASA has sponsored programs at both HAC and Watkins Johnson to

develop high efficiency X-band TWT's at the 20-watt level for the TOPS

program. The Watkins Johnson tube was the WJ3703. Since Watkins

Johnson has no contract on TOPS, they are continuing on company funds to

complete the development by the end of t973. They expect the tube to be

45 percent efficientand weigh I to I-I/Z pounds. A Helios type powez"

supply would be 80 to 85 percent efficient and weigh 1.36 to I. 81 kilogreu_s

: (3 to 4 pounds),

_ Tim HAC tube developed for NASA was the Z85tl. HAC has indicated

;= that the 28511 has been tested to a JpL specification. TMs tube shows a

_ ..... nominal efficiency of 46 percent and a minhntm_ cfl'iciencyof 4,1pcrcent.

H. 2-37
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To provide tl,_ required b watts at 8400 MHz, two options are con- i

sidered most attractive. The first would be to use the TRW or MVM 1973 i

unit as a driver and ma;'e the HAC Z85H with a lightweight power supply 4i

(cotnparable to the Watkinc John.son Helios unit} to provide 20 watts

(t6 watts, m,_.nirn;m_ after filtering_ cZ output. Th_ is a relatively low risk i

approach requiring oral 7 power supply modlfication and repackaging. For

Atlas/Centaur, where the extra prime power is availablej this approach

would be acceptable. On the Thor/Delta_ where prime power is very ,i

importarlt, the TWT would be scaled ._own in power to 8 watts nominal.

HAC has ir, dicated that this should add about $50, 000 to their program.

Table 8.2-i0 sumxrtarizes the pertinent characteristics for a

I-I/2-wz:tt solid-state transmitter and an 8- and 16-watt TWTA using a

solid-state driver.

Table 8.2-10. Transmitter Tradeoffs (High Power Outputs)

DKIVER FLU5 IWTA (2
SOLID STATE (I

ATLAS/CENTAUR ORSlTER THOR; DELTA ORBITER
.,, ,,

INPUt FREQUENCY (,MHZ_ 95.625 (10F) 95.(_25 (10f) 95._25 {1OF) i

DRIVE POWER REQUIRED tDBMI O_ t DB 0_ I DB 0_ I DB i

INPUT POWER (WATTS_ 24 (KI 37

:OUIPUT POWER 0.VATTS) 1.5 (3 1614 8 (4 i

MODULA] ION NONE NONE NONE i

WEIGHT [kO qLB)I I.I (2.5) 4.3 i9._) _5 3.9 (B.5) _5

DEVELOPMENT STATUS

DRIVER REDESIGN OF EXISTING SEE APPENDIX BD i
UNITI, o i

TWTA HAC I'W[ t285H HAS QLIALI- HAC tWT #285H MUST fie MODI- ]
FlED TO JPL SPECIFICADON. FLED. PO,¢,[R SUPPLY IS NEW
POWER SUPPLY I$ NEW LIGHTWEIGH1 PACKAGE. 1

LIGHTWEIGHT PACKAGE. i

MODIF !CAIIONS REQUIRED INCREASE S-BAND DRIVER DRIVER AS DESCRIBED IN DRIVER AS DESCRIBED IN i
POVvER-MOREEFFICIEN1 APPENDIXBD- TWT AS IS - APPENDIX 8D. SCALE tWt. !

MULTIPLIER REPACKAGE POWER SUPPLY REPACKAGE POWER SUPPLY. i

J

COS)" PER UNII 1

SOLID STALE DRIVER, Sk (5 120 ]b 75

[WEA, SK
--- 2,_ 283 i

q

i

(IALLOV_S OPERA'rlON TO 0._ .,Mr i

(ZALL'O_,',30PLRA|ILA'q IL) LND L)f MISblON - ;'34.32 C, IOAMLIERS II ,/ AU)

I3ALIO_'vb I DB t OR ISt') tlllER, I Itt Alql) Tt MPt I_:ATURI

(4ALItA*'_5 I D8 I.C,._ flllLl_ Afq[) IINt t(_Sb b

C_t,_l',_lllqt, F( _',lk SUH'L_ ft)K LISLb II V*_?ULL_ AL_U _'_ 91 MI lit I-" tit;

(61ABL[ BASIl! (,_r,l _;I [_t 31L-N (.)1 ll_:, b.-tl_i'_P ]KANbMITTER 1
|

t

H 2-38 i
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Low Power Outlaut tSolid-State)

Tl_e DSN requires an X-band signal which is coherently related to i

the received Sob_ nd signal by a ratio of 880/2Z1. Several nxethod_ of 1
1

_cnievi,xg this ratio were considered; all were constrained by the coherent

dr_v_ si_mls available iron the S-band receiver usad in the ba_lin_ sy_ .... ._

t_,n, silxce only ,_n¢ receiver is used to drive both the S-band and the

X-band trans,nitters. Three different approaches were studied in provid-

ing the X-band transmitter:

$ If a new design is considered_ it requires the development of a
XIt multiplier_ since It is a prime number in the 880 coherence
term. High-order multipliers tend to have stability problems and
,nay present severe filtering problems. Luckilyj two approaches
based on existing designs were found which removed the necessity
lot a new design. A completely new design was also not consid-
ered cost effectivem since only one flight unit and a spare would
probably be required.

• A second approach utilizes an existing unit produced by Motorola
for the MVM 1973 program. Interface changes are necessary to
allow its use with either the Viking Lander, Pioneers l0 and t 1,
or rRW microminiature receivers and transmitter drivers. No
interface changes would be required if used with the Motorola
receiver and driver. A list of pertinent characteristics for the
Motorola lVIVM 1973 unit are given in Table 8.2-11. Figure
8.2-t4 includes a block diagram of this X-band transmitter.

• A third approach utilizes a simple modification of a TRW S-band
transmitter. A block diagram of the proposed transmitter as
modified is given in Figure 8.2.14. By using a mixer to provide
a coherent signal at _Z0 f, the requirement for a times i I is
removed. Only slight retuning of the power an_plifiers (from 240
to ZZ0 f) is required to allow their use as a driver for a balanced
varactor quadrupler. The additional multiplier and an isofilter
are packaged in one additional module in the modified transmitter.
A list of pertinent characteristics for the TRW and Motorola
X-band transmitters is given in Table 8. Z-11.

No X-band transmitter has been selected at this time since it

appears clear that either approach discussed will provide a usable system.

A modification of the Philco-Ford S-band transmitter similar to that pro-

posed for the TRW unit may also be attractive. TRW would prouose to

make a source selection for the X-band transmitter after firm cost pro-

posals are received.

8.2-3q
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and X-b:_nd Perform;thee

Ranging is a method for estim_tthlg tile t:';trth-spacc, cr;mft di_t;D, ncp by

nle;tsuring the delay of :t sig!],_t_l tl';_Ut_lnittcd to the _pctcecr_tft :tnd tz'cux_-

ponded back to earth. Thi_ i._ normally acconq_li.shed with _qu;lr,,_v;tv,,-

modulated carrier _igll;t[_ which ,ire coded in certain ways to re,_olvp

anlbiguities in the range measurement. There art, presently two types of

pl;tnetary ranging codes used by the DSN, the so-called "Tau" and "Mu"

codes Which az'e described in some detail in the Tt'.leconuuunications Sys-

tem Design Handbook (JPL Technical Memorandtu_l 33-571). The ;llajor !

difference between the two systems is the time required to ttcquirc the i

rangh_g code with probability U. 99. These times are given by JI--L ION1

3300-73-70):

N
o

1850 _-_- £or Tau ranging

TACQ = N (1)
o

75 _ for Mu ranging

where enough code components are chosen for a given range ambiguity,

here 5000 kilometers° N O is the receiver noise spectral density in watts/

IIz_ PR is the ranging signal power in watts, and TAC Q is in seconds,

Recommended Thor/Delta Configuration _See Section 8, 2.4.2).

_ Table 8.2- I_ shows an uplink ranging design control table for the orbiter

at the end of the mission. The ranging code is phase-modulated onto the

uplink carrier, demodulated in the spacecraft ranging channel, limited_

and remodulated onto the downlink carrier. Some budget parameters for

the ranging channel were taken from the MVM i973 Telecommunications

Link Performance document (JI=L 615-II, Revision A). The final para-

meter, ranging suppression, is the a_nom.t o£ ranging signaJ power in the

squarewave plus noise output of a unit amplifier limiter.

The uplink asstm_es a 64-meter station with a Z0-kW transmitter.

Higher outputs, up to 400 kW, are available and could be used to reduce

acquisitio,tthnc. Table 8.g- i3 shows the corresponding down/ink design

control table for ranging. The data subcarricr and ranging are ph_tse 'l

i
8.2 o,I0 i

1

¢
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•mmlelnlmQ _eDmmlImmllmllol(I
II llW 1 DIh I0 MHZ
0

1¢1 ,Ja '_OItMS [ - _ _F il IPLJI 'i
i'_. 12_ MH7 2 0 CH

Table 8 Z-11 X-Bgmd Transmitter Trade()ffs | ....
, • | ,

' " V
MOTOROLA M'IM 1973 TRW m_t=eJam _o,u,ew_,,,,_,u, omm_I_o

.................................................................117---II_IPIJT FREQUENCY (MHZ) t9, 12,_ (_f) 9._.b2_ d0fl

DRIVE POWER REQUIRED 0 DBM _Z DB O Dl_ml I DB :" jo. _.j .... ;_".... |INPUTPO_,ER_ATTS) ,aw io,, _M, ] i J l _ ,
I HOmUNGI I J I | 'i:
0 / I l I i ,£

OuTPut FREQUENCY (MHZ) 8415 (Bb'0f) 8415 1880h SWITCH C a _i----.-J I i ! m .tiCeMMANO/--, I I t ; _1
OuTPuT PO_,_'ER_,';ATT_,) 0.2 MINIMbM g,2 MIi_IIMUM ON _l C Og COMMON J J i I ' .

-i5 '_-O.,6V/" • _ I 1 II >i

MODULATION LINEAR PM (NOT REQUIRED) NOT REQUIRED OFF / Lm J J _ ,

o,o._vt : J l '
SIZE (IN.) 2x6.9x8 1.52 x 4.52 . 4.53 I 100M e '_

iI r RFIN _ ,
WEIGHT KG {LB)', 1.8 (4) 0.9 [2) _l OHMS I

TELEMETRY -j TEMPERATURE_- i ._
Out --" • ..... 0,100 MV • J

m 0.% ! _
HARMONICS OF 19,125 MHZ -30 -40 OC pOW_ 4t

SPURIOUS -50 -60
i

PO-"ENTIAL INTERFERENCE (221f) POWER AMPLIFIER AT 176f PO',_'ER AMPLIFIER AT 220f II I
• II

DEVELOPMENT STATUS QUALIFIED MODIFICATION OF TRANSMITTER (..__m I ,M
TO 8E QUALIFIED FOR DSP 25 ro $0 VOC I m _ _,

12w [
COSt 15_) 2.!,0 _50 | m

I FLIGHT I FLIGHT I I
Jill illlmml i lid l Illl IIi I_

I SPARE I SPARE
(JPL TYPE PROGRAM)

RECEIVER MODIFICATIONS REQUIRED w_

MOTOROLA (MICROMIN) N/A ADD XS TO TRANSMITTER

MOTOROLA (STANDARD) NONE ADD XS TO TRANSMITTER

PHILCO FORD (MICROMIN) ADD BUFFER AMPLIFIER TO ADD BUFFER AMPLIFIER TO
RECEIVER AND PROVIDE RECEIVER AND PROVIDE l

VCO OUTPUT AT 2F VCO OUTPUT AT 2t. I _UXILIARY
C._CILLATOR

ADD XS TO TRI.N_MITTER

TRW (MICROMIN) ADD BUFFER AMPLIFIER NONE /

i

TO RECEIVER AND

PROVIDE VCO AT 2f 95.625 M)_Z ',OF)._FcoHERtNT/ I I--I I
_J NONCOHERENT

IRON (PIONEERS I0 ANO I I ) ADDToRECEIVERBUFFERAMPLIFIERAND ADDToRECEIVERBUFFERAMPLIFIERANDPROVIDE O DIll; I_1DB "-'I_?WITCH
PROVIDE VCO OUtPUt VCO OUtPUt AT 2f. A

AT 2f, ADD XS TO TRANSMITTER INHIBIT 1 "_

COHERENT _

COHERENT/

NC)N-COHERENT _tNO | RillMOOt CONTROL

I,"0I,I_0UT YRAMI_
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'table 8. Z- i 3.

' ihlO. ..

I F_EQUENCY (MH|

Table 8, Z-tZ. Uplink Ranging, Recommended Thor/Delta Orbitcr 2 RANGE_G,G_I

NO. PAR_ETE_ NOM,NALADVERSE NOTES a :RAmMITTERmI
4 TRANTMITT_ Clil

I

I I FREQUENCY (MHZ) 2115 5 TRANSMITTER

2 I RANGE _GIGAMETER (AU)_ 254,32 6 POINTING LO_I
(i.7)

7 POLARIZATION I

3 i TRANSMITTER ROWER (DBM) 73.0 0 20 KW

' TRANSM,rTER ANTENNA GAIN (DB) 60.6 0.7 64 MEIER $ SPACE LOSS (DI]4
9 RECEIVERANTE_

5 SPACE LOSS (DB) -267.1 , - j

6 RECEIVER ANTENNA GAIN (DB) 3.5 0.3 UPLINK FANSCAN 10 TOTAL RECEIVE_

7 POINTING LOSS (DB) -0.6 0.2 0.OI7RAD _--1 DEG) POINTING ERROR It I RECEIVERNOIS[I

8 POLARIZATION LOSS (DB) -0.1 0,1 0.17 RAD (1O DEG) OFFSET LII-4EAR

RECEIVER CIRCUIT LOSS (DB) -I.3 0.2 12 PT/No (DB-HZ) i9

I0 TOTAL RECEIVED POWER (DBMJ (3 6_7*8+9)-132.0 - CARRIERTRACKI

11 RECEIVER NOISE SPECTRAL DENSIT f (DBM/HZ) -169.0 1.0 Tsy S= 15.9 RAD (9t0 DEG) K; NF = 6 DB 13 CARRIERMODU1

12 PT/No (DB-HZ) (I0-I I) 37,0 1.3 RSS TOLERANCE 14 THRESHOLD LOI_
LOORSNR(Oli)i

CARR.ZERTRACK_NG PERFORMANCE
REQUIREDLOOP

I:'I I CARRIER MODULATION LOSS (DB) -I 1.5 03 1.3 RAD ,_

PERFORMANCEI14 ! t THRESHOLD LOOP BANDWIDTH (DB-HZ) 13.0
1.0 20 HZ LOOP

15 l LOOP SNR COB) (12+t3-14) J 12.5 - DATACHANNll• J
REQUIRED LOOP SNR + LIMITER LCSS (DB) 6.3 LIM LOSS = -0.3 DB DATA MODULA|

PERFORMANCE MARGIN (DB) (15-16) 6.2 1.8 RSS TOLERANCE DATA lilt RAT|'_

RANGING CHANNEL PERFORMANCE RECEVER LO$$ 4

RANGING MODULATION LOSS (DB) -0.3 0.1 1.3 RAD E_N O (DB) (1_

RANGING BANDWIDTH (DB-HZ) 61,8 0.B 1.5 MHZ REQUIREDElf_

SNR AT LIMITER INPUT (DB) (12+18-19) -25.1 I ,S RSS TOLERANCE 23 J RERFORMAI'_i

RANGING SUPPRESSION (DB) -21.1 615-11 (JPL) I RANGING Cle

24 RANGING M_

25 TOTAL RANG|

26 pRfNo(Oli-t4_
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'[able 8.2-13. Downtink Ranging, Recommended Thor/Delta Orbiter

NO. ] PARAMETER NOMINAL ADVER.SE NOTESi

I F_EQUENCY(MHZ; 2300?

2 1 RANGE"GIGAMETER(AU)_. 254.32
i (i .7)

3 I TRANSMITTERPOWER(DBM) 45,2 0.3 33-WATT NOMINAL (31-WATTADVERSE)

4 I TRANSMITTERCIRCUITLOSS(DB) -0,5 O.I

5 IRANSMITTERANTENNAGAIN (DR) 11.0 0.3 FANBEAMPO,NT,NGLOSSI= -03 02
;,[t POL ,'AT,ONLOSSOR) -0, O0 O,,RAO(,OOEG)OE,:STL,NE,

i
8 1 SPACELOSS(DB) -267.8

b
9 : RECEIVERANTENNAGAIN (DR) 61,6 0.4 64 METER(0.1 DBLOSSAT 0.35 RAD

(20 DEG) ELEVATION

10 TOTALRECEIVEDPOWER(DBM)(3+4+5+6 9)-150.9

1/ i RECEIVERNOISESPECTRALDENSITY (DBM/HZ) -IB4.O 0.6 O.5t RAD (29 DEG) K; 0.35 RAD (20 DEG)ELEVATION

t2 PT/NO (DB-HZ) (I0-1 I) 33, I 0.8 RSSTOLERANCE

_' CARRIERTRACKINGPERFORMANCE "

13 [ CARRIERMODULATIONLOSS(DR) -E.8 2.5 9D = 1.15; $R = 0.46 RAD

14 i THRESHC,:.DLOOPBANDWIDTH(DB-HZ) I0,0 0.4 I0 HZ LOOP

15 i LOOP SNR{DE]{12+13-14) 14t3 - --

l& ! REQUIREDLOOP SN_ (DE) 10.0 -
/

17 PERFORMANCEMARGIN (DE)(15-16) 4.3 2.7 RSSTOLERANCE

DATACHANNELPERFORMANCE

18 DATAMODULATION LOF:_(DE) -B.6 0.8 BD = 1.15 RAD;BR= 0.46 RAD

19 DATABITRATE(DB-BITS/S) 24. I - 256 i

20 RECEIVERLOSS(DB) -2,7 0.5

21 EB/NO (DB)(12+1$-19+20) 4.5 -

22 REQUIREDEB/NO (DB) 3,0 - 10"3 DELETIONRATE

23 PERFORMANCEMARGIN (DR)(21-22) 1.5 1,3 RSSTOLERANCE

RANGING CHANNELPERFORMANCE

24 RANGING MODULATION LOSS(DB) -t4.7 3.1 RD = 1.15 RAD_BR _0,46 RAD

25 TOTALRANGING LOSS(DR)(21UL + 24) -41.8 1.5

26 PR/No (DB*HZ)(12_-25) 4.7 3.4 RSSTOLERANCE

FOLDOU'_PFRAME

8. Z-4Z
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!

ALL CONFIGURATIONS .1

%--_-:: modulated on the downlink carrier at I. 15 and 0.46 radian, respectively. ]
I

In the ranging channel the total loss is the sum of the modulation loss and i

the uplink ranging suppression. Figure 8.Z-15 shows acquisition t._x_les i
versus spacecraft range for each ranging code for the 64-meter DSS. The I

Mark I ranging for the Z6-meter subnet could provide ranging to

Z million kilometers (0.0i2 AU) early in the mission, but would be

replaced by the 64-meter DSN for the remainder of the mission,

,00 1!

5O i -_ .....

64M DS_ ('20KW_

Pe = 0.01
RANGE
A_01GUITY _ 5000 KM

J / , '_

.
I0 l

_ 1 ! i ;

5 ...... I ......

2 .- . .. __

0.2 0,4 0.6 0,8 1.0 1,2 1.4 1.6 I.g fAU_

RANGE

I J, I I l I 1 I I 1
0 29.9259.s,ie_,76 .9.6e_49.6o_.s2 2o9.44ng._ _69.2aIO_G_ErERS_

Figure8.2-15.RangeAcquisiUonTimeversusRangeIPrelerredThor/DeltaOrbiter)

An X-band design control table for the orbiter at the end-of-mission

is shown in Table 8.2-i4. Assuming a separate X-band lanbeam antenna

with a II dB of gain, a spacecraft transmitter power greater than 6 watts

8.Z-43



ALL CONFIGURATIONS

T,II>l,' _.,'--1t. X-13and Downlir, k
_, II I

1

NO. PARAMETER NOt,_INAL ADVERSE J NOTES

I FREQUENCY (MHZ) 8400 I "

2 RANGE GIGAMETER (AU)' 254.32 END-OF-MISSION
(i .7)

3 TRANSMITTER POWER (DSM) 43.0 0,5 / 20-&_ATT IVVTA

4 TRANSMITTER CIRCUIT LOSS (DB) -I .(' 0.2

5 TRANSMITTER ANIENNA GAIN (Dfi) l _.O 0,3 r i:ANBEAM

6 POINTING LOSS LOB) -0.3 0,2

7 ATMOSPHERIC LOSS (D_) -0.2 0,4 0,52 RAD (30 DEG) ELEVATION NOMINAL
[ 0.17 RAD (I 0 DEG) ADVERSE ]

B SPACE LOSS (O8) -279.0 0,0

9 RECEIVER ANTENNA GAIN (DB) 71.b 0.3 0.4 METER, 0.52 RAD (30 DEC.) ELEVATION; i
30 MPH _,YIND

10 TOTAL RECEIVED POWER (DBM) 13,4*b,6,7,stg_ -154.9

|1 RECEIVER NOISE SPECTRAL DENSITY (DB/_ HZ) -182.7 2.3 0.52 RAg (30 DEG) ELEVATION, 3_°K
NOMINAL , bbOk ADVERSE

12 P1 NO (DB-HZ) (IO-I I} 27.b 2.4 RSS TOLERANCE

CARRIER IRACKING PERFORMANCE

13 CARRIER MODULATION LOSS (DB) 0.0 0.0 NO MODULATION

14 THRE5HOLD LOOP BANDWIDTH (DB-ttZ) 10.0 0.4 J 10 HZ LOOP

15 LOOP SNR (D8) (12+13-14) I/.8

16 REQUIRED LOOP SNR tDB) 11_._", -

17 PERFORMANCE MARGIN (DB) (lS-Ib) 7.8 2.5 RSS TOLERANCE

is needed for the carrier margin to exceed the adverse tolerance. Tf

Z0 watts of output power is assumed, the X-band system can operate out

to 1.7 AU with the c,_rrier margin about, 5 dB in excess oZ the tolerance.

A plot of excess margin versus range is given in Figure 8.2-16. One to i
1

two watts is the approxhuate state-of-the-art in solid-state X-band ampli-

fiers; thereforeR a TWTA is required. A t0-watt TWTA would be suffi-

cient to 2-54.3Z gigan_eters (I. 7 AU) wit/_ about 2 dB n_argiu R but a Z0-watt

off-the-sheJ/ TWTA is chosen as baseline on the basis of cost (no develop-

ment cost), Note that the plot of lnargin versus range in Figure 8,Z-16 is

for a Z0-watt TWTA.

Preferred Atlas/Centaur Con/iguration

Prior to the Version IV update of t/_e science payload definition, the

zecon_nended Thor/Delta and the preferred Atlas/Centaur subsystems

were essentially the smile and WCl'e based on a spacecraft coz_figul'ation

whose spilt axis was perpendicular to the earth line, Version IV changed

the Atlas/Centaur spacecraft col_figul'ation Lo earth-pointing (spin axis J

parallel to the earth line).

_,I-,t.!

........... ....................... "_", --: ........... _"_" - ' "_'" _ '7'_" '_! '!7" r'.......... "_'_, "T"' ,': "i.......... " 7_",......
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I

16 \ I tre
20-WATT TWTA

(_ 0 i _ | IdB X- JAND FANBEAM ANIENNA

_. - _ 64M [:)$5

" ° "........, i !:::re _ \W _ N /
g ,2........... \ .......

0 e

a

i,
_ e.......... t......... y

WoI
• I

4L ..... I
0.4 0.6 0.8 1.0 1.2 1.4 1.6 l.e (AU_

RJ,NGE

i I i i J I t I
59,84 89.76 119.68 149,60 179.52 209,44 239.36 269,28 fGIGAMETER_

Figure8.2-16.X-Ban_MarginversusRangetPreferre_Thor/DeltaOrbiter)

Tables 8.2-i5 and -i6 present the ranging design control tables at

end-of-mission with the 54-meter network. The acquisition times are not

plotted, since the calculated numbers using Equation (i) above are below

the 80-second minimum quoted in JPL IOM 3300-73-70. The signal-to-

noise ratios are much higher, since the antenna gains are higher than for

the recor_ mended Thor/Delta configuration, I

The X-band transmitter output power can be reduced (also reducing I

cost) over the Thor/Delta version £or real _time tracking to Z54.3Z giga- II
meters (I.7 AU). The 200 mW MY/V[ i973 unit would be sufficient with a

i. 52-meter (5-£oot) X-band dish (utilizing a dual S- and X-band feed

design) since greater than 35 dBi gain is available. The margins would

exceed those shown i_ Figure 8.2-i6 for a 20-watt TWTA and an II dB 1

fanbeam antenna, I

8,2,4 Preferred Subs)rstem Description --_ AIC,V [[_-A/C'V ]

This section dc-_cr:[he_ r.he preferred Atlas/Centaur communication li

subsystems based on the Versio;_ IV science payload and the i978 probe i
imis s ion launch,

i

8.2-45 i

t
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Both the probe bus and the orbiter are based on the preferred space-

craft configuration -- earth pointing. The main comnmnication modes !

are therefore designed around antennas pointing along tile spacecraft spill !

axis. . 7]

8.2.4.1 Probe Bus A/CIV ;_
i

The block diagram for tile probe bus, Figure 8.2-17j shows it ]

redundant set of transponders and a redundant set of 0-watt solid-state

power anlplifiers connected through switches and diplexers to an aft omni,

forward omni, and aft-pointing horn. Maximml_ reliability and minimum

cost is reflected in this configuration in that all equipment except the

power amplifiers has been flight-proven. Siaaailar b-watt amplifiers of

slightly less efficiency have been designed and built by Microwave Semi-

conductors Corporation (MSC) and qualified and space flown by Teledyne.

The transponders selected for the baseline are residual Pioneers 10

and 11 units (two flight spares and two prototypes which will be upgraded).

The forward omni, switches, diplexers, and aft medium-gain horn are

also identical to Pioneers 10 and 11 hardware and tlle aft omni is a

Defense Support Progrmn (DSP) unit. The Pioneer horn was d, osen to

provide the minh_ltun 13 dBi gain requirement at 0.21 radian (12 degrees)

off-axis pointing. This angle for bus entry is required by the science

instru_lents for the new 1978 baseline bus targeting° The gain of the horn

[13.5 dBi at 0.2! radian (12 degrees)[ and the (,-watt transmitter provide

an entry EIRP of 49.9 dBm (incl, tding 0.1 dB polarization loss), su.fficient

to provide 1024 bits/s with tile 64-meter station.

The 6-watt solid-state power amplifier was chosen over residual

Pioneers 10 and tl TWTA_s on the basis o£ cos;. Knowing that there arc

only enough residual TWTAt._ for the bus, b-_att solid-state units would

have to be procured for the orbiter (or vice versa). Preliminary esti-

mates _how that it would be less expensive to procure two extra b-watt

units for the bus (and have con_monality with the orbiter for integration,

test, and spares) than it would be to relurbish the 't'WTA's to provide two

flight units plus a 8pare as a nainillltml. On the other hand, o1_ llxe basis

of cost, the Pioneers 10 and 11 residual receivers and traustnitter th'ivezs

were chosen over the procurement of extra transponders for the orbiter

8.2 -46



AIC IV

Table 8.2-15. Uplink Ranging, Preferred Atlas/Centaur Orbiter

-_A/C IV PARAMETER NOMINAL J ADVERSE NOTES

FREQUENCY (MHZ) 2115 -

RANGE r'GIGAMETER (AU) 254,32 -
(t .71

TRANSMITTER POWER (DBM) 73 0 20 KW

4 t TRANSMITTER h,NTEI INA GAIN (DB) 60,6 0.7 64 METER

5 SPACE LOSS (DB) -267. I 0 254.32 GIGAMETERS (I ,7 AU)

6 RECEIVER ANTENNA GAIN (DB) 27.5 0.5 1.52 METER DISH

7 POINTING LOSS (DB) -2.3 0.2 CONSCAN (I DB) + (I DEG)
POINTING ERROR

8 POLARIZATION LOSS (DB) -0.2 0.1

9 RECEIVER CIRCUIT LOS_ (DB) -I ,9 0,2

l0 TOTAL RECEIVED POWER (DBM) (3+4+5+6+7+8+9) -110.4 -

I I RECEIVER NOISE SPECTRAL DENSITY (DBM/HZ) -169.0 1.0 'rsy S = 910°K; NF = 6 DB

12 PT/No (DB-HZ) (10-1 I) 58.6 1.4 RSS TOLERANCE

CARRIER TRACKING PERFORMANCE

13 CARRIER MODULATION LOSS (DB) -11.5 0.7 1.3 RAD

14 THRESHOLD LOOP BANDWIDTH 13.0 1.0 20 HZ LOOP

15 LOOP SNR (DB) (13.13-141 34.1 -

16 REQUIRED LOOP SNR + LIMITER tOSS (DB) 6.3 0 LIM LOSS : -0,3 DB

12 PERFORMANCE MARGIN (DB) (15-16) 27.8 1.8 RS-_ TOLERANCE

RANGING CHANNEL PERFORMANCE

18 RANGING MODULATION LOSS (DB) -0.3 0.1 1.3 RAD

19 RANGING BANDWIDTH (DB-HZ) 61.8 0.8 _.5 MHZ

20 SNR AT LIMITER INPUT (DB((124-18-i9) -3.5 ].6 RS3 TOLERANCE

21 RANGING SUPRESSION (DB) -6.0 1.6

32.768 t_HZ
COMMANDS SUBCARRIER
TO DDU FROM DTU

PIONEERS l0 M_D i1 r'J4----4 IJ"lSl j j COHERENt _l, l,.n

_ I_ _DRIV[. -- I=w----! O,_LE,X._ ;_SE'_"I----I*I"*"SM,T.RI',;_N
, -IN°"' IT--

PORWAmT I I'_"1_°N°ERII - I
OMNI

l I
AIC IV IOASD1,....... I T NSR3NDER NO 2

S'_'_=r¢_IICH _PIONEERS1ERS10....AND _1 -- 1
tigure _ ? 11 Atl,]s'Cenlaur Probe Bus (REDUNDANT) l (6 WAttS)

_lOck l) h}(Ird I11 _AI:

OMNI I r_u. z i I-f _ " % J (6 WATTS) J . _ _ I

rcsP1 _ ¢:- __-= H _

PIONEERS 10 AND II t,tfw

: _---"-_ --7-.-- - -
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_Z entau r Orbiter

'111

NOTES

[_A/C IV

"TER Table 8.2-16. Downlink Ranging, Preferred Atlas/Centaur Orbiter
=_ GIGAMETERS (I,7AU)

_ETER DISH NO, PALAMETER NOMINAL ADVERSE NOTES _ t

_AN (I DE) + (I DEG)
--TING ERROR I FREQUENCY (MHZ) 2300 -

2 RANGE _GIGAMETERS (AU)_ 254,32 - END-OF-MISSION
(I .7)

3 TRANSMITTER POWER (DBM) 37.8 0. 6 WATTS NOMINAL i

4 TRANSMITTER CIRCUIT LOSS (DE) -I .4 0. ! -

910°K;
5 TRANSMITTER ANTENNA GAIN (DE) 28.0 0.S 1.52 .METER 15FT) DISH _'Y"

NF 6 DE

_"_C_LERANCE
6 POINTING LOSS (DE) -2,8 0.3 CONSCAN LOSS PLUS I PERCENT i

ATTITUDE ERROR

7 POLARIZATION LOSS (DB) -0,1 0. I ,
AD _

8 SPACE LOSS (DB) -267.8 0 254.32 GIGAMETERS (1.7 AU)
_--- LOOP

9 RECEIVER ANTENNA GAIN (DE] 61.6 0.4 64 METER (0. I DB LOSS AT 20 DEG

ELEVATION i iLOSS = -0.3 DB I0 TOTAL RECEIVED POWER (DBM) (3+4+5-_6+7+8+9) -144.7 0.8 RSS TOLERANCES
i

_OLERANCE I I RECEIVER NOISE SPECTRAL DENSITY (DBM/HZ) -184.0 0.6 29°K AT 20 BEG ELEVATION 'i ']I# J

12 PT/NO (DB-HZ} (10-11) 39.3 1,0 RSS TOLERANCES _ i

TAD CARRIER TRACKING PERFORMANCE i i

-'-w.AHZ 13 CARRIER MOUDLATION LOSS (DB) -6.7 1.8 "_D = 1.05 ±10% RAD; BR = 0.'17 *I0% RAD _ii

,-'JI'OLERANCE 14 THRESHOLD LOOP BANDWIDTH (DB-HZ) I0.0 0.4 _.0 HZ LOOP ,_

i15 LOOP SNR (dB) 112+13-14) 22.6 2.1 RSS TOLERANCES

16 REQUIRED LOOP SNR (DB) 10.0 0 RECOMMENDED 810-5 it

17 PERFORMANCE MARGIN (OR) _15-16) 12.6 2.1 RSS 10LERANCES !

32.768 KHZ DATA CHANNEL PERFORMANCE
SU_CARRIER
FROM OTU 18 DATA MODULATION LOS5 (DE) -I .8 0.7 '_D = 1.05 ±10% RAD; _R = 0.37 ±10% RAD i

19 DATA 81T RATE (DB-BITS/S) 30. I 0 I024 BITS/SCOHEREN J.fO Z0 RECEIVER LOSS (DE) -I.3 0.5 ESTIMATED FROM NASA/ARC DATA
DRIV If MW

J EB/N O (Dg) (12,18-19_-20) 6.1 1.3 RSS TOLERANCES
J !Mlhl 21TRANSMITTER

_R 23 PERFORMANCE MARGIN (DBi 121-221 2.5 1,3 RSS TOLERANCES

RANGING CHANNEL PERFORMANCE

24' RANGING MODULATION LOSS (DE) -14.9 2.7 _D _ 1.05 -'1_ RADI _R= 0,37 +10% RAD

25 TOTAL RANGING LOSS (DE) f21 UL + 24) -20.9 3, ! RSS TOLERANCES

"_R NO. 2 J 26 PR/No (DE-HZ) (12 + 25) 18.4 3.3 RSS TOLERANCES
_, ANOll _I I I
_ttS)

_ i ..-----_

• [
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I

TaMe 8.2-17. Probe Release (64-Meter) -"

r_

NO. PARAMETER NOMINAL ADVERSE NOTES

I EltEQUE/iCY [MHZ) 2300 0

2 RANGE [GtGAMETE_I$ (AU)_ 50.86 (0.34) E-II DAYS (LAST RETARGET)

3 IRANSMITFER POWER (DBM) "¢7,8 0.4 6 WAttS NOMINAL j

4 1RANSMITTER CII_CU/T tOS_ _ -1,3 0, I

_RANSM.ITTER ANTENNA GAiN (l_) -1.0 1.0 OMNI COVERAGE

6 PO,NT,NGLOSS(08) o - Table 8.2- ! 8.
7 POLARIZATION LOSS (DR) -0,2 D,I

B SPACE LOSS (DR) -253.0 50.86 GIGAMETERS (0.34 AU) NO. PARAMETER

9 RECEIVER ANTENNA GAiN (DB) 61.6 0.4 64=METER [0.1 DR LOSS AT 0.35 BAD (20 DEG)
EI.EVATION] I FREQUENCY (MHZ)

10 TOTAL RECEIVED POWER (DBM) (3,4_5*_t_7+!_9) -156.9 1.2 2 RANGE [GIGAMEtERS (AU)]

! I RECEIVER NOISE SPECTRAL DENSITY (DBM/HZ) -184.0 I .O 29°K AT 20 DEG ELEVATION 3 TRArqSMItTER POWER (DBM)
[0.26 RAD (15 DEG) ELEVATION ADVERSE]

4 TRA?,ISMItTER CIRCUIT LOSS (DB)

12 PT/No [DB-HZ) (10-11) 27,1 1,5
S TRANSMITTER ANTENNA GAIN (DB)

CARRIER TRACKING PERFORMANCE 6 POINTING LOSS (DR)

13 CARRIER MODULATION LOSS (DR) -4.1 I.I 0.9 • 10% RAD

14 THRESHOLD LOOP BANDWIDTH (DBoHZ) 10.0 0.4 2 BLO = 10 HZ = 10% 7 POLARIZATION LOSS (DE)

15 LOOP SNR (DR)(12+13-14) 13.0 1.9 RSS TOLERANCES 8 SPACE LOSS (DR}

16 REQUIRED LOOP SNR (DB) 10.0 0 RECOMMENDED 81O-S 9 RECEIVER ANTENNA GAIN (DR) ::

17 PERFORMANCE MARGIN (DB) (15-16) 3.0 1.9 RSS TOLERANCES 10 tOTAL RECEIVED POWER (DBM) (3 eTeJ

I I RECEIVER NOISF SPECTRAL DENSITY (DBlv_
DATA CHANNEL PERFORMANCE

18 DATA MODULATION LOSS (O6) -2. I 0.7 0.9 = 10% RAD 12 PT/NO (DB-HZ) (10-1 I)

19 DATA Bit RATE (DR-BITS/S) 15.0 32 RITS/S CARRIER TRACKINO PERFORMANCE

20 RECEIVER LOSS (DR) -4. I 0_5 ESTIMATED FROM NASA/ARC DATA 13 CARRIER MODULATION _S (O_)

21 E_c/NO (DE) (12+18-19.20) 5.9 1.7 RSS TOLERANCES 14 THRESHOLD LOOP BANDWIDTH (DB-HZ)

2E REQUIRED EB,/N O (D_) 2,5 0 10.3 FRAME DELETION RATE IS LOOP SNR (OR) (12+13-14) i

23 PERFORMANCE MARGIN (DR) (Z1-22) 3.4 1.7 RSS tOLERANCES 16 REQUIRED LOOP SNR (DR)

17 PERFORMANCE MARGIN (DR) (15-16)

DATA CHANNEL PERFORMANCE

18 DATA MODULATION LOSS (DR)

19 DATA BIT RATE (DR-BItS/S)

20 RECEIVER LOSS (DB)

21 EB/N O (DR) (12+1R-19.20)

22 REQU,REDECNo (DB)
23 PERFORMANCE MARGIN (DR) (21-22)

J

.7-_LL,b,J!J'_ '"_:

t
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Table 8.2-18. Bus Pro-Entry (26-Mcter)

PARAMETER NOMINAL ADVERSE NOTE ..............................

(MNZ) 2300

_AMETERS(AU)] 64.33 (0.4J) 17 DECEMBER1978ENTRY

iR POWER(DBM) 37.8 0.4 6 WATTSNOMINAL j

]IR CIRCUITLOSS(DE) -1.3 0.2

IR ANTENNA GAIN (DR) 15.5 0.3 PEAKGAIN

1.oss(D8) -z.o o.S 0.2__AD(12DEG)NOM,NAL,0.21RAD
(13DEG)ADVERSE Table 8. Z- i 9. 13us Ent

:_N LOSS(DR) -0. I 0, I '_

(DE) -255,8 0 64.33 GIGAMETERS(0.43 AU) NO, PARAMETER NOMINAL A_

JTENNA GAIN (DB) 53.3 0.6 26-METER
I FREQUENCY(MHZ) 2300 ,_

VED POWER(DBM) (3+4_5+6+7+B+9) -152.6 0.9 R$STOLERANCES
2 RANGE[GIGAMETERS(AU)] 64,22 (0.43) ._

_ISE SPECTRALDENSITY (DIgVVNZ) -181.9 0.9 47°K AT 0.26 RAD(t50EG_ ELEVATION
[0. _7 RAG(10 DEG) ELEVATIONADVERSE] 3 TRANSMITTERPOWER(DRM) 37.8 (J

-IZ) (10-1 I) 29.3 1.3 RSSTOLERANCES 4 TRANSMITTERCIRCUITLOSS(DE) -I .3 IJ

_.KIN, G PERFORMANCE 5 TRANSMITTERANTENNA GAIN (DB) 15.5 III

_)ULATION LOSS(D8) -4.1 I.I 0.9 :_ 10% RAD 6 POINTING LOSS(DB) -2.0 (J

ILOQP BANDWIDTH(_t8-flZ) 10.3 0,$ 2 g'LO_ _0,8 * 10% gAD 7 POLARIZATIONLOSS(DR) -0.1 I_
/

:_B) (12+13-14) 14.9 1.8 RS5TOL_RANCFS 8 SPliCELOSS(DR) -2S5.8

_OF SNR(DB) 10.0 0,0 RECOMMENDED810-5 9 RECEIVERANTENNA GAIH (DR) 61.6
_.E MARGIN (DB)(15-16) 4,9 1.8 RS5TOLERANCES

_0 TOT._r,RECEIVEDPOWER(DBM)(3+4+_h,.6+7+_9) 144.3
_LDt, PERFORMANCE

II RECEIVERNOISE SPECTRALDENSIT¢ (DBM/HZ) -184.0
LATION LOSS (DB) -2. I 0.6 0.9 ± 10% RAD

"IrE(DR-BITS/S) 1B. I 0 64 BITS/S I2 PT/'No (DB-HZ) (10-||) 39.7

SS (DE) -4.8 0.5 FROMNASA/ARC DATA CARRIERTRACKINGPERFORMANCE

_TSTT0-19 !˜�T�4.21.5 RSSTOLERANCES 13 CARRIERMODULATION LOSS(DB) -4. I

jI.4 O (DE) 2.7 O 10-3 FRAMEDELETIONRATE 14 THRESHOLDLOOP BANDWIDTH(DB-HZ) 10.O

_E MARGIN (DE)(21-22) 1.6 1.5 RSSTOLERANCES 15 LOOPSNR (DB) (12+13-14) 2S.6

t6 REQUIREDLOOPSNR (DR) 10.O

17 PERFORMANCEMARGIN (DR)(IS-16) 15.6

DATACHANNEL PERFORMANCE

18 DATAMODULATION LOSS(DR) -2. I

19 DATABITRATE(DR-BITS/S) 3C,,.I

20 RECEIVERLOSS.+DOPPLERLOSS(0.1 DR) -I .4

21 EB/NO (DO)(12+18-19+20) 6. I

22 REQUIREDED/NO (DR) 3._

23 PERFORMANCEMARGIN (DR)(21-22) 2.5
_J

• !

,. :.--.
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Table 8. B-t9. Bus Entry (64-Meter)

. ' i i

PARAMETER NOMINAL ADVERSE NOTES

FREQUENCY(MHZ) 23_J0

RANGE_GIGAMEtERS(AU)] 64.33 (0.43) 17 DEC_'tlbER)978 ENTRY

I_ANSMITTERPOWER(DEM_I 37.B 0.4 6 WA J.; NOMINAL

TRANSMITTERCIRCUITLOSS(DE) -I.3 0.g

TRANSMITTERANTENNA GAIN (DE) 15.5 0.3 PEAK"_AIN

POINTING LOSS(DE) -2.0 0.S 0.2I RAD(12 DEG) NOMINAL, 0.23 RAD
(13 DEG) ADVERSE

POLARIZATION LOSS(DE) -0. ! 0.1

SPACELOSS(DR) -]tSS.E 64.33 GIGAMETERS(0.43 AU)

" RECEIVERANTENNAGAIN(DB) 6|,6 0.4 6,I-METER[O.lDBLOSSAtO,26RAD(20DEG)
ELEVATIONJ

TOTALRECEIVEDPOWER(DBM) (3+4+5,,.6+7+8+9) 144.3 0.8 RSSTOLERANCES

RECEIVERNOISE SPECI'RALDENSITY (I)l_VHZ) -IB4,0 1.0 29°K AT 0.35 RAD (20 DEG) ELEVATION
0,26 RAD (I 5 DEG) ELEVATIONADVERSE]

plr/No (DB-HZ) (10-11) 39.7 1.3 RSSTOLERANCES

CARRIERTRACKING PERFORMANCE

CARR:ERMODULATION LOSS(DE) -4, I _, I 0.9 RAD _:10%

tHRESHOLDLOOP BANDWIDTH(D0-HZ) 10,0 0.4 3 ELO= 10 HZ

LOOP SNR(DE) (12+13-14) 25.6 1.7 RSSTOLERANCES

REQUI_EDLOOP SNR(DE) IO.d 0 RECOMMENDEDBI0-S

PERFORMANCEMARGIN (DE) (15-16) IS.6 1,7 RSSTOLERANCES

DATACHANNEL PERFORMANCE

DAtA MODULAIlON LOSS(DE) -2. I 0.7 0.9 RAD * 10%

9ATA Bit RAIE (DE-BITS/S) 30, I 10_4BITS/S

RECEIVERLOSS+ DOPPL_._LOSS(0._ DE) -I.4 0.6 FROM NAS_v_ARCAI' 17 DESNR

E_/N O (DE) (12+18-19 TI 1.6

REQU,:,EOE_/t'_O (DE) 3.6 0 10"3 FRAMEDELETIONRAtE (
I

p_RFORMANCEMARGIM (DE)(21-22) 2.5 1,6 RSSTOLERANCES
._ t t •

FOLDOUT I,'RAMI_
8.Z-48
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= since the refurbishment cost will be much less than extra new transponder

costs.

Telentetry Mission Profile

Figure 8. Z-1_ shows the telemetry rate profile during the mission.

Tables _',. 2- 17, -i8, an,l - i9 show telemetry design control tables for

probe release (b4-meter), bus pre-entry (Z6-meter), and bus entry

' ' uplink carrier-tracking link budget(64-meter). Table 8 .... 0 shows an

[, ,,;OMN_:o.4.._'::-.O_,+' "'+"+:='--_+---'] for a Z6-meter station, See_AFt,""_ I /

t,,. I i '°++,o_, _M_'_T'XOMN'.I_"M-_-'--_ Appendix 8, ZB for a discussion of

-<+'[ . I I-,-_-Il-_6`' metry design control tables. For_zl- .... + -,---] EEL[ASr;_..,6.1111DEG)
16 t I, 1 { ...... --(64MiPOIN/INGIOFFSEI ,o, the first 50 days after launch the
a t ...........

o['- .... '_---+ I--_ bus attitude is not earth-pointing,
o.m o.m o,_ 0,2 o,+ o,+ (AU+
2.+ S.9O _:_ 14.m 29.92u.msg.s (o_oAmtus>and Z6-meter cruise communicationsRANGE

2o 1o 6o m mo _,__A'_S_NM+SS+O.are handled by the aft omni.
Fiqt,re 8 :.>t+8 Probe8u_+teleetetr_RatePr(,tile

During this time the two omni antennas are independently connected

to the two receivers and two transmitters. The forward omni is not

nominally required, but is provided as an attitude control failure backup.

. For the rest of the mission, except for probe release, earth-pointing is

:- maintained and the medium-gain horn is used. Switch $3 or $4 is acti-

vated to connect the horn to a receiver and transmitter as the forward

omni is disconnected. Switch $4 is included to prevent a single point bus

:- entry mission failure if switch $3 failed in the forward omni position,

u Just prior to entry the bus pointing is offset 0.21 radian (IZ degrees)

• in order to meet the angle-of-attack requirements for ram experiments,

":+...+, Th._ angle represents about a 2 dB drop in antenna gain, but the EIRP is

still sufficient to support 64 bits/s with the 26-meter station prior to
_2"°

.- entry and 1024 bits/s with the 64-meter for the last hour before entry.

During probe release and bus rotargeting the 64-meter station is needed,:u

•,." when the aft _nni is used at the required release and retargeting aLti-

" tudes. Return to earth-pointing after each maneuver can be accomplished,9

-e -" if desired, thereby returning tracking capability to the Z6-meter network.

.=-

¢.
•..'. 8,2-49
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T;_bl_"B._-_0. ]_u'_-,Enlry (F'or Tw,_-W;Ly Fr;iLkin_
No Connil;_nd M,_dulali,in)

I

_12). PARAMETEI_ NOMINAL ADVTR'i[ N(}I(-_

I f I_|I_U[ f_l_Y IMp7) 211_ - IIpIINg

2 _Af',_GE GIGAd_AI f|r', {_kt.II _S4._3 (0.4_1 _ A| LN|rY

Tl_t_'_11Tlr POW(_ [U[_M) /zI 0 0 20 kvv

4 |i_At,i_VllTllr ANT(NI.tA GAIH (Pfl) _l.e 0.9 26.MI1(_ I)%S

SP_E LOSS -_p_,l - M.3J C;I_;AM|ItR_ (O.4J AU)

6 R(_,[IV{R ANI(NNA GAIN CO0) 14.:5 0,_ PIA_ GAIN

7 POINTING LO_S tOE) -1.7 0.3 0.21 I{AD t12 DIG} offSEt PLAt,, GAIN
023 AAD il3 D[G) ADVt_._F

o Pot ARI,PATION L_S$ (DB) -0.2 0. I

9 receiver CIRCUIT LO%'_ (OB) -I ,S 0,t

10 _OIALR_CEIVED POW[R {DBM) (3.4.5,_.6.;t_B.9) -119.2 1.0 R_>S

I I EE.C{IVER NOISE 5@ECTRALDEN$11Y (DOM, HZI * I,_2 1.0 |_YS 9|0°K; NF _ DO

12 PT NO IOB-H") (I0-II) 49.8 1.4 RSS

CARRIER TRACKING PERFORMANCE

13 Ca.RRIER MODULATION LOSS (O_) 0 0

14 THRESHOLD LOOP BANDWIDTH (D$-HZ) 13.0 1,0 2 BLO 20 HZ A'[ 6 DS SNR

15 LOOP SNR (DB) (12e1"_-14} 36.8 -

16 REQUIRED LOOP SNR + LIMITER LOSS (DD) 6.3 0 LIMITER LOSS 0.3 DII

17 PERFORMANCE MARGIN (DB) (1_-16) 30.5 1.8 RSS TOLERANCES

COMMAND CHANNEL PERFORMANCE

18 DATA MODULATION LOSS COB)

19 DATA BIT RATE (DB-BIT/S)

20 RECEWER LOSS (DB) *
NO COMMAND MODULATION

21 E_"N O (DB) (12.18-19_.20)

22 R[QUIRED REel40 (DB) *

23 PERFORMANCE MARGIN

iii it i

single modulation indexR 0.9 radianR is used t_roughout the bus mis-

sion with the Pioneers I0 and II transmitters. A second modulation

index could be implemented if Z to 3 dB more margin were required dur-

ing probe release_ but the c_cisting Pioneers 10 and 11 transmitter would

have to be modLfied to accommodate two modulation indices.

Note that all three probe bus antennas are located o££-axis. This

advantageous for attitude controlR as the offset location provides space-

craft pointing information through doppler spin modulation. For this rea- "'s

son a conical scan antenna capability, conscan, i_ not required on the

probe bus mission. For detagls, see Section 8.5, Attitude Determination

and Cor_rol.

8, Z-50
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DSN Co,ffi_uration ,During Probe and Bus Entr)[

h is dcai ,this, from. the standpoint of tile number of available

receivers at the _wo 64-meter tracking stations at entry, to have the bus

tracked in a tw_-way mode. by the 26-meter _.tations0 Two constraints

prohibit the 25-ntetex station, from tracking the bus all the way through

bus entry: the two-wa)r doppler rate and the entry high data rate require-

Illoltt (1024 bits/s). The buildup of the two-way doppler rate from 2 hours

before bu= entry (~0 Hz/s)to e,try (~60 Hz/s)li_nits the Block J.L[ receiver

tracking capability to about one-half to I hour" before entry (10 to 25 Hz/s)

(soc ffPL Technical .Report 32-1526, Vol. XIII, page. Z3, and also Vol. X,

page i68). Also, the Zb-meter station can support no more than 64 b'_ts]s

at entry. For both these reasons the bus entry is delayed as much as pos-

sible without losing communication during the dual Goldstone/Canberra

overlap period. The pr_:ferred probe and bus entry sequence is as

follows:

Large probe and small probe I entry" ~70 minutes

Guard space: _,ZO minutes

Small probe 2 and small probe 3 entry: _65 minutes

Guard space: ~25 minutes

Bus Entry ~180 minutes after
large probe entry

The 0. g6-radian (15 degree) Goldstone/Carberra overlap period is

Z00 minutes (3 hours, gO minutes), sufficient to cover the above sequence.

This sequence allows two receivers per probe per station (e.g., one

Block LU and one Block IV) wi_h predetection recording possible on a fifth

receiver (Block Ill) operated open-loop at each station. Approximately

i hour before bus entry at least one Block IV receiver at either Goldstone

or Canberra would have to be switched from one of small probes Z and 3

:: to track the bus during the last hour of bus entry, The 64-meter station

is required to give the i0_4 bits/s capability and the Block IV receiver is

_ required to track (in a programmed o_cillator mode) th_ bus two-way

: dopppler (see Appeudix 8. ZB). The reco1_n,_nded approach is to switch

to the,bus one Block IV receiver at Goldstone from small probe g and one

Block IV receiver at Canberra item small probe ,,_,

8._.51 !

4 -_ " 1

00000002-TSC14



 A,cv !
i

This still leaves a total of three receivers each for probes 2 and 3

during the last half of their e'xtr7_ four receivers being available for the

first halt_ of the entry (high altitude}, which is more critical in ter,,ts of

search, lookup, and doppler. For a detailed diagram of the entry colffig-

ttraticn in terms of bust probes, stations, and receivers, see S_,ction 10.7

of Mission Operations and Flight Support.

Antennas. The baseline antennas for the bus spacecraft are exist-

ing, /light-proven designs. The results of antenna tradeoff studies have

shown that the selected equipment represents the lowest cost, lowest risk

approach in meeting comnmnications requirements for the preferred probe

bus configuration.

The bus antennas consist of three separate antennasj providing omni-

directional TT_-C coverage during transit and probe entry phases of the

mission, as shown in Figure 8.Z-19. Two flight-qualifiedconical log

spiral antennas on opposite ends of the spacecraft provide low-gain spheri-

cal omnidirectional coverage. There is no interferometer region because

the antennas are connected to separate transmitters and receivers. A

ucrrugated conical horn, Pioneers I0 and II, located on the aft end of the

spacecraft provides higher gain for higher bit rate communications during

probe entry. For compatibility and minimum DSN operational effect, all

the probe bus spacecraft antennas are right-hand circularly polarized.

Model tests to verify omni antenna coverage and gain performance have

shown that the effects of the large probe and spacecraft structure upon

omni antenna pattern performance are negligible. Shown in Figure 8.Z-Z0

are full-scale spacecraft mockups used in the tests and a measured pat- i

tern for the combined forward and aft omnis; existing engineering nlodel

antennas were used in the tests. While the tests performed with the model

did not establish an opti,ntun location for the antennas, they did indicate ]

that adjusting antenna height accomplishes a certain amount of pattern

reshaping to fillin low-gain areas. Pattern ripple shown on the measured

patterns is primarily due to test range reflections, which will be reduced

in future testing.

The use of existing qualified hardwar,: is the h,wcst cost approach to

selecting diph,x,,rs and l{[",_itches f(,r the pr(,be and orbiter spacecraft

8.Z-SZ
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i

MrASURED OMNI ANTENNa, o 0 DEG (0 RAD/ i

FREQUENCY: 2295 MHZ AFT OMNI ONSPACECRAFTMOCKUP
POLARIZATION: RHCP O = 180DEG (3.14 RAD_

PLANE: o VARIAELE ¢.'J= 90 DEG
(t .57 RAD_

Figure8.2-20, Pr_e BusModelTests

PERFORt_U_NCECHa_CreRISt,Cs,
RECEIVE tRANSMIT

PASSBAND FREQUENCY 21 |5 t 5 MH_ 2295 t S MHZ

PASSBAND INSERTION
LOSS <0,75 DB <0.3 DB

PASSEIANDV_VR < I, 5.1 < 1.5_I

(_LIT-OF-SAN D
Rf JI'CItON "90 DB "_60 O_

ISC)LATION "_B5 DB _85 DB

DIPLEXER (PIONEtRS IOAND I1 TYPE I_ POWER HANDLIN(_ "12 W

WEIGHT *.0.95 KG

FREQUENCY 21I0 TO 2120 ='zg0TO 2300
MHZ MII7

'VSWR "-.1,2:i <t.2:1 ]

POWER SWITCHING
C._PABILITY ) 9 W C_V

INSERTION LOSS ..0.2 DB ,.0,2 D$

ISCI[AIION _ 60 DO

WEIGHt ,_ 0,3 KG
RE 1RANSFEESWITCIt
_'_ONEERSl0ANOIn

Figure8.2-21. BaselineProbeSpacecraft01olexer.',ndRFSwitch

systetl_. The Pioneer 10 and l l Type II diplt'xer and RF _wit_:h (_vc

Figure 8.2-21) were usable as is for the probe nlissions and therefore

were thc sclected dcsigns.

Tz'ans_pnder. Section 8. Z. 3.5 _uanmari_ed the characteri_tic_ of

available lightweight and standard weight transponders° It was noted that

_. 2. g4
i
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only three companies are preset_tiy t_ngaged in tlm manufacture of DSN

compatible S-band transponders. The u_e td hardware aw_ilable fronl all

three vendors will be considered in following sections for all applications

except the Atlas/Centaur probe bus, For the Atlas/Centaur probe bus the

residual unit_ f_.om the Pioneers I0 and II progr_un are reconlmended.

A briet smmuary of the characteristics of this transponder iollows,

1) Pioneers 10 and 11 Receiver. The Pioneers l0 and 1! receiver

differs solllewhat in design from both the TRW and Philco-Ford lightweight

dt.'signsj since it utilizes triple down-conversion, Because the desigu was

accompliMmd with discrete components, the weight is considerably

heavier [2,45 versus 1.36 kilograms (5,4 versus 3 pounds)] and larger in

size. Thc present design is usable for tile bus wit ,ttt modification,

Althougll no! required for |ht, probe bus, a constrall outpu| for use with an

existing conscan signal processor io provide spacecraft poit_ting ilfforma=

lion is available from this unit. A brief l'_t of tilt, receiver characteristics

is given in Table 8.2--2t. A block diagram of the receiver is shown in

Figure 8.2-22-.

2) Pioneers 10 and 11 Transnaitter Driver. The transnlitter driver

from Pioneers t0 and I I is cap0,ble of generating a phase=modtflated

S-band signal o£ 50 to 80 nlW, It has an internal oscillator used to provide

a stable frequency output when the receiver is not phase-locked to an

uplink signal. It has provisions for accepting RF inputs from either of

two receivers for coherent operation. The transmitte,¢ driver is phase-

modulated by a squarcwave frequency of 32 kHz.

TIle transmitter driver consists of two circuit boards. The oscilla-

tor board contains a voltage regulator, TCXO, with switch circuit) buffer)

amplifier) and a X3 multiplier. The driver n_odtde contains tile phase=

modulator with modulation lhniter, buffer amplifier, RF limiter) inter-

mediate power ampl£fier, X _- multiplier_ power amplLfier, Xt0 multiplier)

and bandpass filter. The unit weighn 3.0 kilograms {1.4 pounds) and

requires 1,5 watts,

h list of pertinent characteristics for the transmitter driver are

.:, given in T_tble 8. L-LL. A block diagr_xm is shown in Figure 8.L-L3.

8.2, _g
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I

RIt t1_ INe.: I _1QIJ|NI. I I_ANL,I (I _ I_I_Y t_1%111 ,)11D-,_I;_I MII.'

NOI.%t I IL;U_I _MA_IMLIMI _ lift

INPLII V_WK (_4A_I&_UM) 1 .I I

AL qLIl_lll_lN llIRI 5ML/LP (lOOP _NN 6,1_ DB}. _ Ill_ U_l&_

1L)_.)P Nl'll%t I_ANI)'I_IIIIII AI ItlRI %tl¢)l 1) _(1 I1,'

|RAL I_INL, L IIA_AL _|RI_II_ %

-1_) 1!SM 'Ih_NAI I J@ _11*" AI A _All _)1 _ I:l( I Ili', b _1111 J_ PIIA%I L_KL)I_ k)l " L) _1_AI)

ItlRI _tlk_lt[I _l N_I|IV_|_' 149 II_&_ * I 5 I_1_ (6 |_P _.NR IN A ,'tl If,' I { ll_p _ANI)',_.II_IIII

D_NAMIE RAN_I

+146 2 {!_M)

(LIHIRINI DKIVI IO TM&N_MIIIIK

t_IqLJLN(¥ 2 _21 IIMI% l_l_ |IVI I+ IWI:JUIN_

IMPIDAN(I _(_ ;1

DI$AIIL[D I|VEI -6e LH_

l_k SUEARKI[_ OIIIPUI

+/aa O_ SIGNAL _ 4 + I ++,V P[Ak I k_i Pit Ak

-14+2 DBM bI_._,NAL It) O _ I ./ V P_AK IO P|AK

_OLI_C { L JOKs;

LI+)41) Z ,]/ k|, _

FREQUENCIES 128 H_ O" 704.8 HZ "1"

A(II('I_%_TI_ GAIN C_3NIK_I| ,_=._N_AN I_ltJlPLlt

_JE (OMI_}NiNI _ILX.I MV t 13%), DB

"_OLFK_.t Z 1Okt- =

AuToMATI_ IJ,AIN _L)NI_)L _. +L++tt+ I .¢' I'1_

LLiOP +_ND+ IPlII (3 081

yl, XI) IKIt_tIINL + 51AI_ILII¥ _ PA+_I5 IN It +++ I0 IlK (+3L1 |O 190°I)

PIIAM _TA_ILIT+ _ OFIII_INI +,+LIIPEII - +-_A+'_II O t_4," MAD +_ ,R D[(_ KMM. O 14/KAD tg4 DIG PIAk)

WI:IGHI 2.44 k_.; |5,4 tl_)

Pt'+Wl K I_I_UI_I t* .+ _/vAl 1'_

II

+++I _ +Mt,N_I I_ %IL;N_I |t_

! ,

+_%+Pl , _ 1,,
II J!'z_lt I11 _111

I hll!It' _. _+ .'r_o I+hllllt(ll |tl dlhl II l_itl+Jvlll

F, _,-gh

. /o •
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t

iI I

INP_-IT i l4._ Mh..' 112 I) I
r

_,)UIPLIT 229t) TO 23_ MH_' I

DRIVE |Evil REQUIRED -5 DBM TO '2 DBM

INPLIT IMP|DANCE $0 l_ ]

INPLIT V_WI'I I .5: I ;

MODULAIIL'JN !

IYPL CONSTANT PtlAb| !

) ) I, $[N$1llVlT_ I.I RAD INDEX i

STABILITY ,0 t RAU _i

_iOlIL_L,r [0 i|n(l [i '['l'it11_llllttt'r OuTPuT POWt:R (MINIMUM) SOMV¢ j

]L)r1','l" [" }3L" r['o t'tlt_Tnc t' _PUI_IOU_ LEVELS 40DB I

FREQUEN_-Y _,IABILITY, AUXILIARY _
tO._LI t LA IOR

SHOK| TERM 10.25 SIC) 3 _ I0 "II

LONG I[P,M 4 , 10"0. 10 HR

INPUT VOLTAGE -Ib _ O._ V

INPUT POWER I. _WATTS

ENVIRONMt NTAL

TEMPERATURE -18 TO 4_'C

VIBRATION 32 G "4_ HZ

SHOCK 400 G. 2 kHZ

M(_'I'_tIt AI ION Ml_l_ltlAt I(_N !
INPUT _ | IMIIIIR

Pit_._I INIIRMIDI_II :"5 I_ >

_IL IIVII_ Nq_, ,' h_l &e,

|14._ MtlL" _J L_[l

I
3_,/ ] REfill I_ 1

__ I I

_'_"_"'Ne"iI"_'J_ b . ,,h,PI.&IUgI&_'NI|_'R

ttq:_re8,_-?1. Pioneer10dlld II I rdn_milh'r

Power A_npLificr, A 6-w¢,,tt _olid-ut_tc power mnptificr has been

chosen,

_,, i ,||
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In an initial attempt to minimize costs, a preliminary decision was
I

made to use TWTA's (8-watt output) from tile Pioneers 10 and | l residuals.

After ¢onsideri,_g tile co_t_ of refurbishing and retesting, and the program

costs of carrying two different types of a,uplificrs, it wa_ found less

costly to buy addi+ional 6-watt solid-state amplifiers than t') use the

residual 8-watt T WTA's (6-watt solid-state units must be procured for

the orbiter). Details of a 6-watt solid-state versus TWTA tradeoffs have

previously been covered in Section 8.2.3.4.

The choice o£ a solid-state power amplifier in lieu of existing

TWTA designs is possible due to the improved per_or,nance available

from S-band power transistors. Figure 8.2-24 shows two block diagrams

for power amplifiers. The _irst is the preferred approach, as it uses a

new family of high-gain, high efficiency transistors from Microwave

Semiconductors Corporation. Since no power supply is uecessary to work

from the regulated 28-watt bus, the overall efficiency is equal to or

superior to existing TWTA's, such as the Pioneers I0 and II unit.

K.'dMIMI.IM .... _ - - °_ ,%'dNJ_,_ll&" J
240_ 24iI I

I

28 %,|)C

2_ VD(, 5 _%AII%

.'1-'¢, lyl | PO&%I t_ A/'.'_Pl Jt It R (_J _1C.tJ ,41k_, i R.M'-I',I%| t/R%

'140 f 240}

}
28%{_, ". _,WA11% --._ --

_ITLRNAI_ t_+%*_All _L_'_IR

Figure8. Z-Z4. Twoo-WattSolidStateProverAmplifierDesigns

S.nce the 4000 series transistors have ,lotbeen flightproven, it ',

might be considered wise tc use the 3000 series instead. Alookat tile i

block diagram of this alternate approach will show that alladditional trail-

sister is req_fired. By the tinge Pioneer Venus is illthe developtuent

cycle, TIIW believes the 4000 series will be qualit'ied and available t'o1'

high reliability space applications.
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i A_ mentioned in the previous power combining tradeoff charts_ the

presont t)-watt amplifiers can be combined to provide 10 to t I wattn (12

w;dts nominal), a s required for the Atl;ts/Centaur orbiter options.

Table 8.2-2 _ list,_ sonic pertinent characteristics for the b-w,ttt

solid-state and Pioneers 10 and 1! TWTA power amplifier.

'l,Ibl_'8. 2-'ig. lh_wer A1_,plifiers

|KIt,)LI|NL_ IqAN_.;[ 2/¢b Mtl: , 5 MIIo" 21'95 Mti" , 5 Mti."

F li%lg ',_LIIPUI 6 WAllS H '¢,,AI Ib

i_ I_,: th,VAI R El k,_LiIKJ D _0/t_V_ 4 M'O,

IN'2LI1 xcbl_ 1.4:1 1.4 I

;LIAD _,'hV_K |._.1 I .%1

INPLI1 k'l'C IAL;I 2t{ V t 2% 28 _ _ 2%

INPLII Pk'3'At K I¢ ',',AI 1_, " _B '_%_11b

hPU_IOU30U|PUIb 3l'_DO [_11 b l'_8 0OIAL bLIM)

_,_.tlGttl Kk; (tIt) f_IIIGIt-_',AIN 0.3 (061 1,8 _4)
VIIC,_ION_

OUIPLtl PL'lit[t_ MONii* '_ Rt_(IIK|I_ AVAILABll

Subsystem Weight and Power Sua_mx,az'y, The preferred ±\tb_/

Centaur probe bus communication subsystem weight and power a ee sm_-

m_trized in Table 8. "-24.

Tnbh' 8. 2-24. Conn_unic,_tion_ Subsystem

Wcighl a_d lk_w¢'r Stlllltlliti'}'

IC'I AL ['K" POVdR ,I
IIIh_ k_LIANIIT_ '_%I Ig..lll

P,G I[_1 (\_ AIIN)

RtL Ilkll¢ 2 4 @ (I0 III 4.t_

lZAN_,/_',IltkI_ Ll_l%lg /' I,.I[ _'14_ 1.5

PL%_|K A_t'LIIltR 1 0.6 t I [1 _2.0

DIPL|_LR _ 1.¢ I 4 ,11

_,i%llklllb ._ 14 i ,I 01

&l | OMNI I 0 4 _ 0 9I

Af| H¢'II_N I 1.5 _ _I..I_

I¢It t_t_,AND L LINNII, ILIR A I_ I I _ _ 31

lk'qAI 13,_ 12_ I1 Z'.,_

8. Z.4.2 Pre_er_'ed Orbiter [_-A/CJV

The block di,tgr, tm l'or the orbiter_ l,'igure 8.,-'-_5, shows ,_ rcdun-

d,tnt set of ta,tnsl)Onders, conscan sign, tl processor) dlld A redundant set

N. ,_- %,t)
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_()MMAN_ i
ION{ _. J_. 761}_1_ i
10 IIDLI (-O,_NDS ..... SUIK'IIIIIM

IIIIMIIRV -- -
DIU _ A + I IROM DTII

r-.- [- .--_--- - '_- _ _,_.m.
[ tl , L, i i l,Rr,i,n,_ ,I I l,,_m_

PIC_NIII*, f AI_L'JC, St I I I J -, l _ Ik _-4_ / " "• • _/ MINIMIIM

]_ _ ,"-I- I iIRAN+,PONDIRN,_ ' III-'-- I I

[SlPllXf R I , I ____ __ ..-A --t-- _ -,.,.,., .l_.--._l '_+"""N"._t=- --7 -t"*-BAN"
sJ,s, 'I_;_--,,.._---._I-I I i I III [ I+,- . I-+' DRIVIR

_ '_ [ I J , :tlvtR L.__J..J_LJ +_NSMnUL,I I I i_+_

+' t" + "' ' ' '°"+++Ul
,o' ..... _ I t____co.sc,,,,r- ..... + ,.c++

SIGNAl/ _ PR_CESSOII L . _PON.R,
----! / / _ r_.......... ;._an, I,
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(PIONEERS i fROM r'0R
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FanOG) (Rtounoant_ j-II cOmmAnds--------_

[ 3
FORWARD

OMNI (DSPI i 6 WATTS POWER /
I S2 AMPLIFIER _I_MW--

i +,+-'+' I i+X-BAND X-BAND l J tRANSMIttER
/ l oRIvi_s

HORN TRAN$MIIT|R _ I I2F_ I : " I L I_:_WER
i il) Dill) I AMPLIFIER ----
iDa,P!

(MVM_ NO. 2

I NE,,_,X-llANO SCIENCE EXPERIMENt
_NO! PARt Of COI_%qUNICAIIONS SLI*SYSIEM I CO_ND$

I
l iqurP _ ,.' 2'+ AlhP, Ceiltatlr (Irbitef Col|1_uili(atiol1_, _tlbs_stettl Blo(k l)iatlr,li_1

of 6-watt solid-statepowe]' amplifiers connected through switches,

hybrid-couplersR and diplexers to aZtand forward omnis, an aft-pointing

horn° and a forward-pointing dish. An X-band science occultationexperi-

ment, consistingof a Z00-mW tr,_nsmitterand an a_t-pointinghornR is

also shown in the diagram. (For the study itwas considered not to be

part of the commttnications subsystem° ) The X-band interfacewith the

S-band transmitters and itsoccultationcapabilitieswillbe covered later

in thissection.

The transponders selectedfor the basellne are Viking Lander units

with minor modiZications t,,e.g.,, the additionof conscan output,coherent

i_dxibit,and possibly un X-band drive}. A conscan signalprocessor is

ttsed on tileorbiterfor attitudecontrolwhen the high-gain dish is pointed

at earth. Conscan is required because offset-omtd doppler modtdation

t,amxot be tlsc,d tilterthe first37 days in Venus orbitwhen tilespacecr_t

is £1ippedto point nose to e,trth. The (,-wattomni d,,w_dink does not have t
sttfficient EII_P for trackinBl eVell wJlJl tile b_-lllcter st,ltionp past that

ti_lte.

i

/,

+,
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The power amplifiers are 0-watt solid-state devices, the same _ts

those used on tilebus. The forward and aft omni ;irealso the same as

tho,_eused on the bus but reversed, i.e., the bus forward onlni is the

same as the orbiter aft omni (Pioneers 10 and 11). The aft horn is the i

same ,ts on tile bus (Pioneers 10 and 11), but the 5-foot dish is new. The

feed for the dish is the Pioneers 10 and l 1 high-gah_ feed and is perma-

nently offset for conscan capability and also slightly defocused to extend

the conscan acq, tisition range to about 0.17 radian (10 degrees).

The ELRP of the orbiter in the high-gain anterma mode is 6I.5 dDm,

assm_ling 0. 017 radish (I degree} attitude pointing error and _. l dB polari-

zation loss. This is s,M.ficlentfor a 64 bits/s downlink at 254.32 gaga-

meters (I.7 AU) with a modulation index of I.05 radian and a Z6-meter

tracking station. This permits readout of an entire orbit of stored data

in approximately I0 hours. A slightl7 lower EIRP could have been chosen,

at a slightly reduced spacecraft cost, to provide only a 3Z bits]s caI:_,-

bility, but this would have re_luiredfull 24-hour coverage by a Z6-meter

network consisting of three stations. The 10-hour readout capability

requires only two stations and the cost savings in ground operations is

anticipated to be more than the increased spacecraft cost, thus reducing

total program cost.

A further increase in ELRP (and hence data rate) _or an anticipated 1

one-station readout capability was ruled out on the basis of our preferred

store-and-dtm_p capability; this requires two data dmnps per orbit, one

of which is required near periapsis. Since periapsis passes are variable

with respect to ground station coverage, two stations would be required

anyway at one time or another. For further discussion of this, see

Section 8.3, Data Handling. _-_01s--.'-i-Mom_ _01s.Lq _

Telemetry Mission Profile tm 6,M_PA_,u.•_2 .........

Figure 8,Z-26 shows the tele- _ ,_

metre rate profile during _l_ecruise _ _ _
_6 ..Atb_UNCM* 11ooms_ _tlp2

and orbit phases of the mission, e _____
Tables 8. _ ' _ , 0._ 0._0.,u0 _.,_.0_Au,,.-_0 8 .... 6, and 8. 2__2_7 0.t 0.2t4._ _.9_ :i9.B489.76 149,60254,3_ (GIC,A_tE_._

IAN_!

are telemetry design control tables _ -_ ,',_0__w,.o.,,

for orbit insrrtion, the second flit _itt.., $ .' :h Od_itrrleh.,,_,qn,RJtrPr,,filr

H. 2-{_t

m_
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maneuver, and the end-of-mission, respectively, q'_ibh" 8. _'-27 _h_Jw_ the
i

uplink comtuand design control table at end-of-tuissi,m, b'ron_ launch to

the first flip maneuver (110 days) the high-gain dish i_ p.inlt.d at t,.trlh

and provides t024 bits/s, the limit of the digital tele.letry unit (DTU} as

modified for Pioneer Venus. ALter the first flip the aft horn in pointed _t i

earth and provides bit rates from 51_- to 64 bits/s until the second flip

maneuver 35 days after orbit insertion.

Both flip maneuvers are required for sun heating (thermal) consid-

erations and are not col_strained by the corm_unications subsystem. For

the remainder of the mission the high-gain dish is poia-.ted at earth and

provides bit rates also from 51Z to 64 bits/s. Whenever a 04-meter sta-

tion is used in the mission, o. bit rate of i0_4 bits/s can be supported

reducing the readout time for a Iull orbit of stored data to less than an

hour. For a discussion of orbiter doppler effects, which do not ia_lp:,ir

the mission but may cause short (10 to 15 minutes) periods of ground

loss-of-lock tracking at some periapsis passes, see Appendix 8.2D.

S-Band and X-band Occultation

Tables 8. 2-28 and 8. Z-2q show the received power shortly after

orbit insertion with the 64-meter station for the preferred S-band and

X-band spacecraft colxfiguration. For ease of implementation and mini-

mum cost_ occultation capability is provided for the first 35 days only,

when the aft end of the spacecraft is pointed to earth. The S- and X-band

horns are aligned with the spin axis of the spacecraltj providing nao.xinltnll

gain in that direction. The horn beamwidths are sufficient to allow pro-

positioning of the spacecraR spin axis off the earth line to the desired

refraction angle (a) prior to entry before the start o£ occultation, l_eal

time S-band communications is maintained at 128 bits/s prior to occulta-

tion but shortly after refraction (and attendant defocusing) begins [{about

0.05 radian (3 degrees) and 15 dB loss, nee Figure 8.Z-27)] carrier

trackin_ is lost. Digital recording and processing must be used to further

ex_tract the carrier front ll,e increasingly refracted and defocused ray.

Figure 8. 2-28 is a plot of defocusing loss versus refraction attgle

taken frott_ ¢lat_t prep,trod by Dr. Gunn_tr Fjeldbo m_d included in a letter

_. 2°h2
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Table 8.,_-25. Orbit Insertion Design Control Table

NO. PARAMETEI_ NOMIHAL ADVr:K_E ] NOTES
I

I FREQUENCY (MHZ) _300 O =ORBIT INSERTION
2 RANGE ' GIGAM[TER. ¢_(AU), 59.8 40.4) O

3 TRANSMITTER POWER (DBM) 37.8 0.4 6 WATT_ NOM NAL

4 TRANSMITTER CIRCUIT LOS_ (D_) -I,5 0.I

S T_NSM.Itt'TEE., NTENNA GAIN (DB) ;t,g 0.3 FORWARD OMNI AT t.0S RAD {60 DEG) Tab1,, 8. Z- Z6.
6 POINTING LOSS B) 0 0 i

7 POLAI_IZATION LOSS (DB) -0,2 0,1

6 SPACE LOSS -255.2 0 59.B GIGAMETERS (0.4 AU) qO, PARAMETER

9 RECEIVER ANTENNA GAIN (DB) 61.6 0,4 64-M DSS _0. I DB LOSS AT 0.35 RAD (20 BEG)
ELEVATION _ I FREQUENCY (MHZ)

l0 TOTAL RECEIVED POWER (OBM)(3e4_7 �,�P�-154.52 RANGE ,rGIGAMETERS (AU)]

II RECEIVER NOISE SPECTRAL DENSITY (DMB/HZ) -IB4.0 0,6 Tsy S = 29°K; 0,35 RAD (20 DEG) ELEVATION 3 TRANSMITTER POWER (DBM)

12 PT/NO (DB-HZ) (10-11 ) 29.5 1.0 RSS 4 TRANSMITTER CIRCUIT LOSS (0
S TRANSMITTER ANTENNA OAli_

CARRIER TRACKING PERFORMANCE
6 POINTING LOSS (DB)

13 C ARP.IERMODULATION LOSS (DB) °6. I 1.7 _ = 1.05 RAD ±10%
7 FOLARIZAIlON LOSS (DO)

14 THRESHOLD LOOP BANDWIDTH (DB-HZ) 1O.0 0,4 2 RLO = 10 HZ
8 SPACE LOSS (DB)

15 LOOP SNR (DB) (12+13°14) 13.4
9 RECEIVER ANTENNA GAIN (DI

16 REQUIRED LOOP SNR (DB) 10,0 O
l0 TOTAL RECEIVED POWER (DIM)

17 PERFORMANCE MARGIN (DB) (IS-16) 3.4 2.0 RS$ TOLERANCES
I I RECEIVER NOISE SPECTRAL DrP_

DATA CHANNEL PERFORMANCE i

16 DATA MODULATION LOSS (DB) -1.2 0.6 i _ = 1.05 RAD ±10% 12 PT/No (DB-HZ) (10-11)

19 DATA BIT RATE (DO-BITS/S) 18, I 0 64 BITS/S CARRIER TRACKING PERFORM/

_0 R_]ffVER LOSS (DB) -4.8 O.S ESTIMATED 13 CARRIER MODULATION LOSS |

2[ DOPPLER LOSS [DB] 0 0 INSERTION BEHIND PLANET 14 THRESHOLD LOOP DANDWIDTIH

22 Etlr:N,, _ (DB) (12+!0-t9.,20.21) 5.4 15 LOOP SNR (DB) 112+13°14)

23 REQUIRED EB/N O (b I 2.7 0 10.3 DELETION RATE 16 REQUIRED LOOP SNR (DB)

24 PERFORMANCE MARGIN (DB) (22-23) 2.7 1.3 RSS TOLERANCES 17 PERFORMANCE MARGIN (D|) (

J DATA CHANNEL PERFORMAI_

1g DATA MODULATION LOSS (De

i_, DATA BIT RATE (DB-BITS/S)

20 RECEIVER LOSS (DB)

21 EB/N 0 (DB) (12+Ie-19.20)

22 REQUIRED E_'N O (OB)

23 PERFORMANCE MARGIN (DB)

00000002-TSD12



•._tblc 8.2-26. Flip No. 2 Maneuver (On Omni Antennas)
Design Control Table

• I I I II II

PARAME1ER NOMINAL ADVERSEJ NOTES

_QUENC 1'(MHZ) 2300 [ I

NGIE _GIGAMETER$(AU)_ 97,24 (0,_) 35 DAYSAFTERORBITINS[RTION

_IN_ITTER POWER(OBM) 37.8 0,4 6 WATTSNOMINAL. 5.5 WATTSMINIMUM
4

•_ANSMITT_R CIRCUit LOSS (DB) -I,5 0.3

ANSMITTER ANTENNA G,._,I/'.COB) °1.0 1.0 OMNI COVERAGE _

_._JNTJNG LOSS (DB) 0 '4

_'_IZAT,ONLOSS(DB) -0._ 0.1 Table 8. Z-ZT. End-of-Mi
_ACE LOSS(_ -2_.4 /

NO. PARAMETER NO
-C£1VERAf_TENNA GAiN (DB) 61.7 0.4 64-METER j,

,_TAL RIECtlVED_'OWER(DaM)('_..e_eTf.BeI_ -|_.6 1.2 RSSTOLERANCES 1 FREQUENCY(h_HZ) _3 0 '

_CEIVER NOISE $R£_.fRALDENSITY (DBM/HZ) -184.6 0.6 T = 2S°K AT 0.79 RAD (45DEG) ELEVATION 2 RANG[ [GIGAMETEI_ (AU)J 254._ _(1_

[0.35 RAD (20 DEG) ELEVATIONADVERSE] 3 TRANSMITTEPPOWER(DBM)

_/1_ O (DB-HZ) (10-1 I) 22.0 1,3 R$STOLERANCES 4 TRANSMITTERCIRCUIT LOSS(DB)

_RIE_R _tRACK_!NQPERFORMANCE S TRANSMITTERANTENNA GAIN (DB)

_ARRIERMODULATION LOSS_8) -I .3 0.4 0.54 RAD"-10% _) POINTING LOSS(DB)

-'-'IRESHOLDLOOP BANDWIDTH(DB-HZ) 10,0 0.4 2 BLO= I0 HZ
? POLARIZ_,TIONLOSS(DB)

_OP 5NI_4,DB)(12+13-14) 10.7
8 SPACELOSS(DB)

_QUIRED LOOP SNR(DB._ 9.0
9 RECEIVERANTENNA GAIN (DB)

_P.FORMANCE MARGIN {DB)(15-16) 1.7 1.5 RSSTOLERANCES
10 TOTALRECEIVED_WER _)_4_5_6_7_9) -I

ATA CHANNEL FERFORMANCE I I RECEIVERNOISE SPECTRALDENSITY (DBNV'HZ) -I
ATA _ODULATtON LO._$(DB) -5.8 0,9 0.54 RAD *i0%

A1A tlit RATE(DB-BITS/S) 9,0 o BBItS/5 12 PT/No (D_-HZ) (10-1 I)

_-_._EIVERLOSS (D_) -3.2 0.5 ESTIMATEDFROMPIONEER9 DATA AND CARRIERTRACKING PERFORMANCE
NEW SDAAND SSA

13 CARRIERMODULATION LOSS (D|)
_I_'N O (I)l_)(1_+1B-19+20) 4.0

14 IHRESHOLDLOOP BANDWIDTH(DB-ttZ)
_EQUIREDEB/N O (DB) 2.3 10"3 FRAMEDELETIONRAI'E

|S LOOP SNR (OB)(12.13-14)
•"_RFORMANCEMARGIN (DS) (21-22) 1.7 1.7 RSSTOLERANCES

16 REQUIREDLOOP SNR (DB)

17 PERFORMA,,,ICEMARGIN (08) 05-16)

DATACHANNEL I_RFORMANCE

18 DATA MODULATION LOSS(DB)

19 DATABITRATE(DB.BITS/S)

zo RECEIVERLOSS(DB)

21 Ell/NO (DB) (12+lll-If_..,._O)

22 REQUIREDE0,/NO (DB)

23 PERFORMANCEM,.RGIN (DB) (21-22)

00000002-TSD13
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Table 8.2-27. End-of-Mission Design Control Table
]

. lamH. i ,, i i i I

.AR.ETER NOMINALI........OVERS, - OtES
, II FREQUENCY (MHZ) 2300 J ..

2 RANGE _GIGAMETERS (AU_ 254.32 (I ,7) J - EN(_ OF MISSION t

;3 TRANSMITTER POWER (DIIM) 37.8 It 0.4 6 WATTS NOMINAL
I

4 TRANSMITTER CIRCUIT LOSS (DR) -I .4 _ 0. I I/
i,

5 TRANSMITTER ANTENNA GAIN (DR) 28.0 0.S I.t2-METER (5-FOOT) DISrl !
6 POINTING LOSS (DR) -2.8 0.3 CONSCAN LOSS PLUS 0.017 RAO (I DEG)

ATTITUDE ERROR j

7 POLARIZATION LOSS (DB) -0. I 0. I
4

8 SPACE LOSS (DR) -267.8 0 254.33 GIGAMETERS (I .7 AU) 1

9 RECEIVER ANTENNA GAIN (DR) 53.3 0.6 36 METERS 1

1O TOTAL RECEIVED POWER (DBM)(3_4_Tdl_9) -153.0 0.9 RSS TOLERANCES i! t

II RECEIVER NOISE SPECTRAL DENSITY (DEM/HZ) -181,9 C.9 4_K AT 0.26 RAO (1S DEG) ELEVATION ,2:o 7RA.ClOoE_)ELEVAT,ONADVERS_._

,2 P,/No(D,-HZ)_I_11) 28., ,., RssTOLERANCES I
$

CARRIER TRACKING PERFORMANCE t

l13 CARRIER MODULATION LO)S (DE) -6. I 1.7 1.05 * 10% RAD

14 tHRESHOLD LOOP BANDWIDTH _DB-IdZ) 10.3 0.S 2 8LO = 10.8 * 10% HZ 1I

15 LOOP SNR (DR) (1_+13-14) 12.5 2.2 RSS TOLERANCES

16 REQUIRED LOOP SNR (DB) 10.0 0 RECOMMENDED 810-5

t
17 PERFORMANCE MARGIN 108) 115"16) 2.5 2.2 RSS TOLERANCES

DATA CHANNEL PERFORMANCE

18 DATA MODULATION LOSS (DR) -I .2 0.6 1.0S * 10% RAD

19 DATA B;T RAtE (DE-BItS/S) 18. I 0 64 BITS/S I

20 RECEIVER LOSS (DR) -4.8 0.S ESTIMAIED FROM NASA/ARC DATA J
(10 08 LOOP SNR)

2| J ElF/No (DB) (12_10-19_30) 4.0 1.5 ,_SS TOLERANCES ,

22 J ,'¢r_IJIRED ElF/N O (DE) 2.7 0 10"3 FRAME DELETION RATE

23 J PERFORMANCE MARGIN (DR) (21-22) j 2.1 1.5 RSS TOLERANCESI

00000002-TSD14



TO EARTH

Table\ PARAMETER

I _REQUENC Y (MHZ)

_ 2 RANGE [GIGAMETERS (AU)]

anuNN,..."I _ _ tRANsmIttERroWER(DRM)
Pattern 4 TRANSMITTER CIRCUIT LOSS (DE)

\ "_ SPACECRAFTORBIT S TRANSMITTER ANTENNA GAIN

6 POINTING LOSS (DB_ '_

Figure8.2-27.SpacecraftOccultationPositioning 7 POLARIZATION LOSS (DR)

8 SPACE LOSS (DB)

9 RECEIVER ANTENNA GAIN (DR)

Table 8. Z-ZB. Uplink Command Design Control Table 10 tOTALRECUVEDPOWER
I1 RECEIVER NOISE SPECTRAL DEN:

NO. PARAMETERS NOMINAL ADVERSE NO_'£S 12 PT/No (DB-HZ) (10-11)

I FREQUENCY (MHZ) 2115 CARRIER TICKING PER,F(

2 RANGE [OIGAMETERS (AU)_ 254.32 (I .7) 13 CARRIER MODULATION LOSS (DB.)

3 TRANSMITTER POWER (DEM) 73.0 0 20 KW 14 THRESHOLD LOOP BANDWIDTH 4

4 TRANSMITTER ANTENNA GAIN (D§) 51.8 0.9 26-METER DSS 15 LOOP SNR (DR) (12+13-14)

5 SPACE LOSS -267. I 16 REQUIRED LOOP SNR (DB)

6 RECEIVER ANTENNA GAIN (DB) 27.5 0,3 1.52 METER (S-FOOT) DISH 17 PERFORMANCE MARGIN

7 POINTING LOSS (DB) -2.3 0.2 CONSCAN (I DR) + 0.017 RAD (I DEG)
POINTING ERROR DATA CHANNEL PERFORMANCE

8 POLARIZATION L;.,SS (DR) -3.2 0.1 18 DATA MOLJULAhU¢_ LOSS {DB)

9 RECEIVER CIRCUIT LOSS (DE) -I.9 0.2 19 DATA BIT RATE (DB-BITS/S)

10 TOTAL RECEIVED POWER (D8M)(3.',4+S'_6+7+8+9) 119.2 1,0 20 RECEIVER LOSS (DB)

11 RECEIVER NOISE SPECTRAL DENSITY (DBM/HZ) -t69 1.0 TSy S = 910°K; NF = 6 DB
21 EB/R O (DR) (1'2 20)

12 PT/NO (DB-HZ) (10-11) 49.8 1.4

22 REQUIRED E_/N O [DB)

CARRIER TRACKING PE_cFORMANCE 23 PERFORMANCE MARGIN (DR)
13 CARRIER MODULATION LOSS (DR) -2.8 0,3 B = 1,09 RAD

OFFLINE DIGITAL PROCESSIN(

14 THRESHOLD LOOP BANDWIDTH (DB-HZ) 13.0 1,0 2 BLO = 20 HZ AT 6 DB SNR
24 CARRIER MODULATION LOSS (DII,)

15 LOOP SNR (DB) (12 34.0 1.8

25 DIGITAL RECORDING LOSS (DB)
I& REQUIRED LOOP SN _'.: LIMITER LOSS (DE) 0.3 LIMITER LOSS : 0,3 DB

96 PROCESSING BANDWIDTH R
17 PERFORMANCE MARGIN (DR) (15-16) 27.7 I.B RSS TOLERANCES

27 REQUIRED SNR (DE) (IN 3 HZ)

COMMAND CHANNEL PERFORMANCE PERFORMANCE MARGIN (DB)
18 DATA MODULATION LOSS (DB) -3.6 0,4 ._ = _.09 RAD

19 DATA BITRATE (DB-BITS/S) 0 I BIT/S
NOTE; 4.2 DB LESS MARGIN AT 35 DAYS

20 RECEIVER LOSS 'D8) -I.I RECEIVER, FILTER, AND LIMITER LOSS

21 EB/N O (DB) (12+18-19+20) 45. I I.S

22 REQUIRE r) E_/N O (D8) )7.3 1.0 10"S BIT ERROR RAIE

23 PERFORMANCE MARGIN 27.8 1.8 RSS TOLF.RANCc5
............

t_U _

O0000002-TSE01



IRAD_ tD[G_ 1

0.44 2_ I

O.35 20 iI --

IAMETER NOMINAL ADVERSE NOTES ANGLE la I

(AU)] 59.04 40.4) ORBIT INSERTION

" LOSS_D) -! .2 0. I 0.O9 $
r'_lA GAIN (Be) 15.5 0.S AFT HORN

-5 0. I 0.35 RAD (20 DE(3) POINTING ERROR

(De) -o.i o: ,i
-255.2 0 59.84 OIGAMETERS 40.4 AU) 10 20 30 40

_AIN (DB) 61.6 0.4 64-METER [0.1 DE LOSS AT 0,35 RAD 420 DEG) OEFOCUSING LOSS (dR)
ELEVATION]

JeR(O_)(_*,.-.S,,___,P) -_,_.6 0.0 RSStOLE_NCES Table 8.2- 30. X- Ban
TeAL DEI4SITY (DBM/HZ) -|a4.0 0.6 2_K AT 0.35 RAD (20 DE(3) ELEVATION

[0,26 RAD 415 DEG) ELEVATION ADVERSE]

I) 37.4 1.0 RSS i_LERANCES NO. PARAMETER , NOMII_'AL AI

ERFORMANCE (REAL TIME) I FREQUENCY (MHZ) 8400

N LOSS (De) -I.3 0.3 0.54 * 10% RAD 2 RANGE _GIGAMETERS (AU)." 59,84 40,4)

.4NDWIDTH (DB-HZ) 10.0 0.4 2 BLO = I0 HZ 3 TRANSMITTER POWER (DBM) 23.0

3-14) 26. i I. I RSS TOLERANCES 4 TRANSMITTER CIRCUIt LOS _ (06) -0.5

(06) 10.0 0 RECOMMENDED 810-5 5 TRANSMITTER ANIENNA GAIN (06) 20.0

_1N EBB) (IS-t6) 16. I I. I RSS TOLERANCES 6 POINTING LOSS _B) -0. I

7 POLARIZATION LOSS (DP_, -0.1
ORMANC E

8 SPACE LOSS (De) -266.4
LOSS (DB) -5.8 0.9 0.54 * 10% RAD

9 ATMOSPHERIC LC$S (DR) -0.2
TS/S) 2_. ! 0 128 BITS/S

-3.2 0.S ESTIMATED FROM NASA/ARC DATA (25 06 10 RECEIVER ANT :NNA GAIN (De) 71.6
LOOP SNR)

_+20J 7.3 1.4 RSS TOLERANCES II TOTAL RECEIVED POWER (DBM) -152.7

_) 2.0 0 10-3 FRAME DELETION RATE 12 RECEIVER NOISE SPECTRAL DENSITY (DEgvVHZ) -182.7

_lN (DB) (21-22) 4.5 1.4 RSS TOLERANCES
12 Pt/No (D6-HZ) (I I-t2) 30.0

•C)CE SSlN(3 PERFORMANCE
CARRIER TRACKING PERFORMANCE IREAL TIME)

_t-t '.OSS (DR) -1.3 0.3 0.54 RAD ± _0%

LOSS (De) -0,S 0.S ESTIMATED 14 CARRIER MODULATION LOSS (De) 0

91DTH REQUIRED (DB-HZ) 4.8 1.2 3 HZ, ESTIMATED 15 THRESHOLD LOOP BANDWIDTH (DO-HZ) 10

I1_ :3HZ) 0 1.0 ESTIMATED 16 LOOP SNR (De) (13+i4-15) 20,0
17 REQUIRED LOOP SNR (De) 10,0

%IN (DO) 35.8 1.9 THIS MARGIN ASSUMES POINTING LOSS

(ITEM 6) IS (_DB (TOTAL RECEIVED POWER = 18 PERFORMANCE MARGIN (De) (16-17) t0.0
-141,6 DBM)

AT 35 DAYS r97.24 GIGAMETERS (0,65 AU)_ OFFLINE DI(31TAL PROCESS;NG PERFORMANCE

19 PROCESSING BANDWIDTH REQUIRED (DB-HZ} 4.8

20 DIGITAL RECORDING LOSS (De) O.S

21 REQUIRED SNR (DB) 0

22 PERFORMANCE MAR(31I'J _OB, 24. ?
i

NOTE: 4.2 DB LESSMARGI/K AT 35 DAYS _97.2.; (31GAMETERS (0.65 AU]_

i ,, _:±
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Table 8.2-30. X-Band Occultation

Illll II

PARAMETER NOMINAL ADVERSE NOTES

FREQUENCY (MHZ) 8400 -

RANGE "GIGAMETERS (AU)_ 59.84 (0 4) - ORBIT INSERTION
I

TRANSMITTER POWER (DEM) 23.0 1.0 200 MW I
I

TRANSMII'TER CIRCU11TLOSS (DB) -0.5 0.2

TRANSMITTER ANTENNA GAIN (DB) 20.0 0.3 I_ORESIGHT

POINTING LOSS (DB) -0.11 - 0.017 RAD (I OEG)ATTITUDE ERROR

POLARIZATION LOSS (DB) -0. I 0. I

S_ACE LOSS (De) -2_.4 - i

ATMOSPHERIC LOSS (DE) -0.2 _. _ 0,52 I_AD [30 DEG) ELEVATION
[0.17 LAD (10 DEG) ELEVA11ON ADVERSE]

RECEIVE_ ANTENNA GAIN (Dg) 711.6 0.3 0.52 RJ,D (30 OEG) ELEVATION (30 MPH WIND)
64-ME 11ER

TOTAL RECE11VEDI_OWER (DIEM) -I$2, 7 1.2 RSS TC.LERANCES

RECEIVER NOISt: SPECTRAL DENSITY (DBM/HZ) -1182.7 2.3 39°_K, 0.52 RAD (30 DEG) ELEVATION
(66"K ADVERSE)

pT/NO (DB-HZ) (11-12) 30.0 2.6 RS$ TOLERANCES

CARRIER /RACKING PERPORMAt :CE (_:_AL TIME)

CARRIER MODULATION LOSS C011) 0 NO DATA OR RANGING

THRESHOLD LC_OP BANDWIDTH (DiI-HZ) II 4 2 BLO = 10 HZ

LOOP SNR (D8) (13+14-1_) 20.0 2.6 RSS TOLERANCES

REQUIRED LOOP SNR (DB) 10.0 - RECOMMENDED 810-5

PERFORMANCE MARGIN _DE) (16-17) 110.0 2.6 RSS TOLERANCES[MARGIN IS 4 DB WITH
0.21 PAD t',zDEG) OFFSET POINTING)

OFFUNE DIGITAL PROCESSING PERFORMANCE

PROCESSING BANDWIDTH REOU11R[D (OB-HZ) 4.8 1.2 3 HZ, ESTIMATED

OIC_IIAL RECORDING LOSS (DE) 0.S 0.5 ES[IMATEO

KE_UIRED SNR (DE) 0 11.0 ESTIMATED

PE_FORMANC_ M_,,_O11N (DE) 24.7 3.1 I RSS TOLERANCES I
I

I iI

E: 4.2 DE.LESS MARGIH AT 3_ DAYS 197.24 GIGAMETERS (0.65 AU)_

_X)bDOUTPRAIvlI,] 8.2- 64
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to John Love of TRW from Dr. Arrydas J, Kliore dated Z April i973.

Tables 8.2-30 and 8.2-31 show that for received S- and X-band carrier

levels of - 14Z. 9 and - t52.7 dBm_ _espectivety, defocusing losses of

35.8 and 54,7 dB can be tolerated. Th,se numbers correspond to re_rac-

tion angles of about 0.3 radian (t8 degrees) for the S-band link and about

0.17 radian (10 degrees) £or the X-band link. These calculations assume

a required processing bandwidth of about 3 Hz and a required carrier-to-

noise ratio in 3 Hz of 0 dB (a -178.7 dBm minimum S-band carrier level

and a -1 77.4 dBm minimum X-band carrier level). Conversation with

Dr. Fjeldbo has revealed that extraction of received signals with levels

as low as -t90 dBm or smaller i _. possible with increased processing inte-

gration time and a possible reduction of processing bandwidth. Also,

under favorable conditions ground station noise levels may be lower than

those used here, which were taken from JPL DSN Standard Practice_

8i0-5, Revision C. The increased integration times are possible under

special situations where the received signal at the maximum defocusing

angle may remain constant for several minutes, depending on the atmos-

pheric and orbit geometry.

The occultation capability quoted in the previous paragraph

[0.3i radian (18 degrees) at S-band, 0.17 radian (10 degrees)at X_band]

assumed defocusing losses only. Atmospheric attenuation (absorption)

also contributes to losses and ma 7 be several dB at S-band (up to 6 dB was

experienced with Mariner 5 as shown in Figure 8.z-zg_ _nd possibly higher

at X-band. These losses may somewhat reduce the proposed capability,

but it can probably be regained with increased data processing. Atmos-

pheric turbulence fading may also contribute to reduced received signal

strength, but this effect is random and time varying and the average fad-

ing loss should be zero, This assumption is based on the conservation-of-

energy approach to turbulence fading; for a more detailed discussionj see

Appendix 7.6A_ Probe Communications.

A question remains whether a ona.-way, two-way coherent, or two-

way noncoherent mode of operation will be recommended for the S-band

occultation experiment, Dr. Fjeldbo has indicated (in private communi-

cations) that because of atmospheric effects (defocusingp absorption,

8.Z-65
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}'to. 9. Atmospheric I_ropagatlon loss at S band versus the
FIG. 8. Comparison of the amplitude variations produced by altitude of the lowest pnmt on the radio ray: For the j',ll-d,,nvn

the ._tn,ospbere of Venus at 423.3 end 2297 MHz during ira- c,,eee, the ddocusing was removed by using the 423.3-Mli,

m_r_ion: No filtering was employed. The 423.3-Mliz q)acecratt _mplitude data. FoE- the aippld c_t, the deiocusing w-_ corn-

receiver went out of lock 0.3 mia bdo[e eocoun-"fi{_, putad from the Dopple_ data. iI
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altitudeof the lowestpointonthe radio ray.

Figure8.220. MarinerV OccultationData'
I

'DatafromtheAstronomicalo._, 16.No.2. March1971,N0.138_', I
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I
ttlrl_t_lnnce fading, ctc I a two-way cohereut link rn,*y not be desiraL, lc;

occ_tsional loss-of-lock occurrences in tim spacecraft receiver might pos-

sibly cause the spacecraft downlink to a.ltern&ta between the coherent

uplink aud the &uxilia;'y oscillator. If a two-way link is not recommended,

a one-way link would want a stable oscillator; however, spacecraft ground

operations may want. a command uptink to tile spacecraft during the occul- 1
ration th-ne period, hence the two=way noncoherent mode, But our recom- ',

mented approach for occultation, prepositioning the spacecraft prior to :i

entry with no spacecraft precession or antenna gimballing requiredj may

reduce the desire for an uplink command capability at that time.

The choice of which mode of operation to implement may have a

direct cost impact on the procurement of a spacecraft transponder. The

only existing X-band transmitter has been an MVM i973 unit built by i

Motorola to be compatible with the Motorola S-band receiver and trans-

mitter driver. The X-band transmitter requires a ZF frequency drive

signal (uplink is _-ZtF), either in the coherent mode from the receiver or

in the noncoherent mode from the S-band driver auxiliary oscillator. The

preferred and possibly least expensive S-band transponder for the orbiter

is the Viking Lander unit with an alternate being a TRW or Motorola

design. Both the Viking unit and TRW development are presently noncom-

patible with the Motorola X-band transmitter, which represents a potential

cost impact to accommodate X-band, For an approximate cost estimate,

see Section ll.

A question also exists on the desirability of turning off the data

modulation for the occultation experiment_ leaving all the transmitter

power for the carrier. Our preferred orbiter configuration has a dual

modulation index capability for data reasons. An extra advantage of this I

dual modulation index capability is that the low radian index can be used

for occultationj leaving all but i.3 dB of the total transmitted power in

the carrier. This level is 4.8 dB higher than the carrier power in the

normal communications modew providing about 0, 07 radian (4 degrees)

more de£ocusing capability0 and this mode is recommended for the occul-

tation experiment.

8.2. -57
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Tile defocu._ing capabilities of the S- and X-band link_ are m_t lhe

san_e and the respective hoe's beai_lwidth_ a_'e not idcixtic.tl (ba._cd _n low

cost off-the-shelf antennas). There£oa'e, which angle to choose i,n" })re-

po-_itioning the spacecraft prior to occultation is cot obvious. The opt|-

rams angle for X-band above would be 0.17 red|an (10 degrees); .d this

_ogle the pointing Loss due to the antemta pattern would be abe|It 5 dlS, but

the EIRP would still be stLf£icient to sic|stain zeal tianc tracking prior to

occultation, For S-band th_ optimunl angle would bc 0.31 red|an

{18 degrees), corresponding to about 5 dB pointing loss and real tiJlle

traci"ing at IZ8 bits/s, A compromise offset angle recommended here for

the chocen antennas is about 0. Z1 radian (IZ degrees). At this offset

angle, the X-band defocusing angle of 0.17 red|an (10 degrees} is achieved

within a few tenths o£ a dB o£ beam peak and the S-band 00 31-red|an

(18-degree) deft, cusing coverage is accomplished by "riding" up one side

of the antenna bean: 0. Zt radian (l_- degrees) to beam peak and 0.10 radian

(6 degrees) over the o_her side, only O. 5 dB down. A slightly larger off-

set angle would be recon,.nmnded ifdigital processing sensitivity were

increased beyond rite-178 dBm carrier level, as mentioned previously,

The reconunended appro-ch discussed here is to have occ_dtation

capability 3uring entrance (imme1"sion) only and none during exit (emersion)

tc minhnize spacecraft operations. A/so, no occultation capabi.lityis

planned with th_ high gain dish, after the:second flipmaneuver, since the

narrow beamwidth and the conscan mode w:,uld require spacecraft preces-

sion to follow the defocused ray.

A_..ntenna_...._._.The preferred orbiter spacecrai_ antenna subsystem con-

sists of four separace antennas which are used for conscan and TT&G dur-

ing the transit, orbit insertion, and Venus orbit phases of the mission,

As shown in Figure 8°_--30, the primary downlink antemtas are the forward

dish antenna and _ft horn° An offset feed in the dish provides a ! dB beam

crossover reference for conscaa, while an off axis aft omnidirectional

antenna provides aft pattern cover._ge for launch and doppler attitude ref-

erence between II0 and 235 clays of the nliasion, A l'orward ohm|direc-

tional antenna provides TT._.C coverage during orbit insertion, Use of

existing flight qualified designs was the major factor in the selection of [

O0000002-TSE07



A ANTENNA tOCATIONS B ORBITER SPACECRAFT ANTENNAS

Ht(_ft OAli_l AN[[NNA 3C _--_

u 0 PAD IO DLG ,Ir4CPEASED DtAMFTEP DSCSDISH, pARdi
F/D S

[ EOI_WARD OMNI ANT EINNA PIOI_II
O'_fil'[[R SPACEC.r_AFI & I'ORWARD OMNI ISAME AS THE PROI_L8US SFACLCRAFTAFT OMNI Ai'41[NNA, CONI

MEDIUM GAIN HORN 2,1 r.I
¢SAM;_AS THE PROBEBUS SPACECRAFTMEDIUM GAIN HORN,

/ fT OMNI ANTENNA 75 =- DZ •
ISAME AS THE PROBEBUS SPACECRAFTFORWARD OMNI ANTENNA, DX .|

_ . MEmum GAIN

AFT OmNI _ j
I

: 3. t4 RAD (180 DEGI
I0-

C 0MNI COVERAGE

,____Z
15

NOTE:

• S?HERICALCOVERAGE FOR TELEMETRYAF.,J COMMAND IS P_OVIDED DSC_;HIGH GAIN ANTENNA k_

• T_E SAME ANTENNAS AREUSED ON BOTH SPACECRAFT 0.262

• BOTH ANTENNAS HAVE BEEN FLOWN ON OTHER SPACECRAFT

• AFT COVERAGE OF THE ORBITERSPACECRAFTOMNI WILL BESUPPLEMENTED
BY THE MEDIUM GAIN HORN AND THE FORWARD COVERAGE BY THE HIGH MEDIUM GAIN HORN

GAIN ANTENNA (PIONEER 10AND DB PATTERN (FREESPACE'= CHARACI"EII[J
I 1 MEDIUM GAIN HORN) f = 2.3 GHZ

• PREVIOUS EXPERIENCEON OTHER SIMILAR DESIGN SHOWS THAT SO ,_E POLARIZATION: RHCP
PATTERNENHANCEMENT tS POSSIBLEON THE ORBITERFORWARD O/vNI ,,' PLANE: 0 = VAR., FREQUENC'_
AS SHOWN BY THE DOTTED LINE [ e= 1.57 PAD (90 DEG'_ POLARIZAT:

• , PEAKGAI_
i, HALF POWI

'_ = 0 RAD (0 DEG) 0 = 0 PAD (0 DEG! VSWR:
AXIAL PATI

ORBITERSPACECRAFT T"_ _------t-----_ WEIGHT:

DESCRIPTI_I

eFLOVI

FORWARDOMNI -._ /P _ eCROClJ

HIGH GAIN DISH FEEDHORN

'LAET O ' . t J (PIONEER,_,,_j=_._L_I0AND _'%11FEEDHORNI '_--CE CHARAC|E_

POLARIZ_
PEAK GAll

_ ' - . ._:% HALF P(_

"' ' -'_; VSWR: ,

" " _J DESCPIPTIOJ

• C0 NIOIJ
CROSSEI

3 14RAD 80DEG 31 4RAD ISODEG
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1

"101 _ PRLDLCTEDDBpAtTERND_A_ETER " I 52 MEEERSI_,OlI
F/D =0.4 _ 2.3 GHZ
PIONEER10AND I I, FEEDHORN
CONSCAN CROSSOVER I DBAT 2.1 GHZ
2,1 GHZ DEFOCUSSING: CHARACTERiSIIC_

2S OZ - -0.45 h (2.._, AT 2. I GHZ FI_EQUENCY: 2. I GHZ 2,3 GHI
POL_RITATI_N RHCP RHCP

DX 0.16 ;'. (0.9, AI 2, I GHZ
PEAKGAIN: 27,5 DEI 2B,O DRI

HALF POWERBW: 0.113 RAD 0,105 RAD
(6.4 DEGI (5.8 DEGi

VSWR: • I.S;I • 1.5:1

20 AXIAL RATIO i,3°; • I .S DB r 1.50B

,..-.'DEFOCUSSEDFEED WEIGHT: c6.0 KG

DESCRIPTION:

,= • 1.S2 M PARABOLICHONEYCOMB
_ SANDWICH DISH SIMILAR TO DSCS
Z IS • PIONEERIOAND II HIGH GAIN FEED

,_ ON TRIPOD SUPPORT
• FEEDDEFOCUSEDAND OFFSET

LATERALLYFOR CONSCAN

/ • CONSCAN CROSSOVER AT I DB
IS APPROXIMATELY0.035 RAD

10 (2.0 DEG,

FOC

S
15 10 5 0 5 t0 15 DEG

ANGLE

L I I I I I I
0.262 O. 175 0.087 0 0,087 0.175 0.262 PAD

FORWARD-OMNI ANTENNA

CHARACTERISTICS: (PROJECT DSP CONICAL LOG SPIRAL)
VOLTAGE PATTERN(FREESPACE1 CHARACTERISTICS:

f = 2.3 GHZ
FREQUENCY: 2.I GHZ 2.3 GHZ POLARIZATION: RHCP FREQUENCY= 2.1 GHZ 2.3 GHZ
POLARIZATION: RHCP RHCP PLANE: e =VAR., POLARIZATION: RHCP RHCP
PEAKGAIN: • 15.0 DRI >15.5 DBI [ ¢ = 1.57 PAD (90 DEGI PEAK GAIN: >2 DBI _ 2 Dill

i _ __ VSWR: <2:I < 2:1

HALFPOWERIlW: >32 DEG >28 DEG _=0RAD 0DEG) AXIAL RATIO (".90°) ,4DR <4DR
VSWR: < 1.5:1 < 13:1 ._ _8AXIAL RATIO _'H0°, < I.S DB <4.S DiE i i:t1,57 RAD (90 _.tEGtl

WEIGHT: < 1.7 KG _ _ WEIGHT: <0.41 KG

DESCRIPTION: k DESCRIPTION:
• FLOWN ON PIONEERS 1OAND I1

eCORRUGATEDCONICAL HORN } : : _ . •FLOWN ON DSPSPACECRAFT
•CROSS DIPOLE - _' " " _" •I_/0 ARM PRINTED CIRCUIT CONICALFEED

SpIRAl. FEDWITH INFINITE

• EPOXY FIBERGLASSR/,DOME FOAMF=LLED

'" "r'_L_;,,,_--_ _" 0=3,14 RAD (IB0 BEG)

APT OMNI ANTENNA

CHARACTERISTICS: (PIONEER |0 AND I I PROGRAM 169
CONICAL LOG SPIRAL) VOLTAGE PATTERN(FREE¢JPACE) CHARACTERISTICS:

FREQUENCY: 2.1GHz 2.3 GHz f - 2.3 GHZPOLARIZATION: RHCP FREQUENCY: 2.1 GHZ 2.3 GHZ
POLARIZATION: RHCP RFICP pLANE.*_ = VAR., POLARI?_ATION: RHCP RHCP
PEAKGAIN: 7 DBI 7,S DBI PEAK GAIN: '*4 DBI "_4 DBI
HALF POWERBW= 1.397 RAD 1.325 RAD O = 1.57 RAD(90 DEG) VSWR: • 1.5:I < 1.5:I

(79 DEGi (76 DEG) I_=0 RAO(O DEG) AXIAL RATIO • 4.5 DB ,=4.5, DB
VSWR; <2.0;I <t,5:1 IJ1.57 RAD I90 DEG]]

AXIAL RATIO <3.5 DB <4 D._ , , _.¢'"_'.._--._,J----I---_-_.l WEIGHT: <0.14 KO
"_ E_.e_' _AD t_ DEG!] _ I--4-

WEIGH T: _0.5 KG
DESCRIPTION:

DESCRIPTION: • FLOWN ON PIONEER 10 AND I1

8 AND PROJECTI69 SPACECRAFT
• CONICAL HORN EXCIFED BY A • TWO ARM PRINTFDCIRCUIT CONICAL

CROSSEDDIPOLE LOG SPIRALFEb WITH ROfERT'S

BALUN 12 'Jo _ 0.35 RAD (20 DEG)I

_I= 3.14 RAD 1180 DEGI • EPOXY FIIIERGEASSRADOMEt FOAM
FILLED

,i

Figure8.2-30. BaselineOrbiterSpacecraftAntennas

"'- _............ 7/............. , t! , _'__'_.......................... :_...... .....
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the baseline antenna subsystem configuration. All subsystem component

designs have been flown on Pioneers 10 and 11, DSP, or DSGS spacecraft

and represent ligt]tweight, multiple use, lowest cost, and lowest design

risk approaches compatible with the communications subsystem require-

ments. The high-gain dish feed, the aft omni antenna, the aft horn, the

diplexers, and RF switches are all Pioneers l0 and 11 designs which are

usable without modifications. The forward omni antenna is a DSP design

which is usable without modifications and the dish is a larger diameter

DSCS dish.

Transponder. As mentioned earlier, of the three companies devel-

oping lightweight S-band transpondersp only Philco-Ford has units quali-

fied for space use. Their Viking Lander unit is presently in the qualifica-

tion cycle. Where weight is very important, such as with the Thor/Delta

bus, probes, and orbiter described in following sections, the choice of a

lightweight design is clear. For the Atlas/Centaur orbiter, where weight

is not so critical, the choice is not so obvious, particularly since the

Pioneers I0 and li has been selected for the probe bus. A lightweight

transponder was selected because: I) enough Pioneers iO and il residuals

are not available to supply both the bus and orbiter, and Z) the costs o£

new Pioneers I0 and II transponders are comparable to buying new light-

weight designs.

A preliminary conclusion o£ the study is tu use the Viking Lander

transponder, based on its present development status. Since the contract

awards for hardware development are at least a year away, this decision

is subject to continuing review. To ensure the best available hardware,

the procurement specifications have been written to allow units from any

of the potential bidders, This preliminary specification was reviewed

with both Motorola and Phi/co-Ford and it is TRW's understanding that

both companies should be able to meet the requirements with existing or

planned designs.

A summary of the requirements and characteristics of the light-

weight transponders, i.e. receivers and transmitter driver, is given in

the following sections.

8.2-70
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t) Lightweig_ht S-band Receiver. A short summary of the perfor-

martce requiremelxt_ for the orbiter receiver ia given in Table 8.2-3t.

Designs from both Philco-Ford and TRW are covered in the next two

_¢ctio_s,,

Table 8.2-31. _-Bancl Rt.ceiver Performance Requirements

-- im

RECEIVING FREOOEI_C ¢ RANGE (FACTORY PRESET): 2110-2120 MHZ

NOISE FIGURE (MAXIMUM): 6.5 DB

INPUT VSWR (MAXIMUM): 1.3:t

ACQUISITION THRESHOL__ (LOOP SNR 6.0 DB) -14fl DBM

LOOP NOISE BANDWIDT'., AT THRESHOLD 20 HZ

LOOP NOISE BANDWIDI"I - STRONG SIGNAL: TBD

FREQUENCY OFFSET TRACKING CAPABILIIY: *126 KHZ

STATIC PHASE ERROR,

,126 KHZ OFF3ET A_" -120 DBM 0. I RAD

"-63 KHZ OFFSET AT -148 DBM 0.2 RAD

DYNAMIC PHASE ERROR:

e_.0d HZ/S OVER .126 KHZ AT -120 Ol_t O. 7 RAD

=50 HZ/S OVER ,63 KHZ AT -1411DIL_ 0.7 RAD

:20 HZ/S OVER *63 HZ AT -148 DBM 0.6 RAD

DYNAMIC RANGE: 100 DE

IMAGE REJECTION: 55 DB

VCXO FREQUENCY STABILITY ALL CONDITIONS: (t 5 PART$/106)/S HR

PHASE STABILITY (COHERENT OUTPUT - S-BAND): 0.05 RAD (2.8 D_O RMS), O. 14 RAD (11.4 DEG) PEAK

COMMAND Dir.MODULATtON: "0" FOR 12B HZ, "I" FOR 204 HZ

COHERENT DRIVE TO TRANSMITTER: REQUIRED

COHERENT MODE INHIBIT: REQUIRED

DISABLE COHERENT DRIVE : <-60 DBM

FSK SUBCARRIEROUTPUt': |0 _ 2 V PEAK TO PEAK

AGC CONSCAN OUTPUT:

AC OUTPUT 100 MV , I DB

S/N (-135 DiM 2 % AM) -4 DB • HZ

SOURCE IMPEDANCE IOK9

LOAD IMPEDANCE 165 Kfl

AUTOMATIC GAIN CONTROL CLOSED LOOP 2 HZ _ 50%
BANDWIDTH 3 DB

TELEMETRY : tiID

DESIGN AND CONSTRUCTION:

SIZE TBD

WEIGHT 1.6 KG _3.5 LB)

ENVIRONMENTAL:

TEMPERATURE 5.6 TO 60°C

VIBRATION TED

SHOCK TBD

INPUT VOLTAGE: ZB VOC t. 2%

INPUT POWER: _3 WATTS

8.Z-71
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a) Philco-l?ord R,,ceivers. Phiico-Ford h,_ developed a. product

lille o] lllicro-nlJllJaturc S-band hardware for both "near" and "dr_.p"

_p.'_cc applicatiolIs. A (h_'p space receiver being dt, vt, loped for tht' Vikhxg

Lander mission is presently being qualified. This nnit ,tl)pcara to t_lt,t_t

tile Pioneer Vunu_ mis'zion requixemeilts. The block diagr,un given in

Figure 8.2-3I ie 8inailar ¢o the Viking de:_ign.

t_MPIffiIR

+, i ......
l CCP"'I_II+t/ - (b I_ • .... I,_lq_llD

I /514+4111II II _ ia_.tp I II i

_' _ " %J-,:.v_T_8.,;,i, c_.,,,0,,+,4k--.ll. Pm ,+_-i: OHI ,+t I_ !

D111ClO_ } _,*l 'tff C_ "lN,ff_l

|
...... %. I+ "r....... t r;;',+"t +'" ""'"-""''' _+'

" _MPI II II R

t I NIl

AMPt 11+II:8

_.GC ...... •

47._q MF,_ I g 6MN¢, L L)I;IECIO' i_ . tt OP _19E,$

110., I' '" I 0"_' 1" -7 "PC I LOOP

,_._,,,. _ _ _ _ _ I I_ _I P,_ mt_cto" I _.tt_.

+m...... ,,t / ...... tm._+'+ -- L-+---I'---'I J
' )L}I_, PJ(_, I _1+ mt_. I±o o , ,l

'+ ,
............ _ ........... _ vtxk' +-1'- tC_

_ _ 38.2.', t,,.'+Ht 2 +_- " " _ COHI_tNIT o

-2- t XCIIAIION It:)
'I_ II_ANS,MII III_

figure 8.7+31. lypi_l Fhilco Receiver nltl"tl+ 4 &ND B

The block diagraan shows a double conversion, phase-lock loop

design very sLmilar to that originally developed fox" Defense Suppo_'t

Program (DSP) applications. It differs from the near space unified S-band

system (USBS) desi_;ns in that a narrow 18 Hz loop nox_+e bandwidth is util-

ized to reduce the _cqujsition threshold to about -t50 dBw. To allow

cross-strapping £or rcclunrlancy_ the receiver has two output_ to the com-

_n_tnd baseband circuitry and to the coherent transmitters. The present

design is physically packaged with its companion transmitter and two

I

I
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_ -,vc,v !
i

.;+ , DC/DC converter_, The receiver portion of the pacl_ge (including con-

verter) i_ n_ade up of nine modules mounted on an interconnection chassis,

b) TRW Lightweight Rqe,,,-iver. In Figure 8.fi-32, a block diagran_

i*a given _or the DSN compatible receiver being developed at TRW. It is

very shnilar in size, weight, and construction details to that being devel-

oped by Philco-Ford. Alt&ough this particular design is being developed

during 1973_ existing programs for similar type hardware have developed

a solid technology and manufacturing base. The only noticeable dLfierence

in block diagrams given is that the TRW design utilizes an offset oscillator

operathtg at Ir, the second IF frequency, This technique allows the second

IF to be set at some frequency othL- than one subharmonicaUy related to

the first IF. this allows greater freedom in ._.g.t"_g to reduce spurious

responses and climinates certain false lock problems. This design tech-

nique has been used on both DSP and USBS designs. TRW will compare

its in-house design from both technical and cost standpoints to the Philco-

Ford and the Motorola units, __ .ANO,NO,,+,mu,mo.

_ ""-1 . t,_VA
LCH _ q'lUlptll NO. |

NON+COHII_|NI

/ r_ AMPt

t_0';._ ' ' -- ,,,,
I swtt

F,7 t2rl

E,l .1
I'_"_" i l_o,,_o, I ,--, ," ,, _':'__

Pt_wt_

I ('ONOIIIt+N|M ICONtmOtttOl- ++Ix+ t-4_ _ x_i_ ............... -1 -- -- -l• I"++'"_'"'l "3-' "" -- I
_ - .,,.,,,,_,,,,
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I
_) L_ightweight S-ban(l Transmitt,,r DrivL, r._. 'l'h_, rcquJrrmcnl,_ l',)r

lht_ tr,_namitter driver and powcr amplKicr,_ can I)c _,ltist'it-d I)y mt)dific,_-

tions Io _'xiuting designs from a nmnbt, r of COml)imies. Any collop, my with

.ul SCiI_,5 th, sign cttn ca,_ily modj.fy tht: multil)lication ralio t,) th,_t .rt'tlni r,,d

b} the DSN. It h_t._ been l'l{Wta _,,_l)(,ricnco) however, IJldt the I)ot_udittl

aavings _lY6111 separate bidn on the receiver and Ir.ms)uitter_ is _t)l-_, than

offsetby contr,_cittal and intezZ,tct, problems, it is, tllt, leL)ru) TRW(s

intent to procure the transmitter driver £rom the _amt' ¢omp:tn$ thai pro-

rides the trttn$ponder receiver. This limits the iield) as previously dis-

cussed) to Philco Ford_ Motorola) and TRW. Blockdi,tgrmn_ lot ,t

Philco-Ford and TRW ligh!:weight transmitter driver t_re shown in }'igurc

8.2-33, Pertinent characteristics £or each oithe_e traits arc given in

Table 8.2-32

pl]II_'t _ H ,It[) I_AN_&qlTIII_

CCHt_tNI _ Mk?l)[ _ PNAS[ ,'4t))
",(','PfCt_NIRt_I ."* h_

, ,, ]

_N_L(T

)0) R • X1 t *(h_SI ,' ,, %%,

INHI[I)r

J INPtt| I_'N_'MII I LR¢q_"NI- Ci III ll'_ _I _ --

I It.l*)rt,;',. ? I}. l'rdll_inill_r Ori_et_,

The baseline transmitter driv'er for the Atlas/Cento.ur orbiter is the

Viking Lanth:r. In its prescnt state it is p,_¢kagcd together wit_it tht,

receiver in four tnodttlcs (inchtding a DC/DC com, ertcr) mottnted on _t

8, 3- 7.1



A/C IV

Tablt. 8. ,-3_. Transmitter Driver Characteristie:s

TRAN,_MII IER DRIVERS

VIKING LANDER TRW LIGHTWI:IGHT

,_RI:_CIENCY Of: OI_RATIOIq

INPUT '_8.3 MHZ. {4 f) 95.5 MHZ (1O |)

OUTPUT 2290 10 2300 MHZ 2290 TO 230U MHZ

DRIVE LEVEL REQUIRED 5 DE,T". _ I D_, 0 DBM ± I DB

INPUT IMPEDANCE 50 O 50 El

INPUT VSWR I. 3: I I. 3: I

MODULATION

TYPE LINEAR PHASE LINEAR PHASE

SENSITIVITY *0.5 RAD/VOLT * 1.0 RAD/VOLT

STAe,ILITY :_0. I RAD sO. t RAD

OUTPUT POWER (MINIMUM) 125 MW 125 MW

SPURIOUS LEVELS 50 DB 40 DB

FREQUENCY STABBILITY, AUXILIARY
OSCILLATOR

SHORT TERM (0,25 S) 3 x 10°10 3 x 10"11
(MUST MODIFY)

LONG TERM - 4 x 106 10 HR
(-I TO 22°C)

INPUT VOLTAGE .t2B VDC ± 25% +28 VDC i 15%

INPUT POWER 3 WATTS 3 wATTS

ENVIRONMENTAL

TEMPERATURE -I! TO 60°C -9 TO 64°C

VIBRATION (SINE/RANDOM) 10//7.5 -/20

SHOCK 1200 G/3.2 KHZ

"rnother" chassis common to the receiver. A review o2 the block diagram

for a typical l_nilco transmitter shows it to be ver), similar to the TRW

design. Both provide S-band power amplification to provide maximum effi-

ciency. They di_/er primarily in the input frequency and the overall multi-

plication ratio. Both provide a receiver controlled noncoherent auxiliary

os cillator.

3) Transponder Modifications, X-band Occultation Experiment. A

requirement for an X-band occultation experiment has been reviewed dur-

ing ',.!_estudy, The Version IV science payload includes a requirement £or

the X-band link using, for example, an existing (GEE) MVNL 1973 X-band

transmitter manufactured by ix_.oto.-_R° On reviewing the MVM t973

desigr, it was established that the required coherent drive signal from the

S-b_,_d receiver must be at Z/ZZi (if) times the receJ.ved S-band signal.

This is compatible with the Mariner transponder, but not compatible with

8.?.-75

!
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IFl- c,v
the coheretlt dl'ive available from the Viking Lam|vr_ TRW Lig|ltweight, I

or Pitmoev_ 10 aml Ii tran_pondrrs.

Iti each of the_e desJga_ tl',e basic VGXO trequem'y ill the .vvc_qvor

js the required 2_, It woutd appe,tr that tliil_f ,i iiliiiol illlidific,ition is

required to the rtace.ivera to provide--- this g£ output thro'lgh ,i lltffft_r .untfli-

tier, These lttodificationn world .tllow two-way cohert lit S- and .K-I),,nd

operation,

If it is required to provide one-way operation of S- and X-bal_d

(both coherent to the au._dliary oscillator in the S-band tr,ilxspondt, Y)l thell

modifications to the caixdidate transponder design_ tire mort.' extensive.

Oitly the Motorola designs will work with file MVM 1973 without ally chalige.

The Viking l,tnder coherent drive and tl'an_mitter driver au.x.iliary

oscillator work at 4f, or twice that required by the MVM 1973 X-band

tr:mslnitter. The 'FR_" lightweight dcsigix coherent drive is at 10f ;tlxd the

F_ioneers l0 ,tnd i l design provides ldf,

No proponal_ have been received for the. transpoildt, rs and no dett_.r -

ruination has yet been made of the cost that must be added to the S-band

trannponder to accommodate the X-band experiment,

2X preliJninary estimate of at least $25, 000 to accommodate only the

coherent two-way operation wottld appear reasonable, Tt_ provide both

one-way and two-way X-band compatibility wotfld probably cost at least

$50m 000 additional. The_e costs _hould be recognized as coats to accom-

modate the science requirements; they are not a basic orbiter cost,

Power Aanplifier

The power aaa_plifier specLficd in the preferred Atlas/Centaur orbi-

ter is identical to flint described for the Atlas/Centaur bus, i,e,, a b-watt

solid-state amplifier. A description of the unit was provided in the bu_

_cction,

Coilt]c0,1.x.. Signal Processor

The sel_cted digital con_can signal processor is the flight-proven

tttttuodi¢ied Pioneers 10 alid I1 unit (see 1;'igttre 8.g-3,t). It sleets all

Piolieer Velltt'd lntxctiolia[ requirenivntal iS light IO.'i kilogrtull$ (0.8 pound)l.

8,Z-7h
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Fiqure ,_.3M. Digilal ('oIl._farl Signal PI'O('PS_,OF

low power (l.l watts), and highly reliable. The pl'OCe88Ol" e:ltinK.te_ tile

phase and the amplitttdc tff the 0.08 Hz (4.8 rpm) conscan signal embedded

in noise and inter£erence produced by wobble, aatenna pattern distortion,

and other _ources. Tlxe coimcan signal phase determines the precession

thrustea" firing while the amplitude, which is proportional to eaz'th aspect

angle, terminates conscan when the selected threshold (deadzone) is

reached. The digital implementation closely approximates an optJanmn

naaxiantma likelihood phase and ,unplitude estimator. The procc_or

requires an accurate frequency (_pin rate) reference which is supplied by

the stm _ensor. (See Section 8.5_ Attitude Determi_mtion and Control_ £or

the cons can fun ctional tit, s c ription. )

_td)_y_,tcm Weight and _o\ve.t"5tmunary

The prcfer_'ed At.l,t_/Gcntaur orbiter conmmnic,ttion _tth_yst:c_

weight ,_tld powt'r is atunntarized in Table B..'-33.

,_. 2-77
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_M¢IV 'lablc 8.2-33. CommLmicatb_ns Subsystem
Weight and Power Summary ]

i WEIGHt I DC POWER

ItEM QUANI'ITY _ KG {LB)', I (WATTS)

RECEIVER , 2 '_.4 (,_.2) 7.0

CON_AN PROCESSOR i I 0.4 (0.8) _ 1.2

1RANSMITTER DRIVER 2 I.I ( 2.4} 3.5

iPOWER AMPLh IER ! 2 0._, ( 1.21 22.0

HYa_JD ! ' I O. 0._( O, J)

O,PLE_ERS I 2 I 1.9(43)
!

SWITCHES J 6 1.6 (3.6)

AFT OMNI [ I 0.1 (0.3)
I

FORWARD OMNI I 0.4 (0.9)

ANTENNA (S-FOOt DISH) I 3.3 (7.3)

AFT HORN I 1.5 (3.3)

RF COAX AND CONNECTOR A/R 1,4 (3.0)

TOTAL 14.7 (32.4) J 33,7 t

NOTE_ THESE WEIGHTS WERE CHANGED SLIG_-iLY SUBSEQUENI TO PREPARATION OF
MASS PROPERTIES TAELES IN SECTION 6 OF THIS REPORT,

,__,1w8. Z. 5 Rec_.__ommended Communications Subsystem T/D III _ T/D III

8.2.5. t Probe Bus (I977 Probe Misslon Launch) _ T/DIll J
I

The recommen,_ed T,robe bus configuration is earth pointing for both i

the Thor/Delta and Atlas/Centaur versions for the 1977 launch and Version

III science payload. For most of the cruise period and during entry the i

aft end of the spacecraft is pointed at earth, i.e., the spacecraft spin axis !
J

is pointed towards earth within an angle constrained by the beamwidth of 1
4

the aft-pointing directional antenna. For launch, midcourse maneuvers,

and probe release sequencesp communication coverage is provided by a

pair of omnidirectional antennasp one forward and one aft. The antennas

are interconnected through switches and diplexers te redundant receivers,

transmitter drivers_ and power amplifiers. The block diagram is shown

in Figure 8, 2-35 along with a weight and power summary.

The Thor/Delta payload weight limitation constraints the communi-

cation subsystem to a low weight design, a 1. 8-kilogram (I-pounds) Viking

transponder and a 0. 45 kilogram (l-po_d) solid-state power amplifier.

The power anaplifier will have a dual output power level capability (3 and

6 watts) to reduce the solar array sizing requirement. The output level

will be controlled by the I)C supply voltage, 28 volts for 6 watts and [

O0000002-TSF04



TID III

1 L

z
Fic]ure8.Z-35.ThorDeltaCommunicationsSubsystem

2l volts for 3 watts. The Atlas/Centaur payload capability allows the use

of residual Fioneers 10 and i t transponders, 3. l-kilograms (6. 8 pounds),

and 8-watt TWTA's, 1. 8-kilograms (4 pounds), without making any new

units, resulting in considerable cost savings. The preferred directional

antennas is a 0. 35 meter (2-foot) diameter parabolic dish, flown on the

Defense Support Program (DSP) with greater than 20 dBi gain and one

sided half-power beamwidth of 0. tl3 radians (6. 75 degrees). The 1977

launch allows bus entry with +he ram and ea_'th directions colinear and

therefore permits use of such a narrowbeam antenna. The forward ornni

is a Pioneers 10 and It unit and the aft omni is a DSP unit. The diplexers

and switches are also Pioneers 10 and 11 qualified units. The Viking

Lander transponder is presently going through qualification but the solid-

state power amplifiers, as required for this program, would have to be

qualified for space use.

All three antennas are located off-axis because of the centered loca-

tion of the large probe on the forward end and the laur.ch vehicle adapter

on the aft end. The off-axis antenna locations are advantageous for

attit_lde control, however, as they provide spacecraft pointing information

through doppler spin modulation.

8. ?--79
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T/D III

During launch and through the first midcourse maneuver as a mini-

mum, the two omni antennas will be separately connected to the t_vo re-

ceivers and two transmitters through switches S! and $2, respc'ctlve]y.

The aft dish will be disconnected during this phase and wi]] not b_, re-

quired until 55 days into the mission. By this tim(_ switches $3 or $4

will be activated to connect the dish to a receiver and transmitter as fl_e

forward omni is disconnected, nominally not to be required for the re-

mainder of the mission. Switch $4 i_ included to prevent a single point

bus-entry mission failure if switch $3 failed in the forward omni pos':tion.

The communications bit rate capability with the 26-meter he.york

during cruise varies from t6 to ! 024 bits]s as antennas, power levels, and

range vary during the .':,._izsion. Probe release and bus entry are handled

by the 64-meter _.etv.'ork at t6 and _024 blts/s respectively.

DSN Configuration During Probe and Bus Entry

It is desirable, from the standpoint of the number of available re-

ceivers at the two 64-meter tracking stations at entry, to have the bus

tracked in a t_vo-way mode by the 2B-meter stations. Two constraints

prohibit the 26-meter stations from tracking the bus all the way through

bus entry: two-way doppler rate and the entry high data rate require-

ment (512 bits/see. The buildup of two-way doppler rate from 2 hours

before bus entry (~0 Hz/s) to entry (_60Hz/s) limits the Block III re-

ceiver tracking capability to about ! ]Z to ! hour before entry (| 0-25 Hz/s);

see 5PL Technical Report 32-|526, *J-el. XIII, page 23 and also Vol. X,

page !68. Also, the Z6-meter station can support no more than ! 28 bits/s

at bus entry for the preferred bus EIRP. For both these reasons the bus

entry should be delayed from t_e last probe "touchdown" at the surface

a minimum of t P- to ] hour. This allows one receiver per probe per

64-meter station during simultaneous probe entry and two receivers per

probe per station if a sequentia 1 probe entry sequence (two at a time} t

were used. Predetection recording would be accomplished at each 64-

meter _tation with a fifth receiver operated in an open*loop mode. After

the last probe impacts the surface, the 64-meter station with Block IV

receivers would be available to track the last |/2 to ] hour bus entry with

a programmable doppler rate capability and also to give a !024 blts/s entry

telemetry capability0

E. 2-PO i
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{%._r fol'nlaTtee i )ata

The nfissi(m data rate profile for the pref(,rred Thor/D_.lta confi_.-

uratior "s shown in t"igure 14,2-36. Ttdemetry power budgets for proho

relt, a_t, and bus entry are shown in Table S. _ '..-z.t, and an upllnl_ power

budget using a 26-meter station in a two-way tracking mode only ,.'s

shown in Table 8. 2-35. The uplink margin is greater than 30 dl:_, suffi-

cient for a good two-way tracking data, The resulting receiver SNR of

about 40 dt3 is sufficient for the bus to track uplink doppler rates up to

30 Hz/s with the receiver phase error remainin_l within ±0,052 radian

(4"3 degrees)°

m
2048 AFt,'

FONARD
12_ M_ L3MNI 64 M',

1024

128

l_Ogl.

16 {M MI

3 WATTS .6 ...... _ - a,- _ WAIIS ENTRY
i i,

i, I i , L I ___L___.
0,02 0.04 0.06 0,1 0._ 0.3 0.4 iAtl_

I............... -I.____L .......... L I l J
2.99 5.9R 8.98 14.96 29.9? 44.88 59.84 (GIG_M[-T_R_

l [ J .i--.----J
.I0 60 90 120 133

DAYS

Figure8.?-30. BusTelemetryRateHistory

The data rate profile shows two transmitter power output levels,

3 and 6 watts° The 6-watt power level is required for receiver carri,zr

tracking with the 64-meter station during probe release while the bus is

transmitting through an omni antenna of -Z dBi minimum gaily. This

mission design point also establishes the modulation index requirement

at 0.66 radians. At probe release the link is sized at t6 bits/s, allowing

for an 8 bits/s backup mode in case of any" unforeseen performance de-

gradations. The alternate 3-watt level is used to minimize the sizir, g of

the solar array st 149,6-gigameters (1 AU} where the earth-spacecraft

8.Z-81
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[_T/D III

Table 8.2-35. Bus Entry Uplink Control T,d,le

NUMBER] PARAMETER , raOMIt_AL /] AD' E_:SE T ll,5qf!,

1 FRE(QUEFICY ,MttZ 21 I 5 0

2 RArlGE rGIGAMEILR _ALJJ7 ,d.,tgi 0

3 TFAFISMITTER PO',','EE tDBMI 73,(] 1 0 20 _ %
I

4 [RAr,ISMITfER Ai'4[[ FIINA GAIN ! DBJ 5I .8 0.9 26 MET r° DSS

5 SPACE LOSS -256.1 0

6 RECEIVER AN[ENNA C, AIN II)B_ 19,0 (1.5 (1.6 METE_ DfSH

7 POINTING LOSS qDB_ -0,3 0,2

8 :OLARIZATION LOSS {DB_ -0,2 0,]

9 RECEIVER CIRCUIT LOSS tDB) - 1,4 0, ]

10 TOTAL RECEIVED POWER _DBMi 13_4r5,6,7,819i -I 14,2 ---

I I RECEI\ ER NOISE SPECTRAL DEL,ISITY _DBM tlZI -169 1.0 TSy S 910¢_,; Nf : 6 I)B

12 PT NO rDB-HZI qlO-ll'_ 54.8 ---

CARRIER TRACKING PERFORMANCE

13 CARRIER MODULATION LOSS _DBI 0 0

"4 IH_ESHOLD LOOP BANDV,'IDTH iDB-HZi 13.0 1.0 2BLo - 26 HZ AT 6 DB SNR

15 LOOP SMR ibBi 112q3-141 41 .8 --=

16 REQUIRED LOOP SNR _ LIMITER LOSS (DB_ 6.3 O LIMITER LOSS = 0.3 D_ 1

17 PERFORMANCE MARGIN IDB) (15-161 3,5.5 1,8 RSS TOLERANCES I

i

COMMAND CHANNEL PERFORMANCE

18 DATA MODULATION LOSS (DB! ......

19 DATA BITRATE _DB-BITS/SEC/ --- ! --. ) J

20 RECEIVER LOSS _DE_I "'" IP I-. ( NO COMMAND i
I MODULATION

21 EB 2.o2o I I 122 REQUIRED EBN O ......

23 PERFORMANCE MARGIN --.

I

communication range is small, requiring less EIF, F. The 3-watt output

solid-state power amplifier is implemented by switching a voltage-

dropping power resistor into the 28 VDC supply line, thereby dropping

amplifier supply voltage to about 2! volts, resulting in a reduced RF

level of 3 watts°

During the first 55 days the aft omni is used to allow favorable sun

angles for probe thermal considerations, During this time normal

tracking by the 26-meter network allows bit rates from t024 to 32 bits/s, :':

both the probe and orhlter missions the Pioneers |0 and If preferred
will be modified to generate bit rates from 8 to 1 024 Mts]s (instead of
to ?.048 blts/s) since an 8 bits/s but not a 2048 bits/s requirement

For the modification see S,.ct_on 8.3_ Data Itandling.

8.2--83
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Except for the 2-week probe release sequence the remainder of the mission t

is accomplished us*.ng the aft 0.6-meter (2-foot) diameter dish, The

power budget during entry with the 64-meter station shows sufficient

margin (3.9 dB) above the RSS tolerances to allow the spacecraft to be

pointed off the spacecraft-earth line up to the antenna half-power one

sided beamwidthp about 0. 122 radian (7 degrees), and still support a bit

rate of ]0Z4 bits/s. The entry EIRP at beam center _s 66.0 dRm.

Antennas, The recommended Thor/Delta bus antennas are the

same as the preferred Atlas/Centaur bus antennas described in Section

8.2.4. t except for the medium-gain a_ltenna. For the Thor/Delta bus,

the mcdlum-gain antenna is the 0.6-meter (Z-foot) dish as shown in

Figure 8.2-37. The dish was selected over the horn in this case pri-

marily because of its higher gain since an offset entry angle was not re-

quired for the f977 bus mission. I
i

4
THOR "DELTA PRC)8[ _US /_[ DIUh q r_AIN DISH xOtl AOE PATTERN CHARACTERISTICS :

SPACECRAFT DSp 2-FC_O| DiSH t R[L SPACL _ 2.3 GHZ
POA.ARIZATION: RHCP FREQUENCY: 2. I OHZ 2.3 GHZ

PLANE: VAR., ,_ 1.57 POLARI7ATICN: RHCP RHCP

RAO_90 DEO p;.AI_ GAIN: Io.0 DBI 20 DSl
" 0 LAD

FORWARD /F._'t-Ir) _ HALF POV.'[R BV/' 0.27,$ RAD 0.ZJI RAD j

OIMNI " 0 RAD _11k"_.._I *"_ ! /.. ,._..'.. _ 16 DIG _13.5 DEO

/< i \'S¢.R J:l 1.5:1

\_ : - ." .." .,.4., ", ". " AXIAL _,\TIO ,'I0 : 3 DB 1,5 DB

';_ i , " ,'*"" ;5 ,, , , , '¢.[IGHTr '.I.qKGM
DESCRIPTION:

• FIOV_N ON FLOWN ON DSP _PAC[CRAf-T

All • 0.6 ,M ION[_'COh,_B SANL-_/vlCH PARABOtA

MEDIUM _' C'I',_NI • CUPPED CROS_ DIPCh[tS tEDWIIN SPLIT
_'*_IN [_I_H ' THSI 0ALUbd

-RAD

I i

Fiqure8._'-31.ThortDelt._ProbeSpacecraltMediunPGdinAntenna

Transponder• The various transponders considered for Pioneer

Venus have been described in previous sections. To minimize costs

and to maxlrnlze commonality, it has been decided to baseline the Viking

Lander transponder until cost and technical proposals are received from

potential _,uppliers. As discussed earlier, both the S-band receiver and

transmitter will be purchased from the same vendor to minimize inter-

face problems.

Power Amplifier. The power amplifier specified for the bus is a

3/6-watt, dual mode, solid-state amplifier. It is identical to those I
described in Section g. 2.4.1.

8.1-F4
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_T/DIII Subsystem Weight and Power Summary. The recommended Thor/

Delta probe bus communication subsystem weight and power i_ summarized

in Table 8.2-36.

'Fable 8.2-36. Subsystem Weight and Power Summary

II,:M 1 QUANIIT Y WF.IGH ] I bE POW[_,WATTS,

li C, iLSPl i i

TRANSMI ITEf_ DRIVER 2 3.5

POWER AMPLIF IER 2 22.0 l

HYBRID I 0.05 ] 10.]l_

OlPLE×ER 2 t,9 [ 14.3! i
SWITCHES 4 t .I 12,41 |
FOPWARD OMNI I 0.1 (0.3_

!AFT OMNI I 0.4 I(}.91

M[ DIUM GAIN !

ANIENNA (2-FT DISH) 1 0.o .2.0i i

RF COAX AND CONNECTORS A P, i 0 q i

,,
TOTAL 32.5 i

i

8, Z, S. 2 Orbiter _ T/D III

The recommended Thor/Delta orbiter spacecraft configuration has

its epln axis perpendicular to the spacecraft-earth line, (the spin axis is

also in a plane perpendicular to the Venus orbit plane). The primary down-

link communications antenna is a t. Z-meter (4-foot) t ! dB Pioneers 6

through 9 Franklin array fanbeam antenna centered on the spacecraft

spin axis. Together with a 3S-watt TWTA (minimum 3! watts), the down-

link supports 256 bits/s with the 64-meter network and 8 blts/s with the

26-meter network at ZS4. 32 gigameter (!.7 AU). The primary spacecraft

receive antenna is a 0.6 meter {Z-foot) section of the same antenna, 8 dB

gain, which is mounted on top of the downlink antenna. It is tilted0.06

radian (3.S degrees) off the spin axis to provgde a_dtude control error

signals to the conscan signal processor. This fanbearn antenna, which

provides the beam scanning capabillty for attitude control, is referred to

as the fanscan antenna. A block diagram of the subsystem, which includes

these antennas, is shown in Figure 8.2-38.

A forward omni antenna is includedl itis a Pioneers 6 through q

unit with horizontal polarization and has a toroidal pattern which provides i

I
!
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coverage at the t. 05 radian (00-degree) earth aspect angle dur.;ng orbit

insertion. The horizontal polarization provides some isolation from the

vertical polarization of the fanbeam and fanscan antennas; it represents

no ground station uplink/downlink operational problem, since both uplink

and downlink will be handled by this antenna when in use. In the normal

cruise attitude the upllnk fanscan and downlink fanbeam antenr, a polariza-

tions are essentially colinear [to within 0. 06 radian (3.5 degrees)] and

also provide compatibility with the simultaneous transmit (command) and

receive (telemetry) colinear polarization limitation of the 26-meter sta-

tions. The forward omni, along with the aft low gain horn, provides near

spherical coverage for launch and midcourse maneuvers. The only "hole"

in the near-spherlcal omni coverage is a O. 35 radian (20-degree) half-

angle cone (-5 dB point) along the forward axis where there is n_ mission

requirement for communications. The aft low-galn horn is the feed from

tt_e Pioneers ! 0 and ! t hlgh-galn dish and, together with the forward

omnl, provides -Z dBi near-spherical coverage except for a 0.58 radlan

(]3-degree) half angle cone about the forward _pin axis. The -2 dt_i

coverage includes a 3 dB circular/linear polarization Ioss and a "._dB

hybrid coupling loss for the low-gain horn.

8.2-86
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Tl_e black diagram shows the c(mpling of the fan, can antenna and

the aft low--gain 1,o!-11 ill a 3 dB hyhrid before tile connecHon td:, Receiver l,

since tile tw¢_ pattt_rn:_ have ¢:ssenHally no overlap, any potenH_q inter-

fer<n_eter region _._ minimized, The forward omni is connected [:o Pe-

_.iver 2, preventing any _ock-out mode. After nrMt _nserti_)n I at g'). g4

gigameters (0. 4 AU) communication range] and perpendicular spact_.-

craft attitude is regalneds switch _ is activated to connect the ransean

antenna directly to one of the receivers, through switch St, bypassing

the coupler and gaining 3 dB more uplinl, sensitivity. The forward omni

and low-gain horn will no longer be used except in some catastrophic

attitude failure mode and then only an uplink capability wc_fld exist, since

the omnl downlinl_ capability with the 64-meter station _runs out f_ shortly

after orbit inser_ion. The fanbeam antenna is used for the downllr_k only

to save diplexer and switch insertion losses. The insertion loss between

the transmitter and antenna is then only 0.5 dB. A TWTA output bandpass

filter would be required without the dlplexer.

The preferred transponder is a Viking Lander unit and the power

amplifier is a dual mode 35/t4 watt TWTA unit made up of an MVM '73

tube and Helios power supply. Qualification would be required. When !

transmitting over the omni or low-galn horn the low-level output is used. !

This allows the use of existing Pioneers ! 0 and ! ! switches and diplexers
i

which are not rated for power levels up to 35 watts.

Performance Data
i

The bit rate capability of the orbit phase of the mission (see Figure

8.2-39) decre_taes from f024 bits/s [59. 84 to 1.27 gigameters (0. 4 to

0.85 AU)] to 256 bits/s at 254.32 gigameters (1.7 AU) withthe 64-meter

stations. For the backup mode with the 26-meter network, the capabili%,

decreases from 256 blts/s at VOI to 8 bits/s at end-of-mission. A dual

modulation index capability is implemented to provide the backup tracking

mode by the 26-meter network. The index would be changed by command

from t. t5 to 0.48 radians whenever this backup mode was required. Dur-

ing cruise the 26-meter stations are used with bit rate capab!tlity decreas-

ing from 1024 bits/s near earth to 256 bits/s at VOI, The 1924 bit/s

limitation is set by the implementati,m of the Pioneer,_ l0 and l ! digital
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Figure 8 2-39 Orbiter Telemetry Rate History

telemetry unit which will be slightly modified to produce bit rates from

8 to I0;_4 bits/s. 'There does not appear to be a requirement for bit rates

izz excess of 1024 bits/s.

Tables 8.2-37 through 8.2-4G shows telemetry design control

tables for the orbiter at the end-of-mission [254.32 gigameters (t. 7 AU)]

with an EIP, P of 55.3 dBm. Table 8 2-37 assumes a slightly lower than

nominal spacecraft transmitter power of 33 watts and a transmitting

antenna gain of ii db. Reception of the coded data with less than t0 -3

frame deletion rate via the 26-meter stations of the DSN constrains the

maximum bit rate to he 8 bits/s and the modulation index to be 0.48

(±i0 percent} radians.

Table 8. Z-38 indicates that a data rate of 64 bits/u can be used

with the 64-meter stations. Furthermore, the large carrier margin

shown in Table 8 2-38 _mplles than an even larger data rate can be

handled if the modulation index is increased.

Table 8 2-39 shows that the 64-meter 8rations can handle as high aa

256 bits/s if the modulation index i8 switched to 1. t 5 radiana.

8.2 -88
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Table 8.2-38, End_of-Mis_ion Design Control Table
(64-Meter, l0 Hz Loop, e =0.48 Rad)

U_ABE0 J pA _ .d_,LLTFi._ NO_AIPIAL 1 ADVERSE NOiES

I F_.EQIJEriCY iMHZj 2300

2 RANGE rGIGA/'._ETER JAU ! 254,32 (I ,71 i 0,3

3 T_ANSMITTER POWER JDB .'_i 45.2 ! 0.3 38 WATTS HOMINAL (31 WATTS ADVERSE)
i

4 TRANSMITTE r, CIRCUIT LOSS aDB_ -0,5 ! 0.)?

5 TP-,Ar'._SMITT__AI.JTEr_I_AC,AHJ ,DBJ II ,O I 0,3 FANBEAM

b

Table 8.Z.
i

6 POINTING LOSS (DB, JOl 3 0. 2

7 POLARIZATION LOSS _DB_ -0.1 0.0 0.17 RAD I10 DEC,) OFFSET LINEAR

8 SPACE LOSS IDBI -267.8 PARAN_

9 RECEIVER ANTENNA GAIN (DB) 61,6 0.4 64 METER _0,1 O8 LOSS AT 0.35 RAD (20 DIG)
ELEVATION] I FREQUENCY (MHZ)

I0 TOTAL RfCEIVED POWER (DBM_ i3+4*5+6'7+8 (�P�-150.92 RANGE *C,IC,AMETER

II RECEIVER NOISE SPECTRAL DENSITY fDBM, HZ_ -184.0 0.6 29°K; 0.35 RAD (20 DEG) ELEVATION 3 TRANSMITTER POVAER

t2 PT NO (DB-HZ t_10-11 ) 33. I 0.8 RSS 4 TRANSMITTER CIRCUIT I/

CARklER TRACKING PJ_RFORMArJCE 5 TRANSMIT_R

6 POINTING LOSS (DB]
13 CARRIER MODULATIOF_ LOSS _DB) -1,0 0.3 0.48 : 10% RAD

7 POLARIZATION LOSS

14 THRE(.MOLD tOOP BAI',tDWIDTH FDB-HZ_ IO,O 0,4 I0 HZ LOOP
8 SPACE LOSS (DB_

1S ! LOOP St4k IDB_ 112+13-14, 22,1
9 RECEIVE

16 REQUIRED LOOP SNR _DBp 10,0

17 ! PERFORMANCE MARC,tN (DB_ (15-16) 12,1 1.0 RSS TOLERANCE |0 TOTAL

I ! I RECEIVER NOI3E
DATA CHANi'qEL PERFORMANCE

12 PT, N(. qDB-HZI (10-11
18 ! DATA MODULATIOF4 LOSS (DB_ -6.7 0.9 0,48 ± 10% RAD

_9 DATA BIT RATE (DB-B,TS SEC_ _8,1 64 BITS/S CARRIER

20 RECEIVER LOSS d)B) -4,3 0.5 DUE TO 22.1 DB SNR IN 2BLO 13 CARRIER MODULATION tI

21 ! Eft'No IDB_ (I 2+18-19+20t 4.0 14 T

23 j PERFORMANCE MARGIN (DB) (21-22) 1.3 1,3 RSS TOLERANCE 16 REQUIRED LOOP SNR
J 17 PE

DATA CHANNEL

18 DATA MODULATION

19 DATA BIT RATE

20 RECEIVER LOS_ (OB)

21 E8 N O (DBI

2_ REQUIRED EB M O (DB_

23 PERFO

,.e
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Table 8.Z-39. End-of-Mission Design Control Table
(64-Meter, 10 Hz Loop, 0 = I. 15 Rad)

f',_L,MBEP'r PARAMETER NOMINAL ADVERSE N,_TES 'I

FREQUENCY'_MHZ_ 2300

2 RANGE "G GA/v_TER(AU_I. 254,32 (1,7) 0.3

3 TRANSMITTERPOV&R (DIM) 45,2 0.3 33 WATTSNOMINAL (31 WATTSADVERSE)

4 ANSMITTERCIRCUITLOSS[081 -0,5 0.}

5 ; *_NSMITTERANTENNA GAIN (DB) 11,0 0.3 FANBEAM

6 POINTING LOSSIDB) -0,3 0.2

7 POLARIZATIOP,LOSS(DBI -0, I 0.0 0.17 RAD(10 DEG) OFFSETLINEAR

8 SPA%ELOSSIDB_ -267.8

9 RECHvE_ANTENNA GAIN _DIq 61.6 0.4 64 METER[0.10B LOSS.6T 0,35 PAD(20 DEG1
ELEVATtON]

10 TOTALRECEIVEDPOWER!DBM)_3+4+5+6+7+8e9) -150.9

II RECEIVERNOISE SPECTR*.'DENSITY(DBM/HZI -184.0 0.6 29=K;0,35 RAD(20 DEG' ELEVATION

12 PT"NO (DB-HZ; ,0-11 i 33,1 0.8 RSSTOLERANCES

CAR_IERTRACKINGPERFORMANCE

13 CARRIERMODULATION LOSS(D_! 7.8 2.8 1.1S t 10% RAD

t4 THRESHOLDLOOP BANDWIDTH(DB-HZ) 10,0 0.4 Ib HZ LOOP

15 LOOP SNR(DB)(12+13-14) t5,3

16 REQUIREDLOOP SNR(D8) |0.0

17 PERFORMANCEMARGIN (DB) (15-16t 5.3 2.9 RSSTOLERANCE

DATACHANNEL PERFORMANCE

18 DATAMODULATION LOSS12B) -0,8 0.5 I .IS _10% RAD

19 DATABITRAIE (DB-RITS/SEC) 24,1 256 BITS/S

20 RECEIVERLOSS(9B) -2,7 0.S

21 Eg/NO (DB)(12+19-19+20) S.S

22 REQUIREDEB/NO (DRt 3.0 10"3 DELETIONRATE

2? PERFORMANCEMAR_IN IDB}(21-22) 2.S 1. I RSSTOLERANCE

FOL]X)UT FRAI_iI.', 8.Z-89

I:" " "'_:_;":-"i:"_ ::_._ _ ': - "-..............._ .........._--_7-_-_-1_-_'7-:-_c
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Table 8. ?-40, End-of-Mission Design Control Table
(26-Mcter, 3 Hz Loope O = 0.96 Rad)

• : :_.',!'I pAc, %'.iL If ;' , f IO/_Alr IAL ADV[F_SE I IOT[S
i

I;i _ Lr:c, .;,,_7; i 2-%0

:_ ;'A_";(i'J (;IGAr_,E let' *All,- 2.54.32 _1 .7,

;_ r!:Ar J',Mi/[[r_ PO,',[I_ _DBM_ 45 2 0.3 33 WATIS HOMII'IAL _3l V/AITS ADVERSEI

,I T;'.A_JSF'AIT[[_ CIPC_ ,t I LOSS .DI_ -J.5 0. l

5 T_A_SMITIE_' At,JlEr_lr JA GAIN IDB_ I1.0 0.3 FANBEAM _ .._j

6 P()lr_TIr ;G LOSS fD_I "0,3 0.2

P_LA;' ZAF O J LC'_S ,DB_ -0.0 0.0 0.17 RAD ,10 DEG_ OFFSET LIt'lEAR

SPACE LOSS ,DB_ -267.8 Table 8.

r'ECEI .E_: Ar:TFNr,JA GAIN ,DBJ 53.3 0.6 26 METER IBLOCK Iv RECEIVERI

_0 TOTAL oEC_fVC.D POwEP fDBM!_3"_4" 5_'6"7_8_q_ -159.2

! _ECEr'ER ;',_OISE SPECT_'AL DEt'_SITv IDBM.HZ_ -182.2 0.7 4-4°K; 0,35 RAD (20 DEG) ELEVATION
r0.26 RAD (15 DEO)ADVERSE ._ 1 FREQUENCY (MHZ)

2 RANGE _'GIGA/',_'It Ri
i _ PT NO _D6-HZ_ , ]0-I 1, 23.0 I .O RSS TOLERANCES

CA_'RIER T_ACKI_'_O PERFORMAF_CE 3 TRANSMITTER POWER

4 TRANSMITTER CIRCUII
13 CAPPIE_ tAODULATiON LOSS ?DB) -4.8 1.4 0.96 : 10% RAD

$ TRANS.',_ITTER ANTENt
14 THRESHOLD LOOP _AND',VIDTH (DB-HZ) 6.3 0.S 3 HZ LOOP WITH 1.5 DB DEC

6 POINTING LOSS (D_)
15 LOOP SN_ ,DB, 112+13-14i | 1.9

7 POLARIZATION LOS|'
16 REQUIRED LOOP SNR IDB_ 10.0

g SPACE LOSS (DR)
17 PE_PO_.t_ArgCE MARGIN _DB_,. 15,,,-16_ 1,9 1.8 RSS TOLERANCES

9 RECEIVER ANTENNA

DATA CHANr'JEL PERFORMA, '_'E

10 TOTAL RECEIVED PO_
18 DATA MODULATION LO3S IDB_ -1.7 0.7 0.96 _ 10% PAD

I1 RECEIVER NOISE SPIel
19 DATA BIT _ATE _DB-BITS SECI 12.0 --- 16 BITS,S

12 PT/N O {DB-HZ) (10-1 !,
20 PECE"'ER LOSS :DB) -5.6 0._

21 EB rJO ,D8_12_-18-19_201 3,.7 CARRIER TRACKING PI

22 P_EQuI_ED EB _']O ,DBt 2.4 I0 "3 DELETION RATE 13 CARRI_.R MODULATIOI

23 PE_FOR,_AA.%CEMARGIN [DB)121-22) 1.3 1.3 RSS TOLERANCES 14 THRESHOLD LOOP BAI

15 LOOP SNR _DB) (12+l_
I

16 REQUIRED LOOP SNR,

17 PERFORMANCE MARG

DATA CHANNEL PE_,,,

1g DATA MODULATION i

19 DATA BIT RATE LDB-_r

20 RECEIVER LOSS ¢0B)

21 EB/'N O (DBI i 12"i'18-1_

22 REQUIRED EB N o (DI

23 PERFOFMANCE MAR(

_UT F_

I

I'

;........._" - " _ ii.i L i _=_-_:_:--:-_ - o,-,,.'................:--'_'-':"..................
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_Table 8. Z-4i. Orbit insertion Design Control Table

_LJ

PARAMETER NOMINAL ADVERSE NOTES

i

_QUENCY {MHZ) 2300

• NGE "GIGAMETER (AU)_ 59.84'G,4 ...

_NSMITTE_ POWER _DIIM) 41 .S 0.2 14 VCAT'rS NOMINAL

_=_NSMITTER CIRCUIT LOSS {DB) -1.1 0.1 ---

,:_Ns_rrTERANTENNa,GAIN(OS) -O.S 0.0 FOR'_VAR00MN_ "I'a.bl-e 8. Z- 4Z. Ul:)link
I:_INT|NP@ LOSS (_)a) 0.0 0.0 ---

:::_L,_IZATION LOSS (DS2 -0.1 0.0 ---
NU/',; {_tR PARAMETER

_I_,CE LOSS IDB) -2-R_.2 --- _0.4 GIG_, '";oR AG

_.EIVER ANTENNA GAIN !DR} 61.6 0.4 64 METER _0.1 DB LOSS AT 0.35 RAD 120 DEG; I FREQUENCY (MHZ_
ELEVATION

2 RANGE rGtGAMET_RS (AU_ _.
_-_TAL RECEIVED POWER {DBM) {3_'4_'5 _9)-153.8 ......

3 TRANSMZ_TER POWER i,"RMI

_.____I_IV'ERNOISE SPECTRAL DENSITY _DBM/HZ) -184.0 0,6 29°K; 0.35 RAD (20 DEG_ EtEVATION
4 "RANS_ITTER ANTENNA GAIN (OBI

• _N O (DB-HZ) { 10-11 ) 30.2 0 ,_ RSS TOLERANCE
5 S_ACE LOSS (DB)

_RRIER TRACKING PERFORMANCE 6 RE,_EIV_R ANTENNA GAIN (DE)

_,_RI_.R MODULATION LOSS (DB_ -I .0 0.3 0.4_ : 10% RAD 7 POh_Tl _IG LOSS (DR)

._E_HOLD LOOP BANDWIDTH (DB-HZ, I0.0 0.4 10 HZ LOOP 8 POL,_R'ZATION LOSS (DE)

9 9EC_ ', ER CIRCUIT LOSS (DE_
:_'OR SNR /DE) (12+13-14) 19.2 ......

.'_UIRED L_P SNi_ iDB}. IO.f¢- ...... 10 TOT_ ', RECEIVED POWER (DBM_ l

-:_-J:OPMANCE MARGIN (DBi,IS-16_ 9.2 1.0 RSS TOLERANCE 11 P'.C[I%ER NOISE SPECTRAL DENSITY,

12 PT/No _DB-HZ! (I0-111
• TA CHANNEL PERFORMANCE

TA MODULATION LOSS (DB) -6.7 0.9 0.48 : 10:,, RAD CARRIr:_, 1RACKING PERFORMANCE

TA BIT RATE (DB-BITS/SEC) 15.1 --- 32 BITS 'S 13 CARRIER MODULATION LOSS iDB)

_EIVER L033 'DB) -4,1 0.5 ESTIMATED t4 THRESHOLD LOOP BAPJDWIDTH <DI_-HZI

• N O _DRI _12_18-19_-201 4.3 ...... 15 LOOP SNR (_)(12 i

:--.,,_UIRED EB N O (DB) 2.5 --- 10"3 DELETIOtq RATE 16 REQUIRED LOOP SNR + L.IH_ITERLOSS (DB)

•"_FORMANCE MARGIN (DB) (2i-22) I .8 I .3 RSS TOLERANCE 17 PERFORMANCE MARGIN (DB) (I5-16!

l I
I I

J COMMA _JD CHANNEL PERFORMANCE

Jg DATA MODULATION LOSS (DBI

i_ D_,TA Bit RATE (DB-B_tS SEC_

20 RECEIVe:2 LOSS t,)Bi

21 E_ No_DB; _12+18-I"_ 20 '

22 _E_I_IRED [B f'lO <E)B_

,LI pEr',lC)!!MAr-4CE MARCIh_ {PP,! _21-221

_o

u ....
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Table 8.2-42. Uplink at 254. 32 Gigameters (t.7 AU)

PARAMETER NOMINAl ADVERSE

r,_'.jMB_R i NOTES

1 FREQUENCY _MHZ) I 21IS

2 ," RANGE _'GIGAMETERS tAU)] i 254.32 (I .7) I _

TRANSMITTER POWER DBMt I 73.0 : 0.0 20 KW

43 i'l IRANSMITTER ANTENNA GAIN (DE) i 51 .t I 0.9 26 METERS !

-267 .I 0.0 i !5 ', SPACE LOSS (DE)

6 i RECEIVER ANTENNA GAIN (DE) .I 6.5 J 0.3 ',: UPLINK FANBCAN

7 i POINTING LOSS (DB) j -D.o 0.2 L 0.017 PAD (~I DEG) POINTING ERROR

8 ; POLARIZATION LOSS (D81 I -0,I 0.1 " i 0,17 PAD (10 DEG) OFFSET LINEAR
, !

9 i RECEIVER CIRCUIT LOSS (DE) i -I .3 0.2 iI [
10 j TOTAL RECEIVED POWER (DBM) (3+4+5+6+7+8+9) : -1 37.8

I ; i RECEIVER NOISE SPECTRAL DENSITY (DBM/HZ) -169,0 1.0 Tsy S = 910_K; NF = 6 DB
t I

12 i PT/No (DB-HZ) (10-11) i 31.2 j 1,4 RSS TOLERANCE1 i i
CA'_RIER TRACKING PERFORMANCE _ j !

13 ,[ C,kRRIER MODULATION LOSS (DE) i -2.B 0.3 i 1.09 RAD

i ! 114 I THRESHOLD LOOP BANDWIDTH (DB-HZ) 13.0 1.0 20 HZ LOOP AT 6 DB SNR

IS II LOOP SNR (DE) (12+I 3-14) 15.4 I I

16 f REQUIRED LOOP SNR + LIMITER LOSS (DE) 6.3 I LIMITER LOSS = 0.2 DE

17 Jl PERFORMANCE MARGIN (DE)(15-16) I! 9.1 j 1.7 ',,, RSS "OLERANCE
i COM _AND CHANNEL PERFORMANCE

i
_8 i DAtA MODULATION LOSS (DE) i -3.b 0.4 j 1.09 RAD

19 ! DATA BIT RAT[ [DE-BITS,,SECI j 0 i 1 BIT, S

i2C ! Rr.CEIvER LOSS (DR) J -1 ,I 0 RECEIVER, FILTER, AND LIMITER Less

2, i ES. N O (DB) (12_18-19+201 j 26.5 J

' l 17.3 1.0 l I0-SBER
2;" i I/[G,/uIRED EB i'q0 (DB) t

8.2-90
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Table 8.2-40 indicates the performance that can be expected if

l_lock IV receivers are uaed at the 26-meter stations (as proposed 1)y the

DSN). Assuming a 3-ttz ground receiver loop, a maximum data rate of

16 bits/s can be accommodated at an index of 0.96 radians.

Table 8.2-4t shows the telemetry budget for the orbiter at Venus

orbit insertion with an earth aspect angle of i. 05 radian (60 degrees).

For this case the spacecraft transmitter is operating at t4 watts nominal

into the forward omni antennz with -0.5 db gain. For tills configuration the

64-meter station can support 32 bits/s.

Table 8.2-42 shows the upllnk performance at tlle end of the orbiter

mission. Reliable reception of PCM/FSK/Pivl commands via tile fanscan

antenna is accomplished at I bit/s and arr -dulation index of 1.09 rad_ans

with greater than 7 db margin above the adverse tolerances.

Antennas. The recommended Thor/Delta orbiter antenna subsystem

consists of four separate antennas which are used for TT&.C and fanscan

during transit, orbit ins ert"_,on, and Venus orbit phases of the mission.

The spacecraft configuration is the reduced EIRP option with the spin

axis normal to the earth line. As shown in Figure 8.2-40, a fanbeam

antenna is used as the primary downlink antenna, a tilted fanbeam antenna

is used as the uplink and fanscan antenna, a forward omnidirectional

antenna provides TT&:C coverage during orbit insertion, and an aft horn

provides TT&C coverage during launch. Use of existing Llight-qualified

designs and commonality of equipment with the probe bus spacecraft

represented the lowest cost, lowest risk approach, and was therefore the

major factor in establishing the ante_ma subsystem configuration.

The high-gain downlink antenna is the qualified Pisneers 6 through

9 Franklin array antenna, while the fanscan uplink antenna is a shortened

Pioneers 6 through 9 antenna. The fanscan antenna wilt be _ilted 0.06

radian (3.6 degrees} relative to the spin axis for a I dF; fanscan cross-

over reference. Each antenna in the stack will be separately fed by

.miniature coaxial cables to simplify the design relative to the existing

Pioneers 6 through 9 design, l]ecause of length, weight, and ma,c:ne?ic

cleanliness constraints with the requirement for taro omni ante_nlas, th_

_.3-91
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_(_ ANIENNALOCAFIONS B OMNI COVERAGE - OrAD{ODfC,

0 R_D (O DLOi OMfll
/CHARD
OMNI "" COi-ISCAN --_ l

FAN fiLAM ,fANSCAN

FAI'4 Ri:AM

AFT OM NOTES: AfT OMNI COUPLED TO fANSCAN AI"ITENNA j i
, J. J4 RAD (IRO D_G) AFT OMNI COVERAGE GAIN IS RELATIVETO ' ]

LINEAR _OLARI_ Align 3.14 PAD
C_R_IT[RSPACI CRAET II_0 DEC)

i

_'_I_ 0RBIT_RSPACECRAF1ANTENNAS VOLIAGEPATTERN_REESP_CEI CHARACTERISTICS:
FANBEAh_ ANTENNA f" 2, '_ OH'/ fREQUENCY: 2.3 C.Hz
!PIONEERS 6 THROUGH 9 FRANKLIH ARRAY)

POLARIZATION: LINEAR VER'tlCAI POLARIZATION: LINEAR VERTICAL

PLANE: .=VAR_ o 0 ° PEAK GAIN: _11DBI
HALF POWER8W: 0,105 RAD > 15,8 DEG)

VSWR: _:1.2 I

0 DEG WEIGHt - I 3)KG

# 270 DEG (_
90 DEC

__ 3_ PAD 2 RAD DESCRIPTION:J_ll_ • 20 ELEMENT COLIN_AR OIPOLE ARRAY FLOWN ON
el L ; :-' I '1 I ' _ _ _ : _ t PIONEERS6 THROUGH g SPACECRAFT

........ _ • PIONEERS 6 THROUGH 9 CJMNI ANIENNA_
REMOVED

,, 180 DEG
. PAD IUSED FOR DOWNLINK ONLY

rANSCAN ANTENNa. {SHORTENED PIONEERS VOLTAGE PA_ERN ,FREESPACE) CHARACTERISTICS

6 THROUGH 9 FRANKLIN ARRAY, f 2.1 C,Hz FREQUENCY; 2.1 GHI 2,3 GHI

POLARIZATION: LINEAR VERTICAL POLARIZATION: LINEAR VERTICAL

PLANE: " = VAK, o _ 0° PEA_.GAIN: _ 7.5 DBi >8.0 D_,I

t'_LF POWERBW: >O.Zl0 RAD >0, t92 RAD
(12.4 DEO) II.2 DEG.

SHORTENED VEREION _t-90 DEG n O DEG n 90 DEC VSWR < t.5:1 <1.2:1
PAD

OF ABOVE ARRAY } WEIGHT: " 0.5 KG

; . _._._L , , . , t_ji i DESCRIPTION
• l0 ELEMENt COIINEAR DIPOLE ARRAyI

SHORTENEDPIONEERS 6 THROUGH 9 ANIENNA
.= I_ OEG

PAD • TILTED0.061 PAD (3.5 pEG FOR ) dB FANSCAN
CROSSOVER

AFT OMNI ANTENNA VOLTAGE PATTERN {FREESPACE_ CHAPACTERISTICS:

LPIONEER_ l0 ANL) II FEED HiORNt F _ 2.3 GHz FREQUENCY: 2.1 GHz 2.3 GHz

P_AR|ZATION EHCP POLARIZATION: LHCP LHCP

PLANE: ,; VAR. O:0 PEAK GAIN: >7DBI _7.SDBI

" 0° PAD _ODEGI HALE I-_,tVEReW: >I.3e PAD "1.33RA0

_0 _79DEC) {76 DEC i

I VSWR " 2.0:1 • l.St
AXIAL RATIO " 3,5 dB " :, dE
i ,0.87 PAD r_ODELhi
WEIGHT: • 0.5 t,C,

DESCRIPTION:
" • 3.14 RAt) _IBDDEG_ • CON'.CAL HORN tXCITED BY A

CROSSEDDIPOLE

FORWARD OMNII ANTENNA VOLTAGE PATTERN<FREESPACEI C IARACTERISrlC$.
IPIONEERS 6 THROUC;H 9 SLOT ARRAY1 I 2.3 GH_

POLARIZATION LINEAR HORIZONTAL FR_.QUENCY 2.1 C,H_ 2.3 C,Hz

_, PLANE: .... AR o 0 _ POLARIZATION: LINEAR HORIZONTAL

' DE:_, PE.AKCAIN: ",-t .0 OBI :' _ DBI

EC f _/ "_ _ "__" u HAtE POWERBW: _ 2.27 RAD _ 2.0_ RAD

{130 DEC.) _t20 DEG)

,_ ',0D VSWR • I.S I • t._'l
900EG WEIGHr: . 0.2 KG

2 .g-t_-_--_'l-+_-+ r.l-, I-,_'_"e_ " # I_D DESCRIPTION

_ _ ik / 2 •RING ARRAY OF FIVE SLOTS

Figurefl,2-40, Recommend_Thor/DeltaOrbiterSpacecraftAntennas

_.2-92
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TtO III

e×iating Pioneers 6 through 9 antenna was a complex design. The design

constraints led to a thin wall (0. i3 ram) construction, an electrically

short arraf (0. 446 wavelength element spacing at 2.3 gHz), and a complex

coaxial feed system to feed two omni antennas. The basic 20-element

Pioneers 6 through 9 array design is simple, since allarray elements

are mechanically the same. Because of this feature, increasing or de-

creasing the array length is not a major modification. Operation at

just the downlink or uplink frequency ann incorporation of an independent

feed system represents a significant design simplification which should

result in lowsring the assembly time and costs of the antenna.

The Pioneers 6 through 9 slot array omnidirectional antenna was

selected as the forward omni antenna because its polarization is ortho-

gonal _o that of the fanbeam antennas. Maximum isolation between the

forward omni antenna and the fanbeam antennas is achieved with non-

aligned polarizations. The separate receive and transmit systems pro-

vide isolation bet-_een fanbearr, s, but RF chokes may be required to

increase the isolation. The circularly polarized aft horn is used to fill

in the radiation pattern coverage about the aft end of the spacecraft for

the launch phase of the mission. Circular polarization provides constant IJ
gain relative to a linearly polarized ground station antenna as the space-

craft spins. With the switching and diplexing scheme employed, pattern

interference between all antennas is minimized.

High RF power levels will not be applied to the diplexer nor will

switching be formed in high RF power modes throrgh critical altitudes;

therefore, existing Pioneers i0 and II Type II dlplexers and RF switches

described in Section 8. 2.4. i can be used. All antennas are capable of

handling RF power levels greater than 80 watts since minimum conductor

spacing in any of the antenna designs is on the order of 0, Z cm.

Transponder. The transponder used on the orbiter will be identical

to that specified for the probe bus, The present baseline is the Xrildng ....i

.._ Lander unit, as described in Section 8, 2.4, 1.

8.2-93
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WTID III

Fal_scall .qil_nal Proc,,s_,_r. The fanscan signal proc(;ss,_r basclh_(.d

for the Thor/Delta orbiter _s id_,ntica] to tb_. mlil fl_)wn on I_ione_,r._ I 0 and

|I. A. d_.scr_ption of th,. unit and a table ot" characteristics are _iven in

Section 8.2.4. I.

Power Amplifier. The low gain of the fanbeam antenna used in the

preferred orbiter configuration for the Thor/Delta requires that the power

amplifier provide a nominal output of 36 watts (3t watts minimum.). It

has been shown that a solid state approach is more cost-effective and much

lighter in weight than a TWTA. However, due to the lower efficiency of the

solid state approach (parallel _-0-watt units), the Thor/Dolta launch will

utilize the 36-watt TWTA from MVM '73 (modified). This reduces the

power amplifier power input (compared to the solid state unit) by- about

30 watts. Both the solid state and TWTA can be reduced in output power

during the early part of the mission as required to accommodate the

availabible dc power. The TWTA utilize_ a dual mode tube to allow the

reduction of output power to i6 watts.

Tradeoffs and characteristics for both the solid sta_:e and th. • TWTA [

power amplifier are given in Section 8.2.3.4.

.Subsystem Weight and Power Sammary. The recommended Thor/

Delta orbiter communications subsystem weight and power is summarized

in Table 8.2-43.

wE,G,T ,_cPow_
mM _UAN,,W "KO(LBI_ |WATTS)

_ECE,VER 2 2., (s.2) 7.o
CONSCAN PROCESSOR ] 0.4 (0. A) I.§

TRANS_mER_,VE_ _ 2 ,., (2.4) 3.5
TWTA 2 5.4 (]2.0) 106.0

Table 8. Z-43. DIPLE×ER$ 2 1.9 (4,3)

HYBRID,_ 2 0.l (0.2)

Communications Subsystena sw,rcms 4 ,., (2,4)
Weight and Power Summary A_PO_N, , 0.Z (0._]

rORWA,_O_N, , o., (o._
_ANSCA,A_tENNA , o._ (,.o_
FANBEAM ANTENNA I I .I (2.5)

RI" COAX AND CONNEC|ORS A R I.I (2.5)

IOTAL 1_.4 (34.1) I IE,.0

NOT[: IHES[ WEIGttTS WERE CHANG[O SLIGHPLY SUBSEQUENT tO PREPARATION
OF MA¶,% PROPERTIES TABLES IN SECTION 6 CARTHIS REPORT.

• m i

_.Z-94
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8.2.6 O rl)iter Options ALL ORBITER VERSION III

i)urin I- tl_e co_irse {)f the study thrt_e orl_ite]" oDtl ons were_ c(m-

sidt_r_rt in fair detail and are summariz_d here for completem_ss. Thc, s_'

options were based on the understanding of the science data requirem,--nts

_hat _xisted prior to the Version IV update of the orl)iter sciencv dofinql:_,m

(Version IV increased the amount of data to be taken pc_r ¢)rbit and mad,_

Xoband a primary science experiment). The understanding of these

requirements with respect to desired real-time data rates varied enough

to lead to the various options presented here. All three options have

their spin axis perpendicular to the earth line and vary from a minimum

t28 bits/s downlink despun reflector configuration using a i2-watt power

amplifier (Atlas]Centaur and Thor/Delta Orbiter, Version III science

payload) to a 35-watt, It dB fanbeam design with 8 bits/s minimum

capability (Atlas/Centaur Orbiter, Version III science payload) to a t2-

watt, tt dB fanbeam alternate (Thor/Delta and Atlas/Centaur Orbiter,

Version III science payload) that required the 64--meter network to achieve

64 bits/s minimum. Each configuration has a fanscan antenna that

provides an attitude control function similar to Pioneers l0 and ! ! by

providing amplitude modulation 9n an uplink carrier v, hich is extracted hy

the fanscan (conscan) signal processor. Also, each option is applicable to

either the Atlas/Centaur or Thor/Delta launch vehicles.

& AIC Ill & T/D Ill
8.2. 6.1 pespun Reflector

The despun reflector option is essentially that which was presented

at the Pioneer Venus Midterm Briefing on 2 March t973. Only an uplink

fanscan antenna and conscan signal processor were added to improve

attitude control capability. Figure 8.2-4t is the subsystem block dia-

gram, The aft horn and fansca_ antenna are coupled together through

a hybrid and together with the forward omni give the antenna coverage as

shown in Figure 8.2-42. Th!._ is the same coverage as the recommended

Thor/Delta orbiter version discussed in bt_ction 8.2.4.2. A despun

reflector similar to Helios is used to provide a raM-time data rate at

end-of-mission of i28 bits,s. At tt, e time of the midterm, 128 bits/s

was thought to be the real-time data requirement. This interpretation

has since changed and is reflected in the lower F,IIlP options. The |2-

watt power am_!".qer consists of two 6-watt units phase combined in a

8.Z-95
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A/C III l-.ybrid. The resul'.ing EIRD of this configuration is 62 dBm. See

_)T/D Appendix 8.2C fo_ ' a amplifier/antenna sizing tradaoff that wa_III power

performed for t'ds option. During most of the crulsc portion of the

mission only a._e 5-watt nlodule is activated to reduce the sizing of tile

solar array when the spacecraft is furthest from the sun (and closest to

earth). Lat,'r on, jllst prior to orbit insertion, the other amplifier is

activated. When only one amplifier is on, the resulting power out of the

hybrid is :. nominal 2.7 watts. A direct connection between the transmitter

output and high gain antenna is made to maximize EIRP and reduce weight,

i. e., eliminate a diplexer in that path. However, sufficient bandpass

filtering must be included in the power amplifier to prevent it from over-

loading the receiver through ar_tenna coupling. This feature is inherent

in all the options presented here. Table 8.2-44 shows design control

tables for orbit insertion with the omni (64-meter station) and end-of-

mission with the hi_,h gain reflector (26-meter station)at t28 bits/s.

8.2 6.2 35-Watt/Y'a'__beam Fanscan Option _._.1 w ..J_jw" ' _ A/C lit _ T/D III :_

This Atlas/Centaur option is identical to the preferred Thor/Delta

orbiter version presented in Section 8.2.4, 2, except that the 3 5-watt

TWTA is replaced by a less efficient (but less costly} 35*watt (3t watt

minimum) solid-state power amplifier. The 35-watt amplifier vould

consist of two 20-watt units in parallel, as in the large probe, for

commonality and lower cost. The reason the solid-state unit could not

be used on the Thor/Delta configuration is that the extra solar array re-

quired to handle the increased DC power could not easily be accommodated

on the small Thor/Delta conical solar array. Therefore, the Thor/Delta

subsystem presented a higher cost than the corresponding Atlas/Centaur

version.

The block diagram (except for the TWTA), the mission telemetry

rate profile, and the design control tables for this option are the same

as those presented in Section 8.2.4.2. The main reason a high trans- 1

mitrer power was used in bo,h Atlas/Centaur and Thor/Delta versions

of this option is that a letter from NASA/Ai_C (from John 5. Hurt of

.Ames to W. H. Simmons of TRW, May 9, 1973, ASD:?-44-9/32-t30) re-

qeusted that the orbiter spacecraft be capable of performing the mission

1
@.Z =97
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_ _W.... A/C tit with the 26-meter network, at least as a backup for daily operations. A

..: .__lw 3 5-watt output is required to do this with the existing Pioneers 6 through 9:." _ T/D Ill

:_ i t dB fanbeam antenna at 8 bits]s. The following option shows the lowest

i- cost version of all thre_ options presented here if the above request were

: waived, i.e., if use of the 64-meter laetwork only were possible.

!}, 8.2.6.3 t2-Watt Fanbeam]Fanecan Option _/Olll

i_ ..... This option represents the simplest spacecraft and lowest cost of

I1_ all configurations that have their spin axis perpendicular to the earth-

t_ line. It is based on communication while in orbit with the 64-meter DSN
i"

* only and will not work with the 26-meter DSN except for the cruise portion

i! of the mission up to orbit insertion. From then on one 64-meter station

is required each day for a few hours to read out an orbit of stored data.

The block diagram is the same as the preferred Thor/Delta orbiter

• shown it. Section 8. Z. 4. Z;-_xe-_p_Vt_ 35-watt TWTA is replaced by a 1Z-

watt solid-state power amplifier. The telemetry data rate profile is

shown in Figure 8.2-43, 64 bits/s being the mi:,imum capability. The

downlink with the 26-meter network (t 0.8 loop bandwidth) expires shortly

: after orbit insertio_ about [8Z.Z8 glgameters (0.55 AU)] (VOI + ZZ days).

i_ From then on the 64-meter network is required. Resign control tables
for the 26- and 64-meter downlinks are shown in Tables 8. Z-45 and 8.2-46.

512 64 M

120

32

r 1. roll EOM
, i !

80., 012 0.4 ,.0 1.7 (AU)
EARTH-SPACECRAFtRANGE

t J I _
14.96 29.9_ 59.84 149.60 254.32 CGIGAMET[R)

Figure8.2-43,OrbiterTelemetryPateProfile

i 8. _-,.99
l-
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"I-- Table 8.2-45. Early Orbit (26-Meter) Telemetr E Design Control Table

i ri NUMfiER ! PARAMErER NOMINAL ADVERSE NOT,IS

1 FREQUENCY (MHZI 2300

2 RANGE _"GIGAMETERS (AU_ 59.B4 i0,4/

_' _ TRANSMI1,TER POWER 1DEN) 4_.8 0.4 12 WATTS NOMINAL

4 TRANS,MITT(R CIRCUIT _.OS$ _OB_ -0,_, 0.1

............................ $ T_,ANSMtTTER &NTENNA GAIN (bBI It ,0 0.3 FANBEAM

* POINTING LOSS (D$) -0.3 0.2

7 POLARIZATION LOSS (DB) -0, I 0.0 0.17 RAD (10 DEC1 OFFSET LINEAR

$ SPACE LOSS IO6) -255.2 ---

9 RECEIVER AN1,ENNA GAIN (O61 .53,3 0.6 26 METERS

10 |DIAL RECEIVED POWER (08M)(3 ¢7+$_9)-I$1.0 ---

! I RECEIVER NOISE SPECTRAL DENSI1,Y (DBM/HZ) -189.2 0.7 441K; 0.35 RAD (20 DEC) ELEVAI'ION
_0.26 I_,D (15 I_G_ ADVERSE _

12 PIJNo _DI_-HZ_, I IO-I I i 31.2 1,0 RSS TOLERANCE

CARRIER TRACKING PERFORMANCE

13 CARRIER MODULATION LOSS (DB) -5.9 1.7 1.04 * 10% RAD

14 THRESHOLD LOOP BANDWIDTH (DB-HZ! I0,3 0.5 10,§ HZ LOOP

IS LOOP SNR (DB} (12 �œÄ�P�15.O---

_6 REQUIR[D LOOP SNR (OB) 10,O ---

17 PERIORMANCE MARGIN (DB) (15-16) .5.0 2.0 RSS TOLERANCE

DATA CHANNEL PERFORMANCE

18 DATA MODU,,AtlON LOSS (DB' -1,3 0.5 I ,C_ 10% RAD

19 t DAtA flit RAtE tDB-BII3/SEC) 2I .t --o 128 BII$/S
1

20 i RECEIVER LOSS (DB) I -4.6 0.q FROM NASA/ARC

i 21 EBN O (DB) (12¢'18-19;20) 4.2 ......
22 REQUIRED E_/N O lOB) 2.8 --- 10 .3 DELETION RATE

23 PERFORMANCE MARGI N (DE) (21-22) ' 1.4 1,2 RSS TOLERANCE

I

,}!.
t:T

7
':4:"

%:

"--"'If" 8.Z- 100
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Table 8. Z-46. F.nd-of-Mission (64-Meter) Telemetry Design Control Table

f_ll_A_l =; i PARAMETEr" NOMINAl. ADX'[RSI NOTE_,

I t Ri:(_LIENCY (t._H21 2.'100

2 I_AN(._E 'G GAMIIE_S (AL])_ 254.32 (I .7_

J |_'L_NSMI I'I_R POWER ([)BM_ 40.8 O. I 12 _,_ATIS NOMINAL

4 TRANSMITI[P,, CIRCUIT L055, (DB) *0..% O ,I

5 TRANSMITTER ANTENNA GAI F_IDBI I 1.0 0.3 FANBEAM

6 POINTING LOSS (DB_ -0,3 0.2

7 POLARIZATION LOSS IDBI -0.1 0.0 0.17 RAD II0 DEGI DIESEl LINEAR

8 SPACE t :.)SS (DB_ -267.8

e RECEIVER ANTENNA GAIN (OR) 61.6 0.4 _4 METERS tO ,I DB LOSS AT 0.35 PAD
(20 DEG) ELEVATION

10 IOTAL RECEIVED POWER tDBM) (3'+4+5,6'_-7N!'_'1 -155.3

I 1 RECEIVER NOISE SPECTRAL IXNSITY IDBM/HZ) -184.0 0.6 29°K; 0.35 RAD (20 De.G) ELEVATION

12 Pr NO (DB-HZ I _I0- I I ) 28.7 0.8 RSS TOLERANCE

CARRIER TRACKING PERFORMANCE

13 CARRIER MODIILATION LOSS (DR) -;_.¢ 1.7 1,04 t I0",_ PAD

14 THRESHOLD LOC)P BANDWIDIH (DB-HZ) tO.0 L).4 I0 HZ LOOP

IS LOOP SNR _DB! II2+13-14) 12.0

16 REQUIRED LOOP SNR IDII) I0.0

17 PERFORMANCE M,_RGIN IDBI (15-16) 2.8 1.9 RSS TOLERAhlCE

DATA CHANNEL PERFOflMANCE

18 DATA MODULAIION LOSS (DBI -I ,3 0.5 1.04 _ 10_,. RAD

I9 DATA BIT RAI_ ,I08-R_TS 'SEC) 18.1 _4 BITS S

20 RECEP,'ER LOSS _DBI -5.3 0.S FROM NASA ARC

21 -B NO (DI'I 12¢18*19_20) 4.0

22 REQUIRED EltN O (DR) 2.7

23 PERFORMANCE MARL,IN (DO)[21-22) 1.3 I 1.1 aSS TOLERAt'ICE

I

8.Z-IOI
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_.3 DATA HANDLING SUBSYSTEM

_- 8° 3. I Introduction _nd Sm_znary

During the _tudy, data h_r.d_ing _ubsystem designs that would meet

the constraints o£ the Thor/Delta launch vehicle were =ontinuaUy review,._d

_i to see how they might be changed to take advantage of the additional capa-

bilities allowed by the Atlas/Centaur. Each tizne_ however, the require-

ments, interfaces and hardware were found to be essentially identical for

both configurations; only the method o£ packaging the data storage unit

changed. For this reason, reference to the launch vehicle is generally

omitted from this section even though the effect of both vehicles on the sub-

system were carefully considered.

The remainder of this introductory section summarizes the key fea-

ture of the preferred data handling subsystem (i. e., the one we have

designed to meet the needs o£ the Version IV science payload). Section

i 8.3.2 summarizes the requirements analyses that were made for the

:. probe bus designed for the Version III science payload, and the deltas

• required for Version IV. This is followed by stunmari_.ed requirements

':- for the orbiters designed for Version I].I and deltas for Version IV.

Section 8, 3, 3 covers our work on the pros and cons o£ using existing

telemetry equipment as opposed to more advanced designs. This section

also considers the use of centralized as opposed to conventional process-

: of various ways o£ handling the interfaces between the science and this

subsystem. These tradeo£fs were aimed not so much at achieving high

performance as at achieving low cost and (particularly when the Thor/

Delta was under consideration) low weight.

Section 8.3.4 presents details on the bus and orbiter data handling

:,iltt_ systems designed 1'or the Version KI payload, while Section 8.3.5 pre-
",'I.

.:.I-.:_ sents the details on the _zbsystem designed for Version IV. A summary

/_I version o£ this last section is presented in Figure 8.3-[ and includes the

/ following:

/_!t!_ • The digital telemetr V unit (DTU)fulfills all data handling £unc-

/i tions except data storage. This DTU _s the same unit used on
- Pioneers 10 and I[, with changes to only three of the nine cir-

00000003-TSA06



and five o£ the nSne subassemblies serve as the nucleus of the
,,:'_ data subsystem for the probes as well,

, o"

• The data storage unit (DSU) is a new design based on current
"i" C-MOS technology that enhances the performance of several of

the science instruments by providing multiple and simultaneous
asynchronous buffering for high data rate measurements,

ii]! • Probe data storage uses the same components developed/or the

i v. spacecraft DSU,

• Spacecraft/probe DTU commonality permits important savings in

iii: integration and operational software and training costs, particu-
1 larly since the software requirements will be very silnilar to

i_i!- those developed for the Pioneers t0 and II prograr_

" !i,i1 8, 3, Z Rec_uirements AnalysesThe analyses summarized in this section are presented first on the

!:,il basis of the work done in response to the Version III science payload for

each mission, and then on the basis of the work that was done in response

to the Version IV payload.

The early work was based on bus and orbiter designs with quite low

data rates because Version Illdid not impose high data rate requirements.

In fact, the early versions of the payload were necessarily somewhat

_' lacking in specific requirements so the study team made what it consid-

• ered to be reasonable assumptions, For such considerations as timing

and spin-sector determination, for examples or for downlink (ding and

formatting for DSN compatibility, requirements were actually "backfitted"

from the hardware, .__ to speak, on the basis that use of Pioneers I0 and

II hardware would keep costs to an absolute minimum.

With the advent of the Version IV payloadls more specific and (in

terms of data rate) more demanding science requirements, the team

changed its approach accordingly,

8.3,2.1 Probe Bus Requirements Analysis (Version Ill dl d'_

Science Payload 1977 Launch Opportunity) _ A/C Ill_ T/DIll

The data handling subsystem acquires engineering data for subse-

quent telemetry transmission, The analog measurements should be quan-

tized to at least 64 levels (6 bits) to obtain adequate information for space-

craft and instrument monitoring, A telemetry list is given in Appendix I

8.3A. Table 8.3-I summarizes this list,

.... 8.3-2
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Table 8. 3-i. Engineering Measurements The data handling subsystemSumma ry
'" provides the spacecraft timing

SUBSYSTEM ANALOG

_ . ____ source, The timing requirement

'_ O#,lA HANDLflNG 3

_",, ATTITUDE CONTROL 10 transitions should be coherent

, THERMAL 5 with the subcarrier at all bit

".MI scieNcE A _ __ J
IOTALREOUtRED 3;' 78 20 JJ rates. The requirements for the

--==.=.== J _ Pioneer I0 and II subsystem were

"_ used as a basis for the Pioneer Venus requirements; they meet or exceed

i! the Pioneer Venus needs. They are:

Frequency 3Z. 768 kHz _ O. 02 percent

--_- Jitter <0.5 percent between any two cycles

Stability 200 ppm long-term

":,:: Asymmetry <2.0 percent between adjacent hall cycles. J
! I

: A spin sector generator is required to provide angular resolution in

the plane normal to the spin axis. This resolution should be better than
= I

_!: 0. Z radian (i0.5 degree) to provide the programming increments needed

fi' for spacecraft attitude control and for instrument sampling determination/

,_: ..i . control. The spin sector generator error contribution should not exceed

,::i: _,, L0 percent of the sun sensor error, minimize the effect on the overall roll

_'.._._. attitude determination. That is, error between the sun pulse and a gener-

.... _;':' ated sector pulse should be less than 0. 000 _- radian (O. 01 degree). Two

_'. '-, spin sector operating modes are needed; an averaging mode to remove sun

:: =:: .pulse jitter during normal flight, and a mode for times of spacscra/t

.. :_-:... maneuvering where the sun pulse must be tracked regardless of jitter
:ii,,_/7

,_ :; contributions,

...._ ._ Error correction coding of the telemetry downlink is strongly recom-

-_i '*!i!i:1_ mended to maxizaize the transmission bit rate at a given RF power within

_: ?/ill a maximum allowable, error rate. The selected coding/decoding scheme

: cIv] must be compatible with the existing DSN capabilities, Rate one-haLf con- 1

?...
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AIC lil lO and 1 1, offers an attractive low-cost approach becaus_ o£ the existing

hardware and software.
i Wttilc the origi_al study guidelines did not actually require that the

WD III

_" probe bus be capable of relaying probe data in transit for the purpose o£

: preseparation checkout, it seemed likely to become a requirement. Con-

" soquently) the study team took it as a sell-imposed requirement and

designed the probes with an umbilical to the probe bus as well as designing

the data format accordingly to accommodate probe data.

Critical probe bus data handling circuits should, of course, be redun-

dant to maximize reliability.

For the Version III science payload it is assumed that the scientific

data are digital for the neutral and ion mass spectrometers and the uitre,-

::, violet (UV) fluorescence experiment) and either analog or digital for the

magnetometer and electron temperature probe. If analog is accepted, it

should be quantized to Z56 or more levels (8 bits), the Version III under-

" standing of the instrument requirements. Except for the magnetometer,

which operates throughout the mission) all data is acquired during the

': .,. probe bus entry phase (approximately I0 minutes) as shown in Table 8.3-2.

: Table 8.3-Z. Probe Bus Instrument Data Rates

" (Version III Science Payload)

EITS SAMPLES BITS BITS '
EXPERIMENT PER PER PER PER

•" SAMPLE MINUTE MINUTE SECOND

MAGNE1OMETER 32 20 640 10.7

ELECTRON TEMPERATURE 30 60 I 800 30.0

NEUTRAL MASS SPECTROMEI"ER 2500 2 5 000 83.3

ION MASS SPECTROMETER 2000 2 4 000 66.7

ULTRAVIOLET FLUORESCENCE 72 20 I 440 24.0

TOTAL 12 880 214.7

I

: The added data handling requirements lot the "other candidate"

instruments are minhnal, Several engineering measurements would be

required plus the scientific data in Table 8.3-3.

A/C IV 8.3, _-o_- Probe Bus Requirements Analyses (Version _Y Payload)

! .... The principal impact on the subsystem requirements is the increased

" .... data rate approaching Venus and during entry. The Version IV science

_- " 8.3-5
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_,._,..-_ Table 8.3-3. Probo Bu_ Data Rates for "Other Candidate"

L, ,, _ _ Instruments (Version IH Science Payload)

!!; /k/CIII _-m====mm m_==.==m_filES SAMPLES BITS fliTS
EXPERIMENT PER P|R PLI_ PER

?,i:lii' '(; T/D III SAMI_L[ MINIJIE, MINUIE 5[COND

; ; i{j __ I,)AYGLOW PItOIC)MISTER 60 20 IT00 20,0

lOT AL 1360 22. ;

_ mnigi_llgn g_ggglmgiiigm _

L;' "DUllING CRUISE ALSO.

L Table 8.3-4. Probe Bus Instrument Data Rates

' (Version IV Science Payload)?

EXPERIMENT BITS PER SECOND BITS PER SECOND ,
' SAMPLE FROM ENTRY-4 DAYS FROM ENTRY-! HOUR

NEUTRAL MASS SPECTROMETER 520 195

ION MASS SPECTROMETER 210 236.3

ELECTRON TEMPERATURE PROBE 90 33.8

RETARDING POTENTIAL 125 140.6

. ANALYZER

_ ULTRAVIOLET SPECTROIItlE TER 7200 12 J
..- 720 - 270

TOTAL

DATA RATES ARE BASEl) ON THE PREFERRED DESCENT TRAJECTORY

-

requizements (see Tabl_ 8.3-4) increase the data rate from 214.7 to

• 875.7 bits/s at entry, a factor of four higher. Data acquisition and trans-

'- mission are not required during cruise.
!.

" In addition to the science requirenxents given in Table 8.3-4, new

instrument housekeeping requirements have been imposed. Signliicantly._

:_ analog-to-digital conversion (to /0-bit resolution) is speci$ied for the ion

mass spectrometer. Table 8.3-5 gives the data requirements for the

other candidate instruments.

....... li All other probe bus data handling requirements remain as described
-!7!iii_:: a_ Section 8.3. Z. 1.

o
:i i_ 8.3.2.3 Orbiter Requirement, Analysis (Version Iii Science Payload)

'_ ! _ The orbiter engineering telemetry measurements list is given in" I>_ Appendix 8.3A, and a summary is presented in Table 8 3-6.
-JIM

8.3-6

_+ : • ....... ....
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c_ The timing, data coding, DSN compatibility, and redundancy require-.......

±-- _ n_ents are similar to those o_ the probe bus. The spzn sector generation
>.

requirements are also similar except that a pseudo-sun pulse is necessary

for science programming during periods of solar eclipse. The sectorz

-_ generator must °'remember" the spin rate and continue to generate spin

= sector data in the absence of sun pulses for periods up to 85 minutes.

z This willoccur during orbitday 170. The longest sun eclipse near periap-o
U_

= sis is 18 minutes and occurs at day 41. Figure 8.3-Z depicts the suntu

> occultation profile for the recomzxxended orbit.
-J

}" Other orbitcharacteristicssuch as time near periapsis and time in

earth occultationwhich ianpactthe orbiterdata handling subsystem are

also shown in Figure 8.3-Z. The earth occultationperiods near periapsis

during the first71 days in orbit,arc important since the majority of sci-

entificinformation is acquired at low altitudes.

'.=: -: ' t
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=- -_ Figure 8 3-3 illustrates the data acquisition profile by instrument.>. •

_ The magnetometer samples continuously during cruise and orbit. The
ul

_ electron temperature probe, neutral mass spectrometer, and ion mass
t_

_ spectrometer operate at altitudes where there is perceptible atmosphere•

,.= = The radar altimeter can map below iO00 kilometers and may operate in a

: _ non_veraging, high bit rate mode below 300 kilometers, where the

w"_ received signal-to-noise ratio w',ll be favorable. The ir_rar,ad (I.P_) radio-

_: -_. meter will sample when viewing the planet, probably the dark side only

8.3-8
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Figure 8 ]-] O toiler Ver_iorl II I Science Payload Instrument Data Acquisi:ion Profiles

and close to periapsis. The requirements for the ultraviolet (UV)
Z_

spectro, aeter may vary depending on the selected instrument. The instru-

ment will probably sample when viewing the nadir and zenith; possible

sample periods are thus ]imited to two for a fixed mounted instrument but

are essentially unlin_ited for a girnballed instrtm%enL. A reasonable

requirement, adopted for our analysis, is to acquire UV spectrometer

data when below [500 kilometers, and to provide limited means of high

.... altitude sampling.

From these considerations, representative dnta rate requirements,

Table 8.3-7, were established which provide good science accoznrnodation

tempered by overall cost and risk considerations.

Yabh; 8. 3-7. Orbiter Instrui,lent Data Rates

(Version I12 Science Payload)

BITS SAMPLES BITS BIIS

_:_ EXPERIMENT PER PER PER PER
_, SAMPLE MINUTE MINUTE SECOND

;" ,AONETOMETER 24 5 )20 2

ELECTRON TEMPERATURE 30 60 1800 3D

NEUTRAL MASS SPECTROMETER 5000 0.2 1000 16.7

ION MASS SPECTROMETER 2000 0.4 800 13.3

UL TRAVIOLEI SPECTROMETER 400 2 800 13.3

INFRAI_ED RADIOMETER 40 10 400 6.7

RADAR ALTIMLTER 280 5 1400 23,7

., . TOTAl 6320 105.7

ii

[4.3-9

..... .,. ,- .......

I
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O_ Requirements for special high bit rato modes are also included since
.j such modes improve the scientific data return for the UV spectrometer and>.

LR radiometer, with minimal impact on the d_ta handling subsystem, In ..

¢J these modes, high bit rate data is stored and transmitted later at the pre-z

_ vailing telemetry link bit rate, as provided for the imaging photo polari-
S. meter experiment on Pioneers t0 and tl. The s_ecial mode for the radar
z
O altimeter will be provided during all periapsis passes. The spe':ial modesm

x for the UV and IR will be provided, by commands only when storage ist_
>
.a available. Table 8.3-8 gives the special mode requirements, Memory is.J
< also needed to store normal formatted data during earth occultation periods

which occur during the first 7t days in orbit. Finally, storage is neces-

sary for the magnetometer data to preclude the need for continuous DSN

coverage. Table 8.3-8 also gives the storage requirements. The total

storage necessary is not the sums since the special modes can time-share

memory. However, since the DTU data is in line the first 7t days in orbit

and the radar altimeter high bit rate mode is in line throughout the mis-

sions redundancy is suggested for these functions.

Table 8 3-8 Orbiter Data Storage and Special Mode
Requirements (Version III Science Payload)

REQUIREMENTS COMMENTS
USAGE (BITS)

DIGITAL TELEMETRYUNIT (DTUt 168 960 22 MINUTES DURING OCCUL-
TATION AT 128 BIIS,/S OF
FORMATTED DATA

RADARALTIMETER "05 000 3500 BITS '_ Of I SECOND
EACH; 12 SECONDS FOR
6 MINUTES

ULTRAVIOLET SPECTROMETER 80 000 1600 BITS/S FOR 50 SECONDS

INFRARED RADIOMETER 40 960 2300 B TS/S EOR 18 SECONDS

MAGNETOMETER 2 BITS/S FOR UP TO 24 HOURS
DEPENDING ON DSN AVAIL-
ABILITY AND MAGENTOMETER
COVERAGEDES,RED

Additional requirements imposed by the other candidate instruments

are summarized in Table 8.3-9.

0 8.3.Z.4 Orbiter Requirements Analysis (Version IV Science Payload)>4
-o
Z -J

0 >" The orbiter subsystem requiremel_ts were impacted by Version IV

uJ uJ science payload changes in data throughput rate and the amount and usage>o
-J _ of storage. Table 8.3-10 summarizes the Version IV science d_ta rate

8.3-10
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Table 8. 3-9. Orbiter Data Rates for "Other Candidate"

0 Instruments {Version IllScience Payload).J
>.

<[_ BI15, Ill'SAMPLES [ DIP-, lilts

eL [×PIRIMLNI MR I PER PER P[R
IAI bAMPL[ MINUr[ MINIIT[ SECONDU

Z ............. -2- " ....................klJ 5OIAR VVlND PKOI_t 5 Ib0 2.7

EII[RMAL SLJPIR|I4ERMAL 40 I0 400 6.7

.... ----" PAR11CLEDE IEC TC)R I
Z

J
0 ELECTRICFIELD DETECTOR 32 5 160 2.7

¢/'J SOLAR ELECTRON DEIECIOR 40 10 400 6./ i

Lu
MICROWAVE RADIOMETER 600 2 1200 20 __ !

..I

.j TOTAL 2320 38,8 J

Table 8. 3-10. Orbiter Instrument Data Rates

(Version IV Science Payload)

BITSPER BITS PERSECOND BITS PERSECOND BITSPERSECOND

SAMPLE {CRUISE_ tHIGH ALIlTUDE) IPERtAPSIS_
EXPERIMENT

iI J

MAGNETOMETER 3P 3 3 32
W SOLAR WIND ANALYZER 32 3 3 -

Z ELECTRON TEMPERATUREPROBE 24 24

1_ NEUTRALMASS SPECIROMETER t00

> ION MASS SPECTROMETER • I00

. i ULTRAVIOLET SPECTROMETER 1.7 34o
INFRAREDRADIOMETER 100

Q:
UJ RADAR ALTIMETER * . S0

.J
II TOTAL 6 7.7 44C

NOT AVAILABLE IN VERSION iV SCIENCE REQUIREMENTS

requirements during cruise, high altitude orbit, and at periapsis. Figure

8.3-4 presents a more detailed orbital data rate profile.

The data rate at periapsis has increased £rom i05,7 to 440 bits/s.

a [actor o[ [our higher.

These higher data rates also increase the amount o_ storage required.

Table 8.3-g I gives the minimum data storage necessary to buffer the

uRformatted data during occultation.

However, a cost-effective communications link requires a reduced

telemetry data rate, which could be accomplished by stc rlng low attitude

• J d_ta for later transmission at a lower data rate_ The storage necessary

..... for this is given in Table 8,3-1Z,
..

8.3-11

[ , "" ---: ..................... _...... _ ........., ..... _ ...... ... L.. :: : .._._ '_ :,:.: =_._ _=._.:,=hi=_._._ =_. _..-r._:_._.g_._.__._ _.
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ALL VERSION IV SCIENCE PAYLOAD

I A#III
I" _ '(-CUI f AI It")N "I

i el RJAI%i _,
t

P_4GNt IC _aLIfR i I

I i
_+JtAi_wtl_D AINALYZI_

+/ +" i L " /
FLtCTM{!P',IIEMPEIIAIURL P_J_!

I " J
NLUTgAL _AASS SPLCIM_MEILM

I 75 I Im I P+ I
+ IC r+ MAS<+SPl_Illt')MF Ifi;I

l ++ I ,oo I '+ I
ULTRAVIOLEt SPECfi_._ ".+.[TER

i ,.°, I +, i ,.°, ?
15(RADIOMETER

.... I '® I
RADAR ALTIN_ETER

TOTAL SC1£NC£ 611 RATE

! ,.°, I,+l,° ,.°, 1
-2| -17 -e -6 T OMIN _ _ +17 +-21

: I I I l --J l I...... L--_ +-L

rl BITS'S 2: ALSC DURING, CRUISE

• , Figure 8. ]'4. Orbiter Version IV Science Payload Data Rate Profile

Table 8.3-ti. Minimal Orbiter Data Storage Requirements
- (Version [IXScience Payload)

REQUIREMENTS COMMENTS
i_ USAGE (BITS)

•. DIGITALTELEMETRYUNIT <DTU) 7 600 HCUSEKEEPINGDATAAT5.9
BITS/SDURING22 MINutEs De
CX'-CULI"ATION

+ MAGNETOMETER 42 240 32 BITS/SFOR22 MINUTES

_. ELECTRONTEMPERATUREPROBE 31 680 24 BITS/SFOR22 MINUTES

+ NEUTRALMASSSPECTROMETER 82 500 100BITS/SFORII MINUTESAND
25 BITS/SFORII MINUTES

:. ION MASS SPECTROMETER 8"2 SO0 100 BITS/S FOR II MINUTES AND
.- 25 BITS/S (:OR !1 MINUTES

" ULTRAVIOLET SPECTROMETER 44 880 34 BITS/S FOR 22 MINUTES

INFRARED RADIOMETER 132 000 I00 BITS/S FOR 22 MINUTES

'_::" RADAR ALtIMEtER 39 000 S0 81TS/S FOR 13 E,_INUTES

--):_
J, "+ TOTAL 462 400

..... The known data parameters o£ the other candidate instruments are
+ givenin Table 8.3- 13.

+ The other orbiter data handling requirements are essentially

_" unchanged from those defined for the Version III science payload in Section
+_ 8.3.z.a.

1: 8.3-IZ

,,, _++L-..-.-,L+_.+2,_G._ " : , 'i -,"_+:_ _ _ i -* _::.j_._+c_;`;F_+;_+c_'_-_+_+_+._.:`+_[_'_;m+_5_;C -- ....
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i_ ,. 'Fable 8. 3-1Z. Cost-Effective (Delayed Transmission) Data
_.=" Storage Requirements (Version IV Science Payload)

_"'_ _C |V tY,AC,[ RIQUIREM[ NI _ CC_MMENTS
;-"--i tBIlSI

:?- .............f;jC, I1A| tl l[MfTRY tJFIII jDTU) 322 560 128 BIIc,"S FOR THE42-MINUTE
• LOW*ALTITUDE PERIOD;

!) INCI.UD[S fOrmAtTED MAGNE-

t. temPtEr,ELEctrONtEMPERA-
_ym TURE, ULIRAVIOLET SPECtROM-
t- PIER, AND HOUSEKEEPING DATA

I_|EI.JTRALMA'_,SSPI!CIROMETER 117 000 25 BITS'S FOR 30 MINUTES AND
_i : .... 100 BITS/S FOR 12 MINUTES

INfRAR[D RADIOMETER 204 000 100 BITS S FOR 34 MINUTES

RADARAt llM[T[R 48 000 50 B TS,/SFOR 16 MINUTES

1OTAt 808 560

Table 8. 3o13. Orbiter Data Rates for "Other Candidate"
Instruments (Version IV Science Payload)

DATA_.CaulsmOn 8Its PER Bits PER BItS PER_>o E.ERIMEN' RANE,N S PLESECOND

eL AC ELECTRICFlttD DETECTOR -400G" 195 000 24 2.3
ee LU <4000 5 600 24 2.3
UJ (._
_Z
..I t.lg MICROWAVE RADIOMETER -'2000 250 000 ....

i:'- (/) SPIN SCAN PHOTOMETER "4000 3 600 O00 ....

< 4000 378 000 ....

[-
ALSO DURING CRUISE

**NOT AVAILABLE IN VERSION IV SCIENCE REQUIREMENTS.

8, 3.3 Tradeoff Studies

The tradeo£f studies covered the following subjects:

• Off-the-shelf telemetry equipment

• Low weight, advanced technology alternate

• Centralized processing

);?i • Memory alternatives

1: • Science interfaces.

All o£ the tradeoffs were coz,(hscted prior to the receipt af the Version IV

science requirements. The results of the eLf-the-sheLf telemetry equip-

..' : ment tradeoHs_ and the science interface tradeofZs remain pertinent, how-

_i ever. The other three tradeof-fs are less critical for the selected Atlas/

-'--, Centaur launch vehicle, because of its large weight margin.

8.3-13

I'
!,

• _ - _. ;,_---'" I_-
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8.3.3.1 OH-the-Shelf Teh'.3netry Equipment ALL CONFIGURATIONS

•".- A comprehensive survey of off-the-shelf telenlctry equipment other

than that derived from the Pioneers 10 and 11 progr,un, was conducted.

Although several provided good performance featttres_tndlow basic costs,

" certain functions were lacking such as the convolutional coder and filespin

sector generator. /m addition, the interfaces with other subsystems were

generally not compatible. It was concluded that the cost and risk advan-

tages of using developed hardware could only be realized for this type of

equipment i£the entire equipment complement Item the same program

" were used.

Since the Pioneers I0 and II DTU is flight-provenj meets _hc Pioneer

- Venus data handling requirements (with minor modifications) is cot_ipatio

ble with the DSN and other spacecraft subsystems, and is well known to

both NASA/ARC and TRW, it was selected as the preferred telemetry data

processing unit. Table 8.3-14 summarizes the results of this equipment

survey.

8o 3, 3, 2 Low Weight, Advanced Technolosy Alter_te [_ T/D Ill z_ T/D Ill

It became obvious during the overs/.1system, studies that the weight

margin for a Thor/Delta system was minimal, especially for the probe

missi3n. An advanced data acquisition and command subsystem (DACS)

was explored as a low-weight alternate. Figure 8.3-5 is a block diagram

o£ a candidate DACS.

The DACS uses "P" channel MOS LSI and TTL MSI technology to

achieve a flexible, low-weight, low-power subsystem. Key components

have been developed and breadboarded at TRW. Thc subsystem use'a the

Pioneers 10 and II DDU to demodulate and authenticate commands and a

" central control unit (CCU) to distribute commands and collect and format

I. telemetry data from remote terminal units (RTU). The RTU distributes

1_' commands received from the CCU and collects and performs analog-to-/

Ii digital (A/D)conversion of telemetry datarequested by the CCU inaccord-
i-" ance with a program stored in the CCU read-only memory (ROM). When

!_ the probes are released, the telemetry format is determined by a program

stored within a ROM in each probe RTU. Since the DACS processes com-

mands, the Pioneers t0 and 11 CDU is simplLfied to provide only special
I

I 8.3-14
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i functions, such as ordnance firing, high-level commands, and signal con-

ditioning. Other CDU functions such as thruster firing, pulse counting°

command storage, and sequencing and other DTU functions such as spin

sector determination and convolutional coding are performed by the CCU.

The key features of the DACS are:

$ Low weight

• Low power consumption

• System flexibility (modular design, ROM programmable formats),

Table 8.3-15 compares the preferred con_nand and data subsystem

(derived fro,n Pioneers i0 and ti) to the alternate DACSo Because of the

increased use of microminiaturization (P-MOS LSI and bipolar MSI), the

weight and power of the DACS are substantially reduced. However, the

DACS requires further development with the attendant costs; the manuIac-

' turing costs are similar for the two approaches. The cost salts includes

total program costs, including nonrecurring and recurring costs for the

probe bus, the probes) and the orbiter, The _730K difference assumes

the availability of the prototype, qualification, and flight spare Pioneers

t0 and II DTU's; oltty refurbislunent and retest costs are included. The

delta is reduced to _430K if thrc_ new DTUts must be fabricated for the

baseline.

.! Because of the lower costs and minhnal risks associated with the
dev_loped approach, the Pion_rs 10 and il subsystem is selected. How =

ever, the DACS remains a viable alternative for weight constrained Thor/

Delta configurations.

8.3-16
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..... Table 8.._-15. Itast, linL, v,..r_us I)ACS Cost: Tradeoffs

I

i'AKAhM lil_ ] liA!llli_l lI^_ :, IDt I IA IRC)M BAM IINI

. 1 i• i I I KIP.II I1'1 L_._ 't !l _ VI LCYt ,t ,,. it'

':.IA,i"_ I',MI'IiMAI 1/[%'11 I_P- Mt _l'_l RAIl III _¢lI OP-t._|t,)lllb'l l_MI 1'41
MINI i'|t._lll', )

_,_'[l(.:lll Kt; (LB) 1,'. 1 (2t_.,',: _ '_ {21 I ;..J 06. II .7 {I ",0} -,t._] 1-10.6} -I ,lt *-,'I.L_

PO_,': h" {V.A|IS) , 10.2 II.;' ll.2 ] II.:i -b,O -0,2

-0. OOJ
,-. _t I IA[:tll II_ tl'°_8 t 0.9145

: i<. Oh, l - ] i ,, ,,%,t31_KOR 5;30K"

_- ASSUMES PIONEERS I0 AND I I R[SIL)UAL UNITS AVAILABLLii

A comprehensive analysis of the DACS is given in Appendix 8.3Bo

8.3°3.3 Centralized Processing

Central processing was examined as an alternate to the conventional

approach where each subsystem perforxrts its own data processing° The

concept is to execute in a single processor those functions presently per-

formed in distributed hardware so that the overall spacecraft weight a.,_d

cost will be minhnized. Centrali'--edfunctions would include:

• Telemetry formatting

• Convolutional encoding

• Spin sector generation

• Command storage

• Thruster pulse counting

• Progranuniug for AV maneuvers

• Programming for precessions

'. • Progranuning for science instrument sampling
i'

't".) .... •' Science ghnbal controlling.!I. The subsystem model assunxed the use o£ the DACS (described in Section

: 8,3, 3. Z) with the CCU replaced by a faster, general-purpose processor,
. > In addition to hardware economies achieved with the DACS, the program-

ruing portions of the CEA and progranuzling portions of the affected scien-

tificinstruments would be deleted.

8.3-17

" .... :: :_. ........._..........................._c,.............:,_........................................:...................................:_'._':......... :_. ,,_i_........ - " " _ .... _ _i,_. _ ..........' :....:.....................::...-..............__ , . _ .....:,, ....... ,____-_._,_
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ii _ T/DIll Table 8,3-16 stunmarizes the comparative weight and power para-

s- _ T/OIllmeters, The weight saving is offsetby the higher nonrecurring costs,Such a radicaldeparture from proven approaches involves a development

risk, however. In general, this risk derives from multiplexing many

; diverse functionsby means of software withina singleprocessor, The
Y

conventional¢t_bsystems lose theiridentityto th¢ extent thatclassical:-_
: management techniques are no l,'- er applicable.

i
i: Table 8.3-16. Centralized versus Distributed Processing

....... I...........

WEIGHT IF, G (tB)l 14.1 (31,0) i 8.9 (19.7) 5.2 (ll.:l)

i
pO_%rt _ (_ATIS)

.: Appendix 8,3C documents additionaldetailsdeveloped in thistrade_.ff

_.. studT,

8.3.3.4 _emorY Alternative ALLORBITERCONFIGURATIONS!
The memories listed in Table 8.3-17 were investigated for use as

the orbiter data storage unit. The Pioneers 10 and l i DSU was rejected

!i because of itsunacceptably low capacity, .There are other off-the-shel_

core and platedwire memories with the capacity _equired for the orbiter

but none can interfacedirectlywith the digitaltelemetry unitor the sci-

" ence, They are allheavier than the preferred C-MOS memory andt

because of intricatefabricationtechniques, cost more, Further_ only one

input or output is available while the' selected approach is flexible and can

"._ be cort_igured as a group of smaller memoriesj thus providing buffer stor-
age lot several science instruments simultaneously, Of course it is possi-

' " alties are higher cost, weightj and power consumption, The I_-MOS offers

:!i!_.;. many of the sattae advantages am the static C-MOS but since it is dynamic
;'" timing problems i_it the speci61 buffer ,nodes, Stati_ P-MOS was not

i-i'! - investigatedbecause of the inherently high power cr_nsumption, The costs
I

given in Table 8,3-17 include nonrecurring and recurring as well as the

..... 8.3-18

I
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• ALl-ORBITER
CONFIGURATIONS 3ab!(_ 8, 3-17. Data Storage Tr_deoffs

TOIAL CO_| = pOWER"
. MEMOI_y IYP_ _kG {LE) ($K) (WAILS)

coR_
_'IONEE_S ,_ I_ _,6_3.._> N,+A 0,4ro i,_ oft rileS,ELr..ASDFUINTErFACe._N_UmCI_Nr
=0AND II CAPACITY. NEEDS THREE VOLTAGES.

EMI I I(X) 000 6.4 (14.0 630 _.0 10 5.5 OfF tHE SHE[[, REQUIRES MAJOR ML)DIEICATION OR NEW

!- INTERFACE UNIT. NEED5 THREE VOLIAGES.

HELLOS _24 28B 4.7 {10,3 ? 3.0 105,7 ADVANCED DEVELOPMENT. REQUIR[SNEWINIERFAC[ UNII.
GERMAN MADE. NEEDS THREE VOLTAGES.

PLATED WIRE

MINUTEMAN 5B0 000 7.4 (16.2 644 1.5 OFF THE SHELF. REQUIRES NEW INTERFACE UNIt'. NEEDS
i+ THREE VOLTAGES,

i": VIKING S00 000 4.3 (9.5) 655 1.5 ADVANCED DEVELOPMENT° REQUIRES NEW INTERFACE UNIT,
NEEDS THREE VOLTAGES.

MOTOROLA 768 IX)0 { 17.2 (38) 650 I .5 TO 2.5 REQUIRES NEW INTERFACE UN!T. NEEDS TWO VOLTAGES_
I

HONEYWELL 544 0(]0 i6.3 (36) 560 5 REQUIRES NEW INTERFACE UNIT NEEDS POWER

SWITCHING ADDED. NEEDS FOUR VOLTAGES

SOLID STATE

DYNAMIC 491 520 1.2 (2.7) 460 4.3 NEW DESIGN USING PROVEN TECHNOLOGY. BECAUSE OF

P-MOS TIMING PROBLEMS SPECIAL BUFFER MODES CANNOT BE

(MULTI-CHIP) SUPPLIED. NEEDS IHREE VOLTAGES.

STATIC 491,520 J 1.2 (2.7) 415 0.4 TO 3.0 NEW DESIGN USING PROVEN TECHNOLOGY. GIVES

C-MOS l SPECIAL MODES tO SCIENCE. NEEDS ONE VOLT_,GE.

(MULTI-CHIP)

STATIC 73728011.8(4.0) 465 0.6 TO 4.5 NEW DESIGN USING PROVEN TECHNOLOGY. GIVES

C-MOS JL_ SPECIAL MODES SIMULTANEOUSLY TO SCIENCE AND PRO-

(MULTI-CHIP) VIDES R.ECONFIGURABLE REDUNDANCY. OPERATIONALLY
%,'_RY FLEXIBLE. NEEDS ONE VOLTAGE.

_ _lin_mm=mim _
11

WEIGHT, COST, AND POWER COLUMNS INCLUDE DELTAS TO COVER INCREASED ELECTRONICS REQUIRED
FOR ADDED INTERFACE MODULES. COSTS OF POWER REGULATION ALSO INCLUDED.

costs for requized inter£ace u.nits, where applicable, The weight and

power entries also include intez_ace u_ts_ as required,

8.3.3.5 Science _terfaces ALL CONFIGURATIONS

The data handling subsystem can provide several irtter£ace services

to the experiments. These include:

..... • Signal condltioning

• Asynchronous bu_fer_'_g

.... • Bu£fer storage

• Analog-to-digital conversior_

• Analog muitiplexlng
i.

• Prosramming,

I.

.... 8.3-19

. .......... : . _., ..... ,:+.=,++_~u_+________ ...............................-+.::+-:..7/_;_.,,+,............ _,+:i.'++,,;,;,,.,+,7," _+ + +'
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i.

'ii:!
i_:!_ii':::_: _ Signa]. conditioning, a6ynchronous bufa[ering, and progr.:_mmin$, are gane_r_

_ M!y instrument-peculiar and, therefore m are uaL_ally performc.d by each
:. rc instrunlent. This approach is recommended for Piaae_r Vcuu,s in order

C9
E to maintain standard interfaces wilkJt the_ r_gut'_0,ll_ ease o_ irxtcr[.xce _pcci-
2

0 fication and control.
.i
--I

BuXfer storage is large and expensive, particularly when capacities

: approaching lO0_ 000 bits are required. Time sharing of buffer storage

yields obvious cost and weight advantages and is reconunended _nd included

in )ur preferred data handling subsystem approach.

Analog-to-digital conversion and analog multiplexing are functions

. which may be performed by eithsr the individual instruments or centrally

by the data handling subsystem since the tradeo£fs are not sensitive in

either direction, Modifications involving only a few boards will allow the

Pioneers I0 and II DTU to provide iO-bit resolution analog-to-digital con-

version for the instruments for both science and housekeeping data,

Because other changes to the Pioneers i0 and li DTU are necessary, this

is a cost-effective approach.

e_ 8.3.4 Data Handliu/_ Subs_rstern for Version 111 Science Payload-o"
z _ The subsystem designs discussed in this section were sized for use

_ with the probe bus and two orbiter configurations: I) a fanscan antenna

.j _ with a 31-watt transmitter and, 2) a Franklin array with a despun reflector.

_ Their sizing is also based on use of both 64- and _6-meter DSN subnets

for time periods that vary according to what the team regarded as reasona-

ble as surnptions of availability.

These designs make use of the Pioneers i0 and ii DTU and a new

: DSU. No distinction is made between Thor/Delta and Atlas/Centaur launch

vehicles except in the area of DSU packaging.

_ A/C III 8.3.4. I Probe Bus Data Handling Subsystem Description (Version III
wJ

Science I_¥ .load I .........

1T/O III
The probe bus data handling subsystem is comprised of a single

:;li_ internally redundant DTU, Figure 8.3-6 is a block diagram of the DTU.
The DTU can accept data r _ given in Table 8,3-t8, 1

8.3-ZO

:i
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_:_" channel_ ,:ire n._ed internally in the I)TU Analt)g hotts,,kt,c, pirtg d,it;t art. i

:L... accepted and digitized t- 6 bits; thr_:e channel._ ;Lr,. tt._.,d intention,ally in

the DTU. Word g_ttes ,tnd shift t:lock_ ,ire supplied to _yn,'hr-nize sel'J,tl

d.tt,I acquisition.

_ i M,_,, _,, ] ....... Dat,-i is ;:.rrangL, d ,_tl_d f,,rmatted
, _ _,, I ,,a_ ,.,,.,, for telemetry in l',)2-1}il nl;tinfr,tm('s.

i! Figure 8. t-7 depicts this frarrae for-
?

i,_, _-' ' mat comprised t,f eight 24-bit rows.

One and a half rows are used for

_ fixedword_ and a half is occupied

' ' ' ] ..... I : by the subcommutated engineering
JFOt_AAT ,_LI_I(_OM [NGINE[10NG SCmtNCt

_ ,0 suKo_ suKo_ and instrument housekeeping data.

The remaining six rows are allo-

: ....... cated to the science data. This

allocation is controlled tW external
r _ ; i ¢ i ,

• patching°
I | , I I I I I i

" FlgureB.3-L Basic Telemetry F0rmitlet Version Ill There are two principal science

.: $ciellcePaylolKI formats, designated as A and B.

'-" Each has its own patchable programming and each is selectable by ground

comm and.

Special D formats are available where the A or B format is inter-

leaved with an external source (such as checkout data from a probe). When

in a D format, _5_._xternal source is allocated every other i9Z-bit block.

This external data is not formatted by the DTU_ i.e., the fixed words and

,. subcoms are not inserted.

!_ The engineering subcom contains 128 words; each word i3 6 bits.

ii These words are in four groups designated Ci to C4, The C formats, can

be accelerated so as to replace the mainframe science data with en$ineer-

ing data. This allows a much faster engineering data rate for maneuvers

or diagnostic purposes. Science housekeeping data is subcommutated with

64 words and 6-bit resolution and is designated El and i_Z,

The formatted data is convolutionally coded (rate l//._ constraint

length 3?-)and biphase modulated on a squarewave subcarrier for trans-

_ mission, The encoder can be bypassed by ground command. The data is

°

8.3-22

°

, c/ .. _ .... - " "S..S.L_..L_ ' ": :_ . ..... _'_ " :_ - :- _ L,,=:o _ "...................... '_
.... , ....... ,, , ° .......... _,o_ .. _, "..... S ...... S': ......... -- .......
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A/C Ill [_ T/D Ill

• transmitted at one of 8 bit rates from 8 to 10Z4 bits/s (16 to 2048 coded

_ymbols per second), The subcarrier amplitude can be commanded to one

o£ two accurately controlled voltage levels to achieve two modulation

indices to optiJnize downlink telemetry acquisition and processing.

The DTU receives a sun pulse once per spacecraft revolution and

gc,_,,r,ttesspin sector pulses at four rates; one each rovolutionp one each

I/8 revolutions one each 1/64 revolution, and one each 1/512 revolution.

An overflow flip-flop is added to the spin sector generator registez to pro-

hibit the use of the first sun pulse following an eclipse (while the flip-flop

is only a requirement for the orbiter, its addition maintains maximum

probe bus/orbiter DTU commonality), The DTU also acts as the central

timing source and supplies several _lock frequencies to other spacecraft

subsystems and instruments.

The science data requirements occupy just over half the available

fraxne at 51Z bits/s; the remaining excess frame capacityp shown as spare,

can accommodate growth of the science data rate requirements. Since the

link can support 1024 bits/s during probe bus entry, a science data rate ....

increase of approximately 300 percent is available.

Figure 8.3-8 shows the recommended format assignments for vari-

ous phases of the probe mission and illustrates a possible word allocation

for Format B.

PHASE FOR_T

I, lAUNCH C

_. CRlflSE A

3. /t_,N[UVER $ (4

4. _Clt'NC_ CHICKOII$ B

5 P_8[ CHiCKOUT D3 tA'G, PRO,[ i BIN[IT1
l_4 - SMArt PROB[ I iD/v_DE f FRAME SYNC
D5 - SMAll PROeE 2 ID ......

(_ - 5_t, RIIOeE 3
Nit) AI AAASS $P[CTROMET[R

b. PROWl/RFLfASf C

It_PL RAI'UR[ PROSE

.- SP[cTI_O_ TER [

SPARE

IFORMAI' I SU_COM _NGINE|RINO l $CIINC-;--

'° I '° 1
ION MJt$$ SPFCtROMITFR

IV_$$ ULI#AVIOLll MAGN[ IL)
_ilq:c f tUOR[_CENC[ _T[R SPARF

SPAt[

- i i , i s

l:itJllrP K _ H |Plt'llltql V lOrllh11$ for Probe HI,_, VPrslon III .%[io11£o l)aylo,ld

8.3-Z3



NC Ill The probe bus interfaces with the probes in order to pruvide corn- l-

T/O III mands and acquire telemetry data for sequencing, calibration and checkout.
The DTU provides four separate serial input channels, one for each probe. _:=

There are throe internee line8 for each probe: an _utblo line to notEy _'Je ....."

probe that data is being transferred, a data line, and a chained clock Ibis. i._

The isolation shown in the DTU for the clock out-putwill preclude propaga-

tion o_ line shorts that may be causes by the cable cutters at probe release.

Figure 8.3-9 depicts this interface.

=i ........

, - "'N°
Figure 8.3-q. DIUIProte Inlerface

_AJC III 8.3.4. Z Orbiter Data Handling Subsystem Description (Version HI Science
Payload

T/D lit
I,....,.J

The orbiter data handling subsystem is comprised of a single, inter-

AJC III nally redundant DTU and three DSU's. The DTU is described in Section

w 8,3,4, t
T/D III *

A recommended set of formats for the orbiter is given "n Figure

8,3-t0. For spacecraft option ID the communications link can support

128 bits/s at end of ,nission. The principal orbiter format shown accom-

modates the Version Ill science low altitude data at this rate. The radar

altimeter data is stored and read out after completion of the periapsis

pass, The radar altimeter benefits from the use of a large buHer_ parti- I

cularly below 300 kilometers where a favorable signal-to-noise ratio !

• _ 8.3-24
;

• " :-'..... _..........".... ' - •",,"" ' " -:.:= -.... ii\. -.C".!-

00000003-TSC02



__ ALC Ill ___\ T/D III

i IAHN_ _1 L

- 4. ,,_L_ _-_- ; _ •

IHIIII' g 4 II) ()ll)lll_f ttlflll,lt'_

allows high data s_.naplingwithout data filtering.Greater data acquisition

rates can be accommodated by storing at higher rates tnd telemetering in

delayed tirncat 128 bits/s, or by using a 64-meter ground station, w stor-

...... age is used £or the high altitudedata as well as £or the radar altimeter,

axxdalldata during occultation_the duration o£ DSN stationcoverage_ is

minimized. Figure 8.3-l! presents the thateneeded'to transmit the data

assm_ing the followingdata requiroments:

• 491 5_0 (75 percent sciencc_ 25 percent housekeepit_g)near
periapsis

• 245 760 (1O0 percent science} specialmodes, probably near
periapsis

..... • 368 640 (75 percent science, 25 percent house.keeping)high
altitude.

This pro£ilccotdd vary depending on the totalscience data taken each _4

hours. Additionalstationti_teis necessary for up to _ hours £rom orbit

days i to 7i and I_5 to 144 lot the RF occultationexperiment. Several

hours are needed on orbitdays 30_ 60, 150, and i85 £or periapsis main-

-" tenance, Routine tracking is also required, The coverage neecled during

the orbiter cruise period could be minh_ized by storing rite magnetontetcr

data and tran_uxitting for a short tiaaae once a day,

For the fanbean_ orhiter spacecraft, the reduced lelemclrv rate

capability necessite'es greater DSN coverage. Figure 8.5-12 plots file

lime assunling the Iral_snlission of I 105 q20 stored bits cited above.

4
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Figure 8. 3-[L DSN Usage

W 2¢
.A/CIII

T/D III 16
16

TIMETO f EU£MLrI,RY
TRANSMIT12 RATE

" DATA _'6/_LrTER (SITS/S1

(HOURS) DSNSTATION 32
6

64METER

4 DSNST_I_ION 64'" 12S
/

_ _ - J 2_

, I * i I l0
2,_ 80 ?S 100 125 150 175 200 22_

TIMEINOniaT_)AYS)

Figure 8. 3-1Z. DSN Usage for Fanbearn Orbiter

The storage requirements are implemented by using three DSU's,

each comprised of two 122 880 bit modules. These modules can be chained

to form a single memory bank o£ _45 750 bits or they can be used indepen-

dently. In this manner, the four data sources identi£ied in Table 8.3-8

are accommodated simuib_neously at low altitudes and the magnetometer

:. (and perhaps the UV spectrometer) are assigned storage at high altitudes.

Figure 8, 3- 13 shows the storage arrangement. In the event of a DSU £ai.l-:2
:, ure, recon£iguration is accomplished by ground command. Any two of the

'I); three functions are chosen (the radar altimeter and IR radiometer are

_ �„�handledas a single function for reconfiguration since each requires half a

: D_U), Redundancy is provided for the formatted occultation period in_or-

.- mation and the nonformatted radar altimeter data (in line functions). The

_ UV spectrometer and 111 radiometer exper/ments are improved by the

***f -" availability of the added storage.

. 8.3-."-6

...................... _ ...............k_.._, .]_,_,_[; __, _,_,_,., ' _=_'_
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i

i
-_" I u_It I

_-- 1 I R...........

T
.'., Figure E 3-13. Data StorNe Conliguration

- The proposed DSU is based on a 256-bit C-MOS random access

_" memory chip. For the weight limited Thor/Delta orbiter, ten chips are?

-:. placed in a single 2_-lead ilatpack. For the Atlas/Cer_t_ur cor_iguration,

:- conventional single chip 14-1ead flat_acks are employed. Figure 8.3-14

is a block diagram of a memory module, two of which compromise a DSU.

:-- ..... The memory is organi_-ed in a three-dimensional matrix, in the classical

- manner. There are forty Z56-bit strings pec plane and iZ planes. The

__--* memory module appears as 10 Z40 iZ-bit words. During memory load,

data is shifted serially into the bu_e_ sh_t zegister with the data source

- clock, On the twelfth clock, the contents o_ the buffer shift register are

transferred in parallel to the addressed memory word. Since the address

is selected by a cou_ter6 the module appears as a IZ2 880-bit serial

memory to the "outside world."

MOR'r I OEC_OEIt

ClOCk _S£t

L- .... _ I_ tom
j.

(.. ,,,,,- _
,. lOCAtIONi ---- FLAGS

, "- a ON CHtP DECODING SEIECI"S1-(IF.2S6 I I
i _ |]_, _ 81t$ - tW_ J_R _A[MOiY CI_IIATING M_O_S

I;
flgul_ 8, _-14. Mermry MOdule Block Diagram

t: e.z-z7

....,_ . ,:*= :.: ........ _.
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I:
v_

:i':: The selected DSU is the most cost-ef£ectiw.' approach to s,ttisfying

li both the orbiter mission requirements _nd tlw Piom;cr_ I0 _nd II DTU- interfaces. The new DSU design enhances the performance capabilityof

i:- several of the scientificinstrmnents by providingmultiple and shnultane-

, ous asynchronous bufferingfor high data rate measurements. This £1exi-

bilitypermits the use of a reasonably sized communications links and

reduces ground operations time.

A/C|V 8.3.5 Preferred Data Handling Subsystem for Atlas/Centaur Spacecraft
(Version IV Science1

[_- AJCIV
The followingdata handling subsystems satisfythe Version IV sci-

". ence requirements and are sized for use with the preferred Atlas/Centaur

earth- pointing configurations,

A/CIV 8.3.5. I Preferred Earth-Pointing Atlas/Centaur Version IV Science
Probe Bus Data Handlin_ Subsystem

The preferred probe bus data handling subsystem consists of a sin-

gle, internallyredundant, mocILfiedPioneers 10 and II DTU. The follow-

ing changes were made to the DTU described in paragraph 8, 3,4, i.

• c_ Format
O

; -J>- Tile Version IV science payload higher bit rate requirements neces-

sitate a more efficient format than the Pioneers 10 and 11 DTU. The pre-us
: (_

z ferred, modified DTU uses 9i perceat of its format for principal scien-us

tific data, versus 75 percent for the Pioneers 10 and il format. The basic
_>
z format, Figure 8.I-C, is increased from 19Z bitsto 768 bits (from 8 to
O

3Z rows of Z4 bits each}.
_e

:: MJ

> The new format is sin_ilarto the Pioneers i0 and II format_ shown.J
=J
< in Figure 8.3-8, facilitatingthe use of Pioneers I0 and II integrationand

_.perationalsoftware and elindnatingconsiderable development costs.

Special Formatj-

iI' The special formats (D)are no longer interleaved with the A and B

<_ formats, as for Pioneers 10 and II, but are placed intothe mai- format.

i_._" The principalformat continues to be usedj but Z4 of the 3_. rows are over-

i! laidwith D data (rows 5to 16 and ZI to 3Z}.

/,!
'1, .-._ 8.3-Z8(
/:
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<-" ALL VERSION IV SCIENCEPAYLOAD

.[

i::_ _ Format Quantity

:_'_ The number of principal science formats is increased from two (A

'_..;:_ and B) to eight, Four will be a11ocated to the probe bus and four to the

:,,_::; orbiter, Therefore, one DTU spare is adequate for both the probe bus and
z
.... the orbiter, These formats will be preloaded in read-oniy-memories

i_ (ROM's) providing programming versatility approaching patch connectors

but with an increase in the number of formats,

Word Length

"' The preferred DTU program is not restricted by word length_ increas-

ing packing efficiency. The Pioneers t0 and li DTU had a 3-bit mainframe

word length, which caused packing inef/iciency for words whose length was

not a multiple of three.

A__n_log -to-Digital (A/D)

The A/D conversion resolution is increased from 6 to 10 bits to

accommodate the science requirements, Where less than |0 bits is neces-

sary, as for the engineering subcommutators, the word length will be

reduced. An integrated circuit, successive approximation A/D will

replace the discrete component ramp converter now used.

Analog Main Frame

Routing of analog inputs to the main frame word slots allows accom-

modation of analog science, (This is not a requirement for the probe bus

or orbiter but is necessary for the large and small probes. Commonality

dictates its availabilit F on the bus and orbiter for optional use, )

Science Subcornmutator Word Length

The science subcorrunutator word length is increased from 6 to |0

I' bits to satisfy the ion mass spectrometer requirements,

L Selectable Bit Rates

Eight commandable bit rates, from 8 to i0Z4 bits/s in binary incre-

- ments, will be provided in lieu of the range from 16 to Z048 bits/s availa-

ble on Pioneers i0 and il. The 8 bits/s rate is required to support of/

" _ earth-pointing maneuvers at extended ranges.

8.3-Z9
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I" ALL VERSIONIV SCIENCEPAYLOAD

!
L?
/.

li Multiple Level Biphase Outputs

M_tiple raodttlation amplitudes are selectable by ground command

• to permit optimization o£ the downlink modulation index.

i Spi_t Sector Generator Hold Mode

"- An overflow/lip-flop prohibits pairing of the sun-pulses immediately

i before and a£ter an eclipse. This allows smooth probe operat'_on even with
_" several hour sun eclipses.

'!: The changes are principally confined to two board types, the pro-

:4 grammer and the analog subcommutator. Only very minor modifications

are necessary on other boards. These changes result in a cost-effective

DTU that meets the Pioneer Venus requirements while retaining proven

Pioneers i0 and II technology.

The format for the probe bus, Figure 8.3-15, shows an entry for-

mat sized for I024 bits/s.

, _4 If the "other candidate" in-

.............................._ , ...... _ struments, Table 8.3-5, are both
......_..AZ'9,,I-,_ .......

= _----- _ -- added, the science data rate will

_---_-_iJ_il___ii_ I_]_i :--=_ The ove tall data rate could be in-
creased the necessary 24 bits (but

...... _ON_SS_P_CTROMm_ this would raise the rate just over

the i024bits/s standard), or the

_ DTU crystal frequency could be

_'-= _LJ_CIRON IEMP_I_TUIIE I_I0111

V':,,J,_',_.J,d._?.b:/,:._.:'.'_;_.:_?._,_;d,._::['_'_;'__ raised a few percent increasing the

2_c'EsuBc°_ _ ...... _.- ......................... bit rates accordingly. Alternatively,
R[TARDING POT[NrlAL ANALYZEII

the transmitter power may be in-
creased to 12 watts; this would,

" - however, impact other subsystems
uvspEa_oME_ such as power and thermal. Either

L . .

..... one of the two "other candidate"

- _ __ instruments could be added without

impact to the probe bus data hand-

rlqure8._ 15.ProbeBus£ntryFormat(10Z4brigs} ling subsystem.

8. _-30
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[_- A/C IV

The available storage exceeds the requireme:itsB as shown in T_blc I

8.3-19, Figure 8,3-16 also shows the preferred storage configuration.

Table 8.3-19. Preferred Available Storage

versus Requirements

- REQIJIR[ML_Nl S IMPL[MENIA IION
USAGE IBIISI IBIISI

" DIGIIAL TELEMETRYUNIT IDIIJ) 322 560 :168 640
: flNCLUDES MAONE'OMEI[R,

ELECIRON IEMPERAIURE, AND
ULIRAVIOLET DATA)

NEUTRAL MASS SPECTROMETER 117 000 172 B80

ION MASS SPECTROMEIER 117 000 122 880

INFRARED RADIOMETER P04 000 24S 760

RADAR ALTIMETER 4fi 0{30 122 850

TOTAL 808 560 983 040

The totz,1 bits 983 040, are supplied by four DSU's, the fifth is a

._ spare. Recon_iguration is accomplished by one of five ground commands

which shift all five units to a new "position." This same cow,hand tells

" the DSU whether it is in a single module or chained modules mode. A

sixth and seventh command place the DSU_s in the high or low altitude I

configuration. The DSUts are in the read-in condition except when con-

- trolled for read-out by the DTU.

_' Figure 8,3-t7 gives _ periapsis pass in operational termsB illus-

: ".rating the use of the DSUIs.

The available telemetry link assumed is 64 bits/s, Data is stored

for 4_- minutes at low altitudes and telemetered later. Except during

occultationsj the magnetometerj electron temperature probe0 UV spectzo-

meterp and housekeeping data can be real time telemetered while the other

• periapsis storage take place. The 342 minutes shown to dump low altitude

" dataj however, includes this formatted data. While the stored data is

): being read out to the ground_ real time data is being interleaved so that

::'iT no data is lost. The eight commands are stored_ relieving the ground ofmuch routine effort, Only the dump commands have to come from the

ground. While these could be storedj the stored command programmer

located in the CDU does not know when ground station availability exists.

' A more detailed discussion of the operational sequence is given in I

8.3-3Z
.. _-._ ..-- .... :'? _ -'-,---.-,-'_."_b.'_--- _..'; "-'?':._-.. " " ": - .---- ......-_ ......._

° _" " " _ ...................:.. ...... . : . : ° ° _,,-'_ ,iiiiiTllil..................... i
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" _,"_ A/C IV
" .7" HJ

" 7

_, |0 HOURS [_,JNt/_AG[ ---_ 14 HOUIS NO C_N LJS,IkGE-----'_

//6_ MINUT_ _|- U_K AN(_M_L_FLLANF_I_'5 _V|TL-HI(_ TIMF_

'._" _ /IS_MINUUSl_DUMe.'_,A_TITU_S_O_Ar_E
/ / /42 MINUT[_ IOW PLTIIUU_ 5TOll

__"_ _ // / /, 34_ MINU1,S TO nLl,, LOW ALII'UD' S' OliIAG'// / / / /{lle MIN_T$ ItlGH ALTITUrIE STOIll;

Jl LtGEND

- UAIA SIOIIE

_._" J _ _ OAIA DUMP

, . /-" ............... _'_ //'% _ STOREDCOMMANDS

I" (

d

NO|ES
/
I TELFMEIRY LINK - 64 III/S

REAL-TIME INTERLFAVED
-21 *17 -O-6 T_OMINUILS 6 8 |7 _1 WITHDUMP
L__L._ , 1 L I I _.... _--J

/_\ SWITCH MAGNETOMETER AND ULTRAVIOLET.%_._fRO/_ET[_ TO HIGH DATA RATES
SWITCH DTU TO LOW ALTITUDESTORE FORMAT (INCLUDES M,,GNETOMETER, ELECTRON
TEMPERATUREI_O|Es ULTRAVIOLET SIq[CT|OMETER, ANO, HOUr':KEEPING)

BEGIN STORAGE FOR NEUTILALAND ION MASS SFECTROMEIERS

./_ BEING STORAGE FOR INNMEORADIOMEIi_it

//_ SWITCH RAOAPALTIMETERTRANSMITTERON AND I_GIN STORAGE

/_ SWIICH NEUTRALAND ION MASS SPECTROMETERS10 HIGH DATA RATES

2_ SWITCH NEUTRAL AND ION MA_S StIEC1ROMflEIH, 10 LOW OAtA RATES

/_ SWITCH RADARALTIMETERTILIt_ISMII"TEROFF

• _ STOP ;'TORING INFRAREDRADIONqETERDATA

SWITCH DTU TO HIGH ALTITUDE FORMAT
SWITCH MAGNETOMETER ANDULTRAVIOLET SFECTROM_ER TO LOW OATA RATES

STOP STORING NEUTRAL AND ION MASS _PEC_R_T_IS

_," Figure8.3-17.OrbiterDataStorageTimelfne

: section 10. S. 7, and the command storage is described in Section 8.4. The

formats derived for use with the subsystem hardware and operational pro-

cedures outlined are given in Figure 8.3-18.

As shown in Table 8.3-13, the other candidate instruments are not

...." _ well understood at this time. From a data handling viewpointR the AC

• electric _ield detector could be added with no perceptible impact. The

impact o£ the microwave radiometer also appears to be negligible.. The

l_ scan photometer, however, will more than double the daily data. The
spin

_i I_ effects o_ the added 3,978, 000 bits will depend on the sample size, amount

- _/" 0£ storage in the instrument itsel_, and operational procedures. The photo"
t,

i_',i_ meter could be interleaved on every other orbit, £or example, or one or

{!i two more DSU's could be added and continuous ground station coverage

employed.

' ,ii

8.3 ..33
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8.4. t ,Introduction and _S.,.urnmary ALL CO_IFIGURATIONS

The pr_f_rrad command subsystem design provides cost savings by
r

_- ._ using 1light-proven Pioneer# tO _rd AI hardw._ze (either a_-i_ oZ' wi.th

. minor modHications), wh'ch is highly reliable and flexible in its applica-

tion. It consists of tile digital decoder unit (DDLI) and the command dis-

" tribution unit (CD_), which process and distribute commands throughout

the spacecraft and to the probes prior to their release.

The DDU and CDU consist of subassembly "slices" contain:,.g

printed-circuit boards that facilitate modification of specific functions to

,: meet new requirements or provision for growth. The key features of the

proposed design, summarized in Figure 8.4°I, include:

• The DDU and CDU are redundant, the latter internally redundant
in a single package.

i y_:_i],. • The DDU from Pioneers 10 and 11 can be used without change.

_'_!_L::}I! • The modifications required to the CDU involve the addition of onenew slice, the redesign of an existing slice, and minor modifica-

• The increased ordnance firing requirements of Pioneer Vet, us as
0°I:- compared to Pioneers I0 and 11 are accommodated by adding a

slice containing the necessary firing circuitry. This is the most
cost-e_£ective approach to adding the required capability, and the
small weight penalty is acceptable for the Atlas/Centaur mission.
The majority of the additional ordnance firing requirem._nts
derive from the experiments and probe release operations.

:_ The following sections derive the mission r_quirements imposed on

_ the command subsystem, disc.usa the tradeo_ analyses that were per-

formed to select a cost-eHecti_re implementation, and describe the dgtaLled

preferred cor_igurati0n recorrtm_:nded for the Pioneer Venus program.

ll- .. 8,4,2 Rec_uirements VezsusCa_abilities

o _,: The £unction of the cor.unand processor in the Pioneers tO and tt
k _

_i._ "' CDU is to decode, process, and distribute real-time commands upon

_:i.'- receiving digitally coded signals from the DDU. The three type_ of real-

I: time commands are:

I

00000003-TSC14



A/C III _- A/C III

• Discrete pulse

• Discrete state

• Serial (routed to the DTU, ADCS, command memory, and to the
probes)

The existing real-time capability is adequate to meet all the Pioneer

Venus requirements for the probe bus and orbiter missions without modi-

£ication. Figure 8.4-1E surnmar:_zes the number of discrete commands

required by each subsystem, Appeudix 8-4A provides a detailed com-

mand list.

Provision must be made to command each of the four probes via a

separate bus/probe interface connection (umbilical) during prelaunch test-

ing and again during preseparation checkout. Approximately nine com-

mands are required for each probe.

The serial command function of t_. CDU offers a convenient method

of implementing these probe command requirements without impact to the

existing design. Eight routing destinations are selectaSle wi_h the 3-bit

routing address in the command message. Spare_ are avail, able, one of

which may be assigned to the probes. By activating and commanding

only one probe at a time, the single routing address serves all four

probes.

In addition to these real-time command requirements, the orbiter

mission requires a command memory capability, permitting storage of

commands for execution at a later time. Table 8.4-| defines these

requirements. Four commands are provided to arm and fire the solid

i_i rocket motor for Venus orbit insertion because the spacecraft is occulted

by the planet during this critical operatiou. The timing error of the

motor firing should not exceed approximately 16O seconds minimizing

the perturbation to the desired orbit.

An additional requirement is to protect against premature, as well

as late, motor firing that might preclude achieving a satisfactory orbit.

Independent redundant time delay computation circuitry greatly enhances

.... the reliability of this operation.

8.4o_

L
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0 0 0 0 I A! A 2 R2 I (:1 C2 C3 (:4

PREAMBLESYNCROUTING _J _ ] COMMANAD_,ss OECO=R R1Q h C) t'31
^O_,RESS"l C)R,C)_'_t

ROUTING ADDRESSCODE

Rt C) R2 C) C21
R1 R2R 3 R1C)R_E)c,(

0(_0 NOT USED
001 CDU REAL-,rIMECO_MAt_." (; (DISCRETECOMMAND)
010 CDU COMMAND MEMORYt COMMAND
011 CDU COMMAND MEMORYt TIME
I(X) DTU SERIALCOMMAND DATA (8 IIITSI
101 A_ SERIALCOMMAND
110 CDU COMMAND MEMORY,, TIME
I|1 leR_llESERIAl. COMMAND

i

C PIONEERS),0AND1| OIOIIALOECODERUNIT D SUBSYSTEMCHA

SUMMARY
DESCRIPTION

NUMBERUSED

DIMENSIONS (CM)

J WEIGHT _KG)

POWER_AT,r ¢,I

DERIVATION

REQUIRED
MODIFICAT IONS

tOI,,DOU
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E 03,VWIANDR[QUIR[M[NISSUMMARY

COMMAND I L[L [WICALbl_ll(_SUTi(_i_" _ 21 [ 24

OqSTRIBUTION / |2 L 20

AT DAT/_ Hht IC_LIT'iCJ i 10 i

L COf,_t/O_'-dlCAT]Obl¢, 6 I 24 4 i 12

THERN_AL := 6 _ 2

f _lp" = " "" _'_ SCtENC, 16 I 29 ,0 i 6._c: i .....

CDU CAPABILITY 41 I 177 41 177

_pAI;_S l? i 43 27 i 79P[RCfiN | USED 58 . 76 74 55

,, , t 1

I

- T . _'' 8.4-3
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A/C IV

Table 8,4-I. Command Memory Requirements

TOTAL PROPOSED

..... £_£CUTE COMMANDS CAPACITY SPARE_
COMMAND NAMt MI,SSION PHI SE TIME REQUIRED OF NEW

(MIN) IN MEMORY MEMORY

ARM ORBIT INSERTION MOTOR ORBIT IN,_ERTION P-O, I
i

ARM ORBIT INSERTION MOTOR P-0, I

._ (REDUNDAN T) 4 16 12

FIREORBIT INSERTION MOTOR P-O

IFIRE ORBIT INSERTION MOTOR ORBIT INSERTION P-O
(REDUNDANT)

LOW ALTITUDE STOKE.FORMAT SELECT EACH ORBIT P-21

STOREINFRARED DATA J P-17

RADARALTIMETER TRANSMITTERENABLE P-8
=: AND STOREDATA

NEUTRAL AND ION MASS SPECTROMETER P-6 8 16 B
TO HIGH BIT RATE

NEUTRAL AND ION MASS SPECTROMETER P+6
TO HIGH BIT RATE

RADAR ALTIMETER TRANSMITTERDISABLE ji P+8

HIGH ALTITUDE STOREFORMAT SELECT ' I P+21

/

! /

Ô�@�„�Thespacecraft is occulted for periods up to Z0 minutes during peri-

apsis passage for the first 70 days in orbit. Stored commands reconfigure

the instrument operating modes and the data storage formats during this

period of high scientific interest when real-time commands cannot be

transmitted. Approximately eight commands fulfill these functions.

Timing execution o£ these events is less critical than the motor firing; an

uncertainty of Z minutes is acceptable.

The existing Pioneers 10 and 11 command memory in the CDU has

the capability of storing up to five command messages and their associated

time delays for later sequential execution. The maximum time delay

capable of being stored in any given slot is 83Z0 seconds. Each command

is executed sequentially after the associated time delay relative to the

execution of the previous command in the stack. The resolution of each

incremented time delay is iZ8 seconds for time delays between 384 and

83Z0 seconds. The existing memory is not redundant.

A tradeoff st ,dy, evaluating alternative approaches to meet the

more stringent Pioneer Venus requirements, is discussed in Section

8.4.3. i.

8.4-4

t
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8, 4. Z, Z Ordnance Firin_ Circuits _A/C III A/C Ill

Table 8,4-Z iden_.ifies the ordnance firing function requirements

--" applicable to the probe bus and orbiter spacecraft, Twenty-two firing

;= circuits (including redundancy) initiate the scientHic instrument and

"-': probe disconnect/release ordnance, The orbiter has IZ circuits to

:_ accommodate rocket motor ignitionR ram platform release_ and several

experiment functions. Since the existing ordnance firing system has only
..

- four circuitsj provision must be made to augment this capability to meet

the new Pioneer Venus mission requirements. Several implementation

7 approaches are evaluated in Section 8.4.3.2 and a preferred configuration

:- is recommended.

Table 8.4-Z. Ordnance F_ting Requirements

..... ELECTRO- FIRING ACTIVATION- METHOD EXPLOSIVE CIRCUItDEVICE

• ORBITERSPACECRAFT

_ NEUTRALMASSSPECTROMETERtON I PiN PULLE_ 2 2 ORBIT
SOURCECAP EJECTION

"" ULTRAVIOLETSPECTROMETERSUN I PiN PULLER 2 2 CRUISE
:: COVEREJECTION

..___ ELECTRONTEMPERATUREPROBERELEASE I PiN PULLER 2 2 CRUISE
:: RADARALTIMETERANTENNARELEASE 't PiN PULLER 2 2 ORBIT

FIREORBITiNSERTIONMOTOR I INITIATOR 2 2 VOI + o

.. g) _ RAMPLATFORMRELEASE I PIN PULLER 2 2 ORBIt
- Z O FIRINGCIRCUITS:6 PRIMARYr 6 REDUNDANT,12 TOTAL

....
•1_ _ PROBEBUSSPACECRAFT

_: "" e_ 5 ULTRAVIOLETSPECTROMETERSUN I PIN PULLER 2 2 CRUISE

(.9 COVEREJECTION

ELECTRONTEMPERATUREPROBERELEASE I PiN PULLER 2 2 ORBIT

•_: O NEUTRALMASSSPECTROMETERiON 1 PIN PULLER 2 2 ORBIT
U SOURCECAP EJECTION

..r _ LARGEPROBEDISCONNECT CABLECUTTER 2 2 E - 25 DAY

_ LARGEPROBERELEASE 3 BALLLOCKS 6 2 E - 25 DAYT_

_ ._-_' SMALLPROBEI THERMALSHIELDRELEASE 1 PIN PULLER 2 E - 21 DAY" 2
.:.- _ _ SMALLPROBEDISCONNECt CABLECUTTER 2 E - 21 DAY

..... SMALLPROBE! RELEASE I PIN PULLER 2 2 E - 21 DAY

_!;__ SMALLPROBE2 THERMALSHIELDRELEASE I PiN PULLER 2 E - 19 DAY
2

. SMALLPROBE2 DISCONNECT CABLECUTTER 2 E - 19 DAY

_! SMALLPROBE2 RELEASE I PIN PULLER 2 2 E - 19 DAY

• ",T'_. SMALLPROBE3 THERMALSHIELDP,ELEASE I PIN PULLER 2 F - 15DAY
2

" SMALLPROB|3 RELEASE CABLECUTTER 2 E - 15 DAY

_" SMALLPROBE3 DISCONNECT I Pt_I PULLER 2 2 F - 15DAY

FIRINGCIRCUIT._: II PRIMARY,II REDUNDANt,22 tOtAL

.)2
8,4-5
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8.4.2, 3 Thruster Firing Counters ALL CONFIGURATIONS

: The preferred roaction control system for the probe bu_ _nd orbiter

_-" provides eight hydr_Lzine thrusters: four axial thrusters for velocity and:..

.precession co,ttroland four transverse thrusters that may be used in a

pulsed nlode _or lateral 5V corrections (allowing the spacecraft to renlain

_ in an L,arthopointing attitude) as well as for spin and despin control.

_- The CDU should be equipped with thruster firing counters to indicate

•r- the ntuuber of firings performed by each o£ the eight thrusters I_taddi-

. tion to the counting capability, real-time telemetry shotdd indicate when

_= the thrusters are firing,

•-- The Pioneers I0 and il GDU includes counters for four axial thrus=

:., tars, which count a maxin_mn of 64 firings belore recycling to zero. For

::. the two spin control thrusters, however, the unanlbiguous counting caps-

: bilityis limited to two firings. The counting circuitry is activated when

i_ a pressure switch in the thruster propellant line is closed0 indicating a

_:" firing condition. When the pressure switch again opens, the thruster

I_ counter increments by one.

:!- The addition of four firing counters for the transverse thrusters

:L'_- (identicalto the existing counters associated with the velocity/precession

li;i_ thrusters) is proposed to satisfy the new requirements.

8.4.3. i Command, Memory ALL ORBITERCONFIGURATIONS

The limitations o_ the Pioneers i0 and ii command memory cir-

cuitry (five commands and associated time delays), timing resolution

(IZ8 seconds), and lack of redundancy led to the development of a new

_i and more flexible design to meet Pioneer Venus mission requirements,The new design of the stored command programmer:

i_ • Allows for reasonable growth in conunand assigmnents.
:_::,_:: • SiJnplifies and increases the flexibility of the ground operation

_::':_I procedures during the orbiter flip maneuvers and routine orbitaloperations, and if used on probe bus, during sequential probe

tii release events.

• Minhni'--e0 the need for periodic mandatory real-thue commands Ifor each orbit cycle.

8.4-b



-- ALL ORBITER CONFIGURATIONS

• Is approximately equal to the cost of modLfying the existing

design,

• Provides redundancy with little increase in cost.

A detailed technical description of the i_referred design for the com-

mand memory, incorporating the capabilities and features discussed

above, is given in Appendix 8.4B. It is based on a random access C-MOS

men_ory (25bx2), which may be loaded in a random order with a maximmn

of 10 discrete commands and associated time codes. The time code pro-

vides a resolution of _ seconds with a ma_n_m_x delay og 36.4 hours.

The redundant 32-kHz clock signals from the DTU provide the inde-

pendent timing sources for the master counter in each half of the stored

command programmer. Thus, late execution of commands (or failure

to execute) due to single-point failures in either circuit is precluded. A

clock frequency detector circuit is incorporated to ild_ibit operation o_ the

progranuner if the clock has _ailed in a mode that wou.ld incroase the fre-

quency and cause a premature corrm_and execution,

S A/C III 2 Ordnance Gircuit8.4.3. Firing Augmentation

T/D Ill Table 8,4- 3 sm_unarizes the key tradeoff considerations that were

developed in evaluating four inxplement_tio_ concepts satisfying the
- II:D..A/C III

increased requirements /or ordnance firing circuits,

_T/D III

Table 8.4-3. Ordnance Firing Circuit Tradeoff Smmnary

II

DELTA I DELTA'OPt ION CONC [PT C HARAC TERISTICS Vv [IGHT" COST

kG _LB) | ($000)

.... | USE EXIS|ING PIONE['.,;S 1O AND i I CAPACI/OR DISCtIARGE ! IRING *0.45 (_0.9B) J 4b

SLICE AND ADD A NEW SLICE CIRCUIIS; INDEPENDENT Oi 1.... BA1/ERY

2 REDESIGN EXISTING PIONEERS 1O SAME AS OPrlON I -U.47 (-I.03) 50

AND |l SLICE. 10 USE THE 28-V1_C,

BU._ TQ CHAR(;[ CAPACIIOR BANK

3 DEVELOP N|¢* SLICE DESIGN TO RU,,1UIRL$ A BATIIR3 IO IIANDLL -0.42 (-0,0.1) 55
ElSE RELAY,_ ,HAT FIRE ORDNANCE LARGE CURRENT PULSES

.... DIRECTLY FR,.)M 28-VDC BUS I
t

4 DEVELOI'NLV,;_LICI.PESlGNTO SAMIASOPTION3 -0.60 {-I.3..}} t 52
Lib[ SCR's |IIAT f IRE ORDNANCE I. . DIRECTLY FRoM 28-VDC BUS

I I I

J 'VvEIGHI ANDCOSI'iNIRIESAR[ RELATIVE TO |liLt LINM()IH|IID IRIS|IN','; PISIGNS. L'(_blh ARI ISII&tA}(|'_ ICqAI

PKJ,I(;RAM ,COS| DLLTA'::s (3 UNITS).
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_ _ A/C II! Option i consists of retaining the existing ordnance slice and adding I

a new slice containing the addition_ _iring circuits required. The weight
[_TID Ill

_ and cost are increased slightly compared to the Pioneers 10 and I i

A/C III cortf._gurationo

_'-- _T/DII! The second concept involves redesign of the existing ordnance slice
to permit charging the capacitor bank directly from the 28-VDC bus.

Elimination of the associated transformers and charging circuitry results

in a small net weight reduction but at somewhat greater cost and design

risk. This approach retains the capacitor discharge techr_ique used suc-

cessfully on Pionee#s tO and llt with the important feature that operation

is independent of battery degradation or failure. The new design allows

for growth and includes provision for interface isolation circuits between

the CDU and the probes.

• Options 3 and 4 are designs based on relays or silicon-controlled

rectiliers (SCR's} operating directly from the Z8-VDC bus, omitting the

capacitor bank for energy storage. This method places the battery

in-line to support the transient load and increases the filter/rig require- [

ments for units interconnected with the primary bus. Both options were

rejected for this application because of the cost and risk associated with

a new slice design and the potential impact on EMI filter modifications to

existing units.

Option I is our preferred approach for the Atlas/Centaur configura-

tion because cf the low cost and risk, and an acceptably low weight

penalty (0.45 kilogram).

Option Z caters to the stringent weight constraints imposed by the

Thor/Delta payload capability, while minimizing the redesign effort.

8.4.4 Pret'erred Subsystem Design [_A/C,V [_ A/C IV

:_I _he preferred command subsystem consists of the Pioneers iO and

_i!I." II DDU and CDU interconnected as shown in Figure 8.4-2. A detailed
description of the configuration is given in the following sections.

,. Two redundant DDU's. identical to the Pioneers tO and II units. ] "

ful£illthe cotlu1_and denxodu/ation requirementc of both Pioneer Venus

missions. The 8-bit coflunand is attthenticutedby using a 4-bit par._.ty

-:; 8.4-8
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A/C IV [_ A/C IV
I

8.4.4. Z Command Distribution Unit I
,

i The key features of the CDU, consisting of subassembly slices con-

taining printed-circuit boards, are suntm_trized in Table 8.4-4 and

Described as foliow_.

Ordnance Firin s

The ordnance firing sTstem {Figure 8.4-4) for rocket motor arming

and ignition and various experiment and probe release functions is con-

tained on two slices : one existing and one added to handle the increased

requirements. This system includes redundant charging circuits and

capacitor banks that provide power to fire ordnance devices, minimize

batter 7 requirements_ and ensure probe separation in case of batter 7 fail-

ure. Primar 7 and backup ordnance must be ignited simultaneously for

Table 8.4-4. CDU Configuration

t I

SPECIFICA'T!0N 1SIZE: 20.4 x 17.8 x 25.4CM
(8x 7x 10IN.)

WEIGH]: 4.5 KG (9.8 LE)
POWER: 2. I WATTS

PREVIOUS USE: PIONEERS 10 AND I I

CIRCUIT TYPE: LP-TTL MSI

REDUNDANC Y: IN TERNAL

NO. OF SLICES: 9

III I II

MODIFICATION SLICE WEIGHT
NUMBER KG (LB) DESCRIPTION

ill

MINOR I 1.36 (3.0) ORDNANCE - CAPACITOR DISCHARGE FUNCTION

MINOR 2 0.45 (0.99) HIGH LEVELOUTPUT CONTROL/SEQUENCER

MINOR 3 0.45 _0.98) TELEMETR¥CONDtttONING::UNDERVOLTAGE,;
THRUSTERCOUNTER

i'! MINOR 4 0.35 (0.76) SIGNAL PRESETCONTROL, TELEMETRYSIGNAL
CONDITIONING

NONE 5 0.34 (0.74) LOW LEVELOUtPUt NO. I

E NON[ 6 0.34 (0,74) LOW LEVELOUTPUT NO. 2
i

NONE 7 ( 0.38 (0.84) COMMAND PROCESSOR
I

N[_'_ : 8 1 0.34 (0.7,1) COMMAND MEMORY PROGRAMMER (INCRLASE
_": CAPACITY)

I-! NLV, 9 O.,I5 10.9')1 ORI.')NANC[ OE FIRING EIP,CUITS, ISOLATORS,1 ' I

i':' i COUNIERS
.t_" ,

, :":

' _.4-10
i'

i'
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• THE ARM SIGNAl. CONNECTS THE AC POWER SOURCE q)EACH ORDNANCE CIRCUIT CAN FIRE UP TO SIX SQUII$
ANO CHARGES CAPACITO|S SIIWUL[ANEO_Y wITH ENERGY FROM ONE

• CAPACITORS FIRE THEORDNANCE WEN 1ME SCR CAPAClIOR lANK
SWITCHESARE 'IRIGGERED • CAPACI[OR CHARGE IS MONITOREO 8Y I'I_LEM_I'IY

• RECHARGEOCCURS WITHIN _0 M/S • SAf F./ARM SWITCH STAIIIdlSALSO. MON|_OII_D

FlgumlL4-4k Ordalncefiring Systm

release o£ the large probe from the six ball-lock _etention mechanisms to

avoid a tip-off condition• Delayed firing of redundant ordnance for the

remaining functions is not required and may be bypassed.

The number of required firing circuits is minimized by parallel

_" combining functions that occur simultaneously azLd do not interact. For

i!;_ ,.. exanlplc I the small probe thermal shield release and cable cutter actua-

ii';,*i" tion _re initiated by the same trigger circuit, 3t_ficient space is _vaLt_-
ble in this added slice to accommodate the increased quantity of thruster

firing counte rs.

8.4-11
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_A/C IV _,_. A/C IV

Output Control Logic

A third slice contains high-level output control logic to perform the

colmnanded switching functions and a sequencer previously used to ,_uto-
Z-

rnatically initiate post launch functions prior _o c_tablishing the command

- link. The sequencer is not required for the Atlas/Centaur l_unched mis-

sions because the Centaur stage establishes the desired spacecr,_ft spin

rate and orientation° However, sh_ce the weight penalty is insignLficant_

it is recon_n_ended that the circuitry be retained to avoid the expense of

i.: its removal and to meet future requirements that may arise.

Signal Present Detection

A fourth slice contains signal-present detection circuitry to auto-

..., mati_aÂ_y switch antenna inputs to the appropriate spacecraft receiver
r,

., (after a preset interval) to preclude a lock-out condition in case of

receiver failure.

! .. A limitation of the Pioneers lO and 11 CDU design (which resulted

in either a 36-hour or 72-hour period, depending on the previous position

.... of the transfer switch) has been corrected. Replacement .of the existing

_: solid-state toggle function with a simple logic function that monitors the

!- transfer switch position ensures that the preset delay remains invariant_

regardless of the initial position of _he switch.

The overvoltage sensing circuit monitors the 5.3-VDC power input

voltage to each command processor. If the h_put voltages reaches

+6.2 volts on the primary input voltage sourcep the sensing circuit auto-

_ rnatically switches to the redundant input voltage _ource so that the corn-

_. mand link will not be interrupted.

This slice also counts thruster firing pulses and delivers real time

telemetry indication of when the thrusters are _iring. There are 64 thrus-

• ter firings counted before recycling the counter back to ze,o and starting

...._:i over again. Provision is made to equip each of the eight thrusters with

,)il-} this capability.

(. Supplementary Functions

A fifth slice performs five more functions : signal conditioning, 1

overload control, power reset, overvoltage sensing 0 and thruster pulse

counting.

8.4- i)_

_c_--__:._--:_,,..-.-:- ..... _................::._ .--.=.......:. _:i_:i_'_'_"_ , ,, o _ , _ ..... _ o.., _,_,.. ,, ,__ ,, o, ,.
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• • The signal conditioning circuits in the CDU provide signal comp_ti-

bilitywith the digital te!emetry unit {DTU) input characteristics. Each

_- signal conditioning circuit consists o£ passive resistor circuits, Two

types el signal conditioning are provided, thermistor conditioning using

voltage divider resistors and switching event signals using current limit-

ing resistors.

The overload control function turns off certain spacecraft loads in

the event of an overload condition to the spacecraft _nain DC power bus.

The loads turned off in sequence are s:ience, data storage units (DSU),

ACS to standby propellant heaters, and then the transmitter. The sensing

of an overload condition is performed within the power control unit (PCU);

an overload condition exists when the main DC power bus voltage falls to

26.5+0.5 VDC for a time period of 200_I0 milliseconds. The above loads

are turned off automatically by the CDU and remain off until restored by

ground command.

The power reset circuit is designed to reset all bistable functions

: in the CDU to a predetermined state. This function occurs during the

initialapplication of power from the 5.3=VDC source. The power reset

function can be simulated in flightby _round command.

Command Procee sing

The command distribution unit (CDU) command processor, Figure

8,4-5. decodes discrete commands from the associated DDUp processes

them to produce user-compatible outputs_ and then distributes the outputs.

Both processors are contained in a single slice and the outputs are cross-

strapped for added reliability. In the event of a failed command proces-

sor (A or B), the redundant processor must be addressed via the associ-

ated DDU to obtain a serial and/or discrete command output £rom the

CDU.

A new slice contains the command memory, which stores up to

16 discrete commands and their associated time delays. In addition to

the primary functions described in Section 8.4.3.1, it can also be used

as a backup to stop maneuvers in the event of a malfunction.

Table 8,4-5 st-nmarizes the CDU modes o£ operation. A £unction._1

block diagram of the CDU modified £or the Pioneer Venus application is

shown in Figure 8.4-6.

8.4-i:

_._.
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A/C IV

Probe ].nte trace

Each of the four probes operates under the control of the probe bus

prior to separation for sequencing, calibration, and checkout. The com-

mand interface is comprised of three lines: command data, clock, and

execute, as illustrated in Figure 8°4-7. Isolation is provided between the

probes and the probe bus, as shown, to elimir_te a possible electrical

shozt condition from occurring when the u_bilical to a probe is severed

by the cable cutter prior to separation°

i CO_NDOATA TO - , i CO_.DDATA UI---

co_,.D c,oc. _o_

_M t ,-

PROCESsoRCOM_NDCLOCIK IIFA [ '_v I_l
P ¢ "'1

CO--NO _1"* _ A I .',
v ,j IJ

'-'l l--
_ CROSSSTRAPP,NO

l

-- SMALL
'--J, J, no,,2

-¢ g
° ONE PROIRCHECKEDOUTATA m,_
• SHIELDEDWIREI_DUCESINTERFERENCE

* ISOtAtOIS ELIMiNAtE_OIIS AND ALLOWS
ALLIHIIEEWIIIEIN;I[IIFACECOMMON TOALL -- --

,_s --0- ;':.; *J
,L

SMALL

_._ "--I X-- ,ROU, _,:_: ij

F_E _S

COI_ND Ol$11111UlrlONUNIT

Figure&4-?. CO01Pr_Inlertl_e
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r'

:.. _.-_ ATTITUDE DETERMINATION AND CON'I'RO!, SI.IBSYSTEM (ADCS)

".L'i t_. "q. 1 lilt rocluct ion .ind _lll_ltll_L!'y

l.'igttrt, S. q-t _ulnnlnrizt, s lilt' basic inlornl;tlion on lilt. ADCS Iha!

Ilan boon dt, fitlt,d for lilt, pl't, fcrrod Atlas/Centaur probe bus and orbitt, r

car'r\*ing tilt. V(,rsion IV science payload.

The rues! important characteristics of Ibis ADCS from the cost

point of view is that it is derived directly from the flight-proven

l_ionocrs I0 and I I ;ind Intelsal Ill progranls and uses a singi., sub-

system design for both probe bus and orbiter. This commonality per-

mits a furtht.r cost saving on spares since only one type of spare is

needed for n giv¢.n component, Preserving this commonality means thai

some functions art. provided that are needed for only one mission and

consequently are unused on the other; examples are the circuitry to

generate small probe release signals, conscan logic, and ram platform

tnctor control logic. The cost of these unused functions is minor com-

pared to the savings effected b v commonality of design.

The requirements analysis indicates that attilude determination

and control accuracies in the 0.017- to 0.035 radius (1- to 2-degree)

range are adequate; this degree of accuracy is readily' achieved without

the use of sophisticated attitude referenc¢'s such as star mappcrs. The

relatively low accuracy requirements stems in part from the use of

sequential probe release, which has been adopted to permit entry of all

probes with the desired zero angle of attack. From the attitude control

point ofview_ sequential probe release is advantageous because high

spin rates are not required, with their associated stringent requirements

on release attitude.

Attitude determination is accomplished by a combination of sun

sensor outputs (both sun aspect, and roll reference) and one of three

different RF sensing techniques (two of which impose virtually no weight

or power requirements on the spacecraft); each is used under appropriat¢,

conditions, as outlined below:

8.5-1
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• Doppler Modulatioz_ _.,..
!

Rol;ition of the offset onlni antenna

abouL tit., _pin axis produces a doppler
modulation taroportio_m! to r ain 0and /"" "x"N
allows the groulRt sllttion Io estitnate O
with good accurncx- for vahtt-s of Onot
in the vicinity of n/2 r.td (q0 deg).
This technique is us_,d on hath prohc
bus and orhiler when lilt. earth direc- ';4t. i
tion is not nlore than _-1 radian from /

the aft (negative) spin axis. " I
(B

• Doppler Shift

A deliberate axial _V maneuver typi-
cally I meter/second) produces a

doppler shift proportional to AV cos 0, -.. _av
from which the ground station can esti- tl .4

mate (/ with good accuracy for values _N -.1
of O in fiat, vicinity of 1r/2 radianB A(90 degrees). This technique supple-
ments the doppler modulation technique f-. _
for cases wh_,t'e the earth direction is
near 1r/2 radians, and also for deter-
rnining the Venus orbit insertion atti-
tude (at which time communication is
through the on-axis forward omni
ant enna).

s Conical Scan (Conscan)

When the high-gain orbiter antenna is
pointed at the earth, a measure of

liH _PIN

pointing error is determined onboard t,N_ *_,_
from tilt, modulation of Ihe uplink AGC

voltage produced by rotation of the _M,_,,t,,,tI -_j :
MIt'II_I'ILAIION | _ |l |'"_ "_'le &NIINN_tilted antenna pattern about tile spin : ,,t,.,

axis. The onboard determination of "'. /_ PA.tRN
tWO angles is bascd on this modulation
con_l)ined with role reference pulses
from the sun sensor; the two angles are
telemetered to the ground, where point-
ing error is contputed and appropriate
conlnlands transmitted to correct the

error, An alternale mode of operation
_. iv provided, in wldch the attitude con-

trol pulses are computed onboard
without ground inl_,rvention.

i .................. ,i ¸ ,, ,
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A KEye)£SIGNFEATURES
_ANSVFR_
I_RUSTER

/ ATTITUDEDETEP_tlNATIONAND CONTEOLCONCEPTSHAVRRE_IN FUN
_ _ _z • __. St._CRSSFULLYPIIOVEN ON PIONEERSIOAND n SPACECRAFT

A,,AL__ ALL_CSH_OWA...,SD.,VED.OMeX,.,NG..,_.T-_O_N "
IIHRUSTERS EQUIPMENTWITH MINOR MODIFICATIONS

i

THRUSTER PROfilERStO AND I l GIK_UND SOF_YARIAND MINIMIZ§ A_AI_ION .
REQUIRF.MENTS

/ _ _r " , ," _L_%_, /_ CPIOGARDPROGRA._AMINGCAPARILITIE'$FORAUTOMATICR,XECUTIONOF
/ , \_| .... " • _ /// IL /11tANSVEIt_ MANEUVERSEQUENCESMINIMIZE DEffNOENCY ON REALTIMECONTROL
/ ,_'_'_,_ , _; _ . _i;iDY X THRUSTER FOR CRITICALRVBNTS

/ _\ _ _ _, /_J_-,/_ / _ SUN_PECTSENSOIIDATAFKOVNDESC.4kPAIIUTYFORiN-EUGHTREACrioN
._/_: .'_ C_NTI_L SUBSYSTEMCALImATION

___*. _ " " !_ SIMPLE,RELLARLE,ATTITUDEO_Er,MtNAtlON APPBO_tl, I_SED ON SUN
ASPECTSENSORAND DOPPLERDATA, MEETSREQUIREMENTSOF ALLCRITICAL

, _ MANEUVERSAND EVENTS
CON._,AN SIMPLIFIESATTIllJDEDETERMINATIONAND CONTROLIN ORBIT,

_'1_ k" _ " _ , J _,/ NUTATION TNU5REDUCINGTO A MINIMUM THEENGINEERING S1JPPORTREQUIREDFOR

_,_ DAMPERS(2) OREItASIONS

SUN SEhlSOREAND CRITICALCEACIRCUITSAND EUBASSENBLIESARE
IIRDUNDANTFOR ENHANCEDRELIAIILITY

_ANSVERSEI _..J_T- -o-'fl,_"I P _],_ _.,_- \ FAVOIABLESPACECRAFTMOMENT-OF-INERTIARATIOSAND PASSIVESPINsTAmluZ*T,ON.'_AC.,'UCLUDE,NS_*m,L,.R,SKSA.DCBO.-
COUPLEDDYNAMIC PI[OBLF,MS

.//_ _SS_RS_"_ _ THRUSTER CHANGEsNUTATIONwITHINDAMPEROPERATINGFREQUENCY_u_GEsTUNiNGINSENSITIVETO SPiNS_ED
_o_ .... ).. .VD_Z,Ne
ELECTRONICS SUN T _,
ASSEMBLY SENSORS .A.,K_

REQUtREM_I'SVERSUSCAPABILITIES

IPIIOL__ ACCLIRACI|S(30)

.OU_R_BNT C_ARILI_

TT.ANSVERSE
THRUSTER

RAM SPIN SPEEDCONTIK)L

PLAT_OP3_ 0.41_ RA_/S (4.1)ItEM) NOMINAL SPEED I% 0,1 TO 0.5%
DRIVE

2.m4 RN)/S (_ FtA_)
LARGEREOIERELEASE 3% 0.5 TO 1.0%

1.047 RAD/5 (10 RPM)
AXIAL SMALLFROIRRELEASE 3% 0.STO I.O%

THRUSTERS 6.28_ RAD/S (¢OItPM) PROBE|US ENTRAP" 3% o,_ 10 I.O_

SPINAXIS ALTITUOEDETERMINATION

CRUISE-k_IDCOURSEMANEUVBIS 0.0_6 (I .$) • 0,024(I.4)

PRON D|PLOYMENTRETARGETING 0,042 (2,5) _0.035 (2.1)

FEOREBUSENTITY 0.009 (0.S) 0.003 TO
(0.30TO 0,32)

ANTRNNA POIN_!NG
0.257(15) • 0._13('_I)

CRUISE

PROIHEIt,IS |NTEY 0.017 (1) <0.14 (O.B)

(SI_G) VELOCITY INCRE/V_NTDISPERSIONS

TI_ANSVERSE M_COUIL_ MANEUVERS 0.0_ (2) < 0.026(|.S)

THRUSTleR RRTAROETINGMANEUVEI_ 0._2 (3) < 0.010(|. I)

THRUSTER

SIGNAL |X ._qlM_NT POINTING
PROCESSOR HYORAZINETANKS CRUISE 0.rt_.2(3) (0.028 (I.7)

ASSEMBLY TRANSVERSE FROERBUSENTRY 0.017 (t) 0.014(0.E)
THRUSTER

SENSORS

PEOIRDEPLOY/_NT ATTITUDR

SPINAXISORIENTATION 0.042(2._) <0.{T_,'_(2.1)
RELEASE$Plfl AN[ "! 0,_9 (0.5) 0,007(0.4)

I
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_A,c,v_l-A,c,v

Figure8 _,-I, AttitudeDeterminationandControl
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_A/CIV The data ralc rwquircnwnts of 111¢, Version IV science payload for

"]_i _'* the orbiter l_.d 1o lhe need for a hi,,,h-gain antenna. It would have been
_--A/C IV

possibh, Io provide the required gain with a despun reflector antenna, but

an earth-pointing spacecraft wilh fixed anltmna was chosen because of lh,,

..... considerable cost. saving (over _1 million). This saving takes into account

the gimbal mounting of the ram instruments required with the earth-

poir_ting configuration. In addition to the cost saving, there is a lower

risk factor, because there are no potential bearing problems or instabili-

• ties due to cross-coupling, with the fixed-antenna, earth-pointing con-

figuration. The science aspects of the earth-pointing configuration were

.:'. covered in Section 3.

Another point worthy of special mention is the sun sensor selected

for the ADCS; this is an off-the-shelf design previously used successfully

on Intelsat III. It has the advantage of providing both sun crossing pulses

_ (as a roll reference) and sun aspect angle (for attitude determination)

from a single instrument of simple design. It is planned to take advantage

of sun sensor data to perform in-flight calibration of the reaction control

system, thus effecting a considerable saving in ground testing costs.

_ The calibration can be carried out at the time of the first midcourse cor-

rection and will reduce thruster impulse uncertaimies to the g to 3 per-

i cent range. This is more than adequate for all pointing requirements,

including the doppler shift attitude determination technique mentioned

above.

" The remaining sections, 8.5.2 through 8.5.6, cover respectively

.... the requirements anal):ses, concept selection tradeoffs, the details of

i the preferred design summarized above, subsystem performance, and

the science interface.

_i 8.5.2 Functions and Requireme1_ts, 1977 Probe Mission,
Version III Science Payload and Both Thor/Delta

• and Atlas/Centaur Options

rrUj

uuo The attitude determination and control subsystem (ADCS) provides>z

...... _ capabilities for performing the following funclions:

• Attitude Delcrmination. This funclion generates da_a from which
the inertial orientation of the spin axis can bc determined on lhc
ground. Also, a spin ang|c (roll} reference is required onboard

....._ b7 the science _.xperimenls and for timin_ attHudc control
thrusting and small probe dcploymcnl.

8.5-4

I,, "tl .............................. '
I" k

00000003-TSE09



ALL VERSION III SCIENCEPAYLOAD

• Spin Speed Control. This function is required for initial despin
(Tlisr/D-bq[a Configurations), nominal spin speed mairdenance,
spin-up/despin for orbiter deboost maneuver, and probe bus
spin-up prior to entry. Additional spin-up/despin z,ctions may
be required during probe-bus retargeting maneuver_ to reduce
velocity dispersions caused by cm offsets. A set of redundant
hydrazine thrusters (parts of the reaction control subsystem)
provides control torque. The ADCS provides valvc control sig-
nals, the duration and number of which are selectable by ground
cow=mand.

• Spacecraft Precession. Spacecraft precessions are required for
maintaining the desired cruise and orbiter attitudes and reorient-
ing the vehicle for velocity corrections and probe deployment.
The ADCS provides signals for thruster operation and includes

_i:_ a programmer to automatically execute an open-;oop sequence
:_I of precession maneuvers for velocitycorrections and probe

deployment.

• Velocity Control. The ADCS provides signals to time the opera-
ties of the RCS thrusters to produce axial or transversal velocity
corrections. Axial velocity corrections can be executed as part
of an automatic sequence, including precession of the spacecraft

to the desired orientation for firing and return to the initial
- position.

e Small Probe Deplo_rment Control. S_.gnalsfor initiatingsmall
probe deployment are provided to the separation mechanism.
Delays relative to spin angle reference signals are adjustable

by ground command.

Table 8.5-I includes a more detailed listof functions and presents pre-

liminary estimates of accuracy requirements.

Table 8.5-I. Summary of Attitude Determination and Control Requirements

I_O1_ 8U$ OWBIItR

.... ACCUIt _V REMA_.$ ACCURACY I_MA_KS
(3a} (3r_

Spil'_SPEED CONIROL I I_RCLN1 0._0 tAD $ _4,8 RPMI FIO_4tt'IAL t FERCEN! 0,,_0 RAD _ (4.6 I_PM) NOMINAl
SPE£0 SP£EO

3 PtlCC|NI 6.28 I_AD. $ (60 RpM) PROB[ BUS 3 P[RC£NT 6 .] _ _ AO 5 (_ _ t_ _ O _ _ _1
ENIteY INSt_TION

5Ptl_ _XIS ATIIIUDI C.026RAD {I .5 DiG} CIqUI_IE-MIKOURSE MAN_LIVI_S 0076 RAD II. ) D|tJ_ CRUISI=MIDCOiJRS[ MAN[UVF_5

DEIEKMINAIION ' 0.01/RAD (I.0 DIG) _O|[ DIPLOYMINI - 010_ RAD _ 0 DIG} _R_ I I IN _1R 110 _ _
• RETAIIGETING

0_I_AD(O._iD_G) PROII[BU._ENTI.1Y AIIITuDE 0,OITI_AD(I 0DEG,) SNOI_RIT

HIC_t,H.(._AIr4 At41ENNA O(_F RAD (_.0 Olq_ CRUI$[ O,0,1 r, NAD (_ .O DEG) CKtJI_

POJNIINOILA_TH 0 017 RAD 11.0 D[(_) _OBE BUS [NIRY 0 01_ IO tl 0]0RAD IN _BIT
A_IP_I C,Ot_PONEN1) 109 TO I ; D|f_}

V|E(JC_IIV INC_I-_I;,dY _ 05_ I_AD (3.0 n[Gt I_[IARG[ llfq(_. MAN[UV_i_'_ LII05_ RA_ (3 0 Df(_I OR_ll II tS_RIIC)N

IH_tUOING _Jy I'_IA_AIC
EFFI[C I5)

EXI'_EIMEN| POINTING 0052 flA(_ {3.0 DIG) (.glJISI 01_ 2 ;lAD {3 _ L)FG] _UI_,t

0.(I[I?RAD (0.$ DI.G) Pl_O_l. I_U_ LNIRY UO_3 WAD (t.O bl(,_ IN O_BIT

'_ _O[II_ Dt_FIOyM_rP,!_ 0 0;7 _I) (I 0 D_G} 5Pft,_ A_I3 U_ILNTA_IC_N
AIIIIUD[

0,C0? _AD {0.} Dr%9 SPIN ANC._I gll i&S[

I_I_PUN Wfl L[CTo e 'l).013 k_A(_

_()IP411HIJ (_0)5 DIG)
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I-
A similar situation occurs with mo_t experimcnt_ As ;_n t,x_mple,

: _ta_ Figure 8.5-3B shows the maxinmm allowable attitude t, rror_ for a given

a:_-_- ram experiment pointing error. Here, as well as in Figure 8.5-3A,
tuZ¢

_-O_ attitude deviations are assumed ahou! the sun lint, which is the direclion

'_0_-_. of rotation typically ast_ociated with drifts indueod by unbalanced solar.II_Z
.,1_0
<Cmtj pressure.

_ 8._.3 Functions and Requirements
_- O

>" Since Version IV science payload configuralions are based on Atlas/

w Centaur launch vehicle systetns, no initial despin max._uvers art. required.

Prior to launcf,, each Centaur guidance and control system will be pro-

_ grammed to prove.de the required vehicle _ttitude and spin rate (after

_, engine cutoff) so that, after separation (and magnetometer deploTment, in
O

the orbiter cases)j the nominal cruise spin rate is attained.
I:. LLI

> Table 3.5-Z is an updated version of Table 8.5-1 listing require-,=J
-4

< merits for attitude determination and control for the preferred

configurations.

Table 8.5-_-. Attitude Determination and Control Requirements

I I

ACCURACY _EMARKS ACCu_._ ¥

_ I )PIN SPE_DCONI'OL I _RCENI 0.50 RAD S ,4.8 RPM) NOMINAt I _RCEN/ 0.50 RAD $ (4.8 RPM) NOMINAL
_PEt_ SPLID

/ 3 P_,_CENt 2.09 _.ND 1.05 RAO $ (_0 AND

I0RPM_PRORERELEASES

_1PERCEN; 6. _1 _:A(_ S (60 RPM) PROBEBUS 3 PERCENT 6, ?_ _AD _ t60 _,PM)ORal t
ENTRY INSERTION

_PIN &XIS ALTITUDE I 0.0_6 RAO il .5 O(G) : RUI_E-MIDCOURRE MAN[UVER_ 0.0_6 RAD _1.3 Dt_._) QRUI_-MIDCOUR_[ h_ANEU_/EK

D|IERMINhIION 0.044 RAO (2..5 DEGI PROfit DLPLOYMENI - 0.044 RAD _2.5 [_,_('. ORBIT INRtfCTION
RFIAK_tTING

_1 0._09 RAD |0 $ P_'-_ PRC.IB(BU_ (N IRY A| 111Ula_ 0 0IP RAI) il.O D_G) IN ORIel/

HIG_I*_AIN ANTENNA 0,;/62 RAD t l5 OEG_ CRUISE 0. 070RAD (4.0 DEG1 C_OlS[

PQINTIINO 0.009 RAD (0.5 DEGI P_OBT BUS [NIRY 0.017 RAD (I.0 DEGI IN ORBIt

v_tOCIl_r INCRIMENT 0,0_2 1141)1.3.0DIG1 KETA_fG(TING MANEUV|R._ 0,057 RA_ (J.0 D_GI O_Bll IN_tRTIQN

_ I DISPERSION' (OVEllAt_" 0,_$ 'AD (2.0 DIG. MIDC OU'SE MANIUVER$ 0.1_k_RAD (_. 0 0, GI MII_ OUS_,.OR,,I IR,M,! IN_ t UDING DYNAMICtfF t_ IS)

[XPENIMEN1 PCqNTING 0,052 RAD (3,1) 0[_1 KRUIbE 0,(_' RAO 13 _ DtGI ! CRUISE

0.017 g_O 11.0 D[GI PRORi _US tN|RY 0.035 N&D {_.t) I)_G) I IN Ofl_ll

P_IIE D_FLOYMENI J 0.044 PAD 12,5 DEG_ SPIN AXIS ORIENPAIION
I, AITITUD_ u,009 RAD 10,.$DI_) SPIN ANC, L| _[EL_ASE

I•::J'-- POINTINGDESPUNREFLECt'OR - t0.013 RAD
{ (tO. 75 _EC,_

:,,?._ The probe bus spin speed has been raised to 2.09 rad/s (Z0 rpm)for

, '1_ large probe release and 1.05 rad/s (10 rpm) for small probe release to
_" reduce subsequent probe processions caused by solar lightpressure.:Ii

_.I{ Entry spin speed is specified at 6.Z8 rad/s 160 rpm).

_,=- 8.5-8
!; ....
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-- O,,g/CIV In lhv proforrod earth-paintin_ orbilor configuration, the maxinmm
allow;d)h, _pin nxis pointing orrors for tlloeting cotaatnunicalions requiro-

:_ monls do not dopolltj t)tt cL, l,-,stinl gootnolry, an in lho case witl) fanbeam

ant t, ntl_'llq.

L
Atliludo t, rror litl_it_ o_tahlish_d by radially pointing scionct, _,xpori-

ntt, nt._ are functiOllS of earth position ar.dp consequently0 of li111t,, as _how_a

in Figure 8. 5-4 f(Jr tht, rant experiments.

(ILA0t iOEGI

°- ......'W• /f_\_
0.012 - 3 .......... _ ..... _-

/

! 0.017_.o /

0 40 go 1_0 tim ,,'_¢ 240

TIME _|LII VENt,IS ORllIl INSEgTION IDAYS_

Figure 8,5-4. Maximum Attltu_ [mrs Aliomd by Ram [iperiments

o Guiding criteria adopted for the ADCS design selection are to usect

_i ° existing)" flight-qualLfied hardware wherever possible and to provide:
: _ • Electrical interface accommodation

w • Growth potential

_> • Commonality of probe bus and orbiter vehicles
Z

i °
-- _ • Flight operations flexibility°n"

LAI

> Commonality with Pioneers 10 and 11 hardware also implies corn=

_1; _ monal_ty with Pioneers 10 and tt software, which is an additional feature

_.:_:i providing potential cost savings.

_: g. 5.4 ADCS Concept Seh:ctton Tradeoffs ALL CONFIGURATIONS

':_.-. :
_" Traduo£f studies were performed to select optimum attitude deter-

I
I
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ALl. CONFIGURATIONS

configurations. These studies included:

• Sel¢_ction of attitudL, control concept, and thruster contr_l
approach and hardware

• Seh_ction of attitudt, determination approach and equipmen!

• Selc, ction of antt_nna despin control concept and hardwar(,

• Definition of maneuvering strategies for probe deployment and
retargeting, and periapsis maintenance.

8.5.4.1 Thruster Control Tradeoffs (All Configurations)

The reaction control subsystem (RCS) selected for Pioneer Venus is

identical to the Pioneers 10 and 11 RCS except for the following:

• The Pioneers 10 and 11 thrusters will be declustered to avoid

plume impingement problems, and radioisotope elements will
be replaced by resistive heaters. This change is being made for
FLTSATCOM and will be available for Pioneer Venus.

• Two additional thrusters will provide a fully redundant spin/
despin capability. Redundancy is also needed because the spin/
despin thrusters will control velocity.

Various approaches £or providing thruster control were surveyed,

including those used in DSCS-II, Intelsat III, Pioneers A through E, and

Pioneers I0 and II. The Pioneers 10 and II control electronics assembly

(CEA), with minor modifications and additions, was preferred because of:

e Similarity of design requirements

• Better performance and cost effectiveness

• Compatibility with power, data handling, and command and
telemetry subsystem

• Minimum design changes.

The CEA is described in detail in Section 8.5.6 and attitude control

performance data are given in Section 8.5.8.

8.5.4. Z Attitude Determination Tradeoffs (All Configurations)

At least two celestial references are needed to determine the

inertial attitude of a spacecraft. For Pioneer Venus, it is necessary to

define the spin axis orientation and to provide a spin angle {or roll) ref-

erence. Table 8.5-3 summarizes the reference alternatives.

8,5-I0
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Table 8._-3. Attitude Dvt(_rmination References and Sensin_ Approa(:ho_

(The arrows indicate approacht,_ preferred for Pioneer Venu_)

I I oBAB III I --

_ltt_lttt I [ ?)IH'qNL ) &iq_)A_. It I-H4,_, ,) AM I)A_,_,_*il IIt:!_ _ _[t'J,A) t, '_¢_| Abtll_l L) DII IN[I_ i

*" " t - 4 --

5HIq I, ji) Fil_ i , APAI_U IT_

_t)H ! O
I _Ul_.I A_I)I.c I '_I:N%L.I)_ INIII_A_ I1t !_LIN A*dq'* I +_IIL );llLat(',L_l

I _f FAITI_I4 5IAKC I)lr,_C; t'll_f4_ tRb t, | ANIH ANPb. I Kt_II_1% 'J'A_ I_ _) I

LAI;|H i HPtlt4k _ON:)_AN [ A_'.,_ AF¢ PI_.')NIIIX!_ !(I _1_11) II I AKTII &!,l'h 1 At,It, PI'A!,_ , !,_)t,l_:l', _ _r_llt, )_I<1, I_,'llll'&_it 11i

fAN_ AN

_OPPL|K MOOLIL_IION PIONLLI_ ILl LA_IH AbP_t.I AND PHASt )_1_1)-I 5 AtJILNNA _ t 5

_1_ f_I_PP_)_ _.A5 _. 050 J 5IA£ A._IMUI'¢ AN[_ I,_I_L)IR[_DAIA PROI_ _.SIN_)
_t._vAt|ON

• SIAR_. $IAR IRACKER M,Id_INER; f,.)AO / _TAR GIM_AL ANGII:S R_._LII_[_ [L[CI_IL AL

/ M_HANIC AL C-IMP+At tIN(_;

L I / ,, ,

Sun Sensors

Since sun sensors provide by far the most reliable and inexpensive

attitude reference, they have been selected as primary sources of attitude

data on all Pioneer Venus configurations. We made a detailed survey of

available sun sensors) including more than 12 units, and rejected those

with extremely limited fields of view (FOV)) or those applicable only to

three-axis=stabilized spacecraft. Of the three potential candidates that

remained) the DSP sun sensor was eliminated because, due to its small

_: linear aspect range, it could not be adapted to Pioneer Venus without

extensive modifications. The Pioneers 10 and 11 sensor was re.iected

because it has no aspect measurement capability at all. The Inteisat III

sensor wan preferred because it yields both roll and aspect information

over its entire FOV) and adaptation to Pioneer Venus requires only

minor changes. By a simple change of slit configuration, the FOV can be

easily moved from the 0.45 to ?-.70 radians (Z5 to I55 degrees) to the

0. 17 to 1.92 radians (10 to ll0 degrees) aspect range required by Pioneer

Venus. Although the Intclsaf III sensor in nonredundant, two units weigh

and cost loss than a single sensor from Pioneers |0 and li. Table 8.5-4

summ&rizes the salient design characierislics of the candidate sun sen=

sots mentioned above.

.z..x.

":" 8.5-11
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Table 8.5°4. Dt'sign Characteristics uf Sun Sensor Alternativv_

Pt )v,t_ All 0 J

.... i J

_.IN_ _ % tIANNt t_ _ ANB 30NL'I' NO NO NO

..............i- ...........................L........................................
ROLL RtFtrttt._,;.t _AD 0.OI7 TO 2.8;9 }: O.331 |O 2.809 0.4a6 I',) 2."05 0.175 TO | .920
FOV ,DEC.J (I TO 16b) 09 10 Id51) 25 TO I)JA (lO l,.) I tel

_OLL RLFI._,LNCE RAD "001; "_0.002 _0.007 . 0.003
ACCURACY ID[G_ _ I) J (_0.4) (f0.4) ("0,2)

_i-OR Vlft\'_ AI'-|C,tE _O 034 RAD) 1

... A_,pEcTFr"¢ RAt) I.,483 1"O 1.658 0.4L]6 ,O 2.705 0.1,3 IO, ,2° I
(DEG_ (85 10 9.5) (25 TO I:)$) (lO TO 110)

.... ,¢LSf'E(|A(-_URA(.Y i ICAJ_ - _0,012 *0.004 _O,C_I_

Li0tOl __ - (,0._) (t0.25) _:0.3_

tAT NULL)

REMARKS [ NO ASPECTMEASUREMENI NO ELtCTRONIC$ NO ELECTRONICS NO ELECTRONICS

CAPABILIJY

_ INCLUDES ELECTRONICS m_m_mmJmlmJJ_m _ _V'T_'PE SLIt

Earth Aspect Measurement Alternatives

The earth was selected as the second celestial reference. Earth

aspect angle measurements, when used in conjunction with data provided

by the selected sun sensor, are sufficient to provide complete attitude

determination except in those instances where the earth and sun lines are

nearly parallel.

Figure 8. _-5 illustrates the principle on which the antenna pattern

searching approach is based and shows a typical maneuver sequence for

repositioning the spirt axis perpendicular to the earth line. This method

is applicable to the orbiter configurations flying perpendicular to the Venus

.. orbit plane. Its main advantage is that it does not require any onboard

equipment, but it has the disadvantage of requiring a significant amount of

ground support, particularly when solar pressure effects require frequent

attitude corrections. It is considered a backup to fanscan or conscan

techniques.

The oriemation of the spacecraft about the earth lint, can be esti-

mated on the basis Jf measurt, ments of downlink signal polari_ation.

8.5-12
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,: _. A PAtlTRNS[ARCHPRINCIPII BMAN[UV[RMRAIIGY

, l'_,,l,,I ¸, L,i ,t ,Xf'lf-_lt-_. tll_t'l:u;ll llil lil_.i_ _.AirJ t'1 _,F ',I(;f'JAI ,1_1 t4_ .III

,_A, 1. ,, _.,_,,,r._,,',lil.t,_'.*_.tl;_l ',f_trJ_ h_,il" Ii:_f_T, -' ir_'.i Ihi _rllll,l_l,',tl_,_l ,i_lll ,',_, L,I _ _IVI_St PNI41'.'.k)filll_c_t_L;ltSIt,l,_AI P:A_ A/'Jllh_
_, _._I_ i _,_,_ I,,_llJIif,_, i_l.:l_ tl,'t_. ! lib (IN _l,l'l_*_lll ',IDI {'(_lt#,JI .,,, Pltl,,t_

,.ll, ,),. _. DtIRAI It_l_ ¸

I41 _IVIN'II I_.'1( I'.'.hll_4 AfJI)l_lll'd ,_ .'11_1'.

ICLIPIIL_ PtA,'_{ _- ._ll'"_tl " I It.l_ DrOP tN

--:_ _ ., II_I CF S ION

' .... .......
i 14,0 ()1 O _

fIRtH _ ....

IAi_lli 4",rlCI &Nc;II t'4N I_ PIC,%II'I 0{ {l!ltRl_tlNIll ! KC]_.I lift l{It_,ll-l_41N _tNll NNA PAIII_N V',llltlkl I._NI-IINIII O!

1H| H.%ll °p(_%li_ IttAI_>,II'iIH Ittt SPII_!-A_I'i _f_l_ll,%TIOl_l I_, tlRM t_._Kit|('|ll'l INI _ttN A',Ptt'! lt_ AllAII_I Ifll Ol_ll_ll_

AT 1 IT .'L)t NL_MAL t O 1_1 5,PAC[ CtlAi I -'>t'l_i i I1_!, . II_l C_l_ll iG IRAT ON_ _11 I D[SPt_N tll f I [(IOR, 1111 _t _[ I I .V,

!!; I _;[Ct_T[ L_i'O tltlCT IH( SPiN A_,IS Nt?_/,_,%L TO Tiff IA_Tli IIi_! . TillS[ I_ICLS_IONS A_I I'fPICA|I'I A_C!tll 1tit _tlN I If_l,
,', _tK. tl I_ Tilt Dl_t C! iON t_l L)lllf I I_Cllt;t'l I'l I_'_ tll_l_AI ANt I t) _,OI AI_ t'l_l _,LIlll 1ORt,)i. li._, c'%11_(-OMPtN_>_I ION M'%_
81 D[M_AB|[ 1_ MINIMIZ[ IN! fill Ci IINE'Y t_F C_R_rCTION_ Ilfc_LIIR[D lt_l ¸ I_ItlFT. |tli I_IIOPItlAI_It Ct?NM,k'IPII('_N PtI_

MANt t _V[ i# _t_tl[ NCt ,%S 11"4 B iS c._N l tlL Ot_tlt I_ _t 0.01 k G t OR | It! TtI(_!4 DI I |A _R#IIt Rf, _ND 0.(ll kid FOIl Tltt

ATLA_ C[N1AiAft CON_ 1OllllAltl_3N'l. 11ll llCliNIt)t:l I'; C¢_N_IDtIII I) I(_ BI -%_ACkLiP TQ t,%NIS(_N (_R _.X>NSCAN,

• Fioure8.5-5. Attitude0eterminationandControlByAntennaPatternSearching

Corrections for Faraday rotation are necessary because deviations for

S-band signals can be as high as 0. 175 radian (t0 degrees). These coz.-

rections involve measurements of free electron density along the com-

munication pat]i, which are not feasible at all times because calibration

sources are not available (i,e,, spacecraft with known attitudes at the

right locations) or because solar activity is unusual. Under favorable

, ionospheric conditions, accuracies on the order of 0.0i7 to 0,026 radians

(I to 1,5 degrees) (3_) may be attainabh with calibration, Because of its

disadvantages, itis not considered further,

Up]ink conscan (used on Pioneers I0 and Ill is directly applicable

to the probe bus spacecraft and the earth-pointing orbiter oplion. The

principle of operation and functions performed by conscan are discussed

briefly in Figure 8, 5-(JA, Uplink conscan requires an offset antenna

(inlplying aboul I dB of signal loss) and signal processing onboard (con-

scan processors are off-the-shelf i]ems wt, ighing about 0.5 k K and

r_,quiring about 1,2 walls), Two advantages are that i! l) requires mini-

. , real ground soft:ware developnlenl and 2) grt, atly sinlplifies altitude de]er-

minalion and control operalious, Downlink c'o_scan also requires an off-

sot antenna on ]lit- spacecraft_ btll altitudt, t, rrors are computed on the

8.5.,13
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ALL CONI IGURATIONS

ground. TLis method has not been used previously and requires new

ground equipment or more ground software, but may be attractive as a

potential backup to uplink conscan.

Uplink fanscan is identica.l in principle to conscan, except that it is

implemented will1 an offset fanbeam antenna. This approach is applicable

to the orbiter configurations with the spin axis perpendicular to the earth

line. A brief description of the principle is given in Figure 8.5-6B and

more details on design characteristics and performance can be found in

Section 8.5.8 and in Appendix 8.5A. Downlink fanscan is also a viable

alternative that m_y be attractive for backup purposes.

The first use of doppler effects for attitude determination is believed

to be on Pioneers I0 and II. Figure 8.5-7 discusses principles of opera-

tion and shows ranges of accuracy attainable with each approach. More

A. DOPPLERMODULATION (RAID) (DEG)

, o.o."I llJl0.024 1.4 .....

EARTH LINE _" )_ 0.017 T,_

'_ _=O., .. I
,, DOPPLERSHIFT

. _1 ,,,,,._ _._ 0.010 0.6

__ 0.0O7 0.4

VI_ AV 0.003 0.2

EARTH LINE
0

O0 20 dr0 60 80 t00 (BEG]

i ASffCT ANGLE

I I _ I I l
0 0.35 o.7o 1,05 1,40 1.75 (RAD)

THE EARIH ASPECTANGLE CAN R DETEIL_IINEDFROM CHANGES PRO_ULLD O_ THE SPiN ON THE

J_r- FREQUtNCV OF RFSIGNALS FROM AN OFFSET ANTENNA. IF THE SPIr.] AXIS 15_tSALIG_i/) FROM

-= THE EARIH LINE (BY ANGL_ ae), THE DOWNLINK S|GNAL IS FHQLll t_CS-Mr DULATE(_ A1 THE SPiN

FREQUENCY, WITH THE MODULATION A/_PLITUOEA FUNCTION CT _e' '.VITH THE"5PIN A_I_ N_AR

THE EARTHLINE, DOPPLERMODULATION CAN PROVIDE AltITUDE INFORMATION WITHIN 0.009 PAD

(0,5 DEGI, |UT ACCURACY DEGIU_ES RAP|D(LYFOR ANGLES GREATERTHAN |.05 RAD f60 DEG) AS

i: SHCWN,
D(_PPLER_HIEI_ CAN AL_O BFI_EO FOR AT|IT|_D[ D_|[RMINATI(_N WIIH ANGLE_ NI AR 1.57 PAD

(9C DLG_, BUT A AV MANEUVER IS REQUIRED. THE COMPONENT OF VEL(?CIE¥ CHANGE ALONC.

Tit[ FARTItl IN[ IS(:8TAINE() RY I_(]PPLERMEASLIREMENI, AND ftl_ RAT_ _ (_r TIltS C(_MP(_Nf_;T T(_

Till pltI:[)l( TID VALUE (_E THE MAN_U*VI:REXEEUTi:D GIVES THECO_INI (_l- IHI ANGEl _{TWI_N THE

SI_IPI AXIS ArJI) tllI ',PAI:I ( I.IAII-IARIH l INT. IHI_ A|IIIUDE f)f I[P-_41NAII[!N ILL IINIIJIII IS ML'SI

SLflSITI_,,'EAT SPIF] AF++_IiS t_J('_MA[ t() THE EARTHIIN[, AS SH('WN. I1 tS PI_[IrtI'I_PIIt It" IIc+t

(_.(PpI[R SHIFT('d_llV It4 TlA(Ir,[ IN_TAN/ I_ WHEREA AV I_, IC_ _[ l_ll _ITID iMl['*(( tl_r_l", PlRIAP%P,

MAlt ,lrH_,l'W[. ('_ rp( nt RFTAROiT MAN[UVE_H T( _ MINIMI/t (_PtRATII'NAI C{'_,_PII_T'Y,

_ f=qu_8.5I. I_pplerMeasummentofEarthAsl_ctAnqle
/;
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u_ detailed error analyses are presented in Appendix 8.5B One of the mainz
O
V- advantages of attitude determination by doppler measurements is that no

" onboard equipment is required. The DSN ground stations are needed for
t$

doppler signal analysis, but results are quickly obtainable with only simple

_ processing of data. to all Pioneer VenusDoppler techniques are applicable

-J.j configurations, particularly during probe deployment and velocity correc-

tion maneuversj where omni antennas are used.

Star Mapper s ALL ORBITERSPERPENDICULARTO THE EARTHLINE

Star mappers were considered for obtaining higher attitude deter-

mination accuracies if needed because of new requirements or changes in

design ground rules. Star mapper operation is based on star aspect

determinations by measurements of the transit times of stars across two

slits. Some of the key factors considered in their design are star availa-

bility, spin rate range, sun/planet interference, and shade size and weight

c onst r aints.

A survey of existing and proposed designs revealed no instrument

directly applicable to the Pic, neer Venus missions. On the assumption

that developing a light, simple new design might be more cost effective

than modifying an existing one, various configurations were examined to

:. assess the impact of FOV and detector changes on shade size and weight,

star availability, and sensor performance. The following preliminary

: requirements were established:

.?: • Accuracy in the 0.009 to 0.017 radian (0.5 to 1.0 desree) range
- I_vithout.pr.oc.essing).Reducing accuracy requirements to this
"' range mlmmlzes aperture, shade size, and star availability,
:- and software requirements.
7

• Use of..su.naspect data for attitude determination. Only one star
is required in FOV

-i

-_" • Northern hemisphere view in Venus orbit. This view minimizes

__. p_anet interference and shade requirements.

_?- • Nominal mapper operation restricted to orbit phase. This

__ restrictic)nsimplifies the star avai_abJlity problem and allows
operation with at least one star of visual magnitude better than
+l.0 at all times, Some degradation of performance in other

_' orientations is assumed acceptable.

- Figure 8.5-8 shows design data corresponding to four design

examples based on the assumptions listed above. Inspection of lhe data

8.5-16
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ALL ORBITERS PERPENDICULAR TO THE EARTH LINE

.... A ;0NSHADE CONFIGURATION

' l A_RTURi

7

'L. _- LT

:- B SUNSHADEDATA
i' _ DI MMEST

FIELL_OF STAR APERTLIIE SUN
i ='--- DETECTOR VIEW DIAMETE_ W LT L1 | WEIGHT

_- [R_D(OEG I (VISUAL CM ANGLEMAGNITUDE (CM_ ( ) (C.M) (CMI (O,_ RAD(DEG] (G)
!)

= 0.33 (18, ALTAIR 4.26 22,96 21.56 17.09 9.93 0.79 (451 030-" 4.77

: .i". .... SILICON .....................
!" . DLIIHE
[.. 0,_O (It.J1 +1.79 5.99 22,17 45.11 28.15 11._ 0,79 (415) 1610

1.1_ 10.01 14o97 7,10 4.33 0.79 (4S) IdO
ALTAJR

0.33 (lOI 4.77

,_" $-20

ALCAID 2.40 8 m 18,07 11._ 4.63 0.79 (451

_' C SUMMARYOfDESIGNCHARACTERISTICSL

_-I S,t,,:C,N S-20,Pm,,

H -.......................................................................FIELD O! Vlt_._,' lEAD ID[GI| 0,33 (161 0.20 111,3_ 0.,1,1 ,li'l_ 0."0 ,11 .._!_1

I I SLNSII I'_ ITY ' 037 I I .Z9 *0.77 • I .V5

1' APERTLIR|IC_L 4,Z6 7.98 1,_ .t,_L_

SPIN i_ATEtg'AD_ tRPM_ 0,_0 (4,01 0._] (4.01 0.50 q4.1_, L),_(I d4.8_

EANL_','_IE'_THIH7 _ 30 ,E) .10 30

-' ASH'CT ANGL_. JRAD tDEO_t 0.60 (3_,3_ 0.6_ 131,6,_I 0._0 (,14.]_ 0.66 t37._

MINIML!M SUN ANGLE II_/,[) _DEG_] 039 (45,0_ 0.79 14_,01 0,79 {4_.0_ 0.79 _4._,i1_

SIZE • _C_,_t 8 X B X |6 I0 X 10 X 20 _ X6 _ |& 8 _ 8 _ 20

/I[., WEI(_;HT {(IRAMS,

I_HADI _ INCI LIE'I['D' _4_0 4030 1,160 ,%_6S

P(%_'IR ,%_,A11S1 0.9 0.9 I, .% I. b

ACCURACY IRAD iDEG_I O.OI I0 0.02 0.01 1'0 0.02 O.OI ll.'l 0.0_' 0.01 I0 0.0._

(NO PRCtEES_INO ASSLIMED_ iO.6 TO l) _3m (0.6 TO II (3m _0,6 lO 1, +,tiLl tO,6 T',_ I 1,1,_

II](glS NL_T INCIUL)[ SIIN SHADEISII e_

. FOUR PRELIMINARY SIAl MA_R DESIGNS HAVE _EEN F_EPAIED ON THE _ASI$ OF A

MINIMUM SET OF REQUIREMEN1'$. TWO SENSOR CONFIGURATIONS U_E SILICON

OETECIOES AND THE OTHERTWO ARE IASIID ON S-_O _HO_OMULTIF|IER TUNS. 114f

TADIE$ SHOW SHAO_ SI_ES AND NILIMINARY OtSIGN CHARACTIRI$TICS AS FUNCTIONS

Of I_ETLCTL1RTVPl AND FIELD-OF-VIEW Wll)1'H,

Figure8.S-IL StarMapperDesignRequirements
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ccaJin the tables shows aperture/shade size requirements can be significantly [

_ rcdt.ced by using photomultiplier tubes {PMT's). Silicon deteelors are

_ attractive because of their higher reliabilily,but lh_,reis nol as nmvl,

_w flight experience as with PMT's
HJ •

a_b-
we In general, star mappers are ¢xpensive (i.t,., a star lnappt, r dt'v_'lop-
t_

ment program for Pioneer Venus would cost at leas! $350,000) and, in
en

" addition, they require c,laboratc (and costly) ground soflwarc.O
.=J

.a More details on star mapper tradeoffs, survt,ys, and performance

characteristics are given in Appendix 8.5C.

Selected Attitude Determin_'tion Approach ALLCONFIGURATIONS

.... The attitude determination approach selected for all Pioneer Venus

configurations is based on sun and earth aspect measurements• The sun

_i sensor selected for all configurations is the Intelsat III unit with a different

slit configuration. This sensor provides both roll reference and aspect

• angle measurements. The selected earth aspect measurement approaches

are:

• Doppler modulatien and shift. These techniques will be used in
all phases of the probe missions and during all phases of the
orbiter mission except when using fanscan or conscan.

• Uplink fanscan. Fanscan will be used in all orbiter configurations
flying perpendicular *o the earth line during the cruise and orbit
phases.

• Uplink conscan. This method willbe used in the earth-pointing
orbiter configuration when on the high-gain antenna.

Reasons for discarding star mappers and selecting these approaches

are:

• Pioneer Venus attitude determination requirements [in 0. 017 to
0.0Z0 radian (1 to 1.5 degrees} range._ can be met with simple,

1 inexpensive, proven techniques based on sun and earth
references.

"_l: • Star mapper hardware and software would require development
costs. No existing, qualified, sensors are directly applicable

_" • No onboard equipment is needed for using dop)ler methods.

Simple, "eyeball"-type data processing canbe used on the ground

" for quick action.

• Either fanscan or conscan can be implemenied with the same
processor, which is a flight-qualified off-the-si_elf unit.

8.5-18

................... : .......... :: ;;:::;;;:-..........-; .........:':;_=:;;--., T

I

O0000003-TSF09



L z
0 I-',.rformancc data c_)rrvsponding to all orientations for cruise, _V
t-
< ,..,neuvers, l)rol)c dt.I)loym,,nl , and orl)iial operations are given int_

D St'c:lion 8. _. h.t.9

Z
O Effect of Sun-Spacecrafl-Earlh Geo._e! ry ,m
o gttitnde l)et_rmination Accuracy,,,J
.,J

One of the problems associated wilh sun and earth referenct, s for

allitudt, dt lt, rminatioll i_ the degradation of accuracy occurring at litnes

of ._yzygy or whv_ lhe spin axis is nt, ar thL-. plane determined by the sun,

the earth, and the spacecraft. Figure 8.5-9A shows regions of attitude
!,

uncertainty (in stereographie projection) for the most favorable case

1.57 radian (90-degree) sun-spacecraft-earth angle_ and for two condi-

tions where losses of accuracy are caused by unfavorable geometry. Fig-

ure 8.5-9B relates attitude determination uncertainties to measurement

errors, and Figure 8.5-9C is a typical time history of attitude determina-

tion accuracy for the orbiters, showing the improvements attainable during

q! syzygy conditions by estimation of the drift rates produced hv solar pre-

sure. Even without corrections for drift, the accuracies attainable near

the end of the mission meet the requirements of Section 8.5.2. In addi-

=,, tion, all critical functions can be performed at times when attitude informa-

tion quality is such that no dcgradatio,: of r.fission objectives will occur.

A star mapper is a viable alternative for providing additional attitude ref-

erences during syzygy conditions, but it has not been included in the

recommended baseline designs because of its relatively high cost and

weight penalties compared to the mission benefits accrued on the basis of

the science pointing requirements,

 .,ooooo  ,o oo**o, 6.,0,,,
In the orbiter options with despun reflector antennas, a parabolic!

-tt cylinder reflector is poimed at the earthby aclosed-loop servosystem

operating with a sampled roll reference provided by tl_e sun sensor.

The rotary interface between spacecraft and reflector is provided

by a deapin drive assembly including a hruahless DG motor (with resolver

comnmtation) and position and rate pickoffs. Four drive mechanizations

were considered and the Helios assembly was selected because it meets

requirements with minimum cost and weight. The selected drive is a

.... 8.5-19
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C TYPICAL TIME HISTORY OF ATTIIUOE 0E/ERMINATION ACCURACIES FOR ORBITERS

THE CURVE SHOWS ORBITER ATTI[UDE DETERMINATION ACCURACY AS A FUNCTION CF TIME ON THE ASSUMPTION OF SUN

ASPECT AND FANSCAN MEASUREMENTS, SOME DEGRADATION OCCURS NEAR SYZYGY TIMESt BUT THERE ARE INSTANCES IN
WHICH LARGER ATTITU_tE ERRORS MAy QE TOLERABLE AS _H_I,tt_ IN SECTION 6.52. IMPROVEMENT_ CAN BE _RTAtNED BY

_STIMATION OF THE DRIF1 RATES PROt.'UCED BY SOLAR PRESSURE

i i ,RAp,,o,o1
_1 o.o,+,._ ,

: +i Ti I
'" + I !,z _
< 0.01, Z 1.0 ' II,L. _ q%..................

_ I DRIFT ! / ] i..I z

_) RATE i / J I
< I-,,_,,o-I / l i

0.009 _ 0,5 ............

I M1551_)14

; VENUSo_ot i I

j INSERTION I
!

o o ............................ L
o I_O 200 3O0 4_

TIMI IUAYSt

FlgureS.5-q. Effectof Sun-%pacecraft-Earth GeomelryonAttltudel)etermlnatlonAccuracy
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___A/Clll _A/CIV _T/Dtll

fully space-qualified unit that also includes the electronics for driving

the motor and _haptng the position reference and r_te pulses. The only

modification required for adapting this unit to the Pioneer Venus require-

ments [0, 52 rad/s (5 rpm) instead of 6. Z8 rad/s (60 rpm)! i,_ to increase

the n_unber of rate pulses from 5.09 to 81.5 pe_' radian (32 to 51Z per

revolution). This modification will necessitate a change from the

magnetic pickup now employed to a system consisting of light-emitting

. diodes, a mask, and detectors.

Despin electronics implementations for the Pioneer Venus antenna

despin control system L uld be made with equipment developed for the

Helios or the DSCS-II programs, or a combination of both.

The Helios system consists of two main assemblies:

. • The despin drive assembly (DDA) includes electromechanical
components and a nonredundant electronics package, the despin
drive electronics (DDE). The DDE consists of motor power con-
trol amplifiers, resolver excitation and signal demodulation cir-
cuits, pulsewidth modulator• for motor signal control, rate and

_. pulse conditioning logic, and motor curr_nt telemetry interface
..... circuit.

• The despin control electronics (DCE) is a nonredundant unit
including digital position and rate error detectors, error signal
holding registers, D/A converters, a proportional-plus-integral
compensation amplifier, and a position reference function gener-
ator providing commandable piece-wise-linear approximations to
the required offsets from the sun reference.

The DSCS-II despin electronics assembly is a nonredundant unit per-

forming function• equivalent to the Helios DDE and DCE except that it has

neither a rate loop nor a position reference function generator.

The despin electronic• approach selected for Pioneer Venus consist•

of two Helios DCE assemblies (standby redundant) operating with the non-

redundant DDE included in the despin drive assembly. This partially

redundant scheme is preferred because:

• Total despin system reliabilityis increased from 0.928 {for a
nonredundant system) to 0.981 at a cost of only _50 000 and

1.8 kg.

• Going to fully redundant electronics would increase reliabilityLy
only I percent (relative to the selected approach) with a cost
penalty greater than $300 000.

8,5-_- 1
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A/CIII Tile only internal modifications required 1o adapt Ihe Helios DCE to I

the Pioneer Venus requirement_ are minor chang(,_ in loop gainB and timeA/C IV I
constanls. Clock frequencies, externally supplit, d tt_ the DCE0 will i,._ve

4_T/D III to be changed for compatibility with the lower spin rate.

8.5.4.4 Probe Deploylnent and R_:targeting Maneuver Traduofffi _MC III
_- (1977 Probt, Mi.,;sions, Atlas/Genl:,ur and Thor/Dell:t)
_- T/D lli

A_ _hown in Figure. 8,_-10, the probt_ deployment -_t.quence begins

. 25 days before encounter with the release of lht, large probe. The figurE.
r shows probe bus maneuvering requirements, alternatives for performing

r retargeting maneuvers, and the selected operation_ approach. The first

ii retargeting is done by transverse thrusting beeau,._e of propellant con-
sumption considerations. If axial thrusting were ased, the third retargel-

ing ocientation would be unfavorable for attitude determination purposes.

REQUIRe:MENTS 5EL[CTED ARPROACH TO RETARC_ETIN(,';MANE UVER$

. TIME EVENT INITAL/EINAL SOLAR INIIAL,/FINAL EARTH _SV MANEUVER LOCAIlON OT SPIN AXIS J THRUSTERS
IoAvs_ ASPECT{RAD,OEG,J 5SPECTW,,D,otG_ ,_'s,

E-25 LP 0.663/0.667 f38.0/38.2_ 3.141/2.628 II80/150.6_ RTI 1.57 RAD (90 bEG) TRANSVERSE
FROM SPECIFIED

l-i'3 RTt 0,712/1,310 ¢40,8/75.1 3.14ttl.933 (1801110.8r 1,02 gT2 SPECIFIED AXIAL

E-21 SPI 0.750/0.435 T43,4/24.9, 3.141/2.612 (180/149.7_ RT3 1.57 RAD N0 DEGt TRANSVERSE
" E-|9 RT2 0,801/1,106 t45,9/58.2, 3.141/1.S02 tl80/86.1) 7.32 FROM SPECIFIED I

E-17 $P2 0,845/0,482 f4B.4/27.6, 3,141/2.720 f180/155.9_ RT4 SPECIFIED AXIAL I
E-15 RT3 0.88_/'1.284 ,50,8/73.6. 3.141/I.0t4 II&D/S8.11 6.34

E-13 SP3 0.925/0.626 t53.0/35.9_ 3.141/2.637 1180/I$1.I,

E-II RT4 0.965/1,141 _55,3/65.4, 3.141/2.663 riBO/152.6_ 26.55 J SPIN AXIS LOCATION FOR PROBEDEPLOYMENT

AND RETAROETING
1 t hi RADI_ I')IE(D t 40_AO (_10D_GI ....

II IbHAD lgOO_G ,_. % • _2_RADIt0 ire,,
• ' _ - -_ I(_HAD fig lEG

I " " . . . _'_.,_s_
1 / . " ' . ._E-_9

• _T_'' ' t.%_

AETE_NATIVES IN PERFORMING RT (RETARGETINGI MANEUVERS " /'/' i'" ". ":**',_;._", _D

...... ] 1¢ * ' .' ." --._*', '. ' *LP • _ OII_IAO

RfTARO_WITHAXIAE THRUSTERS i : : ;.-.k. ../.-2 _ ali _ _ *g_X,

_90DEG FROM .%PECIFIEDONg AND RETARGET
WlTIt TRANSVERSETttRUSTERS

• I30 NOT PRECESSSPIN AXIS BUT RETARGETWiTH
A COMBINATION OF AXIAL AND TRANSVERSE ,
RIRINGS

Figure 8.,_-10, Probe Deploymentand RetarcJetin 9 Maneuver I'radeotls

L

I._ Spin axis orientations for t_le selected maneuvering approach are

f. shown in the stereographic map on the lower right-hand side.

_( In addition to these alternati,,es, two choices of normal cruise

ii orientations are:

Earth pointing {tail of spacecraft pointed at earth)

• Perpendicular to the earth line and at maximum inclination rela-
live to the Venus orbit plane.

8.5-L2
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:_ • NC Ill The. _,l_liv_, dt,l_loyn_el_t sequ_:ncr can be execufed in aJW one of lhe following

T/D III way_:
•._: • Rvlur. lo crui_ _ oricntationaft¢.r _a,:h maneuver

..... • (;o t'rol_ ,m,, rvquired ori_,ntation lo lht, nt, xt withou_ returning
-i: Io cv_li,_;t , ;Otiiude,

The preferred appr¢_itch i,,_ °o reiurn to the cruise orientation after

i " t,;ich maneuver for oplit_ir,_ing communications and improving inilial atti-

ruth, dctt, rminatio, accuracy t, rior to each opcn-toop maneuver. The

cruise orienlalion prefl,rrt, d ia earlh pointing because of the following

rc_ or18 :

• Large probe thermal control during the first part of the cruise
phase is facilitated.

• Attitude determination is considerably simplified. Doppler
modulation provides sufficient accuracy and no additional onboard
equipment is required.

• The total amount of precession required for probe aeployment and
, retargeting is minimized.

• An additional fanbeam antenna is avoided since the medium-gain
aft-looking antenna needed for probe bus entry can also serve for
cruise communications.

Retargeting maneuvers will be performed as shown in the summary

table included in Figure 8.5-10, The first retargeting is by transverse

thrusting because it requires less propellant than an axial maneuver (Isp
loss is less than tl-,e impulse required for additional precession), Trans-

verse thrusting is used for the th_.'d retargeting maneuver because the

orientation required is more favorable for attitude determination by

doppler modulation.

The stereographtc map in Figure 8.5-10 shows spin axis locationsi

for p2 obe deployn,ent and ret_"geting maneuw:'rs relative to a coordinate

system (centered on the spacecraft} where one axis points at the earth;

the second axis is normal to the plane determined by the earth, the space-

craft:, and the sun; and the third axis completes a right-handed set.

7 8.5,4 5 Orbiter Maneuver TradeoffsO
_S_. (All Confi[_urations, Version III Science Payload)
i-n"
IJtU

>_ Velocity control maneuvers arc required in orbit to maintain 1he.jm
.._et
•¢oaltitude of periapsis within the 200 to 400 km t'a_h_,, These _aneuw, vs

8.5-_3
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are most efficient when performed at apoapsis in a direction opposite to

_- the velocity vector. Several ways of performing the maneuver_ are:
m
n-
O a) Precess the spacecraft to the desired orientation and fire the
- axial thrusters. The main disadvantage of this approach is due
z to the precession angles required [about 1.0_ radians0

(60 degrees) frora normal attitude_, which cause loss of com-
te munications when the distance to earth exceeds the maximumUJ

> range of the omni antenna.
..J
..J

< b) Precess the _pacecraft to an orientation normal to the velocity
direction at apoapsis and iirc the transverse thrusters. This
approach has the advantage that the precession can be made
around the earth line, thus maintaining communications during
the maneuver. One disadvantage is the large precession angles
required _greater than 1.57 radians (90 degrees)]to avoid
operation with sun aspect angles greater than 1.57 radians
{90 degrees) during the first part of the orbit phase. This
option is not available to earth-pointlng spacecraft.

c) Use a combination of axial and transverse thruster firing with-
out precessing the spacecraft. The velocity change require-
ments increase by about 40 percent when this _,pproach is
followed.

d) Fire axial thrusters only, with spacecraft in cruise attitude.
Firings should be made at true anomalies of about 3.32 radians
(190 degrees). Disadvantages of this method are the increased
propellant requirements and the resulting changes in orbit
parameters.

A comparison of the last three alfernatives (acceptable from the

communications standpoint) is made in Figure 8.5-11 in terms of propel-

lant requirements. Alternative b) has been selected because of its !ower

propellant , equirements.

5. 5 ADCS Concept Selection Tradeoffs _A/C IV _A/CIV
8.

Additional tradeoffs for selecting preferred attitude determination

and control designs for the Atlas/Centaur, 1978 probe bus and orbiter,

Version IV science payload configurations were performed in the follow-

ing areas:

Probe deployment and retargeting maneuver strategy

• Periapsis maintenance mane'_ver strategy

• Ram experiment platform drive

• Occultation experiment s_:rateg 7.

8.5-Z4
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UJ
_' SI IECTED APPRC)ACH AITER/'.IAT[ APPROACHt

..I PRI:Ce'_sloN , Io@ )_xlAt'_1_A_s(jLIIsI: AxiALIIRONG
I ,a,'v_, fIRINGS (_l.Jl_F CRUI_(_ATTITUDE

T f_( &4 TitAi_)V[I_E FIRINGS ATIIT_[

C I'l[-,.'_AY SUH [ARTH AXIAl AM TRAInlS TRUE AV
I_lcfS_t:?_ AV ,_.PEC| ASI_CT IM"S_ VEI_EAv ANOh_AL_ !M/_i,
II_AD {_IC. I 'M 'S_ IRAD ID[GI IRAD (DIGg IM'51

GU "JO 2.t,(_ ,149 t)'i3 1.0_ {SQ, 1.5_ (_h 5.31 10,6 190 _.0

"1" _ ?,57 ,147. I 10,2 1.01 15B 1,57 _90_ 5.2.5 8,8 190 16,6I,--
O |_0 O.T/ 144 _ 12.:} 1.10 153_ 1.57 1905 6,31 10,6 190 _0.0

i'I 1_ 05_ *'17 t O 7 1.31 I7S_ 1,57 1901 4,47 7,5 190 14.1

i
TC!TA[S I,_./IJ ,144 43 _ 22.34 37.5 ?0.7

N2H 4 MA.5 ql,CJ 4.30 2.03 3.71 7.00-,I 0.45
u

(_ rc i',_t _AS_ '_G" 4.75 5.7'4 ?.00

Z SPIN AXIS LOCATION I_G;_VENL_ O_IT INSERIION
I.tJ AND I_-RIAP$1SMAIINTLNAN(_E MANLUVERS

e_ e • 3_t2 RID

• liB0 _I_0 1270I G) +150

el.

,
O VENU_ 01011 INSERTtON

_J MANEUVER ,i

ASPECT ASPECt )Oi
DEG)

IRAD (DIG I_ IDEG) " e
954 1.17 (07', 1,06 (01_

-12 RAD /90 DEG)

Figure8.5-ll PrObeDeploymentandRet_r_etincjManeuverlradeoffs

[_A/C IV The attitude control requirements of these configurations are simi-
lar to those of the earlier spe.ceeraft and, therefore_ the same approach

[_ A/C IV
has been selected.

Attitude determination requirements are also similar, except for

the stm sensor FOV. The first small probe release has to be made in an

orientation where the sun aspect angle will be I. 90 radians (I0. 9 degrees).

Therefore, to provide some margin during the precession maneuver to

reach this attitude, the roll indexing FOV will be extended at least

0. 03 radian (2 degrees) (on each side) beyond the 0. 17 to i. 92 radian

(lO to t 10 degree) solar aspect measurement range previously selected.

The advantage of operation with two different ranges for aspect measure-

ment and roll indexing is that the logic for precession control can be

I designed for automatically stopping maneuvers when either of the ends of
the sun aspect measurement range is reached.

8.5-25
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A/C IV _:_- A/C IV

Probe deployment and retar_eting maneuvers will be made with the

earth in the rear hemisphere starting from, and returning to, the earth-

pointing orientation for optimum communications. Doppler and sun aspect

measurements will provide attitude inforr, lation after each precession

maneuver.

To reduce _*robe precession due to solar pressure after release to

acceptable limits, it ha_ been calculated that Z. 09 and 1. 04_ rad/s {20 and

l0 rpm) are appropriate for large and small probe release, respectively.

Requirements and details about the probe deployment and bus

targeting sequence are given in Figure 8. _-lZ.

Earth-pointing configurations utilizing conscan for attitude deter-

mination provide consistently good spin axis attitude determination

accuracies even at syzygy times. This is not the case with fanscan

because this approach does not provide information for rotations about

the earth line. The only problem with conscan is the angle limitation due

t¢ antenna gain and beamwidth constrair[s. As shown in Fig:ire 8. 5-i3,

periapsis maintenance maneuvers can be executed by processing the

spacecraft to orientations where transverse thruster firings can provide

the required increments along the velocity vector direction at periapsis.

The preferred approach, eliminating the need for spacecraft processions,

consists in firing axial and transverse components while in the earth-

pointing attitude. The main advantage of this approach is that communica-

tions are not interrupted at any time during the orbit phase of the mission.

Existing gimbal actuators were surveyed to select a unit to drive the

platform for the ram-looking experiments. Among the units considered,

the most attractive candidates were the DSCS-I: antenna drive assembly

(a single axis module only), the OGO solar array drive, and the solar

array drive being developed for FLTSATCOM (a single, nonredu_dant

version only). The FLTSATCOM solar array drive was selected because

it is less complex and its lower cost and weight. The DSCS-II drive is

over-designed for this application, and its resolver position indicator

requires complex electronics (the accuracy provided by this resolver is

not needed). The OGO solar array drive is expensive, requires complex

electronics {because a closed servo loop is required to control it), and

: operates continuously to hold the desired orientation.

8.5-Z6
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Figure 8. 5-14 shows the selected platform drive assembly, which

includes a stepper motor, a harmonic-drive gear reduction, single and

duplex-pair bearings, and an unlimited rotation film potentiometer for

shaft position indication. The curve included in the figure shows the ideal

drive offset angles {from the forward spin axis direction) required to point

the platform-mounted experiments in the ram direction at periapsis (o_.ce

per revolution). The actual gimbal angle function will not be continuous

because adjustments will be made only about once per week. The maximum

rate of gimbal angle change will be about 0. 03 radian (l. 75 degrees)/day

during the first i0 days in orbit. Afterwards, it will not exceed 0. 017 rad-

ian (l degree) /day.

HARMONIC DRIVE POTENTIOMETER

,.o1 ,.o, /

2.27 - 130

1.92 - I10 -0.01 lAD/DAY

I I 1.22

,_..... \\ /
0 03RAD I 8DEGI ij 0.52 - 30n I I I ; A ; ,
STEPPER/,aOTOR 40 gO 120 160 200 240 280 320

CHARACTERISTfCS TIME IN ORBIT (DAYS!

WEIGHt: 1.81 KG I4.0 LBI

SIZE: 13.5 CM DIA X 16 CM

POWER 28 VDC, 6 WATTS PEAK

STEPSIZE: 0.0003 R._D (0.018 DEG,

SLEWRATE_ 0.0035 RAD/S (0.2 DEO/SJ

Figure8,,S-14.SelectedPlatformDriveAssemblyDesign

Various strategies will perform earth occultation experiments. The

simplest one consists in offsetting the spacecraft in advance so that, near

the end of the occultation, the antennas are pointing in the direction of the

refracted rays. The most complex approach consists of programming the

precessions of the spacecraft for contin'_ously tracking the refracted rays

during both entry to and exit from occultation.

_ The selected approach is based on a fixed offset of about O, 2t radian

(tZ degrees), which is a compromise between the capabilities of the X-

-- and S-band antennas. This method wa_ preferred because it meets occul-

tation experiment requirements with minimum cost and complexity, while

still providing good performance (out to 0, 31 radian (18 degrees) refraction

8.5-Z9
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[_A/CIV angle for S-band and 0. 26 radian (l K for Sectiondegrees) X-band).

8. 5. 10. 3 discusses requirements and design implications of tracking the

refracted rays which could provide somewhat better performance if high-

gain antennas are used.
:!

Limitation of X-band occultation experiments to the first 37 days in

orbit has the advantage of requiring only one additional (X-band} antenna

(on the aft end of the spacecraft). Attitude determination in the offset

pointing orientation can be made on the basis ,_f sun sensor and doppler

modulation data.

Occultation experiments performed after 37 days, the time at which

the spacecrafts flips to present its high-gain antenna to earth, are more

difficult because of the increasing range and because of the narrowness

of the high-gain antenna pattern. A further high-gain X-band antenna and

programmed ray tracking would be appropriate.

8. 5. 6 Preferred ADCS Design Description ALLVERSION III SCIENCEPAYLOAD

The ADCS designs selected for the preferred and optional Pioneer

Venus spacecraft configurations are based on equipment developed for the

Pioneers 10 and 11, Intelsat Ill, and Helios programs, with minor

modifications.

Table 8. 5-5 summarizes the attitude determination approaches

selected for each spacecraft configuration and the component a::_semblies

used in each ADC'S design. Also, the table shows which equipment from

other subsystems is used for attitude determination and control functions

in each case.

fonceptually, there is no difference between designs for Atlas]

Centaur and Thor/Delta configurations of the same type. The only differ-

ence would be in the CEA's because the Thor/Delta version would be

repackaged to save weight.

The earth-pointing orbiter configurations have a single-axis gim-

i_. balled platform where ram-viewing e;_pcriments will be located. Actua-

tion power and shaft position indication are provided by a platform drive

assembly fPDA). Power control and signal processing for the PDA will

be made by additionaJ circuits in the CEA.

8.5-30
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Table 8.5-5. ACDS Equipment and Approaches for Pioneer Venus

r_
_{: AIL£$/CENIAUR ATLAS/CENTAUR AND THOR/DELTA ORBITERSAND

O IHOR,/DELTA IPREFI?,RED OPTION I OPTION l OPTION 3
)., eeoe[eusi_,
_Q" ATTIIUDF DETERJ_INATION APPROACH
LU

f ANSCAN NO YE_, YES NO YES
Z CONSCAN NO NO NO YES NO

I,U I)OPPLEH(CRUISE) YES NO NO YES NO

DOPPLER_j_,_ANEUVER$) YES YES YES YES Y|5

e
ADCS EQUIPMENT

z
PIONEERS 10 AND I I CONTROL ELECTROh,IICSASSEMI_LY YE", YES YES YES" YES

INTELSAT Ill SUN SENSOR ASSEMBLY YES vES YES YES YES
IT" PLATFORM DRIVE ASSEMBLY NO NO t,IO YES NO

U,/ HELLOS AN[ENNA DESPIN CONTROL EQUIPMENT NO NO NO NO YES

--I
_1 EQUIPMENT FROM OTHER SUBSYSTEMS

PIONEERS 10AND 11 CONTROL ELECTRONICS ASSEMBLY YES YES YES YES YES

CON,_CAN/f AN SCAN pI_OCE$50_ NO YES YES YES YES
SPIN PERIOD SECIOR GENERA|OR YES YES YES YES YES

NUTATION DAMPE_ QUANIlEIES (PERsPACI,'CRAI=T) 2 I I I I

THIS UNIT INCLUDES ELECTRONICS FOR RAM PI ATFORMDRIVE ASSEMBLY

The Pioneer 10 and l I CEA (common to all designs) centralizes all

subsystem interfaces, thus providing better commonality with other sub-

systems, also based on Pioneer designs. Modifications required include

deletions of star sensor and despin logics and additions of sun sensor

electronics, DEA switching logic (Option 3 only), probe deployment control

capabilities, drivers for additional spin/despin thrusters, and drivers for

platform drive assembly (Option Z only).

The selection of the [ntelsat III sun sensor is a significant cost

saving (on the order of _Z00 K to _300 K) because it allows inflight calibra-

tion of the reaction control subsystem, thereby reducing ground testing

requirements. The only modification to this unit presently considered is

a change in the slit geometry.

Adaptation of the Helios antenna despin equipment to the Pioneer

Venus requirements involves minor modifications, such as changing clock

' frequencies, loop gains, and the number of rate pulses per spin revolution.

_A/C IN 8. 5. 6. 1 ADCS Design for the Preferred Probe Bus Configurations

_ AICIV Figure 8. 5-15 shows the ADCS configuration recommended for the

[_TIDIH probe bus spacecraft. The CEA is the; primary control system for both
the orbiter and the probe missions. It is composed of Lhree subassemblies:

• Program storage and execution (PSE)

8.5-31
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T,0,
• Duration and steering logic {DSL)

,_"

• Sensor and power contxol (SPC),

The PSE subassembly permits an entire maneuver sequence to be

: performed without ground commands. A mai_euver sequence normally

- consists of an open-loop precession to a new attitude, execution of a AV.

and an open.loop precession back to the original attitude. Maneuver
?

accuracy is obtained by controlling execution error sources and by in-

- flightcalibration of thruster performance. This operation sequence hasF

: been successfully used on Pioneers 10 and il. The PSE will be used on

_:: Pioneer Venus with no modification.

' ',,." COMMAbIDS _EAL-T _ME
TELEMETRY AND DATA COMMANDS REACTION CONTROL

_ r-T---I ._.o_ _"--1 _u,s.s,E_,"I
r _ , / i aEc_o,.,cs _ i ' _ I/ ,, ASSEMIILY _ - -

:" iOATA-_'S_'_'._'UI'_'_'STEM--__SO_WES_---1 1 I T,_,usIE_I T._usTE,sj

, _ A-- i--_..so*.,o"r--Jl['----"IIG _ "A"'"'EI

_i: r "1
I I

I 1[ ] _'_'""°"i I DA_,.A D_,.. 1 .c.._,sM I
1 t. , ! I
l STRUCTURESAND M_CHANISM$ SUI_'_t_IEM t=

STRUCTU_$ AND MECHANISMS SUES'=_TEM

ricjure8,5°L5,A{titude0eterminatlon_,ndControlSubsystemforthePreferredProbeBusConfigurations

" The DSL subassembly is redundant and contains logic for selecting

thruster combinations and pulsewidths to be used. The DSL can be used

withou_ the PSE for real time, or quadrature-pulse iiring (precession

roll relative to the sun). Modifications include additional logic for two

more thrusters, deletion of the despln logic, and a change in pulsewidth

: selection.
• _"

The SPC subassembly is that of Pioneers I0 and 11 except that all

star logic circuits will he deleted. ElectronLcs for the redundant sun

sensors will be added along with logic to c 3ntrol the small probe release

B.5- 3Z
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_ ,, mechanism. This logic provides capability to trigger the probe release

ii:i- at preselected (by ground command) angles from the roll ref-.rence

-1::_|_: defined by the sun sensor.The spin period sector generator" (a part of the data handling sub-

_ system described in Section 8. 2) measures the spin period and gelmrates

i!!:: p'_i_e trains consisting of 1, 8, 64 and g12 pulses per 6. Z8 radians (spin
in a mode called the ACS mode in Pionee,'s 10andll. This mode is used

during precession maneuvers and small probe deployment because the

one pulse per revolution signal is synchronous with the sun sensor pulses

and therefore gives an accurate base from which to control the release

time. The hold mode is entered by stored command prior to sun occulta-

tion in the orbiter. In this mode, the spin period is determined onboard

on the basis of averaging measurements during 402. 05 radians (64 spin

revolutions). The period obtained by this -vez'agingprocess is used to

generate a rollreference during such occultation. No updating of the

period measurement takes place untilexitfrom the hold mode is ordered

by another stored command.

The reaction control subsystem (see Section 8.6.2) includes eight

ii hydrazine thrusters and the corresponding valves, supply, and instrumen-

tation. Precession maneuvers and velocitycorrections are performed by

means of a set of four ax__althrusters located in the same plane with the

spin axis. During precessions, thrusters are fired impulsively to produce

couples {thus minimizing velocity changes). Velocity corrections are

made by continuous firing of two thrusters to minimize disturbance torques.

Spin speed control and impulsive velocity corrections {normal to the spin

axis) are executed by means of a set of four transverse thrusters located

on a plane perpendicular to the spin axis at the location of the center of)

ii mass after large probe deployment.

{I The nutationdampers proposed for the proposed bus configurations

consist of mercury-filled U-tubes with expanded end chambers to enable
J _

t- their natural frequencies to be tuned to the required spacecraft nutation

t frequencies. Two devices are used on each spacecraf' Lo minimize the
degradatio'a of performance caused by inertia ratio changes during probe

deployment.

8,5-33
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Orbiter Configurations _ A/C III T/D III

'!_ The A DES design recommended fnr the preferred orbiter configura-

It i [ r.q Tie("

|1 It t.q I ¥ Af'I['_ DATA I C( MMAI,ID_# B[ACTION CONtI_OL

.... "--1 I I _, n_ctrON,cs I t , "

I DL._. i:, i,,imsr j ....._I:Z..-.?i I ..j q--,_,_t
t i_e_-AN_g_--Z_r-...... I eOW[_ i Co_mANosl I I CONTROL _.

u. / I 6 _ 6 I I I I S,ON_tS I _1
_--- _ J I ! _ I'R^NSVERSESENSO AND ] I

< '---'', F.....t-*l_,,_', _ I '°" II a :_=CI/
I _- I I , I I _ , -I -_/

I ,u...so,_I_ I . - ,- J

DA/_P_

J
STRUCTUR[S AND
M[ CHANISMS SLBSYSTLM

lqgure &5-l& A1tifl"_eOel_l'minationandContl_l SubsystomConfigurationfor lhe Fa_belm,
FanscanO_ite rs

The CEA is t::e same unit proposed for the probe bus configurations

except chat the logic for probe release, inc!uded in the sensor and power

controZ subassembly, will not be used.

Attitude determination data from the fanscan signal processor is

provided directly to telemetry. Threshold and firing enable signals are

1.it inputto the duration and steering logicsubas_cmblies Lo provide automatic

precession control capabilit>'.The directlorof precession (tobe selected

• a prioriby command) is determined by the fixed-angleprecession logic
included in the DSL's.

• A singlenutationdamper is used because the ranges of inertia

:ii,_ ratiosin the orbiters are not so wide as in the probe bus configurations.

_dC 8.5.6.3 ADCS Designs for the Optional Orbiter ConfigurationsIII

As shown in Table 8.5-5, the Option i design is identicalto the
_/o Ill

configurationproposed for the preferred orbiters except in _he transmitter

power. 8.5 - 34
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Ftqure8.5-L8.AltitudeDeterminationandControlSubsystemConfigu_lionfortheOrbiter',.with
DespunAntennaReflector

performed in each control mode, and the interfaces of the CEAwith the spin
c_

period sector generator, the conscan/fanscan processor, the despin con-

trol equipment, and the platform dri_,e assembly.

a

u_ Redundant sun sensors provide l) roll reference pulses to the sp£n

_u period sector generator and Z) sun aspect information to telemetry. "['he

m spin period sector generator {part of the data handling subsystem) gene=

: z rates sequences of I, 8, ,_nd 512 pulses per spin cycle and operates in th,..

four modes listed. The programmer includes data stor_,__,e_.cl,ist-_rs and
tU

> counters for executing man_-uver sequences. The fixed-a_gle, p#ecesaion
.=l

:: _ logic defines four orthogonal precession dircct_._n_ selectablc by gro_'pd

command. The pulse generator has logic for _electing pulse duratio_

and preventing thruster firing due to single fa_1_#zo_. The valve sel.ct

1oglc includea command, storage latche_, and d_code_ U_t_,.sfor ._,electing

thrusters. The valve drivers are se:'_.es redundant, po,/er :m and ()per_ .......

tion of two drivers are required for firi:,_, t_robe depL_ymenL is control)ed

by delay l¢_gic, adjustable by c,_tHand, t.
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c_ J 1
<_ The conscan processor generates firillg pulses and, in addition,o i i
_. provides a threshold signal to the c3nscan logic for stoppin8 preccs_tort

when the pointing error is less than the dead, one value, In the fanscan

case. timing pulses for thruster firing are generated byth_ fixed-angle
MJ

precession logic. The fanscan logic outputs a firing pu:tse when it gets a

- permissive level from the fanscan processor {once every two revolutions)
2

O and an enable command from the ground.

• The despin control system maintains the hi_h-gain antenna reflector

iI_ art earth-pointing orientation. The required antenna angle from the sun

is provided either by command or by an onboard function generator. In

either case, the commanded angle is computed with respect to the sun

sensor phase reference. Using a piece-wise-linear approximation to the

changing sun-spacecraft-earth angle, the function generator automatically

updates the control loop position comm_nd to keep the antenna reflector

pointing at the earth.

The antenna control loop receives _ pointing command once per

spacecraft revolution. The antenna position error is computed degitally,

then converted to an analog signal. The total control error, which drives i

zhe despin motor, includes _.,aantenna rate feedback signal. Antenna rate

is measured by a digital tachometer operating with pulses generated by

photoelectric rate pickup devices. The main functions of the rate loop

are to improve system stabilityand to reduce antenna pointing errors

caused by periodic torque fluctuations.

During acquisition, the antenna position error is limited tO 0. 39 rad-

fan {22.5 degrees) and maximum motor torque is applied to despin the

antenna. When the control errors are small, the antenna position loop

employs proportional-plus-integral control. Integral control is necessary

to minimize errors caused by constant torque operation, such as bearing

friction.

8. 5. 6. 5 Sun Sensor As_sembl Y ALL CONFIGURATIONS

The sun sensor assembly (Figure 8. 5-20) selected for all ADCS

designs is essentially the Intelsat Illunit with a different slitgeometry.

A V-type slitconfiguration has been preferred to the Intelsat Illarrange- I"

Iment to l) improve accuracy over the entire aspect ar.glerange of the

sensor, Z) simplify the signal processing logic, and 3) eliminate polarity

8.5-38
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ALL CONFIGURATIONS

DE_,CRIFTIC'N fUNCTION

, THE SSA CONSISTS OF A EIJSEDSILICA fil OCt, 1HI SSA PR'"_VIDESROLL II',IDEXINC AND SUN
WITH A PHOTO-VOLTAIC SfflCON O[lfcro_ ASPECT INfOt_MAJ'IOIN.
I:OCATED ON THE (_ACK SURFACE,THE fRoNT
SURFACE HAS FHOTOETCff_D SLITS IN A OERIVAIION
VACUUM-DEPOSITED NICKEL FILM, :'

MODIFICATION OF INTELSAT I|l SSA SY
INTELSAT III SUN SENSOR CHANGING SLIT DESIGN.

ERRORANALYSIS

WEIGHT: 185C-

POWER: N O'_4E

SIZE: 4.75 x 3.3 x 3 CM

NUMBER; 2 P_R'SPACECRAFT

RELIABILITY: 0.9993 (425 DAYS)

Hgure8.5-20.SunSensorAssemblySummaryDescription

ambiguities. An important feature of the proposed design is the resulting

scale factor linearity that minimizes ground software requirements.

When the sun is in the FOV of the sensor, the output consists of two

pulses per spin revolution (reference and timin E pulses), Sun aspect

angle is measured by the time separation between the thresholded trailing

edges of the reference and timing pulses, and roll indexing is provided by

the thresholded re£erence pulses only.

The sun sensor signal processing ele._tronics (to be incorporated

into the CEA) are described in Figure 8. 5-Zi.

8. _.6.6 Control Electronics Assembly (CEA)

The Pioneer 10 and tl CEA (Figure 8. 5-ZZ) is directly applicable

to all mission functions required for Pioneer Venus. It contains three

functional subassemblies: program storage and execution (PSE), duration

and steering logic (DSL), and sensor and power control (SPC). i

The sun sensor signal processing electronics amplifies the sun

pulses, detects the a_pUtude of the peak signal, and sets a threshold in i

the comparator so that the tr:_iltngedge of the sun pulse is always sensed

at the same percentage of peak. The two sun pulses are separated in the

logic circuitry and g_te a clock frequency into a i5-bit binary counter for

aspe"t information. The roll tinning reference is a single pulse out of the

logic circuitry.

8.5-39
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ALL CONFIGURATIONS

The PSE contains data storage registers and state logic that contrc',

the stored program to execute a maneuver. The seven "states" are

normally executed in order:

! ) Delay

2) First precession

3) Delay

4) _V execution

5) Delay

6) Return precession

7) Program complete.

The delay states allow ground intervention, attitude determination, and

wobble decay. The program can be interrupted, stepped to the next state,

or reset on command. Precession magnitude !.scontrolled via calibrated

thrusters pulsing once per revolution for a programmed period of time.

Pulse counting is unsatisfactory because of spin coupling effects. Pulses

occur at a fixed roll angle such that the spin axis describes a thumb line

during reorientation.

Since the PSE is internally redundant, no single failure can result

in improper AV or precession execution. No modification of the PSE is

required for Pioneer Venus.

The DSL contains pulsewidth and thruster selection logic plus an

independent capability for thruster firing, either in real time or a roll

angle of 0, I. 37, 3. 14, or 4. 71 radians {0, 90, 180, or 270 degrees)

relative to the sun pulse. This enables all mission functions (precession,

AV, and spin control} to be completely executable without the PSE using

only ground commands. The minor improvements in the DSL assemblies

are l) expansion of valve drivers and selection logic for two additional

thrusters and 2) separate power switching for the valve drivers to prevent

inadvertent pulse firings during power switching.

The SPC contains power switching logic for tlle _het asscrnblte_

plus star set_soi' logic that will be deleted in _II Pioneer Venus designs.

Circuits for small probe release con=rol will be added. Sun sensor elec-

tronics added to the SP(: will provide roll reference pulses f_r the spin

: 8.5-41
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period sector generator, which in turn provides the reference signals for
o
_- experiments and attitude control, Aspect information from the sun sensor

electronics is telemetered.
2

Most CEA changes are made in the SPC, with minimal changes forz

8 the DSL's. The PSE, which is by far the most complex electronic design,.J

will be unmodified.

8.5.6.7 Despin DriveAssembly _A/CI,I _A/CIV _T/Dlll

The despin drive (Figure 8. 5-23) consists of an inside-out, resolver-

commutated, 16-pole brushless DC motor; position and rate pickup; and ....

integra: motor drive electronics. VacKote dry-film bearing lubrication

allows operation from -50 to 75°C (-58 to 167°F). The drive is derived

from the Helios solar probe satellite and will be modified to provide 512

rate pulses per 6.28 radians (per revolution). A 4. 32 em (1. 7 in. ) hole i

through the drive allows passage of wave guide, structure, and cabling. 1

MAGNETIC
REFLECTORMAGNETIC PICKUP
FLANGE /BEARING

/ /'RELOADER I
RADIATOR / / /ANTENNA

.... j// ELANGE

MOUNTING// o fOR

FLANGE _// Z _' : _ _RESOLVER
DESPIN DRIVE ASSEMBLY ELECTRONICS" / \

HOUSING

PlCKUP._._S SHIELD / / SHIELD t
ELECTRONICS

POSITION PICKUP: REDUNDANTp ONCE
4_PER REVOLUTION PULSESGENERATED HEllOS DESPIN DRIVE ASSEMBLY

BY MAGNETIC PICKUPS, PEAKVC'LTAG[
IS 180 MV AND SLOPE IS 1.6 MV "ARC
MINUTE OF SHAFTROTATION AT MOTOR CHARACTERISTICS

0.52 RAD S 15RPh_il. S'ALL TOROUT: 4680,52 G'CK'_
RAT[ PICK| IP: UGH T-L MITTIHG DIOD(5 !65 IN.-O, _) AT 28VOLTS
Wilt _E ti_l_ IN CONJiiNC_i(_N WITH h ..... ]
t_A_,_ A_t_ _Pt_CAt PWKLIP 1(_ _ II 111 BACK EM_-CONSIAIqT: 1.1,1 V _AD 5
512 Pl)Lq[5PLR 2 RhOl.,t-l_ ;gl? PUI%I 5 t('_R_)lJ[ COI_J$1ANI_ lJ321._ O'CM
PERR[VOL_ITIONI. TIt| CHARACH RI%TICS il6O IN.-OT_ "_P

OF THLSL PUIStS ARI CIIRRENTLY RISISTANC[: 68 OHMS PIIAS[
_.tN_[" FtNLO.

INDt tCTANCf : 100 MII EIHI NRI[_ "PHAGE i

Fkmre8. 5-23. Despin0rive AssemblySmm_aryDescription

The design uses a single-piece titanium shaft that attaches to the

reflector, The shaft also connects to the despun section through a set of

preloaded angular contact hearinga, and a three-piece housing o£ alumi- 1 ...... i
num and titanium, i

8.5-4g
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The bearing spacing has been maximized, within the constraints of

tile envelope, to minimize any angular offset between the reflector and

spacecraft. The bearing pair have outward--directed thrust capacity which,

coupled with thc spacing, maximizes the bearing rotational spring rate.
I

]_oth bearings have light interference fits in their outer race mount. :_i_

The upper bearing has a slip fit inner race mount, while the lower bearing

has a slight interference fit inner race. A small unbalance radial load

may be produced by the motor magnet ring, which makes press fits on the

bearings outer races desirable to prevent creep and possible fretting. The

upper bearing inner race is a sliding fit to simplify assembly and dis-

assembly, to provide the bearing system constant preload loop, and to

allow for differential axial expansions.

Bearing preload is achieved with eight helical compression springs

applying 2Z. 24 to 44. 48 newtons (5 to 10 pounds) of force on the upper

bearing inner race through the preload ring.

The bearings and the slip fit bearing and shaft interface will be

lubricated with the BBRC dry VacKote process. Dry VacKote, which is

used on the Helios drive, produces lower and more constant bearing drag

torques than does the wet VacKote process.

The motor and resolver stators are attached to the same housing

section. Arc=shaped slotted holes are provided at the resolver and hous-

ing interface to provide precise external angular alignment of the motor

and resolver electrical zero. The resolver is attached to the shaft and

housing with machine screws. The motor rotor is similarly attached to

the shaft but is keyed to the housing and clamped in place when the upper

and middle housing sections are joined.

To generate the required number of 512 pulses per 6. 28 radians

{revolution}, the magnetic pickups are replaced by light-emitting diodes,

a mask, and a solid-state photoelectric detector. The mask (located

between light sour_-e and detector) intermittently interrupts the light beam,

thus producing a pulse train with very short rise and decay times.

All electrical leads exit the DMA from the upper housing section.

This design simplifies the stt'ucturaI assembly and disassembly by mini-

mizing the risk of lead damage.

8.5°43
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Angular contact ball bearings (AFBMA Class ABEC 7) used in the I

despin drive are manufactured by Fafnir. The slim-line type of bearing

is used because of itslow weight. Both races and balls are made from

400C stainless steel, hardened :o a minimum of Rockwell CSS, Raceway

surface finish is obtained by honing (polishing is not permitted). The ball

separators are made from Ru_on A material containing S-percent molyb-

denum disulfide. This separator is a sacrificial type in that it replenishes

any lubrication removed from contacting metal surfaces.

BBRC uses dry VacKote lubrication on all bearings and sliding

surfaces. VacKote is _e generic name for several proprietary lubricant

formulations and application processes developed by BBRC for use in hard

vacuum. VacKote development was begun in i959 when the first OSO was

bein designed. At that time, itwas discovered that the available lubri-

cants for vacuum service were not effective at the hard vacuum levels of

orbiting satellites. Two basic systems resulted from this early work,

one based on a fluid and one based on a dry lubricant.

After an investigation of fluid, semifluid, and dry lubrication sys-

tems, dry VacKote lubrication was selected for the DDA. Dry VacKote

has an extremely low evaporation rate. Hard vacuum poses no danger of

material loss. Potential contamination outside the DDA is minimized.

Labyrinths and other flow restrictions are not necessary, thus simplifying

the mechanical design, mmon components requiring wet lubrication

(brushes and slip rings) are not present. And, finallyj but most signifi-

cantlyj the dry VacKote system is characterized by extremely low torque

and is insensitive to torque variation with t_.mperature.

The dry VacKote process desposits an unbonded but adherent coating

of MoS 2 about 0.00i cm (i0 microinches) thick. Itis unbonded in the sense

that no resins or adhesives are employed. This dry coating will be applied

to the balls, race sttrfaees, retainers, and the slip fit bearing interface.

Dry" VacKote prevents metallic corttactand fretting, thus preventing cold

welding and th e generation of metallic debris. It tends to relieve surface

concentration factors, which reduces the chance of spelling. Itfurther

has the tendency to improve the surface finish of the treated parts by
t

reducing the surface roughness.

I

8.5-44 ...... i
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A block diagram of the electronics included in the despin drive

: assembly is shown in Figure 8. 5-24. The rate and position pu.ise con-

: ditioning logics include priority circuits such that pulses from only one

of eacix pickoff pair are delivered to the DEA. Pulses from the redundant

: pickups will be automatically delivered if any one of the priority units fails.

The sine and cosine motor driving signals are obtained by pulsewidth modu-

lation Of the DC supply collage. Driving signals are derived by demodula-

tion of the sine and cosine output signals from a resolver mounted on the

san,reshaft as the motor. The amplitude of the resolver excitation signal

is controlled by the drive signal input from the DEA. Motor current is.

• measured by sensing logic included in the powez output stages. The

resulting analog signal is conditioned for direct output to telemetry.

A .JsIG_L L__ . _ SIGMA1. t__.
"]CONDIT,ON'NG! _ - "lCONOIT'ONINGI

POSITION _-lm. t) I_tE _LSE

PULSES r_._GENERATOR| v TO OEA PULSES _ TO OE¢

" 71 CONDITIONING J " _ICONDITIONING

RESOLV[R _SIN! H l"-d SINE pOWER t-_ / EOCOSINE
' SINE SIGNAL -- DEMODULATOR SINE PWM _'wI'rCH POWERAMP J---Jl_MOTOR

I WINDINGS

v- ................ I  U.ENtMONITOR _ tim

/ TO SINE

OR SWITCH J_ POWER AMP _Jb MOTOR/ WINDINGS

DELVESIGNAL INPUT

Figure 8.5-?4. Oespin Dvtve Electronics Block Diagram

The only modifications to the despin drive electronics required for

adaptation to Pioneer Venus are minor changes in the pulse conditioning

circuits. The position pulse channel requires adjustments to the signal

levels for 0. 5Z rad/s (5 rprn) operation. The rate pulse channel will be

modified to provide excitations to the pickoff light sources and to operate

wxth the new photoelectric sensors.

8. 5. 6, 8 Despin Electronics Assembly

A block diagram of the DEA is shown in Figure 8. 5-ZS. The angle

" " command generator provides adjustable linear functions of time (in digital

form) to approximate the required offset angles from the sun for maintain=

ing the antenna reflector pointed at the earth. Initialangles within the

s.S-¢5

)
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DISCRIPTION
- 1,HESEA G_NER_1,ES CLOSED-|SOP MGTOA CON1,ROL

THE DEA INCLUDES OIGITAL _T_lJ ANALL_G 5IGNAL_ EASED ON tOSl|lON AI_D RA1,EERROP
LOGIC pRC)VIDING CONTfl(_,t 51GNA|% IV INFORMAIION DERIVED 6Y PROC{Sr_I¢"4G _Ut4 5[N_R
THE MOT'OR POWE# CONTI_DL AND ArID DMA PULSES.
DECOMMUTATIC)N [L[C1,RONICS IHCLUD[L)
IN |HE DMA. _M_D!F!CA1,1C_NSR£QUIg[O

• CHANGE CONTROL GAINS

_HARACT[RI_|ICS. • DEIEI"[ RAT[ FEEUBAC_ INPUT TO IHI ANAICJG
COMPEt_SATION HEIWO g_"

W[IGHT_ 1.8 KG
• SUPPI.Y FIXED CLC)CK FRE(_U[I_4CI['; I_%TI AD OF

pC_WI'R: 1.5 W SPIN-SYNCH_NIZED PULSES.
NUI_|ER: 2 PER SPACECRAr/

1,FIEMETRY
RELIABILI1'Y: G.940 (42SDAYT_ 41L

/

TELEMETRY PULS|$ PULSES I Ri:_ISTER I 1,[L(MEIRY

CLOCK CLOC'_ CLOCK• I .... I I umtl R, I I

RAIE PULSES L_

TELEMETRY

Figure8. 5-2_. OespinElectronicsAssemblySurnmaryDescription

0 to 6.23 radian (0 to 360 degree) range can be established by command

with a quantization of O. 003 radian (0.175 degree)• Positive or negative

increment rates can be selected by command within the following ranges:

XI: O. 004 to O. 127 radian (0. 24 to 7. 25 degree)/day

X2: O. 007 to 0. 253 radian (0. 48 to t4. 5 degree_, day |

Each range consists of 32 levels.

The time delay logic delays each sun sensor pulse by an interval

proportional to the output from the angle command generator.

The phase error detector is an ! i-blt downcounter providing a

sampled measure of the antenna pointing error by measurement of the

phase shift between the delayed sun sensor pulses and the position

pulses from the DDA.

An 8-bit sample-and-hold register provides limiting to _0. 39 radian

.... (±Z_. 5 degrees). Sample-and-hold updating is synchronized to the antenna

position pulses. Thus, the D/A converter output between consecutive P

antenna position pulses is constant.

8.5-4'_
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t _ MC H! Position loop stabilization and steady-state error minimization are

provided by an analog amplifier, which introduces proportional-plus-
ArC iV integral compensation.

_TID III The rate error detector is an ll-bit upcounter that provides a

sampled measure of antenna inertial rate on the basis of a commanded

rate bias and c!ock pulse counts between consecutive rate pulses.

Limitingto 8 bits is provided by a sample-and-hold register, to

which digital data transfcr is made after each antenna rate pulse.

Adaptation of the Helios assembly to Pioneer Venus _ecluires only

minor modifications (see Figure 8. 5. 25). Redundancy switching will be

performed in the CEA, which also handles the command and telemetry

interfaces.

8. 5. ? Descriptions of ADCS Designs for the Preferred _ ._.

Atlas/Centaur Configurations for the Version IV _)A/C Iv ,_A/C IV
Science Payload

i

The ADCS design selected for the preferred probe bus configuration :_:_,

is as described in Section 8. 5. 6. 1. The design selected for the preferred ..........

orbiter configuration is as described in Section 8. 5. 6, 3 for the earth-

pointing orbiters.

!
!

A summary description of the selected platform drive assembl_r is

given in Figure 8. 5-Z6. The layout design of the platform drive assembly !

(PDA) is based upon a solar array drive currently being developed for

FLTSATCOM. The drive unit consists of a 0. 03 radian (I. 8 degree)-per-

step stepper motort which is coupled to the input of a harmonic drive i

reducer. The harmorlc drive ratio is |00:i, which results iri an output I

step size of 0. 0003 radian (0. 0i8 degree) per step. The output shaft is

supported in the housing by a duplex pair of angular contact bearings fixed

at one end. The other end of the shaft is supported by a single-row deep-

groove bearing, which floats axially in the housing to accommodate axlal

thermal expansion. This bearing arrangement has been selected to

positively control the shaft location under load, specifically under vibra-

tion during launch. The bearings are of 440C stainless steel with phenolic

• etainers, impregnated _,th NPT-4 oiL Other bearings [Or the harmonic

'_i drive and motor are similarly impregnated with NPT-4 oiL Nylasint

'_:: 8.5-47
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Figure_.5-Z6.PlmllormDriveAssemblySummryt)e_crlptlon

reser_.oirs, impregnated with NPT-4 oil, are mounted in several locations

throughout the assembly, The shaft and housing and other structural parts

are made from ROR4 aluminum alloy.

For position indication, one single-turn potentiometer is mounted

to the housing. Input rotation of the potentiometer is taken from the out-

put shaft with a set of antibacklash gears. The potentiometer will contain

:. a conductive plastic or £U.m-_ype resistive elemer:z, which needs no addi-

tional lubrication. Bartemp bearings will be used so that lubricant

reservoirs need not be built into the potentiometer.

" 8. 5. 8 Attitude Determh_LLu_ _ _.on_rol Performance,

:: Version IIl Science Payload

- 8.5.8.1 Probe Mission (1977 T.au._ch) I_.A/CII, [_T/OII,

7 Detailed analyses were. performed to derive quantitative assessments

.: of the pe_'£ormance attainable w|th the recommended ADCS design in all

critical phases of the probe mission, Particular attention was given to

_;: the determination of drift rates caused by solar pressure; the calculation

of attitude errors and dynamic perturbations originated by separation

(from booster), midcourse, probe release, and retargeting maneuvers;

the analysis of reaction control subsystem performance; the computation

of attitude determination accuracie_ during cruise and probe release and

retargetlng maneuvers; and the computation of velocity errors during

retargeting maneuvers.

8,5-48
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• I
-_/ _ This section smnmarizes the results of the above mentioned analyses.

:_ _ Wherever po._._ible, the material is organized chronologically. Data are i

- J_ T/D III
_.. given separately for the Thor/Delta and the Atlas/Centaur preferred con- _-,]

:_= figurations appropriate to the Version III science payload and the 1977

:.... probe mission launch.

"' Separation from Booster @ T/D III

_ The Thor/Delta-launched spacecraft will be spinning at 9. 42 +2..I.4783
•

rad/s (90 +27 rpm) at third-stage burnout. Spacecraft nutation will have-14

induced by the third-stage motor thrust vector misalignments and by

center-of-mass offsets of the combined third stage and spacecraft.

Assuming a third=stage motor thrust of 7. i x 104newtons (16000 pounds),

a thrust vector to center-of-mass offset of i. 83 mm (0. 006 foot)t a spin

axls moment of inertia (for third-stage and spacecraft combination) of

2 slug.ft2),155 kg • m (I14 an inertia parameter k = 0. 4, and a spin rate

of 8 rad/s (76. 4 rpm), the peak nutation angle at burnout is approximately

O. 07 radian (4 degrees).

The nutation angle following separation i_ om the third stage is a

function of spin rate, nutation angle before separation, mass propertiess

axial and lateral spring force differentials, moment arms, and separation

time. A nutation angle of 0. 03i4 radian (i. 8 degrees) is predicted after

separation on the basis of the following assumptions:

• Nutation angle be£ore separation = 0. 07 radish (4 degrees)
2

• Average transverse MOI after separation = i22 kg • m
(90 slug-ft 2)

2
• Average tra_nsverse MOI before separation = 258 kg . m

( i 90 slug-ft _)
Z

• Spin MOI vf spacecraft after separation = 145. 5 kg • m
(I07 slu$-ft 2)

2 slug.ft2_• Spin MOI before separation= 155 kg. m (tl4

• Separation time -_0. 1 second

• Axial force differential per pair of springs = 17.8 newtons

(4 pounds}
¢ L

......... • Lateral fozce differential per pair = 8. 9 newtons (2 pounds) i

8.5-49 t
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_ _ • Radial distance from centerline to separationA/C III
_" springs _ 0. 305 meter (1 foot)

T/D III • Axial distance from spacecraft center of ma,_ to _eparation
springs _ 0. 244 meter (0. 08 foot).

A pictoria] representathm of the spin axis attitude err,)r during

separation is shown in Figure 8. 5-Z7. For the Thor/Delta, the :,_omentum

uhift will be approximately 0. 0374 radlan (Z. Z degrees), and the nutatio:l

damper time constant after separation will be on the order of 15 minutes

iD[¢_i / NbqATION DAMPER

TID III °l°_ r
0.0;P0I-

°ot
-O.0_ t 4_ AI_ER SEPARATION
-0,105 Z -6_1 ................... TIME

Fkjure8.S-27.Pi¢lorlalRepresenlallenofSpinAxis/altitudeErrors_)urin
Separationfrom111tfd$tiaje .....

The Atlas/Centaur-launched spacecraft w111 be _pun up to 5 rpm by

the Centaur prior to separation. An analysis of the separation dynamics

is not included at the present time because the pertinent Centaur data are

not available.

DespLn Maneuver [_ T/D III I

The ThorlDelta configuration initially spins at 9. 4 ?. �´rad/s-I. 47

(90 +Z7 rpm). Assuming a nominal cruise spin speed of about 0. 5 rad/s i
-14 1

(4. 8 rpm), the spacecraft will be initially despun dow-n to a rate of approxi- _,

mately 0. 55 rad/s (5. 25 rpm) by the transverse thrusters (so that the

desired rate is attained after magnetometer boom deployme_t, i

Assuming a constant deceleration of 0. 0565 rad/s 2 (0. 54 rpm) for

stead-firing conditions, the thrusting time required for the initial despin

maneuver is in the range from 132 to 208 seconds,

During deployment, the magnetometer boom will be subject to

lateral loading due to nuta_ion and Coriolis acceleration. Assuming a

boom length of 3. 5 meters (136 inch), an inertia parameter _ = 0. 2, a

spin speed of 0. 5 rad/s (5 rpm)and a nutation angle of 0. 07 radtan

(4 degrees), the resu/ting acceleration is on the order of 0. 006 g. With a

8.5-50
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_T/D deplc_y_l_ent rate of 1 meter/s, the Coriolis acceleration is 0.0017 At
III g.

Lhc ntmlinal spin rate of O. _ tad/s (5 rpm), the axial load due to centrifu-

gal force is about O. 09 g.

Cruise t'hasc Attitude Determination and Control ALL CONFIGURATIONS

Three-dimensional angular geometry will be described in terms o£

stereographic projections. The spacecraft is assumed positioned at the

center of a sphere with its equator parallel to the ecliptic plane. The spin

axis and the spacecraft-sm_ =ud spacecraft-earth lines are next projected

onto the sphere. The sphere is diviaed in 0. 17 tad (10 deg) increments .....

both in longitude (meridans) and latitude (parallels) to indicate angular

measure. Figure 8. 5-Z8 shows how the sterographic projection of this

imaginary sphere surrounding the spacecraft is obtained. An important

property of this projection is that it is conformal (angles measured on-the

projection are equal to the corresponding angles on the sphere).

SI'F.REOGPakPHI¢
_OJECTION
OF POINT P

NOJE_'_'ION P_NE /

ON rile $1_(ERE

TO SUN

tO EAltrH

FkJure8._i-ZS. $tere_r@hlc ProjectionMethodfor Plane
RepresentationofThree-Olmensional
Angular 6eometry

S A/C IU Figure 8. 5-Z9 is a stereographic projection showing locations of the

sun and earth as functions of time and the spin axis orientation profile
T/D Ill

during the probe bus cruise phase. After launch and trans-_,'enus injection,

the spin axis (point A) is about 0.49 rad (28 deg) from the sun. From the

- thermal, power, and communications view, this attitude is desirable;

no initial orientation is needed. The spacecraft therefore could remain

in this position until day 5, when the first midcourse maneuver is planned.

8.5-51
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Figure8.5-2_. StereographicProjectionShowingSun-Earth-Spacecraft

GeometryDuringProbeBusCruise i
.!

At this time the vehicle is precessed to the required attitude (i. e. point !, f

B) and the AV is executed. Instead of returning to the initial position, the !

vehicle is precessed to a new location (point C), where it can remain from i

day 5 until time for the second midcourse on day 55. After the second i

midcourse (assumed at orientation D), the communications signal strength .....

decreases until the medium-gain (0. 6 meter) antenna is required. At this i

point, the spacecraft becomes an earth pointer and remains earth pointing ]

until probe deployment. _i

On about day 75, syzygy begins (where the sun, earth, and space- _i

craft are mo_t closely aligned). At this time, another option occurs: I

either the spacecraft can remain as it is such that the sun passes through i

the sun sensor deadzone, or the spacecraft can be precessed around the

sun, always keeping the sun aspect angle greater than 0. 17 radian (10 de- t

1trees) and the earth within the range of the 0, 6-meter medium-gain
antenna, t

Disturbance torques produced by unbalanced solar pressure are the t

main cause o_ attitude drift during probe bus cruise. The curves pre- I

sented in Figure 8. 5-30 provide current estimates of attitude drift rate as . t
t

functions of time for the Thor/Delta and Atlas/Centaur spacecraft configu- l

rations. Drift rates are generally low because thermal reasons require it

8,5-5_ i
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orientations with sun aspect an_les in the 0. 26 to 0. 6i radian (15 to

35 degree) range during cruise and the effective offset between centers of

[ pressure and mass decreases with aspect angle. For instance, if the
attitude of the spacecraft is not corrected during the 50-da 7 period

between first and second midcourse maneuvers, the total precession due

to solar pressure would be less than 0. 035 radlan (2 degrees).

Attitude determination accuracy is a function of solar and earth

aspect angles and the sun-vehicle-earth angle. The sun sensor provides

sun aspect measurements with an accuracy given approximately by the

following e×pres sion

Ae(rad, 3or) ffi 0. 00349/sin s

where evs is the s_m aspect angle, Doppler modulation provide_ earth

aspect angle information with accuracies as shown in Figure 8. 5-7. Based

on these assumptions and the geometry shown in Figure 8. 5-29, attitude

determination accuracies for the most _ignificant cruise event_ are as

follows:

Initial attitude after launch _0. 014 rad (±0. 80 deg) i

Initial attitude before maneuver_ :tO. 014 rad (±0. 80 deg) Ifor first midcourse correction

8.5-53
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[_A/C lit [_ T/D lit

First midcourse attitude ±0, 008 Lo _0. OZI tad
(i0. 44 to +1. 2 deg)

Cruise attitude (after first ±0. 0lZ rad {±0. 67 deg)
midcourse)

Cruise attitude (35 days ±0. 017 rad (+l. 0 deg)
after launch )

Cruise attitude before second ±0. 024 rad (±l. 4 deg)
midcourse)

Second midcourse attitude ±0. 008 to O.021 rad
(±0.44 to ±1.2 deg)

Earth-pointing attitude ±0. 008 rad (±0. 44 deg) :t

h4idcour se Maneuvers

The attitude errors, velocity dispersions, and spin rate variations

that may occur during midcourse maneuvers are summarized in Tables

8. 5-6 and 8. 5-7 for the Thor/Delta and Atlas/Centaur probe bus configu-

rations. Attitude determination errors are not included because the

orientations required for these corrections are not known at the present

time. !

During midcourse correction AV maneuvers utilizing the axial !

thrusters, the most significant disturbance producing attitude errors is

due to the difference in thrust level of the thrusters. A ±4 percent thrust

level uncertainty was assumed for this case. The alignment of the

thrusters is the most significant cause of spin rate changes during these

maneuvers. A thrust veclor alignment accuracy of approximately 0.

deg {~9 milliradian) was assumed for this analysis. E_perience of

Pioneer !0 has shown a much larger error, on the order of 1 degree

(~17 milliradian) although flight data from Intelsat III has shown errors of

less than I/8 degree (~Z milliradian). For either case, the spin rate

variations are suCficiently large during the large AV maneuvers that an

in-orbit calibration should be performed prior to a AV maneuver, and

the maneuver then be controlled in such a manner as to prevent unaccept-

able spin rate changes. For the probe mission, utilization of a pair of the

spin thrusters for a AV maneuver is impractical before large probe

r_lca_v due t_ the large axial center ol_ i_ass offset before large probe

release. 'i:}u, summary table assumes that {he spin Ihrusters lie nonli-

na_l!y in the center _1 ma_s plane after large probe release.

8.5-5.t
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Table 8.5-6. Thor/Delta Probe Mission SpacecrafL Dynamic Diaturbance_

ANG|E Mt)M|NTUM I" V[IOC_|_ V[Lt3£1|_ NtJTAI'IIIN
T/D III I.,,.,sl SPIN RAT[ Of ATTACK VILIO'd DI_FIRSION D[i_;RADAIIt]N ANGL[

IKII IttRUSll R CtIANGE ERROR SHII:I aNGLI iM,s) _AD (UIC,_
IV|N1 S) N ItS) '.l_A0 S tRPMI' RAD {DIG) RAD (DIG) _RAD (0t_)!

5tPA_Allt_N I_L)M Bt/O_,ll_ I 02 O (0) 0.0_ 12._) 0.031 (1.8)

t Ilit_| MIUI( L)(JN%11 73 _ Z(I.i/) tl.0_ (H0) 0.0_ (4.4} 0.014 (0.11) 0.070 IO.l_l 0 L l 0._ ($,t_

SECONL) MI_Jg_t_)LIK_Ei 7 3 I 10.?l tO.0t (tU. l) O,04b (2.6) 0.1_9 (0._) 0.004 (0._5) 0.004 0.038 I?,_)

IHIRO MtlX,dUeSL I 2 J.I _O.?) *0.O] U0 31 0.045 (2.6) 0,009 {0.5) I 0,004 (0._5) O.00t 0.D38 (_,2_

THI#D MII_OLiK_{ 2 Z . J. I (0.7i 10.15 (el .4) 2.443 (140) 2.443 {.40) LARGE 0.003 (0.Z)

FIRSTRETARGEIING I i.02 _31(07) t0.01(x0.1) 0.02311.3) 0.010t0.6) I 0. 005 (0. _1) --- 0.012(07)

FIRSTI_EIARGEIINC, 2 I.Q2 I 3.1 (0.7) t0.04 (t0.4) 0.00910.5) 0._)9t0.$) I 0.(X)4(0.1_) 0.00007(0.004J

SECONDRETkROEIINO I J 7._ -;I.1(0.7| _.07(.0.7) O.20_tl2) j 0.070t4) I 0.035(2) 0.041 0.140(11)

THIRD R[|ARGETING l 6.34 - 3 i t0 71 _0._l (,2_1 0.0_$ t4.3) 0.075 14.31 0.030 t2._l --o NEGLIGiRL[
!

fOL_IH REIARGITING I 26.55 _3. I (0.7) t0._9 t*2._) O.l_lli (2.2) I 0.017 tl) 0.009 (0.S) 0.0el 0.021 (I.Z)

0.324 RAD/S (S RFM} SPiN RATEASSUMEDFOR ALLCASES.

IUTILIZlNG PAIR Of AXIAL THRUSIERSWIIH 9 MILLIRADIAN MISALIGNMENt.

2UTILIZING PAiR Of SPIN THRUSTERS.

Table 8.5-7. Atlas/Centaur Probe Mission Spacecraft Dynamic Disturbances

ANGLe MOMENTUM VELOCITY I --
AJC III _HRUS_ SPIN RATE VELOCi|Y NOTATION

EVEN1 ",v OF ALIA{t( VICTOR i:qSI_RSION1Al_H II_RUSTER CHANGE DEGRAOATION ANGLf
(M/S) {N ILl)} [RAC/S 0U_A)) ERROR SHIFT ANGLE

IRA{) (DEG}I {RAD (DEG)] [RAD _EG)_ (M/S) [RAO (DEG)!

FIRSTMIOCOURSEI 13 5.2 (I .17) _0.16 (_1 ._) O.0_10(I .7) 0.g07 (0.4) 0.gO_ (0._) 0.00_ 0.0_4 (1.41

SECOND MI_COURS| | ? $._ (i. I_) I0.01 (_0.8) 0.0_10 (I .;e} 0._)7 (0.4) 0._ (0._) 0.0014 0.(_4 11.4)

THIRD MIDCOLIRSEI 2 $._ :1.17) I0.GR {10.J) 0.0_10 (I .;) 0.0_7 (04_ 0.00,1 (0.2) 0.0004 0.24 (I .4)

tHiRD MIDCOURSEz _ $.2 (I. I_) IO. I_ (_1. |) 1.920 (I 1_)) I ._0 _! !0) tAtlOt t.All_

FIRSTREIARGEIING I I.W SjI It. 17) t0.01 (_0. i) 0.017 (I) I 0.007 (0.4) 0.0_1 (0._) NEGLIGIBLE 0._09 t0.S)

FIRSTRETARGEEING_ I._ $._ (t. 17) _0.01 (10.4) _0.014 (t_.l) 0.014 (0.0) NEGLIGIBLE NEGLIGllLE 0.003 (0._|

SECOND RETARGETING1 P._l_ S._ (I. 17) *0._ (_._'. 0.15_ (91 0.O_ (31 0.0_0 (I ._) 0.04 O. 10_ (6)

IHIID RETARGITING I 6._4 5._ (I. 17) _0._ (t0.6) 0.111 (_.l) 0._ (4.;) 0.04| (2.4) 0.01 0.1_ (6._)

EHIID RETARGETING_1 6._ SjI {I .17) _0._0 1_.7) 0.0911 1_.0) 0.0911 ($.6) 0.049 (2.11) NIGLIGIIILi 0._ (0.1)

FOIJRTHREIARGETING I 26._k_ $._ (I .17) _0,24 (_.3) 0.(k_ (2) 0.017 (I) 0.009 (0._l) 0.01 0.01_ (I)

illl|

O._k_4RAD $ ($ RRM) SFIN RAT! ASSUMED FOR ALL CA_E$.

IulltlZl_O LAIR De _o_At I_USTI_S.

'_" ZUTILIZING tam O$ S_IN EHRUSTER$.
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.AJClit _ T/D Ill

The following is a summary of parameter dt, fit_itit)ns and no,non- i

clature used in Tables 8. 5-6 and 8. 5-7. -'_

: _:_i

• Angle of attack (_i)_the angle between the spin axis just prior
to thruster firing and the spin axis during thruster firing

i

• Nutation angle (0)--the angle between the spacecraft spin axis i
and tLe angular momentum vector _; __:

a Attitude angle (_)--the angle between the _pin axis prior to
thruster firing and the angular momentum vector

• Velocity degradation (AV d)-the IOss in magnitude of the
velocity increment due to the coning motion of the spacecraft

• Velocity increment dispersion angle (_v)--the angle between
the intended direction of the velocity increment and _he actual
velocity increment.

Probe Deployment and Retar_eting Maneuvers

Figure 8. 5-3i includes results of an analysis of attitude determina-

tion accuracies obtainable during probe deployment and retargeting based

on measurements of sun and earth aspect angles. Estimation accuracies
i

are given in terms of error ellipse parameters defined in the figure. _

Earth aspect angle measurements are made by the doppler techniques i

described in a preceding section, where determination errors are given

as functions of aspect angle. Solar aspect measurement errors are

as surned given by an inverse sine function of aspect angle with a minimum

value of 0. 0035 radish (0.2 degree) (3_) for orientations perpendicular to

the spacecraft-sun line.

In all cases the peak errors are less than the assumed requirement

of 0. 017 radian (I degree) (30").

Retargeting maneuver execution errors are given in Tables 8. 5-6 i

and 8. 5-7 for the Tho:/Delta and Atlas/Centaur configurations. The first i

retargeting maneuver will be made by a pair of transvers_ thrusters.

Relatively large attitude errors [(0. Z09 radian)(up to IZ degrees)] are I

induced during the second retargeting maneuver due to the radial center

of mass offset occurring after release of the first small probe. These i

errors can be reduced by either increasing the spin rate or by operating

with the transverse thxusters in the pulsed mode. The third retargeting t
maneuver is based on transverse thruster firinRs because the required i

attitude is more favorable for attitude determination. The fourth retarget- !

i ing is made by the axial thrusters because oI_the large velocity change

' required. 8.5- 56 ]i

00000004-TS[306



_A/CIII [_T/DIII

Figure 8.5-32 shows the locations of the spin axis during the entire .......i

probe deployment and retarget sequence. Using the probe bus as an earth I
pointer during thisperiod permits maximun_ _ommunications utilization :_-J

........i

prior to maneuvers. Itis an excellentstartingpoint for maneuvers since :_::_

the precession magnitudes required are reasonably small. Two options _/i::i!ii

for mission operations are apparent: first, maneuvers can be minimized ::_ ::_:I
by orientation to a position (say the large probe release), executing, and 1

staying there until the next maneuver two days later. The next maneuver ....... I

is the first retarget, which is only an O. 14 radian (8 degree ,) precession. I
The spacecraft c%n now remain in this positionuntiltime to maneuver _

for the firstsmall probe release, again a short maneuver. This process

can be continued for the entire sequence since the baseline design permits

the resultantsun angles for indefiniteperiods. Power and thermal

designs are ideal for this process. However, ifhigh-bit-ratecommuni-

cationusing only the Z6-meter DSN is desired, the second option can be

used, thatis, spacecraft can be precessed back to earth pointingat any

time (aftof spacecraft to earth). With thismodified earth-pointing

approach, allprobe release maneuvers are shortened considerably from

the Venus orbitplane normal position.

Tables 8.5-8 and 8.5-9 show differencesbetween the actualand

desired velocitychanges during 4V maneuvers. Velocity errors associ=

ated with the probe retargeting(RT) maneuvers are resultantsof rxial

and radialvector components.

Axial velocityerrors are caused by uncertaintiesin the thruster

impulse, which have been assessed as ranging from 3 to 6 percent of the

desired level. Radial velocityerrors result from a combination of atti-

tude errors incurred prior to thrustingand velocitydispersions caused

by effectsof rnisalignments while thrusting. Attitudedetermination

errors are caused by solar and earth aspect measurement errors and

the associated geometry. Velocity dispersion errors were estimated

assuming a 9-mil]iradianthrust vector misalignment for the probe bus

configurations. Four percent thruster imbalance was assumed in both

w
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MG Ill Presented in Tables 8. 5-10 and 8. 5-11 are current estimates of

performance characteristics of the reaction control system (RCS). TheseT/0 III include the abilities to precess the spin axis, spin-up and spin-down, and

change the spacecraft velocity vector. Precessions and axial velocity

changes are performed by a set of four thrusters located at the top and

bottom of the spacecraft. Spin control and radial velocity changes are

made by a set of four thrusters located on a plane perpendicular to the

.._ spin axi0 _nd located hoar the spaceeraftls center of mass. RCS perform-

ance varies as a function of propellant remaining (blowdown effects) and

mass properties. Calculations are shown for the spinning, precessing,

and velocity trimming of the Thor/Delta and Arias/Centaur probe and

orbiter missions. The peak nutation factor is a function of mass proper-

ties and thruster firing policy. This factor determines the maximum

nutation amplitude based on the precession step size.

Pulse sizes available tothe RCS are of 2.0; t. 0; 0. 125; 0. 0625-

and 0. 03125-second duration. The 125 millisecond pulse duration is used

as a generaI reference in the table and other values are included where

appropriate due to preferred mode of operation.

Small Prube Release Dynamics (_ T/D [l!

The trajectories of the small probes relative to tbe bus are described

by the equations for an involute, i. e.,

kP.- R (cos _ �¢sin¢)O

AT= -R (sin¢-¢cosqb)
0

where

AR = radial displacement between probe and bus

_T = tangential displacement between probe arid bus

R = distance between probe center of mass and bus-plus-
o remaining-probe center of mass at time of separation

qb= angle of rotation after time of separation.

8.5°58
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_.4JC III EVENT S'MmaL LP RTI ,,%PI RT2 SI_' 1 RT3 SP']

i

DAYS 6EFC)R[ENCOUNTER 25 23 21 19 17 15 13

[_TIO III -SPACECRAFT- A/'IGLE IN VOP RAU [(_[G) _ 2.470 (142.0) 2,429 (139.2) 2.3B4 (136,6) 2,_M0 (1_14.1I 2.29_ (131.bl 2.255 1129.2) 2.916 (127.0) _,1]

_PIHAXIS, ANGLE CELEStIAL ;I 1.910 (109.9) 1.740 (q9.7) 1.30_' (74.6) 9,612 (149.7) 0,696 L39.9) 1.735 (99 4I I.lfil (67.71 2,_

-ASP[CT'RAD(DEG) A 0.667 (38.2) 0.698 (40.0) 0.435 (94.9) 1.016 (SB 9) 0.4112 (276j 0.}50 143,0j 6.626 (35 9) I.|d

EERQR_.R._,.D_DI2G.t "[ " E.... 0._06 _0._J 0.005 [0.3_} 0.DOe L0.4O) 0.0_. (0.24) 0.0_7._ {0.4aj i _J.C,_I _-29, 0.n_ LQ.3_ _.al

D[TERMINATIOI_I MODE" A A A 0 A I A A

PRO§ABILITYELLIPSEON CELESTIALSPHERE
RAD (DLGJ

SEMI-MINOR AXIS _ 0.00_ (0.31) 0.0037 (0.21) 0.0079 (0.45) 0.0030 (0.17) 0.0061 (0.35} 0(1051 (099) 0.0058 (0.33) 0.GI

_N_,L_ 8_EWE.E_"_._ _N_t _,_ • 0.141_ (_0. I.t 0.2010 (1_.0) 0._6 (30.2) 1.3199 (75.6j i. 1447 _..,6) o. 1902 [10.9) 0.5200 (29.6) 0,_1

I
- DOPPLERMODULATION

g - DOPPLERSHIFT

Figure8.5-3|, ProbeDeploymentandRetargetingAttitudeDeterminationAccufacies

[_ ,__ w Table 8.5- 10. RI'/D III _ T/O III Th

SPIN SPEEDCHAHGE

CONDITION 125MS
CONT._I_dOUS

(RAD $),PULSE -RAD, S'_ (RPM/5)(RPM PULSE/

PROBE i

[_ -1.57 RAD CRUISE:
A/¢ III (-90D_G.

ECLIPTIC __ 100 PERCENTN2H 4 _.007) _0.0o8) 0.056 _ ,_.54) e_
P_E ,_ \ \ __ / / _ 5o P_CEN'r o.oo_e(o.oas_ o.o3_4 (o.oao) 0.

T/OJU .......... 20 PERCENT i C,.00a2 _C.C31) 0.0200 (0.25_ O.

AFTER: !

(0.035 10 0.070i 10.28 TO 0.56_ 1_

SPIN SPI i 0.004_ TO O.0O_6 g.0a4b 10 0.0_91 _

AX/S,_t__ t : _ \ i (o.0_1 TO 0.032, (0,33TO 0.06) (1$I_ i 0,00_7T00.0113 0.0450TO0.0901 0_

gAD (0_,_-_L ] i __! ! z I ] I I ) _],.EAReu i _0.0._ TO O. i08, (0.43 TO 0.86_
q

DSN COVERAGE _/ IDt ,I I 1 1 _ I Y ,n

WITH 26*METER / " I_ ,. . I 5P3 ; 0.0069 ?O 0.0138 0.0SSS TO 0.0tll O_

NOR. (0o.o6O.To0 ,
SP_ i {0.059 IO 0.1181 (0,47 TO 0.94)

SP I C_81TER

_,IDEGI _-'" "_ / N 1 7"-'-'T "-_'- \ V \ / t00PERCENIN2H4 t 0.1t31 (0._08i 0,0901 (0,R6) O,I >*
\_->" SOPER,.:N,o.o,1o.o6o,o.oso,(o,,,

I'OS RAD'_-'_'-----.L----_-- 20 PERCENT 0.0052 (0.050) 0.O_IR (0._01 O,
(60 DEGI 1.57 RAD)

: (90 DEGI ENCOUNIER" 0._$2 TO 0.0104 0.0419 TO C'.0E38(0.050 TO 0. I_01 (0.40 TO 0.80)

Figure 8. S-3Z StereocjrBhic Projection Shying Locations tN ORBit I 0_0.050ZO aZe0,00_ro o.om_ o.o_2_(o.4iTOC._TOo oese

o_ the Spin Axis, Sun, and Earth During Probe _N ORBIT'* 0.0053 TO _.01_ 0.0_7 TO 0.07/5 _1_ReleaseandPrmeBusRetarcJetlngManeuvers (aosi 10 0. t021 (0, 37 TO C. 74)

EN0 OF MISSION 0.0(_8 TO 0,010S 0,039B TO 0_0,W6 0_
_0.046 TO 0.C_i 0.038 TO 0.76) e_

M_'.GNETOMETERRETRACTED,

, °*MAGNETCMETER DEPLOYED,

IR_JX)UT I"I¢,AMI_

1
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Table 8.5-I0. Reaction Control System Performance of /VC III A/CIV Table 8.5-11

wThor/Delta Configurations A/C IV _ A]C III
J

, SPIN SPEEDCHANa
SPIN SPEEDCHANGE PRECESSION-RAD (DEG) L_V (M,S) TRANSVERSE

FEA_ THRUSTER&V CONDITION 135MS _l_l
NUTATION (M, 'S),-'REV [ _AO/$)/PULSE CO

125 MS CQN_N_C)U_ CONTINUOUS 2oSECOND PULSES, (R_NVPULSEi ERA
o/s=

(R_D $)PULSE _P.AD,:S=(RPM,S 125MS PULSE 31.25 MS PULSE FACTOR 12_ MS PULSE (PERSECOND) TwO FIRINGS/REV

(_P_ rULSE_ .... _Om,_e.[

I ....

CRUISE:

100 PERCENTN2H4 0,0_1 10.0301 0._._t 1

O,0071 {0.058) 0.05_5 (G.54) i 0.0138 (0.79) 0.0035 10.20_ i,46 [ 0,00_,_ 0.026 0.104 _10PERCENT 0,0018 10.017) 0,0147

O.00.a_0L0.038_ 0.03|z._0._;_ ]_ 0._ (0.,14} - 0,001_ (0.111 , I.a6 i,oo0_e 0.014 0.056 20 PE_ENT 0.0016(0.015) 0.0l_6 1

I I I AFTER, i

I 1 LP 0.0018 TO 0.0034 0.01471

C,0037 TO 0.0073 0.0293 TO 0.0586 0.0070 TO 0.0140 0.0{L_17TO 0.0035 _ 1,BB j 0.0023 _'O 0.0046 0,01_ 1_) 0 036 0,07_ TO 0.144 (0.017 TO 0.032) (0.14 lrl_
(0,035 TO 0,070, (6.28 TO 0.56_ [ (0.40 TO 0.801 (0.10 TO 020_ , SPI 0.0g_0TO 0.0040 0.015}'1

o.o043too.ooBa 0,0_100 o,,�a L 0,0080T00.0_7_ 0.0021 T00.0042 I I.SS 0.0026100.0052 0.021 To0.042 0.084TO0.168 (0.0|91'O0._08) (0.1_T|
(0,12 to 0.24}

(0M041 TO 0,_2; (0"33 10 0.66) i (0,49TO 0.98) I SlI_ 0,_TTO0._ 0._

O.0057TO0.0113 00450TO0.0901 , 0.0t00 TO 0.0216 0.002010 0.0032 i 1,35 0.0031 TO0.0062 0.025100.050 0.100100.200 J (0.026TO0.052) (0.201'J

(,0,0_ TO ,9,108; (0.43 TO 0,86) i _0.62 TO 1.24_ (0.t5 IO O.30_ SP3 ] 0.0006TO 0.0071 0,_1,_
O,0069TOO.0138 0.0SSSTC) O.OIII ! 0.013btO0.0272 0.0033 TO 0,0066 1.27 0,0039100,0078 0.031TO0.002 0.124100.248 (0,034 TO 0.0_) (0.271r

(0.066 TO 0.132_ _0._3 10 0.106) I (0.78 TO 1.56) (0. t9 tO 0.38) END OF MISSION 0,0_S TO 0,0050 0.01_P

O,0062 TO 0.0124 0,0_92 TO 0.0984 I 0.0120 TO 0,0241 O,0030 TO 0,0059 ],31 0.0035 TO 0.0070 0.028 TO O,05b 0.1i2 TO 0.224 (0.024 TO 0.0dS) (0,191
(0,0,,_9TO O. tlB) _0.47TO 0.94_ (0.69TO 1.38) (0. ?tO0 34_

ORRITER

J CRUISE:

O.m131 10.108; 0.0901 (0,86_ i 0.0222 0.27) 0.0058 10.33) 1,04 0.0043 0.034 0.136 100PERCENTN_4 0.0057 (0.054) 0.04_i

O,0063 (0.060) 0,0503 (0 49) J 0.0124 L0.71) 0.0CJI (0.18) t.05 0.002,, 0.O19 0.076 50PERCENT 0.00_l (0.030) O._lii

O,0052 (O,0SOI 0.04i9 (0,40) I 0.0log (0.602 00_26 (0.15) 1.05 0.0020 0.016 0.064 20 PERCENT 0._6 (0,025)
0.0_011

0,0052 TO 0.0104 O.C49TO0.0B38 0.0105TO0.021:}9 0.0CZbTO0,01_2 1,10 U.0OI8 TO 0,0036 0,oi4TOO,028 0,0_6 TO 0. |12 ENCOUNTER 0,_9 TO 0,0059 0.0_
(0,C_0 TO O. 100_ (c.40 TO 0.80) 10.60 TO 1.20) (0,15 TO 0.30; 16.0_8 TO 0.0_) (0._ _t

0.0052 TO 0.01m 0.0_2v TO 0.0958 0.0_06 TO 0.0213 0.0026 To 0.0052 t 08 0.0025 TO 0.0050 0,020 TO 0,40 0.80 TO 1,60 IN ORBIT* 0.0029 TO 0,0059 0.C_H
_0,O50 TO O. 100) 10._1 tO 0.82J (0.61 TO 1.22) 10.15 TO 0,30_ J (0.02R _O 0,0_) (0.2_

0.0053 TO 0.0105 0.0387 10 0.07;'5 0.0096 TO 0.0192 0.0024 TO 0.0049 l/ t0,1 J 0.0025 IC 0.0050 0.020 tO 0.040 0.80 TO 1.60 IN GRillE*" 0._024 TO 0.048 0.OIIII

(0.051 TO0.102} (0.37TO0.74) (O,_S TO 1,10) (0,1_ TO 0.28) (0.0231'O0,016) (0.11 ,

0.0048TO0.0105 O.03QBTOO0796 0,0098TO0,0195 0.0024TO0.0049 t CD 0.0024IO0.00_8 0.019TO0.038 0.072TO0.144 END OF MISSlON C_.0_2 TO 0.0044 0,Ol_J_
(0.O46 TO O 092) 0 038 TO O.76) 0.56 tO 1.12) 10. t4 TO0 28 (0.021 IO 0.04_) (0,I7 1R

--_._TED. MAGNETOMETER RETR_ tED.
**MAGNETOMETER DEPLOYED,

_.])0U'r I,"LA_:_!:
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!

_,5.8. Velocity Errors During Thor/Delta Table 8.5-9. Velocity Errors During Atlas/
Probe Maneuvers Centaur Probe Bus Maneuvere

_ott evmi _ A/C lit j e_mtEVENT1 I ....."--_tl _r_ _r3 aN RI I #T2 #T_ gTl
.

1.02 7.32 ,%34 icl.55 glv (IVll£1) l,O'd[ _.:tt 6,11 2d._,l

tVIK_IHAIIOH AITI1,UDE DITIRMINAIION ! 0.0091 (0.52) 0.0112 (0.64) 0.0136 (0.78) 0.0109 (0.61i
_' (DIG) 0.0091 (0.52) 0.0112(0.64)! 0.01._6(0.7§ t' 0.0109 (0.63) [RROI IADIDEG)!

_iSe_eSlON VItOCiIV DISPII:_ION 0.(700 (0.00J 0.t_62 (1.50J 0.Oe_' (2.1_01 0._7 (0. _50./
•_ (DIG), 0.0044 (0.25) 0.0_.9 (_.0) 0._ (215) 0.0_7 (0._0) ANGL[ _ltAI) (DIG)

VELOCITY COPA|IN[D VELOCITY 0.0091 (0.52) 0.0204 (I._) 0.0506 (_.91) 0.0140 (0.§0)
_w'bE {I_AO (DtG)J 0.0101 (0.50) 0.07'46 (2.101 0.015S (2.41) 0.0140 (0.00) EI_RORANGLE ' RAD (DIG)

,C_-t1,Y E#IIOR RA01ALVELOCITY 0.01 0.21 0.32 0.37
O.UI 0,27 0.29 0,37 lRl_Otl (M/S)

_It," a AXIALVELOCI1,yI:.RROI( O,_EOD.061 ti.ll|O'li.4'4' Ot!tiOO-311 D.?71OI,M
0.COTO0.C6 0.2_TO0.44 0.191,O0,30 0.77TO1.54 (_$)

"_K;IIY illlOR 1,OTALVELOCtIY iRliOfl 0.32 tO 0.061 0.32 TO 0.51 0.37 TO 0.50 0.65 TO I.$8
0,032 tO 0.C61 0.35 TO 0,$2 0.35 TO 0.48 0.86 TO 1.58 (M/$I

I I

_A/C _p.A/CIV Table 8,5*11. Reaction Control System Performance o£
III

,,_[3,1w Atlas/C entaur C onfiguration
[_- A/C _ A/C III

IV

I
SRN SREEDCHANGE IECESSION !RAD (DEG) AV 0,1./51 TRANSVERSE

PEAK THRU$1ERAv

• I_IU1,ATION CON1,1NUOUS "(MiS)/REV
CONDITION ]25 MS CONTINUOUS 125 MS PULSE 31.23 MS PULSE FACTOR 125 MS PULSE 2-S¢'COND PULSES

r-0tAO/S)/PULSE _P,AD/S" 0tPM/$)] (PERSECOND) TWO FIRING$/gEV(eI_vVPULSE

CIUISE:

1001_ENT N2H4 0.00_1 (0.030) 0.0251 (0.24) 0.0063 (0.36) 0.0016 (0.090 1.41 0.0016 0.014 0.056

_0 I_ttCENT 0.00|8 (0.Oft) 0.0147 (0.14) 0.003_ (0.201 0.1_09 (D.0_01 1.40 0.0009 0.007 0.0_B

20PERCENT 0,0016(0,015) 0,0126(0.12) 0.00_l (0.18) . 0,00_8(0,0431._ 1.48 0,008 q.0C_ 0.024

AFTEr:

LP 0.001iTO0.0(O. 0.0147TO0.02.93 0.0033TO0.0066 0.00BTO0.0017 1.79 0.0011 TO0.0022 0.009IDiOtS 0,036 TO 0.072
(0.017 TO 0.032) (0.14 TO 0.25) (0.19 1,O 0.38) 0.040 TO 0.0961

5P1 0.C<_0 TO 0.0040 0.01571'O 0.0314 0.0040 TO 0.0080 0.0010 TO 0.0020 1.56 0.COI.I TO 0.0020 0.Oil TO 0._4 0.048 1:O0.0_6
10.Ol_ 1,O 0._lS) (0.13 10 0.30) (0.23 TO 0.40) 0, 0.58TO 0. I i6)

SP2 0.0_7 TO 0.0054 0,0209 TO 0.04191 0.0G54 TO 0.0108 0.0014 TO 0.00_7 | .30 0.0019 TO 0.0038 0.014 TO 0.028 0.56 TO 0.112
(o.oz,_to o.o_i) (0.2oTo o.4o) (o,31TOo._) (o.o;,eToo.i_,)

SP3 0.0_6 TO 0.0071 0.0233 TO 0.0'165 0.0072TO0.0143 0.00i8TO0.0036 1.34 0.0094 TO 0.0048 0.019TO0.030 0.0?6TOO.IS2
(0.034 TO 0.0_) (0.i? TO 0.54) (0.41 1,O 0.82) (0. i02 TO 0.201)

END OF MI$SION 0.0(_$TO0.00_0 0,01_9TO0._198 0._0.SII'O0.0101 0.0013TO0.00_.5 I..51 0.0022TO0.0044 0.010TO0.036 0.072TOO.t44
(0.0_, TO 0.0_) (0.19 TO 0.381 (o.29TO0.SS) (0.072TOO.l_)

CRUISE:

100PERCENt N2HI 0.00_7 (0.034) 0.04.50 (0.43) 0.0113 (0.65) 0.0028 (0.162) 1.06 0.0029 0.024 0.096

50 F_RCENI 0.00_) (0.0301 0,0_51 (0.24) 0.00_3 ,..36) 0.0016 (0,0901 1.0_ 0.0016 0.014 0.;_

20 RECENT, o.oa_6 (0.025) 0.020_ (0.20) 0.0052 (0.301 0.0013 (0.075) 1.06 0.0014 0.011 0.044

ENCOUNIEI_' 0.0_910 0.0_t 0.023010 0.0461 0.0059 tO 0.0119 0.001.5 TO 0.0030 1.01 0.0013 TO 0.0026 0.010 tO 0.020 0.040 10 0.080
(0.020 TO 0.0_) (0,22 Tu 0.44) (0.31 TO 0.6111 (0.08.5 TO 0.170)

INOR|IT 0.(X)29TOO.00.59 0.0230 TO 0,0a61 0.00.59TO0.0119 0.0015 TO 0.0030 1,0_ 0._01810 0.0036 0.014TO0<028 0.0._ TO 0.112
(0.0i8 TO 0.056) (0.22 TO 0.44) (0.34 TO 0.68) (0.00.5 IO 0.1701

tNO_ff'* 0.0024TO0.048 G,Oi_lt_O,0_ g,_l?T_O,_8 O.O_ltllOO_00_,t 1,1_ 0.0018TO0,0036 0•014TO0,028 0.056 TO 0.11_
(0.023 IO 0.016) (0.18 TO 0,36) (0,20 TO ().561 0.070 TO 0.1'_01

ENDQFMI$SlON 0.0022T00.0011 0.0178T00.03_ 0.0044 TO 0.00e# 0.0011 iO0.00_2 1.07 0._013T00._ +].0t21OO._4 g,gllltOO,OltO

_memJ (0,031 1"O0.042) (0.17 TO 0.34) (0,25 TO 0.50) (0,06,7 TO O. 124) ,, i

_._*GNETOMm_tET_KTED
_,ONETO_ETE_Ote_O'_EO.
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I

,.: The relative trajectories shown in Figure 8.5-33 show only one
"E i:¢ probe interferes with the deployed magnetometer boom, thereby requiring

i_- / retraction of the boom for release
._ /" 4

•_: ._ t_ _.... of this probe, The relative tr_jec- :_": /Q -" tortes of the first and third prGbes

' ] _ released begin in a direction along ..

_';_ _ a radial line passing through the

iT spacecraft centerline; however, the

"':_- , _St*N¢_ relative trajectory of the second
-- {I IlTlnSI

,\,_ _aon.ometf_ ] probe released begins in a direction[

: --_ m,_oYo I approximately 0. 157 r_.d (9 _g) off

a radial line due to the center-of-

mass offset of the bus and last
remaining probe at that time,

Figure8.5-3_.SmallPr®eTrajectoriesRelativeto
Pr®aBusCoordinateSystem

The small probes aye released sequentially from the bus with no

impulse imparted to the probe by the release mechanism. As a result,

///_'_'_._ CeN,,OFM*,*_',,OeeReteAS_ each probe travel0 in an iner-

// _' /___ _// " C'N"' O'M'S "'J" '_e_'mast _'ial directi°n perpendicularto a radial line connecting
the s_acecraft and the probe

u AVp

Avb ,_'..._.- ,_ __,,._ centers of mass at the _

\., 2o ,o,o,o,r.,....owoin Figure g. 5-34. No change

_eus of either probe or bus spin irate occurs as a result of

Figu_L_-]4. S_. em_l_ms,_omot_ probe release. The velocity

changes imparted to the probe
Table 8.5-12. Velocity Increments

Produced by SmsU Probe Releases and bus are AVp = 0_ri ;

AVb = wr2; where w is the
R I R2 _VpRoIIE AVBu S

_V£NT (m) (m) (M,S) (_*S) spin rate. Norninal values

,,stsmaLt_,oeeret_s_ o._ o._ 0.,3 -0.o_ for the velocity increments
S[COND SMALL PROS_REL[ASE O./7 0.145 0,40 -0.076

T,leDSmALLR,Ogee_L_ASe0.68 o.:s 0.3s -0.0_e expected in the Thor/Delta

configuration are given in
• THEA4'S IMPART[D DURING THE SECOND I_OB[ R[I[ASE WILt fie IN A DIRECTION

AIxI_O/_IMAII'tV O FS;0I_.IAN 49 OI:*'_R(:{_}.OFF ff_tl_NOJ{OtAl_ tO tHE 4_AOIAt.
tint cON_IcItD tO Tiff CINIt_ OF THt ProOf AND TH[ c[:NT_E O_: THI sFACf_- Table 8.5 o1_.
CRAFI DU[_ tO |HI CINIIR OF MASS LOCATION FRIOR tO _ICOND _O0_ REL_ASI,

8.5-60
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[_A/C _ III _ A/CIII _ 1"/O!II
III TID

During small probe release, disturbances can induce transverse

rates that will cause precession of the momentum vector and nutation of

the spin axis. On@. source of distur-

_ > brace torques is the pr¢_oad energy
in the releRse mechllv[sm. This ener°

@ i" _'_ T" gy can praduce a force misaligned with
the probe center of mass as shown in !

Ire _ i

ir+'_ Figure 8.5-35.

figure8._-D. ForcesInducingtraversematesDuring The curves in Figure 8. 5- 36 indi-
S_II ProbeRelease

cate the magnitude of the errors as a

function of the various parameters. Since the center of mass of the _ma11

probe lies approximately Z centimeters above the plane of the re1_s.se
mechanism, it can be determined

"'i ..... I"I

,.o I.T-t-E_T_0_- _ I. -_" I from the curves that only small
I/ THOR/DELTA ------t _'_ I

_- !ll ATLAS/CENTAUR _'_.__. _--! l
/l _ "---_ ..... _-.>-"_'p000N/CMI preload forces can be allowed.

....... z_--......... _...... _._L.... __ _--:-_

_-_ _: s_ N/CM/// For:example, using a relatively
_ _ i , stiff release mechanism struc-..... I i /i i " 5000N/CM

o L . apreloadforesofapproximately

iiti'li"----SO newtons ( 11 pounds> will induce/#/ .>: t_--=_2,1_o_/<M _ O. 017 rad (1 deg) of attitude shift

:<uS_,0.02 I1!/ ......r_"

z _._II: _ '_---_ k-_OO?NIC_ , will induce higher errors for the
0 10 15 20 2't

KICKOFFMOMENTAIt,MICM) same preload. Therefore, a

Figure8.5-36.SmallPro_eiil_ll ErrorsforaPreloa_edReleaseSystem de sign was conceived to release
the probe in two stages. The

first stage releases the preload, which is necessary to hold the probe

firmly during boost. After this preload is released, the probe is restrained

in the release mechanism, with only loads due to centrifugal force acting on : '

the s_ructur_. This load is approximi_tely 6, _ _ (1.5 lb). Therefore, the >

probe and release mechanism structure is required to produce a stiffness

of only 440 N/cm (Z50 Ib/in. ) to limit the attitude shift and nutation to less i
than 0. 017 red (l deg). This can be achieved easily, i

" " Another source of attitude disturbance is the shift of the spacecraft

principal axis after each probe is released, due to the errors in aligning

8.5-61
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l
4

l

the probe center of mass and the spacecra_ft center of ma_ in the sanle

plane perpendicular to the spin axis. The small probe attitude shift and

nutation will be equal t{) the :_pacecraft principal axis tilt due to this effect,

_-_ ]'/[3 II! The large probe i._ separated from the bus by tmlocking three ball-

lock bolt_, thereby allowing the three separation _prings to impart an

axial relative velocity _)f about O. 3 m/s (I ft/s) to both probe and bus.

The resulting inertial velocity changes are 0. 196 m/s {0.65 ft/s) for the

probe a_d -0. i24 m/s (0.41 ft/s) for the bus. Uncertainties in these

values can be limited to less than *_ percent by calibrating the separation

springs.

The separation event will also produce disturbances that will pre- '

cess the probe momentum vector and induce nutation. A summary of the

error analysis including contributions from various sources is given in

Table 8. 5-t3.

Table 8.5-13. Large Probe Separation Tipoff Errors

I Ni_',ION _0,_; POOIq[',

&_-_AL ! Pk'INL_ '_,_1_ (2llfL_.:tl'q IIAL 0,000 0 0i0 BhO)
2 P,(_-C ( N 1

_0 35 ( { f'4_la,'_l T[[_ {'11.0_ INCF_!

:O,I_kNTIM[TI:_ ( k_ 06 I['_LH}

b_,tL-k_a, _LLEAS[ DIFFI_LNIIAL 0,003 0(_05 ICI.3_
S _'_tkLISEC OND5

_:35 IL)1AL tI,CI 0.01,' (I(q

,_Ls,,w w
8. 5. 8. _- Orbiter Mission _ A/C III _ T/D III

Detailed attitude determination and control perforl!lance analyses

have been done for both the Thor/Delta and Atlas/Centaur configurations.

The subjects considered include disturbance torque analyses during cruise

and orbit, dynamic analyses of all maneuvers, reaction control subsystem

performance evaluation, attitude determination accuracy analyses, and an

analysis of the communications antenna and science instrument pointing

r e quit ements.

Following the approach used in the preceding section, results are

presented in chronological order. Where applicable, data for the Thor/ I

Delta and the Atlas/Centaur configurations are given separately.

8.5-6Z
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Separation from Booster AJC I!! _ TID I11

A third stage burnout, the Thor/Delta-launched orbiter spacecraft

will be spinning at % 4Z +2. 83 rad/s (90 +27 rpm). Assuming a combined" -i. 47 -t4

spin momentof inertia of 96. 5 kg-m Z (71 slug-ft2), an inertia parameter

k = Oo 45, and other parameters as in the probe bus case, the peak nuta-

,ion angle will be on the order of O. 087 radian (5 degrees) at the maximum

spin speed of 7. 95 rad/s {76 rpm).

After separation, a nutation angle of 0. 035 radian (2 degrees) is

predicted when the following assumptions are made:

• Nutation angle before separation = 0. 087 radian (5 degrees)

2
• Average transverse MOi after separation = 65. 5 kg ' m

(46 slug-ft 2)

2
• Average transverse MOI before separation= 177 kg" rn

(1 30 slug-ft 2)

2 slug.ft2)• Spin MOI after spacecraft separation = 9t. I kg" m 164

• Spin 1V,O[ before separation = 101. 1 kg. m 2 (71 slug-i_ 2)

• Other parameters same as for probe bus.

The momentum shift will be approximately 0. 087 radian (5 degrees)

and the nutation damper time constant for the Thor/Delta orbite:" after

separation is on the order of 15 minutes at 0. 52 rad/s (5 rpm).

The Atlas/Centaur-launched spacecraft will be initially oriented and

spun up to 0. 52 rad/s (5 rpm) by the Centaur. Since no data on Centaur

operation at 0. 52 rad/s (5 rpm) are available at the present timep the

corresponding analysis of separation dynamics could not be completed.

Despin Maneuver Z_ WT/D III

The initial spin rate of the Thor/DeD:a spacecraft after separation

is 9. 42 +2. 83 rad/s (90 +27 rpm). By command, the control system will-i. 47 -14

be operated to reduce the spin speed down to 0.61 rad/s (5.8 rpna). The

norr,_l rate of 0. _ rad/s (4.8 rpm) will be attained after the magnetome-

ter boom is deployed (Version Illscience payload).

As_uming an average deceleration rate of 0. 09 rad/s 2 (0. 86 rpm/s),

the required firing time will be in the range from 82 to i29 seconds.

8.5-63
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Based on calculations made for the probe bus, it follows that mag-

netometer boom deployment loads due to nutation and Coriolis effects

will be small Zor the orbiter also.

Cruise Phase Attitude Determination and Control _ A/C III_ T/DIll

Figure 8. 5-37 is a stcreographic projection showing locations of the

sun and earth and spin axis orientations during orbiter cz'ui_e, Inltiallyj .......

the spacecraft will point south in the orientation designated A in the figure.

During the first 5 days, this attitude will allow communications with the

omni and the high-gain antennas. After the first midcourse correction,

planned on day 5, the spacecraft will be precessed to the B orientation, !

near which it will remain for the next 50 days until the second midcourse I

lcorrection is executed. After the second midcourse maneuver, the cruise

attitude will be C. Afte:rZ00 days, the cruise orientation will be D. From I

there, the vehicle will be precessed to point E for Venus orbit insertion, i

A syzygy condition occurs on day 168, when the sun, the earth, and the 1

spacecraft are almost aligned. 1
1

VENUS
1.57 RAD / ASCENDING
(90 DEG) // NODE

10
fJ'3 2 09 RAD _0

I;'Jn nEG_ _ :_u 240a_'_lr_ 1.05 RAD

sunfocus...... _ . .j.4_._;_a4_DRG)
_A_ ./% " ___. _,_ _OC_S

EARTHAE
a: _ . _ '"t0r',_,_'_..-2_,_.'0/VENUSO*_li
0 _ . - . "m_ ': ' u" _-")_1i]0 INSERTION

z
2.62 RAD ,o" . _'-, "_.,"lo \ c.5_ RAO

g.

gJ 3.1_t i

(rodit _t tJtl¢__l cle_N' f \t ),-...-'rz

_._ _o_ " " " /'s.;'(. _AD

i

SYZYGY "_.._ 17_ " " '( ' ' _'_- ECLI, ,l(...... .cUTo . _ _ -__ EcHt!lc
" . " i-LANE

4.19 RAL_ "'_:,.24RAD
(240 DEC,) _"_,._.._ 190 _20o _ (300 L)LO'

--NORTHERN HEM_SPHER! 4,71 RAt) "SUN AT VOI
(210DEC)

.... SOLHIHIRN HEMISPHERE

rigure8.5-]1. StereographicPmjectinnShowlnqSun-[arth- _
SpacecraftGeometryDurin90_llerCrut_e
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A/C Ill T/D Ill

Attitude drift during cruise is produced by solar pressure torques.

Disturbance torque analysis results for the Thor/Delta and Atlas/Centaur

configurations are given in Figure 8. 5-38. Drift rates are larger in the

Thor/Delta configuration because the solar array height and, consequently, t

the offset between centers of pressure and mass are greater than in the

Atlas/Centaur configurations. Precession caused by solar pressure is

always about the line joining the spacecraft and the sun. Consequently,

at any given point in time, the solar pressure drift will change the earth

aspect angle at a rate dependent on the earth-vehicle-sun angle. As the

inertial location of the sun {in a vehicle-centered coordinate system)

changes with time, any accumulated precession due to solar pressure will

also include a small component, which will appear as a sun aspect drift.

_RAD/DAY I _DLG/DAYI

i_ o.o17 I.oo,..............................I .......-r-.......A/C Ill ' I!

' i _ ' '_'_''.... 1o.oiA/C III o._N

T/D III
0.010 _ 0.60 i

O.Otl7 _ 0,4tl Jt_ ]

O._X)3 0._0 _ _ J 1

|

0 It .....
0 ',0 I i10 I ',_1 2ilO 250

[)_.'vIRO_A LALINCll i

[ iqure 8.5-,18. Solar Pressure Drill RateVersus 'rimeOrbiterCnlise Phase ,!

!
Figure 8. 5-37 shows that precession caused by the solar pressure I

during the 50-day period following the first midcourse correction will be I

almost along the desired locus from B to C. During this period, the Thor/ J

Delta configuration would precess about 0. 35 radian (20 degl'ees), while j

the Atlas/Centaur spacecraft would drift only 0. 1 5 radian (8. _ degrees), i

The frequency with which attitude corrections have to be made i

depends on the pointing error allowance during Cruise. Asstuning a maxi- i

mum pointing error t,f 0. 052-4 radian {3 degrees) and corrections to bias i
]

8.5-05 i
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i

_-_ AJCill solar pressure effects, intervals between maneuvers for the Thor/Delta

w orbiter would vary from 7 to 15 days. For the Atlas/Centaur corffigura- ITID Ill

tion, the corresponding intervals would be in the range from 17 to 35 days.

Consequently, for the Atlas/Centaur configuration, only one attitude

correction may be necessary during the interval between first and second

midcour se corrections.

The sun aspect sensor and the fanscan system provide attitude

determination information. Sun aspect measurements are made with

accuracies estimated by the same model assumed for the probe bus space-

craft. During cruise, fanscan willprovide data from which earth aspect

angle can be deter,,inedwith an accuracy better than 0.0044 radish

• {0.25 degree), 3_. The overall attitudedetermination accuracy is also a

functionof the sun-vehicle-earth angle. Figure 8. 5-39 is a plot of attitude

determination accuracy during orbiter cruise. Except during syzygy con-

ditions,attitudedetermination errors will be well below the 0.0i75-radian

(i-degree) limit. All criticalfunctionscan be performed at times when ,

attitudeinformation qualityis such that no degradation of mission objec- i

tires will occur.

i ................... -7;-- J_r

t

tAI
1,=,

0.035

O

0. 016
1.5

0,0|7 " | .L1

' 2 DRI|T RAT}

IIMI IDA_¢S_

fkjure8.5-39. AttitudeOeterminatimAccuracyOurin9OrbiterCruise I

t

The attitude determination accuracy dul'irttT syzygy can be improved I

by predictionof the driftdue to solar pressure effectsas shown in Fig- !

ure 8. 5-39, whcre a 2-percent estinaation accuracy (easily attainable _ 11

after 150 days of tracking)is shown bounding the error to less than the " " ]I

required O. 0175 radian (l degree) limit, i!

8.5-66 i
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A/C III TID lit

I_arth a._pect Ltngle information during midcourse maneuw-rs is

obtained by doppler measurements. Consequently, the corresponding

attitude cletermination accuracies will be in the ±0. 0077 to ±0. 0209 radian

(±0, 44 to ±t, Z degree) as i_ the pzobe bus configurations. !_:i _!i

Midcourse Maneuvers

[ables 8. 5-14 and 8. 5-15 contain summaries of attitude errors,

velocity dispersions, and spin rate variations that may occur during mid-

course maneuvers with the Thor/Delta and the Atlas/Centaur orbiter

coxffigurations. Attitude determination errors are not included because

the orientations at which these maneuvers shotfld be executed are not

defined at prese:lt. Asstm_ptions made in the error analyses are :_hown

Table 8.5-14. Thor/Delta Orbiter Dynamic Disturbances

TID III tMRUST mote _Nv_, v_tocvw VEt_,TV NUTATiON
EVENT AV EACH THRUSTER CtIANGE DtGRADATION ANGLE

(/*_ S) [RROII SHIFT ANGLE
N (LE)] [RAD/S (RPM)_ [RAD (DtG)I |RAO (OEG)i [RAD (DEG)i (1_,$) _RAD [DEL_)I

SEPARATIONFROM IIOOSTER O.Z$* 0 _) 0.087 (,_) 0.035 (2)

FII_$| MIOr_)URSE /J -$.2 ().1_*) El.31 (Rig.S) O.gOR(4.111) 0._13 (I.3) 0.012(0.7) 0.11 0.0bl t3.$)

SECOND MIOCOURS[ ? -3.1 (_.1) tO. 13 (El.2) O.0SI 0.9) 0.014 (0.8) 0.00_' (0.4) 0.001 0.037 [2. I)

THIRD MIDCOUR5[ 2 -3.i (-O,_ i0.l_ (t0._) O._i (_.9) G.Oi4 (0.85 0.007 (0.4) 0.00l 0,_7 ('_. |)

DE6OO_T 20 _00 (_0g) 0 (0) O. t_ (I.0) 0.04_ (_.4) O.02i (!.2) (0._%) O, 112 (t.4)

I_RIAPSI$ TRIM _V (IOTAL) 43._ -J. t (-0.7) t0.S2 (tS) 0.(_/' (_l.i) 0.010 (0.6) 0.005 (0.3) 0.013 0.026 (I _)

"ASSUMES I _ 5 RELATIVEV_LOCITY AT SEPARATION,
°|HER ASSUMPTIONS: 9-MILLIRADIAN IHRUSTERMISALIGNMENT

t4 I_R_NT tHRUSt LEVELUNCERtAINlY FOil EACH THIU$1HII
0._ RAD_S ($ RPM) SPIN RAT! DUllING MIOCOURSE AND FI]IIAI_I$ TRIM MANEUVERS

6.20 _AD,$ (60 RPM) SPIN RATEDUlliNG DEIIOOST (VENUS i_llllllr INSERTION.

Table 8.5-15. Atlas/Centaur Orbiter Dynamic Disturbances

IHRUS| SPIN RAtE Ahll_ LE MOMENTUM VELCI_ITY VELOCIIY NLI_ATION !
A_C |El {VINE _¥ EACH |HRUSTER CHANG| (_F AVlA_K VLCI_)I_ DISI_RSION DEGRADAEI_N ANGLE

|RROR SHIFT ANGLE
(_ $) _ N (L0): | RAD/'$ _PM)I I RAiD(D{LG)_ l RAD (O|G) i [RAD (DIG): (/_' _) RAD (DEG)'

FIRS! P,41DCOUR$| 14.5 5.2 (I.I/) 10.293 (t2.8) @.0_12(4.|) 0.024 (I .4) 0.012 (0.1) 0.015 O.041 (2.7

S[_ Oral,1_II_OURSE I 5._ (1_17) *0.117 (t 1.4) O.0_r (4.l) 0._4 (1.4) 0.01_ (0.7) 0.007 0.047(_.71

THIRD MIIK._j_ES,_ _ _._ (I, I1) t0.gR_ (t0.4) o._r_ 44.1) u.o_4 (i .4) 0.01_ (0.7) 0.00_ 0.04; (_.7)

MAXIMU/_

PERIAP_I5 TRIM _.V |IO_AL) 43.5 _.2 (I.12) 10.70_ _t_.S) 0.0_ (4.1) 0.0,_4 t) .4) 0.012 (0._) 0.0_ O.t_RYtl.?)

AS_LJMPIIONS 9_MII |IRADIAN THRUSTERMISAII(_,NM|N|

_RI'IRUINI IHRII_T Ilvtl UNCIRIAINIY FOR IA_'tt IIIRUMIR

if, _'_RAD _ (_ RPM) _PiN RAil FORMI_IRS[ AND _,RI_I_ Ill _|UVER$

6 20 ,_AD,,S (60 #PM) SPIN RATE FOR D[III(X}S! MA_EUVIR (V|N_|$ (_BI| JNSiRIIL_NL
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with the tables, and considerations of the magnitude of tile various error

sources and definitions of parameters are similar to those for the probe

bus spacecraft.

O2

n- Venus Orbit Insertion Maneuver
tU

The Venus orbit insertion maneuver will be executed on day Z00. 1

° 1z The orientation required for this maneuver is shown as point E in Fig-

_ ure 8, 5-37, where the otto a#pect angle will be about i. 19 radian

......

Z ,
168 degrees) _nd the earth aspect angle will be I, 045 radish 160 degrees),tl

_ approximately. The spacecraft precession required (from D to E) is on
tU

m the order of i. 08 radians (62 degrees).z

u. Since the earth will be on the forward side of the spacecraft, where.J
.=J

the omni antenna is on center, no doppler information will be available

for attitude determination unless a small AV maneuver is executed. The

approach proposed consists in executing an open-loop precession maneuver

from D to E. Assuming an impulse bit predictability error of 3 percent,

the execution error along the constant rhumb path would be about 0. 03

radian (I.9 degrees). However, the accuracy of execution can be improved

significantly by information provided by the sun aspect sensor. For -

instance, the sun aspect angle at the end of the constant-rhumb maneuver

is l_own, and the angles between the precession path and the constant solar

aspect loci are predictable. For the assumed geometry, the sun sensor

error is about 0. 0038 radian (0. 22 degree) and the angle between the thumb

line and the constant sun aspect locus at E is on the order of 0. 47 radian

(27 degrees). Consequently, the uncertainty along the rhumb line could be 1

theoretically reduced to about 0. 0085 radian (0. 49 degree). If other effects i
such as dispersion across the rhumb line direction and trim maneuver

errors are included, the overall error will be in the 0. 0i to 0. 0i2 radian

(0. 6 to 0. 7 degree) range.
!

Attitude Determination and Control in Orbit

Figure 8. 5-40 shows sun and earth locations (in ecl(ptic coordinates) t

during the orbit phase. Point E represents the spin axis orientation after

the deboost maneuver. Point F corresponds to the attitude that would

optimize communications, while point G is the preferred orientation for
t

science instrument pointing (perpendicular co the Venus orbit plane).

8.5-68
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1!

--NORTHERN HEMISPHERE
---SOUTHERNH_.MISPHERE ATVOI

(270DEG)

Figure 8. 5-40. Steragraphic Projedion Showing Sun-Earth-Spacecraft

Geometry in 0rbi!

Inspection of the graph shows that there are periods during which the

spacecraft can be normal to the Venus orbit plane without affecting corn-

-+ munications (i. e. , t40 days after VOI). Therefore, _he selected orienta-

tion policy consists of pointing as close to G as allowed by communication

constraints. !

w Disturbance torques in Venus orbit are mainly due to solar pressureTID III

[0. 0t4 radian (0. 80 deg)/day drift rate for the Thor/Delta orbiter]. Drift

rates caused by gravity gradient and aerodynamic torques are at least one

order of magnitude lower than the effects of solar pressure [i. e. s the

drift rate induced by gravity gradient is of the order of 0. 0008 radian0

(0. 045 deg)/day and aerodynamic torques cause precessions of the order

o£ 0. 000Z radian (0. 01 i deg)/day at Z00 km periapsis altitudes]. Attitude

drifts produced by environmental disturbance torques are shown in

Figure 8. 5-41,

I
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Figure8.5-4].. Atlitude DriftProduc_ byEnvironmental

DisturbanceTorquesin Orbit ]

t
Drift rates caused by solar pressure can be reduced (in the Thor/ i

Delta orbiter case) by either raising the center of mass (requires redis-

tributing equipment) or lowering the center of pressure (by attaching a

solar _ail or fin to the lower part of the spacecraft). - :,...........J

Antenna-pointing requirements depend on the communication llnk :; ...."::!
t

budget allocations for effects of pointing errors thatj in general, are a t

function of range. Assuming a i-dB tolerance during the early part of the ]

orbit phase and a maximum loss of 0. 3 dB at end of mission, the corre- t

sponding earth aspect angle components of the pointing error are 0. 0Z9 t

radian (1.67 degrees) and 0.016 radian (0.9 degreel. These maximum I

a11owable errors are based on the asstunption of a i.ZZ-meter (48-inch)

Franklin array with a half-power beamwidth of about 0. i radian

(5, 8 des]tees).

If only communications requirements are considered, the allowable

spin-axis-pointing errors may be larger than the above limits Lecause

component rotations about the spacecraft-earth line have no effect on

antenna gain. Figure 8. 5-3A shows, as functions of time, the maxirnur_

rotations about the sun line that can be tolerated without exceeding the

i dB and O, 3 dB attention limits assumed, For the Thor/Delta configu- ,,
l

ration, the minimum interval between attitude corrections will be 4 days

8. D l+t
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_[alw
it _ A/C III if prece_._ions are nlade to bia_ the pointing in a direction opposite to the

(alw exp,'cted drift. Th¢, Atlas/Centaur configuration will not require attitude

corrections more often than once every 9 or l0 days, assuming the same

control policy.

Figure 8. 5-3B shows how much the spacecraft may be allowed to

pl"ecess due to solar pressure effects while still maintaining the ram

experiments within specit'ied pointing error limits at periapsis. One

interesting conclusion derived from comparing Figures 8. 5-3A and

8. 5-3B is that, during the first half of the orbit phase, the communica-

tions and ram experiment pointing requirements are compatible. After

185 days in orbit, both requirements could be made compatible ifthe ram

experiment pointing error tolerance is increased from 0. 35 radian

(2 degrees) to 0. 525 radian (3 degrees).

Attitude determination accuracies attainable in orbit on the basis

of telemetered sun aspect and fanscan information are shown In Figure _i

8. 5-42. The maximum limit of O. 0175 radian (1 degree) is exceeded "

only du_ing the last 6 days of the mission, when the pointing error can be

a11owed to be a_shigh as 0.049 radian (2.8 degrees) withou*,violating the ............i

as surned ram experiment and communicationspointlng constraints. _i

,RAOI _DEG_ t

] _ ,,! i i|''i i! ! 1

i lit ti!, !\1" 0 J LLL:j
0 100 200 [NO OF JO0

IIFA_ Ir'_YS_ MISSION

Figure8.f-a2.AttitudeOetermlnetlonAccuracyInOrbit
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A/C III /_ T/D III

RCS performance data for the orbiter configuraiions are given in [

Tables 8. 5-10 and 8. ,q-ll, which include_ the abilities to precess the spin

axis, spin-up and spin-down, and change tho _p,_cecr_xft velocity vectoz.

Processions and axial velocity changes are performed by a set ,fffour !

thrusters located at the top and bottom of the spacecraft. Spin control and !
radial velocity changes are made by a set of four thrusters located on a

plane perpendicular to the spin axis and located near the spacecraftls i
center of mass. RCS performance varies as a function of propellant 1

remaining (blowdown effects) and mass properties. The peak nutation i

factor is a function c,f mass properties and thruster firing policy. This

factor determines the maximum nutation amplitude based on the precession

step size.

Periapsis Maintenance Maneuvers

Orientations for periapsis maintenance maneuvers are shown in

Figure 8, 5-13. Spin axis attitude determination accuracy calculations

for periapsis maintenance are based on the same assumptions and pro-

cedures used for the probe mission. Results are included in Table 8.5-16 [ i

in terms of total attitude determination errors, which corresponds to the

semi-major axes of the associated error ellipses. Peak attitude errors :]

range frc, m 0.007 radian (0.04 degree) to 0.0175 radian (1 degree), i

Table 8.5-16. Velocity Errors During Thor/Delta and
Atlas/Centaur Orbiter Maneuvers

lilt'It D[t TA t)R_iltR [V[NI AliAS "(INIAUR CIR_Ill# [V|NI

....................... p_}...... _ ..... _M4.....

_V I_._!,l ] 12. I ] ILl.: )_.3 , 8,1 11,3 tO, 8./
RATI_TuD[ D[||I_INAIlON _(11.10;0i0,4O} ]G 0O,'.]tOaZ 0.0150 10.81_) 0,0)_'l (0.98) 0.00]0 (0.40) 0,_O73 10,42) 00150 _0,1_1 0.0171 ',0.VOl

II_ROR RaO (OIL.,) 'l [VILOCITY DISPEIt'_ION i C*0K).__0,30) 0,_Sd 10 301 O.t_251(O.30) 0.U052 (0.30) O,01_2(0,_0) O,0l_] (0,20 O.012_ (0.10) 00_21 _O.:O)

AN(S.It RAD ID[()) _ t_ _2 10.._1)COMOII_tI_'C_tO(tT'_ i 0._7 _0,_0_ @._*_l,(@:_f_. @,I)},]_(|,l_l. O.GlAl (0.el) 0,0143 (0,e2} O.019Z (1.11) 0,0_1_ (1._01_RRC_ANGL_ ItAD (D|GI

&XtAL V||_CtTY t_RO# 0,M TO 0.24 0,2_ 1"O0,_ 0.;]? TO 0,74 0,11 TO 0,5| 0.37 10 0,74 0,_6 TO 0,G1

IMT_IAIV_IL_ITy|RRO_S) 0. 39 T() _. ;5 0.3_IO0.b2 (_.4_ TO 0.77 031_O0,_ 0.41TO0,76 0,$_100. _'1 0,44TO1._0 0.31100,55

PerLapsis maintenance maneuver execution errors _i'e given in [ "

Table 8.5-1b for the Thor/Delta and Atlas/Centaur configurations.
l

Axial velocity errors are caused by uncertainties in the thruster
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......... ,__I W
A/CIII impulsep which have been assessed as ranging from 3 to 6 percent of the

a desired level. Radial velocity errors result from a combination of atti-
T/D III

rude errors incurred prior to thrusting and velocity dispersions caused

by effects of misalignments while thrusting. Attitude determination

errors are due to solar and earth aspect measurement errors and the

associated geometry. Velocity dispersion errors were estimated assum-

ing a 9-milliradian thrust vector misalignment for the orbiter configura-

t_.ons, and foua, percent thr_tster imbalance was assvu_ed in both ca_cs.

8. 5. 9 Attitude Determination and Control Performances Ver qieri IV

Science Payload t 19.78 Probe Mission Launch

8.5.9.1 1978 Probe Mission [_A/CIV

This section contains ADCS performance data corresponding to the

1978 probe mission. The Version IV science payload preferred space-

craft configuration is assumed here. !

Separation Frozu Booster

The spacecraft will bc initiallyoriented and then spun up to 0.5

rad/s (4.8 rpm) by the Centaur control system prior to separation. An

analysis of the separation dynamics is not included at present because

the uertinent Centaur data are not available.

Cruise Phase Attitude Determination and Control

The geometry during probe bus cruise is shown in Figure 8.5-43°

During the first 5 days, the spacecraft will be pointing in the direction

designated as A. After the first midcourse maneuver, the spacecraft

will be precessed to position B, where it will remain during the following

45 days. These orientations have been selected for facilitating thermal

control of the large probe during cruise. After the second midcourse

maneuver the spacecraft will be processed to point C, at which the earth
I

pointing phase begins (aftend points at earth).

Syzygy occurs at about 60 days from launclb but it is not a problem ......i

any more because the sun aspect angle (while earth pointing) will be t

about 0. 35 radian (20 degrees), and doppler modulation Of the offsct omni

antenna provides attitude information with accuracy independent from the

earth-spacec raft- sun angle.
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Figure8.5-43. StereographicPmjeclionShowingAngularGeometryDuringPr_e ! 'BusCruiseandPr®eDeploymentandRetargetingManeuvers i

Precession rates caused by solar pressure and required for earth

tracking are shown in Figure 8.5-44 as functions of time. The solar ]

pressure dr_fts are significantly lower than earlier configurations due to '_

a lowering and size reduction of the solar array. !
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I_AIC IV

•*t/ Attitude determination accuracies for the n_ost sip.nificant cruise

OVOllt.'i are a._£ot|_ws:

Initialattitudt. after l_tmch _0.0115 ¢adian (*0.66 dot_ree)

1niiLd attitude b_,fore fir._t midcour_e ill, 0117 cadian (_0.67 degree)

I.'ir._t n_idcoltr._e _0,004 radian to 0. 021 radian

(_0, 25 to _I. 2 degree)

Cruise (after firsl midcourse) _0. 011 radian (_0.62 degree)

, Second midcourse ±0. 004 radian to _0. 021 radian
(:1:0. 25 to _:l. 2 degrees)

Cruise (after second midcourse) ±0. 004 radian (:tO._5 degree)
I

Midcourse Maneuvers i

1Table 8.5-17 contains a summary of attitude errors, velocity

dispersions, and spin rate variations that may occur during midcourse

corrections. Parameter definitionsand assumptions made are as

described for Tables 8.5-6 and 8.5-7.

Table 8.5-17. Atlas/Centaur Probe Bus Dynamic Disturbances
Due to Thruster Firings

I_OMiNAL CHANGE IN ANG| _ Of M()M[ NT U_ _.[10CI|Y _,[LOClTY NU|AIIONAV

"r ['_INT [M S (FT '¢3[CIJ bPlN RAIE SPIN RAI[ A||i CK VIC|O(_ IHll) DI_P[RSION ID[GRADAIION ANI_L[
_', {eAO $(RPM)] {RAO t(RPMq [_O(_G)] {e#tO_OfG)] [#AO(0[GI] [ _ $) {_010EO_]

.......... t" [IR_TMID_.OLI_Sf. 11_ 7 t_3) 0.52 I$i _),073 (e0.?) 0.016 10.9) 0.009 10.3) 000;_600.15) ! I 0._')10 t06)

_ S[C_NOMIDCOU_St (I) I {3._1) 0,_2 l_1 -0.010_(tO.I) 0.016 10.9) 0.005 Io.3_ 0.00;_6_0.19_ =: N[GLIG¢,L_ 0 (]@10 _0.6)
tZ) 1 _3.281 0.5_ _) _092 t_0._) 0.691_ 1401 0.698 1401 0.35 120)

-,. THIRO_IOEOt_SE _ i_._) 0._2 _)l m.021 t_0.2) 0.016 10.9) 0.mS 10.3_ O.O0]a_O.15I ', NEOLIGIRLI O,r_JlO _06I_Z_ _ 16,_6_ 0._ (St _.109 (.I.0) 1.31_ (1101 1.3_6 _801 069a t_

_ SPIN-UP ¢(_.005t_0 ill;' 0.5_*Z,0_ {_-_0) ¢|.5; _ 1¢)5) 0,0D)910.||) 0.0010 (0.OSt N/A I N A 0.0010 cO,(_t

I
_" 0[$PI_ t0._5(@.017_ Z.0_- 1.05 (_+101 ' -I.0+ t-101 O.0_$(0.0]J 0._00fl{0.01, N A ! N/A 0 k]0_-$_0.0_I

_ _IRST_[IAqG[tlNG (11 1.21 (#t 1.09 IlOl _0.01091_0.11 0.00'a'_(O,l?) 0.0014 t0.g_) 0.01RI710.04) N|GLI{_II_L| 0.0019 t0.tt)_ 1.2) _4) I.OJ OO) ,@.0d;_ t_.41 O.0_l{O.$) 0._? iO._ 0.0D_410.ZS) _OtlOl't(

'-" $[CONDqEIAIIGEtINGO) 16.0) (531 1.0_ It01 =0.126 (tl.21 _.0_3 |1.9) 0.0012 _t.9; 0.0012 (0.71 NS_LIGIBLiE 0.(323 11.3)

I'HIRDRETAI_GETING 11)! 6.12 (tg.l, _ 1.05 00) ,0.0_ (tO.It1 0.0_| (I.I) 0.017 II._l 0,(_7(0._1 NI_LI_II_LI 0.016 l_.9)

12_ 6.)2 (_gJ) 1.05 (10) t0._30 (t_.21 0.0_ (_) 0.0_ 13) 0.0_6 (I._1 0.1_01

• _ [(31RTHRETA_G[TING(11 _ _$.7_ _4.5_ 1,0§ _101 t0.l_ il.l_) 0.0_1710.:)) 0._0|8 1016) 0.0014_0.(_1 NA 0.000t710.011

"-"' _PIN*IIP fO.O_'._(t0,_el) 1,09- 0,_' (10-$0) *_._ (*._0) 0,_J(0.0_) O.O00_i(0.0_} _'*' A N,A

"i}_ ,I) UIILIIING pAl' O' AxI't 1HRU_"'_,i_I} UIItI_IN_ PAII_ *.)I. _*01N (()I4Tt_C)I. IHRtlSIIRS

-!

":" Probe Deployment and Retargetinfi Maneuvers (

": The geometry during pzobe deployment and retargl,ting maneuvers

" is shown in Figure 8.5-43. All maneuvers will vtart frt)n_ and return to

.'= the ,arth-pointing attitude.
_

-.o
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_A/C IV Aititild_., del_,rlniilation during this seqlit_nl_, ,if l/i_llli'llVl' rS i.<i lliis,'d

ori _un ,_cnit_lr ii_ti, ;t dat_l and doppler modulation lli,.;t._llirl.llii.ill._, A

_iLIIIll!l;iry of ;lttitvl," determination accuracit, s at ill,, liriihi, r,,h,;t_,, ;ind

rotargoting orJoiltations is prt, s_,ntt, d in Table ft. 5-18.

Table 8,5* 1 _3_ Probe Deployment ;tad Retar_eting Attitude :,t
Determination Ac(gttrgcie s

(_ A/C IV fvm. sv.,oL¢',,. ,,, s., .,, _ ,,a| _,_ ..
................................. I

". DA'/SBI_FOIII[hlCOUIqT[I l_l 13 II 19 17 I$ / ,3 II
/

%UN-IPACICIIII-tAJIIN A_GII • I 1.ill l.ilkl l.lll 1.3$$ 2.lii 1 .ill / 1 2_ l. tilt

ILIAD 10lOI] (1431 (140i (Ill (135) 11331 (I."1 / ilill) ll261
i

5U_I*SIIIN &Xl$-tllll4 ANGLt s! I I .)_lt l .l._l 0._dl# I .lili I .Ill 1.9il 1.021 l .I
Clil_"._t llllt { _0 (DIG i] lit.41 (134.1i t32.5) (tk$.$1 191.9i 1169.1) IllS.el il40.ll

SUl'q-ASnCl [lAD iOIO )| A I 0 ,ll.ll_ 1.134 0.190 O,dOI 0.310 0.803 O,tt04 i.$18
(1.4) (651 il0.9i Ill) i22.9i ill 134.61 lall

l_o*[liAo (otil)] [ I O.OOiO 0.001 O,OIIl O,aCI9 0.0G89 0.0049 l O.Oit5 0.003S
' I IO.i/) (O.iil {I ,05) (O.Si) lO,:lli (O,llli (O._Y) ;O.lOI

[AIITH-AS_CT{ILAD (DIO)] A I 1.713 2.114 1.$39 i.13 2.3B1 I ._01 i.t 2.3_
• [ i1$$.$) ill/) (14_.$) (llll (11,5) It) (ISil ll3i)

IlIOI(RAD (DIG)] I. I O,t 0.01¢9 0.0091 0,1 0.0Ill 0,0040 0.00";7 0.0It
" ' (O.]li) (! .14) (O,S3) (0,_) (0,#,1) t0.23) 10.44) (O.?lll

O£TIEII/_INAI'ION MOD( A A A A & B A A

PIOIIAIIJLIIY ELLII_[ ON CELESIIAL
SI)_l_ {lAD (0iS)|

StMI_.ii.K_ AXiS * I GiG O,Ciffil O.Ot_! @.Oti9 O.')tl? 0.03._ 0._ O.01tl_
i0.I) (I .(_) 11.13) 10.i81 (0.73) (I .911 i0._Si II .lli

$|MIMINOR AXIS b I 0,(]0_16 0,0038 0,(X]86 0,0_'7 0 .(_089 0.0031 0.00.rCi O.(X)_
(0. i'll 10.ill (0,49) 10.4d) 10,$1i t0.11t) (0.33) 10.20)

......

ANG'I_ I_[trWE[N EI AND a 9 | 0,5724 0.g0|0 1.447S 0 ._$62 0.0t95 1.4937 083S3 ] 0.90_?
(1.8i (4_.9) !84 I) (_14.(I) (_.7) i (e_.6) (_.li 1_1.9)

, i ., I I
i - I_OIPLEI tODLJLATION

8 - DOPPL(R SHIFT

MAGNIIUD[S AREDEFINED IN FIGt!tl 8.5-31.

Rctargeting maneuver execution errors are given in Table 8.5-17,

and velocity error,_ due to combiLed effects of attitude determination and

execution errors are shown in Table 8.5-19.

Reaction control subsystem performance will bc approximately as

given in Table 8.5-11 since changes in mass properties are small.

Probe Release Dynamics 0'A/C iV '_ A/C IV _> A/C IV

Tabte 8, 5-_O is an updated version of Table 8.5-12 giving velocity

increments produced ',W small probe releases, t,

Large r< betipoff errors produt_ed during separation are given in ']

Ta ble 8.5- Z 1.

8.5°76
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Table 8.5-19. Velocity Errors During Probe and Orbiter Maneuvers

A/C IV FRomEVeNt O.BITrREvEN_
.I _T2 I Ru RT4 PMI PMZ FM_ PM,

AZCIV av,M_l

AXIAL 1.21 16.07 0 2S.72 2.13 2.0t 0._2 1.96

RADIAL 0 0 6.12 0 12,10 9.80 9.1S 8,46

TOTAL 1.21 16.07 632 25.72 12.3 10,2 I2,3 8.7

ATTITLJDEDETERMIN/_TtON ERROR 0.0293 0.0119 0.0333 0.0216 0.0063 0.0063 0.0063 0._63

(RAD (L_GI] I1.621 (0.68) i1.90) (I.241 (0.36) (q.'_) (0,361 (0,36)

VELOCITY _IISPERSIONANGL£ 0.00(O 0.0061 0.026 0.0014 0.U079 0.0079 0,0079 0.0079
['RAD (DEG)] (0.04) (0.35) (I .S) (0.06) (0,4S) (0,45) (0,45) _,0.45)

COMBINED VELOCt.IY ERROR 0,0283 0.0132 0.424 0.02t6 0.0101 0.0101 0.0101 0.0101
ANGLE [RAO (iXGIJ (I ,62 (0,76) (2.43) (I .24) (0.58) (0.58) (0.58) (0,_18)

VELOCITY ERROR(M/S)

RADIAL" 0.03 0.21 0.26 0,56 0.36 0.29 0.211 0.25

AXIAL* 0.04 O._JD 0.18 0.7"/ 0.t4 0.13 0.28 0.10
0,07 0.96 0.39 I ,S4 0.18 0.20 0.50 0.1S

TOTAL 0.05 0.$2 0.32 0,95 0.39 0.32 0.40 0.27
0.00 0.98 0.45 1.64 0 35 0,62 0.75 0.53

"INCLUDES THRUSTUNCERi_INTY OF AXIAL THRUSTING AND VELOCITY ERROR
ANGLE EFFECTSOF RADIAL THRUSTING

"'INCLUDES THRUSTUNCERTAINTY OF RADIAL THRUSTING AND VELC)CIIY ERROR
ANGLE EFFECTSOF AXIAL THRUSTING

Table 8.5-_.0. SmallProbe Sepa:ation Velocities,
= 1.048 rad/s (10 rpm)_

$ ,r I r2 V Vb
_C IV EVENT (M) (_) (_) (M/Sl

O A/C IV FIRSTSMALL PROOERELEASE 0,87 0.18 0.91 -0,19

SECOND SMALL PROBERELEASE 0.81 0.22 j IS °0.23

THIRDSMALL_OBE_ELRASE 0.=7 0.25 0.7 -0,20

'THESE'W'SARE=NAOmCTIONnRnNDICU_TOARADIALLINE
FROM THE SFAC|CRAFT CENTERLINE TO THE BEFARATINO PROBECENTER OF
MASS EXCEPt FOB THE SECOND mOBE RELEASE,WHICH IS APPROXIMATELY
0.17 RAOIAN (I00(GREES)OFF THIS LINE DLR TO THE SPACECRAFTCENRR-OF.MAssLOCAtiONATt.ATTIW,

8.5.9. ?-. Orbiter Mission

Separation From Booster _A/C
IV

The spacecraft will bc initially oriented and then spun up to

0. 5 r,_d/_ (4. 8 rpm) by the Centaur control aystem prior to separation.

An analysis of the separation dynamics is not included at present be-

cause the: pertinc, nt data are not available.
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O0000004-TSD01



Talile 8.5.21. Lart.u l'rolit, Separ.ltion 3"ili¢Iff Errii_

]t_.{'l'._.l:',",l A_Jt.IrIAI' ',tfli 1 ,'_IJO

I Ir, X%ll ',it _ dfll'fill"_

r it I i All h'hL ',l'tqr l; , t I _'t I t) /_)4 0.2 O. l

I_ _ t_l_.%h Irj 044.

Atl4l 'i_lr_. ,_All IHIII_'IflII41 t),00'l O2', t).l_"b

,? Iq _l t Ill

c,_Mil_t_t','.lllillit,lll ell IAtrl ',t'_l£1t> 0,1kl,I O,l'l l),Oll

rO II'_t t%l ii iI. _ IPl I

',PTl_ll, _'4l_lli t, 't .%lit_fi iI 001 O il'l li,iiT'b

_l) I'm I i , .I _ ii_ Ii'i

fail ICY, I_ Itt|Mff DIIttRINIIAL 0.i}01 ti,lt_ d,litl ,_
_l MILLI_ICOtiI'

14%$IOIAI 0 .llOtl 0.4 0_ i

Cruise Phase Attitude Deterniination and Control _A/C
IV

The cruise phase geometry is as shown in Figure 8.5-37 t, xcept

that the spacecraft will be initially placed in the earth-pointing orienta-

tion corresponding to the fifth day. After the first n_idcourse n_aneuver

the spacecraft will i)e returned to the earth pointing orientation. -I

During the first I I0 days, the forward end of the spacecraft will

be poh_led at earth, except for the second midcoursc maneuver (planned

on day 55). Attitude determination during this phase will be provided by

the conscan system. During maneuvers, attitude detern_l.nation will be

on the basis of sun aspect sensor and doppler modulation data.

After I]0 days_ a spacecraft flip maneuver is required to point the

aft end at earth, which is necessary to Inaintainthe solar aspect angle

less than 1.57 radians (90 degrees).'

There are several optionv regarding the flip maneuver. The

approach favored at present consists in prt}gramnling a I. 57-radian

(90-degri'e) open loop nlaneuver, at the end of which antennas will be

switched and, if required, a small AV firing will be made for doppler

attitude determination. A second 1.57-radian (90-degree) maneuver

will be pr{)granllllcd afterwards for attaining the desired earth-pointing

attitude, 'Flit, Ol)en-]oo I) lilanellVers can lie e×ectited with acctiracies in

the 0.0-17- Io 0. 063-radian (_. 7- to .t. 6-degree) range i on the basis of I

in-flight reiiction control _ulisystein eiilit)ralion data.
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LI:} -_A/C IV

, Attilud., d.,lt-rlllhli,|iOll duriug thv rt'lnahidrr of th,' vrui._v ph.l_o

_ill ho oU lho h.l:_i,_ of mm _,uHor ,rod dol)ph, r ll_o(hl]_i hilt (iJl.l.

t't'ft'_.l,._ and o,_rll'_ tr,lt'l,,ing, l,'i_,,'ur,., 8. '_-.1() ol_,ov,,_ aitii'uth, dt'tot'ul_ilmii,,m

,)ccuracio._ ,ltlain.li)Lt, I)y (hq)ph-r 111¢';ISlll't'n|t'11[_, 'J'ht' t'tlrvt,8 dt, si_ll,||t, tJ

A corres|)oud to ,_l)iu n_odulation ofh, ct_, while the curve,_ ),Lt)eh, d I_ i_t't,

l)a_vd on a I u)/_ vohwity m,tnt, uvor. ('urv(',_ designat(,d A wt, rt, (:)l)-

t._inod hy a:_umin_ an ;mtenua l)ha,_e center m_¢crt,_inty of 17. 7 mm

(0. _ inch} on a piano normal I,,) (he ,_l)in axis.

Midc ou r_t" Miluouvt, rs

T,thlt' 8. _-2L vtmt,I in,_ sttmnlari_,t_ of _tt ituth, errors) w,loci( Y

di,_l)(,r_ion,_ ) and _pilx r,de v.lri.ttion_ tlul,! illity O't_¢'U|' <turhtg tltith'ottr_t,

nlltnt, ttvt, r_. "rht, _tUWUl_HHiono ntltd(, itre ;ts descrihott for 'l'itbh,_ 8.5-14

ittt(| 8. _- | _i.
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• Table 8.5=z2. Atlas/Centaur Orbiter Dynamic Disturbances
Due to Thruster Firings 1

_'.i- A/C IV I ' _,,,.,,oN ,

F\FNT ,'t\ NO_+ItNAI +JHANk_I IN AN(_I[ t'SF MC+MINI_r_,'I \It', vlf_ '_[LvKIP*
',PIN _All _,P+N _A_f AltAvk '_'IC lv_tl _Hlt I DI_,_ RMt N D}GRADAIIOF_ ANC, LI I

l l_'*l P+'_ILXOtl_'.l tl) i_ _2.11 t G,_+%_ +it 1_'6 t'l _I (1,0_,1 _1.4_ L).L1CI_I_ tO._s! t'+ |It)l.k_ tt_ _I 0A_tX"e 0Or6 i0 m i

(2t ,2.b t_,>_'i_t *O+4t'_l t+4,41 0.16 _gt 0.16 tel 00t)l.'t0.1_ I

1_ I 1 t,l+tPt'1_ 0._t}_ ?tl.t_s,l _tl_._! O,t)_Jtl,,ll G,t)22++tl ,|1 tl IJOt'ttl. I} ]_ +K+_ tl 'Gt t+_1 ,tl 01'O _,0..14_ O t%+4t).4_ t'_ t+It_, tt _ ',_ 0 (1L14,_+*ttl 2_Ix 0 t_tll _ %+10it, tit 91 I
i

".l l-ai_', _+_RI_I! IN_,IRIIL+_P4 _ ;+310t_ 0AI;' tl+ t1(_ _ t0 II 00.{% tt'l _ NJ(;IIC, I_I[ 0 0) 22 tO 21 J

el _IAP',I'_ &_,&l_'alf _J&t4t

2,_ _40 I tl_ 12 ,t,40 4_ O.',2U,_ ,0.0J144 ti0.H_ O 04,_1:.4_ 0,010 t0 _ O $1tlIt4_ _kl 4'_ 0 It I,+ it0/0 _1 ._+ I
t21 2 .If40 +Ix O._2t)l fl.!t4d t_,2_ 0,21 II+tl 0,._I tl_' i'l _t112t0 11 I

i

,*l\ Nq" + '|1 It_.?.13,_ (I.'_t*t_ '0.0_',1 l'4.% t104#t2 4_ It.IlIA _ll.+_ I tl,C'ltl!tlS_0 4_ _ 0.004 lt,0,'_ _l.!t+ ]
i,'I hi _PtI.l '_} 1%_i!t_ ,tI+4+_) t,4 b 0+I; 1101 0.01P tit) t_ Otll+t0 i x I

!
_\ t,l_ 3 tl_ 123 14It 4' O+_ l"_ 't_ t_4 t¢OPh tL04? _24t _t UI_, ,t) '#_ 0 tt_71_ _0 4'+_ 0 003 0 026 I ,_t

to +t l++ ,t,*t' 4, 0 _++l'_ ,t_,'_44 tl3._ 0,21 _1++_ t_ .'1 _12 J 0 (Ittt'il I I t
I

t_ _ t| *t_t] tl_ I_ t, 2_'t_ tl It_ + ,,t'l 0.14 _tl, 0 14 _t1_ tl tl01 _0 l_

[ , I
Nt. I1_S 11! t_ll|l.'INt'&IktAl Ibl_U'.l|l,l++
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[D-,_A/CIV

= ' Venus O:'bit Insertion Mar,_.uver

The orientation required for this maneuver is shown in Figure

8.5-47. At this attitude, the sun aspect angle is 1. 172 radians {67 de-

grees} and the earth is on the forward end of the spacecraft at an angle

of about 1o047 radians {60 degrees). The spacecraft precession re-

quired is on the order of Z. 37 radians (136 degrees),

lAD

110_190_ D(G) IGO
_,_i_--_'*'_ _ _ EARTH LOCUS

SUNtocus eo_j_'-- _6o -'_-._'_,,_ . ",s HEM_SP.EREI
IN H|MISPHE_(L) /_t 0 PM2 :_0 _¢_'_r% [ARTH AT

\ // • %_ VENUS OR|t?

(N HE_ISFHEitEI/_" .... 41_- /

,o--%.
Z6.o

qL

120j 60_(

I
160

i

, RAD
(IS0 ._ SO. -._..T
olO_ ' i "

I
1_) ,A'" .. -- -," -- -- -- .._ I

_. 170 ,,,,,,.4P,'w_ VOl ATTiTUBE 40_

,
,., /

,AX// /,, ,
" SUN LOCUS

BEFOREVOI _ _,,# (S HEMISPHERE)

pM4 18_,vv

210 220225 O _ _25

O -- N HEMISPHERE

,e.... SH(MISPHEII[

Figure8.5-47.Venusomit InsertionendOfoitPhaseGeometry 1

1

Because the earth is on the side of the spacecraft where the omni I

antenna is on center, no doppler inform=tion willbe availablefor attitude 1

determination unless a small velocity maneuver is executed. Sun sensor 1

data cannot be used to improve the open-loop maneuver accuracy as in !

the fanbeam fanscan configurationsbecauseR near the end, the sun aspect I

is almost constant. The approach proposed consists in first precessing ]
to a pointsuch as A (inFigure 8.5-47) where the earth aspect angle 1

[about I.4 radians {80 degrees)] is favorable for doppler attitudedeter-

ruinationby means of a small AV maneuver. The orientationat A can be

estimated with an accuracy on the order of 0. 013 radian (0.74 degree).

8.5-81
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_" A/C IV

From this point, a precession maneuver of about 0. 995 radian (57 1

degrees) is executed to reach the VOI attitude. Assuming an execution

tmcertainty of _0.030 radian (+1.7 degree), the total error will be

approximately 0. 016 radian (1.9 degrees).

Attitude Determination and Control in Orbit

The angular geometry during the orbit phase is shown in Figure

8.5-47. During the first 37 days in orbit the aft end of the spacecraft i

will be pointed at earth. After a flip maneuver, the forward end of the

spacecraft will be maintained earth pointing through the rest of the

mi s s ion.

As shown in Figure 8. 5-48, the main source of attitude drift in

orbit is earth motion. Solar pressure effects produce precession rates

which are approximately one order of magnitude lower.

i

, i t i
(RAD/DAY) (DEG/DAY'i {DEG/DA_ AD/DAW I

I L,
!

0 (302e O. 16 1.6 0,028 I
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0.0021[- 0.12 - 1.;_ 0._!

| !

0"0014 f -1 O.Oe_ ! .... 0.8 C.014 .... _iiJ

o.000_ I-- 0.04 - 0.4 0.007 !

4
0L 0 0 i

/m 24a _10 _ _ 4oo 44ooAYsFROMLAUNCN i

t...... L 1 I I I I t0 40 80 120 160 200 2,10DAYSFROMVENUS
OlmoTINStlttC_ t

Figure8._-48.AltitudeDrillRatesinOrbitDuetoSdarPressureandEarthMotion 1
J

During the first 37 days in orbit, antenna-pointing errors up to _i
I

O.205 radian (12 degrees) can be allowed except during occultation I

Therefore, the frequency of attitude corrections during I

|

experiments.

this period will depend on the occultation experiment schedule. I 1
The communications link budget allows a maximum pointing error

of 0.017 radian (1 degree) during earth occultation experiments. This tl

s.s-az I
i

l
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i U_AJCIV requirement can easily be met since the attitude determination accuracies

attainable with sun sensor and doppler data will range from 0. 0066 to

0. 0070 radian (0. 44 to 0.46 degree).

After the flip maneuver, antenna-pointing requirements will vary

_rorn ±0. 070 to _0. 017 radian (±4 to ±1 degrees), depending on communi-

cations range. Consequently, intervals between attitude corrections will

he in the range from 8 down to I. 7 days.

Reaction control subsystem performance in the preferred Atlas/

Centaur, Version IV, science payload orbiter configuration will be

approximately as given in Table 8.5-1 I.

Periapsis Maintenance M_aneuvers

Periapsis maintenance maneuvers will be made in the earth

pointing orientations shown in Figure 8. 5-47. Combinations of axial and

radial firings will produce the required velocity increments as described

in Figure 8.5-13.

Execution errors are mostly due to dynamic effects and uncertain-

ties in the orientation and magnitude of the transverse thrust pulses.

Table 8.5-2Z presents a summary of attitude errors, velocity disper-

sions, and spin rate variations that may occur during periapsis mainte- i_ '_i

nanc e maneuver s. = =,-_

8. 5. l0 ADCS/Science Interface
¢n

8.5. 10. i Radar Altimeter
and Ram Experiment

¢ Gimballing R equlrements

-_ In the spacecraft c_r_!gurations with the spin axis oriented approxi-
_z
u Oo mately normal to the Venus orbit plane, the science instrument pointing

w_ geometry at periapsis is fixed as long as orbit parameters are main-

_" tained close to the nominal design values. Therefore, if measurements

• _ are made at periapsis only, the correspo_,ding instruments can be
o
._ mounted directly on the spacecraft at the required angles from the spin
.J<
< w axis.

If tracking capability and/or insensitivity to orbit parameter

_/_ changes are required, then the affected instruments may have to be gim-

balled for changing the angles between their lines of sight and the spin 1

axis.

8.5.83
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ALL ORBITERS EXCEPT
EARTH-POINTING CONF IGURATIONS

l.'igure _. -_-.19 sllow._ the gimbal angles rt,quirrd lu iminl the radar

altialxetcr antemxa atxd the ram-viewing experit_xents dttritxg the tit,lo

period withitl 8 minutes from periapsis crostJitxg. This period t_orros-

pond8 to the orbit sector where the spacecra£t altitudes arc lower than

t000 knox. The spacecraft spin axi_ is as_mried perpendictdar to the i

Velxuw orbit pl_lle. The radar altimeter antenna is as stm_ed gimballed -I

about art a,xi8 perpcriditult+r to the spin axis and the gimbal angles are

chosen so that the boresight axis points at nadir once per revolution°

The ram-viewing experianents are also assoaated giaatballed about an axis

perpendicular to the spin axis. Giaz_bal angles are chosen so that the

lines of sight point in the direction of the spacccro£t velocity vector once

per 2r radians (once per revolution).

"+" 1 I I i !
• | I '+'*" l li¢¢Ak[ll1241 tO.l_'.++6lAO'l't I. $ t'+_tGMtt S I i i

+ L ! t t t 1 ++_++I10 .................... i t

, tpt_mtnot m,ml ,At_++.sm6mtts)l I

°+" I......iIi+2111....+ °, _ [ ___2.__
lIME RIOM PEIIIAI_I$ (MINUI|$+

FigureIL+.49. RlcbrAltlmllerendReinE_oerlmlntGlml_lA_les fortracking,SpinAxis
Normallo VenusOrbitPleneISolldLinesR®resentR_ulremenlsl

Use of a single gimbal drive for both the radar altimeter and the

ram experiment package is not feasible because, while tht, nadir pointing

vector scans e0. 7 radios (_40 degrees) over the lb-n_inttto period, the

ram vector sweeps through an angle of ±0. 384 radios (±22 dt'grecs) only.

If linear approxinxations to the rvquired giml>al angle funciiotxs art,

ust'd, the pt,a k-pointing t,rrors int+urred (without inchtding +pact'craft

attitude t,rrors) will I)o of the ordt, r of O. 0(16 radian (_:3.5 dogret, s) for

the radar altin_eter and O. 0026 radish (l. _ degrees} for the ram experi-

t tlt'llt pitt" ka ge.

8+5- 84
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ALL EARTH-POINTINGORBITERS

An interesting conclusion that may be dr, rived from Figure 8.5-49

i._ that a ._ingle progranuner (or drive control logic) can be ust'd for ginl-

bailing both experiments simultaneously.

Tht. earth-pointing configurations require gimballing of both the

radar altimeter and the ram-looking experiment:_, irrespective of track-

ing requirements, because the pointing geometry varies with time in

orbit.

Figure 8.5-50 shows the radar altimeter gimbal angle profiles

required for nadir tracking with earth-pointing spacecraft configurations.

Parameters shown on the graph are times in days from Venus orbit in-

sertion. The required pointing functions can be approximately by linear

programs with errors within the 0. 053-radian (3-degree) to 0. 175-radian

(10 degree) range (neglecting spin-axis-pointing errors). The program-

' ruing logic required should have the capability to select initialvalues and

slopes by ground command,

2._ 160 I "7 T---- - _ ....

i 1 i" 2._1 140 ........... 2 ......... '' , " t .......' r

1.09 120

! ,75 I00

1.40

-8 ,.6 -4 .? 0 -- ? 4 6 e

TIM[ FROM FtIIAP_I$ tMINIJT[$_

Figure 8..S-_. RadIr Altimeter Clmbal Angles tot Tracking, [arth-Pointing Conliguratlons

Gimbal angles required to point the ram-viewing experiments

(between 1000-kt_ points) with the earth-pointing spacecraft arc _l_own

in Figure 8.5-51. These functions c_u also be approximated by linear

/- programs, and the re.suiting errors (neglecting spacecraft altitude

errors) wouhl be in the range from 0. 0175 radian (1 degree) to 0. 087

radian (5 degrees),

8.5-85
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Figure8. 5-51. Ram_perimen!Oimt_l Anglesfor i'racking,Earth-PointingConfigurations

8.5.10. 2 Gimbal Actuator Desi_ Example ..........

Figure 8.5-5Z shows a simple mechanization suggested for gimbal-m
m

O ling the radar altimeter that employs a size 8 stepper motor, a spur

_, gearhead, and a harmonic drive final reduction. The motor basic step
o

angle is 1.57 radians (90 degrees)j which is reduced by 15:1 in the gear-m
w
> head and an additional lZ0:I through the harmonic drive, Thus, the out-
.J

pl_t motion per input pulse is 0. 0009 radian (0. 05 degree).

s,zE,s,,, A

...... rl- T! - MJ,x.SEEWnAU 0.00_nAOLS
16. _ MII IIMI IE_ | t (0.S OEG',SI

_'0 INCHES) I"_'qEIER I II l, ]_ OUAN/IZATION 0,_0l RAO

• • NO/MINAL PUL$f lATE I PPS

_4_ 8t._ MillIMETERS PEA.KPOW_'R 5.2 Wr'J.2 INCH|51

?_._ RE _ IN|ERNAt

• GULATOIS POWER

- / AND _! I. I C(

IItlM_ 1iV q I rt_,,i_,.s _q_====

c,v_t CONdor_t,CVnOX,C:S I

! Iqure&5°52, GlmbllAc,uatorDesign[xarllplefor Altlmete;
andRam/Plalform
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_:-:'- _0 To determine output shaft position, a permanent-magnet-operated

_- reed switch is used for the null position indication, and pulses to the

_" motor are counted and stored in a register. At switch closure, theo

- register is set to zero and the fount in the register at any given time is
z
_0 proportion_1 .*o the drive output travel. This type of position indication

has advantages ov=r other types t such as resolvers or potentiometers,
>
.J becaust, no complex electronics are required or wear elements are
..J

involved.

The drive would employ lubrication techniques that were success-

fully flown by TRW on the DSCS-II antenna drives of a similar design.

NPT-4 oil _ould be used on all wear surfaces and oil/vacum_n impreg-

nated nylasint reservoirs would be strategically placed to assure replen-

ishment of the oil lost by evaporation or creep. The pinions would be

440C stainless steel with porous phenolic bah separators.

8.5.10. 3 Refracted Ray Tracking During
Occultation Experiments ALL ORBITERS

As the Pioneer Venus spacecraft becomes occulted from the earth,

RF signals will be refracted by the Venus atmosphere. High-gain antenna

orientations required to track the refracted signals are plotted in Figure

8. 5-53, which is a stereographie polar diagram with time from VOI as a

parameter. Inspection of the graph shows that various spin axis preces-

sion maneuvers are required, in most cases, if both entry and exit

occultations are to be tracked.

One possible maneuvering approach is shown in the graph and con-

sists of precessing only in the plane of the earth and the initial spin axis

orientation. The required precession rates, of the order of 0. 0017 rad/s

(0. 1 deg/s), can be attained by either using pulse durations greater than

125 milliseconds or by operating with multiple firings per spin revolution.

Other strategies eliminating the need for spacecraft precessions during

tracking have been considered and discarded because of the large pre-

cession amplitudes and rates required for repo_itioning after completing

occultation entry.

The graph presented on the right-hand side of the chart shows the

spacecraft precessions required 30 days after VOI. Superimposed on

the graph are examples of precession command profiles providing

piecewisc-linear approximations to the required time functions.

8.5-87
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ENtTR EXIt'
OCCULTATION OCCULtAtION OCCULtAtION

IRAD) q3EO_

'° i

tl_[ t_ECONOS t

Figure IL 5-5). Earth 0¢cuP._t_n FJ_0riment [raring Requirements

8, 5, 10, 4 Dual Frecluency Occultation ADCS ]nterfac, e [_A/ClV

- The preferred way of accommodating this Version IV science pa_-

load experiment is to lin_it the ex, -iment to the first 37 days in orbit,

i'i when the tail of the spacecraft is earth pointing. The same medium-gain

(Pioneers I0 and II derived) horn that is used on the probe bus provides

S-band communications, and a slightly narrower pattern X-band horn is

added (derived from DSCS-II).

Prior to occultationp the spacecraft is prepointed away from earth

to the communication angle limit [about 0. Z05 radian (12 degrees)]. As

the rays refract during occultationp they ride up the pattern. Actually,

= the occultation experiment can conth_ue (with post[acre data processing)

-_ beyond the point of downlink loss and it is expected that S-band to 0. 31

•_ radian (18 degrees) and X-band to 0. Z05 radian (12 degrees) can be

achieved.

This implementation limits the experiment to the entering (or

:: exitingj but not both) occultatione, but requires no maneuvers commanded

in real time. It impacts the ADC_ system only in an operational sense.

8.5-88
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ALLCONFIGURATIONS

8.6 PROPULSION

The propulsion subsystem consists of a conunon design, monopro-

pellant hydrazine reaction control syslem (RCS) for holll lhe prohe bus

and orbiter, and a solid fuel orbit insertion motor (OIhq) for the orbiter.

Figure 8.6-i sumn_arizes th_ propulsion subsystem for the preferrea

Atlas/Centaur Version IV science payload.

The preferred subsystems" minimize developn,:vt risk and cost and

offer high reliability. The RCS consists of flight-proved components,

principally from Pioneers 10 and 11. Blowdown pressurization and cen-

trifugal forces resulting from spacecraft spin provide positive propellant

expulsion with simple, inexpensive tanks. Eight Pioneer-type catalytic

thrusters provide redundancy for all spacecraft RCS maneuvers. The

flight-proven Aerojet SVM-2 solid rocket motor, selected for the orbiter,

provides the required propellant load capability.

Requirements, tradeoff studies, and preferred subsystem descrip-

tions for the Atlas/Centaur and Thor/Delta are discussed below. Addi- ,

tional details of the OIM are presented in Appendices 8.6A, 8.6B, and I

8.6C.

8.b. 1 Reaction Control Syste m

The preferred blowdown pressurization monopropellant hydrazine

RCS provides the thrust required by the attitude control subsystem to

adjust spacecraft spin rate, precess the spin axis to control spacecraft

attitude,and perform AV maneuvers. Because the RCS consists mainly

of flight-provenhardware from Pioneers I0 and II, itprovides minimum

cost, minimum development risk, and high reliability.

8.6. !.I RCS Requirements

The RCS requires i)energy to change spacecraft spin speed, atti-

tude, and velocity;2) use of existinghardware to achieve a cost-effective

system; and 3) a system design thatinterfaceswith the attitudecontrol

subsystem.

_ The energy requirements for the probe and orbiter missions _re of

approximately the same magnitude. However, the energy requirements

for the Atlas/Centaur probe and orbiter missions are somewhat lower

8.6-1 ]
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ALL CONFIGURATIONS

than those of the similar Thor/Delta missions. This results from the

high degree of injection accuracy afforded by the Atlas/Centaur which is

reflected in reduced miscourse AV and spin control requirements as

_hown in Table 8.6-t. Because Atlas/Centaur weights are considerably !

higher than those for the Thor/Delta mission, there is not a wide differ- 2

ence in RCS propellant needs, i

Maximum use of existing (off-the-shelf) hardware achieves a cost-

effective subsystem that meets the spacecraft and trajectory energy

requirements. The major development and test costs and risks associated

with a new RCS are eliminated, minimizing hardware design costs.

Because of the weights involved, selection of effective off-the-shelf

hardware for Thor/Delta is more difficult than for the less weight-

constrained Atlas/Centaur.

The RCS system design requirements reflect the interface with the

attitude control system, predicted on mission requirements involving

velocity changes, precession maneuvers, and spin-rate changes.
i

The velocity increment changes are best achieved by axial thrusters,

which can be fired continuously_ and are not subjected to the specific

impulse impulse degradation associated with pulsed radial or transverse

thrusters. t

To minimize u_lbalanced torques during thruster operations, the

axial thrusters must be parallel to the spacecraft spin axis. Thrust level

and thruster location are defined by the goal that the spacecraft precession

should not exceed approximately 0. 017 radian (l degree) during a 125-

millisecond pulse.

Both the transverse (spin) thrusters and the propellant tanks centers

of mass are located in the plane of the spacecraft center of gravity to

minimize precession in the pulsed lateral translation mode.

T, zree propellant tanks are required to improve spacecraft stability

and to accommodate the basic structural layout.

A further system requirement is that no probable si_,gle-point mal-

function will cause loss of the mission. I

8.6-2
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Table 8, 6-1. Energy Requirements for the Probe and Orbiter Missions I

VERSION IV
" THOR/DELL', ATLAS/CENTAUR ATLAS/CENTAUR

.......... _0 _PROBI DRBITER |RBITER Pz

o_ MIOCOURSE_V(M/S) 82 e2 ,o I 23.s _o I 1o .
"_ PROBE DEPLOYMENT /xV (M/S) 41,23 0 49.12 I 0 49 12 0-rr ID

U,. PERIAP$1S,_V(M/S) 0 43.5 0 J 43,.5 0 43,5

z ATTITUDECONTROLPRECESSIONrRAD(DEG) 21.485l !I.03, _4"_l _ 0053)I _ BG_25.446

_0 11231)t 1205) " J 2 , ]2) 11458)
,,,d"j SPiNCONTROLCHANGEIN SPINRATE[RAD/S(RPM)]16.8601!3.143 6.912 12.881 _/_12 12.881E I "",,_ (161) 221) (66) 1123) (

TOTAL PROPELLANT REQUIRED_KG 18.2 I 6.3 16.7 [ 13.0 I; 1 14,7

8.6. i. 2 RCS Tradeoff Studies ALL CONFIGURATIONS

Tradeoff studies were performed to determine the best approach to

use in configt:ring the RCS. These studies determined:

• The required number and locations of the thrusters

• Thruster position outboard from the spacecraft •pin axis

• The most desirable propellant

• Whether blowdown or regulated pressurization was optimum

• Whether a bladder was needed to maintain propellant position or

whether spacecraft •pin forces would be sufficient to ensure con-
tinuous propellant feed for the thrusters

• The most applicable propellant tank.

Determination of Thruster Required Number and Location

Figure 8.6-2 show• thruster locations for three to eight thrusters

and indicate• that more than five are required to ensure mission success

with the failure of a single thruster. If amplification of the coning anL/e

is important, then eight thrusters are required; if not, si_ could be used.

Thruster Position Outboard from the Spacecraft Spin Axis

[_) .,_C llt
The most desirable position for IX(3S thruster mounting is at the out-

A/C III board edge of the spacecraft platform, This position minimizes exhaust

gas impingement on the spacecraft. However, the requtrement that the

8.6-4
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mint (b'i_,uro 8.0-3)°

tIN.) IC_E / J..',_,N t0.P tl_ ttlllo_i! t t;*tt t

¢k/C Ill t_01 t.Rt*sl,EVil !i
/ / j _,J4 N tl,2 ti! I

I_ ///fliRt,St t tvtl i

/__=_2__k/C III I,X AIIA._CINIAURSPAt'[OIA_I
t It' PLAIFOlitMOuTLrllII_IDILIS

It Ol_ P[tl& SP&C_CRAFI

/

__-__ T/O III ._o I'; -I_ICISslONaNGII !
70 _1 DI6Rll I

- 0.5 II_DS _5 RPM_ ;:

}'°I "'""" !
iLTA t

/ / / ISPA¢IL'IIAfl
/ f _./ 'E_TIMATID

///_ ImOmENtO_

tO .%PACEt'RAtl '
_O! IST_MATEDMO_4fNT

'"/ I 0_" INERTIA
10° i

0 40 81,1 I._ 160 ="(1_ (KG-M2 ) _j
]sPA('I t'R&I l MIAMI NT L'_I INI it IA

o _ 4tl _o t_L) Ioo IA_ 14_ 160|SIt,O-IT ?)

I Igtirt' 8. O-J, M_lXilllUill AIIOw,lhh, Prt-xes$ioll Thruster Radius Arm to Meet O.01! Radtan
(I Oe_ree) Precession Limit al O. IZ5 Setond Pulsewidth as a Function of
Thrust t evel and Spacecraft Moment of Inertia

_ TIDIII l"or thE' q'hor/Dt, lla, at n notuinal mot_'lt, rlt of int, rtia of 88 kg, m 21

_[3_w (t_5 ._lug-fI"), wht't_ thE, Ihrusl Iovt, l is q.34 N, tho procession requirement

__.]_ T/Dill Of 0. 017 r:_dian (<I dt'gt'vv) It' loss could be tact by using a _horler pulse-

width (b4 tu_ 2.2 N). Only aftor tilt' systt'ln supply prossUl'e drops to
1

approxitualt, ly 300 psia could tho dosit't'd O. 125-millist, cond pulst, widlh

bE' usE'd.

Otht,r itt,l_18 influt, ncing Ihrusior location art' sl ruciuralR therta_al,

and itttpinl_t'mt't_f ¢on_idv_'nfinns. Str_lcturnl aspvci8 art, 11ot critical

l_,¢;-_tifl,-lhe Ihl'tt_ler weight_ and lltru_t levi-t8 art, rt, totiv_-iv |my ntad do

not presenl design prol)lonts.

!
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ALL CONFIGURATIONS

The tht.rm;ll con_idt.ration++ art.._otnewha! more inlportnnl. Whilt.

_l would be desirable to locate ,'tll thrusters so Ih;O ._olar and/or _pact.-

CI';iI'I ct)nductivt' ht'aliu_.' could be u:;od, lhi+a is llol practical with oilhor

sp;icocraft configuration. Therefore, some ofihe thruslcrs will he _hadod

and will rcquirc he;tiers. Wherevor possible, lilt' thl'utilerm arc thermally

coupled to the %v;iPlitt, r spatecrafl st I'tlt:lure_ alld all |hl'llSlel'S apt' ittSLI-

lated lo tuinimize radial ire heat losses and healer power requirements.

lqume impingement was a key consideration in lhruster local ion.

The outhoard Iocalion,s selected lend to minimize plume impingement on

critical surfaces.

!_ropellant Selection

The propellan| tradooffwaR made early in Ihe study, but since file

propellant weights involved span the final selected weights, the results

are still valid.

Figure 8. t,-4 shows that, regardless of launch vehicle or mission,

-. the Ii._c of monopropellant hydrazine results in the lightest systems. The

other sv._tems show lees direct cost| but the atlilllotlia sys|enls o.xceed flit,

spacecraft power capability and the nitrogen systems are far too heavy.

Monopropcilan| lavdrazint, is th,., best choice.

Pll(1PIII._NI IMI1NL'tGtN tnlllRtO_,_ttn ._._h_ONl& } I"_/_IN_'NI'_

bPl k'll I_' litiqP( I| _I

I%1CONl'*gl ,_l ,ill 1.l_ It,S ;LID

, ._0 I

t|_ I',at,Iti ._'+
t2_ _ RPI|I_ I

,:,_PtVm I"] +'lrl 1 , I

l.iHlln],li t 'lllfllll It p I ! I

<,i,, NIGFlh , .
I It _l IM'_ • I't "i'll _I i'x%&l i_ '3 0 1%l+t+_ [ ' '0 ,'%1 _i*. ,"d

tl +_+i,,N _i .L',' N i + .'+',+ I%1

IIII111%1 !l'i:t!',! [ itli_tl_ t

_i'l%ll.ld t + _+,I itltl I

NtlNII t-l_llNl; |, I ii.2 iI , 0 , I t _

I,.1141 1.4_ ill 0.! _` 0 it" I i,

lit]lilT'{? li 4 ltt'k I'mtil, ll+lnl Itiit_lf_,

8.6-7
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Blowdown Versus ReGulated Pressurization ALL CONFIGURATIONS

As was the case for propellant selection, the blowdownversus regu-

lated pressurizationtradeoff study was done early. However, since the

weight of propellants studied encompassed the selected final propellant

loading, the results remain valid.

The weights are based on use of the 27.9 cm (! 1 inch) diameter

Mariner 'b9 tank and Pioneers 10 and tl type FLTSATCOM thrusters. As

shown in Figure 8.6-5, the selected blowdownsystem is lighter. .':is also

more reliable and less costly.

REGULATOII AND GAS [INE 5 _ I_1| $_UIt_NT
RR $$UILANI' "-4:-1 ...,p

;IBI ikC;_ IIIOwll .lult t_'_ r PRISSUR&NI

T "+I NJ $0,'
tt+l,o[ Off+ .2

PROI_LL_NT.r, II|GULATEDt 1_ 0LOWDOWN

FIN IAk 40- 18 IEGULA|ORANO I |_'Q(o
I NOI_LLANT Plq_$$_JRAIq_+ w,-, | |lb._l

+< '- + Nil"=-'ilH
REGULATEC IROWDO_N,° ttL1z

_).,I tO _ 64 ..................... • ---- --0_
MINI/_L!M MA_IMLtM

Figure$.0-_+Blowdo.nVersusRegulatedPressurlzltiontr,._eol/

Bladder Versus Centrifugal Forces _ _l_,_w
for Continuous Propellant Feed ... -_ A/C IV _ TIO III

The use of centrifugal force for propellant feed eliminates the need i

for a bladder and its associated components. Bladders are not required I

when there is a bond number greater than i0 (when centrifugal forces

dominate over surface tension)° The bond number is defined as:

fore e

body , R 3
Bo :: surface tension force _

8.6-8
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{_.Iw

whe re

i_ = liquid den_it T

• _urfaco Ionsion

g _: acceleration due to _pin

R = tank radius

Tire propertie_ of hydrazine over the spacecraft temperature ranges are'

p : 1. 000 g/ct_ 3

:_ 74.7t_ dyne/era

With tank diameters o£ 27.0 ¢m (it in.}, therefore, the bond nunlber for

the Thor/Delta vehicle (with its 0.5 rad/s spin rate) is: 1
1

B = (13"9 era)" i2.9 era/ -- 34 i
t'ta _ i

o 74. i c 3/s i

The Atlas/Centaur has an even greater margin because of its larger diam- l

eter Dcfent_e System Gomn_unications Satellite (DSGS) II tanks. Fig- 1
!

ure 8. O-b shows how the bond numb¢'r vari¢'_ with spin rate for the Atlas/ t

Centaur and Thor/Delta configurations, j

00 ............... i
i
I

_lt_S CtNI_LIR _ ]
'i.%! IHOK _ILIA _. /

_PIN iORCtS _0iOUJ.II _O1_ x_ /
I_Pt it _NI t XrL_I_lt_N _ i

'° //
- !

1

I

_ ]

I0 • -

II I I1 1

_,PINIt_lt _q_t_ _

Fiqure8 00 Rl._ttterVef..u_,_pitt10rtes

J
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i
PropellantTrk Selec=io.i.ClV TID"I  -NC W T/o.I I !
The hydrazine quantities to be stored _or the various missions and

spacecraft are shown in Table 8.6-2.

TabLe 8.6-2 Propellant Requirements

USABLE RESIDUAL TOTAL pRFS$URANI
LAUNCH MISSION PROPELLANT

VEHICLE KG _L8) KG (LB) KG (LB) kO _LB)

THOR DELIA , PROBE I7.9 (39.3) 0,4 (t_.8) l_.3 (40. l) 0.3 (0.b)

I ORBITER 15,9 _,35.0) 0.4 (0.8) 16.3 (35.8) 0.3 (0.6)

ORBITER 12.6 _27.8) I _3.2) 14.1 (31.0 1.7

vERSION IV ORBITER i3.2 t29.3) I .5 (3.2) 14.7 (32.5) 1.6 (3.7)
ATLAS CENTAUR

Three candidate tanks were considered• These were the Mariner '69

tank (i,i4 x i04 cm 3, 697 in.3), the Skynet tank (8•i4 x 103 cm 3, 497 in.3), I

and the DSC_ II tank (1.89 x 104 cm 3 I i00 in. 3) Each candidate tank has i

been qualified and flown on hvdrazine subsystems. The DSCS IItanks are• !

the most attractive for the Atlas/Centaur spacecraft, while the Mariner '69 I
I

tank is best for the Thor/Delta. i

Table 8.6-3 shows a comparison of the candidate tanks. The key i

considerations in selecting the DSCS IItanks for the Atlas�Centaur space- I

craft were the adequacy of the existing design (600 psia operating pres- i

sure), the piping system simplicity and high reliability, and minimum

platform outboard area committed to the RCS piping. The Mariner _69 tank

was selected for the Thor/Delta spacecraft because the Skynet tanks pro- i
]

vided insufficient volume to meet the desired 3.4:1 blowdown pressure t

ratio and the DSCS IItanks present packaging problems because of the

large tank envelope. {
!

Maintenance of Positive Propellant Head _ _ IDuring the Mission Ale tV =-AJCIV

The 0, 5 l_adis (5 t'pm)spacecraft spin rat(,product-s centrifugal ]J

£orces adequate to maintain a positive propellant lead at the tank outlet - I

ports with 0,42 kg (o, gz tb) t'esiduat hydra_ine per tank. The most critical !

tperiod of the mission relative to propellant unporiing (exposure of the

I

8.6-10

lit
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Table ft. 6-3. RCS Tank Tradeoffs

t ..... ...._,,I_11I/s._ k I I I| AII_ 111I IA ,'*t I_ *It| I_'l '_%1,'_.1 KI h_Ap{I,,h

AiC t'Mjvoat} .*t,_ v _.AI,,_ , I_"0_fll Inm.'..'_.".jaq

! I
,,.,..... . , i A_m_omL,nDO_,*;, MA"_"nI

A~ILU% )

t !•-A/C IV m
• MMPLI PIPING. ONI OUIOL_AI_P

j _ t_,_lAnt,ont I.,OARO
t lIqUID IIID

W GA_ lUDtT/D III eas,st I_ MouNt i_*t AI_ MOONts)

_..t.)Nb: L)fflIL-ULI 10 PAt. KAGI ON filL)I(

DI I TA SPACIC RAFT

GR[AI| _| WI.IGHI IND [NVIIOP[

',' _AKINIK '69 Ii II 4)¢I l_,',_2l I ,@,l _. I;l l.O b'.3ll l,;" 5.52 140J BO0) PKOS; _PLI PRt.)PILLANT O_g,)WIH l-J@_')

.'," IkM ill IN,I
DI_V_IILIq NOMINAL V*IIk;HI AND IN_rlLOPI

• [LIMINAI[ BLADD[R
• ADD OIP l_.!ll_
• INCrLA_I PI_I_SUI([ CAPAI_ILII¥

l,_,ltA IUBING NiIOED FOg ON PAD
LaRAIN

01IFI_ULI IO _,I_.'_UNI

Sk'_.:_.4NLIcM (10 IN. _ I 8 140 (4_.'_ 3.U:1 3.8.1" 0. '_ II .5) 3.10 _._(114)0 VL%_} P_-k)_ Lll$| V_LIGHI AND LNVILOPI
DI4MITEe CI.)N$: K[QLIIRI5 I_[D[_IGN TO INI_KLA$[ i

MA_.INAI C,£Ct%TH C APA_ttll _,

C-_|AIL_ |ttAN [_LMKEI) 3.4;I BLO%DO_._N ,'_ll_.

L

- [_. AIC IV liquid outlet port to gas during RCS operation) occurs at end-of-life. At
- this time the spacecraft is at its lowest weight and axial thruster firings

_A/C IV have the greatest effect on the in-tank propellant position.

- Propellant position in the preferred Atlas/Centaur tanks at end-of-

life, i.e., with the +X axis thrusters firing is shown in Figure 8.6-7. The

_ propellant position is approximately 0.19 radian (i I degrees) from the 3
._. vertical at 0.5 rad/s, and represents an unavailable volume of 415 cm ,

or 0.42 kg of hydrazine per tank. Firing the +X axis thrusters is worst-

-.: case, as acceleration from the -X axis thrusters would orient the pro- :

'_ pellant toward the liquid outlet port in a conospheroid tank.

•_ The sensitivity of the residual propellant to spacecraft spin rate in a

_ conosph_roid tank is shown in Figure 8.0-8. Unportlng can be prevented by

'-_ on-loading the proper amount of propellant. With a O. 5 rad/s spin rate,

, 0.4Z kg of residual propellant, an acceptable quantity, is sufficient. At spin

f rates below the 0.4 rad/s range, the necessary residual quantities become ]
,'_ excessive. Spin rates above 0.5 rad/s would reduce the hydrazine required.

:_ 8.6 - 1 1
" i
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[_A/C IV I_A/C IV

• TANK OUTLfT RAOIU5:63 CM
PIIOP_L6ANI 5_JtFACI' f r % _
0. la lAD III °lt;I • _ r O _AN[ : I_ _ EMj _ONOS_h[IOID
OFF V{RIICA| _ ......... I 7 7,5

R|51PUAI, I •
IIYDRAZIN[ J

laM{ WAIt 0.Oe U0 O.5 IL_O) _ (0._ KG AI 0._ eAO_) J

OFFV|tIIEAL _" i_ $.O
tIQUIO _u ./ _

IANK WALl U.O[_L_RAI_
(o.spEG)c',_F . t
HORIZON1AL PLAIFORM 0,2 0 ;

SPACECRAFTSPIN RATE 0tAO,/51
-X

Figuro8.6-8. Resi_tualPropellantNecessarytoPrevent
Figure8.6-7.Atlas/CentaurPropellantPositionatFndofLifeWith PropellantUnpollin9inMlislCenteur

•XAxisthrustersFitin9 ConospheroidTanks

8.6.1.3 Preferred Atlas/Centaur RCS Description

The selected RCS, Figure 8.6-9, is common to the probe bus and

orbiter. Eight thrusters are used to provide redundancy and to prevent

coning angle amplification; the transverse thrusters also simplify gl'ound

station operation by retaining spin-axis orientation during lateral

maneuvers.

GAS E_U_|IZAIION tIN{

}
P_IP.qAflY

j _ PRL$SUR{
........... _-" |RAN$OLIC[K

il '

CIICUI| t11_i IN STlU MEN _Ai I_ N
I_ANI) HEATERS

YPICAL

t T A k t !

TRANSVEI$[ (SPIN AN{) i,_T|RAI. _VI
A A_;IAL (PREC|SSION AND AXIAL ._,VI

l_ /t:MPEflATUk{ S[N_OR
141 HEATER_HER_MO_TAT

I_ PUlSt CC_LtNliR PR[CfS_K_N ')WIT_,It
M _ H[A|[I

Figure8.b-9. tsrel{rle_AtlaslCenlaurRCS

8.6-_£
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I_ A/CIV _-/VC IV

,, Pioneer t0 and li flight-qualified components are used throughout

the subsystem to eliminate development risk and to minimize cost. Minor

desig:z changes, incorporated for FLTSATCOM, adapt the Pioneer 10 and i

l I ilardwa_'e to this specific, unclustered engine applivation. !
The propellant and pressurant lines and fittings are welded or brazed ]

J

(between the thrusi:ers and tanks) to ensure leak-free assemblies. Blow- 1

down pressurization and centrifugal force for propellant positioning and

expulsion eliminates the need for a bladder and the associated regulators

and pressurization components. This simplified RCS minimizes cost and

provides high reliability.

General Arransement

The RCS is composed of three propellant tanks with temperature

sensors, and eight thrusters (four axial thrusters for large AV maneuvers

and precessions, and four transverse thrusters for spin control and small

lateral AV maneuvers) as shown in Figure 8.6-9. Each thruster has a

propellant valve heater, thermostat, and temperature sensor. The cata-

lyst bed and a pressure-switch pulse counter have heaters and tempera-
ture sensors.

There are primary and secondary thermostat circuits for all heating

elements, providing series-parallel redundancy. While conservative

temperature-control limits on all heaters increase the needed power, they

assure a positive deadband between the primary and secondary heaters so ]
that both circuits do not come on simultaneously, causing excessive power

drain. Integration and test costs are minimal. The use of tighter control

limits, with secondary heater power turn-on close to the hydrazine freezing

point, would require additional verification testing to assure that parts of

the system away from the thermostat do not actually freeze.

The tanks and thrusters are connected by plumbing without heaters,

but containing temperature sen_ors. They are within the thermally con-

trolled equipment compartment. A filter is located upstream of the

thrusters. A fill and drain valve provides for loading and draining the

propellant. Common gas a_,d propellant lines maintain equal quantities of

:_ " propellant in the three tank_ for spacecraft balance.

8.6-13
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MC IV _;- A/C IV

Proper line _izing and routing art, e_eential to mainlain equal pro-

pellant ]oad_ among tanks and, therefort,, _pact, craf! balance. For file

preferred RCS piping, Figure _.6-10, as for all TRW _pin-etabili_od hv.,-]ra-

zinc nystemaD Ihe _anks ,at,, itlterconnected with flighl-provt, n 0.95 cr._

(0.376 inch) diameter piping. The plunlbing is routed to maintain equal

levels (loads) in the three tanks during static and dynamic conditions. Gas

bubbles in the liquid lines will migrate into the tanks, as will liquid in 'he

gas lines.

JILL AND
L)RAIN VAI VI

I 1 L J ,,

GAS ,_ # "

_QLIALIZA! ION ./t" "_'_ f IL|LR

PIICIPLLL_NI _,{,-,c_] ' .I _ " PROPIIL_NI

JN_UO.t ON e_,_, :H_usvt_s

Figure8.b-IO. Atlas/CentaurRCSPipic(jDiagram

To prevent bubble traps, the Liquid supply piping on the probe bus

is routed over the small probes. Inboa.-d rotating is not recommended

because bubbles could be trapped in these _nhoard piping segments, pre-

venting liquid-to-liquid communication between tanks. This could result

in unequal tank loading. The lines are also o;'iented to n,aximSze the

an,ount of propellant that can be drained from the tanks while the space-

craft i_ on-pad.

The o:rbiter liquid piping would be routed in |he same manner. How-

ever, it is possible to route the orbiler piping along the phdforrn.

H, fi-14
I

z i
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The DSCS II tank does not require dip tubes for propellant draining

or ullage interconnect because the tank outlet is down and outboard and the

gas port is up and ;.nboard. The liquid port is covered by liquid and the

gas port is uncovered in both spin and static environments.

RCS Per(ormance

The following three tables (Tables 8.6-4, 8.6-5, and 8.6-6) illus-

trate the RCS performance for the Atlas/Centaur spacecraft. They show

the propellant required, thruster operations, and tank pressures for each t

mission mode. Table 8.6-4 presents the RCS performance for the 508 kg

(1120 lb) orbiter payload and Table 8.6-5, the 434 kg (955 lb) orbiter.

The probe data presented in Table 8.6-6 is representative (within one per-

cent) of either the 1977 launched probe at 773 kg (1703 lb) or the 1978

launch Version £v" science payload probe at 783 kg (1724 lb).

Table 8.6-4. Science Version IV,_tlas/Centaur Configuration--
RCS Performance, Orbiter Mission, 508 kg (tt20 pounds}

THRUSIERDUtY CYCI.E I AVERAGESPECifIC PROPELLANT I TANK

MISSION MODE ON Off lIME I NUMBER Of PIIL_,[S TOTAL IMPULS|S IMPULSE CONSUMED I messm_

_Sf-CONOSt PEKIV',O IttKOS,|IK$ ' N • S (LB-S) (SECONDS) ----[KG (LBJ'J , IN M_' • 10"6)
FIkST MID<:OURSE

p_[C[SS I . ?CkAD 000 DEC,) C. 125 12.5 240 378 (62.5) 180 O. 16 (0,35) ,3. I0 J"

_ 7 M !, CONHtqUOLIS 770 SECONDS 2 556 (EGO) 227 ],60 (3.521 "i

F_L l ,_ , ,'Or AD LIU_Dt_i U. 125 12.3 240 2_8 (62 5) I_0 O. 16 10 351
i

_S_LA_ tO_T_UE O.i[0 RAD I_' DtO! O. 1_5 12.5 2,40 2J2 (8l) 180 0.)5 t0.34_
EARTH [;_ACI_ I .b3 RAD _80DEG]

_t_ O_D MIDCOt!_S[

F_[CI _,'_1. ,'U _:_,1.)(lOt) DEC,I 0. IZ_, 12._ 240 278 (62.5) IB0 0, Ib (0.J_,

",_ I M 3 CONTIr4UOU5 tlO5_CONDS _8 (1141 227 O 23 [0 50) .

PpECESS1.70 I_AD (t00 DEO_ D. 125 12.5 240 278 (6+P.3l I_O 0.16 [0.3_) _._¥

f tIP 3 (tO_AD LIBDDEG! O. 12_ 12 ._ 430 ',_(' (I 13) 180 0.29 10,¢;3)

PR(C[_ 0.,17 _IAD (4_ D_OI O, 125 l_),5 tlO 1_4 (2t_j I80 (,.O; _0. Ibl

AV ,_M '_ CCIN|INOOUS 220 5tCONDS I 016 (228) 227 0.46 (I .o01

PI_ICI b'+0.,] ++AD[4_ DIG! 0.12_ I_ ,_ I10 124 (28j ILl0 0.07 (0. I_ 2.1_3

II,lS__;T_,"ir,J

P_,LCESS/.07 _D _t_2 DEC+! O. 125 12.3 3(_ 339 (76.3) 180 0.20 (0.43)

5plr,I l,.J 6,3 RAD 5 CONIIt_UI)Ub 395 _)lt t)Nt)5 ! _56 (395I 225 0,80 |1.761 2,,;b

SPiN I_) UbNAD ._ £oN|INUOUS 345 SEt eNDS I 52_ (344) 223 _,,70 (I ._)d)

PRLCLb:._._," _AD I1_2 DEC,! O. 12_ I_.b 278 296 (66.;) I;" 0. t; _0.38) i

_t *P 3.t;6 tAD (180 DEG) 0 12c, 12. ', 4It1 437 198.4) 17/ 0.25 (tl. _6_ /Ou

I! AI_TH T;ACK ,1.25 RAD (250 pl(,l O 1_3 I)._ /_0 /_0 049) 1;1 t ,39 (1)8'
5OLAk T__'(j_IE 0.3; I+ADt+t2Ol¢,lJ

PLI<IAI',1' MAIl _l N_,/4%|
I/ _P,+''_ I k_ltl|lrlll_)OS IIt_ SI_-ONI)S 4 472 001J6_ 2"12 2 (1'__4"_"_ I

"',) ,_M S [ '_t)tllit,IHt)tlS 960 5[rCON r)5 4 OU9(90t) 222 170_3 "gi
12,.4M S (.t_Nl|t'Itl(_t)_ Ill_ %1(()N!)% 4 4i2 (IUUO .'2,' ;LU''_4.'','I '!

H : M '+ ( ( ItJllt_ltOll5 lEO _L(I(INI}5 3 160 (;11) 2/2 I .,t', t,l.}01 I .' ,'6

1 - i I[111AI% ,i4'_tiJ+iJl%lb 2_ JlJ tbJ i, 4_ I,. t,'v ,','I
r_'lid _'1( ( )NI)%

I
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Table 8.6-5. Atlas/Centaur Configuration RCS Performance.
Orbiter Missiot_

INIctY, IIRDL_IYI2YI'IE Nlj/_fil_(ll I_lll%t,_ |(I|ALI/_PIPL'f*, A\_AC.[LP[(III(L' _ 5 - . I_h'PIIIAHI

,'ill _ !J'lJ_%i i%11 ONDS_ Ii'C, !I{_]

I_*IIIAI AI|IhJDi

Ell l_I r I (; _t.Jl I_41J¢'II 15 l,O | I. '_i _ O.III :L!,0_I

P_f( I ',_ _. I.% I _.g V,I 174 ,a9, 175 _. IU '0.22! I

P_IC I _,', _'. 12[+ 17. S _411 _ 9:19 (121 l i l;J t).+_++ t1,22,

._'_" COt_Tl1_llJO_ 9 496 L2134! 222 4.J/ 19.02;

T;_IM 'iPl/4 VARIES 16_, 137_ 110 O. I0 _0.221 i

CrU_SL 0.125/12J I05 58 (131 170 0.0,l (0.08_

ORBIT INS['RIi()N 'i
Pll[CESS U.1_5 I").'} l_t i 7_ dT, 170 0.04 _O.lO,

SPIN UP C _NI INUOUS I 157 i260_ 720 0.54 (I. 19!

D[SPlN CONTINUOUS i |57 ,260i 220 0.54 _I. 191

PREC ES$ 0. 175 '1 ?. S 135 76 117; 170 0.04 (0.101

PERIAPSIS MANE UVEllS AND
ATTITLID[ MAINIENA._JCP

PRECESS 0.12._ 12._ 5_3 _ _4 _147, 160 0,42 q0.q?l

_,_, CONIINIJOLI$ 11 933 ,2683! 218 5.50 iI2,301

tRl_/i SpIN VARIES :)09 _47' 16_ 0.14 _0.301

CRUIS[ 0.125 12.5 270 197 ,41_ 160 0.12 i0.26!

?6 _42 I_I_S_ 12,6 (27.78t

Table 8°6-6. Science Version III and IVAtlas/eentaur ConfiguraU.on
RCS Performance, Probe Mission

THRUST[B DU_ CYCL[ NUJ_BIR Of PULSES TO(&( IMPULSES AVERAGE _PECIPIC BllOPELLAN| I TaNk

mmstOnmODE ON.o_ rImE , , ImmJtsE j _
CONSUMED _ 1 _Ur[

(SECONDS) ,nEll TWO THRUSTERS N . r, (LB-S) I_{CONI1S) [KG IIBI] , IN ,., . 10 "6)

f IK_,| MI[._.. OUR,_E

;.' 7 _._ ' L_.'NTINLIOUS t';5 SIL_)t'_D_ :_ 4_ i123.'t 22; 2.47 (5,451 I 2.B6

SL)LAJ_ IC}R_ A_D _ ARh' I_C _ o 125 12 S I?0 140 (31.4_ IB0 0 08 (0.17)

_'ECE_S ? 70 R,'*I _ 1 70 BAD _I0_ O(C. 1(_,i DEG, 0.125 IL.5 640 ?30 (l_I 180 0 42 (0 92)

,3v t M _EL CONTINUOUS 85 SECONDS _J$ 1177) 227 0.35 (0.78) I 2,81

I_I_D M_L_ L)H_M

PI,'[(..ES5 0.2: _AD 0.77 _,D (45 DI _, 45 Dh',l u. i,_, 12 _ 28_ _88 #5) Ill0 0.19 (0.42I

2._ _ 5 CL_NTINUOU5 _6_ 5((.L_ND_ I :#0 (3_4) 227 0.71 (I.._) I 2.;'5

LA_E P_(O_ R_LIA_f_

SPIN tO 2. I BAD S CON|INUOUS 290 SECONDS _2 049) 180 0.3C (0.66)

FRECES$ 0.43 R_D 0 43 RAD (25 DEG 25 DEG) 0.12_ 12,5 6_0 /02 ilSS) 178 0.40 (0.86)

DESPIN TO t RAD $ CONTINUOU_ IS 5_(.')NO5 _ (_,5) 225 0.1_' (0,39)

R|TARGET RELEASE SMALL PROBE NO. I

PRECE$S-._ 3.501_AD(212DLO) 0.125 I2,S 1390 I 467J_0i 172 D.g01I.Tbl J l._O

3V 1.21 M 5 (-ONIINUOU5 6_ 5ICONO*_ $_ (129) 224 C.27 (0._91

eIIARGEE I¢[L[A_E _MALL FeOBl NO. 2

PRECES$ -_ 368 RAD (216.2 _,tk_ 0.12_. 1_.5 10/O I I_S (_3) 17; 0.64 (1.41)

.W 1¢5.07M S _L)NIINUOU5 ?90_[C_NLI_ 6 294 11416) _23 2.09 (b.361 I 2,43

PRPCE_S ,t 5 8 c _AL 344Dl[;) 0 I_)5 I_ 5 1325 I _01 _IL3! I,'.' g.ll0 (1.271

&V b.l_ t/, S L,CINtlNUOU$ 260 5I(.OND') I e4_ (437i i?_7 0._9 ( 97( _,33 ._

PRI__,IS_ U.44 RAb O,14 I_AD _2_8 Ot_, ,i_,l_ DtL;) 9. I;_ 12,_ I_ lila (_.6} 171 0 10 (O,;_l

,_._"2_i _ M S I_(JNTINUOUb IIX_) SILON|lt_ I |_1 (1634l 211 2.1_e (6,I)) I 2 19

SPIN TO 6._ RALI S CC)NIINUOU$ I_10 $(CLIN(I_. _a_ _'_0_) t2t 0.4_ (0.9l)

UV [XFEBIMIr4T - 1.16 _AD Ifl0t}[_.l 0.115 I_.S .)4_) _t_ (_8) 116 0.IS (0 3.1)

SPIN CL)NI_()I L_P_|IN'IOUS lOLl _ELLINU_ 111A(t¢_ 2,)I 0._1 (07_ I ._ _0
(0.03 _A(; S M S)

,,),,,; .................. _ R,._t_ '_';,;i;;_5_ .... '.;_,.,,',....
349,$ MLIJND_

8.6-t6
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•- _h¢r RCS ],',,atur,,s [_A/ClV __-A/ClV

Figure 8. O=l I sunnnarizes other features of the preferred Atlas/

Centaur RCS,

8. (,. 1.4 Preferred Thor/Delta RCS Description T/D Ill ff_) T/O Ill

The selected RCS is common to both tile probe bus and the orbiter.

The design is similar to the Atlas/Centaur RCS described in Section 8.0. 1.3.

Flight-qualified hardware is used throughout; eight thrusters are used to

provide redundancy and to prevent coning angle amplification; and blowdown

pressurization/centrifugal expulsion are used. The preferred Thor/Delta

power and telemetry requirements and design are identical to the preferred

Arias/Centaur, Figure 8.6-11. Figure 8.6- 12 summarizes other features

of the preferred Thor/Delta RCS subsystem.

8.6.2 Orbit Insertion Motor _-A/C IV T/D III

A solid rocket was selected for both the Atlas/Centaur and the Thor/

Delta orbiter missions. The Aerojet SVM-Z is optimum for both the

earlier and Version IV science Atlas/Centaur orbiters. The existing,

qualified motor design has the necessary propellant load capability. The

Hercules BE-3-A motor, selected for the Thor/Delta orbiter, is also

qualified, and the existing design is totally adequate with the addition of

a safe and arm device.

Bipropellant rockets were evaluated and found to present higher risk

and cost than solid rockets, although the bipropellant showed a small

performance advantage.

Appendices 8.6A and 8.6B discuss the details of the selec',ed Atlas/

Centaur and Thor/Delta solid motors. Appendix 8.6C discusses the con-

tamination aspects of solid motors in general.

8.6. Z. i Rettuirements A/C IV _ T/D III
t

The mission requirements shown in Table 8.6-7 are payload weight _

and velocity change, the key performance requirements. Because each 1

candidate motor was compatible with tile applicable spacecraft design, !

additional performance requirements (envelope, weight, etc. ) were not

considered c rit_-.al.

8.6-i7

j_

O0000004-TSF03



I

Table 8.6-7. Mission Requirements l

VELOCITY CIIANGE PAYLOAD WEIGHT

A/C IV LAUNCH ,.MIDCOuRSE ORBIT SEPARATION INJECTIONv_H_cLE INJETION JONmON

W (M/S) (FT/S) (M/S) (FT/S) " "(rG) (LB) ('1_G; (L_)

T/D III THOR/DELTA 182' 1269) 9,54 (31:)0) 292,6 (645) 280,3 (61B)

ATLAS/CENTAUR i23 5 (77) 854 {3130) 463 (960) 429.3 (946.5)

ATLAS/CENTAUR 23,:_ (77) 854 (3130) 509 (1120) 50.5 (1115)
VERSION IV
SCIENCEPAYLOAD

J , I

rt_
8.6.2.2 Tradeo££s LL_AJCIV _ AJC III T/Dill

Tradeoff studies were made to determine whether existing rocket

motor systems could meet the Pioneer Venus Type II trajectory for both,

the Atlas/Centaur and the Thor/Delta launch vehicles. Only motors that

had been successfully flown in •pace were considered. Primary criteria

for selection were:

• Magnitude of changes to meet Pioneer Venus requirem._nts t

• Demonstrated reliability in ilight

• Overall cost of procurement

• Design limitations

Atlas/Centaur _A/C IV _JC Ill ....

Solid Rocket Motor for Use with Hydrazine System. Tables 8.6-8

and 8.6-9 show the key features of the candidate motors for the initial

Atlas/Centaur orbiter and the Atlas/Centaur Version IV science payload

orbiter.

The Hercules B_;-3-B motor required such a large addition to the

cylindrical portion of the chamber that it was dropped from contention

early because requalification would be necessary. The increased ,-ost

and risk are not warranted,

Th_ Thiokol TE-M-S21 motor is acceptable for the initial Atlas/

Centaur, but requires 4.22 cm additional length in the cylindrical portion

of the motor case plus an increase in throat area to accommodate the

increased propellant weight and burning surface area, The TE-M-SZl !

would have to be lengthened IZ. 5 cm for the Version IV science payload,

8.6-18
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A THEPREFERREDRCSUSESFLIGHT-QUALIFIEDTHRUSTERHARDWAP,E B IHERCSWEIGHTBREAKDOWNR["L[CTSTHEACCURACYOFUSINGFLI
KNOWNWEIGHI$ *

I ,';[IGP- P{_ T(
USE 1 hlU_ RE_' CQMpor4[ NT

ITEM AS IS I MODIFIED REMARKS JTL_A RFQ'JI_ED _KG,Le,t OReri
PROPELLANT TANK X {)CSC II PROPELLANTTANK 3 1.54 (3,4_ 4.62 I|l

THRUSTER X FLTSATCOM THRUSTER 8 0.27 I0.6, 4.12 _4

THRUSTERVALVE X FLTSATCOM FILTER ) 0.18 _0.4_ 0.1B (O

FILTE_ X PIONEERS |0AND II PRESSURETRANSDUCER 1 0.10 r0,4! 0.t0 (0

PRESSURETRANSDUCER X PIONEERS 10AND I | FILL AND DRAIN VALVE I 0.99 eD.2_ 0.09 (0

FILL AND DRAIN X PIONEERS10 AND 11 LINES AND FITTINGS 0 77 (1

VALVE TOTAE HARDWARE B.03 (J_

LINE AND FITTINGS X PIONEERS IOAND II
WffH MODIFIED LINE PRESSURANT 0.41 (0

RUNS/SIZE PROPELLANT 15,06 (_L

TOTAL LOADEDWEIGHT i23,49 (5

DERIVED FROM PIONEER 10 AND I1 ISOTOPE-HEATED, DUAL THRUSTERUNIT: REMOVED FROM

EXPENSIVE, COMPLEX CLUSTERUNit, MOUNTED SEPARATELY=VALVE AND DECOMI_SITION CHAMBER

MECHANICALLY ATTACHEDWITH PERFORAEEDMETAL THERMALSTANDOFF; I$OTCPE HEATING ELEMENT _ WEIGHTS OF THE HARDWAREFOR MOUNTING THETANKS, THRUSTERS,

DELETED, THRUSTERVALVE SEALMATERIAL IMPROVED, ELIMINATING D_Y SEALLEAKAGEEXPERIENCED .&RENOT SHOWN HERE;THEYARE PARTSOF OTHERSUBSYSTEMS,
DURING PIONEER 10 AND 11SUBSYSTEMTESTING. REDUCEDUNIT COMPLEXITY LOWERSCOSTS AND
INCREASES RELIABILITY.

ii

i

O THESELECTEDTRWMRE-I ll'IRUSTERGIVESEXCELLENTPERFORMANCEOVERAWIDEBLOWDOWN ERCSPOWERRANGE,ASVERIFIEDBYACTUALlESTDATAFROMPIONEERS).0ANDL).*

(UI) (N) d
250 _ 1.2 t_,L_XISUM pOWER_VATTS,

" 0.5 ITEM PERuNIT AVERAGE

230 1,0 THRUSTERVALVE 5 |0 BASEDO

ACTUATION POWER I DURING

Z_ 0.4 ' DURING.

0 210 STEA - 0.I 1 MAXIMIu I SECONg
•'_ PJRING

0.3 !
190 0,6 PRESSURETRANSDUCER 0.3 0.3 CONTIN

-- THRUSTERVALVE HEATERS CONTIN

U / _ _ ="_ _ SPIN 0.3 ! 1.2¢ ON USE_
STEADY STATE - 0.2

O 17o ,_,._ _' -Jo.4 z_vUFFEe o._ i.; ANDr_
/ &v LOWER 0.2 0.4 PRIMAR'

/ J THRU51ERCAt*LYST BED 12.78mC)_ / - o.)
PULSING -0. |25 SECOND ON, 0.Z SPIN 0,3 1.2 SECONI
1| .9 SECONDS OFF AV UPPER 0.4 0.8 /45*Fh.

.*.v LOWER 0.2 0.4
130-- l j I 1

100 200 300 400 _I)(N/M 2) TOTAL CONTINUOUS POWER j 5.5
TANI( RIESSUIE

_.--L t J J

0 O'SxlOdl*Oa_lO61.SxlO6Z.Ox1062.SxlO63.0xl(_ (mlA) NO HE.TEAS ARE NEEDED FOR pROPELLANTTAt,lv AND LINES WI4l_

[_.44°C _. (40_P ä�P�EQUIPMtNICOMPARTM_rJT. PROTRUDING I_1_

_t TH_USTIRP[RFr}RMANCE {_&tA, IN CON/UNCTION WITH PROPELEANITANK RLOWDOWN. V|RIFt[O AND iNStJLATEO,

INITIAl PROPELLANTESTIMATESTO WITHIN ONE RERCENT. NOTE: HYDRAZII'JE F_EIZFSAt _1.670C __ ._5°F,1

'"""
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[_A/C IV J_ A/C IV

t " i

:_URACYOFUSINGFLIGHT-TESTEDC_0MPONENE_W|]H C THEPIONE[RVENUSTHRUSTERREQUIREMI]tTSARELESSSEVERETHANPIONEERSI0 ANDI! OR
[L|$A[COM.GIVINGA HIGHLEVELOFCONFIDENCEINTHESELECffDfflRUSTER

MISSIGN REC_UIREMEi_ITS

_',LIGHT tlE/"q PIOt'ILLR_I0 AND I I FLTSATCOM PI(_I,IEEPVI:f'IUS

_r,JENT rC,ALr_G, Btl
1 ,....,.......R.OPI, ANT 'KG, 'KG,'LB,'KG,I HPl)I JGHpI/]

SIr,lOrE TH_USTf_ 12.25 f27_ 16.33 1361 9.07 1701
:r_e27_0,6' ?. I? 4.81 2.17 '4.'_ -

TOTAL AtE TH_LISTERS 26.76 {59, 63,50 (140I 15.9 (35)
0,18 '0.4_ 0.18 0.4_ J 0.18 '04

NUMBER OF THRUSTEPS 6 16 8

0.18 ,0,4, 0.18 0.4: /I 0.1B ,0,4 PER SPACECRAFT

O,O? 0,21 O.Oe/ ,O,2J t 0.09 ,0,2, MAXIMUM HOT PULSES, 1850_ 21 IJ3 6600
0.77 1.7, 0.77 _.7, SINGLE THRUSTER

8.03 _17.7_ 8.03 ;17.7, MINIMUM TEMPERATURE 120 1 104 114i

0.41 ,0.9_ I 0.41 0,9, STARTS, SINGLE THRUSTER

15.06 (33.2) 16.6 136.61 MAXIMUM CONTINUOUS 6500 220 3000I:IRING, SINGLE THRUSTER
23.49 !51.0! Iz5.o4,55.2_ 4SECONDS)|

TANKS, THRUSTERS,VALVES, ETC., AND WIRING * NOT REALLYA COLD STARTBECAUSEHEATERSLIMIT MINIMUM TEMPERATURETO 121"C (250aFt, REQUIRES l

."_R _IIRSYSTEM_. ONE WATT HEATERPOWERPE,',THRUSTERWITH 4.4_C (40°F) PROPELLANT. 1

.!

F THERCS1TLEMETRYPROVIDESINSTRUMENTATIONNEEDEDFORPERFORMANCEPREDICTIONS(BUllS1
TIMES/PULSES).DIAGNOSTICPURPOSES.ANDMONITORINGNORMALRCSOPERATION

REMARKS

RASEDON _IRINO TWO THRUSTERS10 I
I DURING OPERATION. POWERONLY
i

DURING FIRING. 3300SECONDS ALLOWABLE CONTROL
MAXIMUM STEADY STATE; TWO ITEM RANGE SETTING REMARKS
SECONDS MAXIMUM pULSING pER TEMPERATURE I_C rOF,) I°C (eF_]

FIRING PROI_LLANT TANK 10 TO 49 (40 1"O 120) 12.8 TO 18.2 (55 TO 65_ TEMPERATURESARETAKEN AT LOCATIONS

"_.] _ ITINUOUS PROPELLANT LINE IOTO49 (40TOI201 12.BTOIf.2(SSTO65t WHEREFREEZINQ OF HYDRAZINE COULD

CONTINUOUS POWERVALUES RASED PROPELLANTVALVE IOtO 109140TO 230) 12.8 TO 18.2 (55 10 65) OCCUR,
TEMPERATUREINDICATES THRUSTER

'-". 2 ON USE OF THERMAL STANDOFFS CATALYST RED I0 TO 980 _40TO IB001 NONE 3 OPERATION,
[_'. 2 AND THE_OSIATIC CONTROL .......................................................

='_,-.4 PRIMARYHEATERPOWERON AT PRISSURE I N/M 2 (PSIA_I

12.78°C {5S°P% OFF AT 13.34oc f6._OF). PROPELLANTTANK 10=106TO3.45x 10-6 NONE INDICATES THRUSTERBURNTIME,

.2 SECONDARY HEATERON AT ?.22°C _145 TO _00_ INDICATES PULSESNECESSARY TO DELIVER
_.8 r4_°P_, OFF AT 12.7R_C (SSOF). THRUST CHAMBER NONE REQUIRED IMPULSE. PRESSURESWitCH
:-_.4 DELIVERSA PULSEFOR EACH THRUSTER

_.3 _IRING.

, _4v' AND LINESWHICH AREKEPT IN THE HEATED

P_OtRUDING PIORTIONSARECOPPER-COAlED

J
t

Figure8.6-11.OtherFe=luresofthePreferredAlias/CentaurRCS

..... '%,
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A file PREFERREDTHOR/DELTARCS,WITH THEEXCEPTIONOf THESPHERICALTANK,USES C THEPREFERR[0RCSPIPING ARRANGEMENTACCOM_C_IJAT_St.ES_LE¢
THESAMEHARDWAREASTHEPREFERRE0AILASIC[NTAUR.ANDfile SAMETttERMAL PROPeLLANtTAN_,WHENHASRLL_+MODIFIEDtO EI,I_HAtF tH_8_OOERAt,ll
CON|_OLAPPROAQ'I. THREL fuSES AT THE TANK'S OUTSOARO END: !li FOR TNRUSIZ.RPROPELLANTSUE

FOR ON-PAD PROPELLANT DRAINING, AND 13JEGR ULLAGE ffJT[RCONNEC1IN

CON|JIEION_;, PiPiNG I_,0,95 CM [(J._)TSIH, I I1"+DIAMETER, ArtD _CHtEDTOPR

AI_D I'lO MA;P4TAIN EQUAL PROPELLANT HEADS IN THE TANKS?

GAS EQUALIZATION LINE //w v-- -- _--

.......
t..__.j .T,___j DRAIN VALVE

PRIMARY "_

1___../.._.j FILTER SPIN re

cI,cU,T oN
TYPICAL _QA_ALIZA

TT = TRANSVERSETHRUSTERFOR SPINAND LATERAL&V

A = AXIAL THRUSTERFOR PRECESSIONAND AXIAl. AV _PR_C ._lSlO

O_IN
LINE

FROPERLINE SIZING/ROUTING IS ESSENTIAL IN MAINtAIN_t _ BFACFCRAFTSA

ii i

B THERCSWEIGHTBREAKDOWNREFLECTSIHE ACCURACY OF USING ELIGHT-TESIED COMPONENTS DTHEPREFERREDRCSUSESFLIGHT-QUALIFIEDTHRUSTERHARDWARE.
wITH KNOWN WEIGHTS, ilk THE PeO6E AND ORBITERHARDWARI;WEIGHTS AREIDENTICAL; HOWEVER,

*'HE ORBITERPROPELLANTTANKS _,RE LOADEDTO ONLY 16.24 KG (3S.B LB_.

ITEM NUMBER WEIGHT [KG (LB)] ITEM USE CEtANGED _EMARK$... AS e',
REQUIRED PER

COMPONENT TOTAL PROPELLANT TANK X MARINER '69WITHOUT A

PROPELLANTTANK 3 1,04 (2 31 3.12 (6.9_ ANDWITH MODIFICAtlC
TANK MCUN_ tNG

THRUSTER 8 0.)7 (0,61 2.17 (4,8_
THRUSTER X FLTSATCC)M_

FILTER I 0,18 (0.4) 0.1_ (0.41
THRUSTERVALVE X FLTSAICOM _

PRESSURETRANS I O. 10 (0.41 0,18 (0.+1_
FILTER X PIONEERS 10 AND II

FILL AND DRAIN VALVE 1 0.09 (0.21 0.09 10,21
PRESSURETRANSDUCER ^ PIONEERS IOAND It

LINES AND Flit INGS -- 0.90 (2,0)
FILL AND DRAIN VALVE X PIONEERS 10 AND 11

TOTAL HARDWARE 6.67 (14.71
LINE AND FITTINGS X PIONEERS I0 AND I _,Wl

PRESSURANT 0.27 (0.6'_ LINE RUNS/SIZE

PROPELLANT 18,19 (40, I)

TOTAL LOADED 25.13 (55.4)

I
DIVIDED _ROM PIONEERS t0 AND I I; MODIFIED THE SA_[ AS ATLA'_cENTAUII 1

REDUCED UNfl COMPLEXITY, HIGHER RELIABILITY, AND LOWERCOSTS.
WEIGHPS DE ]'HE HARDWAREFOR MG(JNrING THE rANKS, 'tHRUStERS, VAIV{'S, ETC. ANDWIRING

ARE NO1 SHOWN HERE;THEY ARE PARTSOF OTHERSUgSYSIEMS, ,,

d .... I +,,'I/
1 ".... ....... .- :_ -; .... _ _+ ,+ ' .... k
i
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, If

LDM,.,.I,o. ERCSPERFOR/_IAf_E
• "l( [NI I_LADI_ERArID INCORPOAAT[

,;_r Pi_Op[ILANT _,IJPRL'(,42: A_ A D_PTUBE

_EpCGj_NICT I_l STATIC /_,F_DDYNAMIC

-¢_r 0 _( TEDTCI PkLvEf,l| OLJBBLITRAPS

PRFfERPEDOREITERMISSION RCSPERFORMANCE

AVIRACE THRUSTER
EQUIPMENT DUTY CYCLE PERPULSE AVERAGE

_-_..__...,-*_%_....._.i.%_,_ A|FORM TIME ¢_PENT NUMBER TOTAL SPECIFIC PROPELLANT

IN MODE TIME (SECONDS) OF IMPULSE IMPULSE CONISUMED
MISSION MODE iSLCONDS) ON OFF PULSIS [N * S fl _-s_J _SECONDS, [K,_ IL6)]

_,_ _" SRIN DESPIN 96 CONTINUOUS 8SD (191_ 225 0,39 _0.851

l _TERS INITAE PRECESS 946 0.12_ 12.5 76 8509) 175 0.05 (0.11_

ATTITUDE

_RIM SPIN
NEG

MIDCOURSF PRECESS 5 150 0,125 12.5 440 5t6 (116j 173 0.30 10.671
73 M/S

J 7 M S AV _2 S00 CONTINUOUS 22 237 (4 999) 222 10.20 (22.501

2 M ;S TRIM SPIN REAL-TIME 0.032 TO 0.125 SEVERAL 391 (BB) 170 0.24 _0,521
PULSES RESOLUTIONS

CRUISE 0.125 12.S 58 1131 170 0.04 _0 06)t
INSERTION SPIN UP 60 CONTINUOUS 52,4(1201 220 0.25 10.552

DESPIIq 60 CONTINUOUS 525 (1181 220 0.24 40.541

N PRECESS 0.125 12.5 36/8) 170 0.02 (0.OS)

PRECFSS 3 594 0.125 12.S 288 320 (72) 160 0.20 _0.45_
PERIAPSIS

MANEUVERS 6V 900 CONTINUOUS 8 016 (1 802) 218 3,75 _8.27_
AND

ATTITUDE TRIM SPIN REAL. tIME 0.032 TO 0.125 VARIES 142 _32) 160 0.09 (0.20_
_" PRECESSIONTHRUSTERS MAINTENANCE

CRUISE REAL-TIME 0.)25 |2.5 89 (201 160 0.06 r0.131

TOTAL 33 835 (7 606) 15.85 (34,971

SPACECRAFTBALANCE,

PRePERREDPROBEmIssIOnRCSPERFQRMANCE

_R HAROWAR[. AVERAGETHRUSTER AVERAGE
DUTY CYCLE PERPULSE NUMBER TOTAL SPECIFIC PROPElLANTTIME SPENT TIME (SECONDS)

IN MODE OF IMPULSE IMPU{SE CONSUMED
MISSION MODE (SECONDS) ON OFF PULSES [N. S ILB-S_] ISECONDS, [KG _tB_]

IT|MARKS INII"AL DESPIN 160 CONTINUOUS I 415 (3 81 225 0.64 tt .421
ATTITUDE PRECESS 1050 0.125 12.S 84 93 (2h 175 0.05 10.121

'_.9'¢¢ITHOUT A BLADDER TRIM SPIN NEG

MODff_ICATION IN PRECESS 7 986 0.125 12.5 640 716 (1611 173 0.42 ,0.931
: _tJi'JT IrJG MIDCOURSE73 M/S

:_M, 7 M/S &V -3 200 CONTINUOUS 28 335 (6 370_ 222 13,01 (28.70_
2 M/'_ IRIM SPIN REAL-TIME VARIES 444 (100I 170 0,27 '0.'._?_

CRUISE REAL-TIME 0.125 12.5 133 (30) 170 0.08 _0 181
; 10AND I1

PROBE PRECESS 9 161 0.125 12.5 "/33 841 (189) 160 0.53 I1.185 :

10AND I1 DEPLOYMENT AV ~640 CONTINUOUS S680 (I 277) 220 2,63 15.80_
10AND 11

SPIN TRIM 0.032 TO 0.125 12.5 09 t201 160 0.06 (0.13_
|0;,ND 1t WITH MODIF_FU ......................................................

ATTITUDE _ PRECESS 0.125 12.5 169 (38) 170 0. )0 10,23_" "_,,_SIZE MAINTENANCE

TOTAL 37 9IS (8 524) 17,79 (39.28_

EARTH TRACK AND ATTITUDE DRIFT

•"_'A_ C_NTAUR THRUSTE_VALVE;

cOSTS.

Figure 8,6-12, PreferredThor/DeltaRCS

8.6-_0
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Table 8, 6-8. Orbit Injection Rocket
Details for Initial Atlas/
Ccr_taur Con£iguration

I
SRACECRAF! ! ] [

CANDIDATE _JEIGHT AT J I I PROP_LLAI',T EffR_T _II,ITICAL_I(_IOI_ _ .i
ORBIT IGNI|ION I 0ELIVERED PROPELLANT I MOTOR _', EIGht DE'SIgN LIMITATIONS

INJLC TION NOT [NCEU17IPCG _ IMPULSE i ,'vEIGHT _ CvEIGHT f CHANGE MAXIMUM AVERAGE CHAtqGES (_tTHIN PIONEERROCKET O_BII INSERTION ] (t_, SJ (LEF'SI i (KGI (LB) IKGI LLB)
IKGI (LB) IN) (LBF) (N) (LEE/ VENUS DESIGN

f_GC._EI_ i _ _ t REQUIREMENT'..,

_GJ i

i i

._.CuLESSE-3-B' ! _ i
REQUIREMENT [ (5.0 IN,) TO CASE, _M_RATURE

I i i I ,NCREASE,.ROA,I '
ExIS1JNG N, A (N/A) 269 549 160 600) 99.34 1219.0) i H2.31 (247.b) ! 0 (O) ,,t6 4?4 (_ 2CO) 34 250 (77_) NONE ;MINIMUM FIRINC_;OCKE1 ! _[MPEBATURF

CAPASMtlES ] ! i i

THIOKOL [E-M-5_I !_ _ (304 0)PIONEER VENUS 29; ,43 (64_,5) 346 752 (77 957) _ 12_.61 (270.3_ i 137,89 . _ _I0.57 (_23.3I 18 815 (4 230i 17 570 (3950) ADD 4,22CM NONE

_EOUIREMENT I ] ! (I .66 IN.) TO
CASE

; !
EXISTING N/A (N/A) ! 31B 477 (71 60(3) I I|2.04 (E47,¢) I 125. 74 (277.2_ 0 (01 17 125 (3 850) 16 013 (3600) NONE NONE

ROCKET j
i

CAPABILITIES J

AEROJET SVM-2
I

PIONEER VENUS 2E4.58 (267,4) 346 201 (44 _) 124.51 (274.5) 144.74 ('q9.0 J 14.11 (-3hl) 21 528 (4 840) 14 990 (3370) NONE NONE

REOUIREMENT I

EXISTING N/A (N/A) 386 531 (86 900) |3B.62 (305.6) 158.85 (350 2) I 0 (0) 21 484 4 g3O 13 967 1314rj] NONE NONE
ROCKET
C APAItt LITIES

i i

_ERCULES BE-3-B THIOKOL TE-M-521 AEROJET SVM.2 i
g

STATUS: PRODUCTION STATUS: PRODUCTION STATUS: PRODUCTION

FLIGHT HISTORY: 9 FLIGHTS FLIGHT HISTORY: 7 FLIGHTS FLIGHT HISTORY: S ELIGi'iTS

STRYPE (AEC_ SKYNET f INTELSAr Ill
ADVANCED VELA NATO I

PROGRAM COST (EST}: $215K IMP H PROGRAJ_ COST tEST): $307K t

OELIVERY_ 10MONTHSARO PROORAMC_S_ tEST)= S328K DELIVERY: ]0MONTH5_O
DELIVERY: 17 MONTHS ARO

Table 8.6-9. Orbit Injection Rocket Details /or i
the Atlas/Centaur Version IV i
Science Payload Con£iguration 1

CRIFICAL

CANDIDATE I_I N DEE VERPD LIMI[ATION_ j

ORBIT (NOT INCLUDING IMPULSe- I -_;_ : ',_'[IOHI J..... 0NITflIN PIONEER
INJECTION ORBIT INSERTION '_ S __l GEN _ MAXIMU_M .... AVERAGE DESIGN
ROC.E_ _OCKET) I '--' ) ,LBF_BI _ I (N_EBF} (NI (LBFI CHANGES REQUIkFMENTS)VENUSDESIGN 1

(._, (L,I I I I I I

IH1OKOL TE-M-52_

PIONEER VENU3 346.72 (762.8t 405 729 191 2181 i t43.77 (316.3) 160.09 1352,2) ' _31.50 1+69.31 18 815 (42301 17 570 (39501 ADD 12,5CM NONE " '
REQUItfEMENT _4.9 _N,) TO CASE

EXISTING N/A IN_A) 31B, 477 171 600) ; 112,04 (ZR7.0) IZ5.74 (_P?.E) 0 (0) II 125 (3850) 16 013 (36001 NONE NONE

ROC_,ET !
CAPABIUTIES , i

AEROJET SMV-_ i !
I

PIONEER VENU_ 340.41 174B.9) 405 36B 191 1371 ! 146._? i3_1.4I 21 52_ (_0) 14 990 (33701 NONE I NONE
REQUIREMENT i

E_ISTING N/A (N/A) 386,_31 (86 900I 138.62 (305,61 21 _2_ 14830) 13 96/ 131401
ROCKET

STA[LJS, _ODUCFION 5[_EUS: PRODUCTION

IEtOHT E.I_IORY: 2 FLIGHt5 FLIGHT HIStOrY: 5 EEIGHT[_
SKYNEI I INEELSAF III

iMPH

PROGRAM CO_I LEST): _32BK DELIVERY: IO MUNEH_ ARC)

DELIVERY: I]_MONTtI_ARO .-- i'_i'

8.6-Zl !
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A/CIV tt=z_ A/C III

requiring requalification testing and unnecessary costs. The weight in

orbit is about 6.80 kg (15 lb) greater for the TE-M-521 than for the

selected motor, but in a non-weight-limited system this is not a signifi-

cant parameter.

The selected Aerojet SVM-Z offers:

s No anticipated changes to any hardware

• Ability to accommodate a _:J0 percent propellant load variation.
Requirements to the earlier Atlas/Centaur are a -14. I kg
('_1.1 lb) or 10.2 percent propellant off-loaded. For the Ver-
sion IV science payload, the requirements are a +7.18 kg
(+15.8 Ib) or 4.6 percent propellant on-load.

]

• Successful flight history

• Program costs and risks lower than the TE-M-5ZI (10 pzrcent
lower cost),

Bipropellant Versus So),d/Hydrazine RCS Systems Tradeoff, Atlas/

Centaur Orbiter. In Table E ._-i0, three !iquid bipropellant systems arei inl

compared, and the best bipropellant system is compared to the mono-

propellant/solid rocket system.

Table 8. 6-I0. Compari,_on of Bipropellant Versus Solid
Hydrazine RCS Systems for Atlas/Centaur

USA_tJ_f>tONEERV_US
SPACECRAFT RCSSYSTEM PROPELLANTWEIGHT PRC)PELLANT IMPULSE DEI ,VERED

SYSTEM WEIGHT IN ORBIT" fiURNOUI WEIGh! REQUIRED SPECIFIC IMPULSE
(KG_ (LB_ (kt_ t'..8'_ tKG_ (LB) (N' S/KGI (EBF-S/LEM_ (N'$) (tBF-S)

MARINER '71 155.2 (344.01 150.?' C331.0_ |2,_.4 1285.01 _775.7 (283.0) 358 749 (gO 654)

IN2C)4/MMH !

MMfiPS 215.9 1477.71 9,0 1207.01 125,0 1275.31 2893.4 (295.0_ 361 178 (81 2001

IN204'MMHII

JSYMPHONIE 294,0 1647,51 20.4 (44.9, 1:1,5 (267,6_ 2991.5 (305.0} 363 072 (81 626t

qN20 4 A-501

rRw 288,2 i6M,81 4.5 q9.91 2157.8 1270.0_ 21 362 (2 1781

{N 2 H41
3ELECTED

SVM-2 ?88.2 1634,8b 174.5 _274.51 2781.6 1283.61 346 201 177 8331
/SOLID)

SYMPHONIE 294.0 {647,5_ 121.5 (267.61 2991.5 (305.0_ 363 072 (81 626)
[RSO [N2_4/A.5(_p

I

R[C,IUIRED PION_{R VINOS SPAC[CRAtl W[IGHT IPI ORBIT IS 285 KG (628 LE_.

8.6o2Z

P

:3
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.__lw The ESRO tile MMBPS (multi-mission spacecraft), andSymphonic,A/C Ill
the U.S. Mariner '7 1 bipropellant systems were compared to determine

which would best supply enough impulse to perform both mideourse and

orbit injection maneuvers. All three supplied enough impulse. The

MMBPS and Mariner, however, are too large and must be grossly off-

loaded. N,:ither allows adequate usable spacecraft weights in orbit. The

Symphonie is favored by a good margin.

Other liquid bipropellant systems could be assembled from existing

qualified components such as the Marquardt R4D Apollo thrusters of the

Rocketdyne or Bell tankage. In the interest o£ minimizing costs, this

study considered only complete systems that could be used in their exist-

ing qualified configurations.

The selected liquid bipropellant system was then compared to the

hydrazine/solid rocket system in terms of relative :ornplexity (relia-

bility),cost, aridflightexperience. In all three areas, the hydrazine/

solid system is favored. Because b'lpropellant systems are more complex

..... than hydrazin_:/solid systems, they are less reliable. Bipropellant sys- i

terns historically cost two to three times as much as equivalent monopro- i

pellant systems, Finally, the flighthistory of satellitepropulsion systems 1
is overwhelmingly in favor of hydrazine/solid system-a.

The study results indicate that the ESRO Symphonie has a small

weight advantage (6 kg lighter) over the solid system, but for a non-weight-

lirnitedsystem, this is not a significant parameter. The bipropellant sys-

tem may have some advantage in terms of its relatively long burn time

which would produce lower gravity forces and might, therefore, permit

lighter deployabl,_ structural elements. In terms of all the criteria, how-

ever, simplicity, and historical performance record of the hydrazine/

solid rocket system makes itthe preferred choice.

Thor/Delta _w T/D III

Solid Rocket Motor_for Use With H),drazin¢ ._vstem. Table 8.6-I I

shows the key features of the candidate motors for the Thor/Delta orbiter.

Only two known existing rocket motors meet the mission require-

ments without gross changes in design, requiring requali£ication of the

8.6-,'-3
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W
T/D III motor. The first, the Aerojet SVM-1, meets the mission requirements

with the following changes to the existing design:

s The addition of 2.54 cm (! in.) to the cylindrical section of the
motor case

• A slight increase in the throat arcs to accommodate the increase
in propellant burning area and weight.

These changes are considered minor and would not require motor

r equalification.

The anticipated $250K program cost of the Aerojet SVM-l is nearly

twice as high as that for the Hercules BE-3-A, the second and preferred

motor, which offers:

• No changes to the existing hardware design other than the ad-ti-
tim of a safe and arm device

• Off-loading of 3.58 kg (7.0 lb), which represents only a 4. ! per-
cent change to the propellant load and no changes to the motor.
The off-loading can be accomplished by machining the internal
surfaces of the propellant grain with existing tooling after it has
been cast.

• A larger nu.'nber of successful flights (161 as opposed to three
for the SVM-1)

• Program costs of only $135K.
!

Bipr0pellant Versus Solid/H_rdrazine RCS System Tradeoff, Thor/

Delta Orbiter. In Table 8.2-12, three liquid bipropellant systems are !

compared, and the best bipropellant system is compared to the monopro-

pellant hydrazine system. As for the Atlas/Centaur orbiters, the ESRO

Symphonic is favored.

When the Symphonie system is compared to a hydrazine/solid pro-

pellant system, neither exhibits clear-cut performance advantages. How-

ever, as for the Atlas/Centaur orbiters, the hydrazine/r._onopropellant

system is simpler, more reliable, less costly, and has superior flight

experience to the bipropellant system, i

.._lw

8.6.2.3 Preferred Atlas/Centaur Subsystem _-A/ClV _ A/C Ill

The Aerojet SVM-2 solidrocket was selected for either the earlier or

Atlas/Centaur Version IV science payload orbiter. The existingmotor i

8. 6°24
!
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WTID III

Table 8.6-11. Orbit Insertion Rocket DetailB

for Thor/Delta ConfigurationR
Orbit. r Mission

•',11t,l_I /_I IJ_ltc'lt Ib' [it,IJ|'[ II AI I _'dt-_li_ ' . /1t_ J[H

_(l_l' II';_i I'i'|C'iT Itl_'It_e_fi"T¢_, il4,:,J 111_1",9 (Ft,s _ I t,J I It _,'"_' ' "lt_ !' (171lli[rlPt_-)l'l[IR

, . t I b a[QUIfl[M[II|_I
i_'_,i 1111}

Iq,:,,lliD; '_'Lr'_l/'.. it14.57 (4(v_.l_} 2_5 905 _50 ]l_ltl /9.92 (1]t'_.21 '_,'_ t_0 (211.2) _5,99 _,13.2i I_ 5611 135001 IJ 9_7 t:$t40_ A_b2.S4CM 14Ol4[
b_t,au' kM[rll (I ,U IN,I 1C) CASE,

INCR[AS( TIIROAT
ARFA

[XtSllN(_ N A U_I ,_1 _,09 425 14] UU,_) ]'a.v4 U63.0) _.SH (197.51 t} (01 14 412 {3_40) 12 V_5 12'_0()I NONE N_N[
_OCK[T
CAp,_fllLIIIL_

ttL_CULE_ 8.E,_-A
I

PIONEERVE_US 18b._3 _411,91 224 83B (50 54B1 83_5 Holt1 93,4B A_106.11 -'_.58 _-7.91 2B _62 1,6400) J 26 243 ('_900) NONI MINIMUM FIRIrlG ,

REG/UI_EMENI I ffMPERATURE

0°C (,32_F)

EXIStING NA (N/A} 234 854 (_2 _(_01 _6.64 1191.0_ 97 07 !214.01 0 (01 28 467 16400_ 26 243 (59001 NONE MINIMUM P_R_NG

OC K[ T _ T[MPFRATEIRE

CApABILITtES (_C 032°F)

AEROJF.TSVl'.%l MERCULE$B[-3-A

SFATUS: PRODUCTION E,IATU5: PRODUCTION

FLIGHT HISTORY: 3 FLIGHTS PLIGHF HI[IORY: 161FLIGHTS
COMS&T VELA (USAF), RANGER (NASA),

PROGRAMCOlt I,ESlh $250K ATHENA (AEBSD), AMRAO (AR/_,Y),
SPARTA (ARMY)

DELIVERy: t0 MONTH_ ARO
PROGRAM COST (EST): $135K

DELIVERY: IOMONTH$ ARO

Table 8.6-:lZ. Comparison of BLpropellant Versus
Solid/Hydrazine RCS Systems
for Thor/Delta

LISABLEPIONEEI_ VENUS RCSSYSIEM PROPELLANT WEIGHT PROPELLAN_
SPACECRAFT IMPULSE DELIVERED

SYSTEM WEIGHT IN ORBIT" BURNOUT WEIGHT REQUIRED SPECIFIC IMPULSE
IKGt iLBI (KG (LB_ IN • S/KG) (LRF-S/LRM) (N-S_ (LBP-S)

(KG_ ILB)

MARINER '71 51.3 1113.11 150.3 _33:.91 91.2 I200.91 }7"/5.7 (_g3.0 _52 944 IS6 8671

IN 2 04 MMH)

MMBPS 53.6 I243.BI 110.7 (207.0] 88._ (194.2_ _B93.4 I_9S O) 254 7,_5 ($7 274)

IN 2 O4 '_MH_

SYMPH,")NI_ 186.7 _411.3_ 20.4 _',,_.91 85.7 ,'lg$.g) _'_1.5 1305.0) 2._b 169 (_7 5R2)

IN 2 O4 "A-501

TRW 187.8 I413,71 10,67 (73,5_ 2157.8 O_0.0_ 22 996 iS t70)

IN 2 H4_
St LECTED

RE-3oA 187.8 (413,71 _3,05 (183.11 2707.0 (_76.01 224 838 (50 548)
(SOLID)

ESRO SYMPHONII 186,7 _411.3_ B_,7 (l_lB.81 29Ph5 (305.0t 256 16Q iS?Sg2
_N2 04 A-50_

• REQUIREDPIONEER VENUS SPACECRAFTWEIGHt IN ORBIt IS 187KG !413 POUNE,S_
FC_RSOLID AND 186 KG (411 POUNDS11:OR RIEROPE[LANT.

8,6-25 1
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design is unique in that the :_I0percent propellant load variation capability

er, compasses tile _ cquiremcnts of both of these spacecraft. The preferred

motor does not require requ_!ification and is lower in cost than the

Thiokol TE-M-fi2 1 candidate.

Atlas/Ce_itaur Orbit Insertion Rocket Deseripti?n A/C IV _ A/C III

A detailed description of the selected Aerojet SVM-Z mo_or is con-

tained in Apr, endix 8.6A.

,__lw
8.6.2.4 P:'eferred Thor/Delta Subsystem _ T/DIll

The ttercules BE-3-A motor was selected for the Thor/Delta orbiter.

The existing motor design meets the orbiter requirements with only minor 1

change, to incorporate a safe and arm device and to reduce the propellant

load by 7. Q kg. These changes are straightforward and requalification is

not :_ecessary. The Hercules motor also has an impressive history of

flightservice and is low in cost.

Thor/Delta Orbit Insertion Rocket Description _w T/D III

A detailed description of the Hercules BE-3-A motor and the recom-

mended sa_e and arm device are covered in Appendix 8.6B. !

i

8, 6-26
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ALL CONFIGURATIONS

_%
_. 7 TIIFRMAI, CC)N'I'ROI,

_. 7. I lnlroduclion

TI,,, tht.rlilal conl rol s',._tptn d,,sit_n for !,l,, _referr(,d Atlas/Centaur
,I

t:tinfi_ur,ililln, ;is w','ll ;is ;ill ,.iplional confi_ura:imls, consisls of bimetallic-

;iclti;ll_,(t Iotlvt. r assenll_lit's0 _,_uliil;ty_'r insulalim blankets, electrical

ll_._il_.l'._, _ind s_,h,cl_,d surlac,, coalin/_s. Th,.rlnal s,fstelll hardware and

c_:llillf4_ will in hies! inslance,_ be coinmon to both the probe bus and

orhiter ,_pacecrafi when each is tauncl_ed by the same type of booster.

Ilardwaro commonality is sir_,_sed in the system selection to reduce over-

all fabrication, intvgration, and t_,st costs. Ct, rtain individual insulation

blankets, such as those which enclose the orbit insertion motor, and the

number of _,.quired Iouv_,r assemblies will vary between the probe bus and

orbiter dvsigns. The alternate modified DSCS-II col:figuration thermal

sy'slem design utiliz_,d electric heaters to maintain a constant power level

in the equipment mounting area, and does not'require louvers. All olher -'_

features of the preferred design are retained for the alternate configuration.

Temperature control of the large and small probes prior to separa-

tion can be accomplished by controlling the transit solar aspect angle,

providing probe internal heaters, insulating the probes during traisit, or

combining two or three of these systems. To mininaize the electrical

power requirements for the mission, it is recommended lhat the small

probes be insulated from the external environment and radiatively coupled i

to the equipment compartmenl. Furthermore, heaters can be eliminated

in the large probe by controlling the solar aspect an_le throughou! the

mission. This technique eliminates heater circuits with 1) their associated

wiring and electrical connections between the probe and spacecraft,

2) their ground command switching hardware, and 3) avoids an increase

in solar array size.

The 6-_att S-band transmitter selected for the preferred Atlas/

Centaur design requires no special thermal provisions. However, the

31-watt transmitter used in one optional design requires a thermal ,n

insert in the platform under the transmitter assemblies to conduct heat

away from th(, cor, cenlrated energy so.ut'ce and radiate exce-_s heat to .(

space through the louver assemblies, The thermal fin inst, r! can be t]
eliminated in the Thor/l)elta I Z-watt transmitter co_,fftguration by locally t

thickening the mounting platform face sheets, t

8.7-1 iI

"_'__'-'_ ..........._"_;_'" " ....... -_ II ' _.':",:3L-,¢/ u_L_s., '. ................

' .'_.'_ .......... i ...................................................... -_-._-_._;',,,_v_,_+rm;-,p'.-. ',,',_h_llt_'; "__ " "_ \*¢, o " _. _, " '_ _<
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Th,. pr,.fcrr.I Allils/CL,lll;itir prol)o bus and orl_jlcr IIL.,rln. I ,'(),_I rol

.'4_.'il*'lll.b' illilizu CI) lllllillll I_;_i'dw,lr(, ;_li(I ,_;lll'lilt:t' ('oitlili!2,, _] Wllt'l'¢'_St'l' liossil>l, ,.

"['lit, lil,,ri]l;_l sy._iwnl ,_nd i1,_ inh_.r_-IH llt, rit)l'll._:tnLl, ;irl' dcscril),,d lit'lOW for

bolh iili._;;Jon,_. The l'<,Jalt,d lh,,i'nial milvil'oiliitwnl ;iilll _Ulal)_is lwcllni(tUt,_l

us('(I to dt,lt, l'lllilll, _ysll,lli pol'fOl'lllclrt_'t, _tl't, al_o In'ovidcd. t

IS.7.?.. l Probe Bus Spact.cra(l A/ClV i
l

System Description !

The preferred Atlas/Centaur probe bus spa('_,craft th,,rmal conlrol

system description and pertinent operational fcalures are presenled in

Figure 8.7-1. Specific hardware and thermal provisions arc identified
i

and the purpose of each item defined. Hardware is designed to be common

with both mission configurations wherever possible. One exception to this

goal is the outer conical section of the forward thermal shield which is

fabricated of 24 aluminized kapton layers instead of the mylar/teflon film

used for the other thermal shields. The aluminized side faces outward

be tse the forward facing experiments need a-metallic potential refer-

ence plane on the forward end of the spacecraft. This orientation produces

high surface temperatures on the outer insulation layers which protect

the ,-;olar array.

Th(,rmal Control System Performance

Figure 8.7-Z lists the maximum predicted temperature variation of

each component during the entire mission, Ail components, including the

scientific experiments, irieet the specified acceptance temperature limits,

The figure also describes the earth'to-Ver,us transit temperatures for

the solar array, large probe, battery, and potential reference plane.

All thru_t,,r valw_s and catalyst heals have to be heated when not

being fired to prevei_t the temperature of the hydrazirm from falling below

4°C {40°F), Figure 8.7-7. C lists valve and catalyst _ed temperatures for

various healer power comt}inations for the three thruster types. The I

selected he;iter power h, vt,ls and temperaturts are indicaled on lht,

unshaded lines. A lollil I)t)wt'r requiromt, nt of q.2 waits is needed 1o keep

the four l Y;IIIHVI'I'SI' t IWo iifl g_V, and two forward DV |hriisle!','4 Wilrill.

"Flit, powq.l's iir¢. ¢luil.(, tow b_'ratis(" lb¢, lhrusl_,r Stll't'ilce t,:q)osc.d to lhe
i

d
,q. 7=d

J
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J_A/C IV

SURFACETHERMALRRONRTIES

,_,_F_DNARE PURFOSE INSIDE OI]TSIDE

r'NE w riDEG _ r_NI_ r,D[ G ,

FACES OF OMNI A_T_NI4A MINIMIZE ABSORBEDSOLAR HEAT INPUT TO REDUCEVARIATION IN TEMMAA|Ui DUriNG MISSION. -- -- -- 0,24 0,31 O,88
LOCATION ENSURESSOLAR HEARING TO LIMI1 MINIMUM TEMP[RATUIE$FORAll $OLAJI ASPIC|
ANGLES ENCOUNTERED

_E FACING IF:WARD,L_INATED To ONE SHIELDBACk SIDE OF SGLAR ARRAY FROM DIRECTSOLAR IMPtNGFMENI AFTERLARGEP_BL RELEASE ..... 0.66 O,OB O. 12 0.66

_t; PROOE,EXTERf_ALSURFACEh _SULAtEO MINIMIZE SMALL PROBEHEAT LEAKSDURING CRUISETO MAINTAIN PROBETEMPEMTU_ ABOVE .... 0.90 0,45 0,48 0.69
_ETWEENONE OUTER2-MIL ALUMINIZED MIt_IMUM LI_AITS
___V[R SHEET{ALUMINIZED SURFACESFACE
_'_'LAR FACESHEETqINSULATESEAC4
_/'_?_ALWIN(3CW PEf_._kTLON, }|EM 7

-'_'_=ACE A_L/_X_IZ[ _DIAtlON COUPLING FROM ANTENNA TO INSULATION ...... 0.24 0.31 0.B8

FACECF SUBSTRATE MAXIMI; E RADIANT HEATTRANSFER PROM BACK SURFACEOF SOLARARRAY .... 0.90 0.80 0.00 0.B0
AT ZERO ARRAY OUTPUT

E FACING INWARDI LAh'dNATED TO ONE SHIELD LACK SIDE OF SOLAR ARRAY FROM DIRECTSOLAR IMPINGEME|,IT. RI_VIDE LOW TEMPERATURE .... 0.66 0.08 0.12 0.66
BOUND _,RY/LOW,,/, _ TO MAXIMIZE HEAT TRANSFERFROMBACKSURFACEOF SCI.ARARRAY

_PTC_ BETWEENEACH SMALL PROBEAND COUPLES SMALL PROBESTO EQUIPMENT CGMFARTMEt_T TO CONTROLPROBETEMPERATUREVARIATION .... 0.90 .... 0.90 .
DURING 1RANSIT. LOCATION OF WIP_DOWS PREVENTDIRECTSOLARIM_INGEMENT

CONTROL EQUIPME_qTCCMPARTMEF_THEAT LEAKSTO OFFSETTHEVAffiATION IN EQUIPMENT AND ...... 0.S0 0.50 0.20
E_VIRONMENTAL HEAT INPUT EXPERIENCEDDURING THE MISSION TO MAJN:AIN COMPONENT CLOSED

4 _C. 140°F_ TE,APERATURESWITHIN ACCEPTABLELIMITS 0.74

_, q_°F_ OPEN
_ER LOUVERS

_ETWEENONE OUTER 2-MIL MINIMIZE SOLAR HEAT LEAK INTO AND UNCONTROLLED HEATLEAKSOUT OF n._E EQUIPMENT .... 0.69 0.45 0.4_ 0.69
R_ACESEXCEPTINSIDE COVER SHEETFACE COMPARTMENT. STABLEALUMINIZED FAPTCN h_NiMIZES EXTERNALSURFACEPROPERTY

DEGRADATIC N

D fi_TWEENTWO 2-MIL ALUMINIZED MINIMIZE UNCONTROLLED HEAT LLAKS i_4TC At_O CUt C)FTHEEQUIPMENT COMPARTMENTAND .... 0.69 .... 0.69
PT AFTCC,_VERSHEET_ACE INWARD_ THERJ_ALLYDECOUPLE COMPARTMENT Fkn_M SOLAP ARP_y ]

,t
D B_TWEENONE OUTER2*MIL _ MiNIMiZE UNCONTROLLED HEAT LEAK5CUT CF THE EQLIIPME_ cOMPARTMEN1. _iA_LE _ ...... 0.45 (_.4B 0,69 i l
Z _¢D/_YLARCOVER SHEETS(ALUMINIZED ALUMINIZED KAPTON MINIMIZES EXTERNALSURFACEPROPERTYt_,l, _RADATION [

I

i

THEP_AL COUPLING BE1"WEEr_SI_UCI[_R! At_D HEATDISSIPATING COMFON[N_ J

-'A21r-.[ TA]_KS. i'A_;_(S Cc, r_DUCTI.'I Lt ! TH_P2._ALLYDECCUPLE ZERC. H_AI DI_'.,IP,'_T_r_GCC'MPO_E_'iT FROM_URROUNDING TO MINIMIZE j ........... 010
_-' CC[UM_'_ f[ _,_PER,ATIIREVARIATIC'_S DI)l_l' _O TR_&_,IE_J] [N'VIRON_E/ tAL CONOITION_ " I

=.':_f; HIGH HEATDEt'_tTY COMPC,I'I_NTS " MIr 41MIZECOMPCN[NT TO' EGUIPME_'/TPEATF_R/,ATEk_PERATUREGRADIENTS TO MINIMIZE MA)_tMU_ ............
--_.E_;[LER/'_ATERIAL. H = 14; "tl/M -_C CG=_PC)HEI_T TEMPERATURELEVLi _3/_ _:)_tROtj._=OtN_

i

IH[ E_(JfpMEI'IT COMPAI_TME_JT MINiMiZE TEMPERATUREO,L.&DI_NT li'._ GI)pp_Y LIr,_ESAND HEATLEAR_SINTO OR DUEl OF THRU51_R .......... 0.05
AND LINES

_f, ';AL .'E AE_DCATAL'_t BEDWITil F_AIt _TAIHS TH_U%TER_I'_D SUPPL'rLIPJETIMP_RAIURES A_)VE MINIMU_ tEMPERATURELIMITS
I RAI_GI I3_C fSSOF_TO 18°C _6S°F, _AC.KUP

)_._,_Erit :.2 ,'_'ATT_. THRIJ%TEPSME Ut_TED I',( IATE_ THR|JSEERFRO/'_STlillc lllRf II MII'JIMIZ[ HEATERF_.WERREOUIRFMENTS

I

MINIMI._E A--8',t.RBLD;i(AI i;gPUI I,. I_LuUC! vARIAtION i_NiIMpERATURI DURING'/_iS-5-tOI_-.... -. - .... (' 0.24 0._I O.l_

'\ 1_" a!T,',F_"i ( _E rUT[R =-_,_tt ALtJ,,,.NtTFD MItglMIZF S("tAR HEAt tEA_ it-ire _,li' _It';¢@NTROtLF_DHEATi[A[S ot_T C_F THE SENSOR .... _ " " .... * 0.45 0.4B 0.b9
_* 'rf_ 3tHat _"/_L!IMFNI?fD SII_FA( r'_ FAC_ A_"d-t,'Bl'r, GTABLf AlU_*lrll/_ !' _API¢ r i _,_I_'41MI([_.EXIERNAL SU_FA_.[ pI_IPERIY DEGP-_FATIC,I% !

, . _,t _ ,_ _i¢_r U'I(I_ ;=.=,_elAIIJ_,._iP_I_I_D *_l_ll=,_l,_l tffArtLiC_, F _( t/d_ ,',_,'_,_,',"_'r t!' I ![_.IRSURFACI -- O.O,I I 0.11 0,11 0.04

'rgct :, ( _'. f = ='_.;!._l,'t E&!)lAr_l lli'_, [= ',l,At _ Al_r __J_lr.!l_;H,'fABSORRED,i_IAI_IHFUL .... 0.04 0.]_ (,.i!1 _,._

,,. _ i

F_gureI_._'-l. PReferredAtlasICentaurProbeBu_Sl_cP(raftThermal
ControlSystemDescription
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ACOMPONENTI_MPERAI'URECONTROLCAPABI LITYVERSU$ TEMPERATUREREQUIREMENTS

All COMPONENTS ARE MAINTAINED WITHIN SPECIFIED IEMEFRATURELIMITS. [O_ SOMEOF THE
f'XPlERtMt_N'ISFflESPECIFIEDLIMITSARETENTATIV[, tl_t | tMITS MUST I_COhlE Ml_igECLEARLYDEf INED

DURING THE HARDWAREpH_I,SE.

PREDIC,ILD ACCI pIAp,ICI ()PI.RAIINC+
SIIBSYSTIM AND TIMP[RATIJRt_ T_MP[RATHR[ t I_I,IS

SCII NCE COMI'_)NIN'IS
MINIMUM MAXlP_UM MIflIMIJM /_AXII'/hM ,i

"C i_F, 'C f+t, "C 4_f, +C ,_l,

COMMUNICATIONS ........ !

MEDIUM-GAIN ANIENNA -129 !-2001 24 75, -157 ,-750, q3 ,200,
OMNI ANTENNA -129 i-20gl 24 95, -14S +-.230, 93 r200,
S-BAND TRANSMITIERS 7/45_ 41 ! 051 4 r4O_ 52 ,125_
POWERAMPLIFIER 7 I45, 41 rIJ_, 4 _40n $2 _125a r;

S-SAND RECF.IVERS 7 IdS_ 36 I97_ -4 t2S, 43 I_ 10,

DATA HANDLING _i

DTU 7 (4_= 26 _78, -7 f20, 41 _10S
DDU 7 {451 16 _61_ -? r?O: 41 f105_

E_[CTRICAL POWER

BATTERY 7 J45_ 22 _2i -I f30_ 29 1851
PCU 7 q45_ 33 _92, -20 ,-4 65,149_
C,IRF/'INVERIER 7 r4S, 21 ,70 -18 _0, 49 1120k
SHUNT RADIATOR -94 _-137_ 132 ,270 -157 E-250 132 ,270
SOLARARRAY -101 i-IS01 63 (145= -148 f-235, 107 I225_
CgU 7 !45, 28 mS] -? ,?0, 41 _10S

ACS/_OPULSION

C[A 7 t45. 16 _61, -7 _20_ 41 ,105,
SUN SENSOR -7 _20, 52 ,125, -IS '5, 60,140
THRUSTERVALVE 8ODYS 13 1_5, 82 ,180, 13 _55, 93,200
HYDRAZ_NE,_NES , +,40, B_,m0, _ _,.+0, e_,1_0,

HYDRAZINE IAHKS t 5 ,43, 24 (75, il 4 _40, 43 ,110,

SCIENCE

ION MASS SPECTROMETER -18 10 ] 52 '125' -30 ,-22_ 60 140,

UV SPECIBOMETER -18 _0, I_ _)/ :125; I -30 ,-?Z_ 60 ,_40.
ELECTRON TEMPERATUREP_OBEEEECTRONICS 7 _45, t 32 _89. _ 4 _40. 43 ,110,
_JEIJTRALMASS $PECrROMETER I -18 e0, I 52 _125, -30 ,-22, 60 _140
LARGE PROBEPAYLOAD J 7 ,45, 32 ,gg, J -18,0, 35,95,

SMALL PROBEPAYLOAD J -9 ,15, 24 ,76. j -18 _0, 35 ,95RETARDING POTENTIAL ANALYZER J -18 (0 52:125, -30 ,-22_ 60"140'

-i
i

C ATTITUDECONTROLSYSTEMTF.MPERATURESANDPOWERREQUIRE.rElENTS I

A STUDY OF THRUSTERTEMPERATURERESPONSEIN BOTPI FIRING AND ,_
NONFIRING MODES WAS PERFORMEDTO DETERMINE HEATERPOWER
REQUIREMENTS, HEATERSWILL BETHERMOSTATICALLY CON1ROLLED. tHRUSTERTEMPERATURERESPONSE

FOLLOWING FIRING

Im°l I I I
THRU$tERNONFIRINGEQUILtBRIUM ;i (',1_. _VTHRUSTERVALV£

TEMPERATUREVERSUSHEATERPOWER J_ ....MAXIMUM HEATERPOWERREQUIREMENT DURING MISSION] _; TRANSVERSETHRUSTERVAEVE

VALVE VALVE CATALYST CA,IALYST 80OF-- [ ....... + .... 3 _ _,V THRUSTERCATALYSt BED
HEATER TEMPERATURE lIED lIED J X ICONTtNUOUS rtO'¢¢_

tHRUSTER POWEB * POWltIHEATER TEMIIEiAIUREII J _k _]_ TRANSVERSETHRUSTERCA,IALYST
_NATTSI J _ B_I'+ "PULSEDFLOW

IIu_NSVERSE :'iiiO 4:L';i:I_:: 24 iij::;_ 7B iti:ii_o.3 !_i_ ::::::::::::::::::::::::79ii _ (,3'i!:os i _ i;;!i!i_,ilr!i::::::io._::iiii!..........

o.z _ _o 0.2 +s l_S

i;ii!i O.S:.;:i_;:i: _.I::::I_:::.!115 :i_ iii:.:.i;_O.2!iii_;!i!+]!i 63 :.i::i'ii14_,i!
0.6 18 65 0.4 36 9_

_:_°_ +ii '::_:::,sii-+iii!o.,iiiiiiii;;i_1::il!i,, i

• MINIMUM VALVE tEmPERATURE LIMIT 18°C (6S°F) 0,4 0,8 |.2 1.6 +.0
TO ACCOMMODATE DUAL THERMOSTATCONTROL
SYSTEM. TIME AFTERFIRING ENDS (HOU_S_

eeMINIMUM lIED TEMPERATURELIMIT 24°C C/$*F).

I
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i

B PROBEPAYLOADT[MPERATUffESPRIORTORELEASE

LARGE PROfi[ PAYLOAD |LMpfRAIU_L IS MAINTAINED WITHIN ACCEPTABLELIMITS AY SOLAR ASPECT ANGL[ CONTROL. SMALL
PROBfSARE INSULATED FROM THE EXT[RHAi EINVIROI'nlMEHTAND COUPLLD TO THE LQUVfR COHTROLLED EQLJIPMEN!
COMPARTMENI BY THERMAL WINDOWS.

_F °C

8O I

70 - 20 ...... __, /'_ff_'_ --

60-

30! 0 ,....S,V_LLl I

- -10 _ -'T '_1 -__ I "--PROBE

t rNO, 1 RELEASE
(

20 -¢IRST _ SECOND / SMALL PROBE i
,_DrCURS= --M_OCOURSE t NO. 2_eLeASe

. bM:LL' PRO0;,:=_ c _-'-_ --'

'°- 1_l TEMPERATURELIMITo- L_L J i m I
10 20 30 40 50 60 70 80 90 100 110 120 130 140 1_=0 160

DAYS AFTERLAUNCH

.= i i i i

. D TEMPERATUREHSITORYOFBUSCOMPONENTSDURINGEARTHNI_USTRANSIT
8US COMPARTMENT COMPONENTS ARE COl',fi'flOLLED BY LOUVERS AND
INSIJLATION. TH[ PLASMA pOTENTIAL REFERENCESURFACEIS ALUMINIZED
KAFTON AND REACHESA PEAKTEMPERATUREOI 230°C (446°F). ALL
COMPARTMENT LOCATED COMPONENITS AREMAINTAIP_ED BETWEEN4 AND
40'_ 14qTO I04°F_.

_r eC

500-
250 "

.......t I I I t t_'_,PLASMA POTENTIAL REFERENCESURF
15030O

= , , 2J SOLAR ARRA',

i (3s-=NoPOWERAMPLI,ER/ I

, El _ • I I I__,--_"E'_0'EN_O,NTE,,

_0 i F--r.-I-.......I-.I_I_-SMALLPRO'E---I--I" / _ -- sMALLeROsE-._"1!L"_"T I..sM/_Lt'PRO8[ | /
' I_)_ I INO'_eAS|II h" .p_ N_.3RE_EASeI /

['_" [ JL=.SeCONt) I I i ,IE'_'l J :a"'; .... " I I,I____fIRST

o ..........I.-t-TMI I , • -o |o _o :_o.o so _,o70 _o 90 ,oo,,o .o _o .o _so_,o

OA'_S_rteRLAuNcH 'k
!I

Figure8,7-2, PreferredAtlas/Centau,ProbeBus Spacecraft
ThermalPerformance

);rg_' ._'I','. _',: 8.7-4
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i

ambicnt t, nvironment is kept small and three 0.03-meter (1-inch) long !
4

tit:injure standoffs :,re used to attach the thruster valve to the structure.
'i

Additional heater power is not required for the lines and fuel tanks since

the uquipment compartment level is maintained above 4°C (40°F) and fuel

lines external to the compartment are wrapped with multilayer insulation,

Copper plated ( 10 rail} lines are used to erd_ance thermal conduction and

prevent local cold spots from occurring. Figure 8.7-ZC also indicates that

the valves will not overheat after firinghas been completed.

Thermal Envir onm _.,nt i
1

The design thermal environment for the entire probe bus spacecraft ii

mission is shown in Figure 8.7-3. Adequate on-stand spacecraft tempera- i

ture control is provided by supplying 45 kg/min (100 lb/min) of conditioned t

air into the fairing, The air supply is controlled between 16°C (60°F) and

38°C (_00°F) with a relative humidity less than 50 percent (Figure 8.7-3A). i

Figure 8.7-3B also specifies typical ascent temperature histories II
for the inner and outer surtaces of the Atlas/Centaur fairing. Since the i

i
shroud is constructed with a 0.04 meter (I.75-inch) thick phenolic honey- I

comb wall, the interior surface temperature is unaffected by external

aerodynamic heating during ascent. Therefore extra thermal protection i
i

is not required for ascent temperature control. Low heat capacitan:e ;j

spacecraft surfaces such as solar cells, silver teflon thermal shields, !i
and aluminized insulation blanke,ts are prevented from exceeding their t

respective maximum ternperature limits after shroud separation by

jettisoning the fairing 275 seconds after liftoff _vhen the free-molecular

heating is below 34Z watts/meter 2 (0.03 BTO/ft_-sec}.

The transit thermal environment fro_m booster separation to Venus

encounter con_,iders that the space, craft orientation is inertially fixer1,

with tl,,:, exception of solar pressure perturbations, between the first and

second midcourse maneuvers, and then remains earth pointing until

encounter. The resultant orientation provides sun aspect an les that will !

maintain acceptable temperatures of the large prbbe without the use of "1

electric hea, ers {Figure 8.7-3C).

Probe bus heat dissipations for all components are tabulated in Fig-

ure 8.7-3E. A representative mission power profile is also included to

indicate the overall variation in spacecraft heat dissipation, Figure 8.7-3D.

8.7-5
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Thermal Analysis
Techniques _ MC IV

Figure 8.7-4 presents the, probe bus spac(,crafl and typical lhru_tt, r

analylical compuler models used in the study. Compom_nl tempt, ralurr, s

f)r various operating conditions were calculated with lh,,s¢, nlo,:h Is, u,,_itli_,

the TRW thermal anal3_zer c-_mputer program. Criii,_l "col_figtlra_iul..

factors" input into these, programs were determined b v tilt, TRW

"VIEWFAC" program, which generates a hemispherical view from on(.

surface to all adjacent surfaces. A typical computer g¢,nc, rated piclur,- is

shown in Figure 8.7-4B.

8.7.2.2 Orbiter Spacecraft _-_MC I%/

System Description

A description of the preferred Atlas/Centaur orbiter thermal con-

trol system design is shown in Figure 8.7-5. The specific hardware and

thermal provisions are identified along with the purpose of each it¢,m,

Thermal Control System Perfoz,nance

Prelaunch orbiter spacecraft temperatures are identical to probe

bus spacecraft temperature for that period. The hydrazine system power

requirements and temperature levels are also identical to the probe bus

system throughout the mission. Other orbiter spacecraft component

temperatures will vary between the levels listed in Figure 8.7-6A.

Earth/Venus transit and Venus orbit temperature histories of selected

components are presented in Figure 8.7-6B.

All component temperatures, including all scientific experiments

located within the equipment compartment, except the infrared radiometer,

remain within their respeclive acceptance temperature range. The infra-

red radiometer temperature will exceed its upper acceptance limit, which

is much lower than other experiment temperature limits, durin_ the

mission. If the upper temperature limit ,.an be raised without degrading

the instrument performance, platform mounting will be acceptable,

Otherwise, the instrument will have to be isolated from the equipment

compartment and provided with its own therma' :ontrol system. A multi-

latter insulation and electric heater sy., tern comblncd with a dedicated

radiator panel is best for this arrangement.

8.7-6
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I

i I-.,_^,._;,,T_, D PR(]P.[BtJS_','IISSIONIt[A|DISSIPA[IONPROFILE
'_ ?'*'PI? rd Ill _*_l!_tL%TPAII_'EEl111_;('NY |t'_k V_RI( ;U'_ R_(_II BIJ_JSPACICRAF1AE[A_ II_IDICAI[_, EllA| If'If C;V[RALI

• _;','HIAlrJI fl [_fl _ ,*._!J_= _AI¢/it I', III At I_r!.'._pATI(.I'; :rICRIASE_ tlIAII V[I,,IL_ _ MCR[ _(IAR ARRA'_PIC;WERBE(_E;MIS AMAII.I.ILI. |III_,

• ,_,fl; , ifilIl_i,':_ II/'.qI_Ii_A'rt!_! Ill AI I)I','_=PAhl ;l_ lrzr l_l f_(ll I') ACCf_MM(_DAILD 8Y nll l(_lJ_il r_'-_,_Hicll VARY THE HEATREJE£TI.C:N CAPARILI|Y i
! [ Tltf [t,_IJIf'_AtT';I _" MPAklMIFI1.

_SI{c0, [ll_.h _/Ll 'I,AIT_' I_0 I -'"

_*_ IHI _,_,_alCl_l,ACtral,,Icr rl nvl r-i!*,. 1 _ i 1

I_ ..... + l l T ','I rausl [i'ICOUl'lTid.j 1 -_'

-- t I LXCtSS _[Jl Ak A_A'/ PIJWIR _I_

_---J -_'-i -I--_' _ -ti _ ,_,,_,,A,lO,N_..N,RA,_IA,O

t _,lelf_JG _[P&RATI(),'J II _ FXCIS_ SOLAR ARRAYPOWER -- ]
DISSPATE0 IN RCu

v_

t , _-- _- ta 6o t ......Jr _I_ I
: _ '_NI = FXIIRNAI COMPONENT AND REDISSIPATION . in t

I ......
I " o ,o .............. t-[QUIRM[ NI CO,_PAIIMENI

.J__
I II zo ,_'--_ ........ HEATDISSIPATION _ _ _ ,

:f I.....t--_................ :

1
00 20 40 60 gO 100 120

................... DAYS AFTERLAUNCH t
i iil

- i- ............ .m ./,

E
J t_ I • COMPONENTHEATDISSIPATIONS

] - SUBS_STEM AND EXPERIMENTCOMPONENTS AlE LO_ATED SUCH THAT HEATDISSIPATION i

_O IS DISTRIIIUTEDTHROUGHOUT THE PLATFORMAIIEA, LOUVERSACCOMMODAT_ VARIATIONS
_N ] v_ I IN HEAT DISSIPATION AND t,RE IqCATE n TO FURTHEREQUALIZE PLATFORMTEMPERATURES. i

120 I_ 200 240 2100 3_tO 360 H,AT DISSIPATION IV_ATTS i

SECONDS AFTERLAUNCH COMPONENT IAdNCH TRANSI1 INCOLtNTtR

SCIENCE

_--_S NEIJT_A[ _ASS _I_CTRO/_A|TIR 0,0 O.0 14.4

" ATION INPUT, AND DISTANCE ION h_ASSSPICIR(.)_I fIR 0.0 0.0 3.0
:_¢_CECI_FT ELEMENT

LIMITSWITH A MISSION [L[CIRON TEMPERATUREPRO&E 0.0 0.0 3.6

:430 TO 840 ITU/H_I. UV SPLCI_O/_lll t 0.0 0.0 1.8

RECORDING POIINI IAL ANALY_LR 0.0 0.0 3.0 "

_i DIGItAl D[CODLR UNI_ 0.3 0._1 0.3

COMMUNICATIONS

S-_AND RECEIVERS 3.4 3.4 3.4

S-_I_ND TRANSMI|TER DRIVER 1.3 1.3 J.3

S'fiAND POWfR AMPLIt It I_ 16.5 t6.5 16,5

CONTROL ELECTRONICASSIMR[Y 1.7 1.7 1.7

------_ VENUS .- .. I_LSSURETRANSDUE[R 0.4 0.4 0.4

ENCOUNTE,_'I

........ H E_ErE'.,_AI"OW.CO._ROI-- PcuEIECTRON,_ '.0 ,.0 ,.0........ . COMMANI2 DISIRII._I,l I(._N I INII _. I 2. I _, I
SO 6[_ 70 80 90 I00 I IO IZ0 130
[JAYSA_IIR lAUNCH CC)l'4VIk'II_ I|.I il.l H.i

I

Figure8._ ]. PrelerredAtlas/CentaurProbeBusSpacecraltThermal
Environment
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A PROBEBUS SPACECRAFTANI I,Y_ICAL THEI_AL/_OEl --_OtJl CUNFIG
N UMBE
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38 SMALL PlaO9E BC ITO, M iI_Jf, ULATIOr,I It,ltEltl,,iAL AD|QUACYel

39 SMALL PRC'BL OOttOh'_ INSULATION EXTERNAL, ANAL't'TICAJ[

/ ._-_.. 40 SMALL PRCBE BC'TTC_M INSULATI_F_ 'I_T[Rf_AL

it SMALL PR_OE BOTTOM iNSULATI_f-I 'EXTER_IAL
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/. 3B SMALL PROBE TOP "JSULATI_J _EXtER_AI

39 SMALL PRt_BF BC"TT_M INSULAIIO_ ¢IP'JT[RFJAI
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[_A/C IV

IL

SURFACETHERMAL PROPERTIE_,

_AMt I_! ITLM i [)t_.R_?T I r t HAH'_.VARi PbkPOSi INSIDE DE'SIDE

N'_, D_'G N_ pEG
" " P i

_R NOZZLE 22 I Ay{Rs OF" I 4-Mli &IUMtNI/ED WAPTC'N SAND- MII%IIMI_?[ UNCONTROLLFD HEAT E[AK FROM SCLID .... 0.05 0.45 0.S0 0.69
"_ P'_SUiREIGN ;_,ICHED BET,_,_EENf'lJC, ?-MIL ALUMINIZED k APTCP_ MOTOR TO MAIINTAIN MOTOR WITHIN ACCEPTABLE

COVER SF+EET_ALUM_hI'E[_ ,IJRFACESFACE IPIV;ARD TEMPERATURELIMITS PROOF10 FIRIPJG. NC_ZZLE CAP

t, _, S[_ FIGURE B,/-4 IS IETISONED WHEN M_TOR FIRES

MOTOR ' ?2 L_YFRS CF 1 4-_AtL AI!IMIN!ZED KAPTCN SAND- MIf_41&_IZEUNCONTROLLED HEAT I t_AK F_M SOLID .... 0,69 .... 0,05
"_AT_C-_ '_',ICHE_ RETWEE_'_T':,C ?-MIL ALUMINI?ED KAFTON MOTOR TO MAINTAIN MOTOR WITHIN ACCEPTAgLE

CCVER SHEETStALIIMI_dZ_D SURFACESPACEINV/ARD TEMPERATURELIMITS PRIOR TO FIRING. MINIMIZE
, K _, SEE FIGURE 8.7-4 UNCONTROLLED HEAT LEAK FROM THE EQUIPMENT COM-

PARTMENTt MINIMIZE SOLID MOTOR RADIANT HEAT/
SOAK-BACK TC EQUIPMENT COMPARTMENT AFTERMOTOR
FIRING, KAPTON REQUIREDTC PREVENTDEGRADATION
OF INSULATION THERMAL PROPERTIESDUE TO HEAT/
SOAK=BACK PROM MOTOR CASE

SENSOR 22 LAYERS OF I 4-MIL ALUMINI_E_ MYLAR SAND- MINIMIZE SO)EARAND ALREDC HEAT LEAK INTO AND ...... 0.45 0.50 0._9
.JLATION v,,CHED BETWEENCl_E CUTER 2-M!L ALUMINIZED UNCONTROLLED HEAT LEAKour OF THE SENSOR ASSEM-

_APTON AND ONE _NNER 2-MIL ALUMINIZED MYLAR J BLY, STABLEALUMINIZED KAPTON MINIMIZES EXTERNAL
COVER SHEETS,ALUMINIZED SURPACESFACE INWARD}I SURFACE PROPERTYDEGRADATION

_CMNI ANTENNA i 3-MIL COAT OF S-'3G tCHITE FAINT ON EXTERNAL MINIMIZE ABSORBEDSOLAR AND ALREDC HEAT INPUT TO ...... 0.24 0.39 0.88
_LMAL COATING SURFACESOF OMN_ ANTENNA I REDUCEVARIATION I_ TEMPERATUREDURING MISSION,

[
LOCATION ENSURESSOLAR HEATING THROUGH h_OST OF
MISSION TO LIM T MINIMUM TEMPERATUREDURING
NORMAL OPERATION

SUN SHIELD ONE _=MIL SHEETCF V_TE PAINTED KAPTON SHIELD LOUVERS FROM DIRECT SOLARHEAT INPUT _CR 0._O 0.35 0._8 0.45 0.50 0,69
i fPAINTED SIDE FACING I_,_ARDI SOLAR ASPECTANGLES AS LARGE AS 1.7S RADIANSII00
; DEGREES_

PLATFORM 22 LAYERSOF I/4-MIL ALUMINIZED MYLAR MINIMIZE SOLAR AND ALBSDO HEAT LEAK INTO AND .... 0.05 0.45 0,50 0.69
.=_LATIC_" SAND_ICHEDBEIWEEN ONE OUTER 2-MIL ALUMINIZED UNCONTROLLED HEAT LEAKOUT OF RAM PLATFORM,
_*_T_R _URFACES KAPTON ANDONE INNER 2=MIL ALUMINIZED MYLAR STABLEALUMINIZED KAPTON MINIMIZES EXTERNAL

COVER SHEETSALUMINIZED SURFACESRACE INV. ARD_ SURFACE PROPERTY()EGRADATION
l_'X SE_FIGURE _.7o4

T','_O 0.037 _2 ,0.4 FT2 SECOND SURFACEMIRROR PROVIDES CONTRCLLED HEAT LOSS TO SPACP .... 0,90 C.O_ O. I0 O,7B
COVEREZ) SURFACE_ON EITHEREND OF PLATFORM

i B--V_AT?ELEC_'RICHEATER MAINTAIN ACCEPTABLETEMPERATURELEVELWHEN ............
EXPERIMENTS NOT OPERATING

1OR HEATER : S-wATT ELECTRICHEATERWITH THERMOSTATIC MAINTAIN ACCEPTABLEMOTOR TEMPERATURELEVEL ............
C_NTRC_L DURING ERANS|T PRIOR TO MOTOR F_RINO

_IUM-GAIN 3-M_L COAT CF SoI3G wHITE PAINT CN EXTERNAL MINIMIZE SOLARAND ALfiEDO HEAT INPUT TO REDUCE .... 0.24 0.39 o.eg
--"tENI'_A CCAT_'_G SURF,_CE VARIATION IN TEMPIK'ATLJRL'DURING MISSION.

_=_ _CO_A 27 LAYEi_.OP i 4.-MILALUMINIZED MYLAR SAND= MINIM_E SOLAR AND ALBEDO HEAT INPUT AND ...... O.4S 0._0 0.69
- ULA'_'IC.N .'.ICHED RET¢.'ELNONE OuTE_" 2-_11. ALUMINIZED UNCCNIRCLLED HEAT LEAKSOUT OF RAM PLATFORM

APRON _IND ONE INNEe 2-MIL ALUMINIZED AND EQUIPMEN1 COMPARTMENT
M'YLA_'COVE_' SHEETO.

_"X' SEFFIGt?RER."_4.

_TOR PLATF(3RM FIBERGLASSSUPK PTSTRUCTURE MINIMIZE HEAT LOSS FR(_M SO LID ROCKET MOTOR ............
_.' J_CHMLNT Rit'_G 01 tt O1' SUPPORTC()L'JMN

.....................

_"Jr'Q1 RADIAIOR ] _,_lt C{]AT (H; S !}G '.'_HITEFAINT ON AFT MAXIMIZE RADIANT LOSS1C) SPACE AND MINIMIZE .... 0,04 0,:)4 0,'19 0._
SLIPPAGEe POR',vA_f'rSURFACEIJNCOAll D ABSORBEDSOLAR AND ALBEL)t"H_AT INPUTS

I i I

figure 8.1-5. PreferredAtlas/CentaurOfoiter SpacecraftThermal
ControlSvslemOescription
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A COMPONENTT[MPIRATURECONTROLCAPABILITYVERSUSTEMPERATUREREQUIREMENTS B IEMPERATUR[HISTORYOFCRITICAl COMPONENISDURING C
EARTHIVINUSTP_NSI T

All EQUIPMENT TEMIhglATIJlES EXCEt_ Tile tt ttJIDIOMETEg MEET THE"_ECIFED ACCfPIANCI- "FMPERATURt:
IJMITS. THE IR IfADIOMETER TEMPERMUREWILL REACH 21teC,R2_F,, 16°C {28_F ABOVE THE 12<C ff_4% gPACECRAFTTEMPERATURESINITIALLY DECREASEWITH MISSIGN TIME AS EH[
SPECIFICATION Ll_llT. TO CONTROL TO THE ABOVE UMIT WC)LILD REQLJIltETHAT THE Uf*,llT BE ISOLATED _ROM SPACECRAFt GOES OUT 10 1.07 AO AND THEN INCREASE AS THE INCIDE_4T
THE '3PACECfIAE3AND PIOVlDED WITH A HEATER. SINCE THIS IS A SIGNIflC,_NT CHANGE THE HPp[R EXRERIMBHT SOLAR HEATING MORE THAN DOUBLESFROM ITS MINIMUM VALUB. THIS
T_MPERATURELIMIT <HOULD BEREVI_,{:D TO DETERMINEWHETHERit {.AN RERAISED. EFFECTIS DRAMATICALLY SHOWN BY THE SOLARARRAY TEMPERATUREBELOW. PC:

100
Ii

_L!_'-_'SI_.*. A_ TI r._H_,_t_'_ _, ! TL;/P_AT[tr_ L1_11%
S_ [i%C._C_MI"Pr_i',,EDHg

.4
c- ; C 'I 60

: ,_L2.',_._,__!Lc:?!_-'} (°r_

_IC, H-OAi% _<T[!IFoA -17i -730 71 It,_ -706 ,-340 I 171 340' I (i_ 5OLAR ARRAY i /
IEED -;'5-17_ ?4 75 ~185-300 I J8 190 I __ " i • _ •

:-,A_,.:,.._,_,,,. I _.; _ '.', ,_',_ ! 7_g7," ,'C: @POWERAMRL,F,. : , -1 2o
S-BAND _ECEI'•_.RS 1O 49 42 IJS -4 ,25 CJ II0, 701- 160 _ HYDRAZINE P_OPELLANT TAN_ ? __

AN'F.NA L JD4TA H4NDLING 60 140 _---"- _- -1 --7--

L ' ': -tOTu g ,47 7,I 69 -7 ,20 41 ,105 50 _ 120---_-- -- 4- 3 ......... i -
DSU 6 4} 19 ,67 -7 ,20 41 I05 I _ : I / [ I

DDU 9 ,4e, 20 60 -7 20 41 105 40 log- _ ....... +....... -_F----

EL_CmCAL_O:'.'ER L _ I I_ I
tATTERY 9_7 j = sor _ _ _--
PCLJ 10 49 3_ '100 -20 ,-4 65 149 r [ _.-:_ ; "1-'-_*_"CTRF,'Ii'-IV'RTER -_46 83 -18 0 49 ,120 20 _ .....° 60 ....

SHUNT lta.".,jTO, -107-I_ ,_2270 -Is7,4so I_,<27o loF /_ i_ _ I
CDU I0 ['i TO -7 ,20 41 ,105. 0 40

_CS PROPULSION oL 20 _-_\BATTERY '-- ' HYDRAZINE MIN MUM + -
CEA 9 48 20 68 -7 ,20 41 liOS, " I ;I MN MUMLIMIT LMT =ill
_UN S_NSOR 4 39 52 123 -15 ,5 60,|40 0 L , I i i J - , _ l
TH_USTEItVALVE BODYS 13 55 if2 IB0 13 ,55 93 ,200 20 40 60 80 100 120 140 160 lil0 2(_i
HYDRAZINE T&NI'S 7 44 _'! 70 4 _4_ 43 I10
HYDRAZINE LINES 4 40 82 '.gO 4 ,_0 82 .180 DAYS AFTERLAUNCH *ll_l

38 I00

SCIENcESe"LID_CCKET MCIO_ lJ 4 4_ !5 62 -7 40 J

MAGNETOMETER ELECTRONICS 7 45 2! &9 0 3/ 60 ,14b, i
RADARALTIMETER EL[CTRONIC-S 5 42 24 75 -30 1-22 60 _140
_LECT_ON fEh_RAt_i PROITELECTR_NIC_ 5 42 ?6 7o 4 40 i 43 ,110 l
_ON_'AS_SPECT_O_.*ETER t -:_ ,-U I_ _, -_0 --_X, 6O,l_O, TEMPERATURERISEOFAFT-MOUNTEDCOMPONENTSDU_ING
i_RaC)_OmEte_ 8 46 2__ -_..,-_2 12 _. VENUSINSERTIONMOTORFIRING
NEUtRAl t@ASS5PECr_C'.h_ET(r_ -25 -1 } 1_ '_ , -30 -22 6_ 14_

X-SAND OCCULTAT I('N ELECTRONICS _ -]0 -22 _ AFT-L_ATED HARDWARESUCH AS THE LOUVERS AND OMNI ANTENNA
m HEAT-UP OURINO I_C)TOR FIRINP_, THE RAIE O_ TEMPERATUreRISE IS

DEPEN ENT UPON 1HE VIEW OF THE PLUME AND THE THERMAL CAPACITANCE
OF THE EQUIPMENT. EXCESSIVEHEATING WILL NOT OCCUR DURING
FIRING•

E VENUSORBITINSERTl0'tCPACECRAFTTEMPERAIURESFOLLOWINGMOTORIGNITION
COMPONENT AND STRUCTIt IEATINO BY TMEENGINE WILL NOT BEEXCESSIVEDURING ORBIt

INSERTION TIRING. PLAIFO ,. MOUNI_D ELECTRONIC OMPONENT$ ,',ILL EXHIBIT ONLY A ,_F
SLIGHT TEMPERATURERISEAND REMAIN WITHIN ACCEPTANCE LIMITS.

3OO
_'C MAXIMUM ALLCWABLF TEh4PBRATURE

OF ALUMINUM HARDWARE ,_ /
(°F 120' - _ _ _ --- -- _ "J--'_-" _--

s_o- Ji ¢

' : i
/ / I _ffDILM-GAIN

I H_ INL- OURAIION

0 - i---]tHDt,I BIIbl, .>< 'Art rlll_ _?DO ____ ....... J__
0 .................. 0 I0 20 30 40

I 2 3 4 5
11M_ A_l{_ GNIT ")N rHR FIRINE; OLIRATION (SEC'_

1 llll

/
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_,.-A/C IV

C RAMPLATFORMffMPERATURESANDPOWERREQUIREMENTS, D MAGNETOMETERTHERMALDESIGNCON.,IDERATIONS I
DURING

THf _AM PLATFOR/'._THERMAt DESIGN II_,'CLUDESINSULATION WITH AN .,

0.074 _TEP 2 _0.8 FT2, RADIAIOR PANEL• AN 8-WATT HEATERIS REQUIRED MAGNETOMETER SE:l_OR THER/V_LDESIGN WILL INCLUDE AN AFT-FACING
ON TIME AS IHE TO _AINTAIN THE C(2MPGNENTS BETWEEN-30 AND 60°C (-22 AND 140'ft RADIATOR fSHADOWED FROM THE SUN_ AND II_ISULATION. THE RADIATOR

THE LNCIDENI ¢O_ AlL MISSION CONDITIONS. AREA CAN BEADJUSTED TOMATCH THE SENSOR INTERNAL POWER AND

VALUE. THIS _. AT VENU% RADIATOR AREA 0.8 Ft2 MAINTAIN THE SEf':5OR WITHIN ITS OPERATING TEMPERATURELIMITS
"-'_ERATbRE BELOW. _*C OF -20 TO 20_C I-4 TO 68"F).

_°F B. AT 1.07 AU, RADIATCR AREA0.8 FT2 INSULATION

1001 C. AT 1.07 AU, FULLY I_"JSUL_TED

Bat I MAX'MUMORERAE,NG M/_ --"_

TEMPE_'¢IURELIMIT A BOO

60)- - -_ ...... _ / RADIATOR SURFACEAREA 0.0032 M 2 IS IN.2}. CONTROL

*t'_ POWERRANGE CAPI BESHIFTED LEFTCR RIGHT BY

RADIATOR - CHANGING RACIAT,'_RAREA.

PANEL ._ :. (OF; 200 _ _ _ I
_ i 40 I00 [0,037 M" (0.4 FT') I ] 107 7 GIGAMETERS , l ] I

; ---1 t , " SOLARASPECT_0.72 AU), SUN REAC.S.0E 8°F _.16o )NRAO,ATOR--,A.Ng_EIA.M_E

_so / .=,.o,o.O,GA_ET.S-- ,.. -- --

f0.72 AU), _ . . _.L._ ,

40L- _ |ADIATOR / ,_"_e"[-J_P'[if_C)LARVEC-._TORf'I"_ I0_-
P- MINIMUM OPERATING _HADGWED / _ SURVIVAL LIMITS ] _ \ I

",oi -_LL-i-4
- RECOMMENDEC / /POSSIBLE' OPEI_TION' 'AL I _UNtNSULATE01, / i II B-WATT HEATER i /_'__NVELOPE _ ! MAG_Etb_r_'R I

_'DISS_PATION 40 I- -4_ ! / _"-_160,7 GI6AMETE_-RS t HOUSING I I

| ! I_ _ (1 07 AU), RAO ATOR SHADOWED I I
-_,MU .801- -60L "80 t _ i I t I I I I I
,. _ I 0.2 0,4 0.6 o,@ I.O 1.2 1.4 1.6 1.8 2.0

200 I tNTERNAL POWER (WATTS_

o I I
100L 150 S 10 15 20

_.AI'FORM POWER(',VATTS/

_URING G EQUILIBRIUMTEMPERATURESOFLOWCAPACITANCESURFACES H TEMPERATUREHISTORYOFCRITICALCOMPONENTSNEAR
DURINGVENUSINSERTIONMOTORFIRING PERIAPSISIN VENUSORBITER

_.NTENNA LOW CAPACITANCE SURFACESSUCH AS INSULATION WILL HEAT UP ALMOST SPACECRAFTTEMPERATURESREACH MAXIMUM ORBIT VALL_$ AT DAY 16_
_-_'_ERISEIS iNSTANTANEOUSLY WHEN EXPOSED TO FLUME RADIATION DURING VENUS AFTERINSERTION WHEN VENUS ALBEDO, EMISSION# AND FREEMOLECULAR
_==¢LCAPACITANCE ORBIT INJECTION MOTOR FIRING. THE EQUILIBRIUM TEMPERATUREDEPENDS HEATING RATESAREAT PEAK VALUES. TEMPERATURESALSO REACH

OU_ING UPON THE PLUME INCIDENT HEAT FULX AND RATIO OF SURFACEABSORPTANCE MINIMUM ORBITVALUES DURING THESAME ORBIT WHEN THE MAXIMUM
FOR PLUh_ERADITION TO EMITTANCE. 1.42 HOUR SOLARECLIPSE OCCURS,

T2SEC _ I_C/ (°F!BTU/F

:v.,TT5. M_ • 1000, 5 r- ............. T- ALUMINIZED I20 r 250 t 1.42 HOtiR

I I XAPTON _ E_pS_E_

, . ' o /, -010 INSULATION _ _p_W_ER f
_o t _ I _ t " _,ke_o.4_ 0.so ao1.-:0.6 •

I MAXIMUM IT ,257 .j o6s 1so ...........

|H[_i FLUX /' ; /, X /1 0 401--

.... /= -I ...........

1 ../---._/ ALLOWABLE . : .|_0 L --- SUBSOLA.R ROINT

100 300 SO0 700 900 1100 (°el --PE IAPSIS

TEMPERATURE -250 ...... I
-3 -2 -1 0 1

L L. 1...I I---.x ___L.._..L.__.L_,_,_L_.J.___J IoC_ TIME FROM RERIAPSIS(HRx
40 _ _0 100 150 200 250 300 350 40g 450 _) 550 600

figure 8.7-6. PreferredAlias/CentaurOrbiter SpacecraftThermalPerformance
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"il_ The magnetometer, IMUp and NMU are isolated experiments tha_
|

require separate temperature control provisions. The rMU and NUM are

located together on the ram platform and can be thermally controlled by
2

providing an insulation enclosure around the experiments with 0.037 m

(0.4 ft/J) surface mirror radiator panels on either end. An 8-watt heater

mounted on the ram platform is operated whenever the experiments are

turned off. The operating temperature extremes are shown in Fig-

ure 8.7-6C. A fully insulated design {Curve C) would reduce the heater

..... power requirement, but produce excessively high experiment temperature

when the experiments are operated.

Typical magnetometer temperature levels that can be achieved in

practice are presented in Figure 8.7-6D. These temperatures can be

maintained within the magnetometer package by using a radiator surface

in conjunction with unit internal power dissipation_ possibly supplemented

by an electric heater. The figure indicates that the experiments can,

through proper designj such as locating radiator surfaces to limit sun

exposure, provide acceptable magnetometer operating temperatures.

However, the design will be sensitive to electrical lead losses, insulation

shorting, and other physical considerations.

Positive temperature control of the Venus injection motor is

.... achieved by mounting a 5-watt electric heater to the motor attachment

flange. Excess solar array power is available prior to engine ignition

.... and there is _ittleimpact in providing a heater. The heater is thermo-

statically controlled to compensate for the inherent inaccuracies in the

abilityto predict small heat losses out of the motor compartment.

Antenna distortion is not a severe constraint for this mission. How=

ever, it is desirable t_ reduce the overall antenna temperature variation

so that dimensional change is not excessive. For a white antenna surface

. the temperature will be between -131°C (-204°F) and 71°C (160°F).

Firing of the solid rocket motor for Venus orbit insertion produces

plume radiant heating of aft facing surfaces and internal heating by the

nozzle and casing temperature increase. Figure 8,7-6G specifies the

temperatures at which low capacitance surfaces, such as multilayer insu-

lation sheets, will stabilize when heated by radiation from the aluminum

particles in thc motor plume. The figure indicates that, for the expected

8.7 !t
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heat flux value identified in Figure 8.7-6E, it will be necessary to use

aluminized kapton material for the equipment platform aft-facing insula- i

tion assemblies. The rear surface of the cylinder closeout section which

ha_ sheaf fiuxgreater tnanthepermissib!e 34 000watts/m 2 (3 BTD/

ft2-sec, will be constructed with the in,_ulatton attached to the inside of

an alurnh, um collar. The al,:anLnttrn collar will have sufficient thermal

capacitance to limit the temperature rise in the area and protect the insu-

lation from being damaged. Other aft facing aluminum surfaces, as

shown in Figure 8.7-6F, will not be excessively heated by plume radia-

tion. Heating within the spacecraft will also be maintained within accept-

able levels by the central cylinder insulation. Figure 8.7-6E presents

the soakback temperature response of the structure near the motor attach-

ment and a typical electronic component mounted to the honeycomb plat-

form. All temperatures are well within limits.

During the 24-hour Venus orbit the spacecraft can approach within

200 kilometers of the planet's surface. At these heights the spacecraft

is exposed to planetary emission heating which, as shown in Fig-

ure 8.7-7G, is relatively small. After approximately 168 days in Venus ]
lorbit, the spacecraft is also subjected to reflected solar, or albedo heat-

ing. Figure 8.7-7G indicates that this heat is much greater than that

produced by planetary emission. The effect of these combined Venus heat

inputs on normal spacecraft operation at 106.96 gigameters (0.715 AU),

as well as the maximum 1.4-hour eclipse that occurs at the same time,

is shown in Figure 8.7-6H. It is in this period that the compartment

interior reaches its peak temperature and the solar array is exposed to

both its minimum and maximum mission temperatures.

Thermal Environment

Figure 8.7-7 presents the earth/Venus transit and Venus orbit

thermal environment for the preferred Atlas/Centaur orbiter spacecraft.

The on-stand and ascent environments are identical to those specified for

the probe bus configuration in Figure 8.7-3. Figure 8.7-7A, H, B and C

also identify the trajectory and solar aspect angle parameters for transit

and Venus orbit operation of the earth-pointer spacecraft, as well as heat

dissipations utilized in the design. It should be noted that the spacecraft

will be flipped 3.14 radtans (t80 degrees) two times in the mission to [

J

!

maintain proper sun position for the solar array.

" 8.7-12
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A ORBIIERSPACECRAFTTRANSITTHERMALPARAMETERS B ORBITERMISSION HEATDISSIPATIONPROFILE
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c COMPONENT HEAl DISSIPATIONS D INJECTION MoTor CA_E TEMP[RATLIRE tlISTORY AFTER IGNITION
_;UfiSYSTEMAND [XP[RIMLPIF COMPONI NTS ArE IC)CAT[D %UCH TItAT ItEA[ DIr_SIPATION
I_ DISTRIBUTEDTH._OUGH._DT THE PL_TFOR/'AAREA, 10UVI:R$ ACCOMMODA)[ VArIA-

TIONS IN DI_e,IPATION AND ARE tOrJ_TED TO FURTHER[(2UALIZE PIADORM TEMP[rATURI S. MO1CR CA.SII'_G TCMPEkATU_[ElSE DURING VENI._ ORBIT INSERTION
CAN HEAT THE ADJACENT ORBITERSTRUCTURE. MOTOR MOUNTING
IS DESIGNED tO MINIMIZE THE EFFECTSOF MOTOR HEATING TO

HI Ar DISSIFATIC f_ ,_'IAIT_, SENSITIVE SPACECRAF1ELEMENTS
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Solid particle plume radiant heat flux rates and solid motor case

temperature histories for Venus orbit insertion motor firing are shown

in Figure 8.7-7D and E. Maximum albedo and planetary emission heat

rates that will be encountered in orbit for a Venus albedo of 0.76 are also"

defined in Figure 8.7-7F and G. The maximum heating rates occur for a

few days approximately 168 days after orbit insertion. The occurrence

period is shown, along with the design periapsis altitude variation, in

Figure 8.7-7H.

Thermal Analysis Techniques

The preferred Atlas/Centaur analytical computer model is presented

in Figure 8.7-8. Thruster heater requirements are identical with those

determined for the probe bus spacecraft.

8.7.3 Thor/Delta Configurations

As with the Atlas/C _ntaur configurations common hardware/sur£ace

coatings are used wherever possible for the Thor/Delta probe bus and

_ orbiter spacecraft designs. Descriptions of two Thor/Delta configur-.tlons

appropriate to the Version III science payload are presented belew. Simi-

lar Atlas/Centaur designs were also analyzed in detail to select the equlvi-

lent thermal hardware.

8. 7. 3. I Probe Bus Spacecraft r 1977 Launch _¥/DIII

System Description

Figure 8.7-9 describes the design Thor/Delta probe bus thermal

control system configuration. The description uses the previously pre-

sented Atlas/Centaur format, and presents both Thor/Delta and Atlas/

Centaur Version Illlouver area requirements.

Thermal Control System Performance

Predicted mission opera _onal temperatures are presented in Fig-

ure 8.7-I0 for the Thor/Delta probe bus configuration. All spacecraft

temperatures are maintained within acceptance limits by the reduced

thermal control system design.

Thern,al Environment

The Thor/Delta prelaunch and ascent environment is much different

.. than that experienced on tile Atlas/Centaur launch vehicle. Figure

8.7-14
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8.7-11A defines the spacecraft prelaunch thermal _,nvironment for the

Thor/Delta fairing. Adequate on-stand spacecraft temperature control

is provided in the- Tt_or/Delta design by supplying _ppr0ximat_'!y 68 kg/

rain(150 lb/min) of conditioned air into the fairing. The, air supply is

controlic'd between 10°C (50°F) and 3Z°C (90°F) with a relatiw, humidity

less than 50 percent.

Figure 8.7-1113 also specifies ascent tc,mperature historit, s for

three pointg on the standard Thor/Delta fairing. Since excessively high

fairing temperatures exist adjacent to the _'pacecraft during ascent,

insulation will be required on the inside surface of the fairing to prevent

local shroud surfaces from ey.ceeding 135°C (175°F). The free-molecular

heating rate that occurs after fairing jettison is included in the figure.

Fairing jettison is delayed until the free-molecular heating is below

1140 watts/meter 2 (0. I BTU/ftZ-s) to prevent low heat capacity space-

craft surfaces such as solar cells, silver teflon thermal shields, and

aluminized insulation from exceeding maximum temperature limits.

For the Thor/Delta configuration, low heat capacitance surfaces

that face aft can be heated by third-stage engine firing. Figure 8.7-llC

describes the engine case temperature response for the 144-second period

following ignition until the spacecraft separates from the boost vehicle.

Temperature increases are small, however, because the engine is located

a significant distance from the sensitive surfaces.

The probe bus thermal environment encountered during transit from

earth to Venus is provided in Figure 8.7-1 tD. Representative component

and system power dissipations are also presented in Figures 8.7-I IE

and F.

Thermal Anal_,sis Techniques

:! All Thor/Delta probe bus temperatures were calculated using a com-

puter model similar to that used for the Ati,:q/Centaur configuration.

Thermal environment, dimensional, and physical property differences

were accounted for in the anal_¥sis. The thruster computer model ,'tas

identical in both the Thor/delta and Atlas/Centaur configurations. An

:: equivalent Atlas/Centaur Version Ill spacecraft was also studied.

8.7-16
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THE PR_E BU_ IJrJESEll IARIE AI_|D II IGHI E_I_)VEI_IHAR[J_VAI_[. LOCATb_N_ QF THE I.D.
NG_ NAML fJ( ITEh_ DI'SCRII_III_NC)E HA_WARE

HARI_S_VAR__l_I kL't'E[J (O |HI ADJA_[NE (ABLE r_R DERAILED DESCRIPTION,

I EOI_WAPDOMNI _-MII, COAT OF S-|3G WfflTJ_PAINT ON I,Xt[RNAL 5URiACES (ANTENNATHERMAt
COATING

2 lARGE PROBE ONE OUTERLAYER or ?oNtIL SILVERTEFL(_N(SILVERSIDE EACII
CLOSEOUT TO C)NC 2oMIL INN|R LAYI_ OF CLEARMYLAR

3 SMALL PROBE ONE 10oMIL FIBERGLASSJ[TTISONA§IE COVERFOR EACH PRO|
INSULATION INSULATED WITH 22 I,AYERSOF ALUMINIZI,D MYLAR SANOWICI

SECTION VI_I COVER 2-MIL ALLIJMtNITI,D KAPTON AND ONE INNER 2-MIL ALUMINII
(ALUMINIZED SURFACESFACE INWARD). SIMILAR INBULATIOI%
MYLAR FACE SHEETSINSULATES I,ACH PROOEFROM THE SPACE(
AT THERMALWINDOW PENETRalTIONS#ITEM 7

K/X - SEEFIGURE 8.7-4

,(_ _._ /!_( _)_ 4 MJ_DIUM-GAIN I_RE FIBERGLASS CON VEX SURFACE;I_RE AEUMINUM CO NCA'---- ANTENNA COATING
o SOLAR ARRAYSUBSTRATE

S THERMAL COATING 3-MIL COAT OF 3M BLACK VELVI,T PAINT ON BACKSURFACE C

__ _ ! _ 6 FORWARDAND ONEOUTI'RLAYEROF2-MILBILVERTEFLON(SILVERSIDEFACII

MIDSHIELD TO ONE 2-MIL INNER LAVEROF CLEARMYLAR

_
7 SMALL PROBE ONE 2-MIL, 0.Ol86M 2 (0.2 FT2) SHEETOr BLACKENED _API"ON

THERMALWINDOW PROBEANUTHI, EQUIPMENT COMPARTMENT

eIMETAL ACTUATED

(_ B LOUVERS TOTAL BLADEAREA : 0.22 M2 (2.34 FT2}A/C, 0.15 M2 (1._6 FT:CLOSED EFFECTIVEEMITTANCI, =0.20 FULLCLOSED AT 4°C M(

OPEN EFFECTIVEEMITTANCE = 0.74 FULLOPEN AT 29aC (BS°Fl

_) 3-MIL COAIS OF Z-93 WHITE PAINT ON PLATFORMUNDER LOt9 EQUIPMENT 22 LAYERSOF 1/4-MIL ALUMINIZED MYLARSANDWICHED BETVI
COMPARTMENT 2-HI L ALUMINIZED KAPTON AND ONE INNER 2-,MIL ALUMINI:
SIDE INSULATION SHEET(ALL ALUMINIZED SURFACESEXCEPTINSIDE COVER SHEE

K/X, SEEFIGURE B.7-4

10 EQUIPMENT 22 LAYERSOF 1/4-MIL ALUMINIZED MYLAR SANDWICHED BETV_
VIEW OF AFT END COMPARTMENT ALUMINIZED MYLAR COVERSHEETS(ALLALUMINIZED SURFACI

TOP INSULATION COVER SHEETPACE INWARD)

K/_, SEEFIGURE 8.7-4

.y 1t EQUIPMENT 22 LAYERSOF 1/4-MIL ALUMINIZED MYLARSANDWICHED BEI'_

I COMPARTMENT 2-MIL ALUMINIZED KAPTON AND ONE INNER 2-MIL ALUMINL

I AFT INSULATION COVER SHEETS(ALUMINIZED SURFACEFACEPORWABDI
I K/X_ SEEFIGURE 0.7-4

/_ 12' EQUIPMENT COMPARTMENT 3-MIL COATING OF 3M BLACKVELVETPAINT ON EQUIPMENT

RADIATIVE AND CONDUC- DISSIPATING EQUIPMENT
TIVE THERMALCOUPLING
REQUIREMENTS

BAREMETAL SURFACEON CENIRAL COLUMN AND HYDRAZINE

L DUCTIVELY COUPLEDTO MOUNTING PLATFORMAND IS,_LATI

_ PROVIDE GOOD CONDUCTIVE THERMB_COUPLING BETWEENI

COMPONENTS II.E., TR_J_SMITTI,R_AND PLATFORM WITH RTV
MATERIAL. H _ 142 W/M_-'C CRSBTU/HR-FTt_°FI

���-_ -Z 13 RCSTHRUSTERVALVE LOWER _V THRUSTERINSULATEDCOMPLETELYWITH HIGH TEMF
B'_ _'YAND SUPPLY FOIL
l,INc INSULATION,

__ VALVE AND ALL FUEL LINES ARECOPPERPLATED. LINESEX1ER_AL TO THE

CATALYST BED MENT _NSULATEDWITH 1OLAYERSOF HRC=L INSULATION
HEATERS, AND
THRUSTERISOLATION K/X • 0.056 W/M 2- °C (O.OI BTU/HR-_2-_F_

PROVISIONS DUAL RANGE THERMOSIATICALLY-CONTllOLLED HEATERSON
WITH GROUND CONIROL BACKUP. PRIMARYHEATERCONTRC
IB°C (6$°FL _AC_CUPRANGE 7_C (4S°FI TO 13°C (S_°FL HEAT

\\ S._ WATTS

_E) THRUSTERSMOLINTED 10 STRUCTURESWITH TtTAN_UM STANDC
14 CENTRAl. CYLINDER _2 LAyF.RS Or I/4-MIL AI UMINIZED MYLARSANDWICHED _ETV

INSULATION ALUMItlIZED MYLAR COVER SHEETS(MYLARSURFACESFACE O I

t f  EEE,GUREB,-,

15 AFT OMNI ANTENNA 3-MIL COAT OF S-|3G WHITE PAINT ON EXTERNAL 511RFACES,
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A COMPONENT[E_,'_PERA|IJR[£ON1ROI£APABILIW VERSUSTEMPERATUREREQUIREMENTS
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., ACS PROPULSION
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1
8. 7. 3.2 Orbiter Spacecraft i

System Descript'on

A detailed description of the Thor/Delta thermal control _ystem

design is presented in Figurp 8.7-12. This spacecraft had a boom-

mounted magnetometer, but did not require an experiment ram platform, i

Thermal Control System Performance _,
t

Figure 8.7-t3A lists the maximum predicted temperature variation !

of each component during the complete mission. The actual earth/Venus i

transit temperature fluctuations of the selected components are also shown

in Figure 8.7-13B. All components except the infrared ra_liometer will i

remain within acceptance limits, although the Venus orbit insertion motor t

will be below the required 4°C (40°F) minimum ignition temperature during I

the first 110 days of the mission. This is acceptable since the allowable

motor cold soak temperature is -iS°C (0°F).

The infrared radiometer will, as in the Atlas/Centaur orbiter design,

exceed its upper acceptance temperature limit during the mission. The

conclusions _nd recommendations discussed in the preceding paragraph

for the Atlas/Centaur design are also valid for this application. !

Thermal Environment

The Thor/Delta orbiter spacecraft prelaunch, ascent and third-stage :t
engine firing thermal environments are identical to those described for the 1

probe bus spacecraft in Figure 8.7-11. The transit thermal environment

from separation to Venus orbit insertion is given in Figure 8.7-14A. The

solar aspect angle is quite different than specified for the preferred Atlas/

Centaur configuration because the _ecommended Thor/Delta orbiter has

its spin axis always normal to tb_. Venus orbit plane. This means that the

sun is always at right angles to the spin axis instead of continuously vary-

ing like the earth-pointing At!_-s/Centaur configuration.

Typical power dissipations, orbit parameters, and injection motor

heating characteristics for the Thor/Delta orbiter spacecraft are also

!ncl1_ded in Figure 8. 7-14. The maximum Venus heat inputs occur

168 days after orbit insertion as discussed in Section B. 7.2.2.

8.7-20
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_(C lION VIEW

NAME OF ITEM DESCRIPTION OF HA_IW

F,ORWAEI) (IMNI ANIfNNA 3-Mll COAT S-I3GWHITE pAINT ON

TH[RMA| CCJATING LXTERNAL _URFACLSOf CMI'II AN_'ENNA
EANRTA_ANEENNA -3"M'L_COA_0T;---I%-_*"--_;"IN'O"
THERMAL COATING EXTERNAl.SURFACEOf ANTENNA

HIGH-GAIN ANTENNA 3-MIL COAT OF S-13Q WHITE PAIN1 ON

THERMAL COATING EXTERNAL SURFACEOF ANTENNA

ANTENNA SUPPORT 3-MIL COAT OF 5-13G WHITE PAINT ON
THERMAL COATING EXTERNAL SURFACEOf SUPPOrt

SOLAR ARRAY SUBSIRATE 3-MIL COAT OF 3M |LACK VHvET PAINT

THEIU_AL COALING ON RACK SURFACEOf SURS_';qE

ONE OUTERLAVEROF 2-MIL ALUMINIZED TEFLONFORWARD AND
M1DSHtELO tNWARDJ LAMINATED TO ONE 2-MIL INNER LAYER

C

|IMETAL ACTIIATED TOTAL BLADEAREA _ 0.65 M2 _t.05 FT2! A/C, 0.SOM
LOWERS CLOSED EFFEC11VEEMITTANCE = 0.20 FULL CLOSED

Olin EFFECTIVEEMITTANCE : 0.74 FULL OPEN AT !
3-MIL COAT Oc Z-93 WHITE PAINT ON PLATFORMUI

EQUIPMENT COMPARTMENT 22 LAYERS OF 1/4-MIL ALUMINIZED MYLAR SAN_#II

_o S,o.,NSULAT,ONALUM,.,ZEDKAftONANDONE,NNTRZ-M,LAL*

ALUMINIZED SURFACESEKCEP1INSIDE COVER SHEEt'

K/X SEEFIGURE 8.7.4

EQUIPMENT COMPARTMENT 22 LAYERS OF I/4-MIL ALUMINIZED MYLAR SAN_I
TOP INSULATION ALUMINIZED MYLAR COVERSHEETS(ALL ALUMINIZl

Cc_VERSHEETFACE INWARD_

K/X SEEFIGURE 8.7.4

(_ EQUIPMENT _2 LAYERSOF I/4 MIL ALUMINIZED MYLAR SAN_
COMPARTMENT AFT OUTER2 MtL ALUMINIZED KAFTON AND ONE INNI
INSULATION MYLAR COVER SHEETS(ALUMINIZED SURFACESFA(_

K/)( SEEFIGURE 8.7.4

---I1--- _IPMENT COMPARTMENT 3-MIL COATING OF 3M BLACK VELVETPAINT ON

VIEW OF AFT ENU RADIATIVE AND CONDUCTIVE HEAT DISSIPATING EQUIPMENT
.......... THERMALCOUPLING BAREMETAL SURFACEOh CENTRALCr_LUMN ANDi

.y REQUIREMENTS CONDUCTIVELY C(_LIPLEDTC_MOUNTING FLATFOI

S_,_ PROVIDEGOOD CONDUCTION THEI_AL COUPLINI

COMFONENTS (I.E., TllANSMIn'ER_ AND PLMFOIM
MATERIAL
H • 142 WATTS_--_2 -_C f_ ETU,_IR -rT2-'F.__.__'

i INSULATION, VALVE AND

CATALYST EED HEATEI_,
2

, AND THRUSTERISOLATION K/X _ 0.56 WATT_/M -*C (0.OI S/U/HR-FT -_F)
PROVISIONS DUAL-RANGE THERMOSTATICALLYCONTROLLED H!

REDWITH GROUNDCONTROL RACKUP. PEIMARYR

RCSTHRUSTERVALVE LOWER&V THRUSTER_NSULATEDCOMPLETELY WITN

_.,,JLWAND SUPPLY LINE MOLYBDENUM FOILALL FUEL LINESARECOPPERPLAIED. LINES EXTLqI_
COMPARTMENT INSULATEDWITH 10 LAYERSON NI

i TO IE*C (6S'F). BACKUPRANGE 7"C (45*FI TO 13q
l : MENT 5. _ WATTS

THRUSTERSMOUNTED 10 STRUCTUREWITH TITAN

i _ !UPPORT CONE THERMAL COLORLESSCHEM FILM SURFACE

__ t'OATING ISOLID MOTOR INSULATION 22 LAYERSOF I/4-MIL ALUMINIZED KAFTON |ANj
ALUMINIZED KAFTON COVER SHEETS(ALUMINIZll

I K/X SEEFIGURE 8.7-4

IS MOTOR NOZZLE 2_ LAYERSOF I/4®MIL ALUMINIZED KAFTON EANJ
CAP INSULATION ALUMINIZED KARTON COVER SHEETS(ALUMINI_IJ

K/X SEEFIGURE IL?°4

16 SUN SENSOR INSULATION 22 LAYERSOF b"-MIL ALUMli41ZED MYLAR $AN_
2-M L ALUMINIZED ._FTON AND ONE INNER |_l
COVER SHEETS(ALUMIN;_ED SURFACESFACE IN_
K,/X SEEFIGURE R,7.4

3-MIL COAT OF S-IJG WHITE PAINT ON EXTI_RNA

AFT OMNI ANTENNA
THERMAECCATING ANTENNA

4Y

....... • :iii
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d,c III TID III

" SURFACETHeRmAL PPOPERTIES

I)ESCRIFTIONC:t. HAIIDWARF FURPOSE INSIDE OUTSIDE

r,:'_ D_G N_WDEG

.... MINIMIZE A|S(_)RBEDSOLARAND ALaEDO HEAl INPUT TO REDUCEVARIATION 0._4 0,39 0.Rfi
G *6HITE PAINT ON

_.;! S _I _MNJ AI'IT[NNA IN TEMPERATUREDURING MISSION. LOCATION [NSUR[$ SOLAR HEATING TO [
LIMIT MINIMUM TEMPERATURESFORALL SOLARASPECI ANGLES ENCOUNTERED

! 9-1 i c, ,_HIT[ PAINT ON MINIMIZI ABSOBB{D SOLARAND ALOEDOHEAl INlffJ1 TO REDUCEVARIATION i 0.24 0.39 0. l]_ "
_E C){-A,N|f.NNA IN TEMPERATUREDURING MISSION. LOCATION ENSURESSOLAR HEATING TO

LIMIT MINIMUM 1EMPERATU_ESFORALL SOLARAS_C1 ANGLES ENCOUNTERED

[_-_'_IG WHITI PAtNY ON MINIMIZE AISORIED SOLAR AND ALl[DO HEATINPUT TO REDUCEVARIATION _, _8
IN TEMPERATUREDURING MISSION. LOCATION ENSLIIES SOEABHEATING TO

'_E CF ANELT_LA LIMIT MINIMUM TIFMPEATURESFORALL SOLARASPECTANGLES ENCOUNT£R[_ t

_-'i; ,',h,_(pA,N_ON MINIMIZEARSOR_DSOL.'_ANO_DO HEATINPUTTOLIMn_XIMUM ---T------_ - 01_; C.390.a--_--
"RE Gi- _UPPORT SUPPORTTrdldPEIIATURES J.

_,_il_CK VELVETPAINT MAXIMIZE RADIANT HEAT TRANSFERFROMRACK SURFACEOF - 0,9_ / O.B0 0._ 0.B0

OF SUBSIRAtE SOLAR ARRAY _ AT ZERO ARRAY
CU?PUT

_ R CF 2-MIL ALUMINIZED IEFLON IALUMINIZED SIDE FACING SHIELD RACKSIDE OF SOLAR ARRAYFROM DIRECTSOLAR AND ALBEDO 0.66 0.08 0.18 0.66
hATE0TO (_{- _-MIt INNER LAVEROF CLEAR MYLAR IMPINGEMENT. PROVIDE LOW TEMPERATUREBOUNDARV _.OW *t/{ LTO MAXIMIZE

HEAT TPJ_NSFERFROM LACK SURFACEOF SOLARARRAY

£_, 0.65 t_ 2 q.OS FT2, A/C, 0.S0 MZ tS.4 FT2_T/D CONTROl EQUIPMENT COMPARTMENT HEAT LEAKSTO OFE3ETTHE - 0.50 O.S0 0.20VARIATION IN EQUIPMENT AND ENVIRONMENTAL HEAT INPUT L L_J'>LL_
_'E EMtTTANCE = 0,20 FULL CLOSED At 4"C (40'F_. EXFERIENCEDDURING THE MISSION TO MAINTAIN 0.74

E,R_ITTANCE= 0.74 FULLOPEN AT 29"C _S F] COMPONENT TEMPERATURESWITHIN ACCEP|ARLELIMITS L)PLt_
_-93 WHITE P,_INT ON PLATFORMUNDER LOUVERS

II-_IL ALUMINIZED MYE_R SANI_NICHED I_EWEEN ONE OUTER2-'MIL MINIMIZE ,_ AND AL_EDQ HEAl LEAK IN|O AND UNCONTROLLED HEAT Lrr._gS 0.69 0.45 0.$0 0.69
=TOt< AND ONE INNER 2-M[L ALUMINIZED MYLAR COVER SHEET (ALE OUT OF THE EQUIPMENT COMPARTMENT. STABLEALUMINIZED KAF[ON MINIMIZES
"I_ACES EXCEPTINSIDE COVER SHEETFACE INWARD_ EXTERNAL SURFACEPROPERTYDEGRADATION

83-4

4-Mtt. ALUMINIZED MYLAR SANDWICHED BE_EEN TWO 2-MIL MINIMIZE UNCONTROLLED HEAT LEAKSINIO AND OUT OF THE 0.69 - 0.69
"LAR COVERSHEETS_ALLALUMINIZED SURFACESEXCEPTAFT EQUIPMENT COMPARTMENT AND THEKMALLYDECOUPEE COM-
CE tI_/VARD_ PARTMENT FROM SOLAR ARRAY

:_ 8.7.,4 ._
"4 HIE ALUMINIZED MYLAR SANDWICHED EEt'WEENONE MINIMIZE UNCONTROLLED HEAT LEAKSOUT OF THE EQUIPMENT COMPARTMEN| - 0.45 0,50 0.69

MINIMIZE SOLID MOTOR PLUMERADIANT MEAT INPUT TO EQUIPMENT COMPARTMENT. IJMI_IIZED KAPTON AND ONE INNER 2 MIL ALUMINIZED
__,-1EETS(_4.UMINIZED SURFACESFACEFORWARd1 STABLEALUMINIZED KAI_ON MINIMIZES EXTERNALSURFACEPROPERTYDEGRADATION

I

_. 8.7-4 ...... _L- .........

OF 3M _ACK VELVETPAINT ON EQUIPMENT PLATFORMAND EQUALIZE TEMPERATUREGRADIENTS WITHIN EQUIPMENT COMPARTMENT RY MAXIMIZING - I 0.90
;_G EQUIPMENT P,ADIATIVE THERMALCOUPLING BETWEEN STRUCTUREAND HEAT DISSIPATING COMPONENTS I

_ACE CN CENTRALCOLUMN AND HYDRAZINE FANKS. TANKS THEBMALLYDECOUPLE ZERO HEAl DISSIPATING COMI_ONEN_S TROM SURROUNDING TO - I , o 10
COUPLE3 _'C _-_;UNIING PLATFORMAND ISt.JLAIED FRC'MCOLUMN MINIMIZE TEMPERATUREVARIATIONS DURING TK_NStENT ENVIRONMENTAL COFJDITIONS i
CC,-_r_ur'_lOl',i THERMALCOUPLING BETWEENHIGH HEAT DENSITY MINIMIZE COMPONENT TO EQUIPMENT PLATFORMTEMPERATUREGRADIENTS TO MINIMIZE
.E , ILANSMITTERi AND PLATFOPJv_WITH RTV INTERFACEFILLER MAXIMUM COMPONENT TEMPERATUREABOVESURROUNDINGS !

,_. -o_c,_eTU_R_n___-°F....... + ..........
=_TEl_ INSULATED COMPLETELYWITH HIGH TEMPEBATURE MINIMIZE UNCONTROLLED THRUSTERHEATLEAKTO SPACE - _, 0,12 O. 17 0.0 _,

"O;L i
_.RE CC)PPERPLATED. LINES EXTERNAL TO THE EQUIPMENT MINIMIZE TEMPERATUREGRADIENTS IN SUPPLYLINES AND HEAT - - 0.(_
INSULATED WITH 10LAYERS (ON NRC-L INSULAEION LEAKS INtO OR OUT OF THRUSTERAND LINES i

_/M 2 -*C f0.01 RTU/HR-FT2 -if) i
'-IERMOSTATICJS.LLYCONTROLLED HEATERSON VALVE AND CATALYST MAINTAINS THRUSTERAND SUPPLYUNE TI:MPERATURF$AROVE
_4_CONTROL RACI(UP, PRIMARYHEATERCONTROL RANGE 13°C (55°F) MINIMUM TEMPERATURE[IMtTS i!

RACKUFRANGE PC (4S'E_ TO 13_C (S$=F). HEATERPOWER REQUIRE- [
ISOLAIES THRUSTERFROM STRUCTURETO MINIMIZE HEATER POWER REQUIREMENT l,T_IEEDTO SIRUCTURE WITH TITANIUM STANDOFFS

F_ SURFACE RAD_ATIVELYOE_LE CONEFROMSOEARAR_VAND_Am SHIELD O0S| - 00_

_'4*MIL ALUMINIZED KAFTON SANDWICHED R_I_fEEN I_AtO 2-MIL MINIMIZE UNCONTROLLED HEAT LEAKSFROMSOLID MOTOR TO MAINTAIN MOTOR WITHIN 0.69 0.0S
• ,pTON COVER SHEETS(ALUMINIZED SURFACESFACE INWARD, ACCEPTARLETEMI_RATURE LIMITS RItIORTO FIRING, MINIMIZE UNCONTROLLED HEAl LEAKS

FROM THERQUII_ENT COMPARTMENT. MINIMIZT SOLID MOTOR 9,ADIANT HEAT/SOAK-0ACK t
_,7-4 TO EQUIPMENT COMPA-4TF'.ENTAFTERMOTOR FIRING. KAPTON REQU;REDTC_PREVENTDEG-

RADATION OF INSULATION THERMALPROPERTIESDUETO HEAl/SOAK-RACK FROM MOTOR CASE

_A-MII ALUMINIZED KAFTON SANDWICHED EETWEENIWO 2-MIL .MINIMIZE UNCON|gOLLED HEAT LEAKSFROM SOLID MOTOR TO MAINTAIN - 0.0S 0.4_ 0.SO 0.69
_PION COVER SHEETS(ALUMINIZED S_RFACESFACE FORWARDI MC)TOR WITI41NACCE_'A|LE TEM_RATURE LIMITS F_IOR TO FIRING. NOZZLE

8.7-4 CAP IS JETISONCD WHEN MOTOR FIRES

/4-h_lt ALUMINIZED MYLAR SANDWICHED BETWEENONE OUTER MINIMIZE SOLAR AND ALEEDO HEAT LEAKINTO AND UNCONTROLLED HEAT LEAKS 0.4_ _. S0 0.69
ZED _ __T_IN AND ONE INNER 2-MIL ALUMINIZED MYLAR OUT Of IHE SENSOR ASSEMBLY. STABLEALUMINIZED KAF/ON MINIMIZES EXTERNAL
_'A,EUr,'" _TED SURFACESFACE INWARD] SURFACEFROIqERTYDEGRADATION

8.7.-4

MINIMIZE AISORREDSOEAR AND ALREDOHEAT INPUT TO REDUCEVARIATION IN 0.i4 0. _9 0._
_-I 3G WHH_. P_I_JT ON EXTERNAL SURFACESOF OMNI TEMPERATUREDURING MISSION. L(_CATK_N ENSURESSOLAR HEATING THROUGH

MOST Or MISSION TO LIMIT MINIMUM TEMPERATURESDURING NORMAiL OPERATION

IHE OFRI_ER USESEHERMALCONIROI HAR[1WARECOMMON TO THE PR(_B|BLI_,SP_{ ICWAII.

LOCJ_TIONS OF HARDWARE ARE KEYED IO THE ADJACENI IABE("tOW DEFAIEE[)I_E3_'RIPIION

Figure8.1-12.ThorlDRItaO_ilerSpacecraftThermalConlrolDescriplion

_.7-21
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A COMPONENTTEMPERATURECONTROLCAPABILITYVERSUSTEMPERAAIREREQUIREMENTS B
TEMPERATUREHISTORYOFCRITICALCOMP(]
FARTHIVENUSTRANSIT

THE THERMAL CONTROL SYSTEMWILL MAINIAIN ALL COMPONENIS EXCEP| |HE IR RADIOMETER
WITHIN THEIR SFECIFtEDACCEI_,4d_JCELIMITS I_JRING ALL MISSION PHASES. THE |R RADIOMETER

TEMPERATUREWILL REACH2B'C t82*FI, 16=C f2BeF) ABOVE THE 12e¢ 1.54°F)SI_CIFICATION SPACECRA¢I IEMpI_A|UR[$ INIIIALLI
LIMIT. ._PACECIL_FIGC)[._, ,',)U1lO !,07AUJ

SCLAE HFATThIGh4OPI"THM,I DOIJ_.I

i PPf()ICTID I ArF_P1AtJCt ( p!I'AIILI(,
',l!fi'_l',/Jh _ ,_,tJb TLMPIRAIIJPIS | r!/._Pr_!;_h_Pi II/.fl]'_

SCIEI_4CEC: r,q,i t_t NI', q

C,"f C F. _ C F I C f F ...... _,,--_

Cr MMbNIC;*IIQr_] j ] Q IRANSMITTER

-.' ,-'0', :' '00, ° '" (7)'A"ER"
r EFLLCTORFEED -Ik_ f-|7_, 2,175 -IB5 -300 48 |00
S-RAND TRANSMITTERS |0 ,49, :_7.i3S, 4 .40 bZ_"125_ (eC) (eF) SOLARARRAY

FO','.ERAMP[IFIEP IO i49, _? t35, ,1 40 52"_('12J:_ tr_ VENUSORBITI_
S-8Ai-.,[s_ICErJ[l_S 10,49, 42 }08, -,l 25 43110' .50- 120J vMoTO.Rr$!lial

DATEHANOi lING ]

Dlru 9 ,47, 71 69 -7 20' 4l ,lOS, _J0-
DSU 6 ,43, 19 '67, -7 ,20 41 ,lOS,
DDL 9 ,4B, 20 6B' -7 ,20 41 ,lOS,

B_,TTEQY 9 _47_ 24 75 -) ,30 29 'Bb _-
DCu 10 f49_ 38 100, -20 -4 65 r149, 20-- E
DC-DC CON'_ERTER 8 _46 2B ,83 -IB 0 49 120, ,

SHUt _1"_A DI&TO,i' -102 ,-153, 132 .2i0, |0 _"

SCL.... RAY -125 ,-194_ !02 21.$ 102. 102 215 [--/

CDL' IO r49, 21 ,70_ - '20 41 '10_ 40f-_

-IC
D_.*A -4:25, $4 q30, -22 -58. 75 167'
bL,_ !O (49, 23 ,74, -12 ,10 43 ,If0 BATTI

CEa (_ '4B, 20 ,68, -7,20 41 _05 LIMIT
SUN SE_5Ol_ _ =39" 52 ,125, -15 _5 60 140 0 -- J
THeUST___vALv_ BCD¥$ 13 ,55, 82 ,|80_ 13 ,55 93 40
e_YDPA_II_[ TA_KS 7 144 21 .70. 4 ,40 431,
HYDr_AZINE LINES 4 (40, 82,180, 4 ,40, 82 180.

SCLID ROCKET MOTCR 3 _37, [ 16 ,62, -7 ,20, 38; I00
;CtENCL

I._AG_!TC_ETE_ ELECTPONICS 7 _45. 21 _69 0 32 60 IJO
_'AD_,__,_Tl,',,[tE_ EL_Ct_ONIC_ 5 ,42, 24 ,7S, -30 -22 60 140,
EL£CTRON TEMPERAIUR_ PROBEELECTRONIC(, 5 _421 26 /79, 4 (40 r 43 (II0,
U'JSP_CTRO_.IET_R 10 149, 3B I00, 0 32 40 104
ION MASSSPECTPOMEIER 8 146, IB,_5, -30 ,-?t _0 140

'X' 1 E
,PRADIC)MEfER 8 27,BI -3o-22 _e,,_4 EQUILIBRIUMTEMPERATURESOFLOWCAPRII'JELII_ALMASS sprCTPOMETE p 8 I _ 22 ,72_ -30 ,-27" 60 ,140

, DURINGVENUSINSERTIONMOTORFIRING
LOW CAPACITANCE SURFACESSUCH,

• !L_ . D T_'.OR_OAI[ ,%T._'::C lq5 _ Fr p M t_:IMLJ,M OF 0.S-HOUR PERORBIT. INSTAIN_ANEOUSLY WHEN EXPOSED
ORBit INJECTION MOTOR FIRING. 1

m UPON tHE PLUME INCIDENT HEATF&
_O PLUMERADIATION_ 10 EMITTAN

BTu FT2-3LC

D TEMPERMURE RISEOFAFI-MOUNTEDCOMPONENTSFURINGVENUS s ,

INSERTIONMOTORFIRING _AI"TS',',,,ZX,_ 11 ii
i i

AFT-LOCATEO HARDWARESUCH AS THE LOUVERS AN00MNI ANTENNA HEATUP 50
_UR|N_MOTORr,R_NG,the RATEOF_EMPE_'tUeER_SE_s_NOEN_ UPON i
THE VIEW TO THE PLUME AND THE THERMAL CAPACITANCE OF THE EQUIFMEMT. ---_'_4-'---
EXCESSWE.EAT|NGW_LLNOTOCCURDURINGF|R|N_. II

MAXIMUM
('C) (*F) 40 ' AtLO',','A_LE_

F l MAXIMU/_ ALLC_WABL[_TEMPERATUI_E._ HEATFLUX
J I OF %LUMINUM HARDWARE _,[ I/

ll+ L__I " I , , - wr :=:l..E-_--:--.
I / 1J'e'/oovE,s., =

lllOL 1 | l i l • -- /

ol,/'i J,/f I I 1 ,o. >1,-17
r "qlLl l <.o

"'®oL'_ ,o I i 1 1 / ,o
FIRING DURATION (_ECCNOS)

. ,_x[:.:_ :;_- _:: _'-_;:,._tli_-:,:_]_._ET_';t','_;,.-_:-'_ ....... .,,_,.b,___=. _:,..c. ; _,_, .,:-:. ,-_.:;=_._ ,_ ,:_,,,._, ,:=_.±_=_-_s:* , ,"., ._
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L_.._W T/O III

,_'_[HISIORYOFCRIIICALCOMPONENTSDURING VINUSORBITINSERTIONSPACECRAFTTEMPERATURESFOLLOWING
i-_$ TRANSIT v MOTORIGNITION

SPACECRAFTT[MR[RAIIIRE_ INITIALLY D[CRE/.SEWITH MISSION liME AS IH[ COMPONENT AND STRUCTUREHEATING BY THE ENGINE. WiLL NOT B_"
SPAC[CRAPT GOES OLfl TO 1.07AU AND THEN IHCRFAS[ AS THE INCIDENT EXCESSIVE DURING ORBIT INJECTION [:|RING, PLAT[ORM MOUNIED

ELECTNONIC CO/vPON[i4tS WILL EXHIBIT ONLY A SLIGHT TEMPERATURE
SOLAR HEATING MNRI THAf'_DOUBLESTRO&_..'T_MINIMUM 7ALIJ[, RISEAND REMAIN WITHIN ACCEPTANCE LIMITS,

• r- 7oor_ , J I
3so I l I

QBA"FRY. <7,o so_

j vEo oR.. , i

t , , > ,® I! I ' ;_ /

.-.-_1 -- i T BATTE V MINIMUM :

DAYS FROM LAUNCH 1 2 3 4 5 6

TIME AFTERIGNITION (HOLMS)

i iii |

:_ TEMPERATURESOFLOWCAPACITANCESURFACES F TEMPERATUREH ISTORYOFCRITICALCOMPONENTSHEARPERIAPSIS
• iS INSERTIONMOTORFIRING IN VENUSORBIT

...-_-OW CAPACITANCE TURFACESSUCH AS INSULATION WILL HEATUP ALMOST
[ ',NSTANTANEOUSLY Wi.4ENEXPOSEDTO PLUME RADIATION DURING VENUS SPACECRAFTTEMPERATURESREACH MAXIMUM ORBITVALUI[S AT DAY 168AFTER
.'-"_RBIT iNJECTION MOTOR RILING. THE EQUILIBRIUM TEMPERATUREDEPENDS INSERTION V,HEN VENUS ALBEDO, EMISSION, AND FREEMOLECULAR HEATING
._J-PON THE PLUME INC_OENT HEATFULX AND RATIO OF SURFACEABSORPTANCE RATESAREAT PEAK VALUES, TEMPERATURESALSO REACH MINIMUM ORBIT VALUES
_-'TO PLUMERAD ATIONt TO EMITTANCE, DURING THE SAME ORBITWHEN AN 1.42-HOUR SOLAR ECLIPSEOCCURS,

s.... t I i I 1 I , I'C> ('p,ALLJ_II'IIZED
_'lS/M 2 x IOCO_ i f i 1 l r ARtbt J ' 150 300

lOP" _-_ _[- _L_---]_---I - -- IflSULAIION "f'--_.,p 0.4S , 14-HOURDAY I6e_,FTERVOI iORBIT I i, i

,':A_IMU_ V r 4----_ _00 --IOI- X - ALLO,VAfil _....... _'-'--
"_ HEATrtU*' I I I / i /I ' 1,42-HOUR !ANS-. :_- ECLIPSE = 'TT_R

'°/ ..........z,.... -- -- -iF-,

_Ol- '', _ ,o_ _ ..... __-

, [

__ _ ! = o___+ ,_,,,_ _A

I, I SOLARI01"- I _ -50 ARRAY _ "
_,PTON / / •

r---_ _ I AIEOWA_E I ------_

00 100 _ 700 _1) II00 _INIMUMARRAYi h_1 -4_n(- -?p'J'!c

TEMIq[RATUREfell) -200 , I I 1i ",'ol_'"i_",__L_....L___J----J_I--_ -3 -a -I o .
50 100 150 _0 l_li) 300 31) _ iql _ _ 6(30 IIMt IR()M PIIHAPSIS fHEiIilt$

ItMII_RATUiE 11)

Figun!B.#-13. 111orlDelll011literSllcecnlft
the rmll Petfornlnce

!

':_::'_" _'_'_'' 8.7oZ2

o : .... . .................. :;__....................._.__.L. _ -i"_'_i _i-_ _' - -_i_llu
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A ORBITERSPACECRAFTTRANSI!THERMALPARAMETERS B ORBITERMISSIONHEATDISSIPATIONPROFILE C COMPONENTI"

THE SPACECRAFTSOLARASPECT ANGLE, INCIDENT SOLAR RADIATION A TYPICAL HEAT DISSIPATION HISTORY FORVARJCIj_ GRB!T[I_ %IJB_YST[MAN'
INPUT, AND UISTANC[ FROM THE SUN IMPACT THE THERMALS'I_TEM SPACECRAFTAREAS INUICATES THAT THE OVERALL HI,SIGN I_ DISTI_IEUTED
DESIGN. THE SPACECRAF] ELEMENT TEMPERATURESHAVE TO BE HEAt DISSIPATION INCR[ASES NEARVENI_ AS MORE SOLAR IN DISSIPATIO_
MAINTAINED WITHIN ACCEPTANCE LIMITS WITH A MISSION SOLAR ARWAYPOWERBECOMES AVAILABLE. THIS HEA" DISSIPATION
HEAl FLUX VARIATION OF 1160 TO 2660 WATTS/METER2 rJg0 TO 840 BTU/HR) INCREASE IS ,ACCOMMODATED fly THE LOUVERS, WHICH VARY

THE HEAT REJECTION CAPABILITY OF THE EQUIPME;4T
COMPARTMEN l

IDEG) cr_MPE

,,,u,.., t I I ! I so,.
'.'r . ,,.- ,,o 1....4 ,oo,_ i 1 : .-- .O.,TOM,T._-- I UNDEGRADED ARRAY ELECTRONTEMPER

(WATTS/MZb J i I i t N[ UI_"AL MASS SP

_., EXCESS SOLAR ARRAY, ', , IC,N MASS 5PfCTR'

z T.at- T I _ 3ool....J POWERDISSIPATEDin"\SHUNT I_ADIATCJR "_ " _ "" - U'v SPECTROME[Ell

Z i EXCESS soLAR ARRAY POWER "\ ! IR RADIF'-METER
/

] i EX_'"AECOM,O"EN,."._
_, _ AND_r ms_matloN "_, " *- ....

_. / , ___ ..° / I Ii ,_ [ , . I E,,O,,.,0EC_DE,
_ _ cc_mUNI0.41-- 4_( _ 40 o..

_.x_._b: _ S-BA,DT,ANSMI1

500 - l _; VEI_US CRBIT INSERTION ----_. 0 S S0 100 IS0 200 250 ACS PROFj _ DA',_ AFTER
i LAUNCH

[ CC hJTKCL ELECTR(0 _ O- ¢- O ; --
O 40 _0 120 160 200 Atqb SUN SENSO_

DAYS AFTERLAUNCH PRESSURETRANSDI

_L[CTRICAL POWE

PEII El [CT RC"_JICS

g,,,, CCff*._MAN D DIST_I
r. ORBITERSPACECRAFTSOLIDMOTORPLUMEINCIDENTRADIANTHEATFLUX F VENUSORBITANGLEANDALTITUDEPARAMETERSNEARPERIAPSIS

CON'v [RTER

RATIERY
THE AFT SURFACE_OF THE ORBITERSPACECRAFTRECEIVERADIANT ORBITERSPACECRAFTVENUS ANGULAR AND ALTITUDE PARAMETERS
HEATING FROM THESOLID MOTOR PLUME FOR THE 23 SECONDS THAT NEAR RERIAI_IS WHEN TH_ SUN IS PAIL_LLELTC THE LIP_ECF _IODES
THE ATLAS/CENTAUR MOTOR FIRESAT VENUS ORBIT INSERTION. tCRBtT DAY 168, ESTABLISHTH_ MOST SEVER[ VENI_ ALBEDC HEAT INPUTS
CRITICAL SPACECRAFTSURFACESAREPOSITIONID TO REMOVE THE
INCIDENT HEAT RATETO ACCEPTABLELEVELSCONSIDERING THE HEAT
CAPACITY AND SURFACEABSCRFTANCE TO THE PLUME

IDEG {DEG _KM _ 1000 i_. SOLARAND_
I SUN PARALLELT( [- -'-N" ........

I--- -,--_'_ _ 14 LINE C'F NCD,S IN
LOUVERS-----.--I- I III I AFT OMNI rCRBIT DAY 168 p

,.,Nozz,®_¢'--_'_A'ENNA ,S0-" i" : "'1 i'
CENTER I ;'LI 100 -- _ 240 - t2 , _' ._,>. "- -

LINE L__.]. --NOZZL--m-EEXIT Z 8/VATTS.M2, {BTI
PLANE: 1(9)1 _" = '('J "" r_i __%:2_

I
fWATTS/M _ IBTU/F.T2" i I _ i SO-- Z 200 - _ 10 VLCt,,R _',]. j,_""I " ' = _ _ ! " _0o_

_o_ I i I , I o z ]
_ 2000

_01.- q l I -100-- _ 80 4

, i _ 0 ti_0f,o 'I i/l '-

o,- o .....,o-,o . %, : ..o[DISTANCE FROM SPACECRAFTSPin AXIS -20_ - O O

L .... .1 I l ..... J.___J -Si} -30 -1o IO 3e _ 0
0 0._ 0.4 0.6 0.8 1.0tM) TIME FROM PFRIAPSIS (MINUTES _

i

!_:t.DOUT I_IIAMI'I

; .,: .; . .. ' ..... ...... = . : , .... _ .......O..... : ........ ,. • , , +............
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ThermalAnalysis Techniques

A computer model similar to that describea in Section 8.7.2.2

was used to calculate Thor/Delta orbiter temperatvres. Thruster require-

ments and heater requirements ;,re identical to tile other configurations.

8.7.4 Optional Spacecraft Configurations

A number of other alternate configurations were investigated during

the study. These included various large probe t lermal control techniques

"' and several orbiter spacecraft designs. The rr_ost significant alternate

configurations are discussed below.

8.7.4. ! Probe Bus Spacecraft

Seven thermal control system techniques were reviewed before

selecting the final Atlas/Centaur and Thor/Delta probe bus thermal con-

trol system designs. The advantages and disadvantages of each technique

were reviewed as described in Section 8.7.5.2 before deciding on the

earth-pointer design.

.. 8.7.4.2 Orbiter Spacecraft

Two alternate normal-to-the-Venus-orbit-plane orbiter configura-

. tions were studied.

Despun.Reflector Option _A/C,V _ T/D Ill

This orbiter spacecraft was equipped with a despun reflector assem-

bly and a 12-watt transmitter. The selected thermal control system design

for this configuration is shown in Figure 8.7-15. The thermal system is

similar to the other orbiter configurations and will maintain all components

and experiments, except the infrared radiometer, within acceptance limits.

The despun reflector element temperatures, shown in Figure 8.7-16, are

considered ;.nthe antenna design to limit structural deformation to toler-

able limits. Curves S and 6 of this figure are also applicable to the con-

figurations shown below.

Fanbeam, Fanscan Options _ A/¢ If! _ T/D i!l

- A simplified orbiter configuration was studied that used a fanbeam

antenna with a 31-watt transmitter. The design and thermal performance I

of lhis option was very similar to the Section 8.7. 3 Thor/Delta and Atlas/ [

8.7-Z4
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Centaur configurations except for the transmitter temperature. When the

higher power tranamitter units are mounted to the standard honeycomb

equipment platform, excessively high temperatures will result. Therefore,

it is necessary in this design to provide a thermal fin insert to the plat-

form as described in Section 8.7. 5. 3 to reduce the transmitter upper

operating temperature to acceptable levels.

8.7.5 Tradeoffs ALL PROBECONFIGURATIONS

Three basic tradeoff studies were performed to select the most

economical and reliable thermal control system design. These studies

are described in the following sections.

8.7.5. I Methods of Accommodatin_ Power Variations

_.17 Table 8, 7-i compares the advantages and disadvanta_;es of three

..... control methods that can be used to accommodate component and environ-

mentally-induced power variations within the spacecraft equipm._nt cor_.-

partrnent. The louvers, heat pipes, and lleaters will maintain acceptable

8. "7,-Z6
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ALL PROBECONFIGURATIONS

T,lble H. 7-1. Comparison of Three Thermal Control Methods to
Accommodate, Component and t_nvironmentally
huluccd Pow,_r VarLations

5 f',l[M ADVANTAGES Dh_ADVANTAGES

I(.;iJVIK5 • FLIGH1 PROVEN • WIDE ACTIVATION TEMPERAIURE RANGE
(I [[II)_, I ,'Pl_

• OPEI_Jk,,NG IEMPLRATURE RANG[
SELF:.. TABL!

• INHERENT REDUNDANCY

HLAT PIPES • CLOSE CONTROL OF EQUIPMENT • REQUIRES REDUNDANCY
(VARIABLE CONDUCTANCE TEMPERATURE DURING THE MISSION

[YP[) • MIGHT AFFECT SPACECRAFT DYNAMIC

• POSSIBLE REDUCTION OF UNIT AND BALANCE AT HIGH SPIN RATES
SPACECRAFT ACCEPTANCE TESTING

• CONSTRAINS SPACECRAFT SOLAR SIMU-
• OPERATING TEMPERATURE RANGE LATtON THERMAL VACUUM TESTS

SELECTABLE (PRIOR TO INTEGRATION)

ELECTRIC HEATERS • CLOSE CONTROL OF EQUIPMENT • REQUIRES LARGER BATTERY FOR ECLIPSE

(PROPORTIONAL TYPE) TEMPERATURE DURING THE MISSION OPERATICN

• POSSIBLE REDUCTION OF UNIT AND • MIGHT REQUIRE SLIGHTLY LARGER ARRAY
SPACECRAFT ACCEPTANCE TESTING

• REQUIRES ADDITIONAL SWITCHING
• OPERATING TEMPERATURE RANGE CAPABILITY

SELECTABLE (PRIOR TO INTEGRATION)

• REQUIRES REDUNDANCY
• SHUNT $1ZE MIGHT BE REDUCED

component temperatures throughout the mission, with the heat pipe sys-

tem providing the best control. The electric heaters offer the most versa-

tile system since they can be controlled by ground command. However,

both the heat pipe and heater systems are less adaptable to design changes

during the spacecraft development phase. This is because heat pipes have

to be integrated into the mounting platform during its fabrication early in

the program, and the heater wire routing affects the spacecraft harness

design. Slight modifications can be made in both systems at a later date,

but with much more program impact than needed for a louver change.

Louver assemblies can be repositioned easily by bonding new screw,

inserts into the platform.

The program costs of all three systems are substantially the same.

This is due to the fact that the heater system requires a larger array and

additional command capability, and the heat pipe system complicates the

performance and evaluation of thermal/vacuum tests. In addition, since

most spacecraft black boxes have been previously qualified to a much

8.7-27
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ALL PROBECONFSGURATIONS

wider temperature range the potential component unit cos! savings dcrivcd

from the heat pipe or electric heater systems are not realized. There-

fore the louver system was selected because it is flight proem, adaptable

to late modifications in both temperature actuation rang(, and plalform I

location, by design has inh(.rcnt r('dundancy, and does not constrain spac(,-

craft solar simulation and thermal vacuum testing.

8.7.5.2 Influence of Large Probe on Thermal Control System Design

The thermal control system design for the probe bus spacecraft is

largely dependent upon large probe temperature control since the equip-

ment compartment and small probes are isolated from the solar environ-

ment. Table 8.7-2 lists the primary advantages, disadvantages, and

characteristics of seven thermal control methods that were considered to

maintain acceptable large probe temperatures.

Systems 1 through 5 were considered first at the time this tradeoff

was performed to maintain similarity of the spin axis with the Thor/Delta

orbiter spacecraft. The first two systems were the most simple, but did

not meet the design requirements. Initially, System 2 required a heater

power output of 27 watts :_car earth. Subsequent probe insulation tests

reduced this value to !5 watts, a dissipation still too great for the current

Thor/Delta configuration. The Atl_s/Centaur design could support this i

requirement and this system is considered an alternate for that

configuration.

A multilayer or high absorptance/emittance ratio cover that is

jettisoned prior to large probe release is utilized in Systems 3 and 4.

These systems will maintain acceptable temperatures, but add weight

and complexity to the design. In System 5 the large probe is raised above

the array so that itis fully exposed to the sun. This system is considered

unacceptable because it strongly influences the probe thermal surfaces

and produces a dynamlc instabilityof the spacecraft.

Systems 6 and 7 use variable solar aspect angle control to maintain

acceptable large probe temperatures. These systems were the most

attractive from overall spacecraft design considerations, particularly the

Thor/Delta configuration. A summary of the system characteristics is

presented in Table 8.7-3.

8.7-28
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Table 8.7-Z. Thermal Control Method Characteristics

SOLAR ASPECT
SYSTEM DECRtPTION ANGLE (FROM A(3VANTAGES DISADVANTAGES

SPIN AXIS)

1, UNHEATED _JL S_UN 1.57 HAD • LARGE PROBEHEATER •EXCESSIVELY LOW

LARGE PROIE (90 DEG) NOT REQUIRED LARGE PROBE

• OR.RATES NORMAL TO T'EMFERATURELEVEL
VOP 1..65_C (-g5 _F)I

• MINOR PROBETHERMAL
INTERFACE

PROBE t •2. HEATED INTERNAL...._ _ 1,57 HAD SIMPLE SYSTEM •REQUIRES LARGE PKOBE

AT_ HEATERUS _,ATTS NEAR

LARGE PROBE HE (90 DEG_ I• MINOR PROBE THERMAL EARTH)
INTERFACE

• _E_UIRE$ HEATER
: A • OPERATESNORMAL TO CON|ROL

_J VOP

I SUN

PROBE _ --MULTI LAYER
3. ;i_ULATED INTERNAL-_.,_ INSULATION 1,57 RAD • ACCEPTABLEPOWER

REQUIRESL,A.RGEPROBE

LARGE PROBE HEAT_ER (90 DEG_ LEVEL HEATER
• REQUIRESJETTISONABLE

• OPERATESNORMAL TO COVER

-.................... •ADDED WEIGHT AND• MINOR PROBETHERMAL COMPLEXITY
S INTERFACE

• REQUIRESHEATER
J CONTROL

i /-HIGH _.t
4, THERMAL _'_P" THERMAL 1.57 RAD • LARGE PROBEHEATER •REQUIRES JETTISONABLE

SHIELD OVER _LD (90 DEGt NOT REQUIRED COVER
• ADDED WEIGHT AND

LARGE PROBE • OPERATESNORMAL COMPLEXITY

• NO PROBETHERMAL
INTERFACE

PROBE MOSAIC PAINT • REQUIRESLARGE PROBE
S. EXPOSED INTERNAL _j_ PATTERN 1.57 HAD oOPERATES NORMAL HEATER(9 V_ATTSNEAR

LARGE PROBE HEATER_ [90 DEG_ TO VOP EARTH)

BLACK • REQUIRESHEATER

A_T CONTROL
• MAJOI( DYNAMICS

INPAC T
I I SUNI • MAJOR PROBE INTERFACE

,_, _ L . PROBE
6. SPIN AXIS L Su,_ U_,_. INTERNAl VARIABLE • ACCEPTABLEHEATER • REQUIRESLARGE PROBE

• MINOR PROBE THERMAL • REQUIRESHEATER
INTERFACE CONTROL

• REQUIRESA'iPECT
CONTROL BY
GROUND COMMAND

7. MOt31FIED SUNj_/,_ VARIABLE • LARGE PROBEHEATER • REQUIRESASPECT

EARTH _ SUN ANGLE NOT REQUIRED CONTROL BY

POINTER • MINOR PROBETHERMAL GR(_JND COMMAND

,_._;'0 INTERFACL

_.'_('O_l'r_" "" _ANT[.NNA TOWARD
,k EARTH

8.7=Zq
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! 8.7.5,3 Transmitter Heat Distribution System _A/CIII _TIDIII

The, fanbc, an and fanscan antem_a system for the optional 3t-watt

Thor/Delta orbiter mission spacecraft would increase the transmitter

power density to a point where a special heat distribution thermal fin

would be required for transmitter mounting. This fin could be fabricated

of a solid piece of aluminum or designed to use heat pipes to distribute

..... the energy., The heat pipe system is less than half the weight of the solid

metal plate, but compromises spacecraft solar simulation tests. Valid

tests can be performed only when the heat pipesp bonded in the equipment

mounting platform_ are kept horizontal throughout the test. rhe weight

of an aluminum thermal fin appears to be acceptable for the optional

Thor/Delta configuration. Ifweight reduction is required at a later date

the heat pipe fin could be used with the resultant test constraints.

8.7-_1
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8.8 STRUCTURE AND MECHANISMS

The structure and mechanisms subsystem includes tile spacecraft

primary and secondary structure as well as its mechanisms. These

include: 1) largo and small probe retention and separation systems;

2) the magnetometer boom; 3) the nutation damper; and 4) miscellaneous

deployment springs and initiators for deploying the radar altimeter,

electron temperature probe, and ultraviolet fluorescence grating.

Figure 8.8-1 summarizes the key features of the subsystem. It

includes information on both the probe bus and the orbiter.

"[i,e remainder of the section provides further detail on the design.

8.8.1 Structural Subsystem

: . various spacecraft configurations studied were identified in

Sectxon 5.2. Since there is great structural commonality between all

the configurations, only one is shown in this section. Further, since the

structural configurations for the probe bus and orbiter are fundamentally

identical, the probe bus design is discussed primarily, becauae it is

much heavier and represents the more critical of the two vehicles.

Where differences exist between the structures for the various configura

tions and the two launch vehicles, they are described.

8.8. t. I Design Requirements

The design loads and flight environments of Section 5.2 provide the

basic str_cturaldesign requirements for the spacecraft. From a struc-

tural viewpoint, there are two basic differences in the design conditions

between the probe bus and the orbiter:

l) The probe bus is approximately 30 percent heavier than the
orbiter.

2) The orbiter is subjected to a deboost into Venus orbit; the probe
bus is not.

8.8.1.2 Structural Descri lion
- ]_ __

The spacecraft structure consists of four primary elements: 1) the

central cylinder, Z) the equipment platform, 3) the truss support system,

and 4) the solar array substrate and ring supports. The structure uses

conventional aluminum alloys and attachment techniques. (A beryllium

8._.1
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central cylinder is r¢,quired for the two Thor/Delta spacecraft struc-

tures.) Each of the primary structural elements is describ_,d in the

following paragraphs. Figure 8,8-iE shows the structural elements and

illustrates the commonality between probe bus and orbiter. The figure

is for Atlas/Centaur; Thor/Delta is similar.

Central Cylinder

The central cylinder is the basic building block for the spdcecraf!

structure. The booster interface ring is attached to tht, aft _,nd of the

cylinder.

There are subtle changes in the size and function of the central

.... cylinder related to it_ use as part of the probe bus or the orbits,r:

• Probe Bus

Shorter than on orbiter

Forward end supports large probe, providing direct load
path to booster interface for this large mass item

• Orbiter

Larger than on probe bus

Conical forward adapter for DMA mounting for Optien 3
spacecraft: extended length for preferred and Option 1
spacecrafq

Internal ring to mount Venus orbit injection motor, i

During the design study, various materials were evaluated for t

fabricating the central cylinder. Table 8.8-1 shows the gauges and !

weight differences for aluminum. For Atlas/Centaur, aluminum was

.. selected. Based on weight_ beryllium was chosen for Thor/Delta.

Equipment Platform

This sandwich annular panel provides the mounting surface for the

majority of the spacecraft systems equipment and the science instrument

components. The panel is sized to provide both adequate strength and

stiffness to withstand the launch and flightloads and environments. It

is 1.9 cm thick with 0.03-cm ZOZ4-T81 aluminum aUoy facesht,ets and

S. t-I/g-7P(505Z) honeycomb core.

8.8-Z



KEYDESIGNFEATURES

MAJOR gTRUCFURECOMMONALITY BETWEENPRORFBUSAi'_DORBITL;_

CONVENTIONAL MATERIALSAND FULLY PROVEN MANIJrACTIIRINO
TECHNIQUES USED THROUGHOUT

STRUCTUREIS DESIGNED TO FACILITATE _NE[GRAEIO|,J AND A(-Cfb5
DURING II Sf PHASL_

TRUSSTUBESAND FITTINGS ARE DLSIGNfD lO MINIMIZE FABRICATI( N
COST WHII[ _AINTAII'IINO ABILITY TO 1401D r'IVfRAI I AI IGF;MEr_T
AND TCLI PANC{ SRFC-_UIRID fOR IflDV,'IDU&I PAI't!, C,Fl HI '_P,'Ji( ;!_,i I

STRUC[IJREl_ &RRA_'_GLDTO PROVIDE DIRECTLOAD RATH3 FC;,'n_[
PRIMARY PAYLOADS (LARGE AND SMALL PROBES ON IHI FR(JBI_i),'_
,_,,%'P;HIGH-GAIN ANTENNA AND ORBII INSERIION MOIOR (;N THE:
ORBIT[R_

STRU( TURF ISCONFIGURED TO FACILITATI ACH(EVE_,_Eb!TOF _,'A¢,S
BALA ,/CE AI'_D FAVORABI.E MOMENTS OF INERTIA RATIO

_TRUC'TUREIS ALSO CONFIGURED TO MAINTAIN AN ACCEPIABL[
f'CNTER-OF-GRAVITy SHIFT ON THE PROBEBUS DURING THE TOTAL
PROBEDEPLOYME,-_T{EQUENCE

PROBERETENTION AN[, I)EPLOYMENT SYSTE_,_SUSE PROVEN T_CF-
NIQUES AND PYROTECHNIC DEVICES

FULLY COMPATIBLE WITH THE ATLAS,CEPITAUR ROOSTERSYSTEm._

PRINClPALPHYSICALCHARACI_RISTICS

m_ss_sLs!I_._ATES PKC_EBus _B_J_?_
IKG !_LBjl !t:O _LBzI

PRIMARY SPACECRAFT (DRYJ_' 161.0 !3S5.01 195.4 C430.9,

LARGE PROBE 263.6 ISBI ._i

SMALL PROBES ,3, 2i0.1 _463.2_

SCIENCE 13.8 13013_ 4_,4 i100,1_

SOLAR ARRAY 8.2 !Ig.O_ 14.2 ,31.3

HIGH-GAIN ANTENNA 3.3 _7.3

ORBIT INSERTION MOTOR 163.2 359.6:

_ DIMENSIONS I,.h_h_ 'IN.] I,_,2_ :IN t ]

OVERALL HEIGHT 1375 62 210_ 83

MAXIMUM DIAMETER 2616 103 2615 I03

LESSPROBES, SCIENCE AND.,,'OR INSERTION /_,_©T_R

BASISOFSTRUCTURALDESIGN

" ", PROPOSEDMATERIALSAND;_ FABRICATION TECHNIQUES

[ . COMPONENT
,,,L_ PROBE BUS ORBiTFR

_ i.:F, _. .....
f _ " - i ," . "_ :I _,_ CENTRAL CYLINDER ALUMINUM SHELLAND SAME
..... ' I " _/_"_ Rl_'.'OS

• I f_. } :.!i_i TRU_SBYTE,.ALUM,NE,MT_B_SANDMACH,.E_,ALOM,NOM
SAME

\
" FITTINGS

4

... _ _ '., i EOU,FMENT ALUM,NOMHON,,'- _A_.
1 ,/ _ " PLATFORM COMB SANDWICH

- I_.7 ,_i ', _TH CUTO.TS,
i, • ) SOLAR ARRAY ALUMINUM HONEY- SAME

SUBSTRATES COMB AND _LARGLR_
FACESHEETS

SMALL PROBE ALUMINUM MACHINED - -
CONSTRAIMT AND PLATE
DEPEOYh_ENT
SYSTEM

HIGH-GAIN . _ FIBERGLASS FACESHL_I/
ANTENNA /',LUMINUIM HONEYCOMB

SANOWICH WITH EIBI_R-
GLASS FLEDSIRUIS

o_ L)..... " % ", "," , .. ,4 _ ' '
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Figure&8-t Structurein{lM_chinlimsSu_systlmSummlry
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..: Table 8.8-I. Thor/Delta Central Cylinder
"_,, Material Tradeoff

A WEIGHT
-_ t 2 t WLIGHT RELATIVETO
.._ MATERIAL (KGP/M3) (KG/M) (CM) (KG) ALUMINUM
= (KGI
_" IAL!JMINUM 27_ 7(_ x 07 0._02 2,_ 0

; MAGNESIUM 1771,5 457xl07 0,127 2,10 -0,.53

L BERYLLIUM 18,54,6 2988x 107 0,051 0,_3 -1.77

•... TITANIUM 4428,8 1153x 107 0,076 3.266 +0.64
•" i i i

,_&

For the orbiter, the platform is essentially complete. On the

probe bus, cutouts are required to accommodate the.threesmall probes

which penetrate below the level of the platform.

Truss Support System

The truss support system consists of tubes, rings, and vertical

tee members.

The smaller diameter center ring forms the top closure to the I
Icentral cylinder; the outer ring provides a frame for tieing together the

upper solar array support struts.

...... Diagonal struts from the lower end of the outboard verticals to the

forward central cylinder ring support the outer edge of the equipment

platform.

The vertical tee section members at the outer periphery of the

equipment panel react the axial loads from the solar array and support

the small probe support yokes. They also mount the pivoting frames for

retention and release of the small probes and their thermal covers.

The nearly horizontal tubular truss members joining the inner and

outer rings shown in Figure 8.8-1E react the torsional and lateral shear

loads from the solar array, In addition, they provide a forward equip-

ment compartment thermal closure support system.

Solar Array Substrate and R_

The solar array substrate is honeycomb sandwich (0.95-cm-thick

core with 0,020-era-thick aluminum facesheets) formed intoconical ]
#

frustum sections as shown. These panels will attach to end rings, as

shown, to tie them physically together.

8,8-4

#
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5: " " /_._.2 Structural and Dynamic Analyse, s:. lint|

-__ /_.8,2, 1 Structural Analysis

,: An ,inalytical model of the Thor/Delta probe bus configuration was

defined for use with the Structural Static Analysis Program (SSAP).
2
" Figure 8.8-2 shows the plane, side, and isometric views of this model.

,y

: !

_. ,""-,:.., "_--_.,_../-_,_._ _._,.... x._ "',...\,.

; "Z VltW *X VIEW

-._.... _ .'_--.:,r_"'..

:i ,.:., _,_,,']

._.. i_ ,.#

" ritjure 8.8-2. (:tlillptlterPrintoul, PioneerVenw, ProbeBu_,

!':.: 8.8-5

.... -- \
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This model and program are used to d,,termine the internal m(.mb_.r

loads within the structure when nubjeeted It) various slatic or p_eudo-

static design loading conditions.

With the internal rr._mber loads identified, th(, _;tructural integrity

of the spacecraft is confirmed by de_ailed stress analysis. Table 8.8-Z

is a weight breakdown used to distribute the masses on the structure,

and Table 8.8-3 presents |he summary of minimum margins of safely

for the critical members within the structure.

Table 8.8-Z. Weight Breakdown for Analytical Model

MAJOR COMPO_ _;NT WEIGHT WEIGH1
ASSEMBLY (KG) _LB) (l_O) (LB)

SOLAR ARRAY UPPER RING 1.27 (2 .riO)
LOWER RING 1.36 (3.001
BALANCE WEIG;I)'$ l._I (4.00)
THRUSTERS 0.54 (t ,20)
SOLAR ARRAY 6.21 (13.70)
STRUTS (I/2) 0.52 (I .15)
FORWARD OMN! AND SUPPORT 0.27 (0.60) 12.0 (26.4S/

_RGE PROBE RING LARGE PROB: 158.98 (330.50)
STATION 1|9.75) RING WEIGHT 2.31 (S.10) J

ATTACHMENT HARDWARE O. 14 (O.30) 1tOP STRUIS 0/2) (_.59 (1.30)
DIAGONAL STRUTS (|/2) 0.41 (0.90)

PROBE SUPPORT AND RELEASE _LARGE) 3.63 (8.00) 166.66 (366.10)

RING I_ING 1.68 (3.10)
(STATION 116.00) AITACHMENT HARDWARE U.09 (0,20)

VERTICALS (I/2) 0.70 (I .55)
SOLAR STRUTS (I/2) 0,52 (I .15)
THRUSTERS 1.09 (2.401
TOP STRUTS (I,,'2) 0.59 (I .301 4.67 (IO.30)

PLATFORM OUTER FITTING$ AND ATTACHMENT
RING HARD_ARE 0.36 (0.80)
STATIC)N 103.625) VERTICALS 0,,2) L),?0 (I .55)

tHRUSTERS 0.55 (I .20)
DIAGONAL S/RUTS (I/2) 0.41 (0.90) 2.02 (4.45)

EQUIPMENT PLATFORM 7.85 (17.30)

PLATFORM ATTACHMENt HARDWARE O. _4 (0.30)
EQUIPMENT TIEDOWN 1.36 (3.00)

: SCIENCE 5.90 (13.00)
MAGNETOMETER BOOM ASSEMBLY 2.04 (¢.90)
SCIENCE SUPPORT BRACKET5 2.27 (5.00)
MISCELLANEOUS BRACKETS 0.91 (2.00)
WOBBLE DAMPER 1.81 (4.00)
ANTEI'4NA AND SUPPORT 1.13 (2.50)
PLATFORM-MOUNTED EQUIPMENT 51.25 (113.00) 74.66 (164.60)

OMNI ANTENNA 0.4I (0.90)
OMNI SUPPORt 0.23 (0.50) 0,64 (| ,40)

PROPULSION 5MALL PROBES (3) 77.70 (tEl .30_
AND PROFITS 3MALL PROBE SUPPORTS (3) 1.22 (3.80)

TANKS (3) 2,54 (_.60)
PROPELLANT (3) 2_.85 (57.00)

. PROPEIIAN1 $UPPORT AS_LMoLI;S (3) 2,27 (5,00) II0.08 (242.70)

CEN;RAE (,:t NII_AL CYLINDER 2.22 (4.90)
C YL ll'_lO[¢¢ S[ PARA |IUf4 RING 3.36 (7.40)

MIDIUM-C'AIFJ ANIIE_'JNA (].4._ (I ,0/3)
MfDIUM-rL_AII'4 ANIENNA SU,VIJC)RI 0.23 (D,50) 6,20 (13.BD)

:l, (MAt (DISTRIBUIL MC)SILY LOUVERb) l_./l (19,20) __B,_! (19.20)

tOTA_ 3,B_, ! (84_.U0)

8.8-6
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Table fl, fl.3. Minimum Margins of Safety
- (Thor/Delta Probe Bus)

"i, mr_._ J Ill ,

.._. STflU':l URALCOMPONENT CRITICAL I.OAD MARGIN ill'MARKS

•_ CONDITION FAILURE MOBIl.__ OF _AFETY"
CENTRAL CYL|NOER TklIRO-$TAG| BURNOUT SH_t.I. BUCKLING 0.1_ BERYLLIUM

EQUIPMi'NT PLATFORM THIRD-STAGE SURNOUT FACESHEET 0.34 FN _ 34 HZ
_RINKLING

vERTICAL T_E STRUTS 9.42 RAD/S (90 RPM) SPIN BUCKLING 0.,,¢0

TgUS5 TUBES (PLATFORM) AXIAL VIIRATION STIFFNESS LARGE MINIMUM GAUGE AND

SIZE TO KEEPFN > 35 HZ

SOLAR ARRAYSUPPORT THIRD-STAGE BURNOUT COLUMN LARGE MINIMUM GAUGE AND
TRUSS DIAMETER

SOLAR ARRAYLOWER RING THIRD-STAGE BURNOUT Ci,IIPPLING 0.16

,ARGE PROBESUPPORT THIRD-STAGE BURNOUT CRIPPLING 0.07

5M.%t FRO,_BSUPPORT PROBEPRELOAD CRIPPLING 0.35
YOKE (LATERALVIBRATION)

OMNI ANTENNA MA_,T I.,_T[RAL VIBRATION STIFFNESS LARGE KEEPFNLAT >20 HZ

, *SEE MIL HDBK-SA

8.8.Z.Z Dynamic Analysis

The structural analysis modeJ of the Thor/Delta probe bus con-

figuration described in Section 8.8.2. | was modified and used to com-

pute cantilevered natural frequencies and mode shapes. The modes

weze then used to compute response levels to the specified sinusoidal

• excitation at the spacecraft/booster interface (Section 5.2) over the

frequency range 20 to I00 I-lz. Modes and frequencies were computed

for a Zt6-node model incorporating an 18-node mass and stiffness model

of the large probe. The small probes were considered as rigid masses.

.... Results are presented in the form of a summary of frequencies

and mode descriptio _ (Table 8.8-4), and peak response levels for

selected nodes (Table 8.8-5).

.- The fundamental frequencies of 33 Hz lateral, 50 Hz axial are

sufficiently high compared to the minimum frequencies specified (20 Hz

lateral, 35 Hz axial) to preclude a strong dynamic interaction between

the spacecraft and booster. As a result, the accuracy of the specified

launch loads for primary structure will not be significantly affected by

'_ spacecraft flexibility. The natural frequencies of the large probe are

high in comparison to the spacecraft and have a minimal effect on the

overall spacecraft response characteristics.

8.8-7
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Table 8.8-4. Summary of Table 8.8-5. Summary of Predicted
Thor/DeltP Probe Bus Response Levels for Sinusoidal

Configuration Modes Input at Booster Interface $ T/D III
llll i

I F_I:Q_'[NC_ PREDOMINANT MOTION

M DE _MZi

------ FR|QU|NCY INPUT L|V|L* PEAK RESPONSE
33 _,ATE_ALB_N0_NG.,_OCKING LOCATION DIRECTION (HZ) tO) (0, (}PEAK)

40 LATERAL BENDING ROCKff,IG

$0 AXIAL SMALL PROBE, INI_OARD i AXIAL 50 _.3 42

4 5_ LATERALBENDING,'ROCKING ATTACH POINt

§ ,5! LAIf_L TO_SION EDGE OF EQUIPMENT AXIAL 50 2.3 22
PLATFORM

(_ 03 LATERAL

65 LATERAL LARGE P_O@I", AXIAL I05 _.3 22
EQUIPMEN1 SHELF

E _9 LATERAL

9 77 PLAT_'O_M3[NDtNG LARGE PROBE,CONE/" ,_%IAL 105 2._ P "'
$_IRT INTERFACE !

T1 82 HiG_'ER MOUE_, SMALL PROBE, INBOARD LATERAL 82 |,5 10
ATIACH POINt

',,_ IC} HIGHER _'_ODI.S I

13 103 HIGHER MODES LARGEPROBE LATERAL [ 33 1.5 5-8 _
t4 105 H_GHER_ODES '_

1,5 I 106 I LARGE PROBe A_,IAL NOTCHING TO BEAPPLIEDAT FUNDAMENTAL FREQUENCIES TO MORE REALISTICALLY
I SIMULATE FLIGHI LOADING

i

 ,or/DeltaOrbiterCo iguration q
1
/

The analysis was performed for the Thor/Delta probe bus configu- i

ration because it is the mo_t critical from a structural weight and fre-

quency standpoint. Because of the similarities in the structure and the 1
]

weight distribution and because of the lower overall weight, the funda- I

mental frequencies of the Thor/Delta orbiter configuration will be slightly i

higher than the probe bus, and peak response levels will be approximately I

the same. 1

The most significant difference will be the fanbeam antenna on the ]

orbiter, which itself will have a fundamental frequency of approximately 1
l0 Hz.

,_AtC IV Atlas/Centaur Probe Bus and Orbiter Confi[_urationA/C IV Fundamental frequencies for the Atlas/Centaur probe bus and

z_dC orbiter configurations will be similar to the corresponding Thor/DeltaIll
configurations. This is due to the similarities in the structural configu-

ration and the increased structural weight allocation, which compensates

for the increased spacecraft weight and dimensions. Respense levels

will be approximately the same, _ince the spacecraft/booster input levels

specified _or Atlas/Centaur ,_nd Thor/Delta boosters r,re identical over " "i
the frequency range which contains the important mo_es.

8.8-8
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Iv 8,8o _, Mt,chanisnls
i

Tht, rc ;11"_,t'ivv primary 111et-ilanisllls rt,quired ell Ihe probe bus:

• Larg_, probe rt-lease system

• Small prob_, releast, system

• Probe electrical disconnects

• Magnetometer boom

• Nutation damper.
, _ Ale IVi

8.8.3. i L_ar_t_ Probe Release Mechanism

I_T/D III
The single large centrally mounted probu is attached to the forward

ring of the central cylinder by three equally spaced ball locks (Fig-

Ul'e 8. 8-3A), ]_ach ball-lock mechalAsm uses a set of four spherical balls

protruding from the shaft to engage a self-aligning notched bushing in the

mating part. The drawing shows a cross section through the mating sur-

faces and the ball-lock assembly. The shaft reacts only tension loads at

lilt' probc-spacecraft inlerface. Shear loads are reacled by a recess in

,' the spacecraft ring engaging a boss on the probe side of lhe interface.

Compression loads art. reacted directly from the probt, inner shell to the

support strut in bearing at the interface. Release is initiated by dual

squibs gt, nerating pressure to drive the piston inside the ball-lock pin.

Outboard of each ball,-lock is a separation spring housed in a

rclazner cup. A retaining pin in the cup which holds tilt, spring in the

compressed condition will pertxait east, of assembly to the underside of

the support strut. The retaining pin is then removed after installation lo

allow the spring to bear against the probe push plate. The lower end of

i-: the spring will be permanently attached to the cup to prt, venl casting off

i as debris. The springs are designed for a 0.3 m/s (1 ft/s) separation

w, locity.

Table 8.8-6 shows the tradeoff study of different rt, lease schemes:

Ihree ball-lock configurations and o_ae using bolt cuttvrs, l)csign No. 2

was selected because of its light wt'ight; il is pictured in Figurc 8. I;.,3A.

1_.8-9
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O A/C IV _ T/D III

Table 8,8-6. Evaluation of Release Systems for Large Probe

DI_IL;N NLI, _.OMPONLNI_ (I IIIY [ WIIGH[ J WEIGI_I '_LIGHI RLMARK:)
(kO) It, G) (kG)

BALL LOCk:) J l)._0_ 0.912 'I
(MANIFOLD _,Y:)Ii:M)

GA:) GENERATIONS -- O 240 0 481
TUBE IS :)INGLE-POINT

ELECTROEXPLOSIVE DEVICE 4 0.009 o.OJ6 2.24 FAILURE

PNEUMATIC LINE (4 M) 0.240 0,240

ELECTRICAL DISCONNECT I 0.572 0.572
(O&H TECHNOLOGY, INC.)

2 BALL LOCKS 3 0.804 0.912 i
SYSTEM)

/

ELECTROEXPLOSIVE DEVICE 6 0.009 0.054 1,54 1

[LECIRIC AL DISCONNECT I 0.57Z 0.572 i
(G&H TECHNOLOGY, INC.)

3

AILD DEFONATING FUSE) BALL LOCKS 3 0.304 0.912

MILD DETONAIINO FU,_I: (DUAL) 2 0,340 0,680

SHIELD CABLE 2 'J 0.481 2.68

ELECTROEXPLOSIVE DEVICE 4 0.009 0.03b

ELECTRICAL DISCONNECT I 0.572 0.572
(G&H TECHNOLOGY, INC.)

4 8OL1 CL.II TER 6 0.07.5 0.454 1
_BOL t CUT TERS) JRE'IAINLR CAGE 6 0.002 0,014 MAY REQUIRE

12 Ei _CTROEXPLOSIVE
J

ELECTRICAL DISCONNECT I 0.522 0,522
I (G&H TECHNOLOGY, INC.)

" . SUPPORT BRACKET AND BOLl 3 J 0.136 0.408 i

i I

8.8.3.2 Small Probe Retention and Release Mechanism

The small probes are each supported on the probe bus with a

mechanism to protect them during launch and transit environments, and

to provide unperturbed initial conditions for their controlled release

under pure centrifugal force (Figure 8.8-3B).

A thermal cover provides an acceptable thermal environment for

the probes until shortly before probe release. The unperturbed initial

conditions are attained by a two-step release process: first, the thermal

cover is ejected, and at the same time the preload in the probe retention

device is relieved. Then, after any spacecraft perturbations due to the

first step settle down, the unpreloaded probes are released by the

second step. Without any preload or other initial indeterminate forces,

the initial release conditions are well known for use in accurate targeting

c omput at ions.

8.8-11
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[_A/C IV [_ T/D III

Each small probe is held by four V-shaped pads positioned ,round
l

the probe major diat,lt, t¢.r as shown in Figure 8.8-4B. The pads provide

both vertical and l;ttt.ral support for the probe during flight and b,.fore

release, The two inboard pads are fixed 1o a rigid part of the spacecraf!

structure. Each of th(, two outboard pad',_ is an integral part of _, pivoling

triangular frame memb¢.r which is hinge-mounted at: the longitudinal space-

craft tee members on each side of the probe. Torsion springs at their

hinge lines force the free position of the pivoting frames to be away from

the probe.

l
The two pivotin_ frames are joined _round the outer major diameter t

of the probe by a band which effr=ctively clamps the probe back against the

two fixed inboard pads. A preload is appli_,d to the band to prew, nt probe

chatter during launch vibrations. This band is retained by two pin pullers

which function in sequence to produce the two-step separation. The first

of these pins also engages a lug which holds the thermal cover and its light

framework in position around the probe and against tbe vertical tee mem-

bers. Overlapping channels on the thermal cover and on the band provide

vertical alignment of the cover, and also provide a push-off surface for [ t
!

leaf springs to effect cover separation at release.

The probe as rct_dned in the spacecraft is depicted in Figure 8.8-3B0

with the thermal cover removed for clarity. Also pictured is a view of

the retention system pin pullers as they art, engaged in the locked position

(Figure 8.8-4A). A portion of the retention lug for the thermal cove r is

shown in the cutaway view. This lug is attached to the cover and is ejected ,i

with the cover as indicated in subsequent illustrations of the sequence of

events.

The stowed positio._ and deployment st,quence is illustrated in Fig-

ures 8.8-4B and C. The stowed position is shown in Figure 8.8-4C,

and the position of the lock pins with respect to the retention band for this

condition is shown in Figure 8.8-4Ao

The first sequence of deployment is shown in Figure 8.8-4A7 0 where

pin pulh, r No. l is actuated. The pin pulh, r is actuated by dual (redun-

dant) squibs which drive the piston of the pin puller assembly. The ther-

mal closure lug is released, allowing the torces from the leaf springs as ]

8._-12
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[_A/CIV well as centrifugal force to the thermal 8-41_
eject cover. Figure 8.

shows the initial path of file released cover. When pin No. 1 is pulled, a
T/D Ill

slotted hole in the retention band fitting permits the band to relax approxi-

mately 0. S ram (0.020 in.), which is more than sufficient to relieve the

initial preload plus any thermal expansion of the band. This allows the

probe to be free from any clamping load; it is retained only by the band at

the outboard pads. Also at this time the electrical cable connecting the

probe to the spacecraft is severed by a redundant set of cable cutters.

The cutter is actuated by the same signal which actuated pin puller No. 1.

The cable is severed at this time in the sequence to ensure that there is

no disturbance when the probe is finally separated from the spacecraft.

The second step of the deployment sequence is illustrated in Fig-

ure 8.8-4A3. Pin puller No. 2 is actuated, allowing the two pivoting

frames of the clamp to swing outward under the force of the torsion

springs. These springs are strong enough to move the retaining frames

away well before the probe begins to move under the centrifugal body

force. The probe is then free to begin its independent trajectory solely

under the outward acting centrifugal acceleration without any indetermi-

nate forces. The separation mechanism and the retention band are

arranged to maximize the probe-to-spacecraft clearance as the separation

takes place.

_._.3.3 Probe Electrical Disconnects

Table 8.8-7 shows the connectors that were examined between

probes and spacecraft. The zero entry connectors use stiff springs to

ensure contact, and would induce indeterminate initial impulses to the

small probes as they separated; they would not allow unperturbed probe

release, and are therefore unacceptable. The cable cutter was selected

as being the lightest acceptable design. Short circuit isolation is not

considered a serious drawback to its application.

8.8.3.4 Magnetometer Boom ALL ORBITERCONFIGURATIONS

Summary Specification

The magnetometer boom will be capable of mounting a two-pound

mass approximately the size of a 4°inch cube on the end of a deployable

elemt_nt. In the retracted or stowed position it will be capable of reacting

8.8-14
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7"7 TablE. 8.8-7. Electrical Di3connects

UNIT SUgSYSTEM QUANTITY TOTALAttC IV lYI'[ c OMPOI'q [NT WEIGHT WEIGHT PER WEIGHT REMARKS
(KG) (KG) SPACLCRAE1 (KO)

T/D III O&HIECI-INOLOGY,li'_IC. PLUG 0.399
0.$72 4 2.288

MODEL 70,4E RECEPTACLE 0,172

CABLE Cull/R" CUTTER 0.077

BRACKET 0.136 0.304 4 1.216 ISOLATE AGAINST
SHORTS

CONNECTORS 0.C91
(I EACH SLOE)

ZERO-ENTRYCONNECTCR$ PLUG 0.091
RECEPTACLE 0.091 0.318 4 1.272

BRACKET 0. 136

MARTIN MARIETTA AEROSPACE PDS000010-003

u'J
z a 20 G a._ial (thrust axis) acceleration, while at the same time reacting a
o
_- 3 G lateral acceleratior_, in any lateral axis, The temperature at the boom

a: to magnetometer interface may range from -101.12 to +65.56°C (-.150D

,7 to +150°F) and the boom will be capable o£ functioning over this tempera-
Z

0 ture range.
ec
tt,
_. The boom deployment will be in a radial direction to a maximum

" length of 4.8 meters from the stowed position and will be accomplished ato
.=1
.j a rate not to exceed 1 m/min. An electrical cable attached to the mag-

netometer will be deployed in coordination with the boom deployment and

the capability to retract both at approximately the same rate will be

accommodated in the boom design.

The angular position of a datum line on the outboard end of the boom

will be known to within 0.017 radian (1 degree) with respect to a corres-

ponding line on the boom extension mechanism, after repeated extension/

retraction cycles and after exposure to a specified solar heating condition.

In the extended position, the boom will be capable of reacting a

0. 1 G acceleration in any direction without yielding the boom or mecha-

nism. Also, the minimum natural frequency of the boom in this extended

position will be not less than 1.2 Hz.

A minimum of 20 extension-retraction cycles will be required in

the design.

8.8-15
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ALL ORBITERCONFIGURATIONS

The boom mechanism and mechanical and electrical int_,rface hard-

ware will be included _uch that the complete mechanism can be, mounted ]

on the spacecraft equil-ment platform with bolls, and power leads for the

motor will terminate at a connector for attachment: to the spact, craft

power system. Magnetometer mechanical anti el¢,ctrical interfaces arc

to be determined.

Tradeoffs and Description

This mechanism must both deploy and retract the magnetometer to

an extended length of approximately 4.8 meters for Atlas/Centaur a_ld

3 meters for Thor/Delta.

Three mechanisms have been surveyed: Astromast, Bi-Stem, and

Celeste reel-type booms. The Astromast i' an open section deployable

truss with multiple hinges and joints. Deployment is controlled by

unwinding cables from spools and letting springs in the binges move the

boom into the extended position. Retraction is accomplished by reversing

the spools and pulling the mast back in via the cables. Reliability of the

retraction plus indefinite accommodation for cabling makes this an unde- !
I

sirable choice. The Celesco and Astromast booms are shown in Fig-

are 8. 8-5.

The Bi-Stem device has not been completely evaluated for this

application, but as an open boom section it is not as torsionally rigid as

the Celesco closed section boom, and therefore the position of the mag-

,etometer with respect to the spacecraf _.would not be known to an accept-

able degree of accuracy.

The Celesco boom is preferred for the following reasons:

• It deploys and retracts with equal facility. The boom elements
• are wound directly on and off a spool similar to a fishing reel.

• Cabling is accommodated (up to Z0 leads) external to the boom
and permits electrical attachment to the magnetometer withoui

_:_ slip rings or brushes. Cabling is a flatstrip and winds up on its
own rccl driven from a common shaft with the boom as it is

deployed or retracted.

• Itis torsionally rigid, with pro lictable deformations under solar

h c;tt ing. 1_



ALL ORBITER CONFIGURATIONS
;,

I_ l _ Cf-tESCO _OOM PARTIAt|Y DEPL(_Y_D &STROMAS I

•J .

,FLIGMT-DEMONSTRAT£D ON CLASSIFIEDPI_OGP.AM_

EITMEI DESIGN CAN IV,EEl AE'(,_'UIREMENI$;RFP FOR II,OON _t,tiNG _a'IE@JW_Et_

Figure8.8-5. ExistingBoomDesignRecommendedforMagnetometerDeployment

On the probe bus the boom must be retracted before the release of

small probe No. 3, which would impact it if not retracted. After probe

release it is deployed again. On the orbiter spacecraft it must be rc, trac-

ted before the orbit insertionburnp and then subsequently redeployed.

While deployed_ the maximum loads on the boom normal to its axis are

<0. O1 and <0.10 G along its axis. Capabilities exceed O. 1 and I0 G in

the two directions, respectively.

If the magnetic field at the magnetometer is less than 5¥, it may be

necessary to use a longer length boom. II appears that I)oll, Gt, lt, sco and

Astromast booms c_n meet the sp(,cified requirt, tuents at ]t,n_lhs as long

as 10 meters.
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ALL CONFIGURATIONS

8,8.3.5 Nutation Damper

Dcscription

The nutationdamper recommended for use on Pioneer Venus is

similar to one developed for Meteosat by CNES {France). Itconsists of a

mercury-filled U-tube which has expanded end chambers to enable its

natural frequency to be tuned to the spacecraft nutationfrequency. Since

natural frequency of the damper and nutationfrequency are both propor-

tionalto tle spin rate, the damper is self-tuning, i.e., the frequency

ratio is independent of spin rate. The range of frequency ratios over

which the damper is required to operate depends on the range of space-

craft nutation to spin frequency ratios (i. e., inertia ratios) encountered.

The natural frequency (Table 8.8-8) is a functionof the radialdistance

from the spin axis, l_ngth of tubej and area ratioof the tube to its

expanded ends. Amplificationof the relativemotion between the fluidand

tube is a functionof the natural frequency and damping inherent in the

damper design, as well as the inertiaratio of the spacecraft. The damper

is mounted to the edge of the platform to achieve maximum excitation.

Table 8.8-8. Summary of Damper Design Parameters

IcMLIN.}ItC_0N.}}I[CM{,N.)]! {LS)}[ [CM (_N) i [KG {M_N)

i I
, 0.21-0.24 ! 0.23 85,, 2,.6 0.64 7.75

IHOi£DELIA i _ (33.5| (8.5} (0.25) (3.05}i I._2 ,0
PkL.)BI:BUb _ 0.70-0.82 '_ 0.80 1 85,1 2_.4 1.02 3.28 ' (4.0) 60

J I ! (33,5} (10) (0.40) (I .29)
i

THOR. DELTA 0.3b=0.4, i 0.39 _ 85., 2..$.4 0.64 4.22 ,.14 20
o_elff:_ i (33.5) (10) (0.25) it ._) (2._)}

t !

ti ,06.7 ,e.., o.= ,.eoC.22-0.24 I 0.23 1 (42) (,0.5) (0.25} (3.07}

aI'LAS CENTAUR ! 2.5 i 15

ATLAS CENTAUR I 0.52-0,57 0.g 106.7 30.5 |.02 4.93 |,62 |0
,OI_IIER (42) (i2) (0.40) (, ,94) (4.0)

i i i '

k_A,_. MAXIMUM TH¢OR[tlCAL TIME CONSTAN|

/

8.8-18

i

,, .... ,.... :' , , ., 22TCiT2'I T .,T'_=--T

00000005-TSD11



ALL CONFIGURATIONS+,

- Mercury is used Is minimize the damper case weight for a given weight

" of fluid. The original concept included tile use of a damping fluid in the
¥-
:: inboard manifold lube I,) provide the desired amount of energy dissipation.
;4-

For the particular damper configurations that have evolved for Pioneer

Venus, however, the =llercury alone provides sufficient damping. Damping

can be enhanced, where required, by using a cluster of smaller diamefer

tul)es within the U-tube. Air is evacuated from the damper. The inboard

connecting tube between the two end chambers is retained to prevent mer-

cury vapor differential pressure from influencing the natural frequency.

The damper designs preferred for the various Pioneer Venus con-

figurationsare described in Table 8.8-8. Two dampers, tuned to differ-

ent frequencies, are used on the probe bus because the perfoxmance of a

single damper is significantly degraded by a wide range of inertia ratios

encountered. The damper design for the Thor/Delta probe bus configura-

tion that is tuned to the nut_.Lion frequencies encountered after separation

of the large probe is illustrated in Figure 8.8-6,

LXPANDLD ( NO O+_.MBLI¢



ALL CONFIGURATIONS

Basis of Recommendation and Performance

Comparison to Other Damper_ __-

The .qolf-tuning U-tube mercury damper i_ preferred ov_r oth_,r

types of dampers based on performance versus weight and _implicily of

design. A tuned damper i__ u_ed to aehl_v_ the desired performance with

a minimum weight. (An alternate method for achieving comparable per-

formance versus weight is to use a damper, similar to that used on

Pioneers l0 and 11, which operates off the motion of the magnetor.eter

boom, taking advantage of its large inertia. This was rejected, however,

because of the complication to the boom and its retraction mechanism,

and because the damper is inoperable with the boom retracted.) A damper

that is self-tuning, i.e., the natural frequency is proportional to the spin

rate, is used to achieve the desired performance at low spin rate and to

accommodate changes in spin rate without unacceptable loss of perfor-

mance. Other self-tuning damper types (i.e., pendulum dampers) were

rejected because of the difficulty in achieving the self-tuning aspect at low

spin rates. An outward-pointing pendulum damper cannot be tuned to the

nutation frequency unless the pivot is on the opposite side of the spin axis

from the damper mass. In addition, the stiffness of a flexure1 pivot has a

detuning effect at low spin rates. An inward-pointing pendulum damper

and a pendulum damper oriented along the spin axis can be tuned to the

nutation frequency for a particular spin rate but becomes detuned and loses

performance as spin rate is varied.

The theoretical performances of a 1.8 kg (4 lb) viscous ring damper

and a bellows-type damper used on Pioneers 10 and 11 have been computed

as a basis of comparison and are presented in Table 8.8-9.

Per for manc e

The theoretical time constant is plotted as a function of spacecraft

inertia ratio in Figures 8.8-7 through 8.8-t t for the various configurations.

Variation with Inertia Ratio

The time constant is strongly i_ffluenced by the inertia parameter \,

through the effective excitation force acting on the fluid. As k increases,

the relative motion between the fluid, resulting from i_ertial forces acting

on it, and tile tube, decreases, resulting in a degradation of the time con-

stant. When k = 1, i.e., inertia ratio :: 2, the fluid is in equilibrium ,I

with the tube and no relative motion occurs.

8.8-20
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ALL CONFIGURATIONS

The implication is that it becomes increasingly difficult to achieve

a good time constant for high inertia ratios and the damper must be

sharply tuned to achieve a high magnification factor to compensate for the

excitation force reduction.

Variation with Spin Rate

The time constant variation with spin rate is shown in Figures 8.8-8

through 8.8-1 I. The time constant always improves with increasing spin

rate; however, the amount of improvement depends on the frequency ratio

and damping factor. At resonance, the time constant decreases with the

square of the spin rate increase. The variation decreases toward zero as

the frequency ratio moves away from resonance.

Variation with Temperature

Time constant varies with temperature through viscosity changes.

The percentage variation in time constant is always less than or equal to

the percentage variation in viscosity. For mercury, the variation of vis-

cosity is approximately 15 percent over the anticipated temperature range

of -6.67 to +37.78°C (20 to t00°F). The percentage variation in time

constant due to tempe_,_ture changes, therefore, wilt be between 0 and

t5 percent.

Divergence Time Constant in Thor/Delta

Third-Stage L'_ection Mode
mL ....

J
The nutation frequencies during the Thor/Delta third-stage injec- !

tion are sufficientl V _eparated from the damper natural frequencies, I

resulting in a long divergence time constant (50 to 700 minutes for the tt

orbiter and 70 to t80 minutes for the probe bus). Consequently, the t

wobble buildup while the spacecraft is in this spin-stabilized, unfavor-

able inertia ratio mode {less than four minutes} will be insignificant and

no valve nor diaphragm is needed to constrain the fluid.

Damper Design Parameters

Table 8.8-8 summarizes the recommended design parameters f_)r

_ each configuration. Damper geometry is determined by performance and

.-, weight requirements. Tube length and diameter and end-chamber diame-

_: ter are selected to provide the values of natural frequency, damping, and

8.8-22
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mass of fluid in the tube that is required Io achieve the desired tirr, e con-Z

_O stant. The amount of fluid in the end chambers is determined by theI--

,_ range of amplitudes over which it is desired to maintain linear '

o_ performance.O.

Z ,
0
o Surface Tension Effects
..J

-J i
At low spin rates, surface tension has a significant effect on the !

shape of the liquid/vapor interface and could, as a result, affect the nat-

ural frequency. Damper tuning has a significant effect on performance,
'1

especially for high ine.-tia ratio configurations for which a sharply tuned q

damper is required to achieve satisfactory performance. Therefore, the
effect of surface

on natural frequency must be properly asz3essed i
tension

to ensure a minimal effect on performance. Minimization of the effect of ]

!surface tension can be achieved by using a plating material on the end-

chamber surfaces that mercury will wet with a contact angle close to but 1

less than t.57 _.'adians (90 degrees), thereby minimizing the surfa:e cur- i
]

vature. Further analysis and scale-model testing should be performed to

more accurately assess thxs effect, t

Testin_ 1

Tests to verify damper performance should be conducted w!,th a

damper model mounted horizontally to the end of a torsional oscillator i

such that the t :otion provides excitation along the damper tube. Experi- ]
mental determination of the variation of performance with excitation to ,_

natural frequency ratio, damper geometry, and damping factor should be

attained. In addition, the effects of surface tension on damper natural

frequency and performance should be determined through scale-model

tests which simulate low Bond numbers (ratio of gravitational to surface

tension forces)°

8.8.4 Probe Separation Analysis [_A/CIV [_T/Dlll

8.8.4.1 L.ar[e Probe--Atlas/Centaur and Thor/Delta

The large probe is separated from the bus by unlocking the three

ball-lock bolts, thereby allowing the three separation springs to impart

an axial relative velocity of approximately O. 3 m/s (1 ft/s) between the

large probe and the bus.

8.8-Z3 1
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The relative separation velocity betw_.L,n Ill(, probe and the bus for
I

the Atlas/Centaur and Thor/Delta configurations are [

w

_/n 62 (MI + M2) Vre I k 'Uz

: 0.31 m/s (I.02 ft/s) (Atlas/Centaur)

: 0.32 m/s (1.06 ft/s) (Thor/Delta)

where

n = number of separation springs = 3

k : spring rate of each spring : 23 N/cm (13.3 lb/in.)
(Atlas/Centaur)

-- 11.6 N/cm (6.7 lb/in.)
(Thor/Delta)

6 = stroke of each spring = 5 cm (2 in.)

M I = mass of probe : 300 kg (21 slug) (Atlas/Centaur)
J

= 143 kg (9.8 slug) (Thor/Delta) [

M 2 = mass of bus = 470 kg (32 slug) (Atlas/Centaur)

= 218 kg (15 slug) (Thor/Delta)

The inertial veloclty changes of 1he probe and bus are determined

as follows.

M 2

AV probe _ MI + MZ AVre I = 0. 187 m/s (0.61 ft/s)(Atlas/Centaur)

0. 196 m/s (0.65 ft/s)
(Thor/Delta)

M i
- = - 0. t23 m/s (-0.41 ft/s)

AV bus _ MI + M2 AVrel (Atlas/Centaur

,_ - 0. 124 n,/s (0.41 ft/s)
(Thor/Delta)

I
8.8-24
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Unt:(,rtainties in those values can I)e limited 1o less than i5 per-

: cent by calibration of tilt" separation springs.

The _eparation event wilt also produce disturbances which will

precess the probe momentum vector and induce nutation. A summary

of the primary disturbances is shown in Table 8.8-10.

Table 8.8-10. Large Probe St,paration Tipoff Errors

1RANSVERSE MC)MLNIUM VECTOR

ANGULAR RATE StttET AND NUTAIION
DISTURBANCE (RAD S) ANGLE

_DEG)

ATLASC?_-uT--T
AILAS'CENTAUR IHOR DELIA 10.RPM' ___R_p_M4 THOR DELIA ....1

II

INET LATERIAL SPRING FORC[ 0.004 0.005 0,2 loll o,5

2 NEWTONS (0,44 LB) (ATLAS CENTAURi 1 I

I NEWlON (0.22 LB_I(THOR DELTA)

AXIAL SPRING RATE DIFFERENTIAL 0.005 0.006 0,25 [ 0.125 0.6 1
t2 PERCENI J t

COMPRESSED HEIGHT OF EACH SPRING 0.003 0.005 0, 15 0.08 0.5

t_0.05CM (_0.02 ,'N.)

SPRING RADIAL LOCATION 0.001 0.00l l 0.05 0.025 0.1 !

BALL LOCK RELEASE DIFFERENTIAL 0.003

5 MS

RS$ TOIAL .... 0.008 _

The transverse rates were computed using a digital computer pro-

gram. Examples of the transverse rate induced during the separation

event are shown below.

The magnitudcs of tlau motnt,ntum vcclor shill and nutation angle

are delcrmined as follows.

00000005-TSE05
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A _t
e -- _-- _.--._- x57.3

6

where

e = nutation angle

: momentum vector shift

A = probe transverse moment of inertia

C = p:obe spin axis moment of inertia

wt -- transverse rate after separatien

= spin rates

The instantaneous attitude error after separation will be clue to a

combination of the momentum vector shift and nutation describing a
1

circular path as shown below. 1

The vector representing the nutation angle will rotate at the inertial

precession frequency and will tend to diminish in magnitude if the probe

contains any nutation damping sources.

8,8.4.2 Small Probe Separation Analysis, Atlas/Centaur
and Thor/Delta

The small probes are released sequentially from the bus with no

impulse imparted to the probe during a nominal separation. As a

8.8-Z6

, f

O0000005-TSE06



i

 A,c,v
° rcsull, tht, probe l.r:wcls in an inertial direciioll which is pcrpendieular

to a radizd tint, colll|_?clinb_, lilt, spact, craft centcr of lilacs and the probe

_enter tff l_,uss 8t the il_._tant of p1"ohc, r_lc, aso as sht_wu lit, low. ......

No change of spin rate of t_ither the probe or bus occurs as a

result of probe release.

A velocity change wilt be imparted to the probe and bus as

follows. I

6V
probe t0r I

£Vbu s = _r 2

where

_0 _ spacecraft spi.n rate t

r I :_ distance from probe center of mass to compositecenter of mass before release

Nominal values for these velocity increments are nhown below, assuming

a spin ralt, of 1.408 rad/s { 10 rpm) for the Atlas/C<,ntaur, and 0. 524 rad/s

(_ rpm) for Ihe Thor/Delta.

8.8-27
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l.'irst S,nall _ocond _mail Third _111,11]
.... Probt, R_,leaso l_robc Rolo;Ise:: I_I'OIjL ' l_clO;l_O

r 1 (n.,l, r_)
Atlas/Centaur 0.87 0.81 0. t,7
Thor/Delta 0.83 0.77 0. {,8

r?. {meters)

Atlas/Centaur 0. t8 0.22 0.25
Thor/Delta 0. t3 0. 145 0, 15

AVprob e {m/s)
Atlas/Centaur 0.91 0.85 0.70
Thor/Delta 0.43 0.40 0.35

AVbu s (rn/s)
Atlas/Centaur -0. t9 -0.23 -0.2b
Thor/Delta -0. 069 -0. 076 -0. 078

The trajectories of the small probes relative to the bus are des-

cribed by the equations for an involute, i.e.,

AR -- R (cos O �qsinO)O

AT -- -R ° (sinq - qcos O)

where

AR = radial displacement between probe and bus

_T = tangential displacement between probe and bus

R o -: distance between probe center of mass and bus plus
ret.,aaining probe center of mass at time of separation

0 --- angle of rotation after time of separation

i-

The z_V's inlpartt, d during the second probe rclease will be in a direc-
lion approximately 0. lb radian (q dt'grees) off perpendictllar to lhe

... radi¢ll lin_, COnllectL'd tO the cent :_* of tht, probt, and thc ct, ll|t,,r of the
:sptlccct*,lft dtlt' tO tire center-ofonaass location before second prol_e _
rt, h.asr.

!

" I .... I
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T|=¢' rc|_tivo trajectories ill F'iguro 8.8-12 show that only (_uo probt.

inlt, rft.rt, t_ with tht. th.ployt, d magntometer boomj thereby rt'quiri=_g

_: l'tqr;lt'li¢)ll t)t Iho I)OOlll for only ollt, probe rolt.ase. The r¢lativt, It;lie('-7.

L Iorit,s of Iht, first and lhird probt, s reh.ased begin in ,a direction along a

radial lint, passin_ through Ihe spacecraft t'entt, rlint-; howt, vt.rt the real-

-_. livt, t ra.jt, ctory of tht, second probt, released bt, gins in a direction approxi-

: mat¢ly O. 16 radian 19 degrees) off a radial line because of center-of-

- mass offset of Ihe bus and lasl remaining probe at that time.

f_

/J ,.
I

,>,7 .

/

k,

_ t bistre8.8-12. 51_tt|lPr0hrIrdje¢hlrit,,Relative10Hm,
- (rh0riOt,lh)C0nliqul,.lli0=lI
i:

F

Duri_g the sn_all pvobt, relcase_ disturbances can induct, trans-

verse rates which will cause precession el the momeniuna vector and

"- nutation of the spin axis after probe release.

#
e One source of dislurbance torques is the prcload energy in the

": release mechattistt_. This energy can produce a force misahgnt'd with
E

the center of mass of the probe as shown below.

8.8-Z9
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_OQt i
Ii1, m

_b' kt

The transverse rate of the small probe induced by this disturbance

is determined as follows,

wt I I

Ip i +_--E'T+_ + mh "

The resulting momentum vector shift and nutation resulting from

this disturbance, assuming a spin rate of 0.5Z rad/s (5 rpm), is
i

Itcot
O = (_ = _ x57.3 _. iO0_ tx x

where

It = transverse MOI of probe

I -- spin axis MOI of probex

m : mass of probe

Ib -- transverse MOI of bus

M : mass of bus

h --offset between center of mass and impulsive force vector

F : kx = disturbance force

k = spring rate of preioad system

x : deflection ol preload system

R : nutation angle

8. tt-30
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_t c_ = moment,_m vector ehift

_ot _ transverse angular rate of probe

00x = spin rate o; probe

The curve--', in Figure 8.8- 13 indicate the magnitude of the attitude

errors as a funclion of the relevant parameters. Since 1he center of mass

is approximately 2 cm above the plane of the release mechanism, the,

preload force at the time of release must be limited 1o approximately

Z5 to 100 newtons to limit the tipoff errors to 0. 017 radian (1 degree),

using represc_'_ativc stiffnesses for the Thor/Delta configuration. Cor-

r_.spondingly, the preload force must be limited to 100 to 400 newtons for

the Atlas/Centaur configuration. Therefore, a design was conceived

which releases the probe in two stage_. The first stage releases the pre-

load, which is necessary to hold the probe firmly during boost. After

this preload is released, the probe is restrained in the release mecha-

nism with only insignificant loads due to centrifugal force acting on the

structure, thereby eliminating this source of tipoff errors.

b f ,_lt_CtNIAt'R_ _*_ /
2 I i .,_I I, ;.S,N'iE'N'C_I

E _ I, _, £10@N CM .f/_" i ;

_:_ 0._ 1 / i i _ _W c_L...-."
I-T/'-T T /

E 2

I ....i i
- 0 5 I0 1_ 20 ;s

I_lCK_tfl c MOM[ NT AIM (CMI

Figure R.8-l}. Stud11Probe Tipoff Errors for a Prelo_l_l Rele4_e $yMcm

j-

'.:.

- 8.8-31
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_- -_' 9. NASAIESRO ORBITER INTERFACE

•'" This _¢tion presents results of a technical and cost tradeoff to

determine the moat effective rfl_eehod of pe_.z'forrning the orbiter mission
>.
: as a cooperative venture with the European Space Research Organizationx

-, . (ESRO). It is based on variations of NASA planning which assumed that

the bus portion of the spacecraft would be provided to ESRO for integra-

tion of orbiter mission-peculiar subsystems and scientific instruments,

and that ESRO would perform the system test program for this mission

and deliver the spacecraft to CKAFS for NASA launch and flight mission

operations control.

• The results presented in this section are based on the work done up

• through midterm, as directed by A_D:244-9/32°042, dated 13 April 1973;
,.o

they do not reflect the subsequent shift to Atlas/Centaur, the addition of

:" the X-band occultation experiment, nor the schedule impact of delaying

the probe mission from 1977 to t978.

The technical versus cost factors analyzed during the study were

•. based on the following criteria:

_' • Maximum use of probe mission hardware and design

• Assignment of hardware to the original NASA contractor to
sustain the experience developed on the probe mission

• Use of the probe mission design, manufacturing, and test
planning and control documentation.

To fulfillthese criteria, probe and orbiter commonality has to be maxi-

.... rnized. This line of analysis points to orbit mission-peculiar h'ardware

and other program factors as the logical assignment for ESRO

participation.

. It has been determined that the anticipated ESRO deboost propul-

s,_,onsystem is adequate for the Atlas/Centaur orbiter mission and that

the anticipated use of the Helios despun reflector antenna is suitable,

• except that incorporatiou of an X-band link is difficult.

Figure 9-i illus_rates the key orbiter mission-peculiar equip-

- merit incorporated iratea configuration compatible with the probe bus.

I ,-,:,,,' o:" ...... • ' O0000005-TSE13
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Figure9-1. ESR0HarD,are ParliCil_ion

Table 9- i expands on the mission-peculiar items. The main ques-

tion is the extent of ESRO participation,and options can best be presented

in terms of integrationand test activities.

: Table 9-I. ESRO ParticipationDefinition

I I I I I

ORBITERMISSION-PECULIAR ITEMS FURTHERWORK REQUIRED

Io ::.XPERIMENTS INTE.1FACEDIrFII_;ITION AND CONTROL

2. SCIENCE DATA REDUCTION AND ANALYSIS MISSION REQUIREME."!TSINPUTS DEFINITION

3. DE6OOST PROPULSION DEFINITION FOR DESIGN INTEGRATION

4. HIOff-GAIN ANTI_NNA DEFINITIO_ FOR DESIGN INTEGRATION

6 ADAPTATION OF PROSeB'.JSSTRUCTURE IDEVELOPMENTSTATUS AND APPLICAT!OI'M

I

I
• INTEGRATION AND TEST I TttREEOPTIONS _ISCUSSED (SEEFOLLOWING 4

'" I TEXT AND CHART_! II l,. I IIII II I I I II --

Three NASAIESRO integrationparticipatir,n optionswere reviewed; i

the relatedtasks and interfaceflow diagrams for the respective options

are shown in Figure 9-_..

' ,'......... ' 00000005-TSEI4



OPTION1 OPTION2

• PROVIDE EDUCATION AND ORIENTATION T_) ESRO PERSONNEL • PROVIDE ErA/CATION AND ORIENTATtC

FOR INTEGRATION AND TEST OF WHOLE SP,._CECRA.':T. COMPLETI _)N OF INTEGILATION At'

• RIOVIDE NASA TECHNICAL SUPPORTAND TESTAUDI lING AND • PROVIDE EIASATECHNICAl.

REVIEWREPRESENTATIVESTHROUGHOUT fNTEGRATION AND TEST. REVIEW REIILESENTATIVEDURING COMPLE|IGN OF INT!
AND ENVIR,_NMENTAL TEST.

• PACKAGE AND SHIP ALL INDIVIDUAL FLIGHT _PAC_CRAFT

HARDWAREAND DOCUMENTATION TO ESRG. • SHIP PARTIALLYINTEGRATEDFLIGHT SPACECRAFTTO
SHIPPING CON1AINER, SHIPAND I

• PACKAGE AND SHIP ALL GROUND SUPPORTEQUIPMENT TO PARTS,AND DOCUM_.NTS.

ESRO. • PACKAGE AND SHiPALLGROUND SUPPORTEQUIPMENT

• INSTALL AND VALIDATE EGSE AND MGSE FIXTURES. EUROPE.

• PERFORMCOMPLETE FLIGHT SPACECRAFTINTEGRATION AND • INSTALL AND VALIDATEEGSEAND MGSE F_XTURES,
TEST USING ESRO FACILITIES.

• COMPLETEFLIGHT SPACECRAFTI:_

• RETURNSHIPMENT OF FLIGHT SPACECRAFTAND GSE TO CKAFS. ENVIRONMENTAL TESTSUSING ESTECFACIUTIES.

• JOINT ESRO/NASA LAUNCH SUPPORTTEAM AT CKAFS. • RETURNSHIPMENT O

AND SUPPORTLAUNCH OPERATIONS,

USA {NASA) EUROPE (ESRO) USA (NASA)

I PROVIDE ESRO

SPACECRAFT PROVIDE ESl_O
INTEGRATION PERSONNEL
EXPERIENCE AND WITH
EDUCATION EXPERIENCE
THROUGH STM AND AND I

PROTOSPACECRAFT EDUCATIONTHROUGH STM
t AND PROTO

SPACECRAFT
PACKAGE AND
SHiP FLIGHT
SPACECRAFT FLIGHT
STRUCTUre, SPACECRAFT L---., INTEGRATE
BOXES, SOLAR INTEGRATION i i FLIGHT SPA(:ECRAFT
ARRAYS, USA AND TEST SPACECRAFT SHIPPING

IN USA WITH CONTAINER
INSTRUMENTS TO ALL USA
EUF _,'_ ELECTRONIC ANDPACKAGE

t BOXES AND SPARES
INSTRUMENTS

PACKAGE AND I
SHIP ALL
GROUND 5UPPOflT
EQUIPMENT TO PACKAGE AND
EUROPE(ESRO) SHIP ALl GSE

TO EUROPE

I P, SUPPORT '_ .... '

NASA AND
NASA AND _ ---- -- ?-Pt SUPPORT PEESONNEL
PERSONNEL

FLIGHT

FLIGHT SPACECRAFT
SPACECRAFT
LAUNCH ENVIRONMEIql"ALTESTING IN I

OPERATIONS I , EUROPE !
I

I I

i I ESROTESTI
I

tl I SUPPORT I
J PERSONNEL : !

!
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OPTION2 OPTION3

-"_,-TIONABID ORIENTATION TO ESROPERSONNEL FOR • PROVIDE DESIGN INTERFACESPECIFICATIONS AND COORDINATE

INTEGFFATIONAND ENVIRONMENTAL TEST• ESROHAR(_tVAREDESIGN AND DEVELOPMENT,

• ECHNIC_L SUPPORTAND TESTAUDITING AND • PROVIDE ESROPERSONNEL SUPPORTFOP INTEGRATION OF

--:TAT_VE DURING COMPLETION OF IWIEGRAT ION EUROPEANPARTS-TESTAUDITING AND REVIEWS tN USA.

_:ENTAL TEST, • PERFONv_ALL FLIGHT SPACECRAFTINTEGRATION AND TESTIN

_-T_ITEGRATEDFLIGHT SPACECRAFTTO EUROPE IN USA USING USA ENVIRONMENTAL TESTFACILITIES.

_INEE. SHIPAND PACKAGE BACKUP SPARES, • ESROPROVIDESM}NIMAL LAUNCH OPERATIONS SUPPORT.
_UM_.NTS.

_'HtP ALL GROUND SUFPOk'TEQUIPMENT TO

°'_'LIDAtE EGSEAND MGSE FIXTURES.

-'-IT SPACECRAFTINTEGRATION AND PERFORM

=-L tEStS UoING £gTECFACtUTIES,

--,IT OF FLIGHT SPACECRAFTAND GSE TO CKAFS

_d..JNCH OPERATIONS.

EURGPE (ESRO) USA (NASA) EUROPE (ESRO)

.... ; ' / FLIGHT
SPACECRAFT
ANTENNA,

j_ I DEIMDO_

MOTO;', AND
INSTRUMENTS

---_._HT I SPACECRAFT FLIGHT
I INTEQRAT ION SPACECRAFT - "1
i _J AND J I AND TEST INTEGRATION

I .I FLIGHT I T | ANTENNA J
1 1"411 SPACECRAFT | J I DEEOOST
I i/ANOSPARESI I I MOTOR

AND ESRO

fF[IGHT -- _ .... PERSONNEL

STA _ I SPACECR_,FT _I-

AND _ ENVIRONMENTAL ]" "-_ ANDtNTEGRATION
i _ AANODATE J_ J _, TEST J I TEST/AUDITING
l.J EOSE/MGSE I I -., I

r-I'NEu'opEJ ,' I I

IsH,PP_lO..I IPERPo'MI OPERAT,ONSFLIGHT J
/ SPACECRAFT I. I SPACECRAFT LL

: -J AND GSETO Jq"--'l ENVIRONMENT I "_

| CKAFS FOR | | EUROPE Ji lLA°NC"I ITEST'N°'N"
I
!

!!1 I ANDESROTEST J

A LAUNCH

I SUPPORt Ji PERSONNELI
I
I

i

Figuret-2, NASA/ESR0PadldNtlon Options

• . , , , J
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I
Each option is analyzed and summarized in terms of key points in

Table 9-2. The second option is recommended on the basis of lowest

total cost to NASA. However, this option also presents the most difficult

management interface between NASA and ESRO because of the split in

spacecraft operations between Europe and the United States.

Table 9-3. NASA/ESRO Integration

and Test Operations

OPTION I OPTION 2 OPTION 3

INDIVIDUAL FLIGHT SPACECRAFT INTEGRATEFLIGHT SPACECRAFT iNTEGRATEFLIGHTSPACECRAFTIN
ELECTRICALBLACKBOXES, ELECTRICALBLACKBOXES, US/kWITH ESROSUPPORT
APPENDAGES,THERMALCON- APPENDAGES,PARTIALTHERMAL
TROL, ".ND PROPULSIONSHIPPED CONTROL, AND PROPULSION SHIPEUROPEANSCIENTIFIC INSTRU-
TO ESRO IN USA MENTS, ANTENNA, STRUCTURE,AND

DEBOOSTPROPULSIONTO USA FOR
STRUCTURESHIPPEDTO EUROPE INTEGRATr USASCIENTIFIC IN- FLIGHT SPACECRAFTINTEGRATION AND
[OR MANUFACTUREDIN EUROPE STRUMENISIN USA TEST

USASCIENTIFIC INSTRUMENTS SHIPFLIGHT SPACECRAFTTO ESRO FINAL INTEGRATION AND ENVIRON-
;HIPPEDTO ESRO FOR FINAL INTEGRATION OF MENTALTESTCOMPLETEDIN USAW

ANTENNA, DEBOOSTPROPULSION, WITH ESROSUPPORT
ALL INTEGRATION AND ENVIRON- AND EUROPEANINSTRUMENTS
MENTAL TESTPERFORMEDIN
EUROPE PERFORMALL FLIGHTSPACECRAFT

ENVIRONMENTAL TESTSAT

ESTECFACILITIES .....1

MAXIMUM OVERLAPOF ORBITER MINIMLIM SCHEDULEOVERLAP NO SCHEDULEOVERLAP I
AND PROBESCHEDULETO MEET i

_RBITERLAUNCI",DATE

NO USEOF APPLICABLEPROBE USEOF APPLICABLEEGSEFROM USEOF ALL APPLICABLEPROBEMIS-
MISSION GSE PROBEMISSION SIGN GSE

J

PROGRAMCOST HIGHERTHAt',: LOWESTPROGRAMCOST TO HIGHESTPROGRAMCOSTSTO '1OPTION 2 NASA NASA

EASIERINTERFACEBETWEEN HARDESTINTERFACEBETWEEN EASIESTINTERFACEBETWEENNASA
NASA AND ESROTHAN NASA AND ESRO AND ESRO I

OPTION 2 j

..-:

9-4
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ALL VERSION IV SCIENCEPAYLOAD

I 10. MISSION OPERATIONS AND FLIGHT SUPPORT

i0. ! INTRODUCTION

This section describes mission operations and events to show how

the baseline design performs its intended functions. The baseline

sequence of events for the orbiter and probe missions are described for

the preferred Atlas/Centaur configuration.
J

10. I.i O1biter Mission Operations

The preferred orbiter spacecraft is characterized by the conical

solar array and is maintained in an earth-pointlng attitude. The sun

aspect angle at launch is about 1.48 radians (85 _-_.._,,rees),with the spin

axis pointing _hout 0.33 radian (19 degree:_) below the ecliptic plane.

The spacecraft can remain in this attitude until the first midcourse

maneuver on day 5. Prior to the midcoorse, the space.craft is precessed

to earth-pointing. This maneuver also serves to calibrate the thrusters

for precession. Once earth-pointing, the thrusters are fired for about

30 seconds to ca!;brate for the _V. The midcourse maneuvers are per-

formed open loop, identically to Pioneers I0 and II, with the calibrations

performed to attain direction accuracies of about 0.02 radian (I degree)

and arnplitude accuracies of a few centimeters per second.

After midcourse execution, the nominal cruise orientation would be

assumed where the positive spin axis {aligned with the high-gain dish axis

of symmetry} is aligned with earth. The earth-pointing attitude need not

be maintained for the first 60 days since omni communication at i6 bits/s

can be sustained via the Z6-meter DSN.

The second and third midcourse maneuvers are performed Z5 days

after launch and 15 days prior to Venus orbit insertion (VOI), respectively.

A flipof the spacecraft is performed at about day 110 such that the aft

horn is earth pointing to maintain the sun in the forward hemisphere.

This attitude is also used for the occultation experiment. The 0.44-

radian {25-degree) beamwidth of the aft horn permits'a two-point spin

axis location strategy to replace the exact earth tracking strategy nor-

mally associated with an earth-pointing spacecraft. Orbit insertion is

performed by a solid rocket mot,-,rwith the spacecraft spin stabilized a!

iO-i
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6.28 rad/s (60 rpm). After orbit insertion 200 days after launch, the

spacecraft continues with the aft end earth pointing until 37 days after

VOI. Once again, the spacecraft is flipped to maintain the sun in the

forward hemisphere and to point the high-gain dish toward earth.

During Venus orbit operation, periapsia is maintained within 200 to

400 kilometers of the surface using four AV maneuvers performed on

days 30, 60, 145, and 184 after insertion. About i3.7 kilograms

(30 pounds) of fuel are required for three midcourse corrections (99 per-

cent correction capability) and the four orbit trim maneuvers. Excess

fuel left over from midcourse maneuvers can be used for additional orbit

trims to tighten the periapsis altitude control band, or can be used for

ex±ended mission life. On-orbit operation of science is enhanced by an

expanded and improved (from Pioneers i0 and li) stored command pro-

grammer having 16 commands with ±2-second quantization. This com-

mand programmer can be set to perform a11 science commands for days _ i

or even weeks at a time with only an occasional trim of the programmer _
,i [

time and daily data readout from the data storage unit.

:0. i. 2 Probe Mission Operations I

1
The probe spacecraft is launched with a sun aspect angle of 0.38 i

radian (22 degrees) at about 0.35 radian (20 degrees) abo've the ecliptic.

This attitude is also desirable for cruise since it provides a good thermal

- environment for the large probe, _hich would otherwise require heaters.

The spacecraft remains in the launch orientation until the execution of the

first midcourse AV after which the orientation is set about 0.3 i radian

(18 degrees) from the launch attitude, 0.35 radian (20 degrees) above the

ecliptic. This new orientation is used until day 50, or the time for the

second midcourse. By Jay 50 the aft omni communication bit rate is down

to 64 bits/s. The spacecraft now becomes an earth pointer with the aft

medium-gain horn used for primary communications. The earth pointing

configuration is maintained until the third midcourse, 30 days prior to

entry. Alternating probe deployments and AV retargeting maneuvers

(sequential deployment) occur every 2 days starting 25 days from entry,

and ending il days before entry with all four probes deployed. The bus

is also retargeted for entry. About 16. ! kilograms (35 pounds) of fuel

,Y. is carried on the probe bus for midcourse and retargeting maneuvers,
-:.

i0-2
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_ Retargeting and probe deployments can be e}:ecuted either for sequential

entry or simultaneous entry (or any combination thereofl with only slight

changes in fuel requirements for the retargeting.

10. 1. 3 Commonality of Configurations

The orbiter and p':obe mission have operational commonality for

most maneuvers and procedures, including midcourse manc.uvers, atti-

tude determination, and attitude corrections. Probe deployment is per-

formed very much like the midcourse _V except that the probe release

replaces the thruster /W firing. The major equipment differences

between orbiter and probe missions include conscan in the orbiter only,

and the small probes are replaced by science and the large probe is

replaced by the high-gain dish antenna. There are other slight differences

(such as omni antenna complement), but most electronics and functional

elements are common.

We examined four primary configuration options of the orbiter which

could meet the assumed science requirements. These configurations all

have a conical solar array band above the equipment compartment to

maximize clear fields of view for experiments. The conical array permits

operation with the sun anywhere in the forward "hemisphere" [within

1.9Z radians (110 degrees) of the forward spin axis] for indefinite periods

without performance degradation. The differences in these four versions

are mainly in the antenna complement and the nominal flight orientation:

1) Spin axis aligned with earth using high-gain dish for [_h_
primary communications as for Pioneers 10 and tt.

Z) Spin axis normal to ecliptic, using 3t-watt fanbeam __lw
(pancake pattern) antenna for primary con_.munication.

3) Spin axis normal to ecliptic, using tZ-watt fanbeam ,.__w
antenna. This option depends on the 64-meter DSN
for primary science data.

4) Spin axis normal to ecliptic. Despun reflector used
for primary communications.

Mission operations are similar for versions 2), 3), and 4), to that of the

preferred configuration 1)o Only the preferred (baseline) version is dis-

cussed in detail in this section. The major differences between the mis-

sions are discussed in Sections I and 8.5.

10-3
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The following paragraphs discuss the procedurt, s and rationale for

midcourse maneuvers (probe bus and orbitc_r), probe deployment and data

recovery, orbit insertion, orbit trim, attitude determination, attitude

maintenance, and science operations.

i0.2 AV MANEUVER PROCEDURES

10. Z. l First Midcourse ALL CONFIGURATIONS

Midc_urse AV maneuvers are performed identically on the orbiter

and probe missions. The first midcourse is performed on day 5 with

communication maintained via complete coverage of the omni antenna.

Fuel is budgeted for 99. 9 percentile injection errors which are about

7.0 m/s for the Atlas/Centaur. Two primary methods of AV execution

can be performed by the system without ground intervention. The first

primary method of AV execution uses thrusters which are aligned with i

the spin axis. This method is described in detail in this section, with the i

second primary method and the backup modes covered in later paragraphs. 1

t

II CONTROLELECTRONICSASSEMBLY

, I !

s,,.,_R,oo_ _oo,.M' foo,,T,O.' : r--"_...
STORAGEAND _ AND STE[RfNG_ THRUSTER.__ I t

SEOORGE.ERATOR,X_C_',ON[[ LOO,_If _ "--'
t i

,..._._ ........ ...i
|_lOH 10-1- FklllCU0fUd[|IHIlI_S fOl' Mi(l=0u_SeManeuv_s

Precession and _V maneuvers involve operation of elements in the

digital telemetry unit (DTU). the propulsion subsystem, and the control

electronics assembly (CEA). The functional operation of these elements

is identical to that of T_ioneers tO and t t. All elements used for preces-

sion and AV maneuvers shown in Figure 10-t are redundant except for the

program storage and execution assembly (PSE). All functions of the PSE

can also be performed by ground commands into the duration and steering

logic {which is redundant) so ti_at any single failure can be tolerated, The

spin period sector generator (SPSG) and the PSE ,_re by far the most com-

plex elements and are off the shelf (unmodified designs) from Pioneers 10

and 11. The duration and steering logic (DSL) and thrusters are slightly

modified in that: 1) new thruster selection logic is required because of the

10-4
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:'- increased number of thrusters, and 2) the thrusters need to be separated

from the cluster assemblies used for Pioneers I0 and II. Tile declustered

thrusters are being cleveloped for FLTSATCOM0

A _V maneuver sequence is normally performed by prccessing the

spin axis to the direction of the desired AV, firing the thrusters that are

aligned with the spin axis to execute the AV, then precessing back to the

desired final orientation. The sequence is depicted in Figure 10-2. The

precession is performed by firing short (I/8-second) torque pulses once

per revolution at a fixed angle to the sun. This continues for the time

necessary to obtain the proper orientation. The AV is obtained by firing

two thrusters on opposite sides of the spacecraft that are aligned with

the spin axis. These fire continuously until the AV is complete. The

entire sequence is controlled by the PSE. Data loaded from the ground

into tl_ePSE is generated from known initialposition and the desired final

state of the spacecraft. Since the hardware elements for the AV are

identical to Pioneers I0 and 1I, the existing NASA/ARC program ger_.ra-

tion software (for data to be loaded into PSE) can be used off the shelf,

without modification. A brief explanation of this flight-proven software

is given in Appendix 10A,

([NTRY ON DAY 1_101

_/_/IEGIN ENI'R'V
...,_i "_ /SEQUENCE

/ _"VENU$ i,1_ DE,IRAdIN,E #,v FRO. ,_1_ DAY 195
V_AI _.e INJI_CIION ERRORAN0 j_

_'_ \LAUNCH DEEIVE &V EXECLRION _. al_ _ )
\ _ PARAMETEI_ FOP PS[ _ /,'/ ,*/

/ I , "\ \-
r,Av_ ['_SEQUtNC[ I \ /_ RETURNTO

_)_._I_,_T"I_N_F_O'_'F_LCLSMON ] \ pC)SITI_N AND REMAIN• UN,IcNoMfocou_sc
AND AV CALIBRATION v ATIrlIUD[('_ PR[C::S$ IOANDAVDELAY (_) xt CII1! .,_vTHIN DELAY

FigureI0-_ProbeMissionFirstMidc0urse

Precessions are performed open-loop using thrusters that have been

calibrated by ground test. The ground calibration is supported and refined

by in-flightcalibrations. The precession maneuver accuracies for open-

loop maneuvers are dominated by thruster calibration error. This error

1-0o5
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is approximately 6 percent on the ground; however, after in-flight cali- )

bration, precession maneuver accuracies on the order of 1 to 3 percent

have been demonstrated for Pioneers iO and li, which use the identical

equipment used for Pioneer Venus.
'i

Using the stored program data as described in Appendix 10A, the

AV sequenc_ can be loaded and executed. A typical command sequence is

shown in Table 10-I. All commands and functions are identical to those

of Pioneers I0 and il except for the thruster selection command. This

change is required because the increased number of thrusters requires

a slight modification of the selection logic, The existing command soft-

ware can remain unchanged for the entire command sequence except for

this one item.

Table 10-t. Primary Commands for AV Execution

I II I

EXISTING ARC
COMMAND DESIGNATOR COMMAND FUNCTION

RIP I-2 SELECT 0/3.14 RAD(0/180 DEG) REFERENCE FROM SPSG

RIP S SELECT ACS MODE OF SPSG

FMC $ USE fORMAT C FOR TELEMETRY

SEN 1-2 SUN SENSOR I$ SELECTABLE FOR REDUNDANCY

PSE 9 POWER ON TO PSE

SLA 9 POWER ON TO DSL

AC$ I ARM REGISTER I AND LOAD ANGLE (¢=) AND MAGNITUDE
OFFIRSTPRECESSION(TIME)

ACS 2 ARM REGISTER 2 AND LOAD MAGNITUDE OF DELAY AND

=,v(TIME)

AC$ 3 ARM REGISTER 3 AND LOAD ANGLE (a) AND MAGNITUDE

OF RETURN PRECESSION (TIME)

PRE I-2" SELECT PRECESSION THRUSTERS

PUL 2 SELECT I/8-SECOND PULSE LENGTH FOR PRECESSION
THRUSTERS

VEL I-2 SE_.ECT AV THRUSTERS FOR FORE OR AFT THRUSTER FIRING

ACX 4 RESET PSE TO GET TELEMETRY READING OF REGISTERS
AND INITIALIZE FOR MANEUVER

ACx I EXECUTE STORED SEQUENCE-PRECESS TO DESIRED

POSITION, EXECUTE AV AND RETURN PRECES$ TO
DESIRED FINAL ORIENTATION

i i i i

MODIFIEDFROMPIONEERSl0 ANOI_.

Upon sequence initiations the contents of the storage registers are

transferred into their respective counters (angle counter, delay counter,

primary magnitude counter) in accordance with the occurrence of the

following PSE program sequence states. All stored programs cycle

10-6
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1
,i

through _dl sequence states unless interrupted by ground command, The

ground commands can be used to inhibit the sequence, override the inhibit

condition to continue: the sequence from the point inhibited, or "stepped"

to jump into the next state. Sequence "Step" is normally used to shorten

a delay period.

Sequence State Function Command

.... _ S0 Re set ACX4
S 1 Delay ACX 1
SZ No. I Precession

$3 Delay
$4 Midccur se AV
$5 Delay
$6 No. 2 Precession (return)

$7 Program Complete

The above described sequence assumes that the axial thrusters are

fired continually for the A_,rexecution. Other alternatives exist as

described in the following sections.

I0.2.2 Second and Third Midcourse

:-. The accuracy of the proposed method of AV execution has been

demonstrated by Pioneers I0 and li. For both of these spacecraft, the

first midcourse maneuver AV was executed within 0.02 radian (i degree)

of the desired pointing direction. Precessions of 0.79 and 0.6i radians

(45 and 35 degrees) were performed open-loop to obtain the pointing direc-

tion. AV execution magnitudes for the first midcourse of Pioneers 10 and

il were executed to accuracies of about 3 and i.5 percent; however, the

AV magnitudes were trimmed in each case to negligible magnitude error

by inhibiting the stored program and firing individual thruster pulses.

Magnitude was checked using the doppler shift measurement capability of

the DSN in real time. Since the equipment employed for Pioneer Venus

is identical to that of Pioneers I0 and II, similar accuracies are expected.

Pointing errors during midcourse AV maneuvers are most signifi-

cant ifa large first midcoutse maneuver is required. In that case pointing

(and other execution) errors add to the tracking errors in determining the

resultant second midcourse requirements. As a figure of merit, second

midcourse AV requirements have been shown in Figure i0-3 as a function

i0-7
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of pointing error during the first midc(iur.,_e.

_2 ) 0_--',_:4 _- ....... _x_CI_TA,_, Pointing errors of the base, line system con_WO_<,!

::_,' [ ' I q_. e_iNiiNC CA_
_" L, (),') * r _ CAP&I_II ItY _"

_, _..---_ tribute only slightly to overall midcour_e
-,_- ,3L_,_,_J_) J_ _ ,u_c,, requirpmenl..q. For a worst-case (99 pt, r-

I II_l _IDC (Jllit'A
Ft311_li ING I I_ll r)ltL , ,_ _ ,_,. cc.nti_V, pointing error of 0.017 radian

Li 0,1}17 I}.015 0._15, )

figure10-3.[lteci0iFirslMidc0urseP0intinq (l degree) would contribute about O. 12 m/s
[rt0r0nSecondMIdc0urseRequitemenls for Atlas/Centaur. This urror is dominated

i by ephemeris and tracking errors, with uncertainty in the solar force

model also contributing. With a 1 m/s AV allocation for the second mid- I

course execution errors are negligible for the Pioneer Venus capability, _

as demonstrated by Pioneers lO and ti.

Second _.nd third midcourse maneuvers are nominally performed

identically with that of the first midcourse. However, the second pri-

mary AV method which employs all four transverse thrusters fired in

pairs can also be used. This method is discussed in the next section.

Alternatives for second and third midcourse also include leaving

residuals from the first (or second) midcourse as an attempt to control

the direction of the next. With the probe mission as an earth pointer, a

small third midcourse could be pre-biased in the direction of the earth

to eliminate reorientation for the third midcourse AV.

10.2.3 Maneuver Options

A major feature of the Fioneers 10 and 1t system adopted for

Pioneer Venus is the design flexibility. If a AV is to be executed, the

following options are available:

1) Continuous AV, using a stored program and either of two axial
thruster pairs (axial thrusters are aligned with spin axis}

2) Pulsed AV, using a stored program and all of the transverse
(spin) thruster pairs. All four spin thrusters are fired each
revolution in the inertial direction of the AV.

3) Pulsed, by real-time ground command of axial thrusters

4) Pulsed, by real-time ground command of transverse thrusters

5) Pulsed or continuous as in the previous four options but using
only single thruster(s) as an added backup mode.

t0-8
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Methods t) and 2) are both autonomously cot trolled by the PSE, an

unniodificd part of the CEA, and are designated as primary. Methods

3), 4) and 5) are backup. To control the direction of 1he AV, anoth_'r

set of options are availablet

!) Rhumb line precession to the desired attitude for execution of
the AV by one of the above options (single maneuver to any
attitude)

2) Execution of the AV by components without reorientation of the
spacecraft

3) Precession by ground command via the so-called Type I, Type II
precession (for Type I precession the spin axis remains in the
plane d_fined by the spin axis and the sun, Type IIprecession is
about the sun line)

4) Real-time pulses timed from the ground and executed at the
instant received. In the event of sun sensor loss, phase control

can be obtained from downlink doppler modulation. Round trip

light time must be taken into consideration. This mode is the
ultimate backup.

Redundancy considerations were of primary concern in the development of

the design approach to maneuver execution equipment. The two sun

sensors, two spin period sector generators, two duration and steering

logic assemblies, the program storage and execution assembly, and the

thrusters are cross-strapped so that the complete failure of one each o£

all of the above control elements (Figure I0- I) would not be critical to

mission success. In the case of the eight thrusters, a complete mission

can be obtained using as few as three thrusters: one for spinup, one for

spindown, and one axial precession-velocity thruster.

A AV can be executed using the spin control thrusters pulsed radially

where all four spin thrusters are fired each revolution (Option 2). The

spin axis is precessed normal to the desired AV such that the plane con-

taining the spin thrusters contains the AV vector. When two transverse

thrusters are aligned with the AVj they are fired. The opposite two

thrusters are fired after a 3. 14 radian (180 degrees) rotation. Although

this method is identical in operation to that on Pioneers 10 and !l, with

the spin thrusters located in the plane containing the.center of mass, this

mode is greatly improved over the equivalent mode for Pioneers 10 and !l

where only two spin thrusters are used. The additional thrusters reduce

I0-9 J
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the execution tini_eanti center of mass offsets are su<h that i]r_c_,_;si_,n

couplin_ i._ ncl4l[_ible. Redun(],t,icy of tran._v,_r._ie thru._ters al_o peL'mits i

spinup for execution of lnany rnaneuv¢,rn if de:_irt:d, l)i,_l_(_rni,m ,,rr,_r._

can be reduced (by a factor in_rsely proporti,_na] to the square ofth,:

spin speed} by increasin_ spin spee.d for AV executi,,n using n sin}_le

thruster.

Spin coupling is a concern in all large AV maneuw, rs since a sig-

nKficant spin speed r_,duction causes greater AV dispersion and can even

cause loss of spin stabilization. Spin coupling results from thruster mis- i

alignment for a AV obtained via the axial thrusters and from unbalanced

thrusters for a AV produced via transverse thrusters. The worst case

magnitudes of tim spin coupling for the expected maneuvers are given in

Eigure 10-4. Significant spin changes for the Thor/Delta spacecraft

version occur not only because of the higher mass-inertia ratio than for

Atlas/Centaur, but also because of the large first midcourse.

&.l.'.l - ;, _-lll_Jt;t i _._.

i

J_ ...... -L. I _,_s,on I_'°/_Ec _ 1 RAP

..... I --  s,cis,c -- t
; JtHOr.DettaeeOSe io.0iS ,0.17,i 1.32 *d2.6L_; I_'<'_'_""°',Ro,,lo0. ,o.,oo1o._ +*'+'"/

1_'" t,.o,,'_E<E_oRB,Et,, o.o_ ,o.21,/"_' >'l'_'_'l

O.Ol, o.,,,0,1$' i

*?3 _,%,3EC 67
J PNII',_ARYC4LIS[ * MISALIONM[NT 0.009 RAD f0.5 D_O_

RADIAL - PULSEDAV i _'e25.7 M/SEC D,V

....... +" r .S-...... _m"s._ZECm_/sLC- <_7C _

• " " "' L% "<' iHOR/DFtIA profit J o,q28 <o,21. j 0.1t# ,1,7,

._- tN_'_ ] at,;, 'CFNT,U, prOB[ | O.Oiv ,0. le6,, 0.12 d.i,

r"°r"t_ tta OreiTtR J0'0"°_ ,0,2,_I 0.:,0 ,_._
M,ASZCtNIAUlt Oi_6'lfRJ 0,017 _tl.I/,_ i 0.20 (1.'_i-Ipp_Ilf TR_NSVERS[ I .

THRUSTERSPtJt_lO AIR, R
1.14 _AD ,1B0 bEG: PH_,dt'f Ca,USE - iHRtlSTI-R DIFFERENTIAL 16%1
lnl,ll I('}N

f iqure tO-4. Spin Coupling Effects for Worst Case_V

The design of the PSE also provides the benefit of independence of

spin rate for all precession maneuvers. This is achieved by pretesting

for a predetermined time rael_er than for a predetermined number of

thruster pulse counts. If, for exampleR tile spin rate doublet_ during the

AV (because of spin coupling}, then on the return precession each thruster

10-t0
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impulse will cause only one-half the angular step change; however, pulses

will occur twicE' as often. Thus a constant rate of pr(,cession occurs with

the Pioneer Venus system which is independent of spin sp(,_,d. If pu!se

COUhling were used, ver V large precession errors could occur in the event

of spin changes.

10.1_ Attitude Determination }Jrocodurcs

I0.3. I Intrvduction

For Pioneer Venus, the sun and earth have been selected as celes-

tial references since existing off-the-sheif hardware can be used which

has sufficient accuracies for all mission objectives. The sun sensor pro-

vides a pulse which, combined with the spin period sector generator,

provides an exceptionally accurate roll reference. In additionR the sun

sensor provides ti_espin axis-sun aspect angle measurement with an i

accuracy of 0. C04 rad','.an (0.25 degree). Earth aspect measurement _s .!

provided by the conscan signal processor adopted unmodified from t

Pioneers 10 and 11. Conscan provides the earth aspect with accuracy of i

about 0.00Z to 0. 003 radians (O. 1 to 0.2 degrees). These two independent t
measurements determine essentially the same angle. As a coplanar i

condition is approached, the geometry causes a steady degradation in the

system accuracy for fixed measurement accuracies of sun aspect and

earth aspect. The effect of geometry on attitude accuracy is illustrated

in Figure 10-5.

EARTH _-EARTH
SUN __..._. -_

SUN

/;AVOliASL[ G£OM_TRY

MOST ACCURATEATttTUDE I. b-] RAD _0-DEG_ ¢JUI-,I/EARTHASPECT
DETERMINATION t_ WHEN 8OTH ANGLES ISPI_ AXIS _ TO RAGE):
TH_ EARIH-SPACECRAFT-SUFJ UNFJVORABE[ SUN-SPAC;CRAST- I
AND IHE ROLL AN_LE BETWEEN EARIH ANGLE
EAREHAND SUN APPRC)ACH
1.57 KAD _9_D[Oi Ut'_CEREAINTY REOI_N IS ELONGATED

AS THE _tlN-¢ ,._.CRA_-EARTIt ANOt[
&PPR_ACHr_ 0 OR 3. tJl RD,_ _ _' t80 _tG_

Figure10-5.GeometryEffect0nAttitudeDeterminationAccuracy

Fortunately, unfavorable geometry occur,_ only for short intervals

during interplanetary cruise for the orbiter and probe missions, and at

the end of the orbiter mission. These short periods in no way jeopardize

.... _= .... , o , _ ,,, ¢.
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or reduce mission objectives or effectiveness, The primary advantage

of the selected sensors is that the measurements are direct and instan- i

taneous, and very simple software is used that 1:.asalready been developed

for Pioneers 10 and II. Although a sun aspect measurement was not

used on Pioneers I0 and II, the software needs only a single calibration

curve, thus unique attitude can easily be read directly from the displayec'

telemetry.

f0.3. Z Open=Loop Attitude Accuracy

Attitude accuracy is maintained by periodic attitude measurement

and precession correction. This process continues as long as the sp_ce- i

craft is in an earth-pointing configuration where attitude is maintained

within the conscan range [0.17 radian (I0 degreesl]for the orbiter forward

end, or within the medium-gain horn beamwidth [0.Zi radian (i2 degrees)]

on the probe bus and orbiter aft end. Offpointing occurs during mid- i

course maneuvers, probe deployment and retargeting, Venus orb_x injec-

tion, and perlapsis maintenance AV. Offpolnting also occurs fo'.'the first

50 days of the probe mission with the spin axis pointing about O.44 radian

(Z5 degrees) from the sun. Attitude corrections are unnecessary during

this period. After day 50, the probe mission becomes av earth pointer,

tailtoward earth, with doppler modulation and the sun _ensor used for

attitude determination. For the orbiter mission, the tailto earth attitude

is mRintained during the i08 to 237 day period using doppler modulation

for attitude determination. The wide beamw!dth of the aft horn permits a

two-point spin axis pointing strategy between f_ays I08 and Z00 (VOI),

with attitude corrections also unnecessary during this time. Before

day I08 and after day 237, the orbiter is c,arth pointing, using the high-

gain dish for communicr_tion and using conscan for attitude determination.

The analyses presented in detakl in Section 8.5 and the orbital

experience of Pioneers I0 Rnd II bare demonstrated that the open-loop

Pioneer control concept used for these maneavers is well within the

required accuracy to meet all ,nission objectives. However, the Pioneer

capability has been improved by the addition of sun aspect measurerrent

which provides a check on system accuracy. The openloop accuracy will

be about 0. 035 radian (2.0 degrees) {3,1}for al! AV maneuvers even with-

out the other attitude reference chec'_s.

10-1Z
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10.3.3 Precession Calibration

Precession calibration can be performed with greater accuracy for

Pion_,er Venus than for Pioneers IG and 1 t. Tile calibration is performed

using the sun aspect measurement capability by performing the precession

calibratien maneuver directly toward or away from the sun. An angular

maneuver of precomputed magnitude is executed. The aspect angle change

is then compared with the precomputed value to determine the correction

to be applied to all future precessions.

10.3.4 Earth Aspect iVleasurement _AIClV _A/ClV

Earth aspect is determined by three separate methods: conscan,

doppler modulation, and -toppler f,hift. Conscan is the primary earth

aspect determinatiolz method for the orbiter when the high-gain dish is

pointed within 0.17 radian (10 degrees) of the earth. This is the case

except during midcourse maneuvers, Venus orbit insertion, and during

the time between days 108 and 237 when the aft end medium-gain horn is

earth pointing. The probe bus uses omni communication for the first

50 days, thereafter operating as an earth pointer on the aft medium gain

horn. Both the orbiter and the probe bus use doppler modulation for

primary attitude determination when the aft end is toward earth, when

offset omni antenna can be viewed. Doppler shift is used for attitude

determination only once, for Venus orbit insertion.

Antenna pattern search is used only as a backup mode where con-

scan has failed and other methods cannot be used.

The conscan concept used on Pioneers 10 and li is based on the

modulation of KF signals produced by printing errors when the spacecraft

antenna boresight is offset from the spin axis direction. ]?he curve

between points A and B in Figure t0-6 repre-
CONCEPI
. '_e A _._.4r EARTH

.__ _SPJNAXtS sents the ranges of antenna gain swept through

-_-__ ........ / Axis during a spin cycle as a consequence of the

pointing error, o • The modulation amplitude
FUNCTION_ e

• Ott,RM,.t̂M_U,U.tANOP.ASE and phase of the fundamental are detected to
(Rtt._T0vt TO SUN PIJLSES_O_

E*_tHeOJNr,NOF,,O_. produce the attitude measurement. The main
• AUIO_AI ICALL¢ CONTROL/HRU$1E_S

to ,_tctsssP,n̂ ,,, rewirese,,T., advaz, tages of the cons can approach a re its

Fiqurel0-6.C0nsr_nC0nc@t good attitude determination accuracy, low cost,

t0-13
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and operational simplicity. Although conscan is primarily for attitude )i

determination, it can also be used for automa.ti _ precession control to

maintain earth pointing.

The earth aspect angle can be delurmined

fro.n changes produced by the spin on the fre-

quency of RF signals from an offset antenna, as

v ,_ SP,NAX,S in Figure t0-7. If the spin axis is misaligned

_A_;NUNF--_'_..._. from the earth (by angle ae) , the downlink sig-

FigurelO-7, Ool_lQrM_ulatiorl/arth hal is frequency modulated at the spin frequcncyj
AspectAttitu_Determination

with the modulation amplitude a function of n e.

With the spin axis near the earth linej doppler modulation can privode

attitude information within 0.009 radian (0.5 degree) but accuracy degrades

ranging for angles greater than 0.05 radian (60 degrees), as shown in

Figure lO-fl.

(P.A.D _OEG

Doppler shifts can also be used for

°'°2ai '"l ' ' \W'_a'lv u_N _!,^,_'v attitude determination with angles near,,,l--i ..... .....

0.021 1.2 ............

ver is required, The component of yelp-

s.0 _,;. _- .... +..... city change along the earth line is obtained

o.o,.,-_ o8 ! . by doppler measurement, and the ratio

0.0,, 0.6[ ,// _-. _-! 5_EE, of this COmpOnent to the predicted value
. , of the AV maneuver executed gives thel !\%:,,

o,oo, o.,_Vl i _ _'_ and the spacecraft-earth line(Figure 10-9).

I [ I , I ! Io _p_o,- 0[ J ! _ ! This attitude determination technique is
80 II_0 I_0 140 160 I_0 {OEGI

AS_C_,_OLe most sensitive at spxn aspect angles nor-
L • • l _ 3 _RAUi

1,40 135 _,I0 2,M 2,11_
_"_ real to the earth line, as shown in /igure

¢ic]ure10-8. I_c_perAMllu_eMegsummen_AccurKy
tO 8. ILls preferable to use doppler shift

only in those instances where a V is to
be executed (midcourse, periap_is main-

a'_""_" _v tenance, or prone retarget) in order to
_,_ UN_ . minimiz e propellant allocation s.

/

I Doppler shift attitude determination
Figure104. OapplerShift_arthAsNct

A.Itu_l_rmination is required for Venus orbit insertion with

iO-i4

. ..,..o_."',._,_.,_.,_ ,_ ,........ . ............_. ....,, . ,__.--_. ........
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_vi , doppler measurerr.:,nts made via the forward
!'"/ omni. This omni is on the spin axis, as

_v shown in Figure i0-10, such that doppler

modulation cannot be used. Since flae earth

. aspect is t.09 radians (62 degrees)_ doppler

shift is slightly more accurate than doppler

modulation, therefore no requirement for an

.... offset omni can be justified for this one maneu-
Iriqure1.0-10. DooDlerShi,t for Orbit Insertion

vet. During the 2. 13 radians (122 degrees)

precession maneuver from earth pointing to the Venus orbit insertion atti-

tude, the spacecraft attains an earth aspect angle of t.57 radians (90 deg-

rees). At this point in the maneuver a switch must be commanded to change

the communication link from the aft omni to the forward omni. Since dop-

pler shift is most accurate at 1.57 radians (90 deg_'ees) attitude, it is con-

venient to stop at this position, switch the omni, and execute the 1.0 m/s

AV for attitude determination. The precession maneuver can then be

continued open-loop to the VOI attitude with confidence in the accuracy

which assures the proper attitude for insertion.

Both doppler modulation and doppler shift have been used on

Pioneers 10 and 11 for attitude determination verification. No new ground

capability or software is required.

10.4 ATTITUDE CORRECTIONS

Pointing requirements for science and communications, when com-

bined with solar torque spin axis drift and earth motion, determine the

frequency and n-agnitude of attitude correction. In the case of tl_e probe

mission, essentially no attitude correction is required until day 50 when .j

the spacecraft becomes an earth pointer. Tracking of the earth then ]becomes the governing factor, since drift rates are generally iess than

0.0014 radian (0. 08 degree) per day. Orbiter drift rate near launch is

about 0.009 radian (0.05 degree) per day, increasing to 0.0019 radian

(0. t 1 degree} per day at Venus orbit insertion for the Atlas/Ceneaur, as

shown in Figure 10-11.

Science pointing is not a constraint on absolute pointing accuracy

since attitude determination accuracy meets the science requ*, ements.

i0-15
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_,, PROBE •-e

(MEAD/DAyj {DEG/DAY) (DEG/DAy, tMRAD/DAy,

-1.40 -0.0$ .4 7,0 !

ol.yS -0.10 .2 3.5 I

-2.10 -0,13 0
30 40 60 80 I_O | 2'

DAYS

(MJ_D/'DAY)' m+,,_./mAw ORBtTER
_. Io .... , _-' (Dt.=G/DAY+(EAD/DAYI

I

1.75 0.10 ..... _ ............................ / !.C 0,035

.6 0.029
1.40 O,Oe

\

1.0$ 0.06 J _ J .2 0.021

0,_ ..... J0,_ .4 0.007

'---"EARTHTRACKING0

t o
00 _ 40 dO _ IO0 120 140 160 tim 3OO

OAYS

Fiqure |0|1. Prec_ssion RatesDue to Solar Pressure and [a-th Irackinq

The attitude accuracy is easily determined if earth aspect angles are

small [0.70 radian (40 degrees)] for doppler modulation or within the

0.17-radian (t0-degree) conscan range. Thus, absolute pointing is

constrained by communications, since beamwidths are in the _0. Z 1 radian

(+i2 degrees) range for the medium-gain horn (probe mission and orbiter

aft pointing) and _:0.06 radian (+3.5 degrees) for the higF-gain dish

{orbiter forward pointing). Earth motion ranges from 0.005 to 0.009

J0-16
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radians (0.3 to 0.5 degrees) per day for the probe mission. For com-

munication on the medium-gain horn, the earth-pointing attitude need

only be corrected weekly, since the beamwidth is large ce._npared to the

earth motion. For the orbiter, earth ruction varies from about

0.007 radian (0.4 degree) per day near earth to a peak of 0.0Z3 radian i

(1.3 degrees) per day early in the orbit phase. Communication can be

maintained within the 0. iZ radian (7 degrees) high-gain beamwidth by

correcting earth pointing at 5-day intervals. Corrections for solar torque

drift are nearly an order of magnitude less than correction for earth

pointing. However, the motion caused by the solar torque describes a

cone about the instantaneous sun line. For the small drift magnitudes

between attitude corrections, this motion is _bserved as motion perpen-

dicular to the ecliptic plane and the earth motion.

Attitude corrections for both earth motion and solar torques are !
1

readily made either by a stored program in the program storage and I

execution assembly (PSE) or by using the fixed angle precession logic i

and the stored command capability. Daily corrections can be made auto=

matically via the stored command capability by having the stored com-

mands recycle each 24 hours. Closed loop (conscan) can be selected in

place of open loop precession to maintain earth pointing of the high-gain

antenna of the orbiter. Gonscan is primarily used for attitude determina-

tion, but can be used for closed-loop control to maintain the antenna

pointing on the earth ifdesired.

10.5 GROUND STATION SUPPORT REQUIREMENT

t0.5. i DSN Support ALL CONFIGURATIONS

DSN support requirements are determined by spacecraft bit rate

capabil:ity and the times of mission critical events. These include mid=

course maneuvers, probe deployment and entry, Venus orbit insertion

and periapsis maintenance AV. Figures 10-1Z and 10o13 show the bit

rate capabilities. For the probe mission, operations are performed

using only the Z6-meter DSN until the third midcourse and the probe

deployment sequence. For the orbiter, the 64-meter DSN is optional for

data acquisition while on orbit, but is necessary for communication during

the flip maneuvers, Venus orbit insertion, and the third midcourse.

iO-i7
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• ,I: i-' ": -,

• " " = Z
E

I f , d i
i I'_,4 ....... _ t,4 _A! ll* r sb_

t 25_

m I _( 5LII_[M[ _T

O. 0 ] ' / L:'. _ ( _ul 4 _ __ " ' : " 1-- " a_O

RANGE u 1
_Ad

_At,IOE

I._lJ 14,y_ _9_7_ (C GAME'fiRS _ ..... .......... _.j (_,lCAhatTERS;
T4._6 14( .60 299.20

Fiq_re10_3. _ii R_eCat._bilityProfilefor ProbeMission Hgure[O-IL Bit RateCapabilityProfilefor OrbiterMission

10.5.2 Interference wi_h Other Missions

Th<, DSN nmst bc shared with other interplanetary spacecraft.

Those pr<,scntly known or possible for on-orbit operation in the late 1970's

include Mnriner-3upitt, r-Saturn (MJS), Pioneer I1, Pioneer Saturn-

Uranus (PSU), Pioneer /upiter-Uranus (PJU), and Viking 1975. Of these,

the Viking t975 and Mariner Mars missions will have been essentially

: completed prior to Pione¢,r Venus launch and will no longer be requiring

extensiw: cow:rage. Other surviving spacecraft using the DSN might

include Pioneers 6 through 10 and Helios. Possible PSU and PJU launch

windows (,ct:ur in late 1979; however, these follow the nominal Pioneer

Venus end-of-mission b_ about 3 months. A Mariner Mars might also be

launched in the late 1979 window.

Those interplanetary missions19'B t979

:J!F IMIAIMJ Ii j :A S jO;t'l'iL_ _ i_ jMIA[_[J _J iAJ slolNI_
.......... v, hich significantly overlap with

e._J'_ "d JUPIII:R FLYEY

'""<" Pioneer Venus are shown in Figure

J * "r _': ''_ _ _. ,O$SI,I,SA.I.U,N I0-14. The Jupiter flyby would

_lOt.I[f_ll _,_c_UrNCtIHl_*.... _-,-,...,_ coincide with the middle of a 1978

_u.c. orbiter mission, and the Saturn
l, 3 J I_

_ t,t,_c, flyby of Pioneer tl might interfere
Hqure1014. Interplanetar,Missi0nOverlap

w_th the end of the orbiter mission.

The rclativ,.]y short _luration of a planetary flyby (about 48 h._urs) would

n_t :_i_nifi('ant]y p('rturb orbiter operation. One orbit of data can be

_Lored on board and ¢lump_.d in 3 to 4 hours using only Z6-meter statior, s;

iO-i8
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. /,_., .... .......... _........T........... .':--"--_-_ . ;_
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......... therefore even if the 64-meter stations are dedicated to Mariner or

Pioneer i l, no major operational difficulties are envisioned from inter-

ference with these missions.

10.5.3 Support Software Modifications

Because of the great similarity between Pioneers l0 and l! equip-

ment and that selected for Pioneer Venus, a quantitative measure is

desired of the usable portion of the software.

One possible measure of the required modification in the Pioneers

t0 and II software to adapt it to the Pioneer Venus spacecraft was obtained

by examination of the Pioneers 10 and II CRT telemetry displays f:om the

Space Flight Operations Facility (SFOF). Each item was examined on 11

of the display formats to determine which items would be totally unchanged,

modified, deleted, or added. By definition, modifications were limited to

scale changes (e.g., temperatures) or name changes (e.g., experiment ]
J

acronyms). All other changes were considered as deletLons and addi-

tions. Deletions were caused primarily by RTGts_ star logic, command

memory changes, and sequencer deletion. Modifications were caused

primarily by experiments and temperature ranges, and probe/orbiter

only related telemetry. Additions were caused by the solar array power

source, additional thrusters, and the new stored command programmer.

The study results tabulated in Table 10-2 showed 51 percent of the

engineering telemetry was completely unchanged, with 25 percent dele-

tion, !2 percent minor modification, and 12 percent addition.

An example of the display modification is shown in Figure 10-15.

This subsystem display (attitude contzol) is typical of tile displays to be

modified in that about 50 percent of the items are unchanged, however,

there are a somewhat higher number of additions and deletions than

average. Only engineering telemetry was examined. All science telem-

etry was assumed as new, but was not included in the totals shown. An

independent study was performed to determine the usability of the Sigma 5

EGSE software of Pioneers 10 and 11. This study showed that about

60 percent of the engineering software was directly usable.

i0-t9
P

!'t

00000005-TSG09



ALL CONFIGURATIONS

Table I0-2. Telemetry CRT Display Modifications

l

MINOR ADDITION
OK DELETION MODIFICATION

LAUNCH SEQUENCE -= 22 .....

RF/C DU/DAIA 35 2 15 5

CDU/DATA 2; 13 -- 12

POWER NO. 3 t9 16 15 9

AC S/PROPULSION 42 20 5 22

ACS REGISTER STATUS 22 ......

SPACECRAFT STATUS 41 6 1I 2

CONSCAN 17 1 ....

IHERMAL 17 12 8 4

RTG -- 25 ....

GROUND DATA 17 ......

237 117 54 53

PERCENT OF TOTAL 51.4 25.4 11.7 11.5

_ MINOR MODIFICATION

_ DELETED

SC-.;'4[*$'.',-$I,:_9:._3°o2196-7_F0_r,l_T_,i,7!,F,?=3)_,Zi='Rt.'_PSL_S'rSST_TU
ADD FOUR MORE EACH
(TOTAL EIGHI) OF IHRUSTERS,
COUNT DISPLAYS

,,:._D 15 . ,

_'ll'_ T 2r _ NrI_ A'rr,'ELT2,: '!' '_;'LT2F'";_ l_' fiVF'I2T 41_7,1B ItCHANGE

._""_T.'_r_, _'l_'I__VELT_: ,::_:LT3F'Ci 'i,/.i',tPt3t467,I8 jIR._NGE
II

_,_'F'T4F;hFI_ _VELT,i: I'.__':LT4F'C; _? _VPT4T 72s,sz.Ij

// . . .... -_ • . o .

E GHT IND V DUAL -_- , ,,.. I?-.-.-.-.-.-.-.-.-_T_7,,_") t _ _ r-_"-'_-_

INDICATION$_'_HK _ _ _ / //

_¢L_':, NIDPH __PSG_*RS@ / _P£,,: !$.00S62_SPIrl_K 5.9%6,:,
MODIFY;
NO STAg.
SELECTION

flgu_ 1.0°B.ExampleofC_1l'e_e_t_ O_sptay

iO-ZO
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10.(, PROBE DEDI_OYMENq' SEQUENCES

10.6. 1 Prob(, Target Selection and l;t,.lon>,, Slv.:t_,. _,

'Fo ,Jhl,.dl, a c(,_l-effl.clivc and v,'Jital,.l, '._:;} ,_, :_c'_,i;_'_ , ,,..iJ._iz:l:-.

co_lpatiblc _ with the ,_cicncc. require, monte; have i_ .,, _i,.tin. J _J_i , t_tv,. :-:i(,

uclcciion. Thesc constrgtinls deliria. ;_ (:r,,::;,_,n_ ,:J! i,,..o ]}l;{:_i,,i ,_ul!acw :iS

slto,_,en in ["i_4ur,' ln-lL. The upper od_yc c-,:,'lutlos ,._vrv ._it,,:-: havinp (onl-

municaliorJ ztnglea gr,:a!.ev than 0.9,, radian (;:> (Jt.grt,_ s}. 'tlit ),Jw..r trip,,

eliminates sites having entry angles Slot.per than u. i9 radian (45 dt,gre('s),

Tl,e communication angle constraint implicitly requires that entry a_glos

shallower tha_ 0.44 radian (g5 degrees) arc excluded.

SI_11tLTAN{:OUS RIL !,_St

&%{:NIRyL# -II_ _PI
•3M S_2
.I$_ St3

ANGI-[ OF _JTAC_ g,_A× .I 87 _;_AD'5_ i'_ '_

3{:_Ot N _lat RLL_AS_
0.79RA.'_

DIG _tEI_TRYLP OM SPI

'Y0M 51'3

ANC,tL OF A_T_,C__X 0.'J3 K&;.! ,2 DLW
0.70 RAD

,-_0 Di:Co

0,6}RAD
IO SUN "I-35 DEC,,

L22 RAD
_'0DEG_ FROM
0.96 RAD SIJBEARWI
_55 DEG

0.52 RaO
,-:10DEG_

0.44_D
i-25 D_G)

I._ PAD (70OEGi
FROM SUN

Figure10-16.PrObe[nlryLocationsforSimu!tanmusorSequentielRelease

Probe deployment can be performed with either simultaneous or

sequential release, Sequential release requires tha! the center of mass

of each probe lie in the same plato _s the bus ccnler of mass in order Io

maintain alignment of the principal (spin) axis b¢.twcen deployment.

Other alternatives can also be selected, including

• Probe entry site selection

• Spin ra/e increase prior to d¢,ployment to minimize d,:.ploymcnt
lipoff or solar torque induced error

I e R.etargcting to control individual probe entry limcs.

10-_'1 , i

• .7: ...... '........ '......... _ ....... .....:: .......... _ ._, ,,,;_ :::_'r : ;7"%7" _,:=_- " ": '= :,:""::: :i: _.,e:= .. : , u , _ , ..... .--_.,-., :. ....... :...:,.............. _ , .,

................................... _"--'-'_-_" " ..... u';_,_'_-'=-_-2>_.{.,,Z:_{_::",:,JX t_>¢;__:: " ,,_w,,
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Sequential release is an cxt.romoly fl.oxib]o d,,ploymonl mode which

permits the acquisition of any sot of earg_,t :_ite_ within the crescent while

obtaining zero angle of attack for each probe. The probes enlor with

solar aspect a,lgles varying from 0..62 to 1._2 radians (3[} to 70 dogrees),

but this variation may he accommodated with identical thermai controls

on each probe. The probes may be released at any desired spin rate.

Finally, the bus retargets may be designed so that all small probes enter

either simultaneously with the large probe, sequentially two at a time, or

at individual separate times.

The simultaneous release characteristics are also indicated on

Figure 10-16. To obtain a reasonable system the probes must be released

at essentially the same attitude. This causes non-zero angles of attack

(_) to obtain a spread of entry sites. If released 21 days from Venus,

the 01= 0.87 radiRn (50 degrees) pattern required a spin rate of Z.04 tad/

sec (19.5 rpm)0 _tLe times of arrival are different, as indicated, if

maximum coverage is desired. The solar aspect angles are identical,

which simplifies the thermal control problem.
I

Sequential release with entry two at a time appears to be the most

desirable deployment mode because of its characteristics of flexibility,

low spin rates_ zero angle of attack, and entry _ime separation. This

method combines the science benefits of simultaneous entry with opera-

tional ease and multiple ground station coverage. Retargeting and deploy-

ments can be performed to control the times between each probe entry to

simplify the ground communications lockup.

10.6.Z Probe Release Timeline

The operational timelines of sequential and simultaneous release

are essentially the same0 with sequential release requiring a repetition

of several events. The ground system operation_,l timelines must cover

the following functions:

* Orbit determination: conservatively a 4-hour task for both the
orbit determination task and propagation of the best estimate
state vector.

• Bus targeting analysis: conservatively a l-hour task to derive !

the timing, AV's, and attitudes if tracking data is available. [
[
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• Detai, ._t.quoltce and command generation: conservatively a
6-hour t_sk to gi, nerate detailed coi:_irnand sequences, validate
lho _oquoncos against system performance capabilities, validate
actual cot/lllland '_tructurc_, and hold command conferences, as
required. This will normally be done the day before the owmt.

• [to]on_;t and validate commands: conservatively I hour to
release commands, validate, Transmit, and verify, and retrans-
sit if required.

s Spacecraft irrlplomentation: conservatively 6 hours to precess,
verify attitude, correct attttude, execute AV (or probe release),
and unwind to cruise attitude. Four hours from start of preces-
sion to execution is assumed.

The baseline design provides retargeting _nd probe deployment

maneuvers to be performed alternately every 2 days, as shown in Fig-

ure 10-17.
30 THIRD IvlIDCOURSE - 0.79 RAD (45 BEG) PRECESSION, 2 M/$ AV,

0.79 RAO (4S DiG) RETURN

29 FRESEPARATIONCHECKOUT# FOUR PROBES

105 - 79 PROBESI"ATUS, PROBEAND BUSRETARGETING ANALYSIS

25 SPIN UP TO 1.05 RAD/S (10 RPM)

LARGE PROBERELEASE" 0.42 RAG (24 DE(}) PRECESSION
0.42 PAD (24 BEG) RETURN

RETARGETNUMBER I - 0.96 RAD (SS OEG) PRECESSION..1.21/_/$ AV,
0.96 RAD ($5 b._G) RETURN

5

21 REtEASESMALL PROEE I " 0.55 RAD (31.5 D/G) PRECESSIONm0.5S It, D (31.5 DECl) RETURN

19 RETARGETNUMI_R 2 - 0.61 RAD(35 OEGI F'RECE$SIONe
16.1 M/S AV, 0,61 RAD (35 OEG.) REIURN

17 RELEASESMALL PROBENUMIER 2 -0.76 RAD (43.5 D[GI

120 .... PRECESSION, 0.76 PAD (43,5 BEG) RETURN

15 RETAgGETNUMOER 3 - 0.09 PAD (S.0 DIG) PRECESSIONe 6,12/v_ AV
0.09 IU_0 (5.0 BEG) RE1URN

13 RELEASESMALL PROBE3 - 0,24 RAD (14.0 OEG) PRECESSIONr

125 0.N gAD (II.0 DEG) RETURN

II RETARGETBUS * PRECESSION 0.45RAD (25.8 DtO)_ 25,7M/S AV
0.4_ '_AO (25.11DEG) RETURN

PRECESS1'O ENIltY ATTITUDE AND SPIN UP TO 6,28 RAO/S

13C -0_.._ _ (60 RPM)

Figure10-11.PrOpulsionfwnlstlmetlne

Typical precession and &V sequence: arc given, although the system

flexibilitypermits many options. The sequence shown provides simultan-

eous entry of the large probe and one small probe, followed I.5 hours

later by the other two small probes, with bus entry i. 5 hours later. Slight

/O-Z3

t
I
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liiodifictition _If l.ht., soc,lnd rot.a, rgoting in this ..._l,quon,.<, (,l,._r,,z,:-,, ii, /$V 1,,

i_° 8 ri;/;:) '_v,_utd porn-itt ._hnultan¢,ous ,.n ry c,f all })r_fi),-:_ Itl].:lt_.,.tl i_,. i_,

!_i°,Jli, - btt:_ hi ._ll -ddiliol]_l I. !] hour:., t.]ntry _t',i_-i-,. ,..!::_., :',., ,._:. ,_.

71il IF

li:,lly j,*._t prior l,i ,';,c'h l_r,)b_ rtdea._t:. Method 1) i.s; d,.,-.i_'i.dit* Ill,, Jl lit'l,..

vid_ _La,LLt_ fray_"&ll i_ur praha._ at o;l_: thitt:, tlli,i°,-'by pr*,vidiltg ii,+,:'_- ,,,-.-_-

billty to l'cassign rotargt,ts for the probes in the _'v_:nt ot7 anonialit::_.

A lnini-.timclino for a probe dt:ployment and r,,la rgt,t i:; giv,,n in

Figure 10-t8.

(eEl} TR|MATIITUDE _V, _.5 MIN

INIItAL i_OSIIION (IF REQUIRED) //
_RAI)I A/TI rlJDE. DE|FJI_INATION _ d

'?1
b

°""-
m 0.70- 40

MAN_UV[R

I )

0.35 20

_IIIIUDE T_iM
EAR|H A$_T 2.72 RA(I

0.17 10 I Hl_(1_ REQUIRED) (156 ID_G)

0 0 t l i
! 13 H,t I_S

_IME _I,AY$)

*P|RFO_MAINCE IL_; _.G[.

PRt'CESSION STl_t $17E : 0'0g; tO 0.014 PAD (0.4 10 0,70 tM:C,)
PF_I_ Nt,ffAIION : 0.0)3 TO _.92 RAb (0.?$ tO 1,25 DEG'
WOlfE DAMPING Tlht CC_ ;_iA;¢l _ 10 10 40 _IN
ATTIIUD! A(..ltil,_,CY _ 0 017 RAD (I DEC ) Io'
F_OPELLANT &V 2.v KG

Iv_EC_ • 0.6_ _,G

ri,jum lO-l&Pml_Oelq,ymnlTIl_'in_

The probe r,_lease s,zquence _.iine allocations arc, based on P_oneers

10 and t l 2i_ hi: .'_i_dc.,.,ar,e r_a_,:,ver_. Th- probe release and rettlrgeting

_s performed ident'cailv to the F_ioneer._ '.0 and 11 r:'Adco,_rse, which

.;:llows _:ornplete gi'ound cc_.tr'_l and rtonitoring of a)l pl,ases of the Inaneu-

v_.,:',However, the ooer. loop approach i,._ a ver'_ ,;onscrva.tTv,. tnetbod

wh_...':h provides thr ba,:Kt:p of continuing to ,.'xecute tht, pr,:programtt_c,d

1-_ar:euvt_,r a_;.'.on,atically even witho,,t ground intcrvent_on or conta¢:*-.

Cm:Linuouv "nonitcrine pe_'mlts i-',, oper:it.or to ].ntvrrt'pt the rna, l_cuvt, r,

det_r.-._ine at*;'_ude, and enake r:tarlg,,_ tit ¢orr(:.ctions 1D either poi_,iing I

,3-.Z4

.......:'c'_i?-__ " -- t
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direction or AV magl.itude to irnprove accuracy if desired. In a con-
tingency situation,, release (or AV) times can be delayed. AV trim can be

done in an arbitrary direction while in the release attitude if desired.

Maneuvers are performed every other day, and car, be performed

during a reasonable working day. Considerable time (2 hours) is allocated

for delay prior to the _,,r and each precession in order to minimize wobble.

As will be shown, all probe release maneuvers and most retarget maneu-

vers are on the order of 0.5Z radian (30 degrees) and can be performed

with high accuracy [0.02 radian (1 degree)] with only open-loop maneuvers

and on-orbit calibration, which will have been supported by the midcourse

maneuvers.

The timeline shown is for a nominal probe release seq'-_ence, and

the worst case retarget maneuver. The sun aspect angles lie generally

between 0.44 and 1.05 radians (25 and 60 degrees) for the entire deploy-

ment and retarget sequence. The conical array power capability and

thermal design concepts are totally in concert with the leisurely deploy-

ment and retarget times for these events.

Figure '9-19 shows the locations of the spin axis during the entire

probe deployment and retarget sequence projected onto a unit sphere

about the spacecraft. Using the probe bus as an earth pointer during this

period permits maximum communications utilization prior to maneuvers,

and is an excellent starting point for maneuvers because the precession

magnitudes required are reasonably small. Two options for mission

operations are apparent. First, maneuverv can be minimized by orienta-

tion to a position (say the large probe relea::_), ex'ecuting, and staying

there until the 1]ext maneuver two days later. The next maneuver is the

first retarget, which is only an 0. 14-radian (8-degree) precession. The

spacecraft can now remain in this positlon until time to maneuver for the
t

first small probe release, again a short maneuver. This process can be

continued for the entire sequence, since the baseline design pe_'mits the

resultant sun angles for indefinite periods. Power and therm designs

are ideal for this process. However, if high bit rate communication

" using only the Z6-meter DSN is desired, the second option can bc used;

: that is, the spa cecraf_ can be processed back to earth pointing at any time

(aft of spacecraft ',> earth}.

I O-25
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Figure 10-19. StereographicProjectionShowingAngularGeometryDuring Pmhe
Bus Cruiseand ProbeDeploymenland retaffjeting 15_neuver_

As part of the overall study, bus configurations which cruise with

the spin axis normal to tht, sun line (nominally normal to the Venu_ orbit

plane) have beeu considered. With the baseline modified earth-pointing

approach, all probe release maneuvers are s_.ot'tened co_iderably com-

pared to a spacecraft with spin axis no:real to the V_nus crbit plane

during cruise.

I0.7 BUS AND PROBE ENTRY DSN COVERAGE

For the multiprobe and orbiter missions, the bus and probe entry

phase imposes the most severe requirements on the utilization of the

DSN, receivers, recorders, and personnel. This section discusses the

entry phase impact on the DSN and recommends a bus /probe /DSN con-

figuration that utilizes the DSN capabilities to its fullest with maximum

probability of mission succees.

One of the early study constraints for probe, t,ntry h:td beer' a doubly-

differenced very long baseline interferometry (DDV I,BI)_ ,:.'xpertment"that

)O- ,.6
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.... desired near-simultaneous entry for all four probes, with the bus entry

delayed about I hour. With the initial requirement for a 1977 multiprobe

mission the 64-meter DSN coverage consisted of Goldstone and Madrid.

Additional non-DSN coverage was possible with the Arecibo and Haystack

antennas, one of which wa=_ required for the DDVLBI experiment. With

the simultaneous probe entry sequence, there were not enough receivers

at each 64-meter site to track each of the probes and the bus in real

time and provide a predetection recording capability, which requires

another receiver operated in an open-loop mode. A recommended DSN

configuration for this simultaneous probe entry phase was defined and is

discussed in Appendix 10B. The Version IV science payload definition,

which delayed the multiprobe mission to t978, changed the optimum DSN

entry coverage to Goldstone and Tidbinb_lla, eliminated Arecibo, and

weakened the requirement for a VLBI experiment. Figure 10-20 shows

the DSN station coverage for the 1978 entry. These changes, along with

a desire to improve on the redundancy of the DSN probe entry tracking

capabilities, opened the door for consideration of a sequential probe entry

s equerlc e,
qRAD, IDEG_

1,7s-_=I'-"---"3_-- "-*nlv*t I t ] i
/ | I !
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Figure10-_ TrackingStationC_er=jef_ 19/8ProbeMission

With sequential probe entry more than one receiver at each station

" could be used to track each probe. The preferred configuration discussed

here recommends two-probes-at-a-time entry; first the largo probe (LP)

10-Z7
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and small probe one (SP1), then 90 minutes late-_ small probes two and

three (SP2 and SP3)t and finally another 90 minuies later--bus entry

(nominal end-of-mission, EOM). The entry timeline for the bus and

probes is shown in Figure I0-21. Tile transmission periods and station

receiver utilization show that two receivers (Blocks TII and IV) per p,'oL, e

at each 64-meter station are used to insure redundant tracking. A 20-

minute interval is allocated between LP/SPI _.mpact and SP2/SP3 entry

to account for any arrival time uncertainties and possible post-impact

transmissions. At approximately 30 minutes into the SP2/SP3 descent

1 hour before bus entry) a Block IV receiver at each 64-meter station

should be switched to the bus as the bus entry high data rate mode is

activated (1024 bits/s), requiring the 64-meter antenna. Also, the

Block IV receiver is desired to use its programmable oscillator capa-

bility to track the bus through the high doppler buildup during entry.

HOUIIS FROkqLARGE PROIR ihl_y -3 -2 -I 0 ! 2 3
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• THE LARGE PROBE(LP)AND SMALL PROBENO. I ($PI) ARE • THE LARGE PROBEAND SMALL P_OIIE r,l*". I HAVE IMPACTED
TRANSMI'ITING DURING THE ENIRY AND DESCENT I_dASE. AND SUPPOSEDLY C_ASED TRANSMit II,,'.G.

• U_LINK TO THE LARGE PR(_•E IS MAINTAINED SY T_'IE • SMALL PRC)I_ES2 AND 3 _F'2 AND $P3) _RE NOW IN THE
GOLD'STONE 64-MI_TER DISH. ENTRY AND DESCENT PHASE.

• I'_OoWAY COMMUNICATION WffH THe, PROM BL_ iS MAIN- • TWO-WAY DATA COMMUNICATION _t 64 BIT S WITH THE
TAINED WffH THE GOLOSTONE 26-ME' ER DISH AND A RLOCK _OIE I_US tS STtL£ NLAINTAINED FY THE GOLOSTONE 26-

III RECEIVER, METERDISH uhrrlL I HOUR BEFORERtJSE_'_RY, T° _. 120.

• PREDETECTIONRECORUi; !_ (PDR)OF PRG_ AND BUS • PREDETECTION RECORDING OF 8U_ AND PROBESIGNALS
SIGNALS IS ACHIEVED WITH J'HETHIRu ,_-I-M['tER BLOCK lit IS CONTINUED.
RECEIVERAT EACH STATION.

• DOUI_E REDUNDAN_ D_MODULAI ION Or: EACH PROIE
•OOUBLE REDUNDANT DEMODULATION OF EACH PROBE SIGNAL IS MAINTAINED UNT!L I HOUR BEFOREIILI_ _NTRY.

SIGNAL IS THUS ACHIEVED IW USING A BLOCK Ill AND IV
RECEIVERAT EACH M-METER (TATION. • AT _ HOUR BEFOREBUSENI1W (to ', 12_ A IL_OCK IV RECEIVER

AT THEGOLDSTONE 64 METERDSS IS SWITCHED FROM $P2 TO
TI'IEBUS. AT TIOBINBILLA A BLOCK IV RECEIVERIS SWIT:._IEO FROM
SI_ tO INE BUS AT 1_IE _ Tfk/_. (THIS IS DONE TO ACCOM
MODA_ 1024 BIT/S AND 10 t_ACK THEHIGH Pile ENVY
DOPPLEROF 11tEBUS, CARRIERI1LA_KING MIGHT STILL BE
MAINTAINED At fftE 26 MEtEft STATION WITH CAREFUL MANUAL
RECEIVERtUNING DURING THE HIGH DOPPLER BUILDIP.!

• THREERECEIVERREOLJNDANCY IS THEP_BYMAINTAINEU ON AlL
PROMS.
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three-way) tracking is maintained from the Z6-meter station. All real

time downlink tracking and data recovery is fully compatible with the

existing DSN receivers, subcarrier demodulators, symbol synchronizers,

and data decoders. Only predotection recording for off-line proccssing

..... may require the implementation of nonstandard hardware (see

" Appendix iOC).

i0.8 ORBIT OPERATIONS

lO. 8. 1 Venus Orbit Insertion (VOI)

Venus orbit pa_,-neters depend primarily on arrival velocity and

position error, arrival weight, orientation error, timing of the insertion

burn start, and dynamic performance. In addition to controlling these

errors, the VOI should be independent of ground station operations. This

latter requirement is necessary first because the insertion firing occurs

while the spacecraft is in earth occultation, and second because this

mission-critical event occurs at a predetermined time and should not

depend on uplink capability. On-orbit operations for the VOI insertion,

depicted in Figures t0-Z3 and 10-Z4, include precession to the proper

attitude, spinup to minimize execution errors, and commanding of the

AV start. The operations are performed to minimize the above execution

errors while maintaining independence of ground station time critical

commands. Attitude _ -ution errors in the injection AV bays an almost

negligible effect compared to arrival velocity, position, and weight

errors. Orbit period is the parameter most strongly affected, and this

is easily corrected with the onboard AV capability.

10.8. Z Precession to VOI Attitude
, J|

The approximate attitude for the insertion burn is about I. 08 radians

(6Z degrees) from hhe normal position such that the +X axis (spin axis

along the high gain antenna) is down O. 49 radian (Z8 degrees) from the

ecliptic plane with i. i2-radian (67-degree) sun aspect and i. 06-radian

(6 i -degree) earth aspect angles. Precession to this attitude and execu-

tion with as much as O. 05 to O. 07 radians (3 to 4 degrees) of pointing error

would result iv satisfactory orbit insertion so that errors would be well

within the spacecraft correction capabilities.

10-30
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SPIN _XtS SUN LOCUS

IIEFOREVOI (S H_MISPHEHE)

200 _3aRAr AT VOI
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(270 0EG)
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Figure10-23b. VenusOrbitInsertion andO_it PhaseGeorn_try
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rf_t C_.S_IL) /
VOI INJfC lION

AIIIILIIK -
vOl - 2 DAY5
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P_O{.;RAMMr R OPERATLON

Figure10-24.VenusOrbiterInsertionSequence

Prior to Venus orbit insertion, the spacecraft nominal attitude is

such that the tail of the spacecraft is earth pointing. A Z,13-radian

(tZZ-degree) maneuver is performed to attain the proper attitude for

orbit insertion. Precession to the VOI attitude is performed using the

o.uen-loop precession capability of the PSE assernbly described previously.

To insure proper pointing for VOI, there are two options: l) precess open

loop from the known initial position and depend on the open loop accuracy

and sun a;_pect measurement, or Z) perform attitude determination at an

intermediate point using doppler shift, Either Gption will yield sufficient

accuracy for insertion, For the second option, the attire: ,e at 1.57 radians

(90 degrees) to earth in the maneuver is used as a stopping point to switch

the omni antenna, and execute a | m]s AV to dctermir, e attitude via the

doppler shift method. The precessi,m to VOI is the_, _:ont,!nuccl u;.'ing the

corrected attitude.

_'s Execution errors in the burn result in three

,, primary orbital _rror._: I) deviation from
_) 0,3

- 0._ t ,,ctum_GcAPamurv nomiD:,i Z4-hour pc riod, 2) periapsis alti.tude
2 _OYNA_tC s

0.1 IDURINGBURN error, and 3} deviation of al'gunlt:nl of periap-
/

a o -- _ ,I _ .J.... _ sis. The AV misatignmt, nt r.,sults prin_arily in
! 2 1 4 (OtO)

!...... L .... -J ........ =.... J an era'or in o!:bittd period; however, t}:c effecto o.0!7 e.o_5 o.otq o.o;'o(_v)

aVM,;at,GNM[NT is small compared to other systcm _,1 l'Or_. In

Hgur_IO-Z_.OmitPeriodtrmr asaFunction
ofPointlngErmr Figure 10-25, the zero lllis,]]ignlllellL intercept

3¢.

'! ............................. ° 00000006-TSA10



ALL ORBITER CONFIGURATIONS

slmws tilt" rt_sult of all oth{.r systt.m _.rrors, with th{. curve stop_' ._howing

the .tdditi_mal period error introduct, d by attitud, ,.rror at ilnjt, ctian.

For option 1) above a capability has been fl nonstrated by Pioneers

10 aad I I :,xperienct_ for prec__,s_ion magnituae a;:curacy of 3 percent of

.... th(_ m_nev.ver length. For the VOI maneuver, the direction of precession

is knows within 0.013 radian(0.72 degree) (3if), while the magnitude error

is 0.06 radian {3.6 degrees) [3 percent of 2. 12 radians (122 degrees)].

The sun aspect sensor permits measurement of the sun aspect angle within

0.003 radish (0.2 degree) and this measurement provides an excellent

check c,f the open loop precession accuracy. Error detected in the final

sun aspect should be attributed to rhumb line magnitude and corrected

accordingly, Option. 9.) for precession a_ctitude determination is to per-

form a srr.all AV maneuver (t m/s) at an intermediate [ t, 57 radians

(90 degrees) earth aspect] position and determine the earth aspect angle

by doppler shift measurement. At the VOI attitude, this method provides

..... attitude within 0. 036 radian (2.04 degrees).

For either option, the effects of the relatively large attitude errors

permitted during the injection burn have an almost negligible effect on

orbit parameters.

t0.8.3 Stabilization Spin

To stabilize the spacecraft during the VOI burn and to overcome

disturbance effects caused by the injection engine, it is necessary to sp_n

up to approximately 6._-8 rad/s (60 rpm). The dynamic analyses of

Section 8, 5 show that the AV dispersion will be less than 0.0Z 1 radish

(t.Z degrees) worst case. Again, this error has a negligible effect on the

resulting orbit parameters compared with arrwal errors. Spinup of the

spacecraft is performed by ground command. Since the spinup and pre-

cession orientation commands cannot be time critical, it is necessary to

have the capability of orientation and spin up for days prior to the inser-

tion b_arn. The conical solar array spacecraft design provides the capa-

bility of remaining at the insertion orientation for an indefinite time. At

6.Z8 rad/s (60 rpm) solar drift would be less than 0.0018 radian (0. 1

degree)/day for Atlas/Centaur, such that orientation to VOI attitude and

spinup can be performed a_ much as I week prior to VOI.

t0-33
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IG.8.4 VOI Solid Rocket Motor I_nition Command Control

The so,lid rocket motor (SRM) ignition command must not depend eta

ground station timing for its execution. Furthermore, no fiingle failure

should prevent proper command timing and execution. Timia_g sensitivity

studies (Section 4.3.3) indicate that it would be desirable to execute this

mission-critlcal command with an accuracy of about 15 seconds.

To obtain the desired accuracy without dependence on ground station

commands, an onboard programmer is required. To meet the failure

mode criteria, redundant commands are also required. The onboard

stored command programmer has been designed using dual independent

command channels each containing an eight-command capability No single-

point failure can cause premature firing of the solid rocket motor. The

ordnance arm and fire commands are separate, with both required for

engine ignition. The design is equivalent to quad redundancy (see

Section 8.4).

The stored command programmer design permits the load of com-

mands at ground station leisure, with start of countdown for command

execution as much as 1.52 days pr.iar to VOI. Longer storage carl easily

be provided, but the 1.52-day capability war._ assumed adequate in view of

likelihood of multiple (three) ground s,_ation coverage, although on1¥ one

is required. Of the 16 command capab'.lity provided, only four are used

for SRM ignition.

10.8.5 Periapsis Maintenance

The baseline orbiter trim strategy :s to keep periapsis altitude

within a band from 200 to 400 kilometew. Parametric analyses show

that the total AV time does not increase significantly when the pex iapsis

altitude control band is reduced to 25 kilometers. The number of maneu-

vers required to keep per;apsis within the control band does increase as

the control band is tightened. In fact, there is a significant increase in

the number of apoapsis maneuvers when the control band is decreased

from _-100 to _Z5 kilometers. This effect is shown in Figure 10-26 Con-

sequently, an adaptive strategy would be to control periapsis altitude from

Z00 to 300 kilometers or even lower, provided the additional fuel required

is available. Although the baseline fuel loading does not include the extra

10- 34
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Figure 10-26, Peflapsit Maintenance Altilude Varlal_. [g,_t¢

fuel to provide this option, there

is a very good chance that all the l x u_co_uo_ em_es_s

' midcourse maneuvers will not /

/
require the AV load for each I

I

maneuver. Thus, the additional I
• /
.... trim maneuver fuel could come I

/
from the excess. Fur thermore, _ I

_. the fuel tanks have been pur- "-/'_//
l

posely ore rsized _o that weight /
ntargins at launch can be used _ II

I
to provide extra _tV capability. _ I

_i _he baseline trim strategy in- /
cludes four AV maneuvers which /

!

occur on days 0,60, ItS and t80 /
/

after Venus orbit ineertion, as _, ,I _ ,.... ,_ _ .

shown in Figure IO-Z7. These I ! /, / .... _ _, / . _,_.s,s^t._o_CORR_C t_O W, THIN
I | iI , I II I
I ] _ ! ' I / ! / ,_0 t'O _00 K_ RANGE

maneuvers are nominally per- = ; , ! : , : ,, ,.Av_.ws
li / |i , / '

"" formed at a.poapsiswith theAV - , : iI. ' ,"
_//__ ,,.,A.._AL,,,UO,direction along the velocity vec- _ CO.tCTrOw,m,N

tor. There are a number of ._-L___L,, _n_.__L______V,_S

options for performing the first _vs_eo_vo,Figure10-21.Pedal)sisAltitudeMaintenance
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!

periapsiq AV maneuver including all th," tJption._ di._cussod ;n .q_', tion 10.2.3.

"iht, st, include:

• Prvcess spin ;Jxis Io ;tpoapsis velocity dirocti,)n, t'x¢._:ut,. AV
with axial thrusters

• Prc'cest_ normal to apoapsis velocity vector and perform /W with
radial (spin) thrusters

• Perform AV using components.

The latter option is most desirable for all periapsis trim maneuvers other

than the first (day 30) since the downlink omni communication capability

runs out after day 37. An additional alternative exists for the third peri-

apsis maintenance AV when the spin axis is nearly in tlLe orbit plane f142

± 3 daysL The AV can be. imparted using only axial thrusters alo'lg the

velocity vector at a true anomaly of 3.02 radians (173 degrees); h _weve_-,

the AV magnitude is increased from 12 m/s to about 20 m/s h_ thi:

strategy.

The selected approach for pe,iapsis maint," nar, ce is to maintain

earth pointing orientation and execute the dV by components, usiA_._ the

pulsed, radial thruster AV tAV]SCT) for the lateral component, and the

axial thrusters for the earth line component. This method is completei_

discussed in Section I0.2.3.

10.8.6 Attitude Correction_ _-'A/C |11 _:_-A/CIV

Attitude corrections to maintain earth pointing are dominated by

earth motion. Small corrections are also required to correct for solar

torque drift which is an order of magnitude less than the earth motion.

The earth motion and solar torque drift are shown in Figure 10-28.

Corrections can be made using the PSE, the fixed angle pulses, or con-

scan as described in Section I0.2.3. Corrections need only maintain

attitude within the antenna beamwidth, which varies from about ±0.27

indians (±12 degrees) early in the orbit phast_ (medium-gain horn), to

aoout :tO. 01 ? radian (:tl degree) at the end of the nominal mission. The

frequency of attitude correction varic_ fr_m_ alternate wt, oks at the start

of the orbit phase to every 1.5 days at pt, ak eorrt, clion titnt, v, while com-

municating via the high-gain dish.

10-36
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J

0.0021J 0.12 !! ]0o021 i

O.GO|4 0.06 0.014

0.0007 0.04 ..J0.007 i

O- 0 t 0
200 240 260 320 360 400 440 DAYS FROM LAUNCH

[ 1 I I I I J
0 ,lO I10 120 160 200 240 DAYSFROMVENUSO._TINS.nON i

Figure10-28.AttitudeDriftI_,_,esir C)roitDuetoSolarPressureandEarthMotion

t0.8.7 Orbiter Science Operations and Options ,_AJC
IV

i0.8.7. I Introduction _

Flexibility in orbiter science operations is provided by equipment

that _ _:ormally required for other purposes. The units which provide

this additional system flexibili%' for science operation include the data

storage unit, the command memory, the ram platform, and the earth-

pointing configuration. The flexibility provided is incidental to their

existence, not the cause. The most significant contributor to the opera-

tional flexibilityis provided by the command memory. A i.52-day maxi-

mum time lag is provided for 16 independent commands with 2-second

quantization. One of these commands can be used to reset the command

memory clock such that the command memory recycles without ground <

interruption. A 2d-hour recycle period would permit all science opera-

tion commands that are periodic to be autonomously ope_'ated by the com-

mand memory. This system capability and its interaction with the ground i

stations, the data storage unit, and certain experiments is described in ,,

the following p_ragraphs {• 1

i

i
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10.8.7.2 Use of the Data Storage Unit and the Command Memor]f

Experiment operations are performed with major emphasis on high

data rate near periapsis, Most experiments require higher data rates

within a few minutes of periapsis with much smaller data rates (ifany) at

the higher altitudesshown in Figure 10-29 for the baseline instrument

complement. Switching of experiment data to higher rates begins at an

altitudeof 4000 kilometers (_I minutes before periapsis at Z00 kilo,neters)

with commands to the electron temperature probe, neutralmass spec-

trometer, and ion mass spectrometer. At 3000 kilometers or 17 minutes

before periapsis, the infrared radiometer is switched to the high data rate

mode. The next switch is a power switching to the transmitter driver of

the radar altimeter at I000 kilometers (8 minutes before periapsis), This

is the only switch of experiment power thatmust occur during the Z4-hour

orbit. The lastswitch before periapsis occurs to provide a second, higher

bit rate for the ion and neutral mass spectrometers. As shown in Fig-

ure 10-29, the entirehigh bit rate switching operation is reversed after

periapsis. Since a number of the bit rate switch commands are desired i

10-38
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sil_ult_iil_'lltt,_lvp ih_' _'lliii'_' swiit'hing soqui, ilso ¢;lil lit, porfornlod lilh oilly ii
l'illil t'ilniliiiilld_o {)li lht, first t'Oliilltandt tht' iliagil¢,lonit, lt,r, lit'ell'Oil 4
I t'llltlt'l'liltll't' ill'lille, till i'aviolet stir,or rolllt, l t, r and lht' lloUl rlll _llld low lllitSl4 !

spt, cirolllelers art" swilclled, q'ho secollcl t, Olllin;tild is ust,d for Iho infra- !i
rod i'iidiolnl'il'l" I Iht" third for lllt, i-adar alliluelor lransnuillt, r driver i

power nnd lliglt bit I';llc, i slid the fourlh (_'liich can also be a nlelllory flag) iI

produces the, higher bit rate for tile ion arid neutral inass spectrometers.

Coinmands five litrough fight are ust.d to reverse the above bit rate i

switching after periapsis. A ninth command can be used to reset the

stored command program clock after 24 hours to have the stored program

repeat itself each orbit. Science operations would thereby be completely

automated to run for days or even weeks with perhaps only an occasional

trim of the clock reset time to account for clock drift or orbit changes.

The data storage unit becomes a key operational feature for two i
!

specific situations; earth occultation of poriapsis eventsp and low bit rates

for real-ti,ne telemetry which occur near mission end on the 26-meter
t

ground stations, hi the event of earth occultation, real-time telemetry is !
i

impossible_ requiring stored commands to route data into the DSO for

temporary storage. As shown in Figure 10-29, the maximum bit rate is

440 bits/s with all t, xperi.ments in the highest bit rate mode. If the telem-

etry bit rate is above 512 bits/s, then real-time telemetry can be used

and the DSU bypassed. However, the first 70 days on orbit include earth

occultations within 5 minutes of perial_sis, thus data storage is necessary.

After day 47, the bit rate using the Z6-metor DSN dish drops below 1

512 bits/s; however, the 1024 bits/s capability remains throughout the

mission with the O4-meter DSN dish.

There are several options for data readout once the data iiae been

stored, These include operation with the 64-meter DSN to reduce readout

tituos, and readout in real time of sonle data wl.ili, storing of other expe, -

niont outpuls. The tvlenlory dttmp tinles for the various formats depend on !

the available DSN dish as shown below. !

64-Meter DSN 26-Meter DSN

(alia) (lain)

l,ow altittidt" data 2t 342

lligli altitttde data t2 15i
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The data handling oplion_ int'Itldt. Ivt{) ._c'i_'tlt {' |tll'll1,11 :-;tl'llC|llr_'_

r_,ft, rt't'd lu ,i._ the low _illilud,' and high _llilu(h, I,_ri,1.11.g, whitl_ ,it,, sli),hl

mo¢lificalions of the A l't3t'lll,ll ,llld art, in a(IdiiL_n i,_ the ollicr 11oi'111;11I'ol,-

reals (such a_ the C engin_,ering l:Ol'll111{_}. "l'ilt"St' ,i"t' u.nt'd _ilh ])SU

opL, ration opt iot.s as follow s :

• Low altitude format can t)e used for real-linle data rcadoul dttring
th,, entirt, orbit if the bil rate is at least _ 12 hil s/s. All data

fr,_m experiments operating at high bit: rail, _t periapsis is for-
matted and :ransmitted in real time.

• Low altitude "partial" formal is used at low hi! rates (t_4 bits/s).
Tht, magnetometer, elc¢lron temperature probe and lilt, ultra-
violet spectrometer data (plus housekeeping) is format_¢,d and
telemetered in real time. The remaining science data is stored
u_fforlnatted in tilt, DSU,

• The high altitude ¢ormal presents rcal-lime data lrutn lilt, mag-
netonleter, solar wind analvzer and ultraviolet spectron_eter, all
at their lowest bit: rates. This format is similar to the A/D
interleaved formal of Pioneers 10 and II wilh all dala in lhe ",'_"

section of the format. Large blank spaces (D section) will appear
in *he telemetry.

• High altitude format with real-time data as in lhe item above.
The blank sections described above art, filled with the menlor.v
dump data which is the unformatted (raw) data stored previously.

To summarize the capabilities, a normal st'quent:¢, of operation is

next described for a 26-naeter DSN for an end-of-mission bit rale of

64 bits/s, The first of tile eight stored commands occurs at the ,1000

kilometers altitude before periapsis to change t, xperiment bit tales. Tile

magnetometer, electron lemperature probe, and ultraviolet spectrometer

are formatted and stored in the DSU mt, naory. (If the bit talc is a! lea_l

128 bits/st flais data can also be sent real time.) The data from the ion

and neutral mass spectrometers is also stored, but ns tmformalted raw

data. The second commawd for bit rate change of tht, infrared radiomeler

also adds this data to the memory slorage. Thr third and fourth slored

commands perform similar functions. The eighth commaud no! only

reduces tht, bit rates for experiments, l)ul also switt-ht, s fo the high alli-

tudc formatp with onl_ magnetomelere, solar wind, and ultraviolt, l data

presented in real thnt,. A ground comt_aud I_tusl l)t' ust'd to dump lht,

tnelnory COllt elflS.

l 0 - .le,
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" _ |0.8.7.3 Occultation Experimen_,Op,,ration
....+r"

Earth occultation occttrt+ during Iwo pt, riod_, Ih_, firt+t 70 tlay_ in

orbit plus a sllot'l period from day 12l Io day 1.t1_. TILL, first oct'ullafion

is centered approximately :tt the time ;Ibottl periapsis, with a ,alaxit_ttll_

occultation of 20 minutes duration. The second occullalion i8 cenlt, rcd at

about 75 minutes before periapsis wilh a t_aximum duvatiota of about

96 minutes. Figure 10-30 t_hows lhe duration and altitudes of lhc
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The earth-pointin_v orientation of the spacecraf! is limited in sun

aspect angles that can be maintained. Tile limiting factor is Ihermal

control, whic;, prohibits sun aspect angles greater than aboul 1.75 radia,ls

(100 degrees) to prow, n! dirt, cl sunlighl inlo lhL, louvers. A 1.52 radian

{90-degree) aspect angle occurs 37 days afler VOI. Although this day is

nominally designated i'or a spacecraft flip nlaneuver (mort, from afi toward

earth to front facing), the flip can be delayed as much as 18 days and

remain within the 1.75-radian (100-degree) aspeci angle constraint, giving

a 55-day occultation experim,,nl capability.

The aft medium-gain hom_ _s used for both the X- and S-band occulta-

tion experimenis. The baseline metkod for ol, eralion is to off-point the

spin axis about 0.2 1 radian (12 degrees) to optimize both S- and X-band

gain ov,,r the occultation time; however, the capability exisls to precess

the spacecraft during this time at a fixed rate. Fixed-rale precession

c,m giw" a linear approximation within about 0.05 radian (3 degrees) of

the optimum pointing direction for the entire pointing history. This is

achieved by selecting the closest precession rate and the precession start

time to minimize the error between the linear precession curve and tile

ideal pointi_g history. The stored program would be used to return the

s p:__',,,c raft Io eart h point ing.

During the occultation off-pointing, platform Dloun|ed experiments

{ion and mass spectrometers) can be maintaint, d poinling in the ram direc-

tion during pt, riapsis by computing the new dirt, ellen caused by the off-

,,zlrth aliitudt,, and comnaandiug the platform lo l_i._ new angle.

10. ,_. 7.4 Experiment 1._lalform Updating

The experiment platform can be commanded to point within 0.004

radiazt (0. _5 degree) of the desired poinling direction relalive to tile space-

craft. F, ach ground command i8 used to step the plalform direclion by

0.009 radian (0.5 degrt, e) in the dirt, ellen dt'lermined b_ a polarity select

command. The nomina_ pointing direction of lhe experiment platform is

shown in Figure I0-_1 which shows a worsl-case poin!ing direction change

of 0,031 radian (1.75 degrees) per day. This pointing profile can easily

be maintained wilhin an order of magnilude better than Ihe estimated experi-

ment tolerance of about 0. 17 radian (10 degrees). Abou! ll_r_'e and ont,-half

t 0- .t ,'
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u
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commands per day would be used. The commanding can be performed

automatically by the stored command programmer, with three con_mands

per day for the first 4 days and four per day during the next week. Three

to four commands per day would then bt' alternated for the next 4 weeks

0 with only the weekly progran_ update necessary from ground operations.

Two major experiment advantages of the experin_ent platform include

the ability to: t) n_aintain experiment pointing in the ram direction even

for off-earth pointing n_aneuvers, and 2) point the exper':m_,nt platform in

the. ram direcLion at altitudes other than 1)t, riapsis if desired and at the

discretion of the ground operator.

10.8. 7.5 Ultraviolet Spectrometer Dayglow Maneuver

The ultraviolet (UV) spectrometer experinlent capability can be ex-

tended to obtain dayglow measurements by performing an additional space-

craft maneuver. The nominal UV experiment field of view is a 0.017 by

0. 0000 radian (! by 0. t7 degree) slit which scans a cone 0. 14 radian

(8 degrees) from the spin axis,aas shown below. For optimum conditit,ns,

ULTRAVIOLET the dtlyglew measurements should be

,_ .._._ FIELDOF VIEW_ = taken with Venus just filling the 0.0i7-

_'-- "l • J SPINAXI$ exactly _e¢'t these, conditions, the,
I

_._.//_ spa_.'ec raft would p_, rfo rm a prece_-
_i¢)n n_Ineuv(,r of nbout O. 70 radizln

10-43
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(40 deRrees} =_uch that the cone of the b'OV is just in front of th,. path ,ll'

Vt, nus at the ti.le Vvnus is 600,000 kilolnt, ters fronl l|io sp.lcet'r,lft. '['hl, re

art, t_vo dift'iculties involved ill this mant'uvt.r: i)the 0.0iT-r.ldian(i-degree)

Venus disc (at 6')._, 000 kilometers from Vt,nus) tlct'ur._ |. 5 days prior io

entry; L) a O. 70-radian (40-degree) prcct, s_ion n_aneuver is rl, quired ill

properly point the expt, rill_ellt. The in_'t'tial rale of Ventis n_otion relative

to tile spacecraft spin a.,cis is about 0.07 deg/hour at |.5 days befort' _'ntry s

as shown in Figure i0-3L. If the spacecraft is point_,d within 0.0i7 radian

(i degree) of the desired pointing for this experiment, lhen i0 io 15 hours

would be required butore the planet passes into full experiment view. This

time would not permit sufficient margin for sp;_ceeraf! reori¢,niation and

spinup for entry. As a compron_ise, a 0.005-radian (0. 3q-degree) planet

view of tile experiment is proposed which woold occur at ill01000 kilometers,

4 days before entry. Now, if tlle spacecraft is pointed 0.017 radian (1 deg-

ree) ahead of Venus (pointing error worst cast-) then Venus wouhl pass

through the FOV of tile experiment 3 days out at about a 0. 009- radian (0.50-

degree) view diameter (see Figure 10-33). After one full day o_ planet

viewing, the spacecraft can be oriented and spun to 6.28 rad/s (60 rpm)

with sufficit, nt time margins fox" entry.
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_. 11. LAUNC|[ VEIIICLE-RELATEDCOST REDUCTIONS
,.

II. 1 INTROI)ITCTION

A brit, f sl_rvo_¢ (_f the factors c_mtrilmting nms! significantly lo the

t'ost (If Silly hi_h-technology endeavor, such as spacecraft development,

shows convincingly that hardware (:()st reduction requires:

• Use of ,,xisting designs to reduce the design and development
cost of reinventing each element of a system

• Commonality of design between elements of the system to reduce
parallel effort and realize efficiencies in design, mamffacture,
and testing

• Generous margins in critical parameters {such as weight,
volume, and power) to simplify new designs and to provide
greater flexibility in application of existing designs.

The launch vehicle tradeoff studies focused on the degree to which

rdaxation of weight an_ vohune constraints (consistent with Atlas/Ccntaur

capability) could reduce overall program cost. The following sections

examine the effects of weight and volume relief on costs both qualitatively

and quantitativelyj discuss cost/weight allocations, and summarize the

Thor/Delta-Atlas/Centaur cost tradeoffs leading to the recommended

mission system.

11.2 QUALITATIVE EFFECTS OF WEIGltT/VOLUME RELIEF

Thor/Delta baseline designs for the probe bus and orbiter, even

with fairly tight weight constraints, art, able to make extensive use of

existing unit designs based largely on Pioneer 10 and 11 subsystems. The

Thor/Delta probes, on the other hand, are severelyweight/volunle con-

strained and require significantly high-'r proportions of new and major

modification design effort.

-- Consideration of relative influence of the development cost factors

i on the probe bus/orbiter and the probes is sunmmrized in Table 1 1-1.

This comparison shows clearly that the probes have greater potential

benefit from weight/volume relaxation than do the probe bus/orbiter.

Atlas/Centaur provides twice the capabilit_ of Thor/Delta for the probe

missions, increasing the injection weight from 385 kg (849 lb} to 771 kg

{1170 lb). h_itial allocation of this capability incx'ease between probes and

11-1
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Table 11-1. Qualitative Effee!_ of Weight/Volunae
Relief on Costs

N _ , I

l [FFI:CI ONC051 INfl IlEl'qCL iACIOR
I PRC_M:BHS

..................... l C_RBII[_ P_, ,I,[',

USEOF E×ISTING DI-SIGNS itARI)WAR[ b/v_tt tArc;_

IMPROVEDCOMMONALITY SMALL VLRYlarGE

NEW DESIGN SIMPLIFICATION

HIGH MARGINS, LESSANALYSIS/TEST MODERATE LARGE

• LOWERFABRICATIONCOSTS SMALL MODERATE

• PACKAGING DENSITY SMALL LARGE

OTHERFACTORS

• BETTERACCESS"EFFICIEb_CY SMALL SMALL

• REDUCEDWEIGHT CON'ROL MODERATE MODERATE

• /v_GIqETIC CLEANLINEIS NEr',LIGIBt E LARGE

• IMPROVEDSCHEDULECONFIDENCE SMALL LARGE

I I

probe bus, shown in Table 11-2, reflected the anticipated benefit to the

probe design by assigning approximately three-fourths of the increase to

probes and one-fourth to the 0robe

bus. For purposes of establishing Table I1-2. Initial Allocation ofIncreased Atlas /

the most cost-effective weight aIlo- Centaur Capability

cation, however, both probe and

probe bus design analyses explored weight
THOR'DE_.TA 1 ATLAS/CENTAUR

the full range of potential cost IKG (IB)] I IKG (L811
I

savings, up to the full amount of
SMALLPROaE i

increased capability availability. LARGEPROBE 237 (522) : 522 llIS0_i

This aspect is treated in detail in PROB/BUS 1,18 (327) 249 (5SO)

the next section. TOtaL ,, 385 (g49_ 1 /7 ( 7001

11. 3 COST/WEIGttT ALr_OCATION

11.3. 1 Optimum Use of Increased Capability

Cost, as well as several other parameters, is a major l'actor in

selecting subsystem and systeln configurations. Ctmq):JrisoP_s I. lwt,t,l)

variou_ co_afiguri_tions, or c,_ttq_arisons of variation_ withitt a g_vt,r, t on-

figuration, a re best nmdt ,911the basis ot cost differences. They arc

eilnpler to identify and (h,fine lhan absolute costs since the differing

I°Z
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:_ . . aspt, cts between variolls cl_tJic,.s can l)e refim.d without great L'oncer_a

about tlw cost of tht, (usually lctrgt,) portion which in coning,m.

-. A il_;_jor tr:tdeoff, which must always b,, c,maidered in any _ynt,,m

-: definition, is lh,tt I,qv,,,pil ,,,st ,_nd weight. Tht, significance ,ff this factor

: was roc,_gnizt,,I IW tht, addition t,f the Atlas/Co,_*aur consideration to the

: Phase I_ study, with the explicit ground rul.. that tiw study _'shall empha-i-

- siz, e the low cost and not use the increased capabilities of the Atla_/

•" Centaur launch vehicle to enhance or modify tht, mission. " The approach

:_.- described in the preceding paragraph, that of considering the cost change

5" effects of weight changes, was also applied to tile major elements of the

spacecraft, the probe bus/orbiterm and the probes.

A general treatment of optimuna weight allocation for minimum cost

is presented in Appendix IIA. Appendix lib trt, ats the more general

case of weight and reliability allocation for miuinmna cost, where cost

can be expressed as a function of these factors. Application of tile gen-

eral n-variable cost/weight optimization criteria requires data to define

total cost curves for each of the n elements comprising tile system. These

data are difficult to obtain even for the elements of the system tllat are

part of the spacecraft (namely, the probe bus/orbiter and probes) and

virtually impossible to obtain for the elements such as the scientific

experiments, which are not yet fully defined. Correct application of the

allocation technique sllould consider all contributing elements. Still,

much useful insight into the interaction between the probe bus and probes

can be obtained from a limited, two-variable treatnaent. TMs is the

. approach adopted for consideration of cost/weight allocation and sensi-

tivity in this study.

In applying the general concepts to a two-variable ca.,.o, the question

to be answered is whether the total available capability is allocated to the

two elements in the way which results in minimum cost. Further, for

the increased Atlas ]Centaur capability, the analysis need only consider

the best allocation of the weight increase relative to the Thor/Delta

baseline configuration. Establishment of the Thor/Delta probe and bus

configurations as baseline cost and weight points permits treatment of

Atlas/Centaur variatioim as incremental changes from these baseline

7.
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cost ,navingn curw,, with the maximum indicah;d byihe vertical dashed

line. Figure ll-]13 is a plot of the cost/weight slopes for this general

,,x;impl,,, sl)_wing Ih,. coincidence of the equal values with the point of

ll_;_xilntut_ *:,)st s;|vings (minimum cost) above, When plotted in this

fashion (probes and bus in c.pposite directions), the. "balance" of the

t_ttua] and opposile slot.,( s with the maximum (zero slope) poin_ on the

total savings c_rv(, is r_ade clearly evident. This condition correspond_

exactly with the criterion for the general n-variable case described in

Appendix 1 1A.

Figures II-IC and ll-lDillustrate the application of these concepts

to practically realizable hardware cases, The data are not continuous

since each point represents a distinct design with different sets of equip-

ment and coufigurations. These points are shown by the circles on the

probe and bus curves, The most nearly optimum pair of points shows

roughly equal cost/weight change values, and further displays a signifi- !
4

cant additional
margin (35 to 40 kg) over the predicted contingency re- !

quirements. These points represent the selected Atlas/Centaur probe

and probe bus configurations.

The other possible pair of points, representing the lightest Atlas/

Centaur probe configuration and a bus with cold gas attitude control, is

nonoptimum for two reasons. The weight margin is very small and the

savings curve _!ope ($K]kg) for the probes is much higher than for the

bus, indicating an imbalance in sensitivity to weight changes. The se-

lected configurations are the optimum pair.

11.3.2 Cost/WeiBht Sensiti_:ty - Thor/Delta

Weight allocation to achieve minimum cost depends on finding the

point where the slopes of the cost versus weight curves are the same.

This process does not depend on the absolute values of the slopes, only

the coincidence between them. Examination of sensitivity to changes

reveals some interesting related aspects of this subject.

Since wt_ art, interested in examining the effects of changes away

from a nominally defined combination (presumed optimum, or near-

optimum), it is convenient to establish tht_ nominal weight allocation

point as th_ origin. Figure l l-Z displays the cost/weight effects of

II-5
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Figure ]l-_. Thor/Oelto Cost/Weight Tradeoffs

various combinations of design variations around the baseline configura-

tion. Changes in one direction (say to the right) then represent simul-

taneous increase in probe weight and a corresponding decrease in bus

weight. The reverse is tr_e for changes in the other direction.

Considering the Thor/Delta case shown, a range of possible design

changes has been identified. Most of these represent weight decreases,

with corre_pondir_ cost increases, £or both probes and bus. For the

probes, these changes are in the range of t50-500 SK/kg {70-230 _K/LbJ.

While for the bus, they are in the lower range of _0-150 $K/kg (10-70

$K/lb). This disparity indicates that the nominal design point should be

shifted to more nearly equalize these rates of change. Weight changes o£

5 kg or less represent cost changes on the order of $500K, indicatinga

relatively high sensitivity to change. This observation is significant in

light of the marginally small weight contingency associated with the Thor/

Delta design.
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11. 3.3 Cost]Weil6ht Sensitivity-Atlas/Centaur

Data for the Atlas/Centaur cost/weight lradeoffs, plotted in the

same manner as tile previous Thor/Delta case, are shown in Figure 11-3.

In this ,'a:_e, lhe wt,ight axis is compressed by a factor of 20 and the cost

change axis expanded by a factor of 20. These changes preserve the

equivahmt cost per unit area, and also maintain a visual similarity be-

tween the two curves.

Cost/weight changes for both probes and bus are in the range of

7-12 $K/kg {3-5 SK/lb). Comparison of these rates of change, and the

range of weight changes involveds indicates that Atlas/Centaur is roughly

one-twentieth as sensitive as Thor/Delta. Further, the low cost change

per unit weight change indicates proximity to the region of diminishing

returns,

The very large areas associated with the various probe configura-

tion changes are indicative of the large savings attained by providing

sufficient weight and volume to use existing designs and high coxnmonality

in the probes. ._
$k/KG

4

30-

31_ +O0 1(10 0 lrX)

' _ llOflt[ll PIIO+[S IIGH+'I.R BUS

WflGHI CHANG[ (I_G)

trlqure 11-3. AllaslCentaur Cosl/Wekjht tra_.olf+
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ll. 4 HARDWARE IMPACT

Having considered the general effects of cost/weight variations and

shown (in Figures 11- 1C and 1 1-1 D) that an optimum Atlas/Centaur probe

bus combination exists, we can now examine the quantitative benefits of

the added Atlas/Centaur capability, The hardware categories outlined in

Table II-I will be discussed in the 1ollowing sections, with the nonhardware-

re.t.atedfactors covered in Section 1I.5.

lI.4. I Increased Utilizationof Existing Designs

Design selection for the probe bus and orbiter spacecraft, based

largely on Pioneer 10 and 11 subsystems results in high utilizationof

existing designs for both Thor/Delta andAtlas/Centaur. As can be seen

from Table 11-3 for Thor/Delta, and Table il-4 for Atlas/Centaur, more

than half the units are useable without change or require modifications so

minor that requali_ication will not be required. All of thenew designs

are low-risk applications of current technology.

Probe design selection, while able to draw extensively on existing

designs and technology, requires significantly more new design effort for

Thor/Delta (Table 11-5)than for Atlas/Centaur (Table 11-6).

Table I I-3, Use of Existing Designs - Thor ;Delta

PROBEBUS ORBITEI<

SUBSYSTEM
1* 2 3 4 TOTAL I 2 3 4 TOTAL

ELECTRICALPOWER 0 0 I 4 5 0 0 I 4 5

COMMUNIC ALIGNS S 2 I ] 9 8 4 2 1 15

ELECTRICALINTEGRATION 0 1 0 I 2 0 I 0 1 2

DATA HANDLING ! 0 ! 0 2 I 0 1 1 3

AIi'ITUDE CONTROL 0 0 2 0 2 I 0 2 0 3

PROPULSION 4 3 0 1 8 5 3 0 1 9

THERMALCONTROL 0 I 0 I 2 0 2 0 I 3

STRUC'rdRE/MECHANISMS 0 0 0 3 3 0 0 1 3 4

TOIAL 10 7 5 I1 33 )5 10 7 12 44

PERCt:NT 31 21 IS 33 lO0 34 23 16 2? I00

'1 - USE AS-IS

2'_ MODIFY EXISTING DESIGN - NO REQUALIEICATION

3- MODIFY EXISTING DESIGN -REQUALIFICAT_ON

4 - NEW DESIGN

1t-8
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Table 1 1-4. Use of Existing Designs - Atlas/Centaur

FRO6EBUS, ORBITER

- I* 2 3 4 TOTAL I 2 3 4 ITOTAL
I

ELECTRICALPOWER 0 2 I 3 6 I 2 i 3 7

COMMUNICATIONS 7 0 I I 9 10 4 2 I 15

ELECTRICALINTEGRATION 0 I 0 I _ 0 t {I I 2

DATAHANDLING I 0 I 0 2 I 0 I I 3

ATTITUDECONTROL 0 0 2 0 2 I 0 2 0 3

PROPULSION 4 3 0 I 8 S 3 0 I 9

THERMALCONTROL 0 I 0 I 2 0 I 0 I 2

STRUCTURE/MECHANISMS 0 0 0 3 3 0 0 I 3 4

TOTAL '._ 7 $ I0 24 18 II 7 11 47

PERC_'NT 35 21 IS 29 I00 39 23 15 23 I00

*| - USEAS-IS

2 - MODIFY EXISTING DESIGN - NO REQUALIFICATIOf','

3 - MODIFY EXISTING DESIGN - REQUALIFICATION

4 - NEW DESIGN

Table 1!-5. Thor/Delta Probe Design

"" SMALLPROBE LARGEPROBE
SUBSYSTEM

I* 2 3 4 TOTAL I 2 3 4 rOTAL

ELECTRICALPOWER 0 0 0 2 2 0 0 0 2 2
J

COMMUN|C A110_'4S 0 0 3 0 3 0 1 3 0 4 i
DATAHANDLING AND 0 0 0 I I 0 0 I 0 I
CO_ AND

HEATSHIELD/THERMAL 2 0 0 0 2 2 0 O 0 2

STRUCTURES�MECHANISMS 0 I 0 2 3 0 I O 2 3 ,
AEROSHELL 0 0 0 2 2 0 0 0 2 2

DECELERATOR .......... 0 0 0 I I ,I

TOTAL 2 I 3 7 t3 2 2 4 7 15 i
PERCENT 15 8 23 54 100 13 13 27 47 100 '_

*I - USEAS-IS

2 - USEAS-IS, 400-0 AND HIGH-TEMPERATUREQUALIFICATION

3 - MODIFY EXISTING DESIGN-REQUALIFICATION
4 - NEW DESIGN

Table tl-6. Atlas/Centaur Probe Design !

SMALLPROBE I LARGEPROBE I

SUBSYSTEM I* 2 3 4 TOIAL I I 'I2 3 4 TOTAL i

ELECTRICALPOWER 0 I 0 I 2 0 I 0 | 2 1
1

COMMUNICATIONS 0 I 2 0 3 0 I 3 0 4 t

DATAHANDLING AND 0 0 I 0 I 0 0 I 0 I
COMMAND I
HEATSHIELD/THERMAL 2 0 0 0 2 2 0 0 0 2

STRUCTURES/MECHANISMS 0 I 0 2 3 0 I 0 2 3

AEROSHELL 0 I 0 1 2 0 I 0 I 2 i

/

DECiLERATOR .......... 0 0 0 I I _,

TOTAL 2 4 3 4 13 2 4 4 S I S

PERCENT 15 31 23 31 100 13 27 27 33 100

el - USEAS-IS !

2 _ USEA_-IS, 400-G AND HIGH-TEMPERATIIREQUALIFICATION i

3 - MODIFY EXISTING DESIGN - REQUALIFICATION j

14 - NEW DESIGN

11-9 I
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These results are shown graphically in Figure 11-4, where bus/

orbiter data are combined on the left half of the figure and probe data are

on the right. The small effects of increased capability on the bus]orbiter

can be summarized by the minor reduction in new designs from 30 to Z7

percent. The benefit_ of Atlas/Centaur to the probes show clearly inthe ....: :

reduction of new designs from 50 to 32 percent, with corresponding in-

creases in the use of existing designs. This improvement in utilization

of existing designs results in bus/orbiter savings of $0. 3M and probe

savings of $I. 5M.

PROBEBUS/OR B_TFR ] PROBES

N_O.iG. I I 1
MODIFY EXISTING DESIGN - MODIFY EXISTING OESIGN -
REQUALIFICATION REQUALIFICATION

MODIFY EXISTING DESIGN - USE AS I$, 200G AND HIGH
NO REQUALIFICATION TEMPERAI'UI_EQUALIFICATION

USE AS-IS USEAS-IS

50 40 30 20 I0 O 10 20 30 40 50

PERCENTDESIGN UTILtZAT|ON

ATLAS/CENTAUR

THOR/I:_ELTA

Figure11-4. UseofE_lsting0esignsLowers0evelq_mentCost

11.4. 2 Increased Desil_n Commonality

Commonality between probe bus and orbiter, shown by Table 11-7,

is relatively high and not launch vehicle sensitive. Considering subele-

ments of the designs, such as structure components, commonality is i

improved still further. Excluding items that do not have like function_ i

on both probe and orbiter missions (e. g., X-band equipment, probe "_

ejection mechanism, etc. }, approximately two-thirds of the units are

common. These results are not surprising since bus/orbiter common-

ality is a prime design objective.

Similar tabulations for the small and large probes, shown in

Table 11-8, tllustrate the dramatic effect of Atlas/Centaur capability

increase on probe commonality. The significance of these factors on

cost reduction is the avoidance of much new {separate} design and dcvelop-
¢

merit for both the small and large probes.

II-I0
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Tahlo 11-7. |)roho Bus/Orbitor I)osign C_mmlonality

• I
" PROBL { _RBITfR '

COMMON Bit5 TOl AI
kIf'-1IL_L._E LINI L,,)Ut: I

Uto_,D__tL]_
USE AS-IS I0 0 5 I5

MODIFY EXISTING DESIGN -.. O I 4 I l
NO REQUALIFICATION

MODIFY EXISTING DESIGN - 4 I ;3 B
R[QUALIFIC ATION

NEW DESIGN 2 9 i0 21
i

TOTAL DESIGNS 2"-2 II 2"2 ,5.5

PERCENTOF TOTAL 40 20 40 I00

ATLASCENTAUr

useAS-iS 12 0 6 le
MODIFY EXISTING DESIGN - b i 5 12
NO REQUALIFICATION

MODIFY EXISTING DESIGN - 4 1 3 8
REQUAUFJCATION
NEWDESIGN 1 9 I0 20

TOTAL DFSI,,.,NS 23 II 24 58

PERCENTOF TOTAL 40 19 41 I00

I

_": Table 11-8. Probe Design Commonality

I

COMMON J SMALL j LARGEPROBE : PRC_E TOTAL

UNIQUE i UNIQUE

THORLOELT6

useAS-lS 2 0 0 2
USE AS-IS, 400-G AND HIGH 0 I 2 3
TEMPERATURE QUALIFICATION

MODIFY EXISTING DESIGN - I 2 2 5
REQUALIFICAIION

NE_,DESIGN 0 7 8 _S

TOTALDESIGNS -3 ,'-; ;] 2%
PERCENT OF TOTAL 12 40 48 1O0

ATLAS,/_ENI AUR

useAS-iS 2 o o 2
USE AS-IS, 400-0 AND HIGH I 2 3 6
TEMPERATURE QUALIFICATION

MooiPYEXISTINGoES,ON- 4 o o ,
.EQUAUFICA"ON
NEWDtSIGN m _ 4 o

• TOTALDESIGNS 8 5 7 20

i PERCENTOF TOTAL 40 25 35 100

"5-: I
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Conuuonality l)olwevn the prohe l)us and l)rol)es also improves

.significantly wilh Atla.s/Cvn(aur since l)iou,,,,r It) and I I data handling

units can by u._ed in tht, bus and l)olh l)rol)eao In a(h|ition (o the use of an

existing design rather than a new one in the l)rol)rs) this al)proach re-

sults in the savings relaied to common use of the san_e asseml)lie_ in

several system elements.
_ OMMOb_Ak II_

The results are shown _raph- 0t_.N

ically in Figure I l-5, in a manner ,_,.,r,,>,t_ _ [.] _aAS.N)_._
J

similar to that used in Figure 1 1 =4 [.] ,),,,_L,)_,,

for design utilization. The major _o,,_ ...... I

results in cost savings of $3. 6M. --:- I--)- -v---_

1 1.4. 3 Desisn Simplification Pt)C_.tNl,OMMON_HI_

Inc rcased weight and volume Fiqure11-%0esignComm0nalil_towers0evel®mentCost

margins, in addition to the major

benefit of permitting a wider choice of existing desiz, ns, provides the

opportunity to sinaplify tilt' remaining new design effort through use of

greater design margins and safety factors. This has further benefit in

reducing the analysis and test effort requirt, d to vt, rify design adequacy,

For the probe bus/orbiter, these effect._ are ,pparent primarily in

struclures and nat-chanisnls _incc thcse art, as have the highest conct, lttra-

lion of new design effort. Use of standard shapes) simple fittings) and

conventional f;tstening techniques contribute to les_ costly ¢tcsign) tooling,

detail fabrication and assend)ly, ,at a relatively modest increase in weight.

This approach is expel;ted to result in at least a I0-percent h)wer cost in

these elements° Similar effects are expected in tilt, new electronic

assemblies, although the potential ia less significant in these limited

C_8t'8,

Tilt.'. probes reali_-e sul)slantial cost savings from design 8ilnplifica-

tion. Use of larger design margins in the pressure vessels) aeroshell)

hratshiehl _lntl tht, rnm.1 control areas perniits significant rt, ductionv in

dt,vt,]oplllcnt testing and nnalysis. Ill addition, the increased fat'iora of

safety prrmii deletion of structural model It, sting, Tilt, combined cost

avoidanct, of t',esc prohe factors is $1. qM.

II=i_
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Simplification of the system level design integration and analysis tasks,

due to in,proved commonality and more nearly optimum equipment layout.

is expected to permit cost avoidance of about $0. IM. The total result of

the greater flexibility on the new design acti_ity will be at least $1.9M.

11.5 OTHER LAUNCH VEHICLE-RELATED FACTORS

Several other factors reflect the benefits of relaxed size and weight

constraints, either directly or indirectly, Typically, spacecraft are

tightly weight constrained and, to a lesser extent, size constrained.

While the principal benefit irom relaxing these constraints is shown in

the lower hardware costs described above, there are collectively signifi-

cant lesser items that deserve recognition.

The costs of "weight control, " i. e., the direct action to avoid

weight growth and/or effect weight reduction if overweight conditions

exist, can be sizable. Comparison with recent spacecraft and planetary

lander programs indicates that approximately $0.2M can be saved in the

probe bus/orbiter and at least $0.4M in the probes for this factor.

Possible additional IIhidden" costs, such as retest where weight reduc-

tion redesign has invalidated previous testing, are not considered in this

ass es sment.

The larger size of the probe bus/orbiter and probes improves

access in several important aspects. Basic assembly, test, and checkout

are simplified and speeded up. Perhaps more importantly, fault isolation

or troubleshooting during system testing, when serial downtime is very

costly in both direct manpower and diminished schedule confidence, can

be significantly improved through better access to individual boxes and

connectors. While very difficult to assess in an accurate quantitative

fashion, this factor contributes at least $0.1M each for both the probe

bus/orbiter and probes.

Another benefit of the relative "roominess" of the probes in the Atlas/

Centaur design is the marked easing of the science integration and magnetic

cleanliness requirements, for the case where the payload includes the

small probe magnetometer. The very tight packaging of the Thor/Delta

probes poses some very stringent and demanding problems in these areas.

Relaxation, due to size, is estimated to result in approximately $0. 31d

savings.

11-13

.'9 .: v

....... ,. .... ..... Q ..... . ........ e " _:?) .............. ,, ,-o -_,

i!.... .............. _ " " - ..... . " ' i "°.... :':5....... "_ _' __".k ......... __................ L.......... _-.......

00000006-TSC09



11.6 TtIOR/DELTA-ATLAS/CENTAUR COST TRAI)EOFFS

Summarizing thu preceding spacecraft hardware and other co_t

savings factors, Tabl:, 11-9 shows clearly the nlajor impact of Ill,,

Atlas/Centaur capability increase over Thor/Delta, ,,specially on prob,,

cost. This summary also highlights the basic findings of the study cost

reduction analysis :

• To reduce cost, reduce new hardware development

• If an existing design will do the job, use it

• If a unit can be used in more than one application, do it.

Greater weight and volume allowances increase the probability of applying

one or more of the above maxims.

"lable 11-9. Weight/Volume Effect C_st

Summary

A_P_OXIMAUSAVINGS_SM_

BUS/
ORBITER _ROBES

OREATER UT_LJZA/'ON OF EXISTING 0 _ I ,S
DESIGNS

IMPROVED C OMMOI"_ _,LITY --- 3.6

SIMPLIFICATION OF NEW _E_,t3[, _c, 0.5 1.4

OTHER FACTORS THAT LOW!R COST 0.3 1.5

TOTALS I ,I 8.0

i ii

Offsetting the savings tabulated above for Atlas/Centaar is the

significant increase in launch vehicle and related support costs, $9.0M

fc, r each launch.

It may readily be seen that launch vehicle-related cost reductions,

primarily for the probes, are adequate to offset the cost increment of one

Atlas/Centaur, but not two. With this in mind, the concept of a "split

launch" evolved, using Atlas/Centaur for the probe mission and Thor/

Delta for the orbiter mission. The major probe savings are unaffected,

while the loss of commonality between the probe bug and orbiter results

in increased costs of about $1. SM for these elements. 1
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I Table 1 1-10 summarizes these considerations, in the upper portion
l of the table., and provides a limited assessment of some other related

costs not. directly within the scope of the study. From the-as figures, the

"split mission" concept presents a favorable cost tradeoff, even allowing

for wide variations in the assessment of the related costs, For example,

the intangible costs, which include such factors as schedule confidence,

are likely to be affected by the use of different launch vehicles, and may

even be positive (extra cost) for the "split mission. " The essential

.... result is unchanged, however, Probe savings are greatly dependent on

the greater capability of Atlas/Centaur, while the probe bus/orbiter is

only slightly affected by launch vehicle,

Table 1I-I0. SplitMission Cost Summary

_NIT
MISSION

ION ALL ALL ATLAS/CENTAURPROBETHOR/DELTA ! ATLAS/CENTAUR THOR/DELTAORBITER

ELEMENT _,_,_

.... SPACECRAFt

PROBEBUS BASELINE - 0.6 - 0.6

PROBES - 8.0 - 8.0

ORBITER - 0.5 + 1.0
SUBTOIAL ° 9.1 - 7.6

LAUNCH VEHICLE +18.0 + 9.0

TOTAL HARDWARECOST i + 8.9 + 1.4
I

RELATEDCOSTS
I

GROUND DATA HANDLING - 0.5 - 0.5

.... SCIENCEDEVELOPMENT r - Z.4* - 2.4*
INTANGIBLE ! ° 2.0 - 1.5

SUBTOTAL - 4.9 - 4.4
,iTOTALCOSTDIFFERENCE + 4,0 - 2.0

I I II
*BASEDON ASSESSMENTOF PROBESCIENCEONLY

.... ll-IS

........ O0000006-TSC 11



11.7 RECOMMENDED MISSION SYSTEM

The basic cost of the ]Pioneer Venus multiprobe and orbiter mis-

sion spacecraft can be kept reasonably low by extensive u_e of existing

designs_ front Pioneers 1O and 11_ Viking a and other programs. Use of

the greater capability of Atlas/Centaur provides n,ajor cost savings in

the probesp largely through greater use of existing designs and improved

,:_mmonality. Improvements in the probe bus/orbiter are not sufficient

to justify the use ,Jf Atlas/Centaur for both missions, within the scope of

the study guidelines and data.

On the basis of these considerations_ the recommended mission

system uses Atlas/Centaur for the probe mission and Thor/Delta for the

orbiter mission. This combination is cost effective and greatly reduces

the risk inherent in the demanding multiprobe mission.

The program redirection of 13 April 1973, which delayed the probe

mission launch from January 1977 to August 1978p injected several other

factors into the consideration of launch vehicle selection. The close

proximity of the probe mission launch to the May 1978 orbiter mission

launch understandably raises concern regarding use of different launch

vehicles. It is also recognized that the Thor/Delta orbiter mission,

while entirely feasible for the payload defined by the study ground r_les,

has virtually no potential for growth or flexibility. Accordinglyp the

NASA decision to utilize Atlas/Centaur for both missions, considered in

the total program environment (including lower spacecraft and science

costs) is a fundamentall 7 sound one. The entire program will benefit

from the opportunit 7 to demonstrate the very real benefits oi reasonable

relaxation in weight and volume constraints.
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"" LONG LEAD ITEMS AND CRITICAL AREAS

,_ n! dy wa._ c,mducled t_ define any hi_ij-ri._k, hi_h-eo_t, or !ontt

lead item _. °._'ld areas where i)erfornlance. __'ost. t_r schedule are critical,

Ti_is worl( r_ls;,rJ included a review of all probe etement_ to identify any

possible research and technolo_y required I:o ,_upport implementation of

the t_verall prowL-am cont:_ined in Volume [I and shown in summary form

..... t974 1 1_7_ i i97a le77 |e_ 1

i• _U , DR2_ i LICT!IIICf L
DE'--'_TAi'LDESIGN INITIATION& PROCUR|MEN1 .....

QUAL_LT STRUCTURAL/MECHANICAL e_ _-.- . I LP _RGE PRO_

QUAL-TLT UNIT [L|C_tCAL F_ " F t , _ ....... 0R DESIGN REVIEW

GoAt 'Fit UNIT ASSI_LY & liST " _ ' " " ' _- .... t -- ___.½__t_ _ , DVU DESIGN VILIFICATION UNIT

............... "......*............. .... i i i
!

SPACECR_I iN_EG_TION & lEST (AT l_)

K$C LAUNCH PRi_ & OP_RATION$ (AT CKAFS _ i i _ LP : _ ¢i

Figure12-1, ScheduleSummary

12. 1 I,ONG LEAD

Probe program elements were examined to define any long lead items,

i.e., any design activity that must stazt early in the program because of

the technical risk involved. We concluded that no such items exist; in fact,

the use of existing designs and proven technology is one of the key features

of our proposed design. Therefore, we do not propose any long lead tech-

nology or hardware desiyn activities.

12.2 CRITICAl, AREAS

Examination of critical areas associated with the proposed probe pro-

gram revealed that several c ritical performance and engineering activities

exist, due primar!ly to hardware developnaent, build, and delivery schedule

12-1
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imposed on the probes These schedule related critical activities, shown I

in Figure 12 2 fall into three categories:

1) System performance (aero tests and science window deve!_pment)

2) Interface definition

3) Preliminary procurement activities

The necessity for these activities is rather obvious in supporting the

center loaded program discussed in Volume III For this program approach,

it is essential that all hardware design requirements and specifications must

be defined at the time hard start is indicated; in other words hardware

must be designed fabricated, and procured in a quick direct fashion in

order to support the schedule No time is allowed to finalize or fine tune

the aero shape negotiate interfaces or develop procurement paperwork

after Lhe hard start Therefore we have designated the actiyities shown

in Figure 12-2 as critical azeas for support of the proposed center

loaded schedule

! 974 1975

NOVJ DEC JAN fell MAR APB MAY JUN JUL

I. SCIENCE,

A) PROBESCIENCE ICD MAINTENANCE & ARC/

R) SC,ENCE wINDOW DEVELOPMENI

H MISSION ANALYSIS

A) PROBE.DSM INTERFACF $PECAND ICD MAINTENANCE

Ill. _YSTEM DESIGN:

A) APPROVEDPARTSLIST (MMC SuBCoNTRACTORS)

R) APPROVED SYSTtM L[VEL TFST PLAN

CI SUBSYSTEMINTERFACEAN{) lEO IIgEPAILATION

IV. MECHANICAL SUBSYSTEMS

A) AEIROCONFIGURA|ION TESTING

B) DEFINITIVE PD PREPARATION -,

CJ SUI_::ONTRACTOR LIAISON (SUPPORT}

v. ELECrRICAL SUBSYSI'EMS

A} DEFINITIVE PD pREpARATION

fiJ SUBCONTRACTOR LIAISON _SUPPOR{)

Cl ICD M_INIENANCE
1_...._

Figure ]Z-Z. Critical Acli¥ilies

1Z-2
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