NASA TECHNICAL MEMORANDUM

NASA TM X-71994 Copy No.

A STUDY OF SUBSONIC TRANSPORT AIRCRAFT CONFIGURATIONS USING HYDROGEN (H_2) AND METHANE (CH_4) AS FUEL

BY

Daniel B. Snow, LaRC Blake D. Avery, LTV/HTC Lawrence A. Bodin, LTV/HTC Paul Baldasare, LTV/HTC G. Fredrick Washburn, LTV/HTC

August 1, 1974

This informal documentation medium is used to provide accelerated or special release of technical information to selected users. The contents may not meet NASA formal editing and publication standards, may be revised, or may be incorporated in another publication.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION LANGLEY RESEARCH CENTER, HAMPTON, VIRGINIA 23665

NASA TM X- 71994

Unclas 47925

G3/02

(NASA-TM-X-71994) A STUDY OF SUBSONIC TRANSFORT AIRCRAFT CONFIGURATIONS USING HYDROGEN (H2) AND METHANE (CH4) AS FUEL (NASA) 32 P HC \$3.25

1. Report No. NASA TM X-71994	2. Government Acces	sion No.	3. Recipient's Catalo	g No.
4. Take and Subunke A Study of Subsonic Transpo Using Hydrogen (H ₂) and Mei	ort Aircraft (thane (CH ₄) as	Configurations 5 Fuel	5. Report Date August 1, 19 6. Performing Organi	74
⁷ Author(s) Daniel B. Snow, LaRC; Blake Lawrence A. Bodin, LTV: Pa	e D. Avery, Ll 11 Baldusare,	rv/htc; LTV/htc;	8. Performing Organi	zation Report No.
9. Performing Organization Name and Address	K Washburn, L		10. Work Unit No.	
NASA Langley Research Cente Hampton, Virginia 23665	er		11. Contract or Grant	No.
12. Sponsoring Agency Name and Address	· · · · = · · · · · · · · · · · · · ·		13. Type of Report a TMV	nd Period Covered
NASA			14. Sponsoring Agence	y Code
15. Supplementary Notes Special technical informat	ion release, r	not planned for	forma] NASA p	ublication
With questionable future of impetus, this study underta for future commercial trans methane, several aircraft aircraft weights, range and Boeing 747-100 aircraft. reduce aircraft energy cons JP or hydrogen fuel.	il supplies ar akes to detern sport aircraft configurations d payload are The results sh sumption and t	nd increasing en nine the accepta t. Using both 1 s are developed a determined and now that liquid that methane off	ergy requirem bility of alt iquid hydroge and energy co compared to a hydrogen can ers no advant	ents as an ernate fuels n and nsumption, conventional be used to age over
17. Key Words (Suggested by Author(s)) (STAR <u>Aircraft</u> , Hydrogen fuel Methane fuel	category underlined)	18. Distribution Statement Unclassified -	Unlimited	
19. Security Cleasif. (of this report) Unclassified	20. Security Classif. (c Unclassific	of this pure) 2d	21. No. of Pages 30	22. Price* \$3.25

Unclassified The National Technical Information Service, Springfield, Virginia 22161

*Available from STIF/NASA Scientific and Technical Information Facility, P.O. Box 33, College Park, MD 20740

A STUDY OF SUBSONIC TRANSPORT AIRCRAFT CONFIGURATIONS USING HYDROGEN (H_2) AND METHANE (CH_4) AS FUEL

by Daniel B. Snow, LaRC Blake D. Avery, LTV/HTC Lawrence A. Bodin, LTV/HTC Pau! Baldasare, LTV/HTC

G. Fredrick Washburn, LTV/HTC

LANGLEY RESEARCH CENTER August 1, 1974

INTRODUCTION

In the spring of 1973 Langley Research Center began an Energy Trends/ Aircraft Fuels (ET/AF) Study to assess the impact on aircraft design and energy consumption when fuels other than JP are utilized. Both hydrogen and methane fuel were investigated and the resulting aircraft were compared to a baseline JP fueled aircraft--the Boeing 747-100. While the data in this report, i.e., weights, drag polars, mission analysis results and configuration drawings, should provide a strong base for follow-on effort in this field, more work is required before a final configuration selection can be made. Some follow-on effort is already being pursued both in-house and on contract with the Lockheed Aircraft Corporation.

Although some complementary work was being conducted simultaneously at LaRC and other NASA centers, this document will deal entirely with the subsonic aircraft studies which were directed by LaRC and heavily supported by HTC, LTV Aerospace Corporation.

SYMBOLS

AR	Wing Aspect Ratio
ATA	Air Transport Association
BTU/PM	British Thermal Units Per Passenger Nautical Mile
c _D	Total Drag Coefficient
с _{Йс}	Compressibility Drag Coefficient
С _{ДF}	Form Drag Coefficient
^С Дf	Skin Friction Drag Coefficient
c ^{DI}	Interference Drag Coefficient
c _{Dji}	Induced Drag Coefficient $\frac{C_L^2}{\pi R}$ (Coefficient of Drag due to Lift $\frac{\pi R}{\pi R}$ e
с _{Др}	Minimum Parasite Drag Coefficient
с _{Дw}	Wing Camber Drag Coefficient
C _{DXT}	Increase in Friction Drag Coefficient over Baseline Value
CH ₄	Methane
d	Fuselage Diameter, ft.
ESF	Engine Scale Factor
ET/AF	Energy Trends/Aircraft Fuels (study)
ft ²	Square Feet
H2	Hydrogen
HFO	Hydrogen in Fuselage, Overhead
HF0-368	HFO with 368 passengers
HF0-480	HFO with 480 passengers
HPP	Hydrogen Fuel, Passengers in Pods

HPP-364	HPF with 364 passengers
HPP-438	HPP with 438 passengers
НРТ	Hydrogen in Pods on Tips of Wing
HPU	Hydrogen in Pods Under the Wings
HSAD	High Speed Aircraft Division
HTC	Hampton Technical Center
JP-4	Jet Propellant Similar to Kerosene
1	Fuselage Length, in.
LaRC	Langley Research Center
16	Pounds
16/ft ²	Pounds per Square Foot
1/å	Fuselage Length to Diameter Ratio
LH2	Liquid Hydrogen
lch ₄	Liquid Methane
MAC	Mean Aerodynamic Chord, in.
MFO	Methane in Fuselage, Over
MFU	Methane in Fuselage, Under
MFU-368	MFU with 368 passengers
MFU-416	MFU with 416 passengers
MPU	Methane in Pods Under the wings
NASA	National Aeronautics and Space Administration
n.m.	Nautical Miles
OWE	Operating Weight Empty, 1b.
P/L	Payload, 1b.
P&WA	Pratt & Whitney Aircraft
S _{GROSS}	Gross Wing Area, ft ²

S _{REF}	Reference Wing Area, ft ²
TOGW	Takeoff Gross Weight, lb.
t/c	Wing Thickness to Chord Ratio
T/W	Thrust to Weight Ratio
W/S	Wing Loading, 1b/ft ²
[^] c/4	Quarter Chord Sweep Angle, degrees
λ	Wing Taper Ratio

STUDY GUIDELINES AND CONSTRAINTS

GENERAL

Before aircraft configuration studies were begun, several guidelines were established; others were incorporated as the study progressed and the need to establish boundaries became obvious. Below are listed the important guidelines.

Range	5000 nautical miles
Payload	368 passengers plus baggage (77,000 lb.)
Cruise Mach Number	0.82
Wing loading	Approximately 125 lb/ft ² for hydrogen,
	slightly higher for methane
Thrust to Veight Ratio	(T/W) 0.25 - 0.35
Fuel Reserves	1967 ATA International requirements
Engine	P&WA JT9D-7 scaled to required thrust
Fuselage Fineness Ratio	(1/d) 9 - 12

FUELS

The major guideline under which this study was conducted was the use of liquid hydrogen (LH_2) and liquid methane (LCH_4) as alternate fuels for passenger and cargo air transports. Some properties of these fuels are shown in Table I.

A significant factor in the design of these aircraft was fuel density. Although hydrogen and methane are more efficient fuels than JP on a weight basis, their low density requires large tankage volume. Another significant characteristic of these fuels is that to maintain them in a liquid state and to prevent enormous fuel losses from boil-off, fuel tanks must be pressurized. Consequently, tank design became a driving force in the aircraft configurations using either of these fuels.

TANK CONCEPTS

Three categories of fuel containment were considered in this study:

(1) Fuel contained within the wing.
(2) Fuel in pods on the wing, and
(3) Fuel in the fuselage (see figure 1). Within each category was the option of integral or non-integral tanks.

ANALYSIS PROCEDURE

Drawing upon experience gained in earlier Advanced Transport Technology (ATT) Studies, the LaRC/LTV team used a straightforward but comprehensive approach to the integrated design effort. Basically, the following steps were used:

1. Configurations

a. general arrangements - A layout of the desired aircraft was made with fuel in the fuselage or fuel in wing pods, double-deck or singledeck, high wing or low wing, four engines or three, etc.

b. <u>passenger/fuel matching</u> - The desired number of passengers was selected which established payload weight. Passenger accommodations were then added to the layout. An estimation method provided an approximate fuel requirement for a selected range and the appropriate tank volume was then added to the aircraft layout. If the aircraft size and fuel volume were not compatible at this point, adjustments were made by changing the aircraft size to accommodate both passengers and fuel. This iteration was continued as each additional step was incorporated in the configuration studies.

c. <u>dimensions</u> - When the above steps were compatible, dimensions were taken from the scaled drawings to provide wetted areas, slenderness ratio, component sizes, volumes, etc. This data was used as input to determine aerodynamic and weight characteristics.

2. Aerodynamic Characteristics - LRC aerodynamicists provided the basic drag data (Table II) for an aircraft approximately the same as the JP-fueled Boeing 747 aircraft used as a baseline design in this study. The data included skin friction drag coefficient ($C_{D,f}$), form drag

coefficient $(C_{D,F})$ [combined and used as minimum parasite drag coefficient $(C_{D,p\ min})$] and interference drag coefficient $(C_{D,I})$. To this data was added an estimation of the coefficient of drag due to wing camber $(C_{D,W})$. The coefficients of drag due to lift $(C_{D,i})$, and compressibility drag $(C_{D,c})$, i.e. drag rise due to Mach number, were then calculated and added to previously determined numbers to yield the total drag coefficient (C_{D}) . No trim drag was considered. This coefficient and other information was used as input data into a Mission Analysis Program.

3. Weights Analysis - A comprehensive statistical weights program developed by LTV was used to produce a systems' weight breakdown to the level shown in Table III. Dimensional data taken primarily from the configurations effort was used as input. These input data categories are listed below:

- ° Wing geometry
- ° Fuselage geometry
- ° Fue! tank geometry
- ° Fuel tank locations
- ° Mission fuel
- ° Payload

Some weight components were assumed to be invariant for ease of calculation on this preliminary effort. Components in this category are listed below:

° Engines, macelles, thrust reversers

- ° Landing gear system
- ° Empennage
- ° Some systems and equipment such as radar, computers and other electronics

Since most of this study was conducted using a Boeing 747-100 aircraft design as baseline, values for that aircraft were used for landing gear weight and tail volume coefficient. Also, the Boeing 747 engine (JT9D-7) weight was used as a constant although thrust was scaled to match the mission. The results from the weights analysis were subsequently used as input into the Mission Analysis Program.

4. Mission Analysis - A Mission Analysis Program (PAB2011), developed by NASA-Langley, HSAD, was used to evaluate payload/range requirements. The program includes take-off, climb, cruise and descent segments of a mission. Cruise is determined by a single step Brequet equation. Significant inputs to the program are listed below:

- $^{\circ}$ LH₂ or LCH₄ fueled engine data which includes thrust and fuel flow vs. Mach number and altitude
- ° Base pressure table
- ^o Delta drag coefficient, which is the increment of drag coefficient between baseline configuration and analyzed configuration
- ° Lift coefficient table
- ° Wing reference area
- ° Weights (TOGW, OWE, and P/L)
- ° Cruise Mach number
- ° Engine scale factor
- ° Input range

Air Transport Association (ATA) International rules were used for mission and reserves calculations. A flight profile schematic showing the ATA requirements is given in figure \hat{z} . A "rubber engine" computer deck containing Pratt & Whitney Aircraft JT9D-7 engine performance data was used to represent the basic power plant for this study. Fuel flows were adjusted based on the Lower Heating Values (LHV) of hydrogen and methane. A basic installed thrust of 40,900 pounds was modified by use of an engine scale factor (ESF) to permit climb and cruise at the proper Mach number/altitude combination for various aircraft configurations.

Results from the mission analysis program are shown on the configuration sketches, figures 3 through 9 and a summary of aircraft weights is given in Table IV.

STUDY RESULTS

Tank and Fuel

1. <u>Fuel within the wings</u> - Integral tanks in the wing are not practical for hydrogen or methane fueled aircraft because of the pressure that is required to maintain cryogenic fuels in a liquid state. A pressure vessel with nearly flat sides (upper and lower wing surfaces) is excessively heavy. A brief study of non-integral wing tanks indicated insufficient space available for the large volume of fuel required and excessively high tankage weight to fuel volume ratio.

2. <u>Fuel in pods on the wing</u> - Safety is a prime consideration in the design of any aircraft, particularly one with fuel as volatile as hydrogen. Wing pods offer the advantage, in terms of safety, of separation of passengers and cargo from the fuel. In addition, inspection, maintenance and normal ground operations such as fueling support the use of remotely located fuel tanks.

3. <u>Fuel in the fuselage</u> - This concept offers many variations in tank configuration: spherical, elliptical, cylindrical and lobed tanks, located overhead, fore and aft, and in the center of the fuselage. Only a few of these, however, were exercised because of available time. Full fuselage diameter cylindrical tanks, while they may prove to be the most efficient concepts, were eliminated in this study because of possible regulations relating to pilot access to the passenger compartment. Such configurations have an obvious advantage because of the high ratio of fuel volume to tank weight and therefore will be investigated in future efforts. The detailed analysis of fuselage tanks in this study considered that the tanks were located either above or below the passenger compartment. One exception to this located the passengers in wing pods thereby permitting the use of the entire fuselage for fuel storage.

Hydrogen Configurations

1. <u>Hydrogen in the Fuselage</u>, Overhead - HFO

The HFO configuration, figure 3, had the least weight of fuel, the lowest drag count and the smallest engines of all hydrogen configurations studied. Take-Off Gross Weight (TOGW), however, was not the least. The compounded problem of non-integral and unconventionally shaped tanks was a major reason for the weight being as high as it was---592,932 pounds. The tank shape was selected in an attempt to utilize as much of the "D" crosssection in the top of the fuselage as possible. The HFO aircraft incorporates a single passenger deck with a 15/85 first class/tourist mix in a twenty-four (24) foot wide fuselage with six (6) abreast seating in the first-class section and ten (10) abreast seating in the tourist section. The large volume of liquid hydrogen needed for a 5000 n.m. range in turn provided a large passenger space for a configuration of this type. In fact, the first layout for 368 passengers (HFO-368) yielded excess cabin space. By modifying the seating arrangement and seat pitch it was possible to provide space for 480 passengers in the fuselage (configuration KFO-480). It was necessary, however, to increase the fuel capacity by 5000 pounds to maintain the 5000 n.m. range so the fuel tanks were enlarged slightly to accommodate the added fuel. The energy consumption, 2047 BTU/PM, for the HFO-480 was the lowest of all aircraft studied under this effort.

2. Hydrogen in Pods on Tips of wings - HPT

This configuration is shown in figure 4. Significant features of this 368 passenger aircraft include wing mounted fuel pods, a T-tail and

location of the engines on the aft fuselage. The large 124.3 feet long and 16 feet in diameter cylindrical pods on the wing tips contain over 115,000 pounds of LH₂. There are clear advantages and disadvantages with this design. Separation of fuel and passengers provides superior safety aspects yet imposes a severe drag penalty which requires larger engines and more fuel than the H^FO aircraft. This results in a much greater energy consumption (2726 BTU/PM) than the HFO-480 and a slightly greater consumption rate than the HFO-368. By comparison of the HPT performance data in figure 4 and Boeing 747-100 uata in Table V it can be seen that the take-off gross weight of the HPT is 125,506 pounds less than the JP fueled Boeing 747-100 which has the same payload/range capability.

3. Hydrogen in Pods Under the wings - HPU

Except for the fuel pods, the HPU (shown in figure 5) and HPT configurations are identical. An intersecting double cylinder tank system is used to reduce tank depth and permit ground clearance with the under-the-wing installation. The small difference in wetted area and resulting difference in drag level, engine thrust and energy consumption between the HPU and HPT were considered to be minor and were therefore neglected for this analysis.

4. <u>Hydrogen fuel, Passengers in Pods on the wing - HPP</u> Figure 6 shows the configuration and data for two hydrogen fueled air transports with passengers in wing pods and fuel in non-integral full fuselage diameter tanks (only in/the wing box area are tank sizes reduced). One set of data is for 364 passengers seated five (5) abreast (HPP-364) and the other set of data is for 438 passengers seated six (6) abreast (HPP-438). These aircraft unlike the other hydrogen fueled concepts, have

a high mounted wing with twin engine nacelles under the wing. At 437,540 lb. and 448,389 lb. for the HPP-364 and HPP-438 respectively, the operating weight empty (OWE), is grea er for these two configurations than for the other hydrogen fueled aircraft considered in this study. Energy consumption for these two aircraft, 3003 BTU/PM (HPP-364) and 2573 BTU/PM (HPP-438), was also quite high. For these and other reasons, such as excessive motion and loads anticipated in the passenger cabins during aircraft maneuvers, these configurations will probably receive little additional attention.

Methane Configurations

1. Methane in Fuselage, Under - MFU

In this configuration, shown in figure 7, methane fuel was contained in the lower section of the fuselage under the passenger compartment. The tank shapes were the same as for hydrogen but the tank size was much smaller. The MFU design is slightly shorter in overall aircraft length than a Boeing 747. It, like the HFO, was configured for 368 passengers (MFU-368) and 5000 n.m. range. It was also rearranged for additional passengers, 416 total (MFU-416), at the same range. This aircraft has an OWE which is only slightly greater (approximately 7000 lb.) than the HFO but with the addition of fuel the TOGW is much greater---772,063 lb. compared to 592,932 lb.---a 179,131 lb. difference. As a result, both engine thrust and BTU/PM are large relative to the HFO. This design does provide a large cargo space fore and aft of the fuel tanks that was not available in the HFO design.

(

2. Methane in Fuselage, Over - MFO

The only difference in the exterior of the MFO, figure 8, and MFU configurations is the bubble beneath the passenger compartment of the MFO to provide for wing box carry-through structure. This results in a small increase in drag for the MFO, thereby requiring a slightly higher cruise altitude than for the MFU configuration.

The fuel and passenger arrangement for the MFO configuration provides excess space in the upper fuselage section. A modification of this concept utilizing this excess space for additional fuel for longer range or additional passengers appears to be a more practical concept. Such a configuration should perform comparable to the MFU-416.

3. Methane in Pods Under the Wings - MPU

To facilitate safety and provide cylindrical tanks for pressurized cryogenic methane, wing pod tanks were incorporated on the MPU design shown in figure 9. At 113.7 feet long and 11 feet in diameter, the wing pods are much smaller than the HPT tanks and appear to be an acceptable size in proportion to the Boeing 747 size fuselage. TOGW of this aircraft is 43,500 lb. heavier than the other methane designs, and 16,000 pounds more fuel are required to maintain Mach 0.82 and a 5000 n.m. range. The advantages of this aircraft, compared to other methane aircraft, are the same as the HPT and HPU aircraft--safety and ease of tank inspection and maintenance.

1

1

CONCLUSIONS

Because this study did not address the problem of economics directly, only from the standpoint of fuel utilization, no single aircraft configuration selection is made. There were, however, several conclusions derived which will aid in this selection. They are listed below:

1. The economics of both flight operations (aircraft performance) and ground operations (maintenance) combined with safety have a strong influence on the configuration of an alternate-fuel aircraft. In this respect configurations with wing pod fuel tanks offer advantages in ground operations and safety, and configurations with fuel in the fuselage offer advantages in performance.

2. If the aircraft are large, approximately 400 passengers or more, LH₂ fueled aircraft offers superior performance characteristics (BTU/PM) as compared to JP fueled aircraft. The JP fueled aircraft, in turn, offers superior performance when compared to the CH_A fueled aircraft.

3. Methane fuel, in addition to having the disadvantages of a cryogen, does not possess the advantages of high heat content and low density provided by hydrogen fuel.

MISSION PROFILE

FIGURE 2

368 PASSENGERS	FUSELAGE LENGTH 270.0 FT. FUSELAGE DEPTH 25.75 FT. FUSELAGE WIDTH 24.00 FT. WING SPAN 165.8 FT. THRUST/WEIGHT 28 MACH NO. 28 THRUST 40,900 LBS/ENGINE ENERGY REQ'D 2654 BTU/PASS. MI. BURNED FUEL 90,113 LBS.	480 PASSENGERS	FUSELAGE LENGTH 270.0 FT. FUSELAGE DEPTH 25.75.FT. FUSELAGE WIDTH 24.00 FT. WING SPAN 172.1 FT. WING SPAN 172.1 FT. THRUST/WEIGHT 256 MACH NO. 256 MACH NO. 256 MACH NO. 2047 BTU/PASS. MI. BURNED FUEL 94,250 LBS
PERFORMANCE DATA -	WE 406,932 LBS. AYLOAD 77,000 LBS. AYLOAD 77,000 LBS. OGW 592,932 LBS. FIGGW 592,932 LBS. ANGE 4,978 N. MI ANGE 128 LBS/FT2 REF 3950 FT2 REF 30,500 FT. ULT. END CR. 33,800 FT.	PERFORMANCE DATA -	WE 426,127 LBS. AYLOAD 100,400 LBS. UEL 112,000 LBS. 0GW 638,527 LBS. ANGE 4,950 N.2MI. /S 128 LBS/FT ² REF 4270 FT. ² GROSS 5,000 FT. ² LT. START CR. 29,500 FT. LT. END CR. 32,700 FT.

FIGURE 3 HFO

FIGURE 4 HPT

OME PAYLOAD FUEL TOGW M/S	PERFORMANCE DATA 392,439 LBS. 77,000 LBS. 115,055 LBS. 584,494 LBS. 4,992 N. MI. 125 LBS/FT.	- 368 PASSENGERS FUSELAGE LENGTH 22 FUSELAGE DELTH 22 FUSELAGE WIDTH 22 WING SPAN 16 THRUST/WEIGHT 0.8	27.7 FT. 22.3 FT. 21.25 FT. 6.6 FT. 308
SREF	4041 FT ²	THRUST 45,000 LBS	S/ENG
^S GROSS	4746 FT. ²	ENERGY REQ'D 2726 BTU/F FUELED BURNED 97,04 ALT. START CR. 33,00 ALT. END CR. 36,60	PASS. MI. Ha LBS. 00 FT. 00 FT.

FIGURE 5 HPU

H 225.2 FT. 22.3 FT. 21.25 FT. 173.8 FT. 285 .82	45,000 LBS/ENG. 3003 BTU/PASS. MI. 98,263 LBS.
FUSELAGE LENGT FUSELAGE DEPTH FUSELAGE WIDTH WING SPAN THRUST/WEIGHT MACH NO.	THRUST ENERGY REQ'D FUEL BURNED
437,540 LBS 77,000 LBS 117,092 LBS. 631,632 LBS. 4639 N. MI2 125 LBS/FT.2	4,338 FT. ² 5,090 FT. ² NRT CR. 31,500 FT. D CR. 34,800 FT.
OWE PAYLOAD FUEL TOGW RANGE W/S	SREF Seross ALT. ST/ ALT. EN

PERFORMANCE DATA - 438 PASSENGER-SIX ABREAST

! }			
DME DAD	448,389 LBS. 01.647 LBS.	FUSELAGE LENGTH	225.2 FT. 22.3 FT.
FUEL	117.092 LBS.	FUSELAGE WIDTH	21.25 FT.
TOGW	657,128 LBS.	WING SPAN	176.5 FT.
RANGE	4,483 N. MI.	THRUST/WEIGHT	. 29
W/S	125 LBS/FT. ⁶	MACH NO.	.82
SREF	4,476 FT.	THRUST	47,362 LBS/ENG.
S _{GROSS}	5.257 FT.	ENERGY REQ'D	2,573 BTU/PASS. MI.
ALT. START	CR. 30,600 FT.	FUEL BURNED	97,943 LBS.
ALT. END C	R. 33,800 FT.		

FIGURE 6 HPP

			P							7
		1 26	A	1	7					
	261.8 FT. 22.31 FT. 21.25 FT.	186-25 F1. . 82 . 82	ENGINE BTU/PASS. MI.	27,500 FT. 35,000 FT.		261.8 FT. 22.31 FT.	21.25 FT. 186.9 FT.	. 25	.82	BS/ENGINE
a FRS	ENGTH EPTH TIDTH	GHT	254 LBS/ 'D 2744	cr. R.	.RS	PTH PTH	DTH	iHT		49,350 L

	61.8 F1 222.31 F 21.25 F 86.95 F1	.82	ASS. MI 7,500 F 5,000 F		51.8 FT 22.31 FT 21.25 FT 6.9 FT.	.82 TNF	INC SS. MI. BS. T.
- 368 PASSENGERS	FUSELAGE LENGTH 2 FUSELAGE DEPTH FUSELAGE WIDTH WINGSPAN THRUST/WEIGHT	MACH NO. THRUST 48,254 LBS/ENGINE	ENERGY REQ'D 2744 BTU/P ALT. START CR. 2 ALT. END CR. 3	416 PASSENGERS	FUSELAGE LENGTH 26 FUSELAGE DEPTH 26 FUSELAGE DEPTH 2 FUSELAGE WIDTH 2 WING SPAN 18 THRUST/WEIGHT	MACH NO. THDIST AD 360 LBS JENG	ENERGY REQ'D 2472 BTU/PA BURNED FUEL 237,656 L ALT. START CR. 29,500 F
PERFORMANCE DATA	416,743 LBS. 77,000 LBS 278,320 LBS 772,053 LBS.	131 LBS/FT ² 5,017 FT. ²	5,893 FT. ⁵ 238,394 LBS.	PERFORMANCE DATA -	424,088 LBS. 87,200 LBS. 278,320 LBS. 789,608 LBS. 4,965 N. MI.	134 LBS/FT. ² 5 017 ET ²	5,820 FT. ²
	OWE PAYLOAD FUEL RANGE	^{W/S} GROSS ^S REF	JGROSS BURNED FUEL		OWE PAYLOAD FUEL TOGN RANGE	W/> GROSS	Seross
			j.				

FIGURE 7 MFU

ţ

ENERGY REQ'D 2472 BTU/PASS. MI. BURNED FUEL 237,656 LBS. ALT. START CR. 29,500 FT. ALT. END CR. 36,600 FT.

Ų	261.8 FT. 22.31 FT. 21.25 FT. 186.9 FT. 25 .82 LBS/ENGINE 48 BTU/PASS. MI.	37,300 FT.
368 PASSENGERS	FUSELAGE LENGTH FUSEL SE DEPTH FUSELAGE WIDTH WING SPAN THRUST/WEIGHT MACH NO. THRUST 48,254 ENERGY REQ'D 27	ALT. END CR.
PERFORMANCE DATA -	408,743 LBS. ~77,000 LBS 278,320 LBS. 772,063 LBS. 5069 N. MI.2 132 LBS/FT. 5017 FT. ² 5893 FT. ² 5893 FT. ²	
(OME PAYLOAD FUEL TOGW RANGE W/S SREF SGRDSS	

FIGURE 8 MFO

FIGURE 9 MPU

	PERFORMANCE DATA -	368 PASSENGERS	
OWE PAYLOAD ♪ FUEL TOGW RANGE	440,978 LBS. 77,000 LBS. 297,558 LBS. 815,528 LBS. 4,938 N. MI.	FUSELAGE LENGTH 2 FUSELAGE DEPTH FUSELAGE WIDTH WING SPAN THRUST/WEIGHT	27.7 FT. 22.3 FT. 21.25 FT. 192.8 FT. .237
M/S	130,LBS/FT. ²	MACH NO.	.82
SGROSS	6,273 FT. ²	THRUST 48,254 LB	S/ENG.
SREF	5,341 FT. ²	ENERGY REQ'D 3015 B BURNED FUEL 254, ALT. START CR. 29, ALT. END CR. 36,	575 LBS 575 LBS 000 FT. 400 FT.

			COMPARISONS	WITH JP-4 A	ND GASOLINE			
Fuel (Formula)	Heat of (8TU/1b)	Combustion* (BTU/gal)**	Density** (1b/ft ³)	Boiling Point (°F)	Ignition Temperature (°F)	Ease of Storage (l-easiest)	Toxicity (1-least toxi	Flammability Limits In air c)(% by volume)
Hydrogen H2	51,600	30,400	4.4	-423	1,085	ω	-	4.0 - 75.0
Ammonia NH ₃	8,000	45,600	42.6	-28	*	4	Q	15.0 - 28.0
Hydrazine N2 ^H 4	7,170	60,500	63.1	236	166++	ς	7	4.7 - 100.0
Methanol CH ₃ 0H	8,580	56,700	49.4	149	800	2	ى	6.0 - 36.5
Ethanol C ₂ H50H	11,530	76,000	49.3	173	700	-	4	3.5 - 19.0
Me thane CH ₄	21,500	74,500	25.9	-259	1,200	9	8	5.0 - 15.0
Prcpane C ₃ H ₈	19,900	97,000	36.5	-44	4	ى	m	2.1 - 9.5
Acetylene c ₂ H ₂	20,734		ł	61 L-	635	٢	I	2.3 - 80.0
Gasoline JP-4	19,100 18,600	112,000 121,000	43.8 48.7	257 210	480	££	(4) (4)	1.1 - 7.0 0.8 - 5.6
*Lower he **Liquid ++Hydrate	ating value	Sou	urce: 1973 Su	ummer Design	n Team Data, La	ıRC		

CHARACTERISTICS OF SYNTHETIC FUELS AND COMPARISONS WITH JP-4 AND GASOLINE

-

TABLE I

SUMMARY
MIN
Ъ С
COEFFICIENT
DRAG

CONFIG.	HFO	HFO	HPT/HPU	dдн	ddH	MFU	MFU	MFO	MPU
ITEM	^CDPMIN	Δς _D pmin	^CDPMIN	^{AC} DPMIN	^CDPMIN	^CDPMIN	^C _{DPMIN}	^CDPMIN	^CDPMIN
BODY	.00769	11200.	.00611	.00562	.00545	.00523	.00523	.00549	.00457
MING	.00494	.00494	.00511	.00513	.00497	.00514	.00514	.00514	.00490
H. TAIL	.00161	.00149	.00158	.00147	.00142	.00127	.00127	.00127	.00120
V. TAIL	.00108	.00100	.00106	. 00099	.00096	, 00086	.00086	.00086	.00075
FAN COWLS	.00066	.00061	.00065	.00061	.00059	. 00053	.00053	.00053	.00049
PYLONS	.00051	.00047	.00050	.00047	.00046	.00041	.00041	.00041	.00038
FLAP TRACKS	.00055	.00051	.00054	.00051	.00049	.00044	.00044	,00044	.00042
INTERFER.	.00120	.00120	.00120	.00120	.00120	.00120	.00120	.00120	.00120
TANKS-PODS	ł	ł	.00497	. 00565	.00548	ł	i	1	.00282
TOYAL	.01824	.01734	.02172	.02165	.02102	.01508	.01508	.01534	.01672
BASIC POLAR	.01200	.01200	.01200	.01200	.01200	.01200	.01200	.01200	.01200
CDXT	.00624	.00534	.00972	.00965	.00902	.00308	.00308	.00334	.00472
SREF.	3950 ft ²	4270 ft ²	4041 ft ²	4338 ft ²	4476 ft ²	5017 ft ²	5017 ft ²	5017 ft ²	534l ft ²
W/Saross	128	128	125	124	125	130	134	130	130
TOGW	592.932	638.527	584,494	631.632	657,128	772,063	789,603	/72,063	815,528
Saross	4642 ft ²	5020 ft ²	4746 ft ²	5095 ft ²	5257 ft ²	5893 ft ²	5893 ft ²	5893 ft ²	6273 ft ²
BODY 1/ 4	11.25	11.25	10.7	10.6	10.6	12.32	12.32	12.32	10.7
BODY d	24.0 ft	24.0 ft	21.25 ft	21.25 ft	21.25 ft	21.25 ft	21.25 ft	21.25 ft	21.25 ft
BODY 1	3240 in	3240 in	2732 in	2702 1n	2702 in	3142 in	3142 in	3142 in	2732 in
WING SPAN	165.8 ft	172.1 ft	166.7 ft	173.75 ft	176.5 ft	186.8 ft	186.8 ft	186.8 ft	192.8 ft
WING A	6.96	6.96	6.96	6.96	6.96	6.96	6.96	6.96	6.96
Ac/a	37.5°	37.5°	37.5°	37.5°	37.5°	37.5°	37.5°	37.5°	37.5°
, × , +	. 356 8, 8%	.356 8,8%	. 356 8.8%	. 356 8,8%	356 8,8%	. 356 8,8% 8,8%	. 356 8,8% 8,8%	. 356 8.8% 8.8%	.356 8.6%
M A.C.	307.5 in	319.9 in	311.0 in	322.5 in 3	127.2 in	346.5 in	346.5 in	346.5 in	_357.56 in
PAYLOAD	368 pass	480 pass	368 pass	364 pass 4	38 pass	368 pass	416 pass	368 pass	368 pass

•

TABLE II

:		Liguta Hydre	ogen LH2	1		.ر	Iquid Meth	ane LCH	
Configuratio	n	AFU 480	-нр / нр 368	364 H	438	368	1rU 416	368 U	368 368
Wing	65500	66100	11088	96545	97095	94907	95165 4657	94907 6667	12600
Vertical Tall	7968	7968	7968	3983	3983	3780	3780	3780	3760
Canard Fired and	0 92800	0 92800	0 73926	133270	0 133270	0 80226	0 80226	0 80226	80226
Landing Gear	31325	31325	31325	31325	31325	31325	31325	31325	31325
structure Total	(211454)	(212054)	(215091)	(279034)((279534)	(523969)	(224227)	(223969)	(255062)
Englnes	40464	40464	40464	40464	40464	40464	40464	40464	40464
Thrust Reversers	6706	6706	6706	6706	6706	6706 1780	6706	6706 1780	6706 1780
Fuel Sys-Tanks & Plumb.	48350	48350	27865	11405	11405	44000	44000	44000	29523
-Insulation Propulsion Total	(105030)	//30 (105030)	84900)	66058)	56058)	(100092)	(100092)	(100092)	(93234
Surface Controls Auxiliary Power Instruments									
Hydraulics . Electrical Avionics	73415	86474	73415	73415	81611	73415	79012	73415	73415
Furnishings & Equipment Air Conditioning									
Anti-Icing Systems & Equipment Total Mfg. & Certif Tolerance	{ 73415)	(86474)	(73415)	(31415)	(11918)	(73415)	(21062)	(73415)	(73415)
Weight Empty	389699	403558	373406	418507	427203	397476	403331	397476	421711
Crew and Baggage-Flight.3									
Unusuable Fuel Engine Oil Passenger Service Caroo Containers. 4	19033	22569	19033	19033	21186	19267	20757	19267	19267
Operating Weight	408932	426127	392439	437540	448389	416743	424088	416743	440978
Passengers									
Passenger Baggage Cargo	77000	100400	77000	77000	91647	77000	87200	17000	000//
Zero Fuel Weight	485932	526527	469439	514540	540036	493743	511288	493743	517978
Mission Fuel	107000	112000	115055	117092	117092	278320	278320	278320	297558
Design Gross Weight	592932	638527	584494	631632	657128	772063	789608	772063	815528

GROUP WEIGHT STATEMENT

TABLE III

CONFIGURATION COMPARISON

TABLE IV

PERFORMANCE DATA

0F

STANDARD 747-100 FOR COMPARATIVE PURPOSES

OWE	355,400 LBS.	FUSELAGE LENGTH	227.7 FT.
PAYLOAD	77,000 LBS. (368 PASS.)	FUSELAGE DEPTH	22.3 FT.
TOGW	710,000 LBS.	FUSELAGE WIDTH	21.25 FT.
RANGE	5,000 N.MI.	WING SPAN	195.7 FT.
W/S	121 LBS/FT. ²	T/W	.23
S _{REF}	5,500 FT. ²	MACH NO.	. 82
s Gross	5,857 FT. ²	THRUST 40,90	O LBS/ENGINE
		ENERGY REQ'D	2350 BTU/PM
		BURNED FUEL	235,000 LBS.