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I NTROMJCT ION 

In the spring of 1973 Langley Research Center began an Energy Trends/ 

Ai rcraf t  Fuels (ET/AF) Study t o  assess the impact on a i r c r a f t  design and 

energy consumption when fuels other than JP a r e  u t i l i zed .  Both hydrogen 

and methane fuel were investigated and the resu l t ing  aircraft were 

compared t o  a baseline 53 fueled aircraf t - the Boeing 747-100. Yhile the 

data i n  t h i s  report ,  i.e., weights, drag polars,  mission analysis  results 

and configuration drawings, should provide a strong base f o r  follow-on 

e f f o r t  i n  this f ie ld ,  more wori, i s  required before a f ina l  configuration 

select ion can be made. 

both in-house and on contract  w i t h  the Lockheed Aircraft Corporation. 

Some follow-on e f f o r t  is already being pursued 

A1 though some complementary work was being conducted simultaneously a t  LaRC 

and other  NASA centers,  this document will deal en t i r e ly  w i t h  the subsonic 

a i r c r a f t  s tud ies  which were directed by LaRC and heavily supported by 

HTC , LTV Aerospace Corporation. 
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SYMBOLS 

Wing Aspect Ratio 

A i  r Transport Association 

B r i t i sh  Thermal Units Per Passenger Nautical Mi le 

Total Drag Coefficient 

Compressi b i  1 i ty  Drag Coeff icient 

Form Drag Coef f i c i  en t 

Skin Fr ic t ion  Drag Coeff icient 

Interference Drag Coeff icient 

Induced Drag Coefficient 
(Coeff icient o f  Drag due t o  L i f t  

Minimum Parasite Drag Coeff icief i t  

(3: ) 
n l R  e 

Wing Camber 

Increase i n  
Value 

Methane 

Drag Coeff icient 

Fr ic t ion Drag Coeff icient over Baseline 

Fuselage Diameter, ft. 

Engine Scale Factor 

Energy Trends/Ai r c r a f t  Fuels (study) 

Square Feet 

Hydrogen 

Hydrogen i n  Fusel age, Overhead 

HFO with 368 passengers 

HFO wi th 480 passengers 

Hydrogen ,Fuel, Passengers i n  Pods 
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HPP-364 

HPP-438 

HPT 

HPU 

HSAD 

HTC 

JP-4 

1 

La RC 

l b  

l b / f t 2  

1 /d 

LH2 

LCH4 

MAC 

MFO 

MFU 

MFU-368 

MFU-416 

MPU 

NASA 

n.m. 

HPt with 364 passengers 

HPP with 438 passengers 

Hydrogzn i n  Pods on Tips o f  Wing 

Hydrogen i n  Pods Under the Wings 

High Speed A i rc ra f t  Division 

Hampton Technical Center 

Jet  Propellant Similar t o  Kerosene 

Fuselage Length, in. 

Langley Research Center 

Pounds 

Pounds per Square Foot 

Fuselage Length t o  Diameter Ratio 

Liquid Hydrogen 

Liquid Methane 

Mean Aerodynami c Chord, i n  . 
Methane i n  Fuselage, Over 

Methane i n  Fuselage, Under 

MFU with 368 passengers 

MFU with 416 passengers 

Methane i n  Pods Under the wings 

National Aeronautics and Space Administration 

Nautical Miles 

Operating Weight Empty, lb.  

Payload, lb.  

P r a t t  81 Whitney A i rc ra f t  

Gross Wing Area, f t  2 



2 Reference Wing Area, ft S~~~ 

TOGW Takeoff Gross Weight, lb .  

t / c  

T/Y Thrust to Weight Ratio 

w/s Hing Loading, 1 b / f t  

Wing Thickness to Chord Ratio 

2 

Quarter Chord Sweep Angle, degrees %4 

4 

x Wing Taper Ratio 
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STUDY GUIDELINES AND CONSTRAINTS 

GENERAL 

Before aircraft configuyation studies were begun, several guidelines were 

established; others were incorporated as the study progressed and the 

need to establish boundaries became obvious. Below are listed the impor- 

tant guide1 i nes. 

Range 5000 nautical miles 

Pay1 oad 

Cruise Mach Number 0.82 

Wing loading Approximately 125 l b / f t  for hydrogen, 

368 passengers plus baggage (77,000 1 b. ) 

2 

slightly higher for methane 

Thrust t o  ‘:eight Ratio (T/W) 0.25 - 0.35 

Fuel Reserves 

Engine 

Fuselage Fineness Ratio ( l / d )  9 - 12 

1967 ATA International requirements 

P&WA JT9D-7 scaled to  required thrust 

FUELS 

The major guideline under which this study was conducted was the use o f  

l iq i l id  hydrogen (LH2) and l i q u i d  methane (LCH4) as alternate fuels for 

passenger and cargo air transports. Some properties of thew fuels are 

shown i n  Table I. 

A significant factor i n  the design of these aircraft was fuel density. 

Although hydrogen and methane are more efficient fuels than JP on a weight 

basis, their low density requves large tankage volume. Anotkr signifi-  

cant characteristic o f  these fuels i s  that  t o  maintain them i n  a l iquid 

state and to  prevent enormous fuel losses from boil-off, fuel tanks must 

be pressurized. Consequently, tank design became a dr iving force i n  the 

aircraft configurations using either of these fuels. 
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TANK CONCEPTS 

Three categories of fuel containment were considered i n  this study: 

(1) Fuel contained within the wing. (2) Fuel i n  pods on the wing, and 

(3) Fuel i n  the fuselage (see f igure 1). Within each category was the 

option o f  integral or non-integral tanks. 
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ANALYSIS PROCEDURE 

Drawing upon experience gained i n  earl  i e r  Advanced Transport Techno1 ogy 

(ATT) Studies, the LaRC/LTV team used a straightforward but comprehensive 

approach to  the integrated design e f fo r t .  Basically, the following steps 

were used: 

1. Configurations 

a. general arrangements - A layout o f  the desired a i r c ra f t  was 

made with fuel i n  the fuselage o r  fuel i n  wing pods, double-deck o r  single- 

deck, high wing o r  low wing, four engines or  three, etc. 

b. passenqer/fuel matching - The desired number o f  passengers 

was selected which establ ished payload weight. Passenger accomnodations 

were then added t o  the layout. An estimation method provided an approx- 

imate fuel requirement f o r  a selected range and the appropriate tenk 

volume was then added t o  the aircract  layout. If the a i rcraf t  s i t e  and 

fuel volume were not compatible a t  t h i s  point, adjustments were made by 

changing the a i r c ra f t  size t o  accomnodate both passengers and fuel.  This 

i te ra t ion  was continued as each additional step was incorporated i n  the 

con f i gura t i on s tudi es . 
c. dimensions - When the above steps were compatible, dimensions 

were taken from the scaled drawings t o  provide wetted areas, slenderness 

rat io,  component sizes, volumes, etc. This data was used as input t o  

determi ne aerodynamic and weight characteristics . 
2. Aerodynamic Charac t e r i  s t i  cs - LRC aerodynamicists provided the 

basic drag data (Table 11) f o r  an a i r c ra f t  approximately the same as the 

JP-fueled Boeing 747 a i r c ra f t  used as a baseline design i n  t h i s  study. 

The data included skin f r i c t i o n  drag coeff ic ient  (CD,f), form drag 
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coeff icient (CDSF) [combined and used as minimum paras1 t e  drag coeff ic ient  

)] and interference drag coeff ic ient  (C ). To t h i s  data was ('~,p min D, 1 
added an estimation o f  the coeff ic ient  o f  drag due t o  wing camber (CD,w). 

The coeff icients o f  drag due t o  l i f t  (cD,i), and compressibility drag 

{C,,,), i.e. drag r i s e  due t o  Mach number, were then calculated and 

added t o  previously determined numbers t o  y i e l d  the t o t a l  drag coeff ic ient  

(CDi. No t r i m  drag was considered. This coef f ic ient  and other information 

was used as input data i n t o  a Mission Analysis Program. 

3. Weights Analysis - A comprehens!ve s t a t i s t i c a l  weights program 

developed by LTV was used t o  produce a systems' weight breakdown t o  the 

level shown i n  Table 111. Dimensional data taken pr imari ly from the 

configurations e f f o r t  was used as input. These input data categories are 

1 isted below: 

O Wing geometry 

O Fuselage geometry 

O Fue? tank geometry 

Fuel tank locations 

O Mission fuel  

O Payload 

Some weight components were assumed t o  be invariant f o r  ease o f  calculation 

on t h i s  preliminary ef for t .  Components i n  t h i s  category are l i s t e d  below: 

O Engines, riacel les, thrust  reversers 

O Landing gear system 

O Empennage 

O Some systems and equipment such as radar, computers and other electronfcs 
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Since most o f  t h i s  study was conducted using a Boeing 747-100 a i rcraf t  

design as baseline, values f o r  that  a i r c r a f t  were used for landing gear 

weight and t a i l  volume coeff icient. Also, the Boeing 747 engine (JT9D-7) 

weight was used as a constant although thrust was scaled t o  match the 

mission. The results from the weights analysis were subsequently used as 

input in to  the Mission Analysis Program. 

4. Mission Analysis - A Mission Analysis Program (PAB2011), developed 

by NASA-Langley, HSAD, was used t o  evaluate payload/range requirements. 

The program includes take-off, climb, cruise and descent segments of a 

mission. Cruise i s  determined by a single step Brequet equation. Significant 

inputs t o  the program are l i s t e d  below: 

O LH2 or LCH4 fueled engine data which includes thrust  and fuel flow 

vs. Mach number and a l t i tude 

O Base pressure table 

Delta drag coeff icient, which i s  the increment o f  drag coeff icient 

between base1 ine configuration and analyzed configuration 

O L i f t  coeff ic ient  table 

O Wing reference area 

O Weights (TOGW, OWE, and P/L) 

O Cruise Mach number 

O Engine scale factor 

O Input range 

I 

A i r  Transport Association (ATA) International rules were used f o r  mission 

and reserves calculations. A f l i g h t  p r o f i l e  schematic showing the ATA 

requirements i s  given in  f igure 1. 
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A "rubber engine" computer deck containing Pra t t  & Whitney Aircraf t  

JT9D-7 engine performance data was used t o  represent the basic power plant 

f o r  t h i s  study. Fuel flows were adjusted based on the Lower Heating Values 

(LHV) o f  hydrogen and methane. A basic insta l led thrust  o f  40,900 pounds 

was modified by use o f  an engine scale factor (ESF) t o  permit climb and 

cruise a t  the proper Mach number/alti tude combination f o r  various a i r c r a f t  

configurations. 

Results from the mission analysis program are shown on the configuration 

sketches, figures 3 through 9 and a sumnary o f  a i r c r a f t  weights i s  given 

i n  Table I V .  

f 
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STUDY kESULTS 

Tank and Fuel 

1. Fuel within the wings - Integral  tanks i n  the wing a r e  not 

pract ical  for hydrogen or methane fueled aircraft because o f  the pressure 

t h a t  is required to  maintain cryogenic fuels i n  a l iqu id  state. A pressure 

vessel w i t h  nearly f l a t  sides (upper and lower wing surfaces) is excessively 

heavy. A brief study of non-integral wing tanks indicated insu f f i c i en t  

space avai lable  for t h e  la rge  volune of fuel required and excessively 

high tankage weight to fuel volume ratio. 

2. Fuel i n  pods on the wing - Safety is a prime consideration i n  t h e  

design of any a i r c r a f t ,  par t icu lar ly  one w i t h  fuel  as v o l a t i l e  as hydrogen. 

Wing pods offer the advantage, i n  terms of safety, of separation of 

passengers and cargo from t h e  fuel. 

and normal ground operations such as fueling support t h e  use of remotely 

located fuel tanks .  

In addition, inspection, maintenance 

3. Fuel i n  the fuselage - T h i s  concept o f f e r s  many var ia t ions i n  

tank configuration: spherical ,  e l l i p t i c a l ,  cylindrical  and lobed tanks, 

located overhead, fore  and a f t ,  and i n  the center of the fuselage. Only 

a few of these, however, were exercised because of avai lable  time. F u l l  

fuselage diameter cyljndrical t anks ,  while they m y  prove t o  be the most 

efficient concepts, were eliminated i n  t h i s  study because of possible 

regulations re la t ing  t o  p i lo t  access to  the passenger compartment. Such 

configurations have an obvious advantage because of the high  r a t i o  of fuel 

volume to  ta:!k weight and therefore will be investigated i n  future ef for t s .  

The detai led analysis of fuselage tanks i n  this study considered t h a t  the 

tanks were located either above or below the passenger cmpartment. One 
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exception to  th is  located the passengers i n  wing pods thereby permitting 

the use of the ent i re  fuselage f o r  fuel storage. 

Hydrogen Configurations 

1. Zydrogen i n  the Fuselaqe, Overhead - HFO 

The HFO configuration, figure 3, had the least  weight o f  fuel, the lowest 

drag count and the smallest engines o f  a1 1 hydrogen configurations studied. 

Take-Off Gross Weight (TOGW), however, was not the least. The compounded 

problem of non-integral and unconventionally shaped tanks was a major 

reason for  the weight being as high as it was---592,932 pounds. The t m k  

shape was selected i n  an attempt t o  u t i l i z e  as much o f  the "D" cross- 

section i n  the top o f  the fuselage as possible. The HFO a i r c r a f t  incor- 

porates a single passenger deck with a 15/85 f i r s t  class/tourist mix i n  

a twenty-four (24) foot wide fuselage with s ix  (6) abreast seating i n  the 

f i rs t -c lass section and ten (10) abreast seating i n  the t o u r i s t  section. 

The large volume o f  l i q u i d  hydrogen needed for a 5000 n.m. range i n  turn 

provided a large passenger space f o r  a configuration o f  th is  type. 

fact, the f i r s t  layout f o r  368 passengers (HFO-368) yielded excess cabin 

space. By modifying the seating arrangement and seat p i tch it was possible 

t o  provide space f o r  480 passengers i n  the fuselage (configuration HFO-480). 

It was necessary, however, t o  increase the fuel capacity by 5000 pounds 

to  maintain the 5000 n.m. range so the fuel  tanks were enlarged s l i g h t l y  

t o  accommodate the added fuel. The 6nergy consumption, 2047 BTU/PM, for 

the HFO-480 was the lowest o f  a l l  a i r c r a f t  studied under th is  effort. 

In  

2. Hydrogen i n  Pods on Tips o f  wings - HPT 

This configuration i s  shown i n  f igure 4. Signif icant features of t h i s  

368 passenger a i r c r a f t  include wing mounted fuel pods, a T- ta i l  and 
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location o f  the engines on the a f t  fuselage. The large 124.3 feet  long 

arid 16 feet i n  diameter cy l indr ica l  pods on the wing t i p s  contain over 

‘115,000 pounds of LH2. There are clear advantages and disadvantages with 

th is  desf gn. Separation o f  fuel  and passengers provides superior safety 

aspects yet  imposes a severe drag penalty which requires larger engines 

and more fuel than the He0 ai rcraf t .  This resul ts i n  a much greater energy 

consumption (2726 BTU/PM) than the HFO-480 and a s l i g h t l y  greater consump- 

t i o n  rate t h m  the HFO-368. By comparison o f  the HPf performance data 

i n  f igure 4 and Boeing 747-100 uata i n  Table V i t  can be seen that  the 

take-off gross weight o f  the HPT i s  125,506 pounds less than the JP 

fueled Boeing 747-100 which has the same payload/range capabil ity. 

3. Hydrogen i n  Pods Under the wings - HPU 

Except f o r  the fuel pods, the HPU (shown i n  f igure 5) and HPT configurations 

are identical.  An intersecting double cylinder tank system i s  used to 

reduce tank depth and permit ground clearance with the under-the-wing 

instal lat ion.  The small difference i n  wetted area and resul t ing difference 

i n  drag level, engine thrust  and energy consumption between the HPU and 

HPT were considered t o  be minor and were therefore neglected for t h i s  

analysis. 

4. Hydrogen fuel  Passengers i n  Pods on the wing - HPP 

Figure 6 shows the configuration and data for two hydrogen fueled a i r  

transports with passengers :n wing pods and fuel  i n  non-integral f u l l  

fuselage diameter tanks (only in t the  wing box area are tank sizes reduced). 

One set of data i s  f o r  364 passenhers seated f ive (5) abreast (HPP-364) 

and the other set o f  data i s  f o r  438 passengers seated s ix  (6) abreast 

(HPP-438). These a i  rc ra f  t unl i ke the other hydrogen fueled concepts, have 
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a high mounted wing with twin engine nacelles under the wing. A t  

437,540 lb.  and 448,389 lb.  for the HPP-364 and HPP-438 respectively, 

the operating weight empty (%E), i s  grea er  f o r  these two configurations 

than f o r  the other hydrogen fueled a i r c r a f t  considered i n  t h i s  study. 

Energy consumption f o r  these two ai rcraf t ,  3003 BTU/PM (HPP-364) and 2573 

BTU/PM (HPP-438), was also qui te high. For tne;: and other reasons, such 

as excessive motion and loads anticipated i n  the passenger cabins during 

a i r c r a f t  maneuvers, these configurations w i l l  probably receive l i t t l e  

additional attention. 

Methane Configurations 

1. Methane i n  Fuselage, Under - MFU 

In  th is  configuration, shown i n  f igure 7, methane fuel  was contained i n  

the lower section of the fuselage under the passenger compartment. The 

tank shapes were the same as f o r  hydrogen but the tank size was much 

smaller. The MFU design i s  s l i g h t l y  shorter i n  overal l  a i rcraf t  length 

than a Boeing 747. It, l i k e  the NFO, was configured f o r  368 passengers 

(WFU-368) and 5000 n.m. range. 

passengers, 416 t o t a l  (MFU-416), a t  the same range. This a i r c r a f t  has 

an OWE which i s  only s l i g h t l y  greater (approximately 7000 lb.) than the 

HFO but with the addition o f  fue l  the TOGW i s  much greater--772,063 lb. 

It was also rearranged f o r  additional 

compared t o  592,932 1b.---a 179,131 lb. difference. As a result,  both 

engine thrust and BTU/PM are large re la t ive t o  the HFO. This design does 

provide a large cargo space fore and a f t  o f  the fuel  tanks that  was not 

available i n  the HFO design. 

( 
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2. Methaze i n  Fuselage, Over - MFO 

The only difference i n  the exter ior  of the MFO, f igure 8, and MFU config- 

urations i s  the bubble beneath the passenger compartment o f  the MFO to  

provide for wing box carry-through structure. This results i n  a small 

increase i n  drag for the MFO, thereby requiring a s l i g h t l y  higher cruise 

a1 tStude than f o r  the MFU configuration. 

The fuel  and passenger arrangement f o r  the MFO configuration provides 

excess space i n  the upper fuselage section. A modification o f  t h i s  concept 

u t i l i z i n g  th i s  excess space f o r  additional fuel f o r  longer range or  addi- 

t ional  passengers appears to be a more practical concept. Such a configu- 

ra t ion  should perform comparable t o  the MFU-416. 

3. Methane i n  Pods Under the Wings - WU 

To f a c i l i t a t e  safety and provide cyl indr ical  tanks f o r  pressurized 

cryogenic methane, wing pod tanks were incorporated on. the MPU design 

shown i n  f igure 9. A t  113.7 feet  long and 11 fee t  i n  diameter, the wing 

pods are much smaller than the HPT tanks and appear to be an acceptable 

size i n  proportion t o  the b e i n g  747 size fuselage. TOGW o f  t h i s  a i rc ra f t  

i s  43,500 lb. heavier than the other methane designs, and 16,000 pounds 

more fuel are required t o  maintain Mach 0.82 and a 5000 n.m. range. The 

advantages o f  t h i s  aircraf t ,  compared to other methane aircraft,  are the 

same as the HPT and HPU aircraft-safety and ease o f  tank inspection and 

maintenance. I 
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CONCLUSIONS 

Because th is  study d id  not address the problem o f  economics direct ly,  

only from the standpoint of fuel u t i l izat ion,  no single a i rcraf t  configu- 

ra t ion selection i s  made. There were, hawever, several conclusions derived 

which w i l l  a id  i n  t h i s  selection. They are l i s t e d  below: 

1. The econunics o f  both f l i g h t  operations (a i rc ra f t  performance) 

and ground operations (maintenance) cambined with sa+ety have a strong 

influence on the configuration o f  an alternate-fuel a i rcraf t .  In t h i s  

respect configurations with wing pod fuel tanks o f f e r  advantages i n  ground 

operations and safety, and configurations wi th fuel  i n  the fuselage offer 

advantdges i n  performance. 

2. If the a i r c r a f t  are large, approximately 400 passengers 3r  more, 

LH2 fueled a i r c r a f t  of fers superior performance characteristics (BTU/PM) 

as compared t o  JP fueled a i rcraf t .  T+e JP fueled a i rcraf t ,  i n  turn, offers 

superior Performance when compared t o  the CH4 fueled a i rcraf t .  

3. Methane fuel, i n  addition t o  having the disadvantages of a 

cryogen, does not possess the advantages o f  high heat content and low 

density provided by hydrogen fuel. 
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PERFORMANCE DATA 

OF 

STANDARD 747-1 00 FOR COMPARATIVE PURPOSES 

OWE 355,400 LBS. FUSELAGE LENGTH 227.7 FT. 

PAYLOAD 77,000 LBS. (368 PASS.) FUSELAGE DEPTH 22.3 FT. 

TOGM 710,000 LBS. FUSELAGE WIDTH 21.25 Fr. 

W E  5,000 N.MI. WING SPAN 195.7 FT. 

MIS 121 LBSIFT.~ f / W  .23 

5,500 FT.2 MACH NO. -82 

5,857 FT.' THRUST 40,900 LBS/ENGINE 

ENERGY REQ'D 2350 BTU/PM 

BURNED FUEL 235,000 LBS. 

S~~~ 

'GROSS 

I 

TABLE V 


