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FOREWORD

This report covers work performed under contract NAS 3-16764 for the
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by the NASA-Lewis Research Center with Mr. John P. Merutka as

Project Manager.

Research efforts were performed under the direction of Mr. W. G. Long.

Dr. A. V. Illyn, Technical Director of the Refractories Division, served

as project director for this contract. Mr. H. L. Miller was responsible

for the manufacture of fine diameter mullite fiber.
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ABSTRACT

This report contains the results of a research program to develop and

evaluate mullite fiber with a mean diameter under 2 microns. The 2-mi-

cron fiber is produced by a blowing process at room temperature from a

low-viscosity (10-25 poise) solution. The blown fiber was evaluated

for dimensional stability in thermal cycling to 1371C and was equivalent

to the 5-micron spun B&W mullite fiber. An additive study was conducted

to evaluate substitutes for the boron. Three levels of chromium, lith-

ium fluoride, and magnesium were added to the standard composition in

place of boron and the fiber produced was evaluated for chemical 
and

dimensional stability in thermal cycling to 1371C. The magnesium was

the most chemically stable, but the chromium additive imparted the best

dimensional stability.
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i. SUMMARY

A new blowing process was developed to reduce the average mullite

fiber diameter from an average of 5 microns as manufactured by the commercial

spinning process to below 3 microns to be comparable in diameter to available

silica fiber. This development allows the maximum utilization of the

approximately 1000C operating temperature advantage which mullite possesses

over silica. The thermal conductivity of a fibrous product is a direct

function of the fiber diameter.

Mullite fiber was produced with a total of fifty-four individual

combinations of blowing process variables. Each fiber sample was examined for

fiber diameter distribution. The process variables which produced the finest

diameter fiber in the first forty-one combinations were identified and thirteen

additional process variable combinations were selected for optimization of the

blowing process. These thirteen fiber samples were examined for fiber diameter

distribution and shot content. The average fiber diameter for seven of these

thirteen fiber samples was two microns or less. This represented a significant

reduction in fiber diameter from the commercial B&W mullite fiber, which had'an

average fiber diameter of approximately five microns.

Two pound batches of mullite fiber were manufactured with the optimum

process variables and subjected to thermal cycling to 1259C and 1371C. Results

of this thermal exposure indicated that the fine diameter fiber produced by the

blowing process was equivalent in thermal stability to the five micron mullite

fiber produced by centrifugal spinning. Table 1 compares the properties of

the blown fiber prepared in this program with the B&W mullite fiber previously

manufactured by centrifugal spinning.
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Table 1. Comparison of Blown and Spun Mullite Fiber Properties

Spun mullite Blown mullite

Mean Fiber Dia., 4.7 - 5.0 1.7 - 2.0

Shot Content 9 - 38 38 - 53

Linear Shrinkage, % After (1) (2)

25 Thermal Cycles < .5 (12000) < .5 (1259)

<1.0 (1325C) <1.0 (1371C)

Chemistry, Mole % 67.7 A120 3  Same as spun

25.5 Si0 2
5.8 B 2 03
1.0 P 2 05

(1) Measured on bulk fiber after cycling to 1200C and 1325C (reference 
1).

(2) Measured on pads from chopped fiber after cycling to 1259C 
and 1371C.

An additive study was conducted to determine if a satisfactory 
substitute

could be made for the boron content in the standard B&W mullite composition.

Boron has a relatively high vapor pressure at temperatures above 
1200C and tends to

vaporize. The result is a progressive diminution of the boron content.

Chromium, magnesium, and lithium were each added at three different concentration

levels as a boron substitute. The chromium additive was the most stable and

appeared to offer excellent thermal stability at the five 
weight percent additive

level.

A second consideration in the additive study was to determine the

effect of the three additives in retarding grain growth at temperature in 
the

mullite fiber. Based on scanning electron microscope examination of the fiber

surface and cross-section, no significant change in the degree of grain growth

was effected.

The blowing process was scaled up from a production rate of .22 lb/hr to

10 lb/hr. Fiber was produced at 10 lb/hr, although the quality was poor.

Additional development efforts are required to define the proper combination of

blowing process parameters to produce satisfactory mullite fiber at 10 lb/hr.

The results of this project indicate that mullite fiber can be produced

in a finer diameter by the blowing process than was previously possible by

centrifugal spinning. The mullite fiber produced in the blowing process has

an equivalent level of thermal stability. The blowing process can be scaled

up, which should allow the production of fine diameter mullite fiber at lower

costs. Chromium is a more thermally stable additive than boron at temperatures

to 1371C. No change in the grain growth characteristics in mullite fiber was

effected in the additive study.
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2. INTRODUCTION

Previous development work has demonstrated the excellent thermal

stability of B&W mullite fiber produced by a centrifugal spinning technique

with an average fiber diameter of approximately five microns
(1 )

In tests of several fiber systems for utilization on the Thermal

Protection System of the Space Shuttle, it was shown that the thermal conductivity
(2)

was a direct function of fiber diameter ( . With the excellent dimensional

stability of the mullite fiber at Space Shuttle service temperatures, the

feasibility of producing finer diameter mullite fibers was examined.

Prior to the initiation of this program, a laboratory-scale blowing

process was assembled in the Research & Development Division of Babcock &

Wilcox and fiber samples were produced. The mean diameter of these fibers was

significantly lower (<3 microns) than previously produced by centrifugal spinning.

This work formed the basis for the present contract.

The program is divided into two technical tasks and one reporting task

to accomplish the above objectives. Task I involves a parametric study of several

variables in the B&W Blowing Process, followed by a complete characterization

of the 10 best variable combinations. The goals of Task I are to produce a

mullite fiber with an average fiber diameter less than 3 microns, with 95 percent

of a 100 fiber sample to be 6 microns or less in diameter. The shot content of

this fiber should be no greater than is now present in the commercial B&W spun

mullite fiber.

The standard B&W mullite composition which was utilized throughout Task

I is as follows:

Oxide Constituent Mole %

Al203 67.7
Si02  25.5

B203 5.8

P205 1.0

The Al 203 and Si02 constituents will be held constant in Task II, with

additive substitutes for the B2 03 and P205.
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Task II involves a study of additives to the standard B&W mullite

composition. The goals of Task II are to determine a mineralizer additive

which promotes the low temperature formation of mullite and is less volatile

than the B203. A further goal of Task II is to determine a suitable grain

growth inhibiting additive to reduce the amount of grain growth experienced in

standard mullite fibers at 1371C (2500F).
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3. EXPERIMENTAL PROCEDURE - TASK I

3.1 Fiber Manufacture

All the mullite fiber evaluated in this program was manufactured by

the B&W Blowing Process. A schematic of the equipment is given in Figure 1.

The solution is fed through a narrow orifice into a nozzle where compressed

air causes fiberization. The fiber is then fed through a duct into a collection

bin.

The fiber is then fired to 1065C, converting the glassy material to

polycrystalline mullite.

The variables in the blowing process were solution viscosity, air

pressure, production rate, nozzle setting, and relative humidity. The ambient

temperature was maintained at 28-30C. A parametric study of these variables

was initiated to identify the combination which would produce the finest

diameter mullite fiber.

3.2 Fiber Diameter

Initial determinations of fiber diameter were made at 450X using an

optical microscope with a Vickers split image eyepiece. This technique had

proven quite accurate and reproducible in previous development programs on mullite

fiber. However, the fiber produced by the blowing process is significantly

smaller in diameter, and the measurements taken were approaching the limits of

resolution of an optical microscope (%1-2 microns).

The scanning electron microscope was utilized for all measurements of

fiber diameters, following the failure with the optical system. A representative

sample of fibers was taken from the fiber batch and examined at 600X.

Photographs were made of at least four areas from each fiber sample. These

photographs were then enlarged to 3600X, and fiber diameters were measured

from each photograph. From these measurements, the fiber diameter distribution

and the mean diameter was determined.

3.3 Shot Content

Shot is defined as the unfiberized portion of the fiber product and is

common to most refractory fibers. The shot content was determined by a water

elutriation method using the apparatus shown in Figure 2.

- 5 - Babcock & Wilcox



Figure 1. Experimental Mullite Fiber Blowing Process
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Figure 2. Apparatus Used in Fiber-Shot Separation
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This page is reproduced at theback of the report by a differentreproduction method to providebetter detail.
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The first step is the crushing of a 20 gram sample. This crushed

sample is then placed in the inverted Erlenmeyer flask section. Water flow is

then introduced at a predetermined rate, and the fiber is carried off through

the vertical column along with the discharge water. The shot remains at the

lower end of the Erlenmeyer flask and settles into the receptacle as the water

flow is terminated. Microscopic examination of both the collected fiber fraction

and the shot residue confirmed that this technique is highly efficient in

separating shot from fiber.

3.4 X-Ray Diffraction Analysis

Diffraction patterns were generated using motor driven diffractometer

synchronized with a recorder. The mullite fibers were ground in an agate mortar

to pass a 100 mesh screen and then packed into an aluminum holder. Copper

radiation with a nickel filter was used and the scanning rate was 2 degrees per

minute. Crystalline components were identified using the ASTM powder

diffraction index cards as a reference.

3.5 Surface Morphology

The surface condition of the fibers were examined using the scanning

electron microscope (SEM) and the transmission electron microscope (TEM). Fiber

samples were prepared for SEM examination by vapor plating a thin coating of

gold or palladium. Bundles of fiber were encapsulated with epoxy prior to

examination by the TEM. The fiber bundle was then fractured, and the exposed

fiber in the fracture surface was replicated. The replicas were then shadowed

at 30 degrees with palladium followed by carbon deposition at 90 degrees.

3.6 Fiber Pad Preparation

Fiber pads were prepared with and without binder for exposure to thermal

cycling. The fiber was dispersed by forming a water slurry and agitating

in a Waring blender for approximately 30 seconds. For those pads containing

binder, a measured amount of colloidal silica was introduced in the slurry prior

to blending. The pads made with a silica binder contained 10 weight percent silica.

The pads were formed in a filter press with a 2 inch diameter cavity.

The 2 inch diameter by approximately 1 inch high pads formed were dried overnight.

The dried pads, with and without binder, were then ready for cyclic elevated

temperature exposure. Measurements of the diameter and height of each pad was

recorded prior to thermal exposure to calculate thermal shrinkage.
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3.7 Thermal Cycling

The 2 inch diameter fiber pads were subjected to 25 thermal cycles from

room temperature to 1259C and to 1371C. A separate group of fiber pads was

used for each temperature. A glo-bar fired furnace was maintained at the

control temperature, 1259C and 1371C, and the fiber pads were introduced directly

into the hot zone of the furnace and held at temperature for one hour. After

one hour the pads were removed and allowed to cool to room temperature. This

procedure was followed 25 times at 1259C on one group of fiber pads and

again at 1371C on another group of fiber pads. This test subjected the fiber

to thermal shock and to the extreme temperatures anticipated on the Space Shuttle

vehicle.

3.8 Blowing Process Scale-Up

Tests were performed to evaluate the feasibility of scaling up the B&W

blowing process from 0.22 to 10.0 lb/hr.

A schematic of the blowing system for the experimental mullite fiber as

modified for the 10 ib/hr production is shown in Figure 3. The mullite solution

is fed to a gear pump by gravity or by using a slightly pressurized (20-30 psig)

solution vessel. The flow of solution is controlled by controlling the speed

(rpm) of the gear pump, which has a capacity of 2.92 cc/revolution. The solution

is pumped to a feed nozzle. Five types of solution feed nozzles were used during

the testing. Three of the nozzles are single-orifice types, and two are multiple

(six and nine) solution orifice types. Figure 4 shows sketches of the feednozzles

used for the testing.

The solution stream (or streams) from the solution feed nozzle enters the

blowing nozzle. Two sizes of blowing nozzles were used during the testing. The

nozzles are identical in configuration and only differ in size.

The solution is fiberized in the blowing nozzle, and the fibers travel

down the collection duct to the collection belt. The fibers are then partially

dried by the drying lamps above the collection belt and enter the tunnel kiln

for final firing for about 15 minutes at 1065C.
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Figure 3. Improved Continuous Blowing System
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Figure 4. Solution Feed Nozzles
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4. RESULTS AND DISCUSSION - TASK I

4.1 Blowing Process Parametric Study

A parametric study of the variables in the B&W blowing process was

conducted to identify the combination of process variables which would produce

the finest diameter mullite fiber. The blowing process involves the feeding

of a room ambient temperature solution into a stream of compressed air, causing

shearing of the solution droplets and thereby fiberizing the material.

The variables studied were solution viscosity, air pressure, production

rate, nozzle setting, and room relative humidity. The fiberization room

temperature was maintained at approximately 28-30C throughout this project. The

first 18 combinations were grouped into test Series A. In this series, production

rate was held constant at 100 grams/hour and the relative humidity in the

fiberization room was maintained constant at 30 percent. The solution viscosity,

air pressure, and nozzle setting were varied as shown in Table 2.

Fiber produced in each of these 18 combinations was examined with the optical

microscope at 450X with 100 diameters read and the average fiber diameter

calculated. This same procedure was followed for Series B and C. The

absence of very fine (<1 micron) fiber was noted in the results of the optical

microscope examination. At 1 micron, the limits of resolution of an optical

system are approached, and we were unable to distinguish between 1 and 2 micron

fiber diameters. The fiber diameters produced in test Series A, B, and C

were re-examined and judged as to the lowest concentration of large diameter

(>4 micron) fibers. The lower numbered runs in each test series tended to produce

finer diameter fibers.

In Series A, runs Al, A2 and A3 produced finer diameter fiber than the

higher numbered runs in the A Series. In Series B, whose process variables

are given in Table 3 , the finest diameters were produced in Bl through B4.

These four runs were all made at 10 poise.

The process variables examined in test Series C are shown in Table 4.
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Table 2. Parametric Study - Fiber Produced in Test Series A

Viscosity Production Air Nozzle Relative

(p) rate (PR), pressure setting (TO), humidity,
Run poise g/h (PN), psig no. turns %

Al 10 100 22 1/2 30

A2 10 100 27 1/2 30

A3 10 100 32 1/2 30

A4 10 100 40 1/4 30
A5 10 100 50 1/4 30

A6 10 100 60 1/4 30

A7 25 100 22 1/2 30
A8 25 100 27 1/2 30
A9 25 100 32 1/2 30
A10 25 100 40 1/4 30

All 25 100 50 1/4 30
A12 25 100 60 1/4 30
A13 50 100 22 1/2 30
A14 50 100 27 1/2 30
A15 50 100 32 1/2 30

A16 50 100 40 1/4 30
A17 50 100 50 1/4 30
A18 50 100 60 1/4 30

Table 3. Parametric Study - Fiber Produced in Test Series B

Viscosity Production Air Nozzle Relative

(6) rate (PR), pressure setting (TO), humidity,

Run poise g/h (P N), psig no. turns %

B1 10 200 32 1/2 30

B2 10 300 32 1/2 30
B3 10 200 60 1/4 30
B4 10 300 60 1/4 30
B5 25 200 32 1/2 30

B6 25 300 32 1/2 30
B7 25 200 60 1/4 30

B8 25 300 60 1/4 30
B9 50 200 32 1/2 30
BO1 50 300 32 1/2 30
B11 50 200 60 1/4 30
B12 50 300 60 1/4 30
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Table 4. Parametric Study - Fiber Produced in Test Series C

Viscosity Production Air Nozzle Relative
(W) rate (PR), pressure setting (TO), humidity

Run poise g/h (PN), psig no. turns %

Cl 10 100 32 1/2 10
C2 10 100 32 1/2 30
C3 10 100 32 1/2 40
C4 10 100 32 1/2 60
C5 25 100 32 1/2 10
C6 25 100 32 1/2 30
C7 25 100 32 1/2 40
C8 25 100 32 1/2 60
C9 50 100 32 1/2 10
C10 50 100 32 1/2 40
C11 50 100 32 1/2 60

In test Series C, fiber was produced and collected for all 11 runs. The

fiber in runs C2, C3, C4, C5, C8, C9, and C11 was of very poor quality. At

the high humidity conditions of runs C2, C3, C4, C8, and C11, the solution tended

to atomize rather than fiberize. Shearing of the droplets into fibers was

minimal. This condition is apparently related to the effect of higher humidity

on the surface tension of the solution droplets.

Since the optical microscope did not completely define the fiber diameter

distribution, the scanning electron microscope was employed to characterize the

fiber distribution in those runs in the A, B, and C Series which showed the

lowest concentration of large diameter fibers. The fiber specimens which were

selected are shown in Table 5. The values indicate that 60-70 percent of the

fiber produced for most of these runs is finer than 2 microns, assuring that the

mean diameter would be below 3 microns.

Table 5. Fiber Diameter Measurements

DIAMETER, MICRONS

Run No. <1 1<2 2<3 3<4 >4

Al 22 42 20 15
A2 30 41 19 8
A3 30 35 22 11 3
Bl 51 20 20 5 3
B2 58 25 5 5 4
B3 29 29 32 5 3
B4 40 27 21 8 3
Cl 30 25 25 9 9
C6 30 20 20 10 20
C7 28 31 25 14

Babcock & Wilcox
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Based upon the results produced in Test Series A through C, it appeared

that the lower viscosity ranges produced the finest diameter fiber. Therefore,

a range of 10-25 poise was selected for the final series. The optimum nozzle

setting had been established at 1/2 turn. The air pressure to the nozzle was

optimized at 32 psig in Test Series A through C for the 10 poise viscosity

solution. For the 25 poise solution, 22 psig appeared to produce the finest fiber.

For the DE Series, the production rate was varied between 100 and 300 grams

per hour. The relative humidity was maintained between 14 and 27 percent. At

higher values of relative humidity, 30 percent and above, the fiber tended

to gel together in the duct and in the collection bin. The complete set of

combinations of process variables for the final Series is shown in Table 6.

Table 6. DE Series Redults

Nozzle
air Average*

Solution Nozzle supply Fiber Relative Shot fiber

viscosity, setting, press., prod. humidity, content diameter,

Run poise no. turns psig rate, g/h % % P

DE1 10 1/2 32 300 14 48 2.0

DE2 10 1/2 32 300 24 50 1.7

DE3 10 1/2 32 200 14 44 1.7

DE4 10 1/2 32 150 15 46 1.8

DE5 10 1/2 32 100 14 35 1.7

DE6 17 1/2 32 300 26 53 2.0

DE7 17 1/2 32 200 20 47 1.9

DE8 17 1/2 32 100 20 42 2.2

DE9 17 1/2 32 100 12 37 2.2

DE1O 17 1/2 32 200 16 39 2.1

DEll 25 1/2 22 300 27 46 2.6

DE12 25 1/2 22 200 21 41 2.1

DE13 25 1/2 22 100 25 41 2.2

* Based upon 100 fiber measurements.

The shot content was measured for each individual run in the DE Series.

As shown in Table 6, the shot contents ranged from 35 to 53 weight percent of the

bulk fiber products. The lower shot contents appear to be produced at the lowest

production rate and the lower values of relative humidity with the solution

viscosity held constant. Thus, DE5 has the lowest shot content of any run at

10 poise viscosity. At the higher production rate, 300 grams/hour in DE1 with all

other variables identical to DE5, the shot content was increased from 35 to 48

weight percent. Shot content tends to increase with production rate for all of

the viscosities examined in the DE Series.
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The shot content of spun mullite fiber ranges from a low of 9 percent

to a high of 38 percent, based upon ten spun fiber samples examined by the

water elutriation method.

The fiber diameters for all runs in the DE Series proved to satisfy the

goals of this project. The average diameter of the fiber in individual runs

ranged from 1.7 microns in runs DE2, DE3 and DE5 to 2.6 in DEll. In general, the

lower averages are produced in those fiber samples where no large diameter fibers

are produced. Consider DE2 and DE9 fiber diameters. Tables 7 and 8 show

the fiber diameter distribution in these two fiber samples. The cumulative

distribution shows the percent of individual fiber diameters less than the

value in the left column of each table. For instance, in the DE2 fiber, 91

percent of the diameters measured were less than 3 microns. In the DE9 fiber,

85 percent of the fiber diameters were less than 3 microns. The significant

difference between the DE2 and the DE9 average diameter values is in the fraction

over 3 microns, particularly in the few fiber diameters over 5 microns in the DE9

fiber. Representative fibers from the DE2 and the DE9 runs are shown in Figures

5 and 6, respectively.

In general, the distribution of fiber diameters in the DE Series is

similar for all 13 runs. This is a natural result of focusing in on the process

parameters to a degree where further refinement produces no change in the fiber

diameter distribution. Over 100 total combinations of process variables have

been investigated during the course of research conducted by Babcock & Wilcox

prior to this program, as well as the work described in this program.

X-ray diffraction patterns of the fiber samples in the DE Series show

only gamma alumina and mullite present in crystalline form. No cristobalite was

identified. The relative amounts of mullite and gamma alumina appear to vary,

judging from the intensity of the x-ray diffraction peaks. These differences are

a direct function of the firing temperature in the tunnel kiln. In the

production of spun mullite fiber, x-ray diffraction patterns have typically

exhibited varying amounts of gamma alumina present in the mullite fiber. The 1065C

firing temperature for the mullite fiber is the minimum temperature at which the

glassy fiber is converted to crystalline mullite. If the fiber is fired at a

lower temperature due to variations in the furnace temperature, the conversion

to mullite is less complete and significant amounts of gamma alumina remain.

Figures 7 through 9 illustrate the changes in the relative amounts of

mullite and gamma-alumina as a function of time at temperature in a fiber specimen.

The fiber in DE10 apparently was exposed to a temperature slightly under 1065C,
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Figure 5. DE-2 Fiber Examined by Scan- Figure 6. DE-9 Fiber Examined by Scan-
ning Electron Microscope ning Electron Microscope
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Figure 7. X-Ray Diffraction Pattern of DE-10 As-Manufactured Fiber
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Figure 8. X-Ray Diffraction Pattern of DE-10 Fiber With 15 Minutes

Additional Firing at 1065C
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Figure 9. X-Ray Diffraction Pattern of DE-O10 Fiber With 2 Hours

Additional Firing at 1065C
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Table 7. DE-2 Diameter Distribution

(Arithmetic Mean = 1.7 V)

Cumulative Distribution

Fiber Diameter Value, P Percent less than value

0.0 0
0.5 0
1.0 17
1.5 41
2.0 62
2.5 86
3.0 91
3.5 95
4.0 96
4.5 98
5.0 99
5.5 99

Ordered Array

0.5 1.0 1.5 2.0
0.6 1.5 1.5 2.0
0.7 1.1 1.5 2.0
0.7 1.2 1.5 2.2
0.8 1.2 1.5 2.2
0.8 1.2 1.5 2.2
0.8 1.2 1.7 2.4
0.8 1.2 1.8 2.4
0.8 1.2 1.8 2.4
0.8 1.2 1.8 2.4
0.8 1.2 1.8 2.4
0.8 1.2 1.8 2.5
0.8 1.2 2.0 2.5
0.9 1.2 2.0 2.5
0.9 1.2 2.0 2.5
0.9 1.4 2.0 2.5
0.9 1.5 2.0 3.0
1.0 1.5 2.0 3.0
1.0 1.5 2.0 3.0
1.0 1.5 2.0 3.2
1.0 1.5 2.0 3.5
1.0 1.5 2.0 4.0
1.0 1.5 2.0 4.0
1.0 1.5 2.0 4.5
1.0 1.5 2.0 5.5

NOTE: The ordered array is a display of the 100 fiber diameter measurements.
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Table 8. DE-9 Diameter Distribution

(Arithmetic Mean = 2.2 )

Cumulative Distribution

Fiber Diameter Value, p Percent less than value

0.0 0
0.2 57
4.0 92
6.0 96
8.0 98

10.0 99
12.0 99
14.0 99
16.0 99
18.0 100

Ordered Array

0.8 1.4 1.8 2.2
0.8 1.4 1.8 2.2
0.9 1.4 1.8 2.2
0.9 1.5 1.8 2.2
1.0 1.5 1.8 2.2
1.0 1.5 1.8 2.5
1.0 1.5 1.9 2.7
1.0 1.5 2.0 2.8
1.0 1.5 2.0 2.8
1.0 1.5 2.0 2.8
1.1 1.5 2.0 3.0
1.1 1.7 2.0 3.0
1.2 1.7 2.0 3.0
1.2 1.8 2.0 3.0
1.2 1.8 2.0 3.2
1.2 1.8 2.0 3.2
1.2 1.8 2.0 3.8
1.2 1.8 2.0 4.0
1.2 1.8 2.0 4.0
1.2 1.8 2.0 5.0
1.3 1.8 2.0 5.0
1.4 1.8 2.0 6.0
1.4 1.8 2.0 6.0
1.4 1.8 2.2 8.0
1.4 1.8 2.2 17.0
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producing the high gamma-alumina content. The same fiber, when refired at

1065C for 15 minutes, produced the pattern in Figure 8, which is typical of the

other fiber specimens in this series. The mullite phase is predominant

following this firing. Further exposure of 2 hours at 1065C produced the

diffraction pattern shown in Figure 9, in which the mullite structure is more

fully developed. (The complete series of 13 x-ray diffraction patterns is

presented in the Appendix.)

The effect of underfiring on fiber quality is nebulous. The processing

of fiber into tiles for the Space Shuttle evaluation involves a step in which

the fiber tile is fired to 1259C. This firing converts the fiber to mullite.

If the presence of gamma-alumina were determined to be detrimental, then an

increase in firing the fiber would convert most of the gamma-alumina to

mullite.

The surface morphology of the mullite fiber in the DE Series was

examined at 3600X and at 30,000X on the scanning electron microscope. The fibers

are extremely smooth with no significant morphology developed. Figures 10

and 11 show surface of typical fibers in the DE Series. These surface conditions

are also typical of spun mullite fiber.

4.2 Blowing Process Scale-Up

Tests were performed to evaluate the feasibility of scaling up the B&W

blowing process from 0.22 to 10 pounds of fiber per hour.

The original 100 grams per hour continuous production system resulting

from the parametric study was initially set up. This system used solution feed

nozzle A (Figure 4) and the mullite fiber blowing nozzle. The process variables

used for this initial set up are as follows:

Solution viscosity (ps), poise 10
Air supply press (PN), psig 32
Nozzle setting, turns open 1/2
Relative humidity (RH), % 25
System temperature (Ts), F 85
Production rate (FPR), lb/hr .22

The solution feed rate was then gradually increased until the solution

began to adhere to the inside diameter of the blowing nozzle. The limiting

solution feed rate for this system is a fiber production rate of about 0.66 lb/hr.

At this feed rate, solution adherence on the nozzle wall becomes prominent.
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Figure 10. Surface of DE-2 As-Manufactured Fiber
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It was believed that higher flows of mullite solution could be

fiberized by increasing the air flow to the blowing nozzle. This was done

by increasing the pressure of the air supply to the nozzle from 32 to 85 psig.

As a result, at a nozzle setting of 1/2 turn open, the compressed air flow

was increased from 160 lb/hr to about 425 lb/hr. Aspirated flow remained

constant at 900 lb/hr.

Following these changes, it was found that the maximum allowable fiber

production rate was still 0.66 lb/hr. Furthermore, when solution feed nozzles

B and C (Figure 4) were substituted in place of feed nozzle A, the maximum

allowable fiber production rate remained at 0.66 lb/hr. Also, as the chamber

pressure was increased above 40 psig, the mullite solution tended to atomize

rather than to fiberize.

Holding all other process variables constant, the viscosity of the

solution was increased to 75 poise. This increased the maximum fiber production

rate from 0.66 to 2.2 lb/hr. For this test run, the air supply pressure was

85 psig, and the nozzle setting was 1/2 turn open.

Again holding all process variables constant, a series of tests were run to

determine the effect of the number of solution streams on the maximum allowable

fiber production rate. From this series of tests, it was concluded that multiple-

solution feed nozzle orifices allowed slightly higher rates of fiber production,

and that a solution viscosity of 75 poise, a nozzle air supply pressure of 85

psig, and a setting of 1/2 turn open yield a satisfactory fiber.

At this point, it was obvious that higher solution viscosities would allow

higher rates of fiber production; however, previous work had shown that higher

viscosities also result in fibers of larger diameter. Since it was desired

to minimize the diameter of fiber during this test program, a decision was

made to install the larger blowing nozzle rather than to increase viscosity

further in attempting to reach the goal of 10 lb/hr. The maximum compressed air

flow available when using the larger nozzle was about 743 lb/hr. This flow was

achieved with a supply pressure of 52 psig and a nozzle setting of 1 3/4 turns open.

Another system change made at this time was to pressurize the inlet to

the gear pump to from 20 to 30 psig. At the higher flows of mullite solution,

the gear pump tended to cavitate and to interrupt the solution stream.

Pressurizing the inlet to the pump enables the inlet to remain flooded and prevents

cavitation.

Using the larger nozzle at an air supply pressure of 52 psig and a nozzle

setting of 1 3/4 turns, the goal of producing 10 lb/hr of fiber was reached.
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Five production runs were made at fiber production rates of about 10 lb/hr.

However, the mullite fiber produced at this rate was extremely short. Further

work will be required on the process variables to optimize fiber at 10 lb/hr.

The shot content for the five batches of fiber produced at 10 lb/hr was not

significantly different from that produced at 0.22 lb/hr. The appearance of

the fiber gives the illusion of a much higher shot content, probably due to

the short fiber length. The shot content ranged from 42 to 53 wt %. In

contrast, the shot content of the 2 pound batches produced for the thermal

cycled pads ranged from 45 to 54 wt %. It is apparent that product quality can

be optimized only through a systematic parametric study similar to the study

that resulted in optimizing product quality at the 100 g/hr production rate.

The scale-up study is summarized in Table 9.

Table 9. Scale-Up Study Summary

Solution Air supply Nozzle Production No. solution Fiber
viscosity, pressure, setting, rate, nozzle quality
poise psig turns open lb/hr orifices

10 32 1/2 .66 1 Satisfactory
10 85 1/2 .66 1 Unsatisfactory-

solution
atomized

75 85 1/2 2.2 1 Satisfactory
75 85 1/2 3.4 6 Satisfactory
75 85 1/2 3.7 9 Satisfactory
75 52 1 3/4 10 9 Short fiber-

typical shot
content

During these production runs, it proved to be desirable to minimize

relative humidity so that the fibers were as dry as possible before being

collected on the fiber collection belt. However, previous work had shown that

relative humidities below about 20% result in fiber of a brittle texture after

firing; this condition was also apparent during the current testing.

Several system hardware changes were suggested following the testing. The

velocity of the fiber should be reduced before collection to prevent the fiber's

tending to fuse upon impact on the collection belt. The air velocity of the duct

could be reduced by expanding the duct.

An attendant problem encountered at the higher production rates involved

insufficient drying of the fibers before collection. This problem is probably
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due to a high concentration of moisture in the air in the collection duct.

To enable sufficient drying of fibers in the collection duct, additional

drying air could be supplied to the duct, or the air in the collection duct could

be heated.

In summary, it appears that hardware changes, along with a comprehensive

parametric study similar to that for the production of fiber at 100 g/hr,

will permit the production of mullite fiber at 10 lb/hr.

4.3 Thermal Exposure Evaluation

Based on the results of the DE series fiber evaluation, five of the best

combinations of variables were selected to form series F. In this series, 2

pound batches of fiber were manufactured for thermal exposure evaluation.

The process variables selected for the five 2 pound batches are given

in Tablel0, together with the shot contents of F-1 through F-5. The range of

shot content values indicates that the process variables produce very little

difference in the five batches of mullite fiber.

Table 10. Process Variables and Shot Content for
Two-Pound Batches

Solution Nozzle Nozzle Fiber Rel. Room Shot
viscosity, setting, press., prod. humid., temp. content,

Run poise no. turns psig rate, g/h % F wt %

Fl 10 1/2 32 100 25 85 45.2
F2 10 1/2 32 150 25 85 46.4
F3 10 1/2 32 200 25 85 47.4
F4 10 1/2 32 300 25 85 53.6
F5 10 1/2 32 300 15 115 50.2

In general, the fiber diameter distribution of all fiber groups in the

DE and F series is very similar. The diameter distributions for fibers taken from

groups F-1 and F-4 are given in Tables 11 and 12. The values in these tables

indicate that the parameter changes have little effect on the distribution of

fiber diameters.

The reduction in fiber diameter produced in this program compared to

spun mullite is demonstrated by examining Figures 12 and 13. The F-4 series fiber

distribution peaks at approximately 1.5p, while the fiber produced by centrifugal

spinning, shown in Figure 12, peaks at from 4 to 5p. This reduction in fiber

diameter should produce a significant increase in high-temperature insulating

properties. At temperatures above approximately 800C, the primary modes of heat

transfer in a fiber insulation system are radiation and gas conduction. For a given
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Table 11. Run F-I Fiber Size Data

(Average Diameter = 2.8 p)

Cumulative Distribution

Fiber Diameter Value, p Percent less than value

0.5 0
1.0 1

1.5 14
2.0 30
2.5 45
3.0 59

3.5 71
4.0 79

4.5 89
5.0 96
5.5 96
6.0 97
6.5 98
7.0 99

Ordered Array

0.9 1.8 2.6 3.6
1.0 1.8 2.6 3.6
1.0 1.8 2.7 3.8

1.0 1.9 2.7 3.8

1.0 1.9 2.8 4.1
1.0 2.0 2.8 4.1
1.0 2.0 2.8 4.2

1.1 2.0 2.9 4.2

1.1 2.0 2.9 4.2

1.1 2.0 3.0 4.2

1.2 2.0 3.0 4.2

1.3 2.0 3.0 4.2
1.4 2.1 3.1 4.2
1.4 2.1 3.1 4.3

1.5 2.2 3.1 4.6

1.5 2.2 3.2 4.6

1.5 2.2 3.2 4.6

1.5 2.2 3.2 4.6

1.6 2.3 3.2 4.8

1.7 2.3 3.3 4.8

1.7 2.5 3.4 4.8

1.7 2.5 3.5 5.8

1.7 2.5 3.5 6.0
1.8 2.5 3.5 6.5

1.8 2.5 3.5 7.0

NOTE: The ordered array is a display of the 100 fiber diameter measurements.
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Table 12. Run F-4 Fiber Size Data

(Average Diameter = 1.8 p)

Cumulative Distribution

Fiber Diameter Value, p Percent less than value

0.0 0
0.5 0
1.0 12
1.5 35
2.0 70
2.5 85
3.0 90
3.5 91
4.0 94
4.5 97
5.0 100

Ordered Array

0.5 1.2 1.6 2.0
0.7 1.2 1.7 2.0
0.7 1.2 1.7 2.0
0.8 1.2 1.7 2.1
0.8 1.4 1.7 2.2
0.8 1.4 1.7 2.2
0.9 1.4 1.8 2.2
0.9 1.4 1.8 2.2
0.9 1.4 1.8 2.2
0.9 1.4 1.8 2.3
0.9 1.5 1.8 2.5
0.9 1.5 1.8 2.5
1.0 1.5 1.8 2.5
1.0 1.5 1.8 2.7
1.0 1.5 1.8 2.7
1.0 1.5 1.8 3.0
1.0 1.5 1.8 3.5
1.0 1.5 1.8 3.5
1.0 1.5 1.8 3.8
1.0 1.5 1.9 4.0
1.0 1.5 2.0 4.0
1.1 1.5 2.0 4.0
1.1 1.5 2.0 4.5
1.2 1.5 2.0 4.7
1.2 1.5 2.0 4.9

NOTE: The ordered array is a display of the 100 fiber diameter measurements.
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Figure 12. Fiber Diameter Distribution in Mullite Fiber
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Figure 13. Fiber Diameter Distribution in Mullite Fiber From 
Run F-I
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density of material, finer diameter fibers increase the interference to

radiant energy flow and reduce the gas and conduction. This effect has been

demonstrated in several fiber specimens of varying diameters in reference 2.

To evaluate the effects of thermal exposure on fine diameter mullite

fiber, pads were prepared with and without colloidal silica binder. The pads,

made in a 2 inch die by a filtration process, were dried overnight before cyclic

elevated temperature exposure. Two typical pads are shown in Figure 14. Pads

without binder delaminated and cracked during drying and continued to crack

during the thermal cycle exposure. Most of the pads remained intact after the

25 thermal cycles.

The pads made with a binder contained 10 wt % colloidal silica, which was

intimately mixed with the fiber before forming the pad. The pads were introduced

into a furnace at 1259C held for 1 hour, removed from the furnace, and allowed to

cool in air. This process was repeated 25 times. Following thermal cycling, the

diameter and the height of each pad were measured. This procedure was repeated

for the 1371C exposure.

Dimensional measurements taken before and after the 25 thermal cycles are

given in Tables 13 and 14. After 1259C cycling, the shrinkage is less than

0.5% in the pads with silica binder. No significant difference between Fl and F4

fiber samples can be discerned. In specimens with colloidal silica binder, the

average diametral shrinkage is less than 1% after the 1371C thermal cycling.

The height shrinkage ranged from 0.41 to 1.90% for all fiber pads with binder.

The pads without binder experienced greater shrinkage. However, the

delaminations in these pads were so severe that any conclusion on shrinkage may

be meaningless. The effect may be due to mechanical shifting caused by handling

and by thermal shock during the thermal exposure tests.

Fiber specimens from lots F1 and F4 were prepared by encapsulating fibers

in an epoxy matrix, fracturing the composite formed, and then examining the

exposed fiber surface.

The surface of an as-manufactured fiber from the Fl series is shown'in

Figure 15 as viewed by the scanning electron microscope. The smooth surface indicates

no grain growth or roughening. Figure 16 shows an F4 fiber after exposure at

1259C. Some grain growth has been developed along with consequent surface

roughening. Figure 17 shows the Fl fiber after exposure at 1371C. Although the

surface appears to be extremely rough and the grains appear to have grown

excessively, the average grain size is apparently less than 0.2 p. This size is

an approximation, considering that the fiber in Figure 17 is 2 P in diameter.
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Table 13. Dimensional Stability Following 1259C Thermal Cycles on

Blown Mullite Fiber in Fl and F4 Production Lots

Initial Final Initial Final

diameter, diameter, Change, height, height, Change,

Sample in. in. % in. in. %

Fl #1 binder 2.037 2.071 + 1.67 0.825 0.825 0.00

Fl #2 binder 2.047 2.054 + 0.34 0.739 0.740 0.14

Fl #3 binder 2.015 2.025 + 0.50 0.768 0.769 + 0.13

Fl #4 binder 2.017 2.026 + 0.50 0.833 0.833 0.00

Fl - no binder 2.03 2.04 + 0.50 0.95 0.94 - 1.05

F4 #1 binder 2.037 2.044 + 0.34 0.960 0.951 - 0.94

F4 #2 binder 2.032 2.038 + 0.30 0.791 0.802 + 1.39

F4 #3 binder 2.000 2.004 + 0.20 0.906 0.904 - 0.22

F4 #4 binder 2.028 2.032 + 0.20 0.918 0.914 - 0.44

F4 - no binder 2.06 2.06 0.00 1.38 1.32 - 4.35

Table 14. Dimensional Stability Following 1371 C Thermal Cycles on

Blown Mullite Fiber in Fl and F4 Production Lots

Initial Final . Initial Final

diameter, diameter, Change, height, height, Change,

Sample in. in. % in. in. %

Fl #1 binder 2.007 2.010 + 0.15 1.028 0.016 - 1.17

Fl #2 binder 2.014 2.000 - 0.70 0.850 0.858 + 0.94

Fl #3 binder 2.006 2.009 + 0.15 0.706 0.693 - 1.84

Fl #4 binder 1.992 1.980 - 0.60 0.971 0.975 + 0.41

Fl #1 no binder 2.04 2.01 - 1.47 1.25 1.19 - 4.80

Fl #2 no binder 2.05 2.01 - 1.99 0.94 0.91 - 3.19

Fl #3 no binder 2.12 2.05 - 3.30 1.15 1.14 - 0.87

Fl #4 no binder 2.04 1.99 - 2.45 1.17 1.13 - 3.42

F4 #1 binder 2.010 1.977 - 1.64 0.987 0.974 - 1.32

F4 #2 binder 2.036 2.024 - 0.59 1.039 1.029 - 0.96

F4 #3 binder 2.037 2.037 0.0 0.892 0.875 - 1.90

F4 #4 binder 2.014 2.009 - 0.25 0.992 0.982 - 1.01

F4 #1 no binder 1.99 1.95 - 2.01 1.27 1.24 - 2.36

F4 #2 no binder 2.05 --- --- 1.30 ---

F4 #3 no binder 2.02 1.93 - 4.45 1.24 1.19 - 4.03

F4 #4 no binder 2.00 1.93 - 3.50 1.27 1.23 - 3.15
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Figure 15. Blown Mullite Fiber As-Manufactured (Lot F-l)
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Figure 17. Blown Mullite Fiber Following 1371C Exposure I

(Lot F-1)
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Figure 18. Blown Mullite Fiber From F-4 Pad With Binder

Following 1371C Exposure

20,000X
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Ceramics with a grain size under 0.2 p are normally considered to be fine grain.

Figure 18 shows an F4 fiber after exposure at 1371C. This fiber was

taken from a pad containing binder. There is little difference in the grain size

of the fiber between Figure 16 and Figure 18, which shows an F4 fiber without

binder. The binder does not appear to influence the ultimate development of

grain size.

The x-ray diffraction patterns for the thermally exposed blown mullite

fiber from lot Fl are given in Figures 19 and 20. Figure 19 shows the

diffraction pattern of the mullite fiber after the 1259C thermal cycling. Mullite

is the only crystalline phase indicated in this pattern. Gamma-alumina or

poorly defined alpha-alumina should also be present because of the excess of

alumina in the mullite fiber composition. Figure 20 shows the mullite fiber after

exposure at 1371C. The mullite crystalline phase is now accompanied by a

minor amount of alpha-alumina. The presence of alpha-alumina at 1371C, which

was absent at 1259C, may be related to the volatilization of the B20 3 . Boron

retards the formation of alpha-alumina, and the chemistry of the mullite fiber

after 1259C shows only a slight decrease in boron concentration. After 1371C,

the boron content has been reduced from an original 5.2% to 2.2%.

The relative changes in chemistry for the Fl mullite fiber as a function

of thermal exposure are as follows:

Chemical composition, wt %

Thermal Exposure A1 203  Si02  B2 03  P205

As-manufactured 78.5 16.3 5.3 1.9
1259C (2300F) 78.8 16.6 3.1 1.7
1371C (2500F) 79.3 17.5 2.2 1.5

This quantitative analysis was performed by wet chemistry techniques. The

results are similar to those for the chemical analyses made after thermal

exposure of centrifugally spun mullite fiber.

SEM examination of the fiber pads was performed before and after thermal

exposure to determine the general condition of the fiber and the consistency of

the fiber pad. Figure 21 shows areas representative of Fl and F4 pads at the

surface and at the center of the pad before thermal cycling.
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Figure 19. X-Ray Diffraction Pattern of F-i Fiber After

1259C Thermal Cycling
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Figure 20. X-Ray Diffraction Pattern of F-i Fiber After

1371C Thermal Cycling
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Figure 21. SEM Examination of F-4 and F-I Fiber Pads With
Binder Before Thermal Exposure

Surface, F-4 Fiber 600X Center, F-4 Fiber 600X

3 Surface, F-1 Fiber 600X Center, F-1 Fiber 600X

This page is reproduced at the
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better detail.
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Figure 22 shows these pads after exposure to 1259C thermal cycling.

There is no visible change in the characteristics of the fiber or the pad. Figure

23 shows the F4 series pads after 1371C thermal cycling. There seems to be no

marked degree of change in theappearance of the fiber following the 1371C

thermal exposure.

Pads with binder that had been exposed to 1259C were subsequently cycled

to 1480C, held for 1 hour, and removed from the furnace. The diametral shrinkage

ranged from 0.8 to 2.1%. The shrinkage in height ranged from 0.3 to 2.1%.

These pads were then exposed at 1535C for 1 hour. The total accumulated diametral

shrinkage for the 1480C and the 1535C exposures ranged from 2.5 to 3.9% for the

three pads measured. The shrinkage in height ranged from 2.8 to 5.4%.

These values indicate a degree of stability far in excess of 1371C,

which is the goal of this contract. By working to optimize the binder

system, a 1480C fiber system appears feasible for the mullite fiber.

4.4 Ten-Pound Mullite Fiber Lot

The best combination of parameters was selected after the evaluations of

the thermally exposed fiber pads were completed. Since there was no significant

difference in the performance of the Fl and F4 fiber during thermal exposure,

fiber F4 was selected as the best process variable combination to use in the

manufacture of the 10-pound lot of mullite fiber. This lot was subdivided

into 1- and 2-pound packages and delivered to sources for their evaluation as

specified by the NASA project manager. The fiber was produced under the

following conditions:

Turns open 1/2
Nozzle press., psi 32
Viscosity, poise 10
Rate, g/h 300
Air temp., F 85-100
Rel. humidity, % 22-29

The chemical analysis (wt %) of this 10-pound lot is as follows:

A1203 , 77.6; Si02, 16.9; B203, 5.1; P205 , 1.7

The cross-section of the fiber, as revealed by the transmission electron

microscope, is shown in Figure 24. Although x-ray diffraction indicates that a

mullite crystalline phase is present, the size of the crystallite is so fine

that grain boundaries are not visible.
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The production and distribution of the 10-pound lot of blown mullite

fiber completed the effort in Task I. Task I demonstrated that the B&W Blowing

Process produced mullite fiber with an average fiber diameter of less than 2

microns. The chemistry and dimensional stability of the blown mullite fiber

are equivalent to the spun B&W mullite fiber.
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Figure 22. F-4 Fiber Pads With and Without Binder After
1259C (2300F) Thermal Cycling

Surface, With Binder 600X Center, Without Binder 600X

Surface, Without Binder 600X Center, With Binder 600X
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Figure 23. F-4 Fiber Pads With and Without Binder After

1371C (2500F) Thermal Cycling

Surface, With Binder 600X Center, With Binder 600X

Surface, Without Binder 600X Center, Without Binder 600X
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Figure 24. Fiber From 10-Pound Lot Showing No Apparent

Crystallinity
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5. EXPERIMENTAL PROCEDURE - TASK II

This task was undertaken to examine the thermal stability of three

additives as a substitution for the boron and phorphous additives. The

three additives and the amounts chosen for the study are as follows:

Cr0 3 , wt% 1, 3, 5
LiF, wt% 0.05, 0.10, 0.15
Mg0, wt% 0.10, 0.25, 0.50

Magnesia (MgO) has proven to be effective in controlling the grain growth

in alumina-silica systems in amounts of less than 0.50 weight percent. Lithium

fluoride (LiF) acts as a mineralizer in an alumina-silica system in promoting

the conversion to the mullite crystalline phase. Chrome oxide (Cr03 ) acts

to promoteland stabilize the mullite phase. Chrome additions to alumina-silica

refractories systems in the amounts shown above have imparted excellent stability

at temperatures in excess of 1400C.

These additives were introduced into the standard B&W mullite composition

in place of part or all of the B203 and the P205 , and the fiber was blown on

the same laboratory apparatus as in Task I.

All of the blown bulk fiber for the additive study was manufactured at the

following variable settings:

Nozzle, turns open 1/2
Nozzle press., psig 32
Solution visc., poise 10
Fiber prod. rate, lb/hr .66
Rel. humidity, % <25
Room temp., F 75-85

These parameters were determined to be optimum in Task I of the project.

At these settings, no difficulty was experienced in blowing the fiber from the

additive chemistries.
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Pads measuring 2 inches in diameter and approximately 1 inch in thickness

were made with a colloidal silica binder from each of the nine additive

combinations. These pads were thermal cycled 25 times to 1259C and 1371C by

inserting the pads into the furnace, which was maintained at the control

temperature. The pads were allowed to remain at temperature for 1 hour and

then removed and allowed to cool to approximately room temperature. This process

was repeated 25 times at each temperature.

Chemical analyses were performed on the as-manufactured fiber and again

following the thermal cycling programs. The MgO was analyzed by spectrographic

techniques, the LiF was determined by atomic absorption, and the Cr0 3 was

analyzed by wet chemical techniques.

X-ray diffraction patterns were produced on each of the nine individual

fiber compositions following thermal cycling to 1259C and 1371C.

Electron microscope examination of fiber surfaces and fiber cross-sections

were performed on both the scanning electron microscope and the transmission

electron microscope. This examination was performed to compare the effects

of the different additives on the surface morphology and the grain size in

the blown mullite fiber.

Monofilament mullite fiber was extruded, dried, and fired at 1065C for

each of the nine additive fiber compositions studied. The fiber was extruded

through a single orifice spinnerette.
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6. RESULTS AND DISCUSSION - TASK II

Solutions were prepared of each of the nine fiber compositions. With

the boron and phosphorous removed, difficulty was experienced with solution

stability for each of the additive compositions. The boron and phosphorous

impart stability to the mullite fiber solution whereby the viscosity and

chemistry of the solution remain stable for at least several days. In this

program, the removal of all of the boron and phosphorous from the standard mullite

composition rendered the solution viscosity completely unstable. In addition,

a precipitate was formed in the 1 and 3 weight percent Cr03 solutions, as well

as in each of the LiF solutions.

To counteract these conditions, the P2 05 additive was made a part of the

solution chemistry for each of the additive fiber solutions. Previous work

(reference 1) had shown that P205 was more thermally stable than the B203.

Therefore, 1 percent of P205 was added to each of the Cr03 , LiF, and MgO

additive batches, and both the viscosity and precipitate problems were solved.

The 2 inch diameter pads were thermal cycled to 1259C and 1371C to define

the dimensional stability of the fiber. A separate group of pads were fired

at each temperature.

The results for the 1259C thermal cycling are given in Table 15. In

general, the shrinkages are higher than are experienced with standard B&W

mullite fiber. Duplicate tests were performed to gain greater confidence in the

thermal shrinkage data. The numbers in parentheses in Table 15 are the results

of the duplicate testing. In most cases, the high shrinkage values were repeated.

The 1371C thermal cycling results are given in Table 16. Both

the 5 wt % Cr0 3 pads and the 0.15 wt % LiF pads demonstrated greater dimensional

stability at 1371C than at 1259C. Of all the additives examined, the 5 wt %

Cr03 appears to have the greatest dimensional stability after twenty-five 1 hour

cycles at 1371C. The 0.15 wt % LiF appears to be the next best selection, but

its thermal stability does not compare with that of the standard blown mullite

as presented in Tables 18 and 19.
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Table 15. Dimensional Stability Following Thermal Cycling of
2-Inch-Diameter Fiber Pads to 1259C

Sample Diameter change, % Height change, %

1% Cr03  3.6 (8.1) 7.7 (2.5)
3% Cr0 3  3.7 7.9
5% Cr0 3  5.2 (5.8) 11.5 (6.5)
0.05% LiF 5.8 (2.0) 7.0 (7.2)
0.10% LiF 4.4 (4.5) 9.4 (5.8)
0.15% LiF 8.6 14.5
0.10% MgO 3.1 5.6
0.25% MgO 3.5 (3.0) . 9.3 (3.5)
0.50% MgO 2.4 (4.4) 5.5 (5.5)

NOTE: Numbers in parenthesis are shrinkage values taken from a second
set of thermally cycled pads to verify results

Table 16. Dimensional Stability Following Thermal Cycling of
2-Inch-Diameter Pads to 1371C

Sample Diameter change, % Height change, %

1% Cr03  1.8 8.0
3% Cr03  2.6 15.4
5% Cr03  +1.3 +1.3
0.05% LiF 1.9 12.2
0.10% LiF 3.1 13.3
0.15% LiF 1.1 5.0
0.10% MgO 1.2 13.4
0.25% MgO 2.0 12.0
0.50% MgO 3.0 6.4

NOTE: All numbers are shrinkage except for the 5% Cr03 samples.
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To further evaluate the thermal stability of several fiber pads, thermal

cycling was performed to 1427C. The results of the dimensional stability

measurements are given in Table 17. The 5 wt % Cr03 pads produced excellent

thermal stability after five thermal cycles, and this composition appears to

have potential as a high temperature mullite fiber composition. Additional

efforts with the 5 wt % Cr0 3 mullite fiber appear warranted.

Table 18 shows the results of chemical analyses of the nine fiber

additives as-manufactured, after 1259C, and after 1371C thermal cycling. The MgO

was found to be the most thermally stable additive. The results show no loss

of MgO at 1371C after 25 cycles. The Cr0 3 is the next most stable

additive, heaving displayed a loss of approximately 16% after 25 hours at 1371C.

The LiF proved to offer little improvement over the B203 additive in

volatility.

Based on the thermal shrinkage results and the relative additive stability,

the 5 wt % Cr03 additive appears most satisfactory to replace the B203 in the

standard mullite composition.

The x-ray diffraction results for the thermally exposed fiber pads are

summarized in Table 19. Mullite crystal structure is, or course, the predominant

phase, but alpha-alumina is present in many of the fiber pads, especially those

that were exposed to 1371C.

There appears to be a relationship between the presence of alpha-alumina

and shrinkage at 1371C. The two systems that displayed the lowest thermal

shrinkage, the 5 wt % Cr0 3 and the 0.15 wt % LiF systems, also displayed only a

trace formation of alpha-alumina. The 1 wt % Cr03 fiber shows no other phase than

mullite at both exposure temperatures, but shows greater shrinkage than the 5 wt %

Cr0 3 or the 0.15 wt % LiF fibers.

The theoretical densities of the several phases present in the mullite

fiber are as follows:

Theoretical

Crystalline phase density, g/cc

As-manufactured Amorphous 2.60
(unfired)

Fired at 1065C Mullite 3.24
Gamma-alumina 3.65

Fired at 1259C Mullite 3.24

Fired at 1371C Mullite 3.24

Alpha-alumina 3.98
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Table 17. Dimensional Stability Following Thermal Cycling of

2-Inch-Diameter Fiber Pads to 1427C

Sample Diameter change, % Height change, %

3% Cr03  4.5 12.1
5% Cr03  1.9 2.6
0.05% LiF 3.9 11.8
0.15% LiF 3.3 7.8
0.1% MgO 2.1 8.6

Table 18. Chemical Stability of Additives in Mullite

Fiber Composition

Description Cr03 , wt %

As-manufactured fiber, nominal 1% Cr03  0.66
1% Cr0 3 fiber cycled to 1259C 0.53
1% Cr03 fiber cycled to 1371C 0.40

As-manufactured fiber, nominal 3% Cr03 2.72
3% Cr03 fiber cycled to 1259C 2.24
3% Cr03 fiber cycled to 1371C 2.11

As-manufactured fiber, nominal 5% Cr03  4.36
5% Cr03 fiber cycled to 1259C 4.09
5% Cr0 3 fiber cycled to 1371C 3.63

Mg0, wt %

As-manufactured fiber, nominal 0.1% MgO 0.10
0.1% MgO fiber cycled to 1259C 0.10
0.1% MgO fiber cycled to 1371C 0.10

As-manufactured fiber, nominal 0.25% MgO 0.27
0.25% MgO fiber cycled to 1259C 0.27
0.25% MgO fiber cycled to 1371C 0.26

As-manufactured fiber, nominal 0.50 MgO 0.44
0.50% MgO fiber cycled to 1259C 0.46
0.50% MgO fiber cycled to 1371C 0.45

LiF, wt %

As-manufactured fiber, nominal 0.05 LiF 0.068
0.05% LiF fiber cycled to 1259C 0.054
0.05% LiF fiber cycled to 1371C 0.036

As-manufactured fiber, nominal 0.10% LiF 0.115
0.10% LiF fiber cycled to 1259C 0.077
0.10% LiF fiber cycled to 1371C 0.043

As-manufactured fiber, nominal 0.15% LiF 0.147
0.15% LiF fiber cycled to 1259C 0.108
0.15% LiF fiber cycled to 1371C 0.086
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Table 19. Crystalline Phases in Additive Fiber

Following Thermal Exposure

Fiber pad Exposure temp., C Crystalline phase formed

0.1% Mg0 1259 Mullite
1371 Mullite, with trace alpha-alumina

0.25% MgO 1259 Mullite
1371 Mullite, with prominent alpha-alumina

0.50% MgO 1259 Mullite
1371 Mullite, with prominent alpha-alumina

1% Cr03  1259 Mullite
1371 Mullite

3% Cr03 1259 Mullite
1371 Mullite, with prominent alpha-alumina

5% Cr03  1259 Mullite
1371 Mullite, with trace alpha-alumina

0.5% LiF 1259 Mullite
1371 Mullite, with prominent alpha-alumina

0.10% LiF 1259 Mullite, with trace alpha-alumina
1371 Mullite, with prominent alpha-alumina

0.15% LiF 1259 Mullite
1371 Mullite, with trace alpha-alumina
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Based upon the densities of the phases shown to be present in the

mullite fiber, an increase in alpha alumina formation should produce greater

shrinkage. Those fiber samples in Table 19 with the prominent alpha alumina

phases formed also had high thermal shrinkage. Stability of the mullite phase,

which is formed after firing to 1065C, should retard shrinkage based upon

fiber densification. In earlier work (reference 1) the alpha alumina was not

developed in the standard mullite composition at 1325C, but was present after

thermal cycling to 1450C.

Boron tends to retard the formation of alpha alumina in the standard

mullite composition. As boron volatilizes, alpha alumina appears. In the additive

fiber compositions studied, the 1 and 5 percent Cr03 appear to be most

effective in delaying the formation of alpha alumina. The 5 percent Cr03 also

has the lowest shrinkage after 1371C exposure.

Electron microscope examination of the fiber was made before and after

thermal cycling exposure. This examination showed the mullite fiber as-manufactured

to be very smooth, with a progressive roughening produced as a function of time

at temperature. No discernible difference was noted in the fibers examined

in this program and in the earlier investigations on mullite fiber (reference 2).

A series of scanning electron microscope photographs is shown in Figures

25, 26 and 27. These photographs show a progressive roughening of the fiber

surface with thermal exposure. The surface roughening is caused by grain growth,
where one grain grows at the expense of a neighboring grain. Another

mechanism which is operative at elevated temperature is thermal etching. This

phenomena is the selective attack of thermal energy on high energy areas such

as grain boundaries, and is analogous to etching of metals or ceramics at

room temperature in solution to delineate grain boundaries.

The 5 weight percent Cr03 fiber after 1371C exposure is shown in Figure 28.

The fiber surface is similar to the fiber shown in Figure 27 after the same

thermal treatment.

Since the MgO additive was included in this study to attempt to retard

grain growth in the mullite fiber, a comparison of the grain size of this fiber

with that of mullite fiber previously examined is in order. Figure 29 shows the

grain development in standard mullite fiber after 1425C thermal exposure

(reference 2). The grain development shown in Figures 30 and 31 is not significantly

different. The two levels of Mg0 added in the fiber shown in these figures did

not effectively reduce grain growth.
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It appears that the control of grain growth beyond that shown in

Figures 29 through 31 may be very difficult to achieve. The fibers shown in

Figures 30 and 31 are approximately 2 to 3 microns in diameter, and an individual

grain is less than one-tenth of the diameter. Controlling grain size beyond

0.1 to 0.2 microns may be impossible after 24 hours exposure at 1371C.

The real question is whether the fiber appears to function satisfactorily in

its intended use. The work reported by Tanzilli indicates that grain growth

may not be a significant problem (reference 2) when the fiber is chopped and

incorporated into a pad with binder.

Determination of the strengths of the additive chemistry fibers was

unsuccessful. The fired monofilament fiber was extremely friable in all cases

and difficult to handle. Attempts to test the physical strength were

unsuccessful due to fiber friability. Apparently, the boron-phosphorous

content in the standard mullite composition contributes to the integrity and

handleability of the monofilament fiber. A development program may be required

to adjust the properties of the solution so that a monofilament can be extruded

and tested.
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Figure 25. As-Manufactured Mullite Fiber With 0.05% LiF Added
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Figure 26. Mullite Fiber With 0.05% LiF Added, After
1259C Thermal Exposure
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Figure 27. Mullite Fiber With 0.05% LiF Added, After 1371C

1371C Thermal Exposure
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Figure 28. Mullite Fiber With 5% Cr0 3 Added, After
1371C Thermal Exposure
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Figure 29. Mullite Fiber After 1425C Thermal Exposure
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Figure 30. Mullite Fiber With 0.10% MgO Added, After

1371C Thermal Exposure

Reduced 20% for reproduction. 15,000X

This page is reproduced at the
back of the report by a different

reproduction method to provide
better detail.

- 63 - Babcock & Wilcox



Figure 31. Mullite Fiber With 0.50% MgO Added, After

1371C Thermal Exposure
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7.' CONCLUSIONS

A program was conducted in two tasks to evaluate fine diameter mullite

fiber. Task I involved the production and evaluation of fine diameter

(3 microns or less) mullite fiber as produced by the B&W blowing process.

This fiber was fully characterized as to fiber diameter distribution, shot size

and content, and chemical and dimensional stability in thermal cycling to

1371C. The following conclusions were drawn from Task I:

1. The B&W blowing process produced a mullite fiber that has a

significantly finer diameter distribution than does

centrifugally spun mullite fiber. Fiber produced by the blowing

process has an average diameter of less than two microns, while

the spun mullite has an average diameter of approximately five

microns.

2. The fine diameter blown mullite fiber (<2p) produced in Task I

has a thermal stability at 1371C equivalent to standard B&W spun

mullite fiber.

3. Chemical analyses of as-manufactured, fine diameter blown mullite

fiber following thermal exposure to 1259C and 1371C indicate

that the chemical stability is equivalent to standard B&W spun

mullite fiber.

4. Scale-up of the B&W blowing process from 0.22 to 10 lb/hr was

successful. Further work is required to achieve higher production

rates, and to refine the parameters for 10 lb/hr production of

mullite fiber.
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5. The temperature limitations of the mullite fiber have not been

defined. Mullite fiber is capable of withstanding temperatures

in excess of 1371C.

Task II involved the substitution of Cr0 3, LiF, and MgO for the boron

additive in the standard B&W mullite fiber composition. The fibers produced

were evaluated for chemical and dimensional stability in thermal cycling to

1371C.

The effect of the additives in reducing grain growth was also

examined. The conclusions drawn in Task II are as follows:

1. The LiF additive is no less volatile than the B203 . An alpha

alumina phase developed at 1259C with LiF may have affected

shrinkage. The shrinkage of the LiF additives was high.

2. The Cr03 additive is not completely stable, but is superior to

B203 . The dimensional stability is excellent in fiber pads in

the 5 wt % Cr0 3 addition.

3. The MgO is extremely nonvolatile at all additive levels after

thermal exposure. As a grain growth inhibitor, MgO appears to be

as effective as B203 and is much more thermally stable than B203.
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8. RECOMMENDATIONS

Recommendations for future work are as follows:

1. The temperature limitations of the mullite fiber system should

be identified. Based on thermal cycling results from this

project, mullite fiber is capable of withstanding temperatures in

excess of 1371C. Extending the useful service temperature requires

a system consideration - the binder selected must be compatible

with the fiber at the desired temperature.

2. Process considerations for fine mullite fiber should be explored.

A reduction in fiber diameter requires the development of

techniques to properly disperse and locate the binder in a fiber pad.

Initial work with the fine diameter mullite as reported in NASA

CR-112257 indicates that standard processing techniques used for

the larger diameter fiber are not successful for fine diameter mullite.

Once the process parameters needed to produce a fine diameter fiber

pads are defined, thermal conductivity values should be generated to

compare with those of the larger diameter mullite fiber product.

Mechanical properties of the fiber tile should be defined at elevated

temperatures.

3. The chrome additive fiber composition should be further developed.

In addition to its excellent thermal dimensional stability, the

chrome imparts a relatively high emittance to the fiber insulation.

Earlier research conducted by General Electric under contract
(2 ) to

NASA indicates that adding Cr03 to the coating substantially improves

the thermal insulating properties of the fiber block. Blowing

process parameters for the chrome additive fiber should be examined

in terms of providing the finest possible fiber diameter distribution.

4. Further development of a scaled up fiber blowing system will permit an

increased production rate over the current 0.22 ib/hr laboratory rate.
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