
MCR-74-314
NAS9-13616

Phase 1
Final

Volume I Report September 1974

Study Summary and Scheduling
Overview Language and

Algorithm
Development Study

(NASA-CR-14281) SCHEDULING LANGUAGE AND N74-337.4

ALGORITHM DEVELOPHENT STUDY. VOLUME 1:

STUDY SUMMARY AND OVERVIEW Final Rennrt

(Martin Marietta Corp.) Gnclas
CSCL 09B G3/08 5L473

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

US Department of Commerce
Springfield, VA. 22151

PRICES SUUJECT TO CHANGE

4- -10 z W WAF- d&M~&

MCR-74-314
NAS9-13616 Phase 1

Final
Volume I Report September 1974

Study Summary SCHEDULING LANGUAGE
and Overview AND ALGORITHM

DEVELOPMENT STUDY

Approved

/ John F. Flater

Program Manager

MARTIN MARIETTA CORPORATION
P.O. Box 179
Denver, Colorado 80201

FOREWORD

This is the Phase 1 Final Report of the Scheduling Language

and Algorithm Development Study performed by Martin Marietta

Corporation, Denver Division, under Contract NAS9-13616. The pur-

pose of this study was to conceive and specify a high-level com-

puter programming language and a program library to be used in

writing programs for scheduling complex systems such as the Space

Transportation System. This report is presented in three volumes

plus an appendix:

Volume I - Study Summary and Overview

Volume II - Use of the Basic Language and Module Library

Volume III - Detailed Functional Specification for the Basic

Language and the Module Library

Appendix - Study Approach and Activity Summary

Volume I summarizes the objectives and requirements of the

study and discusses the "why" behind the objectives and require-

ments. Unique results achieved during the study or unique fea-

tures of the specified language and program library are then de-

scribed and related to the "why" of the objectives and require-

ments. Finally, a description of the significance of study re-

sults, in terms of expected benefits, is provided.

Volume II summarizes the capabilities of the specified sched-

uling language and the program module library. It is written with

the potential user in mind and, therefore, provides maximum in-

sight on how the capabilities will be helpful in writing scheduling

ii

programs. Simple examples and illustrations are provided in

Volume II to assist the potential user in applying the capabilities

of his problem.

The detailed functional specifications presented in Volume III

are the formal product of Phase 1. These specifications are written

as requirements for software implementation of the language and the

program modules, and are aimed at a specific audience.

A separate Appendix summarizes the analyses, describes the

approach used to identify and specify the capabilities required

in the basic language, and presents results of the algorithm and

problem modeling analyses used to define specifications for the

scheduling module library. The appendix is directed toward the

reader who is interested in how the study conclusions and results

were reached.

iii

CONTENTS

Page

I. STUDY OBJECTIVE AND REQUIREMENT'S 1

A. STUDY OBJECTIVE . 1

B, STUDY CONSIDERATIONS AND FUNCTIONAL REQUIREMENTS 2

II. STUDY MOTIVATION . 5

A. NASA EXPERIENCE WITH SYSTEM SCHEDULING SOFTWARE 5

B. COMPLEXITY OF DEVELOPING SOFTWARE FOR SCHEDULING 6

C. STUDY PREMISE 7

III. LANGUAGE FEATURES AND UNIQUE STUDY RESULTS 11

A. A PROGRAMMING LANGUAGE FOR DEVELOPING SCHEDULING

PROGRAMS11

B. THE PLANS PROGRAMMING SYSTEM 12

1. The PLANS Programming System Data Structure 15

2. PLANS Language Data Structure Access and

Manipulation . 16

3. The PLANS Programming System Operations Model

Modules 23

4. The PLANS Programming System Problem Solution

Algorithm Modules 24

C. PLANS SCHEDULING PROGRAM LOGIC CONCEPT 26

D. PLANS LANGUAGE SPECIFICATIONS 28

IV. EXPECTED BENEFITS FROM LANGUAGE USE 31

A. PLANS METHODS FOR SIMPLIFYING SOFTWARE DEVELOPMENT/

MODIFICATION 31

B. TRIAL LANGUAGE EFFECTIVENESS EVALUATION 33

C. EXPECTED PROGRAMMING ECONOMIES FROM PLANS USE 35
and

36

Figure

1. Impact of System Complexity on Scheduling Software

Costs 8

2. Scheduling Language Application Role 13

3. PLANS Programming System Data Structure Example 17

4. PLANS Language Data Structure Access Feature Examples 19

5. PLANS Language Data Structure Manipulation Feature

Example 21

6. PLANS Program Logic Concept Example with OSARS

Annotation 27

7. Language-Related Methods for Simplifying Software

Development/Modification 32

iv

Table

1. Example of PLANS Programming System Operations Model

Modules 24

2. Example of PLANS Programming System Problem Solution
Algorithm Modules 26

3. Trial Language Effectiveness Evaluation 35

V

I. STUDY OBJECTIVE AND REQUIREMENTS

A. STUDY OBJECTIVE

"The objective of the task [study] is to prepare the detailed

design of a flexible, user-oriented scheduling language suitable

for the resource assignment'class of problems represented by the

Space Shuttle Transportation System."

This objective for the Scheduling Language and Algorithm De-

velopment Study, as quoted from the Statement of Work, was elab-

orated with a more explicit statement of purpose. This called

for design of a scheduling language (software) that can simulate

system operation and schedule all resources of an advanced space

program, such as the Space Shuttle, where launch frequencies are

high, mission objectives are complex, and mission planning and

support activities are numerous.

This broad general objective was further amplified by a dis-

cussion of problem-related study considerations and a list of

language functional requirements in the next section. To establish

a proper perspective of the Phase 1 study effort and results, the

second chapter of this report explains the motivation for the

study with a discussion of "whys" behind the objective and re-

quirements. The third chapter summarizes the main features of the

language and applications module library with emphasis on unique

study results. Finally, the report concludes with a brief review

of expected benefits from use of the language and related problem-

solving modules in terms of program implementation efficiency and

problem solving capability.

ip

B. STUDY CONSIDERATIONS AND FUNCTIONAL REQUIREMENTS

A number of special considerations related to determining and

specifying scheduling applications program modules led to a list

of language functional requirements in the Statement of Work.

These modules describe the system to be scheduled and mathematically

express optimization and resource assignment algorithms used to

implement the problem solution/decision logic. A brief discussion

of these problem oriented considerations follows.

Many combinations of system resources are used in overall sys-

tem operation, thus the language must facilitate generation of

these feasible combinations. Because any decision or assignment

once made affects future decisions, the dynamic aspects of handling

many solution combinations, sequential assignments, and constraint

sets for decision-tree "pruning" must be considered. These large

sets of discrete constraints are inherent in complex operational

systems and are usually resource oriented. Some examples are

physical dimensions (e.g., payload size and weight, cargo bay

parameters, consumables), interface restrictions, performance

deficiencies, and mission mode limitations. A language for solu-

tion program modules must therefore allow efficient redefinition

of data structures and a natural and flexible syntax.

Selected problem solution techniques must schedule system

operations optimally over a planning horizon consistent with re-

liability and availability of planning data. (For Space Shuttle,

this may be 100 missions or more.) Such techniques should allow

2

rescheduling for contingencies (e.g. undelivered payload, inop-

erative payload, or Shuttle) through conflict detection and reso-

lution with minimal effect on future schedules.

The problem-oriented considerations just mentioned became the

basis for evolving a number of functional requirements for inter-

facing the system simulation and optimization modules and facil-

itating data manipulation and user analyses. These functional

requirements state that the final scheduling language design is

required to:

- Facilitate generation of feasible resource combinations;

- Have data structures that allow problem redefinition in an

efficient manner;

- Provide efficient interface for system simulation modules

with assignment and optimization algorithm modules;

- Provide natural and flexible syntax;

- Consider the ease with which an analyst can perform analyses

and manipulate problem modules as the prime factor in user-

language interfaces;

- Be compatible with data storage and retrieval mechanisms

capable of efficiently manipulating a large quantity of

information;

- Avoid incompatibility with on-line interactive capability

for constraint set manipulation and solution algorithm

selection.

Page intentionally left blank

II. STUDY MOTIVATION
--- '---

The motivation for this study may be explained with a discus-

sion of the "whys" behind the objectives and requirements. The

.summaries of NASA experience with system scheduling software on

previous programs and the factors that contribute to the complexity

of scheduling software are presented in this chapter as the basis

for development of a software scheduling language.

A. NASA EXPERIENCE WITH SYSTEM SCHEDULING SOFTWARE

A program for system scheduling uses assignment algorithms

in various forms to investigate the allocation of system resources.

By using feasible combinations of resource elements (e.g. crew,

payload, vehicles, time, money, etc) these algorithms make a re-

source assignment and attempt to optimize some measure of system

performance. Examples of this optimization for Space Shuttle in-

clude minimization of mission cycle time or minimization of the

number of flights needed to orbit given payloads while satisfying

system constraints and mission objectives.

NASA has investigated and developed several scheduling pro-

grams for the Skylab and Shuttle programs. Among them have been

the Experiment Scheduling Program, the Skylab Activity Scheduling

Program, and the Operations Simulation and Resource Scheduling

Program. These programs were coded in several different digital

computer programming languages, such as assembler, FORTRAN, GPSS,

SIMSCRIPT, and others. Each program, designed for a specific pur-

pose, experienced severe program redefinition when seemingly minor

5

changes in the system constraints or resource models occurred.

The resulting program modification effort was frequently perceived

to be increased by programming constraints attributable to the

programming language used.

This experience with computer-based scheduling programs led

to the conclusion that a more generalized, flexible, and user-

oriented scheduling software language tool is needed to simplify

development and maintenance of scheduling programs for the Shuttle

era. However, determination of what could be done to improve

scheduling software required an assessment of the complexity of

developing this software before an approach was established.

B. COMPLEXITY OF DEVELOPING SOFTWARE FOR SCHEDULING

Scheduling the operations and resources of the Space Trans-

portation System (STS) will involve a complex mix of tasks. Some

individual tasks will be similar to scheduling of other large

aerospace programs, but some will be more typical of conventional

transportation systems, or even machine shop an construction

project scheduling, and resource assignment problems. These and

other nonaerospace related scheduling problem solution needs

contributed to expression of the objective and functional require-

ments of the study. Recognition of the broad application and

complexity of scheduling software contributes to understanding

of the significance of the study results presented in this report.

6

Software used in a scheduling task will be complicated by the

extremely complex activities to be planned and executed in short

time intervals as a result of variable and high activity rates or

traffic volume. Some resources will enter and leave the system

as expendable items; others will be recycled after use. Further-

more, even when the volume of operations is high, the appearance

of new resources or the occurrence of special demands cannot, in

most cases, be modeled by statistical approximation.

The STS scheduling objectives will be complex composites of

minimized development and operating costs, and maximized payload

objectives considering complicated system performance and time

constraints. Because operations will be scheduled while the

Shuttle system is still under development or later undergoing mod-

ifications due to technological progress, computer programs will

require major changes as the system objectives or operations change.

This sensitivity of source computer program code to system model

changes also contributes unnecessary complexity to scheduling soft-

ware development and/or modification.

C. STUDY PREMISE

The premise of this study is that current programming languages

make it uqnecessarily difficult for the problem analyst to develop

and modify scheduling software. Figure 1 illustrates the typical

impact of new, complex systems, such as the Space Shuttle, on the

development and maintenance cost of scheduling software. Schedul-

ing software development costs increase as the software complexity

increases because of traffic volume, recycling of resources, and

7

complex cost-time-performance scheduling objectives. In an en-

vironment where the system resources being assigned and the activ-

ities being scheduled are frequently altered, or where the schedul-

ing objectives or constraints are often redefined, program mainte-

nance costs caused by program code sensitivity to changes increase

rapidly.

Scheduling
Software
Cost Due to Unnecessary
Increases Language-Based

Increases Programming Complexity

V Des'te Nben

Software Development/
Maintenance Demand
Increases

Fig. 1
Impact of System Complexity on Scheduling Software Costs

Unless the programming language permits development of programs

that are insensitive to problem changes, maintenance costs (and

time) may become excessive. Therefore, a programming language

should not only provide high-level capability, but should also be

easily readable and understandable to reduce programming time and

specialized skills required. Additionally, the language should

permit development of programs that are, insofar as possible, in-

dependent of problem or application specific details.

8

When the study was started, no such user-oriented language

amenable to solution of resource allocation/scheduling problems

existed that:

- Offered substantial reduction of programming and modification

times;

- Allowed programs insensitive to problem detail changes;

- Permitted program logic highly independent of problem ap-

plication;

- Had high-level capability;

- Was easily readable and understandable.

Page intentionally left blank

III. LANGUAGE FEATURES AND UNIQUE STUDY RESULTS

During Phase 1 of the Scheduling Language and Algorithm De-

velopment Study, a computer programming language was designed and

specified that met the objectives and requirements cited in Chapter

I. In addition, a library of modules (subroutines) that take ad-

vantage of the special features of the new language to further

reduce the impact of the complexities of system characteristics

and operations on scheduling software was defined. This chapter

summarizes some of the primary language features and unique study

results. The reader who desires more detailed information will

find the formal specifications for the language and library modules

in Volume III and a user's guide in Volume II of this report.

A. A PROGRAMMING LANGUAGE FOR DEVELOPING SCHEDULING PROGRAMS

The final products of this Phase 1 study are detailed functional

specifications for a programming language and routine (module)

library designed to develop programs related to scheduling or plan-

ning problems. These specifications are in Volume III of this re-

port. For conciseness, the language product is called PLANS (Pro-

gramming Language for Allocation and Network Scheduling). As a

programming language, PLANS incorporates a fairly complete set of

ordinary arithmetic, transfer-of-control, conditional and iterative

statements that are treated essentially in the same way as in the

PL/I language. For reasons of early and economical implementation

discussed in an Appendix to this set of report Volumes, a PLANS-

to-PL/I translator was specified instead of a direct PLANS-to-

machine code compiler. Therefore, the basic PLANS syntax and

11

hierarchic block structure are similar to those of PL/I. A sum-

mary of unique PLANS features and capabilities are contained in

the following pages.

Specifically, this study has not developed complete scheduling

system application programs or specified a language in which a

user communicates with a scheduling system. As illustrated in

Figure 2, PLANS users are assumed to be charged with the design

or modification of application programs related to scheduling and

resource assignment (allocation), that could be part of a schedul-

ing system. Also, potential users are assumed to have a problem

orientation (as opposed to computer programming orientation) that

is not limited to aerospace system applications. Thus, a lan-

guage and associated basic data structure and routines have been

specified to provide high-level but flexible programming capa-

bility to analysts in a wide variety of scheduling and resource

allocation problems.

B. THE PLANS PROGRAMMING SYSTEM

In addition to the mainly conventional arithmetic, transfer-

of-control, conditional and iterative statements found in most

programming languages, other capabilities were needed if PLANS

was to meet the functional requirements previously listed. To

make PLANS more usable to the problem analyst, the power of in-

dividual statements was increased considerably above that of most

general-purpose programming languages. The study showed that

increasing correspondence between the individual logical opera-

tions of the problem solution and the individual computer program

12

I PLANS i
I Language /1 I
e Specifications

S----- - Translation/
[PLAN \Software
User 1
Guide - --- - --

L- System Operations Model
I and Solution Algorithm
I Module Specifications .L

/Module
I Library

The PLANS* \
Programming System

Debug PrbeProblem
SProblem

aProblem Analysis and
Analyst/ ---- Solution

Delive PLogic

PLANS Code
Translated to

Problem Source I I '- Machine Code
Code in PLANS and Test Problem

Debug (Scheduling ExecutedAnalysis Language)
and Fix

Problem
Solution
Output
(or Error

Message)

No Solution

Yes

Deliver Program
to Operational
Schedulers

*PLANS
=

Programming Language for Allocation and Network Scheduling

Fig. 2
Scheduling Language Application Role

statements, greatly increased the inherent usability of the lan-

guage for the user concerned with scheduling/resource allocation

problems. However, practical limits to doing this in the basic

language must be recognized, because too much individual statement

power would unnecessarily reduce the flexibility of the language.

To provide functions that have more power than currently spec-

ified individual PLANS statements, the study specified a flexible

data structure especially suited for describing operating systems,

and a library of subroutines called modules for use with the struc-

ture and PLANS (the scheduling language). This combination of a

flexible language and data structure, plus a library of prepro-

grammed modules constitutes a software programming system. The

PLANS Programming System consists of three products which have

been specified to simplify the development or modification of

scheduling/resource allocation software.

In summary, these products are :

1) A high-level programming language for writing scheduling

programs that

- Use typical arithmetic, transfer-of-control, conditional

and iterative statements in logic and computational modules,

- access and manipulate the data structure for problem/module

support,

- define the problem/objectives and manipulate the library

modules;

2) A flexible data structure specially suited for describing the

operating systems to be scheduled;

14

3) A library of preprogrammed logic modules to

- access the data structure for system operations data,

- implement frequently used scheduling/resource allocation

problem solution algorithms.

This programming system meets the prime requirements for (1)

substantially reducing software programming and reprogramming

times, (2) desensitizing programs to problem changes, and (3) ac-

commodating a wide range of problem types and applications with

generic logic codes. A summary of the features of the major com-

ponents of this programming system is given in the following sec-

tions. More detailed descriptions will be found in report Volume

II with several example applications.

The Plans Programming System Data Structure

An initial study task defined a basic structure within which

language functional requirements could be developed. Analysis of

many types of scheduling problems revealed that all information

could be, and most system information is naturally, hierarchically

related. Also, time intervals that have a special place in sched-

uling problems, could be handled without difficulty by using a

small number of interval subroutines. Thus, specification of the

hierarchical or tree data structure in Volume III as the only

structure required for scheduling/resource assignment problems

provides logical simplicity and much greater economy of implementa-

tion than would result from multiple data types.

15

The principal difference between PLANS and most other pro-

gramming languages is that PLANS is oriented primarily toward

manipulation of ordered, labeled tree structures as illustrated

in Figure 3. Both graphical and textual conventions for represent-

ing labeled tree structures were developed. The branching points

are called nodes, and the root node is depicted at the top of the

tree. Nodes are represented by circles, and in text by line in-

'dentation. The name of the tree is shown above the root node.

The character $ identifies tree names so the translator software

can discriminate them from variable names. Each node has a label

(character string to the right), but the label may be null (in-

dicated by the character q, in text and sometimes in graphical

format). Nodes with descendants are nonterminal nodes and those

without are terminal nodes. In addition to a label, a terminal

node has a value, either a character string or a numeric. Graphi-

cally, values are depicted below their terminal nodes, and like

labels, may also be null.

2. PLANS Language Data Structure Access and Manipulation

Although some other languages have hierarchical data struc-

tures, PLANS provides special data access and dynamic manipula-

tion capabilities for its tree-type structure. It can generate

and alter tree structures and access the contents of the struc-

tures either by key word (label) or by ordinal position (index).

The full discussion of the extent and use of these features exceeds

the scope of this summary, but the examples here and in Volume

II give some indication of their importance.

16

$PERSONNEL

JOE #674 SAM #311 MARY #674 #495

Note: The character $ is a prefix to identify the label of a data tree root node. Reference to $PERSONNEL in a PLANS program I
refers to the root node label and all data in the tree; thus

$PERSONNEL
ENGINEER

NAME - JOE In a loose definition $PERSONNEL may be referred to as the data set
JOB - #674 for PERSONNEL.

NAME - SAM
JOB - #311

TYPIST

NAME - MARY The character indicates a null label.
JOB - #674
NEXT_JOB - #495

Fig. 3
PLANS Programming System Data Structure ExampLe

Access Features

Access features are based on the notion that the programmer

can "point" to a particular tree node by specifying the tree name,

the immediate descendent of the root node it is under, the im-

mediate descendent of that node it is under, etc. For example,

in Fig. 4a. if the tree name is $PAYLOAD and the name of the

payload is TELESCOPE, the analyst could write $PAYLOAD.TELESCOPE

to access data about a telescope payload. This is qualification

by label. Or, qualification can be done by position, using a

subscript notation like some other programming languages. Since

PLANS trees are ordered trees, the ordering of a node's descendants

is significant and unless purposely reordered, the tree structure

order remains constant. Thus, the telescope payload might also

be referred to as $PAYLOAD(2) if it is the second in order of the

first level subnodes of $PAYLOAD.

Other tree structure access statements include the keywords

LAST (Fig. 4.a), ALL (Fig. 4.c), FIRST (Fig. 4.b). The update

statement, NEXT, can add a new node to a tree without explicitly

identifying the node subscript. Each of these may be coupled

with conditional algebraic and logical (Boolean) expressions.

Manipulation Features - The primary novel feature of PLANS,

its dynamic tree manipulation capability warrants more detailed

description. These data tree manipulation statements may be

applied to entire trees or tree branches. The basic tree man-

ipulation statement is the assignment statement with fundamental

form of $TREE_A = $TREE.B;. This is essentially the same as an

18

Example features are:

$PAYLOAD

BIOLOGY TELESCOPE GEOPHYSICAL

WINDOW WEIGHTJ WINDOW WEIGHT WINDOW LENGTH

9000 /6500 181 /
START END START END START END

91 273 / 150 316 241 318

--------- IL------ -
SPAYLOAD. TELESCOPE SPAYLOAD (LAST)

(OR $PAYLOAD (21) [OR SPAYLOAD. GEOPHYSICAL
OR SPAYLOAD (3)]

a. Basic Tree Access Mechanisms

SPAYLOAD

BIOLOGY TELESCOPE GEOPHYSICAL

WINDOW WEIGHT WINDOW WEGHT WINDOW LENGTH

.000 6500 18

START END START END START END

91 273 / 150 316 241 318
-- ------ J

$PAYLOAD .FIRST : (ELEMENT. WINDOW. START> 140)

b. Conditional Access Using Qualifier .FIRST

$PAYLOAD

BIOLOGY I TELESCOPE GEOPHYSICAL

WINDOW WEIGHTJ WINDOW WEIGHT WINDOW LENGTH

9000 6500 18

START END START END START END

91 273 / 150 316 241 318

$PAYLOAD. ALL: (ELEMENT. WINDOW. START > 140)

c. Use of Label Qualifier ALL

Fig. 4
PLANS Language Data Structure Access Feature Example

19

ordinary arithmetic assignment statement. The "content" of the

variable (in this case a tree node) named to the left of the equal

sign is destroyed and replaced with a copy of the content (in this

case potentially an entire substructure) of the variable (or ex-

pression) on the right which is unchanged. Thus, as shown in Fig.

5a. the statement $TREE.B = $TREE.D; replaces the substructure of

the tree branch beginning with node B with the substructure of the

tree branch beginning with node D in the same tree, while leaving

the latter branch intact.

Several other statements, as illustrated in Fig. 5b. through

5e., allow removal of a node with its substructure (basic form:

PRUNE $TREE;), removal of a structure from its original tree to

be used to replace structure of another tree (basic form: GRAFT

$TREE_Y(1) AT $TREE_X(3);), insertion of a copy of a structure

in a given place (basic form: INSERT $TREE_Y.C AT $TREEX(3);),

or removal of a structure from its original tree and insertion at

a given place in another (basic form: GRAFT INSERT $TREE_Y(1) AT

$TREE_X(3);).

The tree structures can be input and output and passed to sub-

routines as parameters. A provision for implicit type conversion

allows tree references to be used in arithmetic expressions (XVAR =

$TREE.A.X + 4;) and allows arithmetic expressions in tree contexts

($TREE.B.Y + $TREE.B.Y - 6;). Further explanation and examples

of tree manipulation are presented in Volume II of the report.

20

a. Use of Basic Tree Assignment Statement (REPLACE Function) b. Use of PRUNE Function

$TREE The statement PRUNE $TREE.D; yields
Given: $TREE The statement $TREE.B = $TREE.D; yields Given:

$TRE
$TREE

A B D
A B D

1 X X 14

X Y
12 20 4 39

11 20 4 39 Y Y

12 20 4 39 4 39 12 20

c. Use of GRAFT Function (PRUNE and REPLACE) d. Use of INSERT Function e. Use of G RAFT INSERT Function (PRUNE and INSERT)

Given: Given: Given: $TREE_X $TREE_Y

GTREEX $TREE_Y $TREE X $TREE Y

9A B D C

A B D C A B D C 2 4 8 6

2 4 8 6 2 4 8 6

The statement GRAFT INSERT $TREE_Y(1) AT $TREE_X(3); causes

The'statement GRAFT $TREE_Y(1) AT $TREE X(3); results in The statement INSERT $TREEY.C AT $TREEX(3); causes $TREE_XTREE_

$TREEX $TREE_Y

$TREEYX $TREE_Y

/ BB D C 2 4 6

SC 2 4 8 6

2 4 6 Yielding: $TREE X $TREE Y
2 4

Yielding: $TREE_X $TREE_ Y Yielding: $TREEX $TREE_Y

O A B C D

2 . 6 8

2 4 6 2 4 6 8 6

PLANS Language Data Structure Manipulation Feature Examples

i.

3. The PLANS Programming System Operations Model Modules

Use of the PLANS data structure to describe both the physical

nonprocedural and procedural elements (i.e., resources, processor

activities, and operations sequences) of the 'system to be scheduled

was analyzed. It was decided that the information could be orga-

nized into three tree structures called $RESOURCE, $PROCESS, and

$OPSEQ. Standard data structures were defined for each of these

system element classifications. The standard data structures

that describe the system to be scheduled and the classification of

scheduling problems according to functional characteristics, to-

gether comprise a scheduling operations model concept that is a

unique product of this study. For logical simplicity, the opera-

tions model is considered as (1) the operations model data struc-

tures and (2) nondecision making data access and manipulation

functions required to synthesize a schedule.

The operations model module library is designed in the context

of this operations model; thus, its utility is much.greater than

if it were merely a collection of logical programs. The operations

model provides a conceptual framework within which very general

scheduling problems can be parametrically described. The analyst

who uses this framework will find a large number of routines that

can be applied with a minimum of custom-made logic. Since nothing

in the basic PLANS language and programming system dictates the

use of the operations model, no programming flexibility is lost.

Yet, the operations model concept greatly augments the utility of

Preceding page blank
23

the module library. A few examples of the operations model mod-

ules specified in Volume III are summarized in Table 1.

Table 1. Example of PLANS Programming System Operations iModel
Modules

NAME FUNCTIONAL SUMMARY

CHECK EXTERNAL Identifies temporal constraint violations
TEMPORALRELATIONS that would occur if two sets of job assign-

ments were merged. Useful for checking if
a potential resource assignment will be con-
sistent with existing resource assignments.

RESOURCEPROFILE Determines the profile of a specific re-
source pool over a given time interval for
both a "normal" and "contingency" level of
resource. Determines the profile of the
assigned portion of the pool and defines
the association of jobs making up the usage
profile.

NEXTSET Determines a set of specific resource items
to meet the requirements of a job and per-
mit the earliest possible execution of that
job. Determines future times the job re-
quirements can be met with any combination
of needed resources.

DESCRIPTOR_PROFILE Determines the descriptors for an item-
specific resource that are valid after jobs
involving the resources are scheduled.
Uses the assignment information in $RE-
SOURCE to determine the descriptor set at
a particular time.

UPDATE_RESOURCE Records the scheduling of a job by writing
the assignments in $RESOURCE for all re-
sources used.

4. The PLANS Programming System Problem Solution Algorithm Modules

The module library specified to aid the analyst in programming

resource allocation and scheduling logic is unique. Both mathe-

matical programming routines and project scheduling heuristics are

included and no single collection of routines is known that in-

corporates both problem solving approaches. Although the library

24

algorithms are not inventions of this study, a significant amount

of analysis verified each one's relevance to realistic scheduling

and resource allocation problems. Analyses of state-of-the-art

automated scheduling techniques led-to the conclusion that both

problem modeling methodologies of mathematical programming and

heuristic (network and project) scheduling should be included.

Each has problem models that have limited generalities; however,

others can be solved by building problem-dependent logic. While

PLANS can aid this modeling, an analyst will achieve more rapid

program development and checkout if he can describe his problem

in terms of library modules.

These modules make simple decisions and logical data manipu-

lations based on quantitative criteria easily perceived by the

user. Each module specified avoids judgments or logic for which

the criteria are open to opinion. For example, no modules assume

specific economic models, queue service policies, or criteria for

resolving reE)urce alternatives. Also, there are no approximations

of dependent variables by polynomials or piece-wise linear func-

tions buried in the logic. These judgmental matters are too prob-

lem-dependent and inflexible for an initial library specification.

No implication is intended that future modules should be restricted

by these criteria, since analyses are underway that will lead to

specification of higher-level modules. Examples of the modules

currently specified in Volume III are summarized in Table 2.

25

Table 2. Example of PLANS Programming System Problem Solution
Algorithm Modules

NAME FUNCTIONAL SUMMARY

CRITICAL PATH PROCESSOR Condenses, merges and computes crit-
ical path data for a master network.
Performs executive function which
calls NETWORK CONDENSER, CONDENSED
NETWORK MERGER and CRITICAL PATH
CALCULATOR. Based on network sched-
uling problem model.

RESOURCE ALLOCATOR Allocates resources to jobs to sat-
isfy all resource constraints and
heuristically produce a minimum dura-
tion schedule. Based on project sched-
uling problem model.

RESOURCE LEVELER Reallocates resources to smooth the
usage of resources while maintaining
schedule constraints. Based on project
scheduling problem model.

HEURISTIC SCHEDULING Performs both time-progressive resource
PROCESSOR allocations/job scheduling and resource

leveling. Based on project scheduling
problem model.

GUB LP Solves special-purpose linear programs
that arise as simplified models of
transportation, distribution, and
multi-item scheduling problems. Uses
generalized upper bounding LP format.

C. PLANS SCHEDULING PROGRAM LOGIC CONCEPTS

Because of the generic nature of PLANS programming system li-

brary modules, it is logical to inquire about use of the modules

in a specific .problem solution. Several specific scheduling prob-

lems were analyzed to identify model/algorithm interface. A typ-

ical example is the macrologic shown in Fig. 6 as used to interface

the operations model modules and a time-progressive heuristic

algorithm like the OSARS (Operations Simulation and Resource

Scheduling) program used by NASA JSC/MPAD as a prototype program

for building flight schedules.

26

OPERATIONS MODEL TIME-PROGRESSIVE SOLUTION ALGORITHM Select time of next
availability of a

Select Next Time Interval; [- - full resource set.

START User Define Problem Construct Joblist of
Data Base and Objectives Eligible Unscheduled Jobs Order payloads by

start of window,

Select Next Job from Joblist end of window.
Joblist is ordered
subset of above

Identify Job-Related Process - Unschedule Jobs with window open

at selected time.

Construct Set of All Resources

That Make Process Feasible at / Payload substitution:
Selected Time YES Can previously sched-

If a payload is- uled payload be pre-

assigned via Can Jobs empted by this one?
this route, the Are Sufficient NO Be Unscheduled to NO
next load will Resources Available? Free Resources?
be considered
before time is
incremented; YES
thus, the next , Select Resources for Job Using

pass for this Subproblem-Level Algorithm

test will yield Update Assignments for All

NO and substi- Selected Resources " -If choice exists,

tution will be c, take resources

considered. that have been

Are ~ Are available longest.

NO All Jobs All Jobs
in Joblist YESfor Entire Problem

Considered? Scheduled?

YES

Fig. 6
PLANS Program Logic Concept Example with OSARS Annotation

In this example, the user begins by defining the problem ob-

jectives and related constraints in a data base structure (SOB-

JECTIVES). The operations model executive logic selects the

specified systems operations sequence from $OPSEQ and passes it

with problem constraints to the algorithm. From the processes

in the operations sequence, the algorithm constructs an ordered

list of jobs it wishes to schedule. The model recognizes a job

as a process for one-time execution of an operation or activity

with specific resources, provides algorithm information about

resource requirements (from $PROCESS) and resource availability

(from $RESOURCE), and receives algorithm job scheduling decisions.

With these conceptual distinctions, a simple approach to de-

veloping scheduling/resource allocation program logic evolved.

The roles of the model and the algorithm(s) can be seen as a di-

alog: the algorithm(s) request problem-oriented information about

a system and its operations on which to base scheduling decisions

and the operations model supplies and updates the data. More

detailed discussion of program logic concepts is contained in

Volume II of the report.

D. PLANS LANGUAGE SPECIFICATIONS

A unique means for concisely specifying the syntax and seman-

tics of a digital computer programming language was developed to

facilitate PLANS implementation. Language syntax defines the

rules for combining language elements to form language statements.

Most programming language syntaxes, including PLANS, can be de-

fined with formal notational techniques such as the often used

28

Backus-Naur Form. Thus PLANS syntax could be concisely and unam-

biguously specified with existing techniques; however, the spec-

ification of semantics, i.e., the meaning of the language elements

and statements, presented a different problem. Semantic specifi-

cations are frequently written in English text that describes what

is supposed to happen when language statements are executed. Im-

plementation from English text specifications has historically

encountered difficulties of ambiguity, lack of conciseness, and

logical inconsistencies. Therefore, a technique was sought to

make PLANS semantic specifications as precise as the syntactic

spec if icat ions.

A decision was made to embed the semantics into the syntactic

specification using a conceptual device, called a pseudomachine,

which could respond to simple commands. The semantics of PLANS

statements were then uniquely defined in terms of these commands,

in conjuction with the syntax of PLANS statement. Thus, the

pseudomachine commands that convey the meaning of a PLANS state-

ment, correspond to the syntactical structure and once the state-

ment syntax is recognized, the semantics are known unambiguously.

The formal language specifications in Volume III employ this method.

Use of the conceptual pseudomachine commands for embedded

semantic specification within the syntactic specification is unique

and provides several advantages. First, this technique allows

the preparation of formal and concisely written specifications

with less effort than previous methods. For example, the HAL/S

language specifications required about 250 pages; for PLANS it will

29

be approximately one-tenth of that amount. The technique also

avoids implementation errors; thus it saves implementation man-

power and time because of the unambiguous meanings. Finally, it

is possible to develop a computer program that "emulates" the

conceptual pseudomachine. By manually translating PLANS code into

the pseudomachine commands, a form of "execution" can be achieved

using the emulator. This technique provides a means of debugging

PLANS applications programs before the final PLANS translator

implementation is complete.

30

)

-j

E
0

C:

C

C,

X
U

IV. Expected Benefits from
Language Use

IV. EXPECTED BENEFITS FROM LANGUAGE USE

Because this phase of the scheduling language study has as its

output only the functional specifications of the language and a

set of library modules plus an assessment of implementation fea-

sibility, determination of benefits to be gained from use of the

PLANS Programming System has been made only on a preliminary basis.

However, results of a preliminary analysis of the power of PLANS

source program code conducted about five months after the start

of the study, along with some later assessments of implementation

feasibility in which example programs were coded, has provided

some encouraging insights into the expected benefits from use of

PLANS and the specified modules. Until actual translator imple-

mentation during the next phase of the study has progressed to

the point where the coded programs can be executed, estimates of

the ease of debugging and modifying PLANS programs are based on

the PLANS designers' judgment and information presented on the

following pages.

A. PLANS METHODS FOR SIMPLIFYING SOFTWARE DEVELOPMENT/MODIFICATION

Appropriate design of a programming language can substantially

reduce the complexity of software development or modification.

As depicted in Fig. 7, features use the following methods to sim-

plify software development and modification.

High-level language capabilities that are "tailored" to the

class of problems being programmed will reduce the number of

source program statements required to code a problem. Higher-

level PLANS statements reduce the programming effort and also

31

Reduced Coding Requirements Due to Higher Level

Means

111171 Faster Program
Generation

Logic Readability and Improved Understanding

0 0
Generate All Faster Program

o DO 7 J = 1, N o Combinations Modification

o 1 = (K - 1)/N+ - o of P, K at A Fewer Specialized
o I(K /N+ Time Skills Required
o o

Allocation of Information to Data Instead of Logic

Logical Logical Less Frequent
CodCode Coding Changes

Data More Areas of
Program
Applicability

Fig. 2

Language-Related Methods for Simplifying

Software DeveZopment/Modification

32

provide a programming capability to analysts with less specialized

programming skills. Because the language has good readability,

i.e. produces statements that make the program logic easier to in-

terpret, the task of modifying programs is also greatly reduced.

Removing the maximum amount of system and problem descriptive

information from the program logical code means that many changes

in system characteristics can be incorporated by data changes in

PLANS programs rather than by executable code changes. Debugging

time may also be reduced and the range of applicability of the

programs increased by more general logic code. Furthermore, prob-

lem models in PLANS that have specific information supplied only

as data can be manipulated by a solution algorithm that communi-

cates with the model via data, but not via program code. Thus,

many manipulations of the model can be done automatically rather

than by an analyst trial-and-error procedure. In summary, use of

the PLANS Programming System allows appropriate allocation of prob-

lem information, reduces the probability of error, and provides

software with maximum flexibility.

B. TRAIL LANGUAGE EFFECTIVENESS EVALUATION

Early in the study after the initial list of language opera-

tions and features were identified, it became desirable to test

their functional validity. Therefore, a trial syntax was adopted

subject to later revision. Complete language statements and pro-

grams were coded in this trail language syntax, sometimes called

trail PLANS, to evaluate the basic language capabilities in real-

istic applications. The programmitg was "synthetic" in the sense

33

that no means existed for translation to machine code for program

execution. Three types of programs, including a number of gen-

eral utility routines for scheduling problems, were programmed,

and yielded further valuable insights and requirements for lan-

guage design.

Two of the programs in this synthetic programming exercise

had also been programmed in FORTRAN by other analysts for actual

problems. Results are summarized in Table 3. The first of these

was a simple program to group payloads for fitting into a Space

Shuttle cargo bay. It required 17 statements in trial PLANS com-

pared with 96 statements in the FORTRAN version. The second pro-

gram coded was the basic logic of the NASA JSC/MPAD OSARS. The

coding accomplished using the OSARS functional level flow chart

required approximately one trial PLANS statement per block of the

flow chart, a total of 48 statements. The FORTRAN version of

OSARS requires approximately 600 statements. Of course, some

use was made of the general purpose routines, but the trial showed

that basic PLANS capabilities make flexible programming possible

at a level of coding roughly equivalent to basic logic elements

in a functional flow diagram. The final PLANS specification of-

fers still more coding efficiency based on recent programming per-

formed to assess the implementation feasibility of the PLANS

Programming System.

34

Table 3. Trial Language Effectiveness Evaluation

PRELIMINARY COMPARISON DATA

FORTRAN Trial PLANS
Statements Statements

A Simple Payload Grouping Problem 96 17

Basic Heuristic of Operations 600 48
Simulation and Resource Scheduling
Program (OSARS)*

*PLANS code was generated from functional flowchart and resulted

in approximately one PLANS statement per functional block.

C. EXPECTED PROGRAMMING ECONOMIES FROM PLANS USE

Experience gained in the trail PLANS programming and later

revision of the'trial code into the more efficient, specified ver-

sion of PLANS, was used to estimate programming economies that

might be expected from PLANS. Any such estimate requires assump-

tions about the use of specified PLANS library modules, and most

significantly, the specific problem to be solved; but, based on

the trial cases, there are large reductions in the size of the

source code deck. In fact, deck size may be only 5 to 20% of

comparable FORTRAN, depending upon the specific problem. These

reductions are due to efficient use of PLANS features such as the

higher-level language statements, tree data structure use and

manipulation, dynamic data storage management that eliminates

dimension statements, special ordering and combinatorial opera-

tions, and the generic operations model and algorithm library

modules.

35

Estimates of manpower required to reach the same level of

sophistication as a debugged FORTRAN program show 21 to 70% re-

ductions based on the PLANS trial coding exercise. Some of the

savings occur because the higher-level language statements enable

coding from functional level instead of detail flow charts. With-

out actual program execution and debug experience, estimates of

debug time savings up to 25% depend upon the assumed degree of use

of already debugged library modules as a percentage of the total

program code used. This is also highly problem-dependent. Man-

power savings due to the problem analyst user-orientation of the

language that gives more people programming skills were also con-

sidered, because this avoids much analyst interpretation of prob-

lems for specialist programmers and subsequent interface efforts.

Similar assumptions and efficiencies also apply to program modi-

fication and maintenance efforts. In this case, from 4 to 12, or

more, code modifications may be possible in a given time period,

thus reducing code iterations to hours or days instead of weeks

or months.

Finally, other important but less quantifiable benefits can

be expected from broad applicability of the PLANS Programming Sys-

tem. PLANS, as indicated by the acronymn, is not only a schedul-

ing language, but a language that is well-suited to the solution

of resource allocation problems that are independent of schedul-

ing problems. Its problem and user orientation provides more per-

sonnel with problem-solving skills, and the library modules en-

courage common problem approaches to many problems that can elimi-

nate duplication of effort.

36

