NASA CONTRACT NAS9-12557
FINAL TECHNICAL REPORT
APOLLO DATA ANALYSIS
EXPERIMENT S-211
LOW BRIGHTNESS IMAGE DATA ANALYSIS
7

$$
\text { January } 31,1974
$$

NASA CONTRACT NAS9-12557

FINAL TECHNICAL REPORT
apollo data analysis
EXPERIMENT S-211
LOW BRIGHTNESS IMAGE DATA ANALYSIS

Prepared for
Lyndon B. Johnson Space Center
National Aeronautics and Space Administration
Houston, Texas 77058

Rout O. Mum an

Robert D. Mercer Principal Investigator

January 31, 1974

The Dudley Observatory
100 Fuller Road
Albany, New York 12205

Abstract

This is the Final Technical Report under NASA Johnson Space Center Contract NAS9-12557 for Low Brightness Image Data Analysis. The report gives the background for the contract and technical progress made over a two year period. The purpose of this work was the scientific analyses of photographic data in astronomy obtained by the Apollo Orbital Science Photographic Team during Apollo flights 14 through 17, inclusive. Principal Investigator for this work was Mr. Robert D. Mercer of the Dudley Observatory. Co-Investigator was Mr. Lawrence Dunkelman of the NASA Goddard Space Flight Center. The Johnson Space Center also provided additional funds for portions of this work through a companion Intercenter Agreement to the Co-Investigator.

Elements of analysis of photographic frames provided by NASA are described herein and included several tasks. Some of these tasks were the collection and correlation of Quick-Look listings and working prints for further study and the generation of post-mission and project reports. Postflight calibrations of the flight photographic systems were carried out, and the resulting data were used to correct lens vignetting effects in the original data. The data handling flow included photodigitization of flight data photographic scenes, calibrated step-wedges and vignetting patterns followed by computer program processing of the cesulting array of film density readings.

Several factors kept results from reaching, ie originally anticipated level of accomplishment. However, bzightness, polarization and color information on zodiacal light and brightness measurements on the lunar iibration region, L_{4}, were nearing the point of scientific publication at the completion of the contracted time period.

Background

The requirement for Principal Investigators and Teams of Investigators to assess scientific and technical data collected on manned lunar flights resulted directly from the activities of the Apollo Orbital Science Photographic Team (APST). This group was established in early 1970 to improve the scientific value of the Apollo lunar missions using photographic techniques and on-board systems capabilities in such fields as geology, geodesy/cartography, photogrammetry, astronomy and space photographic instrumentation. The APST served through the Apollo Program Director's Office at NASA Headquarters and made its detailed recommendations directly to integration and operations groups at NASA's Johnson Space Center (JSC).

Their work was carried out separately from those experiments formally accepted by NASA for specific flights. The formal experiments included the usual preparation, integration, operation and daca analyses phases; whereas, the APST work included all but the data analysis phase. In a sense, the APST scientific activities were exploratory in nature and cut across many disciplines; so, no one could be certain of results. For this reason, then, it was considered premature to add data analyses responsibilities to their charter, but the APST members were not precluded from participating in such analyses, if warrented by the quantity and quality of data so obtained.

The work of the APST proved quite fruitful from the beginning, and NASA Headquarters issued an Announcement for Data Analysis Opportunities in the Spring of 1971. Contract NAS9-12557 for Low Brightness Image Data Analysis was one of three proposals accepted in the area of astronomy, the other two being concerned with solar corona data. All used techniques of photographic photometry to obtain absolute brightness measurements on their subject matter. As is NASA's custom, these data analyses efforts were given identifying numbers associated with their experimental work; in the case of Contract NAS9-12557 it became Experiment S-211. Proposals had to include not only known photographic results, but also data expected or possible to collect, because they were submitted to NASA prior to the launch of the last three lunar missions.

The Principal Investigator (PI), Mr. Robert D. Mercer of the Dualey Observatory, and the Co-Investigator (Co-I), Mr. Lawrence Dunkelman of NASA's Goddard Space Flight Center (GSFC), were directly involved in the acquisition of these data as the astronomical members of the APST. They were also involved in reversed roles under the formal Apollo Experiment S-178, Gegenschein/Moulton Region, where the data obtained would be handled in almost exactly the same manner. In both cases, the work was
planned to utilize government facilities as much as possible. While the basic government contract was with the Dudley Observatory, a companion effort was funded at GSFC by JSC through an Intercenter Agreement for the Co-I to use GSFC's contract or student service personnel as well as government facilities and equipments. This agreement is included as Attachment 1. Advantages and disadvantages in this joint arrangement will be discussed below.

Technical Progress

The initial technical approach, as outlined in the proposal, was to use an automated, Joyce-Loebl double-beam microdensitometer at GSFC to photodigitize those frames of the original film which contained scientifically valuable information. Stepped line scan readings of film density would be recorded on magnetic tape for later input to a digital computer at GSFC. Density readings of calibrated step-wedges contained on the flight film and of a second standard wedge for instrument calibration would also be recorded and used in a computer program to convert scene densities to absolute brightness measurements. Finally, calibrated readings of the flight len's photometric transfer function, usually referred to as its "vignetting function", would be applied to brightness readings to arrive at actual values of brightness across the scene. The computer frogram to handle these inputs was in development by another Co-I, Dr. Charles Wolff, on Experiment S-178. This, then, was the situation at the beginning of the contracted effort.

Digitization of data for Experiment S-178 at GSFC proved to be much slower than anticipated, on the order of hours per full frame. Furthermore, the number of frames containing important astronomical data obtained on the last four Apollo lunar missions ran into the hundreds with half again as many calibration frames. The workload grew well beyond that originally anticipated. Other means to carry out this work had to be sought. Fortunately, several vendors were just beginning to produce more fully automated and much faster photodigitizing equipments. The final digitizing method used will be discussed more fully below.

Meanwhile, after careful consideration by all concerned, it was judged too great a burden to develop the Experiment S-178 computer program to meet $\mathrm{S}-211$ requirements. In spite of the much simpler needs for $\mathrm{S}-178$, the programing had gone very slowly. Besides, the S-211 data would require a greater sophistication to deal with frame mosaicing and removal of image smear on the varied subject matter resulting from successful APST efforts. The S-178 program was only intended to remove starlight by clipping sharp gradients in the spacial values of brightness, smoothing over the remaining scene, and, if required, superimposing
and adding arrays of values. The last process mentioned required considerable time to adjust arrays representing large granulation in readings, and then checking frame registration outputs before the addition process.

Thus, another premise on which the original proposal had been based had to be .Jdified after six months into the contract. Here, again, alternative techniques were known to be available; however, it had been hoped that the simpler $\mathrm{S}-178$ program would be adequate, because these alternatives involved very large programs with many sophisticated processors. As expected in the case of these larger programs, it required a longer time to become familiar with their use, although the quality of scientific results could be correspondingly improved. One of these new techniques involved a program running on an IBM computer totally dedicated to image processing work at the Visibility Laboratory in La Jolla. However, those in charge of processing activities felt that the time required to support training and use of this system would overtax their limited staff and resources; so, arrangements for its use could not be made.

Another sophisticated system, the Video Image Communication and Retrieval (VICAR) Program, developed at the Jet Propulsion Laboratory (JPL) for processing televised data from the Ranger, Surveyor and Lunar Orbiter spacecraft, was also satisfactory for S-211 requirements. Furthermore, it had already been acquired from JPL by Dr . Dan Klinglesmith of GSFC for his anticipated needs to support the International Ultraviolet Experiment (IUE) Satellite Program. In the fall of 1972 Dr . Klinglesmith, who, like the Co-I, works in the Laboratory for Optical Astronomy, was checking out the VICAR Program at the GSFC Computer Facility for operational use. He was quite willing to include our requirements in return for personnel assistance with the checkout of additional processors in the program as well as some financial support to acquire display devices that are especially useful for presenting VICAR output. These requests were met using Intercenter Agreement funds for graduate student assistants and for a portion of the equipment requirements. In addition, Mr. G. C. Alvord, a consuitant to the PI in Albany, made a number of trips and spent many weeks at GSFC working directly on S-211 data requirements. A more detailed description of VICAR processing is given later in this report. After a little more than one year, then, the final direction to proceed on photodigitization and computer processing could be started with certainty.

A belated Data Analysis and Handling Plan was then written, and it is included as Attachment 2. Included with it was a draft Exhibit A for the GSFC Procurement Division to use in its Request for Proposals (RFP) on photodigitizing services. Details for accomplishing all portions of the
work are specified in this plan and will not be repeated here. Because of problems noted both above and below and also because many steps in the processing flow had to progress in series as shown on page 3 of Attachment 2, it was not possible to increase the rate of accomplishment simply by spending more time. For instance, final computer program tests could go only so far without digitized data. It took three months from draft of the RFP Exhibit A to bid selection. Only after that could arrangements be made for obtaining the flight fila. and traveling to vendors facilities. But, computer processing of these data could progress no further than the point where vignetting function corrections had to be applied. Vignetting data, in turn, was dependent on optical tests and access to flight camera systems, and so on.

Identification of subject metter, the celestial coordinates of each frame, and times and duratics of exposures began immediately, because this was of great value to all other aspects of the work. This task always seems rather mundane, since it does not usually uncover significant new scientific information, but it is very important, nevertheless, because it requires the collection, assimilation and cross-referencing of all supporting data. This can permit researchers to avoid some blind alleys at later stages in the processing. Results of this work are shown in the Quick-Look Lists included as Attachment 3. Since they have only been fistributed to a few interested persons, the PI and Research Assistants, Linda Schwabe and Karen Jacobs, interi to publish these lists'soon with supporting information in collaboration with the National Space Science Data Center (NSSDC) for much wider distribution as a Data Users Note.

During the Apollo 17 mission more than a hundred frames of lunar surface targets of opportunity were obtained using the Nikon system and type 2485 film. Most of these photographs were taken near the terminators or in earthshine where the scene brightnesses were too weak for color film or slower lenses. Most of these scenes were interspersed throughout the S-211 data. The PI elected to catalog these frames as a part of S-211 work for two very practical reasons, since it was not a formal requirement on any other PI. First, the supporting data had already been collected for S-211 work and the PI's direct support of the Apollo 17 mission as and APST member made it easier for him to perform this task, than for others not familiar with the celestial scenes or sources of supporting data. Second, the detailed work could be carried out by Research Assistant Karen Jacobs without slighting other on-going work.

In the meantime, photodigitizing services were procured on a trial basis by GSFC, using their Intercenter Agreement funds, from both Photometric Data Systems (PDS) of Perkin-Elmer Corp. in South Pasadena and from Dicomed Corp. in Minneapolis. The results from PDS proved better for experimental
requirements, and special arrangements were made with another PI, Dr. Don Von Steen, in the Earth Resources Technology Satellite (ERTS) Program at the Dept. of Agriculture in Washington, D. C. to use exactly the :ame equipment that had been utilized under the service contract at PDS. This saved considerable travel and service costs on the continuing photodigitization work. Unfortunately, the initial service contracts and subsequent arrangements for the photodigitizing work did not get underway until the last seven months of the two year contract. At the close of this contract photodigitization of some calibration and vignetting frames and all of the Apollo 17 data frames remained to be done.

The details of the photodigitization process are quite simple in principle. A square aperture, thirty-six micrometers on a side, of collimated, white light is allowed to pass perpendicularly through the original negative of a selected photographic frame. This beam then impinges upon a calibrated photomultiplier tube, and the developed grain in the photographic emulsion is put into focus at its photocathode. An output voltage of the photomultiplier is recorded in terms of density, that is, in terms of the logarithm, base 10, of transmitted beam intensity. The beam is first stepped horizontally, thirty-six microns per step, completely across the frame in the "x-direction", which is parallel to a side of the square aperture. This is done by mechanically moving the stage, to which the film is attached, using computer controlled servomotors. At the end of this line scan, the stage is stepped vertically downward in the "y-direction" by thirty-six microns and scanned back in the "negative x-direction". Individual readings and information on position are temporarily stored by the control computer, then written onto a magnetic tape as a stri:!g of values following the frame identification group loaded by the operator. One 35 mm frame scanned side-toside from the bottom part of upper sprocket holes to the top part of lower sprocket holes requires about forty minutes and produces approximately 0.7 million separate readings. The grain size on the very high-speed, 2485 type emulsion is already on the order of ten microns; so, there is very little resolution loss using the thirty-six micrometer beam. The film could easily be digitized to a higher resolution, but that effort would prove wasteful in terms of the additional computer storage and data manipulations required. For instance, if the aperture were reduced to twelve microns square, the photodigitization time, the data storage array size, and subsequent computer manipulations would each increase by nine times.

Vignetting tests had to be performed with great care. These tests were delayed by non-availability of, first, flight cameras from JSC and, second, personnel and laboratory space at GSFC. The tests were finally carried out during the last three months of the contract. The procedure
for these tests required that photographs be made of a perfectly uniform field of white light by each flight camera system at the same lens f-stop setting and in the same filter configuration as that used for the data collection. The image of this scene recorded on the emulsion showed greatest exposure at the center of the frame with response dropping off towards the edges and least response at the corners. This falloff in apparent light level is very pronounced for large lens apertures, that is, for low fnumbers. However, large aperture settings are required for collecting all of the available light in low brightness scenes. Thus, these setting must be used and the data corrected for their effects later.

Test photographs of vignetting on calibrated film is the means for doing this. These test frames are digitized just like data frames. From their step-wedge calibrations, emulsion density can be converted to absolute intensity over the frame, then normalized to the maximum value. The logarithm of these normalized readings will be zero at the brightest point on the optical axis near the center of the frame. At distances away from the optical axis, the $10 g$ will have negative values of larger and larger magnitude.

This matrix of values is aligned with the digitized emulsion densities converted to \log intensities for appropriate data frames. The vignetting $10 g$ intensities are then subtracted point by point from the daca log intensities, which increase the resulting values progressively further away from the optical axis. In essence, this mathematically raises the intensities away from the center of the frame by the inverse ratio of the vignetting falloff, which is exactly the desired result. This process requires careful determination of the emulsion response, or "H\&D" curves, both for the data and for the vignetting so that accurate absolute measurements can be made and preserved throughout tedious computer manipulations.

This last consideration cannot be overemphasized, and it is this use of the VICAR program by S211 which is somewhat unique, giving an exploratory nature to this image processing technique. On previous programs some of the available processors of VICAR had been used to enhance, purposely, the scene brightnesses or stretch their contrasts so that lunar surface data might yield more discernable features for scie.tific study. This is quite valuable for creating data formatted for best interpretation by the eye. Unfortunately, it purposely disregards the fidelity of true scene brightnesses or ratios oi brightnesses. Work performed under this contract had to use the opposite emphasis and take great pains to preserve quite accurately the brightness.

This has kept the pace slow and deliberate for the initial data processing. Quality, in terms of photometric accuracies, is the ultimate goal of this data analysis effort. Where the brightnesses are just on the threshold of detectability, the absolute error bars increase rapidly. This, in turn, has great influence on determinating the extent of limits for vague, ragged edged phenomena. So far, only a few of the Apollo 15 data frames have progressed to the stage of corrected brightnesses across their celestial scenes.

Besides the brightness computations, computer programing has begun but results have not yet been forthcoming, on two other parts of the work. The first of these is the VIEWS Program obtained from JSC. When this program is supplied with an appropriate state vector, look angle and field-of-view specifications, it will compute instantaneous celestial coordinates, and it then plots stars, planets and surface features of earth or moon that fall into the field-of-view. The program is actually a synthesis of several, individaal subprograms in which each part takes as its input the output of the preceding part. Thus, a given state vector is integrated forward or backward in time by a Lunar Trajectory Module (LTM) to the moment of interest where look angle and field-of-view specifications are supplied. Limiting coordinates of the scene are developed so that a library of star and planet positions and magnitudes can be searched and those objects falling within the scene are converted to plot coordinates. Finally, if either the earth or moon is in view, an orthographic projection of vector segments showing surface details is added and occulted stars removed. An option is available to add celestial, geographic and/or selenographic coordinate lines as well. The computer program which performs these searches and calculations finally produces a magnetic plot tape for use on a Stromberg Carlson 4060 Plotter. Digital values on this tape drive both scan and intensity circuits of a cathode ray tube to produce the final plots for recording on microfilm.

It was intended to use the VIEWS Program to make celestial overlays to match important data frames. While checkout of the program did reach the stage where plot tapes were produced, the need for this type of data was considered less important than checkout of the VICAR Program software; so, no overlays had been developed at the completion of the contract. The LTM routine was used separately, however, in an attempt to compute the instantaneous position of the lunar libration point L_{4} with solar and planetary perturbations included. Results from Apollo 15 of one four-minute exposure in the supposed direction of L_{4} made this supporting computation important. But, after several weeks work, it was clear that the LTM program could not be used in "his way. A second computer program using a Double-Precision Trajectory (DPTrij) routine
was obtained and checked out for this work. Several weeks were needed to tailor it to the L_{4} problem, and here again, such work had to cease so that the computer consultant, Mr. Alvord, could help with the VICAR processing. The extent to which the effort had grua also indicated that it would be better to delay further computit \ldots, s, the L_{4} point until the data frame had been processed and an syzed to ssure that publishable data was obvious on the film. It still rema. s doubtful that the I_{4} region of light enhancement is present on this frame. Although this frame is one of a dozen thet are the furthest along in analysis, additional VICAR processing will be required prior to publication of scientific results.

There have been many interrelated activities between this contracted effort and NASA Centers. Planned use of government teams and facilities was made, of course, in the interest of economy. However, in many instances the scheduling of the government's support could not be advantageously timed, and this is partly the reason why the contracted effort has been delayed. Reporting of technical activities had always been an important responsibility put on the contractor, but it has not been a companion requirement on government supporting groups, and the intermeshing of milestones has not been clear to all. Verbal communications were good, in general, but the lack of positive management techniques including written technical reports and published schedules for overall control of this work, whether in or out of government, has caused hardsinips. This point is reported here not as an excuse for delays, but so that future arrangements of this type can be strengthened. As smaller budgets put constraints on NASA's scientific work, it could appear profitable to use joint personnel teams and facilities. Whether the results produced from such arrangements are truly economical will depend on the government's giving equal weight to managerent of its :Anhouse participation as well as its contracted efforts.

Important Related Matters

At the beginning of the contract, the PI designed two filters for use with the flight Nikon camera system. With dedicated services from engineering, drafting and the mechanical shop at Dudley, these filters progressed from concept to acceptance for flight and delivery to the launch site in about nine weeks to carry out an APST requirement on the Apollo 16 flight. One filter provided a blue bandpass from 510 nanometers to the Command Module window cutoff at about 420 nanometers; the other provided a red bandpass from 610 nanometers to type 2485 film sensitivity cutoff at 700 nanometers. These special filters were needed to photograph suggested emission lines of hydrogen in the red and singly and doubly ionized oxygen in the blue from the Gum Nebula while suppressing light from the Milky Way
region beyond. A second set of these tilters flew on Apollo 17 for two, very successful photographic series of the zodiacal light, another APS' requirement.

During the first year of this contract. the PI and Co-I were also very busy supporting the APST activilies for the Apollo 16 fiight in April and the Apollo 17 flight in December of 1972. Those flight schedules and related support work necessarily dictated when and where the investigators could apply themselves to work under this contract. On the one hand, it did delay early training by the PI of his two Research Assistants brought on specifically to help in this work, and it hampered early attempts to follow institutional management of the contract, mainly because the PI had to spend considerable time traveling to NASA Centers. On the other hand, this travel permitted better coordination of the PI's early data requests to NASA, and APST trips to the West Coast were very useful in the final selection of the computer program for processing photodigitized data. Furthermore, it was extremely valuable for the PI and Co-I a to be able to thinknthrough their photocalibration and supporting data needs prior to each of these last two flights when specifying experimental requirements as members of the APST. In retrospect, the wearing of these two hats was beneficial overall, but early milestones in the data analysis effort suffered as a result.

A third related matter regards the financial and administrative support of this contract by Dudley Observatory management. This support became a negative factor of large proportion affecting al phases of the work. The PI and his assistants had to spend conside- time checking and reconstructing financial data; this time dimini. eir scientific and technical efforts. The author of this report n. ieves quite firmly that Dudley management does not have the qualificat , experience or desire to deal with day-to-day affairs of scientific sogram administration, and that management actions are only taken to deal with crises.

At the PI's request the government stepped in to review the situation two-thirds of the way through the contract. Their review and financial audit resulted in Dudley management returning $\$ 20,188$ to a $\$ 92,541$ effort. At the close of this contract, some eight months after the start of the government's review, the Observatory is still in the process of developing financial, administrative and personnel policies under duress and under continuing scrutiny by government monitors. Even though the scientific goals sought under this contract are just now nearing publication stage, the PI has elected to close out work under the Dudley Observatory at the first convenient opportunity so as nct to subject the government or himself and his team to further waste of time and money to help an institution solve its own, internally created problems.

Conclusions

The conclusions at the close of this contract are as follows:

1. Results of this data analysis work are nearing the point of publication for NASA and the scientific community. The overall effort is approximately six to nine months behind the original schedule, but the quality expected in results has undergone improvement. Biightness measurements will be most successful for (1) the zodíacal light in polarized and plain white light and in red and blue light from about one to ejghty degrees elongation and for (2) the lunar libration regior L_{4} in white light.
2. The requirement for controlling lechnical progress through technical reporting and milestone scheduling is, of course, vital, but it must be extended to incluc'e inhouse government technical activities supporting outside contracted efforts.
3. The uncertain nature of data analysis work, particularly when portions of th. data are not yet collected, requires that contractual goals and schedules undergo periodic review to change emphasis as needed. This is particularly true for work where the data andlysis techniques themselves are undergoing development, and time is needed for exploring various options. This factor determines the res_arch versus the production nature of the data analysis tasks.

Recommendations

Recommendations concerning this work are as follows:

1. This data reduction and analysis work should be continued. It will provide two important results. First, it will complete the develcpment of new techniques for accomplishing photographic photometry using sophisticated computer techniques. Second, new scientiric measurements will result from completed analysis of the zodiacal light ar.d lunar libration region, L_{4}, data now in processing.
2. Data analysis work should le carefilly assessed for the degree of new techniques required. The quantity or rate of production for processed data and the time involved should be extended ir proportion to the uncertainties in such developmental efforts.

Acknowledgements

The author wishes to express his sincere appreciation to the many NASA and supporting contractor personnel whose help has made the present level of accomplishment possible. Some of these people have been mentioned above, and the author wishes to include in his thanks Dr. Floyd I. Roberson, Messers. S. Nat Hardee, Tony C. Riggan, James Taylor, and James Ragan of NASA, Mr. Paul Hopkins of the Department of Agriculture, and Mr. Joe Dixon and J. Wesley Simpson of Lockheed Aircraft Corp.

In addition to two Research Assistants at Dudley Observatory, the work benefitted greatly from the excellent services of Mr . Dave Wachtel, photography, Mes. Gail Chien, drafting, and Mrs. Gen Pruscop, typing.

MSG/GSFC AGREEMENT

APOLLO LOW BRIGHTNESS IMAGE ANALYSIS

Abstract

The tasks to be performed by GSFC, in support of Apollo Low Brightness Image Analyșis and the Dudley Observatory, are specified in the attached statement of work. This will apply to film analysis for Apollo Missions 14, 15, 16, and 17. The relations and effort between the two fenters will be conducted according to this agreement.

Approved:

Virector
Goddard Space Flight Center

STATEMENT OF WORK

Experiment Long Title: Low Brightness Image Analysis Experiment Short Title: Same

Number:

Concurrence:
$\frac{\text { Recut D. Dunes }}{\text { Principal Investigator }}$

Concurrence (MSC):
S. N. Hilindee

PA/J. A. McDivitt

SERVICES REQUIRED OF GODDARD SPACE FLIGHT CENTER IN SUPPORT OF LOW BRIGHTNESS IMAGE ANALYSIS (DUDLEY OBSERVATORY)

1.0 PURPOSE

1.1 The purpose of this statement of work (SO.:) is to define those services which are required of GSFC in support of the Low Brightness. Image Analysis. In addition, these services will pertain to the support of the NASA/MSC Experiment Manager for this analysis.

2.0 OBJECTIVES

2.1 To furnish the sensitometric equipment and accessories necessary to give the support required to complete the subject analysis.

3.0 TASKS

3.1 Close coordination is required between the PI, Co-I, GSFC technical personnel, and the MSC Experiment Manager on all aspects of GSFC's services in support of the Low Brightness Image Analysis. Mir. L. Dunkleman, Co-Investigator, is completely responsible for the management and implementation of all GSFC effort.
3.2 All original films applicable to Apollo 14, 15, 16, and 17 Dim Light Photography will be transmitted to Mr. Dunkleman, Co-I. He will have the responsibility of their transmittal for analysis, safekeeping, and ultimate return to MSC.
3.3 GSFC will provide the densitometer and related equipment necessary to provide isophotes, isodensitracings, and digital program readouts on magnetic tape.
3.4 GSFC will provide the necessary technical personnel (including computer programmer) to secure the data required by the PI, calibrate the equipment, and maintain the optimum equipment performance.

4.0 DOCUMENTATION REQUIREMENTS

4.1 Monthly Cost Reports to date
4.2 Quarterly Cost Projections per 533 requirements

5.0 FUNDING REQUIREMENTS

Funding requirements are as follows:

LOW BRIGHTNESS IMAGE DAIA ANALYSIS

DATA ANALYSIS AND HANDLING PLAN

Prepared for
National Aeronautics and Space Administration
Johnson Space Center
Houston, Texas 77058

Bhat 0 muan
Robert D. Mercer
Principal Investigator

March 30, 1973

The Dudley Observatory
100 Fuller Road
Albany, New York 12205

General

This document presents a plan for data handing and analysis of low brightness images from those portions of astronomical photography covered by Experiment $\mathrm{S}-211$ (Contract NAS9-12557). This plan is required from the Principal Investigator (PI) both scientifically and contractually for good reasons. First, it assures that the methods and procedures for accomplishing the final objective have been clearly thought through. This assures that maximum scientific content will be extracted within the time and cost scope of the contract. It also guarantees that original photographic materials will be properly safeguarded by the PI prior to their release to him and his team.

It was originally proposed that individual plans be submitted for each of the Apollo missions covered by this data reduction work. However, the similarity in procedures, particularly with regard to the establishment and utilization of image brightness digitization techniques to be followed by highly sophisticated computer processing, indicated that one overall procedure could be written. This composite plan is presented below and applies equally to photographic images, calibrations, and equipment test data for each micsion covered by this data analysis work, namely Apollo flights $14,15,16$ and 17 .

Data Processing Fiow

An overview of the data handling and analysis process will now be presented. Figure 1 shows this data flow in block diagram format. This will be followed by an elaboration on certain special details such as film handling and the like.

Master positive transparencies and duplicate negatives of each photographic data frame will be scanned visually to ascertain the scientific value, image quality and data reduction priority of each frame. Quick-10ok identification listings of all frames will be nade. These listings relate frames by their NASA photo numbers to the times made, subject matter, approximate celestial location and orientation, and associated camera configuration and settings. These lists, one for each flight from Apollo 14 to 17 inclusive, become interim but finished products that are individually complete enough for use by others. In that sense they will be made available to all NASA personnel associated with this work, including the National Space Science Data Center (NSSDC), outside scientists, and interested laymen ho express a specific interest in our early results. Such lists are p. rticularly important in this field of work where the phenomena under study are relatively unknown and where there is a very limited number of easily identifiable objects even to the trained eye of most astronomers.

Concurrent with this effort, data technicians will make blow-up prints from the master positives and duplicate negatives. These prints are much easier to handle and to study for more detailed visual analyses. They are absolutely essential for measurements of angles and distances between celestial objects; such data extracted from these working prints will be used as numerical inputs to sophisticatad computer processing lazer. In addition, such prints and associated projector slides are used for presentations and publications of preliminary results required by NASA. They are required by the scientific obligations inherently levied on all investigators as reporters to their disciplines within the scientific community at large.

Second and third generation 35 mm format film must also be used for some photometry and microdensitometry. Certain frames will undergo unsophisticated measurements to determine approximate values of brightness of key features, ranges of brightness within a frame and base fog levels. From these analyses a first selection of frames will be made for further processing.

This initial group will contain the following information: data frames, brightness calibration frames, and exposures to assess the brightness portion of the optical transfer function for the flight lenses and for the image digitizing equipments used in the data reduction process. Lens calibration photography will be obtained by the Co-Invesi'gator (Co-I) using appropriate optical laboratory facilities and components at NASA's Goddard Space Flight Center (GSFC). All of these photographic images will be digitized from original flight and ground calibration negatives using the most economical and scientifically qualified technique available. The digitizing services will be obtained by the Co-I through the GSFC Procurement Office using a portion of the funds transferred for this work from the NASA Johnson Space Center(JSC) to GSFC. A suggested Statement of Work for the first digitizing effort is included as Appendix A. The results of this work will be a set of digitized brightness measurements for each frame recorded on computer-compatable magnetic tapes.

These tapes along with progr?m control statements and other numerical data from earlier processing will become the input to the Video Image Communication and Retrieval (VICAR) Program developed by the Jet Propulsion Laboratory (JPL) and now being made operational at GSFC for a number of image processing applications. The VICAR Program will be used for the many tasks specified below.

1. Eliminate camera lens and digitizing equipment brightness recording (vignetting) effects.
2. Locate and eliminate starlight.
3. Smooth unnatural discontinuities in digital readings.
4. Create brightness-versus-position contour (isophote) maps.
5. Match up and extend isophote maps over many adjacent frames.
6. Perform special additions of data where scenes overlap and signals are extremely weak.
7. Remove image motion from longer exposures where rates of change in vehicle attitudes could not be avoided.

This VICAR Program processing is iterative, i.e. the results of manipulations with any data set must be analyzed by both investigators and programers to best determine what subsequent VICAR processing must be attempted. Moreover, the same set of brightness measurements may undergo several different kinds of computer processing depending upon the particular scientific objective being sought.

Another computer effort, using the VIEWS Program Ceveloped at JSC, will be carried out at Dudley Observatory to produce star field and celestial coordinate overlays for selected data frames. It will be checked out on a Univac computer at the State University of New York in Albany. Inputs to this program will include: time-related trajectory state vectors, telemetered attitude and rate data for the Command Modules, and the data cameras' lines-of-sight and fields-of-view with respect to the vehicles'body axes. Output will be computed pointing position and a special computer magnetic tape for processing orientation on the SC4060 plotter at GSFC. Processing by the plotter will produce scenes identically located on the celestial sphere as the data frame made at the same corresponding time. These microfilms will be enlarged and printed on ortho, clear-backed, film base to produce overlays for working prints of the dat: frames. A copy of the microfilm will also be provided to NSSDC, since it will be very useful for other researchers who might wish to extract other information from the flight data.

Final results of all of the above work will be information for publication in NASA documents and scientific journals including statements on the interpretation and significance of findings. Accompanying analyses will attempt to provide mathematical expressions for the brightness patterns being studied. Where possible, information on polarization and spectral parameters will also be included.

The initial group of original data and calibration frames, containing approximately 20% of all frames which might eventually be processed, will be digitized and started through the handling and analysis process as a verification that the procedures are adequate and that detailed problems in the date flow are well understood. The suggested Statement of Work in Appendix A is meant to include only this initial group. Once this work has progressed to the point where intermediate results, including computer outputs, are available for investigator analysis, decisions will be made on which frames and how many of the remainder should also be digitized. This also assures that all financial resources are not expended onlv on early stages of data reduction without reaching finished conclusions on at least some portion of the work.

It should be further noted that deta from ipolls Lunar Experiment S178, Gegenschien/Moulton Region will also be handled in a similar manner, since it is also contained on the same flight emulsion and because its subject matter is analcgous to the low brightness phenomena under this task. In fact, some early digital data read from $S 178$ frames on GSFC Joyce-Loebl microdensitometer is being used as tast inpl for early checkout of VICAR Program processing routines. One important conclusion from this test urk has been that digitization on this GSFC equipment is fer too slow and expensive for the amount of data yet to be digitized. Therefore, it has been necessary to seek vendor services that were not or ginally contemplated. It has furthe.. been ascertained that such an approacl: will definitely be muct faster and less costly for the government, and at the same time $i t$ will greatly reduce the amount of film handling necessary for the original tlight ingatives. This is the only subcont acted effort that is now foreseen.

Handling of Original Flight Ne_{l} atives

In Figure 1 a dash-dot ine has bet. added to show the path followed by the original flight film. It ill only be required by the PI and his team during the digitization process after which it is returned to NASA JSC for storage. It is proposed to arrange in advance for these uses of the original photographic materials. Then the PI or his authorized representative will personally pick it up at JSC, hand carry it to the vendor's site of digitization, remarr with the film and monitor the digitizing prusess, and return the film to JSC by hand-carry immediately thereafter.

As noted previously, not all frames will be digitized initially. Therefore, a minimum of two such trifs are necessary, and it is expected that this would be the maximum, as well. If problems occur in later stages of the data processing tasks for the initial group digitized, it could require that three or, at the very most, four trips mioht be necessary. In each instance it is expected that the original flight negatives wosld be away from JSC no longer than one week at a time.

At later siages in the analyses it might be necessary t, make a few special readings on the GSFC micrudensitometers to clarify sertain readings in the production phase digitization performed previously at tue vendor's facility. Here, again, the time away from JSC might be as long as one month for any recheck, and arrangements for handling and storage at GSFC would be identical with those already used for the S 178 film with hand-carry back and forth between NASA centers.

At NASA centers and the vendor's facility the original flight film will be maintained at $70 \pm 10^{\circ} \mathrm{F}$ and $50 \pm 45 \%$ relative humidity normally provided by air conditioned offices and optical. laboratories Wiem not in use or in the hands of responsible personnel, it will be stored in lorked containers located in air conditioned quareers. During transit it will be double-bagged polyethylene envelopes sealed air-tight to avoid humidity charges. The courier
will insure that the film containers do not experience excessive temperatures or rapid changes in temperature.

Film will be handled directly only with gloved hands on its edges or on its base side, and cloth mouth-guards vill be used when film is under examination or when personnel must work in close proximity to the film. Light tables and other surfaces with which film may come in contact will be cleaned by nomal optical procedures, i.e. grease and oil film removers applied, wiped dry with a clean, lint-free cloth and a final lens tissue rub down. Emulsion side of original film will always be maintained away from mechanical surfaces. Emulsion side of film will only come in contact with mechanical or optical surfaces at sprocket holes or outer edges during frame by frame transport or if curl must be removed using edge clamps.

Requirements for Data from NASA

Initial sources of data for this data reduction and analysis work are, of course, NASA JSC. Figure 1 shows the types of data that must come to the investigators for their use. Some of these requirements are as specified in the Mission Requirements Document (MRD) and Photographic Distribution Plans for each mission on which this photography was accomplished.

In general, they include:

1. Best Estimated Trajectory data during periods of low brightness photography in each mission. One copy of this data is required on computer compatable magnetic tapes or on microfilm prim:out accompanied by documents on formats.
2. Command Module attitudes and rates data in Earth Centered Inertial (ECI) coordinates during these same periods. One copy of this data is required either on magnetic tapes or on strip chart recordings with formats specified.
3. Command Module telemetry measurement numbers CG0001 V on Apollo 14, CK 1043 X on Apollo 15, CK 1040 X and CK 1043 X on Apollっ 16, and CK 1043 X on Apollo 17 during these same periods on strip chart recordings at ten inches per second. Data channels and time channels must be properly identified, and time code format specified.
4. Command Module air-to-ground voice transcripts with time references fcr those comments applicable to this photography. One copy is roquired, and this must specifically include pertinent portions of tho DSE Voice Dump Transcriptions.
5. Crew logbooks containing annotated flight plans, checklists and \log sheets. One copy is required for each, entire mission.
6. Scientific and photographic procedures debriefings of flight crews.

One copy of debriefing transcriptions or voice-recorded magnetic tapes is required.
7. Second and third generation photographic products of all Very Highspeed Black and White (VHBW) film. Number of copies must be as specified in the Photographic Distribution Plan for the PI and Co-I for applicable flights.
8. Original VHBW backup film used for ground based photography by the investigators and developed along with the flight film. In addition, one copy of the $H \& D$ curves used to establish control of its photoprocessing at JSC will be required.
9. Access to and occasional possession of original VHBW flight film under handling conditions specified previously. H \& D curves of its photoprocessing will also be required.

Those, then, are the products required by the investigators from the government. The photo products can be supplied by the Photographic Technology Division. Spacecraft telemetry data, air-ground voice and debriefing transcript and logbooks can be supplied from the Metric Data File. The postflight, Best Istimated Trajectory tapes are created by the Mission Planning and Analysis Division. Original photographic materials should only be transferred using courier hand-carry by duly authorized representatives of the government or the PI. All other data sources can be mailed or shipped with appropriate follow-up communications to assure all items are received by the PI or his team members.

Scientific Disciplines Involved in Analyses

The scientific phenomena on which data are now thought to exist include:

1. Zodiacal light
2. Lunar libration region, L_{4}
3. Diffuse galactic light
4. Large filaments and extended galactic regions
5. Lunar eclipse
6. Contamination particles near vehisie
7. Solar Corona

The last two subjects f analyses will only be accomplished in coordination with Experiment S2ll and 2212 PI's who have formal responsibilities for these areas of data, because there is some level of overlap between the three
experiments' requirements.

Extent of Data Analyses

The level of data reduction and analyses to be expected cannot be completely specified, as yet. It can be stated that full processing and analyses on each data frame and the interrelationship between frames is a task requiring several years work and, therefore, beyond the scope of time and cost alloted for this work. However, that was not unexpected considering the degree of success in data collection from flight to flight. The major decision for the investigators, therefore, is the priority to be given to the various subjects under study and what level of data reduction to attempt in each case in order to maximize the scientific return.

The pacing item for all of this work will be the amount of output and degree of sophistication that can be achieved by VICAR Program processing. This certainly does not imply that valuable results cannot be realized without it. Indeed, some preliminary results from Apollo's 15 and 17 already reported now provide scientifically valuable information on zodiacal light and solar corona previously unknown.

The major goal of the current work will be to obtain brightness maps to the best accuracy possible over as large an area of the celestial sphere as data frame coverage permits. Particular areas of interest will be along and close to the ecliptic plane on both sides of the sun, the lunar libration region L_{4}, the Gum nebula, galactic light, and the lunar disk entering and leaving the earth's shadow. Brief analyses of airglow and atmospheric extinction may be attempted using the ground-based data frames made on backup film in conjunction with corresponding flight data frames.

The main goal using the VICAR Program will be the complete development of isophote maps prior to removing image smear for each frame adjudged to have scientific importance. A higher level goal, if it can be achieved within the time and cost limitations of this work, will be to integrate the isophote maps of individual, adjacent frames into a larger isophote map, but again, without consideration for image smear. Finally, if all proceeds extremely well, the goal will be to remove mage smear prior to the creation of individual and composite isophote maps mentioned previously.

Some of the procedures outlined in Figure 1 have been underway for many months. Well over half of the required data has been received from JSC. This has included all of the critical items except some camera lenses needed for calibration tests and the original flight film. Initial access to the latter will be requested in late April or early May 1973 to begin the digitization processing.

Required scientific reporting up through and including the Preliminary Science Reports (PSR) has been completed except for the photographic figure for the Apollo 17 PSR. This will -e submitted in April
1973. The excellent results from Apollo 15 were reported to the Optical Society of America (OSA) meeting at Ottawa in October 1971 and to the Committee on Space Research (COSPAR) at Madrid in May 1972. Both pa; ers were joint efforts from several investigators including the Conmand Module Pilot, A. Worden. The COSPAR Paper will appear shortly in Space Research XIII which is now in press. Similar papers on A :ollo 17 results and on the low light level photographic effort for the comb ined four missions are pianned for the summer of 1973; the latter will Le a GSFC Technical Zerort. An article for the journal Sky and Telescope is also in the plannilg, tage. As more precise information is developed, the investigators intel., to present papers at scientific meetings and to submit articles to well known journals in the field of optics, astronomy, nhysics and geueral sc...ence.

Quick-look identification lists for Apollo missions 14,15 , and 16 have been prepared and distributed to all appropriate parties including NSSDC. A similar list for Apollo 17 has also been made; however, it orly contains low brightness astronomy information. It will be completed after coordination with investigators and crew about such subjects as lunar surface -eatures and cabin interior scenes, that are interspersed in the VHBW film along with the astronomical data. The abbreviated list on Apollo 17 astroncmical photography has had limited distribution among investigators and among individuals at JSC who are cognizant of this work.

Additional Postmission Information Requirements
The only postmission requirements now foreseen are the use of rlight lenses and filters for transmission and vignetting calibration tests. As noted previously, data from such tests is rital in computing brightness corrections for the data frames. Part of this testing is currently underway at GSFC; however, lenses from Apollo missions 14,15 , and 17 will be required by the end of June 1973. All flight filters have been received by the PI.

One other possible source of error has already been tested. An unexpected, weak exposure was experienced on the 16 mm Data Acquisition Camera film of Apollo 14. In order to verify whether or not this effect might have been caused by a loss in window transmission, the investigators performed postflight tests on the right-hand rendezvous window at the Rockwell International plant in Downey, California during May 1971. These tests showed negligible transmission losses. This has not been considered a source of error in subsequent flights, and requirements for such additional tests are, therefure, waived.

Conclusions

This concludes the data handling and analysis plans for low brightness image studies. As of this writing on 1 April 1973, it provides a best estimate of total planning in this regard. Should additional ur modified requirements arise, the investigators will communicate variances in this plan to the Technical Monitor.

STATEMENT OF WORK

Respondents to this RFP must make digital readings of black－and－white， photographic emulsion densities on roll film to be supplied by the government． These readings，along with appropriate identification and $X-Y$ positional information within each frame，must be recorded on computer compatable magnetic tapes．The films provided will include original photographic materials from Apollo lunar orbital flights．This will require that a government representative be in attendance during densitometry operations，and the respondent must provide safekeeping of such film at all times when it is in his hands for processing． Detailed specifications are provided below：

A．Photographic Materials Input
1． 16 mm film
a）Uncut reeled motion picture film， 40 frames per foot， 100 feet in length，PH22． 110 perforation configuration
b）Type 2485 Eastman Kodak emulsion on 4 －mil Estar base
c）Base plus fog density approximately 0.70
d）Density range of interest approximately 0.65 to 1.85 ．
e）Dimensions of interest for each full frame including some portion of adjacent sprocket holes are 8 mm by 12 mm ．
f）Number of frames approximately ten（10）and they are not located sequentially on film．

2． 35 mm film
a）Two reels of spliced film， 8 frames per foot，one reel 50 feet in length and one reel 100 feet in length，PH22． 139 perforation configuration．
b）Type 2485 Eastman Kodak emulsion on 4 －mil Estar base
c）Base plus fog density approximately 0.65 for reel $⿰ ⿰ 三 丨 ⿰ 丨 三 一 1$ and 0.55 for reel 非2
d）Density range of interest approximately 0.35 to 1.85 for reel 非1 and 0.35 to 1.85 for reel $⿰ ⿰ 三 丨 ⿰ 丨 三 2$
e）Dimensions of interest for each data frame including some portion of adjacent sprocket holes are 38 mm by 22 mm ， and for partial sections of calibration frames they are 30 mm by 18 mm ．
f）Number of frames approximately thirty（30）full data frames and ten（10）calibration frames，with frames not necessarily located sequentially on film．

3． 70 mm film
a）One reel of spliced film， 4.8 frames per foot， 50 feet in length， type 2 perforations．
b）Type 2485 Eastman aodak emulsion on 4－mil Estar base
c）Base plus fog density approximately 0．6．
d）Density range of interest approximately 0.35 to 1.85
e）Dimensions of interest for each full data frame including some portion of adjacent sprocket holes are 62 mm by 62 mm ，and for partial sections of calibration frames they are 30 mm by 16 mm ．
f）Number of frames is approximately six（6）full data frames and four（4）calibration frames，with frames not necessarily located sequentially on film．

B．Digital Data Output

1．Number of gray levels to include the ranges specified above will be sixty four（64）and steps must provide linear change in density to within $\pm 1 \%$ over the entire range．

2．Signal to noise ratio must be better than 20 db ．
3．Two additional matrices of values must be provided to determine
densitometer flatness of field over each density range and the largest dimension size specified. One matrix must be made after densitometry equipment warm-up and stabilization but just prior to reading of data and/or calibration frames; the second matrix must be made immediately after these readings and prior to any change in photometric settings of the densitometry equipment.
4. Output of all digital information must be stored on 9-track, 800 bits-per-inch magnetic, computer compatable tapes to be supplied by the government. Storage format on these tapes will require one value of grey level per character block.
5. Equipment must be available to reconstruct any image from matrix of readings on output tapes in order to verify adequacy and completeness of digitization process.
6. Scanning Specifications
a) Sizes of two dimensional scanning matrices may change from frame to frame but will include 2048×2048, 1024×1024, 512×512 and 100×1024 matrix formats.
b) Densitometered spot size and accuracy in the $X-Y$ centering for each position examined must be such that the 1024×1024 matrix of positions covers more than 75% of the total area with less than 10% overlap.
c) Scanning rates must be rapid enough that the set up and reading of sixty (60) frames in the formats specified can be accomplished within five (5) normal working days.

$\|$Quick Begin End		Subject	Time of Exposure		Exp. Time (sec)	Cntr Frm Loc			Crnr Frm Loc	
Fr No	Fr No		Date	GMT			Asc	Dec	Rt Asc	Dcc
0000	0001	Mag Film Loading	26 Jan. 1971	0400	-		-	-	-	-
0002	0015	Protect Frames	" "	-	-		-	-	-	-
0016	0020	" "	" " "	-	-		-	-	-	-
0021	-	Calibration Frame	" ." "	0431	60		-	-	-	-
0022	0023	Protect Frames	" 11	0432	-		-	-	-	-
0024	-	Calibration Frame	"	0432	20		-	-	-	-
0025	002う	Protect Frames	" 11	0432	-		-	-	-	-
0027	-	Calibration Frame	" " "	0432	5		-	-	-	-
0028	-	Protect Frame	"	0433	-		-	-	-	-
0029	-	Protect Frame	" "1	0433	-		-	-	-	-
0030	-	Calibration Frame	". " "	0433	60		-	-	-	-
0031	0032	Protect Frames	" " "	0434	-		-	-	-	-
0033	-	Calibration Frame	" " "	0434	20		-	-	-	-
0034	0035	Protect Frames	" " "	0434	-		-	-	-	-
0036	-	Calibration Frame	" " "	0434	5		-	-	-	-
0037	0069	Protect Frames	" " "	-	-		-	-	-	-
0070	0084	First Mag Removal	" " "	-	-		-	-	-	-
0085	0248	NASA PIL Identification	" " "	0500	-		-	-	-	-
0249	0264	Second Mag Removal	2 Feb. 1971	-	-		-	-	-	-
0265	0306	Protect Frames	"	-	-		-	-	-	-
0307	-	Earth Darkside, through Sextent	" " • "	0351	60		-	-	-	-
0308	-	" ${ }^{\text {b }}$	" " "	0352	20		-	-	-	-
0309	-	" "	" " "	0352	5		-	-	-	-
0310	-	" "	" " "	0353	60		-	-	-	-
03 I 1	-	" "	" ". "	0354	20		-	-	-	-
0312	-	" " "	" " "	0354	5		-	-	-	-
0313	0347	Protect Frames	" " "	-	-		-	-	-	-
0348	0353	Third Mag Removal	" " "	-	-		-	-	-	-
0354	0423	Protect Frames	" " "	5	0		-	-	-	-
0424	-	S IV B	" " "	0705	60		-	-	-	-
0425	-	"	" " "	0706	20		-	-	-	-
0426	-	"	" " "	"	5		-	-	-	-
0427	0468	Protect Frames	" " "	-	-		-	-	-	-
0469	0474	Fourth Mag Removal	" "1"	-	-		-	--	-	-
0475	0508	Protect Frames	" " "	-	-		-	-	-	-
0509	-	S IV B	3 Feb. 1971	0602	60		-	-	-	-

号	
	, , 式気

NASA Magazine No AS15-101-

$\left.\begin{gathered} 0 \\ \\ \\ \tilde{0} \\ 0 \\ 0 \end{gathered} \right\rvert\,$	
	\qquad Nก స్N~N
$\begin{array}{ll} \dot{Q} & 0 \\ \dot{x} & 0 \\ \dot{x} & 0 \\ \hline \end{array}$	
4 0 0 0 0 0	
x 0 0 0 3 0 0	

2 of 2

NaSA Magazine No AS15-100-
Film Type_Eastman Kodak 2485

(1)	
$\begin{array}{l\|l\|} \hline 0 \\ 0 \\ \hline \end{array}$	
$\begin{array}{l\|l\|} \hline 0 \\ 0 \\ 0 & 0 \\ 0 \end{array}$	
U 0 0 0 0 0	

REPRODUCIBILITY DFlimitu

REPRODUCIBIL | V

PMndim』m

Page $\longrightarrow \mathbf{f}$－

$\begin{gathered} \sim \\ \underset{\sim}{\infty} \\ \hline \end{gathered}$		
		$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{N}} \\ & \underset{\sim}{\infty}=========== \\ & \underset{\sim}{\infty} \end{aligned}$
	$\begin{aligned} & 4 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	

NASA Magazine No AS15-96-

NASA Magazine No AS15-98-

(1)	 ○"
$\begin{array}{l\|l\|} \hline 0 \\ 0 \\ 0 \end{array}$	
$\begin{array}{c\|c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	
$\begin{aligned} & \ddot{0} \\ & \stackrel{0}{0} \\ & 0 \\ & 0 \end{aligned}$	

NASA Magazine No AS16-128
Magazine Flight Designator MAG W (Label Y . film)
Film Size 35 MM

xp.
mime
sec $)$
${ }^{0}$

Time of Exposure
Date

$0_{0}=8=00_{0}{ }_{0}{ }_{0} 0_{0} 0$
$=8$
$=8$
$=0$
$=0$
$=10$
$n=n$
$n=-$
$=N$
$N=N$
$+=$
$\frac{\infty}{n}$
$=\underline{n}$
$=0$

Film Type_ 2485 | Date | |
| :--- | :--- |
| 10 Apr 72 | |

$\begin{array}{ccc}10 & \text { Apr } & 72 \\ " & " & " \\ " & " & " \\ " & " & \end{array}$
$=$
$==$
$==$
$" 1$
$"$
$" 1$
$"$
$==$
$==$
11
$===$ $=$ $==$ $=$

$$
=
$$ \because 17

$$
==
$$

filter $==$ $==$ it 11
11 if 11 $==$ $==$
\qquad

$$
\begin{array}{lll}
11 & 11 & 1 \\
11 & 11 & 1
\end{array}
$$

$m=$
$==$
$=$
$=$
$=$
$=$
$==$
$=$
$=$
$==$
$==$
$=$
$=$
$=$
$=$场

$$
\begin{aligned}
& =========- \\
& \text { ter } \\
& ===
\end{aligned}
$$

，$£$
 Fige

苞	

Page 1 of 2
(Labeled W on $f i l m$)

Magazine Flight Designator MAG Y
NASA Magazine No AS16-130

of 2
$\underset{\sim}{0}$

XX xo7eugtsod 743ftil outzeger

I666I	LE			
ON	ON			
วurx	หо			
VSFN	หวกn		38	19990
:---	:---			
39	19989			
	19988			

$$
\begin{array}{l|l}
40 & 19988 \\
41 & 19987
\end{array}
$$

$$
\begin{array}{l|l|}
\hline 41 & 19987 \\
\hline & 19986
\end{array}
$$

$$
\begin{array}{cc}
\text { odiacal Light } \\
\text { " } & \text { " } \\
\text { " } & \text { " } \\
\text { " } & \text { " }
\end{array}
$$

$$
\text { Film Type } 2485
$$

$$
\begin{aligned}
& \frac{\underset{\sim}{\tilde{J}}}{\dot{H}}===== \\
& 586
\end{aligned}
$$

NONE (
 60
60
60
$====$
09
072
Subject

$$
\begin{array}{lll}
11 & O & \text { C } \\
11 & 11 \\
11 & 11 \\
11 & 11 \\
11 & 11 \\
11 & 11 \\
11 & 11 \\
11 & 11 \\
11 & 11
\end{array}
$$

$$
\begin{gathered}
\text { Filth } \\
11 \\
1 \\
1
\end{gathered}
$$

$$
\begin{array}{ll}
11 & 11 \\
1 & 11
\end{array}
$$

$$
11
$$

$$
11
$$

$$
\begin{aligned}
& \text { ilter } \\
& \text { " } \\
& \text { filter }
\end{aligned}
$$

(Postflight ualibration) Film Size 35 MM
 40
60
40 ?

\qquad | 11 |
| :--- |
| 11 |

$==$ $1 / 1000$
$1 / 60$
$1 / 30$
$1 / 30$
$1 / 15$
$\frac{\infty}{-}$
\qquad
$==$
$\begin{array}{ll}11 & 11 \\ 11 & 11\end{array}$
11
11
$\begin{array}{ll}11 \\ i n & 17 \\ i n\end{array}$
II 11
11
11
11
11
$\begin{array}{ll}11 & 11 \\ 11 & 11\end{array}$
$==$

$$
==
$$

1111
4 い
$=$
$==$
11 il $=$ $=$
$=$ na"

$$
107
$$

alibi
Su-j=0

$$
\begin{array}{ll}
\text { ND } & 3 \\
" 11
\end{array}
$$

"
"
$\begin{array}{ll}11 & 11 \\ 11 & 11 \\ 11 & 11\end{array}$
il
$\begin{array}{ll}11 & 11 \\ 11 & 11\end{array}$

$$
\left\{\begin{array}{c}
\text { PI } \\
x= \\
M
\end{array}\right.
$$

$$
\begin{array}{ll}
11 & 11 \\
11 & 11
\end{array}
$$

$$
\begin{aligned}
& 11 \\
& N \\
& N
\end{aligned}
$$

$$
\begin{array}{r}
" 1 \\
\text { ex q }
\end{array}
$$

"uot?ex

$$
\begin{aligned}
& 11 \\
& 11
\end{aligned}
$$

$$
=
$$.

Quick $\begin{aligned} & \text { NASA } \\ & \text { Frame }\end{aligned}$
$\begin{array}{cc}x_{1} & z_{1} \\ 0 & y_{1} \\ 0 & 1\end{array}$

$$
\begin{array}{ccc}
\text { Calibration, } & \text { Polaroid Filt } \\
\text { " } & \text { " } & \text { " } \\
" & " & " \\
" & " & " \\
" & " & " \\
" & " & " \\
" & " & " \\
" & " & " \\
" & " & " \\
\text { Calibration, } & \text { ND } & \text { 3 } \\
\text { " } & \text { Filter }
\end{array}
$$

Page 2 of 2
(Post flight ${ }^{-}$Calibration) MAG YY Film Size 35 MM
 NONE

| Quick | NASA |
| :--- | :--- | :--- |
| Look | Frame |

2
品

Pag_ 2 c. 2

NASA Magazine No NONE

NASA Magazine No NONE

NASA Magazine No NONE

$$	
$\begin{aligned} & 4 \\ & 0 \\ & 0 \\ & 0.0 \\ & 0.0 \\ & 0 \end{aligned}$	

NASA Maçazinc No AS17-156

NASA Magazine No_ $4 \mathrm{~S} \quad 17-157$

Film Type__2485						Film Size 35 mm ..				Remarks	
Quick Look Fr N	Frame No.	Subject	Time of Exporure		Exp. Time (s, c)	Cemter frii loc		CORNER	FR, LOC		
					RT ASC	UEC	RT ASC	DEC			
			Date	GMT		IONG	L.AT	LONG	LAT		
1	-3817	Interios - Hatch handle					-	-	-	-	
	23818	LMP off duty				-	-	-	-		
	23319	LMP off duty				-	-	-	-		
4	23820	CDR eating				-	-	-	-		
5	23821	CMP at center of CM				-	-	-	-		
6	23822	CDR with checklist				-	-	-	-		
7	23823	CMP drinking at G\&N Station				-	-	-	-		
8	23824	CMP drioking at G\&N Station				-	-	-	-		
9	23825	Protect Frame				- ${ }^{-}$	41.5	0°	,		
10	23826	Post TEI				$118.5^{\circ} \mathrm{E}$	$41.5{ }^{\circ} \mathrm{s}$	$127.0{ }^{\circ} \mathrm{E}$	$33.0^{\circ} \mathrm{SL}$	Looking south of Milne	
11	23827	Tsiolkovsky				$119.0^{\circ} \mathrm{E}$	$16.0^{\circ} \mathrm{s}$	$117.5^{\circ} \mathrm{E}$. $7.00^{\circ} \mathrm{s}$		
12	23828	Tsiolkovshy				$124.5^{\circ} \mathrm{E}$	$13.0^{\circ} \mathrm{s}$	$120.0^{\circ} \mathrm{E}$	$5.0^{\circ} \mathrm{SL}$	Danjon near center	
13	23829	Tsiolkovsky				$120.0^{\circ} \mathrm{E}$	$12.0^{\circ} \mathrm{S}$	$112.0^{\circ} \mathrm{E}$	$8.0^{\circ} \mathrm{SL}$	Langemark in background	
14	23830	Fermi Area				$122.0^{\circ} \mathrm{E}$	$14.5{ }^{\circ} \mathrm{S}$	$119.5^{\circ} \mathrm{E}$	$17.5^{\circ} \mathrm{s}$		
15	23831	Tsiolkovsky, Fermi				$125.5^{\circ} \mathrm{E}$	$16.5^{\circ} \mathrm{s}$	$123.0^{\circ} \mathrm{E}$	$13.0^{\circ} \mathrm{s}$		
16	23832	Tsiolkovsky, Fermi				$124.0^{\circ} \mathrm{E}$	$17.0^{\circ} \mathrm{S}$	$121.0^{\circ} \mathrm{E}$	$15.0^{\circ} \mathrm{S}$	Lutke \& Delporte upper L.H. area	
17	23832	Tsiolkovsky, Ferrii				$122.5{ }^{\circ} \mathrm{E}$	$18.0^{\circ} \mathrm{s}$	$118.5{ }^{\circ} \mathrm{E}$	$18.0^{\circ} \mathrm{S}$	Lutke \& Delports upper L.h. area	
18	23634	Ferai Area				$124.5{ }^{\circ} \mathrm{E}$	$20.0^{\circ} \mathrm{s}$	$122.00^{\circ} \mathrm{E}$	$17.5^{\circ} \mathrm{s}$		
19	23835	Fermi Area				$123.5{ }^{\circ} \mathrm{E}$	$19.0^{\circ} \mathrm{S}$	$121.5^{\circ} \mathrm{E}$	$17.0^{\circ} \mathrm{S}$		
20	23836	Ferrii Arza				$128.0^{\circ} \mathrm{E}$	$16.5^{\circ} \mathrm{s}$	$125.0^{\circ} \mathrm{E}$	${ }^{9.0} 0^{\text {c }}$ S		
21	23837	Tsiolkovsky Central Peak				$128.5{ }^{\circ} \mathrm{E}$	19.5 s	$126.5^{\circ} \mathrm{E}$	$19.0^{\circ} \mathrm{S}$		
22	23838	Tsiolkovsky Central Peak				$127.5{ }^{\circ} \mathrm{E}$	$18.5{ }^{\circ} \mathrm{S}$	$126.0^{\circ} \mathrm{E}$ E	$19.0^{\circ} \mathrm{s}$		
23	23839	Tsiolkousky				$124.5^{\text {c }}$ F	$18.0^{\circ} \mathrm{S}$	$112.0{ }^{\circ} \mathrm{E}$	$16.0^{\circ} \mathrm{SL}$	Lutke \& Delporte upper center	
24	23840	Tsiolkovsky				$129.5^{\circ} \mathrm{E}$	$19.0^{\circ} \mathrm{S}$	$128.5^{\circ} \mathrm{E}$	$17.5{ }^{\circ} \mathrm{s}$		
25	23841	Tsiolkovsky Floor				$129 . \mathrm{c}^{\circ} \mathrm{E}$	$19.5{ }^{\circ} \mathrm{S}$	$125.5{ }^{\circ} \mathrm{E}$	$19.0^{\circ} \mathrm{S}$		
26	23842	Mare Inbrium				$38.0^{\circ} \mathrm{V}$	$21.0^{\circ} \mathrm{N}$	$41.0^{\circ} \mathrm{W}$	$21.5^{\circ} \mathrm{N}$	Braley C and Braley E	
27	23843	Mare Imbrium				$33.5{ }^{\circ} \mathrm{W}$	26.00 ${ }^{\circ} \mathrm{N}$	$37.0^{\text {c }}$	$18.5{ }^{\circ} \mathrm{N}$		
$\angle 8$	23844	Maze Imbrium				$38.5{ }^{\circ} \mathrm{F}$	$17.0^{\circ} \mathrm{N}$	$38.0^{\circ} \mathrm{W}$	$20.5^{\circ} \mathrm{N}$	Bessarion \& Bess. A, B, C, E	
29	-3845	Mare Imbrium Basin				$39.0{ }^{\circ} \mathrm{W}$	$24.0^{\circ} \mathrm{N}$	$43.5{ }^{\circ} \mathrm{W}$	$22.0^{\circ} \mathrm{N}$	Ariscarshus N\&D upper L.H.corner	
30	23846	Marc Imbrium Basin				$37.5{ }^{\circ} \mathrm{w}$	$26.5^{\circ} \mathrm{N}$	$46.0^{\circ} \mathrm{W}$	$25.5{ }^{\circ} \mathrm{N}$	Delisle \& Diophantes foreground	
31	23847	Mare Imbrium Basin				$36.0{ }^{\circ} \mathrm{Y}$	$28.0^{\circ} \mathrm{N}$	$45.5{ }^{\circ} \mathrm{W}$	$29.0^{\circ} \mathrm{N}$	Delisle \& Diophantes foreground	
32	23848	LMP Closeup				-	-	-	-		
33 34	23845	. iP Closeup					$25^{\circ} \mathrm{O}$	$120{ }^{\circ} \mathrm{E}$	${ }^{-}{ }^{\circ} \mathrm{s}$		
34 35	238501	-siclkovsky Tsiolk,veky				$125.0^{\circ} \mathrm{E}$	19.0 ${ }^{\circ} \mathrm{S}$	$128.0^{\circ} \mathrm{E}$	$18.5{ }^{\circ} \mathrm{S}$	Zhiritsky near center	
36	23852	Tsiolloovsky Floor				$12.7 .5^{\circ} \mathrm{E}$	$20.0^{\circ} \mathrm{S}$	$130.5{ }^{\circ} \mathrm{E}$	$20.0^{\circ} \mathrm{S}$		
37	23853	Tsioikovsky Floor				$129.5{ }^{\circ} \mathrm{E}$	$19.5^{\circ} \mathrm{s}$	$130.5{ }^{\circ} \mathrm{E}$	$21.0^{\circ} \mathrm{S}$		

NASA Magazine No AS 17-158

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Film Type__ 2485} \& \multicolumn{4}{|l|}{Film Size_ 35 mm} \& \multirow[t]{4}{*}{Remarks} \\
\hline Quict: \& nAsA \& \multirow[t]{3}{*}{Subject} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
\& \text { Time } \\
\& \text { of Exposure }
\end{aligned}
\]}} \& \multirow[t]{3}{*}{\begin{tabular}{l}
Exp. \\
Time \\
(sec)
\end{tabular}} \& \multicolumn{2}{|l|}{CENTER FRM LOC} \& CORNER \& FRM LOC \& \\
\hline Lock \& Frame \& \& \& \& \& RT ASC \& DEC \& RT ASC \& DEC \& \\
\hline \(\mathrm{Fr}_{5} \mathrm{~N}\) \& \(\therefore\) \% \& \& Date \& GITP \& \& Long \& L. A 't \& I,ONG \& LAT \& \\
\hline 1 \& 23863 \& Eratosthenes \& \& \& \& \& \& \& \& Highly overexposed \\
\hline 2 \& 23864 \& Eratosthenes \& \& \& \& \(11.5{ }^{\circ} \mathrm{W}\) \& \(14.5{ }^{\circ} \mathrm{o}\) N \& \(12.5{ }^{\circ} \mathrm{W}\) \& \(12.5{ }^{\circ} \mathrm{N}\) \& \\
\hline 3 \& 23865 \& Eratosthenes \& \& \& \& \(11.5{ }^{\circ} \mathrm{W}\) \& \(14.5{ }^{\circ} \mathrm{N}\) \& \(12.5^{\circ} \mathrm{W}\) \& \(12.5{ }^{\circ} \mathrm{N}\) \& \\
\hline 4 \& 23866 \& Eratosthenes \& \& \& \& \(11.5{ }^{\circ} \mathrm{O}\) \& \(14.5{ }^{\circ} \mathrm{O} \mathrm{N}\) \& \(12.5^{\circ} \mathrm{O}\) \& \(12.5^{\circ} \mathrm{N}\) \& \\
\hline 5 \& 23867 \& Eratos thenes \& \& \& \& \(11.5{ }^{\circ} \mathrm{O}\) \& \(14.5{ }^{\circ} \mathrm{O}\) N \& \(12.5{ }^{\circ} \mathrm{W}\) \& \(12.5{ }^{\circ} \mathrm{N}\) \& \\
\hline 6 \& 23868 \& Eratosthenes \& \& \& \& \(11.5{ }^{\circ} \mathrm{O}\) \& \(14.55^{\circ} \mathrm{N}\) \& \(12.5{ }^{\circ} \mathrm{C}\) \& \(12.5{ }^{\circ} \mathrm{N}\) \& \\
\hline 7 \& 23869 \& Eratosthenes \& \& \& \& \(11.5{ }^{\circ} \mathrm{O}\) W \& \(14.5{ }^{\circ} \mathrm{o}\) \& \(12.5{ }^{\text {c }}\) W \& \(12.5{ }^{\circ} \mathrm{N}\) \& \\
\hline 8 \& 23870 \& Eratos thenes \& \& \& \& \(11.5{ }^{\circ} \mathrm{O}\) \& \(14.5{ }^{\circ} \mathrm{O}\) \& \(12.5{ }^{\circ} \mathrm{W}\) \& \(12.5{ }^{\circ} \mathrm{N}\) \& \\
\hline 9 \& 23871 \& Eratosthenes \& \& \& \& \(11.5{ }^{\circ} \mathrm{O}\) \& \(14.5{ }^{\circ} \mathrm{N}\) \& \(12.5{ }^{\circ} \mathrm{W}\) \& \(12.5{ }^{\circ} \mathrm{N}\) \& \\
\hline 10 \& 23872 \& Eratosthenes \& \& \& \& \(11.5{ }^{\circ} \mathrm{O}\) \& \(14.5{ }^{\circ} \mathrm{N}\) \& \(12.5{ }^{\circ} \mathrm{W}\) \& \(12.5{ }^{\circ} \mathrm{N}\) \& \\
\hline 11 \& 23873 \& Eratosthenes \& \& \& \& \(11.5{ }^{\circ} \mathrm{W}\) \& \(14.5{ }^{\circ} \mathrm{o}\) \& \(12.5{ }^{\circ} \mathrm{W}\) \& \(12.5{ }^{\circ} \mathrm{N}\) \& \\
\hline 12 \& 23874 \& Copernicus \& \& \& \& \(19.5{ }^{\circ} \mathrm{C}\) \& \(9.55^{\circ} \mathrm{N}\) \& \(22.0{ }^{\circ} \mathrm{W}\) \& \(11.5^{\circ} \mathrm{N}\) \& Highly overexposed \\
\hline 13 \& 23875 \& Copernicus \& \& \& \& \(19.5{ }^{5} \mathrm{O}\) \& \(9.5{ }^{\circ} \mathrm{N}\) \& \(22.0{ }^{\circ} \mathrm{W}\) \& \(11.5{ }^{\circ} \mathrm{N}\) \& Highly overexposed \\
\hline 14 \& 23876 \& Copernicus \& \& \& \& \(19.5{ }^{\circ} \mathrm{W}\) \& \(9.5{ }^{\circ} \mathrm{N}\) \& \(22.0{ }^{\circ} \mathrm{W}\) \& \(11.5{ }^{\circ} \mathrm{N}\) \& Highly overexposed \\
\hline 15 \& 23877 \& Copernicus \& \& \& \& \(19.5{ }^{\circ}{ }^{\circ} \mathrm{W}\) \& \(9.5{ }^{9} \mathrm{O} \mathrm{N}\) \& 22.0 \({ }^{\circ} \mathrm{W}\) \& \(11.5{ }^{\circ} \mathrm{N}\) \& \\
\hline 16 \& 23878 \& Copernicus \& \& \& \& \(19.5{ }^{\circ}{ }^{\circ} \mathrm{O}\) W \& \(9.5{ }^{\circ} \mathrm{O} \mathrm{N}\) \& \(22.0^{\circ} \mathrm{W}\) \& \(11.5^{\circ} \mathrm{N}\) \& \\
\hline 18 \& 23880 \& Copernicus \& \& \& \& \(20.0^{\circ} \mathrm{W}\) \& \(9.5{ }^{\circ} \mathrm{N}\) \& \(22.0^{\circ} \mathrm{W}\) \& \(11.5{ }^{\circ} \mathrm{N}\) \& \\
\hline 19 \& 23881 \& Copernicus \& \& \& \& \(20.0^{\circ} \mathrm{W}\) \& \(9.5^{\circ} \mathrm{N}\) \& \(22.0^{\circ} \mathrm{W}\) \& \(11.5^{\circ} \mathrm{N}\) \& \\
\hline 20 \& 23882 \& Copernicus \& \& \& \& \(22.5{ }^{\circ} \mathrm{W}\) \& \(10.5^{\circ} \mathrm{N}\) \& \(24.0^{\circ} \mathrm{W}\) \& \(11.0^{\circ} \mathrm{N}\) \& \\
\hline 21 \& 23883 \& Copernicus \& \& \& \& \(23.5{ }^{\circ} \mathrm{W}\) \& \(8.5^{\circ} \mathrm{N}\) \& \(22.5{ }^{\circ} \mathrm{W}\) \& \(11.0^{\circ} \mathrm{N}\) \& \\
\hline 22 \& 23884 \& Unknown \& \& \& \& \& - \& - \& - \& Highly overexposed \\
\hline 23 \& 23885 \& Unknown \& \& \& \& \& \& \& \& Highly overexposed \\
\hline 24 \& 23886 \& Reiner \& \& \& \& \(55.0{ }_{0}^{\circ} \mathrm{W}\) \& \(6.0^{\circ} \mathrm{N}\) \& \(52.0{ }^{\circ} \mathrm{W}\) \& \(8.0^{\circ} \mathrm{N}\) \& Highly overexposed \\
\hline 25 \& 23887 \& Reiner \& \& \& \& \(55.0{ }^{0} \mathrm{~W}\) \& \(6.0^{\circ} \mathrm{N}\) \& \(52.0^{\circ} \mathrm{W}\) \& \(8.0{ }^{\circ} \mathrm{N}\) \& Highly overexposed \\
\hline 26 \& 23888 \& Reiner \& Reiner \(\gamma\) \& \& \& \& \(56.5{ }^{\circ} \mathrm{O} \mathrm{W}\) \& \(6.5^{\circ} \mathrm{N}\) \& \(52.5^{\circ} \mathrm{W}\) \& \(8.0{ }^{\circ} \mathrm{N}\) \& Highly overexposed \\
\hline 27 \& 23889 \& Reiner \& Reiner \(Y\) \& \& \& \& \(57.0{ }^{\circ} \mathrm{O}\) \& \(6.5{ }^{\circ} \mathrm{O}\) \& \(53.0^{\circ} \mathrm{W}\) \& \(8.0{ }^{\circ} \mathrm{N}\) \& Highly overexposed \\
\hline 28 \& 23890 \& Reiner \& Reineı \(Y\) \& \& \& \& \(57.5{ }^{\circ} \mathrm{O} \mathrm{W}\) \& \(6.5{ }^{\circ} \mathrm{N}\) \& \(53.0{ }^{\circ} \mathrm{W}\) \& \(7.5{ }^{\circ} \mathrm{N}\) \& Highly overexposed \\
\hline 29 \& 23891 \& Reiner \(\varepsilon\) Reiner \(\gamma\) \& \& \& \& \(58.0{ }^{\circ} \mathrm{W}\) \& \(7.0^{\circ} \mathrm{N}\) \& \(53.5{ }^{\circ} \mathrm{W}\) \& \(8.0^{\circ} \mathrm{N}\) \& Overexposed \\
\hline 30 \& 23892 \& Reiner \& Reiner \(\gamma\) \& \& \& \& \(57.5{ }^{\circ} \mathrm{O}\) \& \(6.5{ }^{\circ} \mathrm{O}\) \& 54.00 W \& 7.50 N \& Overexposed \\
\hline 31 \& 23893 \& Rainer \& Reiner \(\gamma\) \& \& \& \& \(57.5{ }^{\circ} \mathrm{O}\) W \& \(6.5^{\circ} \mathrm{N}\) \& \(54.00^{\circ} \mathrm{W}\) \& \(7.5{ }^{\circ} \mathrm{N}\) \& \\
\hline 32 \& 23894 \& Reiner \& Reiner \(\gamma\) \& \& \& \& \(57.5{ }^{\circ} \mathrm{O}\) \& \(7.5{ }^{\circ} \mathrm{N}\) \& 54.00 W \& \(7.5^{\circ} \mathrm{N}\) \& \\
\hline \begin{tabular}{l}
33 \\
34 \\
\hline
\end{tabular} \& 23895 \& Reiner
Reiner \(\gamma\) \& \& \& \& \(60.5{ }^{\circ} \mathrm{O} \mathrm{W}\) \& 6.5
5.5

0 \& $57.0^{\circ} \mathrm{W}$
58.5 \& 6.5
6.0

6.0 \& Cavalerius lower R. H, corner

\hline 34
35 \& 238897 \& Reiner Y Reiner γ \& \& \& \& $58.5{ }^{\circ} \mathrm{O}$ \& $7.5{ }^{\circ} \mathrm{N}$ \& $56.5{ }^{\circ} \mathrm{W}$ \& $6.5^{\circ} \mathrm{N}$ \&

\hline 36 \& 23898 \& Reiner Area \& \& \& \& $63.5{ }^{\circ} \mathrm{O} \mathrm{W}$ \& $4.0^{\circ} \mathrm{N}$ \& $61.0^{\circ} \mathrm{W}$ \& $5.0^{\circ} \mathrm{N}$ \& Cavalerius foreground

\hline 37 \& 23899 \& Reiner Area \& \& \& \& $65.5{ }^{\circ} \mathrm{W}$ \& $3.0^{\circ} \mathrm{N}$ \& $63.5^{\circ} \mathrm{W}$ \& $4.5{ }^{\circ} \mathrm{N}$ \& Cavalerius,"Flash" area

\hline 38 \& 23900 \& Grimaldi Area \& \& \& \& $69.0^{\circ} \mathrm{W}$ \& $0.5^{\circ} \mathrm{S}$ \& $66.0^{\circ} \mathrm{W}$ \& $1.5{ }^{\circ} \mathrm{N}$ \& Lohrmann and Riccioli

\hline
\end{tabular}

\square
Page 2 of 2 Magazine Flight Designator WW

2485			Film Size 35 mm			
Time of Fxposure		$\begin{aligned} & \text { Exp. } \\ & \text { Time } \\ & \text { (sec) } \end{aligned}$	$\frac{\text { CENTER }}{\text { RTASC }}$	$\frac{\text { FRM IOC }}{\text { DEC }}$	$\begin{aligned} & \text { CORNER } \\ & \mathrm{RT} A S C \\ & \hline \end{aligned}$	FRM LOC
Date	GMT			J,A'I	LONG	LAT
			$\begin{aligned} & 83.0^{\circ} \mathrm{W} \\ & 82.0^{\circ} \mathrm{W} \\ & 88.0^{\circ} \mathrm{W} \end{aligned}$	$\begin{aligned} & 12.0^{\circ} \mathrm{S} \\ & 13.5^{\circ} \mathrm{S} \\ & 14.5^{\circ} \mathrm{S} \end{aligned}$	$\begin{array}{\|} 83.5^{\circ} \mathrm{W} \\ 84.5^{\circ} \mathrm{W} \\ 89.5^{\circ} \mathrm{W} \end{array}$	$\begin{array}{r} 9.0^{\circ} \mathrm{S} \\ 10.5^{\circ} \mathrm{S} \\ 12.0^{\circ} \mathrm{S} \end{array}$

Page 2 of 2

Bright Object - Jupiter Bright Object - Jupiter
Bright Object - Jupiter Bright Object - Jupiter

Film Type_2485						Film Size 35 mm				
Quick Look	NASA Frame	Subject	Time of Exposure		$\begin{array}{\|l} \text { Exp. } \\ \text { Time } \\ \text { (sec) } \end{array}$	CENTER FRM LOC		$\begin{aligned} & \text { CORNER } \\ & \hline \text { RT ASC } \\ & \hline \end{aligned}$	FRM LOC	
$\mathrm{Fr}^{\mathrm{NO}}$	No.		Date	GMT		LONG	LAT'	LONG	LA'	Remarks
1	23998	Riccioli				$71.0{ }^{\circ} \mathrm{W}$	$1.5^{\circ} \mathrm{S}$	$73.0^{\circ} \mathrm{W}$, $3.0^{\circ} \mathrm{SL}$	
2	23999	Riccioli				$70.5^{\circ} \mathrm{W}$	$1.0^{\circ} \mathrm{S}$	$73.0^{\circ} \mathrm{W}$	$\mathrm{N} 3.0^{\circ} \mathrm{SL}$	
3	24000	Riccioli				$71.0^{\circ} \mathrm{W}$	$2.0^{\circ} \mathrm{S}$	$74.0^{\circ} \mathrm{O}$	$\mathrm{N} 1.0^{\circ} \mathrm{S}$	
4	24001	Riccioli				$70.0^{\circ} \mathrm{W}$	1. $5^{\circ} \mathrm{S}$	$73.5^{\circ} \mathrm{W}$	$\mathrm{N} 2.0^{\circ} \mathrm{S}$	
5	2,002	Riccioli				$71.5{ }^{\circ} \mathrm{W}$	$0.5^{\circ} \mathrm{S}$	$83.0^{\circ} \mathrm{W}$	$\mathrm{N} 0.0^{\circ}$	Double Crater-Riccioli C
6	24003	Riccioli				$71.0^{\circ} \mathrm{W}$	$1.5^{0} \mathrm{~S}$	$73.0^{\circ} \mathrm{O}$	$\mathrm{N} 2.0^{\circ} \mathrm{S}$	
7	24004	Riccioli G				$71.0^{\circ} \mathrm{W}$	$2.0^{\circ} \mathrm{S}$	$73.5^{\circ} \mathrm{W}$	$\mathrm{N} 2.0^{\circ} \mathrm{S}$	
8	24005	Riccioli G				$72.5{ }^{\circ} \mathrm{W}$	$1.0^{\circ} \mathrm{s}$	$75.0^{\circ} \mathrm{W}$	$\mathrm{W} 1.0^{\circ} \mathrm{S}$	
9	24006	Riccioli G				$71.0^{\circ} \mathrm{W}$	$0.5^{\circ} \mathrm{S}$	$72.5^{\circ} \mathrm{W}$	W 0.0°	
10	24007	Riccioli G				$70.5{ }^{\circ} \mathrm{W}$	$2.0^{\circ} \mathrm{S}$	$72.0^{\circ} \mathrm{W}$	$\mathrm{N} 0.5^{\circ} \mathrm{s}$	
11	24008	Riccioli				$74.0{ }^{\circ} \mathrm{W}$	$1.5^{\circ} \mathrm{S}$	$78.0^{\circ} \mathrm{W}$	$\mathrm{N} 1.0^{\circ} \mathrm{N}$	
12	24009	Riccioli				$75.5{ }^{\circ} \mathrm{W}$	$1.0^{\circ} \mathrm{S}$	$78.5^{\circ} \mathrm{W}$	N $1.0^{\circ} \mathrm{N}$	
13	24010	Schluter A				$79.0^{\circ} \mathrm{W}$	$6.0^{\circ} \mathrm{S}$	$88.0^{\circ} \mathrm{W}$	N $9.0^{\circ} \mathrm{SL}$	Schluter \& Hartwig A
14	24011	Schluter A				$76.0{ }^{\circ} \mathrm{W}$	$3.5{ }^{\circ} \mathrm{S}$	$77.5^{\circ} \mathrm{W}$	N $3.5^{\circ} \mathrm{S}$	
15	24012	Schluter A				$77.0{ }^{\circ} \mathrm{W}$	$11.55^{\circ} \mathrm{S}$	$79.0^{\circ} \mathrm{O} \mathrm{W}$	W $8.55^{\circ} \mathrm{S}$	
16	24013	Schluter				$82.5{ }^{\circ} \mathrm{W}$	$6.0^{\circ} \mathrm{O}$	$81.0^{\circ} \mathrm{N}$	$17.0{ }^{\circ} \mathrm{S}$	
17	24014	Schluter				$83.0^{\circ} \mathrm{W}$	$5.5^{\circ} \mathrm{S}$	$82.0^{\circ} \mathrm{W}$	W $7.00^{\circ} \mathrm{S}$	
18	24015	Mare Orientale				$90.5{ }^{\circ} \mathrm{O}$	${ }^{9.0} 0^{\circ} \mathrm{S}$	$99.0^{\circ} \mathrm{C}$	$174.0^{\circ} \mathrm{S}$	
19	24016	Mare Orientale				$90.0^{\circ} \mathrm{W}$	$14.5^{\circ} \mathrm{S}$	$90.0^{\circ} \mathrm{W}$	$28.0^{\circ} \mathrm{SL}$	Kopff
20	24017	Calibration, Polaroid Filter	29 Nov' 72		1/8	-	-	-	-	
21	24018	Calibration, Polaroid Filter	29 Nov' 72		1/15	-	-	-		
22	24019	Calibration, Polaroid Filter	29 Nov' 72		1/30	-	-	-		
23	24020	Calibration, Polaroid Filter	29 Nov' 72		1/60	-	-	-	-	
24	24021	Calibration, ND 2 Filter	29 Nov' 72		300	-	-	-	-	
25	24022	Calibration, ND 2 Filter	29 Nov' 72		180	-	-	-	-	
26	24023	Calibration, ND 2 Filter	29 Nov' 72		60	-	-	-	-	
27	24024	Calibration, No Filter	29 Nov'72		60	-	-	-	-	
28	24025	Calibration, No Filter	29 Nov' 72		20	-	-	-	-	
29	24026	Calibration, No Filter	29 Nov' 72		6	-	-	-	-	
30	24027	Calibration, No Filter	29 Nov' 72		2	"	-	-	-	
31	24028	Calibration, No Filter	29 Nov' 72		1	-	-	-	-	
32	24029	Calibration, No Filter	29 Nov'72		1/2	-	-	-	-	
33	24030	Calibration, No Filter	29 Nov' 72		1/4	-	- ...	-	-	
34 35	24031	Calibration, No Filter	29 Nov'72		1/8	-	- ${ }^{-}$	-	-	
35	24032	Calibration, No Filter	29 Nov' 721		1/15	-	-	-	-	
36 37	24033	Calibration, No Filter	29 Nov' 72 29 Nov' 72		$1 / 30$ $1 / 60$	-	-	-	-	
37	24034	Calibration, No Filter	29 Nov 72		1/60	-	-	-	-	

