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LONGITUDINAL AERODYNAMIC CHARACTERISTICS

OF AN EXTERNALLY BLOWN FLAP POWERED-LIFT MODEL WITH

SEVERAL PROPULSIVE SYSTEM SIMULATORS

By Danny R. Hoad

Langley Directorate, U.S. Army Air Mobility R&D Laboratory

SUMMARY

An investigation of a four-engine externally blown flap (EBF) powered-lift trans-

port was conducted in the Langley V/STOL tunnel to determine the effect of different

engine configurations on the longitudinal aerodynamic characteristics. The different

engine configurations were simulated by five different sets of propulsion simulators on

a single aircraft model. Longitudinal aerodynamic data were obtained for each simu-

lator on each flap deflection corresponding to cruise, take-off, and landing at a range of

angles of attack and various thrust coefficients.

The bypass ratio (BPR) 6.2 engine simulator provided the best lift and drag char-

acteristics of the five simulators tested in the take-off and landing configurations. The

poor performance of the BPR 10.0 and 3.2 engine simulators can be attributed to a mis-

match of engine-model sizes or poor engine location and orientation. Isolated engine

wake surveys indicated that a reasonable assessment of the aerodynamic characteristics

of an engine-wing-flap configuration could be made if qualitative information were

available which defined the engine wake characteristics. All configurations could be

trimmed easily with relatively small horizontal-tail incidence angles; however, the take-

off and landing configurations required a high-lift tail.

INTRODUCTION

The externally blown flap (EBF) concept considered for use on a jet-powered STOL

transport has been investigated on various engine and model configurations. (See refs. 1

to 7.) Very few investigations to date have considered the effect of engine type, size,

and fan-exit location on the aerodynamic characteristics of the configuration. This wind-

tunnel investigation was conducted to determine these effects with five available engine

simulators. Three sets of engine simulators were designed to represent bypass ratio 3.2,

bypass ratio 6.2, and bypass ratio 10.0 engines. The bypass ratio (BPR) as designated is

correct; however, the physical size and locations are not necessarily optimum for this



research model. The BPR of these engine simulators does not describe in any way the
size, horizontal position, or vertical position of the simulator. The data presented for the
BPR 3.2 engine configuration were obtained from reference 8. One of these simulators was
designed to represent the exhaust characteristics of a daisy-nozzle exhaust shape. This
shape was representative of a design such as the ones in references 9, 10, and 11 which
reduce exhaust velocity near the flaps and therefore reduce jet-impingement noise. This
multilobe nozzle, which will be referred to as the daisy-nozzle engine, was sized so that
the inlet and exit areas would match the BPR 6.2 engine. One parameter which was not
held constant was the relative chordwise position of the engine exhaust with respect to the
flap system. In an attempt to determine whether there was an effect of the relative
chordwise position of the engine exhaust, an extension was added to the BPR 6.2 fan cowl
so that its exit would be positioned at the same relative chordwise location as the daisy-
nozzle fan exit.

The investigation was conducted in the Langley V/STOL tunnel. The longitudinal
data are presented at several thrust coefficients with flap deflections which represent a
cruise configuration, a take-off configuration, and a landing configuration. The thrust-
removed longitudinal data and isolated engine exhaust pressure decay characteristics are
also presented.

SYMBOLS

The longitudinal aerodynamic data in this report are referred to the stability axes.
(See fig. 1.) The origin of the axes was located on the fuselage center line longitudinally
at 0.40 mean aerodynamic chord and vertically at the average center line of each engine
configuration.

The units for the physical quantities defined in this paper are given in both the
International System of Units (SI) and the U.S. Customary Units. Equivalent dimensions
were determined by using the conversion factors given in reference 12.

c local wing chord, meters (ft)

c mean aerodynamic chord, meters (ft)

c s  local chord, horizontal stabilizer, meters (ft)

CD drag coefficient, Drag
q0 S

CL  lift coefficient, Lift
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Cm pitching-moment coefficient, Pitching moment

C thrust coefficient, Thrust
q OS

i t  horizontal-tail incidence angle (positive direction, trailing edge down), degrees

qj effective jet-exhaust dynamic pressure, newtons/meter 2 (lb/ft2 )

qm 0free-stream dynamic pressure, newtons/meter 2 (lb/ft 2 )

r radius, meters (ft)

S wing area, meters 2 (ft 2 )

t/c airfoil thickness ratio

T static thrust, newtons (lb)

x longitudinal distance from leading edge of wing (positive when measured aft of

leading edge of wing), meters (ft)

X,Z body reference axes (see fig. 1)

a angle of attack, degrees

5e elevator deflection (positive when deflected down), degrees

6 f wing trailing-edge flap deflection (positive when deflected down), degrees

bj jet-exhaust deflection (measured from body reference axis X,

positive when deflected down), tan- 1 ormal forced
positive when deflected down), Axial force , degrees

6 sh horizontal stabilizer leading-edge slat deflection (positive when deflected

down), degrees

6 sw wing leading-edge slat deflection (positive when deflected down), degrees

77 static thrust recovery efficiency, (Normal frce)2 T+ (Axial force)2
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MODEL AND APPARATUS

A three-view drawing of the model with dimensional characteristics is presented in
figure 2. This model was identical to the model in reference 8. (See ref. 8 for all airfoil
ordinates.) Photographs of the model showing the daisy-nozzle engine simulator installed
and the triple-slotted flap system are presented in figure 3.

The offtboard leading-edge slat element had an airfoil section that was a 2 5-percent-
chord St. Cyr 178 modified to t = 0.0065c at the trailing edge. This slat element extended
from the outboard engine pylon to the wing tip. Two inboard slat elements had an airfoil
section that was a 15-percent-chord St. Cyr 178 modified to t = 0.0065c at the trailing
edge. The innermost slat element extended from the fuselage to the inboard engine pylon,
and the third slat element extended between the inboard and outboard engine pylons. In
the deployed position, the slat gap was 0.015c.

The wing flaps were triple-slotted, full-span flaps with 15-, 20-, and 22.5-percent
local wing chord for the first, second, and third elements, respectively. The first and
second flap elements had a St. Cyr 178 airfoil section modified slightly to provide a finite
trailing-edge thickness and to fit the upper surface contours of the wing in the retracted
position. The third flap element had a NACA 4412 airfoil section modified to t = 0.0045c
at the trailing edge. All flap-slat gaps were 0.015c. The geometric characteristics of
the wing leading-edge slats and flaps are presented in figure 4.

The geometric characteristics of the horizontal tail are shown in figure 5. The
horizontal tail was pivoted about 0.555 root chord with an incidence range of ±150 in
50 increments. It had a 15-percent local-chord leading-edge slat set at -400. The
35-percent local-chord elevator had three deflections relative to the tail chord: 00
-250, and -500.

Four air ejector engine simulators were used to represent each fan-jet propulsion
system. Each engine simulator was a two-part ejector with individual air-supply lines
and control valves designed to provide the efflux of the fan- and gas-generator stages. A
typical ejector assembly is presented in figure 6. Each engine simulator was fitted with
five separate cowl assemblies intended to represent the five different engine configura-
tions. (See fig. 7.)

The bypass ratio (BPR) is defined as the ratio of total fan-exit mass flow to total
gas-generator-exit mass flow. The five separate cowl assemblies fitted to these ejector
simulators were designed to represent a BPR 6.2 daisy-nozzle engine, a BPR 6.2 engine,
a modified BPR 6.2 engine, a BPR 10.0 engine, and a BPR 3.2 engine. The daisy-nozzle
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engine simulator was designed to represent an engine whose exit and inlet area are

identical to those of the BPR 6.2 engine. This type of nozzle exit is designed to increase

the velocity decay characteristics of the engine and thereby reduce the velocity at the

flaps, which, in turn, reduces flap-impingement noise. Although the inlet and exit areas

of the BPR 6.2 and daisy-nozzle engines were identical, the longitudinal positions of their

fan exits relative to the flap system were not. The BPR 6.2 engine simulator was modi-

fied during the investigation. An extension was added which relocated the fan exit at the

same relative location as that of the daisy-nozzle engine simulator. This engine simulator

will be referred to as the modified BPR 6.2 engine simulator. (See fig. 7.)

The model was mounted in the Langley V/STOL tunnel on a sting-supported six-

component strain-gage balance for measurements of the total forces and moments.

TEST AND CORRECTIONS

This investigation was conducted in the Langley V/STOL tunnel. The free-stream

dynamic pressure for the entire investigation was 814 N/m 2 (17 lb/ft 2 ). The Reynolds

number (based on wing Z and free-stream velocity) was approximately 0.697 x 106 .

The data presented in this report are not corrected for wind-tunnel wall effects. Since

the corrections calculated by the method of reference 13 were found to be small and this

report is a comparison of the engine-model configurations of the test, it is felt that the

data are valid.

Calibrations were made to determine the thrust, inlet mass-flow rate, and primary

mass-flow rate of the fan- and gas-generator stage of each engine simulator assembly

separately as a function of their respective plenum pressures. These data were run

at zero airspeed and reflect the static thrust only. The values of thrust coefficient are

based on this static-thrust calibration and are presented as the conventional thrust coef-

ficient, that is, static thrust nondimensionalized by the product of free-stream dynamic

pressure and wing area (Cg =

The static inlet and primary mass flow rates were used to set the desired pressure

in the plenum of each separate stage of each engine to provide the correct ratio of total

fan exit mass flow rate to total gas generator exit mass flow rate (BPR).

Isolated engine-exhaust-wake surveys were conducted. Dynamic-pressure measure-

ments were made with a pressure rake positioned so that the probes were alined with the

flow and parallel to the engine geometric center line. The probes were alined along a

radial line from the geometric center line. Four radial positions were chosen for the
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daisy nozzle and two radial positions were chosen for the other four engine simulators.

These profiles were repeated at various downstream locations to obtain dynamic-
pressure decay characteristics.

Jet-deflection angles 6 j and static-thrust recovery efficiency 77 were determined
from measurements of the normal and axial forces made in the static thrust condition
with flaps deflected and leading-edge slat deployed.

Each of the five engine configurations was tested in the cruise configuration, the
take-off configuration, and the landing configuration at an angle-of-attack range from -40
to 240. Each configuration was tested at a thrust coefficient range from 0 to 4 and at
various horizontal-tail incidences.

The cruise configuration was defined as the model with 00 flaps, no wing leading-
edge slats, no horizontal-tail leading-edge slats, and elevator set at 00. The take-off
configuration was defined as the model with the elements of the three-element flap sys-
tem set at 00, 200, and 400; wing leading-edge slat deployed at 500; horizontal-tail leading-

o 0edge slat deployed at -400; and elevator set at -25 ° . The landing configuration was
defined as the model with the flap system elements set at 150, 350, and 550; wing leading-

edge slats deployed at 500; horizontal-tail leading-edge slats deployed at -400; and ele-
vator set at -250. The wing cross sections for these configurations are presented in
figure 4.

PRESENTATION OF RESULTS

Results of the present investigation are presented in the following figures:

Figure
Flap static turning effectiveness for

thrust of 1219 newtons (274 lb) .......................... 8

Effect of engine type on the variation of flap static turning
effectiveness parameters with thrust . . . . . . . . . . . . . . . . . . . . . . . 9

Effect of wind-tunnel wall corrections ........................ 10

Effect of thrust coefficient on longitudinal aerodynamic characteristics for -
Daisy nozzle:

Cruise configuration .................................... 11
Take-off configuration .............................. 12
Landing configuration ................................ 13
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Figure
Bypass ratio 6.2:

Cruise configuration ............................... 14

Take-off configuration .............................. 15

Landing configuration .............................. 16

Modified bypass ratio 6.2:

Cruise configuration ............................... 17

Take-off configuration .............................. 18

Landing configuration .............................. 19

Bypass ratio 10.0:

Cruise configuration ............................... 20

Take-off configuration .............................. 21

Landing configuration .............................. 22

Bypass ratio 3.2:

Cruise configuration ............................... 23

Take-off configuration .............................. 24

Landing configuration .............................. 25

Effect of thrust coefficient and tail incidence on pitching-moment

characteristics for -

Daisy nozzle .. . .. . . .. .. . .. . . . . . .. . . .. .. ... . .. . .. 26

Bypass ratio 6.2 .......... ... .... .............. ... 27

Modified bypass ratio 6.2 ............................. 28

Bypass ratio 10.0 ....... ... .. ................... ... 29

Bypass ratio 3.2 ....... ... ... ..................... 30

Effect of engine type on longitudinal aerodynamic characteristics for -

Cruise configuration, tail off ............................ 31

Cruise configuration, it 00 ......... ........................... . 32

Take-off configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Landing configuration ............................... 34

Effect of engine type on variation of lift coefficient with thrust coefficient . . . . . 35

Effect of thrust coefficient on thrust-removed lift coefficient and

drag coefficient for -

Daisy nozzle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Bypass ratio 6.2 ....... ..... ........ ........ ...... 37

Modified bypass ratio 6.2 ............................. 38

Bypass ratio 10.0 ... .......... ..................... 39

Bypassratio 3 . 2  . . . . . . . . . . . . .  . .  . .  . .  . . . . . . . . . . . . . . .  40

Effect of engine type on thrust-removed lift coefficient and drag coefficient . . . . 41

Isolated engine effective dynamic-pressure decay . . . . . . . . . . . . . . . . . . 42
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DISCUSSION OF RESULTS

The reader should be reminded that each engine simulator used in this investigation

is not necessarily indicative of the geometric size of the respective full-scale engine whose

bypass ratio might be the same. The engine position and size relationship to the model

are not necessarily that which would be used on the full-scale airplane.

Static Thrust Characteristics

The flap static turning effectiveness parameters 6 j and 77 are presented in

figures 8 and 9. Figure 8 presents these parameters in a polar coordinate form. These
parameters for the five distinct engine simulator assemblies installed on the model in the

take-off configuration (if = 00/200/400) and in the landing configuration (6f = 150/350/550)
are presented at a thrust which would correspond to a thrust coefficient of 3 with a

forward-speed dynamic pressure of 814 N/m 2 (17 lb/ft2 ).

A perpendicular distance from a data point in figure 8 to the horizontal axis would
represent the lift component due to thrust at an angle of attack of 00, and a perpendicular

distance from the data point to the vertical axis would represent the negative drag com-
0ponent due to thrust at an angle of attack of 0 . If it were assumed that with zero power

all engine simulator configurations had identical characteristics and that the only additions

to the aerodynamic characteristics at an angle of attack of 00 are those components in
figure 8, an assessment could be made as to the relative merit of the five configurations.

In the landing configuration at a thrust coefficient of 3, the relative lift-producing capa-

bilities at an angle of attack of 00 of each of the five engine configurations would be

expected to be (from best to worst): (1) the daisy nozzle, (2) the bypass ratio 6.2 and the

modified bypass ratio 6.2, and (3) the bypass ratio 10.0 and the bypass ratio 3.2. In the

take-off configuration, it would be expected that the relative lift-producing capabilities at
an angle of attack of 0o would be (from best to worst): (1) the modified bypass ratio 6.2,
the daisy nozzle, and the bypass ratio 6.2; and (2) the bypass ratio 10.0 and the bypass
ratio 3.2.

As discussed in reference 4, this assessment of the aerodynamic characteristics of
an engine-model configuration is not necessarily true. A more pertinent comparison,
with data to substantiate it, is presented later in this report.

Figure 9 presents the same flap static turning effectiveness parameters as a function
of thrust for the take-off and landing configurations. This figure indicates that 6 and 7

vary only slightly with thrust above 400 newtons (90 lb) (which is a thrust corresponding
to a C = 1.0 at the forward-velocity test condition for this investigation).
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Longitudinal Aerodynamic Characteristics

Wind-tunnel wall corrections were applied to sample cases of the data by using

reference 13 to determine their effect on the basic longitudinal aerodynamic data. These

data are presented in figure 10. These corrections resulted in a slight change in angle

of attack and free-stream dynamic pressure. Since this report is intended to be a com-

parison of the engine simulator configurations and these corrections are so small, the

data are presented in the uncorrected form.

The basic longitudinal aerodynamic data for all configurations are presented in

figures 11 to 25 at various flap settings and tail incidences. The data are presented with

lift coefficient as a function of angle of attack, drag coefficient, and pitching-moment

coefficient. Pitching-moment coefficient is also presented as a function of angle of

attack. All the data are presented at various thrust coefficients. Generally, addition

of power to any one of these configurations causes an increase in maximum lift coefficient,

in angle of attack for maximum lift coefficient, and in lift-curve slope. The data for the

cruise configurations indicate that the various lift curves at different thrust coefficients

rotate about a specific angle of attack. With power, the lift coefficient increases at

angles of attack above this point and decreases below it. These effects can be attributed

to power effects and possibly to interference effects related to inlet characteristics at

cruise speeds. This point of rotation is configuration oriented and is not affected by tail

incidence.

Longitudinal Stability and Control Characteristics

The pitching-moment coefficient for all configurations is presented in figures 26 to

30 as a function of angle of attack and lift coefficient. The data are presented at various

thrust coefficients and at various it values to determine the effect of thrust coefficient

on trim capability and longitudinal stability.

The pitching-moment coefficients are referenced to the fuselage center line longi-

tudinally at 0.40j and vertically at the average center line of the engines. Also pre-

sented in figures 26 to 30 are the pitching-moment coefficients for the tail-off configura-

tions for the various engine-wing combinations. Tail-off data for the daisy-nozzle cruise

configuration were not obtained and were therefore not presented. Examination of the

tail-on cruise configurations data indicates that the pitching-moment characteristics for

the daisy nozzle, bypass ratio 6.2, and modified bypass ratio 6.2 are very similar; there-

fore, the faired curve in figure 26(a) is a tracing of the bypass ratio 6.2 and modified

bypass ratio 6.2 tail-off cruise pitching-moment coefficients. In general, all the con-

figurations displayed decreasing stability due to increasing power. All the tail-on

take-off and landing configurations data were longitudinally stable to maximum lift

coefficient. The tail-on cruise configurations data, however, were stable up to the angle
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of attack at which stall occurred. The ranges of i t required to trim the configurations

(at any angle of attack) throughout the range of thrust coefficients of the test are sum-

marized in the following table:

Cruise, Take-off, Landing,
5f = 00  bf = 00/200/400 6f = 150/350/550

Daisy nozzle -50 to 00 00 to 70 00 to 70

BPR 6.2 -50 to 10 -30 to 70 -50 to 100

Modified BRP 6.2 -50 to 10 -20 to 79 -50 to 70

BPR 10.0 -50 to 10 00 to 100 00 to 100

BPR 3.2 -50 to 10 00 to 70 00 to 70

The cruise configuration required only a symmetrical airfoil, whereas the take-off and

landing configurations required a high-lift horizontal tail.

Effect of Engine Type on Longitudinal Aerodynamic Characteristics

In figures 31 to 35, the longitudinal aerodynamic characteristics of the five configura-
tions are compared as presented at various flap deflections and thrust coefficients. Where
data are presented as dashed lines, they were interpolated to levels of thrust coefficients

comparable with the data for the other configurations presented. For the cruise configu-

ration, data are presented for the tail-off case in figure 31 and for the tail-on case with

an it of 00 in figure 32. The longer bypass ratio 3.2 engine simulators increased power-

off maximum lift coefficient. The data presented at a thrust coefficient of 1.8 indicate

that the larger bypass ratio 3.2 and bypass ratio 10.0 engine simulators are producing

more lift. Contrary to expected results for increased lift coefficient, these configurations

produced more nose-up pitching moment. This result indicates that the thrust center

line was below the engine geometric center and/or these engine simulators shifted the

center of lift toward the leading edge of the wing. The static-engine calibration confirmed

that the thrust center line was below the geometric center line.

The data for the take-off configurations are presented in figure 33. The daisy-

nozzle and the modified bypass ratio 6.2 engine simulator configurations delayed stall to
a = 150 in the power-off case. At a thrust coefficient of 3.0, there was a definite dif-

ference among the engine simulator configurations. The daisy nozzle, bypass ratio 6.2,
and modified bypass ratio 6.2 engines produced larger lift coefficients than the bypass
ratio 10.0 and bypass ratio 3.2. The modified bypass ratio 6.2 engine had an early stall

and lower maximum lift coefficient than the bypass ratio 6.2 and daisy nozzle engine.
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With relatively ldwer lift coefficient, the bypass ratio 10.0 and bypass ratio 3.2 also

generated less nose-down pitching-moment coefficient; however, the bypass ratio 3.2

engine produced less than the bypass ratio 10.0 engine at about the same levels of lift

coefficient and indicated that the center of lift had been shifted toward the leading edge

of the wing.

The data for the landing configuration are presented in figure 34. Similar to the

take-off power-off data, the daisy nozzle and the modified bypass ratio 6.2 engine simulator

delayed stall. The aerodynamic characteristics of each engine simulator configuration

differed and were easily discernible at a thrust coefficient of 4.0. The bypass ratio 6.2

engine provided the largest lift coefficient; the modified bypass ratio 6.2 engine pro-

vided the next largest lift coefficient at low angles of attack. At large angles of attack,

this configuration experienced stall problems. The daisy nozzle, bypass ratio 10.0, and

bypass ratio 3.2 provided decreasing levels of lift coefficient in that order. Higher levels

of lift coefficient corresponded to higher levels of nose-down pitching-moment coefficient

and indicated that the differences in lift produced can be attributed to differences in loads

generated by the flap system. The reader should be reminded that the physical sizes

and locations of the engine simulators are not necessarily optimum for this research

model. The poor performance of the bypass ratio 10.0 and bypass ratio 3.2 engine

configurations could possibly be improved by properly matching engine size to model size

or by positioning the engines in an advantageous location or attitude.

Effect of Engine Type on Lift Coefficient

Figure 35 presents the lift coefficient of each engine simulator configuration at an

angle of attack of 00 as a function of the thrust coefficient for the take-off and landing con-

figurations. In the take-off configuration, the bypass ratio 6.2, modified bypass ratio 6.2,

and the daisy-nozzle engine simulators produced essentially the same lift coefficient. The

bypass ratio 10.0 and bypass ratio 3.2 engine simulator configurations produced much less

lift coefficient at comparable thrust coefficients. In the landing configuration, the bypass

ratio 6.2 and modified bypass ratio 6.2 simulators produce the most lift coefficient. The

daisy nozzle, bypass ratio 10.0, and bypass ratio 3.2, in that order, provided decreasing

amounts of lift at comparable thrust coefficients. Again the reader should be reminded

that the size of the bypass ratio 10.0 and bypass ratio 3.2 engine models could be mis-

matched. Improvements to this mismatch could improve the performance of these

configurations.

Thrust-Removed Lift-Drag Polars

Figures 36 to 41 present the thrust-removed lift coefficient as a function of the

thrust-removed drag coefficient at various thrust coefficients. These data are presented
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for all engine simulators in the cruise, take-off, and landing configurations. The thrust-

removed lift coefficient was obtained by subtracting the component of lift due to thrust

from the gross lift. This component (CA sin(a + 56j)?) uses the thrust coefficient and

flap-effectiveness parameters presented in figure 9. The thrust-removed drag coefficient

was obtained in a similar manner by adding the component of thrust to the gross drag.
This component (CA cos(a + 6j)7) also used the flap effectiveness parameters from

figure 9.

The thrust-removed data for each configuration at all thrust coefficients tested

combine into a set of curves with an envelope similar to that for the power-off data, and

indicate that the data generally follow the same polar curve for a given engine and flap

configuration. These polar curves are presented in figure 41 as tracings of the cor-

responding data at thrust coefficients ranging from 0 to 4; fairings are also presented in

applicable parts of figures 30 to 40. In figure 41 symbols are used to distinguish between

curves and are not data points. These data present a relative comparison of the circu-

lation lift among the configurations. For the take-off configuration, the bypass ratio 6.2

and the modified bypass ratio 6.2 engine simulator configurations provided the largest

circulation lift. The daisy nozzle provided a little less, and the bypass ratio 10.0 and

bypass ratio 3.2 provided the least. For the landing configuration, the data were similar
except that (1) the modified bypass ratio 6.2 configuration again shows early stall, and
(2) the daisy-nozzle circulation lift is now better than that of the bypass ratio 10.0, and,
at low thrust coefficients, no better than that of the bypass ratio 3.2.

The results from this comparison and the comparison of the flap static turning
effectiveness parameters are different. The pertinent comparison is at forward speed
at some angle of attack. This comparison has been made at an angle of attack of 00 in
figure 35.

Isolated Engine Dynamic Pressure Decay

In an attempt to understand the reasons for the different lift performance of the
various engine simulator configurations, isolated engine-wake surveys were conducted.

At various positions downstream of the engine exit, dynamic-pressure measurements

were made at four radial positions for the daisy nozzle and at two radial positions for the

other four simulators. Then these measurements were integrated over the entire exhaust

areas at that position to arrive at an average dynamic pressure. These data are presented

in figure 42. The average dynamic pressure is nondimensionalized by static thrust over
the wing area and presented as a function of downstream distance, nondimensionalized by
the wing mean aerodynamic chord. The relative positions of the wing leading edge, engine

exit positions, and inboard and outboard third element flap leading-edge positions are

superimposed in the figure to present a comparison at significant positions. For clarity,
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the daisy nozzle, bypass ratio 6.2, and modified bypass ratio 6.2 engine simulators are

presented in figure 42(a); the daisy nozzle, bypass ratio 10.0, and bypass ratio 3.2 engine

simulators are presented in figure 42(b). The daisy nozzle is presented in both parts for

relative comparisons.

Comparing these data at the position of the flaps with the previous data in figure 35

provides a possible explanation for the differences in performance; a trend does exist.

The engine simulators with the largest average dynamic pressure at the flaps (bypass

ratio 6.2 and modified bypass ratio 6.2) did produce the most lift. Those with the small-

est average dynamic pressure at the flaps (bypass ratio 10.0 and bypass ratio 3.2) did

produce the least lift. These data indicate only a trend, in that, to assess qualitatively

the relative merit of several engine configurations on a wing-flap combination, some

engine exhaust information must be known. Quantitatively, these data are not conclusive

enough to form the basis which could permit a prediction of the aerodynamics of an

engine-wing-flap system. However, they do indicate that with a more comprehensive

examination of each engine wake, a method of superimposing this known engine wake onto

the known aerodynamic characteristics of a wing-flap combination could possibly lead to

a reasonable prediction of the overall aerodynamic characteristics of the engine-wing-

flap arrangement.

CONCLUDING REMARKS

An investigation of a four-engine externally blown flap STOL transport was con-

ducted to determine the effects of different engine configurations on the longitudinal aero-

dynamic characteristics. The different engine configurations were simulated by five

different sets of propulsion simulators on a single aircraft model. The results of this

investigation are as follows:

1. In the take-off configuration, the bypass ratio 6.2, modified bypass ratio 6.2,

and the daisy-nozzle simulators all produced nearly the same levels of lift coefficient

whereas the bypass ratio 10.0 and bypass ratio 3.2 both produced nearly the same lower

level of lift coefficient.

2. In the landing configuration, each engine simulator configuration produced dif-

ferent lift coefficient capabilities at low angles of attack. They are (from best to worst):

(1) bypass ratio 6.2, (2) modified bypass ratio 6.2, (3) daisy nozzle, (4) bypass ratio 10.0,
and (5) bypass ratio 3.2.

3. The poor performance of the bypass ratio 10.0 and bypass ratio 3.2 can be

attributed to the mismatch of engine size to model, or engine location and orientation.

13



4. Isolated engine dynamic-pressure surveys indicated that the engine simulators
producing the better lift coefficients also had the higher average dynamic pressures at a
point where they would intersect the flaps. These data indicate only a trend. Quantita-
tively, these data are not conclusive enough to form a basis which would permit the
prediction of the aerodynamics of an engine wing flap system.

5. Addition of thrust to all the configurations reduced the level of longitudinal

stability. All the tail-on take-off and landing configurations were longitudinally stable to
maximum lift coefficient. All the tail-on cruise configurations were longitudinally stable
only to the angle of attack for stall.

6. All configurations, even at the highest thrust coefficients, could be trimmed with
relatively low tail incidence. The cruise configuration only required the simple sym-
metrical airfoil, whereas the take-off and landing configuration required a high-lift
horizontal tail.

7. The engine type and size does affect the lift-curve slope and maximum lift
coefficient for the cruise configuration.

Langley Research Center,

National Aeronautics and Space Administration,
Hampton, Va., April 9, 1974.
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Figure 2.- Dimensions and characteristics of the model. Dimensions are in centimeters
(in.) unless otherwise noted.
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(a) Rear view of model with daisy-nozzle engine simulators installed.

Figure 3.- Model installed in Langley V/STOL tunnel.



(b) Rear view of model showing the details of the triple-slotted flap system.

Figure 3.- Concluded.



Landing configuration
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Figure 4.- Wing details in the cruise, take-off, and landing configurations. Dimensions
are given in fraction of local chord.
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Figure 5.- Details of the horizontal tail used in the wind-tunnel investigation. Dimensions

are in centimeters (in.) or fraction of local wing chord in section A-A.
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Take-off Landing
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Figure 8.- Flap static turning effectiveness. 6 sw = 500; tail off; q. = 0;
T = 1219 N (274 lb).
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Figure 9.- Effect of engine type on variation of static turning effectiveness parameters
with thrust. 5sw = 500; tail off; qo = 0.
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Figure 38.- Effect of thrust coefficient on thrust-removed lift coefficient
and drag coefficient. Modified bypass ratio 6.2.
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Figure 38.- Continued.
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Figure 38.- Continued.
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Figure 39.- Effect of thrust coefficient on thrust-removed lift coefficient
and drag coefficient. Bypass ratio 10.0.
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Figure 39.- Continued.
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Figure 39.- Continued.
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Figure 40.- Effect of thrust coefficient on thrust-removed lift coefficient
and drag coefficient. Bypass ratio 3.2.
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Figure 40.- Continued.
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Figure 40.- Continued.
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(a) 6 = 00/200/400 (take-off); 6s = 500; tail off.

Figure 41.- Effect of engine type on thrust-removed lift coefficient
and drag coefficient. C = 0 to 4.0.

138



8.0

7.0

6.0

5.0

+ 4.0

C
°,

S 3.0

0 ENGINE TYP

2.0 O DA ISY NOZZLE
.. BPR 6. 2 m

O MODIFIED BPR 6.2
. BPR 10. 0

1.0 BPR 3.2

[0

-1.0

-. 5 0 .5 1.0 1.5 2.0 2.5 3.0

CD + CCOS(a +j) 7

(b) 6f = 150/350/550 (landing); as w = 500; tail off.

Figure 41.- Concluded.
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Figure 42.- Isolated engine effective dynamic pressure decay.
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Figure 42.- Concluded.




