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Abstract

A technique 18 described for designing [eedback control systems using frequency domain
models, a quadratic cost function, and a parameter optimization computer program,
FORTRAN listings for the computer program are included in the report, The approdch

is applicd to the design of suock position controllers for a supersonic inlel. Considered
are a deterministic or random system disturbance and the prescence of random measure-
ment nolse. The cosi function mini*vized is formulated in the time domuin, but the prob-
lem solution is obtained using a trequency damain system deseription, A scaled and con-
strained conjugate gradient algorithm is used for the minimization, In applying the approach
to a typical supersonic inlet, both optimal proportional-plus-integral (PI} and proportional -
plus-integral -plus -derivative (PID) controllers were calculated. For the inle! considered,
a single-loop PI controller was fudged to be the most desirable of the various desizns con

sidercd,
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CONTROL SYSTEM DESIGN USING FREQUENCY DOMAIN MODELS
AND PARAMETER OPTIMIZATION, WITH APPLICATION
TO SUPERSONIC INLET CONTROLS
by Robert C. Seidel and Bruce Lehtinen

Lewis Research Center

SUMMARY

This report described a technique for designing feedhuck control systems using fre-
quency domain models, a quadratic performance index. and a parameter optimization
computer program. The approach is applied to the design of a terminal shock position
controller for a mixed-compression supersonic inlet. The computer program described
can be uscd to design controllers for any two-loop linear feedback system having a single
control input and a cascade structure. The problem formulation assumes the system is
acted upon by a single deterministic or random disturbance plus random measurement
noise introduced in each loop. The quadratic performance index chosen to be minimized
is a weighted sum of averaged square system output, output rate, control, and control
rate. The performance index is expressed in the frequency domain and is minimized.
given a frequency domain system description, using a scaled and constrained conjugate
gradient search algorithm,

For the supersonic inlet problem, the disturbance is a deterministic airflow pertur-
bation at the diffuser exit, and measurement noises are assumed to contaminate inlet
duct pressure measurements, The cost function chosen to be minimized is a weighted
sum of averaged square values of the output (throat exit static pressure) and its deriva-
tive plus the coatrol (inlet bypass door area) and its derivative. Optimal parameters
were calculated for both proportional-plus-integral (PI) and proportional -plus-integral -
plus-derivative (PID) single -loop controllers for a NASA designed mixed compression
inlet, Feedback signals used were either throat exit static or diffuser exit static p- es-
sures. Designs were evaluated on the basis of averaged square values of output and
control signals. PI control on throat cxit static pressure proved to be the most effective
compromise hetween complexity and ability to attenuate disturbances, Appendixes dre
included to describe the computer program as well as outline the solution to @ sample

design problem.




A supersonic aircraft propulsion system censists of a supersonic inlet and either a
turbofan or turbojet engine, The function of the inlet is to convert high velocity, low
pressure air ahead of the inlet to low veloceity, high pressure air more suitable for the
engine's compressor. An cfficient inlet for flight at Mach numbers above about 2 is the
mixed compression type, having 2 convergent supersonic region followed by a divergent
subsonic region, An increase in static pressure occurs in both regions as the flow is
decelerated. A terminal shock separates the supersonic and subsonic flows. To maxi-
mize efficiency, the terminal shock should be located near the throat in the divergent
duct. If the terminal shock moves upstream into the convergent region, it jumps for-
ward to form a strong shcck wave ahead of the inlet, This occurrence is known as an
inlet unstart, and results in increased drag and a rapid loss in pressure recovery., This
in turn may lead to a compies~or stall and/or combustor flameout. Conversely, if the
shock moves too far downstream, the pressure recovery is reduced and distortion is in-
creased at the compressor tace, which may also cause compressor stall, Thus, con-
trols are needed to maintain the terminal shock close to but yet downstream of the throat
for good pressure recovery without inlet unstarts,

Figure 1 is a schematic diagram of a mixed compression inlet with a typical termi-
nal shock control loop shown. The terminal shock is positioned using tne bypass door
loop. The door opens and closes to maintain a match between the inlet and engine air-
flow as engine airflow demand changes, This tends to prevent the terminal shock from
moving too far rearward, causing increased distortion, ovr too far forward, causing an
unstart, Throat exit aud diffuser exit static pressure signals shown give indications of
shock position, They are fed back throuzh the controller to drive the bypass door servo,

The controller transfer functions are significant factors in the dynamic regulation of
shock position. The design of such transfer functions has been studied in references 1
to 4. A root locus design technique was reported in reference 1, A stochastic optimal
control theory approach was reported in references 2 and 3, where the expected fre-
quency of unstarts was minimized. A parameter optimization approach, wher~ the pa-
rameters in a fixed-form controller were selected so that the response approximated a
desired closed-loop transfer function, was reported in reference 4,

The approach taken in this report is also based on optimizing the parameters in a
fixed-form controller. However, the cost function chosen to be minimized is the
weighted sum of average integral square errors, due to a deterministic disturbance, and
the mean square errors due to random noise on the measurem:nts. This approach was
motivated by the inlet control problem (ref. 5), where the compressor face disturbance
is most conveniently described as a deterministic signal but where the noise on duct
‘pressure measurements is definitely random in nature. The variables included in the




spective first derivatives.

While the problem is formulated in the time domain, the optimization is done in the
frequency domain, This is because system, disturbance, and noise models ure most
often obtained in frequency domain form, The conjugate gradient scarch (ref. 6) is used
for the optimization. However, the standard procedure is modified to reduce search
convergence time and insure that the resulting controller is stable, This is dune by
scaling and constraining the search parameters.

In the next section, the general control problem investigated is defined and the cost
function and gradient calculations are described. Then the parameter optimization pro-
gram used is described, followed by a description of the inlet model to which the con-
troller design method was applied, Finally, the results are presented, followed by ap-
pendixes, which include one on the use of the computer program and one in which a sam -
ple problem is presented.

GENERAL CONTROL PROBLEM DESCRIPTION

Description of Plant, Noise, and Disturbance

Motivated by the supersonic inlet control problem, a control system structure was
selected as a framework for the controller design problem. This structure is shown in
figure 2. The linear plant (blocks Gr1 and G2) is assumed to have two measurements
Xy and X, available. (Symbols are defined in appendix A.) Variable Xq the outer -
loop measurement, is considered the output. The control is to consist of two blocks,
H] and H2, whose forms are specified at the outset, but whose parameters are to be
optimized, The two inputs to the controller are assumed contaminated with independent
Gaussian noises v, and vo, each having the same power spectral density @v(w). The
controller output drives actuator Ga to produce control u, The plant is acted upon by
deterministic disturbance d which occurs at time zero.

Cost Function Evaluation

It is assumed that the purpose of the controller is to keep X4 and 5{1 as close to
zero as possible but at the same time limiting the excursions in control u and control
rate U. Thus, a cost function must be defined which adequately reflects the average de-
viations in output and control caused by random measurement noises v, and vg and
deterministic disturbance d. We now proceed to develop such a cost function.




For convenience, define components of x, and u such that

1
X1 = X1v * %14
X1 =X 1v**14q

(1)
U= 4+ uy r

=l riy
where the first quantities on the right sides of equation (1) are the comporants due to
measurement noise Vi and Vo and the second quantities on the right sides are compo-
nents due to deterministic disturbance d. First, separate cost functions will be derived
for the measurement noise and deterministic inputs. Then, these separate cost functions
will be combined into a single cost function. Consider first the case where only mea-
surement noise is present. Define the cost function

T

c, = lim L [qlev(t) + agk2 (t) + ryu(t) + rzhﬁ(t)] dt (2)
-T

The q's and r's are arbitrarily selected scalar penalties, Thus, CV is simply a
weighted sum of mean square values. Next, consider the case where only a determinis-
tic disturbance d is present, Disturbance d is assumed to be zerofor t < 0. Define
the cost function

T
Cy= [ [qlxid(t) + qzkﬁd(t) + rlug(t) + rzﬁﬁ(t)] dt (3)
Ta

'

1
T'

Time T 1is defined as the (arbitrarily selected) period during which control is to be
effective in minimizing the effects of d. Factor 1/T is included to make Cd an
average integral squared quantity, and thus comparable to mean square quantity Cv'

Now, the total cost function can be defined as

C=Cv+cd (4)

Cost function C is to be minimized by proper selection of controller transfer function
parameters. The problem may be simplified if we assume that T is large enough so




that x4, "{ld‘ uq. and ixd all go to zero before t= T, Then the total cost can be
written as

C=C,+Cy, (5)

T

C=lim L

2 2 2 - 2
qX7.,(t) + qox7 (t +ru(t)+ru(t)]dt
Tmw 27 g [ 1"1v 2X1y(t) + ryuy 2

+ ;‘— f [qlxid(t) + qzk%d(t) + rluﬁ(t) + rzhg(t)J dt (6)
0

where the upper limit on the second integral de has now been made equal to e,

Our aim is now to express C in the frequency domain, since, as was indicated pre-
viously, we desire to perform the parameter optimization using frequency domain sys-
tem models and data, In the following development, an expression for C will be ob-
tained which is an integral in the frequency domain, over a range of 0 to =, The inte-
grand will be obtained in terms of the following known quantities: noise power spectral
density (PSD), plant, and controller transfer functions, and the Fourier transform of the
disturbance.

As previously noted, cost function C (eq. (2)) is a weighted sum of mean square
values of stationary random variables xlv* Xqyo uv, and hv It can be shown (ref, 7)
that the mean square value of any stationary random variable y can be expressed in the
frequency domain as

— T o -
y2 = lim L / yi(tdt = L / & (w)dw (7)
Teo 27 -7 21 Jow Y

where y2 is defined as the mean square value of y and <I>y(w) is defined as the PSD
of y. It can also be shown (ref. 7) that the PSD of the output of a single-input - single-
output linear system whose transfer function is G(s) is given by

@ (w) = @,(w)|G(jw)| 2 (8)

where tbz(a.‘) is the PSD of the input to the system, If the system of concern is a differ-
entiutor, that is, G(s) = 8, or y(s) = s z(s). then & (w) = w2¢7(w). We can use this
fact plus equation (7) to express Cv in terms of PSD's, obtaining




on

CV = 5% |:(q1 + w2q2> d’xl(w) + (rl + wzrz) Q’u(w)] dw (9)

=0

where <I>x (w) is the PSD of Xy and d (w) is the PSD of U
1
Next we must express Cdm in terms of frequency dependent variables. Givena

time function y(7), having a Fourier transform y(jw), Parseval's theorem (ref. 7)

states that
[ ¢} o0
/ y(t)zdt=if yGw)|? dw (10)
-0 217 -l

Then de of equation (6) can be put in the form of t..e left side of equation (10) by allow -
ing the lower limit in equation (6) be ~o, This can be done because the integrand of

Cg4eo 1S zerofor time t < 0. I this fact is used in addition ‘0 y(jw) = jw y(jw), a fre-
quency domain expression can be obtained for C deo 38

L

1 2 2 2 . 2
Cdco = EE {(ql +w q2>|x1d(jw)i + (rl + W rz)!ud(]w)l ]dw (11)

=00

Since the integrands of equations (9) and (11) are even functions of frequency, the lower
limits can be set to zero, and an expression for cost function C obtained as

[(ql + w2q2) J‘(w) + (rl + w‘zrz) $ (w):l

o0

(@]
n
N e

+ % [(q1 + w2q2>[x1d(jw)iz + (rl + w2r2)|ud(jw)|2] dw (12)

To be able to numerically evaluate C, the PSD's and the absolute value squares
must be expressed in terms of known system transfer functxons noisc PSD ¢ (w), and
disturbance Fourier transform absolute value squared, |d(jw)1 Refer now to figure 2,
First, variable x X1y the component of uy due to measurement noise, can be written as



x,,(8) = G916, (s)[Hl(s)vl(s) N H2(s)v2(s)] (13)
where

G ,(5)Go(S)
G (s)= 119G (14)

cl
1+ GG (sMyls) + Gy(s)0y(s) (5]

Variable x4, the component of Xy due to the disturbance, is
xld(s) = Gcz (s) d(s) . (15)
Similarly, the component of u due to measurement noise is

G, (5)G.(s)
i (s) = ¢l a [Hl(s)vl(s) + Hz(s)vz(s)] (16)
' Gl(s)Gz(s)

and the component of u due to the disturbance is

Ho(s) K

ud(s) = GCZ (s)Ga(s) Gz(s\

Using eqixations (13) and (16), the fact that Vi and vy are uncorrelated, and letting
s = jw. the PDS's of x;, and u, become )

@, (@)= 80| Cy(i)Ge, (jw)\z[tﬂl(mlz + [Hyli) | 2] (18)
and
G, (141G (ie)|? ) ;
@ (@)= D (w) cl 2 [lnlqu)l + ‘Hz(jw)\} (19)
v G,(jw)Gyliw)
Also, using equation (15) results in
g2 = G, G| Lo | | (20)



and using equation (17) gives
H,(ju)
. 2 . . . E 9
agli) % = G, 16, Gl 2| 22— < H )| jdG17 (21)
] w
Substituting equations (18) to (21) into the cost functicn equation (12). cost C becomes

é F{2.b)dw (22)

where F(w,b)is defined as
Flub) 2 |G, e )| [Vq(w) + Vr(w)] [\Hl(jw,p_)tz . ]Hz(jw,l_)_)iz}

Ho(jw,b)
= + H (v, b) (23)
Gliw)  © T

+ Dq(w) + D},(w)

and

V(o) 2 (3 + wPag) @, (] Gylie

G (jw)-

Vr(w) A (1.1 + wzrz)(bv(w)\ a(JU.),
|G ()G (i)
: > (24)

pye) 2 L o, + wPay) il

Al

D(w) = = (r1 + wgrg)lduw)lzlca(jw)lz

4

The symbolism Hl(jw,i_)) and so forth has been introduced to indicate which terms are
functions of controller parameter vector b. Note that Vq(w). Vrrﬁw), Dq("")’ and Dr(w)
are all independent of the controller parameters.



Having now obtained an equation from which to evaluate C as a function of known
system parameters 2ud vaviable controller parameters, the parameter optimization'
sroblem to be solvud is: minimize C{b) by prorer selection of parameter vector b,

The prcblem has thus {ar been 1ormuiated for the case where the system is acted
zpon by a single deterministic disturbance plus two random measurement noises. How-
aver. the problem canbe considered to be a completely stochastic one if the determinis-
-ic disturbance d(t) is reriaced by a Gaussian randgm variable with a PSD of @d(w).,
Then, <bd;_~'s woald be used in place ¢f (1/’T)1d(jﬂg" in equations (24). Also, the prob-
rem becomes entirely deterministic i measurement noise v is considered to be zero.
In that case he noise P3D, d)v(w) is set to zero in equations (24).

Cost Function Gracient Evaluation

An expression for the cost function ieq. (22)) is not usually sufficient to allow ad
effective solution to the parameter opt..aization problem. Most parameter optimization
methods (conjugate gradients, Fletcher-Powe!l, steepest descents, etc.) require also
that the gradient of C be calculateé. One way of computing an approximate gradient is
to make finite perturbations in b, compute C each time, and find the gracient as the
change in C divided by the changs in the respective b vector components, However,
a more efficient method is to derive an explicit expression for the gradient ¥C in
terms of b. Such an approach was taken in this report. Equation (22) can be used to
write the gradient as

vC(b) = - f CF(w, b)dw | (25)
7 0 -

Using equations (23) and (14). makes it possible to express VF(w,b) as

*
VF(w,E) = 2 Real E‘(w.li) —Gcl(]w.Q)Ga(jw) Lt H,(jw,b)
: ' Gz(]w) ‘ -
»*
H,{jw,b) Holju,b)
+ 16, w0 2Dyl A ) e SO AL
~ Gyli) | Gyliw) -

+[Vq(w) + Vr(w)] . {Hz(jQ,E)V{Hz(jw.ll)-} + Hl(jw.b)V{Hl(jw,t&iJ } (26)

9



where the fact that V‘y(jw)lz = 2 Real [y(ix)Vy(-jw)] was used. Once the forms of
Hl(jw,ll) and Hz(jw‘g) have been chosen, ‘he required gradients can also be calculated,

In the computer program described in appendix B, Hl(s,ll);md Hz(s,tl) are assumed 10
be of the following form:

Po; Py
m, M2/ 2 mg (2 2sby, 3
His,b)=Kbys — I (=4 1) T {=+ ey 0 i=1.2 (27)
j=1\by; =1\p2 by

4]

Here, m,, m,, and mg are given. Expcaents p2j and p3j indicate whether the fac-
tors appear in the numerater or denominazor, are «1, and are given for all j. Tne
parameter K could represent a transducer gain (for instance, conyersion from a pres-
sure measurement to a controller input voltage) and is given. With these restrictions. a
closed form calculation can be made for VHl(jw,ll). For example, if Hl(s.g) has four
narameters and is given as ’

p p
Kb,/ 21/ 2 2sb,, 31
Hl(s,b)z-——(—+1 = 4 + 1 :28)
- s \b. / 2 b
o1/ \uZ Pa
where bT = (b, bay, bay, by,), then
b” = (by, by, bgy. Dyl them,
1 7
b,
—})215
(s +bgy)bgy
2p315
VHI(S;b) = HI(S,b) - - 129y
- - 2 2sb
s 31
—+ +1 b41
be, Py
41
b 2
_2p31 __3_1+_S_ s
by 2
41
2 25Hy,
—_— 1 l)41
2 by,
be, 4

10



Programming Considerations

A computer program was wrillen (see appendix B) which »  alates the optimuin -
rameters b ousing the conjurate gradient method (ref. ©). In we program, the cost
function (eq. (22)) and cost func’on gradient (eq. (25)) are comaputed using numerical in-
tegration, In particular. using the tropezoidal rute, the cost function can be written as

] —

C =

na
]

i

Ng
z Flo g - <12y (30)
i=1

where .\Id is the number of frequency points over which the integral is to be computed

(=3), w is the frequency at the im data point, wN o417 YN and wy T Wy A similar
d C

1
expression can be written for the gradient, Judgment is required in selecting the spacing

of the irequency points, such that integration err~rs are minimized. In addition, a var-
iable step size fcature is introduced to further reduce errors.  This is done by using the
fact that errors caused by a [ixed step size are gredtest near 4 system resonance. Reso-
nince is defined herein as the portion where the closed-loop transfer function magnitade h
EGcl (s){ exceeds the open-loop transfer function magnitude. The program detects this
condition and whon it occurs, lGC[ (ju.‘)|2 is evaluated at additional points within each
rrequency interval using interpolation between adjacent prespecified {requency points.
This feature increases accuracy and also tends to prevent occurrence of another compu-
tational problem, namoly, that of the closed-loop system transfer function becoming un--
stable during the search. Since the magnitude squared of an unstable G(,, {jw) is the
same s 2 stable one hzving the same pole magnitudes, the cost function calculation
won't differentiate between the desired stable and an unwanted unstable solution, How-
ever in becoming unstable during the search procedure, Gc[ {jw) will have an increasing -
ly large resonant peak, which the progrim will tend to detect. Then the addition of the
extra function values will ensure adequate accuracy in computing C and ¥C. That is.
the decrease in system stability will be property reflected as an increase in the cost
function, '

The search procedure used is similar to the conjugate gradient method of refer-
ence 6. Two modifications were made td the conjugate gradient search to improve the
speed of convergence in this application. The first was to constrain the search vector b
components to not change sign. With the transfer functions defined by equation (27). this
just means that only stable controllers are allowed as candidates for the optimai one.
The second modification concerns scaling of tue b vector. It is known that **spherical”
cost functions (where the cost is more or less equally sensitive to cach element of the
b vector) tend to lend(memsclves to rapidly converging searches. Thus, a scaling was

11



incorporated into the search procedure such that each parameter has approximately
equal influence. This was done by defining 4 new secaled parameter veetor p using the
diagonal matrix .\ as follows:

'1,',\1 |

liL-
[Keoy
1173

L ]

. ‘e . [t : - . . .
where A, 1s the magnitude of the i ' element of L at the end of the previous interation
of the conjugate gradient algorithm, The cost function and gradient in terms of p are
thus:

C(b) = C(\p) (32)
and
TF(p) = A VF(b) (33)

Theory states thut the unmodified conjugate gradient search will always converge for

quadratic cost functions, In the modified conjugate gradient search, the coordinate sys-
tem is changed at the start of each iteration. Thus in theory, the modified conjugate

gradient algorithm may not always converge for quadratic cost functions, However, ex-
perience to date on nonquadratic cust functions confirms that the aforementioned scaling
algorithm gave convergence times less than or equal to those for aonscaled cases, Ap-
pendix C shows the results for one test c:-se where scaling was particularly useful, A

APPLICATION OF PARAMEL &R OPTIMIZATION TO INLET

CONTROL DESIGN

The plant, o which the parameter optimization method is applied in this study, isa
NASA designed two-dimensional, mixed-compression inlet. A description of the inlet is
given In references 8 and 5. Reference 8 gives experimental open-loop frequency re-
sponses of the inlet's terminal shock and subsonic duct static pressures to overboard by-
pass door area. Experimental frequency responses of the inlet with control are given in

12




reference 5. In these tests, one set of overboard bypass doors was used to generate the
disturbance and a seccnd set was used for control,

Inlet and Noisc Dynamics

The structure studied in this report is shown in figure 3. The output Xy to be con-
trolled is P57. a threat exit static pressure 57 centimeters from the cowl lip and down-
stream of the terminal shock, which is used as an indication of shock position, Meas-
urad sigmal Xo is pressure I’87, which is closer to the compressor face station, where
the airflow rate disturbance d originates. Conwrollers H1 and H.‘2 drive bypass doors
Ga which pass more or less flow to counteract the effects of disturbance d. Control u
is ubp, bypass door area (or dirflow riate).

The inlet dynamics and bypass door frequency responses were found in reference 8
and are tabulated in table I. Magnitude data are shown normalized to the values at
1 hertz, Experimental {requency response data were available over the range of 1 to
150 hertz; points at 0. 001, 300, and 600 hertz were extrapoliated using transfer function
models similar to those given in reference 8,

From a limited amount of experimental data, measurement noises vy and vy were
found to be uncorrelated and to have the same PSD -bv(w). The PSD is tabulated in
table I, with the data for 300 and 600 hertz extrapolated to be equal to the value at

150 hertz,

Cost Functien

To stmplify the discussion of results, the cost function of equation (12), by substi-
tuting and collecting terms, cau be written in terms of averaged square values as

E

2 .2
C= QX7+ qzx% + r1u2’+ Uguy (34)
where
— 0
ol & (w)+ - 1%, (w)] 2| gw 2 averaged square output (35)
1 X 1d
7 1lv T
0
“-(2 a1 w2 o (w) + 1 |x (jw)l 2 dw 2 averaged square output rate (36)
1 b X1v T 1d .
0

13



on

S

u [@u(w) + i }ud(jw)fz} dew = averaged square control (37)
T

o |
1%
1 e

9 2
< [4)“(@) + 1 !ud(jw)J “] dw 2 averaged square control rate (38)
T

0 |
1%
1 e

Disturbance Model

One of the critical assumptions in this study is the selection of the form of the dis-
turbance d{s). The disturbance is assumed to have the form

d(t) = Ae™3t (39)

The disturbance represents a corrected {low rate change at the diffuser exit, For con-
venience, d(t) is taken as an equivzlent diffuser exit area change (cm?‘) instead of cor-
rected flow, A range of parameter a values Is considered, from a = 4 to 400 radians
per second, s0 as to account for our uncertiinty in establishing the exact nature of the
disturbance.

RESULTS

The majority of the results were obtained for & case designated as the reference
case, defined as follows: ;

(1) A single-loop control is used with H2 = 0 H1 is assumed to be of the following
form:

b
Hys) =K —=+—]=K =[S 41

which is a proportional -plus-integral (PI) controller, PI control was chosen in view of
the results obtained using PI control in previous inlet control programs,
(2) An averaging time T -of 1,0 second is assumed.
- (3) The disturbance pole a is assumed to be 40 radians per second, Disturbance

14



amplitaze A is assumed to aqual 84 square ceatimeters, This is about the same ampli-
tude thzs was used in unstart tests reported in reference 3.

Averaged Square Value Comparisons for Reference Case

Relerence case designs are compared on the basis of their averaged square values.
Three =“ferent cases of q,. ry. and r, cost function penalties are vonsidered, Since
the valoss of Ay Qo Ty and r, cannot all be varied independently, 1 is set to one

for all :=2ses. For cach case, wwo of the penalties are set equal to zero and the third 15

viried 7rom zero to mfinity.  Thus, although not alt combination of penmalties are evam-
ined, =2 ones used will give a representative sample of all possible results.

In Iimure d(a), the normalized averaged squire output rate (\i)N is plotted as a

- 2 . E 3
functio= of normalized averaged square output (xl)N‘ Qpax\tulos X] and x‘l' are

normal:zed with respect tc their open-loop values. For each curve, the penalty indi-
cated gces {rom zero to infinity in the direction of the arrow. The 1 and r, curves

o to the open-loop condition for ry or ry equal . The qo == casc, which is

equivalent to C = \% appears to also have an open-loop solution, but in fact approaches
it quite closely but doesn't reach it. Each of the three curves hasa "*knee" type char-

acteristic, thus a design trade-off exists between ;?)N and (:?)N For the q, case,
___\ —_—
for example, one might choose the design having (.'\'Z)N of 1.2 and (x%)N of 0.5as one

which =as a fairly low value of x% N while not having an axcessively large value of
(:c?)\ The q, curve lies below the r, and r, curves since it is the cnly case where
‘(% is penalized directly.

In selecting a controller design suitable for actual implementation, it is important

that the design not require coatrol actuator capabilities beyond those available. Thus,
control signal and control rate requirements are examined in figures 4(b) and (c). Here,

contro! and control rate are normalized to their values at the point of minimum x% (with

ry=ry=4q;= 0). Figure 4(b) is a plot of normalized averaged square control as a func-
/= —

tion of ix% .. For constant x% N 28 would be expected, the case where u2 is

penalized r, resultsina controller which requires less (uz)N than the other (wo

1
cases. Similarly in figure 4(c), a plot of (uz)N against ("%)N the r, curve falls be -

low the ry Or q, curves. Once the physical limits of control and control rate arc
known -e.g., for the inlet, bypass door area. and bypass actuator power output) figures

15



4(b) and (c) can be used in selecting candidate controllers which would not reguire these
physical limits to be exceeded.

Firure 4 can be used in the following manner to assist in coming up with a controller

: o o -2 , . . 2
design that minimizes 1 combination of x7 and Xy while not cusing variables u” and

— Y

.2 - . - 2 2 N
4 to exceed limits, First, check to sce whether the limits on \‘i u2, and u” are
violated for the cise Q, =Ty =TIy = 0. If the limits are not violated, then this control -

. PR 2 .
lor is acceptible, being the one of the assumed structure that minimizes X, without re-

]

.0 9 .
gard to variables \‘i u”, and 1

determine the qy. Ty, and r, valuesat which the limits are reached ((q.,)l, (1'1)1. and

_If one or more of the variables do exceed limits,

(rr,)l), using fizures 4@}, (), and (¢), respectively. Finally go back to the computer
and conduct a trial-and-error design using penalty combinations in the ranges
(q?)l =qy =, (rl)l Ty =, (rz)l Ty S until a design is found which minimizes

.\'% and does not exéeed the limits.

The results displayed in figure 4 can be examined in a conventional manner by dis-
playing the proportional and integral gains of the reference case controller for various

values of (:‘;: _ This is done in figure 5. It caa be noted that for constant (x“i N’
proportional gain bl/bZI is larger for the r, case than for the ry case: but integral
gain b1 is higher for the ry case than for the ry case. That is, proportional gain

most directly affects ul,
Three particular designs are compared ona normalized magnitude frequency re-

sponse basis in figure 6. Each has a different type of penalty (qz. ry. or rz) but all are

for a value of x? = 0.4. The frequency responses displayed are fcr Gl(jw)Gz(jw)
(open-loop response of Xy to d) and Gcz(’“‘) (closed-loop response of Xy to d). It
can be seen that the r, design behaves more like a proportional controller in that it
attenuates the «isturbance similarly at low and high frequency, while the 1, design acts
like an i-te.al controller since it attenuates the distusbance more strongly at low {re-

que.cies (less than 10 Hz) than at high. The case where \% is penalized in 2. compro-
¢ ;e between the other two designs.

Effect of Disturbance Pole Location on Averaged Square Quantities

The effect of having a disturbance which has a pole value a larger than or less than
that of the reference case is shown in figure 7. For simplicity, comparisons are made
only for the q, cases with averaging time T = 1 second, It canbe seen that, siace the

ial
initial value of d(t) is the same for all three cases, the open-loop value of x; is largest

16



for the smallest value of 2, Also the case with the largest vilue of d(t) (@ = 400) has

the largest value ¢f X7, 18 would be expected.

2

Eifect of Adding Derivative Control Action and of Using Tnner -Loop

Controller on Averaged . Squire Quantities

Tn an attempt "2 improve upon the sinele -outer-loop PT contrel, two additional con-
firurations were {mvesiigated, The lirst was the addition of derivitive action to the
outer -loop PI controller. The cransfer function for this controller has the form

Kbl(s,b,, + 1)(s:bgy + 1)
= = The second was an inner-loop PI control. whicl: uses sig-

$(s,/5000 + 1)
nal X, the diffuser exit static pressurc. One reason for considering use of Xy instead
of Xy is that Xg is nearer than X, to the point at which the disturbance eaters. Thus
it might be expected that such a ct troller could better respond to a diffuser exit dis-
turbance. In fizure 8 both of these controllers are compared with the outer -loop PI con-
troller for q, designs of the reference case. The outer-loop Pl and PID controllers

——

exhibit very similar (x%)N against (x{)N characteristics. Figure 8{a) shows the PID

controller is able to reduce (x%)N over that of the PI controller only at large values of

(’(%)N The inner -loop PI control is not as effective in reducing (xi)N as either of the

other controllers, exceptat low values of (\?)N Although there is less phase lag in the
loop between X, and d than between X, and d (sce table I); there is also less gain,
Consequently, the signal -to-noise ratio at the input to the inner-loop controller (Hz(s))
is less than for the outer-loop controller. It is believed that this poorer signal-to-noise
ratio accounts for the ineffectiveness of the inner-loop control. It canbe noted in fig-
ures 8(b) and (c) that (u2>N and (ixz)N are essentially identical for the outer-loop Pl
and PID controllers. Thus, the added complexity of the PID controller hardly seems

warranted. Aiso, the inner-loop PI controller has poorer performance in terms of .\'%

12 . 2 <2
and X7 and also in terms of \ u N or \u" /y-

SUMMARY OF RESULTS

This report has demonstrated the use of parameter optimization techniques in the
design of controllers iora supersonic inlet, The basic problem formulation allows the

17
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disturbance to be described as a deterministic signal but includes measurements which
are corrupted with random noise, The controller design problem was set up as & param-
eter optimization problem in the time domain but was solved in the frequency domain,

A modified conjugate gradient algorithm was used to compute the optimum controller
pirameters. Control effectiveness was evaluated in terms of average square values of
output, output rate, control, and control rate, and also in terms of {requency respon-
ses. In applying the method to the inlet, it was found that, of the controllers investi-
wated, provortional-plus-integral (PI) control using throat exit static pressure feedback
was most effective. A proportional-plus-integral plus-derivative (PID) controller
showed only marginal improvement over the PI control. A PI controller using diffuser
exit static pressure was inferior due to signal-to-noise problems. Also investigated was
the effect or disturbance dynamic characteristics on centroller performance.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, July 2, 1974,
501-24.
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APPENDIX A

SYMBOLS

2
disturbance amyplitude, em”

disturbance pole. rad. sec

controller parameter vector, mp x 1

-m
controtler zain - rad sec)

1

controller poles or Zeroes, rad, see

controller damp:ing rato

controller natural frequency, rad/sec

total cost function

cost function due 10 deterministic disturbance

cost function due 10 deterministic disturbance with upper limit set equal to =
cost function due to measurement noise

intermediate variable in cost function

intermediate variable in rost function

disturbance, c:m2

cost functio- integrand or summand

actuator transfer function, inlet bypass door actuator, cm?'."V

plant. closed-100p transfer functicn, inlet throat exit static pressure to diffuser
exit area disturbance, (N/cm®)/em

plant transfer function, inlet diffuser exit pressure {o diffuser exit distrvrbance,
hY /sz/cmz

plant transfer fanction, inlet throat exit static pressure to diffuser exit static
pressure, N/cmz/N/cm2

generas controller transfer function

outer -loop controller transfer function, V/N/cm2

inner -loop controller transfes functicn, V/N/cm2

integer, in eq. (27)

Fourier transform variable, rad/sec

13



melsurement gain, pressure transdu cer gain for inlet, \/‘N/’cm2
integer, number of elements in b vector

inieger exponent of free s's in controller transfer functions
integer, number of first-order controller factors

integer, number of second -order cont:oller {actors

interer, number of frequency points in numerical integration
throat exit static pressuic, N/'cm?'

9
diffuser exit static pressure, N/cm~™

transformed prameter vector, m_>x 1

2]
integer. 1l

integer, %1

penalty on output in cost function C
penalty on output rate in cost function C
pemalty on control in cost function C
penalty on control rate in cost function C
Laplace variable, sec™t
deterministic disturbance averaging time, sec
time, sec

actustor output, inlet bypass door area, cmz
bypass Joor irea, cm2

component of u due to disturbance
component of u due to measurement noise
intermediate variable in cost function

intermediate variable in cost function

" outer -loop measurement noise, noise on throat exit static pressure measure- -

ment, N/cm2

inner -loop measurement noise, noise on diffuser exit stalic pressure measure-
ment, N/cm2

plant output, inlet throat exit static pressure, N/cm2

plant inner-loop variable, inlet diffuser exit static pressure. N/cm2



s

g component of Xy due to disturhance

kli? < component of Xy dre to measurement noise

v dummy variable

z dummy variable
A diavonal scaling *ransfermation matrix, mp X mp
A\ clement of A

T random noise averaging time, sec

(bd power spectral density of 4. (cmz)z/"Hz

a power spectral density of u, (cm2)2/rad,"sec

@ power spectral density of Y1 and v, (N/Cm2)2/Hz
@ power spectral density of X,.. (N/cn12)2/Hz
.d)y power spectral density of y

<bz power spectral density of z

w frequency, rad/sec

w; frequency at ith data poin@, rad/sec

Subscripts:

( )N averaged square value of, normalized to averaged square value for reference

case with ry=rog=49= 0,2=40,and T=1

( )l value at which limit is reached

Superscripts:

T matrix transpose

-1 matrix inverse

- averaged value of

derivative with respect to time
* complex conjugate 7
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APPENDIX B

COMPUTER PROGRAMS

This appendix describes the FORTRAN IV computer programs which mechanize the
controller parameter optimization, The package consists of 2 main program, two sud-
routines, and a block data subprogram, written for an IBM 360/67 TSS time sharing
computer. The subroutine CCFM conducts the conjugate gradient search, The sub-
routine CALFG computes the cost function and gradient.

Dimensions

The programs ire dimensioned for a maximum number of frequency points Nd nf
25 and 2 maximum number of controller parameters m_ of 10, The vectors dimen-
sioned N, are AD, Al, Al12, DD, DQ, DR, GA, G1G2, HZ, P1, P12, PD, V, VQ, and
VR. T7he vectors dimensioned m_ are B, G, GS, ID, and Z. Vector H has dimension
2mp and vector W has dimension Nd+ 1.

Main Program

The main program handles data and performs preiiminary calculations. The com-
puter variables in the main program are defined in the Main Program Variable List. A
flow chart for the main program is presented in figure 9. The following is a FORTRAN
listing for the main program:

Main Program Listing

C MAIN PROARAM FAP CNYTRNALLER PARAMETER 0°T!N|7ATIO“
COMOLEX G1{25),nr1N2(25),GA(25) -
DIMENSIOM «1(*5) A12(25) AD(25),21025),012(25),Pn{25),nn(25)
DINEMSION 4Z2(25),4(26), V(25) VQ(ZS) VP(ZS) nntzs) DR(25)
, DIMENSTON 3(10), n(’O) ln(ln) H(20)
) COPPOW/CALC/FDﬁ,FVQ,FDR,FVR,GI,ﬁIGQ,GA,”,VO,VR,O0,0R,Iﬁ -
1 K1,K2,NH1,4H2, INST,MDATA,KMT, AN
COMNON/ FME/KOUNT, KA
COMMON/RLOGCYK/HZ, A1, AL12,AD,P1,P12,PN,V, A AN, T, RAL,ARALZ, RAD, RK,
, LOARICAL KA
' EXTERMAL CALFA
MAMELICT /MAM3I/A,AA,AL,A12,AD,HZ, AL, NAT2,GAD, RK, KPR, -
1ND,1,P12,80,T,V
NARELIST /HAHZ/KI K2,MHI,NH2,B,ID,LIMIT,N1,02,R1, ™2
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C  3n(NT DRAARAM HFANINA EAR 1SEY REFERENSE
HRITE(S,961)

961  FoopaT(! GAbTe (A, AN, A1, A12, AN, 4T, 631, AA12, GAD, RK, =

IKPR,HU,?I,PI?,PD,T,V)',/-
2," NAVZ:(Kl,Kz,Mwl,NN:,R,ln,LlMlT,'l,ﬁz,Rl,RZ)'
3, ln=(1=z;2=G;3=P;h,5=czn,nzu;5,7=cpn,cpw)',/-
L, IH§T=(1=SFAUPH,2=NAP2,3=NAH3,h==DIHT)',/-
5t [FR=(N=COMY, 1=NAT ~oy, 22ERROP) T )
¢ SRONMPT.READ AMA PRINT M3
qn~  VRITT(E,a3M)
q93° FORPAT (! MAE32T)
REAN(E,HAMT)
IF(KAR.EN.1) WRITF (R, MAM3)
A ~ANVERSIAMS FRAT FPEA RESE TO CONBLEY. NS
NDATA=ND '
GH=nA12
- ng 110 1=1,'DATA
G1(|)=GA1'A1(l)-CEYD(fPDLx(n.,Pltt)~.nl7u533))

GlGZ(l)-GAlZ*AlZ(I)'CEY°(CP°LX(0.,°12(I)'.017b533))

WE1Y=1Z(1)*R, 2831250
Dn(l1=AA'*2/(T'(U(l)"Z*A"Z))

111 GA(')=CYQQAnaAn(I)*CFY°(C“"LX(0.,PU(I)'.017b533))

MINDATA+1)=U(MNATA)
~ opoMPT,RFAN AMD apENT MAY2
.81 WRITE(E,3uN)
IL3 FontrT (! NELV RS
REAN(S ,HAP2)
N=NH1 +NY2

WRITFi{R,220) Kl,K?,N”l,NHZ,LlHlT,01,02,R1,92,(|D(J),J=1,N)

221 FORMAT(! KI,K2,HH1,NH2,LIMIT=',SIE,/,-
1! QI,OZ,RI,RZ-',IDhFln.Z,' in=',2013)

€ CDMPUTE VARIARLES M ARCT WIf ARE UNT FUNCTICHNS NE 8

no 21n 1=1,HD

pitlat (1) e e2
GASQ=P?AL(QA(I)'PONJG(ﬁA(|)))
VQ(I)=V(|)*(01+HH'02)-GASQ

VR(I)=V(l)*(Rl*”U'WZ)'GAS“/QFAL(61G2(l)'COﬂJC(“1G2(|)))

HQ(I)=“°(I)'(ﬁ1*UH'“2)
221 DR(1)=ON{ 1) * (R1+1V*R2) «GASA

A0 TO 87
¢ ORANDT AMN PEAR INST
737 VRITE(5,250)
230 FORMATLY INST?")

READ (5,42) INST

b2 FORMAT(I1)

6o TN (28,51,900,35),INST
-  PRINT FREQUEMCY RESPAMCE HEANINR
35 YRITE (8,41)

iup o FORMAT(EX,'HZ',12X,'/Y/',7X,"DEG’, 11X'REAL

21 SI7E=.1

EPSal,E-5

KNT=0

ITER=LIMIT#(1-1NST/4)
: CALL FREMUCALTG,N,B,F,0,SIZE, EPS, ITER, 1ERM)
¢ PPIMT SEADAW RESULTS

URITE(R,230) F,I‘R,KHT,KOUNT,SIZE,FDQ,FDR,FVO,FV

IHAGT)

R

230 FOPHAT(! Fe',1PF16.2," 1FRe’, 12, KWT,KOUNT,S|Z?=',-

1 215,81n.3,/," FDO,FnR,FVQ,FVR-',IPbElu.3)
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87 URITE(R,151) (R(.1Y,.1=1,")

I51 .

AA

Al
Al2

CALFG

DD

DR

EPS

FDQ
FDR
FVQ

s 2 m = wom = oz .

FVR

GA

- GAD

GAl
GA12
GK
24
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Main Proosram varuble List

disturbance time constant a (input varisble)
disturbance pulse amplitude finput var:ible)
Galju') normalized, vector (input variable)
GI(ja:)f normalized. vector (input variable)
;G (3w} + Goljw)| normalized, vector (input variable)

controller parameter b. vector (input variable). When inputiing, those in
outer -loop controller transfer function H1 must precede those in inner-
loop transfer function "d Dampinge ratios must precede their natural
frequency terms,

subroutine (declared external in main program) which computes the cost
function and gradient

}d(jw)iz, vector

Dq(w), vector

Dr(w), vector

prameter change defining search convergence, for example, 10'5
F=C=FDQ+ FDR + FVQ + FVR, cost function

costs of averaged square output and output rate due to disturt:ance

costs of averaged square control and control rate due to disturbance
costs of averaged square output and output rate due to measurement r ,ise
costs of averaged squaré 'Eéntrdi :m'c-f !.cortrol'ratré'duo to measurement noise
cost {unction (scaled) gradient, vector

Ga(jw), vector

gain normalizing AD (input variable)

gain normalizing Al (input variable)

gain normalizing A12 {input variable)

transducer gain X (input variable)



AL

- e e

IER

INST

ITER
J

KG
KNT

"KOUNT

NDATA
NHIL
NH2
PD

GN = GAL2
G {jwis veotor
GI(]::.’)' Gz(ju:). veetor

storave, vector

froquencey in hertz, vector (input variable;

index cf element in vector, integer

intecer vector which identifies corresponding partmeter in B oas ‘oo
(input variable), 1= zero, 2 = gain. 3 = pulc. 4 - comples cern daree
5 = cdmple.\‘ zoro mitural freguency, 6 = complex pole damping, 7 = oni-
plex pole matural [requency.

search convercence parameter. 0= convergence 0 EPS in LIMIT; 1 = <on-
vercence to EPS in LIMIT not obtained: 2 = protzble error oceurred,

branching instruction parameter (input variable). 1= search for optimun::

2 = return to NAM2 n" melist; 3 = return to NAMZ namelist: 4 = print fve-
quency, system closed-loop frequency response rnormalized by GN)Land
system Nyquist plot.

set equal to LIMIT except for INST = 4 case when [TER = 0.
index of element in vector

logical variable . TRUE. means compute gradient

count 6( cost function evaluations

count of line search iteriations

if bqual to 1 causes NAMS3 variables to be printed - input variable)
exponent of free s innl {(input variable)

exponent of {ree s in H2 (input variable)

maximum number of iterations (input variable)

" NH1 + NH2

number of frequenc& points over which integration is performed N,
NDATA = ND

number of parameters of B in H1 (input variable)

number of parameters of B in H2 (input variable)

,Gl(jw) in degrees, vector (inpu - 'g)

It
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P1 ,Gl(iw) in degrees, vector (input variable)

P12 _ _._Gl(jw) . Gz(jg)) in degrees, vector (input variable)
Q1 qi (iﬁput variable)

Q2 - Qg (input varicble)

R1 oy {input variable)

R2 ] ry (input"'{n{mblo)

SIZE parameter step size; for example, settc 0.1 at start of search
T 7 T (input variable)

7\7,’7 =!>’v(w), vector (input variable)

vVQe Vq(w), vector

7R Vr(“’)’ vector

w | radian frequency w, vector

ww ) frequency squired

Program Input and Outpui

The program starts by printing a heading referencing the namelist variables and
va:iable codes. Then the program prompts for NAMJ namelist data, The namelist
variables are entered according to the FORTRAN rules for namelist data, The NAM3
_variablesare A, AA, Al, A12, AD, HZ, GAl, GAl12, GAD, GK, KPR, ND, Pl, P12,
PD, T, and V. Since eight of the variables are vectors, the input could be lengthy.
‘Thus, an alternative to entering NAM3 data at run time is to use the block data subpro-
gram, The following is a listing of the subprogram for the inlet investigated in the
report:

<

RLOCK DATA

COMMON/BLORK/HZ,AY,A12,AD,P1,P12,PD,V, A, AA, T, 6AL,GAL2, RAD, GK,ND

REAL HZ(25)/.001,1,,3.,7.,10,,15,,20,,25.,%0,,L0,,50,,60,,70,,~

1. 80,,90,,100,,110,,121,,139,,140.,150,,300,,3600./

REAL A1(25)/1.,1.,1.,.997,.027, R18,.732,.643,.565,.5:11,,359,.325,-
1°7:318,.397, 4RS, .4RG, .46, . 407,.326,.303,,209,.042,3+,0093/

REAL A12(25)/1.,1.,.95,.774,.697,.671,.62¢%,.602,,53,.437,.347,,313,-
1 .334,.352,.318,,322,.299,.2P8,,27,.26,,237,.012,3+_0013/
- PEAL AN(25)/1,,1.,.999,1.,.596,.993,,997,.996,1.,1.112,1,016,1.012,-
1771.01,1.711,1.005,1.A24, %54, ,908, . 782, %80, .09,.051, 3« 00R3/
_REAL P1(25)/M,,-1.,-R.,=18,,-26,,-39,,-u6,,-51,,-58.,-R%,,-F2,,~55.,~
1 -49,,-55.,-65.,-74,, =4, ~11n,,=125,,=715,,-28,,=174,,3e-172,/
TReal P12(25)/0.,-2.,-13.,-24,,-31,,-3%5,, -4k, ~57,,-62.,-75,,-E7.,-99, -
1-92.,-105.,-116,,-128,,-745,,-156,,~166,,~172,,-177,,-251,,3+=266./
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PEAL PN(25)/0.,-3.,-5.,-10,,-13.,-1R.,=2%,,-27,,=32,,-62,,-51,,-5", -
1,-68,,=77,,-95,,00,, =116, , =128, , =146, =100, =173, 2206, 342260
REAL V(25)/.2uF-5,5%2,4E=5,4 €=5,225, 75=5,7 F=5 6, F=5 4, LE-5,~

Y 7.F-5,5.UF-5,4e4 F~5,3¢3,3-5,4 15 7 F-5, Jel £-5/

NATA T,\,4A/71 40,9,/

DATA 1IN, AA1,MAT2, AN, (K/23, N1F, 2807, 36,0, TR2/

END e

The NAM3 variables are printed if KPR is se. to one. Then the program prompts for
NAM2 nameljst dawi. The NAM2 variables are B, ID, Ki., K2, LIMIT, NH1, NH2, Q!,
Q2, RI, and R2. ‘Then the NAM2 variables are printed and a prompt for the INST viarua-
ble is printed,

The INST variable is entered in I1 format, The RNST code values ave !, 2, 3,
and 1. Making INST = I causes 2 search tor the optimum parameters. After the search
results are printed, another INST orompt is issued, Maiking INST = 2 returns the prc-
gram to request NAM2., Making INST = 3 returns the program to request NAM3, Mak-
ing INST = 4 cauces the system frequency responrse to be vrinted. The frequency is
printed under HZ. 'Che system closcd-loop frequency response normalized magnicude
is printed urder /Y/ and phase in degrees under DEG. The real purt of the system
open-loop transfer function is printed under REAL and the imaginmary part under IMAG.
Then the zero iteration search results are printed, and another INST prempt is issued.

Subroutine CALFG(N,E.F, Q)

. The purpose of this subroutine is to compute the cost funstion and its gradient. The
CALFG program variables are defined in the CALFG Program Variabie List, Thuse
_variables in the common blocks and subroutine call are labelea the same as those in the
main program and are not repeated again,

" The Data statement IN and RSNAT values are variables in the variable step size in-
tegration. Smaller step sizes are taken near a system resonance; that is, when the ak- -
solute value squared of the denominmator of the system closed-loop transfer function
|1. + OPEN]| 2, is less than RSNAT. The variable IN is the aumber of subintervals into
whigh an interval is divided. Upon detecting a resonance, the program {ills in exira

" points starting from the previous frequency by linear interpolation, using data from the
bpx.'esen@ and past frequency points. A flow chart of the integration logic for the subrou-
tine CALFG is given in figure 10.



FORTRAN Listing of Subrcutine CALFG

SsuAPQUT e AALFA (Y, R,T,R)
ACHOLEY T(10),AA(25),71(25),G1R2(25)
[Ny ey Y,nr,ﬁT,H1,H2,§,n°FH,H1!,ﬁlﬁﬁl,ﬂnl,"202!I
NprEse AN UE26R),RI25),0025), N0 (28), N2 5)
ApmEve Ay BS010), N, R (), A ()
rnuwnu/caLr/cnn,Fvn,rnn,tvq,ﬂl,ﬂlsz,ﬁh,w,vn,vn,nn,nn,l“,-
11, KD, UHT, N NST RRATA T AN
QoM O ENC P VODNT KA
LARIeAL v, DeNT
naTr RSMAT,1H/.5,3/
A NETEALITETIANS
AT ELALRMES
ReMT=,TPUE, L
no 740 Jd=1,7 ()zyﬁb
B T B R T L Renoy,
?0 WleGrer v (n,,0.) cch szz

g%;::TF!(Q"n') !aczﬁgj

Op
cHuaaf, - J'
Fnoen, . 2
Funan, . 11%29
ovneti(l)
PNYHa
Rel,/TLOAT(IN)
¢ INNFY | FAR FARU OPEN LOOD DATA PAINT; PPCVINE
¢ EOR IMTEROOLATIOM RFTUFFN POINTS® 1M ROSOMANCE
DO 200 Tal, MRATA
90 |NYX=1NXN
1ng RiaFLDATOINY )N
KiMel, =R}
Cilat{l=1YeRINW( 1) wP]
caCHPLX (N, , M)
¢ nLILD AONTRCLYEDNS 11 AND H2
CIFINMY L AT, N) HlaSeeX]
1E(HH2 . AT.N) H2mSea¥?
no 10 Jd=1,H
N in(J)
a0 TH (1,3,1,2,10,2,17),10d

1 STu(5/8(Jd)+1. ) wa(2=-1NJ)
TE(KA) Z(J)m5/(S+R(JII=(FLAAT(ING)=2.)
no TN 8

? §T=(S/R(J+1))we2s5 +SeROI)/ROJ+T)¢].

IF(.UAT.XC) GO TO °R
L raym2.«§eRCJ)/(B(J+1)#STIN(S, ~FLOAT(INY))
[(0e1)e-2(J) (1. +S/(B(UI+2CI+1)))
c o8 §T=ST+«(5-1DJ)

) 60 TO °©
Y §T=8(J)
704Y=00 v (1,,0))
e VE(J.LE.H1) HlaH1eST
- 17(J AT, 5HY) H2=H2+5T
1" CAMTIMIE

coaf CHERY, FOR RECOVANAE; CORPUTE SYSTEL €0OST"
ArtanA(l-1)aRTHenA{] eR]
A11a61(1=1)+RIH+" 1) =R
$I21=R102(1 =13 «RIH+RIN2(1 ) *RI

I T I E I
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110
120

125

130
140

c

160

130

£

190

200

300

OPFN-GA!*(Gll'HZ*nlﬁ?lﬁHl)

IECIDX.LT.IN) G6A TO 110
IF(RFAI((1.¢0P=H)*Pn”dﬂ(1.*nPEH)).LT.RﬁNAT) GO TO 120
1MDTat( 1+1)

INYMN=|M

RGNT=, FALSE,

CO TN 140
HDI'(W(!)*clUAT(IDX*1)¢W(|-1)'FLOﬁT(lN-lnX-l))*R

60 70 140

]D¥N=1

1F(RSYTY AN TO 130

TFC1.AT.2) USS=v(1=2)

1F(1.E0.2) “65mi(1)

CRATaoT. ¢ (CUCTY+FLOATCIN=T)#i(1=1) ) #R=USS) 7 (W(1)=1/SS)
FNO=sFNN+ONAT « DO
FYNeEVN+rROTay Ol UIMAR
FNNeFNR+NPAT =R IxUH
FVR-F\\ID_+(‘RF‘T*‘/R"'al—’f"\f‘
no 125 J=1,M
ALJ)=N(J)+CRCTRRS (D)
RSNT=.TRUE, PPL
0 TN 90 : ¥ ,
PTmiI( 1Y% (1, =R)+H(1+1)*R szac 7
Y=R1A21/(1.+0PEN) ig
YY=REAL(Y#0ONJG(Y) ) *(1PL-11S) Ge ~ Op
H2R21 1 e (R114H2)/R1621+H] (S'p
NP1 #NACTY+RIRDA(1=1) ) aYY 0o
VA= (1Y) +RIHAYA(T=1) ) #YY
VRUs(RI*VD( 1) +RIF*VR(1=1))#YY
DRH-(QI*DR(|)+Q¥H*DQ(|-1))*YY
HMAGf7EAL(”l*CONJn(HI)*HZ*COHJG(HZ))
NM-PEAL(”2ﬁ21I*CONJG(HZGZII))
FRA=FRR+NNY

FDR=FDR+ NP Ial1pe

FUNmEYN+YNL«HMAR

FYReFYR+VRI=HIAR

1E(.NAT.KR) AN TO 180

COMPUTE ARRANIFUT

ST=(“FH4”NAﬂ*(VQU+V"H)+DRH*NP)%TONJG(-Y*GA!)+UQU*H262||

PO 160 J=1,M

1F(J.EQ. 1) GF=( ST+ (VN4 )«H1) 2 COMJA(HT)

1F(J.EO,MH1+1) GF-(QTwFO“dQ(G]!/G1n2|)+(VOH¢VR”)*H2)*CONJG(HZ)
AS(J)=NEAL( Fen0IR(Z(d)))

A=) 47 ()

1FCINST.LT. ) GO TO 190

PRIMT SYSTFI EPENUEMAY RESPONSE AND QPEM Loep

HZai!l /6,2831°50

YI'AR=CARS(Y/AN) '

NEGuATAM2(ATMAR(Y) RFAL(Y))*57,29578

VRITE(R,300) HZ,YMAG,NFG,OREN
InY=1n¥X+1

LIS alt ]

1ECINY,LE, 1) 6O TN 100

CONTIHMDIE

F=FNN+FYN+FNR+FVP

RETURM
;ORP“T(1PE1ﬂ.3,2(5!,2E10.3))
"N
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If the user desired to usc a4 search routine other than subroutine CGFM, the scaled
aradient AVC(b) may not be desired, In such a case the unscaled gradient may be ob-
tiined by dividing cach term in the gradient vector by its corresponding parameter in the

b vector,

DEG
DQW
DRW
GF

GS
G1I
G1G2I
HM
HMAG
H2G21I
HZ

H1

H2

I

IDJ
DX
IDXN
IN

J

OPEN
R,RI,RIM
RSNAT

30

CALFG Program Variable List

chz {jw) in degrees

partial product

partial product

gradient of F

saved gradient partial sum, vector
Gl(jw) value

Gl(jw) . G2(jw) value
temporary value

temporary value

temporary value H2/G2 + H1
frequency value

Hy

Hy

frequency index

ID(J) value

counter for data insertions
counter value for logic

number of subintervals inserted into an interval near a system resonance;
for example, IN = 3 means each interval is divided into thirds

parameter index
temporary values

condition defining existence of system resomance for |1+ OPEN|2~RSNAT,
that is, for RSNAT = 0. 5. The closed-loop frequency response magnitude
is .-1.42 = (1/y/0.5) times its open-loopalue,



R3NT temporary logic; true = resomines

S 5

ST temporary \ilue
VQW intermediate product
VRW intermediate product
W1 « valuae

W next frequency

WS saved WI

W3S sitved WS

Y G (i)

YMAG G, (v GAIZ
Y partial product

Z pirtial produvct‘_ in controller vriadient, vector

Subroutine CGFM(CALFG.N.B.F.G.SIZE.EPS.ITER, [ER.H)

The purpose of Subroutine CGFM is to perform the conjugate gradient search func-
tion minimization. Several nonstandard modifications relative to the conjugate gradient
search described in reference 6 exist in the CGFM subroutine. The gradient is the
scaled gradient ATC(b) and every iteration updated b pirameters change the sciled
coordinate system. This simplifies calculations somewhat but violites theoreticual con-
vergence arguments for quadratic sosts. However, away from the minimum point,

C(b) may be quite nonquadritic; and around the minimum, changes in scaling are gener-
ally small, This, it is believed, accounts for the decreased convergence times obtained
using the scaling modification. Another nonstandard modification to the search is that
the signs of the parameters b are not allowed to change during the search. This pre-
vents formation of an unstable controller during the search,

The CGFM pfogram sariables are defined in the CGFM Program Variable List,
Variables carried over in the common block and subroutine call are labeled the same as
those described in the mpin nrogram and are nct repeated again.  Figure 11 is a {low
chart of CGFM.
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FORTRAN Listing of Subroutine CGFM

SUPPANT [HE ARFP(PALFR, M P F, 0, I 2E,EPS,ITER, LER,H)
ArpennpAn n(3),H(01),0(1)

(Malel Nall NN AN

nOBpNtL EME JRAUNT KA

C THALIZAT NS
KOt T=0n
STEP=2,
1FDa=5

5 BFTA=0,
MEYC=N

15 ¥=n
nO 20 \"1,‘!

20 H(J)=BC0)

Kh=,TPUF,
AALL CALRR(N,R,F, 0)

¢ TEST FORN STNPB| 5 SFAPCH
IF(KOUMT AELITER) 1RR=1
1F(SIZE,LT.EPE) 1FR=D

40 IF(IER,AT,=2) RETURN

C COPPUTF OAST APARIENT VEIGHTINA
TSOR=N,
nn S0 J=1,"

50 TSNR=TSCOR+C(f)**2
IE(NRYr E0,0) GO TO 60
BETA=TSNR/TSAVE

60 SCALE=N,
no 70 Jd=1,%4
Ji=d N
U(JNY==A(J)+RFTA=(IN)

70 SCALF=SMALE+ARS(H(IM))
IF(SPALF. AT, N,) A0 TO 20
[EP=0
AN TA LN

80 STALE=SIZF/SCALF
TSAVE=TCND
HOMC=n0YOe]

Feqg=r
L=1

£ UPDATE R'S

100 DO 110 J=]1,%

JN=J+!

110 B(U) =" (J)»AR0 (T, +SOALFMIJN))
FSaF
Kn=,FALSE,

FALL MALER(N,B,F,M)

(ol o Yol NalBNat RV Rilad ob Lgnr ﬂrrpru STED S{ZF OR fOMCLUNES SFARFH
IF(K.AT.0) 60 TO 120
IF(F,LT.FS) 70 TN 130
IF(L.AT.1) 6O TO 140
A0 TO 150

120 1F(F,LT.FSS) 60 TOH 140
GN TN 169

130 SCASY = SOALE
L= L+l
SCALE= SOAMLF#QTFP
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C FIT DUARRATIC CURVE TO % PTS,

140

147
148

FSS=FS

IF(L.LT.15) GO TO 100
IER=2

GO TO 40

no 148 J=1,N

JH=JeM

RYl=H(J)

R2=H(J)*ARS(], +SCASVH(JIN))

R3=R{J)

IF(L.AT.3) R1=R1+(R2-R1)/STEP
X1=(FSS=FS)=(R1-R3)

X2=(FSS=F)«(R2=-R1)

IF(ABS(R2=R3),0T EPS/L,) RO TO 147
IF(L.6T.1) B(J)=R2

G0 TO 1438
B(J)=(Y1#(R14R3)+X2#(R1+R2))/((X1+X2)*2,)
IF(RCJI*H(J) . LE,0,) B(J)m~ 1#B(J)+EPS*RS

C URDATE SEARCH VARIAPLES

150

160
180

BETA
FS
FSS

J

JN

K

L
NCYC

SIZE=SIZFE«(FLOAT(L)+2.)/4,
KOUNT=KOUNT+]
IF(NCYC.GT.,N) GO TN 5
GO TN 1%

SCASV= SCALE

SCALE= SPALE/(1.+STEP)
K= K+1

S1ZF= SIZF/(1,.+4°TEP)
60 TO 100

S1ZF= SI1ZF/(1,+STEP)
DO 180 J=1,M

B(J)=H(J)

GO Tn 5

END

CGFM Program Variable List

conjugate direction weighting
saved F

saved FS

parameter index

J+N

indicator for step size reductions

number step size increases within iteration

number of iterations before restarting conjugate search

R1,R2,R3 terms in quadratic curve fit

SCALE step size scale factor

BRACKETINE LINE SEARCH PIN,



SCASV
STEP
TSAVE
TSQR
X1,X2

34

sived SCALE
step size

siaved TSQR

squired gradiont terms sum

partial product



A sample proble

APPENDIX C

SAMPLE PROBLEM

m, using the inlet data from table I, is present

TH,
IQXQR‘E

a computer terminal printout of the problem solution:

1 uAuss(A,AA,A1,A12,An,uz,GA1,GA12,0An,ﬁK,KPR,Hn,°1,P1Z,DD,T,”)
2 NAM2=(K1,K2,HU3,4"2,B,tn,LtulT,nl,nz,n1,n2)

3 |D=(1=Z;2=G;3=P;M,S=CZH,PZH;6,7=C°D,CDH)

4 IHST=(1=SEARCH,2=4AP2,3-HAN3,M=PR|”T)

§  |"R=(N=C0MV,1=t0T AANY, 2=FRRAT)

6  NANM3?

7% &nam3 fend

8 NAM2?

9%  xnam2 k1=-1,nh1=2,h=1n,1nnnn,1A=2,1,1tm1t=50,

10* q1=1,q2=.nnn1,r1=n,r2=n,k2=n,nh2=n hend

11 Kk1,K2,me1,nw2,LimlT= -1 0 ) 50

12  q1,02,R1,R2= 1,00F A0 1.00E=-0N n,Nn ne 2 1
13 p= 1.0000F 01 1,000NF Nk

14 111sT?

15% 1

16 F= 3.11001510F-01  (FR= 0 KMT,VOUNT,S17F= 102 20 1,301F=N6
17 FI0,FDR,FVQ, FYP= 2,R884E-01 6,000 2.35726-02 0,000

18 8= 4,7216%5 01 1.3N5€F N2

19  11sT?

20%

21 HZ /Y7 nFG REA] [MAR
22 1.0005-03 1,%315-04 R.1299F Nl 2.620F=~N1=5,LR2F N3
23 1,000f 00 1.906E-01 7.%84F 01 -1,1R80FE=N1=5 4675 N0
24 3,000E 00 5,111F-01 5,L77% 01 -9 .0(7F=0N1-1.720% 00
25 7.700% 00 7.409C=-01 1,2u8F 01 -1,690F=N1=F,145F=01
26 1.n00E 01 7.295F=01-6,281F 00 -1.321F-01-2,095F-01
27 1.500% 01 7.023E=01=~3,750F 91 -p Q3GF=N2-0 R54F=N]
28 2.000F 01 £.7320=01-3,947F 1 -9,30NAF=N7=2,18%F =01
29 2.500E 01 C.f71E~N1-4,R11F 21 -1,138F=01-1,704F=01
30 3.000F 01 5.86hF=N1=-5,350F 01 -1,MENE=01=1,322F-01
31 &.00nf 01 L,o74F=-01-7,013F O -1, 066F-N1-7.616F=~N2
32 5.000E 01 3,830F=-01-2,4R0F N1 a0 4ELF=02-3,330F-02
33  £.000F 01 3, 1,25E-01-8,9PPGF N1 -8 ,622€-02-1,R17€-02
34 7.n00% 01 3,r80N°=01-9,105F N1 -n,7230-N2=5,5035-03
35 8,000F nl 3,p78F=01-1,067F N2 -9,264F=N2 2,758€=12
36 a,00nE 01 3.4,10F=01-1,222F 02 -f,%85F=N) 5,100F~02
37 1.nrN0E N2 3,370F=N1=1,324F N7 -1, NPLE=AD 7,316C-N7
38 1.100% N2 2,075F=01=1 L24F 02 9.760nc=n3 7 ,R27F-N2
39 1.200% 02 2.79Rc=N1=1,800F 07 n.210€-02 £,3926=02
40 1.300F 02 2. 586F=N1-1,R7°F 12 K,273F=-072 3,5%]1F=02
41 1.4097 02 9. ,88F=0N)=1,720F N2 hoLREE=ND 1, SNWF=N2
42 1.500F N2 2,783F=N1-1,771F 02 3,027F=02 1.L12F=13
43 3,.000F 02 1,200E=02 1,010F N2 -0 90RF-N5=1,353F =0k
44 6.00DE N2 1,300F=03 A, n00F A1 -1.7407E-0R=0,0755=07
45 F= 3.11001510F=01 1FR= 1 KNT, KOUNT ,S17F= 1 n 1,000c-0]
46 FNN,ENR,FVN, FYP= 2,884F-11 n,nan 2.357F=-N2 N, 0AA

47 na= 4.7216C 01 1,30567 02

48 1¢5T1?

*User input,

ed. The following is
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Responses in capital letters are program output (43 lines). and lower case letters are
user input {5 starred lines). The line numbers to the loft of cach line were added for dis-
cussion purposes. The listing shows the problem of optimizing a two -parameter control-
lor for a given cost function, The controller wis a single-loop proportionil plus intcgral
coniroller with the form Hz(s) =0 and Hl(s)/K = \)1(5/1)21 +1)/s = (bl/s) 4 (l)l/l)21),

The cost function was C = x% + 0.0001 \? It penalizes system output and output rate

but not control or conirol rate.

Lines 1 to 5 were printed by the computer after the user called the program, Thesc
lines list the NAM3 and NAM?2 variables and parameters ID, INST. and IER. At line 6,
the computer prompted for NAMS3 namelist. In line 7 the user signed in and out of the
namelist without updating any values from the block data subprogram. Since KPR # 1.
there is no print of the NAM3 variables, In line 8 the computer prompted for NAM2, In
lines 9 and 10 the user supplied NAM?2 input. The initial parameter estimates were
b1 = 10 and b21 - 1000. The transducer gain K is part of the NAM3 input and not in-
put here. Inlines 11to 13, the computer outputed the updated NAM2 values, and in
line 14 it prompted for an INST input,

In line 15 the user entereda 1 to search for the optimum controller parameters.
Lines 16 to 18 list the search results. The cost function F was 0.3118. IER = 0
meant that the (scaled) parameters were changing less than EPS (1.E-5) as can be veri-
fied noting that SIZE was 1,39 E-b. The iteration line scarch count KOUNT was 24, and
the number of cost function evaluations KNT was 102, The ’ql and qq costs due to the
disturbance, FDQ, was 0.2884 and due to the noise, FVQ, was 0.0235. FDR and FVR
costs were zero because Iy and r, were zero. The optimum parameters b1 = 47
and b21 = 131 were returned.

At line 19 the computer prompted for another INST input. The user input INST = 4
in line 20, which dirccted the program to display the system frequency response.

Line 21 contains the column headings for the data given in lines 22 to 44, The firstire-
quency was made 0. 001 instead of zero (in NAM3) because Hl(s) would be infinite at
zero. A system stability spot check can he performed using the Nyquist criteria and the
open-loop REAL and IMAG data by reading the IMAG column until a sign change occurs
in which the REAL part is negative (between IMAG = -0. 0056 and +0,028). A stability
check is that the REAL part is areater than -1.0: -0,09 is. A complete test may not al-
ways be so simple but for this problem the response sin.ply spirals into zero.

Lines 45 to 47 repecat the list of costs and search parameters, and at line 48 the
computer prompted for another INST input.

This example problem is also used to study convergence and parameter scaling. In
figure 12 the cost function contours arc plotted as functions of b1 and b21' The con-
tours form an clongated valley more scnsitive to b1 than to b21 and thus not well
scaled away from the minimum, The search trajectory starting at (10, 10 000) is also
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shown. The scarch run in figure 12 took 3. 5 scconds eontril processor unit time on the
IBM 360/67 TSS. The same problem wits run using a standard conjugate gradient search
for two diffcrent but constant sealing rules, One rule scaled the parameters bry their
initial estimates (10,10 000), The problem ran about the sime time, but it converged Lo
a slightly less accurate F = 0.3121 instead of 0,3119. The other rule wits Lo scue the
prameters near the solution (40, 130), In this case thesearch could not advince signift-
cantly from the initial point for byo which remained at 10 000 while bl moved o 46,
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TABLE 1. - MIXED COMPRESSION INLET AND BYPA

MEASUREMENT NOISE POWER SPECTRAL DENSITY (PSD)

SS DOOR FREQUENCY RESPONSE DATA AND

Frequency, Inlet frequeney response Byvpass door frequency rcs;)nnse] Mceasurement
Hz bypass door area to command ! noise PSD.
Diffuser exit static pressure to Taroat exit static pressure to voltage, G,‘(jw) i ‘l".".;x!.
bypass door arca G, liw) bypass door arca Gl(ju)Gzlj:c) : ‘ ‘
- Magnitude Phase. NN cmz:",
Magnitude Phase. Magnitude | Phase. 368 dex \ Tad sec x
0. o6 dey 0.026 dey em? v | |
N cm ’.‘)- cm i
('"\2 (‘ﬂlz ' ;ll
0. 001 1 0 1 0 1 0 pa2g-107
1 1 A1 1 -2 1 -2 I SR T
3 1 -8 95 13 1 -5 L asa07
1 1 -18 7T 24 1 L -10 TS
10 .93 -26 .70 -31 1 -13 S TR
: i
15 .82 -39 .67 -35 .99 18 T
20 .73 -16 .63 43 i S X L st
25 .64 -51 60 57 1 b e 51077 ‘
30 .36 -58 .53 A2 1 R 1. s0-107
10 .41 63 4 | -5 1.0 a2 fo-10t !
30 .36 2 35 T 1.02 51 TR 1
0 | .33 -55 .31 | -90 1.01 L e ST (1 |
70 .32 -19 .33 i =92 1.01 68 30107
80 .39 -55 35 1 105 1.01 LT et
00 .46 65 32 o 1.0° -85 101073
{
100 19 -4 32 128 1,02 0% 107
io .46 - 30 | -5 85 -116 o !
120 4 -110 20 | 156 a1 128 307
130 ek -125 .27 -166 .78 1 REL a3 w‘: i
110 .30 -114 .26 -172 o | -1e0 SRl DN
|
150 -2t -98 .24 -177 A1 -173 TR T
300 042 -174 012 -251 .051 -22R R AT
00 0003 178 om3 _26h o3 250 FENR ’4]
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Figure 1. - Schematic of mixed compression infet with terminal
shock position control,
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Figure 2. - General control system hlock diggrars
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Quter -loop
controtier Hy

Measurement
noise v,

Measurement
noise Vl

Inner -loop

[’"‘ 1 controller Hy

- ] ! Bypa-.; door
s T Upp actator G,

' Xy pr=U

X2 Ae'at o d

Fiqure 3, - Inlet control system block diagram.
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