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16= Abstract

A technique is dese,'ibed for desigtfil_g feedback coifl--ol systems using frequency domaia

models, a quadratic c_ost function, and a p:trameter optimization computer prog't.am.

FORTRAN listings for ti_- computer l)rogram arc ilicluded in the report. The approach

is applied to the design of Shock position controllers for a supersonic inlet. Considered

are a deterministic or random system disturbance altd the presence of random measure-

ment noise. The cost function miifl'-ized is formulated in the time domttitl, but thc prob-

lem solution is obtained us'tiff a frequency t4qlllLLill system description. A scaled and con-

strained conjugate gradient ah_,orithm is used for the minimization, It+ :q)plying tile approach

to a typical supersonic inlet, both optimal l)rOl)orttonal-ifius-intoffral (PI) arid pvopol'tional-

plus-in(eg'ral-plus-doriwttive (PlD) t ontrollers ",w,ve calculated. Foz' the inlet considered,

a sin._le-loop PI con&oiler wtLs ludg,,d to be the most desirable of the vaPious dosi{_txs con
sidered.
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CONTROL SYSTEM DESIGN USING FREQUENCY DOMAIN MODELS

AND PARAMETER OPTIMIZATION, WITH APPLICATION

TO SUPERSONIC INLETCONTROLS

by RobertC. Seideland Bruce Lehtinen

Lewis Research Center

SU MMARY

This report described a technique for designing feedb_.ckcontrol systems using fre-

quency domain models, a quadratic performance index, and a parameter optimization

computer program. The approach is applied to the design of a terminal shock position

controller for a mixed-compression supersonic inlet. The computer program described

can be used to design controllersfor any two-loop linearfeedback system having a single

control input and a cascade structure. The pl,oblem formulation assumes the system is

acted upon by a single deterministic or random disturbance plus random measurement

noise introduced in each loop. The quadratic performance index chosen to be minimized

is a weighted sum of averaged square system output, output rate, control, and control

rate. The performance index is expressed in the frequency domain and is minimized.

given a frequency domain system description, using a scaled and constrained conjugate

gradient search algorithm.

For the supersonic inletproblem, the disturbance is a deterministic airflow pertur-

bation at the diffuser exit, and measurement noises are assumed to contaminate inlet

duct pressure measurements. The cost function chosen to be minimized isa weighted

sum of averaged square values of the output (throatexit staticpressure) and itsderiva-

tive plus the control (inletbypass door area) and itsderivative. Optimal parameters

were calculated for both proportional-plus-integral (Pl)and proportional-plus-integral-

plus-derivative (PID) slngle-loop controllersfor a NASA designed mLxed compression

inlet. Feedback signals used were either throat exit staticor diffuser exitstaticp es-

sures. Designs were evaluated on the basis of averaged square values of outp,ltand

control signals. Pl control on throat exit staticpressure proved to be the most effective

compromise between complexity and abilityto attenuate disturbances. Appendixes arc'

included to describe the computer program as well as outlinethe solutionto a sample

design problem.



A supersonic airtu'Mt propulsion system ccnsisls of a supersonic, inlet amt either a

turbofan or turbojet t, ugine. The function of tht, inlet is to convert high velocity, low

pressure air ahe_d of tim inlet to low velocity, high pressure air more suitable for lh¢,

engine's compressor. An efficient inlet for flight at M_tch numbers _O_ovc about 2 is the

mixed compression type, havimg a convergent supersonic region followed by a divergent

sub_onic region. An increase in static pressure occurs in both regions as the flow is

decelerated. A terminal shock separates the supersonic and subsonic flows. To maxi-

mize efficiency, the terminal shock should be located near the throat in the divergent

duct. If the terminal shock moves upstream into the convergent region, it jumps for-

ward to form a strong shock wave ahead of the inlet. This occurrence is known as an

inlet unstart, a.nd results in increased drag and a rapid loss in pressure recovery. This

in turn may lead to a comw.'es_or stall and/or combustor flameout. Conversely, if the

shock moves too far downstream, the pressure recovery is reduced and distortion is in-

creased at the compressor lace, which may also cause compressor stall. Thus, con-

trois are needed to maintain the terminal shock close to but yet downstream of the throat

for good pressure recovery without inlet unstarts.

Figure 1 is a schematic diagram of a mixed compression inlet with a typical termi-

nal shock control loop shown. The terminal shock is positioned using me bypass door

loop. The door opens and closes to maintain a match between the inlet and engine air-

flow as engine airflow demand changes. This tends to prevent the terminal shock from

moving too far rearward, causing increased distortion, or too far forward, causing an

unstart. Throat exit and diffuser exit static pressure signals shown give indications of

shock position. They are fed back through the controller to drive the bypass door servo.

The controller transfer functions are significant factors in the dynamic regulation of

shock position. The design of such transfer functions has been studied in references 1

to 4. A root locus design technique was leported in reference 1. A stochastic optimal

control theory approach was reported in references 2 and 3, where the expected fre-

quency of unstarts was minimized. A parameter optimization approach, where the pa-

rameters in a fixed-form controller were selected so that the response approximated a

desired closed-loop transfer function, was reported in reference 4.

The approach taken in this report is also based on optimizing the parameters in a

fixed-form controller. However, the cost function chosen to be mimmized is the

weighted sum of average integral square e_'rors, due to a deterministic disturbance, and

the mean square errors due to random noise on the measurem.,nts. This approach was

motivated by the inlet control problem (ref. 5), where the compressor face disturbance

is most conveniently described as a deterministic signal but where the noise on duct

pressure measurements is definitely random in nature. The variables included in the



spective first derivatives.
While the problem is formulated in the time domain, the optimization is done in the

frequency domain. This is because system, disturbance, and noise models _tre most

often obtained in frequency domain form. The conjugate gradient search (ref. 6) is used

for the optimization. However, the s 'tandard procedure is modified to reduce search

convergence time and insure that the resulting controller is stable. This is dune by

scaling and constraining the search parameters.

In the next section, the general control problem investigated is defined and the cost

function and gradient calculations are described. Then the parameter optimization pro-

gram used is described, followed by a description of the inlet model to which the con-

troller design method was applied. Finally, the results are presented, followed by ap-

pendi.xes, which include one on the use of the computer program and one in which a sam-

ple problem ]s presented.

GENERAL CONTROL PROBLEM DESCRIPTION

Description of Plant, Noise, and Disturbance

Motivated by the supersonic inletcontrol problem, a control system structure was

selected as a framework for the controller design problem. This structure is shown in

figure 2. The linear plant (blocks G I and G 2) is assumed to have two measurements

x I and x2 available. (Symbols are defined in appendix A. ) Variable x 1, the outer-

loop measurement, is considered the output. The control is to consist of two blocks,

H I and H2, whose forms are specified at the outset, but whose parameters are to be

optimized. The two inputsto the controller are assumed contaminated with independent

Gaussian noises vI and v2, each having the same power spectral density Cv(W). The

controller outputdrives actuator Gtt to produce control u. The plant is acted upon by

deterministic disturbance d which occurs at time zero.

Cost Function Evaluation

It is assumed that the purpose of the controller is to keep x 1 and "_1 as close to

zero as possible but at the same time limiting the excursions in control u and control

rate u. Thus, a cost function must be defined which adequately reflects the average de-

viations in output and control caused by random measurement noises v 1 and v 2 and

deterministic disturbance d. We now proceed to develop such a cost function.

3



For convenience, define components of x I and u such th;tt

x I = Xlv + Xld

Xl -- Xlv + Xld

U = Uv + U d

*- (1)

where the first quantities on the right sides of equation (I) are the compor_ants due to

measurement noise v I and v 2 and the second quantities on the right sides are compo-

nents due to deterministic disturbance d. First, separate cost functions willbe derived

for the measurement noise and deterministic inputs. Then, these separate cost functions

will be combined into a single cost function. Consider first the case where only mea-

surement noise is present. Define the cost function

(2)

The q's and r's are arbitrarily selected scalar penalties. Thus, C v is simply a

weighted sum of mean square values. Next, consider the case where only a determinis-

tic disturbance d is present. Disturbance d is assumed to be zero for t < 0. Define

the cost function

1 iX2d(t) + q2k_d(t)+ rlu2(t)+ r2_d2(t dt
Cd= _,_

(3)

Time T is defined as the (arbitrarilyselected)period during which control is to be

effectivein minimizing the effects of d. Factor I/T is included to make Cd an

average integral squared quantity, and thus comparable to mean square quantity C v.

Now, the totalcost function can be defined as

C = Cv + Cd (4)

Cost function C is to b_ minimized by proper selection of controller transfer function

parameters. The problem may be simplified ifwe assume that T is large enough so

4



that Xld , _¢Id,Ud' and Ud all go to zero before t = T. Then the total cost canbc
written as

C = Cv + Cd_ (5)

-- ix v(t)+ q2 _ v(t)+ rlu (t)+ dt

T
(6)

where the upper limit on the second integral Cd_ has now been made equal to oo.

Our aim is now to express C in the frequency domair_ since, as was indicatedpre-

viously, we desire to perform the parameter optimization using frequency domain sys-

tem models and data. In the following development, an expression for C willbe ob-

mined which is an integral in the frequency domain, over a range of 0 to _. The inte-

grand willbe obtained in terms of the following known quantities: noise power spectral

density (PSI)),plant, and controller transfer functions, and the Fourier transform of the

disturbance. =

As pre_iously noted, cost funct/on Cv (eq. (2))is a weighted sum of mean square

values of stationary random variables Xlv , Xlv , Uv' and {/v" Itcan be shown (ref. 7)

that the mean square value of any stationary random variable y canbe expressed in the

frequency domain as

y2= lim __i
"r-,_2r

I @y(W)dccy2(t)dt = (7)

where y2 is defined as the mean square value of y and @y(W) is defined as the PSI)

of y. Itcan also be shown (ref. 7) thatthe PSD of the outputof a single-input - single-

output linear system whose transfer function is G(s) is given by

Cy(_,) = Cz(O,)lG(j_)l 2 (8)

where @z(U.,) is the PSD of the input to the system. If the system of concern iS a differ-

entiator, that is. G(s) -- s, or y(s) = s z(s). then ¢,y(W) = W2@z(W).. We can us(, this

fact plus equation (7) to express C v in terms of PSD's, obtaining



Cv _ . ¢_x

(9)

where _Xl(W) is the PSI) of Xlv and _u(W) is the PSD of uv.

Next we must express Cd_ in terms of frequency dependent variables. Given a

time function y(T), having a Fourier transform y(jw), Parseval's theorem (ref. 7)

states that

£ £y(t)2 dt= I ly(jw)l2 dw
277

(1o)

Then Cd_ o of equation (6) can be put in the form of t.e left side of equation (10) by allow-

ing the lower limit in equation (6) be -_. This can be done because the integrand of

Cd_ is zero for time t < O. If this fact is used in addition to _,(jw) = jw y(jw), a fre-

quency domain expression can be obtained for Cd. , as

1 w2q2 l×ld(l )t 2

.00

(ii)

Since the integrands of equations (9) and (11) are even functions of frequency, the lower

limits can be set to zero, and an expression for cost function C obtained as

1 + _°2q2 _Xl(W) + 1 + w2r Cu (w

ud '
To be able to numerically evaluate C, the PSD's and the absolute value squares

must be expressed in terms of known system transfer functions, noise PSI) Cv(CZ), and
disturbance Fourier transform absolute value squared, Id(]¢_)I 2. Refer now to figure 2.

First, variable Xlv , the component of u 1 due to measurement noise, can be written as

6



xlv(s) =oa(s)%z(s)[nl(S),'t(_) +.2(s)v2(_)]
(t3)

where

GcZ (s) =

G l(S)G2 (s)

1 + Gs(S)[G l(S)H2(s) + G t(s)G2(s)H t(s)]

Variable Xld, the component.of x I due to the disturbance, is

Xld(S) = Gel (s) d(s)

Similarly, the component of u due to measurement noise is

Gcl (a)Ga{S) [Hl(S)Vl(S ) + H2(s)v2(s) ]
u,(s)= GI(S)G2 (s)

and the component of u due to the disturbance is

Fn2(s)
(s)G._(s)/_

Ud(S) = Gel - [.%(s) + Z1(sld(s)

Using equations (137 and (16), the fact that v 1

s = ]u), the PDS's of Xlv and u v become

and v2 are uncorrelated,

+ J
Xlv - =

and

., ,I Gc/(J")Ga(JW)l 2
(_.,)=

_'Uv I I_v (_') GI(JW)G2(Jw)

Also, using equation (15) results in

[Xld(J_')l 2

Hl(JW)l2 + IH2(Jw)121

= IGc/(jw)121 d(jw)l 2

(14)

(15)

(16)

(17)

and letting

(18)

(19)

(20)

[



and asing equation (17)gives

2

ud(J,c) 2= iGci(JW)Ga(JW)t21H2Qw) / ''" ,]21_ I+HI(j_') to_::",

Substituting equations (18) to (21) into the cost functien equation (12).

C = C(b)= 1 /£0 F(-.b)dw

(2!)

cost C becomes

(22)

+ Vr(_..)l_ Hl(j_,.b_)i2 + IH2(i=,b__)i2!

+ Dq(_.')+ D,,(w)lH2(]w'-b-)+ Hi(Ju",b-:

J I G2(Jw)
2}(23)

and

v_(:>: (, &=)°+..,lo_<i:>l:= 1+

2

=Cr:: °+I /v_(_,)+' 2 \ I %(j_o): I
. 1 + 2] v GI(JW)G2(Jw)

Dq(W)_ 1 (q 2)T 1 + w2q Id(Jw)t2

T 1 + °:'r2 [d(]"')[Z[Ga(JW)}2

(24)

The symbolism Hl(JW,b) and so forth has been introduced to indicate which terms are

functions of controller parameter vector b_. Note that Vq(W). Vr("'), Dq(W), and Dr(W)

are all independent of the controller parameters.



Havin=_now obtained an equation from which toe_luate C as a function of known

system pa.,--ameters_.,__-a,iable controllerparameters, the parameter optimization

problem to be solv,_dis: minimize C(b) by prorer selectionof parameter vector b.

The preblem has thus far been 1ornlulatetlfor the case where the system is acted

..'Donby a =,ingledeterministic disturbance plus t;vorandom measurement noises. How-

._,vet, the ::roblem can bc considered to be a completely stochastic one if the determinis-

tic disturbance d(t) is re!=taced by a Gaussian random variable with a PSI) of _d(W).

Then, _d i.-') woad be u._:ed in place of (1/T)id(J_'!i" in equations (24). Also, the prob-

:era becomes enth'eiy determmistic ;2 measurement noise ,, is considered to be zero.

In that case :he noise PSD, _Sv(a-') is set to zero in equations (24).

Cost Function Gradient Evaluat!.on

An expression for the cost functio.". ;eq. (22)) is not usually sufficient to allow ari

effective solution to the parameter opt',nization problem. Most parameter optimization

methods (conjugategradients, Fletek.r-_ :.---,steepestdescents, etc.) require also

thatthe gradient of C be c_Iculated. One way of computing an approximate gradient is

to make finiteperturbations in b, compute C each time, and find the gradient as tl_e

change in C dividedby the change inthe respective b vector components. However,

a more efficientmethod isto derive an explicitexpression for the gradient VC in

terms of b. Such an approach was taken in thisreport. Equation (22) can be used to

write the gradient as

vC(b) = ! j VF(w,b_)d_o (25)
- _ 0

Using equations (23) and (14) makes it possible to express VF(w,b_) as
$

H2(Jw,b_)

VF(w,b_} = 2 Real (w,b_} Oc/(J_-'.b_}Ga(JW) • ': L _ + H!(j '

L

+ iGcl(Jw,b)12 r(_)[G_j___ . Hl(J_,,b)l V I_ +

+ [Vq(w) + Vr(W! " {H2(]W, b-)VIH2(]¢_'" b-)]*+

(26)

9



wherethefact that V1y(j'_)l2= 2Real[y(_-,,)Vy(-jw)]wasused. Oncetheforms of
HI(J_eb_)and Ha(JW.b) havebeenchosen.:herequiredgradientscanalsobecalcuk_ted.
In thecomputerprogramdescribedinappendLxB, Hl(S,b)and Ha(s,b)are assumedto
beof thefollowim3form:

ml m2___ 2j m 3 s2 2sb3 j _ _-,
'_ Kb]S + -+ i = I,O (-_J

= II \b2jS + 1 II1
Hi,o, b)

- j=l j- b4j
4j

Here, ml, m2' and m 3 are given. Expcnents P2j and P3j indicate whether the fac-

tors appear in the _umerater or denomina:or, are _:1. and are given for all j. The

parameter K could represent a transducer gain (for instance, conversion from a pres-

sure measurement to a controller input voltage) and is given. With these restrictions, a

closed form calculation can be made for VHl(J_,b). For example, if Hl(S,b ) has four

,_arameters and isgiven as

Hl(S'b-)= s \b21 2 + b41

,28)

where bT= (b1, b21, b31, b41), then,

VHl(S,b) = Hl(S,b) -

1

b,

-P21s

(s + b21)b21

2P31 s

1 b41 '

29 ;

I0



Program m[ng Considerations

A computer program was written (see appen,iix B) which , ulates the optimum lX_-

1"starters b usi1,_ the conjugate gradient method (ref. G). In ..e pro_r.tm, the cost

function (eq. (22)) and cost func';on gradient leq. (25)) are computed using ,mmerical in-

tegration. In lxtrticula.r, u_ing the tr:_.peznid:tl rule, the cost f-lnctiotl can be written as

N d

c = 1-- Z F("'i)(%_l
'2;7,

i=l

_ _i_l) t30)

where N d is tile number of frequency points over which the integral is to be cop._putcd

. = a.' , and w 0 = w 1. A similar(--'3), w i is the frequency at tile i th data point, U:Nd+l Nd

expression can be written for the gradient. Judgment is required in selecting tile stxlcing

of the ;requency points, such that integration err'rs are minimized. In addition, a var-

iable step size feature is introdu,:ed to further r,',duce errors. This is done by using the

fact that errors caused by a fixed step size are grealest near a system resonance. Reso-

nance ia defined herefn as the portion where the closed-4aop transfer fuuction magnitude

_Gc/ (s)I exceeds the ,°pen-l°°P transfer function magnitude.. The program, detects this

condition and wllen it occurs. IGc/(jw)[ 2 is ev-aluated at additional points within each

frequency inter_-al using interpolation between a:djacent prespeci_fied frequency points.

This feature increases accuracy and also tends to p.,..event o,'currencc o," another compu-

_.tioruM problem, 1_m_ely, that of the closed-loop system transfer fuuction becoming un-.

stable during the search. Since tile magnitude squared of an unstable Gel (joe) is O_e

same as a stable one h::.ving the same pole magnitudes, the cost function calculation

won't differentiate between the desired stable and an unwanted unstable solution, How-

ever in becoming unstable during the search procedure. Gc/(ja.,) will have an increasing-

ly large resonant peak, which the program will tend to detect. Then the addition of the

extra functmn _,'alues will ensure adequate accuracy in eOml.'utir:" C arid VC. That is,

the decrease in system stability will be property reflected as an increase in the cost

function.

The search procedure used is similar to the conjugate gradient method of refer-

ence 6. Two modifications weremade to the conjugate gradient search to improve the

speed of convergence in this application. The first was to constrain the search vector I__

components to not chmge sign. With the transfer t unctions defined by equation (27). this

just means that only stable controllers are allowed as candidates for the optimal one.

The second modiP.cati0n concerns scaling of the b__ vector. It is known that "spl, m;ical"

cost functions (where the cost is more or less equally sensitive to each element of the

b vector) tend to lend'themselves to rapidly convergitN searches. Thus, a scaling was

11



incorporatedinto thesearchproceduresuchth:lteachl._!rameierhasapproximately
Thiswasdonebydefininga newscaledp.'tr:lmetervector t! usingtheequalilffluence.

diagomt[m;ttr Lx .\ asfollows:

"1/,\1

t1= • b = _-lb (al)

w_nere .'tI is the magnitude of the ith element of b at the end of the previous interation

of the conju_.Ite gradient algorithm. The cost function and gradient in terms of i_)are

thus:

C_) = C(A_p) (32)

a nd

rF(p) : i Vr(b) (_3)

Theory states that the unmodified conjugate gradient search will always converge for

quadratic cost functions. In the modified e0nlugate gradient search, the coordinate sys-

tem is changed at the start _ each iteration. Thus in theory, the modified conjugate

gradient algorithm may not always converge for quadratic cost functions. However, ex-

perience to date on nonquadratic cost functions confirms that the aforementioned scaling

a_orithm gave convergence times less than or equal to those fo: nonscaled cases. Ap-

pendix C shows the results for one test c_.se where scaling was particularly useful.

APPLICATION OF PARAME :'ER OPTIMIZATION TO INLET

CONTROL DESIGN

The plant, to which the parameter optimization method is applied in this study, is a

NASA designed two-dimensional, mixed-compression inlet. A description of the inlet is

given in references 8 and 5. Reference 8 gives experimentaI open-loop frequency re-

sponses of the inlet's terminal ,shock and subsonic duct static pressures to overboard by-

pass door area. Experimental frequency responses of the inlet with control are given in

12



reference 5. In these tests, one set of overboard byl_'lss doors v..',ts used to generate the

disturbance and itseccnd set was used for control.

Inlet and Noise Dynamics

The structure studied in this report is shown in figure 3. The output x 1 robe con-

trolled is P57' a threat exit static pressure 57 centimeters from the cowl lip and dov,n-
stream of the terminal shock, which is used as :tn indication ¢)f shock position. Me;ls-

urod si_q_al x 2 is pressure P87' which is closet" to the co,npressor f.tce station, whore

the airflow rate disturbance d ori_i,_atos. Controllers It 1 and H.) drivel)ypassdoors

G a which pass more or less flow to counteract the effects of disturbance d. Control u

is Ubp, bypass door area (or airflow rate).
The inlet dynamics and bypass door frequency responses were found in reference 8

and are tabulated in table I. Magnitude data are slm,vn normalized to the values at

1 hertz. Experimental frequency response data were av:ail:lble over the range of 1 to

150 hertz: points at 0.001, 300, and 600 hertz were extrapolated using transfer function

models similar to those given in reference 8.

From a limited amount of experimental data, measurement noises vI and v2 were

found tobe uncorrelated and to have the san:e PSI:) ,l,v(W). The PSI) is tabulated in

table I. with the data for 300 and 600 hertz extrapolated to be equal to the value at

150 hertz.

Cost Function

To simplify the discussion of results, the cost function of equation (12), by substi-

tuting and collecting terms, ca. be written in terms of averaged square values as

m m

C =ql x +q2 x + +u2u 2
(34)

where

x_ A 1 _o 4,. (w) + I IXld(]_)1 doJ =_averaged square output
= ,_ "_lv T

A 2 +i id(i )Ix = x T Ix = averaged square output rate

(35)

(36)
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931 _ I dw=_
u = u(,,') + -- iud(J_') averaged square control

T
(37)

u2 = ,_' u._,' + -- lud(J_.,)l dw ="_averaged, square control rate
T

(38)

Disturbance Model

One of the c,'itical assumptions in this study is the selection of the form of the dis-

turbance d(s). The disturbance is assumed to have the form

d(t) = Ae -at (39) -

The disturbance represents a corrected flow rate change at the diffuser exit. For con-

venience, d(t)is taken as an eqt,lvzlentdiffuser exitarea change (cm 2) Instead of cor-

rected flow. A range of parameter a values Is considered, from a = 4 to400 radians

per second, so as to account for our uncertainty in establishingthe exact nature of the

disturbance.

RESULTS

The majority of the results were obtained for a case designated as the reference

case, defined as follows:

(1) A single-loop control is used with H 2 = 0; H 1 is assumed to be of the following
form:

I{ l(S) = K + = K s +

S

which ts a proportional-plus-integral (PI) controller. PI control was chosen in view of

the results obtained using PI control in previous inlet control programs.

(2) An averaging time T .of 1.0 second is assumed.

(3) The disturbance pole a is assumed to be 40 radians per second. Disturbance

14



amplit_e ;\ is ,lssumed to _luaI 84 square centimeters, This is about lhe S:lnle 3.mp[i-

tude t,h-: was used in unstart tests reported in reference 5.

Acera._ed Square Value Comparisons for Reference Case

Reference case designs 'are coral)need on tile basis of tileir avera:_ed square values,

Three :'_"ferent c:tses of q2" rl" al;d r 2 cost function penalties "1re' Considered. Since

the va:z-_s of ql" (1'2" rl' and r 2 cannot all be varwd independently ql is set to one

for ,ll'. /:.ses. For eaell c;tse, two of the penalties are set equal (o zero and tilt, third is

_:tried from zero to uffinity. Thus. :although not all combihation of penalties .Ire e'.':tm-

ined, ::.e enos used will give a representative sample of ,Ill possible results.

In ::_,,'ure 4(a). the normalized averaged square output rate N is plotted as a

functio-- of normalized averaged square output x N" Quantities x_ and x_ are

normal:zed with respect to, their open-loop values. For each curve, the pem'dty indi-

cated g:es from zero to infinity in the direction of file arrow. Ttler I and r 2 curves

I_o to t_e open-loop condition for r 1 or r 2 equal _. The q2 = _" case. which is

equiva:ent to C = k_, appears to also have an open-loop solution, but in fact approaches

it quite c!osely but doesn't reach it. Each of the three curves has a "knee" Wpe char-

acteri._ic, thus a design trade-off exists between (.k_l)N and (.X-_l)N. For the q2 case,

for example, onemight choose the design having ("Tx'_) °f l'2aad ("-_1) of0. SasoneN N

whieh _s a fairly low value of (._I)N while not ,,aviag an excessively large ,_,lue of

.k_ll)N. The q2 curve lies below tl'.e r I and r 2 curves since it is tile only case where

k_ is 7.enalized directly.
in selecting a controller desibn_ suitable for actual implementation, it is important

that the design not require control actuator capabilities beyond those available. Thus,

control signal and control rate requirements are examined in figures 4(b) and (c).__Here,

control and control rate are normalized to their values at the point of minimum x_ {with

r 1 = r,_ = q2 = 0). Figure 4(b) is a plot of normalized averaged square control as ,t func-

/-'2)_. For constant ('_1) would be expected, the case where u 2 istionof _x 1 : N' as

penalized r I resultslnac°ntr°llerwhicilrequiresless (u2)N thantheother two

cases. Similarly in figure 4(c), aplot of (_-2)N against (_)N' the r 2 curve falls be-

low the r 1 or q2 curves. Once the physical limits of control and control rate are
known e. C., for the inlet, bypass door area. and bypass actuator power output) fiT wes
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4(b)and(c) canbeusedin selectingcandidatecontrollerswhichwouldnot requirethese
physicallimits to beexceeded.

F;.gure 4 can be used in the followin_ manner to assist in comin_ up w_t.h a controller
,..)

design that minimizes a combir_ttion o._ x_ and .k_ while not causing variables u- and
• _ fi2

.9u" to exceed limits. First. check to see whether the Limits on x_. u 2. and are

violated for the case q,) = r 1 = r.) = 0. If the limits are not violated, tl_en this control-

let is:tcceprable, being the one of the assumed structure that minimizes xi without re-

. ,-_ ,_ _ I im i t s.
g:trd to v'ariabies x"i, and it-. Ii one or more of the ,,_.triables do exceed

determine the q,), r I, and r,) :atlues at which the lirnits are reached ((q2)l, (rl_ I, and

(r2)l) , using figures 4(a), (b), and (c), respectively. Finally ,go back to the computer
and conduct a trial-and-error design using penal%, cornbiruations in the ranges

(q'))l "---q2 < _' (rl)l _--:rl < _' (ra)l "---r2 _ _ until a des__gn is found which minimizes

Xal and does not exceed the limits.
The results dis_)layed in figure 4 can be examined in a conventional manner by d_s-

playing the proportional and inteffral gains of the reference case controller for i"ariousix':
values of .X_l)N. This is done in figure 5. It can be noted that for constant 1 N'

proportional gain bl/b21 is larger for the r 1 case than for the r 2 case: but integral

grain b 1 is higher for the r 2 case than for the r 1 case. That is, proportional gain

most directly affects :_-2.

Three particular designs are compared on a normalized magnitude frequency re-

sponse basis in figure 6. Each has a different type of penalty (q2" rl' or r 2) but all are

for a value of (,_l)N = 0.4. The frequency responses displayed are fcr GI(JW)G2 (]_e)

(open-loop response of x 1 to d)and Gcl(j_')(closed-loopresponse of x 1 to d). It

can be seen that the r 1 design behaves more like a proportional controller in that it

attenuates the ,:isturbance similarly at low and high frequency, while the r 2 design acts

like an i,:te_:al controller since it attenuates the distu_'bance more strongly at ',ow [re-

que,,cies (less than 10 Hz) than at high. The case where ._ is penalized in a. compro-

r,'._e between the other _vo designs.

Effect of Disturbance Pole Location on Averaged Square Quantities

The effect of having a disturbance which has a pole value a larger than or less than

that of the reference case is shown in figure 7. For simplicity, comparisons are made

only for the q2 cases with averaging time T = 1 second. It can be seen that. since the
g.

initial _-alue of d(t) is the same for all three cases, fl_e open-loop value of x 1 is largest
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for thesmallest_.iluecf a. Also thecasewith thelargest_=tlueof d(t) (a= 400)has

tile largestralue_ k_. aswouldbeexpected.

Effectc,fAddin_DertvativeControlActionandof U_,t_Inner-Loop

Controll.er Oil Avera,.,_ed.Square Quantities

In .i:) :lltt_t:lpt "o :,111!)rove L:I;OI! tht? sin,dlt2-O_.ltOl'-h)op pI t'Olltl'G I. , tWO ;l.d(litiolla[ (-511-

figurations were m','esti<ated. The first was the addition of derivative .lotion to the

outer-loot) PI controller The :ran_er function for this controller has tile lorm

Kbl(S,b:, , 4- l)(s, b22 4- 1)-- Tile second was an inner-loop Pl control, which us-,s sig-

s(s,'5000_ l)

nal x2, the diffuser exit staticpressure. One reason for considL_'it_use of x2 instead

of x 1 is that x 2 is nearer than x 1 to the point at which the disturtxtnce enters. Thus

it might be expected that such a c( troller could better respond to a diffuser exit dis-

turbance. In figure 8 both of these controllers are comt)ared with tile outer-loop PI con-

troller for q2 designs of the reference case. The outer-loop PI and PID controllers

e.xhibit verysimilar(_l)N a_ainst (._I)N characteristics. Figure8(a) showsthePlD

controller is able m reduce (X2)N over that of the PI controller only at large _-alues of

(,k_)N. ThL inner_loop Pl control is not as effective in reducing (x21)N aseitheroi the

other controllers, except at low ,..'nines of kx 1 N" Although there is less phase lag. in the

loop bcrween x 2 and d than between x 1 and d (see table I); there is also less g-ain.

Consequently, file signal-to-noise ratio at the input to the inner-loop controller (H2(s))

is less than for the outer-loop controller. It is believed that this poorer signal-to-noise

ratio accounts for the ineffectiveness of the inner-loop control. It can be noted in fig-

ures 8(b, and (c, t,_at (J)l',I and (_'2")I',1 are essentially identical for the outer-loop PI

and PID controllers. Thus, the added complexity of the PID controller hardly seems.__

warranted. Aiso, the inner-loop PI controller has poorer performance in terms of X_

- 9)
and x_, and also in terms of N or N"

SUMMARY OF RESULTS

This report has demonstrated the use of parameter optimization tecimiques in the

design of controllers :or a supersonic inlet. The basic problem formulation allows the

17



disturbance to be described as a deterministic signal but includes measurements which

are corrupted with random noise. The controller design problem was set up as a param-

eter optimization problem in tiletime domain but was solved in the frequency domain.

A modified conjugate gradient algorithm was used to compute the optimum controller

parameters. Control effectiveness was ex_luated in terms of av,_rage square _lucs of

output, output rate, control, and control rate, and also in terms of frequency respon-

ses. In applying the method to the inlet, it was found that, of the controllers investi-

gated, l_ro0o_'tional-pius-integr;tl (Pl) control using throat exit static t_ressurc :'eedhack

was most effective. A proportiot_tl-plus-lntcgral plus-derix_ttive (PID) controller

showed onl_v marginal improvement over the Plcontrol. A Pl controller using diffuser

exit static pressure was i,fferior due to signal-to-noise problems. Also investigated was

the effect or disturbance dynamic characteristics on controller performance.

Lewis Research Center,

National Aeronautics and Space Ach'ninistration,

Cleveland, Ohio, July 2, 1974,

501 -_4.
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• APPENDIX A

A

&

b

i) 1

b2 i

t_3l

b4j

C

C d

Cd_..

C v

Dq

D r

d

i
I
i
|

!

SYMBOLS

9

disturbance amp[:mde, cm"

disturbance Vo le- r:ld sec

controller p,tran:eter vector, mp :', [

-m 1
cuTlll'o[Icr %:ILD r;.td SCC}

controller poles or zeroes, r:td, sc.c

controller damp-rig rat,o

controller natural frequm_cy, rad/sec

total cost function

cost function due to deterministic disturbance

cost function due to deterministic disturbance with upper limit set equal to _:

cost function due to measurement noise

intermediate variable in cost function

intermediate variable in cost function

2
disturbance, cm

F cost functio- integrand or summand
2 7V

Ga actuator transfer function, inlet bypass door actuator, cm .

Gcl plant closed-loop transfer function, inlet throat exit static pressure to diIfuser
exit area disturbance, (N/cm2)/cm2

G1 plant transfer function, inlet diffuser exit pressure to diffuser exit dist,:rbance.
b:/cm2/c m2

G2 plant transfer function, inlet throat exit static pressure to diffuser exit static

pr essure, N/cra2/N/cm2

Hi g,_nerai controller transfer function

H1 outer-loop controller transfer function, V/N/cm 2

H2 inner-loop controller transfer functicn, V/N/era 2

j integer, in eq. (27)

jw Fourier transform _-ariable, rad/sec
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• .. o .

K

m
-. P

m I

m 2

m 3

Nd--

P57

P87

P2j

P3]

ql

q2

r l

r2

s

T

t

u

Ubp

ud

u V

Vq

V r

vI

v 2

x 1

":'2

measurement _,'ain,pressure transducer gain for inlet, V "N/cm 2

integer, number of elements in b_ vector

integer exponent of free s's in controller tr;Lnsfer functions

integer, number of first-order controller factors

integer, number of second-order con troller factors

inte,_,er,number of frequency l_oints in numerical integr._tion
O

_roat exit static pressure, N:'cm-

diffuser exit static pressure. N/era-

transformed l_irameter \,cctor. rap:.. I

integer. _i

integer, ±i

penalty on output in cost function C

penalty on output rate in cost function C

penalty on control in cost function C

penalty on control rate in cost function C

-I
Laplace _,ariable, sec

deterministic' disturbance averaging time, sec

time, sec

actuator output, inlet bypass door area, cm 2

2
bypass door ",tea, cm

component of u due to disturbance

component of u due to measurement noise

intermediate variable in cost function

intermediate variable in cost function

outer-loop measurement noise, noise on throat exit static pressure measure-

merit, N/cm 2

inner-loop measurement noise, noise on diffuser exit static pressure measure-

ment, N/cm 2

plant output, inlet throat exit static pressure, N/cm 2

plant inner-loop variable, inlet diffuser exit static presst, re. N/cm 2
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I

.. , .. • _

" >'Id component of xI

ki_' component ef x I

v dummy variable

due to disturbance

dye to measurement noise

z dummy _<triab!e

•.\ diagonal scaling ':'ansformation matrLx, m P

,_ clement of .\

×mp

r random IIOiSO a;'(_l'a_lll}. _ [hI_.e. 5(-C

O d power spectral density of d, icm2)2/Hz

O power spectral density of u, (cm2)2/rad,"sec
"kl

O v power spectral densRy of Vl and v2, (N/cm2)2/Hz

_xl power spectral density of Xlv, (N/cm2)2/Hz

Oy power spectral density of y

4_z power spectral density of z

frequency, rad/sec

w i frequency at ith data point, rad/sec

Subscripts:

( )N averaged square _alue of, normalized to averaged square value for reference

c.'tsewith rl= r2= q2= 0, a= 40, and T: 1

( )l _tlue at which limit is reached

Superscripts:

T matrix transpose

-I matrix inverse

averaged valc_eof

derivative with respect to time

complex conjugate
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APPENDIXB

COMPUTERPROGRAMS

This appendix describes the FORTRAN IV computer programs which mechanize =.Se

controller parameter optimization. The package consists of a ma".n program, taro su_-

routines, and a block dam subprogram, wrltten for an IBM 369/67 TSS time sharing

computer. The subroutine CCFM conducts the conju_o_e.te gradient search. The sub-

routine CALFG computes the cost function and gradient.

Dimensions

The programs xre dimensioned for a maximum number of frequency points N d of

25 and a maximum number of controller parameters mp of 10. The vectors dimen-

sioned N d are AD, A1, A12, DD, DQ, DR, GA, G1G2, HZ, P1, P12, PD, V, VQ, :_nd

VR. The vectors dimensioned mp are B, G, GS, ID, and Z. Vector H has dimension

2rap and vector W has dimension N d + 1.

Main Program

The main program handles dam and performs preliminary calculations. The cona-

puter variables in the main program are defined in the Main Program Variable List. A

flow chart for the n_tn program is presented in figure 9. The following is a FORTR--_N

listing for the main program:

22

Main Program Listing

t,IhlN PROe,RAI'_ FOP Cn'_TRnLL_.R PA.A.r'_T_R ODTIr_IZATIrl'!
CO::OLE× G1 (25), e.Ir,2(25), GA(25)
O i i,.,_.NSI 0'I .%1(25), AI2 (25),A1')(25), P1 (2S), _12 (25), Pr)(25), D_ (25)
Olt_.qS I O': uZ(25),%'!(26),V(2S),vQ(2S),VR(2S), Dn(25), DR(25)
DIBE"ISIO'.I _(10),n(!0), I_(1_),H(20)
C:OI"t'O'I/CALC/FDo, FVQ, FDR, I:VR,m,l,rile,2,r,h,,._,'/C_,VR, mr), r)R,I_, -

I KI, K2,l'JH1,qH2, I_'!ST, _.H')ATA, K_'IT,CN
COI-:I'ION/FHC/KOU'IT, K_
C.OP.PON/t_LOC_C/HZ,AI ,A12 ,AD,PI,DI2 ,Pn,v ,A,AA ,T ,CAI,r,A12 ,_'Ar),m'K,':p
LO.':,ItAL Kr;.
_XTF..R_'!At K_ LFP,
I'IA_'.'ELICT/']Atq3/h,b.A,,%l,AI2,Ah,HZ,qAI,CA]2,_An, nK, KOR,-

IND, .."1,m12, ._rJ,T, V
NAI'*ELIST /HAr_2/K1,K2,NHI,;IH2,B, ID,LI_41T,C_I,f_2,R1,_2



r.

• . 2't

HRIT=(_,qfil)
gGi F(3nI'AT ( t H'_'_ = (A, AA ' _ 1" _12" ^ n" _'_Z"e'_!" G^ 12 ' e'AI3" r'K' -

IKPR,'_n, PI, pl?, PD,T, v) ', I-
, Na_.2:(KI,K2,_I_],N_,R,I_),LI;'IIT,_I,n2, Rl,I_2)' ,/-

3_' ID=(I=Z;2=G;!;=.;.II_,S=CZD,CZt';6,7"CPn,CP%'!)',/"
I_,' IqST= (I=SFAI_rI", 2=NAH2, 3=_A '3" k==_l ;'T)'"/"

5, _ IE_=(h=C_'IV,I=NhT "C)HV, 2"E_ROp)' )

C =RC)I"I_T..READ ^,.n P_I,'IT H _;''_

qOT !PRIT_CF, n'_n) _'-
q_" FC)Rr'_,T( ' ,!A!'_;? w)

RFhn(5,;IAr'3 )
Ir(K,_R.EQ.I) URIT_(8 .,A_3)

C -gHVER_I"_".S FRr_e' rr, cn RcSP TO CqH°LE X 'Ires
NDATA:'IP

GN=P, AI2
- 90" 110 I=I,'IDAT*,

GI( i):,.;,,1.Ai(i).CEVm (r_.n1.X(_., p1( I}..(I171_53_))
,_IG2(I )=r,AI2*AI2( I)*CE'-X°(Cr'r'LX(r)-,_I-2(I )..0171_533))

_.-!(I)=_Z( I)*ft.2_31R5 I_
Dn( I I:AA**2/(T*(_."( I )*'2+A*'2 ))

I_I qA(1) =P'Y*_;An*An ( I)*e_'X° (C_'nLX (_" 'P'J(I)* "r1171_5_3 ))

i'I(Nr) T̂A .1 )-W( '!haTA )
C opOUPT,REA r) A_D _PI:!T _1_"2

5! fir I TE ( (_, 3b, fl )
3_ FOR _'*_T( _ _I'_H2?I)

REAm (S, NAt'2 )
N='NH1 "tiLl2
V!RIT_k_, 22n) K1,K?,N,I,NH2,LIHIT,nI,_2,RI,f_2,(ID(J),J'I,N)

221 FnR_'AT( ' K1,K2,_HI, NH2,LIMIT'''51_'/'-
1' h.l,q2,R1, R2"_ 1_b'I_10"2'' I_-',201S)

C P.DHPUTE V_RI_RLES _. CheT _'!"1 r'_ _RC '_.T _I1NCTIO_I_; hc B
DO 2111 l=l,tlr)
WH:_.'I(I)*'2
GASq:PC.,%L (RA ( I )*PhNJ P'(P'I_ ( I )))
vq(I ):V( I )*(Q1 ÷H_,'I*C)2).GASQ
VR( I )=V( I)*(R] +''_W*n2)*G_'Sm/m_:AL(P']'P'2(I)*mO'IJq (_'1_2( I}))

nq ( I ):'_ ( I )* (ml +!!_l*n2 )

2_q OR( l)=rlm( I )*(R1 +_';'1. R2) "_A_;Q

e,(3 TO _7
C oRr_Ho T ,_,_In REA_ IHST

777 _'_RI TE (,¢;• 25(_)
2_0 FhRH'_T( ' 1N':;T? ')

READ (5,_2) INST

FORfeiT(11)
GO Tn (28,51,90n,)5),INST

pRI_IT FRCC)HP_PY R_PO'!CF I!EAnlNe

35 HRITE (_,_I)
Fr)RPAT(BX, _HZ _ ,12X, _/Y/_, 7X, _DEG',IIX'REAL IH'_S_)

SIZE...1

EPS-I.E-5
KHT-O
ITEP.I. IHIT*CI-INSTI 1_)
CALL f_qFH( CAt rr',I'l,B' I:"e'"SI ZE" _P$" ITER" IER" _)

C _PI_IT SE ''ne'_ RESULTq
_..IRITE(t_,23n) F, ICR,K,_!T, KOUNT,SIZE'FDQ'FDR'FwO'FVR

23h FhP I_AT( _ F'',1PF16"_'_ IER''' I:_" _ K'IT"KOUNT' SI ZC=' '"

I 215,c-In.3,/, ' FDO,I:'nR'FVQ'I:VR'|'IPI;EI"'3)

_"( (
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87 _,.fRTTrC _, 151) (_(J), !--],.,)

_.n_-.^777
_L]n

A

.-kid

AI " "

AI2

B

CALFG

DD

DQ

DR

EPS

F

FDQ

FDR

........... F,yQ

+ FVR

GA

- - G_kD

: : , GAI
+

GA12

GK

24

Mare Program Varixt,!eList

disturbance time cotl++.:,t;.tt;t,t (input v:trlJHle}

di.-,turbanco pulse :tmplitude Hnl)ut _tr:able)

Ga_J.,.') normalized, vector (input _=trlable)

GI{J_') I normalized, vector (input variable)

GI(J_:) • G2(Jw) [ normalized, vector finput variable)

controller t_trameter b. vector iinput variable). When input:ing, those in

outer-loop controller transfer function H 1 must precede those i:: inner-

loop transfer function H2. Damping retries must precede t._eir natural
frequency terms.

subroutine (declared external in main program) which computes the cost

function and gradient

!d(j_:)i 2, vector

Dq(a:), vector

Dr(w) , vector

l_nrameter change defining searci: convergence, for example, 10 -5

F= C= FDQ+ FDR+ FVQ +FVR, cost function

costs of averaged square output and output rate due to disturbance

costs of averaged square control and control rate due to disturbance

costs of averaged square output and output rate clue to measurement r ,ise

costs of averaged square Control and cortrol rate due to measurement noise

cost :unction (scaled) gradient, vector

Ga(jw) , vector

_.in normalizing AD (input variable)

g-ain normalizing A1 (input variable)

gain normalizing A12 (input variable)

transducer .,._tin K (input variable)



GN

GI

GIG2

It

tIZ

I

ID

IER

INST

ITER

J

KG

KNT

KOUNT

KPi'f "

KI

K2

LIMIT

N NH1 + NH2

GN = GAI2

(3 l(.j_'),- .vector

Gl(Jw)- G2(.i_' ), vector

St01":l_O, vectOr

frequent)" in hertz, vector (input variable_

illdex (:[ (,[cmotlt ill vector, t,lto_eI"

illt_.'_or VOCIOF ',vh_ch !dcutffios col'ro-ql_oI_din:. _ i '-Lr,t:':clt'': ill P, ,t:-; 'o ".:',

(input v;l.riabhQ. I =- zero. 2 = gain. 3 : l)OLc. -'-. - compl(';; _',.':'_) iT,L,: !,:::.:.

5 conlplex zero )_ttur;tl frequonc), 6 = colup',c?: _olc. (I:llP, t)ilI-.", _ = (}::'--

l)le._ pole m_tural frequency.

search convergence parameter. O= convergence :oEPS in LIMIT" l = _.,vl-

vergence toEPS inLLMIT not obtained; 2= prob,_bleerror occurr('d.

l)r;lnchin_ i[_stl'uction ptlr:tmeter (input variable). ] z so[trch for (ll)III;]L:PA:

'2 = retu,'n to NAM2 n; melist; 3 = return to NAM:?, mln:elist; 4 -- priv, t fr,--

quency, system closed-loop frequency response r normalizedl):," GN). a::d

system Nyquist pl0t.

set equal to LIMIT except for INST = 4 case when UFER : 0.

index of element in vector

logical wariable . TRUE. means compute gradient

count of cost function ex-aluations

count of line search iterations

if equal to 1 causes NAM3 x_rktbles to be printed input x_,triable

exponent of free s i,: hi (input x,'arittble)

exponent of free s in }t2 (input _,ariable}

maximum number of iterations (input _'ariable)

ND

NDATA

NH1

NH2

PD

numbel of frequency points over which integratb')n is performed N d

NDATA = ND

number of i_trameters of B in H1 (input _'ariable)

number of lxu-ameters of B in H2 (input _-ariable)

_Oa(jw ) in degrees, vector (inpu " 'e)
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Pl

PI2

QI

Q2

R1

R2

SIZE

T

V

v_

"PR

W

4

._Gl(Jw ) in degrees, vector (input _<triable)

.G1(Jw ) • G2(JW ) in degrees, vector (input _.'ari:tble)

ql (input variable)

q2 (input variable)

r_ (input _-ariable)

r 2 (input _,.nri;tble)

._'_rameter step size; for example, set to 0. i _t start of search

T (input_riable)

:bV(_.,),vector (input _riable)

Vq_ )w , vector

Vr(W), vector

radian frequency _.,, vector

frequency squ'tred

Program Input and Outpu_

The program starts by printing a heading referencing the namelist variables and

variable codes. Then the program prompts for NAM3 namelist data. The aamelist

variables are entered according to the FORTRAN rules for r_'tmelist data. The NAM3

..... va..riables are A, AA, A1, A12, AD, HZ, GA1, GA12, GAD, GK, KPR, ND, PI, P12,

laD. T, and V. Since eight of the variables are vectors, the input could be lengthy.

Thus, an alternative to entering NAM3 data at run time is to use the block data subpro-

gram. The following is a listing of the subprogram for the inlet investigated in the

report:

RLOCK DhTA
COHt'OfI/_LOe.K/HZ,^I, ^12,AD, Pl, P12, PD,V,A, _A,T,e.A1,CA12, _,D,GK, Nr_
_F_L HZ(2S)/.0nl, 1.,3., 7., !n., 1S., 20., 25., _;n.,t_3., 5n., 50., 7n., -

1. _0.,(_0.,10n.,l10.,!2n.,130.,l_0.,150,,30 r).,3.600./
PEAL A1(25)/1., 1., 1.,.997, .027,. R!8,.732,.6k_,.SBS,.hl!, .359,.325,-

1"' : 3! _, .5_7... t_65, .4_6, ._r,, ._07,. _2_, .3_3, .209, .q_2,3*.nOq_/
RCP,L h12(2S)/1.,1.,.qS,.77t_,.6t_7,.671,.F.2._,._O2,.53,._37,.3b,7,.3]5, -

1 .3_, .'_52, .'_1_,. 3_, .299, .2_a, .27, .26,. 2_7, ._12, 3,.,_01_/
PF.AL At)(2S )/1., l.,. nq_, 1., ._96, .993, .997, ._q6,1., 1.n12, !.016,1. _12,-

1 1.nl,'t._ll, ] .nnS, 3.n2k,. '_5h,. q(1R, .782,. _,_q, .609,. 051,3.. _06_/
• REAL Ol(25)/r/.,-!.,-R.,-_.,=2R.,-59.,-aG.,-Sl.,-SR.,-F"_.,-F2.,-55.,"
I ' -kg.,-SS.,-65.,-'_h.,-n_.,-lln.,=lPS.,-'IS.,''_.,'lTt*.,_;*'17_./
:P_.,_L P12 (25)/q., -2., -13.,-_,.,-31., -';5., =h_,.,-57., =62. ,-75.,-_7.,'9_., "
1-92.,-105.,-11_., -12R., -? _5., -15_.,-16F,., -172., =1/7., -251.,_*-26_./
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_ -13 -1R. - 7 ,-_..,-u2 -51. -So -

_E_L v (25)/.._t_¢'-5, u-2.4E-5, u. _-5,2,5.7_.-5,7. c-5, r'. ¢'-5, _ ._ E-5, -

D&TA 'In m.AI,_Al 2, .':._,n, gKI23,, nl r,. n2,:_2, "_r,. e,. ".62/
E_;D - .

The NAM3 variables are printed i.f KPR is se, to one. Then the progr_tm. ,..,,-o...m_,','",_ofor

NAM2namel.istdaut. The NAM2 rariablesare B, ID. Ki. K2. LI_{IT, NItl, NH2, Q1,

Q2, RI. and R2. Then the NAM2 _-ariable_ are printed and a prompt for _he IN5"7 varUl-

ble is printed.

The L_ST variable is entered in I1 format. The I_ST code values are 1, 2, 3,

and t. Makix_g LNST = 1 causes a search tot the optimum parameters. .After the search

results are printed, another INST :,tempt is issued. Makin¢ IN,V1"= 2 returns the pro-

....... gram to reques't NAM2. Makir, g iNST = 3 returns the pro;ram to request NAM3. Mak-

ing INST = 4 causes the system frequency response to be 9rinted, The frequency is

printed Under tIZ. The system closed-loop frequency response normalized magn!£ude

is printed :under/Y/and phase in degrees under DEG. The real part of the system

open-loop transfer function is printed under RE AL and the imaginary part under IMAG.

Then the zero iteration search results are printed, and another INST pro:rapt is issued.

Subroutine CALFG(N, 13, F, G)

The purpose of this subroutine is to compute the cost function and Its gradient. The

CALFG program variables are defined in the CALFG Program Variable List. Thuse

..... _vari.able.s in the common blocks and subroutine call are labeled the same as those in the

main program and are not repeated again.

The Data statement iN and RSNAT values are variables in the variable step alze in-

tegration. Smaller step sizes are taken near a system resonance; that is, when the .xl:.

solute value squared of the denominator of the system closed-loop transfer function

[!" + OPEN] 2, is less than RSNAT. The variable IN is the number of subinterrals into

which an interval is divided. Upon detecting a resonance, the program fills in cxtra

- points starting from the previous frequency by linear interpolation, using da_ from the

present and past frequency points. A flow chart of the integration logic for the subrou-

_tine CALFG is given in figure i0.
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FORTR_N Listing of Subrnutine CALFG

....... ?0.

3

R

...... ,I t'

S!,_.rottT ! ':_- __,I. F" ('!, 4,r, r,)
r.¢,,!._!, r v Z( !_),q^ t 25)," I(25),nlr,2(_5)
(._,_l. rv y _r,r.T "I,I'_,_,D_¢'4..'_].I,RI_21,_^I, ,u2_211
n I '"¢'"" j n" 'J( 2_)., V_( 25 ) ,"n ( _5 ) • _n(25'),r_(?_)
nl,,F4q I_,i _g ( 1..I3), I n(_13) , g( _), r (?.)
Cet,,,n_t! C,'_Lr I cnn, rvn, cn_, ='JR, nl, r,! .e.,2,rA +,t?, VO, vrl+, nrl, r',P, I n,.

#_INT; PPOV I ht_

! i'-!,K",'!_'l,'!u_,IC!_T, ,'r'ATA,K'IT'r?;
Cp:,l,n,,l r.,,C/V(_l,,4T, v q

n,_-', qc,i.',T llIl S X,'

: I'll" 1 ,"L I "'T!n'!S
K4T=V"- + 1

q_'IT =. TPUE.

nO 7Ci J-i,"
_(J)-h.
'l!-C_'bl. ;" ( 7_. • il. )
li 7,C,_,pi.X (_., rl. )
_nn-O.

l:t_q,, _,
F'lq- t_.
_.'g-I.!( ! )
I_V'h, I '1
ft.1,/'_L'IP',T(I_'l)

C I lPlrlF"( 1 i:.el_ p,,.,c e, npC_l<l LOC)_ D_,T/_

C "I=(_R I"TER°OLAT !h'l IlCTl.iri:"_l r}OINT _, 14
nO 2_t) I-I,'!nATA

90 InX=InXN
l_O Ri-_LO_Tt Ir_X)"r_

,jI._!(I-I ).RItt+l'/(I ).n!

S=CI_I.X (n., I.'I)
C rlUILr') CD4TRCLIrI_S Ill AND 1-12

...... IF(N?i] ._T.n) H!-S''KI

I r. (tll+_, _T. tI) H2-S**I"2

.. GO 13 ,I-l,q
l_J-ln(J)
gO t'_ (1,I,!,2,10,2,1r)), Ir)d

I ST= (S/B(J) +I • )**( 2- I r_J )
if=(Kg) Z(J)=S/(S+B(J))*( pLnAT(IPJ)-2" )

r.O TC)

ST=(S/r_cJ+I) )*i_.÷_.*S,B(,I)/B(J÷I) ÷I.
IF(."'t3T.KC) C_('1TA or
"'. )-2.*S*R(J)/(B(J+ i)*.(;'r_*(S.-l:LOt, T(InJ))
Z(J+I) =-Z(J)* ( !. +S/(B(,I)*P(,I+ I) ) )
ST=ST*i(5-1DJ)

GO TO 9
St:_CJ)
Zcj_=r._'_l._(l., O. )

!F(J.LE.4_I) HIoH]-ST
ir (J .r.T.'Ju_) H2-H2*ST

Cg'IT t "l_E
cqErK t=('+R Rr_o,,',-rc; Cn_"nIiT: SYST£1' COST_

C_ I=n^ (I -1 ) +I"4IP'+_^ ( ! )'RI
g!l*,_l(I-l)*Rlrl+e'l( ')*r_l
¢_!,R _ t = r;,_.#,2 ( 1 -1 )*RIPq+R_-_2 ( I )*RI

2S

• I



=

O P_.I'l-,",,^ I* (_I I,,H2+_ 1_'!.I*H1 )
IF(IDX.LT.IH) _n "rn 110
IF(ReAl ((1.+OPCN)*rn"Je,(1. ÷npEH)).LT.R_NAT) GO T_, ]2()

"!rq =W(I÷I)
Ir)XN" ll,!
RSHT-. FALSe.

CO Tn II_0
110 _,'/°I"(H( I)*rl nAT (Ir)X+I)+W( I"I)*FLO/_T( IH" InX'1) )*R

nO TO 140
120 I l')V,N= I

IF(R_',T) qr) TO ]30
IF(I._T.2) I'!SS=_'!(I-2)

.... o-_J(1)IF(I I_O 2) t,,,r
CRCT,,-I,÷((b!( I )÷FI, OAT(I N-_ )*H( I -I) ),R-WSS)/(H( I )-I'ISS)

FInrl.i=n n+c p,e..T. P (h_,.!
FVr)- cVO+ r' P,,PT*V q_,"*' !H/_ q
F_R.FnR+ CPCT*.r)R_I*H_''
FVR.FVR+rRr'T.VR!'.HI"_P

DO 125 J=l,_l
125 e,(d) "_ (J) +rf:'CT*_S (,I)

RS._!T=.TRI!E.
e,O Tn qt_

130 HPI-I"( I )* (I.-R) +W( I÷_)*R
lb, O Y=P,I_2 I I (1. +n.PEN)

YY=R cP"L (y, r.n_!jr,(v) ), (Ho 1-,.'S)

u2R21 I =(_1 !-142)/_lP,2 l*M1
hQ!,!,,,(RI.nr,(l )+RtI"I*Dr'(I-I))*YY
VQ_I= (RI*VQ( I)÷RI t_*V?_(I-I) )*YY
VR!'!,,(RI*VD,( I)+RIt'*VR( I-I))*YY
DRtl,,(nl*DR( I )+RIH*DR( I-I))*YY
MM At,--7_EAL(I_I*CON Jn (I_._.)÷H 2 *CON J0,(lt2))
!-vl'i,,R_A I.(,!2n21 I.CO,!,!r,,(H20,211 ))

FOn=Fnr'÷nn_!
FD R" FD R÷ DP,'.!*!'M

I:'VQ,,FV?)+VO_"*'_I_A.r,
FV q,,FVR÷V R_!*,If'At,
IF(.HOT.Kr..) q_) TO 180

C COMPUTE P,R^n.IC'!T
ST" (nr,_,,!+_q,_An,,,,(Vn.'_÷V"'t)+r)R:./.III'), '_ONJ_ (-Y.CA I)+rIP,,!,l.I12_ 2 II

DO IF;0 ,J"1,_
IF(J._Q.1) GF. (ST÷ (Vn!..._÷_'r,".!),HI) *COHJq (H I )
IFCJ.EO.HHI+I) r,F=(ST,rO'!Je(RII/RI_21)+(VOW÷VP._';)*!I2) *C_NJr'(H2)

P,S(J)=P.EAI ( _.,r.O'!,Ir,(Z(J)) )

160 r,(j) =r,(,I)÷," ;_J)

I_0 IC(II'IST.LT._) Gn TO _lq0
C PRIHT SY_Tr-I" F_ErI!'F.._!r:,YR'=SnONSIE'.^N.n ODFN Lrlr_P

lq(_

20_

300

HZ-_._I/6.2 if31.".5h
Yt'^h=C_.RS(YI_N)
nt_?,,ATA._!2(P,IHA_,(y), RFAL (Y) ),,$7.2q578

_,!RI TE (,_, 30_1) HZ, YI"AG, nCG, OftEN
In_-Ir'X*1
HS =_'_I
I_(InX.LE.I'!) _0 Tn 100
CONTI _]IIF
F,. FDn+ FVO+';rlR ÷ F._R
RF.TI'R_!
F_gRI'_T(IPF.If).3,2(SX,2EI0.3))

E'ID

2g



Iftileuser desired to use a sea,'chroutine other than subroutine CGFM, the scaled

gradieut A_TC(b) may not bc desired. In such a case the unsealed gradient may be ob-

tainedby dividiz_gc:kchterm in the gradient vector by its corresponding parameter iu the

b vector.

DEG

DQW

DRW

GF

GS

GII

GIG21

HM

HMAG

H2G211

HZ

HI

H2

I

IDJ

IDX

IDXN

IN

J

OPEN

R, RI, RIM

RSNAT

3O

CALFG Program Variable List

/Gel (joL,)in degrees

partial product

partialproduct

gradient of F

saved gradient partialsum, vector

Gl(JO_) value

GI(J_ ) • G2(J_ ) value

temporary value

temporary value

temporary value H2/G2 + HI

frequency value

H l

H 2

frequency index

ID(J) value

counter for dam insertious

counter value for logic

number of subintervals inserted into an interval near a system resonance;

for example, IN = 3 means each interval is divided into thirds

parameter index

G a. GI(H 2+G2H l)

tempnrary values

condition defining existence of system resonance for I l + OPEN 19.i RSNAT,

that is, for RSNAT = 0.5. The closed-loop frequency response magnitude

is [.I. 42 = (I/_/'6-.'5) times its open-loop-_lua,



RSN._T

S

ST

VQW

VRW

W!

WP 1

\VS

WSS

Y

YMAG

YY

Z

tonlpor.lry logic; true : resonance

s

Iompor.lry ul.luo

intermediate product

intermediate l)roduct

next frcqroncy

saved WI

saved WS

Gel (J-':)

iGct (i_')'_, C,AI2

partial product

l_trtial product in controller gradient, vector

Subroutine CGFM(CALFG. N, B. F. G. SIZE. EPS, ITER. IER. It)

The purpose of Subroutine CGFM is to perform the conjugate gradient search func-

tion minimization. Several nonstandard modifications relative to the conjugate gradient

search described in reference 6 exist in the CGFM subroutine. The gradient is the

scaled gradient .\_'C(I_))and every iteration updated b Ixlrameters change lhe scaled

coordinate system. - T!fis :si,n.plffiescalculations somewhat but viola',cs theoretical con-

ver_ence argun)ents for quadratic sosts. However, a_vay from 0_e minimum point,

C(b) may be quite nonquadratic; and around the minimum, changes in scaling, are gener-

ally small. This, it is believed, accounts for the decreased convergence times obtained

using the scaling modi/icationo Another nonstandard modification to the search is that

the signs of the parameters l) are not allowed to change during the search. This pre-

vents formation of an unstable controller during the search.

The CGFM pr_4ram _ariables are defined in the CGFM Program Variable L_st.

Variables carried over tn the common block and subroutine call are labeled the same as

those described in t.he:m#i_n program and arc net repeated again• Fig'are II is a flow

chart of CGFM.

• . . , . •
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FORTRAN Listing of Subroutine CGFM
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I_'(L.LT,15) _O TO 100
IER=2
Gn TO 40

C FIT AUAnR/_TIP CtlRVE TO "_
140 DO 148 J=I,N

147
148
C

PT,_. BRACKETINP I INF

JHIJ÷_'!
R.I,,H(J)

R31B(J)
IFCL.nT. _j) RI=RI.CR2-R1)I_TEP
XI,,(FSS-F$)*(R1-R3)
X2,, (I:._S-I:) • (R2-R1)
II:(ABf;(R2-R3).P.T._.P_/4.) e,O TO 147
I F (L.P,T. t) B(J)=R2
GO TO 148
B(J),, (YI,(RI+RS)+X2*(RI+R2))/((Xl÷X2)*2. )
IF(B(J)*H(J).LE.0.) B(J) --. I*B(J) +EP._*R5

uPnATE SE/_RCH VARIABLE. e.
SI ZI:.=SI ZF* (FLOAT(L) +2.)/4.
KOUHT,=KOUNT+I
IF(NCYC.GT.'q) C,O TO 5
GO Th 15

150 SCASV" SCALE
SCALF.= SP./_.LE/(I•+_TEP)
K= K+I
SI Z_.= SIZE/(I.+¢T_:)
no TO 100

l<;h SiZe= SIZF/(1.+STE_)
DO 180 J=l,_l

180 B(J)=H(J)
GO Tn 5
ENn

SEARRH r'Ir_.

CGFM Program Variable List

BETA

FS

FSS

J

JN

K

L

NCYC

R1,R2,R3

SCALE

conjugate direction weighting

saved F

saved FS

parameter index

J+N

indicator for step size reductions

number step size increases within iteration

number of iterations before restarting conjugate search

terms in quadratic curve fit

step size scale factor

33



SCASV

STEP

TSAVE

TSQ1R

Xl,X2

s:tvcd SCALE

stcp sizc

savcd TSQR

squ:trcd gradiotlt terms sum

partial product

34



APPENDIX C

a

SAMPLE PROBLEM

A sample problem, using the inletdata from table I,

computer terminal printout of the problem solution:

2
3
4
5
6
7*
8
9*

I0"
11
12
13
14
15"
16
17
18
19
20*
21
22
23
24
25
26
27
28
2g
3O
31
32
33
34
35
36
37
38
39
4O
41
42
43
44
45
46
47

is presented. The following is

HAV3= (A, h_, AI, A! 2,AD,,47.,G^I, _] 2,qAn, qK, KPR, _n,_!' p_2'°D'T'")
NAV.2=CKI,K2,Hu_,oI,'2 B, In,tt"IT,Ol,n2,P],q2)

ID: (I=Z; 2:_; _:P; I_,5:CZn, PZ!.:;6,7:C DD, Cm.;)
I':_T:(I,,SEARC'!,_.,=q_f'2,3"t'IAH3, h=PR I'"i")
IrR=(n=CONV,I-"HOT e.nqv,_.,,ERRnr_)

'IAH,3?
&n am._ .%end

NAH2?
•%nam2 kl..l,nh.1.=2,h=!n,l_O0_,]'_--2,1,] Imlt=5n,

ql=l,U2=. 0001, ri,,0,r2=n, k2,,t_,nh_..n _,en4
KI, K2, _.!,l,,lu2,LIH IT., -I 0 9. o 5(%
QI,02, RI, R2" l.noF 0O I...,0F-nI_ n.nn n.no I ",, 2 1
B= I.QoooF nl !.nono= n_

I'IST?

F,, 5.1190!510E-01 faR= fl KNT, KOIINT,S 17E" 102
F30,FDR,FVQ, FVP= 2._84E-Q1 r).onn 2.35_E-f12 n. Oqn
B= k.7216£ 01 I._O5_E f12
I':ST?

HZ
I._00_.-03
1.000_ O0
._.C)00E 00
7. _OflE flO
l.nflOE 01
I.500 _ Ol
2. 000_ Ol
2. SOOE Ol
3.O_OE Ol
i_.OOqE Ol
5. oOOE nl
6. OOO _ Ol
7.qO0 = Ol
S.90flE Ol
o.O00E O_
I. _.OOE 02
I.lO0_ 02
_I..2,10_ 02
1.300_ 02
l._O_r 02
I.SOOF 02
3. nO0_ 02
6, oOOE 02
I:- 5.11nfllSlOF-O! IFR" .! KI4T,KOIIHT,_IZF"
_nn.,_nR,FVq, F"P" 2.8'_'q] O.O00 2.359.r-02
n.. _.7216 _ ",I 1.3056r 02

IYi D_c.,

I._06E-0.I. 7.Rshr O1
5.1].]._.-015.b,77_ 03
7,b,_.qE-O1 1.2_,RF Ol
7.295_-01-fi. ).P,IE O0
7. 023E-q1-!.75n_' ql
fi.732r..01.3.qhT_ hi.
O. c,,7].E. Oi-u,.C,l1_ ql.
5.RGhE.ql-5.%sor Ol
b,. o71_E.01.-7. h!'&C _
3._3OF.ql-O.hRqC _I
3.h25_-qI-R._PGF nl.
3._8t_.01-9. !65 _ _I

3._In_-ql-] 922 = t_2

_.n7s¢.nl-1 I_ql_ o_

2.5_5_-qI-? _7qF ,')2
2.1t_,SF-Ol-_ . 72oF q2
_.!8",_-nl-3 ,"71 = _2
1.20_-n2 3.nq_. n2

R_._I IH^e
2,62nE.O1-5.h6_. 03

.1 .,__ E.N.I..5, hG7 = nO
_2.n67_.01.i.72_ nO
.!._qOE-Ol-6. !b,5_-O]-
-I .x2]_-_1-%. "oSF'hl

-1. oGOE-O].'! •"_22 _-'_l

,n. hFl_r..-O2-X. "_'_9c-h2
_S, 522c-n2-..1 , R.'I_r-q2

-q.26hr-n2 2.75_ _-q_
.r,._Rsr.n2 5..__9E-n2
.t,.n_t+r-n2 7._._f",c"n)-
9.._rn_-03 7.G27F-n2

I$. I_RF':-h_ !.5 nl_r'h2
_.o27r.02 1. I_12I:-q3

.o ._nfir-n5-1 ._-n_

._ .q._=-Ofi -° .n75_-07
I. N ".flqne'q]

n.t_On

*User input. 35



Responses in c,apit:tl letters are [}rograrn output (43 lines), and lowor c'as, ' letters arc

user input (5 starred lines). The line numlmrstothelc'ft of _,ach liiwwc'readded fro" dis-

cussion purpo.svs. The listil.,_ shows the problen_ of optimizing a lwo-l)aran]_t( _r control-

ler for a given cost fun('tion. The controllc, r was a single-loop t)roporlion_Li plus integral

conq roller with the form H2(s) = 0 and Hl(S)/K--bl(S/b21 + 1)/s-- (bl/S) 4 (hi/b21).

-The cost function was C = x_ + 0. 0001 x . It penalizes system output and outl)ut rale

but not control or control rate.
Lines 1 to 5 were printed by the computer after the user called the program. These

lines list the NAM3 and NAM2 x_,triables and l_trameters ID, INST, and IER. At line 6,

the computer prompted for NAM3 _melist. In line 7 the user signed in and out of the

namelist without updating any values from the block data subprogram. Since KPR { 1.

there is no print of the NAM3 variables. In line 8 the computer prompted for NAM2. In

lines 9 and 10 the user supplied NAM2 input. The initial parameter estimates were

b I = 10 and b21 = 1000. The transducer gain K is part of the NAM3 input and not in-

put here. In lines 11 to 13, the computer outputed the updated NAM2 values, and in

line 14 it prompted for an INST input.

In line 15 the user entered a 1 to search for the optimum controller parameters.

Lines 16 to 18 list the search results. The cost function F was 0.3119. IER = 0
. veri-

meant that the (.caledj parameters were changing less than EPS (I.E 5)as can be

fled noting that SIZE was i.39 E-b. The iterationline search count I_OUNT was 24. and

the number of cost function evaluations KNT was 102. The ql and q2 costs due to the

disturbance, FDQ, was 0.2884 and due to the noise, FVQ, was 0.0235. FDR and FVR

costs were zero because rI and r2 were zero. The optimum parameters b I = 47

and b21 = 131 were returned.
At line 19 the computer prompted for another INST input. The user input INST = 4

in line20, which directed the program to display the system frequency response.

Line 21 contains the column headings for the data given in lines 22 to 44. The firstfre-

quency was made 0.001 instead of zero (inNAM3) because Hl(S) would be infiniteat

zero. A system stability spot check can be performed using the Nyquist criteria and the

open-loop REAL and IMAG data by reading the IMAG column until a sign change occurs

in which the REAL part is negative (between IMAG = -0. 0056 and +0. 028). A stability

check is that the REAL part is greater than -1.0:-0.09 is. A complete test may not al-

ways be so simple but for this problem the response sin.ply spirals into zero.

Lines 45 to 47 repeat the list of costs and search parameters, and at line 48 the

computer prompted for another INST input.

This example problem is also used to study convergence and parameter scaling. In

figure 12 the cost function contours are plotledas functions of b I and b21. The con-

tours form an elongated v'alleymore sensitive to b I than to I)21 and thus not well

scaled away from the minimum. The search trajectory starting at (10.I0 000) isalso
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shown. The search run in figure 12 took 3.5 seconds ¢,entr'tl proct, ssor unit timu o,_ the

IBM 300/67 TSS. The same prol)lcm w:ts rum USill! r, it stAtnd;tl'd conjugate _radieul search

for two different but const;tllt settling rules. Oil(' rule sc_th'd th(' l_tramot¢'rs by their

initial estimates (10, 10 000). The problem ran [tl_(Jul th(, s;tm¢, time, but it ¢,ol_v¢:rg¢'(t tcJ

g. slightly less accurate, F = 0. 3121 instead of 0.311.q. Tim otlmr rule was to s_tlo t.]1(,

i_tramctcrs nca.r the solution (40,130). In thi,_ uasc thcs2arch could not a(Iv_tucc signlft-

c,'tt_tly from the initial point for b12 which remained at 10 000 while b I moved to 46.
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Figure 3. - Inlet control system block diagram.
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