

CONTROL SYSTEMS DEVELOPMENT DIVISION

INTERNAL NOTE 74-EG-13

FINAL PEPORT

IN-LINE TASK 57 - COMPONENT EVALUATION

> National Aeronautics and Space Administration LYNDON B. JOHNSON SPACE CENTER Houston, Texas
> March 1974

COATHOL SESTEAS DEVELOPMEET DIVISTON
 InTERTAL HOTE 74-BG-13

FILAL REPORT

mindife Task 5i -- conpolezt enaldation

PREPPARED BY

APPROVED BY

Power Distribution and Control Branch

national abronautics and space admantstration
LYNDON B. JOHNSOS SPACE CENTER houston, texas
March 1974

TABLE OF CORTEMS

SECTIO
 PAGE

1.0 IfTRODUCTIUN 1
1.1 BACKGROTEID 1
1.2 OBJECTIVE 2
1.3 SCHEDUKE 2
2.0 CONPOREAT SELECTIUN 3
2.1 SELDCTIOR CRLTERIA z
2.E. 1 SHUTHE REAUIREIEATS 3
2.1.2 FEASIBILITT/AVAILABIIITY OP HARDNARE 4
2.2 COMPOMETT LIST 5
2.2.1 REAOTE CONTROL CIRCUIT BPEAKERS 6
2.2.2 SEPOTE PCWER CORTROLLERS 7
2.2.3 PANET MOUNTED SNITCHES 8
2.2.4 POWER GORTMCIORS 8
3.0 ACNIVIIT ε
3.1 EVALILATION APPROACH 8
3.2 ACTIVITY STATUS 10
3.2.1 RCCB EVALUATION STATUS 11
3.2.1.1 ELECTRICAL CHARACTERISTICS 12
3.2.1.2 SPACE SIMULATION TES'1 13
3.2.1.3 ACCELERATION TEST 13
3.2.1.4 VIBRAFION TEST 14
SECTIOA PAGE
3.2 .1 .5 Conclusions 15
3.2.2 TOGGLE SHITCE EVAUUATION STATVE 16
3.2.2.1 NILHS-3950 TOCGLE SHITCH TESTIFG 19
3.2.2.1.1 SPACE SIITLATICI TESI 19
3.2.2.1.2 ACCETERATIOTI TEST 19
3.2.2.1.3 VIBRATIOMT TEST 20
3.2.2.1.4 couclusions 20
3.2.2.2 TEXAS IISTRLIGITS AND EDISOA ETECTRONICS TOCGLE SWITCH TESTIIIG 20
3.2.2.2.1 VIBRATION TEST 20
3.2.2.2.2 concuusions 21
3.2.3 RPC EVALUATIOA STATUS 22
3.2.3.1 EVALDATIOM TESTHIG OF SCI 10 I RPC's 23
3.2.3.1.1 ELECTRICAL CHARACHERISTICS E3
3.2.3.1.2 HIGH-LON TEPPERAIURE TEST 25
3.2.3.1.3 SHOCK TEST 206
3.2.3.1.4 ACCETKRATIOR TES' 26
3.2.3.1.5 VIBRAIION TEST 26
3.2.3.1.6 LIFE CYCLE MEST 21
3.2.3.1.7 CONCLUSIONS 27
3.2.3.2 EVALJATIOR TESTING OF TEHEDVINE MODEL N0. 673-1000X ?PC's $2 \bar{i}$
3.2.3.2.1 ELECTRICAL CHARACTGERISTICS 2

TABLE OP COATEEISS

(Contimued)
SECTIOA PAGE
3.2.3.3 ETALIUATIO TESTITG OF KARTMAR COIFACTOHS 29
3.2.3.3.1 ELECTRICAL CODNECTORS 30
3.2.3.3.2 LIFE CYCLE TKST 30
3.2.3.3.3 ACCELERATIO: TEST 31
3.2.3.3.4 SHOCK TEST 32
3.2.3.3.5 VIBRATIOI TESSI 32
3.2.3.3.6 cONCLUSIOAS 33
3.3 TASK 58 STRPARI 33
3.4 PLATISED ACHIVITIES: 34
TARLE I TEST CRITERIA FOR COMPORETT ENVIRONETTAL TESTITG 35
FIGURE 1 SCI 10 I RPC 37
FIGURE 2 TELEDYNE 2 TERMITIAL COATIROLUFR 38
APPEIDIX A REYOTE CGITROL CIRCUIT BREAKER TEST REPORT A-1
APPERIX B TOGGIE SWITCH TEST REPORTS B-1
APPENDIX C FITAL REPORT FOR SOLTD-STATE SWITCH PANEL C-1
APPENDIX D TEIEDYNE FINAL, REPORT FOR CONIRACT RLAS 9-12914, SOLID STATE POWER CONHROLIERS D-1

1.0 ITMRODUCTIOE

1.1 RACSCROUND

Task 57 - Component Evaluation wis perforsed by JSC to determine the applicability of off-the-shelf devices in the Space Shuttle porer distribution and contral systen. Detailed selection of the test requirements and candidate devices to be considered in this progran was estailished in an agreement between JSC and Rockwell Space Division.

- The Rockvell Space Division power distribution and control systen baseline configuration included power switching components which have not been evaluated for space application.
- The detailed characteristics of the proposed switching devices vere not well enough defined to deternine interfacing requirements.
- JSC had been in the past and was currently involved in developmental programs aimea at providing improved spacecraft sritching devices.
- JSC had the technical expertise and the laboratory facilities to accomplish the task.
- JSC had already invested 6 Civil Service man-months, 6 support contractor man-months, and $\$ 160,000$ in programs that would contribute directly to this effort.

1.2 OBJECTIVE

The objective of Task 5 i was for JSC to perform desiga analysis, tests, and evaluation of selected pover switching components to determine the posijole applicability of off-the-shelf hardware to Shuttle, and to evaluate the various characteristics available in those devices to determine the most desireble characteristics for the Space Shuttle.

1.3 SCHEDU.S

On April li, i\%3, JSC subinted a program schedule of major milestones for Task 57 in an effort to assure that the progran objectives would be effectively met. The milestones were discussed and mutually agreed upan by the cognizant HASA and Rockwell managers for WBS 1.3.4.6. Dae to hardware delivery delays by component suppliers, some of the original milestones could not be met. These milestones were amended by mutual agreement of the WBS managers with the understanding that the objectives of Task 5 could still be fulfilled.

Due to additional hardware delivery delays by component suppliers, two o: the four RPC (remote power controller) designs originally cited Por evaluation will not have sign:ficant data generated through tests in time to meet the milestones of this task. Iests on these RPC's, as well as evaluation of other hardware as it becomes available to NASA, will be continued at NASA facilities, and data and analysis will be provided to Rockwell to support Shuttle procurement and development activities. The \therefore.nal schedule for Task 57 was as follows:

Requirement	Re ponsibility	$\begin{aligned} & \text { Due } \\ & \text { Date } \end{aligned}$	Actual Daic
Initiate Hardware Procurement and Tests	JSC	10/:2	10/2
Establish Shuttle Bavirsnmental Requirements	Rockwell	2/12	Gpen
Provide Preliminary Test Results	JSC	9/73	$9+3$
Provide Interim Report	JSC	12/73	12/73
Provide Final Report	JSC	3/74	3ヶ4

Preliminary environmental requirements were established by Rockwell in most areas so that testing could progress; hovever, complete requirements deffinition has not been officially provided. Some changes in test requirements were informally requested by Rockrell ongineerins as they became known, and these were iacorporated into the test programs where feasible (see individual test activity section 3.2). The submittal of this Pinal report satisfies the JSC milestones of this task.

2.0 COMPONENT SELECTION

2.1 SELECTION CRITERIA

The components were selected for Task 57 evaluation according to several criteria, the main two criteria being the Shuttle requirements and the feasibility/availability of hardware.

2.1.1 Shuttle Requirements

The Rockwell power distribution and zcntrol system baseine configuration included RPC's, RCCB's (remote control circuit breakers),
and very high current d.c. contactors in addition to the hardware qualified in past programs. RCCB's and high current d.c. contectors are devices that have been used on aircraft programs but never tested for space application. RPC's are essentially a developmental device with no program application history.

The Space Shuttle systems' physical sizes aimost force the distribution system's designer to use remote control switching devices to eliminate many pounds of power distribution wiring. The ever-present overluad protection requirements combined with the desirability of the remote control make the RPC's and RCCB's very attractive potential Space Shuttle hardware. The power profiles for the Space Shuttle presently require d.c. power distribution for 15-20 kilowatts of power, far above past spacecraft levels. D.C. contactors of 500 amps or more will be required to manage the power sources for the Shuttle.

2.1.2 Feasibility/Availability of Harcware

Another factor in the selection of somponents for evaluation was the feasibility/availability of the hardware. JSC had several different designs of RPC's already on contract for developmental projects. It was felt that these units had enough variety in design characteristics to evaluate PPC's without further procurements. RPC's of current ratings higher than 10 anps have been proven feasible by several manufacturers: however, the availabjility of those units wculd be dependent on a significant amount of developtental dollars and so coula not be included in Task 57.

RCCB's have not been epplied in spacecraft systems, tint gre used on several comercial aircraft, making then not only feasible but commersially available off-the-shelf. High current d.c. contactors rated at 500 amps and greater are availabie from some aircraft and ground systems programs; however, no spacecraft experience near these ratings is to be had.

There are no special requirements on Space Shuttle toggle switches that cannot be met by past proven devices. The cost associated with spacecraft developed switches, however, is excessive in comparison to aircraft qualified units; therefore, some MII-S-3950 aircraft type togsle switches were procured for evaluation as a low cost unit. Contamination, contact degradation, ani other probleas present with any electromechanical switch make a solid-state switch very desirable for Shuttle application. A JSC research and development program supplied several versions of solid-state switches for evaluation, and two additional rotary solid-state switches were obtained from an Air Force developmental progrem.

2.2 COMPONENT LIST

Components were selected for evaluation in Task 57 according to the criteria of section 2.1. General descriptions of the selected components are given in the following paragrans. A detailed list of components tc be evaluated in Task 57, including vendor model numbers, is given in section 3.0 - Evaluation Activities.

2.2.1 Remote Control Circuit Breakers

One device sel ected as a prime candidate for use on the Shuttle to meet some of the remote switching and paotection requirements is the RCCB (remote control circuit breaker) as developed for commercial aircraft application. An RCCB is basically a combination of a relay and a circuit breaker, and can operate as either or both. It utilizes coils (intermittent $d u t y$) and contact mechanisms in mich the samp manner as relays and contactors.

RCCB's utilize bimetallic sensing of overloads much the same as thermal circuit breakers. When triggered by movement of the bimetal due to heat genergted ty avercurrent, the appropriate mecharical iatches will trip the RCCB to an open contect por;tion. Electronic circuitry/ components are employed for power supply, coil suppression and logic requirements to obtain proper operation.

The basic operation of the commercially designed RCCB's centers around a single wire, ground switching control line. Utilizing input line power to perform the logic and coil operations, the RCCB controls its contactors such that if the single control wire is grounded, the contacts are closed, and if the control wire is opened, the contacts are opened. While in the closed position, if an overcurrent conditic. exists, the bimetal sensor triggers the trip circuitry to open the contacts. Resetting the RCCB after a trip is accomplished by merely cyclin
the control function off and back on. Details of the designs and operations of RCCB's are given in Cutler-Hawner Bulletin $7204 \mathrm{HB}-1 \mathrm{~A}$, Fshruary 1972, and Texas Instruments Technical Product Specificatior No. 181.

2.2.2 Remote Power Conrollers

For the past 8 to 10 years, designers have worked towards providing a solid-state power control device to replace the conventional electromechanical parts. The culmination of these efforts appears to te the RPC (remote power controlier). This device is a sophisticated power control difice that includes many features over and above the turn-on or off and overload tripping provided by relays and/or circuit breakers. The detailed operating characteristics of the particular RPC's to be evaluated in Task 57 vary from one vendor to another, but all have the same general intent. The RPC is completely solid-state in nature, using no moving contacts. The RPC has a current sensing circuit that feeds into the control circuit to provide overload protection. In a.c. units, the overload protection is simply a turn-off function, whereas the d.c. units generally include a current limiting capabili+y in addition to the turn-off function. The RPC also has an overload "trip" indication circuit that can be used for monitoring and management of the distribution system. Other specific operational characteristics can be determined by the requirements given in the specific design specification for each RPC design.

2.2.3 Panel Mcunted Switches

Design analysis and modifications are a continuing prccess in toggle sritch applicatior, with engineers str: $\because \mathrm{ing}$ for designs, manufacturing processes and sest and inspection proced: n that couid eliminate or minimize problems associated with panel mounted switches. In additson to designs which have been developed for space epplication after unique space problems were experienced, several other designs qualified by aircraft programs have been selected for evaluation mainly as a possible low ccst component. Developmental so.id-state components will be evaluated as they become available.

2.2.4 Power Contactors

A survey r° off-the-shelf hardware capabilities to switch d.c. current:; in excess of 500 amperes indicated very little experience in this area was available. The only candidate off-the-shelf hirh current d.c. device uncovered for evaluation was a Hertman reverse current cutout unit. A nodified isiaton of this unit was procured that included a hermetic seal end overcurrent cutout characteristics.

$$
3.0 \text { AC } \quad \text { ITITY }
$$

3.1 EVALUATION AF PROACH

The general approach for Task 57 component evaluation efforts consi.ts of test requirements establishment, lab test activities, end data aralysis. Establishing the Space Shuttle tesi requirements has proved
to be impossible up to this time. Chsnging aission requirements, mor vehicle and engine characteristics nodifications, as wei as clanges in progras considerations to clace wore erphasis os the influences of =05ic and veight have all contriouted to the problem such that Rockrell nes not prorided firm test requirementr for Shuttle which could be appliei to Fask 57. Por the purpose of obtaining same timely evaluation iata in Task 5, however, ine best available requirements definiwion was pat together fron zochorell data and daza from JSC Mest Divisiow inumsntatios. These test requirements are being used for Task 57 efforti, and will be uplated as actaa? requirements becone kettry CEAined. Fable I lists the requirements as estahlished for Task 57.

Irio activities on any one component do not necessarily involve all 0it the test requirements listed in Table I. The first step for each camonent to be evaluted is an analysis of the component's test history. Hany of the components have kad jocumented test programs rum on them, and these prograns are erulwated against the Shuttle requirements to estahiish a delta test requirement for the individual compcnents. Some Shuttle requirements may te elininated from the Task 57 efforts due to known design characteristics fus a particular comporent, or due to similarity of desigh requirements ingosed by two or mose tesis. The specific test plis for each component for Tast 57 is to be included in the test activity report for that component.

During and ativer the test activities, data analysis is to be performed to determine the dbility of the components to meet the test requirements. The amalysis effort will contain minimal failure analysis, since the puipese of this progran is generally to investigate existing hardrare designs for cheir possible direct applicability.

3.2 ACTIVIAI STAUTS

The basic activities for Task 57 have been corponent selection, tes': requirements definition, hardware procurenent, and labcaratory testing. The foilowinf list gives the vendor's model numbers of the cumpnents selected for evaluation according to the criteria of section 2.1. A status of activities on each componerit is presented in the paragraphs folloring the list.

- Reaote Control Circuit Breakers

Cutler-Hanmer Midel Mc. SA600 BA XIX Al
Texas Instruments Model Ho. 3 RC 1-B
Texas Instruments Model Mo. 4 RC 1-A

- Remote Power Controllers

SCI Electronics Inc. Model Mc. 10 I/1 and 10 I/E
SCI Electronics Inc. RHC's for HAS 8-26082 (no model number)
Teledıne Relays Kodel No. 673-1000X
Leach Corporatiun RPC's for NAS 9-12000 (no medel number)

- Panel Mounted Switches

Cutler-banmer P/5 85Cx Kx
Nicro Stitch $P / \mathbf{H} \times$ THI-x
Edison Electronics P/K 45060-20x
Teras Instruments P/A 1XTsX-X
EDC Model No. S-030-01
Raven Electronies Model Kos. 203A, 203B, 202C
Singer Kearfott Salid State Switches (Kas r 5144)

- Porer Contactor

Hartman Model No. AH-Tll

3.2.1 RCCB Fivaluation Status

RCCB's were privured irion Cutler-fiamer and Texas Instrinents as The inly two manufacturers presentily in production of this family of itardware for comarcial application. The Cutler-Hamer RCCB's are being applied in the DC-10 and Texas Instruments RCCB's are used in the L-1Cll aircraf:. In arder to establish the test requirements for Shuttle evaluation of these aircraft qualified components, the vendor qualification test reports* were compared against the Shuttle requiremants of Pable I. There was an adequate test history to prowide a rasonnale level of confidence in the ability of the RCCB's to meet the , ihutile requirements defined by Table I except for the acceleration, space sinulation and vibration requirements. The actusl test program at JSC was, therefore, limited to those three tests. Detailed test
*Cutler-Hanmer Qualification Keport Number 72-4 and Texas Instruments Qualification Test Report Document No. EX 1130-235.
procedures and data sheets for RCCB testing are inciuded as Apperdix A to this report. Twenty-six ACCB's vere selecter. as eest samples, with samples of both vendors hardirare cuvering the complete range of current ratings available. A sumary of the test results is presented in the Polloring peragraphs.

3.c.1.1 Electrical Characteristies

The tes: samples were tested for perfarronce undex roan ambient conditions against the electrical characteristics requirements as defined by the vendors. This effort consisted of the falloring tests:
a. Insulation Resistance.
b. Dielectric Strength.
e. Contact Voltage Drop.
d. Overload Trip Calibration.
e. Bxternal Sritching.
f. Pushbution Sritching (Texas Instrurents only).
g. External Indication (Awciliary Contacts).
h. Visual Operation Indication.
i. Shock Hazard.
J. Voltage Extreme Operation.
k. Backop Control Operation (Cutler-Hamer only).

The RCCB's all conformed to vendor requirements except for ane Cutler-Hammer 25 amp unit and one Texas Instruments three-phase 10 amp a.c. unit. The Cutler-Hamer mit tripped in 335 seconds under 115%
load, not meetins the reqjirement to carry 115% load for 60 minutes vithout tripping. 111 other characteristics of this wait were within apecificatif pis. A phase of the Texas Instruments unit did not trip within 60 inmentes moder 138% load as required, but all other characteristics if this unit sere within specifications. Several units of both venior:i exilibited case terperatures higher than vendor specifications durinf: ist rlcad operation; however, no electrical characteristic degradatica noted due to this temperature excursion and the units vere retainitit: the test sannie group.

3.2.1.2 Space Simation Test

Twent:-two saples vere subjected to a space simalation test in accor inncte, with the requirements of Table I. Pailure of tro Teras Instraments a.c. units was soted when external switching conld not be performed at. $-34^{\circ} \mathrm{C}$. Ine units could not be switched externally at the complet. or of the test either. Pose test electrical measurements vere made we the remaining RCCB's including contact voltage arop, shock hazard, nd 200% tripping time. Ho changes were noted in the electrical characteristit: .

3.2.1.3 ricceleration Test

Twenty-5wo samples were subjected to an acceleration test in accordance with the lequirem mis of Table I. No failures were incurred and no contact chatter.s observed. No changes in characteristics were noted in pcst • :celeration electrical testing.

3.2.1.4 Vibration Test

Seven suplic? mere subjected to the randon vibration test in accorisnce witi the requirenents of Thble I. The Space Stuttle test philosophy provides a major inpect to vibration test prograns relative to past progrems. The 2-hour per acis test requirements for Shattle hardwere is an order of mgnituie greater then past maned spacecrart requirements. This test requirement not onily invalves a comiderable anount of test tike ana mporer, but also redmees the visibility of hardware performance if failmres do occmr dmping teating. In orier to provide as meaningful a test as possible in the vibration effort, a ission cycling plan vas established by the JSC Test Division per June 27, 1973; newo Kr-031, which provided that vibration testing be conducted in a cyelic maner as foilows: (a) hum one aission sianation in each axis, (b) Ivn five tission dmrations in each axis, (c) run five Iission durations in each axis, (d) rwn ten ission durations in each sods, (e) rom 30 mission cycles in each axis, and (f) conplete the testing with 50 nission cycles in each axis. This plan results in a vibration exposure profile of 101 gission cycles and approximately 2 hours. It is felt thet testing in this method allows a better identification of the capebilities of candidate hardware that may be capable of meetinis tae requirements of the Shuttle program but may require refumbishment plans. This reading of "fatigue" life becomes unnecessary, of course, if no failure or degradation is encountered.

Contact shatter was nonitored for both the min contacts and the andilary contacts during testing. The Cutler-funare mits indicateci no chatter on any circuits except for three isolated instances of single openings. Considering the length of the test, the fact that only single discontimuities vere indicated, and the sensitivity of the moitoring cirenits involved, it is concluded that the Cutler-Fanmer BCCB's can meet the randon vibration requirements of Teble I: The Temas Instrunents FCCB's exhibited randon contact chatter in both the main and anidiay coctacts, with chatter susceptibility increasing as the rission cycles progressed. By completion of the 101 mission cyrcles, two of the three Texas Instruments wits tested exhibited continuous chatter. Other than the chatter indications, it ves detected that the Texas Instruments three-phese mit failed catastrophically in that it conld not be externally operated. Post vibration testing of the electrical characteristics indicated no changes from the normal in any of the other mits.

3.2.1.5 Canclusions

The test history of conercially available RCCB's, combined with the initial results of the JSC test program, indicates very promising "aff-the-shelf" components that may be directly applicable to the Space Shuttle distribution system. The susceptibility to vibration previcusly noted was confined to the Texas Instruments units with the apparent design deficiency probably due to the manual push-button requirement. The pushbutton mechanism on the RCCB can be a useful tool
for laboratory test and possibly for ground maintenance purfoses; however, it has no operational phase advantages and apparently jeoperdizes the structural integrity of the hardware. A requirement for mamal pushbution operation capability is, therefore, not recommended for Space Shuttle hardrare specifications. The failure of the two a.c. umits during space simalation is not considered to be an inherent design deficiency since four other units of essentially the same desigo experienced no degradation moder the same test conditions. No detailed failmre analysis was performed on the two mits for the folloring reasons: (1) the test was successfully completed on four other mits; (2) the vibration sensitivity of this particular hardware design makes serious consideration mlikely, and (3) the physicai configuration of this RCCB design is such that disassembly for failure analysis would be a very difficult and time conspring task. In sumary, it is felt that commercially available RCCB's have demonstrated the ability to meet the Shuttle requirements as defined in Table I as vell as providing a sound electrical component to meet requirements for a remotely operated circuit protaction device.
3.2.2 Toggle Suitch Evaluation Status

Final test activities on toggle switches were limited to consideration of the Cutler-Hammer, Micro Switch, Edison Electronics and Texas 1. truments devices listed in paragraph 3.2.

Review of the hardware and the development and test reports on the EIC Model Mo. 8-000-01 Solid-State Rotary Sritch developed for the AFAPL (Air Force Aero Propulsion Laboratory) led to a decision not to perform further testing CM these units at JSC. Though designed, fabricated, and tested successfully within the bowas of the APAPL progral requirements, these swithees could not be considered as off-the-shelf or modifiable Shuttle hainvare since no design and paciraging considerations were included for active flight environmental requirements. Therefore, no JSC test efforts were expended on this hardware.
:The Singer Kēarfott solid-state switches developed for JSC moder Contract MAS 9-13144 were scheduled for delivery in Octover 1973. Due to componeat parts mavailability for the switch circuits, the Kearfott delivery was slipped to January 19;4. Electrical acceptance tests were yerformed at JSC with miliple failures noted, anging frow out-oftolera:se voltage outputs to completely inoperative switches. Since these switches have not been contractually accepted, and since they are provided in a panel-mounted configuration, no further evaluation can be done prior to repair or replacement. Evaluation wata cannot be provided, therefore, as pant of this report, but will be conveyed to Rockwell as it becomes available. The Singer Kearfott Final Report on this project is included as Appendix C to this report to provide the design and development data available at this time.

The Cutler-Hamer and Micro Switch switches were previously qualified to MII-S-3950 requirements and offered a potential low cost
torgle suitel for shuttle application. In order to establish the test requirements for Shuttle evaluation of these switches, the MII-S-3950 specinications were compared against the Shuttle requirements of Trble I. The MII-S-3950 requirenents are sufficient to prove the capabilities of the switches excent for space simalation, acceleration and random vibration.

After completion of test efforts on the MII-s-3950 toggle suritches, Rocksell informally requested that the randon vibration levels of Table I be changed due to more up-to-iate dynamics data. In response to the Rocknell informal telecon request, the vibration spectrum for testing these switches wes changed from the previcus toggle switch spectrum used (spectrum 1) to the higher levels of spectrum 2. Retest of the MII-S-3950 switches at the higher level was not considered necessary since chatter susceptibility was proven to be excessive even at the Iower levels.

The Edison Electronics and Texas Instruments switches have previously been tested to spacecraft specifications to prove their general capabilities. In order to establish the test requirements for Shuttle evaluation of these switches, the Shuttle requirements of Table I were compared to the specifications of ME45?-0102-X0XX for the Texas Instruments switches and MSFC 40438202 for the Edisoc Electronics switches. Comparisun of these specifications revealed that random vibration was the only area where previous test requirements were insufficient to prove the switches adequate for Smuttle application. Although both

Abstract

types of switches have been tested to comparable energy levels in meeting the given specification requirements for random vibration, it is questionable whether the exposure duration adequately demonstrated reliable switch life for as many as 100 Space Shuttle missions. During previous inhouse testing of the $\mathrm{MH}-\mathrm{S}-3950$ switches, a marked increase in contact chatter was noted after vibration exposure totaling approximately 20 missions per axis. It was, therefore, decided to perform random vibration on both types of switches. Detailed test procedures and data sheets for these tests are included as Appendix B to this report.

3.2.2.1 MII-S-3950 Toggle Switch Testine

3.2.2.1.1 Space Simulation Test

Space simulation tests were performed on samples of both vendors' hardmare covering all available tougle configurations. No hardware failures were noted and post test electrical characteristics indicated no degradation.

3.2.2.1.2 Acceleration Test

Acceleration tests were performed on samples of both vendors' hardware covering all available toggle configurations. No chatter was indicated during testing and post test electrical characteristics indicated no degradation.

3.2.2.1.3 Vibration Test

Dandom vibration tests were performed on samples of both vendors hardwre covering all available toggle configurations. Chatter was netected on every test sawple, wi th chatter frequency ranging from 16 individual indications minimum for single and double pole maintain contacts to continuous shatter for all quadrapole or momentary switches. Post test electrical characteristics indicated no changes for any of the switches.

3.2.2.1.4. Conclusions

These MII qualified switches offer a low cost, off-the-shelf candidate component capable of meeting all of the Shuttle requirements of Table I except for vibration. Although no electrical characteristics rere degraded in the course of the tests, the chatter indications pointed oùt an apparent mechanical degradation that would have to be evaluated for systems criticality before these switches could be considered for Shuttle application.

3.2.2.2 Tecas Instruments and Edison Electronics Toggle Switch Testing

3.2.2.2.1 Vibration Test

Random vibration tests were performed on samples of both vendors hardware covering all evailable toggle configurations. Fifteen of the 24 total samples had no contact chatter indications over the complete

```
vibration duration. Seven samples exhibited discrete chatter indications
of three (3) times or less, and the remaining switch (an Edison Elec- tronics unit) gave a contimuous chatter indication after ten mission cycles. Post test electrical characteristics indicated no significant changes for any of the switches.
```


3.2.2.2.2 Conclusions

Most of the chatter indications recorded for these switches were isolated, discrete indications with no apparent pattern or trend. It was noted during testing that most of the chatter indications occurred on more than one channel simultaneously. Given the transient susceptibility of the chatter detector circuitry, this would indicate that many of the simaltaneous indications were transient responses rather than real maltiple channel chatter indications. Even assuming all indications to be real, it would have to be concluded that these s:ritches performed well enough under the vibration requirements to be considered for off-the-shelf Shuttle hardware with only minimal delta qual tests. With respect to the one Edison Electronics switch that exhibited continuous chatter, preliminary analysis of all of the data available indicates that this was a defective switch rather than a design deficiency. This positi, 1 is strengthened by the good performance of the other switches tested with the same basic design, as well as the perfect performance of another switch of the identical part number The chatter susceptibility of this one switch should not, therefore, distract from

Abstract

the proof of capability of these switches, but rather serve as a data point in establishing minimum vibration test requirements for accebtance testing of toggle switches procured for the Shuttle.

3.2.3 RPC Evaluation Status

Evaluation activities to date on RPC's for Task 57 have been limited to consideration of the SCI devices and the Teledyne Model No. 673-1000X. The Leach RPC's have not been delivered to ISC yet, and no evaluation efforts can be accomplishsd on them in time for this report.

The SCI 10 I RPC" were developed for the Marshall Space Flignt Center in an efiurt to obtain a flight packagea solid-state switching and protection device. No qualification test history was available on this R\&D device, so the full requirements of Table I were considered for evaluation of this device. These devices are environmentally sealed, however, and considering the time and cost involved with the tests concerned with seal capability (such as humidity, salt-fog, etc.), environmental testing of these units was limited to high-low tamperature, acceleration, shock, and vioration. The Teledyne RPC's were developed for JSC in an effort to evaluate some design options which varied from the requirements of the Military Specification for KPC's (MIL-F-81653). No qualification test history was available on this R\&D device, so again the full requirements of Table I were considered for evaluation of this
devic. These devices are he:metically sealed, end for the same reasons as with the SCI 10 I jevices, environmental iesting or these units will be linited to hizi-low temperature, accelerat_on, shock, and vibration.

The SCI 3I RPC's have been developed for the Marshall Space Flight Center as part of the contimuing MSA programe to dev $2 l o p$ fligit capable hardwere. SCI experienced seyeral schedule delays due to redesign effor: and parts delivery from component manfacturers. With ielivery
 been ligited to initigl slectrical testing. All units performed sati sfactarily under normal = srating conditiors, except foi insulation resistance and dielectric streagth. All moits failed to meet the requirements of these tests and it was determined that the potting materigi used by SCI in these units singly cannot meet these requirerents. Further testing will continue at MSEC and data and analysis wil: be provided to Rockwell as it becomes available. It should be noted that these SCI RPC's are considerably larger and heavier than the basic MMI-SPEC sutlines, and that consideration of these units as off-the-shelf units after the MSIC qual program would mean a substantial reight and volume penalty to the us.r.

3.2.3.1 Friluation Testing of SCI 10 I RPC's

3.2.3.1.1 Electrical Characteristics

Using the MII-P-8165z design characteristics and specifications as the baseline for comparison, the SCI 10 I RPC has wany design
differences. These are not to be considered failures, but rather exceptions to the MII-SPER requirements taken by SCI when designing the 10 I device. A mjor exception taken is denoted by the nomenciature of the device; i.e., 10 I literally means wat the instantanenus trip level for these units is 10 times the normal rating wi the device, with trips ai levels lover than 10 I time depenaent on the degree of verload. This gives a trip curve proportional to the tize and overload as approximately an $I^{2} t$ function with t approaching zero as I spiroaches 10. The trip curve for these devices is shom in Figure 1.

Another exception with this design is essentially no delay times in response to turn-on and turn-off signals. Where: the NIH-STEC requires some few ailliseconds of signal application or removal to effect a change of state of the RPC, the 10 I design responds in approximately 2 to 6 microseconds. Comoined with the very clean switching charasteristies of the unit, the fast switching could make this design applicable winere extremely time critical coordination switching is required. This design characteristic, howerer, would apparently make this device more susceptible to interference than a MII-SPEC unit, and EII testing is being performed on these devices. Preliminary results of testing to $\mathrm{VIL}-5 T D-704$ and MIF-STD-6181 indicates no adverse characteristics in these units.

Ansther exception with this design is the lack of isslation between tine control and the output state. The importance of such isolation from a user's s'andpoint mist be assessed once the system application is
defined. Fron the component standpoint, the lack of isalation and the allowed very fast turn-un and twrn-aff times combine to reduce any standby power requiremenis to essentially zero. Inis benefits the user by cutting the ${ }^{[F P}$ state porer dissipation to essentially sero, with leaidage currents of a few incroaperes contributing the only Iosses.

The final two exceptions have negilgible advantages or disadvantages from a compunent strodpoint, and should not affect systems application significantly either. The exceptions are (1) the maxime turn-OFP valtage is 1.0 Vac rather than 2.5 Vac, and (2) the trip indication circuit is designed tc output 5.0 Vac at 1.0 milliarperes insiead of the 10 milliamperes of the XID -SPBC design, therehy requiring the monitoring circuit to provide 5000 chin impedance.

The electrical characteristics of the 10 I mits could be sumerizea as fal ds:

Contact Drop (Rated Load)	-	0.250 Vde
Turn On Voltage (Minimu)	-	3.5 Vde
Turn Off Voltage (Yaximm)	-	1.0 Vde
Control Input Resistance	-	500 Otas
Leasage Current (Maximu)	-	100 Micro
Trip Indication Voltage	-	$\begin{aligned} & \text { 5.0 Vde a } \\ & \text { Killiamps } \end{aligned}$

3.2.3.1.2 High-Low Temperature Test

High-low temperature tests vere performed on the 10 I units of both 1 and 5 amp ratings. Performance characteristics during and after
these tests were well vithin specifications except for leakage current readings of one 5 anp unit during high tenperature operation. The specification requirement for lealoge on 5 and RPC's is 500 mieroams maximu. The average leaknge corrents actoally measured on the 10 I 5 amp units was less than 20 sicroaps. One of the 5 ump mits extibited 400 microams lealage at arient conditions, hovever, and under high terperature $\left(77^{\circ} \mathrm{C}\right)$ this unit had 640 bicroams leakage. Post test measurements were within specifications, but still remined above the mverage

3.2.3.1.3 Shock Test

Shock tests to the ievels of Table I sere performed on the 10 I mits of both 1 and 5 anp ratings. Performance specifications before and after these tests vere vithin lifits.
3.2.3.1.4 :=celeration Test

Acceleration tests to the levels of Table I vere performed on the 10 I wits of both 1 and 5 and ratings. Performance specifications zefore and a-ter these tests were within livits.

3.2.3.1.5 Vibration Test,

Simusoidal and random vibration lests to the levels of Table I were performed ar the 10 I wits of tyth 1 and 5 amp rotings. The RPC's were monitored for changes of state during vibration, with none noted. Post test electrical characteristics indicated no degradation in perPormance.

5.2.3.1.6 Life Cycle Fest

Life cycle testing was performed on 10 I mits of both 1 and 5 arp ratings. These units vere cycled on and off For approximately 500,000 cycles at rated load sith no failures or degradation in performance.

3.2.3.1.7 Conclusions

The characteristics of tre SiI 10 I BPC's have been demunstrated, including the ability to meet Shuttle enviranental requirements. With respect to tais specific piece of harduare, the only anomalies experienced under test were indicated during acceptance type checks that could have weeded out those units before application. This leads to the position that the SCI 10 I RRC appears capable of being qualified to its particular characteristice and that applicetion of the device is mostly dependent on the compatibility of these particular electrical characteristics within the pxoposed system.
3.2.3.2 Bvaluation Testing of Teledyne Model Ho. 673-1000x RPC's

3.2.3.2.1 Electrical Characteristics

The Teledjue RPC's developed under Contract HAS 9-12914 applied the general switching and protection specifications of MIM-P-čió53, but incorporated several major desige options chosen through optimization studies performed by Teledyne. Details of the Teledyne electricai
characterisifics, packaging concepts, ani selection rationale for these characteristics are included in Appandix D, the Teledyne Final Repcri for Contract MAS 9-12914, dated August 30, 1973.

One of the ajjor design varistions chosen by Teledyne was to eliminate the power grownd terninal and malre the RPC a tro texnimai device with reference to the power circuits. The functional circuity for this design is shom in Pigure 2. This design has the advantage that no powrer is taken from the load supply for the switching function. The base drive is essentially indepenient of the load valtage, resulting in the RPC having miform capabilities from 0.5 to 30 volts. The 2 terminal unit, therefore, allows for location of the RPC on either the supply or groumd side of the load voltage. In a MII-P-81655 design, the RPC is linited to the eupply side of the load voltage. A possible disadvantege of the two terminai RRC is that the power for the kase drive must be derived fron the control signal, requiring higher control currents than an equivalent 3 terminal device. This current drain is in the range of 10-25 nilliamperes for 1 and 5 aqpere RPC's, and is only required in the of state, with the ori state requirement being essentially zero. In a syster's application, the end results on overall porer dissipation would depend on the nusiber of units an and OPF for the total mission, with the 2 terminal device looking mose attractive as the number and time of OFP state RPC's increased.

The other major design variation selected by Inledye was to increase the contral valtage level fron 5 valts to 28 valts. This increase makes the EPC less susceptible to noise as well as maning the nornal spacecraft bus pover directiy usable if desired. When combined with the two terninal design, this variation allors less conplex drive circuitry, resulting in component reduction and inherently improved cost, veight, and reliability parsenters.

Actual test efforts on these Teledype units at JSC have been halted due to failures. Fowr d.c. HPC's were delivered by Teledyne, two 5 and and two 1 mp units. Both 1 amp units failed to operate after insulation resistance and dielectric vithstanding strength testing. The two 5 mp units successfolly completed all of the electrical functional tests, but failed upon epplication of negative transients on the contral circuit. The units have been retwrned to Teledyne for analysis and repiacement. Meither the failmre analysis nor the new units have been received as of this uriting. Conpletion of the detailed electrical evaluation and the enviromental testing of the Teledyne units mast of course be delayed until the new units are received. Estimated delivery of the new units is Merch 15, 1974.

3.2.3.3 Evaluation Testing o: Hartman Contactors

High current d.c. contactors were purchased from Hartman for evaluation as modified off-the-shelf candidates for source and bus swit,ching. Testing vas acromplished at Marshall Space Flight Center on Pebruary 8, 19\%4, and the test report is presently being written.

The afficial test report will be provided to Rockuell as soon as it becomes available. A summary of the test efforts is presented in the paragraphs below.

The Hartuan AH7ll contactor procured Por this progran is a modification of the Hartman ATO2AP contactor. The modifications were to change the internal logic package from a reverse current cutout to an oyerload cutout and to incorporate a hcrmetic seal into the unit design. Since th's unit has been listed on the Military Qualified Parts List HU. QPI-C05026(AS)-1, it was deternined that the most objective and cost effective test progran for this hardware should include electrical characteristics, life cycling, acceleration, shock, and randon vibration.

3.2.3.3.1 Electrical Characteristics

Initial electrical characteristics were measured for five contactors including contact resistance, pickup and dropout voltage, coil currents, operation times, voltage drops at various loads, and overload tripout calibration. All wits performed satisfactorily in these initial tests.

3.2.3.3.2 Life Cycle Test

One contactor was exposed to a life cycle test with 50,000 cycles as the design requirement. The unit was loaded at 500 amperes on the main contacts and 5.0 amperes on the auxiliary contacts. The cycle rate was set at twenty (20) cycles per sinute. This unit performed with no discrepancies for 43,217 cycles. The main cantacts failed to
mperste for one cycle at 43,218 and the auniliary contacts failed for one cycle at 43,219 . All functions resumed correct operation through 50,000 cycles. Cycling was continued and the main contacts failed again at 52,509 cycles through 52,582 cycles (contacts remained open for entire period). The main contacts reswed proper operation again at this point and no other failures were noted through 55,211 cycles, at which point the test was stopped. The auxiliary contacts failed to iransfer une more time at 52,584 cycles.

Electrical tests were perforned at the completion of the life cycling and all characteristics were within limits. Sase loose object was noted inside the contactor after the test, with no apparent effect on operating cinaracteristics. This unit will be opened for contact inspection and investigation of the loose object, wi ih findings to be provided in the YSFC official test report.

3.2.3.3.3 Acceleration Test

Acceleration tests were performed on two contactors, monitoring for chatter in excess of 10 microseconds and checking pickup and dropout voltages during test. A variation in pickup voltage was noted during acceleration with the worse case axis moving to greater than 26 volts. Both units indicate transfers (continuous chatter indication) at the maximan g^{\prime} 's imposed (22.5 g 's). Both units operated successfully up to 11.7 g 's in all axes. Post test electrical characteristics indicated no degradation.

3.2.3.3.4 Shock Test

Shock tests were performed or two contactors, manitoring for chatter in excess of 10 microseconds. The shock level used was 30 g peak/half-sine. Both units indicated chatter in the worse case axis and passed in all other axes. Some lower level shocks were performeà in the most critical axis and all contacts passed at 6.5 g 's.

3.2.3.3.5 Vibration Teat

Random vibration tests were rwo on two contactors according to the latest spectrum as provided by Rockwell and JSC Test Division agreement. This spectrum contains a peak excitation of $0.2 \mathrm{~g}^{2} / \mathrm{Hz}$, and imediate continuous chatter was detected for both units at this level. The test level was dropped 10 db ard runs of 1 minute duration were started at this level, increasing 1 db after each run. Auxiliary contacts exibited chatter at every level greater than -9 db , but the main convacts had no chatter prior to the -3 db level. Longer runs were then started at the -4 db level (main zontacts heal passed 1 minute iuns at this level), but both units indicated intemittent chatter at this level. Levels were reduced further for longer runs with maia contact total success (no chatter) achieved on one unit at $-6 \mathrm{db}\left(0.05 \mathrm{~g}^{2} / \mathrm{Hz}\right.$ peak). The second unit experienced intermittent failures at this level on its main contacts. Post test electrical characteristics indicate no degradation other than some changes in trip calibration.

3.2.3.3.6 Conclusions

Although the final test report has not been completed by MSFC, several conclusions may be drawn from the preliminary data reports. A major observation for these tests was the apparent susceptibility of these units to the mechanical requirements as established for the Shuttle. Post. test discussions with Rockwell and JSC Hest Division personnel indicate the acceleration and shock discrepancies may have occurred at levels higher than the present Shut tle requirements. The data mast be evaluated against the present requirements to determine the sompatibility of this hardware in these areas. With respect to random vibration, it is obvious that this hardware is susceptible to chatter at levels considerably lower than Shuttle requirements. Consideration should be given to this point in discussions with potential manufacturers to determine the possibility of vibration isolation mounting of this hardware for Sauttle application.

3.3 TASK 57 SUMVARY

The optimum coupletion of tine objectives of this task has been inhibited due to schedule delays in hardware delivery by venders and lack of firm test requirements definition. These delivery problenis may be an important factor to remember in supplier selection to the degree that considerable weighting should be given to in-house integrated circuit design and manufacturing capabilities, as well as inhouse facilities for production line manufacturing. This consideration,
plus the availability of electronic components, appear to be the most critical delivery factors for remote power contrcllers.

Continued test efforts in those areas impacted by delivery problams will be reported to Rockwell Space Division as information becomes available. With test inputs, this Final Repart, and a continued transfer of requirements and information between the cognizant NASA and Rockwell Space Division personnel, the primary objective of providing full evaluation of available hardrare and design concepts will have been accomplished.

3.4 PLANHED ACIITITIES

Test and evaiuation efforts will be completed on the Hartman contactors and the Teledyne RPi's. Evaluation progress of the other hardware under consideration is contingent upon its delivery. The cognizant Rockwell Spece Division perscnnel will be continuously informed of the status of the deliveries and the test erforts.

TABLE I.

TEST CRITERIA FOR COMPONENT ENYIROMENTAL TESTING

TEST	Procedures And parameters
Humidity	MIL-STD 8108, Meth. 507, Proc. i
Salt.Fog	MIL-STD 810B, Meth. 509, Pruc. 1
Fungus	MIL-STD 810B, Meth. 508, Proc. 1
Sand and Dust	MIL-STD 8108, Meth. 510, Proc. 1 Material - $\mathrm{Si}_{\mathrm{O}}^{2}$ (97-99\%) Concentration - $0.3 \mathrm{gm/cu} . \mathrm{ft}$. Air Vel. - 250-1750 ft/min Amb. Temp. - $23^{\circ} \mathrm{C}-63^{\circ} \mathrm{C}$
Pı essure	Per Shuttle Master Verification Plan, General Approach and Guideline, Vol. I, paragraph 3.5.14 (6)
Altitude	MIL-STD 810B, Meth. 500, Proc. I and II Temp. (Max/Min) - $80^{\circ} \mathrm{C} /-54^{\circ} \mathrm{C}$ Pressure (Max/Min) - 1.0 atm./87.5 Torr
Space Simulation	$\begin{aligned} & \text { MIL-STD 810B, Meth. 517, Proc. II } \\ & \begin{array}{ll} \text { Temp. (Max/Min) } & -80^{\circ} \mathrm{C} /-54^{\circ} \mathrm{C} \\ \text { Pressure } & -3.8 \times 10^{-5} \text { Torr } \end{array} \end{aligned}$

TABLE I.
(continued)

-

FIGURE 1. SCI 10 I RPC

Fig. 2 teledyne 2 terminal controllf.r

APPEIDIX A
REYOTE COIIROL CIRCUIT BREAKE TEST REPORT
LBC Ogel, RIST. A

REMOTE CONTROL CIRCUIT BREAKER EVALUATION TESTING

Prepared By
Lockheed Electronics Company, Inc.
Aerospace Systems Division
Housきon, Texas
Under Contract NAS 9-12200
For
PONER DISTRIBUTION AND CONTROL BRANCH

National Aeromatics and Space Adminiotration

- LYNDON B. JOHNSON SPACE CENTER

Honetom, Texas

September 1973

REMOTE CONTRCL CIRCUIT BREAKER Evaluation testing

PREPARED BY

APPROVED BY

D. E. Labberton, Principal Engineer

Prepared By

Lockheed Electronics Company, Inc.
For
Power Distribution and Control Branch
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
LYNDON B. JOHNSON SPACE CENTER
HOUSTON, TEXAS
September 1973

$$
n 74-35270
$$

Abstract

Engineering evaluation tests were performed on several models/types of Remote Control Circuit Breakers (RCCB) marketed by Cutler-Hamer and Texas Instruments in an attempt to gain some insight into their potential suitability for use on the Space Shuttle vehicle. Tests included the measurement of several electrical and operational performance parameters under laboratory ambient, space simulation, acceleration and vibration environmental conditions. Although some undesirable operation was noted, sufficient manpower and facilities were not available to allow a conprehensive enough test progran to provite the basis for drawing a firm conclusion as to the RCCBs' suitability or unsuitability for the Space Shuttle vehicle. A further obstacle to drawing such a conclusion is the uavailability, at the time this report is being written, of firm environmental specifications for that vehicle.

CONTENTS

Section Page
1.0 INTRODUCTION 1-1
1.1 Purpose 1-1
1.2 RCCB Background 1-1
1.2.1 Cutler-Hamer Models' Characteristics 1-2
1.2.2 Texas Instruments Models' Characteristics 1-4
1.3 Test Progran Sumary 1-6
2.0 REFERENCE DOCUMENTS 2-1
3.0 TEST PROCEDURE 3-1
3.1 Acceptance Tests 3-1
3.1.1 Electrical Characteristics 3-1
3.1.2 Operational Chal acteristics. 3-5
3.2 Qualification Tests 3-8
3.2.1 Space Simulation Test 3-9
3.2.2 Acceleration Test 3-11
3.2.3 Vibration Test 3-11
4.0 TEST RESULTS 4-1
4.1 Acceptance Tests 4-1
4.1.1 Electrical Characteristics 4-1
4.1.2 Operational Characteristics. 4-4
4.2 Qualification Tests 4-7
4.2.1 Space Simulation Test 4-7
Section Page
4.2.2 Acceleration Test 4-8
4.2.3 Vibration Test 4-8
5.0 CONCLUSIONS AND RECOMPENDATIONS 5-1
APPENDIX
A TEST DATA A-1

1.0 INTRODUCTION

1.1 Purpose

The purpose of the Remote Control Circuit Breaker (RCCB) testing discussed in this report bas been to verify.electrical and operational characteristics of RCCB's, manufactured by Cutler-Hammer (C-H) and Texas Instruments (T.I.), as specified by the vendors, and to explore the feasibility of their application in the Space Shuttle vehicle.

1.2 RCCB Background

The Remote Control Circuit Breaker (RCCB) was developed to meet the requirements of power control in super sized jet aircraft. It is an electronically control? d electromechanical device which physically separates the power switching from the switching control. While thi package containing the relay and circuit breaker can be installed close to the power source and/or to the load, the control, i.e., the actuating and resetting functions, can be performed via a single 22 gauge wire from the cockpit or any remote location. RCCS's now available on the market have ratings from 5 to 100 amperes. Some of the most notable characteristics of the units tested are described below. Some of the basic differences between then can be more clearly understood by referring to figures 1 and 2 . Additional particulars and characteristics are shown in reference 1.

The successful application of RCCB's in aircraft introduced them to the space industry. This prompted the
recently initiated and executed test prograin for exploring the RCCB's feasibility for the Space Shuttle.
1.2.1 Cutler-Hamer models' characteristics.- The Cutler-Hamer models can be used alternatively for dc (28 volts) or ac ($155 \mathrm{~V}, 400 \mathrm{~Hz}$ operations). In the latter case they can be interconnected for multiphase operation by utilizing control terminal No. 6 (fig. 1).

The state of the main contacts $\left(A_{1}-A_{2}\right)$ is shown by the indicating terminals $\left(S_{1}, S_{2}\right.$ and $\left.S_{3}\right)$ and by a mechanical FLAG exposing either OPEN cr CLOSED signs.

The remote switch connected to terminal No. 3 controls the main contacts if the primary power source is connected to A_{1} or if any suitable power source is connected to terminal No. 4, referred to as Backup Power. Thus, if power is inadvertantly lost from A_{1}, terminal No. 4 can be attached to a power source and the main contacts can be opened by operating the remote switch. In this way, shock hazard (the time delay from commanding the circuit to open until the output power terminal is actually disconnected from the source terminal) is eliminated. Because these RCCB's normally derive their actuating power from the primary power source, opening the remote control switch after loss of power to terminal A_{1} would not cause the RCCB's main power contacts to open. Thus, if primary power to A_{1} was restored, the load terminal, A_{2}, would be energized for the short but finite time required for the RCCB to actuate even though the remote-control switch had been opened prior to restoration of the primary power. Providing the RCCB
A. de or single phase operation

B. MULTIPHASE OPERATION

NOTE:
electronic counter for measurement of jhock-hazard
duration and tripping-time during onerloan operation.

Figure 1. - External wiring diagram of Cutler-Hamner model RCCB's.
with actuating power via terminal No. 4 provides the means of preventing this temporary energizing of A_{2}.

Terminals No. 6, for multiphase operation, and No. 4, for Backup Power, are unique features of the C-H models not available in Texas Instruments units.

1.2.2 Texas Instruments models' characteristicj.Texas Instruments provides two models of RCCBs, one for dc (28 V) and another for ac ($115 \mathrm{~V}, 400 \mathrm{~Hz}$) applications. Both models have a Push Button arrangement not available in C-H models. The ac models are assembled for 3 -phase operation (fig. 2).

The state of the main contacts ($A_{1}-A_{2}$) is shown by the indicating contacts $\left(S_{1}, S_{2}\right.$ and $\left.S_{3}\right)$ and by a FlAti, losated beneath the Push Button, which exposes or conceals an ON sign.

The main contacts are controlled by a remote switch connected to terminal No. 3 provided the power source is connected to the line terminal (A, or A_{1}, B_{1}, C_{1}). Actuating the Push Button temporarily overrides the control of the external switch. Its effect is similar to that of a "momentary switch."

When the power source is lost from the line terminal(s) while the remote switch is closed, the shick hazare is eliminated by opening the remote switch and actuating the Push Button (pulling it up) so that the main contacts open.
A. 3RCIB MODEL FOR dc OPERATION

NOTE:
ELECTRONIC COUNTER FOR MEASUREMENT OF SHOCK-HAZARD DURATION AND TRIPPING-TIME DURING OVERLOAD OPERATION.

Figure \therefore. External wiring diagram of Texas Instruments model RCCB.

Because the Push Button is mechanically coupled to the main power contacts, an alternate or back-up power source is not required to open those contacts when primary power is lost, as is the case with the Cutler-Hammer unit, but the capability for remote operation, which is retained by the CutlerHammer unit, is lost.

1.3 Test Program Summary

Becatse of the similarity of environmental paramerers of al*' ${ }^{*}$ ude and high/low temperature tests with space simulation tests and because the vendors' documentation of humidity and shock tests were deemed adequate for purposes of this initial evaluation, the Qualification testing (environmental exposure) was limited to:

- Space Simulazion
- Acceleration
- Vibration

Acceptance testing, the measurement of electrical and operational performance parameters under laboratory ambientenvironment conditions, was ferformed on 305 samples of several models/types from the two vendors. Of these, 26 were exposed to space simulation, 22 to acceleration and 10 to vibration.

In several instances units tested failed to meet the vendors' specifications or did not operate as desired during/after environmental exposure. The results of the tests are summarized in TABLE I.

2.0 REFERENCE DOCUNENTS

1. RCCB-Remote Control Circuit Breaker Bulletin $\mathbf{7 2 0 4} \mathbf{H E}-1 A$ Cutler-Hamer, February 1972.
2. Remote Control Circuit Breaker Technical Produc: Specifications Single Pole Series SM600BA Number 181, CutlerHamer, Milwaikee, Misconsin.
3. Overhaul manual with illustrated parts for Remote Control Circuit Breaker, part no. 3RCIA, 3RCIB, 4RCIA, H.B.47-EG71, December 15, 1971, Texas Instruments, Inc.

3.0 TEST PROCEDURE

All tests were classified into either Acceptance or Qualification tests. The first of these included those measurements intended to verify electrical and operational characteristics of the RCCB's while the second involved exploring their feasibility for application in the Space Shuttle vehicle.

The specific RCCB models (or types) tested and the tests performed on each model are tabulated in Table I. Test instruentation is shown in Table II.

3.3 Acceptance Tests

3.1.1 Electrical characteristics.- The first part of the Acceptance testing consisted of measuring the RCCBs* electrical characteristics--insulation resistance, dielectric strength, and contact voltage drop.

Insulation resistance between the mutually insulated parts of each RCCB, illustrated in figure 3, was measured with the application of 500 voits dc between all possible pairs of these parts on any one RCCB. The mutually insulated parts considered were the RCCB case, mounting base, line terminal (A_{1}, or A_{1}, B_{1}, C_{1} in T.I. ac models) and load terminals $\left(A_{2}\right.$, or A_{2}, B_{2}, C_{2} in T.I. ac models).

Dielectric strength was measured in a manner similar to insulation resistance by measuring the leakage current

TARLE II. - test instrdaientation and facilities

- dc voltmeter, Meston, model 931
(ID: C07820)
- de millivoltmeter, Weston, model 931
(ID: C00228)
- dc Ammeter, Weston, model 931
(ID: C07828)
- Shunt, Meston, $50 \mathrm{mv} / 200$ a
(-)
- dc Microameter, Weston
- model 1011
- ac voltmeter, Weston, model 433
- dc ameter, Meston, model 904
- dc ammeter, Weston, model 904
- dc ammeter, Meston, model 904
(ID: C09879)
- Oscilloscope, Tektronics, RM45A
(ID: NAS3-6438)
- Plug-In, type D, Tektronics
(ID: NAS2-9487)
- Electronic Timer, H.P., model 5243L
- Plug-In, H.P. model 5262A
(ID: NAS3-8612)
- ac-dc nondestructive insulation tester, Telemet Co., Amityville, N.Y. (ID: NAS6-0093)
- Discontinuity Time Monitor, CTL, Fern Park, Fla.
(ID: NAS8-2732)
- Reg. de nower supply, Kepco, model CK 40-0.8
(ID: NAS5-2084)
- Precision dc power supply, Kristie Electric Co.
- Ohmeter, Simarison, model 270
- 3 phase $400 \mathrm{~Hz} 115 \mathrm{~V} / \mathrm{phase}$ power source (wall-plug)

In House

- dc load bank

In House

TABLE II. - TEST INSTRURENTATION AND FACILITIES (Concluded)

- ac luad bank

- Space Simulation Test facility: RCA High Vacuun Chamber (rith accessories)

Temperature monitoring device, Honeywe11, Philadelphia, Pa.

- Acceleration test facility:

Centrifugal Acceleration,
S/X G264A-O, Ser.: 010;
Trio-TEch, Burbank, Calif. (with accesstries)

- Vibratió. test facility:

Ling Eleztronics Vibrator, model 249-2, Ser. 56; X-axis

> Vibrator, model 310, Ser. 20; Y-axis Vibrator, model 310, Ser. 31, 2-axis

Random Analyzer, Ling, model ASDE-80
VTVM, BRUEL and KJAER, model 2416
Accelerometer, Columbia, model 440-1-H

Charge Anplifier, UNHOLZ-DICKIE, Model 8 PMC V

Log Converter, H.P., modei 7562A
(ID: NAS5-16523)
In House
(ID: NAS4-1272)
(ID: NAS6-4453)
(ID: NAS4-5212)
(-)
(ID: NAS7-0775)
(ID: NAS5-2289)
(ID: CD4643)
(1D: CO1374)
(ID: NAS6-1356)
(ID: NAS8-3657)
A. CUTLER-HAMER MODEL

B. TEXAS INSTRUMENTS MODEL FOR de ORERATION.

TEXAS INSTRUNENTS MODEL FOR ac OPERATION.

Figure 3. - Mutually insulated parts of RCCBs for insulation resistence and dielectric strength tests.
between the mutually insulated parts under application of $150 \mathrm{C}, 50 \mathrm{~Hz}$ (for C-H models) or $1250 \mathrm{~V}, 60 \mathrm{~Hz}$ (for T.I. models).

Following the vendors' instructions, terminals Nos. 3 , $4,5,6$, and A_{1} of the $C-H$ models were shorted together during both tests. The ac potential was not applied between the open contacts A_{1} and A_{2} of the T.I. dc models.

Contact voltage drop was measured between the line and the load terminals while passing the rated full-load current (ref. Table I). The test setups are shown in figures 1 and 2.
3.1.2 Operational characteristics.- Operational characteristics of the RCCB's include:
a. Performance of the main power switching, performance of the indicating terminals $\left(S_{1}, S_{2}\right.$, and $\left.S_{3}\right)$ and of the FLAG and duration of shock-hazard before its elimination.
b. Effects of overloads and the extremes of line voltage upon the overall operation.
c. Specific features of Cctler-Hamer' and Texas Instruments' models.

All tests were performed using the test setups shown in figures 1 and 2.

The performance of the main power switching was tested by actuating the remote control switch while power has applied to the line terminal of the RCCB.

The operation of the indicating terminals S_{1}, S_{2}, and S_{3} was checked with an ohmmeter attached alternately to S_{1} and S_{2}, and to S_{1} and $S_{3},\left(S_{1}, S_{2}\right.$, and S_{3} are the three terminals of a SPDT switch with S_{1} being the common terminal.)

The performance oi the FLAG was checked by visual observation.

The shock hazard duration was measured with an electronic counter as follows:

1. The remote control switch was turned $O N$.
2. Power was disconnected from \mathbf{A}_{1}.
3. The remote control switch was turned GFF.
4. Power was reconnected to A_{1}.

The counter was connected to count milliseconds from its internal clock for the period from step 4 until the RCCB automatically disconnected A_{2} from A_{1}.

The overload tripping operation was tested by increasing the load current from rated full-load stepwise to 200, 138, or 115 percent. The tripping time was measured with an electronic col.iter connected to the individual loads. At the end of the 115 -percent overload run, the temperature of the RCCB was measured at the line terminal of the particular sample. While testing T.I. ac models, the overloads were applied consecutively to three individual phases. Due to the limitation of the test facility, no overload tests could be performed on T.I. ac models rated for 35 amp per phase.

Again because of test facility limitations, the tests for effects of extrene line voltages were limited to dc. The test sample was turned $O N$ and the line voltage was first reduced to the specified minimum (18 V for T.I. models, and 21 V for $\mathrm{C}-\mathrm{H}$ models) and then increased to the specified maximum (30.5 volts for T.I. and 32 volts for $C-H$ models). During both extremes, the operation of the main power switching and the duration of shock hazard were measured in the way explained above.

The operation of the Push-Button, a unique feature of T.I. models, was checked on its similarity with the action of a "momentary switch," and on its ability to eliminate the shock-hazard. In the first case the Push-Button was pulled up to interrupt the load current when the sample was turned $O N$ by the remote control switch, or the Push-Button was pressed down to affect the flow of the load current when the sample was OFF. Elimination of the shock-hazard was tested as follows:

1. The remote control switch was turned $O N$.
2. Power was disconnectei from the line terminal.
3. The remote cont $=0 l$ switch was turned $O F F$,
4. The Push-Button was pulled up.
S. Pownt was reconnected to the line terminal.

The duracior, ar firesence, of shock-hazard was checked via an electronic ccunter connected to the load of the particular test sample, as described previously.

Operation of the Backup Power arrangement, available in C-H models, was tested by disconnecting the power source iron terminal A_{1} and attaching it to terminal No. 4. Tic repote control switch was then repeatedly actuated and the state of the main contacts was monitored by the FLAG indication and the indicating terminals S_{1}, S_{2}, and S_{3}. Elimination of the shock-hazard was tested as follows:

1. The remote control switch was turned $O N$.
2. Power was disconnected from terminal A_{1}.
3. The remote control switch was turned OFF.
4. Terminal No. 4 was attached to the power source for a few seconds.
5. Power was reconnected to terminal A_{1} -

Duration of the shock-hazard was measured in the same way as described previously.

The multiphase operation of the $C-H$ models was tested with the setup shown in figure 1 by actuating the remote control switch and by increasing the individual phase loads stepwise from 100 to 200 percent. The individual phase loads were changed sequentially one after another, and the corresponding trip times were measured with the counter.

3.2 Qualification Tests

Facility and manpower availability procluded subjecting all 305 RCCB's to environmental exposure.

Twenty two samples were actually exposed to space simulation--altitude and temperature extremes combined.

Preliminary to this, four additional samples were subjected to an abbreviated temperature extreme cycling at ambient pressure to verify the basic temperature capabilities of the devices.

The same 22 units were exposed to acceleration.

Again because of resource limitations, the total number of RCCB's subjected to vibration was reduced to 10 . of these, three were subjected to a preliminary test to verify the basic mechanical integrety of the devices. The seven others were then subjected to the full duration cyclirg described below.
3.2.1 Space simulation test.- The test was performed with the setup shown in figure 4. The main contacts of one-half of the test samples were open and these of the other half were closed.

Twenty-two test samples were placed in the chamber which was evacuated to $3.8 \times 10^{-5} \mathrm{Torr}$, equivalent to $360,000 \mathrm{ft}$ altitude. The internal temperature of the chamber was kept constant for one hour at each of the following temperatures: $-54^{\circ} \mathrm{C},-34^{\circ} \mathrm{C},+25^{\circ} \mathrm{C},+74^{\circ} \mathrm{C}$, and $+34^{\circ} \mathrm{C}$. During the $-34^{\circ} \mathrm{C}$ and $+74^{\circ} \mathrm{C}$ periods, the samples were subjected to remote $0 N / O F F$ switching, and during the $+25^{\circ} \mathrm{C}$ period, a dielectric strength test was performed on the T.I. models at $500 \mathrm{~V}, 60 \mathrm{~Hz}$ in the way discussed for acceptance tests.

Measurements of contact voltage drop, of shock hazard duration, and of tripping time at 200 percent overload were made after Space Simulation testing.

Figure 4. - Space simulation test setup (wiring diagram)
3.2.2 Acceleration test.- Twenty-two samples, wired as shown in figure 5, were accelerated in both directions along three mutually perpendicular axes. Acceleration of 22.5 G was applied to the RCCB's for 2 minutes with their contacts open and then for 2 minutes with their contacts closed.

The main contacts were controlled by the rush-Buttons in T.I. models and by remote control switches in $\mathrm{C}-\mathrm{H}$ models. The testing was performed at room ambient conditions.

Contact chatter was monitored with a chatter detector (Discontinuity Time Monitor) during each zest run.

Measurement of contact voltage drop, of shock hazard duration and of tripping time at 200 percent overload was made after conclusion of the acceleration test.
3.2.3 Vibration test.- Ten samples were subjected to random vibration with the following spectrum:

10 Hz at $3 \mathrm{mg}^{2} / \mathrm{Hz}$
$10 \mathrm{~Hz}-24 \mathrm{~Hz}$, increas? $12 \mathrm{~dB} /$ octave
$24 \mathrm{~Hz}-160 \mathrm{~Hz}$ at $100 \mathrm{mg}^{2} / \mathrm{Hz}$
$160 \mathrm{~Hz}-2000 \mathrm{~Hz}$ decrease e $6 \mathrm{aB} /$ octave
2000 Hz at $0.65 \mathrm{mg}^{2} / \mathrm{Hz}$

Test Run	Duration	Contacts	Sequence of Axis
1	$2 \mathrm{~min} .20 \sec (2 \mathrm{Mi}-\mathrm{ions})$	(closed)	X, Z, Y
2	$5 \mathrm{~min} .50 \mathrm{sec}(5 \mathrm{Missions})$	(closed)	Y, Z, X
3	$5 \mathrm{~min} .50 \mathrm{sec}(5 \mathrm{Missions})$	(open)	X, Y, Z
4	1. min. $40 \mathrm{sec}(10$ Missions)	(open)	Z, Y, X
5	$35 \mathrm{min}$.0 sec ($30 \mathrm{Missions)}$	(closed)	X, Y,
	$58 \mathrm{~min} .20 \mathrm{sec}(50$ Missions)	(closed)	Z, Y, X

The axes of the test samples are defined in figure i. The test setups are shown in figures 5 (with closed contacts) and 6 (with open contacts). Testing was performed at room ambient conditions.

Chatter of the main contacts and of the indicating contacts, $S_{1}-S_{2}$, was monitored with the chatter detector.

Measurement of contact voltage drop, of shock hazard duration and of tripping time at 200 percent overload was made after conrlusion of the vibration test.

NOTE: ILL LOADS: 1 Nohm
CONIACT CHATTER MIWITOPING DEVICE WAS NOT ISED FOR indicating tirminals $S_{1}-S_{2}$ iuring acreleration test. teXAS INSTRUMESTS MCDELS WERE COTT:AIILD EY PUSH-bUTTC: (P.B.) ONEY.

Figure $5 .-A c c e l e r a t i o n ~ a n d ~ v i b r a t i o n ~ t e s t ~ s e t u p ~(c l o s e d ~ c o n ~ c e s: ~$

Figure 6. - Vibration test setup (open contacts; wiring diagram).

4.0 TEST RESULTS

The results of testing, performed in accordance with the test procedure outlined in the preceeding paragraph, are sumarized in Table I. The test data sheets are in the appendix.

Of the 305 samples on which acceptance tests were performed, 82 did not meet the requirements specified by the vendor. Of those 82 , seven samples failed; i.e., becane totally inoperalire.

Qualification testing was performed on 26 samples, three of which failed during, or as a result of, the environnental exposure.

The list of the failed samples in TABLE III shows the circuastances and symptoms of failures. No failure analysis has been performed.

4.1 Acceptance Tests

4.1.1 Electrical characteristics.- The insulation resistance is specified by the vendor to be a minimu of $50\left(10^{6}\right)$ ohms when measured at 500 Vdc . The minimum insulation resistance was found to be $40\left(10^{9}\right)$ ohms in the T. ac and C-H models and $1.4\left(10^{9}\right)$ ohms in the T.I. dc mow. \therefore.

Dieleccric strength is defined by the vendors in terms of leakage current which is specified as 0.5 mA maximulat at 1500 V rms, 60 Hz for $\mathrm{C}-\mathrm{H}$ models or at 1250 V rms, 60 Hz

TABLE III. - RCCB - FAILURES DURING TESTING

Sample	Time/Cause	Symptons/Effect
T.I. $7.5 \mathrm{ac} ; \mathrm{S} / \mathrm{N} 26887$ (test ${ }^{\text {(36; }}$ 12/9/72)	During 200 percent overload on phase A	Cracking sound and smoke; not operating thereaiter.
$\begin{aligned} & \text { C-H, S/N 8/5 } \\ & \text { (test } 173 ; 1 / 17 / 73 \text {) } \end{aligned}$	During 200 percent overload	Contact chatter; FLASH over when No. 4 terminal was used.
$\begin{aligned} & \text { C-H, } \mathrm{S} / \mathrm{N} 11 / 35 \\ & \text { (test } 137 ; 1 / 26 / 73 \text {) } \end{aligned}$	During 138 percent overload (before 200 percent overload)	400 Hz emanates whenever turned ON with A_{1}, or No. 4 connected to power source.
T.I. $15 \mathrm{dc} ; \mathrm{S} / \mathrm{N} 29055$ (test 167; 2/2/73)	After 115 percent overload (before 138 percent over10ad)	Main contacts OPEN/CLOSE randomly when external switch is used.
$\begin{aligned} & \text { C-H, S/N } 13 / 75 \\ & \text { (test } 215 ; 2 / 9 / 73 \text { j) } \end{aligned}$	Testing operational characteristics, external switch	400 Hz emanates whenever turned ON.
$\begin{aligned} & \mathrm{C}-\mathrm{H}, \mathrm{~S} / \mathrm{N} 11 / 25 \\ & \text { (test } 269 ; 2 / 16 / 73 \text {) } \end{aligned}$	During shock hazard test when attempting to switch the unit	Contact voltage drop -10.0 volts.

TABLE III. - RCCB - FAILURES DURING TESTING (Concluded)

Sample	Time/Cause	Symptoms/Effect
T.I. 10 ac; S/N 26268 (test $30 ; 5 / 29$!?3)	During Space Simulation Test at $-34^{\circ} \mathrm{C}$	Could not be switched externally during and after testing.
T.I. 10 ac; S/N 26317 (test 131 ; 5/29/73)	During Space Simulation Test at $-34^{\circ} \mathrm{C}$	Could not be switched externally during and after testing.
T.I. 7 ac; S/N 30156 (test 301; 6/26/73)	After Vibration Testing.	During post test checking external switch did not operate.
T.I. 10 ac; S/N 26427 (test 31 ; 12/13/72)	After 200 percent overload	External switching does not work.

for T.I. models. T.I. dc models, exhibited 4 to $7 \mu A$, and T.I. ac models 30 to 45 HA leakage current. C-H models had leakage current up to $78 \mu \mathrm{~A}$. Three C-H samples exhibited an exponential increase of leakage current at $800 \mathrm{~V}, 60 \mathrm{~Hz}$, and were defined as faulty.

The maximu contact voltate (CV) drop, specified in reference to current rating* of the samples, was not exceeded.
4.1.2 Operational characteristics.- The FLAG and remote indication (S_{1}, S_{2}, S_{3} terminals) were found correct in all samples.

Remotely controlled switching did not operate properly in two T.I. dc models, which required a minimum load at the A_{2} terminal before switching would occur. One C-H unit failed during ON/OFF switching of the rated load.

Shock hazard duration is specified, for Cutler-Hamer samples only, to be maximum of 12 ms, which was met in all units. One sample failed in the course of this test. Shock hazard duration was 1 to 20 ms in T.I. dc and 35 to 45 ms in T.I. ac samples. It is not specified for Texas Instruments models. Shock hazard could be eliminated in

RATING	SPECIFIED MAXIMUM CV RROP			
5.0 amps	C-H:	0.50	V; T.I.:	0.45
7.5 amps			T.I.:	0.35
10.0 amps	C-H:	0.30	V; T.I.:	0.30
above 10.0 amps	C-H:	0.20	V; T.I.:	0.25

the T.I. models by operating the Push-Button and in the C-H models by utilizing the Back-up Power arrangement (terminal No. 4)

Vendor-specifisd line vc.tage extremes are 18-30.5 Vdc and 95-130 V rms, 400 Hz for T.I. models and 21-32 Vdc and 104-122 V ras, 400 Hz for $\mathrm{C}-\mathrm{H}$ models. Limitations of the test facility dictated that the RCCB's be tested unfer extremes of only the de line voltage. The vendors' specifications were met by all samples except one T.I. dc unit which could not be controlled remotely when the line voltage was 19 volts.

Vendor specifications for overload operation are in terms of tripping time and temperature of the RCCB. At 115 percent overload, the RCCB should not trip within 60 minutes and its t_{1} erature should not exceed $75^{\circ} \mathrm{C}$. At 138 percent overload, the units should trip within 60 minutes. At 200 percent overload the specified tripping time depends on load rating of the unit as follows:

Rating
Specified Tripping Time
5.0 amps C-H unit: $7-40 \mathrm{sec} ; \mathrm{T} . \mathrm{I}$. unit: *
7.5 amps C-H unit: * T.I. unit: $40 \mathrm{sec} \max$
10.0 amps C-H unit: $12-42 \mathrm{sec} ; \mathrm{T} .1$. unit: 42 sec max
15.0 amps C-H unit: \quad; T.I. unit: $55 \mathrm{sec} \max$
20.0 amps C-H unit: $14-47 \mathrm{sec}$; T.I. unit: *
25.0 amps C-H uni": $15-55 \mathrm{sec} ;$ T.I. unit: *

Not available for testing.

Rating

35.0 amps
50.0 amps
75.0 amps
100.0 amps

Specified Tripping Time

C-H unit: $15-55$ sec: T.I. unit: $65 \mathrm{sec} \max$
C-H unit: $13-55$ sec; T.I. unit: 65 sec max
C-H unit: $13-60$ sec: T.I. unit: *
C-H unit: 17-62 sec; T.I. unit:

In the course of testing:

- One C-H sample exceeded the specified maximum tripping time at 200 percent overload, while one $\mathrm{C}-\mathrm{H}$ and two T.I. ac units failed during this test.
- Four C-H and eight j.I. units did not trip within 60 minutes at 138 percent overload, and one C-H sample failed in course of this test.
- Eieven C-H and two T.I. units tripped within 60 minutes at 115 percent overload, and one T.I. sample became inoperative after this test.
- Twerty-six C-H and 16 T.I. samples (of 50 amps and higher current rating) exceeded the temperature limitation at 115 percent overload.

When T.I. ac samples (3 phase) were tested by overloading one phase while the other two phases were not loaded (passing no :urrent), the samples tripped as specified. When the twc other phases were carrying 100 -percent rated loads, overloading of the third phase (200 or 138 percent overload)
*Not available for testing.
caused, in most cases, a tripping off of the over-loaded phase only. This could cause severe problems during actual use of the units.

> Operation of the Push-Button in T.I. models, and of the Back-Up Power feature (applications of No. 4 terminal) in C-H models was found within the vendors' specifications.

Cutler-Hammer models were wired for 3 phase operation and their performance was as specified, i.e., with two phases unloaded, overloading of third phase caused tripping off of all three anits. It was noticed, as in the case of T.I. ac models, that when the two other phases were carrying normal loads, an overlrading of the third phase resulted, in most cases, in tripping off of only the overloaded phase.

4.2 Qualification Tests

Abstract

4.2.1 Space simulation test.- Prior to the space simulation test, two $C-H$ and two T.I. samples were subjected for 3 hours to $+80^{\circ} \mathrm{C}$ temperature at normal atmospheric pressure to explore any detrimental effects upon the RCCB. Checks of cortact voltage drop, shock hazard duration, and tripping time at 200 percent overload, performed after completion of this test, dia not reveal any changes in the characteristics of the test samples.

Twenty-two samples were subjected to space simulation, following the procedure outlined in paragraph 3.2.1. Failure of two T.I. units was noticed when remotely controlled switching could not be performed at $-34^{\circ} \mathrm{C}$. Also, these units could not be switched remotely after completion of

test. Measurement of contact voltage drop, shock hazard duration and tripping time at 200 percent overload on the remaining units thereafter did not show any changes in their characteristics.
4.2.2 Acceleration test.- Twenty-two test samples subjected to acceleration, following the procedure outlined in paragraph 3.2.2, did not exhibit any contact chatter.

No changes in their characteristics were detected in the course of after-test measurement of contact voltage drop, shock hazard duration and tripping time at 200 percent overload.
4.2.3 Vibration test.- Seven samples were subjected to vibration, following the procedure outlined in paragraph 3.2.3, and three units were subiected to preliminary test runs to explore any detrimental effects of this type of vibration upon the RCCB's.

The contact chatter observed during the initial part of testing was found to be caused by faulty cabling and improper test wiring. Both were corrected and testing was resumed.

In general, most contact chatter occurred when the samples were vibrated along the Y -axis (ref. to fig. 7). The chatter was either reduced and/or disappeared during the subsequent vibration along the other axes, or it was sustained and/or enhanced, especially during the long test runs, suggesting a deterioration of the sample's performance.

As can be seen from Table IV, showing the vibration test results in detail, three units (out of 10) did not exhibit any contact chatter. Two units exhibited contact chatter once during the 50 -mission run (Y-axis), and one sample showed contact chatter twice during the 30 -mission run (Z-axis).

Two T.I. dc samples exhibited repeated contact chatter during the 50 -mission run along the Y-axis, while their indicating contacts exhibited chatier also during the 30-mission run along the Y-axis.

In oi e T.I. ac unit (3-phase) centact chatter was observed during the 50 -mission run, but only in two phases. Indicating contacts were not monitored in this unit (preliminary test runs).

In other T.I. ac samples, contact chatter (phase c) started during the 30 -mission run when it was vibrated along the Y and X axes and prevailed until the end of vibration exposure.

During after-test measurement of contact-voltage drop, shock hazard duration and tripping time at 200 percent overload, only one sample showed any changes in characteristics. One T.I. ac unit ($S / N 30156$) could not be controlled remotely and was defined as faulty.
table iv. - rccb - vibration test results (contact chatter) able iv. - rCCB - Vibration test results (CONTACt L.Mater)

APPENDIX

TEST DATA

S.0 CONCLUSIONS AND RECOMMENDATIONS

Abstract

Limitations or available manpower and facilities precluded the performance of sufficient tests to provide the basis for a firm conclusion as to the suitability or unsuitability of these Texas Instruments and Cutler-Hammer RCCB's for use on the Space Shuttle vehicle. A further barrier to making such a conclusion is the unavaisability, at the time this report is being prepared, of firn specifications fer the environmental requirements for the Space Shuttle vehicle. It is, therefore, rec mmended that no such conclusion be drawn until additionai RCCB test data and Space Shuttle specifications are available.

APPENDIX

TEST DATA

APPENRIX - TEST DATA
 RECB-ACCEPTANCE TESTING (Notes)

Notes
[1] All testing performed at room-ambieni condition.
[2] Insulation Resistance measured at 500 Vdc.
(3) Dielectric Stre" ;th measured at 1250 V (60 liz) for Texas Instrument'r models, and at 1500 V (60 Hz) for Cutler-Hammer models.

4] Vendor's Instruction: No ac-potential to be applied between open cantacts $\left(A_{1}-A_{2}\right)$.
[5] Test-unit did not trip-off within 3605 seconds.
[6] OPERATIONAL CHARACTERISTICS:

- Load Control Switch;
- Trip free operation;
- High-low line voltege:

Cutler-Hammer - 122. - 104. V (400 Hz)
32. - 21.V (de)

Texas Instrument - 130. - 95. V (400 kiz)
30.5 - 18. V (de)

- Auxiliary, or indicating terminals' operation;
- Back-up power operation (Cutler-Hamer only);

Push button optation (Texas Instrument only).
[7] 10. amp.-1oad per phase.
[8] High-low line voltage tect not performed.

RCCB-acceptance tastime \mathbb{D} (zase data)

12-13.72

RCCB-ACCEPTANC: TESTINC [] (cest data)

12-20-72

rcca-acceptance testing (T) (teat data)

REPRODUCIBIIITY OF TH:
ORIGINAL PAGE IS POGR
rccb-acceptance testing []] (test data)

rcca-acceptance testing [D] itass data) , 1.17.73

rcce－ar．clptance testing（1）（lase daca）

	$\stackrel{\square}{0}$		\％		\％		${ }^{\circ}$		\％		\％		\％	
	\because		\because		0		？		$\stackrel{-}{-1}$		0		0	
	－		I		\cdots		$\stackrel{\square}{\square}$	1	－		\pm		\therefore	
䜌	5		9		0		E		E		O		0	
$\begin{aligned} & \square \\ & \vdots \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$	$\stackrel{\rightharpoonup}{\square}$		$\frac{0}{2}$		$\left\|\begin{array}{c} 0 \\ \dot{i} \end{array}\right\|$		$\begin{aligned} & 0 \\ & \dot{0} \\ & \mathbf{y} \end{aligned}$		$\stackrel{\text {－}}{ \pm}$		－		i	
	\because		$\stackrel{3}{\square}$		\pm		－		\because		$\stackrel{\circ}{\square}$		안	
	$\stackrel{\square}{0}$		$\stackrel{\square}{\square}$		－		\％		$\stackrel{\sim}{\square}$		\cdots		$\vec{\square}$	
边言	2		\bigcirc		$\dot{\sim}$		\bigcirc		\therefore		\doteq		ni	
	$\stackrel{\square}{\square}$		$\stackrel{\circ}{\circ}$		i		$\stackrel{\circ}{0}$		$\dot{8}$		\div		\cdots	
	0		$\stackrel{\circ}{-1}$		$1 \stackrel{i}{ }$		－		¢		5		$\stackrel{i}{ }$	
	$=$		\bigcirc		$\stackrel{\circ}{-}$	i	$\dot{\square}$		\because		\cdots		$\stackrel{n}{ }$	
$\underline{3}$	$\begin{aligned} & 1= \\ & 1= \end{aligned}$		$\stackrel{2}{5}$	1	$\frac{0}{3}$		$\stackrel{2}{2}$	1	$\stackrel{\sim}{n}$		$\stackrel{\sim}{\square}$		\cdots	
¢				＝		＝		：		：		：		：
氙		\cdots		$\stackrel{¢}{\infty}$		∞		\％		\％		8		\vec{a}

	\％		\％		\％		）ิ		\％	－	\％		\％	
	$\stackrel{3}{-}$		\bigcirc		\because		\pm		\cdots		\cdots		\because	
	$\stackrel{\square}{\square}$		－		$\stackrel{\text { O }}{0}$		응		$\stackrel{\sim}{0}$		2		\cdots	
	a		G		（8）		6		0		E		Q	
	$\begin{aligned} & \hline 3 \\ & \vdots \\ & \dot{\sim} \end{aligned}$		$\begin{aligned} & \underline{2} \\ & \dot{b} \end{aligned}$		$\begin{aligned} & 0 \\ & \dot{3} \end{aligned}$		$\stackrel{\square}{\square}$		－		$\begin{aligned} & \stackrel{+}{+} \\ & \stackrel{\rightharpoonup}{n} \end{aligned}$		$\bar{\circ}$	
응	$\left\|\begin{array}{l} 0 \\ \dot{\sim} \end{array}\right\|$		\cdots		\cdots		m		$\stackrel{\square}{\square}$		\cdots		$\ddot{\square}$	
	$\stackrel{0}{0}$		$\bar{\square}$		$=1$		$\frac{\cdots}{0}$		$\stackrel{\square}{\square}$		$\bar{\square}$		$\stackrel{7}{\square}$	
	$\stackrel{i}{0}$		\pm		$\stackrel{\square}{-}$		\pm	1	$\stackrel{\square}{\square}$		$\therefore 1$		$\dot{\sim}$	
	$\stackrel{\circ}{\circ}$		$\stackrel{\circ}{0}$		8		$\stackrel{\circ}{\circ}$		\bigcirc		\cdots	1	\cdots	
	0		$\dot{5}$		$\dot{\circ}$		$\dot{\square}$		$\dot{8}$		$\stackrel{+}{3}$		\therefore	
	$\dot{\sim}$		－		$\stackrel{\circ}{\circ}$		$\stackrel{\circ}{\circ}$		$\stackrel{\circ}{\sim}$		$\underset{⿳ 亠 二 口}{\text { I }}$		$\stackrel{\circ}{\circ}$	
$\underset{\sim}{3}$	$\stackrel{8}{3}$		－		$\stackrel{\circ}{\circ}$		$\stackrel{\circ}{\circ}$		$\stackrel{2}{2}$				$\stackrel{\sim}{\infty}$	
¢				：		：		：		：		$=$		：
苫		$\stackrel{\square}{9}$		$\stackrel{8}{\square}$		$\stackrel{\square}{-}$		\because		$\stackrel{m}{0}$		$\stackrel{\square}{\square}$		$\stackrel{\square}{\square}$

acce-acceptance testimg D (east dara) $\mathbf{2 . 2 2 - 7 3}$

A. 19
rCCB-acceptance testing (1] (eest data) 1.24-73

rccb-accertance testing [1] (test data)

rCCb－acceptance testinu［1］（fest dam）

	\％		등		\％			\％		\％		\％		\％		
	$\stackrel{\sim}{\square}$		$\begin{gathered} n \\ \underset{\sim}{n} \end{gathered}$		$\stackrel{\square}{\square}$			$\stackrel{\square}{8}$		$\stackrel{\rightharpoonup}{ \pm}$		$\stackrel{\circ}{\circ}$		$\stackrel{\square}{\square}$		
	$\stackrel{\sim}{2}$		$\underset{\sim}{\sim}$		\pm			$\stackrel{\circ}{\circ}$		$\stackrel{\sim}{\square}$		$\stackrel{\sim}{\sim}$		$\stackrel{\square}{\sim}$		
	E		2		E			5		0		Ω		0		
	合		$\stackrel{n}{\stackrel{n}{x}}$		$\dot{\square}$			$\dot{\vec{~}}$		I		$\stackrel{\square}{\square}$		－		
\vec{i}	－		\bar{i}		$\stackrel{\square}{\square}$			$\stackrel{\square}{\square}$		\cdots		$\stackrel{\square}{\square}$		$\stackrel{\square}{\square}$		
	10		$\stackrel{\square}{\circ}$		\because			\cdots		$\stackrel{\rightharpoonup}{\square}$		$=$		$\stackrel{m}{\square}$		
	\cdots	0	is	9	\cdots	回		\pm	\pm	\therefore	E	\cdots	킂	i	\square	
	$\stackrel{3}{3}$		$\dot{8}$		$\stackrel{\circ}{\circ}$			\cdots		$\stackrel{\circ}{-}$		$\dot{\underline{E}}$		8		
	\cdots		\bigcirc		\cdots			\cdots		\bigcirc		$\stackrel{\square}{3}$		$\stackrel{\sim}{i}$		
	$\stackrel{\square}{\square}$	Э	$=$		＝			$\stackrel{\circ}{i}$	ঢ	$=$		：		：		
$\frac{2}{3}$	$\begin{aligned} & \underset{\sim}{2} \\ & \underset{\sim}{8} \end{aligned}$		$$		$\stackrel{n}{\overrightarrow{\vec{a}}} \underset{\sim}{n}$			－		$\underset{\sim}{m}$		$\stackrel{\sim}{n}$		\cdots		
－		号容		：		：			：		：		：		$=$	
出		$\stackrel{\infty}{\square}$		$\stackrel{9}{ \pm}$		$\stackrel{\text { in }}{\sim}$			$\stackrel{\square}{7}$		N		$\stackrel{\sim}{\sim}$		$\stackrel{\sim}{\sim}$	

rcce-acceptance testing (tost data)

		0	\％		\％	\％		$\frac{3}{3}$		\％	
	$\stackrel{1}{2}$	$=$	$\stackrel{-}{\square}$		$\stackrel{-}{\square}$	$\overline{-}$		$=$ $三$		\bigcirc	
	$\stackrel{3}{2}$	$\stackrel{3}{3}$	E	．	를	\cdots		$\stackrel{\square}{\square}$		\cdots	!
总高	$=$	B	号		\％	$\stackrel{\circ}{2}$		\pm		E	
	\cdots	$\begin{aligned} & \because \\ & \vdots \\ & \vdots \end{aligned}$	a		\cdots	O		－		$\stackrel{\square}{2}$	
$\sqrt[O]{-5}$	$\stackrel{\square}{\dot{j}}$	－	$\stackrel{\square}{i}$		3 1 -1	\pm		－		$\stackrel{\square}{\square}$	
	\cdots	$\stackrel{3}{-2}$	$\stackrel{0}{0}$		$=$ $=$	$\frac{-}{0}$		\div $\stackrel{-}{+}$ $=$		$\stackrel{\square}{0}$	
	ic	$\cdots 3$	\therefore	$\underline{\square}$	$\therefore=$	－	\pm		－	－	$=$
	\therefore	三－	$\stackrel{5}{5}$		3	$\dot{\sim}$		\cdots		\cdots	
			\cdots	$1=$	$\underline{\square}$	$\stackrel{-}{i}$			1	\cdots	$=$
\qquad	$\therefore \overline{3}$		：	7	$=$	$=$		$=$	7	$=$	
$\underset{\sim}{2}$	$\stackrel{\square}{\circ}$	\cdots	－		＂			－		$\stackrel{\text { a }}{\text { a }}$	
－	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	：		：	＝		＝		：		$=$
気	－	$\stackrel{2}{2}$		$\stackrel{\square}{-}$	$\ddot{\square}$		$\stackrel{\square}{2}$		Σ		$\stackrel{\sim}{\sim}$

2.2.73
(02vp 3002) [D

accu－acceptance testinc［］（tost data）

	충		\％		등		％	．	\％		\％		％	
	$\stackrel{?}{\square}$		\cdots		\cdots		\cdots		0		\cdots		\vec{i}	
	3		$\stackrel{\stackrel{\rightharpoonup}{\mathrm{o}}}{=}$		$\stackrel{\rightharpoonup}{2}$		－		$\stackrel{\square}{0}$		2		$\stackrel{\sim}{2}$	
首会关	$\underline{\square}$		$\stackrel{\ddot{\circ}}{\square}$		$\stackrel{\circ}{0}$		\square 0 \vdots		Q		Q		E	
	$\begin{aligned} & \vec{a} \\ & \dot{a} \end{aligned}$		－		$\left\|\begin{array}{l} \dot{1} \\ \hline \mathbf{N} \end{array}\right\|$		\cdots		$\begin{array}{\|c\|} \hline m \\ \dot{0} \\ \hline \end{array}$		$\begin{aligned} & \overrightarrow{\mathrm{E}} \\ & \hline \end{aligned}$		¢	
$\overline{\bar{O}} \overline{\mathrm{C}} \overline{\mathrm{E}}$	\pm		\dot{m}		号		$\left\lvert\, \begin{aligned} & 0 \\ & \dot{n} \end{aligned}\right.$		三		$\bar{\sim}$		9	
	a		$\stackrel{\square}{\square}$		$\frac{m}{0}$		$\stackrel{\sim}{0}$		\cdots		－		\cdots	
	\therefore		0		\therefore		\therefore		8		$\underline{3}$		\pm	
	$\stackrel{\rightharpoonup}{\circ}$		$\stackrel{\circ}{\circ}$		$\dot{8}$		$\stackrel{5}{5}$		0		$\stackrel{0}{0}$		，	
	\therefore		\cdots		$\stackrel{\sim}{2}$		c		i	1	$\dot{\bar{c}}$		8	
	$\stackrel{\circ}{8}$		$\dot{\circ}$		$\stackrel{\circ}{\circ}$		$\stackrel{\circ}{\square}$		$\dot{\square}$		三		$\stackrel{\text { ¢ }}{\square}$	
$\underset{\sim}{3}$	$\stackrel{\text { 을 }}{\stackrel{1}{2}}$		安		$\stackrel{8}{\square}$		$\stackrel{3}{3}$		－		¢		－	
¢ ¢ E				＝		＝		：		：		$=$		：
咅		：		\pm		$\stackrel{\sim}{\sim}$		$\stackrel{3}{2}$		$\stackrel{\square}{\square}$		$\stackrel{\square}{\square}$		$\stackrel{\square}{-}$

RCCB-ACCEPTANCE TESTING (test data)												2-7.73	
TESt	Vendor	S/N		Insulati	on Res.				Overload	Operat		shock	
			Kating	Open Coniacts []$]$	Tnsult Parts $[2]$	Dialectric Strongth [3]	$\begin{gathered} \text { Consact } \\ \text { - Drop } \end{gathered}$	2004 (T:	$\begin{array}{r} 1384 \\ 1 p-08 f \end{array}$	$\begin{gathered} 1151 \\ \text { imus } \\ \hline \end{gathered}$	Tempsi	mazzard (time--delay)	OPERATIONAL CHARACTERISTICS (b)
			(Amp.)	(K N -	OHM)	(uA)	(Volt)	(sec.)	(sec.)	(sec.)	(*)	(macc)	
218	Cutler - Hammar	10/75	75.	80.	75.	15.	0.15	16.0	57.7	(1)	170	6.1	OX
219	"	17175	75.	100.	80.	33.	0.17	24.4	425.11	(5)	162	5.2	OK
220	"	18/75	75.	60.	60.	25.	0.10	15.1	77.3	(H)	136	6.0	OK \cdot
221	*	19:75	75.	80.	90.	20.	0.11	17.2	320.7	(1)	1.17	5.9	OX
				.									
$2: 2$	"	211/75	75.	80.	90.	40.	0.13	12.3	118.8	(W)	110	5.7	OX
					-								
$\because \because 3$	"	:1/75	7	90.	40.	11.	0.0y.	13.8	6月.1'	'0]	138	5.9	OX
224	"	22/75	75.	60.	80.	30.	0.09	12.0	75.7	[5]	145	5.7	OK

2．8．73

	关		\％		\％		\％		\％		\％		\％	
			\cdots		\pm		\therefore		\bigcirc		5		\because	
	$三$		$\stackrel{\text { ® }}{ \pm}$		0		을		\cdots		를		\because	
	E		0		0		0		3		0		6	
	$\stackrel{3}{3}$		$\stackrel{\square}{-}$		\div		$\stackrel{\square}{\square}$		$\stackrel{\square}{\circ}$		\％		\cdots	
	$\stackrel{\square}{\square}$		"		$\begin{aligned} & \text { O} \\ & \dot{\sim} \end{aligned}$		\|o.		$\left\|\begin{array}{l} n \\ n \\ \sim \end{array}\right\|$		\pm		$\left\lvert\, \begin{aligned} & n \\ & 0 \\ & \vdots \end{aligned}\right.$	
	$\stackrel{n}{\sim}$		－		\cdots	1	N		$\stackrel{n}{0}$		$\stackrel{?}{\square}$		$\stackrel{\sim}{0}$	
	$\dot{\sim}$		$\stackrel{\circ}{8}$		in		\cdots		\dot{i}		$\dot{\square}$		i	
	$\stackrel{\circ}{\circ}$		$\stackrel{\square}{\circ}$		$\dot{\circ}$		$\stackrel{\circ}{\circ}$		$\dot{\sim}$		$\dot{\bar{i}}$		\cdots	
	\dot{i}		$\dot{0}$		$\dot{\sim}$		$\stackrel{\circ}{\circ}$		$\stackrel{\sim}{2}$		$\dot{\square}$		－ 0	
	$\stackrel{\square}{\square}$		$\stackrel{\square}{\square}$		$\dot{\square}$		$\dot{\square}$		$\dot{\square}$		\therefore		$\stackrel{\square}{0}$	
$\underset{\sim}{3}$	$\stackrel{0}{ \pm}$		$\stackrel{\square}{\text { ¢ }}$		$\stackrel{8}{2}$		云		응		$\stackrel{\text { 을 }}{\text {－}}$		$\stackrel{\rightharpoonup}{\square}$	
－				：		：		：		：		＝		：
苟		\because		\cdots		$\stackrel{\sim}{\sim}$		$\stackrel{n}{7}$		$\stackrel{c}{n}$		$\stackrel{7}{7}$		$\stackrel{\sim}{\sim}$

rccs-acceptance testinc (1] (tost data)

rCCb-acceptance testinc \square (test data) 2.12.73

	\%		\%		\%		\%		¢		\%		$\stackrel{3}{3}$	
	:		\cdots		n		\cdots		$\stackrel{\infty}{\infty}$		\cdots		\bigcirc	
	Ξ		$\stackrel{\square}{\circ}$		$\stackrel{\sim}{7}$.	\pm		\pm		$\stackrel{\sim}{\square}$		\pm	
	3		0		20		5		\cdots		융		E	
	$\begin{aligned} & \stackrel{\rightharpoonup}{\dot{b}} \\ & \underline{=} \end{aligned}$		$1 \begin{aligned} & 9 \\ & \end{aligned}$		0		$\overrightarrow{i s}$		\bigcirc		-		$\stackrel{\square}{\square}$	
	$\stackrel{i}{i}$		-		$\begin{aligned} & \because \\ & \stackrel{1}{-} \end{aligned}$		$\stackrel{0}{\dot{-}}$		$\stackrel{\square}{\dot{\square}}$		$\stackrel{3}{-}$		\pm	
	\cdots		\cdots		$\stackrel{\sim}{c}$		$\stackrel{\text { 앙 }}{\square}$		$\stackrel{7}{3}$		$\stackrel{\square}{\square}$		$\stackrel{\square}{\square}$	
	ai		\therefore		$\dot{\sim}$		$\stackrel{\circ}{-}$		0		$\stackrel{\circ}{-}$		$\stackrel{\circ}{-}$	
	$\stackrel{\circ}{\circ}$		$\dot{0}$		$\stackrel{0}{0}$		$\stackrel{\circ}{\circ}$		$\stackrel{\circ}{\circ}$		$\stackrel{\circ}{\circ}$		$\dot{\infty}$	
	$\stackrel{\circ}{0}$		$\stackrel{\circ}{-1}$		8		$\stackrel{\circ}{9}$		$\dot{\square}$		$\stackrel{c}{c}$		i	
	$\stackrel{\sim}{i}$		$\dot{\sim}$		$\stackrel{\dot{\sim}}{\sim}$		$\dot{\sim}$		$\dot{\sim}$		$\dot{\square}$		$\dot{\sim}$	
$\frac{2}{n}$	$\stackrel{0}{2}$		$\begin{aligned} & 9 \\ & \frac{9}{m} \\ & \hline \end{aligned}$		$\left\|\begin{array}{c} 9 \\ \frac{1}{4} \end{array}\right\|$		$\stackrel{\stackrel{i}{2}}{\stackrel{i}{n}}$		$\stackrel{2}{9}$		-			
- 0 0				:		=		:		=		:		=
窢。		$\stackrel{\circ}{\sim}$		\#		$\stackrel{\infty}{ \pm}$		$\stackrel{9}{7}$		io		$\stackrel{n}{n}$		\because

2－13－73

	\％		\％		\％		증		\bigcirc	－	능		ㅡㅡㅇ	
	？		\because		\cdots		\cdots		\because		\cdots		\cdots	
	\pm	1	을		$\stackrel{\square}{\square}$		$\stackrel{\sim}{\square}$		$\stackrel{\sim}{\square}$		\pm		\bigcirc	
	뵹		n		$\underline{5}$		3		［2］		ver		9	
	\cdots		$\stackrel{\square}{0}$		$\left\lvert\, \begin{aligned} & \pi \\ & \vdots \\ & \infty \end{aligned}\right.$		－		号		n		$\stackrel{\sim}{\sim}$	
会穴	\sim		$\stackrel{\infty}{\square}$		$\stackrel{\square}{\square}$		n		－		m		\sim \vdots	
	$=$		$\stackrel{m}{0}$		$\begin{aligned} & = \\ & 0 \\ & 0 \end{aligned}$		$\left\lvert\, \begin{aligned} & \overrightarrow{0} \\ & 0 \end{aligned}\right.$		$\vec{~}$		$\overrightarrow{0}$		$\begin{aligned} & \vec{j} \\ & \dot{0} \end{aligned}$	
	$\stackrel{\square}{\square}$		0		$a \cdot$		$\stackrel{\circ}{-1}$		\cdots		∞		\therefore	
	$\dot{8}$		$\dot{\Xi}$		8		$\stackrel{\circ}{\circ}$		$\stackrel{\square}{-1}$		8		$\stackrel{8}{8}$	
	$\stackrel{0}{\Xi}$		\cdots		$\dot{0}$		$\|\dot{0}\|$		－		$\stackrel{5}{0}$		$\dot{\infty}$	
	$\dot{\sim}$		$\stackrel{8}{\sim}$		$\stackrel{\square}{\sim}$		－		5		$\dot{8}$		$\stackrel{\sim}{\sim}$	
$\underline{3}$			$\left\lvert\, \begin{aligned} & \underset{\sim}{9} \\ & \underset{\sim}{2} \end{aligned}\right.$		号		号		号				i \sim \sim \sim	
N 0 0 0				：		$=$		$=$		：		：		＝
$\stackrel{5}{n}$		$\stackrel{\sim}{\sim}$		$\stackrel{\sim}{\sim}$		n		n		$\stackrel{\sim}{i}$		$\stackrel{\infty}{\sim}$		\cdots

RCCB－acceptance testing（1）（test data）

	\％		장			\％		층		창		\％		\％	
	\cdots		3			0		\cdots		$\begin{aligned} & 11 \\ & 1^{n} \end{aligned}$		min		$\stackrel{-}{\square}$	
	$\stackrel{\square}{\sim}$		\because			\pm		in		\because		in		\bigcirc	
	E		2					n		6			1	1	，
	$\begin{aligned} & \infty \\ & \dot{a} \end{aligned}$		$\begin{gathered} 2 \\ \underset{c}{2} \end{gathered}$			\pm		－		－		n $\begin{aligned} & n \\ & i \\ & i\end{aligned}$		$1 \stackrel{1}{0}$	
$$	？	1	－					\cdots		$\stackrel{\square}{\square}$		$\stackrel{\sim}{\square}$		$\stackrel{\infty}{\square}$	
	$\stackrel{\rightharpoonup}{\square}$		$\stackrel{\square}{3}$			\pm		$\bar{\square}$		$\stackrel{\sim}{\sim}$		$\stackrel{ \pm}{\square}$		$\underset{\sim}{\underset{c}{c}}$	
	\cdots		$\stackrel{\circ}{\circ}$			$\stackrel{-}{\square}$		in		$\dot{\sim}$		$\dot{\square}$		is	
	$\stackrel{\circ}{\square}$		$\stackrel{\circ}{\square}$			$\stackrel{+}{\square}$		\bigcirc		\cdots		$\stackrel{\circ}{\square}$		$\dot{\infty}$	
	$\stackrel{\circ}{\circ}$		$\dot{8}$			$\dot{\infty}$		$\dot{\infty}$	1	$\stackrel{\circ}{\square}$		in		\therefore	
	$\stackrel{\square}{i}$	1	$\dot{\sim}$			i		$\dot{8}$		$\stackrel{ \pm}{\square}$		$\stackrel{\circ}{\circ}$		$\dot{\sim}$	
$\underset{\sim}{2}$	－		$\stackrel{0}{0}$			$\stackrel{i}{\text { in }}$		$\left[\begin{array}{l} 0 \\ 0 \\ 0 \\ n \end{array}\right.$		$\stackrel{i}{2}$		－		$\stackrel{3}{3}$	
－				：			：		＝		＝		－		＝
鹤		$\stackrel{\circ}{\circ}$		号			s		$\stackrel{\sim}{\sim}$		号		$\stackrel{n}{0}$		$\stackrel{0}{\square}$

rcci-acceptanca tastinc [D (test Jata) , 2.16.73

A- 41
ncca-acceptanca tebting (tost data) 2.2-78

RCCD-ACCEPTANCE TASTINC [D (tose dete)

A-45

APPETDII B

TOGGIE SHITCH TEST REPORIS

LEC 1124 ARD LBC 1667

$n 74-35271$

EVAUUATIOR RESPORT

FOR

TOEGLE SAIMCHES

Micro Suitch and Cutler-Hamer
 Models per MII-S-3950

Prepared by
Lockheed Blectronics Company, Inc.
Aerospace Systems Divisicn
Houston, Texas
Under Contract IFAS 9-12200
For

ONER DISTRTIEITION AND CONIROL BRANCH

National Aeronautics and Space Administration

- LYNDON B. JOHNSON SPACE CENTER

EVALDAMION REPORT

FOR
TOGGLE SWITCHES

Micro Switch and Cutlec-itammer Models Per MIL-S-3950

PREPARED BY

APPROVED BY

PREPARED BY

Lockheed Electronics Company, Inc.
For
Power Distribution and Control Branch NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

LYNDON B, JOHNSON SPACE CENTER
HOUSTON, TEXAS
23 September 1973

ABSTRACT

Abstract

Several models of hermetically sealed toggle switches marketeà by two vendors, Micro Switch and Cutler-Hamer, as meeting the requirements of MII-S-3950, were evaluated to determine the probability t:at they could withstand the enviromental requirements of, and tierefore -be suitable for use on, the Space Sinttle vehicle. The evaluation vas started viti. a comparison of the environmental requirements of vendorperformea testing and specifications for Space Shuttle hardware. This was followed with in-house testing for those environments where a reasonably firm conclusion could not be drawn in the comparison. Space simalation, acceleration and vibration testing were performed in-rouse. After the iatter of these, the switches were judged to be unsuitainie for use on the Space Shuttle vehicle and the evaluation effort was terminated.

COMIENHS

Section Page
2.0 INIFODUCTION 1
1.1 Eackground. 1
1.2 Sowmary of Braluation Progrem 1
2.0 EVAIUATIOE PROGRAM 3
2.1 Speciffication Comparison. 3
2.2 Space Simulation (Temperature-Altituaie) Testing 4
2.2.1 Test sample. 4
2.2.2 Test procedure 4
2.2.3 Test results 4
2.3 Acceleration Testing. 4
2.3.1 Test sample. 4
2.3.2 Test procedure 5
2.3.3 Test results 5
2.4 Vibration Testing 5
2.4.1 Test sample. 5
2.4.2 Test procedure 5
2.4.2.1 Environmental 5
2.4.2.2 Electrical. 6
2.4.3 Test results 7
2.5 Shock Testing 8
3.0 CONCIDSIONS 9
4.0 RECOMMENDATIONS. 10

FIGURES

Figure Page
1 Vibration Axes 11
2 Tesi Setup for Monitoring Contact Chatter. 12

TABLES

Table Page
I Comparison of Enviromental Kequirements 13
II Type, Manufacturer and Quantity of
Switches Tested. 15
III Anomslies Detected During Vibration
Exposure - Group A 16
IV Anomalies Detected During Vibration
Exposure - Group B 17

EVAIUAITION REPORT
 FOR
 TOGGLE SWITCHES
 MICRO SWITY:H AND CUTTER-HAMMER
 MODELS PER MII-S-3950

1.0 INTPRODUCTION

$\therefore 1$ Background

As a result of a problem experienced with toggle switches during the Apollo program, the Power Distribution and Contrcl Brancin at Lymdon B. JJhnson Space Center has initiated evaluation of several types of toggle switches per the environmental requirements oin the Space Shuttle vehicle. The results of this evaluation for three types of environmentally sealed toggle switches markeiei $د y$ "wn different vendors (Micro Switch and Cutler-Hanmer) as meetint the reçirements of MLL-S-3950, are reported in this document.

1.2 Surmary of Evaluation Program

For purposes of this evaluation, these switches were sonsiderec to be, by virtue of the vendors' test data, in full compliance with the requirements of MIL-S-3950. A comparison of this specification, in
mid-April of 1973, with the then-available documentation specifying the environmental requirements for components of the Space Siuttle vehicle indicatea that space siralation (temperature-altitude), acceleration, vibration and shock testing should be performed. Other enriromental requirements of these two specifications vere similar enorgh to verrment reasonable confidence that the suritches could succeastully complete Space Shattle qualification testing. Sevaral serples, ineinding different contact configarations; of the three types of suritches were subjected to space simulation and acceleration t-sting and exhibited no performance anowalies. A smaller group of samples vas subjecter to vibraiion testing and, when subjectas to Fibration for a total unration sinolating up to 20 Space Shattie mise inn-cyeles along an axis approximately parallel to the switches' actuating rendie, exhibited frequent chatter of norwally-closed contacts. Becamse the $r \in z$ inirments for the Space Shattle incluae a total eliable life expectancy of 100 nissions, these switches were judged to be unsuitable for Space Shattle use. Shock testing, therefore, was not performed.

2.0 ETATMAHIO PROCRAN

2.1 Specification Corparison

The envirorsental requiremerts of MIISSM-39508, to which the suitches vere deaigned and tested oy the veniors, and the corresponing requirements for the Space Shuttle vehicle as specified in insa vSC document SP-T-0023, dateà June 30, 1972, entitied, "Specification Bavironmentel sceeptance Testing", vere conparea. The purpose of this comparison tas to provide a basis for deciding which eavironmental tests to incinde in the in-house test program and wich environeental tests could reasonably he exchuded from it. Becanse the Space Shattle environmental recpuirements had not yet been finalizea, George C. Jarshall Space Flight Center Specification 40,38202 was incluaed in the comparison as a means of broadening the total information base upcr uhici. to jase the test/no-test decisions.

The results of this comparison are siown in Table I. Based on this information, it was iecided to test the effects on the switcies of space simulation (temperature-altitude), acceleration, vibration ama sisock.
2.2 Space Simiation (Pueperata Altitmie) Testing

Abstract

2.2.1 Test semple. - A total of 36 indivijual suitches of the allitary standard types MS 24523 (one pole), MS 24524 (two pole) and MS 24525 (four pole) were subjected to the environsental stresses- of space simiation. A complete list of the switches, incinding tyres, contact configurations and manfacturer, is shown in Table II.

Abstract

2.2.2 Test procedure. - Because of the difficulty of activating mechanical suitches while they art sealed inside a vacuum shamber, the test sample vas subjected to the temperature and altitusie conditions -preseribed in MII-SiD-810B, Method 517.1, Procerare II without being operated either electrically or mechanically. The woltage drop acroes closed antacts while passing DC eurrents of 0.1 and 10 amperes mas measured both before and after the environmental exposure.

2.2.3 Test results. - None of the 36 switches exhibited any noticeable change in voltage drop across closed contacts after expusure to spece simiation as comparea to before this exposure.

2.3 Acceleration Testing

2.3.1 Test sample. - the same 36 suritches, as listed in Table II, that were subjected to space simulation, were subjected to acceleration testing.

Abstract

2.3.2 Test Procedure. - The switches were subjected to an sceslerbtion of $\mathfrak{\varkappa 2}$.5g for a duration of two mirutes in each direction of three montually perpendicular axes. As vith the space simulation test, before and after exposure to the acceleration, the voltage drop across closed confacts while pessing 0.1 and 10 amperes DC was measurer. In adaition, using the seme equipment and technique described below under vibration testirg, chatter (undesired momentary opering) of normally-ciosed contacts was monitored during exposure to the acceleration.

Abstract

2.3.3 Test Besults. - Io contact chatter was detectedi curing any of the acceleration exposure nor vas there any degradation of the voltage drop across closed contacts as a result of this exposure.

2.4 Vibration Testing

2.4.1 Test sample. - Because one-half of tire total of 36 switehes had been exposed to vibration previously and becouse three of those remaining had only momentary action, only 15 of the switcher were subjected to Fibration testing. The detailed list of these 15 is shown in Table II.
2.4.2 Test procedure. -
2.4.2.1 Equironmental: The 15 switches were divided into two groups, one of eight (group A) and one of seven (group B). Each group,

Abstract

one at a tive, vas cubjected to a eeries of mimatat missions. Eech sirniated aisetion consinted of ranion vibration for a duration of 70 secouds with an scceleration spectral density increasing at a rate of 3 ar/octave from 20 Hz to 80 Er, remaining constant at $0.06 \mathrm{~g}^{2} / \mathrm{Hz}$ from 80 Hz to 350 H and deereasing at a rate of $3 \mathrm{AB} /$ octave from 350 Hz to 2000 Hz.

The flist test phase consisted of sinalating two missions, i.e., a totral of 140 seconis, in each of the three axes. (Tre Fibration axes are shown in figure 2.) The next phase consisted of simalatirg five aissions, i.e., a total of 350 seconds, in each of the three axes. This ras follored by another Pive-rission phase and then phases of 10 missions, 30 missions and 50 missions each. (Ite 50 mission phase was not peuformed on the second group of switch. s.) This resulted in a total vibration duration cf approxdmately two hours in each axis.
2.4.2.2 Electrical: As previousiy discussed for space simulation and acceleration testing, the voltage drop across closed contants with DC currents of 0 and 10 amperes was measured berore and after the total vikration exposure.

During vibration, consact chatter was monitored using a Continental Testing Laboratories, Inc., Model TM-5100 Transient Monitor. The test setup is shown schematically in figure 2. All fixed contacts of all
suitches (one group at a time) were compected together and to the positive terninal of the 28-volt DC power supply. 111 movable contacts of any one switch were connected together, to a 1000 -0h resistor and to one chamel of the transient monitor. the other side of the $1000=0 \mathrm{~m}$ resistor ves comected to the negative tervinal of the porer supply.

> With the exception of the first IIve-rission phase of the vibration, only nonmilly closed contacts were monitored for chatter. During that first five-mission phase, the same pairs of contacts vere monitoren but the suitches vere activated se that these contacts were in a normally open position.

2.4.3 Test results. - No degradation of voltage drop across closed contacts as a result of the vibration exposure mas noted.

The namber of undesired contact openings detected during each paase of vibration for each of the three axes is tabulated in Tables III and IV for groups A and B respectively. It can be seen that, with vibration applied along the X axis (parallel to the switches' actuating handles) the number of undesired contact openings shows a mariked increase during the 10 -mission phase, or after a total exposure corresponding to approximately 20 missions. The switches were much less susceprible to vibration along the Y and Z axes. For group B, because two of the switches during the 10 -mission phase and all of the switches daping

the 30 -aission phase reached a state of contimous chatter on the X axis, the 50 -mission phese ves not performed.

2.5 Shock Teating

Because the performance of these aritches doring the vibration testing cansed them to be joiged unsatisfactory for Srace Shnttle use, mo shock testing vas performed.

3.0 CONCIDSTORS

Abstract

The contact chatter detected during vibration expooure after a duration simblating approximately 20 Space Shuttle missions shows them to be unsuited for use in flight systems for this program.

The limitations of the contact chatter test equipment and techniques oniy served to give the switches the benefit of the doubt. The transient monitor usec to detect the chatter has to be reset manualiy after 'be operator has noted and recorded the occurence of a transient (contact opening). Thus namerous transients could have occurrea which were not reconded by the operator. The fact that all poles in each malti-pole switch were connected in parallel could only have prevented recognition of possibly more contact-openings than vere noted.

4.0 RECOMAETDATIONS

It is recomended that suitches marketed by Micro Suitch and Cutler-Bamer as satisfying the requirements of MII-S-3950 and military standards MS 24523, MS 24524 and MS 24525 be considered unsatisfactory for use on the Space Shutile vehicle unless and until additional infor-. mation to the contrary is provided by other sources.

Figure 1. - Vibration Axes
รอบจุ下ルร อโ880น
Under Test

Figure 2. - Tesi Setup Jor Monitorine Jontsil Chat, er
Table I.- Comparison of Enviromental Requirements

Tabie I. - Comparison of Environmental Requirements (Continu i)

Temperature	
Shock	
Vibration	

Table II. - Type, Munufacturer and Zuantity of Switches Tested

'Lable III. - Analomalies Detected lurine Vibration Bxpowuro - 「roup A

 $A=$ bexese anomallen dur to inciee connection
Table IV. - Anomaliea Detected Inaring Vibration Pxpodurc - Oroup B

n74-35272

EVALUATION REPORT FOR TOGGLE SEITCHES
 Texas Instruments, Inc. - Apollo-Type
 And
 Daven Measurements Part Number 45000-x0X

Job Order 32-139
Prepared By
Lockheed Electronics Company, Inc.
Aerospace Systems Division
Houstcn, Texas
Contract NAS 9-12200
For
POWER DISTRIBUTION AND CONTKOL BRANCH

PONER DISTRIBUTION AND CONTKOL BRANCH

EVALUATION REPORT

FOR
TOGGLE SWITCHES

Texas Instruments, Inc. - Arollo-Type
And
Daven Measurements Part Number 45000-XXX

PREPARED BY

APPROVED BY

Power Systems Engineering Section

Prepared By
Lockheed Electronics Company, Inc.
For
Power Distribution and Control Branch
NATIONAL AERONAUTICS AND SPACE ADMINISTRATJON
LYNDON B. JOHNSON SPACE CENTER
HOUSTON, TEXAS
December 1973

CONTENTS

Section Page
1.0 INTRODUCTION. 1-1
1.1 Background 1-1
1.2 Summary of Evaluation Progran. 1-1
2.0 EVALUATION PROGRAM. 2-1
2.1 Specification Comparison 2-1
2.2 Vibration Testing 2-4
2.2.1 Test sample. 2-4
2.2.2 Test procedure 2-6
2.2.2.1 Environmental 2-6
2.2.2.2 Electrical 2-6
2.2.3 Test results 2-9
3.0 CONCLUSIONS 3-1
4.0 RECOMENDATIONS 4-1
Appendix
A TEST DATA A-1

1.0 INTRODUCTION

1.1 Background

As a part of a continuing progran to find suitable candidate hardware for panel switches in the Space Shuttle, a preliminary evaluation of environmental capabilities was undertaken on toggle switches manufactured by Daven Measurements Division of Edison Eiectronics (Daven part number 45000-x.xx) and on Apollo-type toggle switches manufactured by Texas Instruments, Inc. (Klixon $x x$ lSx-x). It was not the purpose of this evaluation to qualify these two types of switches to the detailed requirenents of the Space Shuttle environnental specifications, but rather to take a "first look" at their tested capabilities for the purpose of determining whether the candidate hardware appears to have a good chance of successfully completing a detailed environmental qualification test progran.

1.2 Sumary of Evaluation Program

The initial phase of the evaluation reported herein consisted of comparing the demonstrated environmental capabilities of the two candidate switch types to the latest available Space Shuttle environmental requirements. The documents used for this comparison were:

- Certification Test Requirement, Apollo Block II, Part No. ME452-0102-1101, North American Aviation, Inc., 18 February 1969 (for Klixon switches).
- Specification 40M38202, George C. Marshall Space Flight Center, 3-27-70 (for Daven switches).
- Specification MC450-0016, "Controller, Master Events", North Anerican Rockwell Corporation, 22 August 1973 (Shutt1e requirements).

Based on the comparison of enviromental parameters in these three documents, it was decided that additional information was needed concerning the capability of the switches to withstand exposure to random vibration without contact chatter.

The Space Shuttle temperature and linear acceleration requirements were not judged to be severe enounh to necessitate additional tests to satisfy the purposes of this evaluation. Successful techniques for hermetically sealing such switches have been in use for some time and hence it was felt that the punposes of this evaluation could be well satisfied without particular concern f.r the survivability of the switches in vacuum, explosive athus shere, and sand and dust.

As described below, it Kixon and 8 Daven switches, of several different contact configurations, were subjected to random vibration with the most recently defined power spectral density for the Space Shuttle as of the date of the test.

2.0 EVALUATION PROGRAM

2.1 Specification Comparison

As indicated in section 1 , the tested capabilities of the Texas Instruments (TI) switches and of the Daven Measurements switches were compared to the most recent statement of environmental exposure requirements for the Space Shuttle available at the time the comparison was made. The contents of the three documents used for this comparison that were deemed pertinent to the purposes of this evaluation are summarized in table I.

Although the tested capabilities of the two types of switches for salt spray and numidity do not match the stated Shuttle requirements, most notably with respect to the duration of exposure, the ability of devices to withstand these environments should be primarily dependent upon the materials used for the exposed surfaces and the techniques used to seal the package. Similar components have been made that can withstand such extended exposures, so it was felt that these two types of switches could successfully complete detailed qualification testing without redesign, and that actual testing, for this evaluation, was unnecessary.

The tested temperature capabilities of the switches are reasonably close to the Shuttle requirements for equipment located in the crew compartment. Even the temperature recuirements for qualification tests, which are slightly more severe than those actually expected (and quoted in table I), are not so severe that evaluation tests at temperature extremes were deemed to be a necessary part of this evaluation.
table 1.- Comparison of environmintal. specification requlirements for texas instruments and daven measidpments
toggle switches vs space shiuttle tentative requise

LSW: SOMSEAT	TI:AnS INSTRUMENTS INC. T.1. QAS 758 GR MF: 52-0102. XXX	davien mi:nsuriments MSPC 40M382n2	shittle-tentative NR MC450-0016 (CONTROLLER, MASTER EVENTS)
SALT SPKAY	Solution: 14 NaCl Uuration: 1 hour Ref.: MIL-STD-810	```50 NaCl 9% hours * 35* C M1L-STO-2020 Mechod 1n1 Tese Condition A```	$\begin{aligned} & 51 \mathrm{NaCl} \\ & 30 \text { days } \\ & \text { Mll,-STD- } 810 \\ & \text { Method } 509 \\ & \text { Procedure } \end{aligned}$
humidity	Exposure: 95 ± 58 RH.; $95 \pm 510_{2}$ Duratior: 120 hours Temporaturi: $100^{\circ} 5^{\circ}$ F Ref: MIL-STD-810	$\begin{aligned} & 90-953 \text { R.ll. } \\ & 96 \text { hours } \\ & 40^{\circ}+2^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right) \\ & \text { MI1. STn-2n2D } \\ & \text { Method } 103 \\ & \text { Test Condition B } \end{aligned}$	951 R.ll. $24 n$ hours $71^{\circ} \mathrm{C}$ ($160^{\circ} \mathrm{F}$) MII. STD-810B Method 507 Procedure 1
TEMP.		$\begin{aligned} & \text { Cycling from - } 55^{\circ} \\ & \text { C to t85 C } \\ & \left(-67^{\circ} \text { F to } 185^{\circ}\right. \\ & \text { F) } \\ & \text { MIL-STN-202 } \\ & \text { Method } 102 \\ & \text { Test Condition } \end{aligned}$	
SHock	Form: Sawtooth Peak: 78.8 Duration: 10.15 msec Ref: MLa52-0102 par 4.4.3	```Half-Sine 50 g 11 msec MII-STD-202 Mcthod 213 Test Condition A```	```Sawtuoth 408 11 msoc MC450-0016 par 3.2.5.2, f. 2```
VIBRATION		Extensive ginuscidal and random. See MSFC 40 M 38202 par 3.7.8 (subpar. d requires a random spectrum zotaling 7.42 g rms for 20 min/axis)	Random - $20-20 n \mathrm{~Hz}+9 \mathrm{~dB} /$ octave $200 \cdot 4 \mathrm{nN} \mathrm{Hz}$ constant et $0.05 \mathrm{~g}^{2} / \mathrm{Hz}_{2}$ 400-20no Hz -9 dB/octave (totals 4.7 ng rms) for $6 \mathrm{~min} / \mathrm{axis} / \mathrm{mission}$ (previous inhouse test of MS3950 togple switches, was random totaling 7.41 g rms for $70 \mathrm{ncc} / \mathrm{ax}$ is/miseion)

The Shuttle qualification test requirements include vacuum conditions (10^{-9} torr) in association with temperature cycling. The TI switches have demonstrated an ability to withstand pressures at least as low as 10^{-4} torr. No evidence was found of similar tested capabilities for the Daven switches. However, this capability should also be a function of a properly sealed package, and not the basic switch design. Hence, supplemental vacuun testing was not considered a necessary part of this evaluation.

Although ther $=$ is some minor difference in wave shape, both types of switches have been tested at higher levels of shock than those required for the Shuttle. Hence, no shock tests were performei.

The Shuttle vibration requirements have total energy levels approximately equal to or below those at which both switch types have been tested. However, the distribution of this energy across the frequency spectrum is different in all cases. Because of this, supplemental vibration testing of bnth types of switches was considered necessary. (Note: The power spectral density (PSD) used for these tests was difierent from the requiremerts stated in the reference document for the Shuttle. The PSD to which the switches were actually exposed was chosen because of a more recent statement of Shuttle requirements than that quoted in MC450-0016) .

Neither the TI nor the Daven switches apparently have been tested for satisfactory operation while being exposed to linear acceleration. Although the Shuttle requirements include exposure to such an environment ($\pm 4 \mathrm{~g}$'s for

5 min/axis), the level is so low that no anomalies should reasonably be expected after successful completion of the shock and vibration tests which are documented. For this reason, no supplemental linear acceleration testing was deemed necessary.

2.2 Vibration Testing
 2.2.1 Test Sample

A total of 24 switches were exposed to the random vibration spectrum described in paragraph 2.2.2.1 below. To facilitate this exposure these were divided into three groups of eight switches each. Two of the groups, i.e., a total of 16 switches, were comprised of Texas Instruments' "Klixon" switches, as follows:

[^0]Quantity Type No. Configuration*

	Quantity	Type No.		Configuration*
$\begin{aligned} & \text { Group } 2- \\ & \text { (con't) } \end{aligned}$	2	23LS2-5	3P3T	$\left\{\begin{array}{l}\text { MA-MA-OFF } \\ \text { OFF-MA-OFF } \\ \text { MA-MA-OFF }\end{array}\right.$
	2	18LS2-1	3P3T	MO-LK CFF-MO
The last group was comprised of the Daven Measurement switches, type $45000-x x x$, as follows:				
	Quantity	Type No.		Configuration*
Group 3 -	1	-201	2P2T	MA-MA
	1	-202	2P2T	MA-MO
	2	-308	3P3T	MA-OFF-MA
	2	-204	2P3T	MA-OFF-MA
	2	-207	2P3T	MO-OFF-MO

As can be seen, two of each type except the Daven - 201 and -202 were included in the total test sample. Only one of these two Daven types was tested because additional switches were not available.

$$
\begin{aligned}
{ }^{\text {MA }} & =\text { Maintained } \\
\text { MO } & =\text { Momentary } \\
\text { LK } & =\text { Locked }
\end{aligned}
$$

2.2.2 Test Procedure

2.2.2.1 Environmental. The test sample was exposed to the following random vibration under room ambient temperature and pressure:

$$
\begin{aligned}
& 10 \mathrm{~Hz} \text { \& } 3 \mathrm{mg}^{2} / \mathrm{Hz} \\
& 10 \mathrm{~Hz} \text { to } 24 \mathrm{~Hz}+12 \mathrm{~dB} / \text { octave } \\
& 24 \mathrm{~Hz} \text { to } 160 \mathrm{~Hz} 100 \mathrm{mg}^{2} / \mathrm{Hz} \\
& 160 \mathrm{~Hz} \text { to } 2 \mathrm{kHz}-6 \mathrm{~dB} / \text { octave } \\
& 2 \mathrm{kliz} \text { e. } 05 \mathrm{mg}^{2} / \mathrm{Hz} \\
& \text { (Overall level of } 5.37 \mathrm{~g} \mathrm{rms} \text {) }
\end{aligned}
$$

The total duration of the exposure was 1 hour and 59 minutes in each of three orthogonal axes. Definition of these axes relative to the physical characteristics of the switches (viewed from the terminal side) is included in figures A-1 through A-3. In order to maintain the accumulated exposure duration equal, within practical limits, in each of the three axes, the switches were first exposed for two simulated missions in each of the three axes. (A simulated mission was defined as an exposure of 70 seconds.) Next, they were exposed for five missions in each axis. This was followed by a second 5 -mission exposure in each axis, then 10 missions, 30 missions, and finally 50 missions in each axis.

[^1]variations in the test setup frevented exact repeatability of these measurements, a minimum of three readings were taken for each terminal-pair at each load curreni. Both the minimum and maximum readings were recorded.

During vibration exposure contact chatter (inadvertent opening of normally closed, or closing of nomially oper: contacts for $10 \mu s$ or more) was monitored. The test setups are shown in figures $A-1$ through $A-3$. On all switches having maintained normally closed positions, the contacts were set to these positions. Insofar as possible within available maintained positions, the two switches of the same type were set to different positions. For these normally closed contacts, all such p irs of contacts on each switch were connected in series, thus rroviding a single signal for that switch to the chatter detector. On those switches where normally open was the only maintainei position available, all contact pairs were connected in parallel, thereby again providing a single signal for that switch to the chatter detector.

2.2.3 Test Results

The test data forms appendix A to this document. With one exception, very little or no contact chatter was detected during vihration exposure. Although there were differences (both increases and decreases) between the contact voltage drops measured before and after vibration exposure, no definite degradation in the performance of any of the switches, including the one which exhibited excessive contact chatter during vibration, was detected.

Of the 16 TI Mixon switches tested, no contact chatter was detected in 10 of then. All chatter detected in the other six switches was noted in at least two switches simuitaneously, indicating thet at least half of the detected signals vere erroneous. (The chatter monitor used exhibited not only this channel-to-channel crosstalk, but also susceptibility to noise on its power line. Several channels indicated detected chatter when a large rollup door in the bi-bay near the vibration facility was opened.)

Of the eight Daven switches tested, no chatter was deaected in two of then. Unlike the results for the Kixor. switches, howerer, only pari of chatter detected in the other six occurred in two switches simultaneously. One of the six, a -308 (JP3T, MA-OFF-MA) exhibited continuous chatzer, starting during the 10 -minute exposure and continuing ihrough the 50-minute exposure. During this time, the chatter monitor channel was changed to verify that the monitor was not at fault. It should be noted that ne significant degradation in contac: voltage drop was measured on this switch after vihration exposure. It should aiso be noted that another - 308 switch was tested, with its $=0 g g l e$ in a different position, at the same time and this switch exhibited no chatter at ail.

3.0 CONCLUSIONS

No previously documented or in-house test data was found which should disqualify either of these two types of switches from further detailed evaluation. The continuous chatter exhibited by the one Daven switch was unique and is felt to be a result of some flaw in that particular switch rather than the basic switch design.

4.0 RECOMENDATIONS

It is recomended that both of the two types of switches evaluated herein be considered candidate for use on the Space Shuttle unless additional information or considerations indicate otherwise.

APPENDIX A

TEST DATA

A- 5

Instrumentation Used:

- Digital Multimeter, Fairchild Model 7000, NASA Inv. "87404- Power Supply B, Christie Electric Corp., NASA Inv. "(none)- Load Bank (in-house)$10 \mathrm{~Hz} 3 \mathrm{mg}^{2} / \mathrm{Hz}$
10 Hz to $24 \mathrm{~Hz}+12 \mathrm{~dB} /$ octave
24 Hz to $160 \mathrm{~Hz} 100 \mathrm{mg}^{2} / \mathrm{Hz}$
160 Hz to $2000 \mathrm{~Hz} \quad-6 \mathrm{~dB} /$ octave
2000 Hz e0.65 mg ${ }^{2} / \mathrm{Hz}$
overall level of 5.37 g rmsSimultaneously with Test Sample 6Simultaneously with Test Sample 5
$\frac{\text { Notes: }}{[1]}$
Θ
m 母
Notes:

[5]	Simultaneous contact-chatter signals during 50-mission run (time of day) :											
Sample No.	(Contacts)	$\begin{gathered} \text { Axis } 2 \\ 0923 \\ \hline \end{gathered}$						$\begin{gathered} \text { Axis } \mathrm{X} \\ 1030 \\ \hline \end{gathered}$			Axis $Y$$1133^{\circ}$	
16	(NC)	0928	0940	0948	0955	1011	1015	1037	1050	1052		1220
15	(NC)	0928	0940	0948	0955	1011	1015		1050	1052	1150	1220
14	(NO)	0928										1220
13	(NO)		0940			1011	1015		1050	1052		1220

$\begin{array}{ll}\text { Simultaneously with Test Sample } & 16 \\ \text { Simultancously with Test Sample } & 14 \\ \text { Simultaneously with Test Sample } & 15\end{array}$

Simultaneously with Test Sample 22
Simultaneously with Test Sample 21

See wiring diagram, figure A-2
See wiring diagram, figure A-3
® ®
-
回
9
\square
\square
$\left[\begin{array}{l}m \\ \sim\end{array}\right]$

[^2]Figure A-1. - Vjbration test setup . TI switches, group 1.

JKW - UPPOSI I K KEY WAY
CTR - CENTER
CTR - CENTER
TS $=$ TEST SAMPLE

Figure A-2. - Vibration test serup - TI switches, group 2.

KW = key way
JKW - OPPOSITE DEY WAY
OKW
CTR
$=$ OPPOSI
CENTER
TS = TEST SAMPLE
Figure A-3. - Vibration frst setup - Daven switches.

APFEDTX :

FITAL RENORT FOK SOKTL-STAT: JiITCH PAKEL

SINGER

FINAL REPORT
FOR SOLID STATE SWITCR PAEEL

26 MOVEMRER 1973

DRR NO. 01361 (NP)

THE BINGE COMPANY • KEAAFOTT DIVIBIOH - 1150 MCEAIOE AVEMUE = LITTLE FALLS. M. J. 07424

THE samern comenay

 KEANFOTT BYREAOM \qquad CONTRACT mo. was 9-13144 DRD wo. Ma-129TAFINAL REPORT

FOR

SOLID STATE SWITCH PAMEL

26 NOUEMBER 1973

Prepared by:

EPreppeldt
E. beenfelit Project Engineer

Approved by:

i
Tive cmoris company meinmort covanem12563226
DISTRIBUYIOA LIST
MSA Manned Spacecraft Center RET Procurement Branch
Attn: Ted Lapko, Mail Code BC731 (38)
Houston, Tx. 77058
MhSA Manned Spacacraft CenterTechnical Library BranchAttn: Retha Shirkey, Mail Code JusHouston. Tx. 77058
DASA Hanned Spacecraft Center $1 \operatorname{copy}$
Management Service DivisionAttn: John T. Wheeler, Rail Code Ji7Houston, Tx. 77058
MASA Manned Spacecraft CenterPower Distribution and Control BranchAttn: A.B. Olsen, Main Code 883Houston. Tx. 77058

ABSTRACT

An intensive study of various Eorms of transducers was conructed with application tcwards hermetically sealing the transducer pick off and all electronics. The results of the study indicated chat the Blall effect devices and a LED/phototransistor combination were the most practical for this type of application. Therefore. hardware was developed utilizing a magnet/Ball effect transducer for single action switches and IED/Fhototransistor transducers for rotary multiposition or potenticmeter applications. All electronics could be housed in a hermetically sealed compartment. A numer of switches were built and models were hermetically sealed to prove the feesibility of this type of fabrication. One of each type of switch was subjected to temperature cyc!ing, vibration, and EII tests. The results of these tests are indicated in the follouing report.

THE sumatim Compant MEABFOTT ONUSNOM

TARLE OP COnmexis

Intronuction
Technical Description Transducers
Circuitry
Switch Configuration
Power Consumption
Panel Operation
$\mathbf{x 2 5 6 A 2 2 6}$

- \qquad

Functional
Envizonental
Page
beliability
Appendix

1-1
2-1
2-1
2-23
2-24
2-32
2-33
3-1
3-1
3-1
4-1
I-1

REY.
resumis
The zesults of this project are:

1. An operating switch panel conforming to the reguirements of ras-9-13144.
2. Test data taken during environmental tests performed on selected switch and rotary components. The tests performed were comparable to tests run on masa flight hardware delivered on the skylab project. Satisfactory results mere obtained on all tests.
3. Reliability data indicating MrBP for selected devices.
4. A project report covering the study phase of the project and containing test data, schematics, and outline draurings of the switch devices and the mounting panel.
\qquad

COMCLUSIONS

The results of this project indicate that solid state suitches and rotary components capable of meeting the requirements of manned space flight are feasible and well within the current state of the art. The enviranmental and reliability data indicate that a production unit would have the superior reliability associated with solid state equipment. The large selection of contart closure types will allow switches to be fitted to various regi cements. A phase II production type unit would be packaged in a smiller and lighter housing. The feel of each switch and the sroat panel appearance would be inproved in the phase II design.

RECOMTEADATIOA

The study indicated that the nost efficient switch is one designed to switch a specified voltage and cúrrent. Using a high current switch to handle a low current is inefficient. Any production switches should be designed for a specific power level.

In production quantities a hybrid package containing all the electronics is recommended as a way to save size and increase reliability of the solid state switch devices.

Reduction of switch size would allow the toggle section of the switch to be brought flush to the panel surface and otherwise improve the appearance of the switches.

It is also recommended that a closer analysis of the front panel removability criteria be made with an effort to reduce the panel area used for fastening.
\qquad

INTRODUCTION
The purpose of this report is to sumarize the results of a study zonducted to ueteraine the optimum transducer type and output circuitry for a solid state switch configuration and to demonstrate with hardware, the feasibility of the resulting designs. Two basic types of switches are required, a single action switch (toggle, fushbutton) and a multiposition rotary switch and/ or potentiometer. The switches will be designed to be hermetically sealed and removable as an integral unit from the frort of the panel. Selected switches contain a Light Emitting Dioie (LED) display indicating the status of the switch position and/or operable or failure mode.

The various types of transducers studied included the following:

- Light
- Capacitive
- Hall effect
- Magneto-resistor

Many factors were considered in selecting the appropriate transducer for the application and the necessary circuitry for the switch output. They were as follows:

- Type of excitation required
- Power required
- Cost
- Size
- Reliability
- Hermetic sealing capability
- Cross talk effects
- Packaging
- Switching characteristics

A matrix indicating these characteristics of the various transducers axe shown in Table 1 .

POWER	TAELE I. TRANSDUCER MATRIX			
	LIGHT	CAPACItance	$\begin{aligned} & \text { HALL } \\ & \text { EPFECT } \end{aligned}$	MAGNETO RESISTOR
	. 150 WATTS	. 100 WATT	. 050 WATT	. 050 WATT
EXCITATION	DC 5-10V	AC 10 KHZ	DC 5-10V	DC 5-10W
COST	MODERATE	HIGH	LOW	MODERATE
CROSS TALK	NONE	PROBLEM AREA	NONE	NONE
HERMETIC SEAL	PROBLEM AREA GLASS TO METAL SEAL	PROBLEM AREA GLASS TO METAd seat	COMPATABLE	COMPATABLE
SIZE	MODERATE	LARGE	SMALL	MODERATE
COMPONENTS	TWO SILICON SEMI-CONDUCTORS AND GLASS SEAL	TWO SEALED METAL PLATES AND DRIVE CIRCUITRY	ONE INTEGRATED CIRCUIT AND MAGNET	ONE SEMICONDUCTOR AND NRIVE CIRCUITRY
SWITCHING CHARACTERISTICS	REQUIRES TRIGGER	$\begin{aligned} & \text { REQUIRES } \\ & \text { TRIGGER } \end{aligned}$	$\begin{aligned} & \text { TRIGGER } \\ & \text { PART OF IC } \end{aligned}$	$\begin{aligned} & \text { TRIGGER } \\ & \text { REQUIRED } \\ & \hline \end{aligned}$

\qquad

The results of the study indicated that the Hi?l effect transcucer is the most effective for the single ac:ion switch and the LED/phototransistor is the optimum device is: the multiposition rotary switch and potentiometer.

Dependent upon the function of the switch., four types of output circuits were selected to interface with peripheral equipment. The determining factor in the circuitry was the contact rating of the switch.

- High current	DC	(10 AMP)
- Medium current	DC	(400 MA)
- Low current	Analog	(50 MA)
- Low current	AC	(I AMP)

To insure reliable operation, redundant circuitry has been included wherever size and circuitry dictates practicability. The srbject of man-hardware interface has not been discussed because standard mechanical switch actuating devices are used for inputs with normal actuating pressure loads and travel.

Envelope drawings and schematins are i:cluded in the appendices (Section 8) indicating the design approach configurations for the Phase I program. Production versions of these modules would require some modification for facility of fabrication and appearance. As a result of the study program, a panel was fabricated including 25 single pole or double pole toggle and pushbutton switches, two rotary 10 position switches and two potentiometers as indicated in Figure 1.

\qquad

TECHNICAL DESCRIPTION

The following four basic areas were studied in order to produce the required switch'rotentiometer configurations for the switch panel:

- Transducers
- Mechanical Packaging
- Output (switch contact) circuitry
- Sr if state potentiometer circuit configurations

TRANSDUCERS

Many types of transducers were evaluated to determine tro oprimum switch transfer. For each transducer the source and s : i of the switching medium is discussed along with the various configurations.

MAGNETIC CIRCUIT TPANSDUCER

A magnetic circuit transducer depends on changing magretic flux for switching action. A mechanical switch change occurring external to the hermetic seal changes the reluctance of the magnetic circuit. This flux change is sensed inside the hermetic seal and interfaced with the logic section of the iwitch. Both alternating and direct flux devices have been reviewed.

DC Devices

The flux flows in only one direction in a direct flux circuit and is a functicn of the following relationship.

$$
\phi=\frac{M M F}{R}
$$

A change in the flux is sensed and a typical simple switch is illustrated in Figure 2. With the switch open as in Figure 2 a high reluctance air gap exists in the magnetic circuit. If the missing slug is moved into the gap, the reluctance is diminished. This incre es the flux and changes the characteristics of the flux sensina element. Two sources of mmf appear most apfiopriate icr switch applications: permanent maynets or solenoid coils. Permanent maynets require the following characteristics to te effective.

FIGURE 2

2-2
14202: 2i:2

THE smeen company

 KEAMFOTT Drwision \qquad- Small size
- High induction
- High demagnetization force

Of the present comercially available magnetic materials, the following bes: suit these characteristics:

- Ceramic permanent magnets
- AluICO SERIES*
- Gecor*

The life characteristic of these materials (time of retention of useful magnetic properties) has been estimated at approximately 15 years.

Solenoid coils require electrical power in order to operate. However, these devices utilize materials which ore more readily available than magnets and co not require any special handing techniques as is sometimes the case with magnets. Of the flux sensing elements available the following exhibit the most suitable properties for switch application:

- Pick up coil
- Hall effect device
- Magnetic resistor
- Pick Up Coil - The simplest of the three devices is a pick up coil which is a coil of wire of many turns wound around the magnetic core. This coil does not require a gap in the magnetic circuit which greatiy increases the reluctance and, therefore, rejuces taie magnetic strength required. Many magnetic materials sam be used for this application. The greatent disadvantage of using a pick up coil in a direct flux circuit is the fact that a coil can only sense a chan ? 2 in flux. Therefore, an output voltage would only ke availalle from the coil during switching transition. After the coil has reached a different steady state valve as a result of the new switch position no voltage is present at the coil. The logic necessary to sense these

[^3]\qquad
transient pulses is relatively simple, however, the problen exists in the initial start up proceduce. The use of this device is limited to momentary switch applications where the switch mode of operation is in the normally off condition.

- Hall Effect Device - The Hall effect element is a semiconductor device that generates a roltage as a function of sontrol current and magnetic field. As illustrated in Figure 3 control current is passed through one axis of the semiconductor. The Hall voltage will appear perpendicular to the control current at the edges of the semiconductor chip. This voltage vill be function of the magnetic flux passing through the chip perpendicular to both control current and the ontput voltage. In the smitch application. this voltage is used to control the switch output. The adrantages of the Rall effect device are:
- Small size
- Detection of steady state flux levels
- Life and reliability sinilar to silicon semicraductors

Because the Hall effect device has a relatively low output voltage (in the order of 50 mv) an amplification stage is necessary as an interface between the transducer and the switch output circuitry. The control current required for the Hall effect device is approximately $5-50 \mathrm{kA}$. The Hall effect device is made very thin (. 006 inches typical) in order to retain a high flux density across the Hall device in the on condition.

A devise aválable from Honeymell Microswitch incorporates a Hall effect devic and an amplifier and trigger circuit in one integrat.d caip. this device operates on low levels of flux and prcvides as in output two current sinks. In addition to being smail und sensicive this magnetic switch requures very little power to operute (30 mm max. at 5 volts). This power level is equivalent or lower than most flux sensing levices made of discrete parts.

The device has been designed to operate over the standard Military temperature range ($-55^{\circ} \mathrm{C}-\ldots+125^{\circ} \mathrm{C}$) and is available off the shelf from Micro-Switch. The device is sensitive enough that no specific flux path necu be incorporated in the hermetic seal. The switch will sense

FIGURE 3

the presence of a small magnet at distance of . 090 in. with any non-magnetic material between the magnet and the sensor. This feature will greatly simplify the process of hermetically sealing the final package.

- Magneto Resistor - Ragneto resistors are solid state
passive devices that change their resistance in the pre-
sence of a magnetic field. The devices are thin crystals
of Indiun Antimonide with elsctrical connections at both
ends (Reference Figure ta). The crystal is a semicon-
ductor with a grid-like conducting material running per-
pendicular to the direction of the current flow. With
no flox passing through the device current flows perpen-
dicular to the conducting bands implanted in tia seni-
conductor. Under these conditions the device exhibits
its lowest resistance. If flux is allowed to pass through
the devicr, the current is forced to travel a greater
distance etween conducting banis (Beference Figure 4b).
The longer current path increases the resistance between
the ends of the device. Typical ratios between maximam
and minimum resistance are on the order of 13 to 18 for
sensitive devices. The application of the sagneto
resistcr is similar to the Ball effect devices in that
they are mounted in the gap in the magnetic circuit.
Magneto resistors have the following advantages:
- Small size
- Low power
- Life and reliability sinilar to silicon semiconductors

Power consumption of magneto resistors is a function of the input current and resistance and is, therefore, in the order of mo.

AIternating Magnetic Flux Cevices
Alternating magnetic flux can also be used to convey mechanical switch status through a hermetic seal. Switches of this type operate using transformer coupling. This method would require the use of AC signals inside the hermetic seal. Because AC signa:s must be generated to produce the alternating flux and later rectified to interface with the logic and switch sections. this method will consume more power and be more complex than direct flux circuits.

FIGURE 4

2-7
\qquad
The only source of alternating fiux convenient for use in this application is a coil of wire around the magnetic flux path. The optim frequency at which the flux should oscillate will be a function of core losses in the magnetic circuit, the size of the oscillator, and the amount of radiated energy acceptable.

The greatest disadvantage to this type of design is the possible energy radiated to other switches and circuitry behind the switch. This radiation can be minimized to some extent by placing a magnetic shielding around the switch and EuI filters on the electrical lines, however, this would complicate both the packaging and the manufacture of the final switch.

All the sensors which sense direct flux also sense alternating flux. Of the three types discussed (pirk up coil, Hall effect. magneto resistor), the pick up coil is the most adaptable to alternating flux. A transformer type switch using coils might operate as follows:

In the configuration above, coil N_{1} is not strongly coupled with coil N_{2}. Coil N_{2} is a fepsack cifcuit for the oscillator. With the slug removed from the may netic path the feedback is insufficient to maintain oscillation. This results is a zero voltage output at the full wave rectifier. If the missing part of the core is placed into the magnetic circuit, coil N_{1} is coupled to coil N_{2} providing feedback to the circuit. This causes the circuit to break into oscillations and provides a DC voltage at the full wave rectifier switching the latching logic.

REV. \qquad
The selection of the material to form the magnetic core, is based on a number of factors.

- Magnetic properties
- Ease of machining
- Compatibility with switch housing material
- Ability to form hermetic seal.

A material of high relative permeability and low magnetic retentivity is most desirable. This would insure the greatest change in flux for a given magnet. Two materials appear best suited to this requirement.

1. Cold rolled armeo Magnetic input iron.
2. Cold rolled electro-magnetic iron.

When properly heat treated these materials are easily machined and can be soldered or brazed in the normal fashion.

One other consideration must be made if alternating flux is to be used. Core losses must be kept to a minimum which will require either a laminated core or a ferrite core. Both of these cores would be difficult to hermetically seal and will complicate the machining and manufacture of the transducer unit.

Transducer Evaluation

In the following section each of the sensor and sources are evaluated, thereby, allowing the best possible combination to be determined. A sumary at the end of this section compares all the combinations.

Coil Source With Coil Sensor
This approach is not acceptable because of the inability of the coil sensor to detect a steady state flux. A memory device of some type would be required to hold the switch in either the on or off state after a change in the flux level. Such a transdicer would be firther complicated by the circuitry required to guarantee proper start up. When power is first applied to the switch, circuitry must be provided to set the memory in either the on or off position febrnding on the position of the moveable core section.

Abstract

\qquad Another disadvantage of this method 15 the coil source which dissipates electrical power to provide a steady state flux. Permanent magnets use no power to accomplish the same thing.

Coil Source With Hall Effect Sensor A transducer of this type is feasible. It has two major disadvantages which make it less acceptable than other methods to be described. 1. Power must be supplied to both the coil and the Hall effect device for proper operation. This current would be on the order of 30 ma which is much higher than other types of transducers. 2. The Hall effect device puts out a low voltage (40 - 400 mv) when magnetic flu passes through it. This voltage level would have to be amplified in order to drive logic. The addition of an amplifier would consume nore power and space in the final design and is therefore not desirable.

Coil Source With Magneto Resistor Sensor
A transducer of this type offers many advantages. The magneto resistor requires no control current as does the Hall effect device so the total power consumption will be smaller than the Hall effect. With a flux change of 10 kilogauss the magneto resister changes its rnsistance by a factor of 7 from its 0 kilogauss level. This change is enough to actuate logic without amplification. At worst a single transistor will interface between the transducer and the logic section.

The only drawtack to this combination is the coil source which will draw current to generate the flux.

Permanent Magnet With Coil Pick Up
This method is unacceptable ror reasons mentioned under coil source coil pick up.

Permanent Magnet With Hall Effect Device
This arrangement has the same drawbacks as the one using Hall effect with coil source. The cnly advantage is the fact that no current would be required to generate the flux.
\qquad
The complete transducer circuit is indicated as fuliows:

Permanent Magnet With Magneto Resistor
This combination 15 acceptable because the flux is generated without the use of power and the Magneto resistor requires few additional components and uses little power.

The complete transducer is as follows:

2-11
\qquad
Permanent Magnet With Micro-Switch Sensor (Hall Effect/Amplifier/ Trigger)

Because this device is very sensitive and comes packaged with a trigger and amplifier on the same chip it appears to be by far the most advantageous transducer. It is sensitive enough that no pole pieces would have to pass through the hermetic seal barrier. This would greatly simplify the sealing process. Furthermore, the device comes in a small package allowing the overall switch size to remain small.

The complete circuit is shown below:

Coil Source With Coil Sensor (ac)
A transducer operating with these components would require the following circuitry:

2-12
pa202 1 :/72

The variable inductive coupling between the output and the input controls the feedback to the oscillator. Thus, by changing the feedback, the oscillator can be driven out of oscillation. By rectifying the output and using this signal to control the iozic section, switch operation can be made.

The following problems complicate this approach to the transducer problem.

1. The oscillation inherent in this type of switch will be difficult to shield from the outside world. Use of large RF filters would be difficult due to the small package size required.
2. The difficulty in hermetically sealing a low loss AC type core (laminated or ferrite) would necessitate use of a DC type core. This would force the oscillator to work at a higher power level to offset core losses.
3. Part count for this type of transducer would be high making a small package size difficult.

Coil Source With Hall Effect Sensor (ac)
This type of transducer would have all the drawbacks mentioned under coil source and coil sensor flus the following:

The Hall effect $d \in \cdot i c e$ must be placed in the path of magnetic flux requiring a gap in the core of the oscillator decreasing the coupling. The output from a Hall effect device would be a very small voltage ($40-10 \mathrm{mv}$).

The Hall effect device requires a control current for operation which is an added power requirement not necessary with a coil pick up. This type of transducer is not acceptable because of the poor AC flux characteristics of the Hall effect device. A co'l pickup is far superior in every respect for this application.

Coil Source With Magneto Resistor Pick UP
This transducer is unacceptable for the same reasons mentioned under coil source Hall effect device pick up.

Conclusions

Of all the magnetic transducers discussed in this section, tne most acceptable is the Honeywell magnetic switch used in combination with a permanent magnet. It is the best selection for the following reasons.
\qquad

- Low power
- Smallest size of any magnetic trai , הijeer
- Lowest component count.

LIGHT TRANSDUCERS

Transducers of this type will direct a beam of ligit from a light source through a shutter arrangement to a light sensor. Both light sensor and source will be contained inside a hermetic seal. The shutter arrangement will be external to the hermetic seal. By either allowing the light beam to strikf the sensor or interrupting the light beam with the shutter, sw -tch control of the light sensor can be obtained.

The shutter type of transducer suuld require that the hermetic seal wr-. around the movable shutter. This means a transparent hermetic seal would have to be made at each side of the shutter. To avoid this complicated seal, an alternate configuration with a reflective surface can be used. In this method light is directed through a transparent hermetic seal towards a reflective surface. Upon striking the surface the light beam is directed back toward the light sensor through ine same transparent seal through which it originally passed. In this way only one
\qquad
transparent seal is reçuired and koth source and senso: can be piaced in the sane place. Switching is obtained by either reflecting or not reflecting the light bear back to the sensor. :io noving parts are required within the hermetic seal.

Light Sources

A beam of light can te obtained from the following sources:

- Incandescent lamp
- Light emitting diode
- Electrc Iuminescent latap

The following characteristics would be desirable in a light source:

- Small size
- High brightness
- Low power
- Long life

It would also be desirable to have the light eminate from a single point source. As the light must be gathercd irto a beara to pass to the detector a single point source would simplify this requirement.

- Incancescent lamps - A light source of this type satisfies the size and brightness requirements with no difficulty. Light intensities as high as 2,400 foot LAMBERTS can be obtained in package sizes as small 25 Figure 5. The drawbacks of this source are its power consumption and its limited life. There would be no way to conveniently replace the lamp because of the hermetic seal. This factor alone makes use of incandescent lamgs. PROAIBITIVE.
- Light emitting diode - Light enitting diodes satisfy mist of the requirements. They are small, have a very long life time, moderate power consumption with moderate brightness. \boldsymbol{R} further advantage of the LED source is its narrow frequency band of light output.

Many types of photo diodes and photo transistors are optimized for use at a single fre nency. This means that the proper combination of LED and photo diode will make more efficient use of the light than a combination of photo transistor and any other light source.

LED's come in a variety of package sizes. The device pictured in Figure 6 would be most suited to the requirements of this application. This device was designed to be used with a particular photo transistor in high speed card and tape readers. The characteristics oi this device are listed in Table II.

- Electro-Luminescent Lamps - This type of lamp would not be suitable for this application. Electro-luminescent lamps have very low brightness (20 fL) and are better suited to surface illumination.

Light Sensors

Lightting diodes are the best choice for light sources so only sensors which incerface with LED's will be considered. The following devices are specifically designed to interface with LED's.

- Photo - Diodes
- Photu - tran-istors
\qquad

PIGURE 5
\qquad

FIGURE 6
\qquad
TABLE II. LIGET EMITTING CHARACTERISTICS
ELECTRIGAL CHARACTERISTICS ($\mathbf{T}_{\mathbf{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Cr racteristic	Fig. No.	Symbol	Min	Typ	max	Un.t
Revers Leakage Current $\begin{aligned} & \left(V_{R}=3.0 \mathrm{~V}, R_{L}=1.0\right. \\ & \left.M_{V}\right) \end{aligned}$	-	I_{R}	-	50	-	nA
$\begin{aligned} & \text { Rerpas Breakdown } \\ & \text { Noltitgt? } \\ & \quad r_{R R}=100 \mu \mathrm{~m} \end{aligned}$	-	BV_{R}	3.0	-	-	Valts
Iarwar Voltage $\left(I_{F}\right.$ $50 \mathrm{~mA})$	2	$\nabla_{\mathbf{F}}$	-	1.2	1.5	Volts
Bral :apacitance $\begin{aligned} & \left(V_{y}:=0 \quad V, f=\right. \\ & 1.0 \text { iHz }) \end{aligned}$	-	$C_{\text {T }}$	-	150	-	PF

OPTICA, CHARACTERISTICS ($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)

こharacteris!:ic	Fig. NO.	Syubol	Min	TYP	Max	Onit
$\begin{aligned} & \text { Tot il Power Output } \\ & \text { (No: }=11 \\ & (E=50 \mathrm{~mA}) \end{aligned}$	3,4	P_{0}	50	150	-	$\boldsymbol{\mu W}$
```Radjant Intensity (No.e.2) (1g}=50\textrm{mA}```		$I_{0}$	-	0.66	-	min/ steradian
Peak Euit:sion Wavelength	1	$\lambda P$	-	9000	-	$\stackrel{\circ}{\text { A }}$
Spectral Line Half Width	1	$\Delta \lambda$	-	400	-	$\stackrel{\text { A }}{ }$

The characteristics desirable for this appiication are:

- Suall si e
- Compa*itle witi LED light sources
* Higu light sensitivity
- . ow power consumption

$$
2-19
$$

$\qquad$

- Photo Diodes - Photo diodes are P on N or N on P silicon function devices that generate a photo current in response to a beal of li;ht focused on the sensitive junction.

Being composed of silicon, these devices are small, rugged and reliable. The photo-diode is the basic photo sensitive device in all of the phcto transistor varieties, so in one form or another it will be used in any kind of light transduce:. The current voltage curves for a typical photo diode are snown below.


The voltage and surrent levels are sufficient to drive the logic section without further amplification. However, if a photo transistor were used, lower light intensities would be able to drive the same logic section. This would mean lower power consumption in the LED.

- Photo-transistors - The photo-transistor uses a photo diode to generate base current for a normal transistor. This, in effect, amplifies the current sensitivity of the device by the $\beta$ of the transistor. There is no difference in package sizes between the photo diode and ik 3 to transistor, both can be obtained in packages as Frell as Figure 6.

Photo FETS take advantage of the photo voltaic effect of photo diodes. This is the change in output voltage as a function of light intensity of an open circuited photo diode. The increase of current gain available using a photo FET is of the same order of magnitude as that of a photo-transistor.


In this configuration the light from the Led provides base current for the photo transistor turning it on. The shutter can be placed in the path of the light beam turning off the transistor.

The LED must be provided with from 20 to 50 ma of current depending on the distance between the diode and the transistor, the load RL on the transistor, and any attenuating devices between the diode and the transistor (glass, light pipes, etc.).

The configuration of the reflective type transducer would be identical to that pictured above except for the shutter which would become a mirrored surface.

Conclusions
Of the light type transducers the light emitting diode in conjunction with the photo-transducer is the only method which will adequately meet the requirements of this application.

Table III below lists the characteristics of this type of transdiacer.

TABLE III. LIGET TRANSDOCER CEARACTERISTICS

POWER	. 150 WATTS
$\begin{aligned} & \text { COMPONENT } \\ & \text { COUNT } \end{aligned}$	3
$\begin{aligned} & \text { CROSS } \\ & \text { TALK } \end{aligned}$	2ONE
EXCITATION	DC-5-10V
herdiefic SEAL	PROBLEM AREA GLASS TO METAL SEAL

$\qquad$

## CAPACITANCE TRANSDUCERS

A transducer of this type would operate by sensing the change of a capacitor and operatins a trigger circuit from this change. Because all electrical co:ponents must be contained inside a hermetic seal the only portion of a capacitor wnich could be used to change the capacitance would be the dielectric. The plates of the capacitor being current carrying devices must lie within the hermetic seal and are therefore inaccessable for mechanical change.

This factor makes it very difficult to implement this type of transducer. Both plates must be sealed behind at least. 050 thick sheets of glass while the dielectric contained within the environmentally sealed section is moved in or out of the plate gap.

A further complicating factor is the dielectric itself. It would be desirable to have the capacitor make a very large change in capacitance. This would mean using a material with a high dielectric constant. Most materials with this characteristic are unacceptable for use in a space cabin environment.

A variable capacitance transducer is insrefore unacceptable for use in this application.

## CIRCUITRY

## SINGLE ACTION SWITCH

The basic circuitry of the switch consists of a magnet and Hall effect transducer, amplifier and output solid state relay switch as shown in schematic SW201 (Appendix I). The Hall effect device is an integrated hybrid chip containing the Hall effect pick off, an amplifier and a Schmitt trigger. The output of the Schmitt trigger drives a transistor amplifier which supplies current to the coil of the solid state relay switch. The output of the solid state relay directly supplies the load. The solid state relay coil is in series with the transistor driver and a light emitting diode. The light emitting dinde provides an indication that the switch is in the ON condition and that approximately 80 percent of the circuitry is operating normally. The only difference between the single pole and double pole switch is the addition of a solid state relay, the coil of which is in series with the original solid state relay coil, and an inereased supply voltage to provide additional drive power.

## TEN POSITION ROTARY SWITCH

The circuitry of the ten position rotary switch is shown in Schematic RDO01 (Appendix I). Four LED - phototransistor transducers provide the initial 3CD triggering to obtain 10 discrete switch position outputs. The output of the phototransistors provides triggers to exclusive or gates which inserts the proper logic format into a BCD to one of ten decoders. The output of the decoder supplies through transistor amplifiers the current to drive the apprcpriate coil of solid state relay matrix. The output of the solid state relay directly supplies the load.

## POTENTIOMETER

The input to the potentiometer consists of 7 LED - phototransistor transducers providing a resolution of 128 bits. The output of the phototransistors provides logic states to exclusive or gates, the outputs of which supply the necessary binary data to the digital to analog decoder. The decoder utilizes a ladder network with an operational amplifier output. The output is a 0 to 10 volt analog voltage capable of supplying a 1000 ohm or greater lead. A visible LED on both the rotary switch and potentiometer indicate that all internal LEDs are energized.

## OUTPUT SWITCH CIRCUITRY

The output characteristics of the switches are tabulated in Table IV. Physically all chips are the same size so that any possible combination of switch outputs is available. An important consideration with all types of switches is that the input to output isolation impedance is in excess of $10^{\prime \prime}$ ohms.

## SWITCH CONFIGURATION

The following types of mechanical packages must be produced to compiy with the contract.

- Toggle switch (maintained;
- Toggle switch (momentary)
- Push button
- Potentiometer
- Rotary switch
$\qquad$
TABLE IV. SWITCH CHARACTERISTICS

SWITCH   TYPE	100 MA   DC	140 V   AC	28 V   AC	400 MA   DC
LOAD   VOLTAGE	+50V MAX   PEAK	140 VAC   DMS	280 VAC   RMS	60 VDC

INPUT (CONTROL) SPECIFICATIONS

CONTROL VOLTAGE RANGE	$\begin{aligned} & 3.8-10 \\ & \text { VDC } \end{aligned}$	$\begin{aligned} & 3.8-10 \\ & \text { VDC } \end{aligned}$	$\begin{aligned} & 3.8-10 \\ & \text { VDC } \end{aligned}$	$\begin{aligned} & 3.8-10 \\ & \text { VDC } \end{aligned}$
MAX INPUT CLRRENT A 5T	22 MA DC	15 MA DC	15 MA DC	15 MA DC
TURN OFF   VOLTAGE (MAX)	0.4 VDC	0.8 VDC	0.8 VDC	0.4 VDC
DIELECTRIC   STRENGTH   INPUT TO OUTPUT	$\begin{aligned} & 1000 \text { VAC } \\ & \text { (PP) } \end{aligned}$	$\begin{aligned} & 2500 \text { VAC } \\ & \text { (PMS) } \end{aligned}$	$\begin{aligned} & 2500 \text { VAC } \\ & \text { (RMS) } \end{aligned}$	$\begin{aligned} & 1500 \text { VAC } \\ & \text { (PP) } \end{aligned}$
ISOLATION   INPUT TO OUTPUT	$10^{\circ \prime} 8 \mathrm{MIN}$	100 2 MIN	10" 8 MIN	$10^{\circ \prime} \Omega \mathrm{MIN}$

UUTPUT (LOAD) SPECIFICATIONS

OUTPIUT CURRENT RATING	$\begin{aligned} & +100 \mathrm{MA} \\ & \text { РेEAK } \end{aligned}$	1.0 AMP	1.0 AMP	400 MA
OUTPUT VOLTAGE	$\begin{aligned} & +50 \text { MAX } \\ & \text { PEAR } \end{aligned}$	$\begin{aligned} & 140 \text { VAC } \\ & \text { RMS } \end{aligned}$	$\begin{aligned} & 280 \text { VAC } \\ & \text { RMS } \end{aligned}$	60 VDC
OFFSET VOLTAGE	$+5.0 \mathrm{MV}$	-	-	-
CONTACT "ON" RESISTANCE (OHMS	5.0 MAX	-	-	-
CONTACT "OFF" RESISTANCE (OHMS	$10^{9} \mathrm{MIN}$	$\underset{\text { MIN }}{2 \times 10^{5}}$	$2 \times 10^{5}$	$\begin{aligned} & 10^{7} \\ & \text { MIN } \end{aligned}$
MAX DRIVE FREQUENCY (Hz)	100K	500	500	30K
MAX SURGE RATING	0.1 JOULE	10 AMP	10 AMP	-
CONTACT VOLTAGE DROP AT RATED CURRENT (MAX)	250 MV	1.5V RMS	1.5V RMS	1.5VDC

Each type must have the electronics hermetically sealed. The packages for each type therefore have two sections, a hermetically sealed section and an environmentally sealed section. The hemetically sealed section contains the drive electronics. The mechanical actuation is contained in the environmentally sealed section.

There are two basi- +ypes of package. One contains all the single action switch configuration and the other houses the rotary switch and potentiometer.

## SINGLE ACTION SWITCH

The single action switch is packaged in a rectangular case of the same approximate dimensions as the present hermetically sealed single pole double throw mechanical switch made by Texas Instruments for the LEM and Apollo missions.

Of all approaches tried, Hall effect devices and magneto resistors were the most acceptable. The Hall effect device, because of the higher sensitivity of the Micro-switch device, results in no pole pieces extending through the hermetic seal and, therefore, is the optimum selection.

Figure 7 depicts the layout of the single action switch using this Hall effect device.

## POTEITIOMETER AND ROTARY SWITCH

A potentiometer with a resolution of 3.6 degrees is provided. The potentiometer is nct a variable resistor but a variable voltage supply which should serve all the functions normally performed by a potentiometer. Rotation of the pot shaft varys the digital input to a $D$ to A converter (DAC) producing a variable voltage. The pot is, in effect, a 7 bit encoder connected to a DAC.

The encoder portion of the potentiometer is a mirrored disk outside of the hermetic seal. Inside the hermetic seal a series of photo diodes and light emitting diodes operating through a transparent seal senses the position of the mirrored disk. This digital information is connected to a DAC to provide the outpu'.

The rotary switch is of the same configuration as the potentiometer. An encoder disk is mirrored into 10 sections. A series of photo diodes and light emitting diodes senses the pisition of the encoder disk and operates 10 individual switches. Any of the switch outputs shown in Table IV can be provided in the rotary switch.


FIGURE 7. SOLID STATE TOGGLE SWITCH OUCLINE DRAWING (Sheet 1 of 2)


REPRODUCTBILITY OF THE ORIGINAL PAGE IS POUR

FIGURE 7. SOLID STATE TOGGLE SWITCH OUTLINE DRAWING (Sheet 2 of 2 )
nEV. $\qquad$
The potentiometer and rotary switch are both packaged in a cyindrical housing approximately 2.5 inches in diameter and 1.5 inches in depth. Eigure 8 depicts the layout for the solid state pot arc rotary switch. A glass seal separates the herriotic section irom the encoder wheel. The encoder wheel is environmentaily sealed at the shaft with an e- ring. Light Erorr the LEDs passes tinrough the glass seal, is reflected by the silvered encoder disk ard after again passing through the glass seal turns on the phototransistor. Seven LED phototransistors are arranged to align with a Gray code disc providing seven bits of non-redundant binary information. This information is converted into a variable voltage in the $D$ to $A$ section located on the two PC boards in the sealed zrea.

## HERMETIC SEAL

A sample of each package style ia mermetically sealed. The hermetically sealed portions of these packages constructed as gas eight enclosures completely sealed by fusion of glass tc metal or bording of metal to metal. Special sapphire glass discs already hermeticaliy sealed to a metal ring are braze? into the bzass casing to provide the chamber hermetic seal. After the electronics are inserted into the chamber and leads attached to the soldered giass/metal intezconnect the back cover is sr?dered into place. Prior to sealing, the enclosure is cleanea and dried. The enclosure is purged of ail air anc backfillea with one atrosphere of gas consisting of 95 percent nitros=?/5 percent heliur. A primary consideration in the selection of enclosure naterials is the ease of wolding, brazing cr soldaring the bonding metiods typically employed for metal to metal hermetic seals. rinal miter: 31 seiection provides for brass casings for ease of brezirg ana soldering.

## Environmental Seals

Enviromental sealing is accomplished primarily by gasketing. siliccne 0-rings and gaskets are utilized at closure points to prevent dirt or acisture infiltration and other contaminants.

PANEL CONFIGURATION
The sold state switch panel contains the following types and quantities of switches.

Toggle maintained	SPST	5
Toggle maintained	DPST	5


figure 8. SOLID STATE POTENTIOMETER (Sheet 1 of 2)

$$
2-30
$$



FIGURE 8. SOLID STATE 10 POSITION SWITCH (Sheet 2 of 2)

$$
2-31
$$

14202: 2172

	THE Etmesen company LEANFOTT ENVISM		Y2568226
Toggle momentary	SPST	5	
Toggle momentary	DPST	5	
Pushbutton	SPST	3	
Pushbutton	DPST	2	
Rotary	10 pos	2	
Potentiometer		2	

Thrie switches are mounted on a 19 -inch wide rack. Two of these switches costrol high powered 10 amp switches mounted directly on the test panel. The test panel also contains the rated loads for all the switches and porentiometers and provides an indicstion as to which switcines are being operated. The suitches are grouped relative to contact rating and identified accordingly on the test panel.

## SUMMRY

For the small number of switches produced, several techniques were utilized which would not necessarily remain in the production unit. The same housing was used for both pushbotton and toggle switches which necessitated the use of an add-on toggle assembly. In production units, the toggle assembly would become an integral part of the switch body thereby enhancing the usual outline of the toggle switch.

In production quantities, all switch and rotary components would be hybridized to maiaturize the electronics. This would diminish the package size and simelify hermetic sealing.

## PONER CONSUMPTION

Excluding the switch contact ratings, the following power is required in the quiescent (non-operating) state and the operating mode for each type of switch.

TME EMEES COMPANY KEARFOTT OMRSAOM			$\begin{aligned} & \text { Y256A226 ncy. } \\ & \text { Power Operating } \\ & \text { (min) } \end{aligned}$
Switch Vor	Voltage (roles)	Power Quiescent	
Pushbutton/toggle SPST	$5 ¢ 12$	25	320 mw
Pushbutton/toggle DPST	5.28	20	720 m
10 Position Potary	5.12	500 m	$500 \pi$
Potentioneter	$5 ¢ \pm 12$	fic aw	450 m
	total	nel power quies	cent I.? fitts
		Operat	ing 14.: watts

PANEL UPERATION
POWER APPLICATION
Place all switches in the off (down) position. Apply the power to the proper pins on the input jack panel located at the bottom of the switch panel. The positive side of the -12 volt input connects to the black input jack and the negative connects to the red jack. The 28 fipower supply shall be capable of suppling 25 amps in orier to test the power switches.

The AC roltages ( 120 VAC, 240 VAC) are only used to provide contact vortage ratings on the 5 pushbutton AC switches. The AC need not be connected for proper check out of all DC switches and rotary components.

## OPERATICN

The switch labeled panel controls power to the entire panel. Power is connected to this switch whenever power is present on the jack panel. When it is switched to the ON position, power is applied to all other swirches.

With power connected to the panel and the panel switch on, all switches will operate. Switching any toggle momentary or maintained to the ON (up) position or operating any pushbutton will cause the appropriate load light to illuminate. For the two power switches there are no load lights. Closure indication for these switches is given by two surrent meters located at the top of the panels.

## THE SHMETE COMPANY KEARTOTT DIVEION

$\qquad$

The rotary devices are also actuated by the pancl switch. The outputs of the poteniometers are indicated by two polt meters located at the top of the panel. The rotary switches are connected to decinal displays which indicate the position of the switch.

LOAD CORMECTOR PIN OUT.

$\qquad$
TESTS

## FUNCTIONAL TESTS

All switches were tested at standard ambient conditions to insure proper operation at rated voltage and 10 percent under and over voltages. Power at nonoperating (quiesent) and operation conditions were measured for the entire panel with the following results:

Panel Quiesent Power	2.4 Watts -
Panel Operating Power	14.7 Watts

The panel operated satisfactorily when submitted to the various functional tests.

ENVIRONTERTMA TESTS
One type of each switch: toggle, pushbutton, rotary and potentiometer were submitted to the following environmental tests.

## TEMPERATURE

2 Hour Soak at $0^{\circ} \mathrm{C}$
Functionally tested
2-Hour Soak at $70^{\circ} \mathrm{C}$
Functionally tested

## RESULTS

SPST, DPST, and Rotary Switch operated satisfactorily. Potentiometer intermittent at high temperature as a result of low current through LED's. Increasing current through LED's provides stability over temperature range, however, higher power dissipation results.

## RANDOM VIBRATION

Procedure
A random vibration equal to the total $G$ level utilized on the LEM and Skylab was impressed on the switches. Period of application is 2 minutes.

$$
1150-2000 \mathrm{~Hz} \quad 20-2000 \mathrm{~Hz} \quad .02 \mathrm{gt} / \mathrm{Hz}
$$

THE SIMEER COMPANY KEAAFOTT DIVISION

REY. $\qquad$
Switches Tested
Pushbutton
Toggle
Rotary Switch

## RESULTS

Ali switches functioned chroughout the random vibration. The pushbutton normally open remained in the normally open state, the toggle maintained in a closed switch position remained in that state without interruption and the rotary switch set at position 5 remained closed in that position with all othsr positions normally open. The graphs on the following pages visually depict the vibration levels applied intwe-during the test.

EMI TESTS
EMI tests were conducted on the double pole, single pole and the potentiometer in accordance witi MIL-STD-461. The tests performed were CE01. CE03 and CS06. CE01 and CE03 were preformed on every lead of the device under test. CSO6 was preformed on all power leads with the spike equal to $50 \%$ of the nominal line voltage.

RESULTS
The results of the CE01 \& CE03 tests are contained in the attached data. Emissions for all devices were within the max specification limit. All devices operated successfully during the Cs06 tests.









REPRODLCIBILITY OF TII
ORIGLIAL PAGE IS PUN:
Electremagatit Gempaililify Test Eata Sheet




(2) Bractbom Trens.enos
(B) Meremseol ( $C$ (n)




## PFPRODTCBTAT O-

ORIGR:
Elestromagzefic Cempatibilily Test Data Shect
 HASK







MOTE: A - All trequancies not listod ere scemed for matimum interierence.

(2) Broesband, Transuenti
b) Neroubond (CM)


,


KEPRUDUCibs:as:
ORIGNAL PAGL is : PU.
y256A226

Electiomagnefle Compatibliliy Test iata sheet
REAGFOTT OIVISIOM


MOTE; A - All frequencies at lisfed we scopind for mosimum interforence.

-     - Inferference Type: (I) Ereedbend, Sreedy -State

Ereodbond. Trensients
(3) Nerroutond (CM)

Electromagnelic Compallbllity Test data Sheel

TEst spectanc $/ / \rightarrow 5$
Mollotho-1-2
TEBTMODE



NOTE: A - All hequencies not listed are acenned ior maximum interfarence.

- Inter -ence Type: (1) Brocdbond, Steady-Siole
(2) Broodbond, Tronaionia
(3) Nerrowband (CM)

Electromagnetic Compatiblility test Data Sket



- inielerence $r_{r}-$ : (i) Broadband, Sieady-State
(2) Broadmad, Tronsienti
(3) Narromband (Cm)


 vinum

MNSA DOUQLE DOCE				-ot. 2		50me	
$P=--x$ OR							
anekipreatreos			macherem			$2 \& N O C$	
ceneucree er	A.G.			0.5.			$\text { mare }_{11017-33}$
$\begin{aligned} & \text { TEST } \\ & \text { FRFP } \end{aligned}$	metie	Craction	rex	grecricinem	Cuix	${ }_{0}$	mematics
	10...es	C. P.	s:/4.timer	aera/f.			-
.620	43	1	$3 \%$	7-0	1		PRUEE
. 22	42	70	${ }_{5}$	125			-20
- 35	32	7	37	116			
-045	34	5	39	112			
. 665	32	5	36	166			
-0f,	30	3	33	$10^{2}$			
dos	$3{ }^{\circ}$	2	32	95			
0.120	30	1	31	96			
-15	30	\%	31	62			
- 206	30	0	30	12			
-300	30	$\bullet$	30	FO			
- 8.400	30		30	76			
. 500	55		$55^{2}$	72			
. 110	30		30	64			1
100	10		33	60			
1.5	35		35	37			$\pm$
z-0	30		30	5.			-
3.6	30		30				.
4.1	30		30		1		
5.0	55		55				
$6 \cdot 6$	37		37				
$2 \cdot 1$	38		$3{ }^{3}$				,
12.0	30	+	30				-
15.0	30		30				
20.0	30		30				
36.0	30	$!$	30				
40.0	40	V	30				
50.0	32	$V$	32	$V$	$\pm$		$\checkmark$
							-
-.							



(A) Minomid (KI)


REPRODUCIBTITY OF B
original page is zcoz
Eleetromagnetie compalitility Tost iata sheet


Electromagnefic Compallilily Test fiata sheet


(2) Eraliked, Tremiveres
(a) Mevoriond (CII)


## REPRODUCIBILITY OF THE <br> ORIGINAL PAGE IS POOR

Electromageelic Compatbility Test iata Shect



$$
\begin{aligned}
& \text { (a) Browheme Trems }
\end{aligned}
$$



## REPRODUUZ̈hin: ORIGNAL PAGE is Runas

Electromagasile Compatibliliy Test Diata steet



REPRODUCIBLIIIY OF TIE

Electremagnetic Compatibility Test diata Steet



Electromaqnetic Compatibllity Test Bata Sheet Thst rifcimen

## HASA

000tino.1-1

## 



NOTE: A - All frequancies not lissed ere stanned for manmminn interfarence. B - Interlarence Trpe: (1) Broodbond, Sruady Sivie
(2) Ereodband, $\mathrm{T}_{1}$ : isients
(3) Nerrembend (CW)


REPRONICLiLis: $\quad$ : : orignal page s Pion						
Froveremex			0-1-1		cosma	
HASA						
$\qquad$			-macration			
	A5	Catel: $1 / 33$		cmexecos B. 5.		$\text { mavi/ } 115 / 73$
Tifst	H5be	cranecriom	${ }^{\text {afaxat }}$	Sreciricitiom	Hren mat	
	E	$\checkmark$	20	20	3	PRios
10.0	12	6	2	20	3	$\cdots$
2, ${ }^{\text {a }}$	22	2	27	20	3	$\cdots$
$\square$						
-						
-						
$\square$						
	.					
-						
-						
=						
-						
=						
=						
			.			
-						
$\qquad$						
			.			
200000000000			L.			3-37

Eleciromagatic Compatibility Tast iata sheef


[^4]









$\qquad$

## RGLIABILITY

A reliability prediction was preformed to establish the failure rate of each of the solid state switch devices. This data is sumarized on the attached computer data sheets. Also included in this section is a reliability failure mode and effects analysis. This analysis was made on the 10 position rotary, potentionster, and the double pole switch.

	ombitat tenpenatume =			cce		$\underset{s c}{\substack{\text { STAESS } \\ \text { Su }}}$
	PMT TYPE	Gunitity	$\begin{gathered} k(E n v 1 \\ 1.0000 \end{gathered}$	$1.0700$	$\begin{aligned} & \text { Wafon } \\ & \text { b.0760 } \end{aligned}$	
	nes cumpal	2.0	0.0600	0.6035	$0.04<0$	2
	res comp hl	4.0	0.0000	0.6035	0.0840	16
$\stackrel{\downarrow}{\sim}$	solio stafe kelay	10.0	1.0000	0.004s	0.0458	10
	TENMSISIOR MPN	4.0	1.5000	u. 1975	1.163C	16
	ctacuit mamo	1.0	1.0000	0.0630	0.0030	10
	shoassembly tuta		2,464			

REPROLULLLS
ORIGLNAL PAGE is FUCir
bixed ghuund envikunment





amalthi lemplanlumi. -			40 C		$\begin{aligned} & \text { singtas } \\ & .10 \end{aligned}$
PALI PYPE cimensi suano	$\operatorname{manility}_{1.6}$	$\begin{aligned} & \text { K1guy: } \\ & 1.0000 \end{aligned}$	$\begin{gathered} p_{0} \pi \\ u_{0} \cos ^{2} \end{gathered}$		
a100\%	1.0	1.8000	-0.000	..13uc	c
prusision men	7.6	1.8000	U.1979	2.0737	10
motothansistom	7.0	0.000	L.cuss	0.1070	10
sumassemety t				9.01	

sumassemely tutal

nuv. bilsts

Sugassemicy - SuLiU static ril
Fiactu unumue thataciageif
anciemi temberatura -

4.17

Alase unulatu th ingmmiti




	ambit	TEAPEMA	turt		C	
	$\begin{aligned} & \text { PMI TYPE } \\ & \text { OIWE } \end{aligned}$	$\begin{aligned} & \text { WUANTITY } \\ & \text { l.t } \end{aligned}$	$\begin{aligned} & \text { B ( \& н y } \\ & 8.8006 \end{aligned}$	PRA	$\begin{gathered} \text { U.fok } \\ \cos 2 \phi 2 \end{gathered}$	striss
	cticuss uchao	1.0	1.0000	0.0430	0.0630	10
	stansistun mpn	1.0	1.81000	0.8100	0.7080	20
	sclso state aslay	1.0	1.0000	U.000.	0.064	10
M 4	jntegrateo giacust	b.6	1.2000	0.0300	0.0300	10
	SwITLM Tocele	1.0	1.0000	0.2300	0.2300	10
	macmel	8.0	1.0000	0.8500	U.8500	10
sudassingolr tufal				2.248		




toujpment -- juldu stati gerguame pkeulction ay part trpt $\underset{\substack{2 \\ 3}}{2}$

$$
\begin{aligned}
& 43: \\
& 25: \\
& 40: \\
& 23 . \\
& 25: \\
& 63:
\end{aligned}
$$

anbitent timpenalijet ace fiato gruumo anvinuliment


SUBASSLMULY
SUAASLAMGLY
7.40 SU INLA-all-ngur.-2I7A flgune


KEAMPUIT EAPEMANCL



$$
\begin{array}{r}
20 \\
29: \\
29
\end{array}
$$


tutal pakt:0.290
13.752
$v .440$





APPENDIX I

SCHEMATIC DIAGRAMS


I-1
848021 2/12


FIGURE I-2, SCHEMATIC DIAGRAM STMGLE POLE SWITCH

$$
w=01
$$


figure i-3. schighatic diagran double pole switch



APPESIDIX D
TEILEDIIS FIMAL REPORT FOR COITHACTI HAS 9-12914
SOLID STATE POWER COITHOLLERS

$$
n 74-35274
$$

NAS CONTRACT \# NAS 9-12514
ORL LINE ITEM ※
DRD \# MA-129T

# SOLID STATE POWER <br> CONTROLERS 

## FINAL REPORT

## DATE 30 AUG 1973

## mas contract mas 9-12914

ORE LIME ITEM 12
ORD NTR-129T

## SOLID STATE POWER CONTROLLERS <br> FINAL REPORT <br> DATE 30 AUG 1973

WRITTEN BY
R. Stuart Site R.S. GIBBS

Solid State Military Products Marketing and Development



The report is comprised of the rationale, analysis, design, breadboarding and testing of the incremental functional requirements that led to the dovelcement of prototype 1 and 5 Amp DC and 1 Aap AC Solid State power Controllers (SSNC's). The SSPC's are to be considered for use as a repiacement of electro-mechanical relays and circuit breakers in future spececraft end atrersft. They satisfy ste combined function of both the relay and circuit ercaker and can be remotely controlled by small signals, typicaliy 10 nat 5 to 20 vic.

They have the advantage over conventional relay/circuit breaker systems in that thay can be located near the utilization equipment and the primary MC or DC bus. The low level control. trip indication and status sigmals can be circuited by smali gauge wire for control, computer interface, logic. electrical multiplexing, unboard testing, and power managecent and distribution purposes. This results in increased system versatility at appreciable weight saving and increased reliability. Conventional systems require the heavy gauge load wiring and the control wiring to be routed from the bus to the load to other remote relay contacts, switches, sensors, etc. and to the circuit breaker located in the flight engineer's compartment for purposes of manual reset. Solid state switching reduces the conducted EMI substantially. The SSPC is intended to protect itself, the ?oad, and the systems wiring against overload, shortcircuit and voltage transients.

## SUMMARY

Following analysis, design anc breadboard testing, 1 and 5 Amp DC and 1 Amp AC prototype Solid State Power Controllers were produced and delivered to MASA HANIED SPACECRAFT CENTER/Houston. The specifications of the Statement of Hork were satisfied with a few exceptions. These exceptions were due to compromises in arriving at optimum design with respect to weight, size, reliability and cost. Many options in design were evident and are discussed.

Due, the small quantity of units contracted and problems of high density packaging of discrete components, some optional features of the SSPC's were not included in the delivered articles, particularly "status indication". Circuits for this feature were analyzed, breadboarded and tested. Production requirements would utilize hybrid microelectronic manufacturing techniques, and the inclusion of many optional functions can be realized.

In addition to meeting functional requirements, the design objective was simplicity for reasons of reliability, weight, size and cost. The design leading to the prototype units met this requirement. Relaxation of some specification parameters without sacrifice to overall performance could lead to further optimization of design and are discussed.

## TABLE OF CONTENTS

Page
SUMAARY ..... 1
CONCLUSIONS ..... 6
RECOFMENDATIONS ..... 6
INTRODUCTION ..... 7
DC SOLID STATE PONER CONTROLLERS ..... 9
Power Output Termination ..... 9
Power Chip Selection ..... 14
Power Dissipation ..... 15
Isolation ..... 15
Current Limiting and Short-Circuit Protection ..... 18
Control Voitage Selection ..... 27
Trip Indication ..... 27
Status Indication ..... 28
Reset ..... $2^{\circ}$
Transient Voltage Protection ..... 28
Fusing ..... 30
Foul-Up Protection ..... 30
Circuit Schematic ..... 31
Packaging ..... 31
Techniques ..... 40
Reliabiity ..... 43
Specifications ..... 46
Test Results ..... 49
AC SOLID STATE POWER CONTROLLERS ..... 56
Zero Axis Switching ..... 56
Power Output Termination ..... 56
Power Chip Selection ..... 56
Power Dissipation ..... 59
Isolation ..... 59
Short-Circuit Protection ..... 60
Control Voltage Selection ..... 60
Trip Indication ..... 60
Status Indication ..... 60
Waveform Distortion ..... 63
Reset ..... 63
Transient Voltage Protection ..... 63
Fusing ..... 63
Foul-Up Protection ..... 63
Circuit Schematic ..... 63
Packaging ..... 65
Reliatility ..... 65
Specifications ..... 71
Test Results ..... 75

## FIGURES

Fig 1
MIL-P-81653 3 Terminal DC Power Controller
Fig 1
Teledyne 2 Terminal DC Power Controller 10
11

Fig 3 3 Terminal Emitter Follower OC Power Controller
Fig 4 Output Voltage Drop versus Current. ..... 13
Emitter Follower DC Power Controller
Fig 5 Power Chip Mounted Directly to Copper Surge Block ..... 16
Fig 6 Power Chip Mounted to BeO Insulator to Copper Header ..... 17 Sink
Fig 7 Safe Operating Area Powertech MT1010 Power Transistor is Chip
Fig 8 Effect of 80 Volt Transient on 5 fmp Controller20
Switching into Rated Load
Fig 9 MIL-P-81653 Current Limiting Characteristics of DC ..... 21
Controllers
Fig 10 Current Limiting Characterisitcs Teledyne DC Controller ..... 22and Voltage Drop Across Controller Under Transients
Fig 11 MIL-P-81653 Trip Characteristics for DC Controllers ..... 23
in Current Limit Mode
Fig 12 Functional Block Diagram OC Controlier ..... 24
Fig 13 DC Power Controller Circuit Schematic ..... 25
Fig 14 Status Indicator Simplified Schematic ..... 29
Fig 15 Outline Dwg. of 1 Amp and 5 Amp DC Power Controller ..... 32
Fig 16 Assembly Layout DC Power Controller ..... 33
Fig 17 Circuit Board Assembly-Bottom, DC Power Controller ..... 34
Fig 18 Circuit Board Assembly-Top, DC Power Controller ..... 35
Fig 19 Conceptual Packaging Layout for Hybrid Control Circuit ..... 37
Assembly
Fig 20 Conceptual Packasing for 1 Inch Cube Controller with ..... 41
MIL-P-81653 Mounting Concept
Fig 21 Conceptual Packaging for 1 Inch Cube Controller with ..... 42
Alternate Mounting Concert
Fig 22 Test Circuit, DC Power Controller ..... 55
Fig 23 MIL-P-81653 3 Terminal AC Power Controller ..... 57
Fig 242 Terminal AC Power Controller ..... 58
Fig 25 Trip Characteristics AC Power icntroller ..... 61
Fig 26 AC Controller Status Indicator Simplified Schematic ..... 62
Fig 27 AC Power Controller Circuit Schematic ..... 64
Fig 28 Functional Diagram AC Power Controller ..... 67
Fig 29 Uutline Dwg. 1 Amp AC Power Controller ..... 68
Fig 30 Assembly Layout 1 Amp AC Power Controller ..... 69
Fig 31 Circuit Board Assembly-Bottom, 1 Amp AC Power ..... 70
Controller
Fig 32 Circuit Board f.ssembly-Top, 1 Amp AC Power Controller ..... 71

## FIGURES (cont.)

Fig 33 Trip Characteristics 1 Amp AC Power Controller +25 C 78
Fig 34 Trip Characteristics 1 Amp AC Pnwer Controller -55 C 79Trip Characteristics 1 Amp AC Power Controller +85 C
Test Circuit for Trip-Out Time vers:: Sverload 82
Test Circuit for Short-Circuit 92

## TABLES

Page
Table 1 Screening Procedures for Hybrid Control Circuit 39
Table 2 Faflure Rate Estimate i Amp and 5 Am DC Power 45
Table 3 Specifications 1 Amp and 5 Amp DC Power Controllers 46
Table 4 Failure Rate Estimate $1 \operatorname{map}$ AC Power Controller 66
Table 5 Specifications $1 \operatorname{mpp}$ AC Fower Controller 72

## Conclusions

Solid State Power Controllers can be made in the envelope proposed, satisfy the functions and meet the environmental conditions. This makes possible a fully automatic electrical control system with built-in safety factors to protect the SSPC, the load and wiring against overload, shortcircuit and voltage transients.

## RECOMENOATIONS

Since the efforts of the study and the production and testing of functicnal SSPC's proves the concept, final specifications for production flight SSPC's should be generated. Efforts should be made between NASA, cognizant military services, aircraft manufacturers and potential suppliers to arrive at antual agreament concerning basic packaging, functional requirements, control voltage levels, trip indication, status indication, etc. To meet functional requirments in optimum packaging, hybrid microe?ectronic manufacturing techniques will be required. Poor economics as well as reliability exist in relatively small quantity of hybrid microelectronic production. Standardization of basics would encourage more multiple and universal usage with resulting improvenents in economics and reliability. Economy, rather than design or production, appears to be the only obstacle to widespread practical usage of SSPC's. An advanced system utilizing SSri's would be cost-competitive with conventional systems if reasonabie production could be anticipated.

Although the contract reques: $\pm 1$ study and development in the 1 Amp to 5 Amp range, higher current SSPC's are being zonsidered. For the high DC current range, 10 Amp to 50 Amp , the availability of transistor chips with good secondary break-down characteristics are limited and only available at consideratie cost. Encouragerent to the semi-conductor industry to produce an acceptable chip at reasonable cost is highly recommended.

Industry has recently reported on some SSPC failures in switching into transf. or loads where core saturation can occur. Teledyne has not experfenced this fallure mode. Since reported failures have been catastrophic in nature, further study of the problem is suggested and resulting specifications d-rived to protect against this possible failure mode.

## INTBMOUCTION

It was suggested that a study be made of DC and AC Solid State Power Controllers (SSPC's) with respect to each of the functional requirenents such as control voltage, trip indication, status indication, and isolation. Teledyne Relays was to analyze optional circuitry for each function and to weigh the results with respect to size, cost, weight and reliability. Optimu packaging was to be a main consideratim. The final objective was to fabricate and test prototype units incorp ing the analysis and breadboard testing results. Although the guidings cification was MIL-P-81653, General Specifications for Power Controller, Solid State", deviations were allowed to optinize the design. The basic functions and switching characteristics were to be satisfied in principal. The following functions and points of design analysis were considered for both the DC and AC SSPC's.

DC SOLID STATE PONER CONTROLLERS<br>Power Output Termination<br>Power Chip Selection<br>Power Dissipation<br>Isolation<br>Current Limiting and Short-Circuit Protection<br>Contrel Voltage Selection<br>Trip Indication<br>Status Indication<br>Resé:<br>Transient Voltage Protection<br>Fusing<br>Foul-up Protection<br>Circuit Schematic<br>Packaging<br>Reliability<br>Specifications<br>Test Results

AC SOLID STATE POMER CONTROLLEPS
Zero Axis Switching
Power Output Tenaination
Power Chip Selection
Power Dissipation
Isolation
Short-Circuit Protection
Control Voltage Selection
Trip Indication
Status Indication
Maveform Distortion
Reset
Transient Voltage Protection
Fusing
Foul-up Protection
Circuit Schematic
Packaging
Reliability
Specifications
Test Results

In amalysis and design, the axiom was taken that teliability was inversely propertional and cost-, weight- and size-proporticnal to total component count of the circuit. Emphasis ms on simpilicity.

## DC SOLID STATE POMER COMTROLLERS

## POMER OUTPUT TERMIMATION

MIL-P-81653 solid stat: power controller specification requires the fui .tional circuitry illustraied in Fig. 1, requiring three terminals in :he sutput section. The ground terminal is used for establishing an intervial power supply for switching and status function. This current arravyement has distinct disadvantages in that the base current necessary to drive the power switching transistor must be established for the minimm load voltage, resulting in excessive power dissipation at maximin load voltige ;. Circuitry for the isolation and control function requires a relatier ly high component count. The principle objective of the study was to red je the component count for reasons of size. weight, cost and reliability. Tralisformer coupling is required to obtain the necessary base drive to saturate the power transistor, introducing probable RFI elements unless elaborate filtering is aployed.

A 2-terminal design was investigated and the functional circuitry is illustrated in Fig. 2. This arrangement has the advantage that no power is taken from the load supply for the switching function. The base drive is independent of the load voltage, resulting in the controller having unf"orm switching capabilities from .5 volts to 30 volts. The 2 -terminal de:iign allows for location of the power switching transistor on either the supply or ground side of the load voltage. In the case of the 3-terminal iesign, the load is dedicated to the ground side. The disadvantage is that the power for the base drive of the switching function must be derived 1 rom the control signal. The current required for low control voltages is ispreciably more than that required for the 3-terminal controller. With a 28 volt cor* of voltage current, drain is not excessive for ! and 5 Amp controllers. For higher ratings, control current requirements may be excessive. RFI problens will also exist for the 2-terminal controller, as transformer coupling is required for isolation. The induced power of the RFI element is considerably less for the 2-terminal controller. Status indication $r$ 'quirement is more complex for the 2-terminal controller without the ground reference. It can be accomplished by sensing current in the load line versus sensing voltage at the load in the 3 -terminal controller.

An alternate 3 -terminal design was investigated, as shown in Fig. 3. For 1 Amp lu ds a PMP transistor may be used for Q1, with Q2 omitted. For hijher cu..ents, PNP transistors are not readily available with sufficient Beta $f r$ effictent drive. The NPN power transistor, driven by a PPIP transiste. allows for efficient switching. The only disadvantage is the incrissed voltage drop across the combined switching transistors. Fig. 4 rows lead current vs voltage drop. It might appear that the larger voicage crop would riuse considerably more power dissipation resulting in a less efficient power distribution system. However, calculations taking


FIG.I MIL-P-8I653 3 TERMINAL CONTROLLER


FIG. 2 TELEDYNE 2 TERMINAL CONTPOLLER

FIG. 33 TERMINAL EMITTER rOLLOWER CONTROLLER

into consideration the internal power requirements for drive as well as the power dissipation of the power switching transistor, indicate that this 3-terminal arrangement is more efficient for loads up to 7.5 Amps. Above 7.5 Amps, - Mil-P-81653 controller is more efficient. It has been estimated that from 76\% to 90\% of controllers on actual aircraft systems (A-7, F-14, SST, etc.) are for loads of 7.5 Amps or less. There may be loads which suffer in performance due to the slightly reduced output voltage. Trade-off studies are required to isolate the areas. Another major advantage of the 3-terminal controller illustrated in Fig. 3, is that isolation can be accorodated by opto-electro means, resulting in elimination of RFI-induced elements. reduced weight, size, cost, and improved reliability.

The design used for prototype units incorporated the 2-terminal configuration, Fig. 2, because of the 1 and 5 Amp rating specified and the available 28 volt control voltage. The 3 -terminal controller, Fig. 3, should be considered in future studies if the resulting slight increase in output voltage drop is acceptable.

## POHER CHIP SELECTION

The output power switching transistor is the only highly stressed component in the entire circuit. In the curr it limiting mode, it must dissipate at a ninimum 105\% of rated load X $3 / .5$ volts, or 195 watts for a 5 Arip controller. The chip failure mode is determined by secondary breakdown characteristics. Power transistor chips with 75 Amp rating failed for the 5 Anp rated controller in the current limiting mode due to secondary breakdown characteristics. Chip size and geometry, rather than rating, determine the secondary breakdown characteristics. Power Tech IIT-1010 was selected after comparisor evalution with several other manufacturers' power chips. Power Tech discrete equivalent to the $\mathrm{FT}-1010$ is their P/N PT-7501,

## POWER DISSIPATION

While the controller is in short-circuit or current limiting mode, it is necessary to dissipate the heat generated in the power chip to the heat sink as rapidly as possible to limit the transistor maximum junction temperature to a safe value. The problem is complicated by the need to isolate the power chip from the controller case to meet the $10 n 0 \mathrm{dielectric}$ test. Further complications arise in that the temperature rise is rapid in the event of a short-circuit, and a temperature gradient develops from the heat sink to the isolator to the power chip. This develops mechanical stresses due to differences between coefficients of thermal expansion of the different materials involved. Large power chips are required for reasons of secondary breakdown characteristics, thus making thermal expansion problems more acute. Two methods of power chip mounting were investigated. One was to mount the chio with hard solder directly to a copper surge block of sufficient size to rapidiy absorb the heat generated under fault conditions, in turn isolating the copper surge block from the controller case. Fig. 5. This procedure proved efficient. Another approach was to mount the power chip to the metalized Beryllia ( BeO ), which acts both as an insulator and a thermal conductor. The power chip and BeO assembly is in turn mounted to the copper header making up the case, which acts as an additional heat sink, Fig. 6. This method allows for appreciable weight saving and would be adequate for the 1 Amp controller. However, the heat problems are critical for the 5 Amp controller, and copper surge blocks were used for both the 1 Amp and 5 Atip controllers.

## ISOLATION

A dielectric withstanding voltage of 1000 vAC (RMS) with a maximum leakage of 1.0 mA is required between all input terminals and output terminals. This appiles for control (on-off and reset), short-circuit and current limiting interface, and trip indication. Isolation between control, short-circuit and current limiting, and trip indication is not required since all of these functions have a common DC ground in most applications. They can be isolated at the expense of additional componentry, cost, size and weight. Wherever applicable, opto-electro couplers are more efficient with respect to cost, size, weight, RFI and reliability than DC-DC converters utilizing transformers. Care is taken in the use of opto-electro couplers to allow for leakage currents at elevated temperatures and exposures to radiation.


FIU. 5 POWER TRANSISTOR CHIP MOUNTED DIRECTLY TO COPPER SURGE BLOCK


FIG. 6 POWER TRANSISTOF CHIP MOUNTED TO BEO INSULATOR TO COPPER HEADER HEAT SINK

## CURRENT LIMITING

The characteristics and mounting of the power transistor $c^{h}: p$ determine the current limiting capabilities. It is believed that the cotimum available chip has been selected. Its safe operating characteristics are illustrated in Fig. 7. Fig. 8 shows the voltage drop across the collector and emitter, with an 80 volt supply voltage fc ie 5 Amp rated controller. A locus of points for 105\%, $110 \%, 120 \%, 130 \%$ and $140 \%$ current limiting conditions vs their respective voltage drops across the collecter-emitter are superimposed cafig. 7. These points are in a marginal regio $f$ the Safe Operating Region curves. The current limiting charac eristics of MIL-P81653 are shown in Fig. 9. which dictates fold-back ci rent limiting. This is not recommerided as it does no: allow for full rated load to be applied under transient voltage conditions. Also, fold-back current 'imiting has a negative resistance characteristic which may cause $s^{\prime} \cdot{ }^{\circ}$ is instatility (oscillatior, with many reactive loads.

Analysis of the overvoltage problem yielded the following conclusion. The objert is to prote't the power transistor chip from excessive power dissipation and seconcary breakdown. The most efficient method of doing this is to monitor the voltage across the power chip itself, rather than the supply voltage. With up tc 37.5 volts across the controller, full curre is delivered to the load. Above that voltage, the controller switches off if it is in a current limiting mode. (see Fig. 10) The 37.5 volt value was selected in order that with an 80 volt line surge, the controller would still deliver full rated current to the load. This system protects the power chip only when needed and does not interfere with normal operation. If the voltage surge (above 37.5 volts) occured simultaneously with a short-circuit, the actuator would trip-out immediately. If required, a 100 msec delay could be implemented before trip-out and still remain within the safe operating range of the power transistor chip. The controller will not trip-out under the inc.eased load currents resulting from the voitage transients of MIL-STD-704 (Fig. ©1). The time delay of 2 to 3 seconds is fixed for all conditions except the combined condition of overvoltage and short or near-short conditions, in which case the trip-out is immediate (or delayed for 10 jmsec if desired). Fig. 12 block diagram shows the basic function. The controller will be tripped after a 2 to 3 second delay if the overvoltage indication is not present. In the event of overvoltage, the trip-out is immediate. An overvoltage condition can not tr'n the controller by itself. it must be AND functioned with the contruller in the current limiting mode for trip-nut.

Schematic shown in Fig. 13 for the 1 and 5 Amp DC controller illus.. trates how current limiting and overvoltage projection are accomplishied. Voltage across current sensing resistor R16 is supplied to operational aniplifier U4. When over current exists, voltage is applied through eriitter diode of opto-isolator U2, initating a timing circuit. comp ised of C1, R1, ard R2. The output voltage through diode of U 2 continues through R19, R2O and R17, providing feedback to operational amplifier (14 with Q7 being


FIG. 8 EFFECT OF 80 VOLT TRANSITENT ON 5 AMP

$$
\begin{aligned}
I_{L}= & \text { LOAD CURRENT } \\
R_{L=}= & \text { LOAD RESISTANCE } \\
V_{C E}= & =V O L T A G E ~ D F O D \\
& \text { ACROSS } \\
& C O N T R O L E R
\end{aligned}
$$



FIG. 9 MIL-P-8I653 CURRENT LIMITING CHARACTERISTICS OF DC CONTROLLERS



FIG. 12 FUNCTIONAL BLOCK DIAGRAM DC CONTROLIFR

biased to put 06, the power transistor, in a constant current mode by $\mathbf{v}, \mathrm{r}$ tue of the above-mentioned feedback. After the time delay of 2 to 3 seconds the gate of U3A goes to logic 1, inhibiting the oscillator c. sistir.s of U3C, U3D, C2, C8, RII and R7, and the push-pull amplifier consist .3, of Q5, Q3, Q4, R13, R12 and C3. The trip-out is latched by virtue of reedback via CRI.

The overvoltage sensing circuit consists of cpto-isolator UI, R18 and CR9. With 37.5 volts ( 36 volts zener and 1.5 volts diode drop of UI), current flow through diode of Ul with the transistor of UI effective? short-circuiting $\mathrm{R}_{2}$ of the timing circuit allowing for iumediate inhibition of the oscillator if the controller is in the current limiting mode. Remenber the 37.5 volts is the voltage across the controller and not the supply voltage.

This circuit offers power transistor chip protection for overload and overcurrent conditions. It is protected against short-circuits in normal and overvcitage conditions. It allows the controller to supply full rated loads from 1 to 30 volts, and through transients to 80 volts with a wider margin against misnace trips. It deviates from MIL-P-81653 controller in that trip-out is faster under the combined conditions of cvervoltage and short-circuit. In some schools of thought this is an attribute. Regardiess, the overall advantages far outweigh the disadvantages of the above-mentioned current fold-back systens.

MIL-P-81653 allows f: : current limiting within $150 \%$ maximum and 105\% minimua. Current limiting can be accomplished within a $20 \%$ band through temperature anywhere within the $105 \%$ to $150 \%$ range. Its location is optional. Prototype units were fixed at a $110 \%$ to $130 \%$ band. A band of $130 \%$ to $150 \%$ would provide greater pass current capabilities without effecting nominal load conditions.

## CONTROL VOLTAGE SELECTION

MIL-P-81653 control voltage refers to Para. 3.1. making control voltage a specification requirement for a specific controller. A 5 volt ITL compatible control voltage has been generally specified. It is considered that this control valtage is too low for aircraft and spacecraft use. The 2.5 volt threshold between "ON" and "OFF" conditions of the controller would be susceptable to voltage-induced noise. The 5 volt level increases the current requirements for transformer isolation and power transistor base drive.

The most efficient voltage tc use would be the existing 28 volt bus. Transients can be readily suppressed and voltage levels reduced for internal logic functions. The 28 volt supply would peove most efficient for transformer coupling and opto-isolation. The controller would also be compatible with existing 28 volt systems. The 28 volt control system was employed in the prototype DC controllers after weighing size, cost, weight and reliability.

The purpose of the 5 volt TIL control is to have the controller operated directly from the computer. If direct computer control is essential, then HTL (High Threshold Logic) control vo?tage levels should be considered. HIL was specifically developed for the purpose of noise immunity for systems with far less hostile noise environment than aircraft or spacecraft. HTL has a minimum of 5.0 volt noise immity and operates from a 15 volt supply which would be adequate for transformer coupling and optoisolators.

## TRIP INDICATION

Trip indication can be readily satisfied by either current sinking or voltage indication. Current sinking can be performed in either one of two conditions, light indication when controller is tripped or light off when controller is tripped. The latter method has the advantage in that it also gives positive indication that control voltage has reached the controller by having the light "OW" in the untripped condition. It has the disadyantage that a light turning off is not as distinct a visual indicator of a change in condition as a light tuming on. This method was used in the prototype controllers since the current sinking method of trip indication was to be investigated, and this method does afforc the dual function of trip indication and wiring integrity to the controller. The circuit schematic, Fig. 13, shows now trip indicating transistor Q2 is forward biased from NOR gate output of U3A. By connecting the base of Q2 to NOR aete outpe of U3B, trip indication with the light going on rather than off would be accomplished.

Trip indication by means of voltage indication can be readily performed by connecting the collector of Q 2 through a resistor to the 28 volt control supply, and Q2 forward biased as an indication of trip; that is, connectirg the base of 02 to the NOR gate output of U3B. This system would give both trip indication and control voltage wiring integrity indication. By simple circuitry at the receiving point of indication, a lamp could be turned on when trip occurs. Voltage indication would be 28 volts no trio and .4 volts tripped.

## STATUS IMDICATION

An ideal status indicator would show flow of current to the load with the controller on. This would indicate wiring integrity to the controller and from the contro?ler to the load. A pure voltage indication at the controller output does not indicate voltage to the load, only voltage to the controller output. It does not indicate wiring integrity from the controller to the load. A status indicator based upon current flow to the load was developed. The principal mas similar to the current limiting approach described earlier, ie. a voltage differential was detected across a current sense resistor in the power line and fed into an operational amplifier which biased a signalling transistor. The gain of the amplifier was set to detect current flow of 50 mA or more. A simplified schematic is shown in Fig. 14. Supply voltages for the operational anplifier were from the same source as for the operational amplifier used in the current limiting function. Because of the limited numizi of prototype units contracted which el iminated hybridmicroelectronic manufacturing concepts, it was impossible to package this status indicating circuit in the size package established for the prototype units. This status indicating feature could be incorporated in production varranting hybrid-micorelectronics.

If if is desirable to fully isolate a fault to the load, to the controller, to control viring, to load wiring (from the load supply to the controller and controller to the load), a load voltage sensor wocld be required at the controller load input and controller load output. This would mandate a 3teminal output configuration.

## RESET

After the controller has tripped, resetting is accomplished by removal of control voltage and re-application of control voltage. A seperate reset circuit could be imp. anented by forward biasing through a coupling capacitor, a transistor located between output of U38 NOR gate and input to U3A NOR gate, Fig. 13. This would remove the latch voltage applied to input of U3A through diode CR1.

The time for re-applying control voltage for resetting is 80 msec minimum. This time is dictated by capacitor C7 of fig. 13. In addition, the capacitor must be of sufficient capacity to filter high voltage transient spikes. The 80 msec interval requested before re-applying control voltage following a trip-out should not be detremencial to circuit function.

## TRANSIENT VOLTAGE PROTECTION

Control Input Transients as specified in MIL-P-81653 will not damage the controller. The Operazing Voltage Transients as specified in MIL-P-81653 can be satisfied. The requirenents of Transient Spike Overvoltage ( $\pm 600$ volts) of MIL-P-81653 cannot be satisfied. The controller will not be damaged by these transients. A $\pm 600$ volt transient applied to the power input terminal will be passed to the power output terminal for the duration of the transient : Gmsec.). Power transistors suitable in chip form that would satisfy all the reyufrements of the power chip are not avallable with a 600 vceo rating.


FIG. 14. STATUS INDICATOR SIMPLIFIED SCHEMATIC

## FUSING (FAIL SAFE)

The fusable link requirement is met by insuring that the bond from the emftter of the power transistor is the smallest cross-section conductor in the power system. MIL-P-81653 specifies that in the event of a failure of the contruller in a shorted condition, the controller shall fail open within 4 seconds when a current corresponding to $50 \%$ of the square root of the specified $I^{2} t$ value is applied, namely 18 Amps for the 1 Amp controller and 32 Amps for the 5 Amp controller. The fusable link requirement was included in the prototype controllers. Tests were not conducted to determine exact current/time limits. In flight hardware, this specification can be met.

The fuse link raises problems of arc extinction and other phenomenon in higi, current fuses, to ensure the desired protection of the spacecraft. The proposed method of controlling this is with the use of a stable liquid such as silicone oil or a flourocarbon. There has been previous experience using these types of fluid for purposes of controlling arcing. There are other benefits to be derived from fluid filling. One is the additional heat paths due to conduction and convection that tend to equalize temperatures within the package and minimize hot spots. This would be particularly beneficial te solid state switches. There are also proven benefits of fluid-filled devices with respect to mechanical shock and vibration condicions. Under short duration mechanical shock, the fluid acts as a solid and gives support to all the components it surrounds. Under mechanical vibration, the oil acts as a viscous damper for any resonant conditions. Considerations are made for fluid expansion under differentials to atmospheric pressure and temperature. Fluid filling is proposed for flight controllers, and the possibilities of a replactable fuselink should be considered in future studies.

## FOUL-UP PROTECTION

Sirce the controller is polarity-sensitive, it can be destroyed in test and installation by improper wiring, ie. not observing polarities. Diodes could be used to protect against this condition, but would constitute a . 7 plus additional voltage drop in the $f$ wer circuit. Diode profection can be used in the control and trip-indicating circuits without difficulty. They were omitted in the prototype units and can be included in flight units as indicated in the schematic, fig. 13.

The controller is intended to operate on bi-level control voltages. Slow ramp or gradual increase or decrease of control voltage could destroy the controller. This possible problem area could be eliminated by snap-action on turn-on and turn-off, however this feature would be at the expense of size, weight, cost and reliability due to the additional components.

Rapid sequential switching of reset with the controller switching into a short-circuit, could be damaging. The controller can be reset once within the 80 msec minimum. No positive protection against damage from repetitive rapid cycling can be incorporated without extensive circuitry. Functionally, repetitive recycling is not required. Caution should be exercised in testing and computer programing of the reset function of the controller.

## FOUL-UP PROTECTION (Continued)

The controller is designed for considerable abuse. Properly wired, tested and installed, it should prove trouble-free. With the theary, "If something can be fouled-up, it will be", the above possible areas of concern are noted.

## CIRCUIT SCHEMATIC

The circuit schematic of the 1 Amp and 5 Ar. $\mathcal{D C}$ contrcller is shown in Fig. 13. The two units are identical except for input impedance and gain of the operational amplifier for current limiting. The functions of the schematic have been discussed under each individual function heading.

## PACKAGING

The prototype 1 Amp and 5 Amp DC controllers delivered to NASA Manneo Sp cecraft Center consisted of discrete component packaging, with the exception of the power transistor chip. The outline drawing of the 1 Amp and 5 Amp DC controller is shown in Fig. 15. The method of internal assembly is shown in Figs. 16, 17 and 18.

Intensive study was made of packaging for flight hardware controllers utilizing hybrid-microelectronic principals. Based on an analysis of the circuit complexity and the thermal and environmental considerations, the following was established as reasonable size and weight targets.

Size: 1 cu . in. max.
Weight: 2.5 oz. max.
The control circuitry will be in one hybrid-microelectronic package.
Teledyne, through its Mic-oelectronic Operations, has been engaged in the development and production of hybrid-mtcroelactronics for the past nine years. Over 500 different configurations have been designed and produced, with a total quantity of nver 400,000 packages delivered. Teledyne pioneered in the technology of manufacturing and testing of these devices in large-scale economic production. These hybrid packages have been used in numerous high reliability aerospace systems. This has demanded the development of extensive 100\% screening procedures that in some cases exceeded the requirements of MIL-STO-883 to ensure the necessary reliability.

The circuits invoived are both analog and digital and the circuit components include bipolar integrated circuits and transistors, FET devices, diodes, resistors and capacitors. For digital applications, a package typically houses 25 integrated circuits, with some as high as 32 . For analog applications, a typical package may contain up to 70 components with a mix of integrated circuits, transistors, resistors and capacitors. The range of power densities has been from 6 watt/in to 32 watts/in and all package designs have provided for heat sinking in the system application. Since some system applications have used from 200 to 1000 of these packages in an extremely



## fotes unless otherwise specifien

1. BEFGRE SOLDERING CAN TO HEADER. TEST UN:T PER ENGINEER SPECIFICATION


FIG. 16. ASSEMBLY LAYOUT 1 AMP AND 5 AMP DC CONTROLLERS


FIG 17 CIFCUIT BGARGASSEMBLY BOTTOS DC CONTROLLERS


FIG. 18. CIRCUIT BOARD ASSEMBLY - TOP. DC CONTROLLER
dense array, the thermal problem has received considerable attention. This extensive background is directiy and ideally applicable to the specific problems of the solid state power controllers.

Some of the control circuitry will be in the form of MSI integrated circuits and it appears the component count to be packaged will be in the order of 40. This would exclude the optical isolators and a few additional power devices. The mechanical dimensions of the end item power controller estab? ishes the size of the hybrid package, but from preliminary estimates it appears that a package size of approximately 0.8 inch $\times 0.8$ ir:=h $\times 0.160$ inch would result. This size package could reascnäbly accommodate the components mentioned above, and therefore there would be one hybrid control package per power controller. The substrate power dissination is estimated to be in the range of $\frac{t_{2}}{2}$ watt.

The key factors determining the hytrid package design ior this application are the reasonably high power dissipations mentioned above and the maxinum heat sink temperature. This dictates that this hybrid package must have the lowest possible therwal resistance from the coaponents to the heat sink, and rules cut any siaple mechanical contact interfaces between the substrate and the heat sink. The substrate will be beryllium oxide ceramic which has the highest thermal conductivity of any known electrical insulating material ( 2.6 watts $/ \mathrm{CN}^{\circ} \mathrm{C}$ ). The ceramic will be 0.025 inche:, which will give adequate strength for this size substrate. To impienent the maxi mum thermal conductivity rule, a copper strip in the order of 0.025 inch thira would be brazed to the bottom of the ceramic substrate, providing the best possible thermal path to the heat sink. This sopper would equal the width of the ceramic in one dimension, and extend beyond it in the other dimension to engage a support structure for mechanical mounting in the power controller. which is also the heat path. This is show in Fig. 19.

The ceramic metallization required to provide a base for this copper braze operation can be either moly manganese or thick film gold-palladium. The advantage of gold-palladium metallizing is that its firing temperature of $900^{\circ} \mathrm{C}$ calses no warping or introduction of camber to the ceramic, as odposed to the $1540^{\circ} \mathrm{C}$ firing temperature for moly manganese which can reintroduce cambers in tie order of $1 \mathrm{mil} / \mathrm{inch}$. which are acceptable but less desirable.

Therefore, the program would proceed with the thick filmigold-palladiur approach for ceramic metallization. The exit pads for the package, as shown in Fig. 19, would be thick film stripes emerging from under the cover seal area, appearing as exposed pads on the ceramic surface along two edges. They would be on 0.050 inch centers, which is industry standard, and leads can be bonded by either welding or reflow solder techniques. The insulation for the cover seal land area is provided by silk-scree d and fired glass inks or fired glass preforms, to give adequate insulat: in path to the cover to meet the electrical requirements of the specification. Guld-palladium metallization on the top of this glass insulation provides the solder base for cover seal. The proposed metallization system for the active portion of the substrate is a dual system. Gold-palladium ink would be screened on and fired to form the component mounting pads. This would actually take place at the

DETAIL
FIG. 19. CONCEPTUAL PACKAGING LAYOUT FOR HYBRID CONTROL CIRCUIT ASSEMBLY
same screening aperation as the package exit pads. Aliminum would be evaporated with an undercoat of nichrome over the entire active area. The aluminum thickness would be 250 microinches, which gives the desired resistivity of 5 milliohs per square. The surface would then be coaied with photo resist and exposed with the desired substrate wiring pattern.

After developing and processing, the aluminum is protected by resist, where the conductive pattern is desired, and the aluminum is bare where it is to be removed. The substrate is imaersed in an etch bath and the aluminum is removed from between the desired conductive strips in the circuit pattern, and also from the component bond pads to re-expose the bare gold-palladium surface.

The alminum system was chosen to aliow a monometallic bonding system with aluminum dice pads, aluminum wire and aluminum substrate bond areas. The advantage of this is the total elimination of potential intermetallic problems. This is particularly inpirtant in this application since the tem. peratures will be in the region of $125^{\circ} \mathrm{C}$ or slightly higher, and long life at these temperatures is required.

The dual system with gold-palladium is necessary to frovide a solderable metallization for component attach, since alunimum is not wettable by solders on a practical basis. The role of the evaporated film of nichrome under the alumiraim is twofold. First, it is routinely used as an intermediary to strengthen the bond between evaporeted metal films and either glass or ceramic substrates. In this case it serves an important secondary roie of acting as an effective diffision barrier between the aluminum and gold-palladium where they are in cenlact. Engineering tests involving thousands of hours at $200^{\circ} \mathrm{C}$ indicate that the nichrome is an excellent diffusion barrier, and no evidence of intermetallics have ever been found in the proposed metallurgical system.

Componat attach technology will follow standard production procedures. The component wire bonding will use alumimum wire with ultrasonic welding, which is standard procedure. Circuit analysis is routinely done to establish elestrical current values in the wire bonds to determine wire size requirements. For typical signal type currents, 1 mill diameter wire is used. For higher current apability, $1-\frac{1}{2} \mathrm{mil}$ or 2 mil diameter wires are used, and in some cases multiple paraliel dires have been used.

The hybrid control package will be covered and hermetically sealed by mormil processes, even though it will be contained in the hermetically sealed solid state controller case. This is to give adequate protection for internel handing through screening and environmental test procedures, as well as mandiling during final assembly in the end product. It is also necessary in view of the propose fluid filling of the end item device.

The normal Teledyne high reliability screening procedure will be used on a 1008 besis for all the hybrid packages for this program. These screening procedures are listed in detail in Table 1.

TABLE 1. Screening Procedures for Hybrid Control Circuits

## IEST

1. Incoming dice visual inspection
2. Post-die attach visual inspection
3. Pre-cover visual inspection
4. Stabilization bake
5. Temperature cycling
6. Mechanical shock
7. Hermeticity a) Gross
b) Fine
8. Burn-in
9. Electrical test
a) $D C$ parameters at $25^{\circ} \mathrm{C}$ and at max. and min. rated operational tempera亡ure.
b) AC parameters at $25^{\circ} \mathrm{C}$ and at max. and min. operational temperature.
c) Final Functional test at $25^{\circ} \mathrm{C}$.
10. External visual

## SCREENIHG CRITERIA

Criteria based on MIL-STO-883 method 2010 test Condition A.

MIL-STD-883 method 1008 test Condition C ( 150 C ) 72 hrs.

MIL-STD-883 method 1010 test Condition ( $\left(-65^{\circ} \mathrm{C}\right)$ and $+150^{\circ} \mathrm{C}$ ) 22 cycles.

MIL-STD-883 method 2002 test Condition 8 ( $1500 \mathrm{G}, \frac{1}{2} \mathrm{~ms}$ ) 5 impacts $Y$ axts.

MIL-STD-883 method 1014 test Condition C , step 1.

MIL-STD-883 method 1014 test Condition A except packages are helium filled at seal.

MIL-STD-883 method 1015 test Condition 8160 hrs . $125^{\circ} \mathrm{C}$ junction temperature.

Per hybrid specification.

MIL-STD-883 method 2009.

## TECHNIQUES

The packaging utilizing hybrid-microelectronics and in accordance with MIL-P-81653 concepts is shown in Fig. 20. In this case, the basic assembly would consist of the copper heat sink base, power chip, hybrid control circuit package and miscellaneous components such as the optical isolators (which are themselves hybrid circuits). The hybrid control circuit with its copper heat sink strip is mounted to copper support members which are t-azed to the copper heat sink base. It is proposed to use slots in these members as shown in the drawing, to engage the copper strip of the hybrid package and solder this joint to minimize thermal drops. Any diaphram effects in this arechanical mounting syster would be minimized by fluid filling.

A deck is provided above the hybrid circuit to provide a mounting board for the optical isolators. These are very low power generating components and the increased distance from the heat sink has no adverse thermal effects.

The method of fluid filling electrical devices must contend with the temporatare coefficient of expansion of the fluid, which should be minimized. One cormon method is to fill the device and seal it off at the maximum operating temperature or slightly over. In this case, about $125^{\circ} \mathrm{C}$. Then $\mathrm{a}_{2}$ all future operating conditions, there will be less than atmospheric pressure within the device, and the differential to atmosphere can never exceed 15 psi under any conditions. If the unit were sealed cold, the interior pressure would be higher then atmospheric at elevated temperature, and there is no limit to the pressure differential that could build up.

The hermetic sea! of the package cover seam would be done prior to fluid filling and it is proposed to use either electron beam welding or laser welding. The final seal would be accomplished with a pinch-off tube.

An alternate approach to packaging is shown in Fig. 21, with two significant modifications. First, the terminations are brought out on a surface 90 from the mounting (heat sink) surface. This affords several benefits:
a. Increases heat sink area.
b. Facilitates implementation of an Integrated Wiring Termination System (INTS).
c. Improves ease of replacement.

Secondly, it is proposed to use mounting flanges in lieu of mounting studs to further maximize heat sinking.

Referring to Fig. 21, an L-shaped structure is proposed to provide rigidity and mechanical strength between the heat sink plane and the lead/terminal piane. The power switching devices are again mounted on the heat sink as discussed previously. The hybrid package is mounted to the heat sink by the same structure proposed for the 1 inch cube package, and the transformer deck is the same. This package calls for wire exit leads. To maintain hermeticity and still provide leads, it is proposed to use a hermetically sealed header to bring the leads through the package wall. The external wires would be soidered to the header pins and potted for general protection in that area.

EIG. 20. CONCEPTUAL PACKAGING FOR I" CUBE CONTROLLER WITH MIL-P-81853 MOUNTING CONCEPT



## RELIABILITY

A preliminary reliability prediction analysis has been conducted to determine the fallure rate of DC Solid State Power Controllers using hybridmicroelectronics for flight hardware. The predictions are based on the service and enviromental conditions of the specifications.

The approaches and essumptions used consisted of a functional analysis of the design. It indicated that the functional blocks in each design assume a totally serial relationship. This results in a conservative estimate of the circuit capability. The basic failure rates of each chip or die comprising the hybrid-microelectronic control package was calculated at the maximum hybrid package case temperature of $+125^{\circ} \mathrm{C}$, which is $+5^{\circ} \mathrm{C}$ over the specified $120^{\circ} \mathrm{C}$ maximum case temperature of the controller. Thermal analysis of the design shows that the use of beryllia substrate and the method of mounting the HYBRID intemally insures a low order of thermal resistivity. For prediction purposes, the junction temperature of integrated circuits and semiconductor dice was assured to be at HYBRID case temperature plus $10^{\circ} \mathrm{C}$, or $135^{\circ} \mathrm{C}$. This is in accord with recommendations of the RADC Reliability Handbook, Volume II. Failure rates for capacitor and resistor elements was based on using $+125^{\circ} \mathrm{C}$ as the component ambient temperature. MIL-HDBK-217A was used as the source of failure rates except as otherwise noted in the discussion below. The use of silicone or fluidcarton oil as a filler within the controller housing, facilitates heat sinking and provides a dampering effect on other environments such as shock and vibration. Therefore, an environmental K factor of 1.0 was applied to all calculated failure rates.

The failure rate for the hybrid-microelectronic control package can be estimated by analysing its constituent elements. The I.C. failure rate used for this prediction was based on life test data published by Fairchild Semiconductor* for devices which have received $100 \%$ burn-in sc, eening prior to usage. That figure is . 030 failure per $10^{6}$ hours ( $+135^{\circ} \mathrm{C}$ junction temperature) and is applicable to packaged devices.

In order to predict the failure rate of the hybrid-microelectronic control assembly it is necessary to estimate the intrinsic failure rate of "bare" dice by removing the fallures of the packaged device which cannot be attributed to the "bare" die. The approach then is to eliminate the effects due to leads, base, package, etc., leaving the failure rate due to dice alone. I.C.'s used in Teledyne HYBRIDS are subjected to extensive pre-use screening and testing as follows:

```
100% AC Testing
100% DC Testing
100% Thermal Testing
100% Optical Inspection (at dice level and again at
MEMA precover)
```

[^5]
## RELIABILITY (Continued)

When the intrinsic die failure rates are estimated as outlined, and the effects due to extensive screening and inspection are taken into account, a dice failure rate of .020 failures per $10^{6}$ hours results.

A similar rationale is applicable to other types of dice. Failure rates from MIL-HDBK-217 for Minutemen quality parts were used to represent intrinsic die failure rates. These rates were normalized for operation at $+125^{\circ} \mathrm{C}$ (capacitors, resistors) and at $+135^{\circ} \mathrm{C}$ junction temperature for semicunductors in accordance with factors of MIL-HDBK-217. Table 2 shows the failure rate for. 1 Amp and 5 Amp DC Controllers.
TABLE 2. 1 Amp and 5 Amp DC Controller
FAILURE RATE ESTIMATE
(Failures per $10^{6}$ hours)

QTY.	COMPOMENT		PR SOURCE	fR
4	Integrated Cirentit if.	. 000	1	OP
18	Qes'stors, film	- .007	$\hat{7}$	. 128
8	Capecisori, cersmic	-.cos	2	.304
6	Diodst, gmmel 1 murpose	- . 005	2	. 030
6	Transistors	. .010	2	. 060
,	0,000 - Zoner	-. 102	2	. 306
1	Pamer Transistor	02.000	2	2.000
2	Transformers	. 200	2	. 400
100	Lend londs	-. 00007	3	. 007
	Suostrate, Frame \& Cover		4	. 004
24	External Leads	e. 00005	5	. 001
		al Failur	Rate	3.318

## Failure Rate Sources:

1. See discussion above.
2. Normalized MIL-HDBX-217A, Minutemen level failure rates.
3. Ultrasonic lead bond estimate based on Teledyne and industry data.
4. Best engineering estimate.
5. Welded termination estimate based on Teledyne and industry data.

Thicif 3. SPECIFICATIONS - Teledijne 1 Amp and 5 Amp Solid State Power Controllers


TABLE 3. SPECIFICATIONS - Teledyne 1 Anp and 5 Amp
Solid State Power Controllers (cont.)


TABLE 3. SPECITICATIONS - Te?edyne i Amp and 5 hmp
Solid State Power Controllers (cont.)

PETUIREMERTS	1 ANP DC CONTROLER Teledyne P/H 673-10004	$\begin{aligned} & 5 \text { AT DC CONTROLLER } \\ & \text { Teledyne P/V 673-10001 } \end{aligned}$
Controi Cirsuit (cont.)		
Fiurn-Jn Voltage	24 vUC, minimum	24 vec, mirimum
Pete of Shange	. 5 vDC/mSei, minimum	. 5 vDC/mSec, minimum
Turn-0fi Voltage	5.0 vOC, maximum	5.0 vDC , maximus
Rate of Change	. $5 \mathrm{vDC} / \mathrm{mSec}$, minimam	. 5 voc/mSer, , तinımum
input Current	20 mA , maximum	25 ma, max imum
input Transients	Applicable	Applicable
Voise immunity	Applicable	Applicable
Peset	By removing and re-applyling DC control voitage	By removing and re-applying $D C$ control voltage
Time to Reset (removal)	/5 mjec, minimum 80 mSec, maximum	5 mSec , minimur   80 mSec, maximum
Envirormental Characteristirs		
Case Temperature		
Operating	-5.9 ${ }^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$	$\begin{aligned} & -54^{\circ} \mathrm{C} \text { to }+120^{\circ} \mathrm{C} \\ & -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \end{aligned}$
Shock		
Mechanical	40 G 's for 11.0 +i. 0 mSec	$40 \mathrm{G's}$ for $11.0+1.0 \mathrm{mSec}$
Terperature Vibration	$-54^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$ ambient	$-54^{\circ} \mathrm{C}$ to $+220^{\circ} \mathrm{C}$ ambient
Vibration Sinusoidal (operating) $G$ Level		Sinusoidal (operating)
Frequency Range	5 to 2000 Hz	5 to ? 000 Hz
Pandom (operating)		
Power Spectral Density	$0.2 \mathrm{G}^{2} / \mathrm{Hz}$, maximur.	$0.2 \mathrm{G}^{2} / \mathrm{Hz}$, maximum
Frequency Range	20 to 2000 Hz	20 to 2000 Hz
Acceleration	100 G 's	100 G 's
Salt Foq	Applicable	Applicable
Humidity	Appilicable	Applicabie
Temperature-Altitude		
Operating Ambient		
Altitude	Sea Lovel to 100 Kft .	Sea ievel to 100 Kft
Nori-Operating Ambient	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Altitude	0.65 to $: 5.4$ psia	0.65 to 15.4 psia
Explcs:re Decompressior:	Not Applicable	Not Applicable

TEST RESURTS
Teledyne 1 Amp OC Solid State Power Controller P/N 673-10004

Pin Identification

Pin No.	Function
1	Control Voltage (t)
2	Signal Common
3	Trip Indicater
4	Power In (t)
5	Power Out (-)
6	No Connection
7	Test Point (Emitter)
8	Test Point (Base)

Terminal Arrangement - SDST (Normally Open)

TEST	REQJIRENETT	RESULTS
insulation Resistance   Dielectric Withstanding Voitage   Isolation   Power Dissipation   "ON" (rated load)   "OFF"   Voltage Drop   Serial No. 1   Seriai Mo. 3   Overshoot   Response   Serial Mu. 1   Turn ON Time   Rise Time   Turn OFF Time   fall Time   Serial No. 2   Turn on Time   Rise Time   Turn OFF Time   fall time	100 megohns, min.   1000 VAC (RWS), min.   1000 VAC (RNS), min.   1.5 watts, max.   .150 matt, max.   .5 volts, max. 1 Amp   .5 volts, max. 1 Amp   $1.0 \mathrm{msec}, \max$.   .1 mSec , min.; . 5 mSec , max.   6.0 msec , max.   $.5 \mathrm{mSec}, \mathrm{min} . ; 5.0 \mathrm{msec}, \max$.   $1.0 \mathrm{mSec}, \max$.   .1 mSec , min.; .5 mSec , max.   6.0 msec , max.   $.5 \mathrm{msec}, \mathrm{min} . ; 5.0 \mathrm{msec}, \max$.	$\begin{aligned} & >100 \text { megohns } \\ & >1000 \mathrm{vAC} \text { (RAS) } \\ & >1000 \mathrm{vAC} \text { (RASS) } \\ & 1.0 \mathrm{matt} \\ & .003 \mathrm{watt} \\ & 150 \text { millivolts } \\ & 250 \text { millivelts } \\ & <25 \% \\ & \\ & 2.8 \mathrm{mSec} \\ & .7 \mathrm{mSec} \\ & 1.0 \mathrm{mSec} \\ & .5 \mathrm{mSec} \\ & 2.5 \mathrm{mSec} \\ & .5 \mathrm{mSec} \\ & 1.0 \mathrm{mSec} \\ & .5 \mathrm{mSec} \end{aligned}$

TEST RESURTS (cont.)
Teledyne 1 Amp Solid State Pomer Controller PA 673-10004

TEST	REquIREEETT		RESULTS	
Leakage Current   Time to Rest (removal)   Frip Indication   Hot Tripped   Tripped   Turn on Voltage Turn OFF Voltage Control Voltage Rate of Change Control Current	$\begin{aligned} & 100 \mu \mathrm{hmps}, \text { max. } \\ & 5.0 \mathrm{msec}, \text { min. } ; 80 \text { mser, max. } \end{aligned}$		$<100 \mu$ Amps	
			80 mec	
	Current Sink, 0 to 50 mA Open Circuit. 0 to 32 vAC 24 vOC, min.   5 vDC, max.		0 to 50 ma	
			0 to 32 VDC	
			$<24$ vDC	
			$<5$ VDC	
	$\begin{aligned} & .5 \mathrm{vOC} / \mathrm{MSec}, \mathrm{~min} . \\ & 20 \mathrm{~mA}, \mathrm{max} . \end{aligned}$			
			$7.5 \mathrm{vOC} / \mathrm{MSec}$   12 ロA P 24 vOC	
			$\begin{aligned} & 13 \text { ma ez } 28 \text { YDC } \\ & 15 \text { ma } 32 \text { vDC } \end{aligned}$	
Current Limiting Trip Current		Serial il	Serial 12	
	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & e-55^{\circ} \mathrm{C} \end{aligned}$	1.4 Amp	1.7 Amp	
	$890^{\circ} \mathrm{C}$	1.3 Ami	1.3 Amp	
Time to Trip e 300\% Load	- $25^{\circ} \mathrm{C}$	4.0 sec	4.0 Sec	
	- $55^{\circ} \mathrm{C}$	5.0 Sec	5.0 sec	
	Time to Trip			
30 vDC Supply Voltage 30 vDC	$100 \%$ Output Current	mo Trip	Mo Trip	
	$150 \%$	4.0 Sec	4.0 Sec	
30 vDC	5002	4.0 sec	4.0 sec	
40 vDC60 vDC	150\%	4.0 sec	4.0 sec	
	1508	4.0 sec	4.0 sec	
80 vDC	1508	.02 sec	. 02 sec	
40 vDC60 vDC	$500 \%$	4.0 sec	4.0 Sec	
	$500 \%$	. 02 sec	. 02 Sec	
80 vDC	$500 \%$	. 02 Sec	. 02 Sec	

```
 TEST RESULTS (cont.)
 Teledyne 1 Amp Solid State Power Controller
 P/N 673-10004
Temperature Tests at -55 C C and +90}\mp@subsup{}{}{\circ}\textrm{C
 Note. Units did not operate satisfactorily above }10\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ because of improper
 transformer core. This can be readily corrected in future units.
 Insulation Resistamce All Units Tested Satisfactorily
 Dielectric Withstanding Voltage
 Isolation
 Pryer Dissipation
 Rated Current and Yoltage
 Noltage Drop of Rated Current
Controi Input Trinsiedts
 A single pulse of gliss and mincus }100\mathrm{ volts peak amolitude and 100 mSec dura-
 tion, repeated }10\mathrm{ times at }3\mathrm{ second intervals. All units tested satisfactorily.
 A train of 10 pulses of plus and minus 100 volts peak amplitude and 100 \mu Sec
 duration each. repeated }10\mathrm{ times at 3 second intervals. All units tested
 satisfactorily.
 Above tests repeated between trip indicator temminal and ground (DC return)
 terminal. All units tested satisfactorily.
Test Circuit
 The test circuit for DC controllers is shown in Fig. }22
```

TEST RESULTS
Teledyne 5 Amp DC Solid State Power Controller P/K 673-10001

Pin Identification

Pin Mo.	Function
1	Control Voltase (t)
2	Signal Common
3	Trip Indicator
4	Power In ( + )
5	Power Out ( - )
6	Mo Connetion
7	Test Point (Enitter)
8	Test Point (Base)

Terminal Arrangement - SPST (Mormally Open)

TEST	REQUIREMEIT	RESJLT
Insulation Resistance	100 megohes, min.	>100 megohes
Dielectric Withstanding Voltage	1000 VAC (RNS), min.	$>1000$ VAC (ROS)
Isolation	1000 VAC (RAS), min.	$>1000 \mathrm{VAC}$ ( (RAS)
- Power Dissipation	4.5 matts, max.	3.5 matts
"OFf"	. 164 watt, max.	. 015 matt
Voltage Drop		
Serial Mo. 4	. 5 volts, max.	350 my e 5 Amps
Serial Mo. 5	. 5 volts, max.	350 mV e 5 Amps
Overshoot		<25\%
Response		
Serial Mo. ${ }^{4}$		
Turn ON Time		1.8 msec .5 mSec
Turn OfF Time	6.0 msec , max.	1.3 mSec
Fall Time	$.5 \mathrm{mSec}, \mathrm{min} . ; 5.0 \mathrm{mSec}, \max$.	1.6 mSec
Serial Mo. 5		
Turn Of Time Rise Time	1.0 msec, max. ${ }^{1} \mathrm{mSec}$ min. $; .5 \mathrm{mSec}$, max.	1.6 mSec .35 mSec
Rise	6.0 mimsec min. ; . 5 msec , max.	. 1.45 mSec
Fall Time	. 5 mSec , -in.; 5.0 mSec , max.	1.5 mSec

TEST RESULTS (cont.)
Teledyne 5 Amp Solid State Power Controller P/N 673-10001



TEST RESULTS (cont.)
Teledyne 5 Amp DC Solid State Power Controller P/N 673-i0001

```
Temperature Tests at \(-55^{\circ} \mathrm{C}\) and \(+90^{\circ} \mathrm{C}\)
 fote. Units did not operate satisfactorily above \(100^{\circ} \mathrm{C}\) because of improper
 transiormer care. This can be readily corrected in future units.
Insulation Resistance
Dielectric Withstanding Voltage
Isolation
Power Uissipation
Rated Current and Voltage
Voltage Drop at Rated Current
Control Input Transients
A single pulse of plus and minus 100 voit peak amplitude and \(100 \mu\) Sec duration, repeated 10 times at 3 second intervals. All units tested satisfactorily.
A train of 10 puises of plus and minus 100 volt peak amplitude and \(100 \mu \mathrm{Sec}\) duration each, repeated 10 times at 3 second intervals. All units tested satisfactorily.
Above tests repeated between trip indicator terminal and ground (DC return) terminal. All units tested satisfactorily.
Test Circuit
The test circuit for DC controllers is shown in Fig. 22.
```


fig. 22. TEST CIRCUIT FOR DC CONTROLlers

## AC SOLLID STATE POWER CONTROLLERS

## ZERO AXIS SWITCHING

It is desirable in solid state switching of AC voltages to have the controller turn $O N$ at zero voltage and turn OFF at zern current to minimize the effects of EMI. By proper gating of the solid state switching element (Triac or inverse parallel Silicon Controlled Rectifier), this is readily accomplished. Contisious switching ON and OFF can be at each half cycle or at each full cycle.

In the switching of AC inductive loads, particularly transformers, care must be taken to avoid a DC component being developed in switching. A core may be saturated to such an extent that this is possible. Full cycle switching minimizes the problem. Full cycle gating is more complex than half cycle gating as memory has to be established in the circuitry. The scope of the contract was such that hybrid-microelectronic packaging was not feasible. Consequently, it was not possible to package the additional circuitry recuired for full cycle switching. A circuit has been developed (Pat. Pending) which incorporates a CMOS logic gate in conjunction with an existing circuit to form full cycle control. When quantities warrant hybrid-microelectronic assembly, full cycle control can be included in optimum packaging. Half cycle zero voltage switching was used in the prototype units utilizing a unique circuit developed by Teledyne and covered by patent $\$ 3,048,075$. This circuft will be discussed in detail later in the report.

## PONER OUTPUT TERMINATION

MIL-P-81653 specifies a 3 terminal power output configuration, as indicated in Fio. 23. The zero voltage switching circuitry developed by Teledyne permits a two wire output configuration, as shown in Fig. 24. The arguments for or against the two or three wire system are identical for AC controllers as those for the already-discussed DC controllers. The main disadvantage of the two wire system is that status indication requires slightly more circuitry. The two wire system was enployed in the prototype $A C$ controllers.

## POWER CHIP SELECTION

Three silicon devices are available for AC voltage switching, namely Transistors, Silizon Controlled Rectifiers and Triacs. Transistors are seldom used as they must be connected within a full wave bridge for AC operation, resulting in two diode voltage drops plus the voltage drop of the transistor itself. They also do not possess the current surge capabilities of silicon Controlled Rectifiers or Triacs. Current limiting would be possible with a Transistor switching element where it is not practical with either the silicon Controlled Rectifier or Triac switching element.

Silicon Controlled Rectifiers used in inverse parallel configuration are widely used in AC voltage switching. They are available with high current ratings, high voltage ratings and possess high current surge capabilities. Care must be used in gating for transformer loads. It is particularly important to ensure that two SCR's are fired exactly at $180^{\circ}$ relative to each other.


FIG. 23. MIL-P-81653 3-TERMINAL OUTPUT AC CONTROLLER

FIG. 24. 2-TERMINAL OUTPUT AC CONTROLLER

## POWER CHIP SELECTION (cont.)

If this is not accomplished, the positive and negative current loops will differ in magnitude and a resultant DC will flow through the low impedanse of the primary of the transformer.

Triacs (silicon bi-directional thyristors) possess most of tne same features as Silicon Controlled Rectifiers. The distinct advaritage is ihat only a single component is required for the switching element, and reduced component count is a major objecive in the development of the controller. The single gate assists in minimizing DC offset problems. $1 c$ is not completely eliminated because of inherent small differences that exist within the Triac itself when conducting in one direction and then in the opposite direction. Less componentry is required for zero axis switching with the Triac. The required rupture capacity of the speci*ication can be satisfied with a Triac. For higher rated AC controllers, and where very high rupture capacities are specified, the inverse parallel SCR's should be considered. Selected Triac chips from the $2 N 5443$ family were used for the prototype AC controllers. These chips have a 40 Amp continucus duty rating and a 400 Ampere surge capability for 1 cycle of a 400 Hz voltage line. A further consideration in selection of this particular chip was its center firing gate and glass passivation.

## POWER DISSIPATION

Since current limiting is not practical in solid state switchirn of $A C$ voltages, power dissipation requirements are not as rritical as those for DC controllers. The main consideration on power dissipation is through the period when overcurrent is detected and trip-out takes piace. The AC power controllers trip-out within one half cycle in the event of a short-circuit. The surge capacity of the chip is more meaninaful than power dissipation in shortcircuit conditions. The one half cycle trip-out does not allow suff: ent time for appreciable heat dissipation. As a result, chip mounting si. .lar to that shown in Fig. 6 was used in the prototype AC controllers.

ISOLATION
Isolation between the load circuit and the control circuit is performed by opto-couplers for the control, short-circuit protection and waveform distortion functıons. iransformer coupling is used for the trip-cut function. Referring to the circuit schematic, Fig. 27, the control function in the absence of overload, short-circuit and waveform distortion results in both of the inputs of NOR gate U4A to be at ground potential with output of U4A high, which is coupled to inputs of U4C with a resulting low output, allowing light emitter diode of $U 5$ to conduct. This is with a positive 28 V con.trol voltage applied. With the emitter diode of U5 conducting, the SCR portion of U 5 is also conducting. At low voltages of the $A C$ power line, Q 3 is biased OFF. This allows the DC voltage developed by BR1 to be passed by the SCR of U5 to the gate of Triac Q4, turning it ON. As the DC voltage increases, Q3 is forwarded to biased ON by voltage divider formed by R13 and R1l, shorting the gate of the SCR of U5 to ground and turning it OFF. This is the principie of zero voltage gating covered by Teledyne patent \#3.648,075. The isolation circuits of the other functions will be discussed later.

## SHORT-CIRCUIT PROTECTION

Short-circuit protection is obtained by developing a vol sage across R17, full wave rectifying it to $D C$ by means of BR2 and causing a light emitter diode of $U 2$ to conduct. This forwa,d biases the transistor of U2 putting a logic 1 voltage to inout of : OR gate U4A. As a result, the output of U4A and inputs of U4C go low. The output of U4C goes high and the Triac is turned off instantly, in a haif cycle or less. Problems were encountered in testing where at a combination of overload current and temperatures above $90^{\circ} \mathrm{C}$ the controller would not trip-out. By eithei reducing the temperature to $85^{\circ} \mathrm{C}$ or reducing the frequency, trip-out was successful. This failure was coripletely due to the characteristics of the Triac used at 400 Hz . This problem can be corrected by selecting a Triac with more favorable 400 Hz characteristics.

## COiNTROL VOLTAGE SELECTION

The rationale for control voltage selection is the same for $A C$ controllers as that previously discussed for DC controllers.

## TRIP INDICATION

Trip-out time as a function of overload should be within the limits indicated in Fig. 25. Trip-out is obtained by sensing a current by transformer Il and feeding its corresponding voltage pulses to operacional amplifier $U 7$. This foward biases $Q 1$ and thre sgh the timing and shaping circuit consisting of R1, R3, CR2, R2 and C2, the input of NOR gate U4A is brought to losir level 1. This results in the output of U4C going high and turning off the controller.

Trip indication is $\bigcirc$ btained by the successive gating of U4A, U4B, U4D ard eventual biasing of Q2. The logic is such that. in a nun-tripped condition, Q2 is conducting, and in a tripped condition, Q2 is cut-off. The logic may be reversed by connecting the base of $Q 2$ to the output of U4E. A voltage indication rather than cureent sink indication may be accomplished by connecting the collector of Q2 th ough a resistor to the 28 volt control supply. The collector output of $\Omega$ ? is transient protected $5 y^{\prime}$ R9 and CR4. The tripout is latched by positiv: feedback to the output of U4B through CR3 to one of the inputs of U4A.

## STATUS INDICATION

The general rationale for status indication is the same for $A C$ controllers as that previously discussed for $D C$ controllers. Status indication was not provided in the prototype $A C$ controllers as the scope of the contract did not. warrant the use of hybrid-microelectronics, and it was impussible to add this feature in the packaging desired. Status indication could be provided in the desired packaging using hybrid-microelectronic packaging concepts.

A status indication circuit was developed and is shown in simplified form in Fig. 26. Currerit is sensed by toroid transformer Tl (same transformer core and primary usec in trip-indicating circuit). It is tranisformer coupled to operational amplifier Al, forward biasing Q1 ON ans gating Gl high. G1 output goes low, oiasing OFF Q2. Current sinking lagic could be reversed as described


in trip-out circuit. Also, a voltage level signal could be furnished, An analog signal with the output of al a function of current, could also be furnished.

## WAVEFORM DISTORTION

if the core of an inductor becomes sufficiently saturated to cause a $D E$ of *set or half waying load current conditions, it is sensed b; the voltage drop across R12 of the schenatic. Fig. 27. This causes light enitter diode if opto-isolator U 3 to conduct and forward bias or the transistor of U3, ating " 4 A high, which through : $4 C$ and $U 5$ tums power circuit CFF instantly n less than a half cycle.
-TSET
Reset of the AC controlier is accomplished by removing and re-applying the control voltage as previously described for DC controllers. Control voltage should be removed a minimum of 100 mSec before re-applying. The controller is iatched in trip-out condition under overload, short-circuit and waveform aistortion fault conditions.

## TRAPSIENT VOLTAGE PROTECTION

The power output circuit is pretected by the breakdown voltage rating of $\mathrm{C4}$, the power Triac. Further protection is offered by the filter consisting of R16 and C5. This fiiter increases the effective circuit dy/dt to over SODV/ $\mu \mathrm{Sec}$. This R-C network does contribute to higher leakage current. The r.etwork appears as a capacitive reactance in excess of 30 K at 400 Hz . Since 3 low power factor exists between this current and applied voltage, almost no Fiwer dissipation occurs either in load or controller output.

The control input circuit is transient protected by R7, CR1 and C1. Cl also serves to set the 5 mSec time-to-reset. The trip indicator circuit is protected by R9 and CR4.

FUSING (Fail Safe)
The fusing requirements for the $A C$ controller are met in the same manner as previously discussed for the DC controller.

FOUL-UP PROTECTION
The AC power controller is not as susceptable to damage by improper wiring as is the case for the DC controller. A diode which was omitted in the prototype AC controllers is shown in the schematic, Fig. 27. This offers protection against improper wiring of the control circuit.

AC POWER CONTROLLER CIRCUIT SCHEMATIC
The AC power controller circuit schematic is shown in Fig. 27. This is the circuit of the 1 Amp AC power controller delivered to NASA Manned Space-

craft Center/Houston ; Teledyne P/K 673-10005. The block diagram illustrating the functions is shown in Fig. 28.

PACKAGIMG
The 1 Amp AC power controller was packaged as shown in Fig. 29. An exploded view of the assenbiy is shown in Fig. 30. and the bottom and top circuit board assemblies are shom in Figs. 31 and 32.

The 1 map AC power controller using hybrid-microelectronic asseably concepts could be packaged as shown in Figs. 12. 20 and 21, where conceptual packaging for the DC controller was illustrated and discussed.

RELIABILITY
The rationale in arriving at predicted reliability is the same for the $A C$ controller as for the previously discussed $D C$ controller. The failure rate is show in Table 4.

## table 4. AC poner controller failure rate estimate (failures per $10^{6}$ Hours)

GTY	COMPONENT	FR SOURCE	FR
2	Integrated Circuits 0.020	1	. 040
16	Resistors. Film e.007	2	. 112
3	Capacitors 0.038	2	. 114
3	Diodes, Gen. Purposee . 005	2	. 015
3	Transistors 0.010	2	. 030
1	Triac 01.3	6	1.300
3	Optical Couplers . 20	6	. 600
2	Retifier Bridges 0.02	2	. 040
100	Lead Bonds 0.00007	3	. 007
24	Externai Leads 0.00005	5	. 0012
2	Diodes, Zener 0.102	2	. 204
1	Traesformer . 200	2	. 200
	Substrate, Frane and Cover	4	. 004
	Total	ilure Rate	2.667

Failure Rate Sources

1. See discussion above (Reliability, DC Contro?lers).
2. Mormalized MIL-HDBK-217A Minuteman level failure rates.
3. Ultrasonic lead bond estimete based on Teledyne and industry data.
4. Best engineering estimate.
5. Helded termination estimate based on Teledyne and industry data.
6. Industry nomalized life test data.


FIG. 28. FUNCTIONAL DIAGRAM AC POWER CONTROLLER
: $\begin{array}{r}\text { A }\end{array}$

fig. 29. outline dwg 1 amp ac power contiollef


F!G. 30. ASSEMBLY LAYOUT LAMP AC POWER CONTROLLER


F:G 31. CIRCUIT BOARD ASSEMBLY - ROTTOM 1 AMP AC POWER CONTROLLER


FIG. 32. CIRCUIT BOARO ASSEMBLY - TOP 1 AMP AC POWER CONTROLLER

TABLE 5. SPECIFICATIONS - 1 Amp AC Solid State Power Controller Teledyne P/N 673-10005

REQUIREMENTS	FELEDYNE P/N 673-10005
Mechanical and Dimensional Characteristics Configuration Dimensions Enclosure Weight Mounting Torque	jee Fig. 29   See Fig. 29   Hermetic Seal   3.0 ounces max.   15 in . lbs.
Thermal Characteristics Thermal Resistance Case-to-Sink Heat Sink Temperature (Design Consideration)	$0.5^{\circ} \mathrm{C} / \mathrm{W}$ with specified mounting torque $118^{\circ} \mathrm{C}$, max imurs.
Electrical Characteristics	$-54^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$ c ee temperature unless otherwise specified
General   Terminal Arrangement Insulation Resistance Dielectric Withstanding Voltage Isolation   Between control and trip terminals shorted and output terminals shorted   Life (opserating cycles)   Radic Inserference   Leakage Current   Power Dissipation (maximum $25^{\circ} \mathrm{C}$ ambient)   SN" at rated load "OFF"	```SPST (Nomally Open) 100 megohms 1000 vAC (RMS) 1000 vAC (RMS) 106 minimum MIL-STD-461 4 + j13 mA * 1.75 watt maximum . 311 watt maximum```

- j13 mA leakage is due to dV/dT suppression network which appears as a capacitive reactancr. in excess of 3 ct e 400 Hz .
Since a low power factor exists between this current and applied ve?tage, almost no power dissipation occurs either in load or controller output.

TABLE 5. SPECIFICATIONS - i Amp AC Solid State Power Controller (cont.) Teledyne P/N 673-10005

REQUIREMENTS	TELEDYNE P/N 673-10005
POWER CIRCUIT	
Supply Voltage	124 VAC (RMS) maximum
Limits 1 \& 6 of Curve 1 MIL-STD-704A	98 VAC (RMS) minimum
Current (Rated) Frequency (Rated)	1.0 Amperes $400 \mathrm{~Hz} \pm 5 \%$
Voltage Drop	1.5 vAC (RMS) maximum
Rupture Capacity	400 Amperes Peak
Waveform Distortion	135 vAC (RMS) or 6 V Peak
Fail-Safe	$\mathrm{I}^{2} \mathrm{t}=1200 \mathrm{~A}^{2}$ seconds
Transients Operating Voltage	180 vAC (RMS)
Response	
Turn-ON Time (from application of control)	2.5 mSec maximum
Turn-0FF Time (from removal of control)	2.5 msec maximum
Trip-Free	Applicatle
Trip-Out Time	Appl icable
Non-repetitive Reset	Applicable
Repetitive Resat	Applicable
Trip Indication	
Tripped	Switch closed, . 025 mA maximum leakage
Not-Tripped	
Zero Voltage Turn-ON	Applicable - half cycle control
Zero Voltage iurn-0Ff	Applicable - half cycle control
CONTROL CIRCUIT	
Supply Voltage	
Maximum	32 VDC
Rated	28 VDC
Turn ON Voltage	20 VDC minimum
Rate of Change	. $5 \mathrm{~V} / \mu \mathrm{Sec}$ minimum
Turn OFF Voltage	5 vOC maximum.
Rate of Change	. $5 \mathrm{~V} / \mu \mathrm{Sec}$ minimum
Input Resistance	2.2 K ohms

TABLE 5. SPECIFICATIONS - i Amp AC Solid State Fower Controller (cont., Teledyne P/N 673-100n5

REQUIREMENTS	TELEDYNE P/N 673-10005
CONTROL CIRCUIT (cont.)   Input Transients   Noise Immunity   Reset   Time to Keset (removal)	Applicable   Applicable   By removing and re-applying   DC control vo tage   5 mSec mirimum   100 mSte maximum
ENVIRONMENTAL CHARACTERISIICS   Case Temperature   Operating   Storage   Shock   Mechanical   Temperature   Vibration   Sinusoidal (operating)   G level   Frequency Range   Acceleration   Salt Fog   Humidity   Temperature Altitude Operating Ambient Temperature   Altitude   Non-Operating Ambient   Operating Ambient   Altitude   Explosive Decompression	```-54*C to +120}\mp@subsup{0}{}{c}\textrm{C -65*}\textrm{C}\mathrm{ to +150"C 40 (a's for 11 mSec -54'C to +120 ' C Anbient 15G maximum 5 to 2000 Hz 100 G's Applicable Applicábie Applicabie -54.}\textrm{C}\mathrm{ to +120 C Sea level to 100 K ft. -54. C to +120 C -54. C to +120 % .cj to }15.4\textrm{psia Not Applicable```

TEST RESULTS - i Arp $A C$ Solid State Power Controller Teiecyme p/it 673-i0035

```
FM isE:-:F!CADIC:
```

PI! C	FLMCTIC
1	Tric Ircicator
?	
3	Srieer Must. Ar Peiurrit
4	iest foir: . 4
5	Coptrio Smpt Eeturn
$\epsilon$	Test For: ${ }^{\text {co }}$
:	Ta, Cor , ,
$=$	Fower In . AC High



TEST RESULTS - 1 Amp AE So'id State power Controller (cont.)
Teledjne F.': 67?-10005


CONTROL INPLT TRARSIENTS íall units un?ess noted)
A single se of plus and rinus 100 vili peak arpitude and $100 \mu$ Sec duration repented 10 tires at 3 second iniervals. All unitc tested satisfactorily. A train of 10 fulses of plus and mines 20 vn:t peak amplitude and 100 m 5 cec .ra. + or eacr. repeated ir simes at $?$ secore intervais. All units tastec satisfactority. Repeated above :ests Detween trif terrina: asc rantro: input return termiral. sl: units tested satisfaciorily.

TEST RESULTS: 1 Amp AC Solid State Pomer Controller (cont.)
Teledyne :': $N$ 673-10005

TEMPERATURE TESTS \{al' units unless noted)
The following tasts were made at $-55^{\circ} \mathrm{C}$ and $+120^{\circ} \mathrm{C}$ (uniess otherwise noted)

Insu- cion Resistanc:
Dielectric Mithstanding Voltage Isolat $3 n$ Leakage Current Rated Current and Yoltage $\left(-55^{\circ} \mathrm{C}\right.$ and $\left.+i 25^{\circ} \mathrm{C}\right)$ Voltage Drop ( $-55^{\circ}$ (. and $+125^{\circ} \mathrm{C}$ )
Control Circuit ( $-5.5{ }^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ ) Reset Circuit $\left(-55^{\circ} \mathrm{C}\right.$ and $+125^{\circ} \mathrm{C}$ )

On the above tests, all units tested satisfactorily.
Trip-Out under overload ( $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ )
Note: The Triac chip that was used failed to tum off when an overload e $125^{\circ} \mathrm{C}$ was applied. The controller operated satisfactorily to $+85^{\circ} \mathrm{C}$ under all overload conditions. This situation can be corrected by using a power Triac chip of different characteristics.

## TRIPOUT TIME CHARACTERISTICS

Tripout tien versus percentage of overload are shown in Figs. 33, 34, 35 and 36 for 3 prototype AC controllers.
Note: Where units failed to fall within the trip-oui time versus overloas. this situation can be corrected by putting more effort on the tiaing and shaping circuit controlling trip-out.

TEST CIRCU:TS FOR AC POWER CONTROLLERS
The test ci. sults for AC power controllers are shown in Fig. 37 and Fig. 38.

F!G. 33. TRIP CHARACTERISTICS I AMP AC
POWER CONTROLLER $+26^{\circ} \mathrm{C}$






FIG. 38. TEST CIRCUIT FOR SHORT CIRCUIT


[^0]:    "MA $=$ Maintained
    MO = Momentary
    LK = Locked

[^1]:    2.2.2.2 Electrical. Before and after vibration exposure, the voltage drop across all possible closed contacts of each switch was measured at load currents of both 0.1 and 10.0 amps. Because, in most instances, slight

[^2]:    KH - KEY MAY
    OKW - OPPOSITE XEY WAY
    TS - TEST SAMPLE

[^3]:    *rrade name of a ceneral Electric Co. product

[^4]:    
    
    o4 Ereatima, Treasiones
    ©) Merouber (C)

[^5]:    - Microcircuits Reliability Report - Fairchild Semiconductors, May 6, 1969; 83.8 million part hours (all devices).

