N75 10106

NASA CR-132522

REPORT

NASA-LANGLEY HELICOPTER TOWER INSTRUMENTATION SYSTEM

By S. W. Stoffel

Prepared for:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION LANGLEY RESEARCH CENTER HAMPTON, VIRGINIA 23665

CONTRACT NUMBER NASI-12841

WYLE LABORATORIES REPORT NUMBER 50601

October 1974

REPORT

NASA-LANGLEY HELICOPTER TOWER INSTRUMENTATION SYSTEM

By S. W. Stoffel

Prepared for:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION LANGLEY RESEARCH CENTER HAMPTON, VIRGINIA 23665

CONTRACT NUMBER NASI-12841

WYLE LABORATORIES REPORT NUMBER 50601

October 1974

SCIENTIFIC SERVICES & SYSTEMS GROUP 3200 MAGRUDER BLVD., HAMPTON, VIRGINIA

TABLE OF CONTENTS

1.0	PURPOSE OF REPORT	Page 1
2.0	BACKGROUND OF THE FACILITY	1
2.2	History of the Facility	1
3.0	MAJOR SUBSYSTEMS EQUIPMENT	3
3.1	General	3
3.1.1	Rotor Data Acquisition Subsystem Equipment	6
3.1.2	Facility Data Acquisition Subsystem Equipment	6
3.1.3	Spectral Analysis Subsystem Equipment	18
3.2		18
3.2.1	Instrumentation	18
3.2.2		22
3.2.2.1		22
3.2.2.2		26
3.2.2.3	Combinations of Error Calculations	30
3.2.2.4		31
3.3	Facility Data Acquisition Subsystem	31
3.3.1		31
3.3.1.1	Rotational Speed Display	31
3.3.1.2	Thrust, Thrust Correction, Torque and Pitch Display	35
3.3.1.3	Flapping, Feathering, and Lead/Lag Measurement	
	and Display	35
3.3.2		1 1
3.3.2.1	Error Considerations	1 1
3.3.2.2	Error Calculations	1 1
3.3.2.3		13
3.3.2.4	Frequency Response	14
3.4	Spectral Analysis Subsystem	14
3.4.1	Instrumentation	14
3.4.2		16
3.4.2.1		1 7
3.4.2.2		17
3.4.2.3		52
3.4.2.4	Frequency Response	53

ii

TABLE OF CONTENTS (continued)

		Page
APPENDIX I	Rotor Data Acquisition Subsystem Equipment Characteristics	54
APPENDIX II	Facility Data Acquisition Subsystem Equipment Characteristics	73
APPENDIX III	Spectral Analysis Subsystem Equipment Characteristics	77
APPENDIX IV	List of Related Equipment Manuals	100
APPENDIX V	Recommendations for System Improvement	102

LIST OF FIGURES AND TABLES

Figure	김 씨는 이상은 아이는 것을 수 있는 것 같아. 영상은 것이 가슴 것	Page
1	NASA Langley Research Center Helicopter Rotor Test Facility	2
2	Equipment Arrangement, NASA Helicopter Rotor Test Facility	7
3	Facility Data Acquisition Subsystem, Relay Rack No. 1 (photo)	8
4	Relay Rack No. 1, Facility Data Acquisition Subsystem	9
5	Relay Rack No. 2, Rotor Data Acquisition Subsystem	10
6	Relay Rack No. 3, Rotor Data Acquisition Subsystem	11
7	Rotor Data Acquisition Subsystem, Rack No. 4 and Honeywell 7600 Recorder (Photo)	12
8	Relay Rack No. 4, Rotor Data Acquisition Subsystem	13
9	Spectral Analysis Subsystem, Relay Racks No. 6 (Left), and No. 5 (Right)	14
10	Relay Rack No. 5, Spectral Analysis Subsystem	15
11	Relay Rack No. 6, Spectral Analysis Subsystem	16
12	General View of Spectral Analysis Subsystem and Rotor Data Acquisition Subsystem Equipment	17
13	Typical Data Channel Arrangement-Rotor Data Acquisition Subsystem	19

iv

LIST OF FIGURES AND TABLES (continued)

Figure		Page
14	Wire Strain Gage Control Box, Modified for Simultaneous Calibrate at Helicopter Test Facility	20
15	Circuit Diagram, DC Block, Helicopter Test Facility	21
16	Signal Monitor Box, NASA Helicopter Test Facility	23
17	Squelch Box Circuitry, NASA Helicopter Rotor Test Facility	24
18	Graphic Level Recorder System Response Test Setup, NASA Helicopter Rotor Tower Test Facility	32
19	Typical Response Curve	33
20	Wiring Diagram, RPM Indicator Measurement System, Helicopter Test Facility	34
21	Thrust Measurement System, Helicopter Test Facility	36
22	Wiring Diagram, Thrust Correction Measurement, Helicopter Test Facility	37
23	Torque Measurement System, Helicopter Test Facility	38
24	Wiring Diagram, Pitch Measurement System, Helicopter Test Facility	39
25	Typical CircuitFlapping 1 and 2, Feathering 1 and 2, NASA Helicopter Rotor Test Facility	40
26	Typical ArrangementSpectral Analysis of Rotor Data, NASA Helicopter Rotor Test Facility	45
a.		

v

	LIST OF H	FIGURES AN	D TABLE	CS (contin	ued)	
					3	
Table						Pag
I	Rotor Data Acqu	uisition Subs	system Eq	uipment]	List	. 4
II	Facility Data Ac	equisition Su	ıbsystem	Equipmen	t List .	. 5
Ш	Spectral Analys	is Subsyster	n Equipm	ent List.		. 6
			5 m			
1		and the first				
			7i			-
		V V	-			

NASA - LANGLEY HELICOPTER TOWER INSTRUMENTATION SYSTEM

1.0 PURPOSE OF REPORT

The purpose of this report is to provide an overview of the existing instrumentation system capabilities at Langley Research Center's Helicopter Rotor Test Facility and to make recommendations for improving the instrumentation system within the facility.

2.0 BACKGROUND OF THE FACILITY

2.1 General

78

The Helicopter Rotor Test Facility is located in the Langley West Area near the intersection of Ames and Taylor Roads. The facility consists of a vertical conical shaped structure supporting a vertical drive shaft to which a helicopter rotor may be mounted. A control room is located at the base of the tower and a shop building is adjacent to the tower. The drive shaft is driven by a 3,000 horsepower variable frequency motor through a primary and a secondary gear box with a 6 : 1 or 3 : 1 reduction ratio. A double chain link fence of about 80 feet in diameter is mounted on poles in the plane of the rotor head. The roof of the control room is reinforced with closely spaced steel beams. Both of these items are to provide safety to the operating personnel and nearby areas in case of a rotor failure. Figure 1 shows an exterior view of the facility.

2.2 History of the Facility

The shell of the facility was built in the early 1940's with drive power derived from an internal combusion engine. In the late 1940's the base was modified and the 3,000 horsepower motor was installed. In the late 1950's the base was again modified to incorporate the control room.

The primary purpose of the Helicopter Rotor Test Facility is to test conventionally designed rotor blades, in the hovering mode, to determine the aerodynamic and acoustic effects of twist, taper, thickness ratio, camber, leading edge roughness, and tip Mach number.

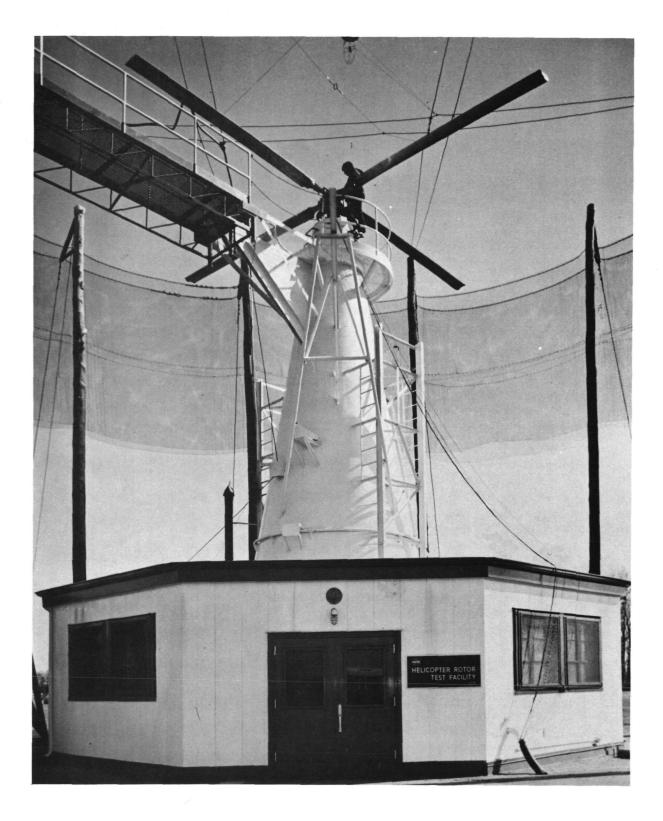


Figure 1. NASA Langley Research Center Helicopter Rotor Test Facility

In addition to conventional rotor blades, the tower has been used to test tipmounted ram-jet, pulse-jet, and pressure-jet engines. The tower has also been used as a centrifuge to proof test live payloads for rocket fired nose cones. Facility capabilities and functions include:

Horsepower:	3,000 (equipped to utilize 1,500 HP)
Torque:	up to 22,000 foot pounds
Thrust:	up to 14,000 pounds
Speed:	up to 475 revolutions per minute
Measures:	pitch, lead-lag, feathering, flapping, pressures, strain gage forces and moments
Capabilities	radius of arm ten feet, maximum "G" -
as a centrifuge:	60, maximum weight - 400 pounds on each end

3.0 MAJOR SUBSYSTEMS EQUIPMENT

3.1 General

The Helicopter Rotor Test Facility instrumentation system consists of a number of major pieces of equipment. These are listed in Tables I, II and III for each subsystem, i.e., Rotor Data Acquisition Subsystem, Facility Data Acquisition Subsystem and Spectral Analysis Subsystem, respectively. The equipment includes custom-made "black box" circuitry, standard vendor products, and "modified" standard vendor products.

The major components of the Helicopter Rotor Test Facility instrumentation system are located in standard relay racks located on the ground floor of the control room. Figure 2 shows a basic layout plan of this equipment arrangement. The Ampex FR-600, CEC VR-3400, and Honeywell 7600 magnetic tape recorders/reproducers are self-contained units on casters. Contents of racks 1, 2, 3, 4, 5, and 6 are shown in Figures 3 through 11. Figure 12 shows a general view of Spectral Analysis and Rotor Data acquisition equipment

TABLE	I - ROTOR DATA ACQUISITION	I SUBSYSTEM EQU	JIPMENT LIST
Quantity	Description	Manufacturer	Model/Type
1	Magnetic Tape	Ampex	FR-600
-	Recorder/Reproducer	mpox	111-000
	Recorder / Reproducer		
1	Magnetic Tape	Bell & Howell	VR-3400
	Recorder/Reproducer	(CEC)	
		()	
1	Magnetic Tape	Honeywell	7600
	Recorder/Reproducer		
	A		
1	Time Code Generator/	Systron Donner	8154
	Search Unit		
	DC Amplifier	Neff	122
	(Quantity depends upon numb	er	
	of transducers)		
1	Galvanometer Amplifier	Bell & Howell	1-172
	(six channel)	(CEC)	
2		D 11 0 II 11	1 172
3	Galvanometer Amplifier	Bell & Howell (CEC)	1-172
	(two channel)	(CEC)	
1	Oscillograph (up to 24	Honeywell	1108
1	channels)	iioney weii	1100
	ondinioro)		
1	Beat Frequency Audio	General Radio	1304-B
	Generator		
1	Graphic Level Recorder	General Radio	1521 - B
	-		
2	Signal Input/Output Monitor	NASA	
	Box		
2	Output Signal Squelch Box	NASA	
	(14 channels each)		
6			
3	Filter Box	NASA	
	(8 channels each)		

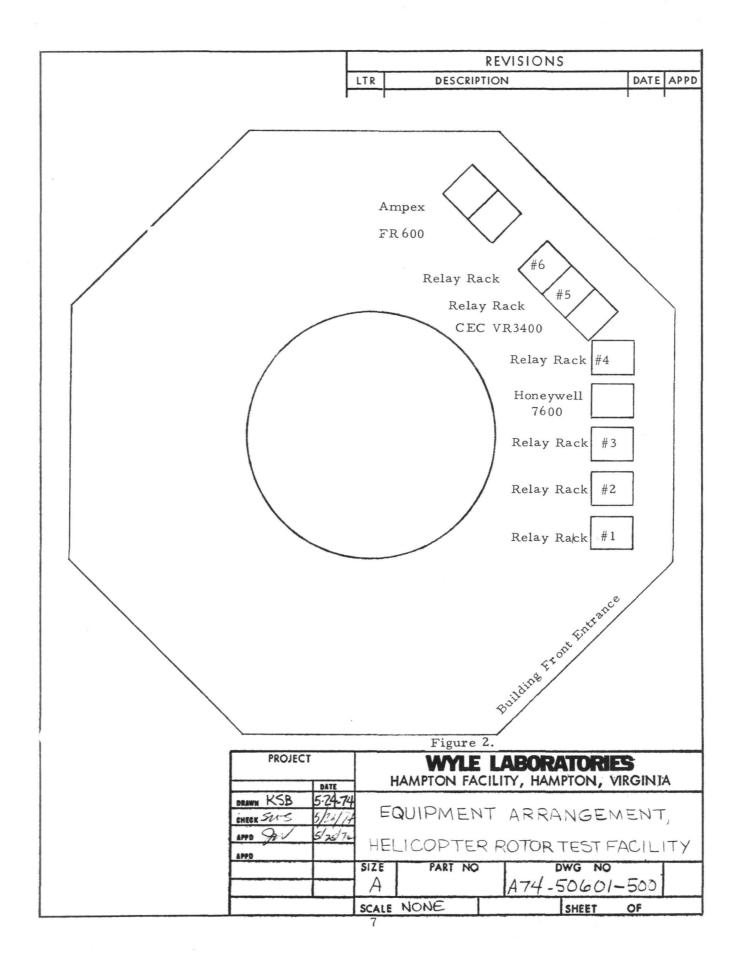
2 TABLE II - FACILITY DATA ACQUISITION SUBSYSTEM EQUIPMENT LIST

Quantity	Description	Manufacturer	Model/Type
1	Oscillograph (up to 24 channels)	Honeywell	1508
1	Tower Parameter Interface Box	NASA	
4	Digital Voltmeter	ERC	Series 4000
1	Frequency Meter	ERC	Series 2700
4	0-20 DC Microammeter	Modutec	
2	25-0-25 DC Microammeter	Modutec	

SUPPORT EQUIPMENT IN THE CONTROL ROOM

Quantity	Description	Manufacturer	Model/Type
1	Dual Trace Oscilloscope	Hewlett-Packard	140A
1	Dual Trace Oscilloscope	Hewlett-Packard	120AR
1	Dual Trace Oscilloscope	Tektronix	585A
1	RMS Voltmeter/Log Converter	B & K	215
1	Digital Voltmeter	Fluke	8200A
1	Frequency Counter	General Radio	1153AP

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
TABL	E III - SPECTRAL ANALYSIS	SUBSYSTEM EQUIP	MENT LIST
Quantity	Description	Manufacturer	Model/Type
1	Low Frequency Translator	Spectral Dynamics	SD 307
1	Real-Time Analyzer	Spectral Dynamics	SD 301C
1	Ensemble Averager	Spectral Dynamics	SD 302C
1	X-Y Display (Oscilloscope)	Spectral Dynamics	13116
1	Phase Meter/Resonant Dwell	Spectral Dynamics	SD 110-1
2	X-Y Recorders	Hewlett-Packard	7035B
1	Correlation and Probability Analyzer (with option 43040-8000 point precomputation delay contr and option 43060 - normaliz		SAI-43A
2	Filters	Krohn-Hite	3202(R)


3.1.1 Rotor Data Acquisition Subsystem Equipment

78

The Rotor Data Acquisition Subsystem includes major pieces of equipment listed in Table I. The specifications for each major item of commercial equipment for this subsystem are furnished in Appendix I.

3.1.2 Facility Data Acquisition Subsystem Equipment

The Facility Data Acquisition Subsystem includes major pieces of equipment listed in Table II. The specifications for each major item of commercial equipment for this subsystem are furnished in Appendix II.

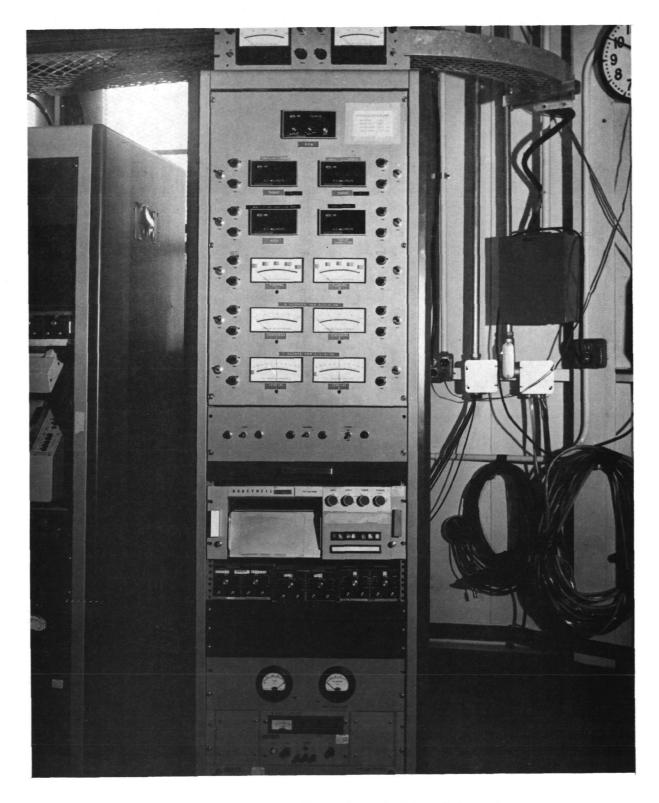


Figure 3. Facility Data Acquisition Subsystem Relay Rack Number 1.

				REVISIONS			
		LTR	DESCRIPT	ION		DATE	APPD
A	Thrus	r Para st, Thr	meter Indicato sust Correction apping 1 and 2,	n, Torque,	ustments; Pitch, Le	RPM	1,
В			meter Interfac d Camera Con		ontrol, Tr	acki	ng
C			h, Honeywell I st correction,		(for pitch,	,	
D	Galvo		ifiers, Bell &		lel 1-172		
E	 Volt a	and Am	nmeter for G				
F	Power	r Suppl	ly, Hewlett-Pa	ckard Mode	el 6113A		
G	Demo			a b s Model	10171		

Figure 4.								
PROJECT			AMPTON FA			ATOR		A
and all the second statements of the second statement	DATE	П	AMILION IA	CILI	11, 11-1	wirton, i	INO IN I	~
DRAWN KSB 5	-24-74		RELAY	R	ACK	NO.1		
CHECK SWS 61	25/A	EACH	ITY DATA				RSYST	FM
APPO 972 9	25/74							
APPD		HELI	COPTER	RO	TOR -	TEST F	ACILI	ТУ
		SIZE	PART NO			DWG NO		
		A			A74-9	50601-	-501	
		SCALE	NONE			SHEET	OF	
9								

		REVISIONS		
	L	TR DESCRIPTION	DATE	APPE
	1	1	1	
	7			
A	Squel	ch Boxes, (2)		
В		nometer Amplifier, Bell & How	ell	
В	Mode	l l-172A (6 channels)		
С	Oscil	lograph, Honeywell Model 1108		
Ŭ		lograph, noney went model 1100		
D	Frequ	ency Counter, General Radio, 1	153 AP	
E	Beat	Frequency Audio Generator, Gen	neral Radio	
		l 1304-B	inor dr reddire	,
F	Graph	nic Level Recorder, General Rad	dio.	
_		l 1521-B	,	
L				
		Figure 5.		
PROJECT	, ,			

Figure 5.							
	WYLE LABORATORIES						
HAMPTON FACILITY, HAMPTON, VIRGINIA							
RELAY RACK NO.2							
ROTOR DATA ACQUISITION SUBSYSTEM							
HELICOPTER ROT	OR TEST FACILITY						
SIZE PART NO	DWG NO						
A A	474-50601-502						
SCALE NONE	SHEET OF						
	HAMPTON FACILIT RELAY RAT ROTOR DATA ACC HELICOPTER ROT SIZE PART NO A						

					REVISION	S		
		Ē	LTR	DESC	RIPTION		DATE	APPD
		1	I				I	1
[
А		Signal	Moni	tor Box, 1				
			i wioni	tor Dox, I	ADA			
В		Dual	Trace	Scope, He	ewlett-Packar	d, Model	120AF	ξ
С		DC Ar	mplifi	ers Neff	Model 122 (8	channels		
		D0 111	inpini	, 10, 10011	MIGGET IED (O	channe io)		
D		Filter	Box,	NASA				
T		A 4 4		TT1 - 44	De alas al Mad	1-1-2500 /2	2 - h	
E		Attent	lators	, Hewlett-	-Packard Mod	lei 350C (3	o chan	inels
F					upplies, Hewl		rd	
		Model	6228	B and Try	gon Model HR	60-5 B		
L								
				Figu	re 6.		في الحرار المتعدمة	
	PROJECT				LE LABOR			
		DATE		AMPTON	FACILITY, HAN	APTON, VI	RGINI	A
	DRAWN KSB	5-24-74		RELAY	Y RACK	NO.3		
	CHECK 51.3	5/2:14	Dr		ATA ACQUIS		DRSV	STEN
	APPO 971	5/25/74						
	APPD				R ROTOR TE	EST FAC		y
			SIZE	PART			= ^ 2	
			A		A 14-3	50601-	202	1

SCALE 11

OF

SHEET

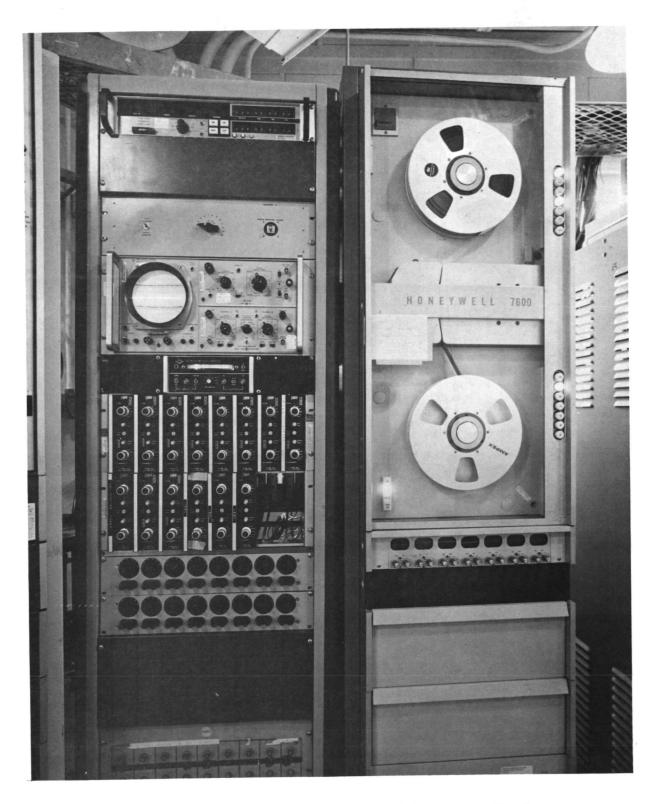


Figure 7. Rotor Data Acquisition Subsystem, Rack No. 4 and Honeywell 7600 Recorder

REVISIONS DESCRIPTION erator,Systron Donner,Model Box, NASA be,Hewlett-Packard,Model 14 B & K,Model 215	:0A
Box, NASA De,Hewlett-Packard,Model 14	:0A
e Hewlett Packard, Model 14	
e Hewlett Packard, Model 14	
e Hewlett Packard, Model 14	
B & K,Model 215	
, Neff, Model 122 (16 channe)	ls)
NASA (2)	
ASA	
ASA	
ASA	
	ASA

Figure 8.						
PROJECT	WYLE LABORATORIES					
DATE	HAMPTON FACILITY, HAMPTON, VIRGINIA					
DRAWN KSB 5-24-	RELAY RACK NO.4					
CHECK 52-5 5/15/	ROTOR DATA ACQUISITION SUBSYSTE	М				
APPO AV 5/297	HELICOPTER ROTOR TEST FACILITY					
APPD						
	SIZE PART NO DWG NO A A74-50601-504					
	SCALE NONE SHEET OF					
	13					

Figure 9. Spectral Analysis Subsystem, Relay Racks No. 6 (Left), and No. 5 (Right).

	**************************************				REVISIONS		
		F	LTR	DESCRI	NION	DATE	APPE
		•					
Г							
A		Filter	, Kro	hn Hite, Mo	del 3202R (2 units)	
В		Phase	Mete	r/h.sonant	Dwell, Spectral D	vnamics	
				- ,	_	lel SD110-	
c		X-Y F	Record	ler, Hewlett	-Packard Model 7	035B	
		C		15.1.1			
D		Model			ility Analyzer, Sa	.1cor,	
E		Preco	mnuta	tion Delaw (Control, Saicor, N	Iode1 430	140
Ľ		FIECO	niputa	ction Delay C	Jontiol, Salcol, N	nodel 450	140
L							
F		Rando	m No	se Generato	r, Elgenco, Mode	el 311A	
ļ							
				Figure	10		
1	PROJEC	T	1	and the second	ويتقربني ويستخد فانتكرت ومعتادهم والتورية ومتبارك ومعاد التعملية		
				AMPTON FA	CILITY, HAMPTON	VIRGINI	A
	BRAWN KSB	DATE 5-24-74			RACK NO.		
	CHECK SUS	177	L .		VALYSIS SUE		NA.
	APPO 922	5/25/74					
	APPO		1		ROTOR TEST FA		У
			SIZE	PART NO			
		I	A		A74-5060		
		-	SCALE		SHEET	OF	

					REVISIONS	
		F	LTR	DESCR	IPTION	DATE APPD
			-			
A		X-Y I	Display	, Spectral	Dynamics, Mode	el 13116
В		X-Y F	lecorde	er, Hewlet	t-Packard, Mode	el 7035B
С		Ensen	nble Av	verager, S	pectral Dynamic	s, Model SD302C
D			Time A SD301		Spectral Dynamic	es,
E			requer SD307		ator, Spectral Dy	ynamics,
				Figure	- 11	
1	PROJEC	T	1	Figur	E LABORATO	DIFC
		DATE	н		ACILITY, HAMPTON	
	CHEEK THE CHEEK THE APPD THE	5-24-74 5/25/74			RACK NO. (ANALYSIS S	
	APPD JW	414			ROTOR TEST	
			SIZE	PART N	A74-506	
			SCALE	NONE	SHE	

Figure 12. General View of Spectral Analysis Subsystem and Rotor Data Acquisition Subystem Equipment

3.1.3 Spectral Analysis Subsystem Equipment

The Spectral Analysis Subsystem includes major pieces of equipment listed in Table III. The specifications for each major item of commercial equipment for this subsystem are furnished in Appendix III.

3.2 Rotor Data Acquisition Subsystem

A typical data channel arrangement for the Rotor Data Acquisition Subsystem, shown in Figure 13, has been set up to acquire, monitor, condition, and record pressure and strain data from a rotor under test. Additional capabilities are provided for off-line playback of data from a magnetic tape unit. Conditioning equipment is configured for four arm bridge transducers, either of the wire strain gage or semiconductor strain gage variety. Bridge excitation, variable to a maximum of 10 VDC, is provided through slip rings to the transducers on the rotor.

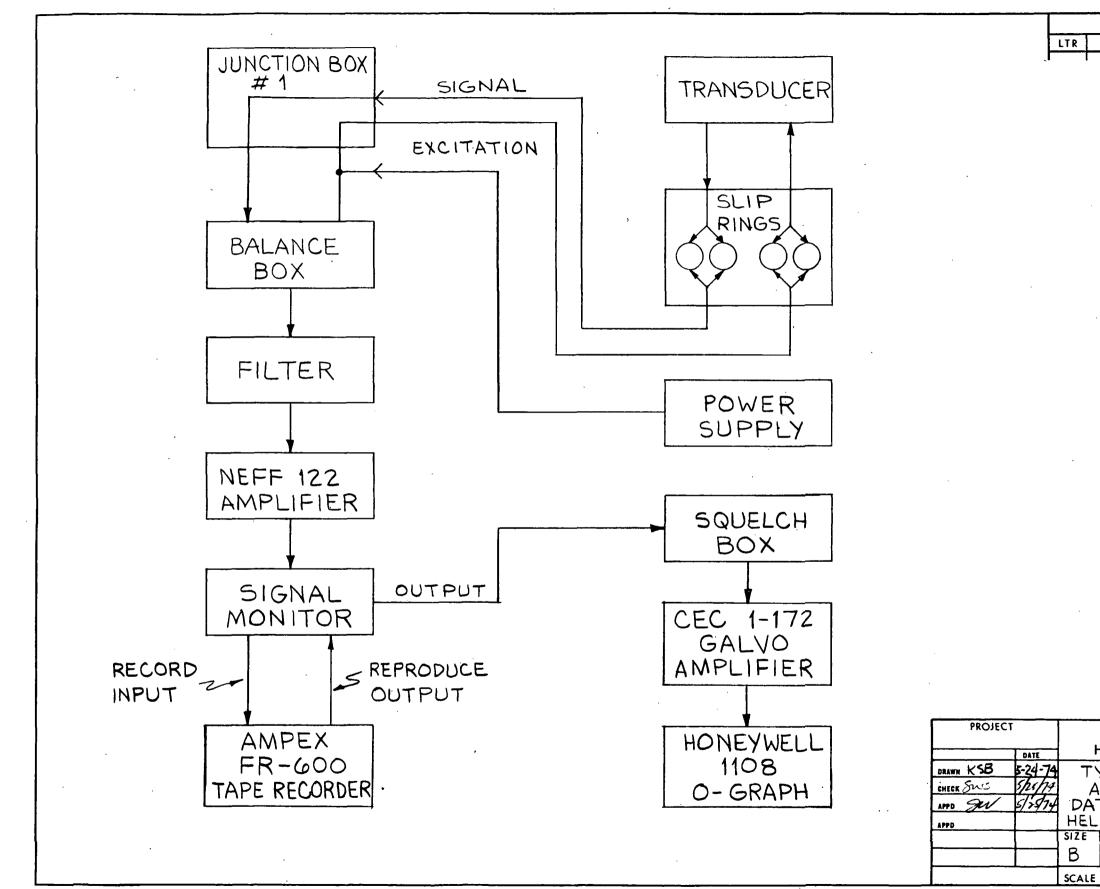
3.2.1 Instrumentation

234

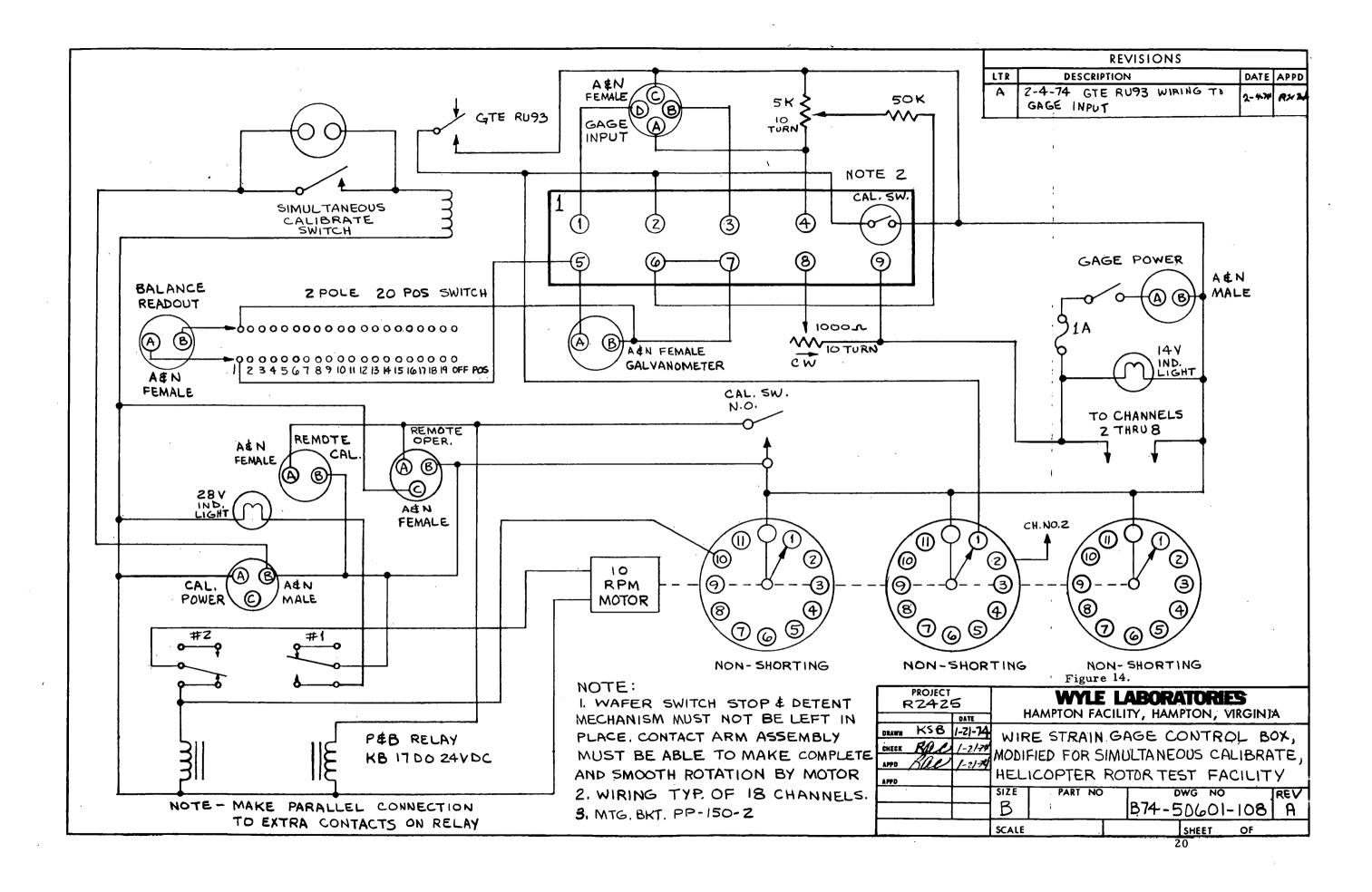
5

Data signals from the rotor transducers are routed back to the control room through the slip rings and the junction box to the balance box. A NASA designed balance box, shown in Figure 14, provides the facilities for span and balance adjustments and shunt resistance calibration for the transducers. The standard balance box has been modified, in this case, to additionally provide for simultaneous calibration of transducers. Data signals are routed from the balance box to a Wyle Laboratories designed filter box shown in Figure 15. Filter circuitry allows for selection of the following:

a. Shorting Neff input lines.

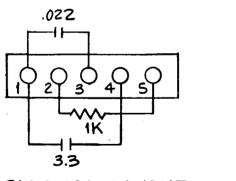

b. Passing all signal frequencies.

c. Blocking signal frequencies from DC to 100 Hz.

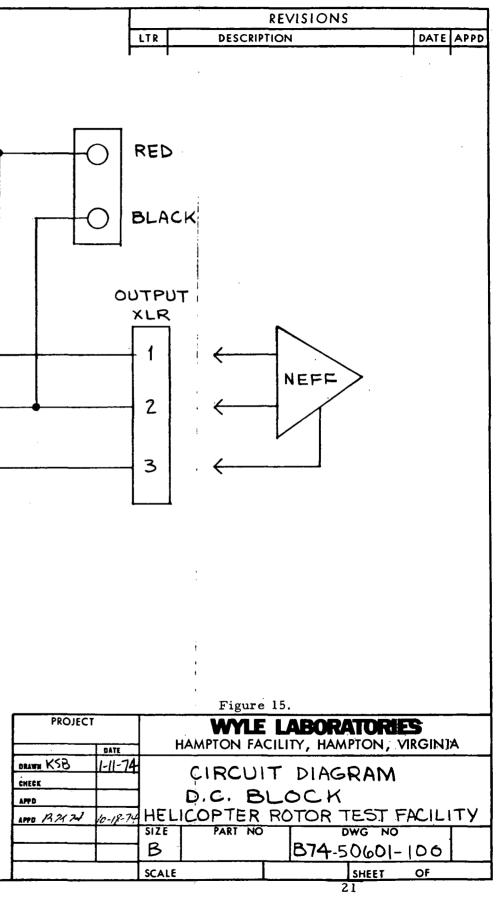

d. Blocking signal frequencies from DC to 1 Hz.

e. Voltage insertion calibration into the Neff amplifier.

f. Monitoring any of the above via red and black banana jacks at the Neff input.



	REVISI	ONS /			
D	ESCRIPTION		C	ATE	APPD
۰,			I	•	· ·
4					
•					
1					
1					
•					
1.					
1					
•					
•					
1					
ļ		•			
I					:
•					
,					
1					
1 8 4					
l					
+					
гī	igure 13.				
				· · ·	
НАМРТ	ON FACILITY,	HAMPTON		-	۰
		C11A N		1	
APPA	NGEMEN	IT - RO	TO	ر ۵	
	AL DATA NGEMEN ACQUISIT TER ROTOR	ION SU	BSV	зт	EM.
· · · · _ /	TER ROTOR	R TEST F	ACI	ĹΪΤ	'¥''
LICOP'		DWG N	0		r
LICOP			-		4
LICOP PA	B7	4-5060	1-0	00	
	B7	4-5060 SHEET	1-0	00	

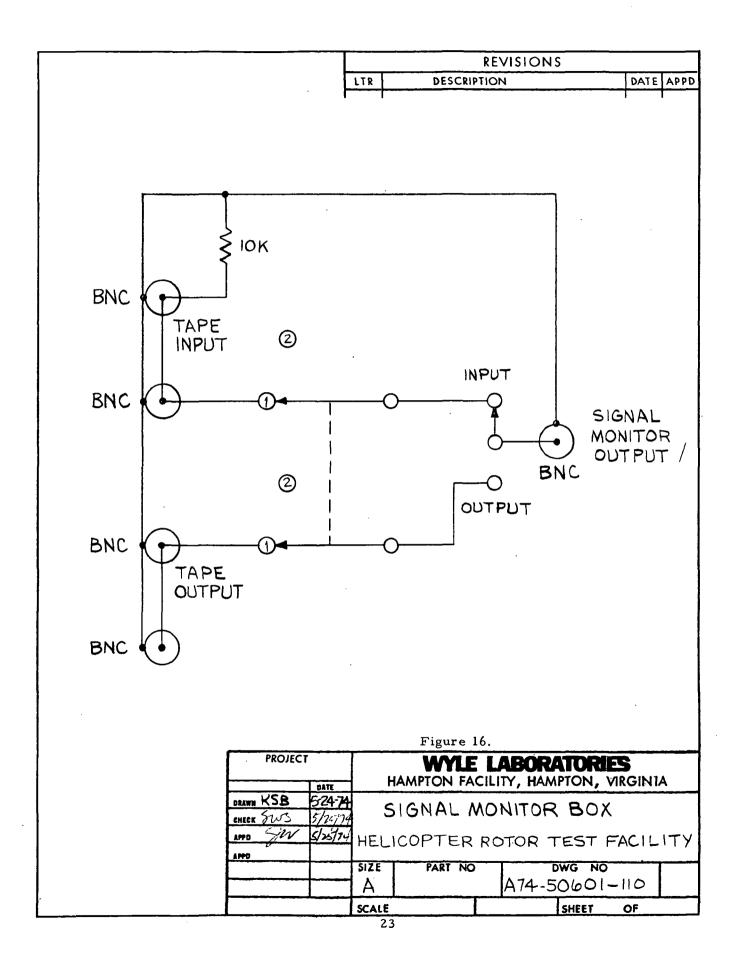

LTR ZERO $\frac{z}{0}$ fu 220. DC BLOCK 100 Hz <u>_3</u>0 3.3uf DC BLOCK 1 HZ ⁴O ALL PASS IK CAL \sim CALINPUT CAL 5 100K 1 ₹ERO -0 <u>_</u>0 DC BLOCK 100 HE 30 2 2 DC BLOCK 1 HZ 40 ALL PASS BUSS 3 3

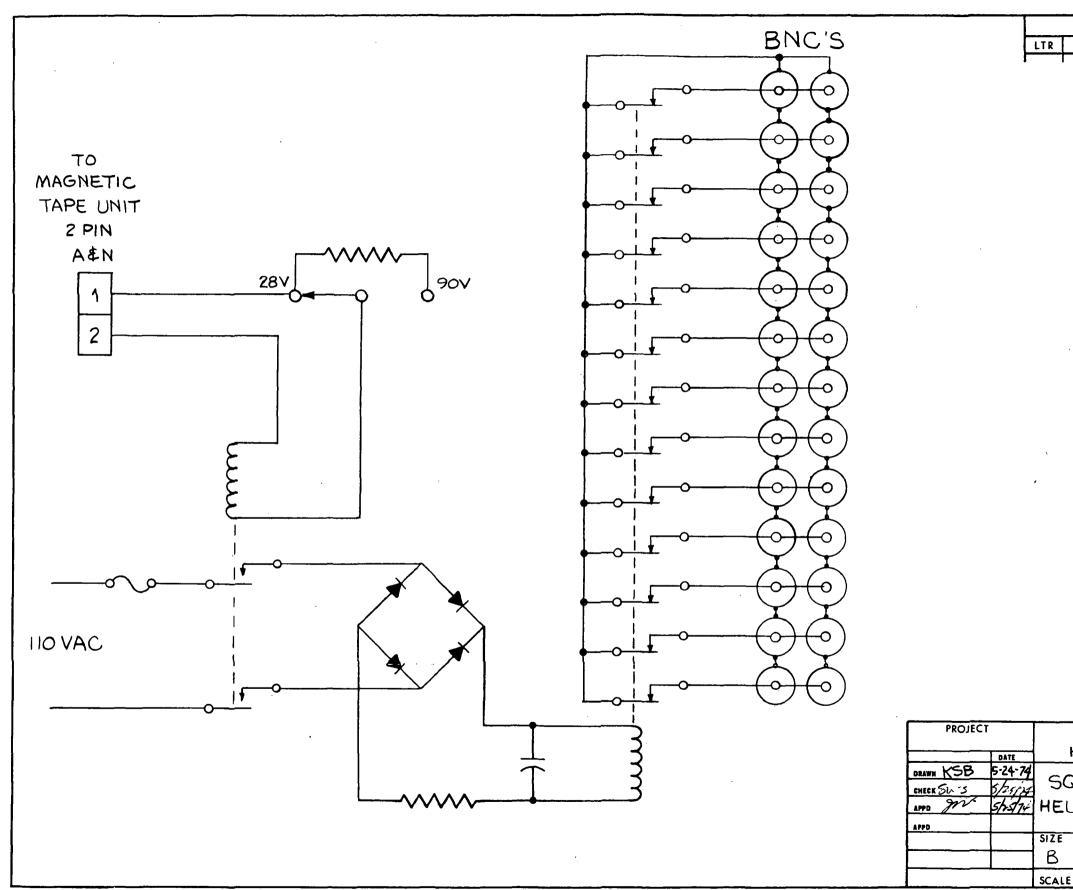
TYPICAL OF 8 CIRCUITS

PHYSICAL LAYOUT, TERMINAL BOARD,

. .

Filter output data signals are then applied to the Neff Model 122 amplifiers for amplification to high-level signals. A signal derived from the Neff differential amplifier output is routed to the signal monitor box shown in Figure 16. The signal monitor box permits the data signal to be paralleled to a magnetic tape recorder, such as the Ampex FR 600, and/or a signal monitor output connector. The signal monitor box also permits an output signal received from the magnetic tape reproduce amplifier to be connected to a signal monitor output connector. The outputs of the signal monitor box are connected to appropriate test equipment, or through the squelch box to the CEC Type 1-172 galvanometer amplifiers.


The squelch box is a device which prevents large noise voltage levels from the reproduce amplifiers from being input to the galvanometer amplifiers when the magnetic tape unit is not running. See Figure 17 for details of the squelch box circuitry. When the magnetic tape unit is not running, no voltage is present at the two-pin A & N connector and all relays are in the nonenergized position shown. Consequently, the high sides and shields of all BNC's are shorted together and to each other, thereby preventing large noise voltage levels from being input to the galvanometer amplifiers. When the magnetic tape unit is put into RUN mode, either 28 VDC or 90 VDC is presented at the AN connector, depending upon the particular magnetic tape unit in use. The two-position switch shown must be placed in the matching 28 V or 90 V position. Both relays shown are thereby energized, removing all shorts from the BNC's. Data signals are then directly connected from input to output BNC's.


A data signal from the squelch box is then routed to a galvanometer amplifier for signal conditioning before driving a galvanometer in the Honeywell Model 1108 Oscillograph.

3.2.2 Analysis

3.2.2.1 Error Considerations

It is extremely difficult, if not impossible, to present a generalized error analysis applicable to all measurements at the Helicopter Rotor Test Facility. The approach taken herein is to describe a methodology of error determination and to present examples for typical measurement configurations. The reader may then apply the methods presented to particular measurement configurations and thereby derive estimates of system accuracy.

		VISIO	14.5			4 9 7 7
DES	CRIPTIO	N			DATE	APPD
•						
н						
*						
, ,						
;						
,						
•						
Fig	ure 17					
			P/AT	DRIF	5	
AMPTON						A
UELCI	H BC	х с	IRCI	JITF	RY	
ICOPT	ERF	2070	RT	EST	FACIL	
		·				·
PART	NU	R 74		NO	-107	1
		10/4		EET		L
	1		1 5 H	FFT	OF	

A detailed analysis of total subsystem performance must include both random and systematic error estimates for all components of the subsystem under the specific, stated operating conditions of the manufacturer's specifications. In the case where commercial manufacturer's specifications are utilized, they are generally stated by the manufacturer as percent of full scale value. Engineering judgment, however, indicates that the manufacturer's specifications may be considered to apply to a typical measurement situation where the rms value of the signal is approximately 20-30% of full scale. This estimate is justified (1) by the fact that environmental conditions encountered at the facility are generally less severe than covered by the manufacturer's specifications and (2) errors are minimized by system calibration performed prior to a test.

1

In the case of NASA fabricated equipment, detailed specifications are not available and engineering estimates must be made.

Random errors are considered to be those systems errors whose behavior can be described only by statistical methods. All random errors are assumed to be independent, to follow a normal distribution with zero mean, have their sources in cascaded elements, and will be expressed as 3 - Sigma Gaussian values. Typical errors which fall into this category include:

- Thermal noise
- Magnetic noise
- Electrostatic noise
- Ripple

3

Ξ.

- Input and output noise
- Quantizing error

All random errors will be added as the root-sum-of-squares (RSS) method, i.e.

$$E_{r} = \left(E_{\underline{1}\underline{r}}^{2} + E_{\underline{2}\underline{r}}^{2} + \dots + E_{nr}^{2}\right)^{1/2}$$
(1)

Systematic errors are deterministic, i.e., obey a well defined, but possibly unknown, mathematical relationship. All systematic errors are assumed to be independent, and have their sources in cascaded elements. They are assumed to have nonzero means so that their average over a large number of readings is nonzero. Any error source which is not clearly random will be considered systematic. Typical errors which fall into this category include:

- Gain inaccuracy
- Linearity

2

- Gain drift
- Offset drift
- Gain stability
- Cross talk
- Frequency response
- Common mode

All systematic errors will be summed linearly, i.e.,

$$E_{s} = E_{1s} + E_{2s} + \dots + E_{ns}$$
(2)

except for frequency response which is treated separately.

The total error is a combination of the random errors and systematic errors and will be expressed as:

$$TE = \left(E_r^2 + E_s^2\right)^{\frac{1}{2}}$$
(3)

Ĩ

3.2.2.2 Error Calculations

Neff 122 Amplifier

Systematic Error

Conditions assumed: Gain of 1000, 5° C temperature change, common mode voltage of 25 VDC or peak AC.

0.005% DC amplitude linearity 0.010% Intermodulation: 0.020% Cross talk; Gain step accuracy (in cal. position); 0.100% 0.091% Zero stability; 0.015% DC gain stability Common mode error, 0.00025% 0.24% Systematic error:

41

0.08%

0.08%

Random Error

. 1

Noise (wideband):

Random error

Total Error

Total Neff 122 amplifier e	error}.	0.25%
``		

Ampex FR-600 Magnetic Tape Unit

Typical of 3 units used

Systematic Error

Conditions assumed: FM record/reproduce mode, high level, 60 inches per second.

Harmonic Distortion;	1.5%
DC drift [©]	1.0%
AC/DC linearity	1.0%
🔅 Systematic error)	3.5%

Random Error

2

2

~ . Noise,

Random error

Total Error

Total Ampex FR-600 error: 3.54%

0.5%

0.5%

CEC Type 1-172 Galvanometer Amplifier

Systematic Error

Conditions assumed: Gain of 0.2 volt per inch, $5^{\circ}C$ temperature change, + three-inch deflection, common mode voltage of 100 VDC or peak AC

Input offset voltage drift.)	0.0625%
Linearity	0.25%
Common mode error:	0.167%
Cross talk	0.005%
Systematic error:	0.48%

Random Error

Ripple and noise 0.04%

Random error: 0.04%

Total Error

Total CEC 1-172 error:	0.48%
I OTAL CEC 1-174 error;	0.40%

Honeywell 1108 Oscillograph

Systematic Error

- 2	Linearity (using Type M galvanometers)	2.0%
	Systematic error	2.0%
Rar	ndom Error	

III THEOR

3% Human Error in Reading ; (Engineering Estimate)

3%

3.6%

ير ا

Random error

Total Error

Total Honeywell 1108 error()

Slip Ring Noise Error

Slip ring noise measurements have been made at the facility for different values of RPM. Conditions were Neff 122 amplifier gain of 1000, Neff filter bandwidth at 10 kHz, filter box at "all pass", hub grounded, transducer bridge resistance of 2000 ohms.

At 0 RPM, the average for 12 slip rings was a noise level of 1.6 microvolts rms. At 355 RPM, the average for 12 slip rings was a noise level of 8.8 microvolts rms.

Other Component Errors

Because of the lack of definitive data, engineering estimates must be made of errors contributed by other components in this subsystem. Typically, these errors could be:

Transducer Error	10%
Power Supply Error	1.0%
Balance Box Error	1.0%
Filter Box Error	2.0%

The signal monitor box and squelch box are switching circuits only and should contribute negligible error?

3.2.2.3 Combinations of Equipment Error Calculations

The total error for series combinations of various equipment can also be calculated by quadrature addition of the individual components. These calculations are shown below, excluding slip ring noise.

a. Recording data via the Ampex FR-600 recorder/reproducer:

1.

Total Error = 10.3%

b. Recording data via the Honeywell 1108 oscillograph:

Total Error = 10.9%

c. Reducing data via Ampex FR-600 recorder/reproducer and Honeywell 1108 oscillograph:

Total Error = 5.1%

The transducer error of \pm 10% used in the above calculations is considered to be typical of that to be encountered in work at the helicopter tower. Typically, boundary layer pressure fluctuations on the order of 0.01 psig are measured with 2.5 psig full scale piezo-resistive strain gage pressure transducers. Although in-place calibration of transducers minimizes errors, pressure errors of 20% of reading and greater are not unrealistic. Static pressures at much higher amplitudes can realistically be estimates at \pm 2-3% of reading.

For strain measurements, the accuracy is determined to a great extent by the load or deflection calibration performed. Errors of 5-10% attributed to the strain gage/calibration combination are typical.

In any case, due to the multiplicity of possible measurement situations, the above system errors can only be considered as typical. Using this methodology, the reader can more accurately assess error values for particular measurement configurations with specific transducers. The uncertain nature of the error contributed by slip ring noise caused it to be excluded from total error calculations above. More definitive slip ring noise data will be available in the future. Much care must now be exercised in analyzing data signals in order to separate the slip ring noise from the experimental pressure data.

3.2.2.4 Frequency Response

2

Тō

20

21 22.1 23

25

26

27

28 29 30

31 32

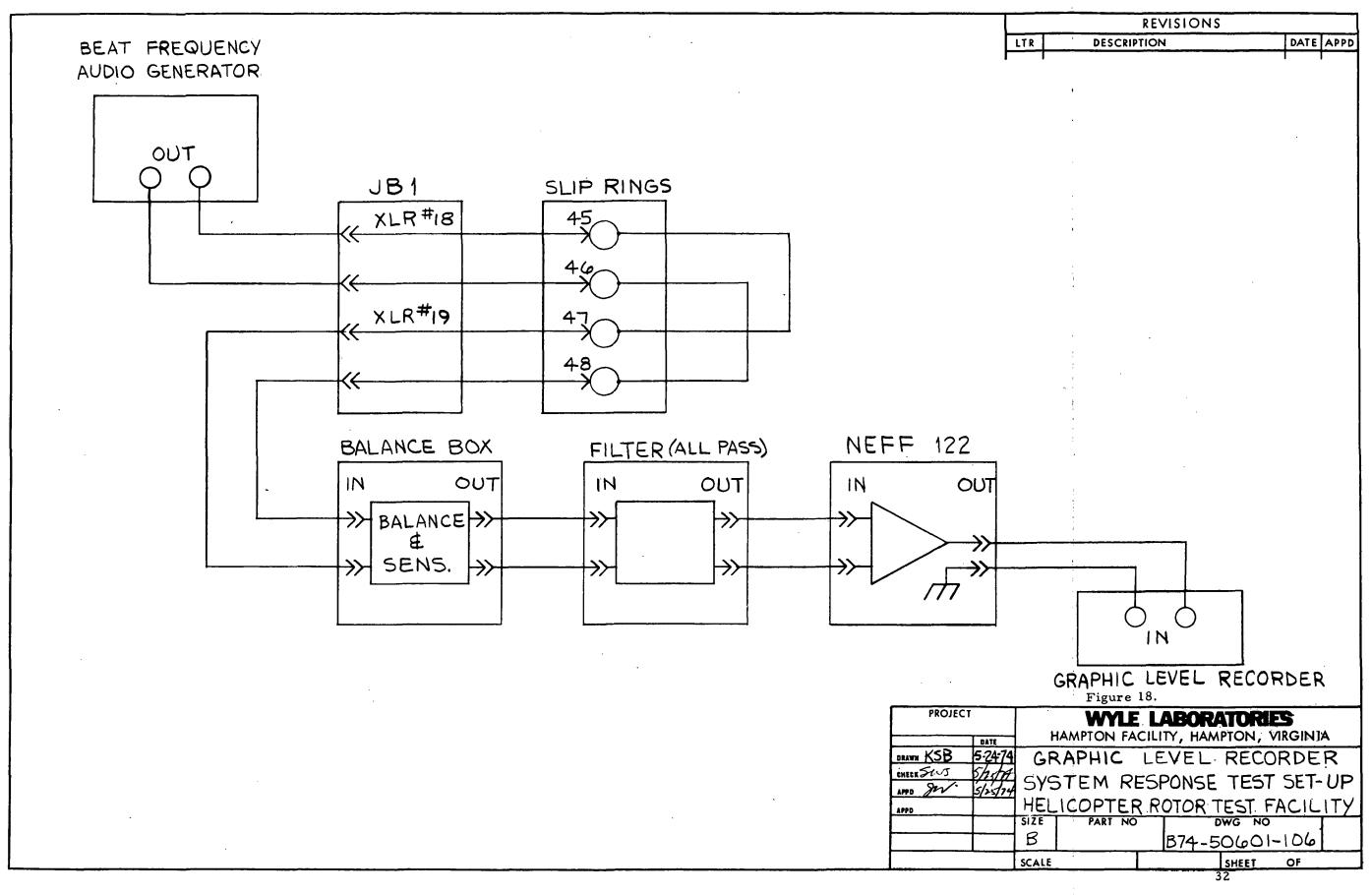
39

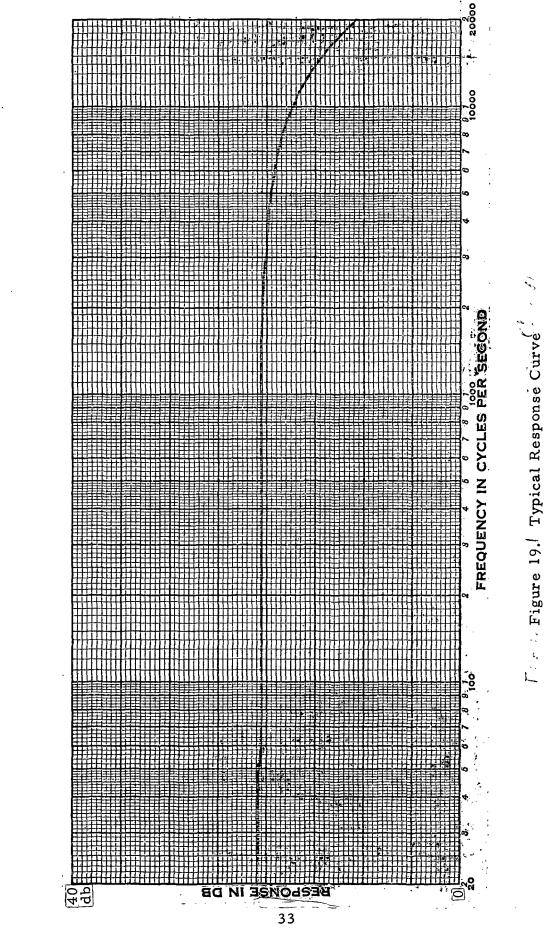
44

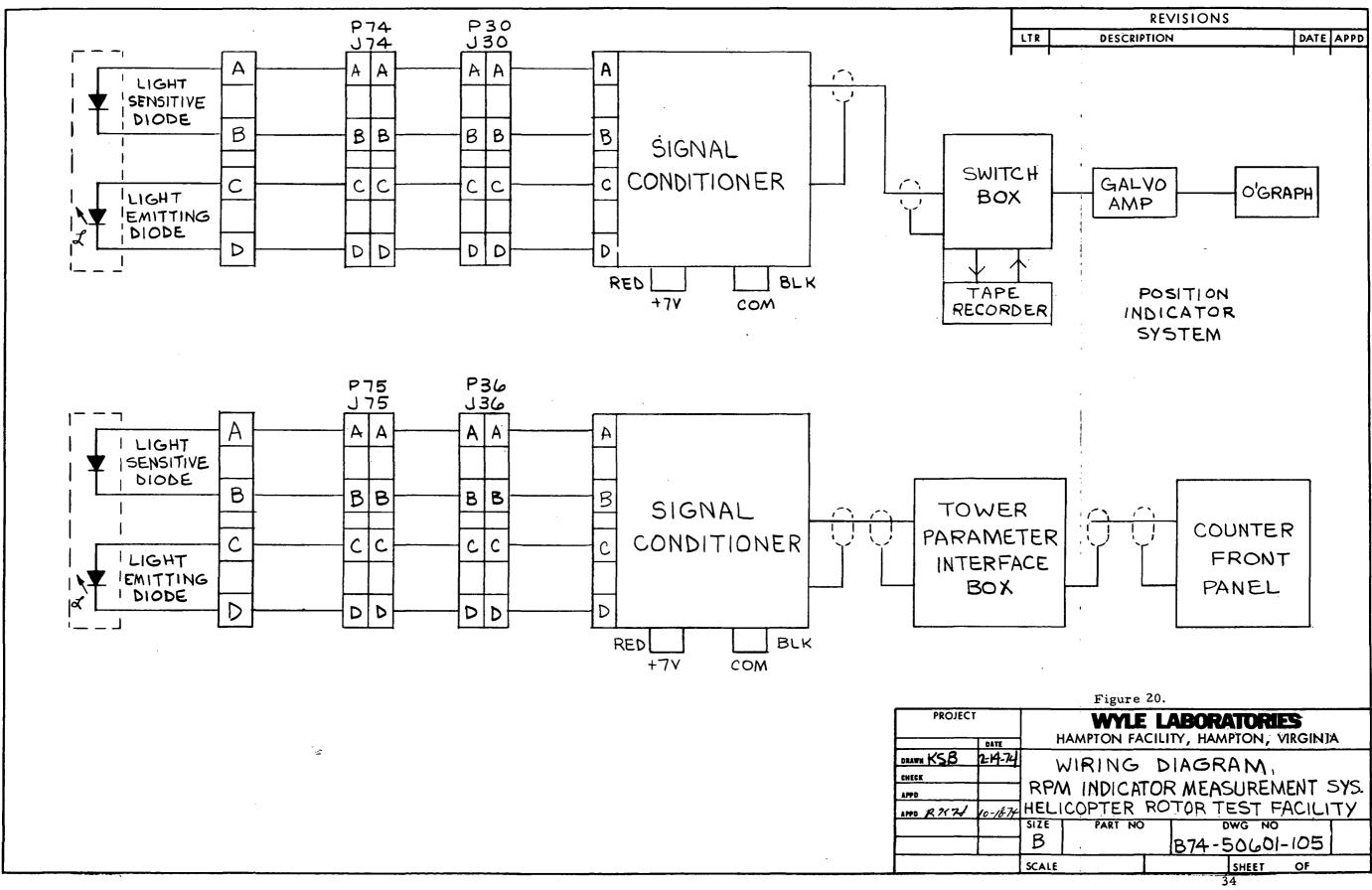
47

The frequency response characteristics of individual pieces of equipment have already been indicated in 3.2.2 above. In order to measure system response, the test setup shown in Figure 18 was used. These test indicated the frequency response was within three db at any Neff amplifier gain setting and any Neff amplifier filter setting. A typical response curve for Neff gain = 1, filter cut off at 10 kHz and no slip ring rotation is shown in Figure 19. Combining this data with that of the frequency response of the Ampex FR-600 Recorder/reproducer, of + 0.5 db, indicates a total system response of (+0.5, -3.5) db to 20 kHz.

For recording data directly on the Honeywell 1108 oscillograph, the total 244 response would be a combination of the circuit tested above (-3 db), the CEC 1-172 galvanometer amplifier (-3 db) and a Honeywell Type M galvanometer (+0.4 db) or (+0.4, -6) db.


As evidenced above, large amplitude errors may result if equipment components are used out to their upper frequency limit. The user should compensate for this as much as possible.


3.3 Facility Data Acquisition System


3.3.1 Instrumentation

3.3.1.1 Rotational Speed Display

45 46 Rotational speed of the rotor is measured, displayed, and recorded. This is accomplished by a large rotating disk with 600 alternate light and dark bars 48 and a light emitting diode. A light-sensitive diode provides the mechanism 49 for providing a pulse train proportional to shaft revolution. The signal is 50 then conditioned through custom circuitry and scaled by the ERC counter for 51 three-digit display reading in RPM as shown in Figure 20. Figure 20 also 52 L

.

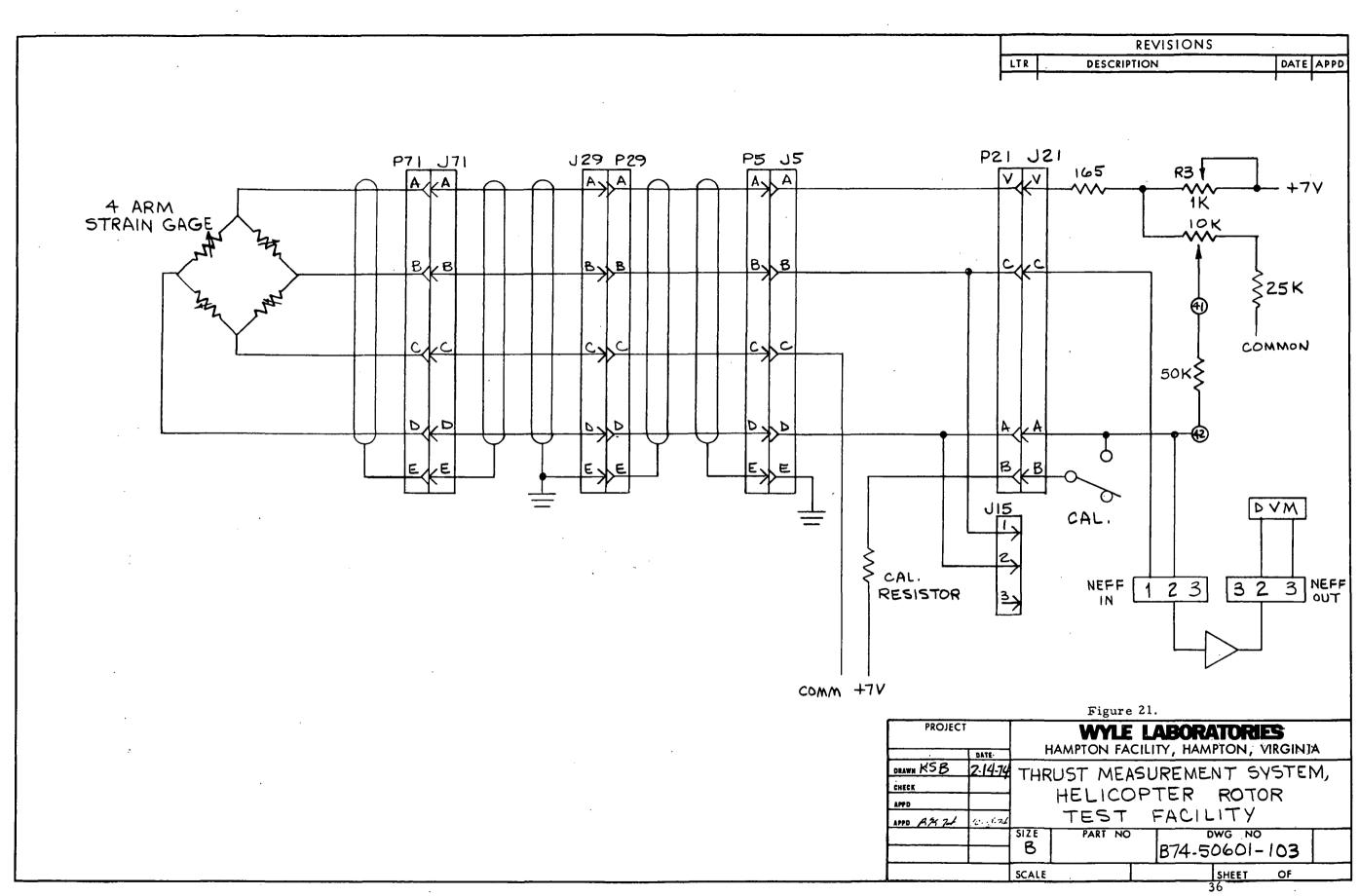
.

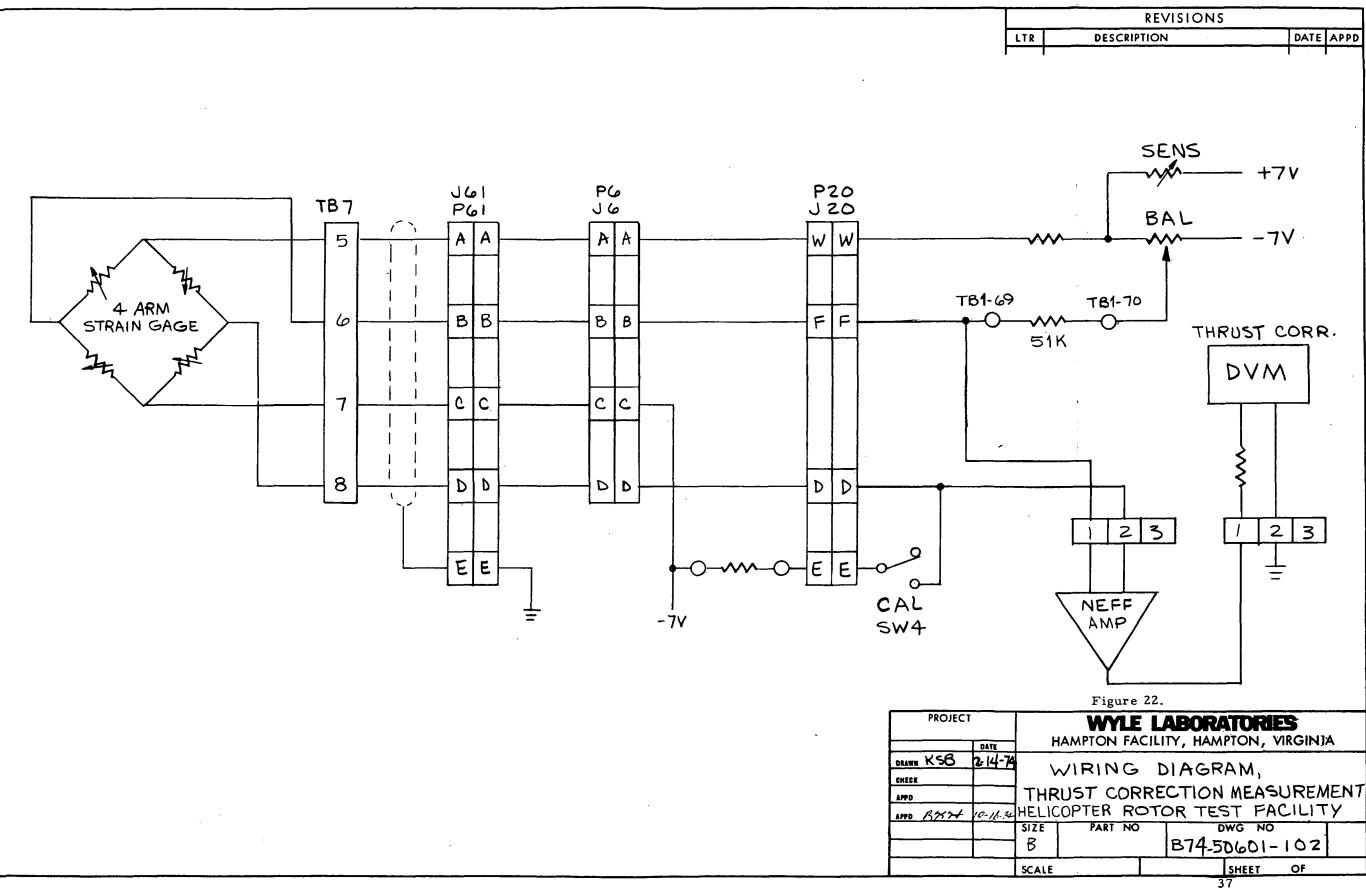
details the circuitry for sensing and recording shaft position. This circuit supplies a single pulse per revolution for correlating data recorded on a magnetic tape and/or an oscillograph.

3.3.1.2 Thrust, Thrust Correction, Torque and Pitch Display

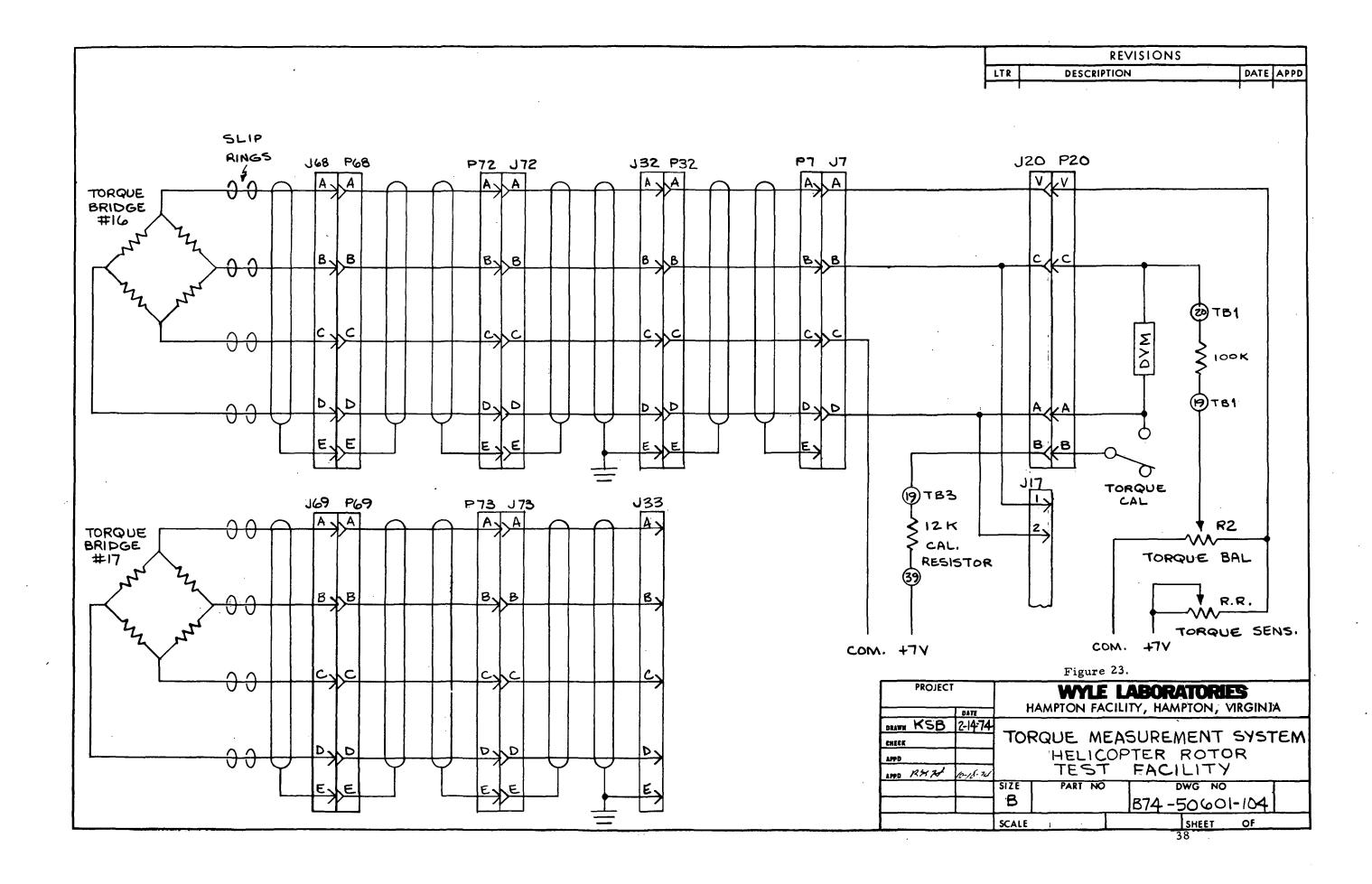
Thrust is measured by a load cell arrangement incorporated in a thrust ring assembly within the tower. Thrust correction is measured by a four-arm strain gage bridge located on the rotor pitch arm. This thrust correction is necessary because a component of force attributable to the pitch arm is linked to the tower structure itself and not the shaft. Therefore, this component must be added to or subtracted from shaft thrust to obtain a true thrust reading.

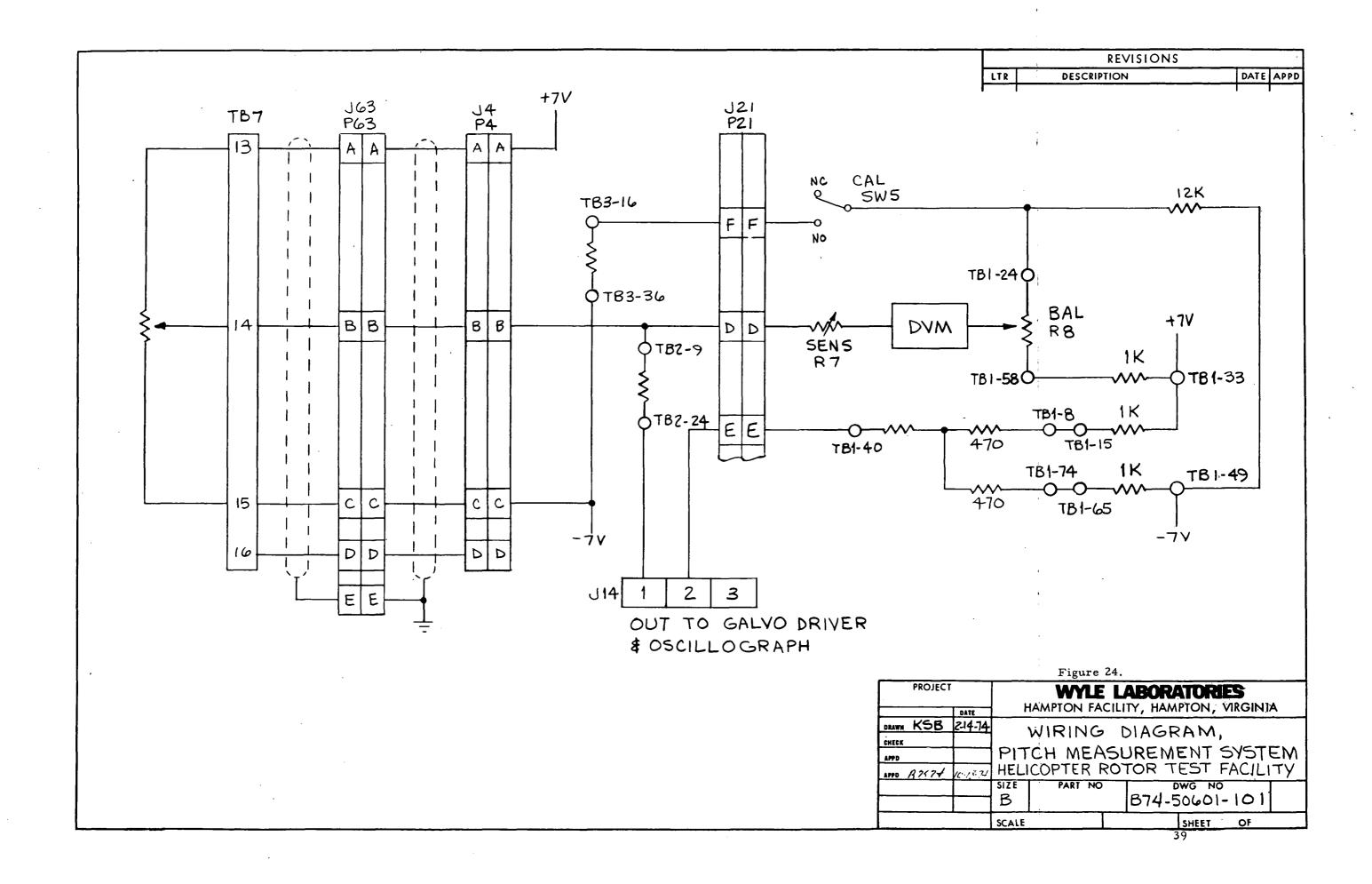
Shaft torque is measured with a four-arm strain gage bridge bonded to the shaft exterior surface at the base. A duplicate bridge is also provided.

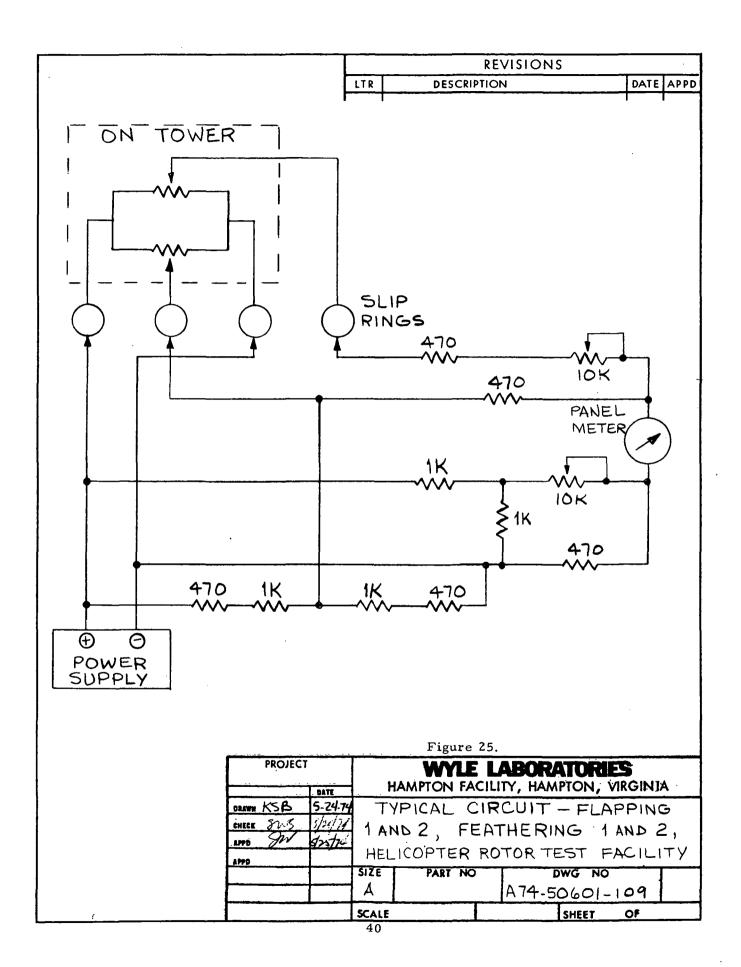

Pitch is measured by a slidewire potentiometer on the pitch arm assembly near the top of the tower.


For each of these parameters, the front panel display is an ERC 4000 series digital voltmeter.

If recording of these parameters is desired, the CEC 1-172 galvanometer amplifier and the Honeywell 1508 oscillograph may be used. Characteristics of the CEC 1-172 are stated in Appendix I. Characteristics of the 1508 oscillograph are stated in Appendix II. Circuitry details for these measurements are presented in Figures 21 through 24.


3.3.1.3 Flapping, Feathering, and Lead/Lag Measurement and Display


Flapping 1 and 2, feathering 1 and 2, and lead/lag 1 and 2 are measured and displayed as shown in the typical circuit of Figure 25. Flapping 1 and 2 and feathering 1 and 2 are displayed continuously on 4 0-20-microampere panel meters calibrated in degrees. Lead/lag 1 and 2 are displayed continuously on 2 25-0-25-microampere panel meters calibrated in degrees.



.

97 12

3.3.2 Analysis

3.3.2.1 Error Considerations

The same error considerations detailed in 3.2.2.1 apply to this subsystem.

3.3.2.2 Error Calculations

ERC Series 4000 Digital Voltmeter

Systematic Error

Assuming a $5^{\circ}C$ temperature change:

Resolution error[®] 0.005%

Accuracy

Common mode error: 0.0001%

0.0325%

0.038%

0.0001%

Systematic error

Random Error 0% None 0% Random error: 0% Total Error 0.038%

ERC Series 2700 Frequency Meter

Systematic Error

Resolution error; 0.01%

Time base accuracy

1 : A 21	Systematic error	0.0101%
•••	Random Error	
		0%
5 a. :	Random error:	0%
	<u>Total Error</u> Total ERC Series 2700 error{	0.01%
	Modutec DC Microammeter	
	Systematic Error	
	Accuracy (typical)	2%
	Systematic error ϕ	2%
	Random Error	
	None	<u>0%</u>
	Randon Error	<i>′</i> 0%
	Total Error	
	Total Modutec DC Microammeter error	2%
	Bell & Howell Type 1-172 Galvanometer Amplifier	
	Errors which are detailed in paragraph 3.2.2.2 are:	
	Systematic Error	0.48%
	Random Error	0.04%
	Total Error	0.48%

.

-**-**

Honeywell 1508 Oscillograph

Systematic Error

Linearity (using Type M galvanometers)	2.0%
Systematic Error	2.0%
Random Error	
Human Error in Reading	3%
Random Error	3%
Total Error	
Total Error	3.6%

Other Component Errors

Because of the lack of definitive data, engineering estimates must be made for errors contributed by other components in this subsystem. Typically, these errors could be:

RPM Transducer Systematic Error (on-off device)	0%
RPM Signal Conditioner Systematic Error	1%
Thrust Bridge/Conditioning Systematic Error	3%
Torque Bridge/Conditioning Systematic Error	3%
Pitch Transducer/Conditioning Systematic Error	3%
Flapping, Feathering, Lead/Lag Transducers/ Conditioning Systematic Error	3%

3.3.2.3 Combinations of Equipment Error Calculations

The total error for series combinations of various equipment can also be calculated by quadrature addition. These calculations are shown below, excluding slip ring noise. a. Acquiring pitch and torque via ERC Series 4000 DVM:

Total Error = 3%

b. Recording any parameter via Honeywell 1508 oscillograph:

Total Error = 4.7%

c. Acquiring thrust and thrust correction via ERC Series 4000 DVM: 3Total Error = 3%

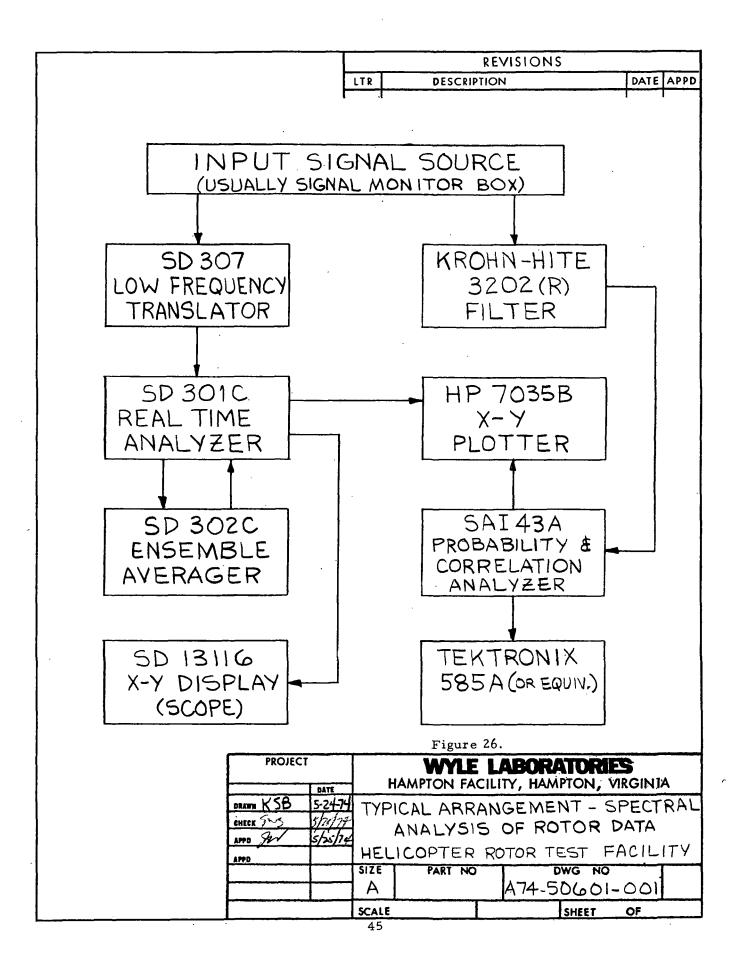
d. Acquiring RPM via ERC Series 2700 frequency meter:

Total Error = 1%

e. Acquiring lead/lag, feathering, and flapping via Modutec microammeter panel meters:

Total Error = 3.6%

For the same reason as detailed in paragraph 3.2.2.3, the error contributions due to slip rings was excluded from the total error calculations above.


3.3.2.4 Frequency Response

Frequency response is of little interest in this area because data is of a static or DC nature except for RPM. In the case of RPM, as long as the minimum acceptable input level is present at the ERC Series 2700 frequency meter, the instrument will read correctly.

3.4 Spectral Analysis Subsystem

3.4.1 Instrumentation

A typical arrangement of equipment for the spectral analysis of rotor data is shown in Figure 26. Through use of the signal monitor box, signals may be obtained from either the record or reproduce side of the magnetic tape unit. For a typical spectral analysis, the data signal is input directly to the real-time analyzer. On other occasions, the low-level translator is used prior to the real-time analyzer in order to translate input data to a lower

frequency range, and thereby achieving better filter resolution in the realtime analyzer itself.

The Spectral Dynamics SD 301C real-time analyzer is the instrument used to analyze the spectral content of a signal over a given frequency band. Data input is generally received from SD 307 low-frequency translator. Outputs proportional to spectral amplitude and frequency are provided to an oscilloscope for display purposes.

For the averaging of successive spectral estimates the Spectral Dynamics SD 302C ensemble averager is used in conjunction with the SD 301C.

A spectral content versus frequency display of the SD 301C data is displayed on an 8-inch by 10-inch Spectral Dynamics SD 13116 oscilloscope. Alternately, spectral content versus frequency may be plotted on the Hewlett-Packard 7035B, X-Y plotter.

For the analysis of probability, correlation, and coherence functions, the Saicor SAI-43A correlation and probability analyzer is employed. Data being input to the SAI-43A are generally filtered prior to this point by a Krohn-Hite 3202 (R) variable filter. If two channels are required, such as for crosscorrelation analysis, two 3202 (R) filters are employed. The correlation and probability analyzer is used for the computation and display of the probability density function, probability distribution, auto and cross-correlation, and signal enhancement (coherence in repeated events).

For fast output, the function computed by the SAI-43A can be routed to a Tektronix model 585A oscilloscope or equivalent. Here again the function is displayed versus time. For slow output, the function computed by the Saicor SAI-43A is routed to a Hewlett-Packard 7035B X-Y plotter. There the function is plotted versus time.

Other equipment, not shown in Figure 26, used in spectral analysis is the Spectral Dynamics SD 110-1 phase meter/resonant dwell.

46

3.4.2 Analysis

3.4.2.1 Error Considerations

The same error considerations detailed in 3.2.2.1 apply to this subsystem.

3.4.2.2 Error Calculations

Spectral Dynamics 307 Low-Frequency Translator

Systematic Error

.

Assume full scale input:	
Linearity	6.6%
Systematic error	6.6%
Random Error	
None	<u>0%</u>
Random error	0%
Total Error	
Total Spectral Dynamics 307 error	6.6%
Spectral Dynamics 301C Real-Time Analyzer	
Systematic Error	
Linearity of spectrum output	<u>0.5%</u>
Systematic error	0.5%
Random Error	
Noise level (54 db down from full scale)	<u>0.2%</u>
Random error	0.2%

Total Error

	Total Error	•
Ch IN 4	Total Spectral Dynamics 301C error	0.54%
WOL MOND	Spectral Dynamics 302C Ensemble Averager	
	Systematic Error	
	Spectrum resolution error (14 bits)	0.006%
•	Systematic error	0.006%
	Random Error	
	None	0%
	Random error	0%
~	Total Error	
	Total Spectral Dynamics 302C error	0.006%
	Spectral Dynamics 13116 X-Y Display	
	Systematic Error	
	Repeatability	0.15%
	Linearity	1.0%
	Systematic error	1.15%
	Random Error	
	None	0%
	Random error	0%

48

ł, ·

2

.

Total Error

-

 	Total Error	
	Total Spectral Dynamics 13116 error	1.15%
	HP 7035B X-Y Plotter	
	Systematic Error	
	Accuracy	0.2%
-	Linearity	0.1%
	Resettability	0.1%
	Systematic error	0.4%
	Random Error	
	None	0%
	Random error	0%
	Total Error	
	Total HP7035B error	0.4%
	Sacior SAI-43A Analyzer	
	Systematic Error	
	a. Amplitude resolution error (correlation and coherence modes)	0.098%
	 b. Amplitude resolution error (probability mode) 	<u>0.195%</u>
	Systematic error for a.	0.09%
	Systematic error for b.	0.195%

.

.

Random Error None 0% 0% Random error Total Error Total SAI-43A error for (a) 0.098% Total SAI-43A error for (b) 0.195% Krohn-Hite 3202 (R) Filter Systematic Error Assume a $5^{\circ}C$ temperature change Output DC level stability 0.33% Systematic error 0.33% Random Error Hum and noise 0.003% 0.003% Random error Total Error Total Krohn-Hite 3202 (R) error 0.33% Tektronix 585A Oscilloscope

Systematic Error

Vertical Deflection Linearity (typical) 3%

Sustanatio and an	3%
Systematic_error	5 /0
Random Error	
the second secon	
Human Error in Reading	3%
	((Engineering Estimate)
Random error	3%
	er H
Total Error	
	4 70
Total Tektronix 585A error	4.2%
Spectral Dynamics SD 110-1 Phase Meter/	Resonant Dwell
	•.
Sustematic Error	
Systematic Error	
	filter in, 400 Hz input, and full
Assuming 40 db amplitude range, low-pass	filter in, 400 Hz input, and full
Assuming 40 db amplitude range, low-pass scale input:	
Assuming 40 db amplitude range, low-pass	filter in, 400 Hz input, and full 0.2%
Assuming 40 db amplitude range, low-pass scale input: Detection accuracy	0.2%
Assuming 40 db amplitude range, low-pass scale input:	
Assuming 40 db amplitude range, low-pass scale input: Detection accuracy	0.2%
Assuming 40 db amplitude range, low-pass scale input: Detection accuracy Filter accuracy	0.2%

L :

Random Error

None	<u>0%</u>
Random	0%

Total Error

3.4 2.3 Combinations of Equipment Error Calculations

a. Acquiring and displaying spectral data via Spectral Dynamics SD 307 low-level translator, the SD 301C real-time analyzer, the SD 302C ensemble averager, and the SD 13116 X-Y display:

Total Error =
$$6.7\%$$
 (0.60 db)

b. Acquiring and recording spectral data via Spectral Dynamics SD 307 low-level translator, SD 301C real-time analyzer, SD 302C ensemble averager, and HP 7035B X-Y plotter: $\underline{1, 0}$ Total Error = $\underline{6.6\%}(0.59 \text{ db})$

c. Acquiring and recording probability, correlation, and coherence data via Krohn-Hite 3202 (R) filter, Saicor SAI-43A analyzer, and HP 7035B X-Y plotter: prove (1,14) the

Total Error (for correlation and coherenc	$(e) = \frac{0.53\% (0.044 \text{ db})}{0.53\% (0.044 \text{ db})}$
Total Error (for probability)	= <u>0.55% (0.048 db)</u>

= 4.2% (0.37 db)

d. Acquiring and displaying probability, correlation, and coherence data via Krohn-Hite 3202 (R) filter, Saicor SAI-43A analyzer, and Tektronix 585A oscilloscôpe

Total Error (for correlation and coherence) = 4.2% (0.37 db)

Total Error (for probability)

e. Measuring phase angle via Spectral Dynamics SD 110-1 phase meter/resonant dwell:

Total Error = 1.2%

The analysis errors calculated above are optimistic for many applications since essentially ideal conditions were assumed. Helicopter rotor noise is extremely complex, contains both periodic and random components, and exhibits high crest factors. These signal characteristics place great demands on the dynamic range of instrumentation equipment. It is therefore estimated that for helicopter noise, errors may exceed the values quoted above by a factor of two or more.

The analyses errors described above are those attributed to the operational characteristics of the instruments utilized. One other major source of error must also be considered. For random data, the most significant errors are often described by the basic statistical considerations of signal analysis theory. It is therefore necessary to judiciously choose analysis parameters such as sample length, number of averages, and bandwidth to optimize resolution and accuracy. A great deal of engineering judgment is required in both selection of analyses parameters and in interpretation of results.

3.4.2.4 Frequency Response

2

2

The frequency response characteristics of equipment have been indicated, when available. The only data of significance is the frequency response of the Spectral Dynamics SD 301C real-time analyzer, ± 1 db to 50 kHz, and the Saicor SAI-43A analyzer, down 3 db at 1.25 MHz.

APPENDIX I

ROTOR DATA ACQUISITION SUBSYSTEM EQUIPMENT CHARACTERISTICS

Equipment characteristics for all major equipment items listed in Table I are presented in this Appendix to afford ease in locating necessary equipment operational information.

Bell and Howell, Type 1-172 Galvanometer Amplifier

1. 40 1. 40

Bell and Howell, type 1-172 galvanometer amplifiers are used for signal conditioning in this subsystem. Characteristics of this type galvanometer amplifier are:

Number of Channels:	Two, four, or six.
Controls:	1. Sensitivity (V/IN or V/CM), nine ranges with vernier intermediate control, tenth range 0.
	2. GAIN (intermediate to sensitivity settings).
	3. OFFSET (electrical galvanometer positioning).
	4. Output polarity reversing switch, NORmal-OFF-REVerse.
	5. AC power, ON-OFF switch.
	6. Input selector switch (DC-CALibrate-AC).
Ambient Temperature:	0° to 50° C.
Input	
Maximum Input Voltage:	400 VDC or peak AC without damage.
······································	54

Impedance:	One megohm + 1% shunted by 45 pico-
impedance.	farads. This impedance is compatible with most oscilloscope probes.
Configuration:	Single ended, floating (circuit ground isolated from case).
Offset Current:	Less than 150 picoamperes at 25 ⁰ C (doubles for every 10 ⁰ C temperature increase).
Offset Voltage Changes:	Less than 150 microvolts/ ⁰ C.
AC Input Configuration:	A 0.1 microfarad capacitor is switched in series with high input lead when input selector switch S3 is set to AC.
AC Power Input:	105 to 125 VAC, 60 Hz, or 210 to 250 VAC, rms, 50 Hz, as required.
 Amplification	· · · · · · · · · · · · · · · · · · ·
Configuration:	Controlled by plug-in feedback network resistor boards.
High Current Galvanometers:	Feedback signal, proportional to galva- nometer current.
Low Current Galvanometers:	Feedback signal, proportional to ampli- fier output before signal reaches a resistor in series with galvanometer coil.
Galvanometer Protection:	Instantaneous saturation in the amplifier output (Q1, Q2) prevents excessive galvanometer current.
Amplifier Protection:	Same saturation feature allows amplifier output to be shorted indefinitely without damage to any component.

Bell and Howell, Type 1-172 Ga	lvanometer Amplifier (continued) I-3
Bandwidth:	Response is down less than three db at 10 kHz; with S3 in AC position, response is down 3 db at 1.0 Hz.
Rise Time:	Example: For Type 7-366 galvanometer, less than 17 microseconds, 10 to 90% of full amplitude.
Overload Recovery Time:	Less than 300 microseconds following a ten-times full scale signal overload.
Stability:	The input offset voltage change is less than 150 microvolts per degree centigrade change in ambient temperature.
Linearity:	\pm 0.25% of full scale from best straight line to \pm 80 milliamperes or \pm 6.8 volts from amplifier, whichever is less.
Maximum Capacitive Load:	2000 pF, each galvanometer wire to ground; greater capacities may produce a small, low level oscillation when the output voltage is near zero.

Honeywell 1108 Oscillograph

FUT DELETER NEED CONTRACTOR

э. ,

> Galvanometer amplifier outputs are routed to a Honeywell, Model 1108 oscillograph for writing on light-sensitive oscillograph paper. Characteristics of a Model 1108 oscillograph are:

Recording Channels:	Capacity for 24 active channels plus four static reference traces. Use Type M sub- miniature galvanometers, interchangeable with galvanometers used in Honeywell Model 906-1, 1012, and 700C oscillo- graphs.
Frequency Range:	Zero to 5000 Hz, depending on the type galvanometer being used.
Writing Speed:	Clear, legible traces from static to beyond 25,000 inches per second spot velocity.

Linearity: ± 2% of reading with deflections of 4" or. less, when initially calibrated at the average left and right 3" deflection. Optical Arm: 11.8 inches (30 cm). Record Speeds: 8, 4, 2, 1, .5 inches per second with 10, 1, and .1 ranges, +7%, -3% of setting. Record Capacity: 200 feet of standard-weight Honeywell Instant Trace paper or 350 feet of extra thin Kodak Linagraph direct print paper. Time Lines: Standard: .01, 0.1, or 1. 0-second intervals, ± 1%. Originality: 0. 1-inch spacing every fifth line accentuated 2-mm spacing for metric system with 5th line heavier. Neff Wideband Differential Amplifier 10 Neff Wideband Differential Amplifier 1, 2, 5, 10, 20, 50, 100, 200, 500, and 1000. Accuracy of Gain ± 0, 1% of full scale when in calibrated steps: Pixed Gain: From 1 to 2.5 times fixed gain steps. Isolation: 10 ⁰ ohms input to output. Input Impedance: 100 megohms, minimum, shunted by 100 pF'. Output Impedance: 0. ohms in series with 10 microhenrys. DC Amplitude Linearity: ± 0, 005% of full scale output or better.		Honeywell 1108 Oscillograph (cont	inued) I-4
15 Instant Trace paper or 350 feet of extra 16 thin Kodak Linagraph direct print paper. 17 Time Lines: Standard: .01, 0.1, or 1.0-second 19 intervals, ±1%. Optional slow speed: 20 0.1, 1, or 10-second intervals, ±1%. 22 Gridlines: 0.1-inch spacing every fifth line accentuated 2-mm spacing for metric system 26 Neff Wideband Differential Amplifier 27 The Neff Model 122 general purpose 100 kHz wideband differential amplifier 28 Fixed Gain Steps: 0, 1, 2, 5, 10, 20, 50, 100, 200, 500, and 1000. 29 Accuracy of Gain ±0.1% of full scale when in calibrated steps: 29 Position. 100 opr. 39 Isolation: 10 ⁰ ohms input to output. 41 100 pr. 100 pr. 42 Input Impedance: 0.1 ohms in series with 10 microhenrys. 50 Output Impedance: 0.1 ohms in series with 10 microhenrys. 51 DC Amplitude Linearity: ±0.05% of full scale output or better.		Linearity:	less, when initially calibrated at the
15 Instant Trace paper or 350 feet of extra 16 thin Kodak Linagraph direct print paper. 17 Time Lines: Standard: .01, 0.1, or 1.0-second 19 intervals, ±1%. Optional slow speed: 20 0.1, 1, or 10-second intervals, ±1%. 22 Gridlines: 0.1-inch spacing every fifth line accentuated 2-mm spacing for metric system 26 Neff Wideband Differential Amplifier 27 The Neff Model 122 general purpose 100 kHz wideband differential amplifier 28 Fixed Gain Steps: 0, 1, 2, 5, 10, 20, 50, 100, 200, 500, and 1000. 29 Accuracy of Gain ±0.1% of full scale when in calibrated steps: 29 Position. 100 opr. 39 Isolation: 10 ⁰ ohms input to output. 41 100 pr. 100 pr. 42 Input Impedance: 0.1 ohms in series with 10 microhenrys. 50 Output Impedance: 0.1 ohms in series with 10 microhenrys. 51 DC Amplitude Linearity: ±0.05% of full scale output or better.	2 6 6	Optical Arm:	11.8 inches (30 cm).
15 Instant Trace paper or 350 feet of extra 16 thin Kodak Linagraph direct print paper. 17 Time Lines: Standard: .01, 0.1, or 1.0-second 19 intervals, ±1%. Optional slow speed: 20 0.1, 1, or 10-second intervals, ±1%. 22 Gridlines: 0.1-inch spacing every fifth line accentuated 2-mm spacing for metric system 26 Neff Wideband Differential Amplifier 27 The Neff Model 122 general purpose 100 kHz wideband differential amplifier 28 Fixed Gain Steps: 0, 1, 2, 5, 10, 20, 50, 100, 200, 500, and 1000. 29 Accuracy of Gain ±0.1% of full scale when in calibrated steps: 29 Position. 100 opr. 39 Isolation: 10 ⁰ ohms input to output. 41 100 pr. 100 pr. 42 Input Impedance: 0.1 ohms in series with 10 microhenrys. 50 Output Impedance: 0.1 ohms in series with 10 microhenrys. 51 DC Amplitude Linearity: ±0.05% of full scale output or better.		Record Speeds:	-
16 Time Lines: Standard: .01, 0.1, or 1.0-second intervals, ± 1%. Optional slow speed: 20 0.1, 1, or 10-second intervals, ± 1%. 22 Gridlines: 0.1-inch spacing every fifth line accentuated 2-mm spacing for metric system with 5th line heavier. 27 Neff Wideband Differential Amplifier 28 Neff Model 122 general purpose 100 kHz wideband differential amplifier 29 Fixed Gain Steps: 0, 1, 2, 5, 10, 20, 50, 100, 200, 500, and 1000. 30 Accuracy of Gain ± 0.1% of full scale when in calibrated position. 30 Yariable Gain: From 1 to 2.5 times fixed gain steps. 40 Yariable Gain: 100 ohms input to output. 41 Variable Gain: 100 pF. 42 Upper timpedance: 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	15	Record Capacity:	Instant Trace paper or 350 feet of extra
22 Gridlines: 0. 1-inch spacing every fifth line accentuated 2-mm spacing for metric system with 5th line heavier. 26 27 Neff Wideband Differential Amplifier 27 28 29 30 The Neff Model 122 general purpose 100 kHz wideband differential amplifier 30 The Neff Model 122 general purpose 100 kHz wideband differential amplifier 30 The Neff Model 122 general purpose 100 kHz wideband differential amplifier 31 Fixed Gain Steps: 0, 1, 2, 5, 10, 20, 50, 100, 200, 500, and 1000. 35 Accuracy of Gain ± 0. 1% of full scale when in calibrated 36 5teps: position. 37 Accuracy of Gain: From 1 to 2.5 times fixed gain steps. 41 Variable Gain: From 1 to 2.5 times fixed gain steps. 42 100 pF. 43 Isolation: 10% of pF. 44 0 0 pF. 45 Input Impedance: 0. ohms in series with 10 microhenrys. 50 DC Amplitude Linearity: ± 0.05% of full scale output or better.	17 18 19	Time Lines:	intervals, $\pm 1\%$. Optional slow speed:
 Neff Wideband Differential Amplifier The Neff Model 122 general purpose 100 kHz wideband differential amplifier has the following characteristics: Fixed Gain Steps: Accuracy of Gain 4 0.1% of full scale when in calibrated Steps: Variable Gain: From 1 to 2.5 times fixed gain steps. Isolation: 100 megohms, minimum, shunted by 100 pF. Output Impedance: Output Impedance: Output Impedance: DC Amplitude Linearity: 40.005% of full scale output or better. 	22 23 24 25	Gridlines:	0. 1-inch spacing every fifth line accen- tuated 2-mm spacing for metric system
 and 1000. Accuracy of Gain 50 51 56 56 56 56 56 51 56 56 56 57 56 56 57 56 51 56 57 56 57 57 58 59 50 51 56 57 56 57 58 59 50 51 56 57 58 59 50 51 55 56 57 58 59 59 50 50 51 55 56 57 56 56 57 58 59 59 50 50 51 56 57 56 57 58 59 59 50 50 50 51 55 56 57 58 59 59 50 50 50 50 51 52 54 55 55 56 57 58 59 59 50 50 51 52 54 55 55 56 57 58 59 59 50 50 51 52 54 55 55 56 57 58 59 59 50 50 51 52 54 55 55 56 57 58 59 59 50 51 52 54 55 55 55 56 57 58 59 59 50 51 52 54 55 55 56 57 58 59 59 50 51 52 54 55 55 56 57 58 59 59 50 51 51 52 	30 31 32	The Neff Model 122 general purpos	
37 38 39Accuracy of Gain Steps:+ 0.1% of full scale when in calibrated position.40 41 42Variable Gain:From 1 to 2.5 times fixed gain steps.42 43 44Isolation:100 ohms input to output.44 45 46 47 48 49 50 51Input Impedance:100 megohms, minimum, shunted by 100 pF.49 50 51Output Impedance:0.1 ohms in series with 10 microhenrys.50 51DC Amplitude Linearity:+ 0.005% of full scale output or better.	35	Fixed Gain Steps:	
41Variable Gain:From 1 to 2.5 times fixed gain steps.4243Isolation:104445Input Impedance:100 megohms, minimum, shunted by46100 pF.47100 pF.4800.1 ohms in series with 10 microhenrys.5051DC Amplitude Linearity:+ 0.005% of full scale output or better.	37 38 39	-	—
 Isolation: Input Impedance: Input Impedance	41	Variable Gain:	From 1 to 2.5 times fixed gain steps.
 Input Impedance: Input Imp	43	Isolation:	10 ⁹ ohms input to output.
 49 Output Impedance: 0. 1 ohms in series with 10 microhenrys. 50 51 DC Amplitude Linearity: + 0.005% of full scale output or better. 	45 46 47	Input Impedance:	
51 DC Amplitude Linearity: + 0.005% of full scale output or better.	49	Output Impedance:	0.1 ohms in series with 10 microhenrys.
	51	DC Amplitude Linearity:	$\pm 0.005\%$ of full scale output or better.

57

I-4

Neff Wideband Differential Amplifier (continued)

Fre	equency response:	Less than 3 db down at all selectable filter settings and all gains from 1 to 2500
No	pise: - -	Three microvolts referred to input and one millivolt referred to output from DC to 10 kHz. Seven microvolts rms referred to input and one millivolt referred to output from DC to 100 kHz with up to 1000 ohms source resistance.
	ritch Selectable lter Settings:	10 Hz, 100 Hz, 1 kHz, 10 kHz, and 100 kHz.
Out	tputs:	Separate wideband and switch selectable filtered outputs.
stron Do	onner 8154 Time Code Ge	nerator/Reader/Tape Search Unit
	onner 8154 Time Code Ge istics are:	nerator/Reader/Tape Search Unit
naracter		nerator/Reader/Tape Search Unit Crystal controlled with overall stability of 1 part in 10 ⁵ per day. Provisions for use of external 1-MHz time base.
aracter: Tir	istics are:	Crystal controlled with overall stability of 1 part in 10 ⁵ per day. Provisions for
aracter Tir Coo Mo	istics are: me Base:	Crystal controlled with overall stability of 1 part in 10 ⁵ per day. Provisions for use of external 1-MHz time base. Modified IRIG B in BCD hours, minutes and seconds, (day or year/ID No.
naracter Tir Coo Mo Out	istics are: me Base: ode Format: odulated Code	Crystal controlled with overall stability of 1 part in 10 ⁵ per day. Provisions for use of external 1-MHz time base. Modified IRIG B in BCD hours, minutes and seconds, (day or year/ID No. optional). Other codes available. 1 to 10 volts pk/pk with modulation ratio
haracter Tir Coo Mo Out DC Coo	istics are: me Base: de Format: odulated Code atput (1 kHz): C Level Shift	Crystal controlled with overall stability of 1 part in 10 ⁵ per day. Provisions for use of external 1-MHz time base. Modified IRIG B in BCD hours, minutes and seconds, (day or year/ID No. optional). Other codes available. 1 to 10 volts pk/pk with modulation ratio from 2 : 1 to 6 : 1.

I-5

Systron Donner 8154 Time Code Generator/Reader/Tape Search Unit (continued)

Input: Accepts modulated code with carrier frequency from 30 Hz to greater than 500 kHz with levels from 50 mV to 50 V pk/pk and modulation ratio from 2 : 1 to 6:1. Input impedance is 100 kohm, ----minimum. 12 13 Direction: Forward or reverse selected by front 14 panel controls. 15 16 Error Bypass: Rear panel switch selects 0 or 3 frames 13 of bypass. 19;20 Control Modes: Manual SEARCH mode plus the following 51 automatic modes: SEARCH TO START; 22 SINGLE CYCLE: RECYCLE. 251 24 ; 25 8154 will automatically select the follow-Transport Control: 26 ing transport functions: Forward; 27 Reverse; Drive; Stop. 28 29 Interval Output: Contact closure and DC logic level 30 activated during reproduce period from 31 start to stop time. 32 -33 34 Start/Stop Time: Desired start and stop times selected 55 35 36 from front panel thumbwheels in hours, minutes and seconds (days/ID No. or 37 38 39 40 milliseconds are optional). 41 Ampex FR-600 Recorder/Reproducer 42 43 One of the magnetic tape recorder/reproducer units employed in this sub-44 system is the Ampex Model FR-600. Some of its operating characteristics 45 46 are: 47 Tape transport 48 a. 49 50 51 52 59

I-6

Ampex FR-600 Recorder/Reproducer (continued)

12		
14 50 7-80 9 0 - 1 Q 30-4	Tape Speeds:	60, 30, 15 and 7-1/2 ips electrically
5		switchable from the front panel of the
7		system control bay.
<u>9</u>		
9	Reel and Tape Sizes:	10-1/2 ¹¹ or 14 ¹¹ NAB standard reels
.0		interchangeable. Transport easily con-
-		verted for either $1/2$ " or 1.9 width tape.
2		
4	Flutter:	Below 0.3% peak-to-peak, cumulative,
5		from DC to 10,000 Hz 95% of the time
5		at 60 ips.
7		
B	Fast Mode Times:	Fast mode rewind or fast forward time
3 .		less than three minutes for 5000 ft. of
D		tape.
2	Tape Speed Error:	Speed accuracy from record to reproduce
3	· · · · · · · · · · · · · · · · · · ·	better than 0.05% when measured over
5		periods of one second and longer when
5		recorded and reproduced on same
7		machine. When recorded on one machine
3		and reproduced on any machine of the
2		same model, tape speed error in worst
		case no greater than +0.2% when
2		measured over periods in excess of one
5		second, without the use of tape speed
5		servo control equipment, and assuming
5		constant 60-Hz power frequency for re-
5		
'		cording and reproducing, and independent
5		of tape dimensional changes between the
		time of recording and the time of re-
		production.
	Servo Tape Speed Contro	1 Sustam
b.	Servo Tape Speed Contro	I DYSTEIII
	Timing Stobilities	
,	Timing Stability:	
5		$1 - 10^5$
<u> </u>	Initial Calibration:	1 part in 10 ⁵
3	- D - 11	2 monto in 10 ⁵
	Daily:	2 parts in 10
	117 13	4 parts in 10^5
· 1	Weekly:	4 parts in 10
	•	

		i
	Time Displacement Erro	r Due to:
	Random Disturbances	+0.25 milliseconds at 60 ips
	(applicable to speed	+0.25 milliseconds at 30 ips
	variations occuring	+0.40 milliseconds at 15 ips
	at a frequency of less	+0.75 milliseconds at $7-1/2$ ips
	than 0.4 Hz)	—
	Time Displacement Erro	r Due to:
	Differential Tape	+0. 5 milliseconds at 60 ips
	Dimension or Speed	+0.5 milliseconds at 30 ips
	Change:	± 0 . 5 milliseconds at 15 ips
		$\frac{1}{\pm 0}$. 5 milliseconds at 7-1/2 ips
	Acceptable Speed	+ 5% maximum
	Deviations from	-
	Nominal:	
	Warm-up:	45 seconds_maximum
	(Stabilization Time)	
	``````````````````````````````````````	
	Lock-in:	10 seconds maximum for
	(Stabilization Time)	speeds 7-1/2 to 60 ips
		15 seconds maximum for
	·	speed of 120 ips
c.	Direct Record/Reproduce	System
ς.		
	Frequency Response	300 to 250,000 Hz + 3 db at 60 ips
		150 to 125,000 Hz + 3 db at 30 ips
		100 to 60,000 Hz + 3 db at 15 ips
		100 to 30,000 Hz + 3 db at $7-1/2$ ips
	-	
	Signal-to-Noise Ratio:	60, 30, 15, & 7-1/2 ips, -25 db
	Input Impedance:	10,000 ohms minimum
	Input Level:	1.0 volt rms nominal, adjustable from
		0.25 to 25 volts rms

	Output Impedance:	Less than 100 ohms
	Output Level:	1.0 volt rms nominal across 1000 ohms or greater load impedance, adjustable 0 to 2.0 volts
	Harmonic Distortion:	Less than 1% total harmonic distortion of a 1000-Hz signal recorded at any one of tape speeds.
d.	Frequency Modulation (FI	M) Record/Reproducer System (High-Level)
	Frequency	DC to 20,000 Hz $\pm$ 0.5 db at 60 ips (max.
	Response:	var.) DC to 10,000 Hz $\pm$ 0.5 db at 30 ips (max. var.)
		DC to 5,000 Hz $\pm$ 0.5 db at 15 ips (max. var.)
		DC to 2,500 Hz $\pm$ 0.5 db at 7-1/2 ips (max. var.)
	Harmonic Distortion:	Less than 1.5% over specified passband
	Signal-to-Noise	46 db at 60 ips
	Ratio (rms noise	46 db at 30 ips
	referred to normal operating level, <u>+</u> 40% deviation):	46 db at 15 ips 46 at 7-1/2 ips
	DC Drift:	Less than 1% of full output over 24-hour period.
	AC/DC Linearity:	Within $\pm 1\%$ of a zero-based straight line.
	Input Impedance:	20,000 ohms, unbalanced to ground.
	Input Level:	1.0 volt rms nominal, adjustable from 0.1 to 25 volts rms to produce full deviation of carrier

£3

•

.

62

ł

			(continued)	I-10
O [.]	utput Impedance:	10	00 ohms	
. O	utput Level:		0 volt rms maxim eater output load.	um 10,000 ohms or
0,	utput Filtering:	$\mathbf{fr}$	riable by toggle s equency response sponse.	witch to provide best or best transient
		10	sponse.	
e. F:	requency Modulatio	n (FM) Re	cord/Reproduce S	ystem (Low-Level)
Frequenc	y Response and Ma	ximum Ar	nplitude Variation	÷
Speed Fr (ips)	equency Response (Hz)		mum Amplitude V em loaded with 101	c ohms and 350 pf
		2, 5, 10		C LEVEL <u>mv_500 mv, 1.0,2.</u>
60 30 15	0 to 20,000 0 to 10,000		0.8 <u>db</u> 0.8 db 0.8 db	1.0 db 1.0 db 1.0 db
7-1/2 3-3/4	0 to 1,250		0.8 db 1.3 db	$\frac{1.0 \text{ db}}{1.5 \text{ db}}$
1-7/8 15/16	0 to 625 0 to 312		1.3 db 1.3 db	1.5 db 1.5 db
12 6 3	0 to 4,000 0 to 2,000 0 to 1,000		0.8 db 1.3 db 1.3 db	1.0 db 1.5 db 1.5 db
1	0 to 500		1.3 db	1.5 db
	armonic istortion:	Le	ss than 1.5% over	specified passband
	gnal-to-Noise		db at 60 ips	
re	atio (rms noise eferred to normal	46	db at 30 ips db at 15 ips	
	perating level, 40% deviation):	46	db at 7-1/2 ips	

Ampex FR-600 Recorder/Reproducer (continued)

10

21 15

13

14

15 16 17

18 19

20

21 22

23 24

25

26 27 28

29 30

31 32

3335678 373378 37890

41

42 43 44

45 46

47

48 49 50

51 52 a.

Tape Speed Accuracy:

Start Time:

DC Drift: Less than 1% of full output over 24-hour period. AC/DC Linearity: Within + 1% of a zero-based straight line. 20,000 ohms, unbalanced to ground. Input Impedance: Input Level: 1.0 volt rms nominal, adjustable from 0.1 to 25 volts rms to produce full deviation of carrier. 1000 ohms. Output Impedance: 1.0 volt rms maximum 10,000 ohms or Output Level: greater output load. Variable by toggle switch to provide best Output Filtering: frequency response or best transient response. Honeywell 7600 Magnetic Tape Recorder/Reproducer **Tape Transport** Seven: 120, 60, 30, 15, 7-1/2, 3-3/4 Tape Speeds: and 1-7/8 ips, electrically selectable by pushbutton. Speeds are bidirectional by pushbutton, selection. 10-1/2" maximum or 15" maximum, de-Reels and Tape: pending on transport selected. Tape widths 1/4'', 1/2'' or 1'' standard. NAB or ASA Hubs: 1.0 or 1.5 mil base tape.

> (Servoed from capstan tone wheel). Velocity tone servo + 0.20%. Phase lock servo + 0.15%.

Ĩ-11

6 seconds maximum at 120 ips.

Honeywell 7600 Magnetic Tape Recorder/Reproducer (continued) I-12

. . . . . .

э Ци

Stop Time:	5 seconds m	aximum at 120 ips.			
-					
Fast Modes:	900 feet per	900 feet per minute under capstan control.			
Static Skew:	Reproduce h	Reproduce head azimuth adjustable to			
		c skew to under 1 micro-	•		
	second betw	een outside tracks on a			
	single head	stack at 120 ips.	i.		
Dynamic Skew (ITD	E): Measured be	etween outside tracks of a	2		
· · ·	single head		2		
Tape Speed	1	ITDE	\$		
	(micro		•		
(ips)	<u>(IIIICFO</u>	seconds, zero to peak)			
120		1			
· 60	<u>l</u>	2			
. 30	i	3 [.]	2		
15		5			
7-1/2		_10			
3-3/4		20	1		
1-7/8		30			
Flutter:	Cumulative,	peak to peak.			
Tape Speed	Bandwidth	Pk-Pk Flutter	T		
(ips)	<u>(H</u> z)	(%)			
120	0.1 to 10,000	0.25			
60	0.1 to 10,000	0.25			
30	0.1 to 5,000	0.35			
15	0.1 to 2,500	0.40			
7-1/2	0.1 to 1,250	0.45			
3-3/4	0.1 to 625	0.50	İ		
	0.1 to 312	0.60			
1-7/8	0.1 to 512	0.00			
b. Capstan Servo					
Type:	 Two Capstar	1 Servo Systems available.			
· -	_	one servo or a phase lock			
	• -	n operate from capstan tone			
	65				

Honeywell 76	600 Magnetic 7	Tape Recorder,	/Reproducer	(continued)

wheel or tape using IRIG constant amplitude reference frequencies.

Time Base Error:

(Phase lock servo only).

Tape Speed (ips)	TBE (microseconds)		
120	+ 1.0		
60	$\frac{1}{+}$ 2.0		
30	<u>+</u> 2.0		
15	$\frac{-}{+}$ 2.0		
7-1/2	+ 2.0 + 4.0		
3-3/4	<u>+</u> 8.0		
1-7/8	$\frac{1}{10.0}$		
Servo Reference	200 kHz at 120 ips. Pr		

Servo Reference Frequency: 200 kHz at 120 ips. Proportional at other speeds per IRIG 106-66. Reference accuracy 2 in  $10^5$ , reference stability 2 in  $10^6$ .

17,

. . .

. <u>.</u> .

c. Direct Record/Reproduce

Dynamic Characteristics:

Tape Speeds (ips)	Bandwidth <u>+</u> 3 db (Hz)	RMS Signal/ Filtered	RMS Noise (db) Unfiltered
120	400-700,000	34	30
60	400-500,000	34	30
30	400-250,000	34	30
15	300-125,000	34	30
7-1/2	200- 62,500	32	28
3-3/4	200- 31,250	30	26
1-7/8	200- 15,625	28	24

Harmonic Distortion:

Normal record level set for 1% thirdharmonic distortion of 1-kHz signal recorded at 60 ips.

I-13

Hor 2	eywell 7600 Magnetic Tape Ro	ecorder/Reproducer (continued) I-14
	Input Level:	0.1 to 10 VRMS, adjustable.
	Input Impedance:	Nominal 20kohms resistive, paralleled by 100 pf maximum, unbalanced to ground. Provision for insertion of termination resistor.
	Output Level:	1 VRMS into 60 ohms.
	Output Impedance:	50 ohms minimum.
	Amplitude Equalization:	Up to 7@amplitude equalizers (one per speed) electrically switched.
	Phase Equalization:	Up to 7 phase equalizers (one per speed) electrically switched.

#### FM Record/Reproduce d.

2

Dynamic Characteristics:

		Lo	w Band	Intern	ned. Band	W	ideband	e ·
Center Freq. <u>kHz</u>	Data BW Hz within 1.0 db	-	RMS S/N db	Speed ips	RMS S/N db	Speed   ips	RMS S/N db	-
432	080,000			120	4.9	120	46	
216 108	040,000 020,000	120	52	120 60	48 48	60 30	47 47	
54 27	010,000 0 5,000	60 30	52 52	30 15	47 47	15 7-1/2	47 46	
13.5 6.75	0 2,500 0 1,250	15 7-1/2	52 50	7-1/2 3-3/4	47 46	3-3/4 1-7/8	45 43	
3.38 1.68	0 625 0 312	3-3/4 1-7/8	49 47	1-7/8	46			

.

Harmonic Distortion:

With a single record level setting total harmonic distortion of any frequency within the band pass will be: Low Band: 1.2% 1.5% Intermediate Band:

.

- D

Honeywell 7600 Magnetic Tape	Recorder/Reproducer (continued) I-15
Q	Wide Band: 2% With record level optimized for mode and speed, total harmonic distortion of any frequency within the band pass will be 1.2% maximum.
Linearity:	$\pm$ 0.5% of full deviation from best straight line through zero.
DC Drift:	$\pm$ 0.5% of full deviation over 8 hours and 20 degrees F after 10 minutes warm-up.
Input Level:	0.5 to 10 volts peak.
Input Impedance:	Nominal 20kohms resistive, paralleled by 100 pF maximum, unbalanced to ground.
Output Impedance:	50 ohms.
Output Level:	2 VRMS into 10,000 ohms. 1 VRMS into 600 ohms.
Record Speed Switching:	7 electrically switched center frequencies plus manual selection for total of 9 center frequencies.
Reproduce Speed Switching:	Up to 7 electrically switched CF/filter assemblies plus manual mode selection for total of up to 9 CF/filter assemblies.

Bell and Howell (CEC) VR-3400 Magnetic Tape Recorder/Reproducer

Operating characteristics for the Bell and Howell VR-3400 Recorder/Reproducer are as follows:

a. Tape Transport

Tape Speeds:

•____

8 bidirectional speeds, rotary switch selectable: 240, 120, 60, 30, 15, 7.5 3.75, 1.875 ips. ţ

(continued)	
	:
Reels:	Standard EIA reels to 15-inch diameter are accommodated. CEC precision reels recommended. NOTE: System specifi- cations are established using CEC pre-
-	cision reels, or equivalent.
Tape:	<pre>1/2" or 1" width standard, 1 or 1-1/2 mi base mylar or 1-1/2 mil base acetate. A specifications based on using CEC recom mended tape.</pre>
Start Time:	6 seconds maximum for 120 ips to capsta controlled speed.
Stop Time:	4 seconds maximum for 120 ips, utilizing dynamic braking.
Wind/Rewind Rate:	1400 feet per minute.
Tape Speed Accuracy:	$\pm$ 0.15% at all tape speeds when in tach mode. $\pm$ 0.02% when in phase lock servo mode (tape).
Flutter (Cumulative Peak-to-Peak):	Less than 0.25% at 60 ips, from 0.20 Hz to 10 kHz.
Controls:	Illuminated pushbuttons for RUN FORWARD, RUN REVERSE, RECORD, FAST FORWARD, FAST REVERSE, and POWER (push-ON, push-OFF). Rotary speed selector, phase lock selector (Tape Tach), and record test selector are front panel located. Remote control of all operating modes via connection at the transport by use of accessory CEC Remo Control Unit, or equivalent.
Dynamic Skew:	Less than $\pm$ 1.5 microsecond between out side tracks (on same headstack) at 120 ip

Bell and Howell (CEC) VR-3400 Magnetic Tape Recorder/Reproducer I-17 (continued)

#### b. Phase Lock Servo Drive

-

2 ~

The Phase Lock Capstan Motor Control unit provides a closed loop servo operation for the D-C capstan motor. This unit provides two modes of operation, tachometer and tape. When in the tach mode the control loop is established from the slotted tonewheel on the capstan drive assembly. The tach mode is used for initial recording. The tape control servo mode uses the prerecorded signal from the tape to establish highly accurate speeds and low time base error when reproducing tapes.

Time Base Error:

Speed	Control Reference	TBE		
120. ips 60 ips 30 ips 15 ips 7 - 1/2 ips 3 - 3/4 ips	200 kHz 100 kHz 50 kHz 25 kHz 12.5 kHz 6.25 kHz	+ 1 microsecond + 1 microsecond + 1 microsecond + 2 microseconds + 4 microseconds + 8 microseconds		
1 - 7/8 ips	3.12 5 kHz	$\pm 12$ microseconds		
Fail Safe:	Capstan control is automatically returned to tach mode whenever tape signal is lost or when system is placed in record mode, regardless of position of mode selector switch. Respective tach and tape lamps light only when transport is up to speed and in servo locked operation.			
External Signal:	ternal Signal: External reference frequencies may be inserted for variable speed control with inclusion of optional input selector.			
Data Channel:	data channel when filter card is incl	l track may be used as a n the optional bandpass luded and provided none he servo control fre-		

## Bell and Howell (CEC) VR-3400 Magnetic Tape Recorder/Reproducer I-18 (continued)

c. Direct System

PERCENT STRUCTURE (CARD & COLOR DE

Frequency Response:

Tape Speed-ips	Response <u>+</u> 3 db Over Indicated Bandwidth	SNR
120 60	300 Hz to 600 kHz 300 Hz to 300 kHz	32 db 32 db
30	150 Hz to 150 kHz	32 db
15	100 Hz to 75 kHz	32 db
7-1/2	50 Hz to 38 kHz	29 db
3-3/4	50 Hz to 19 kHz	29 db
1-7/8	50 Hz to 10 kHz	29 db
Input Level:	0.1 to 15 volts rms (2 without damage) to pr level via input potenti	oduce normal record
Normal Record Level:	$1\% \pm 0.1\%$ third harm 1 kHz signal recorded 60 ips.	
Input Impedance:	20 kohms minimum, s maximum capacitance	
Output Level:	0 to 1.0 volt rms into cable.	a 91 ohm terminated
Output Impedance:	Less than 91 ohms, s	ingle-ended.
Intermodulation Distortion:	Less than 0.6% for F referred to normal re	+ F ₂ components, cord level.
Phase Response:	The system is phase optimum reproduction transient wave forms.	of pulse and
Bias Frequency:	3.0 MHz.	

ļ

Į

(contir	nued)				
			ĺ		
d.	Standard FM S	ystem			
	Input Level:		0.5 to 10 volts (100% modulation	rms for $\pm 40\%$ devon).	viation
	Input Impedanc	,		Coupled) single-e pacity maximum.	nded,
	Linearity:		$\pm$ 0.5% of full s line through zer	cale from a best s	traight
	Output Level:		1.0 VRMS into less than 880 pl	10 kohms, shunte	d by
	Output Impedar	ce:	5 kohms, nomir	nal.	
	Frequency Res	ponse. Carri	er Frequency, S	SNR, and Distortio	on:

.

Tape Speed (IPS)	Frequency (kHz)	-	Response (Hz)	(RMS Signal/ RMS Noise)	Harmonic Distortion (%
60	108	0-20	+ 0.5 db	51 db	1.2
30	50	0-10	+ 0.5 db	51 db	1.2
15	27	0-5	+ 0.5 db	50 db	l. 2
7-1/2	13.5	0-2.5	+ 0.5 db	50 db	1.2
3-3/4	6.75	0-1.25	+ 0.5 db	48 db	1.5
1-7/8	3.375	0-0.625	$\frac{-}{+}$ 0.5 db	46 db	1.5

.

•

#### APPENDIX II

#### FACILITY DATA ACQUISITION SUBSYSTEM EQUIPMENT CHARACTERISTICS

Equipment characteristics for major equipment items listed in Table II are shown in this Appendix to afford ease in locating necessary equipment operational information.

#### ERC Model 2700 Series Frequency Meter, Digital RPM Display

16

ン 14: The Digital RPM display is an ERC Model 2700 series frequency meter with the following characteristics:

Frequency Range:	1 Hz to 20 MHz.
Sensitivity:	100 mV rms, 1 Hz to 20 MHz.
Input Impedance:	1 megohm shunted by 20 pF.
Time Base Accuracy:	$1 \text{ MHz} \pm 1 \text{ ppm at } 25^{\circ}\text{C}$ $\pm 10 \text{ ppm } 0^{\circ}\text{C} \text{ to } 50^{\circ}\text{C}$
Time Base Duration:	Selectable; 1 msec, 10 msec, 100 msec, 600 msec, 1 sec, 6 sec, 10 sec and 60 sec.
Decimal Point:	Remote programmable.
Over Range:	Front panel indicator plus logic level output.
Temperature Range:	$0^{\circ}$ C to $50^{\circ}$ C.
Power:	115/230 VAC 50-60 Hz, 10 watts max.
Mode Control:	Front panel select; Test, MHz, kHz, Remote.
Sensitivity Control:	Front panel; max. sens. to approx. 10 Vp-p.
Output:	Time base gate, E-O-M, over range and BCD.

		en en en en el esta el
7	ERC Model 2700 Series Frequency	Meter, Digital RPM Display II-2
2 3	(continued)	
4		
010 7-00	Inputs:	Time base select, external clock, external clock select, remote hold and decimal point select.
9 10	ERC 4000 Series Digital Voltmete:	<u>r</u>
11 12 13	The front panel display is an ERC characteristics:	4000 Series DVM with the following
14) 15: 15:	Full Scale Response:	Zero to full scale in one conversion cycle.
17 18.	Conversion Rate:	10/sec.
19 30 21	Amperture Time:	33.3 milliseconds.
22.	Polarity:	Automatic.
27	Display:	LED indications.
	CMRR:	120 db at 60 Hz.
	NMRR:	60 db at 60 Hz.
	Isolation:	500 V (input to system ground)
	Calibration:	Biannually.
	BCD Outputs:	Yes.
	External Conversion Control:	Yes
	End of Measurement Output:	Yes
·	Out of Range Output:	Yes
	Operating Temperature Range:	$0^{\circ}C$ to $+50^{\circ}C$
	Temperature Coefficient:	25 ppm/ ^o C

-i.)

.

74

• .

1 2	ERC 4000 Series Digital Voltmet	er (continued) II-3
2 KL 10 KS 7	Power:	115/230 VAC 50-60 Hz, 15 watts max.
0 11-12	Honeywell, Model 1508, Oscillog	raph
	Recording Frequency Range:	Zero to 5000 Hz, depending upon the type of galvanometer used.
	Writing Speed:	Clear, legible traces from static to beyond 25,000 ips spot velocity.
· · · · · · · · · · · · · · · · · · ·	Linearity:	$\pm$ 2% of reading with deflection of 4 in. or less, when initially calibrated at the average left and right 3-inch deflection.
	Time Lines:	100 lines/sec., 10 lines/sec., 1 line/ sec., or 10 sec./line, <u>+</u> 2% at 117 VAC.
	Grid Lines:	0.1 in. spacing, every 5th line heavier. 2 mm spacing for metric system with every 5th line heavier.
	Recording Channels:	Up to 24 active channels plus 4 auxiliary channels.
,	Recording Lamp:	100W high pressure mercury arc, two electrode, vertically mounted.
	Record Capacity:	100 feet of standard weight Heiland Instant Trace (307097) or Kodak Lina- graph Direct Print Paper (200333), 150 feet of extra-thin Kodak linagraph direct- print paper (200333), 3-1/4" max. roll diameter.
	Operating Temperature:	Basic visicorder with fluid-damped galvanometers +50° to 115°F.
	Direct Recording:	Records in full view of the operator with the frequency and sensitivity of a photo- graphic type oscilloscope.

•

.

.

.

2	Honeywell, Model 1508,	Oscillograph	(continued)	II-4
3	· .		l 	
	Trace Identifier:	int 8.	lvanometer traces receive 1/32-in erruptions at intervals of approxi 7 inches along the record to provi entification of each channel.	mately
	Trace Numbering	me pr: ing	e trace numbering system provide cans of positive trace identificatio inting a series of numbers, corre to the galvanometer positions, o ght-hand edge of the recording pap	n by spond÷ n the

.

.

.

#### APPENDIX III

.

#### SPECTRAL ANALYSIS SUBSYSTEM EQUIPMENT CHARACTERISTICS

Equipment characteristics for equipment items listed in Table III are shown in this Appendix to afford ease in locating necessary equipment operational information.

The Spectral	Dynamics	307 Low Frequency T	ranslator
1.		•	
Frequency R	anges:	i ,	
Analysis	Analyzer	Input Center	Frequency Range
Band Width	Resolution	Frequency Range	of Translated Data
50 Hz	0.10 Hz	25 Hz -49.9 kHz	5 Hz <b>-</b> 55 Hz
100 Hz	0.20 Hz	50 Hz -49.9 kHz	10 Hz - 110 Hz
500 Hz	1.00 Hz	250 Hz -49.9 kHz	50 Hz - 550 Hz
1000 Hz	2.00 Hz	500 Hz -49.9 kHz	100 Hz - 1100 Hz
Data Output:			
Amplitud	le:	0.316 Vrms = full	scale
Linearit	у:	$\pm 0.5 \text{ db to} 50 \text{ db r}$	eferenced to full scale
Impedan	ce:	500 ohms	
Reference Si	gnal Output	:	
Amplitud	le:	4.5 Vp-p square w	ave
Impedan	ce:	600 ohms	
Range:		25 - 49 kHz; 1 Hz increments from 1	increments to 10 kHz and 10 Hz 00 Hz to 49 kHz.
Stability	:	Short term; 0.0029 Long term; 0.01%	

Spectral Dynamics 307 Low Frequency Translator (continued) III-2

Input:

W 27- 3

. ...

Amplitude and Impedance -- 0.1 Vrms to 10 Vrms into 100 kohms.

- 		
Upper Frequency Limit	<u>3 db BW (Hz)</u>	Memory Period (sec)
50 kHz	150	0.010
20 kHz	60	0.025
10 kHz	30	0.050
5 kHz	15	0.100
2 kHz	6	0.250
l kHz	3 -	0.500
500 Hz	1.5	1.000
100 Hz	0.3	5.000
50 Hz	0.15	10.000
10 Hz	_0_03	50.000
Sensitivity:	(For full scale out adjustable in 1 db	tput). 1 Vrms to 28.2 Vrms steps.
Level Indication:		en indicator lamps provide input level regardless of
Impedance:	100 kohms	
Coupling:	Selectable DC/AC	

III-3 Spectral Dynamics, 301C, Real-Time Analyzer (continued) Dynamic Range: (Full scale to minimum discernible signal) 50 db. Noise Level: Average level 54 db down from full scale with no input signal. Ten equally spaced points or external input. Frequency Markers: Modes of Operation Update -- Memory continuously updates with new (selected manually data. or remotely): Hold -- Last data in memory is continuously recycled -- no new data is added. Transient Capture -- Number of data points loaded into memory selected manually by % full scale switch otherwise 1500 points are loaded. Triggering of transient capture mode (start of load cycle) may be done externally with a pulse input or from the data itself. The DC coupled triggering level is adjustable (for internal or external operation) from -5 db to -35 db. Remote Operation -- Application of an external DC level shift (nominally 5V -2  $\sim \mu sec.$  minimum to either the Update, Hold or Transient Capture input will automatically cause the selected mode to be activated. Internal Calibrates entire analyzer from signal input to Calibration: DC outputs. Spectrum Axis -- (Lin) Full scale and zero (Log) Full scale, -10 db, - 20 db, -30 db, -40 db Frequency Axis -- (Lin) Full scale and zero (Log) Full scale, -1 decade, -2 decades

ral Dynamics, 3010	2, Real-Time Analyzer (continued)
Sweep Speed	Oscilloscope fast sweeps every 50 msec.
	Oscilloscope slow, sweeps every 100 msec.
	Plotter plot completed in 32, 64 or 320 second as determined by an internal jumper; automatically controlled by SRF.
	Manual sweep position is controlled by % full scale switch.
	External Averager displayed sweep rate is placed under control of SD302.
Sweep Initiation:	Automatic spectra are presented repeatedly.
	External/Manual a complete spectrum is swep each time a trigger pulse is provided or each time the sweep button is depressed.
	Memory Period a sweep is initiated each time a memory load cycle is com- pleted. Each sweep is statis- tically independent of previous displays.
Digital Locater:	Provides subfunctions of Sweep Speed modes; provides intensity markers, sweep limit and transie capture, all controlled by % full_scale switch.
Position Marker:	Provides a marker pulse output independently con trolled by % full scale switch.
Outputs:	
Spectrum Axis:	Linstep 0 to 5V detector output; one step for each synthesized filter location.
	Lin 0 to 5V (nominal) smoothed output of de- tector.

.

The second se

.

t

Spectral Dynamics, 301C	, Real-Time Analyzer (continued)
	Log 1V Log smoothed output of detector.
Frequency Axis:	Lin step 0 to 5V stepped ramp.
	Lin 0 to 5V (nominal) smooth ramp.
	Log 1V smooth log ramp.
	Sweep Trigger provides transition from 5V to
	0V synchronized with start of sweep; transition at end of sweep is back to 5V.
	Pen lift isolated contact closure when sweep- ing in plotter mode.
	Retract blankingOV during sweep 5V during retrace.
Memory Contents:	500 mV p-p full scale signal displaying the speeded up signal stored in memory.
Frequency Response:	<u>+</u> 1 db over entire range
Linearity:	$\pm 0.5\%$ of full scale or $\pm 1$ db, whichever is greater.
Separation:	Two equal amplitude sinusoids two filter band- widths a part, applied simultaneously will average a 6-db valley between peaks.
Selectivity:	Filter response is -20 db at a frequency 0.2 band- widths from center frequency and -40 db at 4.5 bandwidth, $\pm 15\%$ .
Frequency Linearity:	$\pm 0.2\%$ of best straight line of full analysis range.

The second s

.

•

12 III-6 Spectral Dynamics 302 Ensemble 500 Lin step voltage levels per analysis spectrum Singal Inputs: ensemble from analyzer. 500 sample timing pulses per analysis spectrum ensemble from analyzer. Number of Spectrum Ensembles Averaged: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, or 4096. Ten-bit words are averaged for one to 1024 ensembles; 9 msb for 2048 and 8 msb for 4096. Averager Gain: Unity + 1%2::1 113116 Oscilloscope Spectral namics Inputs: Spectrum Lin and Log. Frequency Lin and Log. Z input: + 1V for full intensity - 1V for blanking Settling Time: Less than 7  $\mu$ sec to within a trace width of final value. **Repeatability:** Less than 0.15% error for readdressing a point from any direction. Linearity: +1% of full screen over 8 x 10-inch screen; any inch with respect to any other inch, within 10%. Cathode-Ray Accelerating potential - 20 kV Writing Rate - 20"/  $\mu$ sec. Spot Size - less than 30 mils throughout Tube: 8 x 10 screen at 100 foot-lamberts light output; nominally 20 mils at center screen (shrinking raster). Phosphor and Graticule - Aluminized Pl phosphor with 8 x 10 graticule.

A III-7	K-Y Plotter	tt-Packard 7035B X
, 1 and 10 V/in. Continuous inges.	l, 10, 100 mV/i vernier between	Input Range:
ometric (00 at null) variable -	l mV/in. – pote ll kohms.	Input Resistance:
ohms variable - 100 kohms.	10 mV/in 100	
l megohm variable - l megohr	All other ranges	
:	e Source Resistan	Maximum Allowable
/in. range; all other ranges, no	20 kohms on 1 m restriction.	
e roll of above 60 Hz)	30 db (18 db/oct	Normal Mode Rejection:
	10 mV/in 110	CMR:
	20  in/sec.	Slewing Speed:
e.	$\pm$ 0.2% of full sc	Accuracy:
e.	$\pm$ 0.1% of full sc	Linearity:
e.	$\pm 0.1\%$ of full sc	Resettability:
ith temperature stability of	Zener reference 0.002%/degrees	Reference Stability:

۰,

,

!

Krohn-Hite 3202 (R) Variable Filter

()! (V)

Ŷ

Frequency Range: High-Pass and Low-Pass cutoff frequencies continuously adjustable from 20 Hz to 2 MHz in five bands.

BAND	MULTIPLIER	FREQUENCY (Hz)
1	1	20 - 200
2	10	200 - 2,000
3	100	2,000 - 20,000
4	1K	20,000 - 200,000
5	10K	200,000 - 2,000,000

Frequency Dials: Each channel has a single decade frequency dial (calibrated from 10 to 210) and an associated high-pass/low-pass band switch providing five multiplier ranges for each mode.

#### Cutoff Frequency Calibration Accuracy:

 $\pm 5\%$ -bands one to four,  $\pm 10\%$ -band five, with Response Switch in Max. Flat (Butterworth) position; less accurate in R-C position. Relative to mid-band level, the Filter output is down 3 db at cutoff in Max. Flat position, and approximately 13 db in R-C position.

Bandwidth: Low-Pass Mode - Frequency response from DC to the cutoff frequency set within the range from 20 Hz to 2 MHz.

High-Pass Mode - Continuously adjustable between 20 Hz and 2 MHz with upper 3 db point at approximately 10 MHz.

Band-Pass Operation Model 3202 - Continuously variable within the cutoff frequency limits of 20 Hz to 2 MHz. For minimum bandwidth, the high-pass and low-pass cutoff frequencies are set equal. This produces an insertion loss of 6 db, with the -3 db points at 0.8 and 1.25 times the midband frequency.

へ

#### 2 Krohn-Hite 3202 (R) Variable Filter (continued)

 $\odot$ 

Band-Reject Operation Model 3202 - Continuously variable within the cutoff frequency limits of 20 Hz and 2 MHz or sharp null at any frequency between 40 Hz and 800 kHz. The low-pass band extends to DC. The high-pass band has its upper 3 db point at approximately 10 MHz. The null is sharper than that of a balanced "parallel T" filter, and is obtained by setting the high-pass cutoff at approximately twice the desired null frequency, and the low-pass cutoff at approximately one-half the desired null frequency.

#### Response Characteristics (selected by Rear Panel Switch):

Butterworth - Each channel exhibits maximally flat fourth order Butterworth response for optimum performance in frequency domain.

Simple RC - Fourth order RC response for transient-free time-domain performance.

Note: Higher order characteristics may be obtained by cascading individual channels.

Attenuation Slope: Nominal 24 db per octave per channel in high-pass or low-pass modes.

Maximum Greater than 80 db.

Insertion Loss: Zero + 1/2 db to 2 MHz; 3 db at approximately 10 MHz. 6 db in Band-Reject operation.

Maximum Input Amplitude - 3 V rms up to 2 MHz, Characteristics: decreasing to 1V rms at 10 MHz.

> Maximum DC Component - Low-Pass Mode: Combined AC plus DC should not exceed 4.2 V. peak. High-Pass Mode: 200 V.

Impedance:

Attenuation:

Input

18

191 20 1

2: :

22 ;

23: 2- ;

25 26

27 23

29

30 31.

32

40 41 42

43

44 45

46

47

48 49

50 51 52

85

100 kohms in parallel with 50 pF.

III-9

ł

# HQ BL NOT CON Krohn-Hite 3202 (R) Variable Filter (continued) -

21

		•
	Output Characteristics:	Maximum Voltage - 3V, rms to 2 MHz (1.5V, rms, in Band-Reject operation).
		Maximum Current - 10 mA (less in Band-Reject operation).
- - -		Internal Impedance - 50 ohms, approx. (higher in Band-Reject operation).
	Floating (Unground	led Operation):
		A switch is provided on rear of chassis to dis- connect signal ground from chassis ground.
	Hum and Noise:	Less than 100 microvolts rms for a detector band- width of 2 MHz, rising to 150 microvolts for a detector bandwidth to 10 MHz.
	Output DC Level Stability:	<u>+</u> 2 millivolt per degree C.
	Front Panel Controls:	Cutoff Frequency Hz Dial and Multiplier/Function switch.
		Power-ON Switch.
	Connectors:	Front panel and rear of chassis, one BNC con- nector for INPUT, one for OUTPUT.
Saic	or SAI-43A Analyzer	
	vailable ptions:	Option 43020 - Additional Precomputation delay 2000 points.
		Option 43030 - Additional Precomputation delay 4000 points.
		*Ontion 43040 - Additional Precomputation delay

*Option 43040 - Additional Precomputation delay 8000 points.

III-11

The above options are available in a separate box that is connected to the SAI-43A via a multipin connector and corresponding cable.

5

2

3

12.20 - 13 Contra 13 Contra

19.6.

11

Saicor SAI-43A Analyzer (continued)

Option 43050 - Digital Outputs - BCD format. This option provides for digital outputs from the SAI-43A in BCD format. Normally, the digital outputs provided are in binary form. The extra logic and circuits required for this option are added to an existing logic board.

*Option 43060 - Digital Outputs - ASCII Code. The extra circuits required for this option are added to an existing logic board.

Option 42050 - Rack Mount with slides.

Option 401 - Auxilary Scope Display - Standard rack-mounted Tektronix scope.

Option 402 - Chart Recorder - Small MFE chart or strip-chart recorder.

Option 403a - Tape Punch Interface for a standard tape punch device Model 528.

Option 403b - Tape Punch Machine - Mode 528 Roytron.

Option 404 - Teletype Machine Interface - Standard ASR-33 Teletype machine interface from SAI-43A.

Option 405 - ASR-33 Teletype Machine - Standard ASR-33 Machine.

Option 406 - ASR-35 Machine.

*Saicor SAI-43A Analyzer options currently in use in the Helicopter Rotor Test Facility.

	• •	
2	Saicor SAI-43A Analyzer	(continued)
423	barcor bai-45A Analyzer	
	Operating Modes:	Correlation - Probability - Signal Enhancement
	Input (each channel):	Two identical, independent channels (A and B).
	Full Scale Input:	100 mV rms (sine waye).
	Attenuators:	One per channel, 39 db total in 1 db steps.
	Overload:	Peak overload indicator.
	Coupling:	DC and AC (3 db low frequency cutoff at 1.0 Hz).
е. Т	Maximum Input:	200V peak.
	Dynamic Range:	48 db.
271	Maximum Frequency:	Input amplifiers down 3 db at 1.25 MHz.
271 29 29	Correlation Mode:	Auto and Cross-Correlation 400 lag values; simultaneous computation and display of all 400 values.
	Time Scale:	0.2 $\mu$ sec to 1 sec (total delay span from 80 $\mu$ sec to 400 sec) in 1, 2, 5 sequence with internal clock. Other delay increments with external clock 0.2 $\mu$ sec, min. no upper limit.
	Standard Precomput	tation Delays:
		First point selectable from 0 to $-800 \Delta t$ in multiples of $200 \Delta t$ . ( $\Delta t$ is incremental log value, selectable from 0.2 µsec to 1 sec).
	Quantization:	Full - Effective 8 bits each channel.
		Slipped - One bit each channel.

2

s. -

c	aicor SAI-43A Analyzer	(continued)
1	alcor BAI-45A Allalyzer	
	Averaging:	Switch selectable from $2^9$ (512) to $2^{17}$ (128 x 102 sums/points in powers of 2. Resume integration permits retention of previous sums and accumulation of new additional average. START, STOP a RESUME commands are manually and remotely controllable. A continuous average selection results in averaging until any of the accumulated 1 values reach storage saturation, at which point averaging automatically stops. Overriding STO control permits any predetermined number of sums/point.
	Vertical Resolution:	One part in 1024 switch selectable over a 2 ⁹ ran plus automatic mode. In automatic mode, a full scale input signal results in full scale presentat of the correlation function regardless of SUMMA TIONS (integration) switch position.
	Probability Mode:	Probability Density Function (p.d.f.) and Probability Distribution (Integral of p.d.f.); 400 discrete levels (channel A or channel B).
	Distribution Vertica	l Resolution:
		One part in 512 with highest level normalized to 100%.
	Density Vertical Resolution:	One part 512 switch selectable over a 2 ⁹ range plus automatic mode as in correlation. Manual override, as in correlation.
	Measurement per Function:	Switch selectable from 2 ⁹ to 2 ¹⁷ total points per curve (see correlation mode discussion of avera ing flexibility).
	Horizontal Resolution:	400 discrete voltage bins; full scale established input attentuator settings.
	Sampling Rate:	l Hz to 2 kHz in 1, 2, 5 sequence. Other sampl rates with external clock, max rate 2 kHz no lov frequency limit.

Saicor SAI-43A Analyzer (continued)

Signal Enhancement Modes:

Detects coherence in repeated events. After internal or external sync pulse, a series of 400 samples from each repeated series are averaged. The 400 averaged samples are simultaneously collected and displayed.

One part in 1024 switch selectable over a range of

Vertical Resolution:

2

1

Synchronization:

Either internally or externally triggered. In internal trigger, the start or sync point is marked by an output pulse (available at rear panel marked STIM) used to simulate or trigger the experiment.

2' plus automatic modes as for correlator.

Positive going transition from min  $0 \begin{pmatrix} +0.4 \\ -0 \end{pmatrix}$  to 2.4 External Trigger: (+2.6)(to be supplied)

Internal Trigger:

Stimulus output positive pulse 2.4 to 5V. Width 200 µsec.

0.2 sec to 1 sec in 1, 2, 5 sequence. Other in-(interval between tervals available with external sync, min interval 0.2 sec, no upper limit.

From  $2^9$  to  $2^{17}$  in powers of 2.

Improvement equals square root of number of sums.

Output Modes:

Sums per Point:

Improvement in

Fast (Scope):

Time Scale:

samples)

S/N:

Trigger pulse provided for external synchronization of oscilloscope. Time base provides 40-msec ramp which can be used as an external horizontal drive for the oscilloscope (an alternate means of utilizing an oscilloscope). All functions displayed continuously during and after processing on a 40msec time base (flicker free)

Saicor SAI-43A Analyzer (continued)

recorders

locator

Spectrum:

2

3

COULDER FERO 014 014

Correlation function presented continuously after processing with a 4-sec time base (compatible with SAICOR SAI-51A spectrum analyzer for providing spectrum analysis of correlation functions)

Function presented continuously after processing with a 20-second time base for use with chart

Function presented during one sweep (for use with X-Y plotter) when PLOT button is depressed. Sweep speed automatically varies in relation to vertical signal excursion (20-sec minimum sweep)

ZERO CAL depressed X=0, Y=0; FULL CAL de-

Slow:

Single:

Calibration Signals:

Bin Marker:

pressed X=full scale, Y=full scale 15V pulse one bin width in duration. Depression of BIN READOUT button causes value of function corresponding to bin number selected to appear as a DC voltage at FUNCTION jack with corresponding lag position voltage appearing at TIME BASE jack. Thumbwheel control varies horizontal position of pulse for accurate digital X-axis

Digital Outputs: Correlation functions - 2's complement 10 bits for amplitude

Probability functions - binary 9 bits for amplitude

Enhance function - 2's complement, 10 bits for amplitude

Bin number (x scale, all modes) - binary 9 bits (399 maximum)

Binary format - "1" equals 2.4V min, 5V max. "0" equals 0V min 0.4V max.

Remote start, stop, resume (with override capability)

Programming Capabilities:

External sample and sync inputs

External sync for signal enhance

All front panel connections appear in parallel on the rear panel as follows:

Front Panel	EQUIVALENT REAR PANEL
INPUT A	A IN
INPUT B	B IN
BIN MARKER	MKR
SYNC	SYNC
TIME BASE	X OUT
FUNC TION	Y OUT

Model 585A Tektronix. Oscilloscope

Saicor SAI-43A Analyzer (continued)

Vertical Deflection System

(+ x . )

Characteristics

Frequency Response: (Bandwidth)

#### Performance Requirement

DC to ≥85 MHz (at -3 db point) displays at 100 mV/cm

Deflection Factor:

0.1V/cm

## Tektronix, Model 585A, Oscilloscope (continued)

#### Horizontal Deflection System

#### Characteristics

Sweep Rates Time Base A:

Variable Range:

Time Base B:

Length:

5 X Magnifier:

#### Performance Requirement

Accuracy within  $\pm 3\%$  of the indicated rate for all calibrated front panel positions

III-17

From 0.05  $\mu$ s/cm to 5 s/cm

Accuracy within  $\pm 3\%$  of the indicated rate

From 4 cm to 10 cm

Accuracy is within  $\pm 2\%$  of the sweep rate accuracy

#### Triggering

l

2

Time Base A Characteristics	Supplemental Information
Source:	Line; internal (from trigger pickoff circuit in the vertical amplifier); and external
Coupling:	Internal and External.
Slope:	Trigger on positive or negative going slope of the trigger signal
Level:	Adjusts to permit triggering at any selected level on either the rising or falling portion of the waveform and up to $\pm 10V$ (external) in amplitude

2 [†] Tektronix, Model 585A, Osci	III-18 (continued)
Dime   Dime     Time   Base     E   Characteristics	Supplemental Information
Source:	Line; internal; external
Coupling:	Internal and External.
Slope and Level:	Same as time base A except triggering level range is up to $\pm 7.5V$ (external) in amplitude
Variable Time Delay	
Characteristics	Performance Requirement
Delay Time:	Accuracy is within $\pm 1\%$ of Time Base B sweep rate accuracy
Multiplier Incremental Linearity	Accuracy within 0.2% of total range.
External Horizontal Amplifie	<u>r</u>
Frequency Response:	DC to 350 kHz or more, at maximum gain (at -3 db point)
Input Characteristics:	Approximately/ $\Omega$ paralleled by 47 $\overline{pF}$
Deflection Factor:	
X1:	0.2 V/cm maximum (VARIABLE 1-10 control fully clockwise)
<b>X10:</b>	2.0 V/cm maximum

• •

Tektronix, Model 585A, Oscillos	scope ¹ (continued)
Amplitude Calibrator	
Voltage Output:	Peak-to-peak amplitude accuracy is within $\pm 3\%$ of indicated front panel setting when working into an impedance of 1 M $\Omega$ or higher
Frequency:	l kHz <u>+</u> 25%, positive-going square wave with zero-volt baseline
Risetime:	Equal to or less than 2 $\mu$ sec into 15 pF
Front Panel Output Signals	
Sawtooth A:	140 V $\pm 20$ V increasing to approxi- mately 180 V $\pm 20$ V at the faster sweep, rates and having the same time dura- tion as the A sweep. Recommended load $\geq 100 \text{ k}\Omega$ .
+ Gate A and + Gate B:	Within the range of 20 to 40 volts. V Positive-going gate pulse with the base- line at zero volts Time coincident with the respective sweep. Recom- mended load $\geq 5 \ k\Omega$ .
Dly'd Trig:	A positive - going pulse of approxi- mately 5 V $\pm$ 2 V into a load $\geq 10 \text{ k}\Omega$ ., Pulse occurs at the end of the delay period.
External Signal Connectors	

95

.

٥

•••

•

123	Tektronix, Model 585A, Oscilloscope	III-20 (continued)	
	CRT Cathode:	An applied 20-volt peak-to-peak signal from 1.0 kHz to 1 MHz will produce noticeable modulation. Positive portion of the signal blanks CRT beam	
	Cathode-Ray Tube		
	Type:	T5810-31; P1, P2, P7 and P11 phosphors optional. Other phosphors available on special order	
19 20	Accelerating Potential:	10 kV	
	Usable Viewing Area:	4 cm high by 10 cm wide	
	Graticule:	Internal, adjustable edge lighting. 4 x 10 cm with vertical and horizontal 1 - cm divisions with 2 - mm markings on the centerlines	

30		•
Z1 Spectral I	Dynamics 110-1 Phase Meter/Resonant Dwell	
4C 1	-	,

Phase Meter Section

Frequency Range:

Input Amplitude Range:

Input Impedance:

Input Signal Bias:

5 Hz to 1 MHz continuous (input L.P. filter in OUT position); 5 Hz to 20 kHz when using filter

40 db referenced to 3 Vrms

3 M $\Omega$  or greater shunted by 20 pF

Will accommodate up to  $\pm 150$  V offset on each signal input 

	III-21
Spectral Dynamics 110-1 Phase	Meter/Resonant Dwell (continued)
in the second	
	ľ
Detection Accuracy:	•
Absolute	$\pm 0.75$ degree over 40 db amplitude
	range at 400 Hz
Relative (wideband)	20 db amplitude range
	10 Hz200 kHz, <u>+</u> 0.75 degree 🖓
	5 Hz400 kHz, $\pm 1.5$ degrees
	40 Hz200 kHz, <u>+</u> 1.5 degrees
Input Low-Pass	
Filter	
	1 · · · · · · · · · · · · · · · · · · ·
Relative	5 Hz20 kHz, $\pm 3.0$ degrees at F.S.
	Input
Outputs:	
Gutputb.	
$DC \propto Phase:$	Suitable for external recorder and
	digital readout
Voltago	0-3.6V at 10 mV/degree nominal
Voltage:	0-3.0V at 10 mV/degree nommar
Impedance:	Less than $100\Omega$ . Load impedance should
-	be a minimum of 10 k $\Omega$
<b>.</b> .,	
Linearity:	Less than $\pm 0.75$ degrees at full input and at 400 Hz
Calibration:	0, 180 and 360-degree positions pro-
	vided for rapid calibration of external
	recorder or monitor
Posponso	Three-position selectable switch: slow '
Response:	50%, medium $\approx 1200^{\circ}/s$ , fast $\approx 3600^{\circ}/s$

••

Spectral Dynamics 110-1 Phase Meter/Resonant Dwell (continued)

Front Panel Meter

0 to 360 degrees, -180 to +180 degrees Phase Range: and 0 to 30 degrees (expanded phase +30 degrees). Linearity: +1% of F.S. +1% of F.S. Accuracy: Phase Finder: Push button provided to locate phase angle when on expanded ranges. External Meter/Recorder: Floating signal available for driving external meter or differential input recorder. Approximately 125 mV DC at full scale Voltage: on any meter range. Min Diff Load Impedance: i MΩ. Cal: A front panel adjustment provides a phase offset, adjustable from ten to ninety degrees which may be inserted during dynamic modes of operation, Resonant Dwell Section Input: Dynamic Control Range: Provides resonant dwell control at any input phase angle, 0 to 360 degrees Signal Voltage: 0V to≈+3.6 VDC from phase meter section. Output:  $\approx$ -1.8V to  $\approx$ +1.8 VDC for driving VCO Voltage: in system Sweep Oscillator, such as SDC Model SD104A-5 or SD114 Sweep Oscillator_Servo.

98

50

51

52

の、スイー学

•	
Impedance:	1 kΩ
Safety Interlock:	<ol> <li>Closed-circuit interlock, normally closed for series interlock system automatically opened by application of ≈+15V to either of two inputs; +15V inputs normally supplied from Sweep Oscillator upper and lower sweep limit reset circuitry</li> </ol>
	<ol> <li>Additional single-pole double-throw relay contacts available (part of interlock circuit described above), can be used for low-level signal switching such as the audio be- tween Sweep Oscillator and shaker power amplifier</li> </ol>
	- -

...

•

. .

. -

Δ.

.

#### APPENDIX IV

· ... ÷. بي دري

### LIST OF RELATED EQUIPMENT MANUALS

ţ

APPEI	NDIX IV	
LIST OF RELATED E	QUIPMENT MANUALS	5
	1	
Title of Manual	Manufacturer	Date or N
FR-600 Recorder/Reproducer Instruction Manual SD307 Low	Ampex Spectral Dynamics	68611-16 August 1
Frequency Translator Instruction Manual SD301C Real-Time Analyzer	Spectral Dynamics	June 197
Instruction Manual SD302C Ensemble Averager	Spectral Dynamics	May 1971
Instruction Manual Model 13116-2 X-Y Display	Spectral Dynamics	June 197
Operating and Service Manual X-Y Recorder 7035B	Hewlett-Packard	HP7035B
Instruction Manual Model SAI-43A Correlation and Probability Analyzer	Saicor	
Operating & Maintenance Manual Solid-State Variable Filter Model 3202(R)	Krohn-Hite	
Instruction Manual Model 8154 Time- Code Generator/Reader/ Tape Search & Control Unit	Systron Donner	
Operation & Maintenance Manual Model 122 DC Amp	Neff	
Operation & Maintenance Manual Model 1-172A-XX Universal Galvanometer Amplifier	Bell & Howell	992346-0
Instruction Manual Type 1304-B Beat Frequency Audio Generator	General Radio	Form 1304-010 ID 1419
Instruction Manual Type 1521-B Graphic Level Recorder	General Radio	Form 1521-015 ID 1395

# APPENDIX IV (continued) . .

9. . . . . . . . . . . .

APPENDIX I	V (continued)	
Title of Manual	Manufacturer	Date or No
Instruction Manual SD110-1 Phase Meter/Resonant Dwell	Spectral Dynamics	May 1970
Operating & Maintenance Manual VR-3400 Magnetic Tape Recorder/ Reproducer	Bell & Howell	992560-0004
Operating & Service Manual Model 🦳 215 RMS Voltmeter Log Converter	В&К	1970
Introduction Manual Model 8200A D.V.M.	John Fluke	June 19, 197
Technical Manual, Visicorder Oscillograph Model 1108	Honeywell	16850351-001
Operation and Maintenance Manual, Visicorder Oscillograph, Model 1508	Honeywell	January 1963
Instruction Manual, Tektronix Type 585A Oscilloscope	Tektronix	070-0391-01

#### APPENDIX V

#### **RECOMMENDATIONS FOR SYSTEM IMPROVEMENT**

It has become obvious from personal examinations and consultations with Wyle instrumentation personnel that there is a necessity for an in-depth engineering study of the wiring, shielding, and grounding scheme, or lack thereof, employed in the Helicopter Rotor Test Facility. In order to be effective, shields should be continuous through all junctions and all instruments from the transducer to the recording device. All shields should be grounded to a single point, preferably at the source transducer. Presently, no shielding exists from the rotating slip rings up to the hub. This situation is the result of an inadequate number of available slip rings. Wyle is presently investigating and will incorporate some new ideas into the system to alleviate these problems.

Signal/noise ratio improvement through the slip rings is desirable. Future plans call for installation of preamplifiers on the rotor hub to boost signal levels prior to slip rings. Assuming temperature drift problems may be minimized, this basic idea is recommended. Another possibility for signal/ noise improvements is to research the market for sealed or mercury wetted contact slip rings.

Another area that should be researched further is the possible use of FM/FM or pulse coded telemetry to acquire data. Data bandwidth restrictions may preclude use of either of these systems. Costs will also be high because of the microminiaturization and reliability incorporated into these products.

38

17

18 19

20

21. 22 25

24

25

26 27

23

29

30 31 32

33

34

35 36