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A THEORY FOR PREDICTING COMPOSITE LAMINATE

WARPAGE RESULTIN} FROM FABRICATION

By C. C. Chamis _

XASA-Lewis Research Center

Cleveland, Ohio

ABSTRACT

I

Linear laminate theory is used in conjunction with the moment-curvature

relationship to derive equations for predicting end deflections due to warpage

without solving the coupled fourth-order partial differential equations of the

plate. Composite micro- and macromechanics are used in conjunction with laminate

theory to assess the contribution of factors such as ply misorlentatlon, fiber

migration, and fiber and/or void volume ratio nonuniformity on the laminate war-

page. Using these equatiorLs, it was found that a 1° error in the orientation

angle of one ply was sufficient to produce warpage end deflection equal to two

laminate thicknesses in a I0 inch by iO inch laminate made from 8 plj Mod-I/epoxy.

Using a sensitivity analysis on the governing parameters, it was found that a 3°

fiber migration or a void volume ratio of three percent in some plies is sufficlent

to produce l_nate warpage corner deflection equal to several laminate thicknesses.

Tabular and graphical data are presented which can be used to identify possible

errors contributing to TM _ainate warlmge and/or to obtain an a priori assessment

when unavoidable errors during fabrication are anticipated.

J

*Aerospace Engineer
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Flat composite laminates have been observed to warp upon removal from their

fabrication mold. This warpage is the result of nonsymmetries and residual

stresses that are present in the laminate. The warpage can be of a magnitude

sufficient to render the laminate useless for its intended purpose. Thus, residual

stresses are always present in angleplied laminates which are cured at elevated

temperatures and then cooled down to room temperature. Bending nonsymmetries

result from ply misorientations and fiber nonuniformities which occur inadvertently

d,aring the fabrication of the laminate and produce coupling modes in the laminate.

When the laminate is subjected to either thermal or mechanical loads, these

coupling modes produce laminate warpage. The various coupling modes resulting

from combinations of nonsymmetries are discussed in reference i. Exact determina-

tion of the surface of the warped laminate requires solution of coupled fourth

order partial differential equations. In the literature, neither solutions to the

coupled partial differential equations or approximate equations are available for

predicting laminate warpege as a result of bending nonsymmetries and residual

stresses. Therefore, the assessment of the effect of various factors that contri-

bute to the war-page and the establishment of fabrication control procedures has not

been possible in the past.

Eq_ations, even of an approximate nature, for predicting laminate warpage

co_ald be of considerable practical value to both fabricators and designers. For

example, the fabricator could use the equations to obtain an a priori assessment

of the warpage resulting from factors which may be difficult to control accurately

during lamlna%e fabrication. The designer, on the other hand, could use the results

to specify tolerances which would minimize _arpage-producing nonsy_netries, or he

could use the results to design the laminate with warpage-compensating nonsymmetries.

i
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It is the objective of this report to _hew how linear laminate theory can

be used to derive convenient equations without solving the coupled fourth-order

!xLrtial differential equations as would normally be required. The _se of these

equations for predicting warpage is demonstrated.

WARPAGE GEOME'FRY AND ORIGIN

Warpage Geometry

The laminate warpage geometry of interest in this investigation is depicted

in figu_ i. This type of wa_0age is typical of _02,_@,_@_2) laminates which have

the 0° ply direction parallel to the x-axis. As can be seen in figure i, the laminar

is fixed along its x-edge (AB). Note that in this position, the laminate exhibits

two primary modes of warpage. These are: (i) curvature (bending) along the y-

dirsction and (2) a twist about an axis normal to and bisecting the plate x-edge.

There is also a curvature along the x-direction. However, for the laminate con-

figurations under consideration, the curvature along the x-direction is relatively

small competed to that of the y-direction. The corner deflections C and D provide

a quantitative measure of the Amount of warpage. The twisting increases the bending

corner deflection at C while it decreases the corner deflection at D. In an actual

warped itminate, the corner deflections C and D can be readily measured by orienting

the laminate as is shown in figure i.

Warpage Origin

Composite laminates are, in essence, nonuniform materials since they consist

of several plies with different orientations through the thickness. Because of this

nonuniformity and the }ay-up procedure used during fabrication, some bending-stretching



coupling in the laminate is the general rule rather than the exception. Bending-

stretching coupling is present whena purely extensional deformation in the laminate

produces, simultaneously, bending and stretching. Conversely, a purely bending or

twisting deformation in the laminate can produce, simultaneou_!y, an extensional

deformation. Bending-twisting coupling is also possible in angleplied laminates.

i
i
i
I
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This is the case even if the angleplied laminate is balanced and sy_netric.

Both ply misorientations and fiber nonuniformity will produce bending-stretching

coupling which results in warpage of a flat laminate in the presence of residual

stress. When these conditions are present in (02,+@,_@,O 2) lemlnates, they will

produce warpage having the geometry depicted in figure 1.

THEORETICAL BACKGROUND AND GOV_zd_ING EQUATIONS

In this section, the theoretical background leading to the governing equations

for predicting laminate warpage corner deflections in the presence of residual

stress are described. The equations presented fox' approximate deflection prediction

are of convenient form and obtainable _ithout solving the coupled fourth-order

partial differential equations. A list of symbols used in the equations is con-

tained in the Appendix of this report. Warpage corner deflections can be predicted

more accurately by anisotropic thin-plate bending theory which accounts for all

possible coupling respon3es present in such plates (Appendix, reference I). Warpege

corner deflections can also be predicted accurately by special finite elements

accounting fgr the same coupling responses. However, neither anisotropic thin-

plate bending theory nor finite element analysis which accounts for all coupling

responses have been used to predict laminate war_ge corner deflections in the

presence of residual stress.



Theoretical Ba:kgr ound

The derivation of the equations for predicting laminate warpage corner

deflections is besed on the force-deformation-temperature relationships derivable

from linear thin-lamlnate bending theory (refs. 2 and 3). The two important assuml)-

tiorm in linear thin-laminate bending theory are: (1) the planform dimensions of

the laminate are very large relative to its thickness and (2) the maximum deflection

of the laminate is of the same order of magnitude as the laminate thickness. The

seeo_K] assumption is _Lly interpreted to mean accurate predictions for maximum

deflections equa/ to plate thickness and good approximation for maximum deflections

of 10-20 times the plate thickness. The 10-20 times factor is based on the maximum-

deflection to plate-edge-dlmensions ratio. If this ratio is such that the sine and

tangent of small angles can be approximated by the angle itself (in radlans) then

Linear thin-laminate bending theory would predict good approximations to maxlm_m

deflections.

To illustrate this point with an example, consider a (02,+_5,_h5,02 ) laminate

with maximum tip d_flection of 1.20 inches, plate edges of I0 inches, and plate

thickness of .06 inches. The tangent of the angle subtended by the 1.20 inch

dimension on a I0 inch base is 0.12. The corresponding angle in radians is 0=119

which is equal tc the tangent when rounded off to two figures. Based on the afore-

. mentioned criteria, linear thin laminate bending theory would be applicable to these

types of laminates _.ven though they undergo corner deflections 20 times their laminate

thickness.

The laminate force deformation relationships derivable from thin-laminate

bending theory and of interest in this investigation are given in references h or

5. In matrix form and assuming forces due to residual stresses only, these equations
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_cox = Ac>] [Ccx]

_Kc_}J L[Cc_] [Dc×]

(l)

The notation in equatio** (i) is as follows: _cox denotes reference plane

strains;_1_cx denotes the plate local curvatt_es-, Acx represents a(3 x 3) array

of axial (membrane or stretching) stiffness coefficients; C regresents a (3 x 3)
cx

array of stretching-bending coupling stiffness coefficients; Dcx represents a

(3 x 3) array of bending (flexural) rigidities coefficients; Nc_k denotes thermml

forces due to resid_l stresses and McAT_ are the corresponding thenml moments.

Note the subscript x in equation (I) indicates that these relationships are referred

to the laminates' structural axes (x,y,z, fig. i). Note also the superscript -i

denotes the inverse of the matrix.

The equations used to generate the elements in the arrays Acx, Ccx , and

D are given in reference 4.The form of these equations, neglecting interply
cx

contribution, is:

N_

[Acx] :I AT_i(z_i÷l " zZi)[RIi]T[Ezi]'I[Rzi] (2)

i--i

N_

2[Ccx] = aTti(zti+£ -
i=l

2 -i
z_i) [Rli]T[Ezi ] [R_i] (3)

NI

[Dcx] l I 3_T_ i(z_i+l

i=l

5 T
- i] [Eliz i) ]-Z[Ri]
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The corresponding equations for the thermal forces and moments are:

N_

{Ncz_Tx) = y _Tzi( z_i+l

i--!

N_

lZ{Mc_Tx_ _ aT_i(• = z_i+l

i=l

- z_i)[R_i][E_i]-i {_i ]

- z_i)[R_i]T[Eli ]-I [_i ]

in equations (2)-(6) are:

(5)

(6)

{%i)" [%n. ('_22 o]_ (7)

[RZi] =

m

cos2e_ sin2e_

sin 2 eT. cos 2 a_

_sin 2_% sin 2e Z

" 1 VZZl

Elll EZ22

v_l___! i__
EZll EZ22

0 0
m

9

1
-- sin 2e
2

cos 28_

0

0

1

GZI2 i

(8)

(9)

The notation in equations (2)-(9) is as follows. Ni is the number of plies

in the laminate; _i is the temperature of the i-th ply or the difference be-

tween cure mad room temperatures in the present cmse; the difference Z_+| -

ZA[ locates the i-th ply relative to the reference plane (stacking sequence);

c_||I is the ply thermml coefficient of expansion along the fiber direction and

o(g_ normal to it; @_ is the angle locating the fiber direction in a ply relative

to the laminate structural axes (ply orientation angle); E_I $ is the ply modulus

of elasticity along the fiber direction and E_ z normal to it; _)ilZ is the major
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Poisson's ratio and _24Zlthe minor; and OtlZ is the inplane ply shear modulus.

It is well knownthat the ply thermal coefficients of expansion, moduli and Poisson's

ratios are related to constituent material properties using composite micromechanics

whenthe types of constituents, the fiber volume ratio, and the void roll,he ratio

are known. See reference 4.

The variables of interest in the present discussion are the laminate local

curvatures (_c_), defined in equation (i) which contribute to laminate warpege.

It is seen by inspection from equations (1)-(9) that the laminate curvatures depend

on: the number of plle_ in the laminate (N i ), the ply temperature difference

(AT), the ply stacking sequence (Zt_÷_ -ZA_ ), the ply orientation angle

( _ ), and through micromechanics on the constituent material properties (E, G,

_, ando_), the fiber volume ratio, and the void volume ratio.

Equations (1)-(9) and the micr_mechanics equations for predicting ply proper-

ties from constituent properties have been programmed in the computer code described

in references 4 and 5. This computer code is used herein to compute the laminate

local curvature D_ explicitly as a function of the factors identified in the previous
cx

I_-_: _ph. Therefore, it becomes straightforward to compute perturbations of the

fac+.c: _ contributing to warpage about the condition of bending symmetry. How the

local curvatures will be used to predict laminate warpage corner deflections will

be described in the second part of this section.

The three important points to be noted from the previous discussion are:

i. Laminate warpege, of interest in the pre8ent discussion, is within the

realm of Linear thin-laminate bending theory even when the laminates

undergo large corner deflections compared to their thickness.
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2. The factors contributing to laminate wa,_page are readily identified via

the laminate force-deformation-temperature relations.

3. A computer program is available that can be used to assess the relative

significance of the various factors contributing to laminate warpage.

Governing Equations

The governing equstlons for predicting laminate warpage corner deflections

are readily derived when the local curvatures are known and advantage is taken of

the following observation. The is_Inate local curvatures _cx' eq. (I)) resulting

frcu uniform residual stress ( _T constant in eqs. (2)-(6)/ are constant throughout

the l_sinate. This observation is violated in the vicinity of the free edges within

s distance approximately equal to the laminate thickness which is insignificant

compared to lazi:ite p_nform dimensions. Since the radius of curvature is the

reciprocal of the curvature, constant curvatures yield constant radii of curvature,

and therefore

R : I/K c is constant (i0)

The governing equation for warpage corner deflection, for example, due to the

curvature along the y-direction is obtained from the geometric relationships depicted

in figure 2. Thus
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sin'l( (12)ey blRy)

_y = Ry(Z- cos_y) (13)

Similarly, for the warpage due to curvature along the x-direction:

ex - si_-Z(_/R ) (ZS)
x

5x: Rx(I - cos Sx) (16)

The corner deflection due to twisting of Point C, figure l, is determined

from recalling that twisting takes place about an axis through the laminate center:

_r = Z/<cxy (zT)

exy - sin-Z(alZRxy) (zS)

i
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i0

5xy = Rxy (i - cos eXy ) (19)

For twisting on the other edge_ a is replaced by b in equation (18). The total

corner deflection at point C, figure i. is obtained by superposition since linear

thin-laminate bending theory is used in deriving the curvatures. This procedure

achieves the objective of obtaining an approximate solution for the corner deflec-

tions without having to solve the c-uDled fourth-order partial differential equations.

In addition to the apl_oximltions inherent in the Linear thin-laminate

bending theory, two other approximltions were introduced in deriving equations

(13), (16), and (19). These are:

I. The projected deformed immimate edge length is a_immtely equal to the

umdeformed edge length.

2. Warping due to twisting takes place about an axis through the laminate

center.

Using these approximations, the laminate warpage corner deflections are readily

derived when the local curvatures are known. The error introduced by the two

ap_reximations indicated above is not known.

THEORETICAL WARPAGE CORNER DEFLECTIONS

In this section, theoretically calculated data are presented for warpage corner

defl_ctions resulting from small perturbations of the bending syD_etry using the

equations developed in the previous section. The predicted values were obtained

by perturbing the ply orientation angles in the laminates (02+30,_30,02) and

(02,+45,_45,O2) , using the computer code (ref. 4) and the following procedure:
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i. Perturb the ply orientation angles in the laminates (02+30,$30,02 )

and (02+45,_45,02).

2. Calculate the local curvatureS_cxx, 2cyy' and _cxy due to the perturbations

using the camputer code in reference _.

3- Calculate the corresponding corner deflections using equations (13),

(16), and (19).

The results obtained by this procedure are summarized in table I.

Yn this and subsequent tables, the laminate configuration is given in the first

column. The next three columns are the local curvatures computed using the computer

code (ref. _). The corner deflection due to_ is computed using equation (13)
cyy

and that due tOZ_cxy using equation (19). The maximum warpage corner deflection is

shown in the last col_ and is the algebraic sum of the two previous columns.

The values for x are negligible relative to x and as a result are not included
cxx cyy

in the corner deflection calculations.

A better assessment is obtained by plotting tip deflections versus ply

orientation perturbations. This is shown in figure 3 for the laminate (02,+30,_30,02

The following observations can be made:

i. The warpmge corner deflections vary linearly with the perturbation angle.

2. A perturbation angle of +1.35 °, for example, in the +30 ° pl_ is sufficient

to produce a warpRge tip deflection _f ._2 inches which is approximately

equal to four times the lemir_t_ thickness w_ich, in this case, is 0.060

inches.

A correspo_ing plot for the (02+4_,_45,02) laminate is shown in figure

h. A corner deflection of 1.20 inches, for _le, i_ obtained at a perturbation

angle of 11.5 ° of one of the +45 ° plies. This exercise shows that it is possible

)t



_L

9̧

r

i

12

to obtain, a corner deflection 20 times the laminate thickness with a Ii. 5° error

in onl_ one of the plies. Note the small nonlinearitj in the curves in figure 4.

The effects on the corner deflection of replacing one of the -45 ° plies

with a _ ply are shown in figure 5. As can be seen in this figure, an angle @

of about 180 will produce a corner deflection of 1.20 inches. The effects on

the corner deflection of the simultaneous perturbation in both the +45 ° and -45 °

plies are shown in figure 6. qhese types of perturbations produce negligible corner

deflection due to twisting. However, they l_roduce substantial corner deflection

due to bending.

The important observations from the previous discussion are as follows:

1. The warpage corner deflections vary approximately linearly with small

perturbations in only one of the plies.

2. Relatively small DIy misorientations in only one ply can cause corner

deflections several times the l_mlnate thickness.

3. Combinations of ;erturbations may be selected to produce s_ecific corner

deflections.

SENSITIVITY ANALYSI S

In this section, calculated results are presented which can be used to assess

the significance of the following factors on laminate warpage:

I. Bending nonsymmetry (two ply equivalent laminate)

2. Fly stacking sect, nce

3. Fiber content nonuniformity (assuming voids in some plies)

h. Combinations of items 2 and 3 above
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The results for the bending nonsymmetry case are summarized in table 2.

It is seen from the results in this table that only the twisting component is present

in this case. The graphical representation of the data in table 2 is shown in

figure 7. Here it is seen that the turner deflection varies nonlinearly with ply

angle. It increases rapldlywith increasing ply angle in the range 0°_ @ _ i0°

and levels off at @_ 20° .

Results for some additiorml ply stacking sequence cases (not examined previously)

are smmnarized in table 3. As can be seen from the results in this table, ply

stacking sequences can be selected to yield corner deflections 40 times the laminate

thickness. Note also that laminates can be made with ply stacking sequences which

have (i) sE_rc_Imately the same bendiDg and twisting curvatures and (?) identical

c_t_res in the x and y directions.

The results from the fiber content nonuniformity sensitivity analysis are

s_mmarized in table h. For this case only, the laminate (02_hS,_h5,02 ) was used

and the fiber content nonuniformltywas introduced via voids. As can be seen from

the results in table _, fiber content nonunifonnity in the form of about five percent

voids in only two plies produces corner deflection approximately eqnal to the

laminate thickness. Note that fiber content nonunlformlty of the type investigated

here causes relatively s_mll curvature in the x-direction as compared with the other

t_O. The graphical representation of the results in table 4 are shown in figure 8

when the fiber content nonuniformlty is expressed as a void volt,he ratio. As can be

seen from the curves in this figure, the corner deflections vary nonlinearly with

fiber content nonumiformi_y (void volune ratio) and increases more rapidly as the

amount of nonunifermity becomes large. Note that at void volume ratios of .i0 or

less, the curves in figure 8 are approximately linear.



Results of sensitivity analysis for the combined case of small ply misorienta-

tions and fiber content nonuniformity are summarised in table 5. As can be seen

from the data in this table, the combinations selected, which on the surface appear

to be minor variations from case to case, produce substantially different corner

deflections. Comparing corner deflections from the individual cases in tables 1

and h with the corresponding values in table 5, it is seen that some combinations

are compensatory. The tabulated curvatures in tables 1-5 can be used to predict

laminate warpage corner deflections in laminates of similar configuration but

different planform dimensions. For these cases, the edge dimensions are the only

variables that change in equations (Ii)-(19).

It is noted here that the same procedure used for the corner deflections can

be used to calculate war_ge deflection at any point (x, yj fig. l) in the laminate.

For these calculations, the sign of the subtended angle is determined from the

following equations:

e = sin-l(y/Ry) (20)y

_x = sin'l(X/Rx ) (21)

9Xy = sin-l(x/ZRxy)
(22)

@yx" sin-l(y/2_x )
(23)

v
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where the physical problem will dictate whether equation (22) or (23), or some

combination thereof, should be used.

The important points from the previous discussion are:

i.

e

.

Relatively small perturbations in various ply stacking sequences and fiber

content nonu_formities produce considerable deflections.

At smmll values of the perturbation, the corner deflection varies approxi-

mately linearly with the perturbation.

Combined perturbations can produce compensatory effects on the corner

deflection compared to that produced by the individual cases.

APPLICATION OF EQUATIONS FOR CAIEUIATING WARPAGE

The aI_r0_.i_te equations for warpage corner deflections derived previou.l_

can be used to suggest possible combinations of nonsyunetries that could _explain

the warpage measured in two actual laminates.

Description of Laminates

Laminates were fabricated to have symmetry with respect to bending an_

supplied to NASA-Lewis Research Center by an outside vendor. These laminates were

12 inch square plates, eight plies thick (0.060 inches) of (O2,+@,_@,02) ply

stacking sequence, and were mmde from MOD-I/ERIAh617with about 30 percent fiber

volume ratio and cured at about 370°F. Two of these laminates, (02,_30,$30,02)

and (02_45,$45,02_ exhibited warpage with measurable corner deflections as depicted

in figure I. After curing, the laminates were reheated in an unrestrained condition

to about 300°F and then cooled to romntemperature.
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Corner Deflection Measurements

The wmrpage corner deflections of the two laminates (O_hS,;hS,0 2) and

(02,_30,_30,_45) were measured at points C and D as depicted in figure i.

The measured values are su_zarised in table 6. Note that the last two columns in

table 6 separate the corner deflections into two components: bending and twisting.

The bending component equals the algebraic average of the two corner deflections

and the twisting cccrgonent equals their algebraic difference.. As is observed from

the values shown in table 6, the maximum corner deflections can be substantial:

1.20 inches for the (02,_5,_h5,O 2) laminate and 0.22 inches for the (O_30, +30,02)

laminate. Cempmred to 0.06 inches for the laminate thickness, these deflections are

20 times the laminate thickness for the (0_h5,_45,02) laminate and about four

times for the (0_30,_30,02) laminate.

Some Possible Combinations of Nonsy_etries

The following procedure was used to identify a few of a large number of possible

combinations of norurymmetries that could have contributed to t_e warpa_e corner

deflections that weremeasured in the actual laminates.

For the (0_30,_30,02) laminate, the data in table l were used as a guide

_cause the 12-inch edge of the actual laminate is only 20 percent longer than the

lO-inch edge whichwas used to generate the curves in figure 3. Comparing corres-

ponding values frcm table 6 and table i, it is seen that the measured value of the

maximum corner deflecti zips b_,tween those calculated in the laminates

(02,31,-30,_30 , 02) and _02,!3_,-3C_+30,02). Using a=b=12 in equations (ii) to (13)

and (17) to (19) and plotting the data as shown in figure 3 yields a perturbation

L



17

nonsymmetryof 0.9°.

this perturbation are:

O.174 inches due to bending

O.O46 inche_ due to twisting

The components of the maximum warpage deflection produced by

(.17 inches measured)

(.05 inches measured)

It is of interest that _-hemeasured values are quite similar to those calcu-

lated for the arbitrarily assumed perturbatlcn.

If the ply orientations in the (02_45,_5,02) laminate were (0_45,_39.5,02),

the calculated maximum war_mge corner deflection would be 1.20 inches which is

equal to that measured.

The correcting c_nemts of the deflection are:

1.175 Inches due to bending (I.00 inches measured)

0.025 inches due to twisting (0.20 inches measured)

Agai_ it is of interest to note that the measured values are quite similar

to those calculated for the arbitrarily assumed perturbation and that the perturba-

tions required to produce the _ge corner deflections are relatively small.

(_ENERAL R_ARKS

The equations derived herein together with the results presented should

be of considerable practical value to both designers and fabricators of fiber composites.

For example, the fabricator can use the equations to obtain an a priori assessment

of the warpage resulting from factors which may be difficult to control accurately

during laminate fabrication. The designer may use the results to specify tolerances

which willminimize war_ge-producing nonsymmetries; or he may use the results to

design the laainate with warpege-compensating nonsymmetries.

d
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The results of this investigation also illustrate that suitable combinations

of warpage-producing factors are compensatory and can be used to alleviate some

fabrication problems. It is also noted that because a laminate is flat, or meets

some flatness specification tolerances, it may not be free oi warpage-producing

nonsymmetries. It is possible that warpage will result if the laminate is reheated

and cooled again. This t_--_eof warpage may cause difficulties in designs where the

laminate is part of a stimcture restrained along its edges and is subjected to

thermal cyclic environment. In this case, alternating stresses due to warpege would

not have been taken into account in designing the laminate.

Although the data presented were not obtained using hybrid composites, such

composites will exhibit similar warpage in the presence of bending nonsymmetries

and residual stresses. The approximate equations derlged herein are applicable to

these composites as well.

SUMMARY OF RESULTS

The major results of this investigation are summarized below:

i. A convenient set of equations has been derived which can be used to

approximate laminate warpage corner deflections resulting from small

errors during fabrication. This approach does not require solutions of

coupled fourth-order partial differential equations which would normally

be the case.

2. Using the derived equations, it was found that an error of only one

degree in one ply orientation was sufficient to produce a warlmLge corner

deflection of a magnitude twice the laminate thickness. This ply mis-

orientation, among a large number of other possible ones, could have

caused the warpage corner deflection that was neasured in a i0 inch x
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i0 inch x .06 inch (@_+30,_30,@ 2) laminate made from MOD-I/F/RLA-4617.

3. Using the derived equations in a sensitivity ana].ysis of the various

factors contributing to laminate warpage, it was found that a 3°

fiber migration or a five yercent void vol_ae ratio in some plies is

sufficient to produce laminate warpage corner deflections several times

the ply thickness. It was also found that errors in ply stacking sequences

can produce laminate warpage corner deflections as much as 40 times the

laminate thickness.

4. Combinations of errors or tolerances can produce compensating effects

on the war_ge and initially flat laminates may warp as a result of

unrestrained reheating and cooling.

5. The warpage corner deflection varies linearly with error8 up to i0°

in ply misorientations and up to i0 percent in fiber content nonuniformity.

i
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APPENDIX

SYMBOLS

A
cx

a

b

C
cx

D
cx

E122

k
v

McKTx

Nc _Tx

R

AT_

x,y,z

Array of composite axial stiffnesses referred to composite structural

8xes

Laminate edge dimension alor4 x

Laminate edge dimension along y

Array of composite coupling stiffnesses referred to composite

structural axes

Array of composite bending (flexural) stiffneases referred to compo__ite

structural axes

Array of straln-stress relations (elastic constants for the ith ply)

Ply longitudinal modulus

Ply transverse modulus

FAy shear modulus

Fiber and void volume ratios, respectivel_

Vector of unbalanced thermal moments referred to composite structural

axes

Vector of umbalanced thermal forces referred to composite structural

_xe8

Radius of curvature (subscripts denote direction)

Array of transformation coeffic_euhs _o_" the ith ply

Temperature difference for the ith ply

Structural axes

Location of the ith ply relative to the reference plane

Material axes

i
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_Cox

"_CX

"_cxx

"_cyy

JKcxy

Vector of therm_l coefficients of expansion of the ith ply

PlY longitudinal thermal coefficient of expansion

Ply transverse thermal coefficient of expansion

Corner deflection (subscript denotes compo:?nt due _o corresponding

curvature)

Vector of composite strains referred to composite structural axes

at the reference plane

Ply angle measured from the composite structural axes to the ply

material axes

Vector of composite local curvatures referred T,ocomposite structural

axes

Ply _mJor Poisson's ratio

Ply minor Poisson's ratio

Local curvature, x-direction

Local curvature, y-direction

Local curvature, twisting x=y plane
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TABLE 6. - MEASURED PLATE WARPAGE CORNER DE-

FLECTIONS (REF. FIGURE 1, a=b=12 IN., THICKNESS =

• 06 IN. GRAPHITE FIBER MOD-I/EPOXY ERLA 4617)

L_L_ate Corner deflections, in.

Maximum Minimum Due to

pcir.t C point D bending a twisting b

1.20 .80 1.00 i. L0

.22 .12 .17 _. 05

aBending component. : 1/2 (deflection at C + deflection _ D)

bTwisting component = 1/2 (deflection at C - deflection at D)
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stre_s.
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corner defied,on"_-nelc¢lgedimensionand radius of curvature.

L



• . 8F COt_

I I I
0 1.0 2._) 3.0 4.0 5.0

A0. 0IG

Figure 3. - Predicted m_timum .mrplje corner dlfklction
(pointC, rug. 1, a - b - 10 in. )due to residualstress in
i I0,,. 4.30+A0, -30, ;30. 02)Jaminatefrom MOD-I/_II.A-
aelfcompos_ ato.5 f_r _ume rU_ and AT- -3m° F.
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Ficjure4. - Predictedmaximum_rpage corner
deflection(pointC, fig. 1, a - b - 10 in. ) due
to residualstress in a 10_5, -45,445+A@,0_
laminatefrom MOD-/JER[.A-4617com_esiteat
0. 5 fiber volumeratioand AT - -300v F.
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Figure 5. - Predicted maximum u_lriuagecorner

deflection (point C, fig. l, a - b - 10 in. ) due

to residual stress in a [02, z'.45,-45+A8, +45,0,2J

laminate from MOD-]JEREA-4617 com_osite at-
O.5 fiber volume ratio and AT - -300 vF.
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Figure 6. - Predicted maximum warpage corner
deflection (point C, fig. ], a - b • IO in. ) due

to residual stress in a l02. z'457_45_A8. 0.2]
laminate from MOD-]/ER[A 4617 composi|e at
0,5 fiber volume ratio and AT - -300 o F.
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Figure 7. - Prtdictmlmaximumv_rl_Je corner dertectim
(pointC. fig. 1. a • _ • IO in. _clue to resist stresses
in aJ+6dk -O4] unsymmetriclaminate madefram
MOD-I/ER_ 4617at O.5 fiber volumeratioand AT -
-3oooF
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Figure 8. - Predictedmaximummmrl_gecorner deflection(pointC.
fig. ]. a - b - lO in. )due to residualstress in a 102.±45. _r45,0._
laminztewith voidvolumeratio kv 14(O.OI4(kv)l madefrom
MOD-[/ERLA-4617compositeat0.5 fiber volumeratio and AT -
-300e F.
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