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ABSTRACT

This report describes in detail the design of 20-mm bore ball bearings for

cryogenic turbo-machinery applications, operatingup to speeds of 120,000

rpm. The report includes also a special section on the design of hybrid

bearings, each hybrid bearing being composed of a ball bearing in series

with a conventional pressurized fluid-film journal bearing.

In addition to the bearing design, full details are also presented on the

design of a test vehicle which possesses the capability of testing the above

named bearings within the given speed range under externally applied radial

and axial loads.
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SUMMARY

This report describes the design of a test vehicle and bearing components for

testing and evaluation of bearing systems operating at high speeds in LH2 . The

test program will be carried out at NASA-Lewis facilities.

Within the scope of this program, two rotor supports were considered --- one

consisting exclusively of ball bearings, and the other of hybrid bearings.

The ball bearing supported rotor employs two duplex-mounted pairs of 20 mm bore

bearings. The results of the ball bearing analyses indicate that a light series

20 mm bore bearing employing a complement of nine - 6.35 mm (0.250 in.) diameter

balls, and Armalon or lead-alloy coated, outer ring guided cages, represents an

optimized selection for this application from the standpoint of fatigue life

and wear. The conditions at which these bearings are required to operate do

exceed the present state-of-the-art, and no reliable quantitative estimates re-

garding bearing life can be made at this time.

The hybrid bearing design consists of a pair of hybrid assemblies, each of which

employs.a duplex-mounted ball bearing in series with a hydrostatic fluid-film

journal bearing. The fluid-film bearing is located on the outer diameter of the

duplex bearing housing. To minimize power loss, the ball bearing outer diameter

had to be reduced resulting in the use of an extra-light series 20 mm bore ball

bearing with ten 4.76 mm (.1875 in.) diameter balls. Analyses indicate that a

hybrid bearing mode of operation can be achieved over a wide range of conditions.

When the bearings operate in the hybrid mode, the ball bearings should approach

solid body rotation, at which point fatigue and wear life problems become mini-

mized The fluid-film bearings are designed to operate on a film of LH2 . Con-

tact between the stationary and rotating elements should take place normally at

start or stop only. Starts and stops will be performed primarily on the ball

bearings, thus, minimizing wear in the fluid-film bearings.

The test vehicle is designed to alternately accept the two types of rotor

supports. Both test systems have undergone an extensive design study which

1



included the following:

* Geometric Configuration Study

* Rotor Dynamics Investigation

* Thermal Analysis

* Seal Investigation

* Turbine Design

* Instrumentation

* Selection of Materials

The final tester configuration which evolved from the design analysis represents

a reasonable compromise between the requirements of the tester and the limitat-

ions placed on it by physical restraints. A comprehensive discussion of the

design details, together with a detailed description of each tester and its

associated instrumentation,.is presented.
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INTRODUCTION

The objective of this program is to design and manufacture rolling-element bear-

ings, hybrid bearings, and a test vehicle capable of operation at 120,000 rpm

with controlled thrust and radial loading applied to the rotary system.

The operational requirements of the Shuttle Program impose severe conditions

upon the operation of rotary shaft systems employed in the Tug's LH2 turbo-pump

engines. Most, if not all, liquid hydrogen pumps developed to date use rolling-

element bearings for rotary supports. Operation of actual pumps as well as

rolling-element bearing tests performed in LH2 media have, so far, disclosed

that lack of lubrication is one of the most serious problems which limit the

life of the rolling-element bearing. One practical way of bearing lubrication

most frequentlyemployed, consists of the incorporation of bearing retainers made

of materials known to possess good lubricating characteristics. Using this

approach, the life of the rolling-element bearings has been limited mainly to

the progression of wear. Bearing lives of 20 hours and above have not been un-

common in some up-to-date pump applications where the DN values did not exceed

1.8 million. The new generation of pumps, however, requires high speeds of

operation (DN of 2.4 million) which exceed the limitg of the present-day ex-

perience. This extension of the state-of-the-art, in turn, calls for a new

developmental effort.

As an alternate to the ball bearing system, fluid-film bearings operating in

liquid hydrogen on the hydrostatic or externally pressurized principle have been

designed and tested (References 1, 2). The major problems encountered with

these bearings fall within the area of high-speed rubs and wear at lift-off or

shut-down. High-speed rubs occur as a result of excessive rotor excursions

caused by sudden shock or transient operation through regimes of inherent rotor

instability. The extent of wear at lift-off or shut-down depends upon the speed

at which a machine is capabl e to develop the pressure differentials required to

sustain hydrostatic (or for that matter also hydrodynamic) lubrication.

In order to by-pass the fatigue life and wear problems inherent in rolling-

element bearings or journal bearings operating at cryogenic conditions, combin-



ations of hydrostatic journal bearings and ball bearings known as hybrid bear-

ings have been tried. The results of design studies and tests performed to date

indicate that the hybrid bearings possess good potential for reduction of the

major problems inherent in either the ball bearing or the hydrostatic journal

bearing systems. Within the scope of this program, two approaches to the high-

speed bearing design problem: were undertaken, i.e., rolling-element bearings,

and hybrid bearings were designed and manufactured.

In parallel with the bearing work, a test vehicle capable of accepting the con-

templated beating geometries has been designed. The test vehicle operational

parameters such as thrust load range, radial load rangey.,flow range, speed

range and temperature and pressure ranges have, in most cases, been specified

by NASA Program Management.

The Final Report presents the results of the rolling-element bearing design,

hybrid bearing design, and the design of the test vehicles to be used in the

bearing evaluation program. Principal calculations are performed in English

units.
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TECHNICAL DISCUSSION

A. Ball Bearing Design

One of the requirements of the design study was that the rolling-element bearing

consist of an angular contact, separable, 20 mm bore ball bearing.

The angular contact ball bearing can be employed either as a singular bearing

element, located at each end of the rotating shaft, or in a duplex bearing

arrangement - in which case, two ball bearings are employed at each rotor

support position.

The decision as to whether a singular or a duplex-mounted bearing arrangement

should be used depends upon the type of the vehicle as well as upon various

design details incorporated in the vehicle in which the bearings are to be

used. Whereas, in most applications, singular ball bearing components pre-

loaded so as to minimize excessive sliding of the balls are successfully used,

in high-pressure turbo-machinery, the thrust and sometimes also radial loads

are high enough to preclude their use. Instead, the bearings are mounted in

duplex pairs. The duplex bearing design arrangement affords the opportunity of

preloading one bearing against the other at each rotor support position. As a

result of this type of preload, the bearings can be mounted so as to permit axial

floatation of the rotor bearing system. This has its advantages inasmuch as a

balance piston can be then employed to automatically balance out the axial load-

ing during operation, thus reducing the thrust load capability requirements of

the ball bearings and rendering the ball bearings less susceptible to the wear

and fatigue life problems normally encountered.

Within the scope of this program, a singular and duplex bearing arrangement was

designed. The singular arrangement will be employed in tests designed to estab-

lish the preload requirements for the ball bearings. Once the minimum amount of

preload required to prevent excessive skidding within the ball bearing has been

established, this preload will be built into the duplex bearing arrangement and

a new series of tests performed utilizing the duplex bearing set-up.
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Another aspect of the duplex ball bearing design is also covered in this report.

This aspect pertains to the utilization of the duplex-mounted bearing pair as a

component of a series hybrid bearing arrangement. The performance character-

istics ofthe series hybrid bearing are discussed in Section B. The different

mode of the ball bearing operation within a hybrid bearing arrangement requires

angular contact ball bearings which are compatible with this mode of operation.

Hence, the basic objectives of the ball bearing design became to design bearings

capable of supporting the shaft at the given conditions of operation when employ-

ed independently, or in conjunction with a fluid-film bearing as is the case in

the hybrid bearing arrangement.

The design process consisted of the establishment of the physical envelope

limitations, selection of bearing materials, selection of the cage configur-

ation, and an analytical optimization study. The final bearing geometries,

which were arrived at as a result of the above study, were then subjected to a

performance analysis. During this stage, thermal and centrifugal expansion

and/or contraction was accounted for as was operation at various speeds and

loads.

1. Envelope Limitations

The overall bearing dimensions, i.e., its bore diameter, outer diameter and

width, as well as the ball size, have been selected from standard AFBMA

sizes. The maximum speed of 120,000 rpm and bore diameter of 20mm initially

specified as design goals, permit the use of either the extra-light or the

light series ball bearing. The standard envelope defining a light series

ball bearing, as well as that defining an extra-light bearing, is given in

Table I.

TABLE I

BEARING ENVELOPE DIMENSIONS

INNER DIAMETER OUTER DIAMETER WIDTH

mm (inches) mm (inches) mm (inches)
LIGHT
SERIES (L) 20 (.7874) 42 (1.6535) 12 (.4724)

EXTRA-
LIGHT (LL) 20 (.7874) 37 (1.4567) 9 (.3543)
SERIES

6



The envelope dimensions specified in Table I impose physical limitations

upon the ball diameter and number of balls that can be utilized. The

combination of the number of balls and ball diameter is limited by the

available pitch circumference, by the minimum spacing between balls (from

here on identified as the web thickness) required to maintain a sound cage

design, and by the minimum outer and inner ring wall thickness. Utilizing

a minimum cage web thickness of 3.81 mm (.150 in.) recommended by Reference

3, as a limiting factor, and a minimum of 1.575 mm (.062 in.) as a minimum

wall thickness for the outer and inner rings, the permissible ball size as

well as the maximum number of balls can be calculated. The results of this

calculation are shown in Table 2.

TABLE 2

APPLICABLE BALL SIZE AND NUMBER OF BALLS

PITCH CIRCUMFERENCE PERMISSIBLE BALL SIZE MAXIMUM BALL NUMBER

mm (inches) mm (inches) mm (inches)

LIGHT
LIGHT (L) 97.38 (3.834) 4.76 (.1875) 10
SERIES

5.55 (.2187) 10
EXTRA- 6.35 (.25) 9

LIGHT (LL) 89.5 (3.5250) 4.76 (.1875) 10
SERIES

2. Bearing Materials

Bearings for process fluid lubrication in systems employing LH2 have, in the

past, been made -of SAE 52100 or AISI 440 C stainless steel. The 440 C stain-

less steel has been more frequently used, mainly because of its better

corrosion resistance. The original NASA specifications call for the use of

440 C stainless steel bearings.

The fatigue life of a.440 C stainless steel bearing is a function of material

cleanliness (Ref. 3) and hardness (Ref. 4). The cleanest bearing material

is obtained through the consumable electrode vacuum melting technique (CEVM).

Hence, the materials to be used in this application will all be produced by

CEVM processes. The hardness of the material can be controlled through



proper heat treatment. Bearing hardness in general, should not fall below

58 RC. A normal, acceptable bearing material hardness range runs from 58

to 63 RC.

Another aspect of proper material utilization involves the dimensional

stability of the bearing material selected. Dimensional stability can be

obtained through a stabilization process consisting of repeated cycling

down to LN2 temperatures followed by tempering. The stabilization of the

440 C stainless steel bearings for cryogenic use has been included in the

overall bearing specifications.

The selection of the cage materials forms a critical part of the bearing

design. The cage, in addition to serving the function of a ball separator,

also acts as the main reservoir of the lubricant. The material acting as

the lubricant can be either incorporated into the basic matrix of the

material structure or deposited in the form of a solid film on the outer

cage surfaces. Cage materials which have been tried in LH2 applications are:

* Reinforced PTFE (Armalon, Rulon)

* Salox-M Bronze-filled PTFE

* Polyimide Bronze (60% - 40% by volume)

* Silver Polyimide Tungsten Diselenide (75% - 20% - 5% by volume)

* Reinforced Polymers of the PBI type (Polyimide reinforced with Brass)

* Silver matrix composites

* P-77 Lead alloy coated steel (87.5 Pb, 10 Sn, 2.5 Cu)

Of the above materials, Armalon performed consistently well in a number of

high-speed, cryo-turbo-pump applications, (Reference 5). In recent testing

performed at NASA, (Ref. 6), the lead alloy coatings on metal substrates

also provided promising results. In view of the past experience, it is

recommended that Armalon and P-77 coated steel cages be selected for test

in the ball bearing supported rotor.

In hybrid bearing designs, the ball bearing cage is expected to operate

8



at the full speed of rotation of 120,000 rpm. In normal ball bearing

installations, the cage speed would not exceed 60,000 rpm at a shaft

speed of 120,000 rpm. Because of the speed difference, the cage material

used in the hybrid bearing must be capable of sustaining the high stress

levels expected at these speeds. Only steel or titanium alloy cages

possess this capability. Hence, in hybrid bearing applications, P-77 -

coated 440 C stainless steel and/or P-77 - coated Ti - 5 Al - 2.5 Sn should

be employed. Physical properties of the selected bearing materials can be

found in Appendix A.

3. Cage Configuration

At present, a bearing operating above 600,000 DN is considered to be a high-

speed bearing and a bearing operating above 1,000,000 DN an ultra-high-speed

bearing. These lines of demarcation were arrived at by experience and

usually as a result of a given cage design becoming inadequate beyond a

given speed range. The question of cage adequacy gains in importance when

the bearing is deprived of good lubrication and must depend upon the cage

to serve as a reservoir and supply source for the lubricant. In this case,

factors affecting cage guidance, cage geometry and cage materials must be

given special considerations.

a. Inner Versus Outer Ring Riding Cages

Although most of the high-speed cage designs presently in use are

outer riding, and considerable theoretical and practical experience

indicates the desirability of such configurations, it may be of

interest to describe the relative merits of inner versus outer ring

riding cages, particularly in view of the controversial manner in

which this problem is regarded in the industry. The following

advantages and disadvantages are based upon adequate lubrication.

Applicable advantages of outer (versus inner) ring riding cages:

* Better lubrication is afforded both rolling elements

and cage control surface.

* Lower relative rubbing velocity on control surface.



* Lower bearing pressure per unit area on control surface.

* Control surface contacting cooler outer ring permits

easier heat removal from separator. Inner ring con-

trolled separator is fed heat from hotter inner ring.

Disadvantages of outer (versus inner) ring riding cages:

* High mass moment of inertia and weight.

* Lower strength-to-weight ratio.

* Careful attention must be given to clearance between

cage O.D. and outer ring guiding lands to avoid

possibility of seizure due to different expansion rates.

Cryogenic lubrication is in a sense unique since the problems normally

associated with heat are non-existent, i.e., there is normally ample

cooling available to remove most of the heat generated, thus drastic-

ally reducing the problems due to high temperature. Moreover, low

temperature operation with lubricant containing cages imposes also

several unique problems in the choice of cage guidance. Because the

coefficient of thermal expansion of self-lubricating cages is much

higher than that of the bearing material, cage-to-land clearances are

easier to control at a nominal value when the design is inner race

riding. This is, however, counter-balanced by higher wear rates due

to higher rub velocity at the inner race and enhanced possibility of

cage excitation due to inner race runouts. In armoured cages, because

of structural weakness encountered in the cage material, the centrifugal

retention occurs at the outer diameter; hence, inner race guidance be-

comes mandatory.

It is a fact that most LH2 high-speed bearing configurations employ

outer race guidance, (Ref. 5, 7). Recent test results for bearings

operating in LH2 published by NASA (Ref. 6), also indicate, on the

average, a higher degree of success in terms of longer lives achieved

with the outer race guided cage.
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b. Cage Geometry

The selection of a machined outer race guided cage eliminates, for all

practical purposes, designs employing armoured cages. The machined

cage has been extensively used in the NERVA LH2 turbomachinery design

(Ref. 5, 7), as well as in the NASA tests.

The machined cage, with chamfers around the ball pockets is ideally

suited to accommodate the materials and lubricants, the selection of

which has been discussed in the preceding sub-section.

4. Analysis

Having established the physical limitations of the bearing envelope, the

pertinent ball sizes, applicable bearing materials, and cage geometry, the

next step was directed toward the optimization of the bearing geometry. The

optimization study was performed utilizing the Rolling-Element Bearing

Computer Program available at MTI.

The variables of particular interest in the optimization study were:

* Number of Balls

* Ball Size

" Curvature Ratios

* Contact Angle

The relative soundness of the design evolving from this study was measured

by the following parameters:

* Fatigue Life

e SV Values

* Maximum Stress

* Torque

A description of the above parameters is given in what follows.

Fatigue Life - The fatigue life is indicative of the statistical fatigue

life of a bearing designed to operate with a 90% probability of survival.

The higher the fatigue life, the greater the improvement in system reliabil-

ity. The fatigue life calculations cited in this report are based on
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modified AFBMA procedures (Reference 8) employed in the rolling-element

bearing computer program which, in the past, have proven to be extremely

conservative for oil lubricated systems. There are some indications that

in well lubricated oil systems, the actual fatigue life may be as high as

10 times that calculated by the AFBMA methods, but under conditions of

marginal bearing lubrication, the fatigue life may turn out to be appreci-

ably lower-than that predicted by the computer program. How this life

compares with that obtained in LH2 lubricated systems is difficult to

establish. Considering the uncertainties involved in fatigue life

calculation, the designer must minimize the chances of failure by attempt-

ing to obtain as high a fatigue life as possible.

SV - The SV value represents the maximum product of stress times velocity

of spin in the Hertzian contact zones. Experience has shown that the higher

the SV value, the higher the potential for material removal through the

process of wear. In the past, successful ball bearing operation in LH2 was

achieved up to SV values of 12 x 105 (ib/in2 x ft/sec* - Reference 7).

Operation at higher values, to the best of the author's knowledge, has not

been attempted. Considering the past experience, to render the bearing less

susceptible to wear, the SV values should be maintained at as low levels as

possible.

Stress - The maximum stress criterion is used in order to assure that the

stress levels during operation are low enough to avoid permanent deformation.

According to the criteria established in Reference 4, the maximum deform-

ation must be maintained below 0.0001 d where "d" is the ball diameter.

More recent results (Reference 9) indicate that for 440 C stainless steel,

a mean contract stress below 330,000 (maximum stress of 495,000 psi)

represents a safer standard of acceptability than the 0.0001 d deflection.

Torque - The value of torque enters into the system efficiency calculations.

Excessive bearing torques cause high heat rejection which, in turn, requires

high rates of coolant flow. Consequently, bearing torque should be main-

tained at as low a level as possible. The hybrid bearing arrangement presents

The SV product will be from hereon used without reference to dimensions.
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an exception to that rule. Here, the ball bearing acts as a clutch through

which sufficient torque must be transmitted to drive the fluid-film bearing.

This requires a certain minimum torque load at the ball bearing.

a. Effects of Ball Diameter Change

The study of envelope limitations resulted in the definition of an

applicable ball size range. The permissible ball diameters fall

within 4.76 mm (0.1875 in.) to 6.35 mm (0.25 in.). To evaluate the

effect of ball size on bearing performance, the number of balls, thrust

load, radial load, pitch diameter, outer race curvature and inner race

curvature, as well as the contact angle have been maintained constant

at the values shown in Figure 1.

Bearings with variable ball diameters have been analyzed in the Rolling

Element Bearing Program at a speed of 120,000 rpm of inner race rotat-

ion. The effect of ball size on fatigue life, SV value, torque and

maximum stress is plotted in Figures 1 through 4.

Within the range of ball diameters examined, the fatigue life increases

with ball size, the difference between the 4.76 mm (.1875 in.) ball

diameter and the 6.35 mm (.25 in.) ball diameter being about 8%. The

SV value decreases with an increase in ball diameter by 21% and the

maximum stress which is encountered on the outer race increases by 3%.

This increase is, however, accompanied by a considerable decrease in

the stress at the inner race. The maximum stress is still well below

the brinelling stress limit of 3.41 x 109 N/m2 (495,000 psi).

The increase in fatigue life accompanied by a substantial decrease in

the SV values characteristic of the increased ball size, suggests

that the largest possible ball size, i.e., 6.35 mm (.25 in.) should

be used in order to maximize the fatigue and wear life of the bearing.

The torque increase which accompanies that selection is still reason-

able and the maximum stress is maintained well below the brinelling

limit.
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Fig. 1 Effects of Ball Diameter on Bearing Fatigue Life
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Fig. 3 Effects of Ball Size on Frictional Torque
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b. Selection of the Number of Balls

The effect of the number of balls on the selected design criteria, is

shown in Figures 5 through 8. Because of envelope and ball diameter

limitations, the number of balls cannot exceed 10. Examining the

differences between an 8 and 10 ball complement bearing - the bearing

fatigue life decreases as the number of balls increases. This holds

true for high-speed applications only, where the beneficial effects,

accomplished through the reduction in the externally imposed loading

per ball, are offset by the increased number of stress cycles at the

races. The difference in fatigue life, between an 8 and 10 ball

complement is, however, small and may be considered, for all practical

purposes, negligible.

The SV value decreases as the number of balls is increased, the SV

value with 10 balls being approximately 11% lower than that with 8

balls.

The effects of the number of balls, between the 8 and 10 ball complement,

on torque and outer race stress, are considered negligible.

Although the reduction of the SV values indicates that the bearing wear

rate could be minimized with a further increase in the number of balls,

cage web thickness limitations dictate that the maximum number of balls

for the extra-light series bearing be kept at 10 and that for the light

series bearing at 9.

Having established the ball size and number of balls, the next factors

to be evaluated are those of inner and outer race curvatures and the

contact angle. These factors, in combination with the ball size,

number of balls and pitch diameter, define the internal bearing geometry.

c. Race Curvature Optimization

Race curvature is' defined as the ratio of the radius of curvature of the

race to the ball diameter. The closer this ratio approaches 0.5, the

better the conformity and the lower the Hertzian stresses. There are,

18



54
BALL DIAMETER 4.76 mm

52 (.1875 IN.)
THRUST LOAD = 445 N (100 LB)

u 50 RADIAL LOAD = 0.0 N(LB)
PITCH DIAMETER = 31 mm

o 48 (1.2204 IN.)
m- OUTER RACE CURVATURE = .52
U 46 INNER RACE CURVATURE = .52

CONTACT ANGLE = 200
11w 44

o

42

z 40

w 38

36

34
7 8 9 10 II 12

NO. OF BALLS
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however, physical limitations imposed by the need to maintain a certain

ball-to-race clearance and by machineability tolerance requirements

which limit this ratio to a minimum of about 0.52. The fatigue life

of a bearing normally decreases with an increase in the curvature ratio.

Because of the low fatigue lives calculated for'the 0.52 curvature

ratios assumed in the preceding examples and the anticipated further

decrease as the curvature ratio increases, a maximum curvature limit

of 0.56 was set for the inner and outer races in the race curvature

optimization calculations.

The effect of outer race curvature (f ) and that of inner race
o

curvature (f ) on the performance of the bearing design parameters

previously selected, is shown in Figures 9 through 12 for the 4.76 mm

(0.1875 in.) diameter balls, and in Figures 13 through 16 for the

6.35 mm (.250 in.) diameter balls.

Comparing the fatigue life results presented in Figure 9 for the small

size balls, and Figure 13 for the larger ball size, it is apparent that

for any given outer race and inner race curvature combination (with the

exception of f = 0.56 and f. = 0.52) the B10 fatigue life of the
o 1

bearing will be higher when the larger size ball is used. The fatigue

life decreases at a fast rate with an increase in outer race curvature

because of reduction in Hertzian contact area and high load at the outer

race, due to centrifugal inertia effects. Inner race curvature effects

on the fatigue life are pronounced only at 0.52 outer race curvature

ratios when the smaller size balls are employed.

The trends shown.in Figure 10 and 14 for the SV value variation with

inner race and outer race curvatures are similar, the exception being

that the SV values for the larger size balls are appreciably lower

than those with the smaller size balls. In general, the SV value de-

creases with increase in inner race curvature. The reverse holds true

for the outer race curvature. Here, however, the increase in SV with

increasing outer race curvature is not very pronounced.
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Fig. 9 Effect of Race Curvature on Bearing Fatigue Life
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28



55II
BALL DIA. = 6.35mm (.250 IN.)

53 - - NUMBER OF BALLS = 9
CONTACT ANGLE = 200

51 PITCH DIA.= 31mm (1.2204 IN.)
RADIAL LOAD = 0.0 N(LB)

49 THRUST LOAD = 445N (100 LBS)

47
0

45

41

39337

35 \f 56

29

25
.52 .53 .54 .55 .56

INNER RACE CURVATURE (f I)

Fig. 14 Effect of Race Curvature on Wear Factor

29



BALL DIAMETER = 6.35 mm (.250 IN.)
NUMBER OF BALLS= 9 -.55
CONTACT ANGLE = 2000.6 PITCH DIA. = 31 mm (1.2204 IN.)

RADIAL LOAD = O.ON (LB)
THRUST LOAD 445 N (100 LBS) .50

.45
0.5

E
' \ .40

o 0.4 35

ofo = .52

. fo =  154

--- - f0 = .56
.20

0.2
.52 .53 .54 .55 .56 .57

INNER RACE CURVATURE (f1)

Fig. 15 Effect of Race Curvature on Frictional Torque

30



28 -

26 l . 38
_fo =  .56

o 24 0
x;Z fo= .54 34o x

22 32
fo= .52 -30

n 20 D 28
18 

26
.52 .53 .54 .55 .56

INNER RACE CURVATURE (fi)

16
.BALL DIA. = 6.35 mm (.250 IN)

15 - BALL DIA. = 6.35 mm (.250 IN) - 22
NUMBER OF BALLS = 10
PITCH DIA.=31mm (1.22 IN) 21

o14 CONTACT ANGLE = 20 - 2
RADIAL LOAD = O.ON(LB) 20

13 THRUST LOAD = 445 N (00 LB) 19

1 -- 18

- 17 x
II .52

.54 fo

II

C-,j

31
31



The frictional torque is larger for the large ball size because the

centrifugal inertia effects are more pronounced due to larger ball

mass. Comparing the plots shown in Figures 11 and 15, appreciable

decreases in torque can be obtained through an increase in the inner

race curvature. The same trend is also apparent from an increase in

the outer race curvature.

The maximum stress values at the inner and outer races, shown in

Figures 12 and 16, for the smaller and larger size balls, remain

still well within the limits specified for permanent deformation.

Summarizing the results of the examination of the plots shown in

Figures 9 through 16, the indications are clear that the outer race

should be maintained at the curvature ratio of 0.52, in order to

obtain the highest fatigue life, as well as the lowest SV values.

This holds true for the bearing with the 6.35 mm (.250 in.) diameter

ball and the bearing with the 4.76 mm (.1875 in.) diameter ball. In

the process of using fo = 0.52, one must realize that the frictional

torque would be somewhat higher over that obtained with higher curvat-

ure ratios at the outer race, but this appears to be the only penalty

involved in the overall compromise. The maximum stresses are greatly

reduced through the use of the low curvature ratio, 0.52.

Having selected an outer race curvature of 0.52, one can examine now

the inner race curvature behavior in greater detail. Turning to

Figures 9 - 12 for the small diameter ball bearing, the fatigue life

drops off as the inner race curvature increases. The change in inner

race curvature from 0.52 to 0.56 represents a 32 percent drop in

fatigue life. At the same time, the SV value also decreases.

The overall drop between the inner race curvature of 0.52 and that of

0.56 is equal to 32%. Thus, the drop in fatigue life appears to have

been made up, to some extent, by a similar decrease in the SV values.

The slope of the SV curve is low between f. values of 0.54 and 0.56
1

and high between the 0.52 and 0.54. A value of 0.54 would thus
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represent a reasonable compromise. At this point, the fatigue life

decreases by only 18% over that at 0.52 and the SV value decreases by

23.5%. The torque at f. = 0.54 is not very much different from that
1

at 0.56. However, a reasonable torque reduction can be obtained be-

tween 0.52 and 0.54. The maximum stress is still well below the

specified safety limits. On the basis of the above'observations, a

curvature ratio at the inner race of 0.54 was selected.

With the 6.35 mm (0.25 in.) ball (see Figures 13-16), the variation

of the inner race curvature does not seem to appreciably affect the

fatigue life, however, a significant decrease in the SV values can

be obtained through an increase in the inner race curvature. The

torque value for the bearing also appreciably decreases as the inner

race curvature is increased, and the maximum stress remains relatively

unaffected by the inner race curvature. Because of this behavior, an

inner race curvature of:0.56 would be highly advisable for this type

of a design; the only factor adversely affected by it (the bearing

fatigue life) shows an insignificant change within this range of

curvatures.

Based upon the above examination of the data, the outer race curvature

ratio for both bearings should be fixed at 0.52. The inner race curva-

ture ratio for the 4.76 mm (0.1875 in.) ball bearing should be 0.54

and that of the 6.35 mm (0.250 in.) ball bearing, 0.56.

d. Effect of Operational Contact Angle

Once the ball size, number of balls, and the outer and inner race

curvatures have been established, it remains to define the operational

contact angle in order to fixr the b earing geometry. The operational

contact angle represents the actual contact angle in the bearing as it

would appear in its fully assembled state, at the given speed, and

temperature of operation. In order to arrive at the design, or initial

contact angle, the effects of shrink-fit, centrifugal growth, and

temperature have to be compensated for. This will be done in a later

section, dealing with the examination of the bearing performance over
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its full operating range. In this section, the number of balls, ball

diameter and curvature ratios arrived at above, were used as constants

and the contact angle was varied between 120 and 25*. Two sets of

curves were prepared, one for the 4.76 mm (0.1875 in.) ball and one for

the 6.35 mm (0.250 in.) ball diameters. The results are shown in

Figures 17 - 24.

Regarding the effects of contact angle, the following conclusions hold

for either the small or the larger size bearing:

* The bearing fatigue life increases with the contact angle.

* The bearing SV values increase with the contact angle.

* The bearing torque remains essentially constant.

* The bearing outer race stresses remain constant.

* The bearing inner race stresses decrease as the contact

angle is increased.

The key compromise to be struck in the selection of contact angle,

involves thus, the fatigue life and the SV values. Examining the

curves for the smaller diameter balls, the fatigue life increases

by 30% as the contact angle is raised from 120 to 220, and remains

reasonably constant from 220 up to the maximum value of 250. With

the larger diameter balls, an increase of 48% can be obtained over

a similar contact angle range. The increase in SV values is 25% for

either the smaller or the larger ball size, over a similar range of

contact angles. The design contact angle can be expected to vary by

+ 20, under the best of manufacturing conditions. In view of this,

an angle of 200 - 240 should represent a reasonable compromise between

the bearing fatigue and SV values.

e. Preliminary Bearing Geometry Specifications

The preceding sections outlined in detail the reasoning behind the

selection of the bearing geometry. A summary of the effects of the

bearing variables on the design parameters is presented in Table 3.
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Fig. 20 Effect of Contact Angle on Compressive Hertz Stress
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52 BALL DIAMETER = 6.35mm(.250 IN)
INNER RACE CURVATURE =.56

51 OUTER RACE CURVATURE=.52
NUMBER OF BALLS =9

50 PITCH DIAMETER =31mm (1.2204 IN)
THRUST LOAD = 455 N(LB)

49 RADIAL LOAD = 0.0 N(LB)
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Fig. 21 Effect of Contact Angle on Bearing Fatigue Life
(f - 0.52, f. - 0.56)
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34

33 BALL DIAMETER = 6.35mm (.250 IN)
INNER RACE CURVATURE =.56

32 OUTER RACE CURVATURE =.52
NUMBER OF BALLS = 9

31 PITCH DIAMETER = 31 mm(1.2204 IN)
THRUST LOAD = 445 N(100 LB)

-o 30 RADIAL LOAD = 0.0 N(LB)
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Fig. 22 Effect of Contact Angle on Wear Factor
(f = 0.52, f. - 0.56)
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.040I .
BALL DIAMETER= 6.35mm (.250 IN) -35
INNER RACE CURVATURE=.56

.039- OUTER RACE CURVATURE=.52
NUMBER OF BALLS=9
PITCH DIAMETER =31mm(I.2204 IN) -34
THRUST LOAD = 445 N (100 LB)E .038

z
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22 BALL DIAMETER = 6.35mm (.250 IN.)
INNER RACE CURVATURE = .56
OUTER RACE CURVATURE = .52
NUMBER OF BALLS= 9 -31
PITCH DIAMETER = 31 mm (1.2204 IN.)

21 THRUST LOAD =445N (100 LBS)
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Fig. 24 Effect of Contact Angle on Compressive Hertz Stress
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TABLE 3

EFFECT OF BEARING VARIABLES ON DESIGN PARAMETERS

AND BALL BEARING INTERNAL GEOMETRY RECOMMENDATIONS

Design Parameters Recommended Values

Fatigue Life SV* Torque Maximum Stress Extra-Light Series Light Series

Variable

(Increase in:)
4.76 mm 6.35 mm

Ball Size Incr. Decr. Incr. Incr. (0.1875 inch) (0.250 inch)

Number of Balls Decr. Decr. N.C. Decr. 10 9

Outer Race Decr. Incr. Decr. Decr. 0.52 0.52
Curvature

Inner Race N.C.-Decr. Decr. Decr. N.C. 0.54 0.56

Curvature

Contact Angle Incr.-N.C. Incr. N.C. N.C. 200 - 240 200 - 240

NOTES: Incr. = Increase

Decr. = Decrease

N.C. = No change

The SV value represents the maximum product of stress times velocity
of spin in the Hertzian contact zones. See page 12.



The same table also specifies the dimensional value of the variable

to be employed in two selected bearing configurations - one extra-light

series, and one light series bearing. The light series bearing is

superior to the extra-light bearing from the standpoint of fatigue life

and wear resistance. These characteristics place the light series

bearings as a prime candidate for use in exclusively ball bearing

supported systems.

Systems employing hybrid bearings require as low an outer diameter as

possible primarily because of the high fluid-film bearing losses

associated with the larger diameter (power loss in fluid-film bearings

is proportional to D). Because the relative rotation between the

ball bearing elements is expected to be greatly reduced in the Hybrid

Bearing System, the fatigue life and wear limitations presented by

the extra-light series ball bearing components greatly diminish in

importance. ' The use of the extra-light series bearing in the hybrid

bearing will thus enhance the possibility of successful operation. The

extra-light bearing, because of its reduced size can also be consider-

ed as a potential substitute for the light bearing in exclusively

supported ball bearing systems, when size, weight and torque losses

are at a premium.

As a result of the bearing optimization study, the following recommend-

ations apply:

* For the single bearing pair rotor supported system light

series bearings should be used.

* The duplex pair supported system should also employ the

light series bearings.

* Extra-light bearings should be employed in the hybrid system.

5. Examination of Changes in Bearing Geometry Induced by the Conditions

of.0Operation

The rolling-element bearings proposed for this application will undergo

dimensional changes during installation and operation at test conditions.
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Within the scope of this program, the bearings are expected to pass through

four stages, each of which will contribute to a change in the bearing

dimensions. These stages are:

* Free State

e As Assembled

" As Assembled at Test Temperature

* At Test Temperature and Speed

The bearing free-state dimensions must correspond to those specified in the

procurement drawings and specifications.

During assembly, the bearing internal clearances will undergo a change be-

cause of the strains enforced by the fits of the bearing rings on the shaft

and bearing housings. Cooling of the assembled bearing down to the temper-

ature of operation will introduce additional changes in the bearing dimen-

sions. These changes will result mainly from the differences in the co-

efficients of thermal expansion of the shaft, bearing housing, and ball

bearing materials and will again affect the bearing internal clearance,

Finally, operation at full speed imposes centrifugal growth on the rotating

parts which, in turn, produce internal clearance changes within the bearing

The effects common to each of the above stages have been accounted for in

detailed calculations. The results of these calculations.are summarized in

Tables 4 - 9. The predominant changes introduced in the bearing as it

passes through the four stages are reflected mainly in the internal clear-

ance of the bearing; this, in turn, affects the contact angle. The pertin-

ent ball bearing and cage diameters are shown in Figure 25.

In the preceding sections, it was pointed out that the test plan includes

tests of single, duplex and hybrid bearing configurations. The single bear-

ing pair and duplex pair rotor supported systems are subject to the same

dimensional changes, hence, the analysis of one light series bearing will

apply to both rotor systems. The extra-light series bearing to be employed

in the hybrid bearing system will be mounted in duplex pairs, Since the
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bearings are identical in size, the examination of the behavior of a single

extra-light series bearing will also apply to the duplex mounto

As has been previously mentioned, the bearing materials consist of 440 C

for balls and races, and either glass-filled Teflon (Armalon), or lead

coated 440 C stainless steel will be used for the cages. The shaft will

be made of Inconel X-718.

The coefficients of thermal expansion of each one of the materials of

construction used in the bearing as well as in the forthcoming test

vehicle design are given in Appendix A.

a. Effects of Dimensional Changes - Light Series Bearing

To avoid excessive dynamic excursions caused by loose inner rings, the

bearing has to be designed to operate with an interference fit at full

speed in the expected LH2 environment. Centrifugal growth and thermal

shrinkage calculations were performed, the results of which indicate

that a nominal shrink fit of 0.028 mm (0.0011 in.) will be sufficient

to maintain interference at speeds up to 120,000 rpm. A listing of the

changes in the critical diameters as a function of temperature and

speed is given in Table 4. This table represents the values of the

inner and outer race groove diameters at room temperature, at room

temperature as assembled after the initial interference fit, at the

cryogenic temperature of -420°F, and finally, at the cryogenic temper-

ature as a function of speed, the speed running from 0 to 120,000 rpm.

The internal clearance of the bearing can be expressed as being equal

to:

D8 - D2 - 2 d = PD (1)

The relationship between the contact angle, curvature and the internal

clearance is as given in Eq. [2]:

2Bd - P

cos a 2Bd= (2)4 2Bd
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TABLE 4

CLEARANCES AND FITS FOR LIGHT SERIES BEARING

(Initial Interference = .0279mm (.0011")

D2*** D8 PE PD a
TEMP SPEED, RPM mm (in) mm (in) mm (10-3In) mm (in 3 i Deg.

oK oR

293 (528) 0 24.65 (.9704) 37.44 (1.474) 0.41 (16) 0.09 (3.63) 24.6

293 (528) 00 24.67 (.9713) 37.44 (1.474) 0.37 (14.7) 0.07 (2.73) 21.3

22 (40) 0 24.62 (.9693) 37.4 (1.4714) 0.38 (15) 0.08 (3.15) 23

22 (40) 40,000 24.62 (.9694) 37.4 (1.4714) 0.38 (15) 0.76 (3) 22.5

22 (40) 60,000 24.62 (.9694) 37.4 (1.4714) 0.38 (15) 0.76 (3) 22.5

22 (40) 80,000 24.62 (.9694) 37.4 (1.4714) 0.38 (15) 0.76 (3) 22.5

22 (40) 100,000 24.62 (.9695) 37.4 (1.4714) 0.38 (15) 0.76 (3) 22.2

22 (40) 120,000 24.62 (.9695) 37.4 (1.4714) 0.38 (15) 0.76 (3) 22.2

Bearing in free state

Installed bearing

PE - Axial play in ball bearing

PD - Radial Play in ball bearing

D2 and D8 are defined in Figure 25



where B = f + f. - 1, f = outer race curvature ratio, f. = inner race
0 1 0 1

curvature ratio and d is the ball diameter.

The relationship between PE (axial play) and PD is:

E DD

PE = 4Bd PD - PD2  (3)

The values of PE' PD, and the contact angle calculated for this

particular bearing assembly over the full range of speeds and

operating conditions are also given in Table 4.

The results indicate that the initial contact angle of 24.60 (prior to

assembly) will result in a contact angle of about 220 after the inter-

ference, temperature, and speed effects have been accounted for. This

value is in line with the results of the optimization study discussed

in Section A-1.

The maximum hoop stress occurs in the inner ring with the bearing

fully installed. The stress is equal to 35,840 psi. At cryogenic

conditions, this stress decreases to 21,309 psi, and at full speed of

120,000 rpm, the stress is 27,654 psi. These values are well below

the yield point of 440 C stainless steel.

Because of the relatively low speeds of cage rotation, (30,000 rpm max)

operation with Armalon cages is possible. Calculations of the effect of

cage speed on growth and stress produced the results shown in Table 5.

The maximum tangential stress at 60,000 rpm is less than 2,000 psi, which

is well below a 7,000 psi limit specified for this type of material, The

net maximum growth of the cage is only .013 mm (.52 x 10- 3 in.). The

outer and inner diameters, as well as the operational diametral clear-

ance for-the Armalon cage are also given in Table 5.

As a back up to the Armalon cage, a lead alloy coated steel cage will

also be manufactured. Since the cage will be made of the same material

as the bearing, the relative clearances should not change as the bearing
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TABLE 5

ARMALON CAGE DIMENSIONS

TEMP SPEED D 6  D CD
OK (R) RPM (mm) (in) (mm) (in) (mm) (mils)

293 (528) 0 34.4 (1.356) 34.5 (1.3604) 0.114 (4.45)
22 (40) 0 34.2 (1.3476) 34.5 (1.3581) 0.267 (10.5)
22 (40) 40,000 34.2 (1.3478) 34.5 (1.3581) 0.261 (10.3)
22 (40) 60,000 34.2 (1.3481) 34.5 (1.3581) 0.254 (10.0)

See Figure 25 for definition of D6 and D7.

CD = D7 - D6



is submerged in LH2 . Because the cage speed is close to one-half of

the bearing inner ring speed, centrifugal growth will be minimal. A

tabulation of centrifugal growth, shrinkage, and clearance effects is

presented in Table 6. The maximum hoop stress of the steel cage at

120,000 rpm of bearing rotation is 12,700 psi.

b. Effects of Dimensional Changes - Extra-Light Series Bearing

Hybrid Mode

When used as a component of the hybrid bearing, the ball bearing is

expected to approach solid body rotation. A drawing of the hybrid

bearing is given in Figure 26.

Since the bearing outer ring is expected to rotate at a speed close

to that of the shaft, the bearing housing will also rotate at the same

speed. The differences in the size and thickness of the bearing housing

and the bearing outer ring will cause the housing to grow centrifugally

at a rate faster than that of the bearing outer ring.

In order to maintain a close fit at the full speed of rotation (120,000

rpm) an interference of 0.018 mm (0.0007 in.) on radius between the

bearing housing and bearing outer ring is required at room temperature.

The fit at the inner race remains essentially the same as the one

specified for the light series bearing, i.e., 0.0127 mm (0.00055 in.).

The combination of a high interference fit at the outer and inner races

may critically affect the internal bearing clearance.

The variation in clearance and contact angle with each stage of operat-

ion is given in Table 7. With the assumed interference fits, the worst

situation develops when the fully assembled unit is cooled down to the

levels of operation. At this point, the internal clearance is nearly

0.008 mm (0.0003 in.) when an initial free contact angle of 240 is

assumed. To avoid total loss of clearance, the initial free contact

angle cannot be permitted to drop below 240.
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TABLE 6

440 C STAINLESS STEEL CAGE DIMENSIONS

TEMP SPEED D * D 7  C **
6 7 D

OK ( R) (RPM) (mm) (in) (mm) (in) (mm) (mils)

293 (528) 0 34.26 (1.3490) 34.54 (1.360) 0.15 (11)

22 (40) 0 34.20 (1.3466) 34.48 (1.3576) 0.15 (11)

22 (40) 20,000 34.21 (1.3467) 34.48 (1.3576) 0.15 (10.9)

22 (40) 40,000 34.21 (1.3468) 34.48 (1.3576) 0.15 (10.6)

22 (40) 60,000 34.21 (1.3471) 34.48 (1.3576) 0.14 (10.5)

See Figure 25 for definition of D6 and D7 .

CD = D7 - D6



TABLE 7

CLEARANCES AND FITS FOR EXTRA-LIGHT SERIES BEARING - HYBRID ASSEMBLY

(Initial Interference at Bearing Bore = 0.0279 mm (0.0011"), at Bearing O.D. = 0.0355 mm (0.0014")

TEMP SPEED D2 * D D * P D -

OK CR) RPM mm (inch) mm (inch) mm (inch) mm (inch). D

293 (528) 0** 23.74 (.9345) 33.82 (1.3114) 41.76 (1.6440) .033 (.0013) 24.0

293 (528) 0*** 23.76 (.9354) 33.29 (1.3108) 41.78 (1.6448) .010 (.0004) 11.0

22 (40) 0 23.71 (.9334) 33.23 (1.3081). 41.69 (1.6412) .008 (.0003) 9.5

22 (40) 40,000 23.71 (.9335) 33.23 (1.3084) 41.70 (1.6416) .013 (.0005) 12.0

2.2 (40) 60,000 23.71 (.9335) 33.24 (1.3088) 41.71 (1.6420) .023 (.0009) 16.3

22 (40) 80,000 23.71 (.9335) 33.26 (1.3094) 41.72 (1.6426) .033 (.0015) 21.0

22 (40) 100,000 23.71 (.9336) 33.28 (1.3101) 41.74 (1.6433) .053 (.0021) 25.0

22 (40) 120,000 23.71 (.9336) 33.30 (1.3110) 41.75 (1.6438) .076 (.0030) 30.0

For definition of D see Figure 26.
**
Bearing in free state

***
Installed Bearing

PD: Axial Play of Ball Bearing

a: Contact Angle



With the initial free contact angle of 240, the contact angle at full

speed of 120,000 rpm will be close to 300. Since, however, the relative

rotation between the bearing will be minimal at that speed, the fatigue

and wear aspects are less important. The major concern is that the

Hertzian zone of the ball to inner race contact does not extend beyond

the bearing shoulder. The shoulder height ("H") at the inner race is:

D -D
H = 2 1.07 mm (0.042 inches)

The ratio of the shoulder height to ball diameter is:

H
-- x 100 = 22.3%
d

According to the computer calculations, the maximum ratio anticipated

at the extremity of the Hertzian contact zone is 20.7%. This ratio

represents a very conservative estimate and will occur at the full

speed of 120,000 rpm with an initial preload of 100 lb. Although a

larger margin of safety in this area may be desirable, further increase

in D3 will impose greater restrictions on the flow through the bearings.

The dimensional changes introduced in the cages selected for this

application are shown in Table 8, for the 440 C and Ti-5Al-2.5 Sn

titanium alloy. The dimensions for the two materials are the same

because the differences in density are counteracted by similar differ-

ences in the moduli of elasticity, and the coefficients of thermal

expansion are closely matched.

The relatively tight clearances imposed in the cage-to-land area are

necessary to reduce the magnitude of unbalance caused by the eccentric

displacement of the cage within the bearing. The maximum eccentricity

is equal to the radial clearance, hence:

Max. Unbalance we

where w = grams (oz)

e = eccentricity - mm (in)



TABLE 8

CAGE DIMENSIONS AFTER PLATING
(440 C Stainless Steel and Ti - 5A1 - 2.55Sn)

TEMP SPEED D6* D *q

K (OR) RPM mm (inch) mm (inch) mm (inch)

293 (528) 0 30.378 (1.1960) 30.498 (1.2007) 0.119 (.0047)

22 (40) 0 30.325 (1.1939) 30.444 (1.1986) 0.119 (.0047)

22 (40) 40 30.327 (1.1940) 30.444 (1.1986) 0.117 (.0046)

22 (40) 60 30.333 (1.1942) 30.444 (1.1986) 0.112 (.0044)

22 (40) 80 30.340 (1.1945) 30.444 (1.1986) 0.104 (.0041)

22 (40) 100 30.348 (1.1948) 30.444 (1.1986) 0.096 (.0038)

22 (40) 120 30.358 (1.1952) 30.444 (1.1986) 0.086 (.0034)

See Figure 25 for definition of D6 and D7

CD: Diametral Cage Clearance



With 440 C stainless steel for the cage matefial, the cage nominal

weight is 7 gms. (.25 oz.). At 120,000 rpm, the maximum eccentricity

is 0.043 mm (0.0017 inches). The maximum unbalance caused by the steel

cage is.thus equal to .301 gm-mm (0.00042 oz-in). The effect of this

unbalance on the dynamic performance of the test vehicle will have to

be established in the test phase.

Should this unbalance prove to be excessive, the titanium cage can be

employed. With titanium, the unbalance is reduced to .172 gm-mm

(0.00024'oz-in).

The reason for the expressed preference of steel to titanium is the

lack of experience in the deposition of the recommended lead-alloy

coatings on titanium, and the adhesion of the coatings to a titanium

substrate at cryogenic temperatures.

c. Bearing Loads

Loads acting upon bearings in a turbo-pump can be classified as falling

into the following categories:

! Preload

* Thrust Load

" Radial Load

e Dynamic Load

All loads, no matter what their origin, have to be accounted for in

the design and selection of the bearing configuration.

Preload - Ball bearings have to be initially preloaded in order to

avoid excessive skidding. Past experience has shown that the onset

of skidding in ball bearings is a function of speed, preload and

lubrication. The higher the speed of operation, the higher the pre-

load requirements for the ball bearing.

For bearings operating at ultra-high-speeds, one of the most significant

bearing load components is due to the high centrifugal ball loads. High

ball loading brings about.high Hertzian stresses and invariably results
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in a substantial reduction in fatigue life. The addition of high

bearing preloads to stabilize the bearing and prevent it from reaching

the onset of skidding during operation at ultra-high-speeds acts then

in the direction of further reducing the bearing fatigue life. Hence,

for bearings operating at ultra-high-speeds, it becomes imperative that

the minimum preload required to stabilize the bearings be used, inas-

much as any excess of additional preload will have a tendency to

further reduce the fatigue life which is already heavily taxed by the

presence of high internal centrifugal ball loads.

All the effort expended to date in the direction of determination of

the factors responsible for ball bearig .skidding'leads distinctly

to the conclusion that skidding is an instability introduced through

the interaction of a tractive slip (defined as the difference between

the ring and ball orbital velocity in the direction of rolling) and

gyroscopic slip (resulting from the gyroscopic moments operating on a

ball at high speeds and the tractive forces present within the Hertzian

contact zones which counteract the moments to achieve equilibium). Most

of the data accumulated pertains to oil lubricated bearings. The re-

quirements of the turbo-pump are unique inasmuch as the speed levels,

accelerations, and lack of elastohydrodynamic traction in the ball-to-

race contact zones place this application into a new, not yet explored

region. For this reason, the optimum preload requirements will have

to be established on test. For the purpose of bearing analysis, a pre-

load of 100 ibs. was assumed. This preload is, in all probability, on

the conservative side. High-speed bearings as a rule require a minimum

preload equal to about 5% of the dynamic capacity. The 445 N (100 lb)

assumed represents 10% of the capacity of the extra-light series bearing

and 7% of the light series bearing.

Thrust Loads - The overall thrust load levels can be extremely high in

a turbo-pump operating at discharge pressures of 4000 to 5000 psi. At

the speeds considered for this application, the.imposition of high thrust

loads on the ball bearings will have serious consequences. To remedy

this situation, balance pistons are normally employed. The balance

pistons are designed to automatically thrust balance the rotor during
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operation. Because balance pistons are contemplated for the turbo-

pump design, the assumption was made that the thrust loads will be

fully balanced, and any residual loading will be of negligible propor-

tions. A more detailed discussion of the thrust loading is given in

Appendix B.

Radial Loads - The magnitudes of radial loading expected on the bearings

in a typical turbo-compressor has been calculated in Appendix B. Based

on these calculations a radial load per bearing of 25 lbs. represents a

reasonable estimate. This load can, however, appreciably vary depending

upon the volute design. Because of these, and other uncertainties due to

dynamic loads, a load range of 44.5 - 445 N (10 - 100 lb) is assumed in

the bearing performance calculations discussed in the next section.

Dynamic Loads - Dynamic bearing loads develop as a result of residual

unbalance present in the rotor during operation. Preliminary rotor

response calculations performed as an aid in the design layouts,

indicate that dynamic radial loading per bearing should not exceed

267 N (60 lb.).

Additional dynamic loading develops within the bearing due to the high

centrifugal ball inertia. The centrifugal load per ball in the hybrid

mode of operation is 1000 N (225 lb.) for the extra-light bearing

operating in the hybrid mode at 120,000 rpm, and 500 N (113 lb.) for

the light series bearing in a usual set up at 120,000 rpm. These loads

are accounted for in the performance calculations. In view of the

relatively large magnitude of the ball inertia forces, the ball bearing

life should not be very sensitive to variations in the externally im-

posed radial loading, as long as the radial loading does not exceed in

magnitude the per ball inertia load.

d. Calculated Bearing Performance

The analyses performed up to this point resulted in two optimized

bearing designs (one for the ball bearing supported system, and one

in the hybrid bearing system), a detailed definition of the anticipated

dimensional changes, and an estimate of the loading expected during

operation. 5,9



The above factors were fed into the Rolling Element Computer Program

and new calculations performed to define the effect of those changes

on bearing performance. In addition to the fatigue life, SV and

torque parameters, the variation in bearing stiffness with speed and

load was also established. The stiffness values will be used in the

test vehicle design phase concerned with the critical speed and rotor

response calculations.

The results of this analysis are shown in Figures 27 - 30 for the ball

bearing supported system. Figures 31-34 present plots for the ball

bearing employed in the hybrid bearing system. The bearing preload

in each case was 445 N (100 lb). All data is presented for a single

bearing only. Hence the stiffness and torque of a duplex bearing

system will be twice that shown in the drawings. As was pointed out

in another section of this report, the actual bearing torque in LH2
applications is about three times that of the torque calculated by

the RECAP program.

Ball Bearing Supported System - For the ball bearing supported system

(light series bearing) the fatigue life, SV, and friction torque

values are not appreciably different from those originally obtained

in the optimization study at 120,000 rpm. The effect of speed, however,

is quite pronounced. A decrease in speed from 120,000 to 100,000 rpm

will bring about an appreciable increase in fatigue life. At the speed

of 120,000 rpm, the fatigue life is relatively insensitive to the in-

crease in radial load between 44.5 N (10 lb) and 445. N (100 lb). Radial

load sensitivity increases with decrease in speed. This behavior is

mainly due to the ball inertia loading.

Maximum SV values are appreciably increased within the given speed

range of 60,000 rpm - 120,000 rpm with increased radial loading. Up

to 60,000 rpm, the change in SV appears to be minor. SV vs. inner race

speed is shown in Figure 28. The ball bearing stiffness K varies as az
function of speed. The variation is less pronounced under heavy load-

ing. Plot of stiffness vs. inner race speed is shown in Figure 29.
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Fig. 27 Effect of Speed on Fatigue Life - Single Bearing Set-Up
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Fig. 28 Effect of Speed on Wear Factor - Single Bearing Set-Up
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Single Bearing Set-Up
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The contribution of radial load (within the 44.5 N - 445. N range)

to friction is minor, since the predominant frictional forces are

ball inertia generated. This also explains the variation in torque

with speed shown in Figure 30.

Hybrid Bearing Supported System - The performance characteristics of

the hybrid bearing are presented in Figures 31 - 34. The computer

calculations were based on the assumption that the outer race speed

approximately equals that of the inner race. Relative growth caused

by outer and inner race rotation has been accounted for, as has the

effect of operations at cryogenic temperature levels. As can be seen

from Figures 31 and 32, the fatigue life of the bearing is appreciably

increased, and the effect of load on fatigue life between 80,000 and

120,000 rpm is negligible. The SV values, shown in Figure 32, are

down by close to two orders of magnitude from those obtained with the

ball bearing support system.

These results are not surprising since, theoretically speaking,

once the relative velocity has decreased to zero, the fatigue life

becomes infinite and the SV indicator drops to zero eliminating the

probability of wear. It is this behavior of the ball bearing within

a hybrid bearing set-up that renders the use of a hybtid bearing

attractive.

The friction torque shown in Figure 33 exhibits characteristics which

are not usually expected. Thus, up to approximately 80,000 rpm the

torque is only slightly affected by the increased radial loading.

Above 80,000 rpm, the torque for the 445 N (100 lb) radial load rises

at a reduced rate as the speed increases; at the same time the torque

of the 44.5 N (10 lb) loaded bearing keeps on increasing at a higher

rate. The reason for this is that at about 80,000 rpm, the balance of

forces with the 445 N (100 lb) radial load and 445 N (100 lb) preload

causes one of the balls to become unloaded. At 120,000 rpm only five

of the ten balls remained loaded. The other balls, having lost con-

tact with the inner race, are thrown out against the rotating outer

race and rotate with it. In reality, this behavior will cause the
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free balls to slide on the outer race, bringing about an increase in

torque over that presented in Figure 33 for the 445 N (100 lb) radial

load.

The ball bearing stiffness is not sensitive to radial load (see Figure

34), but does vary with speed, decreasing as the speed increases.

Comparing the behavior of the ball bearings selected for the two

designs -- the bearings employed in the exclusively ball bearing

supported system will yield lower fatigue life and higher SV values

(higher wear) than the bearing employed in the hybrid system, providing

the ball bearing employed in the hybrid system operates as a unit

(difference between outer and inner race rotation not to exceed 1000

rpm at 120,000 rpm shaft speed). It is expected that fatigue life and

wear will be critical items in this application, hence an appreciable

increase in fatigue life combined with a reduction in wear should con-

tribute to an increase in turbo-pump reliability. These factors will

have to be weighed against complexity in design and rotor-dynamic

stability.

The ball bearing stiffness in the hybrid mode of operation is of the

same order of magnitude as that for the ball bearing mode. The stiff-

ness variation with speed is greater in the hybrid mode, while the

sensitivity to load changes appears to be somewhat more pronounced in

the ball bearing mode.

The bearing torque is appreciably higher for the hybrid mode of

operation. This is mainly due to increased centrifugal inertia forces.

That does not necessarily mean that the power consumption is also

higher since the relative speed at which the ball bearing operates in

the hybrid mode is much lower than that for the ball bearing mode of

operation. A detailed discussion of the hybrid bearing follows in

the next section.
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B. Hybrid Bearing Design

The hybrid bearing configuration selected for this application employs a duplex-

mounted set of rolling-element bearings in series with a fluid-film bearing.

The hybrid bearing arrangement shown in Figure 26 is designed to minimize the

shortcomings of rolling-element and fluid-film bearings operating in LH 2, taking

at the same time, advantage of their positive characteristics. Specifically,

the hybrid bearing configuration minimizes the wear within the rolling-element

bearing during operation by a reduction in the relative speed of the rolling-

element bearing components. Similarly, the start-stop wear encountered on

fluid-film bearings is relieved by the fact that starts and stops occur on the

rolling-element bearings and as soon as the pressure within the system rises to

the point where it is capable of sustaining the radial loading, the fluid-film

bearings become activated. Once activated, the system operates on a fluid-film,

which at least theoretically assures an infinitely high life. A detailed

discussion of the fluid-film and rolling-element bearing design for the hybrid

bearing is given in the following report sections.

1. Fluid-Film Bearing Component Design

An important element in the series hybrid journal bearing is the fluid-

film bearing. The extremities of the environment, and the peculiar

properties of liquid hydrogen give rise to some unique considerations in

the design of the fluid-film bearing, as will be brought out in the

following discussion. The general objectives of the design are as follows:

(a) To select optimum fluid-film bearing for present application

(b) To provide details of predicted performance and performance

limits for the selected bearing

(c) To establish a basis for extrapolation of performance predictions

and measurement, under test conditions, to real pump application

The steps which are being followed to meet these objectives are:

(a) Identify important physical phenomena

(b) Determine relative importance of physical phenomena

(c) Select candidate geometries
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(d) Identify important design constraints

(e) Perform preliminary sizing

(f) Establish preliminary performance predictions

(g) Perform trade-off studies between candidates

(h) Select design from bearing performance and systems

considerations

(i) Make detailed performance predictions over load and

speed range

(j) Correlate predictions with test data

The following technical discussion will cover items (c) through (i). A

qualitative and quantitative discussion of important physical phenomena

(items (a) and (b) above), is given in Appendix C.

a. Selection of Candidate Designs

The viscosity of liquid hydrogen is so low that a self-acting (hydro-

dynamic) bearing would not be able to provide the necessary load

capacity. Thus, a hydrostatic bearing, which achieves its load capacity

by means of external pressurization must be used. Unfortunately, the

external pressurization induces flow through the bearing and this flow,

which must be provided by the pump, represents a loss to the "pump

efficiency account." Thus, it is desirable to seek a hydrostatic

bearing design which minimizes flow.

The two configurations which have been selected as candidates, are

shown in Figure 35. They will be referred to as design A and design

B. Both are orifice-restricted hydrostatic bearings with no axial

drain grooves. The significance of using no axial drain grooves is

that leakage flow is minimized (at a slight penalty in load capacity).

The main distinguishing features between the two designs is the width

and location of the pockets. Design A has two rows of narrow pockets.

Design B has a single row of wide pockets. For the purpose of analysis,

each row has been considered to consist of ten (10) pockets.
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The hydrostatic performance of either configuration will be very

similar. Some performance differences are to be expected in the

relative importance of hydrodynamic and squeeze film effects. Thus,

damping and cross-coupling stiffness values may be expected to differ

slightly between the two.

b. Important Design Constraints

The important constraints which must be considered in designing the

fluid-film bearing are:

a Maintain liquid in bearing cavity

a Match fluid-film torque with ball bearing

a Minimize destabilizing contributions

o Provide satisfactory direct stiffness

a Maintain adequate clearance at all speeds

o Minimize flow

The need to maintain liquid in the bearing cavity means that the

heat generated in the film must be removed at such a rate as to

avoid boiling of the hydrogen. A temperature rise of 5.60K (100R)

has been imposed as a maximum (50 percent of the difference between

inlet and critical temperature).

The need to match fluid-film torque and ball bearing torque is

fundamental to the effective operation of the hybrid bearing. The

fluid-film torque should be as low as possible.

The destabilizing influence of the fluid-film bearing results from

the hydrodynamic cross-coupling stiffness referred to previously. There

exists, for a fluid-film bearing, characterized by a set of direct and

cross-coupling stiffness and damping values, a threshold frequency,

below which the effective damping provided by the bearing is negative.

If the natural frequency of the rotor-bearing system falls below this

frequency, then the system is potentially unstable. The magnitude of

the cross-coupling stiffness influences the threshold frequency value
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and the absolute magnitude of the negative effective damping which

occurs below this frequency. Thus, it is desirable to minimize the

cross-coupling stiffness.

To provide satisfactory direct stiffness, means that the bearing must

first of all be stiff enough to carry required gravity and unbalance

loads and secondly, must result in system critical speeds which are

away from important operating speeds and high enough to avoid instab-

ility. Thus, the direct stiffness is an important characteristic of

the bearing.

To maintain adequate clearance at all speeds, means basically that,

in establishing the nominal clearance, the variation in journal diameter

due to changing centrifugal effects with speed must be accounted for.

The operating clearance at the highest speed must be at a minimum to

keep flow down, but cannot fall below a certain value at which the

temperature rise becomes intolerable.

To minimize flow is important from a pump efficiency standpoint,

although, of course, the flow must be sufficiently high that the heat

is adequately carried away.

c. Preliminary Sizing

The length and diameter of the fluid-film bearing are closely dictated

by available space and the size of the ball bearing. The remaining

design variables which may be adjusted to influence performance are

clearance, pocket size, pocket axial location, and inlet orifice dia-

meter. Of these, previous investigations of similar bearings (Refer-

ences 10-13) indicate that, for either configuration, the side land

(dimension La in Figure 35) should be 25 percent of the total bearing

length and that, with a large number of pockets, the total circumfer-

ential extent of all pockets in a row should be approximately 30 percent

of the total circumferential extent fD (Reference 13).

Accordingly, Table 9 lists the dimensions of the bearing, either as
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fixed values or, in the case of variables which remain to be determined

by the design analysis, by a range.

TABLE 9

PRELIMINARY BEARING DIMENSIONS

Length 0.0234 Meters (.925 inch)

Diameter 0.0419 Meters (1.6497 inch)

Side Land 0.00638 Meters (0.250 inch)

Pocket Length .0039 Meters (0.155 inch)

No. of Pockets 10 per Row
-5

Clearance .2 x 10 Meters (.0008 inch)
-4

Orifice Diameter (2.5 to 10) x 10 Meters (.01 inch to .04 inch)

The clearance selection resulted from preliminary analysis by

Dr. Constantinescu. Figure 36 shows the variation in flow and

temperature rise due to friction for the A-design as determined by

Dr. Constantinescu. The supply pressure was assumed to be

8.6 x10 N/m2 (1250 psia) and the ambient pressure 1.72 x 106

N/m2 (250 psia). It may be seen that, below a clearance of 2 x 10 - 5

meters (.0008 inch), the temperature rise exceeds 5.6K (100R). At

the same time, it is a disadvantage, from a flow standpoint, to use a

larger clearance than necessary, and so the clearance at 120,000 rpm
-5

is tentatively set At 2 x 10-5 meters (.0008 inch), to minimize flow

within the constraint of acceptable temperature rise. This clearance

value was used during the early stages of the design process. However,

the possible need to modify it if detailed performance of the bearing

or rotor-bearing system so dictates is recognized.

d. Trade-Off Study Between Candidate Geometries

The two candidates, designs A and B, have been defined. Provided the

number of pockets is large (> 6 per plane), the hydrostatic performance

(direct stiffness and flow) is expected to be very similar for either

bearing. However, the large pocket area of design B is expected to

have two effects. Firstly, it will influence damping because of the
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of Fluid-Film Bearing
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larger area of wide clearance and also because of increased significance

of capacitive effects with a compressible fluid. Secondly, the hydro-

dynamic action will be less pronounced for design B because the surface

is more broken up. To provide a meaningful comparison on these accounts

it was judged most important to include compressibility effects in the

analysis. This was done at a penalty in absolute accuracy, since

Bernoulli and time-dependent inertia effects had to be neglected. Since

orifice diameter is an important factor in performance, its influence

was eliminated by optimizing orifice diameters of each design for direct

stiffness. Table 10 shows the results of the comparison.

As anticipated, the most significant differences occur in terms of cross-

coupling stiffness and direct damping. A has higher values for both,

and the advantage of A is most pronounced in terms of damping. However,

since cross-coupling effects act against damping as a destabilizing

effect, the advantage offered by design A is not clear-cut.

e. Design Selection

While the differences revealed in the trade-off study are not large,

the A design has been selected. Even though somewhat arbitrary from a

performance standpoint, the choice also reflects previous successful

design experience with this configuration for a lower speed cryogenic

application (Reference 11). This choice also reduces to zero the sig-

nificance of the capacitive effects.

Having selected the configuration, there reigains the choice of orifice
-5

diameter and clearance. Clearance is established at 2 x 10- 5 (.0008 in.)

meters at 120,000 rpm.

The influence of orifice diameter on stiffness at 100,000 rpm is shown

in Figure 37.

The value of orifice diameter in the range 5.0 + 7.0 x 10- 4 (.02 to

.028 in.) meters promises to provide good stiffness, with an optimum
-4

close to 5.75 x 10 meters (.0225 in.).
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TABLE 10

COMPARISON OF DESIGNS A & B

(Compressibility included; inertia effect neglected)
(Orifice Diameter Optimized)

A B % Difference

Speed, rpm 120,000 120,000 ---

Clearance, Meters (inches 2 x 10-5 (.0008) 2 x 10-5 (.0008) ---

Orifice Diameter, Meters (inches) 7.5 x 10 (.030) 1.075 x 10-3 (.045) ---

Direct Stiffness, N/m (Ib/in) 2.783 x 108 (1.59x106 2.735 x 108(1.56x106) 1.8%

Flow, Kg/sec (Ib/sec) .110 (.242) .117 (.257) 6.4%

Torque,N-m (Ib-in) .18 (.04) .18 (.04) 0.

Cross-Coupling 2.420 x 107 (1.38x105) 2.241 x 107(1.28x105) 7.4%Stiffness, N/m (1b-in)

Damping7 5 7(Synchronous) N/m (lb/in) 4.264 x 107 (2.44x105) 3.537 x 10 (2.02x105) 17.0%



SUPPLY PRESSURE = 8.6 x 106 N/m2 (1250 PSIA)
AMBIENT PRESSURE = 1.7 x 106 N/m2 (250 PSIA)

1.2- -06.85

E
z I -5.71

w 0

- .8 -4.57 z

w

a .6 -3.43

.4 -2.28
43.5 4 5 6 7 8 9

ORIFICE DIAMETER,METERS(x 10- 4 )
I I I I I

15.75 19.68 23.62 27.56 31.50 35.43
(MILS)
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fo Performance Predictions

In Figure 38, the influence of orifice diameter on the variation of

stiffness and flow with speed is demonstrated.' Superimposed on this

figure is the variation of clearance with speed due to centrifugal

action. Two orifice diameters [5.08 and 6.35 x 10- 4 (.02 and °025 in.)j

have been considered.

The smaller orifice size offers significantly reduced flow at low

speed and a substantially higher stiffness at 120,000 rpm This

combination would appear to be advantageous, except that the mean

temperature rise will now reach 5.70K (10.3 0R) at 120,000 rpm0  This

temperature rise is acceptable, but should be regarded as a limit,

such that lower flow designs should not be considered.

The final choice of orifice diameter is 6.35 x 10-4 /6.00 x 10
- 4 m

(0.025/0.026 in.)

Figure 39 illustrates typical variation of flow and stiffness with

supply pressure at 100,000 rpm for an orifice diameter of 6.35 x 10
- 4

meters (.025 inch). The stiffness follows almost a linear variation,

whereas the flow variation levels off at high pressures as a result

of the increasing level of Poiseuille turbulence.

Figure 40 shows the influence of speed on fluid-film torque and on

temperature rise. Comparison with the ball bearing torque predictions

will show the fluid-film torque to be consistently lower within the

speed range to 120,000 rpm. As the speed increases beyond 100,000 rpm,

the temperature rises sharply. While acceptable up to 120,000 rpm for

this configuration, the temperature rise is an important performance

parameter and must be considered when contemplating future design

changes which might increase the power loss or decrease the flow.

Final fluid-film bearing dimensions were established upon completion

of the rotor-dynamic stability studies.
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2. Ball Bearing Design

The design details of the ball bearing component which forms part of the

hybrid bearing have been discussed in Sections A4 and A5. The component

will consist of an extra-light series bearing employing a complement of

ten balls, each ball being 4.76 mm (0.1875 in.) in diameter. Two ball

bearings, preloaded against one another,as shown in Figure 26, will be

employed. All detailed bearing dimensions and specifications are shown

in Appendix D.

3. Hybrid Bearing Performance

The performance of the hybrid bearing is primarily dependent upon the

torque balance between the fluid-film and duplex ball bearing set. As

was previously indicated,the ball bearing acts as a clutch through which

the torque required to drive the fluid-film bearing must be transmitted.

To accomplish this,- the torque of the ball bearing must be higher or at

least equal to that of the fluid-film bearing at any given speed.

A plot of the ball bearing and fluid-film bearing torque vs. speed of

the outer ring is shown in Figure 41. The ball bearing torque shown was

calculated on the RECAP Program and multiplied by an experience factor of

three.- The ball bearing torques are based upon outer and inner ring

rotation, where the speed of the outer ring is close to that of the inner

ring.

The results indicate that the ball bearing has ample capacity to transmit

the torque required to drive the fluid-film bearing in the hybrid design

arrangement. Note that the design is conservative, and torque transmit-

ability is possible, even without the experience factors employed to raise

the ball bearing torque to realistic levels. The drop in torque with the

higher radial loads at high speeds is due to the fact that the balls in the

zone opposite to.the radial load direction became disengaged from the inner

race.

The program assumes that once the ball is disengaged, its contribution to

torque drops to zero. This, in reality, will not be the case since the

remaining link between the unloaded balls, the cage, and the outer race will

result in additional torque transmission capability.
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Fig. 41 Effect of Speed on Frictional Torque - Hybrid
Bearing Design
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C. Test Vehicle Design

To fully comply with the requirements of the small bearing technology program

two related test vehicles were designed. Each of these vehicles provides

unique features for evaluating particular bearing performance parameters. One

test vehicle configuration is designed so it will accommodate all requirements

for both single and duplex ball bearing testing. The second vehicle, derived

from a majority of parts found in the ball bearing tester is fitted with the

necessary parts for hybrid bearing testing.

Each of the test vehicle configurations has been extensively analyzed. A

description of each configuration, including the pertinent analytical results,

is found in the following report sections.

1. Ball Bearing Tester

The ball bearing tester has been designed to provide two functions. One

function allows the evaluation of the test ball bearing's preload require-

ments at which time the rotor is supported on two single bearings. The

second permits the execution of load-speed-life tests for the same bearings

mounted in the form of two duplex sets.

The two test configurations, combined on one composite drawing are shown on

Figure 42. All the housing parts common to both the single and duplex ass-

emblies are identified first, and include the main housing Q, the end

plate , the turbine nozzle spacer 0, the turbine bearing support plate

), the turbine seal ( and the turbine nozzle block , The turbine

nozzle block contains both the forward driving nozzles and reversing jets

required for deceleration control. In addition to the housing parts, many

rotating and non-rotating components of the ball bearing tester are common

to both assemblies and are intended for use in either single or duplex beat-

ing tests.

A single rotor shaft Q and drive turbine )will accommodate all test con-

figurations and will require a minimum of replacement parts in order to sat-

isfy any test set-up requirement. The shaft assembly is provided with a
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heat dam 9 in the form of a thin-walled cylinder, sized to reduce the

heat flow along the shaft from the turbine to the test bearing area. The

entire rotating assembly, including the test bearings and spacers are end-

clamped with special washers D and nuts .

Outer race support for the test bearings, Appendix D - MTI Specification

0232-43601-02, are provided by a similar pair of bearing mounts n and

@ . The bearing mount closest to the turbine @ provides radial flex-

ibility, but is end-clamped between the main housing ( and the turbine

bearing support plate ) to assure a fixed location for the rotating ass-

embly. The bearing mount furthest from the turbine D , which also provides

radial flexibility, is not clamped and is free to adjust its axial position

as a result of either externally applied axial load or differential thermal

expansion; an extended shoulder on bearing mount © is provided as an aid

in maintaining alignment . Both bearing mounts are used for single as well

as duplex bearing testing. Each bearing mount also.provides the mounting

surfaces for the bearing cavity seal holders G and bearing cavity seals

For test purposes, an axial and radial loader have been included in the

vehicle design. The radial loader assembly consists of a balanced piston

system identified as the radial loader assembly ; a complete description

of this assembly can be found in Appendix E. The radial loader is designed

for use with both the single and duplex bearing test assemblies. In the

event its use is not required, the entire assembly is removed and its

penetration port sealed with a flat plate.

Axial load is applied through a sliding piston @ which is activated by

the introduction of fluid to a cavity provided in the end cap (. It is

anticipated that the axial loader will only be used during single bearing

tests, and that it will be replaced by a rigidly mounted spacer sleeve

when duplex bearing tests are conducted.

* -3
The load pressure relationship for the axial loader is given by FA = 1.26 x 10-

AP where FA is in Newtons. In the English system of units, FA = 1.955 AP.
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Several small rotor-mounted parts are also interchanged when switching from

single to duplex testing. A single long rotor sleeve @ is used in con-

junction with single bearing tests, a smaller sleeve i and a combination

spacer-preload spring assembly @ is used when switching to duplex testing.

The spacer-preload spring is a precision-ground stepped washer which is

designed to produce a 445 N (100 lb) preload at acceptable stress levels

under test conditions. Adjustment of the spring thickness will provide a

new preload should a different level of preload be required at some future

date.

Several important design considerations were examined prior to concluding

the design effort on the ball bearing tester. This report section describes

the effort undertaken and the results obtained in the design.

a. Rotor Dynamics

The rotor configuration illustrated in Figure 42 was subjected to an

extensive study of its dynamic behavior with respect to critical speed

and unbalance response. Two model rotors, one for the single bearing

and one for the duplex bearing tester were defined. These models are

shown in Figure 43 (Figure 43-a shows the single bearing and Figure

43-b, the duplex tester). Each rotor model is marked to indicate cal-

culation stations where properties of the rotors change and where the

turbine's gravity center and bearing center planes are located. A

separate independent calculation was performed to determine the dynamic

properties of the turbine wheel. The wheel properties, which are

summarized in Table 11, are used as inputs for the critical speed

calculations.

TABLE 11

DRIVE TURBINE DYNAMIC PROPERTIES

Polar Mass Moment 1.69 x 10- 5 Kg - m2 (.058 ib-in2

Turbine Weight : 0.042 Kg (.092 lb)
-4 2 2Cross Section Area 1.74 x 10 m (.269 in )

Radius of Gyration 2.00 x 10- 2 m (.786 in)

Average Tangential Stress: 1.08 x 108 N/m2  (15,637 lb/in2
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The initial critical speed calculations for both ball bearing testers

were based on the assumption that the ball bearing outer race seats

were rigidly supported (infinite stiffness). Mathematically, the

critical speed calculation was performed on the simplified dynamic

model shown on Figure 44-a where Kb is the stiffness of either a

single or a duplex bearing, M the rotor mass, I its polar moment of

inertia, and It its transverse moment of inertia. Each critical

speed calculation was made with the ball bearing stiffness as a

dependent variable, resulting in a critical speed map that provides

the speed at which a critical speed occurs for any level of ball

bearing stiffness. Figure 45 shows the rigid pedestal critical speed

maps for both the single and duplex bearing testers and includes the

variation in bearing stiffness with speed. Interpretation of either

critical speed map is obtained by following the ball bearing stiffness

curve from a low to a high speed, the cross-over point where the stiff-

ness and critical speed curves intersect indicates the actual speed at

which the critical resonance occurs. As an example, the single bearing

tester would experience a critical resonance condition at 90,000 rpm.

The location of critical speeds within the-testing speed ranges for both

the single and duplex testers is undesirable and is to be avoided when

possible. One means of removing critical speeds from a specific speed

range is to lower the effective stiffness of the ball bearings. For

example, if the duplex bearing tester had an effective bearing stiff-

ness of 1.00 x 108 N/m (5.72 x 105 lb/in), no critical speeds would be

present above 60,000 rpm.

One method of reducing the effective ball bearing stiffness is to intro-

duce an intermediate spring between the bearings outer race and the

tester housing. A usual device employed in many ball bearing systems

is a flexure-mounted ball bearing housing which provides both a soft

spring mount and a damping device. Figure 44-b indicates the schematic

model for the flexure mounted bearing. In this figure, Kb remains the

ball bearing stiffness with the flexure or pedestal stiffness K , the

pedestal damping B and the spring mount mass M . The actual mount
p p
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design for the ball bearing tester takes the form of a rigid cylinder

into which the ball bearings are mounted, a circumferential array of

axially oriented spokes to provide radial flexibility while maintain-

ing axial rigidity and a flange for securing the bearing mount to the

tester housing. The outer diameter of the rigid cylinder is manufact-

ured with a precision surface so that it becomes a squeeze film damper

when fitted into a close fitting housing bore. The configuration of

the damped flexure mount for the ball bearing tester is shown in

Figure 46.

The calculated spring rate of a fully assembled flexure mount is K =

7.35 x 106 N/m (4.2 x 104 lb/in) with a spring supported mass of M =
p

0.204 Kg (0.45 lb). The inclusion of pedestal (flexure) stiffness,

Kp, and mass, Mp, in the critical speed calculations dramatically

affects the critical speed map as indicated by Figure 47. The critical

speed curves of Figure 47 are similar to those shown in Figure 45 with

one significant change, which is the lowering of the first and second

critical speed lines. For the bearing stiffness shown, no critical

speed now exists over the entire test speed range of 60,000 - 120,000

rpm and the rotor-bearing system is fully capable of high-speed operation

with a minimum safety margin of at least 10,000 rpm between the maximum

speed of 120,000 rpm and the critical speed occuring on the duplex

bearing tester. To ascertain whether the chosen flexure stiffness is

adequate, a critical speed map, shown by Figure 48, was made with a

constant ball bearing stiffness of 1.05 x 108 N/m (6.0 x 105 lb/in) and

the flexure stiffness treated as a variable. This map shows low crit-

ical speeds at the design flexure stiffness of 7.35 x 106 N/m (4.2 x

104 lb/in) and that a substantial leeway in the flexure's radial stiff-

ness as a result of manufacturing tolerances is permissible.

Once the critical speed behavior of the system was found to be accept-

able, further calculations were performed to establish its sensitivity

to rotor unbalance, and determine the rotor response characteristics.
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The rotor response calculations require a damping coefficient in order

to provide reasonable answers. The necessary damping, provided by the

action of the flexure mount, was calculated as a function of radial

clearance between the mount and the tester housing. Figure 49 shows

the results of the flexure damping calculations and indicates that the

damper design, with the assumption of laminar flow, will provide a

damping coefficient of approximately B = 4.37 x 102 N-sec/m (2.5 lb-
P-5 -3

sec/in) at a radial clearance of C = 2.04 x 10 m (0.8 x 10 in).

This damping coefficient along with the appropriate ball bearing stiff-

nesses indicated in Table 12 and a residual unbalance of 7.2 x 10- 7 Kg-m

(0.001 in-oz) at Station 20 when inputted into the unbalance response

calculation, provided the response data for the single ball bearing

tester. Figure 50 presents the pertinent response curves for the

single bearing tester.

At no speed does the rotor excursion exceed 23.3 m/m-Kg (0.66 in/in-oz)

and in the critical tester areas, such as Station 20, the turbine blade

area, does the rotor excursion exceed 1.14 x 10-5 m (0.45 x 10-3 in).

At test speeds between 60,000 and 120,000 rpm, rotor excursions of only

3.81 x 106 m (0.15 x 10-4 in) are indicated.

A similar response calculation for the duplex ball bearing tester was

made over the same speed range and the input parameters listed in

Table 12. The only parameters significantly different from the single

bearing tester were the magnitude and location of the duplex bearing

spring reactions and the pedestal mass. The response curves for the

duplex bearing tester at several rotor speeds are shown in Figure 51.

These curves are similar in shape to the single bearing tester response

curves and show acceptable excursion levels at any speed. As was in-

dicated above, the response curves presented in Figures 9 and 10

represent the expected rotor excursions for a turbine disc unbalance

of 7.2 x 10- 7 Kg-m (0.001 in-oz). Rotors of a similar size and con-

figuration as those designed for the ball bearing testers are commonly

balanced to 2.16 x 10- 7 Kg-m (0.3 x 10-3 in-oz). Consequently, the

amplitudes indicated in Figures 50 and 51 may be multiplied by .3 to

obtain more.realistic estimates. A listing of the response data for
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Fig. 49 Performance Characteristics - Squeeze Film Damper
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TABLE 12

BALL BEARING TESTER

ROTOR DYNAMICS PARAMETERS

Speed Range Single Bearing Stiffness Duplex Bearing Stiffness
1000 RPM 10 N/m (105 lb/in) 10 8N/m (106 lb/in)

0-30 6.40 (3.66) 1.28 (0.73)

30-50 5.50 (3.14) 1.10 (0.63)

50-70 4.80 (2.74) 0.96 (0.55)

70-90 4.60 (2.63) 0.92 (0.53)

90-110 5.0 (2.86) 1.00 (0.57)
0" 110-130 5.50 (3.14) 1.10 (0.63)

Single Bearing M = 0.182 (0.40 Ib)

Pedestal Weight -

tDuplex Bearing M = 0.363 (0.80 lb)

Pedestal Stiffness, Both Testers K = 7.35x 106 N/m (4.2 x 104 lb/in)
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both the single and duplex ball bearing testers is presented in Tables

13 and 14 respectively. Included in Tables 13 and 14 are the dynamic

forces sustained by the ball bearing at the speeds indicated. These

forces are highest at 120,000 rpm and correspond to 107.4 N (24.1 lbs)

and 89.8 N (20.1 ibs) per bearing for the single and duplex bearing

systems respectively. A decrease in the residual unbalance will also

result in a proportional decrease in the dynamic bearing loading.

The examination of the rotor dynamics aspects of both the single and

duplex ball bearing tester final designs indicates that successful

operation is possible. All critical speeds are sufficiently removed

from the test speed range to preclude excessive rotor excursions during

test. The conservative estimate of damping coefficients for the

flexure mount combined with conservative assumptions on the level of

rotor unbalance also provide reasonable assurance that the response

calculation represents the maximum anticipated rotor excursions over

the entire rotor speed range.

b. Thermal Analysis

An important aspect in the design of the high-speed tester operating

in a cryogenic regime is the machine's ability to accommodate the low

temperatures involved. The use of LH2 as the cooling and lubricating

medium for the tester's bearings further requires that the fluid itself

does not absorb sufficient thermal energy to cause its bulk temperature

to rise above its critical temperature. A pressure flow relationship

for the LH2 coolant is given in Appendix F. Both ball bearing testers

have been subjected to a thermal analysis to assure adequate behavior.

The method of analysis is described as follows:

An axi-symmetric model of the ball bearing test rig, as shown in Figure

52, was drawn. This model was analyzed using the MTI Thermal Analysis

Computer Program which accepts a variety of boundary conditions, heat

inputs and coolant flows. The thermal analysis program solves a system

of equations representing conservation of thermal energy over each of a

series of control volumes defined by a two-dimensional finite difference
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TABLE 13

RESPONSE DATA - SINGLE BALL BEARING TESTER

SINGLE AMPLITUDE ROTOR EXCURSIONS FORCE TRANSMITTED TO PEDESTAL
STATION 6 STATION 14 STATION 20 STATION 6 STATION 14

ROTOR SPEED FREE END BEARING TURBINE END BEARING TURBINE FREE END BEARING TURBINE END BEARING
RPM m (INCH) m (INCH) m (INCH) N (LB) N (LB)

5000 1.335E-O8 (5.255E-07) 4.481E-08 (1.764E-06) 7.671E-08 (3.020E-06) 8.5690E-02 (1.9240E-02) 2.8766E-01 (6.4589E-02)
10000 5.575E-08 (2.195E-06) 1.931E-07 (7.603E-06) 3.284E-07 (1.293E-05) 3.5125E-01 (7.8866E-02) 1.2165E+00 (2.7314E-01)
15000 1.352E-07 (5.323E-06) 4.986E-07 (1.963E-05) 8.395E-07 (3.305E-05) 8.2457E-01 (1.8514E-01) 3.0406E+00 (6.8271E-01)
20000 2.680E-07 (1.055E-05) 1.114E-06 (4.384E-05) 1.839E-06 (7.242E-05) 1.5581E+00 (3.4983E-01) 6.4766E+00 (1.4542E+00)
25000 4.801E-07 (1.890E-05) 2.555E-06 (1.006E-04) 4.094E-06 (1.612E-04) 2.6176E+00 (5.8774E-01) 1.3931E+00 (3.1279E+00)
30000 8.918E-07 (3.511E-05) 7.038E-06 (2.771E-04) 1.075E-05 (4.234E-04) 4.4684E+00 (1.0033E+00) 3.5268E+01 (7.9187E+00)
35000 2.941E-06 (1.158E-04) 7.800E-06 (3.071E-04) 1.124E-05 (4.427E-04) 1.3215E4 01 (2.9671E+00) 3.5053E+01 (7.8704E+00)
40000 4.460E-06 (1.756E-04) 4.907E-06 (1.932E-04) 8.255E-06 (3.250E-04) 1.7473E+01 (3.9232E+00) 1.9225E+01 (4.3167E+00)
45000 3.200E-06 (1.260E-04) 3.807E-06 (1.499E-04) 6.619E-06 (2.606E-04) 1.0625E+01 (2.3856E+00) 1.2636E+01 (2.8371E+00)
50000 2.336E-06 (9.198E-05) 3.211E-06 (1.264E-04) 5.311E-06 (2.091E-04) 6.5341E+00 (1.4671E+00) 8.9805E+00 (2.0164E+00)
55000 1.915E-06 (7.539E-05) 2.873E-06 (1.131E-04) 4.511E-06 (1.776E-04) 4.9027E+00 (1.1008E+00) 7.3554E+00 (1.6515E+00)
60000 1.685E-06 (6.633E-05) 2.662E-06 (1.048E-04) 3.960E-06 (1.559E-04) 4.8475E+00 (1.0084E+00) 7.6604E+00 (1.7200E+00)
65000 1.548E-06 (6.094E-05) 2.523E-06 (9.933E-05) 3.533E-06 (1.391E-04) 5.8776E+00 (1.3197E+00) 9.5800E+00 (2.1510E+00)
70000 1.462E-06 (5.755E-05) 2.425E-06 (9.549E-05) 3.172E-06 (1.249E-04) 7.5794E+00 (1.7018E+00) 1.2576E+01 (2.8237E+00)
75000 1.407E-06 (5.541E-05) 2.356E-06 (9.275E-05) 2.845E-06 (1.120E-04) 9.7786E+00 (2.1956E+00) 1.6369E+01 (3.6753E+00)
80000 1.374E-06 (5.410E-05) 2.306E-06 (9.077E-05) 2.527E-06 (9.950E-05) 1.2456E+01 (2.7968E+00) 2.0899E+01 (4.6924E+00)
85000 1.356E-06 (5.340E-05) 2.270E-06 (8.936E-05) 2.209E-06 (8.695E-05) 1.5672E+01 (3.5188E+00) 2.6223E+01 (5.8878E+00)
90000 1.351E-06 (5.317E-05) 2.245E-06 (8.837E-05) 1.879E-06 (7.398E-05) 1.9537E+01 (4.3866E+00) 3.2468E+01 (7.2900E+00)
95000 1.355E-06 (5.334E-05) 2.228E-06 (8.773E-05) 1.536E-06 (6.049E-05) 2.4212E+01 (5.4364E+00) 3.9825E+01 (8.9420E+00)

100000 1.368E-06 (5.386E-05) 2.220E-06 (8.740E-05) 1.194E-06 (4.702E-05) 2.9924E+01 (6.7188E+00) 4.8559E+01 (1.0903E+01)
105000 1.390E-06 (5.472E-05) 2.218E-06 (8.734E-05) 9.251E-07 (3.642E-05) 3.6986E+01 (8.3045E+00) 5.9039E+01 (1.3256E+01)
110000 1.421E-06 (5.593E-05) 2.224E-06 (8.756E-05) 9.393E-07 (3.698E-05) 4.5847E+01 (1.0294E+01) 7.1776E+01 (1.6116E+01)
115000 1.462E-06 (5.753E-05) 2.237E-06 (8.807E-05) 1.389E-06 (5.468E-05) 5.7173E+01 (1.2837E+01) 8.7520E+01 (1.9651E+01)
120000 1.514E-06 (5.961E-05) 2.259E-06 (8.895E-05) 2.186E-06 (8.608E-05) 7.1964E+01 (1.6158E+01) 1.0738E+02 (2.4110E+01)
125000 1.582E-06 (6.230E-05) 2.294E-06 (9.030E-05) 3.310E-06 (1.303E-04) 9.1836E+01 (2.0620E+01) 1.3311E+02 (2.9888E+01)
130000 1.672E-06 (6.583E-05) 2.345E-06 (9.233E-05) 4.856E-06 (1.912E-04) 1.1952E+02 (2.6835E+01) 1.6762E+02 (3.7636E+01)
135000 1.795E-06 (7.067E-05) 2.425E-06 (9.547E-05) 7.056E-06 (2.778E-04) 1.5996E+02 (3.5916E+01) 2.1610E+02 (4.8520E+01)
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mesh. The mesh lines are drawn in the radial and axial directions.

For the ball bearing model, 16 and 30 mesh lines were used in each of

these two directions respectively. The thermal calculations result

in a temperature distribution with a temperature given for each mesh

point in the body.

In the course of modeling this tester, certain restrictions entering

the process of fitting the model within the computer program con-

straints must be recognized. Firstly, the location of the LH2 bearing

coolant streams in the tester model cannot account for the total

wetting of internal tester members, resulting from coolant circulation.

Secondly, neither the thermal properties of the tester materials nor

the generated heat transfer coefficients exactly reflect real tester

conditions. A third significant restriction applies to the location

of the generated friction losses. In actual operation, the clearance

seal and other losses generated by the shearing of fluid are generated

within the fluid itself. Current restrictions on the use of the

thermal analysis program require the generation of heat to occur on

the surface of a body. As a result, calculations within the boundaries

of these restrictions produce abnormally high temperatures on the

surface adjacent to the areas where the heat is produced. The method

of analysis, therefore, tends to provide very conservative temperatures,

which means that the actual temperature distribution would be better (in

this case lower) than predicted. The qualitative trends in the temper-

ature distributions are, however, valid.

The bearing coolant flows were modeled by two separate fluid streams

within the body, and are identified at grid intersections by I, J

numbers, where I and J are the mesh coordinate numbers in the radial

and axial directions respectively. As can be seen on Figure 52, the

stream corresponding to the bearing flow on the turbine side goes from

point (7,19) to (7,15). The second bearing flow stream starts at (1,2)

and goes through to points (1,3), (3,3), (3,5), (7,5) ending at point

(7,9). Turbine flow stream originates at point (12,27) and exits at

point (1,30). All pertinent thermal coefficients were evaluated by use

of the MTI thermal convection coefficients program.
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The summary of all input parameters, both calculated and chosen, are

found in Table 15.

For purposes of analysis, the calculation of temperature distribution

within the test vehicle was reduced to the generation of thermal maps

which provided the combined effects of:

* Rotor heat dams and thermal insulation

* Bearing Coolant flows

* Turbine flow to evaluate efficiency of the turbine heat dam

* Rotor windage loss at 120,000 rpm

* Bearing power loss at 120,000 rpm

* Fluid seal losses at 120,000 rpm

Early thermal calculations for the ball bearing testers which were made

with the use of a 2940 K (5300 R) GH2 radial loader supply indicated excess-

ively high temperatures throughout the entire center portion of the

tester. A change in loader supply from GH2 to LH2 eliminated the

central shaft "heating" effect. Subsequent development calculations,

including the final temperature distribution presented in this report,

are based on a radial loader supply of LH2 at 27.8 0K (500R) which is so

listed in Table 15. The effects of higher surface film coefficient and

skin temperature are discussed in Appendix G. The results of this

analysis show no appreciable change in internal temperature distribut-

ion.

The final ball bearing tester thermal study provided a temperature

distribution within the test vehicle along with the temperature rise

in the LH2 coolant flow streams. Table 16 shows the LH2 stream temper-

ature increases as affected by several combinations of the imposed

conditions. The largest temperature rises for both the single and

duplex bearing testers result from the turbine gas flow and the bearing

power losses. In no case does the indicated stream temperature rise

more than 6.10C (110F). This limited rise should not adversely affect

the LH2 coolant, providing the coolant flow rate is slightly increased.
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TABLE 15

THERMAL ANALYSIS INPUT PARAMETERS - BALL BEARING TESTER

Inlet Flow
Temperature Rate Specific Heat Film Coefficient Thermal Conductivity

Tin Btu Watt Btu Btu(R) Le- (ib/sec) - --- Watt

K (R Kgsec b/sec J/KgK lb-F m K hr-Ft F m - K hr-Ft-

LH2 Bearing Coolant 27.8 (50) 0.091 (0.20) 9.20x 103 (2.20) 35000 (2000) --- ---

Outer Housing Surface 294 (530) --- --- --- --- .175 (0.10) --- ---

GH2 Turbine Annulus 294 (530) 0.082 (0.18) 1.43 x 104 (3.42) 341 (194.4) 0.168 (0.097)

GH2 Turbine Blading - 0.082 (0.18) 1.43 x 10 (3.42) 5430 (309.5) ---

r GH 2 Turbine Discharge -- 0.082 (0.18) 1.43 x 10 (3.42) 3090 (1767)

LH 2 Radial Loader
(Rotor) 27.2 (50) 0.011 (0.025) 9.20 x 103 (2.20) 176 (100)

LH2 Radial Loader

(Cavity Wall) --- 0.011 (0.025) 9.20 x 103 (2.20) 176 (100)

Stainless Steel 33.3 (60) --- --- --- ---- --- 8.65 (5.0)

Stainless Steel 44.5 (80) --- --- --- --- --- --- 11.2 (6.5)

Stainless Steel 61.0 (100) --- --- --- --- --- --- 13.8 (8.0)

W Inconel 718 27.8 (50) --- --- --- --- --- --- 3.48 (2.0)

T6 Aluminum 61.0 (110) --- --- --- --- --- --- 52.0 (30)

Insulation NA --- --- --- --- --- --- .348 (0.2)
(Epoxy Fiberglass)



TABLE 16 LH2 COOLANT STREAM TEMPERATURE RISE:

BALL BEARING TESTER

* LH2 Coolant Temperature Rise
LH2  Assumed Losses

Flow Rate Free End Turbine End at 120,000 rpm
Thermal Condition Kg/sec (lb/sec) C (F) C (F) Watts-(Btu/hr)

Coolant Stream Only .091 (0.20) 0.12 (0.21) 0.122 (0.22) None

Coolant Plus Turbine Flow .091 (0.20) 0.18 (0.33) 0.333 (0.60) None

Coolant Plus Windage .091 (0.20) 0.18 (0.33) 0.206 (0.37) 252 (862)

, Coolant Plus Bearing Losses .091 (0.20) 4.36 (7.87) 3.77 (6.78) 4100 (13927 per bearing)

Coolant Plus Seal Losses .091 (0.20) 0.13 (0.24) 0.155 (0.28 90.4 (308)

All the Above plus LH2 Loader @ .091 (0.20) 5.00 (9.00) 4.45 (8.00) All Above

27.8 OK (500 R) & 0.011 Kg/sec (0.025 lb/sec)

Coolant Stream Only .045 (0.10) 0.24 (0.43) 0.24 (0.43) None

Coolant Plus Turbine Flow .045 (0.10) 0.37 (0.66) 0.66 (1.20) None

Coolant Plus Windage .045 (0.10) 0.37 (0.67) 0.41 (0.74) 252 (862 Btu/hr)

b Coolant Plus Bearing Losses .045 (0.10) 5.05 (9.05) 4.35 (7.82) 4100(13927 per bearing)

Coolant Plus Seal Losses .045 (0.10) 0.27 (0.49) 0.31 (0.56) 90.4 (308 Btu/hr)

All the Above plus LH2 Loader @ .045 (0.10) 6.10 (11.0) 5.56 (10.0) All Above

27.8 0 K (50*R) & 0.011 Kg/sec (0.025 lb/sec)

Flow rate is per coolant stream
(0.2 lb/sec) for the duplex tester
(0.1 -lb/sec) for the single bearing tester

Bearing Power Loss = 0.650 N-m (5.75 in-lb) four bearings at 120,000 rpm
2/3 outer race - 1/3 inner race, 1/2 power used for single bearing tester



The results of the temperature distribution calculation for the ball

bearing tester are shown in Figure 53. Several conclusions can be

derived from the temperature map, these are:

1. The effectiveness of the heat dam is demonstrated by the

very large axial temperature gradient indicated between

the turbine wheel and the turbine end ball bearing seat.

The lack of a radial gradient between the shaft and heat

dam indicates that no thermally induced distortions of the

turbine wheel will occur.

2. To maintain the coolant streams below the critical temper-

ature at the exit from the bearing, provisions should be

made for either an increase of the stream flow (above

0.091 Kg/sec (0.20 lb/sec) or a decrease in the inlet

stream temperature below 27.8 0K (500R).

3. A less satisfactory range of temperatures is shown to exist

along the boundary between the flexure mounts, (Items 12

and 13 on Figure 42) and the housing. The temperatures

shown in these locations are less satisfactory because they

represent levels in excess of the LH2 critical temperature.

At these temperature levels, the performance of the dampers

may be affected by the existance of a mixed phase rather

than the single LH2 phase upon which the calculations are

based. Since the major heat source is associated with the

turbine inlet temperatures, the introduction of thermal in-

sulation between the turbine and nozzle box housing should

help to maintain this damper temperature at sub-critical

levels.

In summary, the temperature trends presented in Figure 53 indicate the

need for some modifications to the original tester design. These are:

* Provide a turbine heat dam by selecting an insulating material

for the turbine spacer block (Item 3, Figure 1)

* Examine the possibility of decreasing the inlet temperature

below the initial levels in the test stand
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Provisions for these modifications have been either included in the

test vehicle design details, or taken into consideration in the

facility build-up.

2. Hybrid Bearing Tester

A companion tester design, which parallels that of the ball bearing tester,

employs a relatively new bearing concept for cryogenic machines. This bear-

ing type (as described in Section A) consists of a hydrostatic fluid-film

bearing operating in parallel with a ball bearing. A test vehicle incorp-

orating the hybrid bearing has been designed and is presented in Figure 54.

Many parts used in this tester assembly are the same as those used for the

ball bearing tester; these parts are identified by the ball bearing tester

numbers (see Figure 42), but will not be described here. New parts, unique

to the hybrid tester will be described and assigned identification numbers

sequentially after the ball bearing tester parts.

New parts, specifically designed for the hybrid bearing tester, include the

turbine end and free end hydrostatic bearing flanges O and . These

parts, designed to fit in the spaces provided for ball bearing tester parts,

contain the hydrostatic journal bearings and are manufactured to provide

ample lubricant passes for directing pressurized LH2 to the hydrostatic

bearings. The turbine end hydrostatic bearing flange also carries a hydro-

static thrust bearing for support of unbalanced axial loads. The two hydro-

static bearing flanges @ and ( are the only non-rotating parts to be

replaced when converting from ball bearing to hybrid bearing testing.

The rotating assembly contains several new parts for accommodating the hybrid

bearing. A smaller duplex ball bearing [Appendix D - MTI Specification 0232-

43601-01] as well as the axial thrust runner requires narrower shaft spacers

including new mid-bearing spacers G , and new inboard spacers @ and O

The addition of the thrust runner 0 requires a new heat dam .

Each hybrid bearing assembly consists of two extra-light series ball bearings,

a mid-bearing spacer , a hydrostatic journal sleeve 3 , and a preload

spring. The preload spring is located between the sides of outer races of
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the test ball bearing in each duplex bearing set. The axial thickness

difference between the unrestrained preload spring and the mid-bearing

spacer determines the level of preload imposed on the bearings. A preload

spring compression, which provides a 100 lb preload at assembly, has been

shown in Section A to be more than sufficient to permit successful ball

bearing performance throughout the entire test range. The installed

assembly of the hybrid bearing is illustrated in Figure 55.

The hybrid bearing (including the hydrostatic journal bearing) requires an

axially unrestrained installation to function properly. This type of

installation means that close contact axial positioning devices such as

bumpers must not be used, because their use imposes a thrust load on the

hybrid bearing set which ultimately prevents proper operation of the fluid-

film bearing component.

To relieve the hybrid bearings from the test vehicle thrust load, a thrust

runner has been designed. The runner is located between the rotor shoulder

and a shortened heat dam, as shown on Figure 54, Item 28 . The physical

size of the thrust runner, as well as its performance characteristics are

shown on Figure 56. Since the thrust bearing is unidirectional, the control

of pressures which affect tester thrust unbalance must be established at

levels which insure a positive thrust on the bearing. The tester design

requires the maintenance of a 1.66 x 106 N/m2 (240 1b/in 2 ) turbine discharge

pressure regardless of the turbine supply. The desired maximum thrust load

is set at 66.7 N (15 lb) thereby establishing a minimum flow rate of 5.20

x 10- 3 Kg/sec (1.15 x 10- 2 lb/sec) at a film thickness of 1.6 x 10- 5 m (7.0
-4

x 10 in). The maximum thrust load occurs during acceleration and will

decrease as the turbine supply pressure is decreased. At zero speed, the

thrust load will reduce to 30.9 N (6.9 lb) resulting in a flow increase to

6.15 x 10- 3 Kg/sec (1.36 x 10- 2 lb/sec).

a. Rotor Dynamics

The hybrid bearing tester, illustrated in Figure 56 was investigated to

determine its dynamic behavior as indicated by its critical speeds and

unbalanced response. The rotor model used for these analyses is shown
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in Figure 57 and is represented mathematically by the rotor bearing

system pictured in Figure 58 where M is the rotor mass, I its polar

moment of inertia, and It its transverse moment of inertia. The

turbine wheel is represented by the dynamic properties previously

listed in Table 11. The remaining rotor dynamic parameters are listed

in Table 17. The hybrid bearing is represented by the ball bearing

stiffness Kb, the duplex bearing outer races and the hydrostatic

journal sleeve mass M , the fluid-film damping B and stiffness K .
p P p

Figure 59 shows the critical speed map for the hybrid bearing and

includes the changes in ball bearing stiffness with speed.

Five hydrostatic bearing stiffnesses, representing the results of five

different hydrostatic bearing supply pressures overlay the critical

speed map to indicate the possible operational tracking of the hybrid

bearing. A sixth curve representing AP =N 2 curve is also included

in Figure 59 to show a ramped supply pressure. The obvious indication

of performance shown by Figure 59 is that a critical speed must be

driven through at high speed for any fixed level of hydrostatic bearing

pressure above 1.72 x 106 N/m2 (250 ib/in2). In addition, all testing

in the area of 100,000 to 120,000 rpm would occur exactly on a critical

speed at the higher bearing pressures leaving only pressures at or below

1.72 x 105 N/m2 (250 lb/in2) as the most probable pressure level permiss-

ible for safe high-speed tester operation. Several questions relating

to the hybrid bearing design are raised as a result of the necessity

of operating above or close to a high-speed critical speed. The three

most important questions to be answered are:

* Can geometric changes improve the stability?

* Will the rotor operate in a stable mode?

* What unbalance response can be expected should the final

design leave the critical speed map unaltered?

The answer to the first and second question was obtained by evaluating

several changes in hydrostatic bearing geometry with the use of MTI's

Rotor System Stability Program. This program was used because any

rotating machine supported on fluid-film bearings-operating above
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TABLE 17 HYBRID BEARING TESTER ROTOR DYNAMICS PROPERTIES

AP = 1.72 x 106 N/m2 (250 ib/in2)

HYBRID BEARING STIFFNESS

Speed Range Ball Bearing Stiffness (Kb) Hydrostatic Bearing Stiffness (K )

103 rpm 108 N/m (106 ib/in) 107 N/m (105 lb/in)

5-25 2.45 (1.40) 0.26 (0.80)

30-45 1.82 (1.04) 1.02 (1.07)

50-65 1.44 (0.82) 1.40 (1.48)

70-85 1.05 (0.60) 2.08 (2.17)

90-105 0.91 (0.52) 3.43 (3.62)

110-125 0.66 (0.38) 5.21 (5.80)

HYDROSTATIC BEARING DAMPING (B )

B = B
xx yy

102 N sec/m (lb sec/in)

10.2 (5.73)

13.9 (7.97)

19.1 (10.9)

29.7 (16.4)

46.6 (26.7)

89.0 (50.2)

Pedestal mass M = 0.104 Kg (0.23 lb), B and B are damping coefficientsp xx yy

in the x and y direction respectively for the overall damping coefficient B
P
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twice its first critical speed is susceptible to rotor instabilities

which are highly sensitive to changes in bearing characteristics.

At any operating speed of a rotor-bearing system, there is a system

natural frequency, v (in general, non-synchronous with the rotational

speed), which can be excited and which has an amplitude decay exponent,

1. Amplitude growth is described by the expression e , where t is

the time. In the commonly referred to logarithmic decrement 6 =

-2wX/v, if 6 is positive (X negative) the system is stable (adequately

damped) and any induced vibrations will decay. As 6 turns negative

(rotor instability threshold speed) the rotor becomes unstable and

susceptible to internal or external excitation forces.

Table 18 provides a listing of the bearing variations investigated and

the resulting bearing performance. The criterion for selecting the

most.promising bearing design is based on which geometry provides the

greatest positive value of log decrement. From Table 18, the bearing

geometry with the highest probability of success is the bearing

previously selected in Section B, but operating at a reduced supply

pressure of AP = 1.72 x 106 N/m2 (250 ib/in2). The flow rate require-

ment for the bearing is now 0.022 kg/sec (0.05 ib/sec) resulting in an

anticipated temperature rise of 10.60 C (19*F). The introduction of

LH2 to the hybrid bearing at 22.2 0K (400R) will assure that the temper-

ature rise through the bearing will not raise the LH2 temperature above

its critical value. The temperature rise of 10.60C (190F) at a tester

speed of 120,000 rpm results from a calculation which assumes the entire

hydrostatic bearing loss is absorbed by the LH2 . A more likely condit-

ion whereby a significant amount of this energy is transferred to the

surrounding metal and not into the fluid stream would reduce the cal-

culated rise in temperature.

An added advantage in operating at the low supply pressure is the sub-

stantial reduction in LH2 requirements the lower pressure provides.

The calculated flow rate of 0.022 kg/sec (0.05 lb/sec) per bearing is

(1/4) one-quarter the flow rate required by the ball bearing tester,
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TABLE 18 HYDROSTATIC BEARING GEOMETRY AND SUPPLY PRESSURE
EVALUATION SUMMARY

Supply Pressure Clearance Length Log Decrement Temperature Rise Flow Rate

AP (C) (L) 6 AT (Q)
N/m2 (ib/in ) m (in) mm  (i n )  

oC (oF) Kg/sec (lb/sec)

6.90 x 10 (1000) .025 (.001)- 22.0 (.9 .154 4.30 (7.75) .052 (.12)

6.90 x 106 (1000) .025 (.001) 14.6 (.6) .108 2.62 (4.72) .056 (.13)
6.90 x 106 (1000) .051 (.002) 22.0 (.9) .087 1.81 (3.26) .105 (.24)

3.45 x 106 (500) .025 (.001) 22.0 (.9) .193 6.50 (11.7) .035 (.08)

3.45 x 106 (500) .038 (.0015) 22.0 (.9) .115 3.46 (6.23) .056 (.13)

1.72 x 106 (250) .025 (.001) 22.0 (.9) .260 10.60 (19.1) .022 (.05)
1.72 x 106 (250). .025 (.001) 14.6 (.6) .058 6.00 (10.8) .026 (.06)

1.72 x 10 (250) .038 (.0015) 22.0 (.9) .013 5.31 (9.43) .039 (.09)

Clearance sized at 100,000 rpm.



thereby leaving a significant flow rate margin for cooling the ball

bearing portion of the hybrid bearing.

The stability analysis of the hybrid bearing tester has answered the

first two questions raised by the critical speed study; namely, that

the basic geometry of the hydrostatic bearing is best left as origin-

ally sized and that operation of the tester along the 1.72 x 106 kg/m2

(250 lb/in2) stiffness line on Figure 59 will produce the most potent-

ially stable operation. The answer to the third question lies in the

results of the rotor response calculations.

The unbalanced rotor response of the hybrid bearing rotor-bearing sys-

tem depends on the accuracy of the input parameters derived from the

hybrid bearing calculation. The calculated performance characterist-

ics of the hybrid bearing described in Section B were further refined

to provide values of stiffness and damping at several reduced supply

pressures including AP = 1.72 x 106 N/m2 (250 Ib/in2). In addition

to the nominal synchronous values of stiffness and damping, an added

improvement to the response calculations was taken by including the

effects of damping cross-coupling. It should be noted that the response

calculations are based on an unbalance of 7.2 x 10- 7 kg-m (0.001 oz-in)

located at the turbine's gravitational center; this level of unbalance

is, as already discussed in the preceding section, close to three times

higher than will actually be attained. With the lower residual un-

balance, the calculated response amplitudes will be accordingly reduced

by the same amount. The response curves in Figure 60 and the response

data listed in Table 19 both show maximum rotor excursion occurs out-

side the bearing areas and primarily affect turbine blade tip clearances.

The rotor excursions, when considering the actual achievable rotor un-

balance, represent tractable amplitudes and should not prevent success-

ful operation of the hybrid tester.

The dynamic bearing loads transmitted through the bearings to the

pedestals are also listed in Table 19. The maximum load occurs at the

turbine end bearing, at a shaft speed of 110,000 rpm and is equal to

222N (50 lb). This radial load which lies well within the 0 - 445 N
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TABLE 19

RESPONSE DATA - HYBRID BEARING TESTER

SINGLE AMPLITUDE ROTOR EXCURSIONS FORCE TRANSMITTED TO PEDESTAL

STATION 6 STATION 12 STATION 20 STATION 6 STATION 12

ROTOR SPEED FREE END BEARING TURBINE END BEARING TURBINE FREE END BEARING TURBINE END BEARING

RPM m (INCH) m (INCH) m (INCH) N (LB) N (LB)

5000 1.419E-08 (5.585E-07) 4.072E-08 (1.603E-06) 7.841E-08 (3.087E-06) 1.078E-01 (2.4208E-02) 3.094E-01 (6.9462E-02)

0 10000 6.065E-08 (2.388E-06) 1.771E-07 (6.971E-06) 3.386E-07 (1.333E-05) 4.470E-01 (1.0037E-01) 1.303E+00 (2.9265E-01)

15000 1.509E-07 (5.940E-06) 4.547E-07 (1.790E-05) 8.613E-07 (3.391E-05) 1.072E-00 (2.4064E-01) 3.218E+00 (7.2258E-01)

20000 3.091E-07 (1.217E-05) 9.820E-07 (3.866E-05) 1.834E-06 (7.220E-05) 2.099E+00 (4.7140E-01) 6.610E+00 (1.4841E+00)

25000 5.900E-07 (2.323E-05) 2.039E-06 (8.026E-05) 3.736E-06 (1.471E-04) 3.771E+00 (8.4673E-01) 1.276E+01 (2.8640E+00)

30000 7.559E-07 (2.976E-05) 2.703E-06 (1.064E-04) 5.004E-06 (1.970E-04) 5.775E+00 (1.2966E+00) 1.990E+01 (4.4690E+00)

35000 1.353E-06 (5.328E-05) 5.578E-06 (2.196E-04) 1.008E-05 (3.967E-04) 9.064E+00 (2.0352E+00) 3.337E+01 (7.4924E+00)

40000 2.020E-06 (7.953E-05) 1.010E-05 (3.978E-04) 1.765E-05 (6.948E-04) 1.241E+01 (2.7856E+00) 4.556E+01 (1.0229E+01)

45000 2.031E-06 (7.995E-05) 7.907E-06 (3.113E-04) 1.337E-05 (5.263E-04) 1.462E+01 (3.2822E+00) 4.518E+01 (1.0145E+01)

50000 1.923E-06 (7.569E-05) 8.659E-06 (3.409E-04) 1.520E-05 (5.985E-04) 1.892E+01 (4.2484E+00) 6.205E+01 (1.3932E+01)

55000 2.409E-06 (9.484E-05) 6.662E-06 (2.623E-04) 1.156E-05 (4.551E-04) 2.140E+01 (4.8043E+00) 5.818E+01 (1.3063E+01)I-.
) 60000 3.117E-06 (1.227E-04) 5.428E-06 (2.137E-04) 9.792E-06 (3.855E-04) 2.366E+01 (5.3130E+00) 5.273E+01 (1.1840E+01)

65000 3.178E-06 (1.251E-04) 4.646E-06 (1.829E-04) 8.793E-06 (3.462E-04) 2.515E+01 (5.6479E+00) 4.836E+01 (1.0858E+01)

70000 2.921E-06 (1.150E-04) 5.883E-06 (2.316E-04) 1.903E-05 (4.305E-04) 3.535E+01 (7.9370E+00) 8.432E+01 (1.8932E+01)

75000 3.198E-06 (1.259E-04) 5.192E-06 (2.044E-04) 1.004E-05 (3.952E-04) 3.837E+01 (8.6146E+00) 7.977E+01 (1.7910E+01)

80000 3.137E-06 (1.235E-04) 4.722E-06 (1.859E-04) 9.350E-06 (3.681E-04) 4.080E+01 (9.1609E+00) 7.640E+01 (1.7154E+01)

85000 2.985E-06 (1.175E-04) 4.407E-06 (1.735E-04) 8.773E-06 (3.454E-04) 4.269E+01 (9.5861E+00) 7.429E+01 (1.6681E+01)

90000 3.289E-06 (1.295E-04) 6.043E-06 (2.379E-04) 1.263E-05 (4.971E-04) 6.633E+01 (1.4892E+01) 1.454E+02 (3.2654E+01)

95000 3.421E-06 (1.347E-04) 5.593E-06 (2.202E-04) 1.204E-05 (4.739E-04) 7.189E+01 (1.6141E+01) 1.410E+02 (3.1656E+01)

100000 3.401E-06 (1.339E-04) 5.245E-06 (2.065E-04) 1.153E-05 (4.539E-04) 7.716E+01 (1.7325E+01) 1.379E+02 (3.0963E+01)

105000 3.338E-06 (1.314E-04) 4.973E-06 (1.958E-04) 1.109E-05 (4.366E-04) 8.205E+01 (1.8423E+01) 1.362E+02 (3.0577E+01)

110000 3.856E-06 (1.518E-04) 5.530E-06 (2.177E-04) 1.197E-05 (4.711E-04) 1.169E+02 (2.6241E+01) 2.259E+02 (5.0725E+01)

115000 3.904E-06 (1.537E-04) 5.136E-06 (2.022E-04) 1.138E-05 (
4
.48

2
E-04) 1.287E+02 (2.8887E+01) 2.184E+02 (4.9032E+01)

120000 3.899E-06 (1.535E-04) 4.811E-06 (1.894E-04) 1.090E-05 (4.290E-04) 1.399E+02 (3.1422E+01) 2.115E+02 (4.7498E+01)

125000 3.874E-06 (1.525E-04) 4.549E-06 (1.791E-04) 1.047E-05 (4.124E-04) 1.499E+02 (3.3666E+01) 2.055E+02 (4.6139E+01)



(0-100 ib) assumed in the original bearing calculations, will be

further decreased with lowered residual unbalance.

b. Thermal Analysis

The hybrid bearing tester, like the ball bearing tester, was sub-

jected to a comprehensive thermal analysis and like the ball bearing

tester, was analyzed using all the power losses and liquid and gaseous

fluid streams concurrently. The complexity of the thermal model of the

hybrid tester resulting from both the interaction of many flow streams

and its complicated geometry required many assumptions in order to fit

the model within the computer program restraints. Along with the

similar difficulties in modeling discussed for ball bearing tester,

the hybrid bearing tester hydrostatic bearing LH2 supply flow stream

model could not account for fluid flow in the region between the two

rows of pockets (see Section B for a complete description of the hydro-

static bearing geometry). As a result of the assumptions made, the

quantitative accuracy of the temperature calculations is in doubt, al-

though the qualitative temperature trends are valid.

Figure 61 shows the thermal model used for the hybrid bearing temper-

ature distribution calculations. In addition to the coolant and

turbine gas and radial loader flow streams, which are similar to the

ball bearing tester, four new flow streams identified by grid, I, J

numbers as (a) one-half hydrostatic supply at free end of bearing,

(12,6) to (10,6) to (10,4); (b) one-half hydrostatic supply at free end

of bearing, (12,10) to (10,10) to (10,12); (c) one-half hydrostatic

supply at turbine end bearing, (12,20) to (10,20) to (10,18), and (d)

one-half hydrostatic supply at turbine end bearing, (12,24) to (10,24)

to (10,26), are included to simulate the hydrostatic bearings LH2 supply

paths. A composite listing of the input parameters used in the hybrid

bearing thermal analysis are presented in Table 20.

The LH2 flow to the thrust bearing was not included in the thermal

mapping and therefore does not appear in Table 20. The decision not

to include the thrust bearing flow was based on the inability to
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-B TABLE 20

THERMAL ANALYSIS INPUT PARAMETERS
s HYBRID BEARING TESTER

Inlet Temperature Flow Rate Specific Heat Film Coefficient Thermal Conductivity

Btu Watt Btu Watt Btu

OK (oR) Kg/sec (Ib/sec) J/KgK b m
2 

OK Ihr-ft2oF m - OK hr-ft-OFI

LH 2 Bearing Coolant (Free End) 27.8 (50) 0.045 (0.10) 9.2 x 103 (2.2) 35000 (20000) ---- ----

LH2 Bearing Coolant (Turbine End) 27.8 (50) 0.045 (0.10) 9.2 x 103 (2.2) 35000 (20000) ---- ----

LH2 Hydrostatic Supply (Per Stream) 27.8 (50) 0.011 (0.025) 9.2 x 10
3  

(2.2) 28000 (16000) ---- ----

S( GH2 Turbine Annulus 294 (530) 0.082 (0.18) 1.43 x 10 (3.42) 341 (194.4) 0.168 (0.097)

4
GH2 Turbine Blading --- --- 0.082 (0.18) 1.43 x 10 (3.42) 5430 (3095) ---- ----

GH2 Turbine Discharge --- --- 0.082 (0.18) 1.43 x 10 (3.42) 3090 (1767) ---- ----

LH2 Radial Loader 27.8 (50) 0.012 (0.025) 9.2 x 103 (2.2) 176 (100) ---- ----

Stainless Steel 33.3 (60) ---- ---- ---- ---- ---- ---- 8.65 (5.0)

Stainless Steel 44.5 (80) ---- ---- ---- ---- ---- 11.2 (6.5)

Stainless Steel 61.0 (100) ---- ---- ---- ---- ---- ---- 13.8 (8.0)

Inconel 718 27.8 (50) ---- ---- ---- ---- ---- ---- 3.48 (2.0)
Inconel 718 27.8 (50) 3.48 (2.0)

T6 Aluminum 61.0 (110) ---- ---- ---- ---- ---- ---- 52.0 (30)

Insulation NA ---- - --- ---- ---- ---- ---- .348 (0.2)
(Epoxy Fiberglass)



provide a sufficient grid density in the thrust bearing area to

accommodate the necessary flow stream. To balance the lack of a flow

stream at the thrust bearing, the thrust bearing frictional power loss

was not included in the thermal calculations.

The thermal analyses for the hybrid tester provides a temperature map

of the complete tester and the temperature rise for all flow streams

(both cooling and hydrostatic bearing supply). A listing of the

temperature rise for each flow stream is presented in Table 21.

The largest flow stream temperature rises are indicated at the hydro-

static bearing supplies which exit the bearing toward the free-end of

the rotor. The maximum indicated stream temperature rise is approx-

imately 14.50C (260F). This value is larger than the bulk rise of

110 C (190F), calculated as if the total bearing loss at 120,000 rpm

was used to raise the stream temperature. This anomaly is largely

due to the inability to exactly model the hydrostatic supply. The

temperature rise can be expected to be significantly lower in the

actual tester.

The temperature distribution in the hybrid bearing tester, using

power losses calculated at a rotor speed of 120,000 rpm is shown in

Figure 62. [In many aspects the hybrid tester temperature distrib-

ution resembles the results obtained for the ball bearing machines.

The temperature distribution at the heat dam (Item 29 of Figure 53),

shows the anticipated high axial gradient ].

The temperature map also indicates some metal temperatures in excess of

the LH2 critical temperature. The major contributor to the generation

of these higher temperatures is identical to that stated for the ball

bearing testers, i.e., the location of generated heat along a machine

surface rather than in a flow stream where the heat is actually

generated.

As previously discussed, the difficulty in developing an exact thermal

model that will fit the existing computer program results in temperature
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TABLE 21

LH2 COOLANT STREAM AND HYDROSTATIC BEARING SUPPLY

TEMPERATURE RISE

LH2 Flow Rate LH2 Temperature Rise LH2 Temperature Rise

Free End Turbine End

Flow Stream Kg/Sec (ib/sec) C (F) C (F)

Coolant Stream 0.056 (0.12) 2.38 (4.3)

Coolant Stream 0.056 (0.12) -- .84 (1.5)

Hydrostatic Supply (a)+  0.011 (0.025) 14.5 (26) 13.2 (24)

(b)+ 0.011 (0.025) 7.8 (14) 8.4 (15)

+Left Row of Pockets Designated as "a" Supply

Right Row of Pockets Designated as "b" Supply

ASSUMED LOSSES

OWindage 252 Watts (862 BTU/hr)

0 Seals 90.4 Watts (308 Btu/hr)

OHydrostatic Bearing 2440 Watts (8359 BTU/hr)

Loss Distributed Equally Between Journal and Bearing Surfaces
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levels much higher than would be experienced by the actual machine.

Moreover, the introduction of additional streams, such as the hydro-

static feed paths, without a further increase in the grid density

(decrease in spacing between stations) may seriously curtail the

accuracy of the calculated temperatures. Unfortunately, a further

increase in the grid density was not possible due to the inherent

limitations of the thermal program used. In general, the conclusions

drawn in Section C-1 apply also to the hybrid tester configuration.

3. Special Common Parts

Several specialized components which are common to both test vehicles

require a specific design effort. These component designs are described

in the following report section.

a. Seal Design

The seals incorporated in both test rig designs are of the non-contact

clearance type and are used to isolate and direct the flow of various

gases and liquids required by the testers during operation. In the

ball bearing tester shown in Figure 63, four different leakage paths

are identified. All these leakage paths are restricted by seals con-

sisting either of floating rings, labyrinth, or laminar annular re-

strictors.

Two identical floating ring seals ) located between the radial loader

cavity and the test bearing cavity are installed to maintain a 1.72 x

106 N/m2 (250 lb/in2 ) bearing cavity pressure, thereby insuring a

positive leakage of liquid hydrogen from the bearing cavity to the

loader cavity which is to be.maintained at 1.66 x 106 N/m2 (240 lb/in 2)

These seals are to be employed only when gaseous hydrogen is used to

activate the radial loading device. The use of liquid hydrogen in the

radial loader will eliminate the necessity for seals in location Q.
A fixed clearance seal © separates the turbine end cavity from the

turbine back space. This seal serves the same function as the shaft

seals (Item ) ), which is the maintenance of a 1.72 x 106 N/m2

(250 lb/in2 ) bearing cavity pressure and a positive leakage path of
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liquid hydrogen into gaseous hydrogen behind the turbine wheel. The

third leakage path is through a labyrinth seal at the turbine tip f.

This seal is used to prevent the high turbine supply pressure from

acting against the back of the turbine wheel. The leakage through

this seal is speed dependent due to centrifugal growth of the aluminum

turbine wheel.

The cavity in the back of the turbine wheel, which is isolated between

seals Q and Q, is vented to the turbine outlet duct that is main-
tained at 1.65 x 106 N/m2 (240 lb/in 2). This arrangement in addition

to minimizing leakage through the imposition of a 6.9 x 104 N/m2

(10 ib/in2 ) pressure drop across seal @, also controls the hydraulic

thrust load.acting on the rotor (see Appendix H).

The leakage path @ occurs between the bearing mount (Item 3 of

Figure 52 and the housing). Leakage across this path is again the

result of 6.9 x 104 N/m2 (10 ib/in2) AP across the bearing mount

between the bearing cavity and the loader cavity. Again, should LH2

be used in the radial loader, this leakage path will be eliminated.

The leakage rates through the three seals (,t, &%), and the

clearance leakage (0), have been calculated versus a number of

variables (i.e., pressure drop, clearance and/or downstream temperature).

Calculation of flows for conditions in the subsonic regime was carried

out by use of the MTI generalized bearing/seal program. This program

takes into account compressibility of the fluid, and nonlinear turbu-

lence. A value of viscosity evaluated at the mean temperature and

pressure is shown in Figure 64. The pressure drop due to the acceler-

ation of the flow into a seal entrance was neglected for the subsonic

regime of operation. The values adopted here are thus conservative.

For high velocities compared to the speed of sound, the flow is less

than or equal to the choked flow. This can be obtained by the nozzle

flow equation evaluated at the critical pressure ratio:
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The flow is given by:

P 2/
Q = CD A 2PIP1 P2 [ - Pl

where A is the minimum flow area and CD the discharge coefficient. A

value of CD = 1, was used to obtain a conservative leakage rate.

The calculated results for the selected seal designs are summarized in

Table 22. The anticipated total hydrogen leakage rate is expected to

be 0.038 Kg/sec (0.070 lb/sec) of which 28 percent is liquid, in a

system which employs all four seals. The use of LH2 instead of GH2
in the radial loader will eliminate seals ( and®, hence the total

hydrogen leakage rate will be .025 Kg/sec (0.56 lb/sec) of which about

11 percent will be LH2.

TABLE 22

SEAL LEAKAGE RATES

Seal Flow Temperature Radial Clearance Leakage Rate
Ident. Medium OK (OR) mm (in) Kg/sec (lb/sec)

-3
1 LH 27.8 (50) 0.025 (0.001) 6.35 x 10 (.014)

-3
2 LH2  27.8 (50) 0.025 (0.001) 2.71 x 10 (.006)

-2
3 GH2  29.4 (350) 0.075 (0.003) 2.27 x 10- 2  (.05) at

120,000-3
4 LH2  27.8 (50) 0.012 (0.0005) 0.091x 10 (.0002)

Total Leakage: 0.032 Kg/sec (0.070 b/sec)
72 percent gaseous, 28 percent liquid

A complete set of graphs providing leakage rates for all seal calculat-

ions is found in Appendix I. The leakage through path No. 4 is not
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presented graphically since it is a singular point.

All leakage calculations as well as the general discussion of the seals

apply equally well to the single ball bearing, duplex ball bearing and

hybrid testers. The only exception is the seal location in position

) in Figure 63. In the hybrid version, the sealing in this position

is accomplished by the thrust plate (Item 28 in Figure 54), the charac-

teristics of which are discussed in Section C-2. The net leakage rate

shall, however, remain at the 2.7 x 10- 3 Kg/sec (.006 ib/sec) level.

b. Turbine Design

The drive turbine design for the hybrid and ball bearing testers was

based on the following initial specifications:

Power - 11,900 watts (16 HP) max.

Max. Speed - 120,000 rpm

Acceleration - 50,000 rpm/sec

Gas Supply - GH2 : 1.66 x 107 N/m
2 (2400 lb/in2 ) and 21.10 C(70*F)

The maximum power required by the turbine was obtained from the follow-

ing sources:

1. Torque to Accelerate

2. Torque to Sustain

a. Bearing Losses

b. Windage Losses

c. Seal Function Losses

3. Safety Margin

The rotor polar moment of inertia generated by the rotor dynamics

computer program is I = 6.28 x 10- 5 Kg-m2 (0.23 lb-in2 ). In order to
p

overcome inertia and to sustain the 50,000 rpm/sec acceleration to

120,000 rpm requires a turbine torque of .339 N-m (3 in-lb). Bearing

loss calculations show a sustaining torque requirement of 0.555 N-m

(4.92 in-lb) at 120,000 rpm, and seal and windage loss calculations

indicate a torque to be supplied by the turbine at 120,000 rpm is
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0.026 N-m (0.24 in-lb). The maximum turbine power requirement is thus

11,900 watts (16 HP). This number includes all power losses plus the

acceleration requirements.

The design of a GH2 turbine presents a somewhat unusual problem in that

the sonic velocity of hydrogen is about four times that of air, the

limiting aerodynamic criteria is not Mach No., but one of limiting

wheel stresses. For reasons of design flexibility and low cost

manufacture, it is advantageous to use the cantilever radial in-flow

type turbine. iThis type of turbine, however, does have higher inher-

ent stresses than the full bladed radial in-flow type. Considering

further the use of a high strength wrought aluminum alloy, such as

forged 2014-T6, the turbine tip speed is limited to 1300 ft/sec, de-

pending on the final length of the cantilevered blade section. In this

regard, it should be noted that when the turbine exhausts to atomospheric

pressure, a very large blade length is necessary to pass the required

mass flow. To bring the stress level within safe limits, it was necess-

ary to reduce the blade height. A shorter blade in turn required high

turbine back-pressures (higher gas density) to maintain the specified

power output. After several trials, the design values shown in Table 23

were arrived at. The back-pressure was elevated to 1.66 x 106 N/m2

(240 lb/in2). The turbine flow rate, generated power and pressure

requirements as functions of speed are shown in Figures 65, 66 and 67.

The elevated back-pressures, in addition to providing for the required

turbine power output, contributesealso, as explained in preceding

sections, to the reduction of test vehicle leakage and hydraulic thrust

loads. However, the need to maintain this pressure at a constant level

when the turbine flow is varied, will require a variable size orifice

at the turbine exhaust. The automatic adjustment to the exhaust orifice

area, in conjunction with turbine supply pressure to maintain the des-

ired torques and speeds will have to be provided for in the control

system layouts.



TABLE 23

TURBINE DESIGN VALUES

Accelerating Sustaining

Speed: RPM 120,000 120,000 90,000 60,000 30,000

Torque: N-m (in-lb) 0.96 (8.5) 0.62 (5.5) 0.38 (3.4) 0.20 (1.8) 0.085 (.75)

Power: WATTS (HP) 11,900 (16.2) 7820 (10.5) 3620 (4.85) 1280 (1.72) 268 (.36)

Pressure Ratio: 1.35 1.2 1.108 1.044 1.014

Back Pressure Orifice Dia.: m (in) 113 (.444) 106 (.415) 92 (.362) 75.7 (.298) 53.5 (.211)

Enthalphy Drop: Joule (BTU) 1.57x105 (149) 9.6x10 (91) 5.39x10 (51) 2.32x10 (22) 7.4x103 (7)

Supply Pressure: N/m2 abs (lb/in2) 2.23x106 (323) 1.99x106 (288) 1.83x106 (265) 1.73x10 6(250) 1.64xl0 (244)

Mass Flow Rate: Kg/sec (ib/sec) 6.99x10-2(.152) 5.66x10- 2 (.125) 4.29x10-2(.0945) 2.90x10-2(.064) 1.45x10-2(.032)

TURBINE CONSTANTS

-2
Turbine Inlet Dia.: m (in) 5.70 x 10- 2 (2.2)

-2
Turbine Exhaust Dia.: m (in) 4.06 x 10- 2 (1.6)

Inlet Blade Height: m (in) 1.09 x 102(.043)
-2

Exhaust Blade Height: m (in) 2.28 x 10- 2 (.090)

Turbine Back Pressure N/m
2 (ib/in2 )  1.66 x 106 (240)

Inlet Temperature: *K (*R) 294. (530)

Turbine Efficiency: .65

Number of Nozzles: 19

Number of Buckets: 30



.10
.09 .20
.08
.07
.06

"W .05

: .04- .09 QS.-08 -.0
w .031
.006

0_, -05

-.04

-.03

.01

.01 30 60 90 120 150
TURBINE SPEED, 1000 RPM

Fig. 65 Turbine Flow for Sustained Operation

143



104

p - 10.0

5.0

10 / °
1.0 "j

o 00. -

0.2

102
30 60 90 .120 150

TURBINE SPEED, 1000 RPM

Fig. 66 Turbine Power at Sustained Operation

144



3.03. N - 400
E ACCELERATION 0

I z

w- -300 m
9 2.0

SUSTAINED

o 200
r- TURBINE BACKPRESSURE= 1.66x 106N/m2(240 LB/IN2)

1.0

30 60 90 120 150

TURBINE SPEED, 1000 RPM

Fig. 67 Turbine Supply Pressure Requirements
for Sustained Operation

145



c. Instrumentation

Proper evaluation of both the ball bearing and hybrid bearing tester

performance relies on the accurate measurement of many test parameters.

Table 24 lists the parameters to be measured, the location of the

primary sensor and the type of instrument to be employed. The selected

instrument locations are identified by number on two tester layouts;

Figure 68 for the ball bearing, and Figure 69 for the hybrid bearing.

In cases where the primary sensor is external to the tester, the

instrument attachment provision is listed rather than the instrument

type. Selection of instrument types is based on the compatibility of

the selected instrument with cryogenic hydrogen.

Particular attention has been paid to those instruments which are to be

permanently installed within the tester housing. The ball bearing

outer race thermocouples will be installed into the flexure mounts in

juxtaposition with the ball bearings' outer races. These thermocouples

will be assembled from individual 2.54 x 10- 4 m (0.010 in) diameter

chromel and constantan wires, each having a 7.53 x 10- 5 m (0.003 in)

thick teflon insulation jacket. Two thermocouples will be installed

at each bearing making a maximum of eight (8) thermocouples to be

installed for the ball bearing testers. The hybrid bearing tester

ball bearings have rotating outer races and as such are not capable of

being thermally monitored, however, a pair of thermocouples will be

installed in the non-rotating part of the free end hybrid bearing. The

remaining temperatures of interest, internal to the testers, shall be

obtained with sheathed 1/16 diameter platinum.resistance thermocouples

which will penetrate the tester housing through sealing gland fittings

at the 1/8 NPT ports provided on several tester parts.

Rotor and pertinent bearing speeds will be measured with the use of

photo-electric devices. Each speed measurement listed will require a

separate optical fibre bundle and transducer amplifier to convert six

(6) pulses per revolution signals to rpm equivalents. Two additional

photosensitive probe locations are provided in the hybrid bearing

tester to permit the measurement of the hybrid journal sleeve lateral

motion. The two probe locations will be at the free end bearing and

circumferentially displaced by 900 .
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CD TABLE 24

INSTRUMENTATION LIST

Location

Measurement Preload Tester Duplex Tester Hybrid Tester Type

1 Inner Race Speed Rotor: Turbine End Rotor: Turbine End Rotor: Turbine End Fiber Optic Sensor

2 Cage Speed Rotor: Free End Rotor: Free End Rotor: Free End Fiber Optic Sensor

3 Outer Race Speed Rotor: Free End Fiber Optic Sensor

4 Ball Bearing Temp. Outer Race 2 Brgs. Outer Race 4 Brgs. Platinum Resistance
Thermocouple

5 Vibration Housing - Both Ends Housing - Both Ends Housing - Both Ends Accelerometer

6 Axial Load Free End Bearing Mt. Strain Gage

7 Radial Load Free End Bearing Mt. Free End Bearing Mt. Strain Gage
Loader Piston Loader Piston Loader Piston Pressure Transducer

8 Bearing Coolant Adjacent to Bearing Adjacent to Bearing Adjacent to Bearing 1/8 NPT Port Provided
Temperature Inlet and Outlet Inlet and Outlet Inlet and Outlet

9 Bearing Coolant At Supply and At Supply and At Supply and 1/8 NPT Port Provided
Pressures Discharge Ports Discharge Ports Discharge Ports

10 Coolant Flow Rate External External External

11 Bearing Supply From Internal 1/8 NPT Port Provided
Pressure Manifold

12 Bearing Supply External
Flow Rate

13 Bearing Supply External
Temperature

14 Bearing Recess External 1/8 NPT Port Provided
Pressure

15 Rotor Lateral Motion Hydrostatic Bearing Fiber Optic Sensor
Sleeve - Free End
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Both radial and axial loads imposed on the ball bearing tester will

be measured with strain gage instrumentation. An axial load spring

will be installed between the free end flexure mount (Item@ , Figure

42) and the loader piston (Item i , Figure 42), Four strain gages

operating into a full bridge will provide the necessary strain

information for determining the applied axial load. The strain gages

will be attached in pairs at the maximum bending stress location of the

load spring in order to maximize the strain reading. The positive and

negative reading strain gages share alternate positions on the bridges.

When arranged in this configuration, they will provide both maximum

output and temperature compensation.

Radial load is similarly measured on the ball bearing tester with the

installation of four (4) strain gages on two spokes of the free end

flexure mount. Two gages will be attached to the maximum stress point

on each of two spokes, aligned with the radial load. Alternate connect-

ions of the positive and negative reading gages on a full bridge will

maximize the strain readings resulting from radial load and provide for

temperature compensation.

In addition to load and speed, it is anticipated that close monitoring

of the supply pressures and temperatures will be desired. To assist in

obtaining these data, 1/8 NPT ports for the necessary pressure and

temperature sensor fittings are provided in both the ball bearing and

hybrid testers.

d. Materials

The following specific materials requirements are important in the des-

ign of both the ball and hybrid bearing testers.

1. Dimensional stability of the bearings and structural parts

2. Erosion and corrosion resistance

3. Sliding compatibility of the materials, including sliding
under start-stop conditions and during a high-speed rub

4. Matched coefficients of thermal expansion between the bearings,
the shaft and housing, throughout the operating temperature
range
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The third item on this list is perhaps the most critical one, and

though all four requirements need to be satisfied, it may be necessary

in any trade-off of requirements to emphasize this one. This is

particularly true for the hybrid bearing tester journal bearings. The

ball bearing material selection has been discussed in Section A-2.

Table 25 details some of the existing liquid hydrogen sliding bearing

material experience (References 1 & 2). The materials most readily

adaptable to the fluid-film bearing component of the hybrid bearing

are those run by Rocketdyne. These materials consisted of chrome

plate vs. silver plate deposited on the basic materials of construction.

The advantage of using plated films rather than solid inserts is

obvious, since the plating permits the selection of the substrate

materials on the basis of strength, stability, and thermal matching

considerations. Chrome plate and silver plate are, furthermore, easy

to apply, as well as economical to repair, should any accidental damage

occur during the tests. The hybrid journal sleeve, made of 440 C

stainless steel for thermal compatibility with the test ball bearings,

will be hard chrome plated. Bearing bores of the hydrostatic bearing

flanges (Item @ of Figure 54) will be silver plated as per AMS-2412.

The plating will be held to a final thickness of 2.54 x 10- 5

-5
7.62 x 10- 5 m (0.001 - 0.003 inch).

The remainder of all the tester parts with the exclusion of the

rotating assembly (rotor, spacers, heat dam, turbine wheel and

fasteners) will be made of 316 stainless steel. Selection of the 316

stainless steel alloy is based on the following reasons:

* All 300 series stainless steels are recommended for cryogenic

temperatures

* 316 stainless steel is readily available

* Notch strength of 316 at cryogenic temperatures ranks

among the highest of all 300 series stainless steels

* Thermal expansion coefficient slightly higher than 440 C

stainless steel to permit ease of assembly at room temperature
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TABLE 25 LIQUID HYDROGEN HYDROSTATIC BEARING MATERIALS EXPERIENCE

Company Materials Results Reference

Pratt and Whitney 1. Bearing B-10 Lead
bronze bushing

Success 2
Tungsten carbide
coated Inconel 718
journal

2. Bearing B-10 lead
bronze bushing

Success 2
Tungsten carbide
coated AMS 6260
journal

Aerojet General Inconel 718 coated Failure 3
with tungsten carbide
journal and bearing

Rocketdyne Silver plated bearinp Success
with chrome-plated
journal
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Inconel 718 is specified for all rotating tester parts with the

exception of the turbine wheel. Two primary reasons for the selection

of Inconel are its relatively high impact strength at cryogenic

temperatures (approximately 40 times higher than 440 C stainless steel),

combined with only a 25 percent larger thermal expansion coefficient,

as compared to 440 C. No other stainless steel combines the high

impact strength at cryogenic temperatures necessary for the tester

rotor with a thermal expansion coefficient close to 440 C. Although

many stainless steels have high impact strengths at low temperatures,

the large thermal expansion rates (as much as 180 percent more than

440 C) preclude their use as shafting, since excessive interferences

between the ball bearings and the rotor would be required during room

temperature assembly.

The turbine wheel design specifies 2014-T6 forged aluminum as its

material for the following reasons:

* Turbine wheel's predominant operating temperature will be at

or near 294 0K (5300R) and so cryogenic temperatures are not

major design criteria

* The overhung turbine design dictates a light weight

turbine wheel

* 2014-T6 forgings have been successfully employed for high-

speed turbine wheels in the past

All static seals installed in tester areas where cryogenic temperatures

are anticipated are specified to be 321 stainless steel, unvented

standard wall "O"-rings with a 2.54 x 10-4 /5.08 x 10- 4 m (0.001/0.002 in)

thick silver plate. In those areas of the testers where temperatures

are at or near 2940K (530'R), fluorinated polymer "O"-rings are used.

Table 26 lists the cryogenic properties of all the major component

materials used in the manufacture of both testers.
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TABLE 26

MATERIAL PROPERTIES OF TESTER PARTS AT CRYOGENIC TEMPERATURES

Density Youngs Modulus Thermal Expansion Coefficient Thermal Conductivity*
Item Material Kg/m

3  
(lb/in

3
) N/m

2  
(b/in

2
) m/m (in/in) W/m-o..F (Btu/hr-ft-OR)

Shaft, Spacers, Inconel 718 8.20 x 103 (0.296) 2.16 x 1011 (31.3 x 106) -233 x 10
-5  

3.48 (2.00)
Heat Dam

Housing, Loaders, 316 Stainless 7.85 x 103 (0.283) 2.07 x 1011 (30.0 x 106) -290 x 10
-5  

8.6 (5.0)
Flexure Mount Steel 13.8 (8.0)

Hybrid Journal AISI 440C 7.85 x 103 (0.283) 2.07 x 1011 (30.0 x 106) -175 x 10
-5  

8.6 (5.0)
Sleeve

Turbine Wheel Aluminum 2.77 x 103 (0.100) 7.57 x 1010 (11.0 x 106) 24.1 x 10-6 /K (12.1 x 10-6/OF) 52.0 (30.0)
2016-T6

Thermal Conductivity Listed Corresponds to Calculated Average Vehicle Temperatures.

0
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CONCLUSIONS & RECOMMENDATIONS

The design study performed within the scope of this work resulted in finalized

designs of rolling-element bearings, hybrid bearings, and a test vehicle for the

development of bearing technology for advanced turbo-pump applications. Two

angular contact ball bearing designs have been produced, one for the use in ball

bearing rotor support systems, and another for use in hybrid bearing systems.

The designs differ in size and internal geometry, because of the differing

performance requirements inherent in the two concepts.

The general design trends indicate a high degree of sensitivity of the bearing

life to load and speed changes. In order to maximize the life potential of each

rolling-element bearing, both externally imposed loads, as well as speeds, should

be minimized. Because the given conditions of operation extend beyond present-

day experience, no quantitative life predictions are possible at this time.

The analytical results indicate that the hybrid bearing should be capable of

successful operation in a hybrid mode since the ball bearing possesses ample

capacity to transmit the torque required to drive the fluid-film bearing at the

given design speeds.

Each of the tester (ball bearing and hybrid) designs has indicated no major

deficiency which could seriously impair their operation. The critical speeds

and rotor response calculations indicate, in most instances, well-bounded,

stable operation at the desired test speeds, with low amplification of response

when transmitting through a critical. The most serious weak spot is found in

the hybridbearing tester response, where the supply pressures may have to be

limited to a maximum of 3.45 x 106 N/m2 (500 psia) to avoid rotor instabilities.

Results of the thermal studies are less conclusive, primarily because of difficult-

ies encountered in the modeling of a rather complex thermal system. It is appar-

ent that some modification, on the test stand, of coolant flow design levels for

tester cooling will be necessary in order to satisfy all thermal requirements.
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Mechanically, all tester designs are now complete and detailed. No additional

adjustments in the external fluid supplies, beyond those mentioned in this report

are envisioned and, therefore, more detailed planning for the test facility can

now proceed. To summarize the fluid requirement for all three tester configur-

ations, Table 27 is presented.

In addition to the liquid flow requirements, several critical absolute and

differential pressures must be maintained for satisfactory performance. These are:

* Turbine Discharge Pressure P = 1.66 x 10 6 N/m2 (240 b/in2)

• Turbine Back-Pressure P = 1.66 x 10 6 N/m2 (240 b/in2 )

* Radial Loader Cavity Pressure P = 1.66 x 10 6 N/m2 (240 ib/in2 )

(when in use with GH2)

* Internal Tester Pressure P = 1.72 x 10 6 N/m2 (250 b/in 2 )

* Coolant Supply Pressure (Approx.) AP= 1.72 x 10 8 N/m2 (2.5 ib/in2 )

* Hybrid Journal Supply Pressure AP= 1.72 x 10 6 N/m2 (250 ib/in 2 )

* Hybrid Tester Thrust Bearing AP= 1.10 x 10 6 N/m2 (160 ib/in 2 )

* Turbine Supply Pressure P =2.24x 10 6 N/m2 (325 lb/in 2 )
max

* Maximum Radial Loader Supply Pressure AP= 8.96 x 10 6 N/m2 (1300 lb/in 2 )

* Maximum Axial Loader Supply Pressure AP= 1.72 x 10 6 N/m2 (250 ib/in2 )

This report completes the design phase performed under Tasks I, II and III of

the original contract.
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TABLE 27

SUMMARY OF LH2 BEARING TESTER

FLUID REQUIREMENTS

Single Bearing Tester Duplex Bearing Tester Hybrid Tester
10-3Kg/sec .(b/se) 10-3Kg/sec (ib/sec) 10-3Kg/sec (ib/sec)

LIQUID HYDROGEN

Bearing Coolant (Net) 90.6 (0.200) 181.2 (0.400) 90.6 (0.200)

Bearing Supply (Net) NA NA 4.53 (0.100)

Radial-Loader (Max) 1.13 (0.0025) 1.13 (0.0025) 1.13 (0.0025)2

TOTAL LH2 91.73 (0.2025) 182.33 (0.4025) 91.73 (0.3025)

GASEOUS HYDROGEN TOTURBINE - 70 x 10- 3 Kg/sec (0.152 lb/sec)
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NOMENCLATURE

2 2
A Area, m2 (in2

B Width, m (in)

B10 Ball Bearing Fatigue Life, hours

B Pedestal Damping, N-sec/m (lb-sec/in)

Bxx Damping (x Axis), N-sec/m (Ib-sec/in)

B Cross Damping, N-sec/m (Ib-sec/in)
xy

B Damping (y Axis), N-sec/m (Ib-sec/in)
YY

C Bearing Clearance (radial), m (in)

CD  Cage Clearance (diametral), m (in)

C Specific Heat J/Kg OK (BTU/lbOR)

D Diameter, m (in)

D1,2..n Sequential Diameters, m (in)

d Ball Diameter, m (in)

d Orifice Diameter, m (in)
o

e Cage Eccentricity, m (in)

F Force, N (lb)

F Force (dimensionless)

FA  Axial Force, N (lb)

Ff Film Force, N (lb)

F Pressure Force, N (ib)

F Radial Force, N (lb)r

F Spring Force, N (lb)

F Radial Load, N (ib)

f. Inner Race Curvature
1

f Outer Race Curvature
o
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NOMENCLATURE (Continued)

GH2  Gaseous Hydrogen

G Average Viscosity Correction

H Shoulder Height, m (in)

H Head Rise, m (ft)

h Film Thickness, m (in)

I Polar Moment of Inertia, Kg-m 2 (in-lb-sec2)
p

It  Transverse Moment of Inertia, Kg-m2 (in-lb-sec2 )

K Stiffness, dimensionless

KBB Ball Bearing Stiffness, N/m (ib/in)

AK Reduction in Stiffness, N/m (ib/in)xx

Kb Bearing Stiffness, N/m (ib/in)

K Pedestal Stiffness, N/m (lh/in)

K Radial Stiffness of Ball Bearing, N/m (ib/in)z

k Thermal Conductivity, Watts/m OK (BTU/hr-ft OF)

L Length, m (in)

L Side Land on Journal Bearing, m (in)

L Pocket Width, m (in)

LH2  Liquid Hydrogen

M Mass, kg (lb)

M Pedestal Mass, kg (lb)

N Rotation Speed, rpm

N. Inner Race Speed, rpm

N Outer Race Speed, rpm

N Specific Speed, rpm

AP Differential Pressure, N/m2 (ib/in2)

P Pressure, N/m2 , (ib/in2)
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NOMENCLATURE (Continued)

P Critical Pressure, N/m2 (b/in 2 )
c

P Reduced (Normalized) Pressure, dimensionless

PD Radial Play in Ball Bearing, m (in)

PD Axial Play in Ball Bearing, m (in)

Q Flow Rate, Kg/sec (Ib/sec)

R Radius, m (in)

2 2
S Hertzian Stress, N/m2 (lb/in )

T Temperature, OK (OR)

OK - Absolute Temperature Kelvin

OR - Absolute Temperature Rankine

AT Differential Temperature, OK (OR)

TB  Ball Bearing Torque, N-m (in-lb)

T Critical Temperature, OK, (OR)

Tff Fluid-Film Bearing Torque, N-m (in-lh)

TR  Reduced (Normalized) Temperature, dimensionless

T Stream Temperature

t Time, sec

V Velocity of Spin, ft/sec

v Volumetric Flow, m3/sec (ft3/sec)

w Cage Mass, g (oz)

Z Heat Flow Rate, watts (Btu/hr)

z Heat Reluctance, watts/OK (Btu/hr OR)

a Contact Angle, degrees

l Initial Contact Angle, degrees

Y Polytropic Exponent

6 Log Decrement
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NOMENCLATURE (Continued)

A Amplitude Decay Exponent

Viscosity, N-sec/m2 (ib-sec/in2 )

v Natural Frequency, sec

C Fraction of Total Bearing Area

p Density, Kg/m3 (ib/in3)

a Pocket Depth, m (in)

9 Heat Transfer Film Coefficient, Watt/m2 (K) (Btu/hr ft2 OR)

w Rotational Frequency, sec
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APPENDIX A

TABLE A-i

PROPERTIES OF BEARING, CAGE

AND SHAFT MATERIALS

Modulus Of Poissons Thermal
Material Elasticity Ratio Density Expansion

N/m2  (lb/in 2 )  .... Kg/m 3  (b/in3) Cm/Cm (in/in)

AISI 440 C 2.16 x 1011 (31.3 x 106) 0.30 .783 x 104 (0.283) -175 x 10- 5

Inconel 718 2.16 x 1011 (31.3 x 106) 0.30 .819 x 104 (0.296) -233 x 10 - 5

Ti-SAE-2.5 Sn 1.17 x 1011 (17 x 106) 0.31 .448 x 10 (0.162) -175 x 10 - 5

Armalon 0.15 x 1011 (2.2 x 106) 0.10 .124 x 10 (0.045) -400 x 10 - 5

-1300 x 10-5

Thermal Expansion is given at 13.3 0K (40*R)

The Expansion of Armalon is lower on the diameter than across the ring thickness. Note corresponding
values.



APPENDIX B

BEARING LOAD ESTIMATES IN LH2 TURBO-PUMPS

This Appendix presents calculations of an estimate of the bearing loads

anticipated in a typical LH2 turbo-pump, the basic characteristics of which

were provided by NASA Program Management.

The turbo-pump consists of a 3-stage centrifugal compressor and a high-speed

(100,000 rpm +) turbine driven pump. Each stage generates a pressure rise of

about 1500 psi. The pressure rise within the wheel for a 450 vane back-sweep

design is about 55 percent of the overall stage pressure rise. Hence, the

pressure difference effecting the axial thrust forces is about (.55) (1500) =

825 psi, per stage. The net thrust area of the 3.85 diameter impellers is

about 10 square inches indicative that very large potential thrust forces are

possible in the pump. In addition, a substantial thrust load (= 1000 ibs.) is

generated by the 2-stage turbine.

While it is possible to reduce the net thrust forces by the proper positioning

of labyrinth seals with controlled inter-stage seals, the net loads will always

be higher than what would be considered acceptable. For this reason, the use of

a balance piston design is not only desirable but, indeed, mandatory.

Radial Loads

Pumps and compressors having uniform area collectors or cross-over channels have

no net radial loads. However, with volute type collectors some net radial load

generally results. In pumps with volute collectors, the static pressure distrib-

ution around the impeller periphery changes at constant speed. At "normal" or

"best efficiency" flow it is theoretically uniform (zero net radial load) but as

the flow rate changes from this value, the pressure distribution becomes non-

uniform, producing a net thrust on the impeller in the radial plane.

Extensive experiments have been conducted over the years to establish design

guidelines for estimating the radial loads. Figure B-1 shows a typical character-

istic for estimating the magnitude of the radial load when the pump has a single
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volute diffuser. Using this relationship, the following represents the

estimated radial load.

N = Specific Speed = NQN ( N q in English units )
H (6.95 x 102 H 3/4

where

-2 3 3
Q = Volume Flow = 3.6 x 10 m /sec ( 1.27 ft /sec)

H = Head Rise - ft = 13,500 m (44,500 ft)

therefore

N = 37.8 (considered low)

Assuming a + 20 percent flow variation from design flow results in a "F " factor

(Figure B-l) of .02 - hence,

F H DB F H DB
Fr - 2.3 in English units)

r 4.58x10-

where

F = Net Radial Load on Rotor - N (ibs)

F = Load Coefficient (Figure B-l)

D = Impeller Diameter, m (in)

B = Impeller Width, m (in)

H = Head, m (ft)

The above relationship was established for water pumps - hence, a head correction

must be made for the relative fluid densities. For a density ratio between LH2
and water of p LH2 /Pwater = .077

therefore

H = 891 m (3500 ft)
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and with

K = .02

D = .0976 m (3.85 in)

B = 4.75 x 10- 3 m (.187 in)

F = 98 N (22 ibs)
r

Assuming approximately 50 percent margin, it is recommended that a net radial

load of 134 N (30 lbs) be used for bearing selection. Since the 134 N (30 lbs)

load is closer to the large bearing, it will see 102 N (23 lbs) load and the

smaller bearing 31.1 N (7 lbs).

It is, of course, recognized that by going to a double volute design, the net

radial load from off-design diffuser effects is eliminated.
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APPENDIX C

FLUID-FILM BEARINGS - IMPORTANT PHYSICAL PHENOMENA

The primary physical phenomena which influence performance are listed in Table

C-1. All of these are accounted for in the design analysis.

TABLE C-1

PRIMARY PHYSICAL PHENOMENA

Hydrostatic Action

Poiseuille Turbulence

Couette Turbulence

Centrifugal Growth of Journal

Frictional Heat Generation

Convective Heat Transfer

They are briefly discussed in the following paragraphs:

Hydrostatic action is the means by which an external pressure source is

utilized to provide load.capacity and stiffness. Fluid is fed to the bearing

under pressure through an inlet resistance (in this case an orifice in each

pocket). The fluid flows axially through the bearing clearance space which

offers a second resistance to its flow. The inlet and film resistances are

of similar magnitude, so that the pressure at the inlet to the bearing film

tends to lie midway between supply pressure and outlet pressure. Under

concentric conditions the film resistance does not vary circumferentially and

the circumferential pressure distribution is uniform. When the journal moves

eccentric in its clearance shape, the film resistance varies circumferentially

and a circumferential pressure distribution is set up which acts to oppose the

eccentricity of the journal. By adjusting the relative magnitudes of inlet and

film resistances the stiffness and load carrying capacity may be adjusted to

meet design requirements. In design analysis of the bearing a line source

approximation (15) is used to represent the discrete hydrostatic supply pockets.

This approximation basically implies the assumption that the number of pockets
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is large. References 10 and 13 in the main text illustrate clearly that above

6 pockets, increasing the number of pockets has very little influence on

performance. Thus, the number of 10 pockets employed in the fluid-film bearing

fully satisfies the implied assumption.

Poiseuille turbulence occurs because the kinematic viscosity of liquid hydrogen

is low. The pressure induced velocity of the fluid through the clearance space

leads to Reynolds numbers of order 25000. As a result, the effective viscosity

is increased. This is clearly a non-linear phenomenon. It is handled in design

analysis as a non-linearity on the basis of work by Ng and Elrod (14).

Couette turbulence again results from low kinematic viscosity but the fluid

velocity in this case is that induced by relative surface motion between journal

and housing. Since pressure flow mean velocities are generally higher than mean

fluid velocities induced by surface rotation in this bearing, Couette turbulence

takes a role of lesser significance than Poiseuille turbulence.

Centrifugal growth of the journal is a significant effect because of the "thin

ring" nature of the ball bearing outer race and because of the high speeds of

operation. As was shown in Section A, the radial clearance may reduce by over

2.5 x 10-5 meters (.001") between static and 120,000 rpm operation.

Frictional heat generation describes the result of shearing the fluid-film by

relative velocity of the journal and housing. Convective heat transfer is the

predominant mechanism whereby the heat is carried away. Thus, a flow of liquid

hydrogen through the bearing is necessary to avoid boiling. The mean temperature

rise through the bearing is calculated by equating frictional heat generation to

the heat carried away by the hydrogen.

Table C-2 lists a number of physical phenomena which may also have some influ-

ence on bearing performance, but may be regarded as :f secondary order.

Included in this table is an indication of how the phenomenon in question affects

performance, and a range of the likely magnitudes of the effect.

As indicated, the most important of these effects are included in most of the

design analyses performed. The magnitude of other effects has been assessed by
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separate analysis, and a decision was made not to include them in the design

analysis. The implication of neglecting these effects is considered to be

acceptable. The meaning of the items of Table C-2 is discussed below.

Hydrodynamic action refers to the forces generated in the fluid-film bearing

due to surface motion induced flow in a circumferentially-varying clearance

space. The nature of hydrodynamic effects is to induce a force which acts at

right angles to the journal displacement vector and, therefore, implies a cross-

coupling stiffness. The magnitude of the hydrodynamic force lies in the range

15-30 percent of the hydrostatic force in this application. The particular sig-

nificance of hydrodynamic action is that, because of the cross-coupling, it can

be a destabilizing influence. Hydrodynamic forces are included in the output of

the design analysis and should be accounted for in rotor-dynamic analysis.

Bernoulli inertia effects refer to the losses in static pressure which can occur

at points in the fluid-film where significant acceleration takes place; specific-

ally, there is a significant acceleration as the fluid leaves the pockets either

in design A, or design B. Because this is an intermediate resistance (between

inlet and film) which is affected by the local film clearance, it acts to modify

the stiffness of the film. Bernoulli inertia effects reduce the optimum hydro-

static stiffness of the bearing, but if the bearing has an orifice diameter sig-

nificantly larger than optimum, the inlet inertia effects can act to improve the

stiffness.

Time dependent inertia effects describe the fact that, when there is normal

relative motion between journal and housing, there are dynamic pressures in-

duced to provide the necessary fluid acceleration. These pressures tend to re-

duce the direct stiffness of the fluid-film bearing under dynamic conditions.

These effects are included in the design analysis according to an approximate

treatment developed by Dr. Constantinescu.

ap 2C2G B
AK xx

xx 1

where
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TABLE C-2

SECONDARY PHYSICAL PHENOMENA

PHENOMENON EFFECT. . MAGNITUDE

HYDRODYNAMIC ACTION CROSS-COUPLING STIFFNESS 15 - 30 PERCENT OF DIRECT
DESTABILIZING INFLUENCE STIFFNESS

BERNOULLI INERTIA EFFECTS EXTRA INLET RESISTANCE 20 - 30 PERCENT STIFFNESS
REDUCTION IN STIFFNESS REDUCTION

TIME-DEPENDENT INERTIA REDUCTION IN STIFFNESS 10 - 15 PERCENT
EFFECTS

NSTEADY COMPRESSIBILITY EFFECTS REDUCTION IN STIFFNESS 2 - 5 PERCENT

TIME-DEPENDENT COMPRESSIBILITY REDUCTION IN DAMPING 10 - 30 PERCENT
EFFECTS

PRESSURE DEPENDENT VISCOSITY REDUCTION IN STIFFNESS 5 PERCENT

CONDUCTIVE HEAT TRANSFER REDUCTION IN TEMPERATURE RISE 5 - 15 PERCENT

( / Included in Performance Predictions )



AK is the reduction in stiffness to account
xx for dynamic inertia effects (N/m), (Ib/in)

p is fluid density Kg/m3 (lb/in)

w is frequency of vibration (rad/sec)

C is the clearance, m (inches)

G is the average viscosity correction coefficient
to account for turbulence

1 is viscosity, .Newton sec/m2  (lb-sec/in2)

B is damping, Newton sec/m' (ib-sec!in)
xy

a is the fraction of the total bearing area over
which clearance C applies

Compressibility effects relate to the fact that the density of liquid hydrogen

varies slightly with pressure. The term steady compressibility effects is used

to refer to the influence that density variations have upon stiffness. It is

found that, due to compressibility, there is a slight reduction in stiffness of

under 2 - 5 percent of the stiffness calculated, neglecting compressibility

effects. The term time-dependent compressibility effects refers, firstly, to

the fact that the fluid can now undergo compression when there is normal relative

velocity of journal and housing, and secondly, to the fact that trapped volumes

of fluid such as in a pocket can cause a phase shift due to capacitive action.

The result is to reduce the damping relative to a value calculated on the basis

of incompressible squeeze film action. In extreme cases (very large pockets)

the capacitive action can lead to negative damping.

The term pressure dependent viscosity refers to the fact that the viscosity of

liquid hydrogen is influenced by pressure. Between 1.72 x 10- 6 (250) and

1.81 x 10- 5 N/m2 (1250 psi), the viscosity can approximately double. Since this

is the largest pressure difference which will be seen in the current test vehicle,

the influence on stiffness of a factor of two variation in viscosity was investi-

gated. The stiffness variation did not exceed 5 percent. This very mild

sensitivity is a result of the turbulence effects. The effective viscosity does

not vary as rapidly as the actual viscosity under turbulent conditions.



Conductive heat transfer represents an additional path for heat loss from the

fluid-film when there is heat generated by friction. Dr. Constantinescu invest-

igated the effect of conduction and showed it contributed most strongly when the

clearance (and hence the flow) was small, as shownin Table C-3.

,TABLE C-3

TEMPERATURE RISE BASED ON

CONVECTION AND CONDUCTION

FOR DESIGN A (V.N. CONSTANTINESCU)

C, meters (inches) 10-5  (.0004) 2 x 10-5 (.0008) 3 x 10-5  (.0012)

T (convection only) OK (*R) 17.76 (32.0) 5.43 (9.8) 2.39 (4.3)

T (convection + conduction) 12.87 (23.2) 4.81 (8.6) 2.26 (4.1)

Difference, percent 27.50 (49.5) 11.40 (20.5) 5.40 (9.7)

The percentage range of 5 - 15 percent specified in Table C-2 is considered to

cover the likely range of discrepancy for reasonable clearances if conduction

effects are neglected. Note that by neglecting conduction effects, a pessimistic

value for temperature rise is obtained.
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APPENDIX D

MTI BEARING MANUFACTURING SPECS

NUMBER 0232-43601-01

(Revision 1)

1.0 SCOPE

This specification, together with the enclosed Figure 1 establishes the require-

ments for the design, manufacture and packaging of a 20-mm extra-light series

ball bearing for use in liquid hydrogen applications.

2.0 APPLICABLE DOCUMENTS

The following documents shall form part of this specification to the extent

specified herein. If the requirements of this specification and those listed

below differ, the requirements of this basic specification shall govern. The

applicable issue of the following documents shall be the issue in effect on

date of invitation to bid.

MIL-STD 100

MIL-D-1000 Form 3 Drawing Specifications

USAS Y-14.5

AFBMA Standard 12 Revision No. 3, June 1969 - Annular Bearing

Engineering Committee Standards

AFBMA Standards for Balls - Anti-Friction Bearing Manufacturers Association

Sec. 10, Rev. 5 Ball Standards

December 1964

AMS 5618 Corrosion Resistant Steel - SAE 51 440 C (Ball Bearing)

AMS 5630 C Corrosion Resistant Steel - SAE 51 440 C (Cages Only)

AMS 6444 B Par. 6.3 Inclusion Rating

AMS 4909 Plate Stock (Titanium 5 Al, 2.5 Sn)

3.0 OPERATING REQUIREMENTS
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3.1 Speeds: Operating - 120,000 rpm

3.2 Loads: Radial Operating Load - 222N (50 ib) max.

Thrust Load - 2220N (500 ib) max.

3.3 Acceleration: 50,000 rev/min/sec

3.4 Minimum Expected 10 Hours
Life:

3.5 Environmental LH @ 23.8/29.5 0K (43/530 R) and
Media: 2 @ 238/29-6K (43/53R) and

1.38/1.72 x 10 N/m2 (200/250 lb/in abs)

3.6 Number of Start- 1.38/1.72 x 106 N/m2 (200/250 lb/in2 abs)
Stop Cycles:

4.0 DESIGN REQUIREMENTS

4.1 Bearing Tolerances - have been established per ABEC Class 7 P

specifications.

4.2 Materials

4.2.1 Inner Ring - 440 C per AMS 5618 C Consumable Electrode

Vacuum Melted (CEVM).

Minimum Rockwell C Hardness @ 58. Surface finish of raceway

2.03 x 10- 7 m (8 p-in) circumferentially. Waviness -

7.64 x 10-7 m(30 p-in) max. peak.

4.2.2 Outer Ring - 440 C per AMS 5618 C Consumable Electrode Vacuum

Melted (CEVM). Surface finish of raceway same as in 4.2.1.

Minimum Rockwell C Hardness @ 58.

4.2.3 Balls - 440 C per AMS 5618 C Consumable Electrode Vacuum

Melted (CEVM). Minimum Rockwell C Hardness @ 58. Surface

finish 5.09 x 10- 8 m (2 p-in) maximum.

4.2.4 Cage - Two types of cages shall be made of two different

materials, i.e., 440 C corrosion resistant steel (35 to 40 RC)

and Titanium 5 Al 2.5 Sn alloy both per AMS 4909 specifications.
-7

Initial surface finish prior to plating 4.05x10-7m(16p-in) rms.
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Cages to be plated with P-77 (87.5 Pb, 10 Sn, 2.5 Cu) by

Gould, Inc. of Cleveland, Ohio. Prior to plating, the surfaces

are to be cleaned and flashed per Gould's specifications. The

plating is to be applied 3.05 x 10- 5 m (1.2 x 10- 3 in) thick

over the entire surface. Balance cages to 3.6 x 10- 7 Kg-m

(5.0 x 10- 4 oz-in) after plating. Material to be removed on

cage bore.

4.2.5 Heat Number - The heat number for all races and balls to be in-

cluded with certification for each bearing.

4.2.6 Surface Hardness - The surface hardness of all rolling-elements

and raceways shall be 58-63 RC.

4.2.7 Stabilization - Stabilize material through repeated chilling

in LN2 and tempering, per I.T.I. specifications.

4.2.8 Demagnetization - All bearing materials shall be thoroughly

demagnetized upon completion of bearing manufacturing process.

4.3 Internal Geometry

4.3.1 Balls - The balls shall be of AFBMA Grade 10. Ten balls per

bearing of 4.76 x 10- 3 m (0.1875 in).

4.3.2 Unmounted Contact Angle - The nominal unmounted contact angle

shall be 260. The angle tolerances are established by the race

and diametral clearance tolerances.

4.3.3 Race Curvature - Inner Race - 54%

Outer Race - 52%

4.3.4 Bearing Shoulders - Inner race shoulder and outer race shoulder

as specified in Figure D-1.. Allow sufficient snap at inner race

low shoulder for handling and disassembly with a temperature

gradient not to exceed 97.5 0C (200*F).

4.3.5 Diametral Clearance - The diametral clearance shall fall within

4.70 - 6.22 x 10- 5 m (.00185 - .00245 in) when measured under

22.2 N (5 lb) gage load applied in one direction, and then in

the opposite direction.
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4.3.6 Axial Clearance - The axial clearance, when measured under a

22.3 N (5 ib) gage load applied in one direction and reversed
-4in the other direction, shall not exceed 2.26 - 2.59 x 10 m

(0.0089 - 0.0102 in).

4.3.7 Dimensional Measurements - All dimensions are to be certified

at 21.1 + 1.10C (700 + 20F).

4.3.8 Face Location - Face A shall be in the same plane as Face B

within 2.54 x 10- 6 m (1.0 x 10- 4 in) with bearing under a

22.2 N (5 lb) axial load. The faces opposed to Faces A and B

shall be in the same plane within 2.54 x 10- 6 m (.0001 in) with

the load at 22.2 N (5 lb).

4.3.9 Race Edges - The inner ring race edges shall be relieved to

permit short excursions of the ball contact ellipse beyond

the raceway limits without ball creasing.

4.4 Markings

4.4.1 Face Markings - Mark Face A with "A" and Face B with "B" as

shown in Figure D-1. Mark Faces A and B with assigned serial

number, and supply part number.

4.4.2 Mark location of the high point of inner race eccentricity.

4.4.3 Markings to be performed with electrolytic etch per

MIL-STD-130 D.

4.5 Cleanliness and Packaging

4.5.1 Cleanliness - Cleanliness to be per MIL-P-116, level II.

Do not use cleaning agents containing H20.

4.5.2 Packaging - Package per fabrication order instructions.

4.6 General

Only the item described on the enclosed drawing and within this document is

approved by-Mechanical Technology Incorporated for use in applications justi-

fied hereon. A substitute item shall not be used without prior approval of

MTI or NASA. 178
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MTI BEARING MANUFACTURING SPECS

NUMBER 0232-43601-02

(Revision 1)

1.0 SCOPE

This specification,together with the enclosed Figure D-2, establishes the require-

ments for the design, manufacture and packaging of a 20-mm light series ball

bearing for use in liquid hydrogen applications.

2.0 APPLICABLE DOCUMENTS

The following documents shall form part of this specification to the extent

specified herein. If the requirements of this specification and those listed

below differ, the requirements of this basic specification shall govern. The

applicable issue of the following documents shall be the issue in effect on

date of invitation to bid.

MIL-SRD-100

MIL-D-1000 Form 3 Drawing Specifications

USAS Y-14.5

AFBMA Standard 12

Rev. No. 3, June 1969- Annular Bearing Engineering Committee Standards

AFBMA-Standards

for Balls, Sec. 10 Anti-Friction Bearing Manufacturers Association -

Rev. 5, Dec. 1964 Ball Standards

AMS 5618 Corrosion Resistant Steel - SAE 51 440 C (Ball

Bearing)

AMS 5630 C - Corrosion Resistant Steel - SAE 51 440 C (Cage

Only)

AMS 6444 B - Par. 6.3 Inclusion Rating

MIL-T-9047 - Bar and Forging Stock

3.0 OPERATING REQUIREMENTS
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3.1 Speed: Operating - 120,000 rpm

3.2 Loads: Radial Operating Load - 44.5 - 445 N

(10 - 100 ib) max.

Thrust Load - 2230 N (500 ibs) max.

3.3 Acceleration: 50,000 rev/min/sec

3.4 Minimum Expected 10 Hours
Life:

3.5 Environmental Media: LH2 @ -420 to -430 0F

200 to 250 psia

3.6 Number of Start- 300
Stop Cycles:

4.0 DESIGN REQUIREMENTS

4.1 Bearing Tolerances - have been established per ABEC Class 7 - P

specifications.

4.2 Materials

4.2.1 Inner Ring - 440 C per AMS 5618 C Consumable Electrode

Vacuum Melted (CEVM).

Minimum Rockwell C Hardness @ 58. Surface finish of raceway
-7

2.03 x 10 7 m (8 P-in) circumferentially. Waviness -

7.64 x 10- 7 m(30 p-in)max. peak.

4.2.2 Outer Ring - 440 C per AMS 5618 C Consumable Electrode Vacuum

Melted (CEVM). Surface finish in raceway same.as in 4.2.1.

Minimum Rockwell C Hardness @ 58.

4.2.3 Balls - 440 C per AMS 5618 C Consumable Electrode Vacuum

Melted (CEVM). Minimum Rockwell C Hardness @ 58. Surface
-8

finish - 5.09 x 10-8 m (2 V-in) maximum.

4.2.4 Cage - Cages shall be made of laminated glass fabric, impreg-

nated with Teflon. Cage material specifications will be

supplied at a later date. Back-up cages shall be made of

440 C stainless steel (35-40 RC) per AMS 5630 C specifications.
-7

Steel cage surface finish shall be 4.05 - 8.10 x 10- 7 m

(16 1-in) rms.
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Steel cages to be plated with P-77 (87.5 Pb, 10 Sn, 2.5 Cu) by

Gould, Inc. of Cleveland, Ohio. Prior to plating, the surfaces

are to be cleaned and flashed per Gould's specifications. The

plating is to be applied 3.05 x 10- 5 m (1.2 x 10- 3 in) thick

over the entire surface. Balance cages to 3.6 x 10- 7 Kg-m

(0.0005 oz-in) after plating. Material to be removed on cage

bore.

4.2.5 Heat Number - The heat number for all races and balls to be

included with certification for each bearing.

4.2.6 Surface Hardness - The surface hardness of all rolling-elements,

raceways shall be 58 - 63 RC.

4.2.7 Stabilization - Stabilize material through repeated chilling

in LN2 and tempering per I.T.I. specifications.

4.2.8 Demagnetization - All bearing materials shall be thoroughly

demagnetized upon completion of bearing manufacturing process.

4.3 Internal Geometry

4.3.1 Balls - The balls shall be of AFBMA Grade 10. Nine balls per

bearing of 6.35 x 103 m (0.2500 in) diameter.

4.3.2 Unmounted Contact Angle - The nominal unmounted contact angle

shall be 240. The angle tolerances are established by the race

and diametral clearance tolerances.

4.3.3 Race Curvature - Inner Race - 56%

Outer Race - 52%

4.3.4 Bearing Shoulders - Inner race shoulder is as shown on drawing.

Outer race shoulder is as shown on drawing D-2. Allow sufficient

snap at low end of inner race low shoulder for handling and dis-

assembly with a temperature gradient not to exceed 97.5 0C (2000F).

4.3.5 Diametral Clearance - The diametral clearance shall fall within

6.85 - 8.37 x 10- 5 m (.0027 - .0033 in) when measured under 22.3N

(5 lb) gage load applied in one direction, and then in the oppos-

ite direction.
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4.3.6 Axial Clearance - The axial clearance, when measured under a

22.3 N (5 lb) gage load applied in one direction and reversed in
-4

the other direction, shall not exceed 3.81 - 4.32 x 10 m

(.015 - .017 in).

4.3.7 Dimensional Measurements - All dimensions are to be certified

at 21.1 + 1.10C (70q + 20F).

4.3.8 Face Location - Face A shall be in the same plane as Face B,

within 2.54 x 10- 6 m (1.0 x 10- 4 in) with bearing under a

22.2 N (5 lb) axial load. The faces opposed to Faces A and B

shall be in the same plane within 2.54 x 10- 6 (1.0 x 10- 4 in)

with the load at 22.2 N (5 lb).

4.3.9 Race Edges - The inner ring race edges shall be relieved to

permit short excursions of the ball contact ellipse beyond the

raceway limits without ball creasing.

4.4 Markings

4.4.1 Face Markings - Mark Face A with "A" and Face B with "B" as

shown in Figure D-2. Mark Faces A and B with assigned serial

number, and supply part number.

4.4.2 Mark location of the high point of inner race eccentricity.

4.4.3 Markings to be performed with electrolytic etch per

MIL-STD-130 D.

4.5 Cleanliness and Packaging

4.5.1 Cleanliness - Cleanliness to be per MIL-P-116, level II.

Do not use cleaning agents containing H20.

4.5.2 Packaging - Package per fabrication order instructions.

4.6 General

Only the item described on the enclosed drawing and within this

document is approved by Mechanical Technology Incorporated for use in

applications justified hereon. A substitute item shall not be used

without prior approval by MTI or NASA.
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APPENDIX E

RADIAL PISTON LOADER

ANALYTICAL SUMMARY

For the purpose of analysis, the radial loader "piston" (Figure E-1) is consider-

ed to have three (3) forces acting on it.

* The spring force, Fs, which is directed towards the shaft, and is

essentially constant for the very small displacements undergone by

the piston.

* The pressure force, Fp, which acts downwards on the piston, due to

the inlet pressure, Pl , acting on the difference in area between the

piston O.D. and the loader pad I.D.

* The fluid-film force, Ff, which acts upwards on the piston, due to

the pressure distribution between the inlet pressure, P 1, and the

ambient pressure, P2. For LH 2 this force is a complicated function

of (P1 - P 2 ) and the film thickness,h. The complexity arises because

of inertia effects and turbulence in the film. A computer program is

available to calculate this force, (MTI Program - EMGROV).

The forces may be defined as follows:

F = 44.5 N (10 lb) (1)

F = ~(D 2 -D 3
2 ) (P -P 2 ) (2)

Ff =  f ( (P 1 - P2 ) ' h, D 2 , D3 ) (3)

and to produce equilibrium of the piston:

Ff = F + F (4)
f s p

(Note that by using (P1 - P 2 ) throughout, the ambient pressure forces may be

treated as zero).
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h PAD

2 P2

D,: 1.57x 10m (0.623 IN)
D22.16 x 10 m(0.850 IN)
D3= 1.52x 1O2m(0.600 IN)

Fig. E-1 Radial Loader Schematic
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Thus, for a given value of (P1 - P2), we must find the equilibrium value of h,

to satisfy equation [4].

The force on the shaft, Fr, is then:

F = F + D 2 (P - P )  (5)
r f 4 3  1  2

and the flow, Q, is also calculated by the MTI computer program, (EMGROV).

Dimensions of the piston are:

-2
D = 1.57 x 10 m (0.623 in)
1

-2
D2 = 2.16 x 10- 2 m (0.850 in)

2-

D = 1.52 x 10- 2 m (0.600 in)

Figure E-2 illustrates the variation of film force with film thickness for four

(4) different values of AP = (P1 - P2), and shows how the equilibrium values

of film thickness are determined for a LH2 loader supply.

Figure E-3 illustrates the variation of LH2 flow through the film as a function

of film thickness. The equilibrium film thickness values are ringed for each

curve. The equilibrium flow rates extracted from Figure E-3 are listed together

with their respective equilibrium film thicknesses and radial shaft loads in

Table E-l.

The film thickness, flow, and shaft forces at equilibrium are plotted against

supply pressure in Figures E-4 and E-5.

Important Points Are:

1. A reverse in slope of the film force vs. film thickness curves occurs

at film thicknesses above 5.00 x 10- 6 m (200 x 10- 6 in). The positive

slope region is not a possible operating region, since it is statically

unstable. The piston will seek the lower film thickness equilibrium

point.
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TABLE E-1 LOADER PERFORMANCE VALUES

LH2 SUPPLY

(P1 - P2) Equilibrium Film Equilibrium Flow Shaft Force, Fr
(AP) m (in) Kg/sec (ib/sec) N (ib)

1.80 x 106 N/m 2 (260 lb/in 2) 3.26 x 10-6 (128 x 10-6 ) 1.64 x 10- 4 (3.6 x 10 ) 395 ( 89)

4.15 x 106 N/m 2 (600 lb/in 2 ) 4.45 x 10- 6 (175 x 10- 6 ) 5.45 x 10 (1.2 x 10- 3) 859 (193)

9.67 x 106 N/m2(1400 lb/in 2 ) 4.84 x 10- 6 (190 x 10- 6 ) 1.09 x 10-3 (2.4 x 10- 3) 1940 (437)

3 .45 x 105 N/m 2 ( 50 1b/in2 ) 2.54 x 10 - 7 (10 x 10 - 6 ) 0 (0) 111 (25)
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2. There is little that can be done to shift the region of equilibrium

film thickness under 5.00 x 10- 6 m (200 x 10-6 in). This is really

dictated by the very low viscosity of liquid hydrogen.

3. The flow through the film is, therefore, reasonably well determined.

If more flow is needed for control purposes, the provision of a

leakage path-through the side of the piston offers one possible

method of increasing the flow.

4. The equilibrium film thickness for a 3.45 x 105 N/m2 (50 ib/in 2) AP

is obviously unrealistic. This limits the loader at the low end of

its shaft force range, to somewhere between 111 N (25 lb) and 396 N

(89 lb).

5. Decreasing the spring force to 22.N (5 lb) would extend the operative

range of the loader at the low end of the shaft force range. Decreas-

ing the spring force would also introduce some uncertainty into how

the piston loader would behave at high pressures. Above a certain

limiting value of AP, the film force would always be larger than the

(spring + pressure) force, whatever the film thickness, as predicted

by analysis. Under these conditions the loader may work but its

performance cannot be predicted.

The previously described LH2 radial loader analysis can be modified somewhat in

order to provide performance information for the loader when it is supplied with

GH2. The relationship between forces and pressures remains unchanged; the

significant change occurs in the value of film force, Ff, and flow rate, Q,

which are now affected by compressibility as well as inertia effects and turbu-

lence in the film. A computation sequence similar to that followed for the LH2
loader produces the flow rates, and film force at an equilibrium film thickness

for several levels of loader AP.

The calculated values of film force, Ff, can now be combined with their related

pressures in equation [5] to generate a new curve of radial load, Fr, as a

function of supply pressure, P . Figure E-6 provides the relationship between

the loader supply pressure and the resulting radial load and flow. Figure E-7

provides the loader's operating film thickness as a function of supply pressure.
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The load pressure relationship shown in Figure E-6 is linear, thereby permitting

the extrapolation of the load curve up to the maximum required radial load of

2000 N (400 lbs).
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APPENDIX F

COOLANT STREAM PRESSURE LOSSES

Pressure loss calculations were carried out to determine the pressure required

to circulate LH 2 through the ball bearings and the hybrid bearing. Figure F-I

shows the pressure loss results for the coolant losses through the ball bearings.

Flow tubes in the hybrid bearing supply lines are sized to provide the following

maximum losses:

* Turbine End Bearing 1.36 x 104 N/m 2 (2.0 ib/in 2 )

* Free End Bearing 1.70 x 104 N/m 2 (2.5 lb/in2 )

* Thrust Bearing 2.04 x 103 N/m 2 (0.3 lb/in 2 )

Pressure losses are calculated from housing exterior to upstream side of orifices.
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APPENDIX G

EFFECTS OF HIGHER FILM COEFFICIENT

AND SKIN TEMPERATURE ON TEST VEHICLE

A review of the thermal calculations for the LH2 testers to determine the effects

of a 750C (1670F) skin temperature and a higher surface film coefficient on the

temperature distribution within the tester.

For these calculations, only bulk thermal effects are assumed for the following

conditions:

A. Temperatures

1. Ambient Temperature T1 = 277 0K (5300 R)

2. Outer Surface (Initial) T2 1 = 19.4 0K (670 R)

3. Outer Surface (Final) T22 750K (1670 R)

4. LH2 (Input) Ts = 100K (500 R)

B. Film Coefficients

W 2
1. Outer Surface (Initial) -i = .18 2 (0.1 Btu/hr-ft -0R)

m OK

2. Outer Surface (Final) (12 = 1.8 W (1.0 Btu/hr-ft -2R)
m OK

W 2
3. Interface LH2 to Metal 21= 22 = 3500 2 (2000 Btu/hr-ft -_R)

m OK

C. Material Properties

1. Tester Housing Conductivity k = 10.4 m-OK (6.5 Btu/hr-ft-OR)

2. LH2 Specific Heat C = 9.21 x 103 -- (2.2 Btu/lb-oR)
p

3. LH2 Flow Rate EQ = 0.18 Kg/sec (0.40 lb/sec)

D. Geometry

1. Tester OD D1  = 0.18 m (5.0 in)
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2. Tester ID D = 0.057 m (2.25 in)

3. Tester Length L = 0.20 m (7.75 in)

A simplified thermal model of the LH2 tester can be represented by the follow-

ing nodal diagram

R T2  R2  T3  R3  T4

T 2 A
1 2 3 4

where

R = 1  = Thermal resistance of outer diameter air film

(Air to Metal)

k A1
R2  = Thermal resistance of tester housing material

R3  = A2 = Thermal resistance of inner film (metal to LH2)

T3  = Inner surface metal temperature

T = LH2 stream temperature

For calculation purposes

A = irD L = 7.9 x 10- 2 m2 (0.85 ft 2 )

A2  = D L = 3.53 x 10 m (0.38 ft2 )

and

R11 = 411A = 0.045 W/OK (0.085 Btu/hr-R)

R12 = ~2A1 = 0.45 W/oK (0.850 Btu/hr-0 R)
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k A 1
R2 L = 25.4 W/oK (48 Btu/hr-OR)

R3  = 3A2 = 403 W/OK (760 Btu/hr-oR)

The nodal equations are solved by the summation of heat flows at each nodal

point so that

EZ2 = 0 = R1 (T2 - T1) + R2 (T2 - T3)

EZ3 = 0 = R2(T 3 - T2)  + R3 (T3 - T4)

EZ = 0 = R4 (T4 - T3) + ZQc (T4 - Ts)

which reduces to

R1 + R2  -R2  0 2-  R1T1

-R2. R2 + R3 -R3  T3  0

0 -R3  R3 + EQC T QC T

The above determinent, when solved for T2, T3 , and T4, yields

(RIT ) (R2+R 3 ) (R3+EQcp  + R2R 3 EQcpTs - R3 (RT)

2 2 2
_-[ +r2) (R2+R3) (RB+R4) (R3+Qcp ) ] - [R3 (R1+R2) + R2 (R+EQcp ) ]

(R )(Qc Ts )(R +R2 ) + R (R T )(R 3+EQc )

3  2 2
[ (R1+R2)(R2+R3)(R3+R4)(R3+EQc p )] - [R3 (R1+R2) + R

2 (R3+EQc )

(R +R2)(R +R3) (Qc T )(RIT )(R2)(R3) - R2 Qc T
T 1+R 2 3 ps 1 2 3 2 p s

[(R1+R2) (R2+R3) (R3+R4) (R3+EQcp ) ] - [R3 (R1+R 2) + R2 (R3+EQcp ) ]
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For the initial (411) parameters listed previously (T2 is a dependent not an

independent variable for these calculations). The nodal temperatures are:

T2  = 10.5 0 K (50.90 OR) (Outer Diameter)

T3  = 10.050K (50.030R) (Inner Diameter)

T = 10.010 K (50.01R) (LH2 Discharge)

A second set of temperatures, based on an outer film coefficient of h =

1.8 W (1.0 Btu/hr-ft
2 -R), is

m OK

T2  = 15.0 0K (59.00R) (Outer Diameter)

T3  = 10.35 0K (50.65"R) (Inner Diameter)

T = 10.050K (50.120 R) (LH2 Discharge)

The resulting temperatures, both for the initial and final coefficients are not

quantitatively accurate but do, qualitatively, demonstrate the very small effects

on temperature that result from an order of magnitude change in external film

coefficient.

An alternate method of evaluating the effect of skin temperature and external

film coefficient on the LH2 final temperature is to calculate the net increase

in heat input from

EZ = Z2 = 1 2 A1 (T 1- T2 2  1 1A 1 (T1 - T 2 1)

for the previously listed parameters

Z = (1.8)(7.9x10 - 2 ) (277-75)-(.18)(7.9x10- 2 ) (277-19.4)

[(1.0)(.85)(530-167) - 0.1 (.85)(530-67)]

or
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EZ = 78.7 Watts (268 Btu/hr)

If it is assumed that this increase of energy input is totally removed by the

LH2 coolant and does not cause an increase in tester metal temperature then from

EZ = EQ C AT

78.7 = (.18)(9.21 x 10 - 3 ) (AT)

or

AT = 0.0480C (0.0870F)

It is unlikely that the total added energy input will be conducted through the

tester's metal housing and as a result, the temperatures within the tester will

adjust upward. Under any circumstances, however, no adverse effects from

adjustment in either film coefficient or skin temperature should be expected.
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APPENDIX H

HYBRID BEARING TESTER

THRUST BALANCE

The objective of this calculation is to size the diameter of the turbine tip

seal to assure a positive thrust load at any rotor speed. Figure H-1 illustrates

the geometry and pressure force locations.

P, = Turbine Discharge Pressure = 1.66 x 10- 6 N/m2 (240 lb/in2)

P2 = Average Turbine Blade Pressure = (P5 + P4 )2 2 2

P3 = Internal Tester Pressure = 1.72 x 10- 6 N/m2 (250 lb/in2)

P4 = Turbine Wheel Back Pressure = 1.66 x 10- 6 N/m2 (240 lb/in2 )

* -6 2 2P5 = Turbine Inlet Pressure = 1.80 x 10 N/m (261 lb/in )

The net pressure unbalance acting on the turbine wheel must be directed so that

the thrust bearing is always loaded. Two extreme load conditions exist.

1. During acceleration when P5 = 1.80 x 10-6 N/m2 (261 lb/in 2)

2. Zero speed where P2 = P = 1.66 x 10-6 N/m2 (240 lb/in 2

A summation of loads yields

7 [P D 2  - D 5  - D - ) - P3 (D 2 D2 + F = 0 [1]

When solved for D, the above equation becomes

4 2 2 2- Pt - (D 3 (P1 -P 2) + D (P 2 - P 5) + D2 (P4 - P2) 1
D [2]1 (P 5 - P4 )

P5 is the inlet pressure at the turbine wheel tip and is lower than the turbine
inlet pressure by the pressure loss trough the nozzle box. Acceleration,
not sustained pressure, is used for the calculations.
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Fig. H-I Turbine Wheel Geometry and Pressure Locations



For the conditions listed above D, = .0482 m (1.893 in) and at this seal

diameter, other conditions of turbine supply yield the following forces.

Pl FT

N/m 2  (lb/in2 ) N (lb)

1.93 x 10- 6  (280) 57.4 (12.9)

-6
2.00 x 10- 6  (290) 64.0 (14.4)

2.07 x 10- 6  (300) 70,7 (15.9)

Figure H-2 presents a curve of thrust load as a function of turbine blade inlet

pressure. At the zero (0) speed condition P2 = 1.66 x 10- 6 N/m2 (240 lb/in2 )

yields a thrust load of FT = 30.9 N (6.9 lb).
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APPENDIX I

SEAL LEAKAGE CALCULATIONS

Figures I-i through 1-3 present the flow curves calculated for the several

leakage paths indicated in the main text.
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