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HARDNESS BEHAVIOR OF BINARY AND TERNARY

NIOBIUM ALLOYS AT 77 AND 300 K

by Joseph R. Stephens and Walter R. Witzke

Lewis Research Center

SUMMARY

An investigation was conducted to determine the effects of alloy additions of zir-

conium, hafnium, molybdenum, tungsten, rhenium, ruthenium, osmium, rhodium, and

iridium on the hardness behavior of niobium (Nb). Both binary and ternary alloys were

investigated by means of hardness tests at 77 and 300 K, or within the temperature

range where alloy softening is normally observed in body-centered-cubic metals. Alloys

were prepared by arc melting high-purity electron-beam-melted niobium and high-

purity alloying elements. Alloy additions ranged from less than 1 atomic percent up to

the maximum solubility of each of the elements in Nb, or up to 30 to 40 atomic percent

solute for those elements that are completely soluble in Nb.

Results showed that atomic size misfit plays a dominant role in controlling hardness

in the binary alloy systems investigated. Alloy hardening was observed at 300 K for all

solute contents, and hardness data could be correlated with the square root of solute

content. At 77 K reasonably good agreement was observed with a similar correlation.

Hardness at 77 K was erratic at low solute contents. When the hardness of arc-melted

Nb was used as a baseline, alloy softening was observed at 77 K with dilute solute addi-

tions. However, when the hardness of an ultra-high-vacuum, high-temperature an-

nealed specimen was used as a baseline, only alloy hardening was observed at 77 K in

the Nb alloys. Softening in Nb alloys at 77 K probably arises from a solute-interstitial

interaction, as suggested by others. This type of softening and the role of atomic size

misfit in Nb alloys is quite different from the softening and the role of electron concen-

tration in controlling hardness in binary molybdenum (Mo) alloys, which suggests a

basic difference in softening and hardening behavior between body-centered-cubic

group V (Nb) and group VI (Mo) alloys.



INTRODUCTION

Alloy softening in body-centered-cubic (bcc) alloys has been studied extensively by

numerous investigators over the past few years. Although softening observed in group V

and group VI metal systems and softening in iron have many similar characteristics,
there is still disagreement as to the mechanisms that produce softening in bcc alloys.

Recent results obtained by the authors showed that alloy softening occurs in the

group VI metals, chromium (Cr), molybdenum (Mo), and tungsten (W), as the result of

the addition of solute elements that have an excess of s and d electrons compared with

the group VI metals (refs. 1 and 2). It was further shown that softening and hardening

in Mo alloys could be correlated with the number of s and d electrons contributed by the

solute elements. Thus, the authors suggest that an intrinsic mechanism controls the

hardness of group VI metal alloys.

Alloy softening has also been observed in group V metals, vanadium (V), niobium

(Nb), and tantalum (Ta) (refs. 3 to 5). However, alloy softening exhibited by as-grown

single-crystal Ta-rhenium (Re) alloys (ref. 6) at 77 K was not present at 77 K after

the same specimens were heated in an ultra-high-vacuum system at a temperature near

the melting point (ref. 7). A comparison of the data indicated that the strength of un-

alloyed Ta was markedly reduced after the ultra-high-vacuum anneal, apparently be-

cause of removal of interstitial impurities. In contrast, the Ta-Re alloy crystals ex-

hibited an increase in strength as a result of the annealing treatment. A similar

observation of ultra-high-vacuum annealing resulting in reduced strength has been re-

ported for unalloyed Nb (ref. 8). These results are cited as evidence that an extrinsic

mechanism such as solute-interstitial interaction is responsible for alloy softening in

Ta and Nb alloys. However, there still remains considerable disagreement concerning

alloy softening in group V alloys, with several other investigators (refs. 3 and 4) at-
tributing softening to an intrinsic mechanism such as lowering of the Peierls stress.

Most of the previous studies on group V alloys have involved only one or two alloy

systems. A more extensive study of several alloy systems such as the one the authors

conducted on binary Mo alloys (ref. 2) has not been performed on any of the group V

metals. In addition, the previous studies have not correlated the softening or strength-

ening results with such parameters as atom size misfit or modulus as has been done for

face-centered-cubic (fcc) alloys (ref. 9).

The purpose of the present investigation was twofold: (1) to characterize the hard-

ness behavior of binary and ternary Nb-base alloys containing solute additions which

have fewer or more s and d electrons than Nb to determine if alloy softening occurs in

these alloys, and (2) to identify the major factor or factors. controlling the hardness of

Nb alloys.
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Niobium alloys investigated included binaries with additions of zirconium (Zr),
hafnium (Hf), Mo, W, Re, ruthenium (Ru), osmium (Os), rhodium (Rh), and iridium (Ir)
plus ternary Nb alloys from the Nb-Hf-Mo system. A total of 55 binary and ternary Nb
alloys were investigated. Hardness was measured at 77 and 300 K, which correspond
to homologous temperatures of 0. 03 and 0. 11 T m (where Tm is the melting tempera-
ture), that is, within the homologous temperature range where alloy softening is nor-
mally observed in bcc alloys.

EXPERIMENT

Materials

Materials for this investigation included high-purity electron-beam-melted Nb, Mo,
W, Re, and Zr; commercial-purity Hf turnings; and hydrogen-annealed Ru, Os, Rh,
and Ir powders. Ingots were prepared by nonconsumable triple arc melting of 70-gram
charges in a water-cooled copper mold, followed by drop casting into a square-cross-
section mold. A portion of the arc-melted, unalloyed Nb specimen was heated in an
ultra-high-vacuum furnace at about 0. 9 Tm for approximately 14 hours to reduce the
interstitial-impurity content of the specimen. The annealing was performed at Case
Western Reserve University.

Table I presents the analyzed compositions of the binary and ternary Nb alloys.
Interstitial analyses of several alloys from each alloy series are also listed in table I.
Because of the limited specimen size, interstitial analysis could not be obtained on the
ultra-high-vacuum-annealed specimen. A typical analysis obtained on single-crystal
specimens heat treated under similar conditions is given in table I.

Slices, approximately 3 millimeters thick and 15 millimeters on a side, were cut

from the cast ingots for hardness testing. One face of each specimen that was to be used

for hardness testing was given a metallographic polish. Specimens were then annealed in
vacuum for 1 hour at 0.7 Tm or at a higher temperature within the solid solution range
in order to reduce segregation and produce single-phase, equiaxed, strain-free speci-
mens.

Apparatus

The modified microhardness test unit used in this study has been described pre-

viously (ref. I). The test unit permitted hardness measurements at 77 K as well as

300 K.
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Procedure

Alloying elements for binary Nb alloys were selected from the fifth and sixth periods
of the periodic table and consisted of Zr and Hf, which have fewer s and d electrons
than Nb, and Mo, W, Re, Ru, Os, Rh, and Ir, which have more s and d electrons than
Nb. Ternary alloy additions to Nb consisted of Hf and Mo. Concentrations of binary
solutes normally extended over the solubility range or up to 30 or 40 atom percent solute
in those systems where total solubility exists.

Test temperatures for Nb alloys were 77 and 300 K or 0. 03 and 0. 11 T At
m, Nb'

least 10 diamond pyramid hardness impressions were made on each alloy at each of the
two test temperatures. A load of 1 kilogram and a dwell time of 15 seconds were used
for the impressions. The relative standard deviation was 5 percent.

Lattice parameter measurements were made on Nb-Os alloys by using standard
diffractometer techniques.

RESULTS

Solute Effects

Hardness data for Nb alloys are summarized in table I. The hardness behavior of
binary Nb alloys at 77 K is illustrated in figure 1(a). Attention should be drawn to the
hardness of unalloyed Nb, for which two values are plotted in figure 1(a). The higher
value, 208, is for an arc-melted button prepared for this study, while the lower value,

171, is for part of the same specimen after it was annealed in an ultra-high-vacuum sys-

tem. As indicated in table I and reported previously (ref. 8), this annealing treatment

dramatically reduces interstitial-impurity levels in Nb and thus lowers the hardness, as
illustrated in figure 1(a). Hardness tests on an ultra-high-vacuum-annealed single-
crystal Nb specimen gave hardness values similar to those obtained for the arc-melted
annealed polycrystalline specimen and thus indicated similar purity. When the annealed
material is used as a baseline, it can be noted that only alloy hardening is observed
(see inset in fig. 1(a)) in the nine binary alloy systems investigated. Figure 1(a) further
indicates that hardening rate increases with increasing group number of the solute ele-
ments; however, no correlation was found between hardness and s and d electrons for
Nb-base alloys. Based on the strength of zone-melted and of outgassed Nb single

crystals, it has been suggested that softening in Nb and probably in the other group V
metals, V and Ta, is due to interaction of solutes and interstitial impurities (ref. 10).

Figure 1(b) shows similar hardness behavior at 300 K for the binary Nb alloys.
Again, the hardness of unalloyed Nb is reduced, from 74 to 38, as a result of the high-
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vacuum, high-temperature anneal, and alloy softening is not observed at this test tem-
perature with either hardness value for Nb. Hardening rates observed for these alloy
systems again increase with increasing group number, as was observed at 77 K.

Figure 2 shows the hardness behavior of ternary Nb-Hf-Mo alloys at 77 and 300 K.
The hardness varies linearly with total solute content at both test temperatures over a
total solute content range of 10 to approximately 40 atomic percent. For Hf-Mo addi-
tions to Nb, hardening is additive over a large range of solute additions.

Since the type of softening reported previously for Nb-W alloys (ref. 4) and observed
in Mo alloys (ref. 2) at solute contents of 4 to 8 atomic percent was not observed in Nb
alloys at 77 or 300 K, hardness was not investigated at other temperatures for the binary
or ternary alloys.

Figure 3 is a correlation of the hardness of binary Nb alloys with the square root of
solute content that is similar to the correlations reported for fcc alloys (ref. 9). In
figure 3(a) reasonably good agreement is shown for data at 77 K for most of the alloy

systems. A probable cause of the erratic hardness behavior in some systems (e. g.,
in the Nb-Hf system) is variations in interstitial contents, which apparently have a
marked effect on hardness at this temperature. The Nb-Re data could not be correlated
with square root of solute content. In contrast, at 300 K the correlation was good for
all systems, as shown in figure 3(b).

Size Effects

An analysis of the data indicated that electron concentration did not play a major
role in controlling the hardness of the nine Nb-base alloy systems investigated in this
study. Therefore, an attempt was made to correlate the observed hardening rates with
atomic size misfits. Figure 4 shows the effect of solute additions on the lattice param-
eter of Nb as reported by Pearson (ref. 11) for all the alloy systems except Nb-Os,
which has not been treated in the literature. Measurements were made on specimens
from this study to obtain the data shown in figure 4 for Nb-Os alloys. It should be noted
that Zr and Hf, which have fewer s and d electrons than Nb, produce an increase in the

lattice parameter upon alloying in Nb. The remaining seven elements, which have more
s and d electrons than Nb, all result in a decrease in lattice parameter upon alloying

with Nb. The calculations of atomic radius by Teatum, Gschneider, and Waber (ref. 12)

indicate that Hf and Zr have larger atomic radii than Nb, while the remaining seven

elements have smaller atomic radii than Nb, which is in agreement with the change in

lattice parameters.

In figure 5, the change in hardness with the square root of solute content dH/dc 1 / 2

at 300 K, from figure 3(b), is plotted against the change in lattice parameter with solute
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content da/dc, from figure 4. Lattice parameters were not available for 77 K; there-
fore, a plot of dH/dc 1 / 2 against da/dc could not be made for this temperature. Hard-
ening in Nb-base alloys can be correlated with lattice-parameter changes, which indi-
cates that atomic size misfit plays a dominant role in controlling the low-temperature
hardness of Nb-base alloys. This is in contrast to the group VI metals, Cr, Mo, and
W, for which the authors have shown (refs. 1 and 2) that electron concentration plays
the dominant role in controlling hardness.

It also should be noted in figure 5 that Hf and Mo additions to Nb produce similar
hardening rates. This may explain why a simple additive relation between hardness and
total solute content was observed for Nb-Hf-Mo ternary alloys. Combinations involving
Hf with Os or other elements with quite different hardening rates might lead to a much
more complex relation between hardness and solute content for ternary alloys.

DISCUSSION

It was determined that hardening rates of group V Nb alloys could be correlated
with change in lattice parameter, which suggests that atomic size misfit plays the domi-
nant role in controlling hardness of Nb alloys. Similar observations have been reported
for fcc alloys (ref. 10), where both atomic size misfit and modulus mismatch were
shown to be important. Attempts were made to correlate the hardness of binary Nb
alloys with electron concentration; however, no general equation could describe the data
from the nine alloy systems investigated. Hardening rate did appear to increase with
increasing group number of the solute elements; however, it is concluded that this trend
plays at most a minor role in controlling the hardness of Nb alloys.

Correlation of hardness of Nb (group V) alloys with atomic size misfit rather than
electron concentration, as was done for Mo (group VI) alloys, suggests a basic differ-
ence in the low-temperature deformation of the two groups of bcc metals. The group V
metals exhibit several similarities to feec metals which include (1) correlation of hard-
ness with atomic size misfit, and (2) good low-temperature ductility with an absence of
a ductile-brittle transition temperature in metal of high purity. Although the low-
temperature (<0.2 Tm) deformation behavior of bcc group V and group VI metals is
generally treated as a whole (ref. 9), the present results, along with the work of others
(refs. 13 and 14), suggest that both physical and mechanical properties for the two
groups can be quite different. Chen (ref. 13) in a review of the physical properties of
the two groups has proposed a subdivision of the bcc metals, based on differences in the
electronic structure and nuclear composition, between group V (V, Nb, and Ta) and
group VI (Cr, Mo, and W). Chen concludes that systematic differences in many physical
properties between groups are manifestations of this subdivision and that mechanical
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properties may be expected to show a marked difference in behavior. More recently

Taylor, Vessely, and Christian (ref. 14) have shown basic differences in the low-

temperature slip behavior for the two groups of bcc metals.

When the hardness of high-temperature, ultra-high-vacuum-annealed Nb was used
as a baseline, alloy softening was not observed in this study. When the higher hardness,
arc-melted Nb was used as a baseline, alloy softening was observed at 77 K, but only
at very dilute concentrations of solutes. Softening observed in Nb appears to be associ-
ated with an extrinsic property, interaction of solute elements and interstitial impuri-
ties, as suggested by Ravi and Gibala (refs. 8 and 10). This type of softening is quite

different from that observed for group VI metals, where an intrinsic mechanism related
to electron concentration is believed to control the hardness behavior. Thus, alloy

softening is further support for a subdivision of the bcc transition metals by group,
group V and group VI.

CONCLUSIONS

A study of the hardness behavior of niobium alloys containing solute additions of
zirconium, hafnium, molybdenum, tungsten, rhenium, ruthenium, osmium, rhodium,
and iridium has yielded the following conclusions:

1. Atomic size of solute elements plays the major role in controlling the hardness
of niobium alloys. Electron concentration plays a minimal role, if any, in controlling

hardness of niobium alloys.

2. Alloy softening in niobium, which can occur at very dilute solute contents in

arc-melted material, is most likely due to solute-interstitial interactions, as suggested
by others. Alloy softening can be eliminated by ultra-high-vacuum annealing, which

reduces interstitial-impurity content.

3. Alloy hardening in ternary niobium-hafnium-molybdenum alloys is additive and

varies linearly with total amount of solute.

Lewis Research Center,

National Aeronautics and Space Administration,

Cleveland, Ohio, October 3, 1974,
506-16.
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TABLE I. - CHEMICAL ANALYSIS AND SUMMARY OF HARDNESS DATA FOR NIOBIUM AND

BINARY AND TERNARY NIOBIUM ALLOYS

Solute Analyzed solute Analyzed interstitial content, ppm by wt. Temperature, K
content,

at. % Carbon Oxygen Nitrogen 77 300

Vickers hardness number

Niobium

None (a) 70 38 62 208 74

(b) --- -- --- 171 38

(c) 6 10 1 --- 35

Binary alloys

Zirconium 4.3 --- -- --- 229 148

10.1 18 64 141 273 193

20.5 --- --- --- 339 251

30.6 21 94 138 342 287

Hafnium 0. 99 --- --- --- 173 89

4.2 --- --- --- 181 117

11.3 --- 212 72 248 178

17.9 32 106 66 248 189
25.8 19 148 54 303 230

33.1 --- 86 4 303 240

Molybdenum 0.82 --- --- 76 175 88

1.0 --- 191 --- 185 99

4.2 24 110 80 217 136

7.9 35 185 96 254 171

9.2 33 177 94 276 175

15.5 20 118 78 272 222

21.0 --- 228 72 335 259

27.0 26 142 68 368 302

44.7 --- 52 28 435 353

Tungsten 1.5 116 70 220 216 131

9.6 --- --- --- 307 201

21.0 56 118 146 383 256

30.7 48 124 100 448 321

Rhenium 1.0 --- -- --- 188 99

2.2 36 94 97 211 127

4.0 --- --- --- 247 158

10.4 40 106 98 337 260

19.5 54 42 42 482 380

Ruthenium 0.63 --- --- --- 268 148

2.8 39 233 169 324 168

7.5 --- --- --- 453 265

11.8 16 100 77 495 341

Osmium 0.56 --- --- --- 202 122

2.3 28 228 175 259 182

6.5 --- --- --- 377 280

9.9 16 150 162 445 326

Rhodium 0.53 --- --- --- 221 106

2.0 123 136 120 297 143

5.0 --- --- --- 334 211

7.2 36 107 123 395 254

Iridium 0.49 --- --- --- 254 116

2.0 58 206 138 309 158

5.0 --- --- --- 325 226

7.6 24 144 82 381 272

Ternary alloys

Hafnium, 5.3, 5.0 . 42 272 98 235 176

molybdenum 5.2, 9.6 ___ 100 78 286 214

5.1, 19.4 --- 106 74 344 277

10.1, 5.1 --- 105 76 291 206

9.8, 9.8 26 110 63 314 245

10.1, 19.5 --- 109 55 373 309

10.0, 27.4 __ 255 110 469 371

20.3, 4.9 --- 198 77 320 254

20.1, 9.0 22 77 56 377 307

aArc-melted Nb.

bPolyerystalline Nb, annealed in ultrahigh vacuum at about 0.9 Tm
CZone-refined Nb single crystal, also ultra-high-vacuum annealed.
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Figure 1. - Effect of solute content on hardness of binary niobium alloys.

10



Hf content,
at.% Temperature,

0 5 K
0 10
0 20 77

S400-
E

300

300-

5 200 -

100 I I I
0 10 20 30 40

Total Hf and Mo content, at.%

Figure 2. - Hardness behavior of ternary
niobium-hafnium-molybdenum alloys.

500 1 Ru
us nRe

Rh
400

400 Zr Ir o

0 0
300 0

200

100

(a) 77 K.
S400

Re

Ru Ir Mo
Os

300 Zr Rh

200 -

100-
Fewer s and d More s and d
electrons than Nb electrons than Nb

0 _ 1 1 1 1 1
6 4 2 0 2 4 6 8

Solute contentl/ 2, at.%

(b) 300 K.

Figure 3. - Correlation of hardness of niobium alloys with square root of
solute content.

11



100 -

Os

80 Ir RuRhRh

rRe

60 -

Zr

Mo Hfc 40 -

20 -

0 I I I
-40 -30 -20 -10 0 10 20 30x10 - 14

Change in lattice parameter, daldc, m

Figure 5. - Correlation of hardening rates of binary niobium alloys with
change in lattice parameter at 300 K.

3.42x0 - 10 Zr

3.40 - Hf

3.38 -

3.36 -

3. 34 -

E
3.32

3. 30

3. 28 - Ir

3.26 - Os

3.24 - Rh

3.22 - ,Mo

3.20 -- Re
Ru

3.18 -

3.16
0 10 20 30 40 50

Solute content, at.%

Figure 4. - Effect of solute content on lattice parameter of
niobium. (Osmium data from this investigation; all other
data from ref. 11.)

12 NASA-Langley, 1974 E-8083


