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SUMMARY

The unsteady transonic equation for oscillating thin

wings is solved by a direct finite difference method in the

case where the steady flow affects only one coefficient in

the equation. Both concave and delta wing planforms are

solved and the program may be used for relatively arbitrary

planforms.. Both pitching and plunging modes are calculated

for a reduced frequency range from .2 to 1.0

The results are consistent' with earlier asymptotic inves-

tigations and are in numeric agreement within the order of

accuracy of these solutions. The thickness effect while

small, increases as reduced frequency decreases to .2
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NOMENCLATURE

AR Aspect ration 4a /S

b Dimensional body length

Cp Unsteady pressure coefficient

f(x,y) Oscillation amplitude distribution

g(x,y) Wing thickness distribution

k Reduced frequency of oscillation

L.ij Generalized force coefficient

M Local Mach number

s(x) Wing planform shape

S Wing planform area

t Non-dimensional time

t Dimensional time

U0  Dimensional free stream velocity

w (fx + ikf) - downwash

x,y,z Non-dimensional Cartesian coordinates

x,y,z Dimensional Cartesian coordinates

y Ratio of specific heats

5 Oscillation amplitude

EThickness ratio of wing

a Semi-span-to-chord ratio

p Parabolic constant

Dimensional frequency

Transonic small perturbation potential

61 Steady state potential
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02 Unsteady potential

SComplex amplitude of 02

Re( ) Real part of

Im( ) Imaginary part of

( )',( )",etc Derivatives with respect to x or

( )x xxetc. Partial derivatives

0( ) Of the order of

sgn z Sign of z
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1. INTRODUCTION

The prediction of unsteady flow requires taking into
account the corresponding steady flow. Landahl's [1] solutions
of steady flow completely separated the two effects thus
omitting the effect of body thickness on the unsteady behavior
of the body. Total inclusion of the terms omitted by Landahl
on the other hand gives a difficult equation of mixed type
similar to the non-linear steady transonic equation which must
usually be solved by time consuming numeric methods. The only
simplification is that the flow-type regions are identified
in advance. But mixed type differencing is still required and
is further complicated by the presence of in-phase and out-of-
phase components of the solution. In addition, a multiplicity
of.solutions is needed for one body to account for several fre-
quencies and for various modes of motion. Thus a method which
is fast and yet provides some measure of the effect of the
steady flow is badly needed.

The present report describes a numerical solution procedure
of a simplified unsteady transonic equation which is very fast
and reasonably accurate and which takes into account many of
the effects of the steady flow field. The numeric solution of
this equation is accurate within a few percent and can be
accomplished on an IBM 360/65 computer in less than one minute
per case (one frequency and one mode of oscillation). It is more
flexible than the older transonic box method [2 ] in that it
accommodates rather arbitrary planform shape and is easily
capable of handling variable local Mach number effects from
the steady flow.

2. PROBLEM FORMULATION

Consider a rigid pointed wing which performs harmonic

pitching oscillations of small amplitude in a steady uniform

transonic flow. It is required that the wing be smooth and
sufficiently thin that the conditions for the validity of small

perturbation theory are satisfied.
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With the flow directed along the positive x axis and the

wing oriented along the x axis, we may introduce non-dimensional

variables x = bx, y = by, z = bz, and t = (U /b)t where b is

the body length, U is the free stream speed and the bar coordi-

nates are the physical coordinates. The steady state position

of the wing, which for convenience is assumed to be symmetric,

is then as shown in Figure 1. Denoting the thickness ratio by

e, the requirement that the wing be thin becomes E<<l.

Since the shock strength is or'order E 2 we may ignbe

the irrotationality effect of the shockeffect in the solution

up to order e2 tne. Consequently, we may assume the existence

of a velocity potential 0 such that the x, y and z components

of the flow velocity are (1 +x), ., and czD respectively.

It has been shown (e.g. by Landahl[ , that the potential 0
must satisfy the following 'equation:

(I - M2) xx + Cyy + -zz 2M2 t (1)

2 2
M2 tt = ( + 1) M2xxx

Consistent with the requirement that the wing perform

small oscillations of amplitude: 5 about its steady state

position, we may write the equation for points on the wing as

z = g(x,'y) sgn z + 5 Re (eik  f(x,)) (2)

where g(x,y) is the steady state wing shape of order 1 and

f(x,y), also of order 1, represents the change in shape due

to oscillation. k is the reduced frequency of oscillation

equal to (b/U where w is the physical frequency. We assume

the oscillation to be a small disturbance to the steady state

solution, so E>>5.

The condition of tangential flow on the body becomes:
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z sbody = g sgn z + 5 Re ((fx + ikf)eikt) + G(E,5) (3)

i k t

where G(E,5) = ]. (egy sgn z + 5 Re-.(,fy -
body

Letting a denote the semi-span to chord ratio, we let

y = y/a in the last term in (3).

-1 -1 Re( eikt f ) (4)
G(e,5) = 1y (eo g- sgn z + Re(e f-)) (4)

S]body y

Then, if the wing is assumed to be nearly planar so

that a>>e, (4) is negligible and the boundary condition (3)

becomes

Z.body = Re {E g sgn z + F (fx + ikf) eikt}  (5)

Moreover, we assume that 5 is sufficiently small that

(5) may be evaluated on z = ± 0 instead of (2).

The non-linear term in equation (1) is the fundamental

difficulty in solving the above problem. Following the

ideas of Lin, Reissner, and Tsien[3 ] , Landahl showed that the

non-linear term would be negligible for k sufficiently high,

i.e. (k)ae Ina- e 1 /3 ). This restricts the range of validity

and leaves out completely the effect of body thickness as the

equations for the unsteady part of the potential are then

completely independent of the steady state solution. Teipel i

extended an approach used by Oswatitsch and Keune[ 5 ] for steady

sonic flow by approximating the xx term with a parab olic

constant Fytransmitting the effect of the steady flow into the

unsteady equation. This method has been exploited by Kimble,

Liu, Ruo and Wu 6] to obtain asymptotic solutions for low

aspect ratio pointed wings.

Instead of this approach 0 may be represented as the sum

of a steady potential 1 and an unsteady potential 62 and

assuming the unsteady flow is:.a Sma;ll ' perturbationa,.ofu,th6: steady

flow gives, as in [1]
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(1 - M2) 0 2 xx - M (Y + 1) (lxx2x + 1 lx2xx)

+ 2yy +  2zz - 2M 2 2xt M2 2tt 0  (6)

In sonic flow 1 - M = )9(Slx). It has become common

practice to ignore the term 0lx 2xx in comparison to

16lxx 62x Th.isr reflects in part the vanishing of the receding

wave as M-1I. Kimble and WuE7 ] carried out numerical solutions

of two dimensional wings with and without the term 6lxo2xx

using Spreiter's[8] steady state approximate solutions and

found less than one-half percent difference in the solutions,

well within the order of numeric approximation. This approxi-

mation requires further study to place it on a firmer physical

foundation. The resulting governing equation for 02 is

[M2 (y + 1) 1 xx 2x 2yy + 2zz - 2M xt - M22tt (7

Letting #2 = 5 Re (p e i k t ) and V2 denote the Laplacian with

respect to y and z we have finally:

2 2 2 2 2
[ M2 (y + 1) lxx +2 i] mx = + kM2p (8)

with boundary conditions

z (x,y, + 0) = (fx + ikf), lyl <s.(x) (9)

cP (x,y, + 0) = 0 , ly( > s(x)

cP (0,y,z) = 0, z > 0

lim c = 0, x > 0.

2 2
y +z -+co
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3. SOLUTION METHOD

Ignoring the fact that the leading coefficient is complex,

equation (8) resembles a heat equation with x playing the role

of time and spatial variables y and z. (It is actually a

biharmonic wave equation if the complex coefficient is eliminated

by differentation). This suggests an adaptation of the Crank-

Nicolson method for solution.

The boundary condition on pz would behaveeas if one were

heating a plate at the edge over an expanding region. This

causes severe difficulties in the use of a difference method

mesh which is uniform in x. The mesh would not match the wing

planform edges exactly (Figure', 2a). Nonetheless, this approach

was completely implemented and failed badly. Severe oscillations

were present in the numeric solution on the wing surface. These

oscillations which are normally a sign of instability in the

numeric method did not extend into the field. In addition, a

Von-Neumann stability analysis showed the field equations were
stable. A similar difficulty was experienced with the transonic

box method[2 ] and was partially repaired by an edge correction.

Various corrections were tried but a difference scheme can only

recognize a change of the boundary to an accuracy the same as

mesh size. This approach was therefore abandoned.

A transformation used by Landahl [l ] to transform a delta

wing problem gave the fundamental idea for a means to transform

the problem in such a way that the mesh aligned itself with

the planform edges thus eliminating the boundary instability

problem.

Let y = ys(x) (10)

z = zs(x)

Then the equation (8) becomes)

[2 s 2  -2 (11)
[s Px -s's (V + Pz)] + s 2 cp
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where a= [M2 (y + 1) ~1xx +2M2ki] and = k M2 while

w = f + ikf

The boundary conditions (8) become

z (x,y, + 0) = w's Iy < 1 (12)

C (x,y, + o) = o I 1

and the other boundary conditions are unchanged. See

figure 2b.

This problem was programmed using a relatively straight

forward adaptation of the Crank-Nicolson method for variable

coefficients and complex p. The stability was excellent and

the previous difficulty completely overcome Unfortunately,

an iterative method of solving the equations at each x step

was used. The amplification factors found by the Von-Neumann

analysis approached one for x near the trailing edge and

Jxx = 0. The iteration procedure took more and more iterations

to converge as x approached 1.0. Underrelaa;tiion ilead-to'i, t

eventual convergence but only after consuming a large amount

of computer time. The effects were not as severe with l1xx l 0

but efficiency still suffered.

Since reprogramming was again necessary to use a direct

elimination procedure, an additional transformation was also

tried to reduce storage requirements. Many mesh points must

be used off the wing in the lateral as well as the vertical

direction to take account of the field effects. The transfor-

mation

y = sin y cosh Z

z = cos y sinh z

eliminates the need for mesh points displaced laterally off the

wing and in addition smootheso(the edge singularity in the

derivatives of cp giving even better numeric accuracy there.

See figure 2c.
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The equation and boundary conditions (with the double

bars dropped) become

[cos2 2 2
S[(cos y + sinh2 z) s x - ss (sin (2y) cp/ 2 + sinhi (2z) pz/ 2 )]

2 2 2 2
+ P (cos y + sinh z) s p = V (14)

Tz (x,y,0) = s w cos y, jYI < (15)

cp (x, ±1, z) = 0, z > 0

P (0,y,z) = 0 , z 0, lyl <(

lim T = 0, x > 0, lyl <

Z-co

This method gave good stability and accuracy of the in-

phase part of p. However, the out-of-phase part of p is Ofbe

ordersi of magnitude smaller than the in-phase part. Without

fine mesh the out-of-phase part was lost in noise. To correct

this p was split into two parts, one a known function related

to the slender body solution, and the othert 9', of4comparable

magnitudez iin both in and out-of-phase parts.

S(P- '+ w cos (y)e-Z (16)

This was substituted into (14) and (15) and only 9 was computed

numerically resulting in very accurate solutions for both in

and out-of-phase parts of p.

4. PRESSURE COEFFICIENT AND GENERALIZED FORCES

The pressure coefficient is computed using central differences

to approximate the derivatives of p from

C = -2 (Tx + ikp) (17)
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We define the generalized aerodynamic force coefficients

by

L = 4 ix + ik p] f. dxdy (18)

where S is the wing planform area, the displacement distribu-

tion function for harmonic oscillations in mode j is given by

fj(x,y) cos kt (fj is of order 1), and 1i is the unsteady

potential due to mode i. The integrals were evaluated '(after

integration by parts to eliminate derivatives) by Simpson's

rule.

5. RESULTS

5.1 Comparison With Transonic Box Method

The program was tested for a case solved by Rodemich

and Andrew[2] by the transonic box method. The planform

was a delta wing of aspect ratio 1.5 oscillating in plunge

at a reduced frequency k of .5 . Results are plotted in

Figure 3 and show agreement to within about 3%. The finite

difference solution uses 16 points in the x direction and,'

8 in the y direction. In a sense this is comparable to 128

boxes in the transonic box method. The transonic box solution

shown, however, required approximately 300 boxes on the wing.
The far field was approximated by setting the correction

potential to 0 at zm approximately 4. This means that at

z = 4 the potential is forced to agree with the slender body
solution. A value of z = 8 caused only about one percent
change in the solutions whereas z = 2.0 caused much more severe
variations

Similar tests were made with varying mesh sizes. Doubling

the number of mesh points in any direction again caused only

about one percent variation in the solutions.
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5.2 The Delta Wing With Thickness Effect.

The generalized moments Lll and L22 were computed for a

delta wing of aspect ratio 1.5 in pitching and plunging modes

at reduced frequencies .2, .5, .8 and 1.0 with and without a

thickness effect.

The thickness effect chosen for this study was based on

earlier work of Liu and Ruo[ 91 which extended the earlier.

work of Teipel mentioned above. It was assumed that e = .0683,

a = .375 and that the wing was a biconvex with simple wedge

chord sections. This implies that the equivalent body is a

cone of base area .0683. According to [9] this gives a

parabolic constant F = .55 which serves as an approximation

to the steady state term (y + 1) M jlxx. The flow was

assumed to be sonic (M = 1) everywhere for this report.

There is no limitation on the program (or its efficiency) to

constant values of (y + 1) M ' however. Better data canE xx
be incorporated in future studies.

The results are shown in Figures 4 and 5. Note the expanded

scales. The effect of thickness is seen to increase as reduced

frequency decreases which is in agreement with past asymptotic

analysis of thickness effect[ 9 ]' [6]. The near agreement with

and without thickness effect at k = 1.0 is rather coincidental

although as frequency increases, thickness effect will vanish.

The accuracy suffers somewhat near k = 1.0 because of the

relatively large mesh size.

The phase angle is affected only very little by thickness.

Note that L22 seems to'show very little thickness effect. This

can be traced to the fact that c is not normalized by k as it

is in the plunging case. We suggest using the downwash w = ikx

and normalizing ( to accurately account for thickness effect

in this case.
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5.3 The Concave Wing With Thickness Effect

To illustrate the capabilities of the method to handle
general planforms, a concave wing with planform given by

s(x) = a (x + x2)/2

and a = .4167 corresponding to aspect ratio 2.0 was chosen.
The results show a slower onset of thickness effect with
decreasing frequency and a slower decay as frequency increases.
The first tendency is again consistent with qualitative trends
noted in the earlier asymptotic investigation at low frequency.
The second tendency has not been seen before and requires
further investigation. Again phase angle is not greatly
affected and the pitching results are largely swamped due
to lack of normalization.

5.4 Pressure Coefficients

Pressure Coefficients were calculated for both wings
oscillating in the plunging mode at k = .2. The amplitudes
of pressure show little change when thickness effect is
included. Thickness effect is largely reflected in rather
significant changes in the phase angles. This emphasizes the
importance of calculating the out-of-phase part of e correctly
since this part almost totally determines the phase shift due

toothickness effect.

6. CONCLUDING REMARKS AND RECOMMENDATIONS.

An efficient and accurate method has been developed for

solving a simplified version of the unsteady transonic equation.

The equation may be modified to include the effect of )lx
wherever this is not negative without interfering with efficiencyt,

or accuracy. Such an approach is reasonable in sonic flow when

the receding wave effects can be ignored. In consequence wake

influence is1 ignored and shocks must be weak. Nevertheless,

when the sonic pocket extends over most of the wing, these

assumptions are very nearly fulfilled. The present method

10



can easily account for variable local Mach number and rather

arbitrary planform so long as the basic assumptions are

fulfilled.

Additional convergence studies in the case of curved

planforms would be valuable since accuracy is somewhat affected
by such changes. The present program may be modified to use
approximately 70% less storage and about the same proportion
less time to make such studies feasible.

It is recommended that pitching results be compared using
a downwash .function w = ikx rather than the more conventional

w = 1 + ikx since the present procedure gives solutions
largely dominated by the plunge-like case w = 1. Comparison
of results calculated with w = ikx will allow normalization
by frequency k and will more accurately reflect differ4rences
due to thickness, planform, and local Mach number.
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Figure 2a. Mesh Does Not Match Wing Edge.

Y Y

Figure 2b. Effect Of Stretching Transformation On Mesh.

/
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SFigure 2c. Effect Of Tetal Transformation On Mesh.
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