PRESSURE DROP ACROSS WOVEN SCREENS UNDER UNIFORM AND NONUNIFORM FLOW CONDITIONS

Final Report - Contract NAS8-28736

Prepared by:
Mike Ludewig
Satoaki Omori
Ganti L. Rao
School of Graduate Studies and Research The University of Alabama in Huntsville Huntsville, Alabama 35807

Prepared for:
George C. Marshall Space Flight Center National Aeronautics and Space Administration Marshall Space Flight Center, Alabama 35812

October 1974

PRESSURE DROP ACROSS WOVEN SCREENS UNDER UNIFORM AND NONUNIFORM FLOW CONDITIONS

Final Report - Contract NAS8-28736

Prepared by:
Mike Ludewig
Satoaki Omori
Ganti L. Rao
School of Graduate Studies and Research The University of Alabama in Huntsville Huntsville, Alabama 35807

Prepared for:
George C. Marshall Space Flight Center National Aeronautics and Space Administration Marshall Space Flight Center, Alabama 35812

October 1974

TABLE OF CONTENTS
Page
ACKNOWLEDGEMENT i
DEFINITION OF SYMBOLS ii
CHAPTER I
INTRODUCTION 1
1 PREDICTION OF PRESSURE DROP ACROSS WOVEN SCREENS 3
1-1 Previous Investigations 3
1-2 Experimental Equipment and Procedure 8
1-3 Experimental Results and Discussions 11
1-4 Recommendations for Future Work 14
2 VARIATION OF PRESSURE DROP ACROSS WOVEN SCREEN 16
2-1 Theoretical Analysis of Effect of Nonuniform Flow, McDonnell Douglas 16
2-2 Extension of McDonnell Douglas Analysis of Effect of Nonuniform Flow 18
2-3 Experimental Apparatus and Procedure 19
2-4 Experimental Results 21
2-5 Analysis of Experimental Data 23
2-5.1 McDonne11 Douglas Correlation of V* versus \emptyset 23
2-5.2 Determination of Velocity Profile 26
2-5.3 Determination of Average Properties from Local Data for 50×250 Dutch Twill Screen for Depths of 3.5 and 2.2 cm 27
2-6 Recommendations for Future Work 28
REFERENCES 30
LIST OF TABLES 31
LIST OF FIGURES 36
APPENDIX A 88
APPENDIX B 95
CHAPTER II
INTRODUCTION 110
1 THEORETICAL CONSIDERATIONS 111
1-1 Equations of Motion 111
1-2 Conservation of Mass 111
1-3 Conservation of Momentum 113
2 SOLUTION FOR THE EQUATIONS OF MOTION 114
3 EXPERIMENTAL RESULTS 120
APPENDIX 122

ACKNOWLEDGEMENT

Abstract

The authors wish to acknolwedge Mr. Steve Allums, of NASA/Marshall Space Flight Center, for his helpful discussions and interest shown in the study. We would also like to acknowledge the help of Mr. Ramesh Shangvi, a laboratory assistant, and to Mrs. Carol Holladay for the typing of this manuscript.

Symbol	Definition	Units
a	surface area to unit volume ratio of screen wire (defined in Ref. 2)	cm^{-1}
A	area	cm^{2}
A^{\prime}	actual area open to flow, AE	cm^{2}
A_{1}, A_{2}	empirically determined constants (defined in Ref. 4)	dimensionless
A_{C}	constant, $A_{1} L / D_{a}{ }^{2} g_{c}$ (defined in Ref. 4)	cm^{-1}
B	screen thickness (defined in Ref. 2)	cm
B_{C}	constant, $A_{2} L / D_{a} g_{c}$ (defined in Ref. 4)	dimensionless
D	depth of channel	cm
D_{a}	characteristic pore size	cm
D_{h}	hydraulic radius (defined in kef. 9)	cm
Eu	Euler number, $2 \Delta \mathrm{p} / \rho V^{2}$	dimensionless
f	friction factor $\triangle \mathrm{pg}_{\mathrm{c}} \varepsilon^{2} \mathrm{D} / \mathrm{TB} \mathrm{\rho V}{ }^{2}$ (defined in Ref. 2)	dimensionless
F	parameter, $\mathrm{fH} / 4 \mathrm{D}_{\mathrm{h}}$ (defined in Ref. 9)	dimensionless
g	acceleration due to gravity	$\mathrm{cm} / \mathrm{sec}^{2}$
g_{c}	conversion constant, e.g., $32.174 \frac{1 b_{m} f t}{\mathrm{lb}_{\mathrm{f}} \mathrm{sec}^{2}}$	depends on system of units used
H	channel length (defined in Ref. 9)	cm
K	constant, 2LA1/Da (defined in Ref. 8)	dimensionless
K_{0}	screen parameter, $\Delta \mathrm{p} / \mathrm{V}$	$\mathrm{gm} / \mathrm{cm}^{2} \mathrm{sec}$
L	channel width (definition in Ref. 9)	cm

Symbol	Definition	Units
${ }^{0} \mathbf{p}$	fraction of area open to flow (defined in Ref. 1)	dimensionless
Δp	screen pressure drop	$\mathrm{gm} / \mathrm{cm} \cdot \mathrm{sec}^{2}$
Q	mass flow rate (defined in Ref. 9)	$\mathrm{gm} / \mathrm{sec}$
Q ${ }^{\text {- }}$	volumetric flow rate	$\mathrm{cm}^{3} / \mathrm{sec}$
Re	Reynolds number, $\frac{\rho V}{\mu a^{2} D}$ (defined in Ref. 2)	dimensionless
Re_{a}	Reynolds number, $\mathrm{Da}_{\mathrm{a}} \mathrm{V} \rho / \mu$	dimensionless
S	solidity, $1-O_{p}$ (defined in Ref.1)	dimensioniess
T	tortuosity factor (defined in Ref. 2)	dimensionless
u	fluid velocity in x-direction	$\mathrm{cm} / \mathrm{sec}$
V	$\text { screen approach velocity } \frac{Q^{\prime}}{A}$	cm/sec
V_{e}	$\text { entering screen velocity, } \frac{Q}{A \varepsilon}$	$\mathrm{cm} / \mathrm{sec}$
x,y	Cartesian-coordinate distances	cm
z	length, X/H (defined in Ref. 9)	dimensionless
α	viscous coefficient (defined in Ref. 2)	dimensionless
β	inertial coefficient (defined in Ref. 2)	dimensionless
ε	screen void fraction (defined in Ref. 2)	dimensionless
n	constant	dimensionless
μ	fluid viscosity	centipose
v	fluid kinematic viscosity	$\mathrm{cm}^{2} / \mathrm{sec}$
ρ	fluid density	$\mathrm{gm} / \mathrm{cm}^{3}$
\emptyset	pazameter, $2 \mathrm{QH} / \mathrm{D}^{2} \mathrm{LK}$ O (defined in Ref. 9)	dimensionless

Symbol Definition

- denotes average value when placed above symbol, e.g. $\overline{\mathrm{V}}$ is average velocity
*

denotes dimensionless quantity,e.g. V^{*} is the dimensionless velocity.
GDCD Convair Division of General Dynamics
MDAC McDonnell Douglas Astronautics Company
NRSD North American Rockwell Space Division

CHAPTER I

INTRODUCTION

The purpose of the present investigation is to gather experimental pressure drop and velocity data for woven screens.

Previous investigators have presented correlations for predicting pressure drop across woven screens. All correlations presented to date have been developed from "pipe flow" (i.e., circular) configurations and data taken in those experiments. The present experimental investigation uses a rectangular channel configuration.

The report is divided into two major sections and an appendix A and B.
Section I presents experimental data taken for three dutch twill screens ($50 \times 250,200 \times 600$, and 325×2300) and two square weave screens (200 $\times 200$, and 325×325) using tap water as the test liquid. Pressure drop measurements were made at four locations in a rectangular channel 8.89 cm long. In every case, no variation (for a given screen) in pressure drop at the four locations was measured. The data is presented as $\dot{\Delta}_{p}$ versus $\overline{\mathrm{V}}_{\mathrm{e}}$ where $\overline{\mathrm{V}}_{\mathrm{e}}$ is the average entering velocity and is calculated by dividing the volumetric flow rate by the screen area open to flow. Existing data have been based upon an average approach velocity (volumetric flow rate divided by total screen area).

Section II presente experimental data for a 50×250 dutch twill screen using water in a modified experimental apparatus. The channel length is extended to a length of 29.16 cm to study the effect of pressure drop variation as a function of Z (dimensionless length along the screen).

Channel depth is made variable in order to study its effect upon pressure
drop. Basic data is presented as $\Delta \mathrm{p}$ versus Z.

The equations of continuity and momentum for the present experimental model are presented in Appendix A. Also included in Appendix B, is a computer program listing of an extension of a McDonnell Douglas theoretical model and data from that computer program.

PREDICTION OF PRESSURE DROP ACROSS WOVEN SCREENS

1-1 Previous Investigations
Several investigators have attempted to obtain empirical or analytical relations between the screen pressure drop and velocity. The correlations are based upon an average approach velocity normal to the screen (i.e., the volumetric flow rate divided by the total screen area) and screen parameters. The empirical equations below are predominant in the literature.

$$
\begin{equation*}
f=\frac{a}{R e}+\beta \tag{1-1}
\end{equation*}
$$

where f is the friction factor defined by $\frac{\Delta \mathrm{p} \mathrm{g}_{\mathrm{C}} \varepsilon^{2} \mathrm{D}}{\mathrm{TB} \rho \overline{\mathrm{V}}^{2}}$

Re is the Reynolds number defined by $\frac{\rho \overline{\mathrm{V}}}{\mu \mathrm{a}^{2} \mathrm{D}}$
α, β are constants determined experimentally
$\mathrm{Eu}=\frac{2 \Delta \mathrm{p}}{\rho \overline{\mathrm{V}}^{2}}$
where Eu is the Euler number and is defined in the following manner for square weave and dutch twill screens
$E u=\left[\frac{1-o_{p}}{0_{p}}\right]^{2}=\left[\frac{s}{1-s}\right]^{2}$ for square weave screens.
Equation (1-3) is the Hoerner equation (Ref. 1) where O_{p} is the fraction of area open to flow and S is the solidity.

$$
\begin{equation*}
E u=\frac{\partial L}{D_{a}}\left[\frac{A_{1}}{R_{a}}+\dot{A}_{2}\right] \text { for dutch twill screens } \tag{1-4}
\end{equation*}
$$

where

L is the thickness of the screen
D_{a} is the characteristic pore size
A_{1}, A_{2} are constants determined experimentally
Rea. is the Reynolds number based on D_{a} and defined as $D_{a} \bar{V} \rho / \mu$.
Equation (1-1) was developed by Armour and Cannon (Ref. 2) who modeled screens as a collection of submerged objects with surface area to unit volume ratio " a " for laminar flow and as a bundle of tubes of diameter D for turbulent flow. Pressure drop data for the flow of gaseous nitrogen and helium through plain square, full twill, fourdrinier, plain dutch, and dutch twill screens were used to derive coefficients of $\alpha=8.61$ and $\beta=0.52$. An illustration of the types of screens is shown in Figure (1-1).

Other investigators have arranged their data in the form of the Armour-Cannon correlation. McDonnell Douglas Astronautics Corporation (MDAC), using GN_{2} and He as test fluids, presented data on three dutch twill screens as shown in Figure (1-2) (Ref. 3)*. Their data points for the friction factor, f, were lower than the Armour Cannon correlation (generally by a factor of 2 for each Reynolds number; however, the correlation was successful in aligning the data points for the three dutch twill screens.

[^0]General Dynamics Convaix Division (GDCD) tested the following six dutch twill screens in 1969 (Ref. 4):

- 80 x 700
- 165 x 800
- 150 x 700
- 30×250
- 50 x 250
- 20 x 250
using GH_{2} and GN_{2} as test fluids. They compared the results of those tests with previous test data taken in 1968 on three other dutch twill screens and one square weave screen (Ref. 5):
- 200 x 1400
- 165×1400 (Dutch Screen)
- 200 x 600
- 20×20 (Square Screen)
using GHe, $\mathrm{LH}_{2}, \mathrm{GH}_{2}, \mathrm{LH}_{2}, \mathrm{GN}_{2}$, tap water, and distilled water as test fluids. Their results of friction factor, f, as shown in Figure (1-3)* were also below the Armour-Cannon correlation, and they found that the data could best be represented by the equation;

$$
\begin{equation*}
\mathrm{f}=\frac{2.49}{\operatorname{Re}}+0.3 \tag{1-5}
\end{equation*}
$$

Some of the most recent work in measurements of pressure drop across

[^1]woven screens has been performed by Martin-Marietta of Denver (Ref, 6) using four dutch twill screens:

- 375×2300
- 325×2300
- 250×1370
- 200 x 1400
with GN_{2} as a test fluid. Their resulting data, as shown in Figure (1-4)*, lie above the Armour-Cannon correlation for Reynolds number less than 10^{-2} and between the Armour-Cannon correlation and the MDAC test data for Reynolds number in the range $10^{-2}<\mathrm{Re}<1.0$.

Information in the paragraphs above is summarized in Table I-1 and Figure (1-5).
*Ref. 6, Figure II-38, p. II-60.

Equations (1-2) and (1-4) were developed by GDCD (Ref. 7) after examination of their data arranged in the form $\mathrm{f}=\alpha / \operatorname{Re}+\beta$. They noticed that considerable error could arise in attempting to use a single correlation for all screens. GDCD, therefore, proposed that the most accurate way to arrange the data was as follows:

$$
\begin{equation*}
\Delta p=\frac{A_{1} L \mu}{D_{a}^{2} g_{c}} v+\frac{A_{2} L \rho}{D_{a} g_{c}} v^{2} \tag{1-6}
\end{equation*}
$$

where $\Delta \mathrm{p}$ is the pressure drop across the screen
μ is the fluid molecular viscosity
ρ is the fluid density
g_{c} is the conversion constant needed if the "American engineering system" is used $\left(=32.174 \frac{1 \mathrm{bm} . \mathrm{ft}}{\mathrm{lb}_{\mathrm{f}} \mathrm{sec}^{2}}\right)$
V is the screen approach velocity
$\mathrm{D}_{\mathrm{a}}, \mathrm{L}, \mathrm{A}_{1}, \mathrm{~A}_{2}$ are as defined in equation (1-4).

Equation (1-6) is merely a rearrangement of Equation (1-4) using the definition $E u=2 g_{c} \Delta p / \rho V^{2}$ and $R_{a}=\rho V D_{a} / \mu$. Equation (1-6) may be further simplified in the following manner:

$$
\Delta p=A_{c} \mu V+B_{c} \rho V^{2}
$$

where $A_{c}=\frac{A_{1} L}{D_{a}{ }^{2} g_{c}}$ and $\quad B_{c}=\frac{A_{2} L}{D_{a} g_{c}}$ *

GDCD presents values of A_{c}, B_{C}, A_{1}, and A_{2} in Table 2-2 of Reference
7. Values of the solidity S for square weave screen are presented in

Table $2-3$ of the same reference. It must be pointed out, however, that there
$* A_{c}$ and B_{c} are referred to as A and B in Reforence 7 .
is a discrepancy in this data, as either A_{1} or A_{2} are not dimensionless or A_{C} and B_{C} are not in the units given in their paper. Tables 1-2 and 1-3* summarizes the values of $A_{c}, B_{c}, A_{1}, A_{2}$ and S.

North American Rockwell (Ref. 8) presented data for eleven screen materials, in the form given for equation (1-4) using liquid heptane as the test fluid. Over the range of Reynolds number tested, though, they found that their data could best, be arranged by deleting the second term containing A_{2} in equation (1-4). Letting $K=2 L_{1} / D_{a}$, the equation $E u=K / R e$ is obtained. Values of A and K are presented in Figure 1-6 \dagger.

1-2 Experimental Equipment and Procedure
Experiments were conducted on 200×200 and 325×325 square weave screens and $50 \times 250,200 \times 600$, and 325×2300 dutch twill screens using tap water as the test fluid. A schematic drawing of the first experimental apparatus is shown in Figure 1-7, and the screen/channel assembly in Figures 1-8 , 1-9 and 1-10.

The experimental assembly consisted of the following pieces of equipment:
(1) A centrifugal pump capable of producing outputs from $40 \mathrm{cc} / \mathrm{sec}$ to over $400 \mathrm{cc} / \mathrm{sec}$.
(2) A filter system capable of 5 micron filtration. This was used to remove impurities from the tap water and to act as a "buffer" to dampen the pulsating output characteristic of a centrifugal pump.
*Ref. 7 , Table 2-2 and 2-3, p. 2714.
†Ref. 8, Figure 4.5, 4.4-2, p.
(3) A rotameter, as shown in Figure 1-11, calibrated with tap water over the range of $30 \mathrm{cc} / \mathrm{sec}$ to $150 \mathrm{cc} / \mathrm{sec}$.
(4) A screen/channel assembly as shown in Figure 1-9, in which the screens listed above were set in place at location A. The channel itself was a standard $10.6 \mathrm{~cm} \times 4.2 \mathrm{~cm}\left(4^{\prime \prime} \times 1.647^{\prime \prime}\right)$ channel size. A plexiglass tank, B, which was divided into two sections, sat on top of the channel, C, and inside screen mounting brackets, D, which were attached to the outside of the channel section (lower mounting bracket) and to the outside of the plexiglass tank (upper mounting bracket). Water flow was introduced into one side of the plexiglass tank which contained an overflow tube, E, and then overflowed into the second section of the tank, which was directly over the screen. The second section of the tank contained a flow straightener, F, paralle1 to the screen. The tank thus served two purposes -- the first section acted as a calming region for the inlet flow while maintaining a corgtant liquid head by means of the overflow tube, and the second section directed the flow perpendicular to the screen. Four sets of pressure taps were located In the screen mounting brackets directly above and below the screen.
(5) A manifold system, shown in Figure 1-12, consisting of four three-way stopcocks connected to a single outlet tube. With this system, it was possible to close off three sets of pressure taps, and by rotating the remaining, open stopcock between its two openings, to measure the pressure above and below the screen. In a similar manner (after closing the first
stopcock), each of the other stopcocks could be opened, one at a time, and pressure differentials could be measured at each of the other locations quickly and with sustained accuracy.
(6) An inclined tube manometer, shown in Figure 1-13, with a 0 to 4 inch scale was used. The test fluid itself was used as the manometer fluid.
(7) Other pieces of equipment (as shown in Fig. 1-7), including a water tank to furnish a liquid head for the pump, valves to regulate output and control liquid height in the tank above screen, and a 0° to $40^{\circ} \mathrm{C}$ thermometer graduated in tenths to measure the temperature of the water at steady state.

The procedure for an experimental measurement was as follows: A volumetric flow rate was chosen by adjusting the pump outlet control valve (see Figure 1-7). The pump was allowed to run at this output until steady state was achieved. Steady state was indicated by the constant temperature of the water, constant output of the pump as indicated by the rotameter, constant liquid head above the screen as measured by a ruler fixed to the side of the tank (this height was the same for all screen tested) and no fluxion (i.e., the same reading) in pressure drop across the screen. Once steady state was achieved, the pressure differential at the four locations was recorded. A new, lower volumetric flow rate was then chosen, and the above procedure repeated.

The upper volumetric flow rate was limited by the amount of flow a given screen would pass, while maintainfng a constant fixed height above
the screen with the outlet control valve wide open. Increasing the flow rate beyond that limit merely increased the liquid head above the screen to such a point that it would eventually overflow the tank.

The lower volumetric flow limit was fixed at the point at which the smallest scale pressure differential could be read (0.254 mm of water).

1-3 Experimental Results and Discussion

Pressure drop versus volumetric flow rate data were collected over the range of $40 \mathrm{cc} / \mathrm{sec}$ to $130 \mathrm{cc} / \mathrm{sec}$ for the five screens under test. In every case, no variation in pressure drop across the screen was measured at any of the four locations. Thus the local entering velocity and the average entering velocity were the same. An average entering velocity, $\overline{\mathrm{V}}_{\mathrm{e}}$ was calculated from the following relationship:

$$
\begin{equation*}
\bar{V}_{e}=\frac{Q^{-}}{A^{*}}={\frac{Q^{-}}{A \varepsilon}}^{*} \tag{1-8}
\end{equation*}
$$

where
Q' is the volumetric flow rate
A^{-}is the actual area open to flow
A is the total screen area
ε is the screen void fraction.

The data collected during the test runs for the five screens are presented in Figures 1-14 through 1-17. It was found that the pressure drop Δp, was proportional to the average entering velocity, \vec{V}, in the present flow configuration (rectangular). Flow fields of previous investigators were in straight tubes or channels with screens pendicular to the flow

[^2]
direction.

Correlations of the present data against previous investigations have been made.

Figure 1-18 is a comparison of the present data for square weave screens with the Hoerner equation, $E u=\left[\frac{S}{1-S}\right]^{2}$. Values of the solidity, S, were taken as 0.70 and 0.66 for the 325×325 and 200×200 mesh screens, respectiveiy. The equation $\mathrm{Eu}=5.44$ represents the 325×325 mesh screen and $E u=3.77$ represents the 200×200 mesh screen. The experimental data, for both screens, lie below the Hoerner equation at high velocities and above the equation at the lower velocities. For the lower velocities, the slope of the Hoerner equation and that of the present data is nearly identical.

A comparison of the present data, for the three dutch twill screens tested, against equation(1-4), was not possibly due to the discrepancy (as mentioned previously) of the units of A_{C} and B_{c} or the values of A_{1} and A2 (given in Table 1-2 of this report). A comparison of the data for the 50×250 dutch twill screen with the North American Rockwell value of A_{1} was not possible because they tested a plain dutch screen.

Present data (with the entering velocity changed to approach velocity for comparison with previous investigators) for the 50×250 and 325×2300 dutch twill screens are shown compared to works by previous investigators over the same Reynolds number range in Figure 1-19. No value of "a" was available in the 1iterature for the 200×600 screen. Screen parameters such as ε, B, etc., available in the literature vary from source to source those used in all calculations made for this report are given in Table $1-4$.

The presentily obtained plots are lower than any previously reported and are not linear. Two possible reasons are:
(1) Geometric; i.e., the present experimental apparatus is rectangular while previous investigations were"straight pipe flow" configurations. The Reynolds number as defined by Armour-Cannon and GDCD does not take into account the channel üiameter (or hydraulic diameter in the case of a noncircular configuration) but rather a characteristic screen pore diameter D_{a}. Thus, Re , as defined, is independent of the type of geometric configuration, but it is doubtful that this is actually true.
(2) Previous data were obtained from gas flow analysis while the present experiment used water as the test fluid. For a gas such as GN_{2}, the kinematic viscosity is an order of magnitude larger than water, thereby shifting the Reynolds number of water to the right (i.e. (Re) $\mathrm{H}_{2} \mathrm{O}>(\mathrm{Re}) \mathrm{GN}_{2}$). Also for a gas, the friction factor would be less than that for water for the same Reynolds number. Thus, the present data viewed in light of previous gas data would
shift up and to the right, the exact magnitude being impossible to predict without simultaneous experimental comparison between gases and liquids.

The present data for the 50×250 and 325×2300 dutch twill screens present a different tendency from former investigations - an increase in the friction factor with increasing Reynolds number up to a certain Reynolds number for both screens. At low velocities, the pressure drop for a fluid such as water is extremely low; thus, the relationship between $\Delta \mathrm{p}$ and V causes the friction factor to rise for low $V\left(f \propto \Delta p / V^{2}\right)$ and fall for high V. It can be considered that previous data for gases would show this tendency if velocities were low enough to obtain the small pressure differences measured in the present case. If the data are analyzed only in the region where f decreases for increasing Re, equation(1-1) satisfactorily aligns the present data points for the two dutch twill screens.

1-4 Recommendations for Future Work
Examination of the experimental results suggests two additional areas of study:
(1) Because of the geometric configuration of the present experimental apparatus, it is impossible for a given screen to obtain data over a wide Reynolds number range, as has been done in the previous "straight pipe-flow" experiments. With the exception of a very limited Reynolds number range, this prevents comparison of liquid data with a correlation of the form $f=\alpha / R e+\beta, \quad$ which can be applied to a gas flow. It is required, therefore, that fluids such as water and heptane should be used in "straight pipe-flow"apparatus with the dutch twill screens tested in this experiment
in order to compare the previous gas data with measured values of liquid. The result would be the extension of the Reynolds number range of liquids over that of formerly tested gases. It would allow comparison of the present data with MDAC (Ref.3) and GDCD (Ref.4) test data, and, finally, a comparison could be obtained for the same screens in different geometric configurations (i.e., rectangular and circular).
(2) For velocities, V_{e}, used in the present experiment (approximately $1 \rightarrow 5 \mathrm{~cm} / \mathrm{sec}$), each dutch twill screen has a Reynolds number range of less than 10. New dutch twill screens could be chosen to cover Reynolds number range different from those tested in the present case $[50 \times 250 \operatorname{Re} 0.6 \rightarrow 3$, 325×2300, $\operatorname{Re} 0.03 \rightarrow 0.06]$. This would accomplish three objectives:

- It would allow the "holes" in Reynolds number to be covered, thus providing a correlation of liquids which would be indicative of the whole Reynolds number range anticipated.
- It would furnish additional or new data on many dutch twill screens.
- It would allow a more complete correlation with previously collected gas data.

In addition, more experience would be gained in the improved design and use of rectangular-channel screen assemblies.

VARIATION OF PRESSURE DROP ACROSS WOVEN SCREEN

2-1 Theoretical Analysis of Effect of Nonuniform Flow, McDonnell Douglas

Previous investigators have developed correlations to predict pressure drop across woven screens as a function of a uniform and average approach velocity (volumetric flow rate divided by screen area). However, the division of a fluid stream into parts by means of a screen is accompanied by pressure changes owing to friction and the change of fluid momentum. As a result, the pressure drop is not constant along a screen and may be considerably higher than that predicted by an equation based on an average approach velocity.

McDonnell Douglas (Ref. 9, Appendix A) considered the channel configuration shown in Figure 2-1.* The following equations were presented:

Continuity

$$
\begin{equation*}
\mathrm{V}=\mathrm{D} \frac{\mathrm{~d}_{\mathrm{u}}}{\mathrm{~d}_{\mathrm{x}}} \tag{2-1}
\end{equation*}
$$

where V is the velocity normal to the screen

D is the channel depth
u is the velocity in the x-direction
Momentum $\quad \frac{d p}{d x}+f \frac{\rho}{2 D_{h}} u^{2}+2 \rho u \frac{d u}{d x}+\rho g=0$
where p is the static pressure
f is the friction factor defined by Darcy's equation
D_{h} is the hydraulic radius
g is the acceleration due to gravity
ρ is the fluid density.
*Ref. 9, Fig. A-I, p. 92.

The flow loss through the screen was assumed to be

$$
\begin{equation*}
K_{0} V=p_{o}-\rho g x-p \tag{2-3}
\end{equation*}
$$

where K_{0} is determined experimentally. Equation (2-3) is applicable for low velocity and in terms of the Armour-Cannon correlation is valid where $8.6 / \mathrm{Re} \gg$ 0.52 (β, an inertial resistance coefficient, defined in equation ($1-1$), is negligible).

With the following boundary conditions and definitions, the three equations above are non-dimensionalized
B.C. (1) at $x=-H \quad u=0$
B.C. (2) at $x=0 \quad Q=\rho L D u$
where H is the channel length
L is the channel width

Q is the mass flow rate

$$
\begin{align*}
& u^{*}=\frac{u}{u_{\max }}=\frac{\rho u D L}{Q} \tag{2-6}\\
& V^{*}=\frac{V}{V_{\mathrm{avg}}}=\frac{\rho V L H}{Q} \tag{2-7}\\
& z=\frac{\mathrm{x}+\mathrm{H}}{\mathrm{H}} \tag{2-8}\\
& \Delta \mathrm{p}^{*}=\frac{\mathrm{P}_{\mathrm{o}}-\mathrm{p}}{\Delta \mathrm{p}_{\mathrm{avg}}}=\frac{\left(\mathrm{Po}_{\mathrm{o}}-\mathrm{p}\right) \mathrm{OLH}}{\mathrm{~K}_{\mathrm{o}} \mathrm{Q}} \tag{2-9}
\end{align*}
$$

where the terms which contain asterisks are dimensionless and Z is the dimensionless length.

The three basic equations ($2-1,2-2,2-3$) become

$$
\begin{align*}
& V *=\frac{d u^{*}}{d Z}=\Delta p^{*}-\frac{\rho^{2} L H^{2} g}{K_{0} Q}(Z-1) \tag{2-10}\\
& \frac{d\left(\Delta p^{*}\right)}{d Z}-\frac{\mathrm{EQH}^{2}}{2 D D^{2} D^{2} L K_{0}} u^{*} *^{2}-\frac{\rho^{2} L H^{2} g}{K_{0} Q}=\frac{2 Q H}{D^{2} L K_{0}} u^{*} \frac{d u^{*}}{d z} \tag{2-11}
\end{align*}
$$

which are combined into a single nonlinear equation

$$
\begin{equation*}
\frac{d^{2} u^{*}}{d Z^{2}}-F u^{*^{2}}-\emptyset u^{*} \frac{d u^{*}}{d z}=0 \tag{2-12}
\end{equation*}
$$

where $\mathrm{F}=\mathrm{fH} / 4 \mathrm{D}_{\mathrm{h}}$ and $\emptyset=2 \mathrm{QH} / \mathrm{D}^{2} \mathrm{LK}_{\mathrm{O}}$.
The boundary conditions are written as follows:

$$
\begin{array}{lll}
\text { B.C. (1) } & \text { at } Z=0 & u^{*}=0 \\
\text { B.C. (2) } & \text { at } Z=1 & u^{*}=1 \tag{2-14}
\end{array}
$$

Equation (2-12), with the assumption that $F=0$, is solved by McDonnell Douglas. The results are presented in Figure 2-2* as a plot of V^{*} versus ゆ. The figure shows that V^{*} at the ends of the channel begins to differ significantly from 1.0 at values of \emptyset greater than 1.0 . In other words, V is not the average approach velocity for $\phi>1$ (for $\phi<1, \mathrm{~V}^{2}=\frac{\mathrm{v}}{\mathrm{vavg}} \sim 1.0$).

2-2 Extension of McDonnell Douglas Analysis of Effect of Nonuniform F1cw

McDonnell Douglas solved equation (2-12) with the assumption that $\mathrm{F}^{\mathrm{c}}=0$.
It was felt that the solution for equation (2-12) would be different by including a treatment of F, especially in the case of small channel depth, D, or high volumetric flow rate Q^{-}(corresponding to high velocities V). *Ref. 9, Fig. A-3, P. 98.

A computer program employing an implicit finite difference technique of Crank-Nicholson type was developed to solve equation (2-12) in this study. The computer program listing is included in Appendix B. The results of the calculations are shown in Figures $2-3$ and $2-4$ as plots of $V *$ versus \emptyset at $Z=0$ and $Z=1$ with the friction factor in the x-directian, F, as a parameter. Other plots of $V *$ versus \emptyset and $V *$ versus Z with F as an independent parameter are presented in Appendix B.

A comparison of Figure $2-2$ with Figures $2-3$ and $2-4$ reveals the fact that the effect of F is negligible in the range $F \leq 1.0$ and may be neglected as originally proposed by McDonnell Douglas.

2-3 Experimental Apparatus and Procedure

The experimental apparatus previously discussed in Section I-2 and illustrated in Figures $1-7$ through $1-13$ was modified to investigate the effect of nonuniform flow (nonuniform flow means that the local entering velocity, V_{e}, varies along the screen because of the accelerating effect of the velocity u which is parallel to the screen). The following changes were made:
(1) The channel length, H, was increased from the initial length of 8.89 cm to a new length of 29.16 cm .
(2) The channel depth was variable by the insertion of plexiglass spacers which reduced the depths of the channel from an original depth of 3.5 cm to new depths of 2.85 cm and 2.2 cm .
(3) A total of fourteen sets of pressure taps were located at the following positions where the origin $x=0$ corresponds to the end of the
channel as shown in Figure 2-5.

Location	Distance x, cm	
1	0.28	0.0096
2	1.79	0.06
3	5.95	0.20
4	9.08	0.31
5	10.69	0.37
6	12.32	0.42
7	13.97	0.48
8	15.53	0.53
9	19.56	0.67
10	21.17	0.73
11	22.76	0.78
12	24.37	0.84
13	27.18	0.93
14	28.67	0.98

(4) A new rotameter calibrated with water over a range of $100 \mathrm{cc} / \mathrm{sec}$ to $400 \mathrm{cc} / \mathrm{sec}$ was installed to allow higher volumetric flow rates Q°. This resulted in obtaining the same average entering velocity range, \bar{v}_{e}, in the modified set up as in the original experimental apparatus.
(5) A larger outlet was provided at the end of the channel to accommodate the higher volumetric flow rates.

All other pieces of equipment shown schematically in Figure 1-7 were retained. A photograph of the modified screen/channel assembly appears in Figure 2-6.

The experimental procedure used in the modified set-up was the same as described in section 1-2 with the following exceptions:
(1) Pressure drop measurements across the screen were taken over a volumetric flow rate range of $100 \mathrm{cc} / \mathrm{sec}$ to $400 \mathrm{cc} / \mathrm{sec}$ instead of $30 \mathrm{cc} / \mathrm{sec}$ to $150 \mathrm{cc} / \mathrm{sec}$.
(2) Each volumetric flow rate chosen was repeated four times in order to measure the pressure drop at the fourteen locations (only four locations at a time could be measured with the manifold system shown in Figure 1-12).

2-4 Experimental Results

Data were taken for a 50×250 dutch twill screen using tap water in the modified experimental apparatus discussed in Section II-3. The volumetric flow rate, Q^{\prime}, was varied from $400 \mathrm{cc} / \mathrm{sec}$ to $100 \mathrm{cc} / \mathrm{sec}$. The depth of the channe1, D, was changed from 3.5 cm to new depths of 2.85 cm and 2.2 cm . The pressure drop across the screen was measured at the fourteen locations.

Figure $2-7$ presents the pressure drop as a function of volumetric flow rate at the two ends of the channel $(Z=0.01$ and $Z=0.98)$ for depths of $3.5 \mathrm{~cm}, 2.85 \mathrm{~cm}$, and 2.2 cm . The effect of the channel depth, D, on the pressure drop, Δp, is considerable. At $Z=0.98$ the channel depth plays a significant role in increasing the pressure drop for high volumetric flow rates (which induces the higher velocity u). At $Z=0.01$ where the velocity u is almost negligible, the smaller channel depth reduces the pressure drop In contrast to the result at $Z=0.98$.

Figure 2-8 presents the same pressure drop data, as in Figure 2-7,
plotted againgt the average entering velocity \bar{V}_{e}. The average entering velocity is calculated from $\vec{V}_{e}=Q^{-} / A e$ where ε is the screen void fraction. Since the average entering velocity and the local entering velocity are not identical, Figure 2-7 is a more accurate representation of the data than Figure 2-8.

Figures 2-9 through 2-21 present the pressure drop as a function of the dimensionless length, Z, for different volumetric flow rates at depths of 3.5 cm and 2.2 cm .

Analysis of the data of Figures 2-7 through 2-21 yield the following:
(1) The average entering velocity, \bar{V}_{e} and the local entering velocity, V_{e}, are considerably different at the higher volumetric flow rates $\left(Q^{\prime}>200 \mathrm{~cm}^{3} / \mathrm{sec}\right)$ and extreme end $(Z=0.98)$ of the channel. In terms of the McDonnell Douglas correlation, this means that both $\mathrm{V}: \stackrel{\mathrm{k}}{\mathrm{k}}$ a \emptyset are greater than one.
(2) The relationship between Δp and \bar{V}_{e} is no longer linear over the same average entering velocity range as studied in phase one of the experimental work (Section I-3).
(3) Pressure drop across the screen is a strong function of channel depth D. At the smallest depth of 2.2 cm, the pressure drop difference between the two extreme ends of the channel $(Z=0.01$ and 0.98$)$ is the greatest while at the largest depth of 3.5 cm , the difference between the two end is the smallest. If the channel depth was increased to some finite value, the pressure drop difference between the ends of the channel would go to zero and then \bar{V}_{e} and V_{e} would become identical.

2-5 Analysis of Experimental Data

2-5.1 McDonnell Doug1as Correlation of V^{*} versus \varnothing

The experimental data of Figure $2-8$ were first plotted in the form of V^{*} versus \emptyset in order to analyze the McDonnell Douglas theoretical model discussed in Section II-1. Results are presented in Figure 2-22; however, the parameters V^{*} and \emptyset are modified in the following manner:
(1) V^{*} is based upon a fictitious velocity, not a local entering velocity; that is

$$
\begin{equation*}
\mathrm{v}_{\text {at } \mathrm{Z}}^{*}=\rho\left(\mathrm{V}_{\mathrm{e}}\right)_{\text {at } \mathrm{Z}} \mathrm{LH} / \mathrm{Q} \tag{2-15}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(\mathrm{V}_{\mathrm{e}}\right)_{\text {at } \mathrm{Z}}=\frac{\Delta \mathrm{p} \text { at } Z}{\left(\mathrm{~K}_{\mathrm{o}}\right)_{\mathrm{avg}}} \tag{2-16}
\end{equation*}
$$

(2) \emptyset is based upon an average value of K_{0}; that is

$$
\begin{equation*}
\phi=\frac{2 Q H}{D^{2} L\left(K_{0}\right)_{\text {avg }}} \tag{2-17}
\end{equation*}
$$

where $\left(K_{0}\right)_{\text {avg }}=\frac{\left(K_{0}\right)_{\text {at }} Z=0+\left(K_{0}\right)_{\text {at }} Z=1}{2}$

Equation (2-18) is used in place of the original McDonnell Douglas definition,

$$
\begin{equation*}
K_{0}=\frac{P_{0}-\rho g X-P}{V} \tag{2-19}
\end{equation*}
$$

Equation (2-19) implies a linear relationship between pressure and velocity; an inspection of Figure $2-8$ shows that this is not the case. Therefore, equation (2-16) is used as the definition of K_{0}; that is, K_{0} is Δp at Z divided by V_{e} at Z and since Δp at Z varies as a function of Z, then K_{o} is a variable and a function of Δp at Z, V_{e} at Z, and Z.
V^{*} and \varnothing in Figure 2-12 are calculated in the following manner.
(1) For a given volumetric flow rate, an average entering velocity is calculated.
(2) For the average entering velocity calculated in (1), $\Delta \mathrm{p}$ is read from Figure $2-8$ at $Z=0.01$ and $Z=0.98$ and the value of K_{0} are calculated at $Z=0.01$ and $Z=0.98$. Than $\left(K_{0}\right)_{\text {avg }}$ is calculated by Equation (2-18).
(3) Once $\left(K_{0}\right)_{\text {avg }}$ is determined, V_{e} is calculated at $Z=0$ and 1 (actually $Z=0.01$ and 0.98) by equation (2-16). Then $V *$ is calculated at $Z=0$ and 1 by equation (2-15).
(4) \emptyset is calculated by Equation (2-17) using (K_{0}) avg determined in step (2) above.

Thus, a given value of \emptyset yield two values of $\mathrm{V} *$, one at $\mathrm{z}=0$ and $\mathrm{Z}=1$.
The results shown in Figure 2-22 fallow the same trend as the McDonnell Douglas theoretical curve. However, the divergence of the curves for $Z=0$ and $Z=1$ at a given \emptyset is not as great as predicted by theory. Finally, the plot in Figure 2-22 is based upon entering velocities not approach velocities; thus the curves converge to a value of approximately three instead of one. Since $V_{e}=V / \varepsilon$ and the void fraction for a 50×250 dutch twill screen is 0.325 , Figure $2-22$, if based upon approach velocity, would shift down to a value of approximately $\mathrm{V}^{*}=1$.

Several points should be made about Figure 2-22, the calculation method used to determine V^{*} and \emptyset, and the McDonnell Douglas theoretical model in general.
(1) The results of Figure 2-22 are encouraging in that the simple equation $\Delta \mathrm{p}=\mathrm{K}_{\mathrm{o}} \mathrm{V}$ may be used to predict the variation in pressure drop
as a function of Z. This is true because in the present measurement the local static pressure above the screen was almost uniform for a given volumetric flow rate and channel depth while the local static pressure below the screen varied in the Z-direction. This variation caused the pressure drop difference.
(2) The validity of the equations used is questioned. A linear relationship is used for Δp even when the actual relationship is quadratic. Also, a great deal of ambiguity exists in both the definition of K_{o} and the determination of its value. Finally, without recourse to an actual measured or calculated velocity profile, a fictitious velocity profile must be calculated.
(3) Realizing that the definitions employed for $V *$ and \emptyset are not those originally proposed by McDonnell Douglas we still feel that the data as presented in Figure $2-2$ or Figure $2-22$ are not a good way to predict the variations in pressure drop. Two reasons are proposed. First, the correlation is based upon the fact that the inertial contribution to the pressure drop j.s negligible. With this assumption, a linear relationship $\Delta \mathrm{p}=\mathrm{K}_{\mathrm{O}} \mathrm{V}+\rho \mathrm{gx}$ (or $\Delta \mathrm{p}=\mathrm{K}_{\mathrm{O}}$) is defined - this is perfectly valid since the viscous contribution is assumed to be the only contribution to the pressure drop. However, the present experimental data for the screens tested has shown that when a linear relationship exists between Δp and V, no discernible pressure difference can be measured. Thus the local velocity and average velocity are identical. As the pressure drop difference at $Z=0$ and $Z=1$ begins to differ significantly, the assumption that the inertial term is negligible
is no longer valid and the defining relationship for K_{0} should include a V^{2} term. Second, even in the viscous range, when the defining relationship for K_{0} is valid, the question shall arise as to what value of K_{0} to use a great deal of ambiguity exists for this term.

2-5.2 Determination of Velocity Profile

The equations of continuity and momentum are derived, in detail, for the present experimental apparatus in Appendix A. The equations are:

$$
\begin{equation*}
\text { Continuity } \quad v e=\frac{D}{\varepsilon} \frac{d u}{d x} \tag{2-21}
\end{equation*}
$$

Momentum

$$
\begin{equation*}
\frac{d p}{d x}+\frac{f \rho u^{2}}{2 d}+3 \rho u \frac{d u}{d x}=0 \tag{2-22}
\end{equation*}
$$

Assuming that the second term of equation $(2-22)$ can be neglected as noted in section 2.2 , then equation $(2-22)$ is written as

$$
\begin{equation*}
\frac{d p}{d x}+3 \rho u \frac{d u}{d x}=0 \tag{2-23}
\end{equation*}
$$

Integrating equation(2-23) from zero to x

$$
\begin{equation*}
u(X)=\sqrt{\frac{2[\Delta p(x)-\Delta p(0)]}{3 \rho}} \tag{2-24}
\end{equation*}
$$

where at $x=H, \quad u(H)=\frac{Q}{\rho L D}$
Now, using equation (2-24) and experiment data at $X=H, u(H)$ is calculated.
The values of $u(H)$ calculated by equation (2-24) are compared with the values calculated by equation (2-25) which is exact. A correction is made to equation (2-24) so that the values calculated at $x=H$ agree closely with those calculated by equation $(2-25)$. Thus equation $(2-24)$ becomes

$$
\begin{equation*}
u(x)=1.18 \sqrt{\frac{\Delta p(x)-\Delta p(0)}{\rho}} \tag{2-26}
\end{equation*}
$$

and is used for all subsequent calculations of the velocity u at location x.
The velocity, V_{e}, is now calculated from the continuity equation once $\mathrm{du} / \mathrm{dx}$ has been determined from Figure 2-23.

Figures $2-23$ and $2-24$ show the velocity profiles $u(x)$ and V_{e} versus Z for a 50×250 dutch twill screen in a channel of depth 2.2 cm .

By comparing V_{e} versus Z (Figure 2-24) and Δp versus Z (Figures 2-16 through 2-21) for $D=2.2 \mathrm{~cm}, \Delta p$ as a function of V_{e} is obtained. This is shown in Figure 2-25. The data, for low velocity, is nearly independent of the mass flow rate Q.

For practical calculations, a single line can be drawn through the data points as shown.

Based upon the single line of Figure 2-25, Euler number is plotted as a function of Reynolds Number in Figure $2-26$. An empirical relationship between Eu and Re may be obtained from this figure.

2-5.3. Determination of Average Properties from Local Data for 50×250

Dutch Twill Screen for Depths of 3.5 and 2.2 cm .
As most existing correlations are based upon the assumption of an average and uniform velocity, the present data were analyzed to determine the average pressure drop, $\overline{\Delta p}$, as a function of the average entering velocity, $\overline{\mathrm{V}}_{\mathrm{e}}$.

Figures $2-9$ through $2-15$ were integrated at each volumetric flow rate to determine $\overline{\Delta p}$. Each volumetric flow rate corresponded to an average entering velocity $\overrightarrow{\mathrm{V}}_{\mathrm{e}}\left(\overline{\mathrm{V}}_{\mathrm{e}}=\mathrm{Q}^{\prime} / \mathrm{A} \varepsilon\right)$. Thus, Figures $2-27$ and $2-28$ present $\overline{\Delta \mathrm{p}}$ versus \bar{V}_{e} for depths of 3.5 cm and 2.2 cm , respectively.

Figure 2-29 presents the Euler number as a function of the Reynolds number based upon the average properties of Figures 2-27 and 2-28. At 1ow Reynolds number, the Euler number is a function of the depth of the channel. As the Reynolds number increases, Eu becomes independent of channel depth. Other dimensionless parameters, such as those shown in Figure 2-30, were investigated to see if the data for different channel depths, D, would conveniently clasp into one single curve. Figure 2-30 was found to be the best possible presentation which includes the depth, D, and channel length, H, as parameters.

2-6 Recommendations for Future Work

Based upon an analysis of the data of Section II, the following points are made and suggested for future study.
(1) Since only one available screen (50 $\times 250$ dutch twill) and one liquid (water) were tested, it is obvious that other screens and liquids should be tested in the experimental apparatus discussed in Section II-3. Special attention should be paid to the viscous region where it appears that such parameters as Euler number are dependent upon channel depth.
(2) It is recommended that an approach to pressure drop prediction as discussed in Section II-1 be taken only as an approx hation as any single correlation for all screens can not be accurate enough for detailed calculations. It is believed that the following equation is the most accurate way to represent the data for each single screen.

$$
\begin{equation*}
\mathrm{Eu}=\frac{2 L}{\mathrm{Da}}\left[\frac{\mathrm{~A}_{1}}{\mathrm{Re}}+\mathrm{A}_{2}\right] \tag{2-27}
\end{equation*}
$$

or in alternate form $\Delta p=A_{c} \rho V+\beta_{c} \mu v^{2}$
If further studies verify the fact that Eu is a function of channel depth in the viscous region, then equations $(2-27)$ or $(2-28)$ must either present value of A_{c} and B_{c} (or A_{1} and A_{2}) as a function of depth or modify the definition of Reynolds number to include the effect. Based on the present work, it appears that equations $(2-27)$ and $(2-28)$ may be used in the inertial region without modification.
(3) If Equations $(2-27)$ and $(2-28)$ are to be used, an accurate determination of a velocity profile is needed. Accurate velocity profile should be measured for the screen tested (50 x 250) and others. The measured velocity profile for a 50×250 dutch twill screen should be compared with the calculated velocity profile (as described in II-5.2); if the two are in close agreement, then velocity profiles may be calculated from the following:

$$
\begin{equation*}
u(x)=n \quad \frac{\Delta p(x)-\Delta p(0)}{\rho} \tag{2-29}
\end{equation*}
$$

where η is a constant

$$
\begin{equation*}
\mathrm{V}_{\mathrm{e}}=\frac{\mathrm{D}}{\mathrm{E}} \frac{\mathrm{du}}{\mathrm{dx}} \tag{2-30}
\end{equation*}
$$

1. Hoerner, S. F., Fluid Dynamics Drag, (book published by author), 1958.
2. Armour, J. C., and J. N. Cannon, "Fluid Flow Through Woven Screens," AICHE Journa1, Vo1. 14, No. 3, May 1968.
3. Study and Design of a Cryogenic Propellant Acquisition System, Third Quarterly Report, MDC G2940, McDonne11 Douglas Astronautics Co., April 15, 1972.
4. Blatt, M. H., K. R. Burton, and E. A. Evans, "Low Gravity Propellant Control Using Capillary Devices in Large Scale Cyrogenic Vehicles," Related IRAD Studies, GDC-DDB70-009, August 1970.
5. Blatt, et al.,"Low Gravity Propellant Control Using Capillary Devices in Large Scale Cyrogenic Vehicles," Second Quarterly Progress Report, report No. 584-4-269, Jan. 20, 1969.
6. Acquisition/Expulsion System for Earth Orbital Study System, Final Report, Contract NAS9-12182, Martin Piarietta Corporation, June 1973.
7. "Low Gravity Propellant Control Using Capillary Devices in Large Scale Cyrogenic Vehicles," Related IRAD Studies, Contract NAS8-21465, General Dynamics/Convair, August 1970.
8. Schuartz, R., et al., Cyrogenic Acquisition and Transfer, Study 8, Contract NAS7-200, North American Rockwell/Space Division, December 21, 1971.
9. Study and Design of a Cyrogenic Propellant Acquisition System, First Quarterly Report, MDC G2562, McDonnell Douglas Astronautics Co., September 15, 1971.
Table I-1 Summary of Results of Investigators Using Armour-Cannon Type Correlation
Table I-2 Screen Geometry, Dutch Twill Screen
Table I-3 Screen Geometry, Square Weave Screens
Table I-4 Geometric Parameters for Woven Screens
Table II-1 Modified Experimental Apparatus
table I-1: SUMMARY OF RESULTS OF INVESTIGATORS
USING ARMOUR-CANNON TYPE CORRELATION

Investigators or Company	Equation Developed or Results	Screens Tested	Fluid Tested
Armour-Cannon (Ref. 2)	$\mathrm{f}=\frac{8.61}{\text { RE }}+0.52$	Too Numerous to List	$\begin{aligned} & \mathrm{GN}_{2}{ }^{\prime} \\ & \mathrm{GHe} \end{aligned}$
MDAC (Ref. 3)	No equation given; results below Armour-Cannon generally by a factor of two. Armour-Cannon correlation suc- cessful in aligning data points	$\begin{array}{ccc} 250 & \mathrm{x} & 1370 \\ 325 & \mathrm{x} & 2300 \\ 200 & \mathrm{x} & 1400 \end{array}$	$\mathrm{GN}_{2},$ GHe
$\begin{aligned} & \text { GDCD } \\ & \text { (Ref. 4) } \end{aligned}$	$\mathrm{f}=\frac{2.49}{\operatorname{Re}}+0.3$	Six screens tested in 1969, Three screens tested in 1968,	GH_{2} GN_{2} Too numerous to list
MartinMarietta (Ref. 6)	No equation given; results above Armour-Cannon correlation for Re < 10^{-2} results between ArmourCannon correlation and MDAC data for $10^{-2}<\operatorname{Re}<1$.	375 x 2300 325 x 2300 250 x 3700 200 x 1400	GN_{2}

Table I-2: Screen Geometry, Dutch Twill Screen

Screen Mesh	$\left\|\begin{array}{l} \quad \mathrm{D}_{\mathrm{B}} \\ \text { Bubble Pt. } \\ \text { Diameter } \\ \text { (Microns) } \end{array}\right\|$	Avg. Capillary Dia. (Microns)	Thickness (in.)	Porosity (Meas.	Dimensionless			$A_{c}=\frac{A_{1} L}{D_{a}^{2} g_{c}}$	$B_{c}=\frac{A_{2} L}{D_{a} g_{c}}$
					A_{1}	A_{2}	Wicking ${ }^{A_{W}}$		
200×1400	13.4	22.8*	0.0058	0.256	190	18		509687	3.61
165×1400	18.6	28.3*	0.0060	0.301	150	16	580	270185	2.68
200×600	19.05	36.7*	0.0055	0.347	52	3	368	51053	0.355
165×800	22.7	48.5**	0.0065	0.310	43	135		28568	14.3
150×700	22.7	60.8**	0.0070	0.171	500	133		227642	12.08
80×700	29.7	139.3**	0.0098	0.416	1000	34	6230	121427	1.89
50×250	33.9	129.5**	0.0127	0.325	115	191		20938	14.78
30×250	48.5	112.2**	0.0265	0.276	130	12	1120	65795	2.23
20×250	52.8	155.3**	0.0280	0.325	150	20		41869	2.84
*Microporo **Macroporo	imeter simeter								

Table I-3: Screen Geometry, Square Weave Screens

Mesh	(Microns) D_{B}	Solidity S
400×400	38	0.64
325×325	44	0.70
200×200	74	0.66
150×150	104	0.63
100×100	140	0.698
80×80	180	0.686
50×50	280	0.700
40×40	440	0.640
20×20	860	0.538

TABLE I-4: GEOMETRIC PARAMETERS FOR WOVEN SCREENS

Screen	D, cm	B, cm	$\mathrm{a}, \mathrm{cm}^{-1}$	ε	T	S
200×200	-	-	-	-	-	0.66
325×325	-	-	-	-	-	0.70
50×250	12.95×10^{-3}	32.3×10^{-2}	$151 \mathrm{~cm}^{-1}$	0.325	1.3	-
200×600	3.67×10^{-3}	14×10^{-3}	-	0.347	1.3	-
325×2300	1.472×10^{-3}	8.9×10^{-3}	1102.3	0.245	1.3	-

The table below summarizes the changez in the experimental apparatus.

TABLE II-1: MODIFIED EXPERIMENTAL APPARATUS

Piece of Equipment	Modifications
Screen/Channel Assembly	(1) length H increased from 8.89 cm to 29.16 cm.
	(2) width L unchanged $(8.89 \mathrm{~cm})$ (3) depth D variable $(3.5 \mathrm{~cm}$, $2.85 \mathrm{~cm}, 2.2 \mathrm{~cm})$
(4) number of pressure tap locations increased from four to fourteen	
centrifugal pump filter inclined tube manometer control valves feed tank manifold system	(5) outlet increased in size
none	

LIST OF FIGURES

Figure 1-1 Type of Woven Screen
Figure 1-2 Comparison of MDAC Data With Armour-Cannon Correlation

Figure 1-3 Comparison of GDCD Data With Armour-Cannon Correlation

Figure 1-4 Comparison of Martin Marietta Data With Armour-Cannon and MDAC Correlations

Figure 1-5 Summary of Previous Investigations Using Armour-Cannon Correlation

Figure 1-6 Euler Number Versus Reynolds Number, North American Rockwell Data

Figure 1-7 Schematic of Experimental Apparatus

Figure 1-8 Experimental Equipment, Screen/Channel Assembly
Figure 1-9 Screen/Channel Assembly

Figure 1-10 Upper and Lower Support Brackets (Top View)

Figure 1-11 Experimental Equipment, Rotameter

Figure 1-12 Experimental Equipment, Manifold System

Figure 1-13 Experimental Equipment, Inclined Tube Manometer

Figure 1-14 Pressure Drop as a Function Average Entering Velocity, Square Weave Screens

Figure 1-15 Pressure Drop as a Function Average Entering Velocity, 200×600 Dutch Twill Screens

Figure 1-16 Pressure Drop as a Function Average Entering Velocity, 50×250 Dutch Twill Screens

Figure 1-17 Pressure Drop as a Function Average Entering Velocity, 325×2300 Dutch Twill Screens

Figure 1-18 Comparison of Present Data for Square Weave Screens With Hoerner Equation $E u=\left[\frac{s}{1-s}\right]^{2}$

Figare 1-19 Comparison of Present Data for Dutch Twill Screens With Armour-Cannon Type Correlation

Figure 2-1 Theoretical Model of McDonnell Douglas Channel Configuration

Figure 2-2 McDonne11 Douglas Theoretical Results
Figure 2-3 $\quad V^{*}$ as a Function of ϕ at $Z=0$ with F as an Independent Parameter, UAH Theoretical Result

Figure 2-4 V^{*} as a Function of ϕ at $\mathrm{Z}=1$ with F as an Independent Parameter, UAH Theoretical Result

Figure 2-5 Modified Screen/Channel Assembly (Drawing)

Figure 2-6 Modified Screen/Channe1 Assembly (Photograph)

Figures 2-7 through 2-31 Illustrate Data for a 50×250 Dutch Twill Screen.

Figure $2-7 \quad \Delta \mathrm{P}$ versus Q^{\wedge} at $Z=0.01$ and $Z=0.98$ for Depths of 3.5 cm , 2.85 cm , and 2.2 cm

Figure $2-8 \quad \Delta \mathrm{P}$ versus $\overline{\mathrm{V}}_{\mathrm{e}}$ at $\mathrm{Z}=0.01$ and $Z-0.98$ for Depths of 3.5 cm , 2.85 cm , and 2.2 cm

Figure 2-9 $\quad \Delta P$ versus $Z, Q=400 \mathrm{~cm}^{3} / \mathrm{sec}, D-3.5 \mathrm{~cm}$
Figure $2-10 \Delta P$ versus $Z, Q=350 \mathrm{~cm}^{3} / \mathrm{sec}, D=3.5 \mathrm{~cm}$
Figure 2-11 $\quad \Delta P$ versus $Z, Q=300 \mathrm{~cm}^{3} / \mathrm{sec}, D=3.5 \mathrm{~cm}$
Figure $2-12 \quad \Delta P$ versus $Z, Q=250 \mathrm{~cm}^{3} / \mathrm{sec}, D=3.5 \mathrm{~cm}$
Figure $2-13 \quad \Delta P$ versus $Z, Q=200 \mathrm{~cm}^{3} / \mathrm{sec}, D=3.5 \mathrm{~cm}$
Figure $2-14 \quad \Delta P$ versus $Z, Q=150 \mathrm{~cm}^{3} / \mathrm{sec}, D=3.5 \mathrm{~cm}$
Figure $2-15 \quad \Delta \mathrm{P}$ versus $\mathrm{Z}, \mathrm{Q}=100 \mathrm{~cm}^{3} / \mathrm{sec}, \mathrm{D}=3.5 \mathrm{~cm}$
Figure $2-16 \Delta \mathrm{P}$ versus $\mathrm{Z}, \mathrm{Q}=400 \mathrm{~cm}^{3} / \mathrm{sec}, D=2.2 \mathrm{~cm}$
Figure $2-17 \quad \Delta \mathrm{P}$ versus $\mathrm{Z}, \mathrm{Q}=350 \mathrm{~cm}^{3} / \mathrm{sec}, \mathrm{D}=2.2 \mathrm{~cm}$
Figure $2-18 \quad \Delta P$ versus $Z, Q=300 \mathrm{~cm}^{3} / \mathrm{sec}, D=2.2 \mathrm{~cm}$

Figure 2-19 $\quad \Delta$ Persus $Z, Q=250 \mathrm{~cm}^{3} / \mathrm{sec}, D=2.2 \mathrm{~cm}$
Figure $2-20 \quad \Delta P$ versus $Z, Q=150 \mathrm{~cm}^{3} / \mathrm{sec}, D=2.2 \mathrm{~cm}$
Figure 2-21 $\quad \Delta \mathrm{P}$ versus $\dot{Z}, Q=100 \mathrm{~cm}^{3} / \mathrm{sec}, D=2.2 \mathrm{~cm}$
Figure 2-22 V^{*} versus ϕ, UAH Experimental Results
Figure 2-23 Horizontal Velocity as a Function of Z
Figure 2-24 Vertical Entering Screen Velocity as a Function of Z
Figure 2-25 Pressure Drop as a Function of Entering Screen Velocity
Figure 2-26 Euler Number Versus Reynolds Number (based on Fig. 2-25)
Figure 2-27 Average Pressure Drop Versus Average Entering Velocity, $D=3.5 \mathrm{~cm}$.

Figure 2-28 Average Pressure Drop Versus Average Entering Velocity, $\mathrm{D}=2.2 \mathrm{~cm}$

Figure 2-29 Euler Number Versus Reynolds Number (based on average pressure drop and average entering velocity)

Figure 2-30 ΔP^{*} Versus V_{e}^{*}

TWILLED DUTCH
Figure 1-1: Type of Woven Screen

Figure 1-1: Type of Woven Screen

Figure 1-2 Comparison of MDAC Data with Armour-Cannon Correlation

Figure 1-3 Comparison of GDCD Data with
Armour-Cannon Correlation

Figure 1-4
Comparison of Martin Marietta Data with Armour-Cannon and MDAC Correlations

Figure 1-6 Euler Number Versus Reynolds Number,
North American Rockwell Data

[^3]

Figure 1-8. Experimental Equipment, Screen/Channel Assembly.

E, Uverflow Tube

Figure 1-9 Screen/Channel Assembly

Figure 1-10 Upper and Lower Support Brackets (Top View)

Figure 1-11. Experimental Equipment, Rotameter

Figure 1-12. Experimental Equipment, Manifold System

Figure 1-13. Experimental Equiment, Inclined Tube Manometer

Figure 1-14 Pressure Drop as a Function of Average
Entering Velocity, Square Weave Screens

Figure 1-15 Pressure Drop as a Function of Average Entering Velocity, 200×600 Dutch Twill Screen

Average Entering Velocity $\overline{\mathrm{Ve}}, \mathrm{cm} / \mathrm{sec}$

Figure 1-16 Pressure Drop as a Function of Average Entering Velocity, 50×250 Dutch Twill Screen

Average Entering Velocity $\bar{V} e, ~ c m / s e c$

Figure 1-17 Pressure Drop as a Function of Average Entering Velocity, 325 x 2300 Dutch Twill Screen

Figure 1-18 Comparison of Present Data for Square Weave Screens With Hoerner Equation $\mathrm{Eu}=\left[\frac{\mathrm{S}}{1-S}\right]^{2}$

Reynolds Number, $\operatorname{Re}=\frac{\rho \overline{\mathrm{V}}}{\mu \mathrm{a}^{2} \mathrm{D}}$

Figure 1-19 Comparison of Present Data For Dutch Twill
Screens with Armour-Cannon Type Correlation

Fig. 2-1 Theoretical Model of McDonnell Douglas Channe1 Configuration.

Figure 2-2 McDonnell Doug1as Theoretical Results

Figure 2-3
V^{*} as a Function of ϕ at $Z=0$ with F as an
Independent Parameter, UAH Theoretical Result.

Figure 2
$\mathrm{V} *$ as a Function of ϕ at $Z=1$ with F as an Independent Parameter, UAH Theoretical Result

Figure 2-5 Modified Screen/Channel Assembly

Figure 2-6. Modified Screen/Channel Assembly.

Volumetric Flow Rate, $Q^{-}, \mathrm{cc} / \mathrm{sec}$
Figure 2-7

Figure 2-8

Dimensionless Length, Z
Figure 2-11
ΔP versus $2, Q-300 \mathrm{~cm}^{3} / \mathrm{sec}, D-3.5 \mathrm{~cm}$

Figure 2-12
ΔP versus $Z, Q=250 \mathrm{~cm}^{3} / \mathrm{sec}, D-3.5 \mathrm{~cm}$

Dimensionless Length, Z

Figure 2-13
ΔP versus $Z, Q-200 \mathrm{~cm}^{3} / \mathrm{sec}, D-3.5 \mathrm{~cm}$
50×250 Dutch Twill Screen

Figure 2-14 $\quad \Delta \mathrm{P}$ versus $\mathrm{Z}, \mathrm{Q}-150 \mathrm{~cm}^{3} / \mathrm{sec}, \mathrm{D}-3.5 \mathrm{~cm}$.

Figure $2-15 \Delta P$ versus $Z, ~ U=100 \mathrm{~cm}^{3} / \mathrm{sec}, D-3.5 \mathrm{~cm}$

Figure $2-16 \quad \triangle P$ versus $Z, Q=400 \mathrm{~cm}^{3} / \mathrm{sec}, 1-2.2 \mathrm{~cm}$

Figure 2-17 $A P$ versus $Z, Q-350 \mathrm{~cm}^{3} / \mathrm{sec}, D-2.2 \mathrm{~cm}$

Figure $2-18 \quad \Delta \mathrm{P}$ versus $Z, Q-300 \mathrm{~cm}^{3} / \mathrm{sec}, D-2.2 \mathrm{~cm}$

Figure $2-19 \quad \Delta \mathrm{P}$ versus $\mathrm{Z}, \mathrm{Q}-250 \mathrm{~cm}^{3} / \mathrm{sec}, \mathrm{D}-2.2 \mathrm{~cm}$

[^4]

Figure $2-21 \Delta P$ versus $Z, Q=100 \mathrm{~cm}^{3} / \mathrm{sec}, D=2.2 \mathrm{~cm}$

Figure 2-22
V * versus ϕ, UAH Experimental Results

Dimensionless Length, z

Figure 2-23
Horizontal Velocity as a Function of Z

Figure 2-24
Vertical Fntering Screen Velocity as a Function of Z

Figure 2-25 Pressure Drop as a Function of Entering Screen Velocity

Figure 2-26 Euler Number versus Reynolds Number (Based on Figure 2-25)

Figure 2-27
Average Pressure Drop Versus Average Entering Velocity, $D-2.2 \mathrm{~cm}$

Figure 2-28
Average Pressure Drop Versus Average Entering Velocity, $D=2.2 \mathrm{~cm}$.

Figure 2-29
Euler Number Versus Reynolds Number (based on average pressure drop and average entering velocity).

Figure $2-30 \quad A P *$ Versus $V \underset{e}{*}$

APPENDIX A

This appendix contains the complete derivation of the continuity and momentum equations for the experimental model used at UAH.
The notation used in this appendix is the same as that used in Sections 1 and 2 of the report and listed in the definition of symbols.

Continuity Equation

$$
\begin{equation*}
V L \Delta X E=\left[u-\left(u+\frac{d u}{d x} \Delta x\right)\right] L D \tag{1}
\end{equation*}
$$

dividing both sides by $L \Delta x$

$$
\begin{equation*}
V=\frac{D}{E} \cdot \frac{d u}{d x} \tag{2}
\end{equation*}
$$

Same Dimensions As Figure Above

Momentum Equation

$$
\begin{equation*}
\text { 1et } \dot{m}=\rho u^{2} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
m-\left(m+\frac{d m}{d x} \Delta x\right) \quad L D-\rho u V L \Delta x \varepsilon=p+\frac{d p}{d x} \Delta x-p \quad L D+f^{\rho} L \Delta x \tag{4}
\end{equation*}
$$

simplifying (4)

$$
\begin{equation*}
-\frac{d}{d x}\left(\rho u^{2}\right) \Delta x L D-\rho u V L \Delta x \varepsilon=\frac{d p}{d x} \Delta x L D+f^{\prime} L \Delta x \tag{5}
\end{equation*}
$$

dividing both sides by $\Delta x L D$

$$
\begin{equation*}
-\frac{d}{d x}\left(\rho u^{2}\right)-\frac{p u V \varepsilon}{D}=\frac{d p}{d x}+\frac{f^{\prime}}{D} \tag{6}
\end{equation*}
$$

rearranging

$$
\begin{equation*}
\frac{d p}{d x}+2 \rho u \frac{d u}{d x}+\frac{u V}{D}+\frac{f^{\prime}}{D}=0 \tag{7}
\end{equation*}
$$

from equation (2) $\frac{d u}{d x}=\frac{V \varepsilon}{D}$

$$
\begin{equation*}
\frac{\mathrm{dp}}{\mathrm{dx}}+3 \rho \mathrm{u} \frac{\mathrm{du}}{\mathrm{dx}}+\frac{\mathrm{f}^{\prime}}{\mathrm{D}}=0 \tag{8}
\end{equation*}
$$

now, let $f^{\prime}=f \cdot \frac{\rho u^{2}}{2}$, then

$$
\begin{equation*}
\frac{d p}{d x}+\frac{f \rho u^{2}}{2 D}+3 \rho u \frac{d u}{d x}=0 \tag{9}
\end{equation*}
$$

Let us define

$$
\begin{equation*}
\mathrm{f}^{-} \equiv \mathrm{f} \frac{\rho \mathrm{u}^{2}}{2} \tag{7}
\end{equation*}
$$

then Equation (6) is rewritten as

$$
\begin{equation*}
\frac{d P}{d x}+3 \rho u \frac{d u}{d x}+f \frac{\rho u^{2}}{2 D}=0 \tag{8}
\end{equation*}
$$

Nondimensionalizing Equation (8)

Equation (8) is written in a nondimensionalized form as

$$
\begin{equation*}
\frac{d^{2} u^{*}}{d z^{2}}-F \emptyset u^{*^{2}}-\emptyset u * \frac{d u^{*}}{d z}=0 \tag{13}
\end{equation*}
$$

with the boundary condition

$$
\begin{array}{lr}
u^{*}=0 & \text { at } Z=0 \\
u^{*}=1 & \text { at } Z=1 \tag{15}
\end{array}
$$

Let us omit the asterisk, *, from now on for convenience. Equation (13) will be numerically solved by utilizing the implicit finite difference technique of Crank-Nicolson as briefly introduced in the next section.

Numerical Solution

Defining the stations Z_{i-1}, Z_{i}, and $Z_{i t 1}$ as $n-1, n$, and $n+1$, respectively, as shown in the figure below:
we can write the first and second derivatives of velocity as

$$
\begin{align*}
& \frac{d u}{d Z}=\frac{U_{n+1}-U_{n-1}}{2 \Delta Z} \tag{16}\\
& \frac{d U}{}=\frac{U_{n+1}-2 U_{n}+U_{n-1}}{\Delta Z^{2}} \tag{17}
\end{align*}
$$

Thus Equation (13) is expressed in a finite difference form as

$$
\begin{equation*}
\frac{U_{n+1}-2 U_{n}+U_{n-1}}{\Delta Z^{2}}-F \emptyset U_{n} U_{n}^{\prime}-\emptyset U_{n}^{\prime} \frac{U_{n+1}-U_{n-1}}{2 \Delta Z}=0 \tag{18}
\end{equation*}
$$

where U_{n} is an old value of U_{n} obtained by a previous iteration at station n .

We solve the equation below:

$$
\begin{equation*}
A_{1} U_{n-1}+A_{2} U_{n}+A_{3} U_{n+1}=D_{n} \tag{19}
\end{equation*}
$$

where

$$
\begin{align*}
& \text { Coefficients of } U_{n+1}: \\
& A_{3}=\frac{1}{\Delta Z^{2}}-\frac{\phi U_{n}^{\prime}}{2 \Delta Z} \tag{20}\\
& \text { Coefficients of } U_{n} \text { : } \\
& A_{2}=\frac{2}{\Delta Z^{2}}-F \emptyset U_{n} \tag{21}\\
& \text { Coefficients of } U_{n-1} \text { : } \\
& \phi U_{n} \tag{22.}\\
& A_{1}=\frac{1}{\Delta Z^{2}}+\frac{U_{n}}{2 \Delta Z} \tag{23}\\
& D_{n}=0
\end{align*}
$$

The boundary condition at $\mathrm{Z}=0$ is $\mathrm{U}_{1}=0$, thus Equation (19) gives

$$
\begin{align*}
& \mathrm{A}(1,1) * \mathrm{U}(1, \mathrm{JN})+\mathrm{A}(1,2) * \mathrm{U}(2, \mathrm{JN}) \\
& +\mathrm{A}(1,3) * \mathrm{U}(3, \mathrm{JN})=0 \tag{24}\\
& \mathrm{U}(1, \mathrm{JN})=0 \tag{25}
\end{align*}
$$

Therefore, we can set at $Z=0$

$$
\left.\begin{array}{l}
A(1,2)=A(1,2) \tag{26}\\
A(1,3)=A(1,3) \\
A(1,1)=0.0 \\
D(1)=0.0
\end{array}\right\}
$$

At $A=1, \mathrm{U}_{\mathrm{n}_{\text {max }}}$
$A(N Y 2,1) * U(N Y 2, J N)+A(N Y 2,2) * U(N T 1 J N)$
$+\mathrm{A}(\mathrm{NY} 2,3) * 1.0=0$

Therefore

$$
\left.\begin{array}{l}
A(N Y 2,1)=A(N Y 2,1) \tag{29}\\
A(N Y 2,2)=A(N Y 2,2) \\
D(N Y 2)=-A(N Y 2,3) \\
A(N Y 2,3)=0
\end{array}\right\}
$$

In the computer program the following symbols are defined:

$$
\begin{aligned}
U(i, J N) & =U_{n} \\
U(i, J \emptyset) & =U_{n}^{\prime} \\
F & =F \\
P H I & =\emptyset \\
D Z & =\Delta Z \\
V S T A R & =\mathrm{dU}_{\mathrm{n}} / \mathrm{dZ}(\mathrm{I} \quad \mathrm{dU} * / \mathrm{dZ})
\end{aligned}
$$

For a given combination of constants, F and the distribution of U_{n} along Z is calculated. Iterations are continued until a desired convergence is obtained. The definition of convergence is

$$
\left.\frac{\frac{U_{n} \max }{2}-\frac{U_{n}}{2}}{\frac{U_{n} \max }{2}} \right\rvert\, \leq \text { conv. }
$$

APPENDIX B

BFOR,IS MAIN,MAIN

C
COMMCN/RLUE/(1 $25 \mathrm{C}, 2), D Z, N Y, N Y 1, N Y 2,2(2501, D(250), A 1759,3)$
COMMOR/PINK/PHI,F
COMNON/WHIYE/ JO.JN
C
$N Y=50$
NYIENY-I
NYZ $=A_{1} Y-2$
DPHI $=5 \cdot 10$
$J N=1$
$\mathrm{JO}=2$
$D Z=1 .(/ F L C A T(N Y I)$
C
$1 F=C \cdot 1:$
$2 \mathrm{PHI}=\mathrm{CO} 10$
5 CONTINUF
DO Ir $I=2, N Y$
IC $Z(I)=[Z * F L O A T(I-1)$
$2(1)=0$
c
C U-PRCFILE TO INITIATE CALCULATIOA
C
DO 2r. $I=1, N Y$
2LU(I,JC) $=Z(1)$
c
CALL GREFI.
CALL FHINT
IF (PHI.LT.I.O) PrI $=$ PHI + DPFI
IF(PHI-GE.I.U) PHI $=P H I+1 \cdot C$
IF(PHI-LE-15.U) GP 105
$F=F+0 \cdot 10$
IF(F.GT•I.U) STOF
GOTO ?
END
GFOR, IS GRFEN, GFEEN
SUBFOUTINE GREEN
c

```
    COMMON/RIUE/U(25\{,2), \(0 Z, A Y, N Y 1, N V 2,2(250), D(250), A(255,3)\)
    COMMON/PIMK/ PHI,F
    COMMON/WHIYE/ JO, N
    M \(\pi N Y / 2\)
    NMAX \(=250\)
    ITMAX \(=100\)
    \(I T=E\)
    \(21=1.1(1 n z+C z)\)
    \(Z 2=0.50 / 02\)
    100 CONTIAUE
    \(I=2\)
    \(10 A(1-1,1)=Z 1+27 * P H 1 * U(1, J 0)\)
        A(1-1,2)=2.0.21-FH101)(1, O) F F 2.013.
        \(A(1-1,3)=-A(1-1,11+7.0-71\)
        \(D(1-1)=1-C\)
        \(I=1+1\)
```

```
    IF (I|LE.NYI)GOTO 10
C MODIFY FIRST AND IAST EOUATINAS RY B.C.
    A(1,1)=0.0
    D(1)=5-0
    D(NYZ) = -A(NYZ,3)
    A(NYP,3)=E.G
    C
    C SOLVE EQUATIONSFOR U(1,JF),I=2,3\ldotsNYI
    C
    CALL TRIM (A,U(2,JN),D,NV2,NM&X)
C APPLYA,C. FOR UCI,JN) ANO U(MY,JN)
C
    U(1,JN)=C,0
    U(NY,JNI=1.O
C
    TEST&(U(H,JN)-U(N,JO))/U(N,JN)
    IF(ARS(TESTI.LE.I.UIC.OR.IT.GT.ITMAX) GO TO 4O
    IT=1T+I
    DO 2; K=1,NY
    2GU(K,JC)=1|(k,JN)
    GO TO 101%
    40 WRITE(6,30) 1T
    30 FORMAT (1GX, 2JHNINBER OF ITERATION=,I5/)
    RETURN
QFOR,TSNORIN,TRIM
    SUBROUTINE TRIM (A,X,D,N,NNI
C
    DIMENSIOM A(NN,S),AA(ZST),D(NN),DD(25O),X(NN)
C
C *FOFWARO TOELININATION
C
    AA(1)=A(1,3)/A(1,2)
    DD(1)=D(1)/A(1,2)
    DO,1=?,N
    AAA=A(1,2)-AA(1-1)*A(1,1)
    AA(1)=A(1,3)/AAA
C
    1-DD(1)=(D(1)-DN(1-1)*A(1,1)/ANA
C. *-AACK SURSTITUTION
C
    X(N)= DD(N)
    DO2 1=2,N
    J=N-1+1
    2X(J)=OD(J)-X(J+1)&AA(J)
        RETURA
        END
GOFOR,IS PFINT,PRINT
    SUBROUTIUE ORFUT
C
    COHFDM/BLUE/U(25E,2),DZ,NY,NY1,NY2,7(250),D125U),A(25\cap,3)
    COMMON/PIAK/PEI,F
    COMMON/WHIYE/ JO,JN
C
    WRITE(G,IO) F,PHI
```

 IG FOKMAT(IHI,ICX,4HF=,OFFII.5,IOXGHPHIT=,UPEII.5/1
 WRITF(G,PC)
 ,C FOFNATI4H NO.,IGX4H7, ICXOH VEIOCITY,ICXBHOLOVEL.,IOXSHVSTARI
 I=1
 3C CONTINNE
 IF(I.GGT.I.AMR.I.I.T.NY) VGTAF=U.FO*(U(I+I,JN)-U(I-I,JNI)/OZ
 1F(1.EQ.1)VSTAR=.5C*(-U(3,JN)+4.*U(?.JNI-3.*U(1,JN)I/nZ
 IF(I.FO.NY) VSTAR=(U(NY,NH)-W(NYI,JNII/N%.
 NKITE(6,1E() 1,7(1),U(1,JN),H(1,.10),VSTAR
 IMO FORNAT(T5,GP4FIR.7)
 I= I+1
 IF(I.GT.NYI PFYIIRS:
 GO TO 3e
 ENO
 OXOT

```










Figure B-6


Figure \(B-7\)


Figure B-8


Figure B-9


Figure \(B-10\)

CHAPTER II

垔

\section*{INTRODUCTION}

The experimental program mentioned in Chapter \(I\) is continued in Chapter II with slight modifications of the experimental system. The manifold system used in the earlier phase of the program had only four three-way stopcocks whereas the new manifold system used seven two-way stopcocks. This improvement facilitated in collecting the preseure drop data across the channel length at seven locations without disturbing the experimental setup. Several precautions were taken especially to eliminate airbubbles and to minimize the turbulence in the tank to obtain better and more accurate readings. Also two new screens (Dutch twill \(200 \times 200\) and \(325 \times 325\) ) were used during this phase of the project to investigate the pressure drop across the channel length. Three channel depths, namely \(2.2,2.85\) and 3.5 cm , were used with the flow rates varying from \(345 \mathrm{cc} / \mathrm{sec}\) to \(65 \mathrm{cc} / \mathrm{sec}\).

The second chapter of this portion of the report contains the theoretical consideration flow patterns in a rectangular channel followed by the summary of the experimental results.

\section*{SECTION 1}

\section*{THEORETICAL CONSIDERATIONS}

The fundamental physical laws of conservation of mass, momentum and energy, when applied to a continua, in most cases yield sufficient equations for evaluation of the flow parameters. These flow parameters are velocity, pressure and forces developed at a given region inside the continua. For our analysis we chose a control volume fixed in space and evaluated the flow parameters in an averaged integrated fashion. The choice of the control volume is arbitrary. However, in order to extract maximum information it is essential for the boundaries of the surface of the control volume to pass through regions where information is known and also where it is required. In most problems, several control volumes may be necessary for the formulation of a determinate set of equations. For clarity in presentation, we express the vector quantities, velocity, momentum and forces in their component form using the rectangular cartesian system (an appropriate system for our flow geometry). Hence, all the equations are scalar in nature.

\section*{1-1 Equations of Motion}

The channel is shown in Fig. (1) and the dimensions are also marked on it. The control volume is shown in Figure (2). Figure (2) shows the mass flows, momenta and forces acting on the control volume as follows:

1-2 Conservation of Mass
Let \(u\) and \(v\) denote the \(x\) and \(y\) components of the velocity vector and \(p\) the density of the fluid flowing through the control


Figure 1. The Channel with the Screen

Consider the control volume shown in Figure 2.

\[
\mathrm{pDL} \xrightarrow{\stackrel{\leftarrow \tau_{0} L D}{ } \longrightarrow\left(p+\frac{d p}{d x} \Delta x\right) \mathrm{DL}}
\]
(b) Momenta
(c) Forces in \(x\) direction

Figure 2. The Control Volume
volume. The control volume is a rectangular, parallelopiped with the dimensions of \(\Delta x, D\) and \(H\) in the \(x, y\) and \(z\) directions of the rectangular cartesian system. The voids ratio \(\varepsilon\) is introduced to calculate the actual area available for flow due to the pressure of the screen.

From Sketch (a):
Mass flow in = Mass flow out \(v \rho L \Delta x \varepsilon+u \rho D L=u \rho D L+\frac{d u}{d x} \Delta x \rho D L\)
or
\[
\begin{equation*}
v=\frac{D}{\varepsilon} \frac{d u}{d x} \tag{1}
\end{equation*}
\]

In arriving at this result, we make the assumption that the velocity component \(u\) is a function of \(x\) only. This is approximately true because below the screen the velocity is predominately in the x direction.

\section*{1-3 Conservation of Momentum}

We apply the law of conservation of momentum in component form in the x direction. In other words, we have to calculate the net efflux of \(x\)-momentum and equate it to the sum of the x-forces acting on the control volume. Since the forces in general can act in either direction, we adopt the sign convention that forces acting to the right are positive, whereas those acting to the left are negative.

The forces on the control volume are due to the pressure, \(p\), of the fluid and also due to the shear stress, \(\tau_{0}\), acting on the control surface. Evaluation of the shear stress is not obvious; therefore, we have to adopt a suitable representation to do so. A conventional method is to introduce a friction factor, \(f\), and to evaluate the losses in energy due to friction forces, as a fraction of the unit kinetic energy, \(\mathrm{u}^{2} / 2 \mathrm{~g}\). Several representations are therefore possible for relating the quantities
\(\tau_{0}\), \(f\) and \(u\). One such formula for calculating the wall shear stress, \(\tau_{0}\), is to take the corresponding force acting opposite the direction of the flow, as \(\tau_{0} L D\), thus the momentum equation becomes:
\[
\begin{align*}
{ }^{\Sigma F_{x}} & =\text { (momentum out - momentum in) } x \text {-direction } \\
\mathrm{pDL} & -\left(p+\frac{d p}{d x} \Delta x\right) D L-\tau_{o} L D=\left(u+\frac{d u}{d x} \Delta x\right)^{2} \rho D L  \tag{2}\\
& -\left[u^{2} \rho D L+v_{u} \rho L \Delta x \in\right]
\end{align*}
\]
\[
\begin{equation*}
\text { since, } \tau_{0}=\frac{\rho f u^{2}}{2} \tag{3}
\end{equation*}
\]

By substituting equation (3) in equation (2) and neglecting terms containing \(\Delta x^{2}\) and the simplified momentum equation we obtain:
\[
\begin{equation*}
\rho u \frac{d u}{d x}+\frac{d p}{d x}+\frac{\rho f}{2 D} u^{2}=0 \tag{4}
\end{equation*}
\]

The purpose of the analysis is to solve for the flow parameters u, v and p. Equations (1) and (4) are insufficient since we have three unknowns. Therefore, we must obtain one more equation containing any or all of the terms ( \(u, v, p\) ).

There is no unique way to generate one more independent equation containing \(u, v\) and \(p\). We will discuss two different methods, outlined as follows.

Method 1 - A successful method of relating \(p\) and \(v\) is to involve an experimentaily determined constant, K (or parameter). Thus, the approach becomes quasi-analytical. Let us assume that
\[
\begin{equation*}
K_{0} V=p_{0}-p \tag{5}
\end{equation*}
\]

The quantity \(P_{0}\) is a reference pressure introduced for ease in rendering the equations dimensionless at a later stage. In differentiating equation
(5) with respect to the independent variable \(x\), we obtain,
\[
\begin{equation*}
-\frac{d p}{d x}=k_{0} \frac{d v}{d x} \tag{6}
\end{equation*}
\]

The term \(\frac{d v}{d x}\) can be evaluated from equation (1) by simply obtaining the derivative with respect to \(x\); thus,
\[
\begin{equation*}
\frac{d v}{d x}=\frac{D}{\varepsilon} \frac{d^{2} u}{d x^{2}} \tag{7}
\end{equation*}
\]

Substituting equation (7) in equation (5), we get
\[
\begin{equation*}
-\frac{d p}{d x}=K_{o} \frac{D}{\varepsilon} \frac{d^{2} u}{d x^{2}} \tag{8}
\end{equation*}
\]

Equation (8) facilitates elimination of the pressure gradient term, \(d p / d x\), in equation (4) and thus yields a single ordinary nonlinear differential equation for \(u\). This equation is written as
\[
\begin{equation*}
K_{0} \frac{D}{\varepsilon} \frac{d^{2} u}{d x^{2}}-\rho u \frac{d u}{d x}-\frac{\rho f}{2 D} u^{2}=0 \tag{9}
\end{equation*}
\]

If it is possible to solve this equation by using equation (1) and (5), we can determine \(v\) and \(p\) at any \(x\) location inside the control volume, as the solution for \(u\) from equation (9) is already known.

Alternatively, a totally different method is proposed here which obviates the necessity of the introduction of any new constants (e.g., \(K_{0}\) as in the method just discussed).

Method 2
Consider the control volume shown in figure (2). Applying the momentum equation in the \(Y\) direction, we obtain
\[
\Sigma \mathbf{f}_{\mathrm{y}}=\text { (momentum out - momentum in) Y-direction }
\]
or
\[
\mathrm{p}_{\mathrm{o}} \mathrm{~L} \Delta \mathrm{x}-\mathrm{pL} \mathrm{\Delta x}+\rho \mathrm{gL} \mathrm{\Delta xD}=\mathrm{v}^{2} \rho \mathrm{~L} \Delta \mathrm{x}
\]

Differentiating with respect to \(x\) we obtain
\[
\begin{equation*}
-\frac{d p}{d x}=2 \rho \varepsilon v \frac{d v}{d x} \tag{10}
\end{equation*}
\]

Substituting equation (1) and (7) for \(v\) and \(\frac{d v}{d x}\) respectively in (10) yields
\[
\begin{equation*}
-\frac{d p}{d x}=2 \rho \frac{D^{2}}{\varepsilon} \frac{d u}{d x} \frac{d^{2} u}{d x^{2}} \tag{11}
\end{equation*}
\]

Now equation (11) for the pressure gradient can be employed in the \(x\) direction momentum equation to obtain an equation for \(u\), namely,
\[
\begin{equation*}
2 \rho \frac{D^{2}}{E} \frac{d^{2} u}{d x^{2}} \frac{d u}{d x}-\rho u \frac{d u}{d x}-\frac{\rho f}{2 D} u^{2}=0 \tag{12}
\end{equation*}
\]

It is obvious that these two methods give slightly different governing equations for \(u\) in terms of the geometry \((L, D, H, \varepsilon)\) and the independent variable \(x\). A very useful conclusion can be drawn at this early stage if we compare equations (9) and (12). These equations become identical if \(K_{o}\) in equation (9) is chosen as being equal to \(2 \rho D \frac{d u}{d x}\). This suggests that \(K_{o}\) is not an absolute constant but dependent on the velocity gradient du/dx. However, it will be a constant if the variation of \(u\) in the direction of \(x\) is linear (not a constant). As it will be seen later, the flow rate through the channel has a significant effect on \(K_{0}\). 2-1 Solution for the Equations of Motion

In the previous section we discussed the formulation of the equations of motion. Two different representations for the variation of the \(u\) component of velocity were obtained. We consider the detailed solution for the equation (9) which is rewritten as,
\[
\begin{equation*}
K_{o} \frac{D}{\varepsilon} \frac{d^{2} u}{d x^{2}}-\rho u \frac{d u}{d x}-\frac{\rho f}{2 D} u^{2}=0 \tag{9}
\end{equation*}
\]

To keep the solution general, we have to render equation (9) and other related equations dimensionless. For achieving this we use the following scheme:
\[
\begin{aligned}
& u=\frac{Q}{\rho D L} u^{*} \\
& v=\frac{Q}{\rho L H E} v^{*} \\
& x=H Z \\
& \frac{p_{O}-p}{K_{0}}=\frac{Q}{\rho L H E} \Delta p^{*}
\end{aligned}
\]

Here \(Q\) is the flow rate through the control volume and \(u^{*}, v^{*}\) and \(\Delta p^{*}\) are the dimensionless velocity components and pressure differences, respectively. The quantity \(Z\) represents the dimensionless \(x\) co-ordinate. A11 other quantities have been defined earlier.

On substituting these variables into equation (9), we obtain
\[
\begin{equation*}
\frac{\mathrm{d}^{2} u^{*}}{d z^{2}}-\phi u^{*} \frac{d u^{*}}{d z}-\phi F u^{*^{2}}=0 \tag{13}
\end{equation*}
\]

The terms \(\Phi\) and \(F\) are termed the flow and friction analogs respectively, and are defined as:
\[
\begin{aligned}
& \phi=\frac{H Q}{K_{O} D^{2} L} \varepsilon, \\
& F=\frac{E}{2 D}
\end{aligned}
\]

The nonlinear equation (13) is solved by means of the CrankNicholson method on a digital computer. (A detailed listing of the program is included in Appendix A.)

The flow domain is subdivided into equal intervals of length \(\Delta z\) between two subsequent stations \(i\) and \(i+1\) or \(i\) and \(i-1\). The solution for the differential equation is thus a set of finite values \(u_{i}(i \rightarrow 1, N)\) and \(u_{i} \rightarrow u\) as \(\Delta z \rightarrow 0\).

The derivatives \(\frac{d^{2} u^{*}}{d z^{2}}\) and \(\frac{d u^{*}}{d z}\) of (13) are replaced by the following equations:
\[
\begin{align*}
& \frac{d^{2} u^{*}}{d z^{2}}=\frac{u_{i+1}-2 u_{i}+u_{i-1}}{\Delta z^{2}} \\
& \frac{d u^{*}}{d z}=\frac{u_{i+1}-u_{i-1}}{2 \Delta z} \tag{14}
\end{align*}
\]

The resulting algebraic equation, derived from equation (13) by substituting equation (14) into it, is linearized by an interlue scheme as
\[
\begin{equation*}
A_{1} u_{i-1}^{\nu}+A_{2} u_{i}^{V}+A_{3} u_{i+1}^{V}=D_{n} \tag{15}
\end{equation*}
\]
where
\[
\begin{aligned}
& A_{1}=\frac{1}{\Delta z^{2}}+\frac{\phi u_{i}^{v-1}}{2 \Delta z} \\
& A_{2}=\frac{-2}{\Delta z^{2}}-F \Phi u_{i}^{v-1} \\
& A_{3}=\frac{1}{\Delta z^{2}} \frac{\phi u_{i}}{2 \Delta z}
\end{aligned}
\]
where
\[
\begin{aligned}
& D_{n}=0 \\
& v=\text { no of iteration } \\
& v-1=\text { previous iteration. }
\end{aligned}
\]

The boundary conditions are \(u_{1}=0\) at \(z=1\) and \(u_{1}=1.0\) at \(z=1.0\). The calculation is initiated by arbitrarily choosing values for all the \(u_{i}(V=1)\) and then calculating \(A_{1}, A_{2}\) and \(A_{3}\). Since the boundary condition at \(u_{N}=1\) is known, aback substitution is necessary for evaluating the \(u_{i-1}^{V}\) from \(u_{i}^{V}\) based on the previous iterant. The procedure is repeated until a residue (arbitrarily fixed) of \(1 \times 10^{-4}\) or less is attained for the corresponding improvement in the value for \(u_{i}\) for each progressing v. Here we used \(\Delta z=10^{-2}\).

\section*{3. EXPERIMENTAL RESULTS}

Experimental data with the modified manifold system with seven stopcocks were collected for \(200 \times 200\) and \(325 \times 325\) dutch twill screens using tap water. The volumetric flow rates were varied from \(345 \mathrm{cc} / \mathrm{sec}\) to \(65 \mathrm{cc} / \mathrm{sec}\). Three different depths of the channel, namely \(3.5,2.85\) and 2.5 cm were used to collect the data for various flow rates. The pressure drops across the screen along the channel length at fourteen locations were measured by changing the manifold system only once.

Figures 3 to 8 present the data on pressure drop across the screen along the channel length as a function of dimensionless length \(z\) for various flow rates and channel depths of \(3.5,2.85\) and 2.2 cm . Examination of figures 3 to \(\beta\) show the following characteristics of the pressure drop across the screen length.
1. The pressure along the channel length across the screen is dependent on the volumetric flow rates. At smaller flow rates the pressure drop between the two extreme ends of the channel length is small whereas at large flow rates the pressure drop between the two extreme ends of the channel length are largest. In otherwords, larger the flow rate, larger the pressure drop between the extreme ends of the channel length.
2. Pressure drop across is the screen along the channel length is also a function of the channel depth. At the smallest depth 2.2 cm , the pressure drop between the two extreme ends of the chennel is large compared to the pressure drop observed between the extreme ends of the channel at larger channel depths of 2.85 and 3.5 .

The experimental results obtained in the second phase of the program are an improvement over the data collected in the first phase of the program and are in general agreement with the conclusions drawn in the first phase of the program.

\section*{APPENDIX}

\section*{Computer Program}

Using Crank Nicolson type iteration:
\[
\begin{aligned}
& \frac{d^{2} u}{d z^{2}}=\frac{u_{i+1}-2 u_{i}+u_{i-1}}{\Delta z^{2}} \\
& \frac{d u^{*}}{d z}=\frac{u_{i+1}-u_{i-1}}{2 \Delta z}
\end{aligned}
\]

The equation becomes
\[
\frac{u_{i+1}^{\nu}-2 u_{i}^{\nu}+u_{i-1}^{\nu}}{\Delta t^{2}}-\Phi u_{i}^{\nu-1} \frac{u_{i+1}^{\nu}-u_{i-1}^{\nu}}{2 \Delta t}-\Phi F u_{i}^{\nu} u_{i}^{\nu-1}=0
\]

Or,
\[
\begin{aligned}
& A_{1} u_{i-1}^{\nu}+A_{2} u_{i}^{V}+A_{3} u_{i+1}^{\nu}=D_{n} \quad \text { Computational Alogrithem } \\
& A_{1}=\frac{1}{\Delta z^{2}}+\frac{\Phi u_{i}^{V-1}}{2 \Delta z} \\
& A_{2}=-\frac{2}{\Delta z^{2}}-F \Phi u_{i}^{V-1} \\
& A_{3}=\frac{1}{\Delta z^{2}}-\frac{\Phi u_{i}^{V-1}}{2 \Delta z} \\
& D_{n}=0.0 \\
& V \rightarrow \text { no. of iteration } \\
& V-1 \rightarrow \text { previous iteration } \\
& \text { Iteration Residue }=1.0 \times 10^{-4} \\
& \text { In the program } \Delta z=1 / 100=0.01
\end{aligned}
\]

Then, \(\quad u=\frac{Q u^{*}}{\rho D L} \quad v=\frac{Q v^{*}}{\rho L H \varepsilon} \quad \frac{d \Delta p^{*}}{d z}=\frac{d v^{*}}{d z}\)

Substituting these variables we get
\[
\begin{align*}
& \mathrm{V}^{*}=\frac{\mathrm{du}}{\mathrm{dz}}=\Delta \mathrm{p}^{*} \\
& \frac{\mathrm{~d}^{2} u^{*}}{\mathrm{dz}}-\Phi \mathrm{u}^{*} \frac{\mathrm{~d} u^{*}}{\mathrm{dz}}-\Phi F \mathrm{u}^{2 *}=0  \tag{1}\\
& \Phi=\frac{H Q}{K_{0} D^{2} L} \varepsilon \quad F=\frac{f}{2 D}
\end{align*}
\]

From method 2 we obtain,
\[
\begin{align*}
& \frac{\mathrm{d}^{2} u^{\star}}{\mathrm{dz}} \frac{\mathrm{~d} u^{\star}}{\mathrm{dz}}-\Phi \mathrm{u}^{\star} \frac{\mathrm{d} u^{\star}}{\mathrm{dz}}-\Phi F \mathrm{u}^{\star 2}=0 \\
& \Phi=\frac{E H^{3}}{2 D^{2}} \quad F=\frac{f}{2 D} \\
& v^{*}=\frac{d u^{*}}{d z}  \tag{2}\\
& \Delta p^{*}=\frac{\left(p_{0}-\mathrm{p}\right)}{Q^{2}} \rho L^{2} H^{2} \varepsilon=v^{* 2}=\frac{\mathrm{du}^{*}}{\mathrm{dz}}{ }^{2}
\end{align*}
\]

If model (2) of the analysis is adopted, we can estimate \(K_{o}\) from the following equations,
\[
\mathrm{K}_{\mathrm{o}}=2 \rho D \frac{\mathrm{du}}{\mathrm{dx}}=\frac{2 \rho \mathrm{D}}{\mathrm{H}} \frac{\mathrm{Q}}{\rho D \mathrm{~L}} \frac{\mathrm{du}}{\mathrm{dz}}=\frac{2 Q}{\mathrm{LH}} \frac{\mathrm{du}}{\mathrm{dz}}
\]

For a given q, \(\Phi\) can be evaluated from
\(\Phi \frac{\varepsilon H^{3}}{2 D^{2}}\) for that \(\Phi\) and some constant \(f\) the corresponding
\(\frac{d u}{d z}\), or simply \(\Delta p^{*}\), can be read from the graph and therefore \(K_{o}\) can be computed theoretically. This can be compared with the value obtained from earlier eype of calculation.

Hence to compare \(\Delta p^{*}\) from the program (Equation 1) (1) calculate \(z=\frac{x}{H}\) for each tap location. Then \(\tilde{\Delta} p^{*}=\frac{p_{0}-p}{K_{0}}\left(\frac{\rho L H \varepsilon}{Q}\right), K_{0}\) is experimentally determined.

\section*{Method 2 Procedure}

The equations are
\[
\begin{aligned}
& \frac{d^{2} u^{*}}{d z^{2}} \frac{d u^{*}}{d z}-\Phi u^{*} \frac{d u^{*}}{d z}-\Phi F u^{*^{2}}=0 \\
& F=\frac{\mathrm{f}}{2 \mathrm{D}} \quad \Phi=\frac{\varepsilon \mathrm{H}^{3}}{2 D^{2}}
\end{aligned}
\]

Here \(u^{*}\) is independent of \(Q\) for a constant ' \(f\) '.
In turbulent flow, ' \(f\) ' remains constant. Therefore for high flow rates a channel of given dimensions have a unique flow distribution. However, \(\Delta \mathrm{p}^{*}\) will be different since, \(\Delta \mathrm{p}^{*}\) does involve Q in calculations.
\[
\Delta \mathrm{p}^{*}=\frac{\mathrm{p}_{\mathrm{o}}-\mathrm{p}}{\mathrm{Q}^{2}} \rho \mathrm{~L}^{2} \mathrm{H}^{2} \varepsilon
\]

Figures 9, 10, 11 and 12 show the variation of \(u^{*}\) and \(\Delta p^{*}\) along \(z\) the non-dimensional variables for two sets of \(f\) and \(\phi\). Their effect is obvious as only the extreme values are chosen. Also plots for \(\Delta p^{*}\) at \(z=0\) and \(z=1\) into \(f\) as the parameter are plotted with respect to the flow analog \(\phi\). The effect of increasing \(f\) is opposite on \(\Delta p\) * at these two locations.

\section*{Experimental Verification}

Since only the pressure is measured the most useful graph would be that shows the variation of \(\left(p_{o}-p\right) \leftarrow\) the dimensionless measured difference on the manometer taps.

\section*{Procedure}
(1) Calculate \(K_{0}\) as follows:
\[
K_{0}=\frac{\left(p_{0}-p\right)}{\Delta p^{*}}\left(\frac{\rho L H \varepsilon}{Q}\right)
\]
here \(\left(p_{0}-p\right) \leftarrow\) measured pressure drop
\(\Delta \mathrm{p} *+c a l c u l a t e d\) from computer program on read off the graph.
\(\rho, L, H, \varepsilon, Q\) are parameters known.
(2) Hence, for a given screen \(\varepsilon\) and flow rate \(Q_{Q} K_{0}\) can be found.

Also
\[
\begin{aligned}
& K_{\mathrm{o}} \mathrm{~V}=\mathrm{p}_{\mathrm{o}}-\mathrm{p} \\
& \mathrm{~V}=\frac{\mathrm{p}_{\mathrm{o}}-\mathrm{p}}{K_{\mathrm{O}}}
\end{aligned}
\]

Therefore \(V\) can be calculated.
Validity of the analysis can be established as follows:
(a) For small \(\phi\) and \(f, u^{*} V_{S} z\) is a st. line
\(\mathrm{u} \frac{\mathrm{d} u^{*}}{\mathrm{dz}}=\) slope is constant, or \(\frac{\mathrm{du}}{\mathrm{dx}}\) is constant,
\[
V=\frac{\underline{D}}{\varepsilon} \frac{d u}{d x}=\text { constant from above. Hence for a series of } Q^{\prime} s
\] small but slightly different each other the test for the constant of \(v\) proves that the analysis is good for that range. It should start deviating after some \(Q\) because \(d u * / d z\) is not linear \(\theta\) eq. at \(\phi=10.1\), \(E=0.6\) as shown by the figures.
(3) These calculations should reveal the nature of \(K_{0}\) variation.
(4) If model (2) of the analysis is adopted, we can estimate \(K_{0}\) from the following equations:
\[
x_{0}=2 \rho D \frac{d u}{d x}=\frac{2 \rho D}{H} \frac{Q}{\rho D L} \frac{d u^{*}}{d z}=\frac{2 Q}{L H} \frac{d u^{*}}{d z}
\]

For a given \(Q, \phi\) can be evaluated from \(\phi=\frac{\varepsilon H^{3}}{2 D^{2}}\) for that \(\phi\) and sone constant \(f\) the corresponding \(\frac{d u^{*}}{d z}\) or simply \(\Delta p^{*}\) can be read and therefore \(K_{0}\) can be computed theoretically and compared with the value obtained from earlier types of calculations.







Z



```


[^0]: * Ref. 3, Fig. 33, p. 76.

[^1]: *Ref. 4, Fig. 217, p. 2-12.

[^2]: *Note that the present work at UAH uses V_{e}, which denotes a entering velocity, while previous investigations use V, which denotes a approach velocity. Thus $V_{e}=\frac{V}{\varepsilon}$.

[^3]: Figure 1-7. Schematic of Experimental Apparatus

[^4]: Figure 2-20 $\Delta \mathrm{P}$ versu
 $Q-150 \mathrm{~cm}^{3} / \mathrm{sec}, D=2.2 \mathrm{~cm}$

