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BIOELECTRIC SIGNAL ANALYSIS AND MEASUREMENT

The goals of this research project are: (a) to use nonstationary

time-series techniques to analyze EEG signals for the estimation of

alertness; (b) to extract time-varying order in sequential time-series

measurement of these data; and (c) to devise strategies for obtaining

ontimal reoresentation of the EEG signal. Significant accomplishments

on each of these goals have been made. Most of the results have been

presented in various international and national scientific conferences

-Z published in the open literature. This report will mainly consist

of renrints of these published papers. However, we shall give a brief

account of our accomplishments as follows.

.. We e uccessfully implemented a frequency-discrimination technique

for KEG so obtain the rate of change of its phase. This is based on the

m=odel tha EEG is a phase and amplitude modulated signal with carrier

frequency center around the a-rhythm, viz.,

e(t) = a(t) cos 2-rf t + c(t)

where a(t) represents the slow amplitude variation of the signal; %(t)

represents the phase variation of the signal; and f designates the

a-rhythm frequency which is about 8 - 13 Hz. Details are reported in

a paper published in the Proceedings of the 1972 National Electronics

Conference.

(2) A mathematical model for the photically stimulated EEG signals has
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been conceived and simulated, based on the phase alignment of EEG signals

with the photic stimulus. In the model, a parameter b which represents

the speed of the propagation of the phase uncertainty is thought to be

related to the alertness states. Calibration of this parameter with

respect to the alertness stages would make this parameter a useful tool

for alertness estimate. Details of this model are described in a paper

entitled "A Model for the Photically Stimulated Electroencephalographic

Signals", published in the Proceedings of the 12th Annual San Diego

Biomedical Svymosium.

(3) Spectral analysis of EEG signals has been used for many years.

However, real time hard copy displays of the time-varying power sp tf~um

that permit tracking of dynamic brain states have been lacking. A

scheme was implemented. This scheme enables us to obtain a display with

the amplitude being exhibited both in waveform and in'gray intensity.

Visually, this hard copy produces a three-dimensional effect. The display

shows clearly the dynamic changes in the power spectrum of the EEG.

The detailed description of this program dubbed "GIFBUF" written by.

F. Mansfield was submitted earlier.

(4) The representation of EEG signals has always been a major problem

in the automatic analysis of EEG signals. We have developed a repre-

sentation for EEG signals and their in-phase and quadrature components.

This representation makes easy the monitoring and tracking of EEG frequencies

and phases. The development and implementation of this representation

resulted in two papers: "Real-time EEG Analysis and Monitoring Using:-
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In-phase and Quadrature Components", published in the Proceedings of the

2 6 th Annual Conference on Engineering in Medicine and Biology, and

Error-free Representation of EEG Signals", published in the Proceedings

of the 1973 IEEE International Conference on Systems, Man and Cybernetics.

(5) It hs been a major task to separate signal from noise in EEG analysis.

We devised a scheme by modeling an EEG signal in the form of a sinusoid

aveforn am an additive noise which represents the incoherent component

o the si With this model, we developed a scheme which will estimate

rhe signal-ro-noise ratio in the most commonly used processing situation;

vz., averS-~ g. The technique and results are described in "Estimating

zignal and oise in Coherent Time Averages of EEG Data", published in
thte Proce..gs of the 26 Annual Conference on Engineering in Medicine

t6) .A nonli ear oscillator model for EEG signals has been developed.

This model has proven to encompass many reported phenomena and predicted

several unreported phenomena when the subjects were under periodic

photic stimulation. The oscillator used is the van der Pol oscillator

described by:

x -- 2 + Wx e(t)

where x(t) denotes the EEG signal to be modeled; w0 is the autonomous

alpha frequency; e(t) is the external stimulus; and [I is the coupling

coefficient. This model also elucidates the effect of a stimulus flash

to the phase of an EEG signal. The details are reported in a paper,

"A Nonlinear Model of EEG Entrainment by Periodic Photic Stimulation",
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published in the Proceedings of the 7 th Annual Conference of the

Neuroelectric Society.

(7) To monitor or track the alertness states via EEG signals, we need

the ability to predict the EEG waveforsm. For this purpose, we used

an autoregressive process representation. This endeavor resulted in a

paper entitled, "Prediction of EEG Waveforms by Using an Autoregressive

Model", to be presented at the 1975 San Deigo Biomedical Symposium.

The full paper will be published in the Proceedings. A reprint of the

abstract of this paper is attached.

In summary, we have accomplished most of the objectives as proposed.
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INDEX TERMS - EEG, Frequency discrimination, Narrow- carrier frequency f2 . The process 4(t) can also
band process, Entrainment of EEG alpha rhythm, Com- be interpreted as a relative phase angle, in the
puter analysis, sense that the alpha signal process a(t) differs

in phase from the signal (cos 2TfTt) by 0(t). It
I. INTRODUCTION is only in this manner that we are able to ascribe

meaning to the phase of EEG as a time-varying quan-
The experimental analysis of EEG waveforms has tity. The fact that the angular velocity or fre-

been dominated by spectral decomposition and ampli- quency in radians per second is the time derivative
tude analysis, mainly autocorrelogram techniques of the angular position leads us to define the in-
though crosscorrelation technique has been used for stantaneous frequency fi(t) in cycles per second
phase measurements. These techniques as applied to or Hertz by
the analysis of EEG signals are abundant in litera- f.(t) 1 d (2)
ture. To cite a few of them, we note that the ear- i 2 dt
liest ones were done by Brazier and Barlow [1], [2],
[3], [4], and notable simplifications done by Kamp, The second term in Equation (2) which is proportion-
et al. [5], DeBoer and Kuyper [6], and Vo-Ngo4 et al to the rate of change of the time-varying phase
al [7]. The fact that the phases of EEG signals as 4(t) can be interpreted as the instantaneous fre-
compared to a reference clock signal contain infor- quency deviation relative to the a frequency f.
mation about the mental alertness has been pointed provided it is stable. Our technique to be describ-
out to us by Anliker [8] who has used phase-vector ed in detail provides a direct measurement of (d)/
and contour-graphic techniques to study the phase (dt). The study on the statistical properties of
entrainment phenomenon. Adey and Walter [9] have the random processes a(t) and 4(t) will be re-
used a phase detection technique in the analysis of ported in another article.
EEG records in the cat. The EEG a-rhythm has been When the brain is excited by an outside stimu-
treated as the result of mutual synchronization of lus frequency fs and the EEG is entrained by the
a population of spontaneously oscillatory processes stimulus, then we should have
by Wiener [1O]. The potential usefulness of the
phase entrainment in either recognizing the patho- fi(t) = f = fs, t + T < t < t + Tf (3)
logical states of the brain or classifying mental
states might be widely explored if investigators hadf signify respectively the time
a reliably simple direct measurement technique. In instants at which the stimulus is on and the tim
this paper we describe a frequency discrimination ius is , and denotes the time delay between

lus is off, and Tn denotes the time delay between
technique as realized by an inexpensive frequency
discriminator forea direct on-line measurement of tquenche tn and the time instant at which the entrainment

occurs and tf, the time delay between tf and the
entrainment phenomenon in EEG as entrained by the time instant at which te e ntrainment disappears.

frequency of a sensory stimulus. We demonstrate the

use of this device for detecting the presence or ab- Equation (3) implies that

sence of the stimulus effect and the measurement of d+
the time delays in the entrainment. , t + T < t < tf + Tf (4)

In our study, the EEG signal is first filtered

by a narrow-band filter with center frequency about
the a-rhythm of the individual. We shall denote Since our technique measures (d)/(dt) directly,

the measurement of EEG signals which were recorded
this filtered EEG signal as alpha signal a(t). It while the human subjects with eyes closed were stim-is then reasonable to consider the alpha signal as ulated by stroboscopic flashes at the rate of 10
narrow-band random process with the alpha frequency flashes per second for one minute, then no stimula-

fa as the mean frequency of the spectral band. Then tion for one minute, then another minute of stimula-
a sample function of this random process is express- tion, etc., does show that (di)/(di) = 0 for sl-
ed as [ii] tion, etc., does show that (dm)/(dt) = O for al-

(t) = (t) cos [2t+(t)] ternate one minute intervals.
The schemes used for the measurement of (di)/

If the bandwidth of its power density spectrum is (dt), Tn, and rf, and for the automatic detection
much smaller thoan its mean frequency s, then the of the states of stimulus-on and stimulus-off in themuch smaller than its mean frequency f£, then the
processes a(t) and i(t) in Equation (1) will be

slowly varying functions of time as compared to
cos 2nfat so that the interpretation of a(t) and II. METHOD
i(t) as envelope and phase has meaning. The alpha
signal process a(t) can thus be interpreted as An ideal frequency discriminator should pro-
amplitude and phase modulated signal process with duce an output voltage linearly dependent on input

A portion of this work was carried out at the Department of Electrical Engineering of the University of
Vermont, Burlington, Vermont, and was supported in part by NASA Grant NGR 46-001-038. It was also supported
in part by NASA Grant NGR 05-020-575 and ARPA Contract DAHC 15-72-C-0232 at Stanford University.
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frequency. There are many ways for the realization formed on-line. As mentioned before, these EEG sig-
of frequency discrimination. The most commonly used nals were recorded while the subjects with eyes
one is the so-called balanced demodulator with the closed were stimulated by stroboscopic flashes for
well-known S curve. The scheme which we have used one minute at the rate of 10 flashes per second,
here is the zero-crossing detector type as described then no stimulation for one minute, then another min-
in [12]. In order to eliminate the influence of the ute of stimulation, etc. The flashes were generated
amplitude variation a(t), we use an amplifier fol- by Grass photo stimulator model PS-2E on its inten-

lowed by a hard limiter in front of the detector. sity scale No. 2. The EEG signals are the differen-
The output of the frequency discriminator is propor- tial potentials between the electrodes placed at

tional to-the instantaneous frequency fi(t) as ex- left parietal and left occipital. The EEG signals
pressed in Equation (2), and does not depend on the are referred to as either stimulus-entrained or non-
amplitude of the signal. We are, however, interest- entrained. In order that the EEG signal be more ap-
ed in the rate of change of Q(t). The value f propriately described by the narrow-band-process mod-
in Equation (2) is subtracted. In our device fa el, the EEG signal was passed through a narrow-band
can be preset at any value in the range of 5-15 Hz. filter with a band-width of 1.5 Hz centered at 10 Hz
The device thus yields (K/2r)(dt/dt) on-line. The to obtain the alpha signal a(t) as described pre-
characteristic curve of the device is given in Fig.l. viously.
In Fig. 2, we show the functional block diagram of A section of the output of the frequency dis-
the analysis scheme. Detailed circuitry of the de- criminator along with the same section of EEG sig-
vice is given in Fig. 3. nals of subject B being analyzed and a square wave

The response time or delay Tn (or Tf) is indicating when the stimulus was turned on or off
defined as the length of time elapsed since the on- are shown in Figs. 6 and 7. The display of apparent
set (or end) of stimulus to the time instant at high frequency components in the raw EEG of Figs. 6
which the brain wave is entrained (or desynchroniz- and 7 are due to the slower writing speed (30 cm per
ed). This delay Tn (or Tf) is, in a sense, the minute) of our strip chart recorder as compared to
time which the brain takes to synchronize (or desyn- the conventional writing speed. It is clearly seen
chronize). There is a noticeable delay between the that there is a delay following the onset of the
onset of stimulus-on (or stimulus-off) and the time stimulus before entrainment is detected; the EEG re-
at which the entrainment is measurable. This fact mains synchronized for a short period of time also
is shown in Fig. 4 where the (d4)/(dt) as the out- after the stimulus was turned off. In Figs. 8, 9,
put of the frequency discriminator does not reach a and 10, we show the output of the frequency discrim-
flat plateau (or start to wander) immediately after inator with the early, middle, and late sections of
the onset of stimulus-on (or stimulus-off). The EEG signals of subject H as the input along with a
fluctuation of the x(t) - (d)/(dt) curve is mea- square wave indicating the events of stimulus-on and
sured by the quantity stimulus-off. The offset of time coordinates in the

above figures is due to the positions of pens of the

S x(t m (5) strip chart recorder. From these figures, we observe
i=l that subject H synchronized with the stimulus very

well at the beginning section (13th min. to 19th
within a specified window width N, where mN is min.) of the experiment as shown by the measurement
the mean value of (dO)/(dt) or x(t) in the of (d4)/(dt) depicted in Fig. 8. As shown in Fig.
window; i.e., 9, however, the subject's EEG signal did not entrain

N to the stimulus frequency as well during the middle
mN = x(t ) (6) (105th min. to 111th min.) of an experimental ses-

i=l sion which lasted about three hours. There is no
sign of entrainment of the EEG signal in the end

New values of p are calculated by sliding the win- section (176th min. to 182nd min.) of the experiment
dow. The onset of the flatness (or the wandering) as shown in Fig. 10. The capability to synchronize
is determined by the time instant at which p is with the stimulus may be a measure of certain brain
below (or above) a preset threshold that is deter- states such as alertness. Further study is needed
mined experimentally. The response time or delay for this measurement by this technique. The fre-

tn (or Tf) is measured as the time lapse between quency discrimination technique as realized by an
the onset of stimulus-on (or stimulus-off) and the inexpensive device is effective in measuring the en-
onset of the flatness (or the wandering) of (de)/ trainment phenomenon of EEG signals.
(dt) as measured by p. Owing to the delay intro- It is possible that variations in the delays
duced by the window width, a correction constant is Tn and Tf in synchronization and desynchroniza-
subtracted from the above obtained time intervals. tion, respectively, might give some indication of

The detection scheme utilizes the same program change of levels of alertness, although our data
as that used in measuring the response time or de- does not include alertness estimates. Results of
lay, but without the prior knowledge of the onset the measurement of delays for both subjects are
of stimulus-on and stimulus-off. In other words, shown in Figs. 11 and 12, respectively. The abscis-
the influence of stimulus (entrainment) is said to sas in the figures denote the time since the begin-
be detected whenever the quantity p reaches a val- ning of the experiments and the ordinates are the
ue below a preset threshold. measured delays. Any Tn > 25 seconds is considered

These schemes are realized by digital computer as not synchronized. Subject B seems to have longer
programs in PAL III language used on a PDP-8 compu- response time to stimulus-on in the first hour of
ter. Both of these measurements can be performed experiment than those in the second hour. Subject H
on-line. Figure 5 depicts the flow chart of the did not entrain so well after the first hour of ex-
computer program for the response-time measurement, periment. In general, we see that it takes longer

III. RESULTS for the subjects to synchronize with the stimuli
than it takes to return to the natural states after

Although the measurements were performed on EEG the stimuli were shut off. The statistics of Tnsignals recorded on magnetic tape, they can be per- and Tf and their correlation with the mental
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states of subjects need further study. However, the V. ACKNOWLEDGEMENT
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Delay of Subject B returning to

Response time of Subject B to natural state after the removal

stimulus-on. stimulus.

Fig. 11. RESPONSE TIME STUDY OF SUBJECT B.

Delay of Subject H returning to
Response time of Subject H to natural state after the removal
stimulus-on, of stimulus.

Fig. 12. RESPONSE TIME STUDY OF SUBJECT H.
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REAL-TIME EEG ANALYSIS AND MONITORING 44.5
USING IN-PHASE AND QUADRATURE COMPONENTS

M. Ein-Gal and D.C. Lai

In the study of brain functions or monitoring and forth are the rate of change of amplitude and

patients in clinical laboratory, a non-invasive phase, respectively. The fifth and the sixth are

scheme for monitoring either psycho-physiological the phase p(t) and amplitude a(t) , respectively,

states or pathological states via the analysis of The seventh is the EEG signal analyzed. The last

EEG signals is an important tool. In view of the is the output of VCO which is used as reference.

time-varying nature of these states, we are inter- Notice that the frequency and the phase are practi-

ested in monitoring them on a moment-by-moment ba- cally constant when stimulus was on.

sis. To this aim, we have devised a digital scheme

which is capable of tracking the amplitude, fre- P s(t)

quency, and phase of a particular EEG rhythm in

real time. The amplitude, frequency, and phase are sin wt
assumed to be low-pass process. These 3-tuples may

be treated as a 3-dimensional vector whose trajec- EEG A/D AMPLITUDE FREQUENCY
tories in the 3-space relate to the change of SIGNAL CONVERTER REGULATOR VCO DISCR

psycho-physiological states or pathological states.

This scheme is implemented on aPDP-15 computer system,

We characterize EEG e(t)as a narrowband process, hence 
os WO

e(t) = a(t) cos e(t) = a(t) cos [0 t + q(t)] ,P c(t)

or e(t) = c(t) cos t + s(t) sin t .O o

By tracking the center frequency 0 , we may de-

compose the signal into two components; viz., the Figure 1. Resolver of

in-phase component c(t) and the quadrature com- in-phase and quadrature signals

ponent s(t) . A digital system depicted in Fig.

1 tracks the center frequency wo and resolves the

input EEG waveform into c(t) and s(t) . This

system is composed of three major components:

(a) Voltage-controlled oscillators and

amplitude regulator, 2

(b) Frequency discriminator, 3

and (c) Low pass filters. 4

The VCO is realized by a second-order difference 5

equation. The locations of the poles are controlled 6

by the amplitude regulator and by the frequency 7

discriminator. The realization of the frequency 8

discriminator is obtained by averaging the rate of

change of phase over a preselected interval in

accordance with the desired time constant of the Figure 2. Representation of

loop. Applying c(t) and s(t) to the horizontal stimulus-off EEG signal

and vertical axes respectively, we obtain a two-

dimensional trajectorial plot where the envelope

a(t) and the phase q(t) are proportional to the

radius and angle respectively in the polar coordin-

ate system.

As an example, this real-time monitoring tech-

nique was applied to the EEG data obtained while 2
the subjects with eyes closed were stimulated by 3

stroboscopic flashes for one minute at the rate of 4

10 flashes per second, then no stimulation for one 6

minute, then another minute of stimulation, etc.

The flashes were generated by Grass photo stimula-

tor model PS-2E on its intensity scale no. 2. The

EEG signals are the differential potentials be-

tween the electrodes placed at left parietal and

left occipital. The results are shown in Figures 2 Figure 3. Representation of

and 3. Figure 2 depicts the representation of EEG stimulus-on EEG signal

when stimulus was off by using this scheme. Figure

3 shows the representation of EEG when stimulus was This work was supported in part by the Advanced Re-

on. The plots in both figures are normalized with search Projects Agency of the Department of Defense

respect to certain scale for visual convenience and under Contract DAHCl5-72-C-0232 and NASA under

they are plotted simultaneously. The top one is Grant NGR-05-020-575,

the trajectorial plot of the envelope a(t) and Stanford University

phase p(t) in polar coordinates. The second one Department of Electrical Engineering

is the plot of frequency versus time. The third Stanford, California 94305

26th ACEMB LEAMINGTON HOTEL MINNEAPOLIS, MINNESOTA SEPT. 30- OCT. 4, 1973 401
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ERROR-FREE EEG SIGNAL REPRESENTATION

M. Ein-Gal and D. C. Lai

Stanford Electronics Laboratories
Stanford University

Stanford, California 94305

Summary We may write

The representation of electroencephalographic y(N) = X T(N)H(N) (2)
signals is an important problem for real-time moni-
toring of either psycho-physiological states or patho- where X(N) is a two-dimensional vector whose compo-
logical states. A representation of any EEG rhythm nents x1 (N) and x (N) are the slowly-varying compo-
in its in-phase and quadrature components is given. nents sought after. Note that the Equation (2) is not
This representation gives zero error when the signal unique since there exist many X(N) which could satisfy
is reconstituted from its representatives. Deriva- (2). For certain particular choice, x (N) and x (N)
tion of the scheme is reported. Using this scheme, a are related by Hilbert transform. LetlX(NjN-1) ge a
digital real-time system for obtaining this represen- function of the past values of X(N). For instance,
tation is designed and realized by a PDP-15 computer. R(NIN-1) could be a linear combination of X(0), X(1),
An example with a typical EEG signal as the input ...,^X(N-1). Denote the difference between X(N) and
to the system is included to demonstrate the accuracy its X(NIN-1) by
of the representation.

E(N) = X(N) - X(NfN-1) . (3)
I. Introduction

The norm of the difference is
A digital real-time system is described for

obtaining the representation of a particular EEG[ "
rhythm in its in-phase and quadrature components with jIE(N)j =ET(N)E(N) (4)
the constraint that the error is zero when synthesized.
In a way, this system provides a form of data com- We choose X(N) by minimizing (4) but satisfying (2)
pression. The resultant representation can be advan- simultaneously. The solution thus obtained is
tageously employed for data transmission and data
storage as well as real-time monitoring of either X(N) = Y* I A(N X(NIN-1) + H(N)y(N) (5)
psycho-physiological states or pathological states. (N
For these applications, the requirement of an error- where I is the identity matrix and A(N) is the matrix
free synthesis or reproduction of the EEG signal is with its components given by the double-frequency

with its components given by the double-frequencyimperative. oscillator; i.e.,

A common scheme for obtaining the in-phase and
quadrature components of a signal is to multiply cos4nf N sin4tf N
the signal by an oscillator outputs at quadrature with A(N) = . (6)
the center frequency f of the signal and then passing sin4af N -cos4nf N
the resultants through low-pass filters in the for- o o

ward path. However, this method does not provide a If i(NjN-1) is the best linear estimator of X(N) basedfaithful replica of the signal when the two compo- n isth et eres ato of e
nents are synthesized. The error arises mainly from on its past history, then the representation of the
the phase distortions of the filter or the pure delays inpunnonaon epesentationr E(N) corresponds to
of the non-recursive filter. Our digital system uses,
instead, an oscillator running at twice the center 2 2
frequency of the signal and a filter in the feedback IE(N)II = v2(N) (7)
path. This filter does not affect the reproduction
fidelity; however, it plays a role in determining where v(N) = y(N) - ^(NjN-1) and 9(NfN-1) is the best
certain statistical properties of the slowly varying linear estimator of y(N) in terms of its past values
components of the resultant representatives. Hence, y(0), y(1), ..., y(N-1).
one may choose a filter to minimize certain proper-
ties of the outcome such as the bandwidth, variance, III. Results and Conclusions
etc.

The digital system is depicted by a block diagram
II. Derivation of the Scheme shown in Figure 1. The oscillator is realized by a

second order difference equation whose coefficients
Let the input signal in its digitized form be are controlled by the amplitude regulator and the

y(N). We shall define a two-dimensional oscillator output of the frequency discriminator. As a demon-
vector H(N) by stration, we select a typical EEG signal as the input

waveform to our digital system. We show both the
HT(N) A [cos2Tf N sin2nf N 1. (1) original EEG signal and the synthesized EEG signal

o J from these two components in Figure 2. Note the high
fidelity of the reproduction. The filter in the feed-

This work was supported in part by the Advanced back path was chosen to minimize the first order
Research Projects Agency of the Department of Defense difference IjX(N) - X(N-1)II. The EEG data were
under Contract DAHC 15-72-C-0232 and NASA under furnished by Dr. J. E. Anliker of NASA-Ames Research
Grant NGR-05-020-575. Center.

242



X,(N)

cos(2wfoN)
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Figure 1 Block diagram of the digital system

for resolving the signal into in-phase

and quadrature components.

2.

3.

4.

5.

Figure 2 Representation of EEG Signal

1. x (N), the in-phase component.

2. x2(N), the quadrature component.

3. The original EEG signal.

4. The reproduced EEG signal

synthesized from xl and x2.

5. The reference signal.
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Ui..Tli l'Ni; , I ;NAI. ANI NO1.i IN COIIEN '.14T TIMI AVEHA;ES OF I,.; DATA

James Anliker, Ph.D.; David Lai, Ph.D.*; Tamara 
Rimmer, B.S.;

and Herbert Finger, M.S.E.E.

NASA-Ames Research Center, Moffett Field, 
California 94035

Coheren rtime averaging is widely used in the An analog voltage proportional to this ratio was

study of tv,,ked responses as a technique for ex- immediately output and displayed on a storage

tr,.tinlog ohcrnt signas from inciierent noise. o cilotcope. Figure I shows the su perimposed

'I1Is piipvr i' concerned with the, problem of oant-

matling. In re i time, the s1gnal nod noise compo-

nents in coherent time averages of .ample functions 1. ' 0

of EEG alpha activity in the presence and In the

absence of coherent trains of photic stimuli.

The rationale for using a coherent time 
aver-

aging algorithm in the study of evoked potentials 
0.5-

is uell kno-n and seemingly straight-forward:

events ir. ech sample function that are coherent 
A'

with the time base of the averager (i.e., bear a

-onsistez: :e-aoral relationshtp to the trigger) 0.0-

w.ill be ert_-nced by averaging (or su-ming) where-

cilCi ernt or random ievenr will tend to cancel

.,t. '.i . mDilcaton is tha when a small signal SUCCESSIVE SAMPLES ON
Snm;x, - ~it:h a Lot of noise, the algnal can be

.,t ,, ,,.vraging i aff Ic Lently large number

S.snl, in etions. io0we',er. i tile case of elec-

i: ,yitol? il potentials, neither the signal . . 1

c...: .sz,,t :: s nor the signal- to-noise. ratio is 1.O-

.-row:, c-ase;uently, it is not clear how to select -.

best number of sample fumctions. to include in

-nsemble average. It is also unfortunate that

.re -r rn tha a nyological process will O.

.ain saii.lary -hounghou- he averaging time ," '

.cr-s,-s : he avera-.jg time increases. Thus,

.... : :c .. mpn ar..e for a low signal-to-

a,:, ay incr ,sn ae number of sample O.0-.

: I , .,,.' t! ;*e. tihe expnrimenter may be

t; ,.. :: a ..,, ntl rly. Similar-

r., t-MerL, F hal piiut , view. the SUCCESSIVE SAMPLES OFF
-.-.:rimenlt". Icn ; double bind: a compromlise

.:, be reac_.ea bztween the desire to avoid deci-

sions base .,n insufficient data and the conflict- FIGURE 1. Signal /(Signal + Noise) Ratios

ing desire :, maintain the shortest 
possible feed-

pack loop. We have sought to minimize these pro-

blems by deveioping a real time signal-to-noise 
successive ratio values for seven 58-sample 

func-

estimation eigorithm. 
tion averages of stimulus-ON (top) 

and the some

We have used a INC-8 computer for implements- number of sample functions for the stimulus-OFF

tion of our estimation scheme and for analyzing condition (bottom). The successive 
ratios for a

the coherent chancas in the EEG alpha 
rhythm in single cumulative average constitute 

a sort of

response to coherent zrains of 10 microsec photic "stabilization pathway" for the average. 
It is

flashes (Grass PS-2 pnoostimulator 
at intensity readily apparent in these records that 

there is

#4) delivered through closed eyelids. 
The inter- greater redundancy as the number of sample func-

flash period was ;et equal to tihe mean period of tions inthe average increases, ahd 
that there is

the .*it,iomotia aiph., rhythm as metlsured by auto- a large difference between the stimulus-ON 
and

correlat hoo. Indivdiial rlKht and left occipital stimulus-OFF conditions. Consequent ly, 
we believe

r;ca.lp tictrodei were referred to the yoked ear- that this estimation scheme holds considerable , p,-

lob.- elcrode. The cortical potentials were amp- tential for quanticative, fully automatic 
assess-.

lified filered (bandpass
= 5 

Hz with 24 db per ments of signal and noise components in 
this type

octave roil-oif), and converted into 
digital'form of evoked response.

at a msec sampling race. Each sample 
function

w 75 m Fec duration and was always synchronous 
The authors wish to acknowledge the technical

wt: i. flish :t I . The average amplitude of the assistance of Miss Janice HcMIllin(NASA/ARC).

ecd peaks was measured. This value was treat-

Sth.; maximum signal contribution to tile avor-

,* co b, expected I L the signal w,'re fully co-

S. dcrepacy between the coherent pre-tig Professor of Electri neern

di to al:d the obtained average was Irteated as *V S itnford University Stonlrd, Cal Engineering,

n,ise. Die ratio of signal to the combined slg- Stanford University, Stanford, California 9430.

nal and noise estimates wtas re-computed as each

new sample function was entered into the average.
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A NONLINEAR MODEL OF EEG ENTRAINMENT
BY PERIODIC PHOTIC STIMULATION

J. R. Nickolls

Stanford University, Stanford, California

D. C. Lai

Stanford University and University of Vermont

J. E. Anliker

NASA/Ames Research Center, Moffett Field, California

The phenomenon that the EEG alpha rhythm synchronizes with periodic
visual stimuli has been observed since the beginnings of electroen.-
cephalographyl. The brain's entrainment ability depends on several
factors, including its internal state or condition. Since a quanti-
tative estimate of a particular brain state such as alertness has
many practical applications, a mathematical model of an associated
input-output relationship is of great use. The quantitative variations of
the model parameters can be correlated with various brain states using
empirical data and model simulation.

We are using a nonlinear oscillator to model a stimulus-response rela-
tionship of the brain.. In particular, we are investigating the entrain-
ment of the human alpha rhythm by periodic photic stimuli. The model
elucidates the relationships between the frequency, phase, and amplitude
of the alpha waveform and the frequency and amplitude of the stimulus.
This model is clearly applicable to other phenomena such as the flicker
effect and photically induced epileptic seizures.

The nonlinear oscillator used in our study is a van der Pol oscillator.
This has also been suggested by Dewan 2 . The analysis treats en-
trainment by pulse trains since our experimental stimuli are strobo-
scopic flashes. The theoretical analysis is made with an extension of
Blaquiere's time-domain method 3. In this paper, we will report on
harmonic entrainment, and combined frequency oscillations. Both model-
simulated re'sults and extensive experimental results from human subjects
will be described and compared.

The simulations of the model have been made on a digital computer, and
the results will be presented for direct comparison with results derived
from EEG data. The empirical data were obtained from alert subjects
photically driven over a wide range of frequencies, and exhibit harmonic,

13 PRECEDING PAGE BLANK NOT FILMED



subharmonic, and superharmonic entrainment, as well as combined fre-quency oscillations. The model accounts for these critical phenomena
well; its validity has been established through extensive empirical
EEG data. Further work on the model and its applications are in pro-gress.
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Abstract

PREDICTION OF EEG ALPHA WAVEFORMS.
USING AN AUTOREGRESSIVE MODEL

A. Shah, D. C. Lai, and J. E. Anliker

An autoregressive process X t of order p is defined by the

following difference equation

X = a X + aX + . . + aX + e
t 1 t-l 2 t-2 p t-p t

where e. is additive noise and the a's are the parameters of the
t

process. These parameters can be estimated from the time-series by a

simpile non-iterative least-squares method. For the case where the noise

is Gaussian, these least-squares estimates approximate very closely

-he maximum-likelihood estimates. Such a model is well known for the

analvsis of stationary time-series. In particular, it has been used

quite extensively for the estimation of EEG power spectra.. However,

the alpha rnhythm of the EEG has slowly changing characteristics which

can be treated as piece-wise stationary but long samples cannot be

treated in this manner. We have developed an algorithm which computes

the least-squares estimates of the parameters of a 7th order process

from a short sample of the alpha rhythm. The order has been estimated

from the autocorrelation and partial autocorrelation functions of the

signal. The algorithm then uses the model for least-squares prediction

up to some maximum lead time. Probability limits for the forecasts

(assuming Gaussian noise) are also computed. As more data becomes

available, the sample window is moved forward and the parameter estimates

updated to reflect the changing characteristics of the alpha rhythm.

The performance of this predictive model is evaluated by the mean-square

error in the forecasts. The maximum forecast lead time can be varied. We

have found the model quite useful for prediction as much half an alpha

cycle (approximately 50 ms.) in advance.




