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ABSTRACT

Feasibility of utilizing the Random Decrement method in conjunc-
tion with a Signature analysis procedure to determine the dynamic
characteristics of an aeroelastic system for the purpose of on-line
prediction of potential on-set of flutter has been examined.

| Digital computer programs were devéloped to simuléte.sampled
response signals of a two-mode aeroelastic system. Simulated response
data were used to test the Random Decrement method. A special curve-
fit approéch was.developed for analyzing the resulting Signatures. A
number of numerical ”experiments” were conducted on the combined‘pro—
cessess. The méthod‘was‘fdund to be capable of determining frequency
and damping values accurately from Randomdec Signatures of carefully

selected lengths.
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SUMMARY

An ensemble averaging method for determining the characteristic
response function of an aeroelastic system from its turbulence-induced
random vibrations was developed recently by Henry A. Cole, Jr. The
most significant feature of this (the Random'Decrement) method is that
very little knowledge about the excitatiom is required to obtzin use-
ful results (Randomdec Signatures). Provided an,automated numerical
procedure camn be developed to analyze Signatures, the Random Decrement
method can be very useful for on-line prediction of the on-set of flut-
ter during subcritical wind tunnel or flight testing.

The Signaiure analysis procedure selected for investigation under-
this project is that of a curve-fitting nature. A Randomdec Signatpré
is approximated by the ;heoretical homogeneous solution of the mathe-
matical model of tﬁe zeroelastic system under consideration. An errof‘
function between the Signature and the analytical expression is defined,
determined and numerically minimized. Those coefficients in the theo-
retical solution which lead to a minimum error are said to be the best
approximations of the dynamic properties of the aeroelastic system.

Digital simulation technigues were‘employed to ga;;yféﬁg pgmgri—
cal experiments for investigating effects of variation of systém, data
acquisition, Randomdec and curve-fit parameters on the accuracy of the

overall approach.



Section 1

INTRODUCTION

The need for an accurate, reliable and rapid means to forecast
the onset of flutter during subcritical wind-tunnel and flight tests
of aervelastic structures is widely recognized. That this need exists .
today is evidenced by the number and variety of current and recently
completed research and development programs in the United Sfates and
abroad (References 1, 2 and 3), as well as by the-differences anong
methods used by various organizations (Referénces 4, 5, 6 and 7).

Coupry (Reference 4) and Cole (References 5, 6, 8 and 9) both advocate
the utilization and on-line processing of wind induced dynamic response
signais from the test specimen for flutter prediction and fallure de-
tection. Their approaches have obvious advantages over other methods
in which "controlled" excitations (impulsive, periocdic and/or other
kinds of forces) must be applied to induce responses in those vibra-
tional modes which eventually fiutter.

Coupry relies on rapid PSD analyses of the response signal and
modal identification in the frequency domain. The accuracy of the
method suffers when flutter modes are closely spaced on the frequency
axis. The method also depends on the PSD of the excitgtion (in this
case, the effects of turbulence) being reasonably flat over the fre-
quency range in which the flutter modes reside.

Cole first introduced the concept of what was later named the
Random Decrement method in Reference 5 while investigating applications
of the correlation functions. He subsequently used it at NASA/Ames
Research Center for detecting fatigue failures in a2 Space Shuttle
wing flutter model (Reference 6). The method received full treatment

by the inventor in References 8§ and 9.



The Random Decrement method is essentially an ensemble averaging
procedure which determines the characteristic response function (the
Randomdec Signature) of an aercelastic specimen under test from its
turbulence-induced random vibrations.

To obtain a Randomdec Signature, one simply collects a number of
scgments of time series representing the random responses of a systen,
and ensemb1e~avérages them. If the systeg is linear and the excitation
random, the average time series converges towards the transient response
of the system due to a set of initial conditions. The order of the sys-
tem is arbitrary. The initial conditions to which the Signature cor-
responds can be manipulated almost at will by judicial "triggering”
(selection of the starting point) of each ensemble member. For failure
detection and for property identification of nonlinear structures, Cole
favors triggering at a constant response level. The resulting Signature
is an approximating time series of the characteristic response function*
of the specimen in its natural environment at an amplitude which is e-
qual to the trigger level. For flutter prediction in linear systems, ¢on-
stant-level triggering is not necessary, and various other methods be-
come optionally available. Since the ensemble averaging procedure can-
not be carried out indefinitely in practical situations, the Randomdec
Signature will contain a certain amount of error which generally makes
direct (visual) interpretation and determination of system dynamic
characteristics difficult. The main objective of this study is
to investigate the feasibility of utilizing the Random Decrement method
in conjunction with a Signature analysis procedure to determine the
dynamic characteristics of an aercelastic system under test for the

purpose of on-line prediction of potential on-set of flutter.

*The existence of a characteristic response function for a nonlinear system
is an assumption.



The Signature analysis procedure selected for investigation un-
der this project is that of a cﬁrve—fitting nature, A Randomdec Sig-
nature is approximated by the theoretical homogeneous solution for the
mathematical model of the aeroelastic system. An crror function between
the Signature and the analytical expression is defined, determined and
nunerically minimized. Those coefficients in the theoretical solution
which lead to a minimum error are said to be the best approximations
of the dynamic properties of the aercelastic system.

Digital computer programs were developed to simulate sampled re-
sponse signals of a two-mode zeroelastic system. Simulated response
data were used to test the Random Decrement method. A special curve-—’
fit approach was developed for analyzing the resulting Signstures. A
rumber of numerical "experiments" were conducted on the combined pro-
cesses. Results of these experiments indicate definite feasibility
of combination of the approaches.

Analyses of the Random Decrement method and the curve-fit pro-
cedures are presented in Sections 3 and 4 of this report, fespectively.
Section 5 deals with the simulation of response signals and the imple-
mentation of the Random Decrement procedures. Numerical results of
the investigation are summarized in Section 6.

Computer programs developed for this study are described in Appen-
dix A, A sample test case with typical input and output is included

in Appendix B.



Section 2

SYMBOLS

All symbols used in the text portion of this report are defined
when they are first introduced. The following is a cross-reference

of these symbols arranged in alphabetical order.

SYMBOL DEFINITION

a. Quasi-steady aerodynamic generalized force in
) the ith mode

Ai(s) History dependent component of generalized force
in the ith mode due to aerodynamics

b. See definition of (-T./b.)
i "7
Bi Amplitude in the ith mode of the anti-symmetric
part of the periodic factor of a Randomdec Sig-
nature
B. Best approximation of B, determined by least-
* squares curve-fit
BC. "Box-car' componeunts of the generalized force
ik . .
in the ith mode
¢ Total modal damping coefficient in the ith mode
c; Modal damping coefficient of the structure in
still air
C; Modal damping coefficient due to aerodynamics
7
c; Intermediate variable used in the curve-fit pro-
‘TESS
L . .
dm Correction factors calculated by the curve-fit
procedure for the parameters S during the %th
iteration
Di Amplitude in the ith mode of the symmetric part

of the periodic factor of a Randomdec Signature

Best approximation of D, determined by least-
squares curve-fit



e(w) Infinite Fourier Transform of measured velocity
response of an aeroelastic system, including
effects of low-pass filters

E Error function used to gauge the degree of
success of a curve-fitting process

ER Ervor function B after 2 iterations of the curve-
fit process

fb Bandwidth of the response simulation process,
Hertz

£.(t) Inverse Laplace Transform of the factor in the

z ’ transfer function on the ith mode which distin-
guishes an aeroelastic system from a purely
mechanical system. For a purely mechanical
system, fi(t) is a Dirac Delta function

F.K Sequences of random numbers used to construct

J QiK in the simulation process

g A dummy integer subscript used in intermediate
steps in the curve-fit process

hi(t) Impulse response function of the ith mode due
to an impulse applied at t=0

h;(t) Convolution of fi(t] and h;(t)

R (t) Inverse Laplace Transform of the factor in the

= transfer function in the ith mode, which is
responsible for flutter of an aeroelastic sys-
tem when its poles move on to the imaginary
axis

i A subscript identifying modal parameters and
variables, i=1,. . . . 1

1 See definition of i.

i -Index used tc identify those modes in which
generalized forces are statistically related,
j=1, . . . . J<I

J See definition of j.

k Sample counter, k=1,2, . . . K

ki Total generalized stiffness in the ith mode

ki Generalized stiffness of the structure in still
air



k" Generalized stiffness due to aerodynamics

K See defnintion of k
L{1} 1 The Laplace Transform operator
m An integer subscript used to associate inter-

mediate variables in the curve-fit process with
the various um's

m, Total generalized mass in the ith mode

m; Generalized mass of the structure in still air
m; Generalized mass due to aerodynamics

n An integer counter used in script form for en-

semble members in the Random Decrement process.
Tt is also used im identifying the time associated
With each ensemble observation.

N See definition of n
Pio Average initial velocity in the ith mode after N
ensemble averages
P:o Velocity in the ith mode at t=t_,, which is also
= the initial modal velocity of the nth member used
in the Random Decrement process
X Simulated periodic components of the generalized
ik : .
forces in the ith mode
qi{t) Response (displacement) of the ith mocde
qi(o) Initial displacement in the ith mode as a function of time
ai(o) Initial velocity in the ith mode as a function of time
E? Mean-squared value of response in the ith mode as a
* function of time
q2(t) Expected squared value of response in the i1th mode
* as a function of time
. Average initial displacement in the ith mode after
* N ensemble averages
qin(tm)' Response in the ith mode collected by the Random

Decrement process as the nth ensemble member,
starting at tn=0



q Displacement in the ith mode at t=t,,, which

1no is also the initial modal displacement of the
nth member used in the Random Decrement process
Qi(t) Generalized force in the ith mode
Q) Part of generalized force in the ith mode
+ which is statistically independent of generalized
forces in all other modes.
Q;(t) Part of generalized force in the ith mode
which is statistically related to a similar
component in the jth mode
Q. Mean-squared value of the generalized force
i - ;
in the ith mode
Qtz Mean-squared value of Qi
i
-5
Qi Mean-squared value of Q;.
Q.K Simutated random components of generalized force
* for the ith mode. Q. 1is simulated at discrete time points
2 kd only. K ;
rgk Intermediate variable used in the curve-fit process
Rz Intérmediate variable used in the curve-fit process
R.. Coefficients relating generalized forces in dif-
+J ferent modes which are statistically dependent
s Laplace Transform variable
SN(t'} "Signal' part of a2 Randomdec Signature
Sm{t') Ideal Randomdec Signature obtained by ensemble
averaging infinitely many statistically inde-
pendent response samples
1 Time
! Running variable for time for all members colliected
by the Random Decrement process. It is also used
as the independent variable for the ensemble average
of all members (the Randomdec Signature).
tn Running independent variable for the nth member

coliected in the Random Decrement process, tn:t-tno'



no

Un(t')

1
0y (")
Uy

y{t')

Time at which the nth ensemble member begins. Tt
is also the nth triggering time in the Random De-
crement process.

Length of a Randomdec Signature

Time constants of simulated low-pass filters used
in data acquisition system

Time constant in the generalized force in the
ith mode associated with Ai(s)

Real pole of the transfer function in the ith mede
of an aeroelastic system

Measurable response of a dynamic system

Mean-squared value of system response

Total response function collected as the nth
member of the ensemble by the Random Decrement
process

Ensemble average of Un(t')

Value of the kth point in the Randomdec Signature

Theoretical homogeneous solution of a purely
mechanical system used to approximate an aero-
elastic systenm

L}
y(t )[t'=k6
A weighting functional

Equivalent to B

Equivalent to {
Equivalent to &

Equivalent to D
Equivalnet to B

Equivalent to T

Equivalent to w



Equivalent to D2

General representation of a , o .

| S 8

Intermediate variable used in the curve-fit process

"Noise" part of a Randomdec Signature

Mean-squared value of the noise term in a Randomdec
Signature

Expected value of the noise term, YN(t') in the
Randomdec Signature

Expected squared value of the noise term in a
Randomdec Sigmature attributed to the ith modal
Tesponse

Sampling peried in a data acquisition process

Frequency resolution of the response simulation
process in units of Hertz

Intermediate variable used in the curve-fit process

Larger of gi and CZ
Damping factor of the ith mode

Real parts of the complex poles of the transfer
function in the ith mode of an aeroelastic system

Best approximation of ;; determined by least-
squares curve-fit

1%

An integer subscript used as a counter for simu-
lated sampled response data

An integer superscript used as a counter in the
iterative curve-fit process

See definition of pv
Multiplying scale factors for optimize step size

in searching for least-squares curve fit, v=1,2,3
pV:(o_s)(v—l)



Integration (dummy) variable for t

Intermediate variable used in the curve-fit process
Intermediate variable used in the curve-fit process

Natural frequency of the ith mode

Tmaginary part of the complex poles of the transfer
function in the ith mode of an aeroelastic system

Damped_natural frequency of the ith mode, w, =
2k, i

2 i
Abbreviation for (1 - C; )%wf
i

. . ! -
Best approximation of w. determined by least-squares
curve-fit *

10



Section 3

MATHEMATICAL FOUNDATIONS OF RANDOM DECREMENT

The mathematical foundation of the Random Decrement method is

derived in the following for a linear time-invariant system.

Let t

time, the independent varisble, -« < t < = ;

It

udt) measurable response of a system;

i = a subscript used to identify modal parameters
and variables, i=1, 2, . . . I, (the system is

of order 2I);

qi(t) modal responses;

Qi(t) = generalized forces;

]

and hi(t) modal response functions after an impulse applied at t=0.

The measured (totazl) response is the sum of all modal responses:

I
u(t) =g q; (t).
i=1

For physically realizable {casual), second-order modes, we have

0, 0 < t;

hi(t)
-z.0,t
e * 1 sin[(1~c§)%wit], t > 0, 1)

h, (t)

and hift) has a finite discontinuity at t=0. 1In the above expressious,
ws is the undamped modal natural frequency and & the modal damping fac-

tor. For any point tn0 (n=1, 2, . . . N} on thé time axis, let

YUno ~ qi(t)|t=t s
no

11



Ps_, = - |
O e t=t
no
. dhi(t)
and hi(t) = t#0.
dt

The response function in each mode may be written, in general, as

2C.w )h (t - &) + q, h, (t - t )

i'i 1110 no ino 1

q;(t) = (p

. +
ino

t
+J/” Qi(T)hi(t - T)dT
t

where T is an integration (dummy) variable. For each n, we define a

new independent variable

and a new modal response function
9y, (t ) =q,(t + ¢t ),

which may be written for each n as

qin(tn) = (Pino * 2‘:j.miqino)hi(tn) * qinohi(tn)

tn
+f Q(t - t Oh(t_ - T)dr.
0

Since tn starts from zero for each n, it is unnecessary to distinguish
them in the iast egustion. We may, therefore, use & common independent

variable t*' for all tn and write

q;, (") = (py o + 26;w,q, Ih.(27) +q, b (T7) (2}

tl
4-J/~ Qi(t - tno)hi(t' - T)dTt.

0

12



Summing over [ modes, the response function for each observation be-

inning with t=t is
£ g no

I
u (") =i§1(Pin +2t.w.a;, Jh (27)
1
* E ql‘ﬂO 1(t')
i=1
I !
+_1§1 Qi(T - tno)hi(t - T)dT.

Uy (")

i
E (Pino * 2C1wlqlno)hi(t')

2| =

1 I
TN z Z qlnohl(t )

n=1 i=1
{ Q,(r - t_Jh, (' - T)dr

I 1 N
i=1 “n=1

+

| 4=

g
n b bt

[

Pino

N

2, 2z w;h, (t )[—nzlq ]

+
M~

I N
il ? (t ){N E qan]

1INt'
+ ﬁ"E X U/P Qi(T - tno]hi(t' - 1)dT.
i=1 n=1%g

13
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N

. Piro and %»Z 9o BT€ the average (over N observations)
n=1

™M =

The quantities %
n

initial modal velocity and displacement, Pig and ds o respectively. We
may, therefore, regard the ensemble average of the response functions as
being of two parts. The first part has a deterministic functional form,
and its magnitude is established by Py and S We shall call this part

the "signal", and represent it by

* 2C,w.q; )b, (') + g b (£1)]. (4)

N4 e

Sy(t') = Z [(p,

1 10

i

The second part, the last term in Equation (3), is the system response
to the generalized forces, and in our discussions bélow, it will be
called the "noise", represented by YN(t'). Itjis the ensemble average
offbrced responses and its characteristics are dependent on the charac-
teristicéof the gene?alized forces,Qi{t). By interchaﬁging the order
of summation and integration operations, the noise term in Fquation (3)
may be re-written in the following form:

t’ N
J/, hi(t' -0z Qi(T - tno)]dr

1

r = =
.YN\t') N
1 4] n=1

i

[

Shorthand notations

N

QiN(T) =z Q- tno)’ and
n=1

tl
Yn(t') = f h. (&' - 1)Q;,(T)dr.

0
will be used.

14



For a given set of Qi’ the noise term may be evaluated. Since
Qi(t) may be related to one another, it is necessary to split each

generalized force into unrelated components Q; (t) and Q;;(t) as fol-

lows:

Q (t) = Q;(¥) +

™M e

R.. Q'(t), for each i, 5
;G (5)

j=1

where ceoefficients Rij contrcel which and how the generalized forces are’
related.

We consider first the simple case defined by

.. =0
1]

for all combinations of i and j, and where each Q;(t) is an independent
and stationary random white noise. Then the exgected squared value of

the noise term &s a function of t' in each mode mzy be evaluated by the

technique outlined in Section 6.2, Reference 10, and is as follows:

. - t'
2 2 2
vig(t) = N QS f RS (t' - T)dT,
0

where Qi is the mean-squared value of the generalized force Qi(t)'
The expected value of Y;(t') is, therefore,

_— 1

. _4-_1‘:!
2 1 2 2,
Yyt =xg Z Qij hi(t' - T)dr. (6)
i=1 0

Cross products containing different indices do not appear because of
the assumed statistical independences among the various generalized
forces. Each integral on the right-hand side of Equation (6) can be

evaluated:

=15



‘ [tiz tezme et -,
hi(t’ - T)dtT = e sin [(mi(t' - 1)ldr

~2C.w.t!
i 2 i~i 2 — 2 % —
= _— |1 - R - 1 _ 2e3 - t
4Cimi { Cl € (1 ciCOSZwit + ci(l gi) 51n2uit 1]

— 2 %
where w, = {1 - Ci) mi.
For small values of Lys the ahove equation may be réplaced by the approximetion:

t'
~2r.w. ¢!
2 . 1 ii
f R(t' - T)dT = - (1 -e ).

A 4Ciwl

%)

Using Expression (7) in Equation (6) we obtain

— ~2C.w.t!
G- P
1

2z 1
Yoty = 2
N(-) N

| NS

)/ (AT ).

i

The last equation may be cleared of the generalized forces explicitly

by noting that the mean-squared response for each mode is

2 2 2
g. = 1im q, (t) = Q,/4C.w..
i e U T 1
Therefore,
I — -2;.w.t°
2 1 2 i
Yult') = g Zq;( - e ), (&)
. i=1 .
Z .2 .1 I 72
and Yy, =limy (')~ 5 ¥ g
N N N i
toe i=1

lé



On account of the assumed statistical independency of the gener-
alized forces, the modal response components are also independent of
one another. The mean-squared value of the measured response is, con-

sequently, the sum of the mean-squared modal responses:

—_— I_
2 2
U —‘E q; -
i=1
So that
72 1.2
YN =35 U-. %)

If the generalized forces are not completely independent of one
another as we have assumed in the first example, the general expfession
of Equation (5) should be used. Instead of Equation (6), a more com-
plex expression will be obtained for ;gkt'). The added complexity, hqw—
ever, is only bookkeeping in nature and presents no fundamental dif-
ficulties. We will demonstrate: via a second example, that the same
estimate on the noise term is still valid when the generalized forces
are related to one another.

Let us restrict our attention to a two-mode system (i.e., I = 2),

with generalized forces
- 11 1
Ql - Ql + st
_ AN
and QZ = QZ.
In other words, we set

Qj (£) = Qy(t) = 0,

Ripg "Ry =Ry = L

17



and RZl = 0,

in Equation (5) for T = 2. The noise term in Equation (3) is in this

case
1 ¢ N
Yyt = § f hy(t' - DZ QT - £ )]dr
0 n=1
i v N
+ ﬁf [h, (t' - 1) + hy(t' - DI Z Q7 - t_)ldr,
0 n=1

Since Q;(t) and Qg(t) are statistically independent,

t! tr
2 1 1 Tt
Yot = 5 @) f Ri(e! - mat & (Qz)zf [hy (et = ©) + hy(e' -] dr
0 0
A 2 ¢
1 " 2 1 '
= ﬁ.[(ql) + (Qg} 1 Jér hl(t - T)dT
1.2 e 2
* 5 (sz f ho (t' - 1)dT (10)
0
+ 2?2 [h, (t' - T)h,(t' - T)dT
N2 S 1 2 :
where (&E}Z and (6?;2 are the mean-squared values of Q;(t) and Q;(t),

respectively. We know from the first example that

w. t!

JR— [P t' — _2:
iy 2
[Qp)” + (Q'z')zj f hf(t' - T)dT =~ qzl(l ~e L1y,
: 0
= t! - -2C_w t'
and Q22f hﬁ(t' - T)dT = qé(l e 272,
0

The last integral in Equation (10) is the only one ‘which we have not seen
until now. Upon carrying out the indicated integration, however, we

find its magnitude to be of the order g, the greater of Cl and gz. For a

18



lightly damped system, therefore, Equations {8) and (9) can still be
used to estimate the mean-sgquared value of the noise term.
We now summarize results as follows: The ensemble average of N

sample series of the total response function is the sum of a signal

term, SN(t'), and a noise term YN(t'):
1y = 1 1
Ug(e') = Sy (€' + vy(th),

where the form of SN(t') is deterministic, and its magnitude is controlled
by the average values of the modal responses and their derivatives atithe
the beginning of all samples (t=tno, n=1, 2, . . . N}; and where YN(t‘)
has a mean-squared value which grows from a near-zero value at t'=0,
to one Nth of the mean-squared value of the measured respénse at large
t'. A pictorial representation of UN(t') is shown in Figure 1 for a
one-mode system.

If the starting times to, of all sample series are selected on
the basis of the total response, its derivative, or a combination of
Both, in such a manner that SN(t‘) does not continually diminish with

increasing N, i.e., if

1im UN(t') = S_(t') # 0 for all t'.

N=<o

Since Qa(t') contains parameters required to specify the system; it
will be called the Ideal Signature of the system.
A Randomdec Signature (of N averages), on the other hand, is the

truncated function:

UN(t’) = SN(t') + YN(t'), t'= T, a finite "signature length".
where SN(t'] is defined by Equation (4).
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The selection of starting times tno is called "triggering".
A proper triggering method is required to guarantee the convergence
of the ensemble average to a usable* Randomdec Signature in a reason-
able** time. Two examples of triggering methods are shown in Fi-
gure 2. With the Level Triggering method, tno = every time respoﬁse
signal crosses a presclected level, regardless of the sign of the
slope. With the Zero-Crossing Triggering method, tho = every time response
‘crosses zero with a plus slope. A third method which is not shown in Figure
2 is the Every-Point Triggering method where‘tno = every sampling time.
Each triggering method will lead to a Randomdec Signature with a different
apparent form. For 2 linear system, they all contain the same information
so far as system dvmamic properties are concerned. This is because

-E.mit' .
e sinwit', and

i

hi(t')

—Ciwit' _ _ .
- e (C.w.sinw.t' - w.cosw.t')
1 1 i 1 i

h. (t1)

so that UN(t') may bhe written in the following general form for all
Randomdec Signatures regardless of the trigger methods used, see Equa-.
tions 3, 4 and 5:

-C.w.t!

1
v - 11 CR PR [ Is
UN(t ) —i§le (8151nmit + Dicosmit o+ YN(t ). {12} .

Different triggering methods merely give us different combinations of

B. and D..
i i

* The usefulness of a Randomdec Signature depends on the method employed
to analyze it, and 1s one of the main objectives of our study. More dis-
cussions will be found in Section 6.

**Qur main concern is the minimum amount of data required to obtain a
useful Randomdec Signature. Time is most appropriately measured in
terms of the period of the lowest frequency content of interest.
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Let us turn our attention to the forcing function on an aero-
elastic structure at subcritical velocities. We will continue to
assume that the structural properties are invariant with respect to
time, and that the forcing function is stationary. In other words,
the following analysis is applicable when the velocity is constant
and below the flutter velocity. Let us consider the state of affairs 1in
a typical mode. The generalized force may be split up into three basic.parts:
the first part, Qi(t), is independent of modal responses and is stationary,
wideband and random; a second part which is dependent on the modal
Tesponse, and can be further divided into aerodynamic inertia, damp-
ing and stiffness components; and a third part which is dependent on

the response historxf For the ith mode, let
mi = generalized mass of the structure in still air,
m\ = generalized mass due to aerodynamics,

m. = m! + m’,
i i

¢! = modal damping coefficient of the structure in

I
still air,
c; = modal damping coefficient due to aerodynamics,
c. = ¢! + ¢V,
i 1 1
k; = generalized stiffness of the structure in stiil
air,

kg = generalized stiffness due to aerodynamics,
k. = k! + k",
i i

q; (0} = modal initial displacement, and
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&i(o) = modal initial velocity.

The equation of motion for each mode of the aeroelastic systems
can be expressed most readily with the help of the Laplace Transform

and can be written as
[m s2 +¢.5 + k, + A, (s)]q.(s)
i i i i i
= mQ; (s) + myq; (0)s + m.q, (0) + ¢;q. (o) (13)

where s is the transform variable, and

q; (s) L{qi(t)},*

Qi(s) L{Qi(t)}.

The term Ai(s) is & general representation of the history-dependent
components of the unsteady aecrodynamic forces. The simplest version

of Ai(s) is a first-order lag:

Ai(sj = Tis + 1

where as is the quasi-steady aerodynamic force and Ti is the associated

time constant.

The following solution of the modal response function is ob-

tained from Equatiom (13):

0, (s) + mq (0)s + md, (o) + (@) ](Tys + 1)

q; (s} = —
(mis regs o+ ki)(TiS + 1) + a;

The denominator can be expanded, factored and put into the form

2 [} 1] ] 2
mi(s + ZZiwis + oWy )(Tis + bi):

*The same symbol will be used for the variable and its Laplace Transform.
The independent variables will always be used to distinguish them. How-
ever, when a symbol is used to represent an initial condition, the "o'' imn

parentheses indicates that the quantity in question is a constant {the
value of the associated variable at t=0 or t'=0)
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with bi’ mi and gi related to the original set of coefficients by

the following expressions:

—_ - |__
by = b - 20550 - 50;)T5s (15)
2 2
==
g wi[l + ai/ki)/bi’ and (16)
2ciw! = (20,0, - @2 - 43T, 7/b (17}
i1 i1 1 1771 i’

The modal response can now be written as

. (5) - Qi[SJ * q;lo)s + qi(O) + 2éimi q; (0) . T.s + 1 (18)
: 52 1+ 2rlwls + m.‘z T.s + b,
11 a 1 i
Let
Ly 5 1 2} = hv(t), (19)
s+ 2glels + w! i
1 Tis +1
L {T p—— } = fi(t), and (20)
hg(t) * fi(t) = hi(t)- (21)

The time-domain solution for the statiomary subcritical response func-
tioncan then be written in terms of h; {t), the initial conditions, and

the motion-independent forcing function as follows:

q;(£) = q;(0)B! (6) + [3;(0) + 20,w;q, (@) Th} (¥) (22)
t
+ f QiCT)hi(t - T)dT.
0
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As (ai/ki) and (Tiwi) approach zero,
b, + 1,
w! > w.,
i i
and Zgimi - Zgimi’

so that h;(t) > hi{t) and fi(t) becomes a Dirac delta. The solution
consequently appreoaches that for a purely mechanical system. As
(ai/ki) and (Timi) deviate from zero, the impulse response function
hé(t) mist be evaluated by the convolution between hg(t) and fi(t).
The corresponding Randomdec Signature is

U(t) = [,

1 1 1 1 -
2P0 * 20,05q;,1 hi(e') = g hy (2 (23)

vy et

We see that for an aeroelastic system at a subcritical velocity, the
Random Decrement procedure will produce a Signature which differs
from that of a purely mechanical system, only in the difference be-
tween h%{t) and hi(t). In representing the solution by Equations
{15)-{22), the above mathematical differences between solutions of
the two types of systems arc more easily related to the physical dif-
ferences.

In any case, we see that the addition of the lag term does not

increase the number of independent initial conditions beyond two

per mode.
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Finally,
Q, (t) =Q, (),
regarding all
Equation (14)

ence 11).

we remark that by (1) setting 1=2, 4,25, T and

= 1:T2 ’
(2) linearly combining ql(t) and qz(t), and {3) dis-

initial conditions, we will be able to simulate with

the special case used by Houbolt (Equation (48), Refer-
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Sectiocn 4

SYSTEM IDENTIFICATION VIA SIGNATURE CURVE FITTING

The Randomdec Signature is a truncated approximation of the
characteristic response function (transient response function due
to initial conditions) of the system in question. It contains in-
formation on the system characteristics. From suberitical {lutter
testing point of view, it is important to be able to determine the
natural frequencies and damping ratios from the Signature, The
method selected to accomplish this objective is described below.

Our efforts are concentrated on a two-mode aeroelastic system
which is characterized by the ten parameters wi, wé, Ci’ Cé’ m
m, al, 2, T1 and T2. The generalized masses m, and m, cannot be
determined from Randomdec Signatures because they appear explicitiy
only in forced response solutions. Fortunately their determination
is not needed in suberitical testing as they are only multiplying
constants for the responses and do not directly relate to stability.
To completely specify a Randomdec Signature for a two-mode system,
four additional parameters corresponding to the initial amplitudes
and velocities in the Signature as governed by the triggering me-
thod are required. The data acquisition equipment and process is
assumed to introduce yet another three parameters: the sampling period,
8§ and +two filter time constants, Tb and Tc' The objective of
the curve-fit procedure 1s to determine the best estimates for the

four most important system parvameters W ! ', and gé in the

1

1: mz: 13

presence of all others, from an imperfect Signature in which not
all effects of the forcing function have been averaged out. We

will try to curve-fit the Signature, UN(t'), by
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I -Ciwit' - _
L] — 3 I 1
y(t') =z (Bysimo, t' + D cosw.t')

i=1 (23)

With B! = (1 - w2y %!

i i i

In approaching the problem this way, we are assuming that

() In a real test situation, the response transducer and sig-
nal conditioning equipment and process are reasonably good, so that
the cut-off frequencies Wy and W, corresponding to Tb and TC, Tespec-

tively. are very high in comparison with mi and mé.

(b) The effects of ai and Ti are primarily on the natural fre-
quencies and damping ratios, and by using wi and Ci in h;[t), most
of the differences between the impulse Tesponse functions of the
aeroelastic system and a purely mechanical system has already been
accounted for. Putting it in another way, the convolution indicated
by Equation {21) is assumed to produce only small differences between
h;(t) and hi(t]. (The consequent error can be estimated by the dif-
ference between fi(t) and the Dirac Delta.)

In view of Equation (18), our approach is valid because flutter

is reached when Ci or Cé(not when 51 or Cz) become non-positive.

We begin the curve-fit procedure by defining an error-measuring

function E. The most commonly used function for this purpose is the mean-

squared erroT:

T
1 - ) 1 1 2 L
T f fy(e') - Uy(er)]der. (24)
0
In the case where UN(t') is defined only at t'=ké, k=1,Z, ....K,

(i.e., if sampled data are used), E is written as

K
1 2
E='_'E(Y' ):
O S
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where ¥, = y(ké),
and UNk = UN(kﬁ).

A more general approach is to introduce weighting and use

tzlyd - ZCUNk}}Z- (24a)
1

E =

o=

1
K

Parameter values gij Qi’ gi and E; which minimize E will be
considered as the optimum approximations of the true parameters.”
The method of minimization is based on the Gauss-Newton method (Refe-
rence 12} modified by Roman (Reference 13) and further modified dur-
ing the course of this project. An initial estimate of parameter va-
lues is made. This estimate is upgraded by information based on the
slopes of the error function E with respect to variation of each of
the parameters. For purpose of the_following discussion, it will be

convenient to rename the parameters in accordance with the following:

o, = B

1 1
Gy = 9
@y = w!
m4 = Dl (25)
QS = 32
% = T34
., = w!
and Qg = Dz.

*The parameters Bi and Di are not system properties but have to be deter-

mined in the curve-fit process.
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Let a;, m=1,2,3,4,5,6,7 and § be an inital set of estimated values

of o s and let
2 Z

be the indicated derivatives evaluated at t'=kS during the Lth itera-

tion. In addition, we calculate

L _ L 13
Bmk B Ck(ay/aam}k’
L _ L2
K
ALY
Lo gt oy - et
Tox T Bglzlnd - 20Uy
X
) 2
RO =T ..
g o1 &k
%, o8- 1 .2
[4) = - gl ~ IR,
& 2,8
and €, = dm/am.

In the Gauss-Newton method, if
]ei] > € = a predetermined band for ail m,

improved, (& + 1)th parameters are obtained by

éi * l)z ag + dg.
i} itl m

In our method, an additional optimum step size factor pv, is

used to improve the rate of convergence and the last expression is
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modified as follows:

MO R T (26)
m m m

Initially, v = 1, and pl = 1 is used.

If the resulting ervor function

g - 1) g2

2

the step size is halfed, i.e.,
pz = 0.5,

and the error function is checked again. The process continues (v = 3,

4, ...) until
E(R + 1) ER.

(% + 1)

The resulting set of new estimates o will then be used to repeat

the entire process until the condition

(2 +
!a( - @él < e (27)

m

is satisfied for all m.

The curve-fit procedure is outlined in Figure 3. 1In addition to
the above:logic, the computer program is implemented to conduct both
a four-parameter (one-mode) and an eight-parameter (two-mode) fit each
time. For the one-mode case, the initial estimate for (a2} the natural
frequency is obtained by counting the number of samples per each "pericd”’
of the Signature; (b) the amplitude is the magnitude of maximum peak;
{c} the damping is set to zero. For the two mode case, the above set of

initial estimates are used for one of the modes, and the frequency and
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amplitude results of the one-mode curve-fit are used as initial estimates

for the other mode. Damping is again set to zero.

31



Section 5

SUBCRITICAL AERCELASTIC RESPONSE SIMULATION

The simulation of desired response signals of an aercelastic
system may be achieved in the time domain by direct numerical
integration of the governing differential equations,or by convolving, again
in the time domain, the forcing function with the impulse response
function of the system. The simulation of desired response signals may
alsoc be achieved by complex multiplication of the forcing function®
with the frequency response-function of the system in the frequency do-
main. The last approach was chosen in this study because it leads to
the implementation of a more general computer program which can be easily
altered to simulate different types of systems.

The velocity response cf an aeroelastic structure in a subcriti-
cal condition will be simulated. Velocity signal is chosen for
simulation because in practice it offers an optimum balance between
low- and high-freguency signal magnitudes under normal test environments.

From Equation (14) the modal response velocity is

p;(s) = sq,(s) - q;(0)

[sQ,(s) + s (0) - wiq, (@] (Tys + 1) - ayq, (0)/m; 28

P 2, . ;
s * Zg.w.s + wi)(Tis + 1) 2 /m

The Fourier transform for the modal velocity is obtained when s is re-

placed by nw(n =/ -1, -» < w < ») in Equation (28):

*Including initial conditions which may be considered as specizl forcing
functions.
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] [hQ, W)/} + nud, () /wF - q; (0)] (T, + 1) - a,q (0)/ (n.w)

p; (w) - .
n-uw /mi + Zqzim/mi)(ani + 1) = ai/(mimi)

The measured total velocity signal has a Fourier transform

1 L
e(w) = z Pi(m)'

(anb + 1)(anC + 1) i=1

f course, when e(w) is inverse transformed, the resulting time series
simiiates the velocity response signal.

The computer program developed during this investigation (Appendices
A & B) uses an existing fast Fourier transform (FFT) subroutine to carry
out all required forward and inverse transformations. The following re-

strictions are imposed on the simulation by the FFT*:

(a) Only equally spaced, sampled response data, in segments
of finite lengths c=n be simulated, since the FFT is a finite
discrete Fourier transform procedure.

(b) The transform of a sampled time series is comnuted for

a tfinite number of equally spaced frequencies only. Both
bandwidth and frequency resolution are limited.

{c) The number of data points in the time domain is the

same as the number of complex frequency components computed

in the frequency domain.

Based on procedural requirements of the Random Decrement method, on
desired frequency resolution and bandwidth, and on computer core size

limitations, simulated response signals are generated in 2,048-point

*Implications of, and solutions to overcome, these restrictions are dis-
cussed subsequently.
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segments. Displacement and velocity components for each mode at the
end of a segment are computed and used as initial conditions for the
following segment.

The simulation procedure is outlined in the simplified flow dia-
gram* of Figure 4, Generalized forces are created in the sampled
time domain first. For each mode, the force can contain a random
component and two deterministic components. Random components for
both modes are generated simultaneously from two independent sequences
of Gaussianly distributed random numbers. FjK’ in accordance with the

following mixing formula:

2
Qe = Q(k0) = I Ry5Fyp
j=1
where 1=1,2 and x=1,2, . . . 2,048 for each segment of simulation, ¢

is the sampling period, and k8§ are the times at which the simulated sampling

takes place. Values of the mixing coefficients, Rij’ are selected byr

the desired amount of "correlation” between the two generalized forces.

Sequences FlK and P2K have zeroc means and unity standard deviations.
Deterministic generalized force components include a periodic

?art, PiK and a "box-car’ part BCiK‘ The amplitudes, frequencies and

phase displacements of PiK’ as well as the rise- and fall-times of BCiK

are user selected via input data. The total generalized force for each

‘mode 1s

QiK - QiK i piK 7 BCiK’ i=1,2.

For each mode the above array is transformed into the discrete fre-

quency domain by the FFT. The transform operates on an array of 4,096

*Detailed flow diagrams of all computer programs are found in Appendix A.



real points. The first half of the array contains QAK; the second arrgy
are filled with zeroes*. After the transformation, only the first 2,048
complex points in the frequency domain are used. They are combined with
terms containing initial conditioms in accordance with Equation (29), and
complex-muitiplied with modal and filter frequency response functions.
The real part of the product array of 2,048 complex points 1is extended
symmetrically about the frequency origin, the imaginary part antisym-
metrically. The resulting array of 4,096 complex points is then inverss
transformed into the time domain. There will be 4,096 real points, of
which only the first 2,048 are corrvect data simulating the>sampied, £il-
tered modal velocity response.

The process is repeated for the other mode. Modal responses are
then summed point by point to obtain the desired total response signal.
All three series are kept for subsequent Random Decrement processing.

The following are the two basic relationships among sampling pericd,

8 (seconds), frequency resolution, Af-(Hertz),and bandwidth, fO(Hertz):

§ (Af)

(1/4096)

f
0

4096 (A£)

In addition, at a frequency 2,048(Af}, the number of samples per cycle”
is exactly two.

On account of the trumeation of the frequency response function, the
frequency resolutions should be set in such a manner that natural fre-
guencies of the simulated system is less than fO/Z. ~Similarly,

modal damping factors causing significant truncation errors in the time

*A standard preliminary procedure for subsequent convolution via frequency
domain multiplication, see Reference 14.
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domain (on the impulse response functions) should be avoided.

In the computer program, Random Decrement trigger points, t are

no’
estéblished by inspecting the total filtered responSe signals. The
actual ensemble averaging - processes are performed on individual modal
compenents as well as the total response signal.  This represents a
luxiry not enjoyed in real test conditions where modal components

are not individually aveilable. The added step is used in the simulatién

process to provide study data on how ensemble samples of individual

responses converge.
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Section 6

PARAMETRIC STUDIES

The digital computer programs were used to conduct a number of

numerical experiments to establish the feasibility and performance

characteristics of the Random Decrement, the Signature curve-fit and

the combined processes.

6.1 FEASIBILITY OF RANDOM DECREMENT

The feasibility of applying the Random Decrement method to obtain an
approximate characteristic response function was demonstrated for a two;
mode system with and without aerodynamic lag forces. The two test cases
were designed to accomplish the goal without relying on the Signature
curve-fit procedure.

In the first test case, the aerodynamic lag forces were set to zero;
the natural frequencies of the two modes are 5,908 Hz and 6.519 Hz (i.e.,
a difference of 9.836%); and the modal damping factors are both 0.020 (of

critical). Referring to Equations (29) and (30), this test case is specified

by the feollowing set of parameters:
Af = 0.02546 Hz
q,(0) = a,(0) = q,(0) = 0
ql(o) = 1.0 in.

w, = 37.12 rad/sec {(5.098 Hz)

=
1]

40.96 rad/sec (6.519 Hz)

2

= 0.02
Z; 020
£, = 0.020
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1,00 1b—sec2/in

m, =
2,.

m2 =1.00 1b-sec™/in

Ry, = 1.00 1b/ (1b-sec?/in)

Rig =Ry =0

R22 = 1.00 1b/(1b—sec2/in

a; = a2 = ()

Zero-crossing and every-point trigger methods were used. Results are
summarized in the series of "log peak plots”* (LPP's) in Figures 5
fzero-crossing triggering) and 6 (every-point triggering). The first
series of LPP's (Figures 5-a through 5-f) show the convergence of the
Signature of the 5.908-Hz Model, the second series (Figures 5-g through
5-1) .the 6.519-Hz mode, and the last series (Figures 5-m through 5-q)
the total system. The number of ensembles used arc indicated on the
figures. These results readily demonstrate that triggering on the total
response signal does indeed lead to a system Signature which corresponds
to the sum of two individual Modal Signatures. They alsc show the left-
to-right convergence trend characterizing the Random Decrement process, as
hinted in earlier discussions. The ideal system Signature is shown inFigure 5-r.
Figures 6-a and 6-b are interim Modal Signatures obtained bv the
every-point trigger method. The amount of response data used to ob-
tain these interim Signatures are the same as those used to obtain Sig-

natures shown in Figures 5-d and 5-j, respectively. A comparison of

*The computer program finds both the positive and negative peaks in a
Signature; it computes log(Pesitive Peak Values), and plots the results

as Peak Nos. Q, 2, 4, . . . ; and it computes log(- Negative Peak Values}),
and plcts the results on the same graph as Peak Nos. 1, 3, 5, . . Damping
for a single mode can be determined easily from this plot of the Signature
peaks by the slope of the curve. For reference, the straight line comn-
nection points (0,0) and (77,-42dB) represents a modal damping of 0.0Z.
Figures 5 and € also illustrate the print-plot capability developed for
the Univac 1108.
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these results indicates that the every-point trigger method requires jﬁst
as much data to.achieve a given Signature accuracy. This method was, -
consequently, deleted from the computer program.

The following parameter set defines the second test case in which

modal aerodynamic lag forces are present:
Af = 0.0200 Hz

q (@) = q,(0) = §;(0) = q,(0) = 0

w, = 67.25 rad/sec

1

Wy = 108.23 rad/sec

z, = 0.03175

¢, = 0.00588

my = 0.0260 Ib—seczlin

m, = 0.0520 1b-sec’/in

Ryp = 1.920 1b/(1b~sec2/in)
R, = 0.385 1b/(Ib-sec”/in
Ry, = 0.960  1b/(lb-sec/in)
RZZ = 0.000 lb/(lb—secz/in]
a; = 24.69 ib/in

a
{

5 =—93.33 ib/in
3

T, = 3.721 x 10 ° sec
T2 = 3.721 x 10-3 seC
T, = T = 0.000.

The case was designed to yield the following aeroelastic system fre-
quencies and damping

73.54  rad/sec

£
I

1
wy = 101.25 rad/sec
£t = 0.00659

i

'+ - 0.0338.
)
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Simulated responses axe shown for this test case in Figure 7. The zero-
crossing trigger method was used to obtain the set of Signatures in Fi-
gure 8. Convergence of the Signatures indicated again the feasibility

of the Random Decrement method.*

6.2 FEASIBILITY OF CURVE-FIT

The feasibility of the curve-fit procedure as a method to identify
system dynamic characteristics was neﬁt established.

As pointed cut earlier in Section 4, the selected study
approach of this project is to apply a parameter identification techni-
gue which assumes that the Signature is the sum of a free response and
a smell-magnitude forced response of a two-degree-of-freedom system
without aerodynamic forces. Therefore, checkout of the procedure
can be logically divided into two steps. The first step is to verify
that the procedure is accurate if the system to be identified is indeed
apurely mechanical one. . The second step is to determine whether force-
fitting the Signature of a system with aerodynamic forces by free
vibration solutions of a system without such terms would lead to use-
ful answers for flutter prediction purposes.

Step 1 was accomplished by adding wideband random noises of vari-
ous intensities to an ideal Signature to test the capability of the
curve-fit procedure. The two components of the ideal Signature have

equal initial amplitudes, and

w, = 2 Wy
£y = 0.018
;2 = 0.035

*Detailed analyses of vesults will be found in Section 6. 3.
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The noise component has a Gaussian distribution, zero mean, and
RMS magnitudes of up to 18% of the initial amplitude of the Signature.
One hundred sampled points were used, Tepresenting approximately 8 cyclés
of the Signature at the average frequency of the two modes. Near-per-
fect (within 1%) identification of all properties was accomplished.
The number of iterations required to determine the least-squares curve-
fit ranged from 7 to 20. The computer program was consequently modified
to limit the number of iterations to prevent accidental high-cost com-
puter runs. In its final form, the program will stop searching for
the best fit if after 20 iterations, the convergence criterion of Equa-
tion (27) is still not satisfied,

Tt was also determined during this stage of checkout that as few
as four sample points per cycle of the higher modal response frequency
are . sufficient for the curve-fit program to identify the correct system
properties. This feature, together with its ability to determine in-
dividual modal damping values when the natural frequencies are very
close*{and, conseguently, with the total Signature displaying the char-
acteristic "heating’” of Figures 5-m through G5-r) are ameong the princi-
pal advantages of the procedure. In all subsequent investigations a
sampling rate corresponding to approximately six points per cycle of the
average frequency was used.

Figure 9 is a typical Simulated Randomdec Signature presented to
the curve-fit routine. Figure 10 is the curve which fits the Signature
in Figure 9 in the least-squares sense. Figure il shows the convergence

paths of & typical parameter and the mean-squared error functiom.

*This ability was verified via test cases to be described later.
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6.3 FEASIBILITY OF THE COMBINED PROCEDURE

Subsequently; the feasibility of combining Random Decrement and curve-
fit procedures was demonstrated by curve fitting a Randomdec Signature
of suitable length* obtained for the test case on page 39. Zero-velocity

properties, i.e.,'those of the mechanical system, are

w, = 67.25 rad/sec

W, = 108.23 rad/sec

£, = 0.03175

z, = 0.00588

m, = 0.0260 1b-sec’/in
m, = 0.0520 lb-secz/in

A lag time constant of 3.721 x 10°3 sec, or exactly one fourth of the
natural period of the first mode, was assigned. The quasi-static

aerodynanic forces are

[}

a 24.69 ibs/in

1
2, = -93.33 1bs/in
corresponding to
2
al/k1 = alfmlml = 0.2100
— 2—
az/k2 = az/mzm2 = 0.1422

The selected characteristics for the aerodynamic forces will simulate
conditions for a velocity close to flutter®*. The resulting values of b1
and b2 are 1.012 and 0.979, respectively. The factors (Tis + 1)/(Tis + bi)
in Equation (18) will, consequently, not change the form of the impulse>

response function of the system. Rased on Equatioms (15), (16) and (17),

the calculated natural frequency for the low-frequency mode will increase

*Lhe effect of Signature length on curve-fit accuracy will be investigated
in Section 6.4

**So far as damping values are concerned. The natural frequencies were

deliberately kept separated by a significant amount to minimize the cost
of the computer run. .
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from a zervo-velocity value of 63.25 rad/sec to 73.54 rad/sec, while
that for the other mode will decrease from 108.23 rad/sec to 101.25

rad/sec. The corresponding changes in damping are:

(z; = 0.03175) > (;i = 0.00659)
(z, = 0.00588) -+ (g; = 0.0338)
The zero-crossing trigger method was used to obtain the Ran-

domdec Signatures. A Signature length of 50 samples was used. The Signa-
tures are shown in Figure 8. The following is a summary of numerical

results from the test run:

—_— e — —— —— e e s oy

No. of Nuﬂerlcal Resultérdf ,Combined Process ; ]
Ensembles: Fregq § Ervor, rad/sec  Damping and Error
Averaged mi Error mé Error c' Error £y  Error
1o ; S : L b
234 73.48i+0.06 103.91)+2.66 .00806 +.00147' 0541 + 0203
] 461 73.541 0.00/102.17,+0.92,.00708 +.DOO49[ 0375t+ 003&
914 73.611+0.071101.42|+0.17 .00719]+.00060! 0386!+ 0048
1806 73.53|-0.011101.62 +O.37§.00590 —.00069I 0426 +.0088,

] !
3612 73.47 -0.071101.24 -0.01 ,.00524 -.991351 0351 + 0013
Exact |73.54 101.25 . 00658 [.0338 ]

The exceptiomnally good agresment between the exact and numerically obtained
results indicate that the influence on the aerodynamic forces is,

indeed, primarily on the frequencies and damping values and that the
impulse response function of the aeroelastic system can be accurately
approximated by the use of those for two second-order modes. The vesults
also indicate that, when applied properly, the combined process is truly

a useful tool for flutter prediction with subcritical test data.

6.4 STIGNATURE LENGTH AND AVERAGING TIME

=

Effects of Signature length on accuracy are demonstrated via results

of two series of tests described below. Problems to be expected in selecting

*Qbtained with a CDC6600 version of the developed computer programs.
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a saitable Signature length for curve-fitting for a system whose dynamic
properties are totally unknown will be discussed in Section 6.5.

In the first test series, parameters are set up to specify a system
which may be described as having separated natural frequencies (by + 15%
of the average frequency) and moderate damping (0.04 of critical for each
mode). Case parameters are

Af = 0.020 Hz

a,(0) = 4,(0) = q,(0) = q,(0) = 0

w, = 73.91 rad/sec

W, = 99,55 rad/sec

Cl = 0.040

CZ = 0.040

m, = 0.0280 1b—sec2/in

m, = 0.0520  Ib-sec/in

R11 = 1,920 lb/(lb—secz/in)
R, = 0.385 1b/ (1b-sec>/in)
R21 = (0.962 1b/(1b—sec2/in)
R22 = (.000

al = a2 = T1 = 72 = Tb = Tc =0

Signature lengths of 12, 25, 37, 50, 75 and 100 samples were curve-fitted.
For reference, the number of samples per cycle at the higher natural fre-
quency is approximately 5, and the period of beating between two sine waves
Qith frequencies equal to Wy and mz would be approximately 40 sample periods.
Nunsrical results indicate that the natural frequencies afe relativelr easy
to determine except when the Signature length was too short ({the 12- cr 25-

point case where the curve-fit program did not have sufficient data to pro-

cess), or when it was too long (the 100-point case, duc to the excessive
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weighting of the tail section of the Signature which contains mostly
random forced response signals}, In all oiher cases, natural frequéncies
were éccurately determined (by within 2.5% of the gxact value) after the
numbér of ensembles used for averaging reaches i,OOO.

Damping determinétion, on the other hand, requires considerably
more data--approximately 2,000 ensembles were required to detérmine
damping to within 0.007 (out of 0.040), for the 37-, 50-, and 75-point
caseé. The corresponding average time ‘is approximately 145 seconds.
Damping accuracies are summarized in Figure 11, Based on these test
cases, 1t may be said that Signatures shorter than a bheat period are
usable for the two mode case. On the other hand, a Signature length
greater than 200% of the beat period requires too much averaging time to
be considered practical. An optimum Signature length appears to be the
50-point case which is 125% of.the beat period.

In the second test series, natural frequencies are spaced much closer
(within + 1.2% 6f the average frequency) and the damping values are 0.04-

for one mode and 0.005 for the other. The case parameters ave:

Wy = 84.72 ) rad/sec

Wy = 86.73 rad/sec
= 4

&1 0.040

;2 = 0,005

all other parameters are the same as the previous test case.

The beat period of two sine waves at frequencies equal to ml and Wy

is 512 sample periods. Signature lengths of 25, 50, 75, 100 and 512

wére curve-fitted. Both the 25- and the 50-point Signatures failed to :~
yvield useful results after 16,836 averages. For the 75-point Signature,

the natural freguency prediction did not yield useful results® until

*When the natural frequencies are close to each cother, the accuracy

criteria should be based on the measurement of the difference of the
natural frequencies, rather the the -natural frequencies themselves.
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after 8,418 averages. For the 100-point case, 4,202 averages are required,
.for the 200- and 512—pciﬁt case, 2,103 averages, The optimum Signature
length for both natural frequency and damping predictions for this‘samp}e
test series was found to be the 200-point Signature after 2,000 averages; or
about 150 seconds at the 85 rad/sec average frequency. Damping measurement
resulits are plotted against the number qf averages for Signature lengths

of 100, 200 and 512 in Figure 13.

6.5 APPLICATION NOTES

The practical usefulness of any on—line flutter prediction process
greatly depends on the amount of data it has to use at near critical
velocities. The ideal situation is wﬁen the process requires so little
data that the need to hold constant velocity at various subcriticél
stages is eliminated. With respect to the overall approach édapted in
this investigation, this consideration leads to the requirement of deve-
ioping a method to select the proper Signature length sSo that the Random
Decrement averaging time can be minimized.

The following factors must be considered:

{(a) Based omn discussicns in Section 3, the rms value of the residual
forced response term (the noise term yy(t')) starts from zero for t'=0,
and increases with t' in accordance with Equation (8). The expected‘
signal-to-noise ratio of the Randomdec Signature‘for a given number of
averagés is, therefore, maximum for small values of t'. Conéequently,
using a shorter length of the Signature would require less averaging and
would yield answers with given expected accuracies in a shorter time.

(b) For a system known, a priori, to have only one degree of freeéom,
the Signature length and averaging time reguired to determine damping

are derived in Reference (9). .
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(c) For systems with two degrees of freedom, the beating of the
two Modal Signatures makes it necessary to select a Signature length
which, in accordance with results described in Section 6.4, is some-
where between 50% to 125% of the beat period. Once the proper Signature
length has been selected, the curve-fit procedure can be used with
confidence.

This suggests the following approach in applying the techniques
put together during this investigation. It is assumed that (a) on-line
Pandom Decrement and curve-fitting programs (or hardware} have been
implemented, (b) real-time display of the developing Randomdec Signature
is available, and (c) it is possible to select the length and sample
density of the Signature to be presented to the curve-fit program. Staﬁting
at a constant low velocity where the danger of explosive flutter is not
present, obtain an accurate veference Randomdec Signature by using a
large number of averages. A high sampling rate (about 16 points per
cycle of the response signal) should be used so that the beat period can
be determined from the visual display. Needless to say, the Signature
should be long enough to cover more than one beat period. Select from this
long and dense Signature the proper length f{about one beat period) and
sample density (about 4-6 points per cycle) and present it to the curve-
fit program. With the properly selected Signature, we are assured of
fairly accurate frequency and damping vesults. The minimum number of
ensembles required to produce frequency and damping data to a given
accuracy with respect to the reference Signature is then determined

experimentally.



The velocity sweep can then begin. The real-time display of the
current Randomdec Signature and results of the previous curve-fit
analyses will be.used to sclect the Signature 1ength-used.for curve-fit,
which will be actuated as soon as a sufficient number of ensemble aver-
ages have been rTeached.

It is,of course, possible to automate the above procedure and use
preliminary curve-fit results to compute the proper Signature length

for a second, more refined Signature analysis.
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Section 7

CONCLUSIONS AND RECOMMENDATIONS

7.1 CONCLUSIONS

We have demonstrated analytically in Sectiom 5 that applying the
Randdm Decrement data reduction procedure to the random responses of a
multi-mode system will produce a Randomdec Signature which is an approx-
imation of the characteristic response function of the system. The
error contained in the Randomdec Signature is in the nature of a resi-
duzl forced response whose mean-squared value decreases as one over the
number of ensemble averages.

Using computer programs developed in this project, sampled random
responses of a two mode system were simulated. The feasibility of the
Random Decrement procedure was established via a number of numerical
experiments on different simulated two-degrees-of-freedom systems, including

both a purely mechanical and an aeroelastic system.

A parameter identification procedure using least-squares curve-
fitting of the Randomdec Signature was adapted. The method was found
to be capable of determining frequency and damping values accurately
from Randomdec Signatures of carefully selected lengths.

For optimum results, a Signature length between 50% to 125% orf
the beat period created by the two frequencies of the Modal Signatures
should be selected. The number of ensembles required to produce accurate
damping results by the combined process is found to be approximately 2Z,000.

The study was limited to one- and two-mode systems.
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7.2 RECOMMENDATIONS

Simulation studies in this project were limited in scope on ac-
count of computer costs. Since the programs for response simu-
istion, Random Decrement and curve-£fit analysis can all be implemented
on less powerful computers, exhaustive statistical studies are recom-
mended using such computers for reasons of economy.

While flutter usually occurs on account of interaction between two
modes of an aercelastic system, the presence of other non-flutter modes
at nearby frequencies cannot be denied in practical situatioms. The
Randomdec Signature will contain characteristic responses in all modes.
The Signature analysis (curve-fit) program should, therefore, be extended
for such situations. On-line flutter prediction programs or hardware
can then be implemented by suitable modification of the application ap—-

proach suggested in Section 6.5.
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1 SUMMARY

 Program RADCUF synthesizes response data of an aercelastic

structure, generates Randomdec Signatures and determines the system
dynamic characteristics (frequency andvdamping'for each of the two
modes of the system) via curve-fit procedures. The program is used
. to conduct parametric studies, aﬁd to verify the practicality of both
Random Decremeﬁt and curve-fit pfocedures vié numerical experiments.

The program is written in Fortran IV and is compatible with
the UNIVAC 1108 Exec 8 version compiler. . The overlay structure of
this program as implemented in the UNIVAC computer is shown in Fig-
ure A-1.

Data—flow during execution can be summarized as follows:
‘The main program, DRVR,:réSAdes in the primary'link and directs tﬁe
1ogical flow of four subprograms of the secondary link. The first
subprogram called by DRVR is IDENT which provides éhe identification
{name of the program, binﬁnumber, run ID, job number, date and time)
of the job oﬁ_output plots. The second subprogram called is FLTR
which generates random responses of a simulated aercelastic system
and obtains Randomdec Signatures from the data. The third subpro-
gram called is CURVFET which curve-fits the Signature generated by
FLTR, The last subprogram called is ENDJOB which writes an END OF

JOB on the last page of the output plots.

A-1(L7
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FIGURE A-1 OVERLAY STRUCTURE-PROGRAM RADCUF




2 DESCRIPTION OF PROGRAM

2-1 Primary Link

The primary link is nzmed DRVR. The primary function of
this program is procedural only, and it does not contain executable

statements.

2-2 Secondary Link

Two major programs reside in the secondary link. They are
FLTR and CURVFT. Their exscuticns are mutually exclusive, and each
of these programs can be executed independently from the other. Al-
thOugh.program CURVFT normally requires input data generatéd by pro-
gram FLTR, this data could be written on Tape Unit 15 by any other

program, so long as the format is compatible.
2-2-1 FLTR

FLTR is a program that resides in the secondary 1limnk of
the system. It creates an envirvonment for the input of general con-
trol parameters, generates response data of a two-mode aeroeslastic
system and computes Randomdec Signatures. Basic functions of this
progran are:

(a) Accepts input data.

(b) Generates response data.

{c) Calls subvoutine FPLT to plot intermediate or final

results.

(d) Callis subroutine PKPLT to (1) determine and plot the

peaks of Randomdec Signature, (2) determine initial
-estimates for subsequent curve-fitting and (3) esta-

biish initial conditions for subsequent response data.



(e) Calls subprogram RNDMC1 to generate Randomdec
Signatures.

(f) Writes final Randomdec Signatures, initial para-
meter estimates, and all system and Random Decremént

parameters on Tape Unit 15.
2-2-2 CURVFT

CURVFT is a curve-fitting algorithm that operates on Randomdec
Signatures created by FLTR. The following is the procedure:

(a) Reads Tape Unit 15 for Randomdec Signatures and
all other data written by FLTR.

(b) Sets up an environment to curve-£fit the Randomdec
Signature with a four-parameter expression corres-
ponding to a one-mode approximation of the Signa-
ture,

(¢} Calls subroutine CF which accompliishes the actual
éurve—fitting procedure,

(d} Calls subroutine FPLT to plet the Randomdec Signa-
ture being curve-fitted, the analytical expression
after convergence of the procedure and convergence
paths of all parameters, and the error function.
All problem oriented parameters are tabulaﬁed by
FPLT also.

(e} Repeats steps (b), (¢), and (d} above for an eight-
parameter curve-fit.

(£f) Calls subroutine CF to provide the final output of

the program under simple English text headings.

A-4



3 PROGRAM INPUT

Control parameters input to program RADCUF are made via
cards utilizing Logical Unit 5 in the UNIVAC 1108 system. Four caras
are used to define one typical case. The following logic is designed
in the program for multi-case executilon.

In the first execution, the program will read the first set
of four data cards and execute until the generation of the Randomdec
Signature for this case is completed. Then the flow of execution will
be directed to read another card corresponding to Card Form 4 or to
find an EQF (End of File). If a Card Form 4 is encountered, the pTo-
gram will execute utilizing the new parameters given by this card
and previous input parameters given by Card Forms 1, 2 and 3. If an
EQF is encountered, the program then will expect to find either another
EQF or a completely new set of four data cards. If the second EQOF is
encountered, the program then proceeds to curve-fit the generated data.

The following is the card stream for typical multi-case type

execution:
CARD FORM
CARD FORM
CARD FORM

CARD FORM

CARD FORM 4

B N =

CARD FORM 4

CARD FORM 4

EQOF

CARD FORM
€ARD FORM
CARD FORM
CARD FORM 4

NN T S

93}

EQOF

EOF



It should be noted that Randomdec Signatures for all cases to be
investigated are recorded on  Tape Unit 15 before curve-fitting

begins.

Input Card Form 1

Parameters: DF, MU(1), MU(Z), QQ(1), QQ(2), P(1), P(2), A(L}, A(2),

LD(1), LW(1), LD(Z}, LW(2)

Format: 0F6.0G, 416

Input Card Form 2

Parameters: KREF, NREF, NPRT, METHR, NRR, METHS, NRS, NUT, SIN, RQ,

AV(1), AV(2), SD(1), SD{2)

Format: F$.0, 214, 2(12, 13), 5%, Il, 6F8.0

Input Card Form 3

Parameters: NA(1l), NA(2), NB, NC, ISRS, IERS, ISC, IEC, ISS, IES,

ISF, IEF, ISP, IEP, NSF, ISYM, NPF

Format: 4F7.,1, 1314

Input Card Form 4

Parameters: NU(1), NU(2), Z(1), Z(2), R(1,1), R(1,2), R(2,1}, R(2,2)

C(1), €(2), NP(1), NP(2Z), TH(1), TH(Z)

Format: 2F4.0, 12F6.0

All input parameters are defined in Table A-1.
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TEXT FORTRAN
SYMBOL  _NAME
8
A
2 (AF) DE
m1 MU(1)
m, MU(2)
q(0) Q)
q,(0)  Q2)
G0 Py
q,(0) P(2)
a,/ (2mAg) ACD)
az/(znAf)3 A(2)
LD(1)
LW(1)
LD(2)
LW (2)
'KREF
NREF
NPRT

TABLE A-1 (Part 1)

DEFINITION
sampling period
frequency resolution of response simulation process
frequency resolution of response simulation process
genéralized mass of Mode 1 (including aerodynamic effects)
generalized mass of Mode 2 (including aerodynamic effects)
initial displacement of Mode 1 '
initial displacement of Mode 2
initial displacement of Mede 1
initial displacement of Modé 2

magnitude of aerodynamic lag force per unit displacement in
Mode 1

magnitude of aevodynamic lag force per unit displacement in
Mode. 2

rise-point no. of Box Car part of generalized force in Mode 1

rise point = (LD(1}){8) seconds after initiation of simulation

fall-point no. of Box Car part of generalized force in Mode 1

rise-point no. of Box Car part of generalized force in Mode 2
fall-point no. of Box Car part of generalized force in Mode 2
(Random Decrement trigger level)/(rms response)

number of points in each segment of simulated response data to
be used for Random Drecrement processing

number of points required in Random Signature

UNIT
sec
Hertz
radians/sec
mass
mass
length
length
length/sec
length/sec
mass/length

mass/length

8

non-dimensional
)

RANGE
21/ (4096 (DF)’

1-2047

2-2048
1-2047
2-2048

2-1536

1-512



8-V

TEXT
SYMROL

1/(2WT1(AF))
1/(2WT2(AF))

1/ (2nT, (A))
L/ (2nT_ (Af))

FORTRAN

NAME

METHR

NRR
METHS
NRS
STN
RQ

AV (1)

AV (2)

SD(1)

SD(2)

NA(L)

NA(2)

NB
NC
TSRS

. LERS

TABLE A~1 (Part 2)

DEFINTTION

trigger method (METHR > Q) level trigger mcthod

HE |

(METHR = 0) zero-crossing-with-positive
slope trigger method
(METHR < 0) = modified zero-crossing trig-

ger method
number of response points to bhe simulated/2048
not used in final version of program
not used in final version of program
signal-to-noise ratio (maximum response)/(std. dev. of noise)
external key for random number generator

mean value of random number sequence used to generate random
component of generalized forces

mean value of random number sequence used to generate random
component of generalized forces

standard deviation of random number sequence used to generate
random component of generalized forces

standard deviation of random number sequence used to generate
random component of generalized forces

cut-off frequency of generalized force in Mode 1 corresponding
to aerodynamic lag forces

cut-off frequency of generalized force in Mode 2 corresponding
to aerodynamic lag force

first-order low-pass filter cut-off frequency
first-order low-pass filter cut-off frequency '

starting point number of transform of forcing function to be
plotted

UNIT

non-dimensional

non-dimensional

non-dimensional
non-dimensional
non-dimensional

non-dimensional
non-dimensional
non-dimensional
non-dimensional
2T (AT)
2m(Af)

21 (AF)
2m(AD)
21 (Af)

ending point number of transform of forcing function to be plotted - 21 (AF)

RANGE

1-4096

1-4096

1-4096
1-4096
=[LERS

=NPRT



TABLE A-1 (Part 3)

TEXT FORTRAN -

SYMBOL NAME DEFINITION ' : UNIT - RANGE
ISC starting time (point no.) of responée data to be plotted § =IEC
IEC ending time (point no;) of response data to be plotted - 8§ =<NPRT
188 starting time (point no.) of Signatures to be plotted § =IES
IES ending time (point no.) of Signatures to be plotted 8 =NPRT
IEF if set >0, interim Signatures will be plotted (plot controller) O or positive
ISF not.used in final version of the program |
ISP " not used in final version of the program
IEP not used in final version of the program
NSF number of subframes to be plotted per page ' 1,2.0r 3
ISYM plot controller, set to zero for print plots, to 35 for (plot controller) - 0 or 35
SC4020 plots : ,
NPF number of horizontal divisions per subframe ‘ 1 + function plotted ‘
wl/(ZW(Af)) - NU(1) natural frequency of Mode 1 v ' | 2T (AL) 1-2048
wz/(ZWCAf)) NU(2) natural frequency of Mode 2 : o 2 (Af) 1-2048
;1 Z(1) , dampigg factor of Mode 1 (fraction ?f critical modal non-dimensional
damping) -
C2 Z(2) dampipg factor of Mode 2 (fraction 6f critical modal non-dimensional
damping) :
R”m1 R(1,1) magnitude agd mixing coefficients of random components ma55—1ength/seé2
of generalized forces
R12m1 R(1,2) magnitude and mixing.coefficients of random components B mass—_length/sec2

of generalized florces



01-v

TEXT
SYMBOL

FORTRAN
NAME

R(2,1)
R(2,2)
c(1)
c(2)

NP (1)

NP (2)

“TH(1)

TH(2)

NUT

TABLE A-1 (Part 4)

DEFINITION

magnitude and mixing coefficients
of generalized forces

magnitude and mixing coeff1c1ents
of generallzed forces

amplitude of sinusoidal component
in Mode 1

amplitude of sinuscidal.component
in Mode 2

frequency of sinusoidal component
in Mode 1

frequency of sinusoidal component
in Mode 2

phase displacement of sinusoidal component of generalized

force in Mode 1

phase displacement of sinusoidal component of generalized

force in Mode 2

of random components
of random components

of generalized force

of generalized force

of generalized force

of generaliied force

Units to be written on Signature plots

(NUT = 1) = in/sec; (NUT = 2} = cm/sec:
(NUT = 3) = ft/sec; (NUT = 4) = M/sec!
{(NUT = 5) = Rad/sec

UNIT ~ RANGE

mass-length/sec2

mass-length/sécz.

‘mass—length/sec?

mass—length/sec2
2
mass-length/sec
2
mass-length/sec

radians

radians



4 FLOW CHARTS

a4_-1 FLTR Procedure

The diagram below shows the order of execution in the xresponse §imu1§tion progran.
FLTR. Contents in the lettered blocks in the diagram are described in the cor-.
respondingly lettered descriptive paragraphs following these flow charts.

INITIALIZE
PLOT SYSTEM

o \——/_—%_‘\ EOF IN CARD STREAM -
[FORM-1 READ CARD > v >

o2 e G > FOF TN CARD STREA

i i i Bt
y AN EOF IN CARD STREAM |-
‘FORM-S READ CARD »VITI
1 v >
EOQOF IN CARD STREAM N
READ CARDgJ/ ™ IX//z

1

]INITIALIZE DISPLACEMENT,
VELOCITY, STARTING

A. RANDOM INTEGER, AND
CUMULATIVE SIGNATURE
ARRAYS

111 : 5@'\_5/

COUNT RESPONSE
SEGMENTS IN INRR

INRRyZNRR Fy

= V >

e

= NRR
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LONSTRUCT RANDOM
COMPONENTS OF
FORCINR FUNCTIONS

!

LINEARLY COMBINE -
FORCING FUNCTIONS
BASED ON R(I,J)

W

ADD CYCLIC AND GATE
FUNCTIONS

i

TRANSFORM FORCING FUNCTIONS
TO THE FREQUENCY DOMAIN:

FPLT

Fl

) PLOT OF REAL \>
=7 AND IMAGINARY /

MULTIPLY FORCING FCNS
BY THE SYSTEM TRANSFER FCN,
IN THE FREQ. DOMAIN

)

EXTEND PRODUCT TO FILL
4096 POINTS

|

INVERSE TRANSFORM
TO TIME DOMAIN

I
11

A-12

COMPONENTS OF _
FORCING FCN.S TN,
THE FREQ. DOMAIN




[EI

i

i
DETERMINE TERMINAL MODAL %

!
i
F. | VELOCITIES AND
i SAVE AS INITIAL

. VALUES FOR NEXT SEGMENT

I ]

| CONSTRUCT SYSTEM RESPONSE !

.| SIGNAL BY ADDING SIMULATED
‘| RESPONSE TIME SERIES

AND NOISE J

I

i - \K
1365 =
/

.,

rCALC YRMS AND
i SET REF=0, RG=0

|

l CALL RNDMC1

| PLOT DECTBEL

/}\ TRANSFORM OF PEAKS
ANE3 _on OF CUMMULATIVE
<EgF INRR PKPLT |- INDIVIDUAL
n SIGNATURES AND

<t # THE SUM SIGNATURE

WRITE CUMMULAT TVE\ \

INDIVIDUAL AND Unlt

SuM SIG RECORDS / j
e d




\390

{ INITIALIZE INRS

/
i NORMALTZE THE SUM
I STIGNATURE BY THE
|
|

TOTAL NO. OF
TRIGGERS (NTK)

{ PKPLT |

i ‘ /”"\}
WRITE FINAL > /
NORMALTZED SIC \Sfiiﬁiig

1

b CONTROL PARAMETERS
g%éTgNFg§?§TEé>>"‘“-*‘ AND FINAL NORMALIZED
: SIGNATURE

IV! RETURN TO READ '

.NEXT FORM-4 FROM
THE INPUT STREAM
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WRITE END
RECORD ON
SIG. TAPE

o]

ENDFILE

]

|
<::;£WIND

PURGE PLOT BUFFERS

o

END

PROGRAM STOP 25 MAY OCCUR IF DECK
IS NOT ARRANGED IN CORRECT ORDER

PROGRAM STOP 35 MAY OCCUR IF DECK
IS NOT ARRANGED IN CORRECT ORDER

RETURN TO BEGINNING OF PROGRAM
TO START AN ENTIRELY NEW CASE




Biock A. JRQ is an internal variable, which contains the key for the

generation of the next random integer by NRAND. It is initialized
to theruser specified input value, RQ, each time a new case is started
with respect to reading a Card Form 4.

INRR is an integer program counter which indicates the num-
ber of segments of response data which have been processed for a given
case. When it exceeds the required number of segments given by the
user as NRR, "End-of-(Case'" procedures are initiated.

The variable NTM is O-origin integer sample point.counter in
the time domain. The first point of the second response segment is con-
sidered point No. NIM = 4096 and etc.

NTK is an integer to be assigned as the total number of sum-
mation of imput signature.

AK, BK and CK are constants to be assigned for the generatiocon
of complex function.

Fortran arrays SRF(L), SRG(L), S(L) for L=1, 4096, accumulate
Signatures(triggered responses)of Mode 1, Mode 2 and the sum of Modes
1 and 2, respectively.

The variables P(1) and P(2) are the initial values of veloc-
ities of Modes 1 and 2. respectively for the first segment of responsec
simulation. '

The variables QQ(1) and QQ(2) are the initial displacements
of Modes 1 and 2, respectively, used by the programAin generating
the first segment of the simulated response data.

The initial velocities and displacements of subsequent seg-
ments of simuiation are obtained according to explanation for Block

F below. Simulation will be started from initial
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input values each time a new case is started after reading a Card

Form 4.

Bicck B. The arrays (QR1(L) and QRZ2(L), L=1, 4096, are used for storage
of pseudo-random number subsets used for the generatiom of forcing func-
tions.

The Fortran function NRAND is used to generate the next pseudo-
random integer from the previous one. This integer, comnverted to float—
ing form and stored in the first loéation of the mode array, is used as
a trigger to generate the pseudo-random number subset for each modal force.-
The means and standard deviations of these pseudo-random subsets are
specified by the user as AV(1l), and SD(1), and AV(2) and SD({2), respec-
tively.

This logic assures that the same pseudo-random number subseti
will be used for each case with respect to Card Form 4 parameter varia-

tion.

Biock C. After the construction of the random sequence component, func-

tions are mixed. The equations of mixing are given by:

F(L) = R(1,1) * F(L) + R(1,2) * G(L),

G(L) = R(2,1) * F(L) + R{2,2) * G(1),

where F is the forcing function for the 1st mode and G for the 2nd

mode. Obviously, no mixing occurs if
R(1,2) = R(2,1) = 0.0 in the control parameters,

The real and imaginary components of the resulting functiomns
may be plotted against frequency for each segment number which is an

integer power of 2. These plots are specified values of ISRS and TERS
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‘on control  Card Form 3 upon the user's request. The subset of each

segment from point No. ISRS to IERS will be plotted.

- Block D. A cyclic component is added to the pséﬁdoprandom subset comn-

tained in QR1(L) and QRZ(L) as follows:

QRI(L) = QRI(L) + C(1) * COS [Z%gé'* NP (1) * NIM + TH(1)]

for L=1, 2049 and similarly for QR2(L). ‘NP(l) and NP(2) are the fre-
quencies in cycles/rad. TH(1) énd TH(2) are thenasscciated phase dis-
placements. These parameters are specified by the usér on Card Form 4.

In addition to édding cyclic components to the forcing func-
 tion;, positive gate functions can also be added. The gate function
generatdr, called DST in the program, is a function of NTMT The first
i;fise' points of the.functions are given by LD(1) for Mcdesl, and LD(Zj
for Mpde 2, on Card Form I. These pqint No.s réfer to the value of NTM,
not the segment index. The number of 'rise' points is given‘by

CLW() and LW(2). The height of each gate is unity.

Biock E. The forcing function and initial conditions are complex-mul=

tiplied by the modal frequency response functions.

The real parts are extended symmetrically about CF{2049) or
CG{2049) respectively. The imaginary parts are also extended but éntié
symmetrically. - IM{CF(2049)) and IM(CF{2049)) are set to zeroc. The re-
sulting complex functions, of length 4096 each, are inverse transformed
into the -time domain. The imaginary components of the resulting tiﬁe '
series.are zgro-valued. The rezl valuea time series are modal velocity

data.
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Block F. Initial conditioms for the second and subsequent segments of}
simulation are determined by the procedure below.

The PKPLT subroutine is called to find the final peak in the
modal velocity signals of each segment. These peak velocities are the
respective initial velocities of the following segment.

The modal displacéments are zero when the modal velocities peak.
The initital displacements for the second and all subsequent segments

are, therefore, zero.

RBlock G. STN is the value of signal te noise ratio which is an option
to include the random noise to the total system respomse. The noise
signals can be obtained by RANDN subroutine if STN is not equal to
zero. The syséem response is, then, simply the summation of simulated
response signals and the noise. The standard deviation4of the noise
component is equal to the absolute maximum value of the response di-
vided by STN which is'established by input.

The resulting data segments are input data for the RNDMCI
algorithm (Randomdec). The Fortran array SIG(L), L=1, 4096 is the
sum of the two modal response segments and is used by RNDMC1 to
establish trigger points, i.e., points which become origins of the
ensemble summing operation which generates the Signature. The Fortran
arrays RF(L), and RG(L), L=1, 4096 are used to hold the components of
the Signature which arise within the current segment of Medes 1 and 2
respectively. On completion of RNDMC1 algorithm, RF(L) is summed in-
to SRF(L) and RG(L) is summed into SRG(L), the array S(L), L=1, 4096,
is the cumulative sum of the two modal Signatures. YRMS is the RMS

value of SIG(L), L=1, 409%6.

A-16



The following diagrams show the logic of the RNDMC1 algorithm
and the zpplication of its related control parameters, from Card

Form 2.

SIGNAL SEGMENTS,
LABELING THE TIME
RELATIVE TO THE
FIRST FLUTTER

. SEGMENT
.

é;i£§;j<0 METHR IS NEGATIVE ﬁm{ii;:>
>0

YREF = 0.0

PLOT THE /
Tl -
- SIMULATED RESPONSE
TEC HL /éggﬁ 2 | EPLT “*___g_QB
{

A -
METHR L . YREF=YRMS
~ #1
\\
FPES .
< METHR »~*~——>4 YREF=KREF* YRMS
\\ //
x\/
.
K= }  COUNTER FOR NO. OF REFERENCE LEVEL CROSSINGS
¥
=0 }  INDEX OVER POINT SET TO BE TESTED FOR YREF CROSSINGS
|
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POINT SET TESTING

>NREE COMFLETE FOR THIS SEGMENT

e >

ADDRESS ADJUSTMENT

SET NEAREST NEIGHBOR
VARIABLE II TO Q

CYREE —S16(1+1)

~._=YREF

N

et

| <YREF

7 A
(820 s

Vi

K

SIG(I):;EE¥T~\5§ESIG(1+1)_YREP('{:i§Ez::

A

'§25

| K=K+l [
O

\yhl, NPRT

RF (N)
RG (N}

RF (N)+E(1,N+1-11)
RG(N)+E(2,N+1-11)
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POINT SET TESTING

COMPLETE FOR THE SEGMENT

J, ‘
RE (N) = RE(N)+F(1,N+I-1)
RG (N) = RG (N)+F(2,N+1-1)

4

RF (N}=RF (N)-F (1,N+1-1)
RG(N)=RG(N)~F (2,N+1-1)
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900

. i
SUM SIGNATURES OF INPIVIDUAL AND
| COMBINED SIGNALS INTO COMMON SIGNATURE

PLOT THE
- ACCUMULATIVE
SIGNATURES

FPLT
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4,2 Curvft Procedure

The following diagrams show the Curve-Fit algorithm. .

JE

<. REWIND >

EP(L)=.001 L=1,8
EPK =.00001

~,
5
\

= haN
#8

15 |
/
w'/
SET UP PARAMETERS AND RETURN
ESTIMATE STGNATURE
7 END )
PARAMETERS TO BE FITTED
NPC=4
NO. OF PARAMETERS TO BE
FITTED, NO. OF ITERA- °
WRITE 6 TIONS AND INTTTAL VALUES
r OF ESTIMATED PARAMETERS
i
[ CALL CF |
/ﬁhPC+2*NPC ﬁ .
\VI=O ; .
| i E ///,_rd
| RESET PARAMETERS A'S \“\\\\\_ﬁ__lk,,,/’//
l FOR UPDATED NPC
<0.02 3
A-A A,=0.94A,

le

Az




CF Procedures

The execution path of the procedure is shown in the flow diagram

below. Contents in lettered blocks in the flow diagram are further de-

scribed in the correspondingly lettered paragraphs following the flow diagram.

|
i

ﬁ)INPUT
POTNT SET

FPLT
l

{ Step T

1 1>IM

] T0 BE CURVE
| FITTED

y _
ESTABLISH DATA FOR
(I)TH ITERATION

CONVERGENCE TESTS

¥

COMPUTE D (J)

| <ep ()

!PER ﬁ;;;tBT\EP(J) i.e., exceeded 1.u.b. A ::
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¥

NN 2
RIQM) = £ [Z& ) - Z(8))]

1! n=1
{

ADJUST A _,J=1, JJ For (I)th
ITERATION N |
CAMHLL,T) = AQMLT) + p*D(J)

3

EDIT AM + 1,Jd)

i

NN
RJ (M+1) =
=1

o

[Z(x) - 2(s )17

A(M+1,T)
out of
Tange
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g
I,D(1),....D(8),]

@ D> ey s |
]
] f

i

SAVE NEW AJESTIMATES

A(L,T) = A(2,d) , J = 1,8

——

|

i

SAVE A VALUES IN
AP(T,J) FOR PLOT

g
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oo

o . e

¥ Sample Point Set /
FPLT +———— ! Resulting from the B
Last Estimates of AJ\

‘ The Base 10 Log Mapping
; }of the Path of R,

[EC -

? _J\The Locus of A_ &
Over Each Iteration Step )

FPLT )

_"1/(;5\5. ¥
L

i”“i*'

jCOMPUTE RML

(ﬁrite Results

Summary
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Appendix B
SAMPLE TEST CASE

PROGRAM RADCUF






INPUT DATA

(Refer to Pages A-5 to A-10)
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FCN FORM

PEAK PLOT OF
SIMULATION SIGNAL PARAMETERS
FREQ RANDOM BOXCAR FORCES ;-

™AL I 3= 2140
NACIOD 2140

s L.

o}

NUC 13 = 535.0
MNUICR2] = 851.0

ec13 = 6.000  QBTHER

DECIBELS

=315

33

=21

|EC 1. 13=0,050
RC 1. 23m0,010

+03

LDC13 = 9.99999X10

w12

Loc2s e 9.95999%10°0°

MODOE 1 SIGNATURE FOR SEGHMENT i

RANDGMDEC PARAMETERS

METHGDS
NO. OF SEGMENTS
TOTAL TIMES TRIGGERE

8]

)
1&
23%
1

+03

DAMPING RC=. 13a,050 ]
e = 0 E£1) =0.0317 RC2,25=0.000 LWL22 = NG. GF ITRNS ON AVG SIG
INIT COND 2c<=> e 0.0038 ave1s =0.000 ECYCLIC FORLES
@DC1> =100 CC€13 =0.000
©C31> =238.000 O CHMOA=D.1257 AvVER) =0.000 wNip =0.100 MAXIMUM PEAK VALUE =
LRI @ 0.000 AC1I = 24,6 BOIR? «l.000 THMCId =0.600 ’ 2.85053X10
@e2Y « 0.000 AC2> = 83.3 C<23 =0.000
MUe: s a,.0260 NP =, 100
~MUC2Y = 0.0520 THC23 =0.000
‘-\‘\'\‘\-\’,\.
[} 19 < b2+ 49 8% 69 7o &3 5 12
PEAY NO.
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PEAK PLOT OF MODE 2 SIGNATURE FOR SEGMENT
RANDGMDEC PARAMCTERS |

SIMULATION SIGNAL PARAMETERS
FRZQ RANDGH

1

FLCN FORM BOXCAR FORCES ..
MNACL 3D 2140 MNUL1) =535.8 RC1,10=0.050 LOC13 = 9,99999110 METHODS : [
NACRDI= 2140 NUC2 = 861.0 RC1.23=0.010 LWE1Y = 05 NG. OF SEGMENTS &
D = DAMPING ®<2.13=0.050 LOCR> = 9.95959X10 TGTAL TIMES TRIGGERED 234
e = 0 BC13 = 0.031T RC2.23m0.000 LwE23 w NO. OF ITRNS ON AVG SIG 1
IMIT COND =zt=3 =0.0058 avcid =0.600 CYCLIC FORCES
2013 = 0.000 GTHER @DCL13 =1.000 €¢13 =0.660
QT13 =83.000 O SMOAm0.1257 AveRd =0.000 M1 =g 100 MAXIMUM PEAK VALUE = .
PTRD e 0.000 AC13 @ 24.6 BDLZD o1.000 THC13 =0.000 2.01908%1079%
SL2O = 0.480¢0 ALRI = 93.3 cc2 =) God
U1 o 0,.0260 N =0.10¢
MILZD «= §,0520 THC23 =0.000
[
ol
N\
W
-12 \ A
-1z V
Cgn <8 \
-
o
g = \
g \
S 2
-27
-38
-3
-23
-39
-2
e 1 2 0 52 58 &9 7 80 109
PEAK NG.
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FCN FORM

WAL L Im 2130
mMac D= 2130

~NE

NE = 8

iNIT COND
ec13 = 8,000
Q<12 =02 000
Zr2> = 0.000
aras 83000

DECIBELS

&=

-12

=13

=33

-3

-35

37

PEAK PLOT OF SYSTEM SIGNATURE FOR SEGMENT 1
SIMULATION SIGNAL PARAMETERS RANDOMDEC PARAMETERS
FREG RANDOM BOXCAR FORCES L.
MUCLII =535.0 MEi1.13=0.050 wOC13 = 9.85993X10 METHODS
NUL2 =351.0 RL1.=23=0.010 LwC1l a 05 NO. 0OF SEGMENTS 18
g DAMPING RCZ.13=0.050 &OC23 = $.59599710 TGTAL TIMES TRIGGERED 23s
ZTL12 =0.0317 RC2.23=20.600 Lwi23 = NG, OF 1TRNS O8N AYG S1G
Zt=2y =0.0058 aveis =0.000 (CYCLIC FORCES
GTHER e@S¢ci13 =1 000 CCid =5.000
& arMBAS (,.1257 AvIRI =0.000 wie @f. 160 MAXIMUM PEAR VALUE =
42313 =  29.6 €DC2> =1.000 THC23 =0.000 2.93328110°%3
ALZS - 3.3 cc=2 =9 000
MUT 13 = 6.0240 nz= =0.100
MUC23 =@ 0.5520 THCEI =0 000
C&\'\‘\
LY
& 29 & 0 83 1) 70 29 0 100
PEAT NG.
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JoB MO ep232 PACE a2
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[] 8 8 iz 1% 20 = 28 32 % 30 3% a3
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COMPUTED VYALUE OF LOGIMEAN-SQUARED ERRGRI FOR EACH ITERATION
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COMYERGENCE PATH OF AL 13
3
32.50¢° ‘,//”’
1 //
i.z2 1.4 8.¢ 1.2 2.6 =z.2 2.3 2.6 2.8 3.0

12,203

[y 6.8

17IRATION Bl.

i.¢

B-23

3.2



CONMYVERGENCE PATH GF AL 23

TS 1:¢ 4

~

T

Jo2 MO 40232

.3 i.g
17IRATIZN 8L,




CONYERGENCE PATH OF
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AL 33

103 MO 40232

PAGE
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0.8 1.8 1.2
ITIIATICY ME.
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108 B0 e0232 PASE A7
COMYERGENCE PATH GF AC . 4)

- 350
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COMPUTED VALUE GF LGGIMEAN-SOUARED ERRGR} FOR EACH ITERATION
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