NASA CONTRACTOR REPORT

ASA CR-2474

NASA CR-2474

COMPUTER PROGRAMS FOR CALCULATING THE STATIC LONGITUDINAL AERODYNAMIC CHARACTERISTICS OF WING-BODY-TAIL CONFIGURATIONS

by Michael R. Mendenhall, Frederick K. Goodwin, Marnix F. E. Dillenius, and David M. Kline

Prepared by NIELSEN ENGINEERING & RESEARCH, INC. Mountain View, Calif. 94043 for Ames Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • JANUARY 1975

1. Report No.	2. Government Acces	sion No.	3. Recipient's Catalo	g No.
NASA CR 2474				
4. Title and Subtitle		5. Report Date		
COMPUTER PROGRAMS FOR CALCUL			January 1975	
AERODYNAMIC CHARACTERISTICS OF WING-BODY-TAIL CONFIGURA- TIONS		6. Performing Organi	zation Code	
7. Author(s)			8. Performing Organia	zation Report No.
Michael R. Mendenhall, Frederick K.	. Goodwin,			
Marnix F.E. Dillenius, and David M.	Kline		10. Work Unit No.	
9. Performing Organization Name and Address				
Nielsen Engineering and Research, In	с.	ŀ	11. Contract or Grant	No
510 Clyde Avenue			NAS 2-7347	
Mountain View, CA 94043		-	13. Type of Report a	nd Pariad Coustad
12. Sponsoring Agency Name and Address				
			Contractor Repo	
National Aeronautics and Space Admi Washington, D.C. 20546	nistration		14. Sponsoring Agency	y Code
15. Supplementary Notes				
16. Abstract This document is a user's manual for	four computer pr	ourams developed to	calculate the long	itudinal
aerodynamic characteristics of wing-	body and wing-b	odv-tail combinations	. The R1307 prod	aram is
based on a linear method and is limit	ed to the small rai	nge of angles of attacl	k for which the lif	ft and
moment characteristics of wings and	bodies are linear	with angle of attack.	The CRSFLW pro	ogram
is based on a crossflow method of pre	edicting the forces	and moments on bod	lies alone or wing	-body
combinations over a large angle of at	tack range. The	method states that the	normal-force dis	stribution
on a body is made up of a potential te	rm given by slend	der-body theory and	a viscous crossflo	w
term modified by Newtonian theory.	The SUBSON proc	gram predicts the lon	gitudinal aerodyn	namic
characteristics of wing-body-tail combinations at subsonic speeds and at angles of attack for which symmetrical pairs of vortices are shed from the body nose and the leading and side edges of the				
lifting surfaces. Program SUPSON p	redicts the longitu	ose and the leading a	ind side edges of	the
body-tail combinations at supersonic	speeds in the sam	he angle-of-attack rar	iaracteristics of v	virig-
		-	•	
This program manual contains a desc	ription of the use	of each program, ins	tructions for prep	paration
of input, a description of the output,	program listings,	and sample cases for	r each program.	
	···· =··· ······	<u> </u>		
17. Key Words (Suggested by Author(s))		18. Distribution Statement		
Computer programs to calculate longitudinal				
, 5, 7		Unclassified - Unl	imited	
combinations				
				CAT. 01
19. Security Classif. (of this report)	20. Security Classif. (c	of this page)	21. No. of Pages	22. Price*
Unclassified	Unclassifi		219	5.75
	1			} 1

.

*For sale by the National Technical Information Service, Springfield, Virginia 22151

TABLE OF CONTENTS

Section	Page No.
SUMMARY	1
INTRODUCTION	l
PART I - R1307 COMPUTER PROGRAM	3
Introduction	3
List of Symbols	3
Description of Program	6
Description of Input	8
Variable definitions	8
Input preparation	11
Sample cases	13
Description of Output	13
Program Listing	16
FIGURES 1 THROUGH 7	27
PART II - CRSFLW COMPUTER PROGRAM	40
Introduction	40
List of Symbols	40
Description of Program	42
Description of Input	44
Variable definitions	44
Input preparation	48
Sample cases	50
Description of Output	50
Program Listing	52
FIGURES 1 THROUGH 5	62
PART III - SUBSON COMPUTER PROGRAM	69
Introduction	69
List of Symbols	69
Description of Method	72
Description of Program	73
Description of Input	74
Variable definitions	74
Input preparation	80
Sample cases	87
Description of Output	88
Program Listing	95

TABLE OF CONTENTS (CONCLUDED)

Section	Page No.
TABLE I	115
FIGURES 1 THROUGH 8	116
PART IV - SUPSON COMPUTER PROGRAM	138
Introduction List of Symbols Description of Method Description of Program Description of Input	138 138 141 142 144
Variable definitions Input preparation Sample cases	144 150 157
Description of Output Program Listing	157 164
TABLE I	194
FIGURES 1 THROUGH 7	195
REFERENCES	218

COMPUTER PROGRAMS FOR CALCULATING THE STATIC

LONGITUDINAL AERODYNAMIC CHARACTERISTICS

OF WING-BODY-TAIL CONFIGURATIONS

by Michael R. Mendenhall, Frederick K. Goodwin, Marnix F. E. Dillenius, and David M. Kline Nielsen Engineering & Research, Inc.

SUMMARY

This document is a user's manual for four computer programs developed to calculate the longitudinal aerodynamic characteristics of wing-body and wing-body-tail combinations. The R1307 program is based on a linear method and is limited to the small range of angles of attack for which the lift and moment characteristics of wings and bodies are linear with angle of attack. The CRSFLW program is based on a crossflow method of predicting the forces and moments on bodies alone or wing-body combinations over a large angle-of-attack range. The method states that the normal-force distribution on a body is made up of a potential term given by slenderbody theory and a viscous crossflow term modified by Newtonian theory. The SUBSON program predicts the longitudinal aerodynamic characteristics of wing-body-tail combinations at subsonic speeds and at angles of attack for which symmetrical pairs of vortices are shed from the body nose and the leading and side edges of the lifting surfaces. Program SUPSON predicts the longitudinal aerodynamic characteristics of wing-body-tail combinations at supersonic speeds in the same angle-of-attack range.

This program manual contains a description of the use of each program, instructions for preparation of input, a description of the output, program listings, and sample cases for each program.

INTRODUCTION

An engineering prediction method for determining the longitudinal aerodynamic characteristics of wing-body-tail configurations including nonlinear aerodynamics of components and interference between them is presented in reference 1. Specifically, particular attention is paid to the nonlinearities associated with symmetrical vortex shedding from the nose of the fuselage and with leading-edge and side-edge separation vortices from the lifting surfaces. Four computer programs were developed to calculate the longitudinal aerodynamic characteristics of wing-body and wing-body-tail combinations. This document is a user's manual for these four computer programs. Principal reliance is made herein to reference 1 for a description of the methods and calculation procedures. Reference 1 also contains calculated results and comparisons with data for various types of configurations.

The first program, called R1307, is based on the method of reference 2. Use of this program is limited to the small range of angles of attack for which the lift and moment characteristics of wings and bodies are linear with angle of attack. In most cases, the upper angle limit of usefulness of R1307 is approximately 10° .

The second program, called CRSFLW, is a crossflow method of predicting the forces and moments on bodies-alone or wing-body combinations over a large angle-of-attack range. This program is based on the method described in references 3 and 4 which states that the normal-force distribution on a body is made up of a potential term given by slender-body theory and a viscous crossflow term modified by Newtonian theory. Nonlinear effects due to vortex shedding from the nose of the fuselage or the leading edge of the lifting surface are not included in this method.

The third program, called SUBSON, predicts the longitudinal aerodynamic characteristics of wing-body-tail combinations at subsonic speeds. It is based on the extension of the method of reference 2 to angles of attack for which symmetrical vortices are shed from the body nose and the leading and side edges of the lifting surfaces. The lifting surfaces are described by a vortex-lattice scheme.

The fourth program, called SUPSON, predicts the longitudinal aerodynamic characteristics of wing-body-tail combinations at supersonic speeds. It uses the same procedure as program SUBSON with the exception that a constantpressure-panel lifting-surface theory describes the wing and tail surfaces.

Each of the above programs is presented in a separate self-contained section of this manual which contains a description of the use of the program, instructions for preparation of input, a description of the output, a complete program listing, and sample cases. A common list of references follows the fourth section.

PART I - R1307 COMPUTER PROGRAM

Introduction

This computer program automates the method presented in NACA Report 1307, reference 2, for determining the lift, pitching moment, and center of pressure of wing-body-tail combinations. The method is restricted to bodies of circular cross section with wings and tails which do not have swept-forward leading edges or swept-back trailing edges. It is further restricted to small angles of attack and small angles of wing and tail incidence in which the forces are linear with angle. For a complete description of the method the user of this program should consult reference 2.

The following sections of this write-up will present a description of the program, a description of the input, a description of the output, a program listing, and sample cases. The notation used is that of reference 2. The list of symbols from reference 2 is included herein for reference purposes.

The program is written in Fortran IV for the IBM 360 series machines. No tapes, drums, or disks other than the standard input/output units are required. The running time for a typical case on the IBM 360/67 is two to three seconds. To run the program on other machines such as the CDC 6600 minor changes are required since the inverse sine and cosine routines are used. On the IBM 360 these are called by ARSIN and ARCOS while on the CDC 6600 they are ASIN and ACOS. One or both of these routines are used in the following subprograms:

EQ19	EQ24
EQ24L	EQ30
EQ30L	VOLOG

List of Symbols

```
A<sub>m</sub> tail-alone aspect ratio
```

A_w wing-alone aspect ratio

°_r

chord at wing-body juncture or tail-body juncture

ct	tip chord of wing or tail
c_L	lift coefficient based on wing-alone area except tail-alone lift coefficient based on tail-alone area
$c_{L_{\alpha}}$	lift-curve slope for angle of attack, per radian
$c_{L_{\delta}}$	lift-curve slope for wing or tail incidence, per radian
с _т	pitching-moment coefficient based on wing-alone area
c _{mα}	pitching-moment-curve slope for angle of attack
c_m_s	pitching-moment-curve slope for wing-incidence angle
đ	body diameter
f	wing vortex semispan
k	ratio of lift component to lift of wing alone or tail alone for variable wing or tail incidence
к	ratio of lift component to lift of wing alone or tail alone for variable angle of attack
к _N	ratio of lift of body nose to lift of wing alone
l	length of wing-body-tail combination
l _w	distance from most forward point of body to intersection of wing leading edge and body
ℓ _M	distance from most forward point of body to center of moments
ℓ _R	reference length
ℓ _s	distance from most forward point of body to shoulder of body nose
$\ell_{\mathbf{T}}$	distance from most forward point of body to intersection of tail leading edge and body
Ē	distance from most forward point of body to center of pressure position
L	lift force
m	cotangent of leading-edge sweep angle
A	

M _∞	free-stream Mach number	
r	body radius	
r _N	body radius at shoulder of nose	
r _W	body radius at wing	
r _T	body radius at tail	
S	maximum semispan of wing or tail in combination with body	
s _n	cross-sectional area of nose at maximum section	
s _R	reference area	
s _T	tail-alone area	
s _w	wing-alone area	
vs	volume of body nose up to shoulder	
x,y,z	streamwise, spanwise, and vertical coordinates, respectively	
x	distance to center of pressure measured from intersection of wing leading edge and body for wing quantities and from inter- section of tail leading edge and body for tail quantities	
^x h	distance from intersection of wing leading edge and body to wing hinge line	
α	angle of attack of body centerline	
β	$\sqrt{\left M_{\infty}^2 - 1\right }$	
βA	wing-alone or tail-alone effective aspect ratio	
δ	wing-or tail-incidence angle, degrees	
λ	taper ratio, $\left(\frac{c_t}{c_r}\right)$	
Λ_{LE}	sweep angle of leading edge, degrees	
	Subscripts	
N	body nose	
т	tail	
	5	

W wing

B(T) body in presence of tail

B(W) body in presence of wing

T(B) tail in presence of body

W(B) wing in presence of body

Description of Program

The R1307 computer program consists of a main program, thirteen function subprograms, and four subroutine subprograms. The main program performs the calculations as shown on the calculating form presented in Table I of reference 2. All input and output takes place in the main program. The function and subroutine subprograms provide the quantities which are obtained from the charts and equations of reference 2 when following the procedure outlined in Table I of that reference. Unless otherwise noted, equations, figures, charts, and appendices referred to in this section are those in reference 2.

Function APENB calculates the tail interference factor using the equations of Appendix B. These values are plotted in Chart 7.

Function APENC calculates the tail interference factor using the equations of Appendix C. This function is used at supersonic speeds for rectangular tails when the wing vortex is inboard of the tip of the tail.

Function CHRT8 calculates the wing or tail lift-curve slope at supersonic speeds from the curves of Chart 8. Values of $\beta C_{L_{\alpha}}$ from the curves are tabulated in CHRT8 and linear interpolation in βA , λ , and zero sweep location is performed.

Function EQ14 calculates the value of $K_{W(B)}$ or $K_{T(B)}$ using equation (14). Values obtained from this equation are plotted in Chart 1.

Function EQ19 calculates the value of $k_{W(B)}$ or $k_{T(B)}$ using equation (19). Values obtained from this equation are also plotted in Chart 1.

Function EQ21 calculates the value of $K_{B(W)}$ or $K_{B(T)}$ using equation (21). Values obtained from this equation are plotted in Chart 1.

Function EQ24 calculates the value of $K_{B(W)}(\beta C_{L_{\alpha}})_{W}$ or $K_{B(T)}(\beta C_{L_{\alpha}})_{T}$ using equation (24). This function is used for the high-aspect-ratio range

at supersonic speeds when there is an afterbody behind the wing or tail and βm_W or βm_T is greater than one. Values are plotted in Chart 4(a).

Function EQ24L calculates the same quantity as EQ24 for the case where there is no leading-edge sweep, $\beta m_W = \infty$ or $\beta m_T = \infty$. The limiting form of equation (24) for this case is

$$K_{B(W)}(\beta C_{L_{\alpha}})_{W} = \frac{8}{\pi (1+\lambda) \left(\frac{\beta d}{c_{r}}\right) \left(\frac{s}{r}-1\right)} \left\{ \left(1 + \frac{\beta d}{c_{r}}\right)^{2} \cos^{-1}\left(\frac{\frac{\beta d}{c_{r}}}{1 + \frac{\beta d}{c_{r}}}\right) + \sqrt{1 + 2 \frac{\beta d}{c_{r}}} - 1 - \left(\frac{\beta d}{c_{r}}\right)^{2} \cosh^{-1}\left(1 + \frac{c_{r}}{\beta d}\right) - \frac{\pi}{2} \right\}$$

- -

Function EQ26 also calculates the same quantity of EQ24 but for values of $\beta m_W^{} \leq 1.0$ or $\beta m_T^{} \leq 1.0$. Equation (26) is used for this calculation and values are plotted in Chart 4(a).

Functions EQ30, EQ30L, and EQ31 are analogous EQ24, EQ24L, and EQ26, respectively, for the case where there is no afterbody behind the wing or tail. Equations (30) and (31) are used for the calculations and values are plotted in Chart 4(b). The limiting form of equation (30) when $\beta m_W = \infty$ or $\beta m_T = \infty$ is

$$K_{B(W)}(\beta c_{L_{\alpha}})_{W} = \frac{8}{\pi (1+\lambda) \left(\frac{\beta d}{c_{r}}\right) \left(\frac{s}{r}-1\right)} \left\{ 2 \cos^{-1} \left(\frac{\beta d}{c_{r}}\right) - \frac{\beta d}{c_{r}} \cosh^{-1} \left(\frac{c_{r}}{\beta d}\right) + \frac{\beta d}{c_{r}} - \left[1 - \left(\frac{\beta d}{c_{r}}\right)^{2}\right] \left[\frac{1}{2} \frac{\beta d}{c_{r}} + \frac{1\cdot 3}{2\cdot 4} \left(\frac{\beta d}{c_{r}}\right)^{3} + \frac{1\cdot 3\cdot 5}{2\cdot 4\cdot 6} \left(\frac{\beta d}{c_{r}}\right)^{5} + \dots \right] \right\}$$

Function VOLOG calculates the volume of an ogive nose using the equations in the appendix of reference 3. In the notation of reference 2, the volume is

$$V_{S} = 8\pi r_{N}^{3} \left[\frac{2}{3} \left(\frac{\ell_{S}}{2r_{N}} \right)^{3} - \left(A_{1} - \frac{1}{2} \right) A_{2} \right]$$

where

$$A_1 = \left(\frac{\ell_S}{2r_N}\right)^2 + \frac{1}{4}$$

and

$$A_{2} = \frac{\ell_{S}}{2r_{N}} \sqrt{A_{1}^{2} - \left(\frac{\ell_{S}}{2r_{N}}\right)^{2}} + A_{1}^{2} \sin^{-1} \left(\frac{\ell_{S}}{2r_{N}A_{1}}\right) - 2 \left(\frac{\ell_{S}}{2r_{N}}\right) \left(A_{1} - \frac{1}{2}\right)$$

Subroutine CH1011 calculates the wing-or tail-alone center of pressure at supersonic or subsonic speed. Curves for determining this quantity are given in Chart 10 and Chart 11 of reference 2. Values obtained from these curves are tabulated in the subroutine and linear interpolation in βA , λ , and zero sweep location is performed.

Subroutine CH1416 determines the center of pressure of the lift transferred to the body by the wing or tail. This quantity is presented in Charts 14, 15, and 16 of reference 2. For large aspect ratios at supersonic speeds, Chart 14 is used. For all other supersonic cases, Chart 15 is used. For all subsonic cases, Chart 16 is used. Values have been read from these charts and are tabulated in the subroutine. The subroutine selects the chart to be used on the basis of the Mach number and aspect-ratio parameter and then determines the value of $(\overline{x}/c_r)_{B(W)}$ or $(\overline{x}/c_r)_{B(T)}$ by linear interpolation in the tables.

Subroutine CH56 calculates the lateral position of the wing vortex $(f-r)_W/(s-r)_W$ at the wing location using Chart 5 for subsonic speeds and Chart 6 for supersonic speeds. Values have been read from these charts and are tabulated in the subroutine. Linear interpolation in βA , λ , and zero sweep location is performed.

Subroutine KFACT calls the appropriate function subprograms used to calculate $K_{W(B)}$, $K_{B(W)}$, and $k_{W(B)}$ or $K_{T(B)}$, $K_{B(T)}$, and $k_{T(B)}$. After these are determined, equation (33) of reference 2 is used to calculate $k_{B(W)}$ or $k_{B(T)}$.

Description of Input

<u>Variable definitions</u>.- The format of the input cards for the R1307 program is shown in figure 1. In this figure the program variable name is shown as well as the card columns in which the value is punched and the format in which it is punched. The remainder of this section consists of a table listing these program input variables along with the algebraic symbol used in reference 2, if applicable, and the input variable definition. The algebraic notation used in defining the configuration is shown in figure 2. A discussion of the preparation of the input is presented in the section following the table. All input length and area quantities are dimensional and should have consistent dimensions.

PROGRAM NOTATION	ALGEBRAIC NOTATION	DEFINITION
<u>Item l</u>		
NHEAD		Number of cards of information which identify run.
Item 2		
HEAD		Identifying information.
Item 3		
NTAIL		Is a tail present? NTAIL = 0; no NTAIL = 1; yes
NOSE		Ogive nose? NOSE = 0; no NOSE = 1; yes
NAFTBW		Afterbody behind wing trailing edge? NAFTBW = 0; no NAFTBW = 1; yes
NAFTBT		Afterbody behind tail trailing edge? NAFTBT = 0; no NAFTBT = 1; yes
Item 4		
FMACH	\mathtt{M}_{∞}	Free-stream Mach number.
SLM	L _M	Distance from most forward point of body to center of moments.
REFS	s _R	Reference area to be used in calculated lift and moment coefficients.
REFL	ℓ _R	Reference length to be used in calculated moment coefficients.

PROGRAM NOTATION	ALGEBRAIC NOTATION	DEFINITION
<u>Item 5</u>		
RW	rw	Average body radius at wing location.
SW	s _W	Maximum semispan of wing in combination with body.
CTW	° _t	Tip chord of wing.
CRW	°r	Chord at wing-body juncture.
WLESWP	Λ_{LE}	Sweep angle of wing leading edge, degrees.
SLW	^L w	Distance from most forward point of body to intersection of wing leading edge and body
XHW	×h	Distance from intersection of wing leading edge and body to wing-hinge line
Item 6		
RT	r _T	Average body radius at tail location.
ST	s _T	Maximum semispan of tail in combination with body.
СТТ	ct	Tip chord of tail.
CRT	° _r	Chord at tail-body juncture.
TLESWP	Λ_{LE}	Sweep angle of tail leading edge, degrees.
SLT	l _T	Distance from most forward point of body to intersection of tail leading edge and body.
Item 7		
RN	r _N	Body radius at shoulder of nose.
SLS	l _s	Distance from most forward point of body to shoulder of body nose.
VS	v _s	Volume of body nose up to shoulder.

PROGRAM NOTATION	ALGEBRAIC NOTATION	DEFINITION
Item 8		
CLAW	$(C_{L_{\alpha}})_{W}$	Wing lift-curve slope based on exposed wing area, per degree.
CLAT	$(C_{L_{\alpha}})_{T}$	Tail lift-curve slope based on exposed tail area, per degree.
CLAN	$(c_{L_{\alpha}})_{N}$	Nose lift-curve slope based on body cross-sectional area at shoulder of body nose, per degree.
Item 9		
ALFI	α_{i}	Initial body angle of attack for which calculation is to be performed, degrees.
ALFF	lpha f	Final body angle of attack for which calculation is to be performed, degrees.
DALF	$\Delta lpha$	Angle-of-attack increment to be used between α_i and α_f , degrees.
Item 10		
DWI	^ŏ w _i	Initial wing incidence angle for which calculation is to be performed, degrees.
DWF	$\delta_{\mathtt{W}}$ f	Final wing incidence angle for which calculation is to be performed, degrees.
DDW	${}^{\Delta\delta}{}_{\mathbf{W}}$	Wing incidence angle increment to be used between δ_{W_1} and δ_{W_f} , degrees.
Item 11		
DTI	° _T i	Initial tail incidence angle for which calculation is to be performed, degrees.
DTF	$^{\delta}\mathbf{T}_{\mathtt{f}}$	Final tail incidence angle for which calculation is to be performed, degrees.
DD T	$\Delta^{\delta}\mathbf{r}$	Tail incidence angle increment to be used between δ_{T_1} and δ_{T_f} , degrees.

Input preparation.- A discussion of the input variables will be presented in this section as an aid in the preparation of the data deck. Before beginning this discussion a few words need to be said as to what the computer program treats as the wing and what it treats as the tail. If a configuration has one set of lifting surfaces, this is the wing regardless of its axial location on the body, and data describing the set are input as wing data. If there are two sets of lifting surfaces, the set closest to the nose is the wing and the aft set the tail. For example, if the configuration has a set of canards near the nose and a wing further aft on the body, the canard data are input as wing data and the wing data input as tail data.

Item number 1 of the input data is an index NHEAD which indicates how many cards of information, item number 2, are to follow to identify the run. The value of NHEAD must be one or greater. Item number 2 is a set of NHEAD cards containing hollerith information which the user wishes to use to identify the run. This information can be punched anywhere in the cards and is reproduced in the output just as it is read in.

Item number 3 contains four indices. The first, NTAIL, specifies whether a tail is (NTAIL = 1) or is not (NTAIL = 0) present. The second index, NOSE, specifies whether the nose is (NOSE = 1) or is not (NOSE = 0) an ogive. The purpose of this index is to provide a computation within the program of the nose volume for an ogive. For non-ogive noses, the volume must be input in Item 7. The third index, NAFTBW, specifies whether the body extends (NAFTBW = 1) or does not extend (NAFTBW = 0) behind the wing trailing edge. The last index, NAFTBT, specifies the same thing with respect to the tail. If NTAIL = 0 then NAFTBT should be input as zero. These last two indices are only used at supersonic Mach numbers. Thus, their values are immaterial at subsonic speeds.

Item numbers 4 through 7 are self explanatory if the table in the preceeding section and figure 2 are referred to. Item number 6, which contains the tail data, is omitted from the input deck if there is no tail, NTAIL = 0, in item number 3. If the nose is an ogive, NOSE = 1 in item number 3, then the nose volume, VS of item number 7, is input as zero and the program calculates the volume.

Item number 8 contains the lift-curve slopes, per degree, of the wing alone, CLAW, tail alone, CLAT, and nose, CLAN. The first two are determined by joining the exposed panels together. If experimental values of these quantities are known, they should be used. At subsonic Mach numbers CLAW and CLAT must be input. They can be obtained from, for example, reference 5. At supersonic speeds they can be input as zero and the program will determine them using Chart 8 of reference 2. If there is no tail, NTAIL = 0, CLAT is input as zero. If the nose lift-curve slope is not known, it is input as zero and the program uses the slender-body value of 0.0349 per degree.

The last three items of input, item numbers 9, 10, and 11, specify the ranges of angle of attack, wing incidence angle, and tail incidence angle for which calculations are to be performed. The first number on each card is the initial value of the angle, the second number is the final value, and the third number is the increment to be used in going from the initial to the final value. Calculations are performed for all combinations of these angles. If there is no tail, NTAIL = 0, zeros should be input for all three numbers in item 11.

<u>Sample cases.</u> Listings of the input data decks for two sample cases are presented in figure 3 and sketches of the two configurations are shown in figures 4 and 5. Sample case 1 is the example used in the computing form presented as Table I in reference 2. Sample case 2 is the configuration used in the tests of reference 6.

Sample case 1 is a wing-body-tail combination. The nose is not an ogive, NOSE = 0, so that the nose volume, VS, is input. The Mach number, FMACH, is 1.99. Thus, the lift-curve slopes, CLAW, CLAT, and CLAN, are input as zero and the program is allowed to calculate them.

Sample case 2 is a canard-body-wing combination. The nose is an ogive, NOSE = 1, so that the nose volume, VS, is input as zero and the program calculates this quantity. The Mach number for this case is subsonic, FMACH = 0.13, so that the wing (canard) and tail (wing) lift-curve slope values, CLAW and CLAT, are input. In this example the nose liftcurve slope value, CLAN, is also input.

Description of Output

The output produced by the R1307 computer program for sample case 1 is shown in figure 6. The first output produced by the program, figure 6(a), is a tabulation of most of the input data, Items 1, 2, and 4 through 7 of figure 1. The next output, figure 6(b), lists quantities which are calculated by the program for the wing, tail, and nose and the lift-curve slopes which were either read in or calculated. The wing quantities which are tabulated are on the following page.

OUTPUT NOTATION	ALGEBRAIC NOTATION
EXPOSED AREA	s _w
BETA *AR	βA _W
BETA*D/CR	βd/c _r
AR PARAM	$\beta A_{W}(1 + 1/m\beta) (1 + \lambda)$
TAPER RATIO	λ
R/S	(r/s) _W
SM*BETA	mβ
CKWB	^К W(В)
CKBW	^к в (w)
SKBW	^к w(в)
SKBW	^k B(W)
(XBAR/CR)W(B)	(x/c _r) _{W(B)}
(XBAR/CR) B (W)	(x/c _r) _{B(W)}
(F - R)W/(S - R)W	$(f - r)_W / (s - r)_W$

Except for the last quantity in the above list, the same quantities are tabulated for the tail. The listed nose quantities are:

OUTPUT NOTATION	ALGEBRAIC NOTATION
BASE AREA	$s_{N} = \pi r_{N}^{2}$
CKN	к _N
NOSE CENTER OF PRESSURE	$\overline{\ell}_{N}$

The definitions of the three lift-curve slopes are:

$$(CLA) W = \frac{d}{d\alpha} (C_L)_W = \frac{d}{d\alpha} \left(\frac{L_W}{q_{\infty} S_W}\right)$$
$$(CLA) T = \frac{d}{d\alpha} (C_L)_T = \frac{d}{d\alpha} \left(\frac{L_T}{q_{\infty} S_T}\right)$$
$$(CLA) N = \frac{d}{d\alpha} (C_L)_N = \frac{d}{d\alpha} \left(\frac{L_N}{q_{\infty} S_N}\right)$$

The first output on figure 6(c) is a series of lift and moment curve slopes for the complete configuration without including wing-tail interference. These six quantities appear in boxes 88 through 93 of Table I of reference 2. All of these slopes are evaluated at $\alpha = \delta_W = \delta_T = 0$ (A = DW = DT = 0 in the output notation) and the coefficients are formed using the input reference area S_R and reference length ℓ_R . For example

$$D(CL)/D(DW) = \frac{d}{d\delta_W}(C_{L_C}) = \frac{d}{d\delta_W}\left(\frac{L_C}{q_{\infty}S_R}\right)$$

and

$$D(CM)/D(DW) = \frac{d}{d\delta_W}(C_{m_C}) = \frac{d}{d\delta_W}\left(\frac{M_C}{q_{\infty}S_R\ell_R}\right)$$

The next quantities tabulated are lift and moment curve slopes for configuration components and the complete configuration including interference of the wing vortices on the tail. These are also evaluated at $\alpha = \delta_{\rm W} = \delta_{\rm T} = 0$. The column identified "BODY" is the nose component and that identified "WING-BODY" is the wing-body combination including the nose and wing-body interference. The column identified "TAIL-BODY MINUS NOSE" includes only the tail lift and that produced by tail-body interference. The last column pertains to the complete configuration including wing-tail interference. The quantities tabulated in this block of output appear in boxes 124 through 127 of Table I of reference 2.

The last output listed in figure 6(c) gives the lift and pitchingmoment coefficients and the center of pressure of the complete configuration, both with and without wing-tail interference, as a function of angle of attack, A, wing incidence angle, DW, and tail incidence angle, DT. The quantity denoted as LM-L/LR is the center of pressure measured from the center of moments and made dimensionless by the reference length. It is calculated as CMC/CLC. The ranges of these three angles for which calculations were to be performed were read in as Items 9, 10, and 11 of the input data, see figure 1. The nine quantities in this table appear in boxes 94, 95, 96, 100, 104, 105, 120, 122, and 123 of Table I of reference 2.

The last page of output, figure 6(d), tabulates for the same angle ranges the lift and pitching-moment coefficient components including those due to wing interference on the tail. The columns headed "NOSE" are nosealone quantities due to angle of attack. The columns headed "WING A+DW" are wing quantities, including wing-body interference, due to angle of attack and wing incidence. The columns headed "TAIL A+DT" are tail quantities, including tail-body interference, due to angle of attack and tail incidence. The remaining two columns headed "TAIL WING INT" are the coefficients produced by the tail due to wing vortex interference. The quantities tabulated on this page are not included in Table I of reference 2.

Figure 7 contains the output for sample case 2. The format is identical to that which has just been described. Since the configuration for sample case 2 is a canard-body-wing combination, "WING" in the output refers to the canard and "TAIL" refers to the wing.

Program Listing

The R1307 computer program consists of the main program, thirteen function subprograms, and four subroutine subprograms. Each source deck is identified in columns 73 through 80 by a four-character identification and a three-digit number sequencing the cards within that deck. The program listing is given on the following pages. The table below will act as a table of contents for the listing.

PROGRAM	IDENTIFICATION	PAGE NO.
MAIN	LNOL	18
Functions:		
APENB	LN02	21
APENC	LN03	21

PROGRAM	IDENTIFICATION	PAGE NO.
CHRT8	LN04	21
EQ14	LN05	22
EQ19	LN06	22
EQ21	LN07	22
EQ24	LN08	22
EQ24L	LN09	22
EQ26	LN10	22
EQ30	LN11	23
EQ30L	LN12	23
EQ31	LN13	23
VOLOG	LN14	23
Subroutines:		
CH1011	LN15	24
CH1416	LN16	24
СН56	LN17	26
KFACT	LN18	26

Sertal.SX.urfal.Lat.Lat.V.L.S.V.U.S.S.C.V.T.T.Lat.Lat.SX.ura.S. 4.3X.Mealug. 17.7X.Lat.Lat.SV.V.S.S.C.V.T.T.Lat.SX.G.Lat.S. 7.37 FGWART(377.2)X.V.V.V.V.V.V.V.V.S.G. 4.0) 751 FGWART(377.2)X.V.V.V.V.V.V.V.V. F. 4.0) 751 FGWART(7/72X.2005. NUG1 86 Lat.R1 NAM R.A) 752 FGWART(7/72X.2005. NUG1 86 Lat.R1 NAM R.A) 753 FGWART(7/72X.2015. NUG1 86 GARGUT 86 SPT 753 FGWART(7/72X.9015.100 EGE GARGUT 86 SPT AACN) 754 FGWART(7/72X.941FFLVG ELEL.SUCK EDECE GARGUT 86 SFFFT FARAN) 755 FGWART(7/72X.941FFLVG ELEL.SUCK EDECE GARGUT 86 SFFFT FARAN) 755 FGWART(7/72X.941FFLVG ELEL.SUCK EDECE GARGUT 86 SFFFT FARAN) 755 FGWART(7/72X.941FFLVG ELEL.SUCK EDECE GARGUT 86 SFFFT FARAN)	756 FORMIT///ZATADOFTT CONDI HE GREATEN TAN CRT) 757 FORMATT///ZATADOFTT CONDI HE GREATEN TAN CRT) 757 FORMATT///ZATATALL LEADING EDGE CANOUT BE SHEPT HUMAHU) 759 FORMATT///ZATATHIF MUSE 18 NUT AN OULVE VOLUME MUST BE INPUT) 759 FORMATT//ZATATHIF MUSE 18 NUT AN OULVE VOLUME MUST BE INPUT) C READ AVD MAITE MEADING INFORMATIUM	RAD#57.29578 1000 READ (57.701) MHLAD D01 1 M11.000 D11 M11.000 M11.000 <td>READ AND WRITE FLIGHT READ (5,705) FMACH, WRITE (5,706) FMACH, READ AND WRITE MING I READ (5,707) RM,5%,CT RRITE (5,708) RM,5%,CT MRITE (5,708) RM,5%,CT MRITE (5,708) RM,5%,CT MRITE (5,709) RM,5%,CT MRITE (5,709) RM,5%,CT MRITE (5,701) RM,141 T DEAD AND MRITE (5,711)</td> <td>TE NIALLEG40) GU TO 10 TF (NIALLEG40) GU TO 10 READ (5,707) R.ST.CTT.CRT.TLESMP.SLT REITE (6,711) HRITE (6,700) RT.ST.CTT.CRT.TLESWP.SLT HRITE (6,707) RH.BLS.VS HRITE (6,712) RH.BLS.VS HRITE (6,712) HRITE (6,713)</td> <td>C CHECK INPUT DATA FOR CASES NUT MANDLED BY PROGRAM IT (TALCM+ML+1.0) GU TO 200 Refrain (6,750) 201 (1(30-MP),610,0,0) GU TO 201 MERA1 201 (1(30-MP),LE,1,0) GU TO 201 10 (1(30-MP),LE,1,0) GU TO 202 MERA1 201 (1(15)-(2H),LE,1,0) GU TO 203 202 (1(15)-(2H),LE,1,0) GU TO 203 203 (1(15)-(2H),LE,1,0) GU TO 203 203 (1(15)-(2H),LE,1,0) GU TO 203 203 (1(15)-(2H),LE,1,0) GU TO 204 MERTE (6,754) 203 (1(12)-(1,2,0) GU TO 204 MERTE (6,754) 204 (1(12)-(1,2,0) GU TO 204 MERTE (6,754) 204 (1(12)-(1,2,0) GU TO 204 MERTE (6,754) 205 (1(12)-(1,2,0) GU TO 204 MERTE (6,754) 205 (1(12)-(1,2,0) GU TO 204 MERTE (6,754) 205 (1(12)-(12)-(10)-(10)-(10)-(10)-(10)-(10)-(10)-(10</td>	READ AND WRITE FLIGHT READ (5,705) FMACH, WRITE (5,706) FMACH, READ AND WRITE MING I READ (5,707) RM,5%,CT RRITE (5,708) RM,5%,CT MRITE (5,708) RM,5%,CT MRITE (5,708) RM,5%,CT MRITE (5,709) RM,5%,CT MRITE (5,709) RM,5%,CT MRITE (5,701) RM,141 T DEAD AND MRITE (5,711)	TE NIALLEG40) GU TO 10 TF (NIALLEG40) GU TO 10 READ (5,707) R.ST.CTT.CRT.TLESMP.SLT REITE (6,711) HRITE (6,700) RT.ST.CTT.CRT.TLESWP.SLT HRITE (6,707) RH.BLS.VS HRITE (6,712) RH.BLS.VS HRITE (6,712) HRITE (6,713)	C CHECK INPUT DATA FOR CASES NUT MANDLED BY PROGRAM IT (TALCM+ML+1.0) GU TO 200 Refrain (6,750) 201 (1(30-MP),610,0,0) GU TO 201 MERA1 201 (1(30-MP),LE,1,0) GU TO 201 10 (1(30-MP),LE,1,0) GU TO 202 MERA1 201 (1(15)-(2H),LE,1,0) GU TO 203 202 (1(15)-(2H),LE,1,0) GU TO 203 203 (1(15)-(2H),LE,1,0) GU TO 203 203 (1(15)-(2H),LE,1,0) GU TO 203 203 (1(15)-(2H),LE,1,0) GU TO 204 MERTE (6,754) 203 (1(12)-(1,2,0) GU TO 204 MERTE (6,754) 204 (1(12)-(1,2,0) GU TO 204 MERTE (6,754) 204 (1(12)-(1,2,0) GU TO 204 MERTE (6,754) 205 (1(12)-(1,2,0) GU TO 204 MERTE (6,754) 205 (1(12)-(1,2,0) GU TO 204 MERTE (6,754) 205 (1(12)-(12)-(10)-(10)-(10)-(10)-(10)-(10)-(10)-(10
L 201 002 L 201 002 L 201 003 L 201 003 L 201 003 L 201 003 005 005 005 005 005 005 005	L L L L L L L L L L L L L L L L L L L			LEC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	111100 000 111100 000 111100 000 111100 000 111100 000 111100 000 1
COM81 × 4 1 1 U × 4	DF WING-BUDY-TAIL CO 1957///)	UNNER BAL UNNITES/Xroware I UNNITES/Xroware I ENTER RELATIVE 10 TIP I Xriongemispan B/Flo.5/ Binnee From 11P 0F MOS Binnee From VIP 0F MOS	3375007, СССАХ /5%,204YQLUME (La)=,6%, ;5%,1148ETaaD ;59,5/3%,54473 =,69,5/3%,6487	#,F9,5/5%,6M6K #408E (ENTER O #40EE (ONFIGU	(CC)/OCD)/JX,J (CC)/OCD)/JX,J CER DECRELSON CER DECRELSON CO CERENUE PRES INNERAL DE
C0481~	DF wIA 1957//			e v 52	T D L M M M M M M M M M M M M M M M M M M
17-TAIL	7 1507.	214 214 214 214 214 214 214 214 214 214	RAU TAUR L CDIUS A ULLDER S 1 DEGREE 8 1 159) 1595 1495 1495 1495 1495 1495 1495 1495	153) ,5/5%,6H3K ,15,5%,6H3K ,15,9%,5/5%	P0(0));21 81555 81555 81555 8251011354 8251011354 8251011355 8251011355 8251011355 8251011355 112552 82525 1125522 112552 1
4	U CENTER UP PRESSURE (UP MACA REPORT 1307, Mattinger 1444-444	1.2%2%20MEEFERECE UU 2.12%2%20MEEFERECE UL 9.5/2%,43MMOMENT CENT 1.0213 1.	ULATION MEASURED TWOM .5) 10 014/5x,200HRADIUS A 11 014/5x,200HRADIUS A 11 0014/5x,200HRADIUS A 11 014/5x,200HRADIA 11 014/51 11 014/51)) 3,F9.5) () 2,F9.5) () 14.6.9.5) () 14.6.81 4,F9.5/5%,6H8K () 2,F9.5) () 2,F9.5) () 2,F9.5 () 4,6.5 () 4,6.5 () 4,6.5 () 4,5.5 () 4,5	<pre>>> 2% 11 FTC FTC 10 (CL) / 0 (CL) / 1 (CL) / 0 (CL) / 1 (L) / 1 (CL) / 0 (CL) / 1 (L) / 2 (L) / 2</pre>
4	004) 1115-58mlift and Center UP Pressure 1115-58mlift and Center UP Pressure 11215-58mlift and Center UP and State 2011-1110-2011	<pre></pre>	SHILON #FIG.5 ALSTIDN #FIG.5 ALSTIDN #FIG.5 ALSTNDE (MPUT 0ATA) ALSTAL (MPUT 0ATA) ALST FROM TP 0ATA/SX,20HRADIUS A ALST FROM TP 0F MUSE TO BHOULDER #/ AULTER #FIG.5 ANULFT CLUVE BLOPE, FER DEGREE/8 ANULFT FIG.10 F MUSE ANULFT FIG.10 F MUSE AULTER A #/F9,5/SX,13HTPER RA HEAGET #/F9,5/SX,0HC AND HEAGET #/F0,5/SX,0HC AND	<pre>>>K(XBAR/CR)((B) =FF9_5) SH(XBAR/CR)((B) =FF9_5) SH(XBAR/CR)B((B) =FF9_5) SH(XBAR/CR)E(B) =FF9_5) JAR(XBAR/CB)((B) =FF9_5) SH(XBAR/CB)((B) =FF9_5) SH(XBAR/CR)E(T) =FF9_5) SH(XBAR/CR)E(T) =FF9_5) JAC44L(LLATED MOBE QUANTITES) JAC44LLET AND MENT CURVE BLOFE OF SHUN, TUCET AND MENT CURVE SHORE OF SHORE OF SHUN, TUCET AND MENT CURVE SHORE AND AND AND AND AND AND AND AND AND AND</pre>	<pre>INTOC(CL)YOTONL, ZA, INTOC(CL)YOTON, ZA, INTO(CC)YOTA), X, NITUOI 000 </pre>
LIFT AND CFNICH DF MALSSUME UF -IMG-BUDY-TAIL mfthuud uf maca mepufi 1307, 1457 fimensium statement dimensium meau(20) fummat statements	701 FURMAT(1015) 702 FORMAT(2044) 703 FORMATT(1X,2044) 704 FORMATT(11,11x)50mL[FT ANU CENTER UP PRESSURE 1 meinaltons/242,32mmethodD UP NACA REPORT 1307, 1 meinaltons/242,32mmethodD UP NACA REPORT 1307, 705 FORMAT(10420,5)	706 FORMATC// ZX.17H-LIGHT CUNDITIONS/SIJSHMERF WU Zm.opf11,5/51.0HLENGTH m.FY.5/12X.43HMOMENT CENT 2000 Hobe 13.71.544545 705 FORMATC// ZX.15H44E INDUT DATA) 706 FORMATC// ZX.15H44E INDUT DATA) 706 FORMATC// ZX.15H44E INDUT DATA) 706 FORMATC// ZX.15H42E INDUT DATA) 707 FORMATC// ZX.15H42E INDUT DATA) 708 FORMATC// ZX.15H42E INDUT DATA) 708 FORMATC// ZX.15H42E INDUT DATA) 708 FORMATC// ZX.15H42E INDUT DATA) 709 FORMATC// ZX.15H42E INDUT DATA) 709 FORMATC// ZX.15H42E INDUT DATA) 700 FORMATC// ZX.15H42E INDUT DATA) 708 FORMATC// ZX.15H42E INDUT DATA) 709 FORMATC// ZX.15H42E INDUT DATA) 700 FORMATC// Z	<pre>710 FORMATICXL3DFAINUE LIME LULLION MENSORED FUCHILIX '330F0UUT LIMEL 711 FE EDEATT(// ZAISHTALL LIMEL LOAT) 711 FORMATI(// ZAISHTALL LIMUT 0AT//SAIDUB AT SHOULDER #.F10.5/ 712 FORMATI(// ZAISHUGE INUT 0AT//SAIDUB AT SHOULDER #.F10.5/ 713 FORMATI(// ZAISHUGE FUND TIP OF NUSE TO SHOULDER #.F10.5/S4.28HVOLUME UI 713 FORMATI(// ZAISHTLFFCURYE SLOPES, PER DECREE/8X,0H(CLA)*0*/X 713 FORMATI(// ZAISHTLFFCURYE SLOPES, PER DECREE/8X,0H(CLA)*0*/X 714 FORMATI(// ZAISHTLFFCURYE SLOPES, PER DECREE/8X,0H(CLA)*0*/X 715 FORMATI(// ZAISHTLFFCURYE SLOPES, PER DECREE/8X,0H(CLA)*0*/X 715 FORMATI(// ZAISHTLFFCURYE SLOPES, PER DECREE/8X,0H(CLA)*0*/X 715 FORMATI(// ZAISHTACACULATED NING GUNTITIES) 714 FORMATI(// ZAISHTCACULATED NING GUNTITIES) 715 FORMATI(// HUREPUBEIA #.P9%,5/SX13HTRPER RATIO #.F9%,5/SX16HR/94 715 FORMATI(// HUREPUBEIA #.P0%,5/SX1,0HBFTAAD/ 714 FORMATI(/// DATRA #.P0%,5/SX1,0HBFTAAD/ 714 FORMATIC/// HUREPUBEIA #.P0%,5/SX1,0HBFTAAD/ 714 FORMATIC// HUREPUBEIA #.P0%,5/SX1,0HBFTAAD/ 714 FORMATIC/// FORMATIC/// FORMATIC//// FORMATIC//// FORMATIC////////////////////////////////////</pre>	<pre>717 FORMAT(5x,194(XBMA/C8)M(8) =_FP.5) 716 FORMAT(5x,194(XBMA/C8)M(8) =_FP.5) 719 FORMAT(5x,194(XBMA/C8) =_JP.5) 720 FORMAT(5x,194(XBMA/C8) =_JP.5) 721 FORMAT(5x,194(XBMA/C8)1 =_JP.5) 723 FORMAT(5x,194(XBMA/C8)1(8) =_JP.5) 723 FORMAT(5x,194(XBMA/C8)1(8) =_JP.5) 723 FORMAT(5x,194(XBMA/C8)1(8) =_JP.5) 724 FORMAT(5x,1194BE AREA =_JP.5) 725 FORMAT(5x,1194BE AREA =_JP.5) 726 FORMAT(5x,1194BE AREA =_JP.5) 726 FORMAT(5x,104HE) 726 FORMAT(5x,104HE) 726 FORMAT(5x,104HE) 726 FORMAT(5x,104HE) 727 FORMAT(5x,104HE) 728 FORMAT(5x,104HE)</pre>	<pre>Z1/10/22/12/27/07/27/27/27/27/27/27/27/27/27/27/27/27/27</pre>

	Set 1027		
~	-		
	L 1001 149		CALCULATE TAIL GUANTITLS AN MEGUIRED BY HORES 23-36 AND 03-78 OF Table 1 up medurt 1547 if fail is present
			IF (MIAIL, 60,0) 60 TO 50
			TAPERTECTT/CRT Rugtert/St
DUMS(81087)0124/1/LE84P/RAD)	-N01 154		IF (TLEBPT_LE.C.0.0) 60 TU 10 048144614/14/(TLEB_0/G1,0674)
		5	GU TO 31 SHRTAL OF OR
	• ••	12	
			8ETAATE4,028ETA0((8TeRT)002)/L8T TF (CLAT.6T.0.0) GO TH 25
			IF (FMACH.LT.1.0) GO TO 23
		55	CLATECHATO(GETAAT, GT, RT, CTT, CRT, TLEGEP)/(GETAARAD) COMTINUE
	• ••• •		BDOCRTS2, 0+861A+RT/CHT
			PAMAMTAGETAAT4(1,0041,0/8MB4)4(1,004TAPER1) MRITE (4.720)
	• •• •		HRITE (6.715) CB1, BETAAT, BOUCHT, PARAMT, TAPERT, ROST, SHHT
.			CLARECLATARAD Call Kfact (Robit.tkth.fwach.bioint.tkut titert titer onto a titer
	• ••		CITE TO THE STATISTICS STATIS
LATO TARK TALL AND NOW ALDE LIT CURVE BLOFES INPUT AB 0.0 IF PROGRAM IS TO CALCULATE TWEN			WRITE (6.721) CATB.CABT.SATE.SABT Call Chistics by Score Sate Sate Sate Sate Sate Sate Sate Sat
	111 ION		VALL VIVALIA VIIVIIIILEERVALTIJERIVIAACH,TAPERTJEETAAT/X86x1) Write (4/722) X96RT
			BL T8448L 1 + × 86 K 1 + 6 K 1
CALCULATE WING QUANTITIES AS REGUIRED BY BOXES 4-21 AND 47-42 OF L	• ••	-	OLTTICISTICALINA Call CM1416(81,R1,TLE8MP,CTT,CR1,FMACM,PARAMT,MAFTR1,RDDCAT,WHCHRTIND
	-	-	·*************************************
			01 mt 01 mst msg bt 21 mt - 21 msg bt - 21 msg
	L 101 102		91X 1091 4X 1 CLAT84567 4CLAT/REFS
		2	
		2	
	LND1 100		IF (CLAN.LE.0.0) CLAME2.0/RAD
WING AND TAIL LIFT-CURVE			CARACCARACCCARACCCARAC
	201 1041		VODEXE VOLCEX
/ (BE1A -RAD)	-	-	##ITE (6.72#)
		-	WRITE (6.725) CBR.CKN.BLN
•	••	 0	OUTPUT LIFT-CURVE SLUPES
WRITE (6.715) CBT. BETAAN, BOOCRT, PARAMH, TAPENN, RUBF, SABN			MRITE (0//10/ ULAW/CLAT/CLAN Write (4.735)
	LV01 203	 0	CALCULATE FORCE AND ADMENT DERIVATIVES FOR NO MINGOTAIL
			LAICHTERCALE, BUILE BOARS OF TABLE T OF REPORT 1307
. APERS. BETARS. XBCRS)		0	
0-1-10-2-0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	LN01 206		IF (MTAIL.6T.0) CLACECLAC+(CKI8+CK8I)+CLATBR Cloecatoreneorth.actato
		, 0	
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT		- (IF (NTAIL.61.0) CLDTC=(SKIH+SKBT)+CLATSR
	LN01 212		CIACIACIACIANIN'NACIANIN'NACIAN'NACIAN'NACIALIAN'NACIALIAN'NACIALIAN'NACIALIAN'NACIALIAN'NACIALIAN'NACIALIAN'N 17 (Nialia) (Nialian'na taona taon
- e -	LN01 215		CADEGE (OKERBOURSELSE) OKERBOURSELSE OKERBOURSELSE) SCEREDKYKEL CADEGE (OKERBOURSELSE) SCEREBS) SCEREBS/KEFE
CALL CHS6(BN.RH.FLESTP.CTH.CRH.FMACH.TAPERK.BETAAN.FRSRH)	N01 215		CADTC#0.0 16 / N1411 C1 11 / NNTV-/44148.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.

		2555 2555 25555 25555 2575 2575 2575 25	2222222222 222222 22222 22222 22222 2222	19999999999999999999999999999999999999	1 3 1 3 4 4 3 6 0 - N M 3 1 3 4 4 3 6 0 - N M 3 4 4 3 5 0 - N M 3 4 4 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
							4
<pre>Litcutit</pre>	Cuturin: and an an and an an and an an and an and an an and an and an and an and an and an an	Снстастска Креплаксрем 15 (манць чы бо ти 170 В112861/лаксрам Нолтеснаки Нолтеснаста ПС (трее1,67.0,99.and.eust.l.,1.0.and.fmacm.ut.1.0) 60 ти 16 (трее1,67.0,99.and.eust.l.,1.0.and.fmacm.ut.1.0) 60 ти 17 (трее1,67.0,99.and.eust.l.) 18 (треек) 18 (треек) 18 (тесеносьрам 18 (тесеносьрам 18 (тесеносьрам) 18 (тесеносьрам)	ອອບອບ×∺13 ວັ	LXENT AVENAL IN (ALPHA-LL-ALF) IN (ALPHA-LL-ALF) HIT (011A-00H SelvardelTar-00H DelvardelTat-00H IF (011A-LE-0TF) IF (011A-LE-0TF) CALCULATE LIFT AND CONFORMED ON		CLTADTF(CKT8+CKBT)=ALPHA+(8K18+9KBT)=OLLTT)=CLAT3H 8113290LTAALPAL 8113290LTAALPAL 911320LTAALPAL 911390LTAALPAL 911390LTABLEN 911390LTABLEN 91051.051.051.051.4037.40057.91.40.4N0.FMACH.071.0) GO TU J20 91051.051.051.051.7637.4N057.91.40.57.91.0 920 01030 920 01030 921340EGUARAALPAA 911394110404 911394110404 911394110404 911394110404 9113041CABN2HTAM 911394110404 911414040441440CAM3FALPHA/RFF CLTTTTTUG04814141.8 940 CANNGECANABRALPHA/RFF CLTTTTTUG04814141.8 940 CANNGECANABRALPHA/RFF CTTTTTUG04814144 940 CANNGECANABRALPHA/RFF CTTTTTUG04814144 940 CANNGECANABRALPHA/RFF CTTTTTUG04814144 940 CANNGECANABRALPHA/RFF 0 CANNGECANABRALPHA/RFF 0 CANNGECANABRALPHA/RFF 0 CANNGECANABRALPHA/RFF 0 CANNGECANABRALPHA/RFF 0 CANNGECANABRALPHA/RFF 0 CANNGF 0 CANGECANABRALPHA/RFF 0 CANGECANABRALPHA/RF 0 CANGECANABRALPHA/RFF 0 CANGECANABRALPHA/RF 0 CANGECA	CATAOTT (CCTUBSREFL DELTT) (CLTUSSREFL DELTT) (CLTUSSREFL 350 WHIT (S.TTS) (S.T.M.LTXEFL 350 WHIT (S.T.TS) (S.M.LTXEFL 100051: (MANADALF 1000051: (MANADALF 1000051: (MANADALF 111111111111111111111111111111111111
<pre>CLUCUTIL NIMETIAL INTERFANCE UNATITIES, SUCH 3 100-10% UNATION STALE 1 0% SERVICE UNATITIES, SUCH 3 100-10% UNATION STALE 1 0% SERVICE UNATITIES, SUCH 3 100-10% UNATION STALE 1 0% SERVICE UNATION CO.2031968ETATTERSERVENTER UNATION STALE 1 0% SERVICE UNATION STAL</pre>	Cutuduit aiterial juigerende unallites, 9044 100-100 17 (Trillien Cutores) CU TO 90 19 (Trillien Cutores) CU TO 90 19 (Trillien Cutores) 19 (Trillien Cutores) 19 (Trillien Cutores) 10 (Trillien Cutore	00000 00000 00000 00000 00000 00000 0000	00000000000000000000000000000000000000		22222222222222222222222222222222222222	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
CLULAT INVERIAL INTERFERENCE WANTITLES, STATE 100-104 STALE 109 SED TO SO STALE 109 SED TO SO STALE 109 SED TO SO STALE 109 SED TO SO STALE 100 SO STA	CALCULATE STALE 10 SERVICES UNAVITIES, SCREPTING STALE STALE STALE 10 SERVICES STALE 105 SERVICES STALE 105 SERVICES STALE 105 SERVICES STALE STALE 105 SERVICES STALE STALE 105 SERVICES STALE			7			
		LE3, HUXES 100-104 .283149867115FNSRMeShran .283149867115FNSRMeShran .283149867115FNSRMeShran	IN CUMPONENT	САВА)°СLAMBR 60 TO 100)sclats Скавевих Скавевих Мудег МодегаLMMLweckBwebLmLBk)sclambr/REFL	0) GU TU 110 	0443K484814248L44LT/REFL Cenda Cenda And Cents And Center Of Uration, Boxes 944105 An 07	A -147 -141 -144 -144 -144 -144 -1741 -174

	FUNCTION APLAN (TAPEN, ROS, FUS, MGS)	100 20		
			THAE (HUCHERA) (FICESOCE), 2) #42) 4 (HUCHER2) (COCHENUC) #42) THAE (HUCHER2) (FICEEHOR) 4 420 4 440 4 440 4 440 4 440 4 440 4 440 4 440 4 440 4 440 4 440 4 440 4 440 4 440 4	-
	BY THE METHOD UF APPENDIX	02 003	7=80,544LG6(7=4,74D) 7=80,544LG6(7=4,74D)	23
	IN CHART 7 OF THAT	05 00F	CH1(J)m2+0*(Ta+14+1C+TD+TE+T+TL+TH)/\$UC ** **********************************	LN05 039
		00 00	IF (Verber) 60 (U 10 Dimetoriety)/(Firitety)	L~03 640
	01HE7810N F(4),1(4),C((4)	02 007	FOCEDUMAFDC	L403 041
		90 0 20 92 0 0 6	1008004440C	LN03 443
		02 010		L 203 044
		110 20		LN03 044
			s 2	LN03 047
		02 014		
		02 015		
		02 010 02 017		
		010 20		
	(1.0+M)) 2+/M/(1.1-M/++2)/	02 019		
		02 022		
	- 「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」	02 023		
2		120 20		
•	APENBE2.00(CL(1)=CL(2)=CL(3)+CL(4))/(1,0+TAPEH)	420	(WILES"23"13"2"""""""""""""""""""""""""""""""	L~04 001
		120	C CALCULATE BETA+D(CL)/D(ALPMA) FOR SUPERSONITE MACH NUMBENS. CHART	LN04 002
		028	OF REPORT 1307	LNOU DOG
				1404 005
			DATA RAD/57.20578/	L204 000
			DATA HA/0.0.0.5/1.0.1.5,2.0.2.5.3.0.4.0.5.0.4.0.10.0/	Log 007
			4.00.4	120
				L N O 4
			+ +++ 0.861 2.021 2.071 3.001 3.201 3.341 3.511 3.601 1.65. 4.001	
		100 10		
	CALCULATION OF TAIL INTERFERCE FACTOR BY THE HETHOD OF APPENDIX LND	200 10	CTATOR. Detter	LN04 015
		10 00t	10 1=0	LN04 016
		20 005		LN04 018
	1		IF (BAR,GL,BA(I)) 60 TO 11 Thefet	LN04 019
		000 10		LN04 020
		000	DXBAE(BAR+8A(1x))/(8A(1P)=8A(12))	L704 022
			TAPERGETCER The filters to by a do to be	LN04 023
		33 012	DX#L=(TAPEx=0.5)/0.5	LN04 024
		1015	TABCHG([A, 3)+0X848(CH8([P,3)+CH8([A,3])	LV04 025
			T046CM0(11.4)+0X24+(C126(14.4)+(C10(14.4)) C1044-14-40221(4)+1-4	LN04 027
		10 010		LN04 025
		03 017	20 CTLES(8-R)+TAN(84PLE/RAD)	1204 020
	6488887.(AA***********************************		5272657264722(CC)C6+0~5+(C1=C2))/(8=2))	LN04 011
		3 620	BATTERADIALAN(COTURACA)/(Bex)) Direletadre (D.S.	L+04 032
		13 021	IF (SHPMC,LL,0,0) 6U 7D 30	LN04 035
		5 022		L704 034
	TARC#STALUG(\.CUBT]#Q/TTATTTC#J/\CUTTL#QJTTATTTTTT]] [NG TUBUB#DA	1 024 C		
		1 025	50 10 40 40 40 40 40 40 40 40 40 40 40 40 40	LN04 037
		3 026	30 JME1	LN04 036
		3 927		LN04 034
				LN04 041
		1 030	so ou se mates 50 CL(K)#CMB(TH.K)+DYRA417445144	LN04 042
		120 20		LN04 043
			Tect.(3)	- NO4 044
			CTRTOUTA+DX5L+(TB+TA) Defiles	
		3 035		LN04 047
				L'104 048

.....

......

FUNCTION EQ26(6M. TAPER. BDCR. PG3) FUNCTION EQ26(6M. TAPER. BDCR. PG3) CALCULATE R0(M) 98CLAM UN RGT) 88CLAT FROM EQ 26 FOR M GHEATER THANKNIO 005 UN10 005 H3 LEG3 THAN OR FOULL TO 1 F (R08.LL.0.0) ED TO 10 F (R08.LL.0.0) ED TO 10 F (R08.LL.0.0) ED TO 20 F (R08. FUNCTION. LLG4LEN.INTCR.MUS)
FUNCTION. LLG4LEN.INTCR.MUS
CALCULAT. NUL. DF INL ASFECT RATIO PARAMETER GREATEN THAN 4, AND LNOB 005
TO, VALUE DF INL ASFECT RATIO PARAMETER GREATEN THAN 4, AND LNOB 005
HUG SUBLE.0.00 GU TU 10
F(803.LE.0.00 GU TU
F(803.LE.0.00 GU TU
F(803.LE.0.00 GU
TU
F(803.LE.0.00 GU TU 10
F(803.LE.0.00 GU TU
F(803.LE.0.00 GU
TU
F(803.LE.0.00 GU TU
F(803.LE.0.00 GU
TU
F(803.LE.0.00 GU
TU
F(803.LE.0.00 GU
TU
F(803.LE.0.00 GU
TU
F(803.LE.0.00 GU
TU
F(803.LE.0.00 GU
TU
F(803.LE.0.00 GU
TU
F(803.LE.0.00 GU
TU
F(803.LE.0.00 GU
TU
F(803.LE.0.00 GU
TU
F(803.LE.0.00 GU
TU
F(803.LE.0.00 GU
TU
F(803.LE.0.00 GU
TU
F(803.LE.0.00 GU
TU
F(803.LE.0.00 GU
TU
F(803.LE.0.00 GU
TU
F(803.LE.0.00 GU
TU
F(803.LE.0.00 GU
TU
F(803.LE.0.00 GU
TU
F(803.LE.0.00 GU
TU
F(803.LE.0.00 GU
TU
F(803.LE.0.00 GU
TU
F(803.LE.0.00 GU
TU
F(803.LE.0.00 GU
TU
F(803.LE.0.00 GU
TU
F(803.LE.0.00 GU
TU
F(803.LE.0.00 GU
TU
F(803.LE.0.00 GU
TU
F(803.LE.0.00 GU
TU
F(803.LE.0.00 GU
TU
F(803.LE.0.00 GU
TU
F(803.LE.0.00 GU
TU
F(803.LE.0.00 GU
TU
F(803.LE.0.00 GU
TU
F(803.LE.0.00 GU
TU
F(803.LE.0.00 GU
TU
F(803.LE.0.00 GU
TU
F(803.LE.0.00 GU
TU
F(803.LE.0.00 GU
TU
F(803.LE.0.00 GU
TU
F(803.LE.0.00 GU
TU
F(803.LE.0.00 GU
TU
F(803.LE.0.00 GU
TU
F(803.LE.0.00 GU
TU
F(803.LE.0.00 GU
TU
F(803.LE.0.00 GU
TU
F(803.LE.0.00 GU
TU
F(803.L Construction
 C IF (M08.LE.0.0) GD TD 10 IF (M13.GE.1.0) GD TD 20 TABL.080CR TABL.080CR TERL.080CR TERL.0810CBCR/TA195GRT(1,0*2,0*80CR)=1.0-B0CR*80CR*ALUG(T6* 1 TERL.080CR(TRT0=1.0)21.2708 1387RT(TRT0=1.0)21.2708 TERLEB.08TC/(3.14159*(1.0+TAPER)*80CR*(1.0/M03=1.0)) LIMITING FORM OF EQ 24 MMEN BM EQUAL INFINITY, NO L.E. 3MLEP FUNCTION EQ24L(!APEH, BUCH, ROS) 10 EG24L=0.0 Return 20 E024L=2.0 Return Evo RETURN 2 2 2 2 000 LEN05 LEN55 CALCULATE \$KM(B) OR \$KT(B) FROM EQ 19 OF HEPORT 1307 CALGULATE KB(*) UR KB(T) FROM EU 21 UF REPORT 1307 CALCULATE AA(B) UM AT(B) FRUM EQ. 14 UF REPORT 1307 TBD0,5afTaN(0,5s(1,0/2eX))+5,14159/4,0 TCEX2a(1,0/4eX+2,0aafan(X)) EQ14E2,0a(Taa18-TC)/(3,14159*(1,0eX)*a2) JF (ROS.LE.0.0.0R.RUS.6E.1.0) GO TO 10 Pisitais Pistiats Pistiats Takex IF (x.Le.v.V) GU TO 10 IF (x.Ge.1.0) GU TO 20 Euzis(1.0-XAX)+=2/(1.0-X)+=2=Eu14(X) Returm CH2_0+1=18/(x=15) C=T0=T1=T=T4=T5 C=T0=T1=T4=T5 C=T0=T1=T4=T5 C=T0=T1=T4=T5 C=T0=T4=T5 C=T0=T4=T5 C=T0=T4=T5 C=T0=T5 C=T0= 207 IF (X.LE.0.0) 6U TO IF (X.Et.1.0) 6U TO PUNCTION BULF (HOS) FUNCTION EQ21(X) FUNCTION EBIG(X) E021#0.0 RETURN TABL+X4+X2 RE TUHN EQ1482.0 RE TURN E021=2.0 E014#1.0 RE TURN X+X=2) RE TURN 2 Q N O 2 2 2 2 8

•	_		FUNCTION EQ1(HM,1APEK, BUCRA, RUS)	LN15 001
	CALCULATE REFINENCIAN UN NUTTIONALLAT FRUM EU 30 FOR M GREATER THANENIL DU 1.0. Value up the Aspect Ratio Parameter Greater than 4, and luit 004 MB GMEATER THAN 1, NU AFTERBUOT,		CALCULATE XU(~)*bCLAP UR NB(])*bCLAF FRUM EQ 51 FUR M GMEATER TM 1.02 VALUE OF ASPECT RAIIU PARAMETER GREATER TMAN 4, AND MB GREATER THAN 1, NU AFTERBOUY.	THANCHI 002 THANCHI 002 TNI 004 LNI 004
•	-LE.0.0) 60 10 10 Luli 26.1.00 60 10 20 Luli 28.	5	IF (805,LE,0.0) 60 TO 10 IF (805,LE,0.0) 60 TO 20 Bocemboceait.0) 60 TO 20	LN13 U06 LN13 006 LN13 006
			RFFE1_0 1F (80CR*LE.1.0) GD TU 1	LN13 010 LN13 010
			BOCA161.0 227.600Ca2	LN15 012
			1 14880A1(104) 1681.04444/80CR	:23
	33			12
			TERTUARGRI(TCATU)	22
	5		TF#((1,0/BDCR)+#84+TA TG#8#4((1,0/BDCR)++2)+10+(ATAN(80KT(1,0/BH))+ATAN(SURT(TC/TB)))	22
10			TwesGAT(BuelC/TS) Timto-(0.564L06(1.04TW)-0.544L06(1.04TW)//T4	23
•2			EG31#16.04TA+#DCR#(TE+TF+TG=T1)/(3,141594T0+(TAPER+1,0)+(1,0/HUS	12:
				22
	-		10 EQ31=0,0 Return	22
			20 603142.0	12:
				22
	FUNCTION EQBOL(TAPER,8DCRA,ROB)			
	LINITING PORM OF EQUATION 30 MMEM BM EQUAL INFINITY, NO L.C. BMEEPINIE 002			
υ	17 (MD3,LE,0,0) 6U TU 10 17 ** /#0.4 AU TU 10 18/12 005			
	RAFE1.0 16 (BDCR.11.1.0) 00 10 1 16 (BDCR.11.1.0) 00 10 1			
	C/(3,14159=(7APER+1,0)=(1,0/R08=1,0)=RRF) [N12			
	2 CO9(BDCR)-BDCR+ALOG(TA+50AT(TA+TA+1_0))+BDCR LN12			
	L*12 L*12		FUNCTION VOLOG(288.8L)	1 M 1 8 001
			2	L 11 1 002
			5	
			Da2.04RB	3 8
	0,00001) 60 TO 2 LN12		84.08664(84.70) **2	
	50 10 3 Luis		BLD#8L/D	
-	10 E030L00.0 Return - Luiz 020		TC=&L0+80RT(R+R=&L090)+R=M=AR&IM(&LD/R)=2,048LD+(R=0.5) VDC=3.14159+(0.66647+&LD30+8LD+TC=(H+0.5))	
	00 [N]3		VOL GENVDC = (D==3)	-

14ATCN10 BUBKUUTINE (MIGIO(S,R,SnPLE,CT,CL,FML),ANPARR,MAFTER,BUGK,MBGR, 1548,Taptr,RU3,BAN) ş 2 DUE TU +1%G 1% TABLE I L 220 SUBROWTIME TU CALCULATE BUDY CENTER UP PRESSURE Tails Chart 14, 15, ur 10 uf Alport 1507, Report this Quantity 13 in 80% 57 or 73, 321. 15 .100. .270, 250 .000. .250, DATA TOL6/ EDGE3/ 2 SUPPOUTINE TO CALCULATE MING ON TAIL CENTER OF PRESSURE, EMANT Or 11 of Repurt 1307, in Table 1 of that report these uumitite are in Bores 51 and 34 of and 60 HANDLE BUEPT-BACK TRAILING DIMEMBICM BA(11),C10(11,J,3),C11(11,J,3),V(4,3) Data Ba/0.094.5,1,0,1,5,2,0,2,5,1,0,0,0,0,0/ Data C10/ SUBROUFISE CMIDII(S,4,5mPLE,CT,CH,FMACM,TAPER,BAR,XHCR) Drad(Bar-Ba(1+))((Ba(1P)-Ba(1+))
Prad(Bar-Ba(1+))((Ba(1P)-Ba(1+))
Prad(Party)
Do 0 0 Jan, Prad(Party) 0 10 65
Do 0 Jan, Prad(Party)(Prad(1P, J, K)-C10(1M, J, K))
0 0 T0 Wax(J)=C11(1M, J, K)-DXBA+(C11(1P, J, K)-C11(1M, J, K))
0 T0 Wax(J)=C11(1M, JK)-DXBA+(C11(1P, J, K))
0 T0 Wax(J)=C11(1M, JK)-DXBA+(C11(1P, J, K))
0 T0 Wax(J)=C11(1M, JK)-DXBA+(C11(1P, J, K)))
0 T0 Wax(J)=C11(1M, JK)-DXBA+(C11(1P, J, H)))
0 T0 Wax(J)=C11(1M, JK)-DXBA+(C11(1P, J, H)))
0 T1 Wax(Ma,J)=C11(1M, JK)-DXBA+(C11(1P, J, H)))
0 T1 Wax(Ma,J)=C10(1P, JF)-(KP, JF)-(KP, JH))
0 T1 Wax(Ma,J)=C10(1P, JF)-(KP, JH))
0 T1 Wax(Ma,J)=C10(1P, JF)-(KP, JH))
0 T1 Wax(Ma,JH)-DXBA+(VXP, JF)-VXP, MAX(MA,JH))
0 T1 Wax(Ma,JH)-DXBA+(VXP, JF)-VXP, JF)
0 T1 Wax(Ma,JH)-DXBA+(VXP, JF)-VXP, MAX(MA,JH))
0 T1 Wax(MA,JH)-DXP, MAX(MA,JH))
0 T1 Wax(MA,JH)-DXBA+(VXP, JF)-VXP, MAX(MA,JH))
0 T1 Wax(MA,JH)-DXBA+(VXP, JF)-VXP, MAX(MA,JH))
0 T1 Wax(MA,JH)-DXBA+(VXP, JF)-VXP, MAX(MA,JH))
0 T DXCL=1.0 If (TAPER.NL.1.0) DXCL=9HPLE/(8HPLE-8HPMC) If (TAPER.LE.0.5) 80 TO 40 Jaoz CTLERCS-47)-14(24PLE/RAD) SPRERRADARIN(CTLE-05-51(CT-CR))/(9-R)) SPPTERRADARIN(CTLE-05-51)/(9-R)) IF (8+PTE,LE,1,0) GO TO 10 HTT (5-70) PMTE (5-70) III220HEXECUTON TERNINATED) 15 2 1 [2]+1 1 [2]+1 1 (0AR,62,84(1)) 60 TU 5: 1 [2] 1 2-1 1 2-1 DXCLasuPMC/(SuPMC-SWPTE) 60 t0 30 XMM1 2 TF (BwPMC,Lt.0.0) 60 (Me2 DX8L=(TAPER=0.5)/0.5 60 T0 50 DX3LeTAPER/0.5 ð 1 5 20 85 3 2 ŝ 2 2 701

District an under an addition addite addition additi DX844C8AR-8A16(14))/(BA16(17)-8A16(14)) D0 220 Kakarap D0 220 Laurup V(Jorki)TX818AA(12,0K)ODX8AA(18186(17,Jor)-X818A(14,Jor)) V(Jorki)TX818A(14,Jor)ODX8AA(18186(17,Jor)-X818A(14,Jor)) V(Jorki)TX818A(14,Jor)ODX8AA(18186(17,Jor)-X8186(14,Jor)) V(Jorki)TX818C(14,Jor)ODX8AA(18186(17,Jor)-X8186(14,Jor)) D0 250 Leloi Y(K,L)=VA(J#,K,L)+OXR&=(YA(JP,K,L)=VA(JM,K,L)) VLA=V(TAK_LH>OSB&=(Y(KP,LH>-V(KM,LH)) VLB=V(TK,LP)OXE=(Y(KP,LP)=-V(KM,LP)) XECR=V(TA,LP)OXE=(Y(KP,LP)=-V(KM,LP)) XECR=VLA=DXCL=(YALB=VALA) XECR=VALA=DXCL=(YALB=VALA) DICLE1.0 15 (1.APER.Nt.1.0) DICLESSPLE/(S.PLE-SMPMC) 15 (1.APER.Lt.0.5) 60 10 115 100 10141 16 (8415(1)) 60 TU 140 142141 148 11441 17 (Ban-GE, Bale(1)) GU TU 210 14854 14854 0x888(808-0,4)/0,2 IF (FMACM.LE.1,0) 60 TO 200 125 130 2 2 DX3[#(TAPER=0,5)/0**,5** G0 T0 120 Kmei ĎXR38R03/0,4 60 t0 135 1 1º (R03.01,0,4) 60 t1 JME2 3 D×R8=(RU\$+0,2)/0,2 60 T0 1**35** J≈=3 DX8L#TAPER/0.5 If (RUS.6T.0.2) G Jmei 10 110 CHART 15 CHART 16 50 73 105 110 120 115 125 130 135 140 200 195 130 220 230 υυυ JmaJ=1 JmaJ=1 ICD14k(J)=b014b(Jk)) (B0CR=B014b(Jk))/ ICD14k(J)=b014b(Jk)) ICD14k(J)=b014b(Jk)) Jej+1 If (80CR.61.80148(J)) 60 10 40 I' (BDCR.GT.1.0) GO TQ 25 XHCR0.50.50.50 TQ 10 XHCR0.50.50.50 EG TQ 10 XHCR0.50.50.50 EG TQ 15 XHCR0.700.50.50 EG TQ 15 XHCR0.700.50.50 EG TQ 15 XHCR0.80.70.50.50 EG TQ 10 XHCR0.000.5170.00 EG TQ 10 XHCR0.000.5170.0000.5170.00 EG TQ 10 X 105 2 5 **ГРе**З DXCL **83**4РМС/(8№94С+34Р7£) 2 IF (NAFTER.40.0) 60 TU IF (80CR.LT.1.0) 60 70 X8CR80.067 Returm JF (3#PMC.LL.0.0) 60 Le1 1f (846,61,1.9) Le2 Je0 CHART 15 AND 16 CHART 14(A) TE14/ DATA TGI6/ CHART 14(B) DATA THIN CHART 14 0 I A Can. --: 5 5 2 20 ŝ 5 -100

000

SUBHOUTINE AFACT (RUS,CAMB,FMACM,PARAM,CNB4,MAFTFR,BMB,TAFEN,BOCR,LM18 ICL4,BETA,SMPLL,BETAA,SXMB,SXMM) SUBMULTINE TU CALCULATE INTERFERENCE FACTORS, BUXES 47+50 OK 65+66 UF TABLE I UP REVUNT 1407 CrubeLuig(HUS) 1: (TRACE,GT1,0,4N0,PAMA,GT,4,0) 50 70 10 (CUB-FC2,HU3) (CTALE,E10,0 50 70 30 1: (AFTE,E10,0 50 70 30 1: (AM9,61,10) 50 70 30 CCRAED226(BH9,JAPER,BDCR,R03)/(BETACLA) 2: CCRAED224(TAPER,BDCR,R03)/(BETACLA) 2: (100,0 100 1: (100,0 50 70 30 2: (CTARED224(TAPER,BDCR,R03)/(BETACLA) 2: (CTARED224(TAPER,BDCR,R03)/(BETACLA) 2: (CTARED224(TAPER,BDCR,R03)/(BETACLA) 3: (100 3: (100) 3: (100) 3: (100) 3: (100) 4: (100) 4: (100) 4: (100) 5 2 0000 DIMEMBIUN BATUN BA Ś BUBROUTINE TO CALCULATE LATERAL PUBITION OF NING VORTEY, CMART Or cmart & Of Repurt 1307, in 188LE I of that report this buantity is in bux 80. SUBROUTINE CHS6(S,R, SmPLE,CI,CK,FMACM,TAPER,BAR,F48R) DXCLE1.0 IP (TABER.ML.1.0) DXCLEBHPLE/(BHPLE-BHPMC) IP (TABER.LE.0.5) 6G TO 30 JMEZ CTLETERMITIK(SHPLE/RAD) Suppersonalian(CTLE-0.5=CT-CR))/(3-N)) Suppersonalian(CTLE-0.5=CT-CR))/(3-N)) Suppersonalian(CTLE-0.5) IF (Suppercle-0.0) GO TO TO IF (1,60.9) GU TO 60 IF (BAR.66.8A(1)) GU TO 50 IM#101 DXCL**#3**4PMC/(\$#**P**MC=**3**4P**7E**) 60 **70 29** 10 XM#1 DX8[s(TAPLR=0,5)/0,5 60 TO 40 JM=1 JPR2 Dx8Lataper/0.5 I=I+1 0 B I . 20 20 ÷ \$ \$

RETURN END

......

Figure 1.- Input format for R1307 program.

Ì

28

r

3 SAMPLE CASE 1 WING - BUDY - TAIL CONFIGURATION SAMPLE CALCULATION OF TABLE I OF REPORT 1307 THIS IS NO. 101 OF TABLE III OF THAT REPORT 1 0 1 0 1,99 5,25 5,062 10.5 2,25 0.562 2,812 0,0 45,0 3.75 1.375 9,16 0,562 45.0 1,812 0,0 0,562 3.19 1,56 ō, 0 0,0 0.0 5,0 0,0 15,0 4,9 4.9 0.0 4 9 4,9 0.0

(a) Sample case 1.

2 Sample case 2	CANARD .	- BUDY - WIN		RATION	
	M X+643	JAN, 1962			5
1 1 1	0	-	·		
+13 39,3	446.	19,11			
1,03 5,03	Ο,	8,05	63,43	7.5	3,5
2, 15,55	0	25.	59	29.	•
. 84 7 . 5	0.				
0385 ,0418	.0341				
0. 24.	4.				
0, 15,	5,				
U . O .	0,				

(b) Sample case 2.

Figure 3.- Sample input decks for R1307 program.

Figure 4.- Sample case 1 configuration.

LIFT AND CENTER OF PRESSURE OF WING-BODY-TAIL COMBINATIONS METHOD OF NACA REPORT 1307, 1957

SAMPLE CASE 1 WING - BODY - TAIL CONFIGURATION SAMPLE CALCULATION OF TAGLE I OF REPORT 1307 THIS IS NO. 101 OF TABLE III OF THAT REPORT

FLIGHT CONDITIONS Mach Number = 1.990

REFERENCE QUANTITIES AREA = 5.06200 LENGTH = 10.50000 MOMENT CENTER RELATIVE TO TIP OF NOSE IS AT 5.25000

1.37500 3.75000 HINGE LINE LOCATION MEASURED FROM BODY, LEADING EDGE INTERSECTION = LEADING EDGE SWEEP ANGLE = 45.00000 Distance from TIP of Nose to Body, leading edge intersection = 0.56200 2.25000 16 BODY RADIUS IN REGION 0.0000.0 EXPOSED ROOT CHORD = 2.81200 WING INPUT DATA SEMISPAN = TIP CHORD =

9.16000 DISTANCE FROM TIP OF NOSE TO BODY, LEADING EDGE INTERSECTION = LEADING EDGE SWEEP ANGLE = 45.00000 0.56200 1.25000 BODY RADIUS IN REGION = 0.00000 EXPOSED ROOT CHORD = 1.81200 TAIL INPUT DATA TIP CHORD = SEMISPAN =

3.19000 DISTANCE FROM TIP OF NOSE TO SHOULDER = 1.56000 0.56200 VOLUME OF NOSE TO SHOULDER = RADIUS AT SHOULDER = NOSE INPUT DATA

Figure 6.- Output from R1307 program for sample case 1.

(a) Page l.

Figure 6.- Continued.

(b) Page 2.

LIFT-CURVE SLCPES, PER DEGREE (CLA)W (CLA)T (CLA)N 0.04058 0.04058 0.03431

CALCULATED NUSE QUANTITIES BASE AREA = 0.59225 CKN = 0.16861 NNSF CENTER OF PRFSSURE = 1.61782

0.94379 0.66700 0.66700 70970.0 1.5625 CALCULATED TAIL QUANTITIES 0.0000 BETA * D/CR = 1.54707AR PARAM = 10.98196RETA*AR = 6.38197SM*BETA = 1.72049 CKTB = 1.25233 EXPOSED AREA = (XBAR/CP)B(T) =[XBAR/CR)T(B) = (XBAR/CP)B(W) =(F-R)M/(S-R)W =0.12817 0.93548 0.32686 0.31015 TAPER RATIO = 0 CKBT = SKTB = R/S =SKBT

0.66700

(XBAR/CP)W(B) =

5.0625

0.0000

SM*RETA = 1.72049

R/S = 0.19986

TAPER RATIO =

0.23115

1.16151

CKWB = CKWB = SKWB = SK

0. 94389

0.21762

SkBW =

BETA*D/CR = 0.85948

RFTA*AR = 6.38197

EXPOSED APEA =

AR PARAM = 10.88196

CALCULATED WING QUANTITIES

D(CM) /D(D1) -0.00714 LIFT AND MOMENT CURVE SLOPES OF COMPLETE CONFIGURATION ND WING-TAIL INTERFERENCE D(CM)/D(DW) -0.00053 D(CM)/D(A) -0.00606 PER DEGREE D(CL)/D(DT) 0.01581 D(CL)/0(DW) 0.04714 D(CL)/D(A) 0.08077

LIFT AND MOMENT CURVE SLOPES OF CONFIGURATION COMPONENTS WITH WING-TAIL INTERFERENCE PER DEGREE

			-0.00254		
TAIL-800Y	MINUS NOSE	0.01742	-0.00787	0000000	0000000
	WING-BODY	0.06336	0.00181	0.04714	-0-00053
	BODY	0.00684	0.00237	0.00000	0• 00000
		A = DW = 0	A=DW=0	A=DW=0	A=DW=0
		D(CL)/D(A),	D(CM)/D(A).	D(CL)/D(DW)	D (CM) /D (DM) .

LIFT AND MOMENT COEFFICIENTS AND CENTER OF PRESSURE FOR THE COMPLETE CONFIGURATION

...

TERFERFNCE LM-L/LR 100.0000 -0.0389 -0.0389 -0.0512	0.0568 -0.0056 -0.0256 -0.0374	-0.4518 -0.1106 -0.0836 -0.0767	-0.0852 -0.0591 -0.0577 -0.0577
-TAIL INTERFERENCE CMC LM-L/LR 0.0000 100.0000 -0.0143 -0.0389 -0.0340 -0.0455 -0.0583 -0.0512	0.0114 -0.0032 -0.0244 -0.0504	-0.0350 -0.0493 -0.0690 -0.053	-0.0236 -0.0382 -0.0594 -0.0854
WITH WING-TAIL INTERFERFUCE CLC CMC LM-L/LR 0.0000 0.0000 100.0000 0.3685 -0.0143 -0.0389 0.7489 -0.0340 -0.0455 1.1395 -0.0583 -0.0512	0.2001 0.5691 0.9529 1.3473	0.0775 0.4459 0.8264 1.2169	0.2776 0.6466 1.0304 1.4247
TAIL INTERFERENCE CMC LM-L/LR 0.0000 100.0000 -0.0303 -0.0750 -0.0606 -0.0750 -0.0909 -0.0750	-0.0112 -0.0518 -0.0608 -0.0648	-0.4518 -0.1357 -0.1080 -0.0977	-0.1219 -0.0953 -0.0880 -0.0845
ND WING-TAIL INTERFERENCE CLC CMC LM-L/LR 0.00000 0.00000 100.0000 0.4039 -0.0303 -0.0750 0.8077 -0.0606 -0.0750 1.2116 -0.0309 -0.0750	-0.0026 -0.0329 -0.0632 -0.0935	-0.0350 -0.0653 -0.0956 -0.1253	-0.0376 -0.0679 -0.0982 -0.1285
ND WING-7 CLC 0.0000 0.4039 0.8077 1.2116	0.2310 0.6348 1.0387 1.4426	0.0775 0.4813 0.8852 1.2891	0.3084 0.7123 1.1162 1.5201
0.00 0.00 0.00 0.00 0.00	00000	4 4 4 4 • 900 • 900	4 • 90 • 4 • 90 • 9 • 90
00000 00000 00000000000000000000000000	4.90 4.90 4.90 4.90	000000000000000000000000000000000000000	4 4 90 4 90 9 90 9 90
A 0.00 5.00 10.00	0.00 5.00 10.00 15.00	0.00 5.00 10.00 15.00	0.00 5.00 10.00 15.00

(c) Page 3.

Figure 6.- Continued.

LIFT AND MOMENT COEFFICIENT COMPONENTS WITH WING-TAIL INTERFERENCE

	HING INT		0.0160	001000	0-0326	0.170.00	0-0139	0.0297		x 200 • 0	0.0431			0.010.0	0.0266	0.0326		0.0159	0-0297	0 0 20 0		0.0431
FICIENTS	A+DT		2020-0-	7870-0-	-0.1180		0-0000	-0-0393			-0.1130	-0.0350			-0.1137	-0.1530		0000-0-	-0-0743	7211 0-		-0.1530
MOMENT COEFFICIENTS		0.000	-0.0079	-0-0056	-0-0044		-0.0026	-0-0054		2000-0-	-0.0110	0.00.0		-0+0720	-0.0056	-0.0084		020000	-0-0054	-0.0082		-0.0110
NO CE	A	0.0000	0.0118	0.0237	0.0355) } 	0• 0000	0-0118	7200		0.0355	0-000	0 0110	011000	0.0237	0.0355			0.0118	750-0		6660.0
TAII	WING INT	0.000	-0.0354	-0.0588	-0.0721		-0.0309	-0.0657	-0.0858		-0-0953	00000-0	-0 1356		-0.0588	-0.0721	0050 0-		-0.0657	-0.0658		5 C 6 1) • 0 -
			0.0871	0.1742	0.2612		0.0000	0.0871	0-1742		0.2612	0.0775	0.1646		0.2516	0.3387	0 0775		0.1646	0.2516	1026 V	1000.0
LIFT COEFFICIENTS WING TAIL	A+DW	0.0000	0.2826	0.5652	0.9477		0.2310	0.5135	0.7961		1.0787	00000	0.2826		0.5652	0.8477	0.2310	0-1-1-0	0.5135	0.7961	1 0707	
ŠĒ	٩	0000000	0.0342	0.0684	0.1026		00000.0	0.0342	0.0684		0-1026	0.0000	0-0342		0.0684	0.1026	0,000		0.0342	0.0684	0.1026	
	υT	00.00	00.00	0.00	00 00		00.00	0.00	00•00		00•00	4.90	4.00		06.4	4.90	4.90		4.90	4.90	4.00	
	ΜQ	00 00	00.0	00.0	00.00		4.90	4.90	4.90		4•70	0.00	00-00		00.00	00.00	4.90		4.90	4.90	4.90	
	۹	0.00	5.00	10.00	15.00		0.00	5.00	10.00	15 00	00.61	00•0	5.00		10°00	15.00	00-00		2.00	10.00	15,00	

Figure 6.- Concluded.

(d) Page 4.

LIFT AND CENTER OF PRESSURE OF WING-BODY-TAIL COMBINATIONS Method of Naca Report 1307, 1957

SAMPLE CASE Z CANAPD - RUDY - WING CONFIGURATION Ref. NASA TM X-643 JAN. 1962 BRADY, PAGE, KGENIG

FLIGHT CONDITIONS MACH NUMBER = 0.130

REFERENCE QUANTITIES AREA = 446.00000 LFNGTH = 19.10999 MOMENT CENTER RELATIVE TO TIP OF NOSE IS AT 39.29999

3.50000 7.50000 RODY RADIUS IN REGION = 1.03000 SFWISPAN = 5.03000 TIP CHORD = 0.00000 EXPOSED RODT CHORD = 8.05000 LEADING EDGE SWEEP ANGLE = 63.42999 DISTANCE FROM TIP OF NOSE TO BODY, LEADING EDGE INTERSECTION = 7.50 HINGE LINE LOCATION WEASURED FROM BODY, LEADING EDGE INTERSECTION = WING INPUT DATA

TIP CHORD = 0.00000 FXPOSED ROOT CHORD = 25.00000 LEADING EDGE SWEEP ANGLE = 59.00000 DISTANCE FROM TIP DF NOSE TO BODY, LEADING EDGE INTERSECTION = 29.00000 2.00000 BODY RADIUS IN REGION = SEMISPAN = 15.55000 TAIL INPUT DATA

NDSE INPUT DATA RADIUS AT SHOULDER = 0.84000 DISTANCE FROM TIP OF NOSE TO SHOULDER = 7.50000 VOLUME OF NOSE TO SHOULDFR = 0.00000 (a) Page l.

Figure 7.- Output from R1307 program for sample case 2.

Figure 7.- Continued.

(b) Page 2.

CALCULATED WING QUANTITIES EXPOSED AREA = 32.2000 RETA*0P = 1.97071 BFTA*0PCR = 0.25373 AR PARAM = 5.94499 TAPER PATIO = 0.000000 P/S = 0.20477 SM*BFTA = 0.49587 CKWB = 1.16585 CKWB = 1.16585 CKWB = 0.28563 SKWB = 0.28563 SKWB = 0.22257 (XBAR/CR)W(B) = 0.55112 (XBAR/CR)W(B) = 0.43753 (F-R)W/(S-P)W = 0.76615

•

CALCULATED NOSE QUANTITIES BASE AREA = 2.21670 CKN = 0.06097 NOSE CENTER OF PRESSURE = 3.46735

.

LIFT-CURVE SLOPES, PER DEGREE (CLA)M (CLA)M (CLA)N 0.03850 0.04180 0.03410

LIFT AND MOMENT CUPVE SLOPES JF COMPLETE CONFIGURATION NO WING-TAIL INTERFERENCE PER DEGREE DICLJ/DIDW) DICLJ/DIDT) DICMJ/DICM) C 0.00324 0.03494 0.00188 0.00467

D(CM)/0(DT) -0.00370 D(CL)/D(A) 0.04464

LIFT AND MOMENT CUPVE SLOPES OF CONFIGURATION COMPONENTS WITH WING-TAIL INTERFERENCE PER DEGRFE

.,

	WING-BODY-TAIL	0.03824	0.00270	-0.03194	0.00533
TAIL-RODY	MINUS NOSE	0*04044	-0.00425	0° 00000	0.0000
	WING-B0DY	0.00420	0.00613	0.00324	0.00467
	BCDY	0.00017	0.00032	0°00000	0• 00000
		A=DW=0	A=DW=O	A=DW=0	A=0W=0
		D(CL)/D(A),	D[CM]/D(A).	D(CL)/D(DW),	D(CM)/D(DM).

LIFT AND MOMENT COEFFICIENTS AND CENTER OF PRESSURE FOR THE COMPLETE CONFIGURATION

0.00 0.000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.0000 0.0000	•	Z	ż	ND WING-T	INI TIN		WITH WING-	INI	INTERFERENCE
0.000 0.00000 0.0000<	•		5	רר	CHC.		ינרנ		LM-L/LR
0.000 0.0015 0.0015 0.0150 0.0150 0.0150 0.0150 0.0150 0.0151 0.0154 </td <td>00-0</td> <td>00*0</td> <td>00-0</td> <td>0.0000</td> <td>00000</td> <td></td> <td>0.0000</td> <td></td> <td>100.0000</td>	00-0	00*0	00-0	0.0000	00000		0.0000		100.0000
0.000 0.03572 0.0150 0.0421 0.3776 0.01871 0.000 0.000 0.0371 0.0421 0.6573 0.0371 0.000 0.001 0.0375 0.0376 0.0421 0.6573 0.0371 0.000 0.000 0.001 0.0375 0.0376 0.0451 0.0573 0.0374 0.000 0.000 0.0162 0.0373 0.0451 0.0451 0.0376 5.000 0.000 0.0162 0.0384 0.0333 0.1544 0.0364 5.000 0.000 0.0162 0.0384 0.0138 0.0573 0.0573 5.000 0.000 0.0162 0.0534 0.0384 0.0158 0.0573 5.000 0.000 0.0011 0.0188 0.01632 0.0573 0.0573 5.000 0.000 0.00324 0.0534 0.0158 0.0573 0.0573 5.000 0.000 0.0017 0.0647 0.0633 0.0576 0.0777 10.000 </td <td>4.00</td> <td>00*0</td> <td>00.00</td> <td>0.1786</td> <td>0.0075</td> <td></td> <td>0.1597</td> <td></td> <td>0.0623</td>	4.00	00*0	00.00	0.1786	0.0075		0.1597		0.0623
0.000 0.0357 0.0226 0.0421 0.5000 0.0351 0.000 0.01143 0.0316 0.0421 0.6573 0.0351 0.000 0.0162 0.0376 0.0421 0.6573 0.0351 0.000 0.0162 0.0376 0.0421 0.6573 0.0351 0.000 0.0162 0.0373 1.44409 0.0154 0.0356 5.000 0.000 0.1948 0.0334 0.1028 0.1544 0.0366 5.000 0.000 0.01948 0.0334 0.1028 0.1544 0.0366 5.000 0.000 0.0187 0.0334 0.1028 0.0573 0.0573 5.000 0.000 0.0171 0.0187 0.01832 0.0574 0.0574 5.000 0.000 0.00126 0.0573 0.0573 0.0574 0.0574 5.000 0.000 0.0012 0.0571 0.0571 0.0574 0.0747 5.000 0.00 0.0012 0.0511 0.057	8.00	00.0	00-0	0.3572	0.0150		0.3276	0.0188	0.0575
0.000 0.01143 0.0301 0.0421 0.6753 0.0351 0.000 0.000 0.877 0.0421 0.877 0.0503 0.000 0.000 0.8929 0.0376 0.0421 0.857 0.0503 0.000 0.00162 0.0373 0.0451 0.01585 0.0564 0.0564 5.000 0.000 0.1948 0.0334 0.1028 0.03569 0.0564 5.000 0.000 0.3734 0.03344 0.0732 0.1544 0.03564 5.000 0.000 0.3734 0.03844 0.1028 0.3266 0.05747 5.000 0.000 0.3734 0.06334 0.0732 0.0574 0.0573 5.000 0.001 0.0911 0.0732 0.06397 0.0574 0.0574 5.000 0.00 0.0324 0.06307 0.0539 0.0574 0.0574 5.000 0.00 0.0324 0.06307 0.0539 0.0772 0.0772 10.000 0.0	12.00	00*0	00-00	0.5357	0.0226		0.5000	0.0271	0.0543
0.000 0.0929 0.0376 0.0421 0.8577 0.0503 5.000 0.001 1.0715 0.0451 0.0421 1.0313 0.0503 5.000 0.000 0.0162 0.0233 1.4409 -0.0079 0.0264 5.000 0.000 0.1948 0.0330 0.1028 0.1544 0.0364 5.000 0.000 0.1948 0.03309 0.1028 0.0354 0.0364 5.000 0.000 0.1948 0.0334 0.01732 0.67796 0.0523 5.000 0.000 0.0733 0.4409 0.03744 0.0523 5.000 0.000 0.0734 0.0732 0.0573 0.0573 5.000 0.000 0.0734 0.0732 0.0573 0.0574 5.000 0.001 0.0734 0.0732 0.0573 0.0573 5.000 0.001 0.0732 0.0674 0.0732 0.0573 10.000 0.001 0.0732 0.0674 0.0747 0.0747<	16.00	00 00	00 00	0.7143	0.0301		0.6753	0.0351	0.0520
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20-00	00-0	00-00	0.8929	0.0376		0.8527	0.0428	0.0502
5.00 0.0162 0.0264 0.0264 0.0264 5.00 0.00 0.1948 0.0309 0.1544 0.0360 5.00 0.00 0.1948 0.0309 0.1544 0.0360 5.00 0.00 0.1948 0.0384 0.1028 0.5154 0.0360 5.00 0.00 0.7305 0.0384 0.1028 0.5019 0.0523 5.00 0.00 0.7305 0.0534 0.0671 0.5019 0.0523 5.00 0.00 0.0732 0.0534 0.0671 0.6796 0.0574 5.00 0.00 0.00324 0.0561 0.0671 0.6772 0.0575 10.00 0.00 0.0324 0.0561 0.0563 0.0777 0.0747 10.00 0.00 0.0128 0.0572 0.0572 0.0777 0.0777 10.00 0.00 0.0128 0.05647 0.0575 0.0777 0.0777 10.00 0.00 0.0128 0.0575 0.0575 0.0777 0.0777 10.00 0.00 0.00 0.07	24•00	00-0	00*0	1.0715	0*0451	-	1.0313	0.0503	0.0488
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5	000						
5.00 0.01948 0.03309 0.1585 0.1544 0.0356 5.00 0.000 0.3734 0.0332 0.0579 0.05795 5.00 0.000 0.7315 0.0332 0.6796 0.0510 5.00 0.000 0.7315 0.03459 0.01032 0.6796 0.05513 5.00 0.000 0.7305 0.06510 0.0671 0.5919 0.0573 5.00 0.000 0.001 0.06515 0.06517 0.06514 0.0574 5.00 0.000 0.001 0.06515 0.06517 0.06517 0.0574 10.00 0.00 0.001 0.0556 0.0531 0.1464 0.0575 10.00 0.00 0.0124 0.0457 0.14409 0.0126 0.0575 10.00 0.00 0.0127 0.0531 0.1258 0.0525 0.07625 10.00 0.00 0.00 0.0126 0.05272 0.05272 0.0702 10.00 0.00 0.00 0.0128 0.05681 0.05272 0.07028 10.000 0.00<			00.00	7910.0	0.0233		6100°0-	0.0264	-3.3435
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4.00	2.00	00-00	0.1948	0.0309		0.1544	0.0360	0.2334
5.00 00679 00679 00579 00579 00579 00579 00579 00579 00579 00579 00500 5.00 0000 00737 00671 00679 00579 00500 5.00 0000 00737 00671 00679 00577 5.00 0000 00017 00687 00677 00777 10.00 0000 00324 006677 006570 00726 10.00 0000 00324 006677 001266 00777 10.000 0000 007681 005720 00728 00726 10.000 0000 007681 001589 00777 00777 10.000 0000 007681 007811 08640 00922 10.000 0000 007681 007811 08640 00922 10.000 0000 007681 007811 09849 00912 10.000 0000 007681 007811 00932 00932 10.000 0000 0076811 007811 00932 10.000 0000 0076811 00932 00932 10.000 0000 007841 007811 00932 10.000 0000 001760 001776 017409 010146 10.000 0000 00000 007841 00932	8.00	5.00	00-00	0.3734	0.0384		0.3266	0.0444	0.1359
5.00 0.07305 0.0732 0.0732 0.6776 0.06600 5.00 0.000 0.9091 0.0610 0.0671 0.8588 0.0674 5.00 0.000 0.9091 0.0610 0.0671 0.8588 0.0674 5.00 0.00 0.0324 0.06467 1.4409 -0.0126 0.0525 10.00 0.00 0.0324 0.0542 0.25770 0.1464 0.06255 10.00 0.00 0.23896 0.0617 0.1585 0.3238 0.0777 10.00 0.00 0.23896 0.0617 0.1585 0.3238 0.0702 10.00 0.00 0.0128 0.0583 0.1219 0.5626 0.0777 10.00 0.00 0.0768 0.0128 0.0522 0.0702 0.0702 10.00 0.00 0.0708 0.1219 0.0728 0.0702 10.00 0.00 0.00311 0.08440 0.0993 10.00 0.00 0.0128 0.08440	12.00	5.00	00-0	0.5519	0.0459		0.5019	0.0523	0.1042
5.00 0.000 0.9091 0.0610 0.0671 0.8588 0.0677 5.00 0.000 1.0877 0.0685 0.0630 1.0389 0.0777 10.00 0.000 0.0324 0.06467 1.4409 -0.0126 0.0525 10.00 0.000 0.0324 0.06477 0.1464 0.0525 10.00 0.00 0.0126 0.0525 0.0722 0.0722 10.00 0.00 0.0126 0.0525 0.0722 0.0722 10.00 0.00 0.0126 0.0525 0.0722 0.0777 10.00 0.00 0.0128 0.01268 0.0702 0.0722 10.00 0.00 0.0768 0.1219 0.5628 0.0702 10.00 0.00 0.0768 0.1228 0.0702 0.0727 10.00 0.00 0.0700 1.4409 0.1350 0.0932 10.00 0.00 0.0702 1.0458 0.0932 0.0932 10.00 0.00 0.0700 1.4409 0.1359 0.0932 10.00 <t< th=""><th>16.00</th><th>5.00</th><th>00*0</th><th>0.7305</th><th>0.0534</th><th></th><th>0.6796</th><th>0.0600</th><th>0.0882</th></t<>	16.00	5.00	00*0	0.7305	0.0534		0.6796	0.0600	0.0882
5-00 0.001 1.0877 0.0685 0.0630 1.0389 0.0747 10.00 0.000 0.0324 0.0467 1.4409 -0.0126 0.0525 10.00 0.001 0.0346 0.0467 1.4409 -0.0126 0.0525 10.00 0.00 0.3896 0.0547 1.4409 -0.0126 0.0525 10.00 0.00 0.3896 0.0517 0.1585 0.3238 0.0777 10.00 0.00 0.3896 0.0517 0.1589 0.3238 0.0777 10.00 0.00 0.3896 0.0517 0.1589 0.0777 0.0727 10.00 0.00 0.7467 0.06813 0.1028 0.0932 0.0932 10.00 0.00 0.0768 0.0849 0.0781 0.0932 10.00 0.00 0.0776 0.3414 0.1350 0.0932 10.00 0.00 0.0776 0.3414 0.1350 0.0932 15.00 0.00 0.0700	20.00	5.00	00-00	0.9091	0.0610		0.8588	0.0674	0.0785
10.00 0.00 0.0324 0.0467 1.4409 -0.0126 0.0525 10.00 0.00 0.0310 0.0545 0.2570 0.1464 0.0525 10.00 0.00 0.03896 0.0547 0.1587 0.3238 0.0702 10.00 0.00 0.3896 0.0617 0.1585 0.3238 0.0777 10.00 0.00 0.3896 0.05681 0.05693 0.1219 0.5026 0.0777 10.00 0.00 0.0768 0.1028 0.5028 0.0777 10.00 0.00 0.7467 0.0768 0.1028 0.0777 10.00 0.00 0.7467 0.0781 0.0812 0.0922 10.00 0.00 0.7468 0.07918 0.08640 0.0793 10.00 0.00 0.4409 0.0132 0.0793 0.0931 15.00 0.00 0.0776 0.3414 0.1350 0.0952 15.00 0.00 0.0776 0.3414 0.1350	24.00	2.00	0.00	1.0877	0.0685	ō	1.0389	0.0747	0.0719
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
10.00 0.02110 0.0542 0.2570 0.1464 0.0625 10.00 0.00 0.3896 0.0617 0.1585 0.0702 10.00 0.00 0.3896 0.0617 0.1585 0.0702 10.00 0.00 0.5681 0.0693 0.1219 0.5226 0.0777 10.00 0.00 0.7457 0.0768 0.1028 0.6828 0.0922 10.00 0.00 0.7457 0.0768 0.1028 0.6840 0.0993 10.00 0.00 0.1028 0.0931 1.0458 0.0993 10.00 0.00 0.0918 0.0932 1.0458 0.0993 15.00 0.00 0.0918 0.0932 0.0794 0.0934 15.00 0.00 0.0776 0.3414 0.1350 0.0934 15.00 0.00 0.00351 0.1359 0.0394 0.1032 15.00 0.00 0.00356 0.1585 0.5018 0.1032 15.00 0.0	00-0	10.00	00 00	0.0324	0.0467	1.4409	-0.0126	0.0525	-4.1598
10.00 0.03896 0.0617 0.1585 0.3238 0.0702 10.00 0.00 0.5681 0.0633 0.11219 0.5026 0.0777 10.00 0.00 0.7467 0.0633 0.11219 0.5026 0.0777 10.00 0.00 0.7467 0.0768 0.1028 0.6828 0.0875 10.00 0.00 0.7467 0.0768 0.0911 0.6828 0.0952 10.00 0.00 0.7467 0.0768 0.0911 0.6849 0.0993 10.00 0.00 0.0918 0.0932 1.0458 0.0784 0.0934 15.00 0.00 0.0768 0.0776 0.4409 0.1350 0.0834 15.00 0.00 0.2722 0.0776 0.24154 0.1032 0.1032 15.00 0.00 0.07272 0.0776 0.21587 0.03144 0.1032 15.00 0.00 0.0702 0.15817 0.1032 0.1032 15.00 0.00	••00	10.00	00-00	0.2110	0.0542	0.2570	0.1464	0.0625	0.4270
10.00 0.00 0.5681 0.0693 0.1219 0.5026 0.0777 10.00 0.00 0.7467 0.0768 0.1028 0.0850 0.0850 10.00 0.00 0.7467 0.0768 0.1028 0.0850 0.0850 10.00 0.00 0.7467 0.0768 0.1028 0.0850 0.0950 10.00 0.00 0.0753 0.0843 0.0911 0.8649 0.0922 10.00 0.00 1.1039 0.0918 0.0832 1.0458 0.0993 15.00 0.00 0.0706 1.4409 -0.1156 0.0934 15.00 0.00 0.2772 0.0776 0.3414 0.1350 0.0934 15.00 0.00 0.2643 0.0925 0.1585 0.5018 0.1032 15.00 0.00 0.5849 0.1101 0.1313 0.18684 0.1101 15.00 0.00 0.5415 0.1077 0.1313 0.68644 0.1101 15.00 <	8.00	10.00	0.00	0.3896	0.0617	0.1585	0.3238	0.0702	0.2167
10.00 0.07467 0.0768 0.1028 0.6828 0.0850 10.00 0.00 0.9253 0.0843 0.0911 0.8640 0.0922 10.00 0.00 0.9253 0.0843 0.0911 0.8640 0.0922 10.00 0.00 1.1039 0.0918 0.0832 1.0458 0.0993 15.00 0.00 0.0766 0.4409 -0.0146 0.0781 - 15.00 0.00 0.0776 0.3414 0.1350 0.0851 - 15.00 0.00 0.4058 0.0781 0.21597 0.1032 - 15.00 0.00 0.4058 0.1031 0.1032 0.1032 - 15.00 0.00 0.4058 0.1077 0.1313 0.6849 0.1031 15.00 0.00 0.4052 0.1077 0.1313 0.1032 15.00 0.00 0.1077 0.1313 0.1032 0.1032 15.00 0.00 0.1077 0.13133	12.00	10.00	00.0	0.5681	0.0693	0.1219	0.5026	0.0777	0.1545
10.00 0.9253 0.0843 0.0911 0.8640 0.0922 10.00 0.00 1.1039 0.0918 0.0832 1.0458 0.0993 15.00 0.00 0.0486 0.0776 0.3414 0.1350 0.0814 15.00 0.00 0.0486 0.0776 0.3414 0.1350 0.0814 15.00 0.00 0.2727 0.0776 0.3414 0.1350 0.0814 15.00 0.00 0.4272 0.0776 0.3414 0.1350 0.0814 15.00 0.00 0.2727 0.0776 0.3414 0.1350 0.0914 15.00 0.00 0.2727 0.0776 0.3414 0.1030 0.1032 15.00 0.00 0.45843 0.0926 0.1383 0.6844 0.1032 15.00 0.00 0.4155 0.1077 0.1143 0.8684 0.1170 15.00 0.00 1.1201 0.1152 0.1028 1.239	16.00	10.00	00*0	0.7467	0.0768	0.1028	0.6828	0.0850	0.1245
10.00 0.00 1.1039 0.0918 0.0832 1.0458 0.0993 15.00 0.00 0.0486 0.0700 1.4409 -0.0146 0.0781 15.00 0.00 0.2272 0.0776 0.3414 0.1350 0.0854 15.00 0.00 0.4058 0.0951 0.5097 0.3190 0.0952 15.00 0.00 0.4058 0.0951 0.5016 0.1032 15.00 0.00 0.5443 0.0951 0.5018 0.1032 15.00 0.00 0.7629 0.1001 0.133 0.6844 0.1101 15.00 0.00 0.7629 0.1077 0.1143 0.6864 0.1170 15.00 0.00 1.1201 0.1152 0.1028 1.0520 0.1239	20-00	10.00	00-00	0.9253	0.0843	0.0911	0.8640	0.0922	0.1067
15.00 0.00 0.0486 0.0700 1.4409 -0.0146 0.0781 15.00 0.000 0.2272 0.0776 0.3414 0.1350 0.0814 15.00 0.000 0.2272 0.0776 0.3414 0.1350 0.0814 15.00 0.000 0.4058 0.0951 0.2097 0.3190 0.0962 15.00 0.000 0.4058 0.0926 0.1587 0.5018 0.1032 15.00 0.00 0.5843 0.0926 0.1313 0.6849 0.1101 15.00 0.00 0.7629 0.1001 0.1313 0.6844 0.1101 15.00 0.00 0.9415 0.1077 0.1143 0.8684 0.1170 15.00 0.00 1.1201 0.1152 0.1028 1.0520 0.1239	24.00	10-00	00-00	1.1039	0.0918	0.0832	1.0458	£660°0	0.0949
15.00 0.00 0.2272 0.0776 0.3414 0.1350 0.0834 15.00 0.00 0.4058 0.0851 0.2097 0.3190 0.0862 15.00 0.00 0.4058 0.0851 0.2097 0.3190 0.0862 15.00 0.00 0.5843 0.0926 0.1585 0.5018 0.1032 15.00 0.00 0.5843 0.0926 0.1585 0.5018 0.1032 15.00 0.00 0.5843 0.0926 0.1313 0.6849 0.1101 15.00 0.00 0.9415 0.1077 0.1143 0.8684 0.1170 15.00 0.00 1.1201 0.1152 0.1028 1.0520 0.1239	00-00	15.00	00*0	0-0486	0-0700	1-4409	-0-0146	0.0781	0646.8-
15.00 0.00 0.4058 0.0851 0.2097 0.3190 0.0052 15.00 0.00 0.5843 0.0926 0.1585 0.5018 0.1032 15.00 0.00 0.5843 0.0926 0.1585 0.5018 0.1032 15.00 0.00 0.5843 0.0926 0.1313 0.6849 0.1101 15.00 0.00 0.7629 0.1001 0.1313 0.6849 0.1101 15.00 0.00 0.9415 0.1077 0.1143 0.8684 0.1170 15.00 0.00 1.1201 0.1152 0.1028 1.0520 0.1239	4.00	15.00	0.00	0.2272	0-0776	0.3414	0-1350	0.0834	0-6621
15.00 0.00 0.5843 0.0926 0.1585 0.5018 0.1032 15.00 0.00 0.7629 0.1001 0.1313 0.6849 0.1101 15.00 0.00 0.7629 0.1077 0.1143 0.6849 0.1101 15.00 0.00 0.9415 0.1077 0.1143 0.8684 0.1170 15.00 0.00 1.1201 0.1152 0.1028 1.0520 0.1239	8.00	15.00	00-00	0.4058	0.0851	0.2097	0-3190	0.0962	0.3016
15.00 0.00 0.7629 0.1001 0.1313 0.6849 0.1101 15.00 0.00 0.9415 0.1077 0.1143 0.8684 0.1170 15.00 0.00 1.1201 0.1152 0.1028 1.0520 0.1239	12.00	15.00	00*0	0.5843	0.0926	0.1585	0.5018	0.1032	0-2056
15-00 0.00 0.9415 0.1077 0.1143 0.8684 0.1170 15-00 0.00 1.1201 0.1152 0.1028 1.0520 0.1239	16.00	15.00	00*00	0.7629	0.1001	0.1313	0.6849	0.1101	0.1608
15.00 0.00 1.1201 0.1152 0.1028 1.0520 0.1239	20.00	15.00	00-00	0.9415	0.1077	0.1143	0.8684	0.1170	0.1348
	24.00		0.00	1.1201	0.1152	0.1028	1.0520	0.1239	0.1178

Figure 7.- Continued.

(c) Page 3.

LIFT AND MCMENT COEFFICIENT COMPONENTS WITH WING-TAIL INTERFERENCE

	TAIL	TNI ONIM	0.0000	0.0024	0.0038	0.0046	0.0050	0.0051	0.0051	0.0031	0.0052	0.0060	0.0064	0.0065	0.0064	0.0062	0.0059	0.0083	0.0084	0.0084	0.0082	0.0078	0.0074	0.0081	0.0118	0.0111	0.0106	0.0100	0.0094	0.0067
									-0.1020	0• 0000	-0.0170	-0.0340	-0.0510	-0.0680	-0.0850	-0.1020	0• 0000	-0.0170	-0.0340	-0.0510	-0.0680	-0.0850	-0.1020	0•000	-0.0170	-0.0340	-0.0510	-0.0680	-0.0850	-0.1020
		MC+A	0.000	0.0233	0.0465	0.0638	0.0930	0.1163	0.1395	0.0233	0.0466	0.0699	0.0931	0.1164	0.1396	0.1629	0•0467	0•0699	0.0932	0.1165	0.1397	0.1630	0.1862	0.0700	0.0933	0.1166	0.1398	0.1631	0.1863	0.2096
I C W	NOSE	4	0.0000	0.0013	0.0025	0.0038	0.0051	0.0064	0.0076	0*0000	0.0013	0.0025	0.0038	0.0051	0.0064	0.0076	00000	0.0013	0.0025	0.0038	0.0051	0.0064	0.0076	0 • 0000	0.0013	0.0025	0.0038	0.0051	0.0064	0.0076
	TAIL	WING INT	0.000.0	-0.0189	-0.0295	-0.0357	-0.0390	-0.0402	-0-0401	-0.0241	-0.0403	-0.0467	-0.500	-0.0510	-0.0503	-0-0488	-0.0450	-0.0646	-0.0657	-0.0655	-0.0640	-0.0613	-0.0581	-0.0632	-0.0922	-0.0868	-0.0825	-0.0780	-0.0731	-0.0680
CIENTS													0.4853				0•0000	0.1618	0.3235	0.4853	0.6470	0.8088	0.9706	0•000	0.1618	0.3235	0.4853	0.6470	0.8088	0.9706
LIFT COEFFI	MI NG	A+DW	0.000	0.0161	0.0323	0.0484	0.0646	0.0807	0.0968	0.0162	0.0323	0.0485	0.0646	0.0308	0.0969	0.1130	0.0324	0.0485	0.0647	0.0808	0.0970	0.1131	0.1292	0.0486	0.0647	0.0809	0.0970	0.1132	0.1293	0.1454
L	NOSE	٩	00000	0.0007	0.0014	0.0020	0.0027	0.0034	0.0041	0•000	0.0007	0.0014	0.0020	0.0027	0.0034	0.0041	0•000	0.0007	0.0014	0-0020	0.0027	0.0034	0.0041	0• 0000	0.0007	0.0014	0.0020	0.0027	0.0034	0.041
		10	00.00	00.00	00.0	00-00	00.0	00.00	00*0	00 • 0	00.00	0.00	00.00	00.0	00.00	00.00	0•00	0.00	00.0	00 00	00.00	0.00	00*0	0• 00	0.00	00.0	00.00	00*0	0.00	00.0
		MO	00 00	00.00	0.00	00.00	00.0	00 00	0.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00
		4	00.00	4.00	8.00	12.00	16.00	20.00	24.00	00 • 0	4.00	8.00	12.00	16.00	20.00	24.00	0•00	4.00	8.00	12.00	16.00	20.00	24.00	00 • 0	4.00	8.00	12.00	16.00	20.00	24.00

Figure 7.- Concluded.

(d) Page 4.

PART II - CRSFLW COMPUTER PROGRAM

Introduction

This computer program is based on the method presented in NASA TN D-6996 and TN D-7228 (refs. 3 and 4) to calculate the normal force, axial force, and pitching moment of a body alone or wing-body combination. The bodies must be slender but may have circular or noncircular cross sections, and the method is not restricted to small angles of attack. The method of calculation of normal-force and pitching-moment coefficients is based on the concept from reference 7 that the normal-force distribution over a body is made up of a potential term given by slender-body theory and a viscous crossflow term modified by Newtonian theory. Empirical information on crossflow drag coefficients as a function of Mach number and Reynolds number is incorporated into the program. This allows the procedure to be applied over a wide range of angles of attack, Mach numbers, and Reynolds numbers.

The following sections present a description of the program, a description of the input, a description of the output, a program listing, and sample cases. A list of symbols from references 3 and 4 is included for reference.

The program is written in FORTRAN IV for the IBM 360 series machines. No tapes, drums, or disks other than the standard input/output units are required. The running time for a typical case on the IBM 360/67 is three seconds. The program will run on other machines such as the CDC 6600 with no modifications.

List of Symbols

А_Ъ

body base area (at $x = \ell$)

A planform area

A_r reference area

a,b semimajor and semiminor axes of elliptic cross section

 C_A axial-force coefficient, $\frac{F_a}{q_{\infty}A_r}$

°dn	crossflow drag coefficient of circular cylinder section, $\frac{F_n}{q_n(\triangle \ell_{cy}) d_{cy}}$
c _D	drag coefficient, $\frac{drag}{q_{\infty}A_{r}}$
с _г	lift coefficient, $\frac{\text{lift}}{q_{\omega}A_{r}}$
c _m	pitching-moment coefficient about station x_m from nose, pitching moment $q_{\infty} A_r X$
c _N	normal-force coefficient, $\frac{F_n}{q_{\infty}A_r}$
c _n	local normal-force coefficient per unit length
đ	body cross-section diameter
D	drag
k	ratio of corner radius to body width for bodies of square cross section
l	body length
L	lift
M_{∞}	free-stream Mach number
$\mathbf{d}^{\mathbf{\infty}}$	free-stream dynamic pressure, $\frac{1}{2} \rho V_{\infty}^2$
r	body cross-section radius $o\mathbf{V}$ d
Re	free-stream Reynolds number, $\frac{\rho \mathbf{v}_{\infty} d}{\mu}$
s	wing semispan
V	body volume
V _∞	free-stream velocity
w	body width
x	reference length
x	axial distance from body nose

i

x _{ac}	distance from nose to aerodynamic force center
×c	distance from nose to centroid of body planform area
× _m	distance from nose to pitching-moment reference center
α	angle of attack
γ	ratio of specific heats (taken as 1.4 for air)
e	wing planform semiapex angle
η	crossflow drag proportionality factor
μ	viscosity coefficient of air
ρ	density of air
	Subscripts
су	cylinder
LE	leading edge
Newt	Newtonian theory
SB	slender-body theory

SF skin friction

TE trailing edge

W wave or pressure

Description of Program

The CRSFLW computer program consists of a main program, eight function subprograms, and two subroutine subprograms. All input and output takes place in the main program. The function and subroutine subprograms provide quantities from the curves and equations of references 3 and 4 and other specific services to the main program.

Function subprogram CNSB computes the ratio $(C_n/C_{n_O})_{SB}$ for winged circular cross-section bodies and winged elliptic cross-section bodies with the major axis parallel to the crossflow velocity or normal to the crossflow using equations (13), (14), and (15) of reference 4, respectively. This same routine is used for winged-bodies with varying cross sections in which the above ratio changes with x-distance.

Function CNNT computes the ratio $(C_n/C_{n_o})_{Newt}$ for the same wing-body configurations considered above using equations (16), (17), and (18) of reference 4.

Function CNRSB computes $(C_n/C_{n_O})_{SB}$ for bodies alone with similar cross sections over their length. The result is identically 1.0 for circular bodies, and results for elliptic bodies with their major axis perpendicular to the crossflow velocity, or normal to it, are computed using equations (21) and (22) of reference 3, respectively. For bodies with square cross sections with rounded corners, $(C_n/C_{n_O})_{SB} = 1.19$ at k = 0 (no corner radius) and $(C_n/C_{n_O})_{SB} = 1.0$ at k = 0.5 (circular cross section); therefore, linear interpolation between these two end points is used for intermediate cases.

Function CNRNT computes $(C_n/C_{n_0})_{Newt}$ for bodies alone with similar cross section over their length. The result is identically 1.0 for circular bodies, and results for elliptic bodies with their major axis perpendicular to the crossflow, or normal to it, are computed using equations (21) and (22) of reference 3, respectively. Bodies with square cross sections with rounded corners are considered using equation (23) of the same reference.

Function CAW computes the wave or pressure contribution to the axial force, C_{A_W} , for various nose shapes and body combinations at M > 1. Forward facing conical-nosed bodies are considered using equation (10) of reference 3. C_{A_W} for tangent ogive noses and for Newtonian minimum drag noses are obtained from correlation curves in figure 6 of the above reference. For circular bodies with flat noses, it is assumed that C_{A_W} is equal to the stagnation pressure coefficient and figure 7 of reference 3 is used. C_{A_W} for conical-nosed bodies of elliptic cross section is computed using equation (28) of the same reference.

Function CDN computes the crossflow drag coefficient, C_{d_n} , of a circular body as a function of crossflow Mach number and crossflow Reynolds number from figures 1, 2, and 3 of reference 3.

Function ETA computes the ratio of the crossflow drag coefficient for a finite length cylinder to that for an infinite length cylinder using figure 4 in reference 3. Function FUN calculates the integrand in equations (7) and (8) of reference 4 for C_N and C_m for the cases with variable cross-sectional shapes over the length of the body or wing-body combinations.

Subroutine SIMP is a Simpson's Rule integration package used to evaluate the integrals for C_N and C_m when the cross-sectional shape is variable over the length of the body.

Subroutine CEL2 computes the complete elliptic integral of the second kind, E. This is used in equation (10) of reference 4 to compute a modification factor, λ , defined as the ratio of the lift of the triangular wing alone by linearized theory to that by slender-body theory.

Description of Input

<u>Variable definitions.</u> The format of the input cards for the CRSFLW program is shown in figure 1. The variable names are shown as well as the card columns in which the value is punched and the format in which it is punched. The remainder of this section consists of a table listing the program input variable along with the appropriate algebraic symbol, and the variable definition. A discussion of the preparation of the input is presented following the table. The algebraic notation used to define the configuration and described in the input table is shown in figure 2. All input length and area quantities are dimensional and should have consistent units. Also shown in figure 2 are sketches of a body alone with the positive sense of the forces and moments illustrated.

ALGEBRAIC NOTATION	DEFINITION
	80 columns of alphanumeric information used for identification.
l	Length of the body.
×m	Position about which the pitching moments are to be taken.
Ab	Base area.
Ar	Reference area.
	l xm Ab

PROGRAM NOTATIO			DEFINITION
AP	A _p	Planform	area.
v	V	Volume of	f body.
хс	×c	x-coordir	nate of body centroid.
xx	x	Reference	e length.
<u>Item 3</u>			
NSHP		NSHP =] = 2 = 3	 pe index: 1 Circular body. 2 Elliptical body with major axis horizontal. 3 Elliptical body with major axis vertical. 4 Square body with rounded corners.
NVAR			 Body shape similar over entire length. Body shape varies with length. (This option used only when NSHP = 2 or 3.)
NWING			0 No wing present. 0 Wing present.
NOSE		=	 Conical nose. Ogive nose. Newtonian minimum drag nose. Flat nose.
NOTE:	If NSHP = 4, then NOSE = combination of variables	4 and NW:	NING = 0 is the only acceptable
<u>Item 4</u>			
NXS		Number of body shall $2 \leq NXS$	of x-stations along the body where hape information is input. S \leq 50
Item 5			
X(I),I=	l,NXS x	body in there a	of x at each station at which formation is to be input. (If are more than 8, continue on ing cards.) $X(1) = 0.0$ and = RL.

PROGRAM NOTATION	ALGEBRAIC NOTATION	DEFINITION
<u>Item 6</u>		Item 6 consists of parts (a), (b), or (c) depending on body shape.
<pre>(a) Circular Body (NSHP = 1)</pre>		
R(I),I=1,NXS	r(x)	The radius of the body at each x- station.
	or	
(b) Elliptical Body (NSHP = 2 or 3)		
(1) A(I),I=1, NXS	a (x)	The value of the semimajor axis at x-station; use as many cards as necessary, 8 values per card.
(2) B(I),I=1, NXS	b (x)	The value of the semiminor axis at each x-station.
	or	
(c) Square Body (NSHP = 4)		
(1) RK	k	Ratio of the corner radius to the body width. Only one value allowed for entire body. ($0 \le k \le 0.5$)
(2) SSQ(I), I=1,NXS	w	Length of square side at each x- station.
<u>Item 7</u>		Item 7 consists of one card plus parts (a) or (b) depending on type of body. Omit Item 7 for blunt-nosed body. (NOSE = 4)
SNOSE	ls	Length of nose.
(a) Circular Body (NSHP = 1)		
RNOSE	r	Radius of body at base of nose.
	or	
(b) Elliptical Body (NSHP = 2 or 3)	a.	
ANOSE	a	Semimajor axis at base of nose.
BNOSE	b	Semiminor axis at base of nose.

>

.

PROGRAM NOTATION	ALGEBRAIC NOTATION	DEFINITION
Item 8		Omit Item 8 if no wing is present. (NWING = 0)
XLE	×LE	x-coordinate of the wing leading edge at the wing-body juncture.
XLET	x_{LE} tip	x-coordinate of leading edge of wing tip. $x_{LE} \ge x_{LE}$
XTET	× _{TE} tip	x-coordinate of trailing edge of wing tip. $x_{TE} \ge x_{LE}_{tip}$
XTE	× _{TE}	x-coordinate of wing trailing edge at the wing-body juncture. $x_{TE} \ge x_{TE}_{tip}$
SSPAN	S	Wing semispan.
EPS	e	Wing planform semiapex angle, radians.
Item 9		Item 9 consists of (a) or (b) depending on body shape. Omit if no wing is present. (NWING = 0)
(a) Circular Body (NSHP = 1)		
RLE	r	Radius of the body at the juncture of the wing leading edge and the body.
	or	
<pre>(b) Elliptical Body (NSHP = 2 or 3)</pre>		
ALE	a	Semimajor axis at juncture of wing leading edge and body.
BLE	Ъ	Semiminor axis at juncture of wing leading edge and body.
Item 10		
ALFI	lpha i	Initial value of angle of attack, degrees.
ALFF	α _f	Final value of angle of attack, degrees.
DALF	$\Delta \alpha$	Increment in angle of attack.

PROGRAM NOTATION	ALGEBRAIC NOTATION	DEFINITION
CASF	C _A SF	Axial-force coefficient due to skin friction.
GAM	γ	Ratio of specific heats, typically l.4 for air.
RE	Re	Reynolds number based on body diameter and free-stream properties.
FMACH	M _∞	Mach number.

<u>NOTE</u>: The angle-of-attack range for bodies alone is $0 \le \alpha \le 180^{\circ}$. The angle-of-attack range for wing-body combinations is $0 \le \alpha \le 90^{\circ}$.

<u>Input preparation.</u>- A discussion of the input variables is presented in this section as an aid in the preparation of the data deck.

Item number 1 is a single card containing any information which the user wishes to use to identify the run. This information is reproduced in the output exactly as it is punched on this card.

Item 2 is geometry and reference information and all the variables are explained in the previous table or in figure 2.

Item 3 contains four indices controlling the type of body to be considered. The first, NSHP, specifies the body cross-sectional shape to be circular (NSHP = 1), elliptical (NSHP = 2 or 3), or square with rounded corners (NSHP = 4). The second index, NVAR, specifies whether the body shape is similar (NVAR = 1) or not (NVAR = 2) over the length. This index is concerned only with elliptical cross sections (NSHP = 2 or 3). The third index, NWING, specifies whether a wing is (NWING > 0) or is not (NWING = 0) present. The last index, NOSE, specifies the nose shape to be a cone (NOSE = 1), an ogive (NOSE = 2), a Newtonian minimum drag shape (NOSE = 3), or a flat nose (NOSE = 4).

Item 4 is a single index, NXS, specifying the number of stations along the body at which shape information is to be input. This number must be equal to or less than 50.

Item 5 contains the x-stations at which the body information is to be input. The first value should be the tip of the nose and the last should be the base of the body. There are eight values per card in increasing order of x distance up to the total of NXS stations.

Item 6 contains the variables defining the body shape at the x-stations in Item 5. For a circular cross section (NSHP = 1), Item 6 is the radius of each station. For an elliptic station, (NSHP = 2 or 3), Item 6 is made up of two cards. Part (1) contains lengths of the semimajor axis at the x-stations, and part (2) contains the lengths of the semiminor axis at the same stations. If the body is square with rounded corners, the first part of Item 6 is a single card containing the ratio of the corner radius to the body width. Part (2) of Item 6 is the length of the side at each x-station.

Item 7 is made up of two cards, the first of which contains the length of the nose, SNOSE. If the body cross section is circular, (NSHP = 1), the second card of Item 7 contains the radius of the nose at the base, (RNOSE). If the body cross section is elliptic (NSHP = 2 or 3), the second card of Item 7 contains the length of the semimajor axis, ANOSE, and the length of the semiminor axis, BNOSE. Item 7 is omitted if NOSE = 4.

Item 8 contains the variables describing the geometry of the wing. If no wing is present (NWING = 0), Item 8 is omitted. The six variables in Item 8 are self explanatory.

The variables in Item 9 are a function of the body shape in the vicinity of the wing. If no wing is present, Item 9 is omitted. For a circular body (NSHP = 1), Item 9 contains the radius of the body (RLE) at the juncture of the wing leading edge and the body. For an elliptic body (NSHP = 2 or 3), Item 9 contains the lengths of the semimajor and semiminor axes, ALE and BLE, respectively, at the juncture of the wing leading edge and the body.

Item 10 is the last card making up a particular run. The first three variables are the initial angle of attack, ALFI, the final angle of attack, ALFF, and the increment in angle of attack DALF. The next quantity is the axial-force coefficient due to skin friction, CASF. GAM is the ratio of specific heats. RE is the free-stream Reynolds number based on body diameter and FMACH is the free-stream Mach number. The angle-of-attack range for bodies alone is 0° to 180° and that for wing-body combinations is 0° to 90° .

Input decks may be stacked for multiple runs. A second case starting with Item 1 can be placed directly after Item 10.

<u>Sample cases.</u> – Listings of the input decks for five sample cases are presented in figure 3 and sketches of the configurations are shown in figure 4. Sample cases 1 and 2 are body-alone configurations taken from figure 9 of reference 3.

Sample case 1 is body number 2 of that reference and is a flat-nosed cylinder. Sample case 2 is body number 5 of the same reference and is the same cylindrical body with a conical nose attached. Sample cases 3, 4, and 5 are wing-body configurations taken from figure 6 of reference 4. These latter configurations all have the same body length, base area, and aspect ratio.

Description of Output

The output produced by the CRSFLW computer program for sample case 4 is shown in figure 5. The first page of output is a summary of input quantities. Various notes are printed describing the specified components of the configuration. The last items printed on this first page are the flow conditions: Re, γ and M_m.

The next page is headed by the identification information on the first card of the input deck. Following this are the calculated results printed on two lines. As indicated by the heading, the first line contains α , C_N , C_A , C_m , x_{ac} , C_L , C_D , and L/D. The second line contains components of C_N , C_A , and C_m . CN1 and CM1 are the potential portions of the normal force and pitching moments, and CN2 and CM2 are the viscous crossflow portions of the lift and pitching moments. The axial-force components are defined in the following table. The last variable is the crossflow drag coefficient, C_{d_c} . The output variables are defined as follows.

OUTPUT NOTATION	ALBEGRAIC NOTATION
ALPHA	α , degrees
CN	$C_{N} = \frac{N}{qA_{r}}$
СА	$C_A = \frac{A}{qA_r}$
СМ	$C_m = \frac{M}{qA_rX}$

OUTPUT NOTATION	ALGEBRAIC NOTATION
XAC	$x_{ac} = \left(\frac{x_m}{X} - \frac{c_m}{c_N}\right) X$
CL	$C_{L} = C_{N} \cos \alpha - C_{A} \sin \alpha$
CD	$C_{D} = C_{N} \sin \alpha + C_{A} \cos \alpha$
L/D	c _L /c _D
CDC	c _{dn}

I. For nonvarying cross-sectional shape and no wing present.

OUTPUT
 ALGEBRAIC

 NOTATION
 NOTATION

 CN1

$$\frac{A_b}{A_r} \sin 2\alpha \cos \frac{\alpha}{2} \left(\frac{C_n}{C_{n_o}}\right)_{SB}$$

CN2
$$\eta C_{d_n} \sin^2 \alpha \left(\frac{C_n}{C_{n_o}} \right)_{\text{Newt}}$$

CM1
$$\left\{ \left[\frac{V - A_{\rm b}(\ell - {\rm x}_{\rm m})}{A_{\rm r} {\rm x}} \right] \sin 2\alpha \cos \frac{\alpha}{2} \right\} \left(\frac{C_{\rm m}}{C_{\rm m_0}} \right)_{\rm SB}$$

CM2
$$\left[\eta C_{d_n} \frac{A_p}{A_r} \left(\frac{x_m - x_c}{x}\right) \sin^2 \alpha\right] \left(\frac{C_m}{C_{m_o}}\right)_{Newt}$$

CA1 C_{AW}

- II. For a varying cross-sectional shape or a body with lifting surfaces.
 - OUTPUTALGEBRAICNOTATIONNOTATION

CN1
$$\left(\frac{A_{b}}{A_{r}}\sin 2\alpha \cos \frac{\alpha}{2}\right)\frac{1}{\ell}\int_{0}^{\ell}\lambda\left(\frac{C_{n}}{C_{n_{o}}}\right)_{SB}dx$$

CN2
$$\frac{2\eta C_{d_n} \sin^2 \alpha}{A_r} \int_0^\ell \left(\frac{C_n}{C_{n_o}}\right)_{\text{Newt}} r \, dx$$

CM1
$$\begin{pmatrix} \frac{A_{b}}{A_{r}} \sin 2\alpha \cos \frac{\alpha}{2} \end{pmatrix} \frac{1}{\ell x} \int_{0}^{\ell} \lambda \begin{pmatrix} \frac{C_{n}}{C_{n_{o}}} \end{pmatrix}_{SB} (x_{m} - x) dx$$

CM2
$$\frac{2\eta C_{d_n} \sin^2 \alpha}{A_r x} \int_0^\ell \left(\frac{C_n}{C_{n_0}}\right)_{\text{Newt}} r(x_m - x) dx$$

Program Listing

The CRSFLW computer program consists of the main program, eight function subprograms and two subroutine subprograms. Each source deck is identified in columns 73 through 80 by a four-character identification and a three-digit number sequencing the cards within that deck. The program listing is given on the following pages. The table below will act as a table of contents for the listing.

PROGRAM	IDENTIFICATION	PAGE NO.
MAIN	CF01	54
CNSB	CF02	56
CNNT	CF03	57
CNRSB	CF04	58
CNRNT	CF05	58
CAW	CF06	58
CDN	CF 07	59
ETA	CF08	60

PROGRAM	IDENTIFICATION	PAGE NO.
FUN	CF09	60
SIMP	CF10	60
CEL2	CF11	61

C PROGRAM CMBFLM - CRUSSFLOH PREDICTION METHOD CF01	001 C NSHP = 4 002 r	
COMMON RL,XM.NAMP.NVAR.NAING.NOBE.NXA.X(50).A(50).8(50).8(50). •	200	CF01 074 CF01 075
	005 C RYAN I Z TUCHARTILLY OF DEFINION VILLEY OF DEFINION VILLEY	
	000 007	
		5
		: 5
	20	1013
SHXR .	015	CF01 086
10.5/5%,5MAB = ,710.5,3%,5MAR = ,710.5,3%,5MAP = ,710.5/5%,	1 016 51 MR116(6,702)	CF01 067
F10.5,3X,5MXH H /F10.5	110	
	019	
704 FORMAT(//20X.16HARECTANGULAR 800Y)	020	
765 FORMAT(/10%, 41MMING 18 PRESENT MITM LEADING EDGE AT X a .F10.5.2%, CF01	120	CF01 092
LESTRAND TRAILING EDGE AT X = 710.57.2X.IZH, EPBILON = 710.53 CT01	220	
	024	
	025	
~	026	CF01 097
- 1004 20 124 01114	027	
RAULUS AFT UP NUME -		
	030 52	CF 01 101
715 FORMAT (aXSHALPHA, 6X2HCN, 6X2HCA, 6X2HCM, 6X3HXAC, 7X2HCL, 6X2HCD, CF01	120	CFOL
	032 255 255	
2 7434642*7434644*7434642) *** Prevat 1/510.1.9510.4 / 104.8114510.333		CFOL
PIS FORMAT(/SK.104ERADR 2% INTEGRAL J1.64, ANS B .E12.5) CP		CFOI
716 PORMAT(//10X+15MFLON CONDITIONS/5X+18HRETHOLDS NUMBER = .EL2+5.5X,CF01 0	24	CF01
BEREARTIAN B 'PA'S' 'SH'IATACH NUTERY B 'FO'S ' 949 Berlattike bokijohboot ikabk bibilar cyrr [Engin] 59		CP01
718 TOWATCIN+, 40X, 29HBODY 2HAPE VARIES RITH LENGTH)	1 939 READ(5.1) (350(1),Tel,NX8)	CF 01
710 FORMAT(SX/20MTABULATION OF RADIUC/DA/IMI/ILX/4MX(I)/ILX/4HX(I)/ EX/ Tec foruiting the State a style of the state of th	140	
720 FUMMATICALISTATITY STATTY STATTY STATE	54	C+ 01
		CF01
/SV.IAMENGARG BADIUS = []		1010
		CF 01
		1040
725 FORMAT(1X,2044)	10	1010
C READ AND WRITE MEADING FOR THIS CASE	STORE LENGTH OF NOSE	1010
		CF01
	053	CF01
D HRITE INPUT DATA FOR BODY)1 054 READ(5,1) 3W08E A READ (5,1) 3W08E A READ (5	1010
22.L2.2.47.44.47.47.44.47.44.4.4.47.44.44.44.44	VII (VVC/VV/VV/VV//VV//VV// DS6 AA1 READ(S.1) ANOBE.BNDBE	1010
REALDS'D' KEAATATATATATATATATATATATATATATATATATATA		CF 01
RL = BODY LENGTH		
XA B MONENT CENTER Se 1 A Start		CFOL
	140	CF01
4P 8 4*848*P	240	
	4	CFOL
		CF01
	047	
READ(12,2) 701P,2427,511MG,2001		CF 01
E] CIRCULAR BUDY	069 65	C+ 01

2005 TM1m1

	INIEA Call Bimp(0,,RL,MIT,IER,TOL,FUN,AM64) If(IER,E0,0) mrite(0,715) INT,AM84	CF01 201 201 C CF01 202 C CF01 202 C CF01 203 101	THE BODY If (Weing) 100,101,100 X Ned	CF02 U21 CF02 022 CF02 022 CF02 025
	13481 164611 CabelfI Cabel-/(Gamefracmafracm))=((2,/(Gam+1,))=41,44(1,/f4Acm)=+2,8		60 TO 125 1 Jr(X:=XTE) 102,101,101 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	CF02 025 CF02 026 CF02 026
~	Ja(2.aGAMaFMAGMAFMAGH4GAM4J_)/(GAM4J_)/10. 15 (fw4Gt4.16.1.0) (Abb0.0 1	CF01A286 103 CF01A286 103 CF01 287 108		CF02 028 CF02 029
	CAIBERFROGE/TROBE/FORCE/ Caberai + Cabr Fistrefistarghade		1 KH42 60 TO 125	CF02 031
20102	2010 ALF45A68(ALF)=0700 2021 Altaia50(ALF3)=0700			CF02 033
	C084L8C08(4.FW) F0842=C08(4.FW)	CF01 291 107 CF01 292 125		CF02 035
	81W24861W4LFF	CF01 295 CF01 294 128		CF02 057
	FISTING AND		X ()	
	CDNCGCDN(FILS) Fundations Fundati		1 KX=J 8 60 10 (1100,1200,1300), N&MP	
	CX#CF4.602 CX#CF4.602 File(x#AAP)4512245C08424A803/(RL4XX)	CF01 200 C Cf01 300 C	CIRCULAR BODY WITH WING PRESENT	
	CH282, #ETAC#CDNC+81WAL+85WAL+4W84/(AFAX) CH282, #ETAC#CDNC+81WAL+85WAL+4W84/(AFAX)	0		
	Crackstra 2.4 CascO3alsCU3al 2.4 Fr s of 57 St 2015	CF01 303 1112 CF01 304		
		CP01 305 CP01 306 1114		
2015	CRAFCN XACG6, D			CF02 050 CF02 051
U	JF(ALF,ME.0.0.AND.ALF.ME.100.0] XACAXM-LMMXX/LM		JECKENES) 60 10 (1102/1104/1106)/ KH	CF02 052 CF02 053
2014	ALFRAALFroTOR			CF02 US4 CF02 055
	C004L5C08(ALFR)	CF01 312 1102 CF01 313	2 Belutry(Alle/Aleiros, Seriary * Ale Go To 1110	CF02 054
	CLECH+CO2AL - CA+BINAL	CF01 314 1104 CF01 315	3#8\$PAN 60 10 1110	CF02 050
	CDeCMABINAL + CATCUBAL CLOBCL/CD 	CF01 316 1106	6 8=1N1FP(XTET.XTE,889);0.,XX) ← RLE 0 fuse=sz/(RReht) → RRehr/(8=5) → 1.	CF02 059 CF02 040
		ſ	RETURN	CF02 061 CF02 062
	ALFEALFOALF		ELLIFTICAL GODY MITH MAJOR AXI8 MURIZONTAL Mith or mithout wing	CF02 043
			IF(KH.EQ.0) GO	
υÚ	EQUATIONS FOR ALF.61.90		8007130504AN0416 8007138504AN0416 	CF02 067 CF02 068
2020		120	GU TU TIGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	CF02 069 CF02 070
2022	IZ4E3 2 Alffe180,-Alf	120		CF02 071 CF02 072
	ALFREALFF010R Gu to 2023	120	GO TO IZIO 14 selntrp(xtet,xte,ssPI,0,,xx) → ALE	CF02 073
	END	22	0 JF(KX) 1212,1212,1214 2 Kxeekx	
			2222 (XX) 9988 (XX)	CF02 077
•	FUNCTION CNBB(XI)	001 002		CF02 079 CF02 080
	THIS RUUTIME COMPUTES INTEGRAMD VALUES OF (CM/CN0)38 FOR Conde-entropy, subset anto van with (facth, DR BODIES	CF02 003 1214 CF02 004		CF02 082
		CF02 005 1225		CF02 085
L)	СUMMUN RL,XM,MBMP,MVAR,MUING,MOBE,MX8,X(50),A(50),B(50),A(50), 1	CF02 007 1227	IF(AA+00) 1220,1227,1440 27 IF(KH) 1229,1229,1110	CF 028085 CF 02C 083
	1 550 (56), KR. 58035, KRU35, ALE /	600 610		CF 020083 CF 022083
	REAL [MIRP [NIRP[xL,xU,vL,vU,x]svL+(x=xL)+(vU=vL)/(xU=xL)	CF02 011 1440 CF02 012		CF 02F 083 CF 026083
	CHECK IU BLE IF WE ARE AT THE POINT UF A POINTED MUBE	013 014	1228 504114UE 1228 1204114UE	CF 0.2 m 08.4 CF 0.2 08.4
J	XX&XI 1f(X1,660,00,4M0,MU3E,ME,4) XX#RL+1,65+5	CF02 015 CF02 016 1220 CF02 017	20 \$15.0.54(3*50H(3*3*90+88-44*4A)) 20 \$15.054(3*50H(3*490)/(4*816) 2445(644*90)/(4*814)	CF02 UB5 CF02 086 CF02 086
		019 019		CF02 089 CF02 089
u u	CUMPUTE MMEME XX IS ALONG IME "ING, IF PRESENT, AND ALONG	CF02 020 1444	CL CHOBERNOO Rejura	CF 0 2 0 90

(16 PREBENT (17 Control (17 Contro) (17 Control (17 Control (17 Control (17 Control (17 Contr	ELLIPTICAL BODY WITH MAJOR AKIS VERTICAL Pith or without wing attacmed	CF02 092 CF02 093	14 KM 1 (100,200,300), M3NP 14 KM 1 (100,200,300), M3NP	CF05 035 CF05 036 CF05 036
	64.61 50 10 1310	CF02 095	CIRCULAR BODY WITH WING	CF03 038
		CF02 097	108 IF(KE) 112.112	
	•	CF02 098 CF02 099	KX=-KK	CF03 042
		CF 02 100		CF03 045 CF05 048
	٠	CF02 102		CP05 045
	1312,1312,1314	CF02 103		CF05 046 CF05 047
1000000000000000000000000000000000000		CF 02 105	CWATE1. Reiver	CF03 040
0.0000 0.00000 0.0000 0.0000		CF02 106 CF02 107	BBPIESSPANeRLE	CF03 050
1 0.00000000000000000000000000000000000		CF02 108	ФЕЛИНИГАТЕ,АЦЕТ/0°,33И],XX) + ИL 60 70 110	CF05 051 CF03 052
1.11 1.11 <th< td=""><td>ם פענאיין</td><td>CF02 110</td><td>ETASSES TOT</td><td>CF01 051</td></th<>	ם פענאיין	CF02 110	ETASSES TOT	CF01 051
10 Current contraction (Contraction) 10 Current contraction (Contraction) 10 Current contraction Current contraction Current contraction 10 Current contraction Current contraction Current contraction 10 Current contraction Current contraction Current contraction 11 Current contraction Current contraction Current contraction Current contraction 11 Current contraction Curren	P(X(XXF),X(XX),B(XXF),B(XX),XX)	CF42 111	10 83P1=55PAN+RLE	510 S D C D C D C D C D C D C D C D C D C D
Control	(AA*88) 8) 1526,1527,1528	CF02 112 CF02A112	\$\$\$\\7#P(XTET_XTE,\$\$\$P1,0,,XX) + ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^	CF01 050
CLUTTIC BODY HITH MUGH ATTH ATTH ATTH ATTH ATTH ATTH ATTH AT		CF 020112		CF03 057 CF03 058
Contract Contr		CF 02C112 CF 02D112		CF 03 059
		CF026112	ELLIPTIC GUDY WITH HAJOR AXIS	CF03 060
	220	CF02F112	200	
Contract Contract Contract Contract Contrel Contrel Contr	1320,1322,1320	CF02 115		CF05 043
Contract Contract Contract Contract Contract Contract Co	• (3+3077 (3+3+44+44+69+98))	CF02 114		CF03 045
400 400 <td><pre>(AA+98)={AA+98}/{4.43} D4fileseeany/faa+84)</pre></td> <td>CF02 115</td> <td>RR= 50 RT (A A = 56)</td> <td>CF03 066</td>	<pre>(AA+98)={AA+98}/{4.43} D4fileseeany/faa+84)</pre>	CF02 115	RR= 50 RT (A A = 56)	CF03 066
Constraint Constraint Constraint Constraint Constraint Constra		CF02 117		CF05 007
Control Control <t< td=""><td>/44</td><td>CF 02 110</td><td></td><td></td></t<>	/44	CF 02 110		
AND MALLER OF CARCENDING AND MALLER OF CARCENDING CONCRETE IN ALLE OF CONCRETE FOR BODIE ALCONCRETE FOR TOTAL CARCENDING CONCRETE IN ALLE OF CONCRETE FOR BODIE ALCONCRETE FOR TOTAL CONCRETE IN ALLE OF CONCRETE FOR BODIE ALCONCRETE FOR TOTAL CONCRETE IN ALLE OF CONCRETE FOR BODIE ALCONCRETE FOR TOTAL CONCRETE FOR BODIE ALCONCRETE FOR BODIE ALCONCRETE FOR TOTAL CONCRETE FOR BODIE ALCONCRETE FOR BODIE ALCONCRETE FOR TOTAL CONCRETE FOR BODIE ALCONCRETE FOR BODIE ALCONCRETE FOR TOTAL CONCRETE FOR BODIE ALCONCRETE FOR BODIE ALCONCRETE FOR TOTAL CONCRETE FOR BODIE ALCONCRETE FOR BODIE ALCONCRETE FOR TOTAL CONCRETE FOR BODIE ALCONCRETE FOR BODIE ALCONCRETE FOR TOTAL CONCRETE FOR BODIE ALCONCRETE FOR BODIE ALCONCRETE FOR TOTAL CONCRETE FOR BODIE ALCONCRETE FOR BODIE ALCONCRETE FOR TOTAL CONCRETE FOR BODIE ALCONCRETE FOR BODIE ALCONCRETE FOR TOTAL CONCRETE FOR BODIE ALCONCRETE FOR BODIE ALCONCRETE FOR TOTAL CONCRETE FOR BODIE ALCONCRETE FOR BODIE ALCONCRETE FOR TOTAL CONCRETE FOR BODIE ALCONCRETE FOR BODIE ALCONCRETE FOR BODIE ALCONCRETE FOR TOTAL CONCRETE FOR BODIE ALCONCRETE FOR BODIE ALCONCRETE FOR TOTAL CONCRETE FOR BODIE ALCONCRETE FOR ALCONCRETE FOR TOTAL CONCRETE FOR BODIE ALCONCRETE FOR TOTAL CONCRETE FOR BODIE ALCONCRETE FOR TOTAL CONCRETE FOR BODIE ALCONCRETE FOR TO		CF 02 120	8841X1TF(X(XXX),X(XX),&(XX),%(XX),XX) Peterson (X(XXX),X(XX),&(XX),*(XX),XX)	CF03 070
1 0				CF03 072
11 60.70/2011/2012/2011/2012 12 60.70/2011/2012/2011/2011/2011/2011/2011/20			887168874N44L6 15/51-01 64 44 20 216	CF05 073
21 0100 215 20100 215 100 00 41144 Algo 20100 215 20100 215 110 00 41144 Algo 20100 215 20100 215 110 00 41144 Algo 20100 215 20100 215 110 01 1 4011 4014 Algo 20100 215 20100 215 110 01 1 4011 4014 Algo 20100 215 20100 215 110 01 1 4011 4014 Algo 20100 215 20100 215 111 011 4011 4014 Algo 20100 215 20100 215 111 011 4014 Algo 20100 416 20100 416 111 011 4014 Algo 20100 416 20100 416 111 011 4014 Algo 20100 410 20100 416 111 0114 416 20100 416 20100 416 111 0114 416 20100 416 20100 416 111 01144 416 20100 416 20100 416 111 01144 416 201000 416 20100000 <			G0 T0 (211,212,213),KH	CF03 075
Curvates Tek VAUE Cervations 212 Constraints 212 212 212			\$\$]MTRP(XLE,XLET,0,,83P1,XX) + 50 to 21%	CF03 076
LCULATES ING VALUE OF CONTONENT FOR BODIES ATTEND 00 LCULATES ING VALUE OF CONTONENT FOR BODIES ATTEND 20 NUMERANDELAXESATESOLATIONELS TATAS NAME-NUMER-NODE TATESTATESOLATESOLATESOLATION ATTENTS NAME-NUMER-NODE TATESTATESOLATION ATTENTS NAME-NUMERANDALISTATESOLATION ATTENTS NAME-NUMERANDALISTATESOLATION ATTENTS NAME-NUMERANDALISTATESOLATION ATTENTION ATTENTS NAME-NUMERANDALISTATESOLATION ATTENTS NAME-NUMERANDALISTATESOLATIONA	N CNNT(N1)	CF03 001	212 4808PAN	CF03 070
Im On with, wild: Im On with, wild: Im Addition Note: with, wild: Im One Im Addition Note: with, wild: Im Addition Im Addition The Pulmi Or A wold: Im Addition Im Addition The Pulmi Or A wold: Im Addition Im Addition E.M. (Im Addition Im Addition Im Addition E.M. (OF CONCONNENT FOR		60 TO 215 Seinteeriff	CF03 079
WARFWIKE-MORE ANDA TCSO1.A(501.		12	IF (44488) 214,120,218	CF05 081
WVAR.ANIMG.MODE.ANILATION (1990) (1900) (190	2	CF03 005		CF034081
NUCL: ALE: ALE: ALE: ALE: ALE: ALE: ALE: AL	RL, XW, MBHP, NVAR, NW [NG, NOBE, NXB, X(50), A(50), B(50), R(50),	CF03 007		
XJ=YL+(1=KL)+(YU-YL)/(KU-KL) YI	J. KK. 30036. RNO36. KLE. XLET. KTET. XTE. 33PAN, ALE. BLE. RLE	Cro3 000		10005040
THE PUINT OF A MORE CF00 011 000000000000000000000000000000		CF03 010		CF 034 041
RE.ME.401 XHMRLei.E-5 CM101 14 14411 CM101 145411 CM1011 145411 CM1011111111 <		CF03 011		CF05 003
E.ME.(a) XHARLe1.E-5 C (1) = a + a + a + a + a + a + a + a + a + a		CF03 012 CF03 013	-	CF03 044 CF01 045
<pre>6 000 AND WING [1F PRESENT] 6 000 AND WING [1F PRESENT] 7 013 013 7 013 7 013 7 013 7 013 7 013 7 013 7 013 7 013 7 013 7 013 7 013 7 013 7 013 7 013 7 013 7 013 7 01 7 01 7 01 7 01 7 01 7 01 7 01 7 01</pre>	0 ANA MORE LE 21 11-21 10 2-2	CF03 014	/(1,-84+84)++1,5 + 1,/(1,-84+84) + 8/44 - 1,)	CF 0.5 040
<pre>6 000 AND WING (IF PREAMT)</pre>		CF03 016		CF05 087
CF03 010 F(xx) 301 F(xx) 301.301.302 CF03 021 Ataac(xx) 301.404.400 Ataac(xx) CF03 023 Ataac(xx) Ataac(xx) Ataac(xx) CF03 023 Ataac(x10) Ataac(x10) Ataac(x10) CF03 023 10 10 10 CF03 023 10 10 CF03	ATION ALONG BODY AND WING (IF PRESENT)	CF03 017	ELLIPTIC BODY WITH MAJOR	CF 03 089
Cross are Cross are	5) 2,1,2	CF05 018 CF03 018	300	CF05 090
CF03 021 MAAKKAJ CF03 022 UBBERKAJ CF03 024 UBBERKAJ CF03 024 UBBERKAPJAKANJAKAJAKANJAKAJAKAJAKAJAKAJAKAJAKAJA		CF03 020		CF03 092
1 1 <td></td> <td>CF05 021</td> <td>AACA(KK)</td> <td>CF03 093</td>		CF05 021	AACA(KK)	CF03 093
$\begin{bmatrix} C_{000} & 020 & C_{000} & 020 & 100 & 100 \\ C_{000} & 020 & 020 & 020 & 020 & 0000 & 000 & 000 & 000 & 000 & 000 & 000 & 000 & 000 & 000 & 000 & 0$.c. 10113 [[] 7.6.4	CF01 021	8000 (M) 800 (
CF03 025 002 AATHNYFR(KKRN),A(KRN),A(KRN),A(KR),A(K),A(K),A(K),A(K),A(K),A(K),A(K),A(K	[E1] e.e.5	CF03 024		CF U3 090
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	E) 6,1,1	CF03 025		CF03 007
CF03 020 Res3087(AA408) CF03 CF03 020 5591a65PA4-0L CF03 CF03 030 15(44.20.0) 07 CF03 031 15(1.512.313.54) CF03 CF03 032 6110 031.5.313.54 CF03 CF03 033 311 SHEAFELF103.349F1.5A1) + bLF CF03 CF03		CF03 027	<pre>////////////////////////////////////</pre>	33
CF03 030 5871m83PAN-BLE CF03 CF03 031 16(n.4.20,0) GO 10 315 CF03 CF03 031 6(1 0 (311,312,313)AN CF03 CF03 033 311 50(12,312,313)AN CF03 CF03 034 311 50(12,121,213)AN CF03		CF05 020		3
CF69 031 If (Nu LE0.0) GO TO 315 CF03 CF0		CF03 030		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		CF05 031	IF(xw,EQ,0) 60 10 315 50 10 111 111 211 21	3
		CF03 034		CF 0.5 105

	5000000 50 TO 315 50 TO 315 50 TO 315 50 TO 315 50 TO 210 50	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	FUNCTION CANC REAL INTRP REAL INTRP DIMENSION X21C DIMENSION X21C DIMENSION X21C DIMENSION X21C DATA IN TAL DATA IN TAL DATA IN TAL DATA X170 DATA X170 DATA X170 DATA X10 DATA X10 DATA V10 DATA V10 DATA V10 DATA V10 DATA V10 DATA V10 DATA V10 DATA V10 DATA V10	FUNCTION CAN(NO3L, RNO3E, ANU3E) REAL THYRP DIRNASION X1(20) TAB1(20) DIRNASION X1(20) TAB1(20) DIRNASION X1(20) TAB2(20) DIRNASION X1, DUN, MAR CONMON AL, DUN, MAR DATA IN TAB1 FROM FIG. & MABA TH D-6996 DATA IN TAB2 FROM FIG. 7 MABA TH D-6996 DATA IN TAB10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	CF00 001 CF00 001 CF00 002 CF00 000 CF00 000 CF00 000 CF00 010 CF00 011 CF00 010 CF00 000 CF00 000 CF000 CF00 000 CF00 000 CF000
	UMETION CMMBB(NBMP) UMETION CMMBB(NBMP) MAD ROUTINE CALCULATER (CN/CM0)BB FOR THE CABE OF MAD ROUTINE CALCULATER (CN/CM0)BB FOR THE CABE HEBE VALUES ARE ALSO THORE FOR (CN/CM0)BB FOR THIS CABE HEDE VALUES ARE ALSO THORE WAS.X150),4(50),8(50),4(50), SCOMMON RL.X4(NUUN,4VAR,MUTH,400E,WAS.X150),4(50),4(50),4(50), SCOMMON RL.X4(NUUN,4VAR,MUTH,400E,WAS.X150),4(50),4(50),4(50), SCOMMON RL.X4(NUUN,4VAR,MUTH,400E,WAS.X150),4(50),4(50),4(50), SCOMMON RL.X4(NUUN,400E,WASE,LE,LELE,4LE,1LE,1LE,1LE,1LE,1LE,1LE SCOMMON RL.X4(NUUN,400E,MUSH),100,100E,100E,100E,100E,100E,100E,100E		DATA TAB2/15,15,564,1655,166 TATARCK,51,569,1655,166 TATARCK,51,515,64,01 TATARCK,51,1,50 TATARCK,51,1,50 TATARCK,51,1,50 TATARCK,51,1,50 TATARCK,50 TATARCK,50 TATARCK,50 TATARCK,50 TATARCK,50 TATARCK,50 TATARCK,51 TATAR	DATA TABETT, 51, 550, 1, 621, 1, 701, 1, 771, 1, 771, 1, 701,	
UUU	AR.MWING.MOBE.MX3.X(50).A(50).A(50).A(80). Out.16.XLE1.XTET.XTE.88PAN.ALE.BLE.RLE Out.10 Teb (cm/cm0)Newt for bodies of similar cross and without wing.		RETURN KETTONIAN MINNUM DRAG KETONIAN MINNUM DRAG CANDA 428 (X*1,663) 25,0 RETURN CANTAGE CANTAGE CANTAGE IT(FMACH-XZ(1)) 45,42,41 A1 (CM1AUC A2 (AMTAGE(1) A1 (CM1AUC A2 (AMTAGE(1) A1 (CM1AUC A2 (AMTAGE(1) A2 (AMTAGE(1) A3,42,41 A1 (CM1AUC A2 (AMTAGE(1) A3,42,41 A1 (CM1AUC A3,42,41 A1 (CM1AUC A1 (CM	RETURN Return Krestondbefrach/rl Krestondbefrach/rl Krestondbefrach/rl Krestan Return Controw Controw Controw Controw State (1) 45,42,41 Sterres Sterres Sterres Sterres Controw Controw Sterres Sterres Controw Sterres Stere	
1200	<pre>ALBD USED FOR THE VALUE OF (EN/CMO)NEMT FOR THE BARE GAME EO TD (1100.1200.1300.1400), NBHP EVANN ABAA(2)/B(2) Abaa(2)/B(2)/B(2) Abaa(2)/B(2)/B(2)/B(2)/B(2)/B(2)/B(2)/B(2)/B</pre>		RETURN 210 CEANDSE/SHOBE 210 CEANDSE/SHOBE 811 ANDR 110 CEANDSE/SHOBE 811 ANDR 110 CEANDSE/SHOBE 110	200 G0 T0 (210,20 ,30 .40), MOBE 210 C24MOBE (3MOBE E19BOBE (3MOBE E10BOBE (3MOBE E19BOBE (3MOBE E10BOBE (3MOBE E19BOBE (2000) (2000) (39500 (30500)) (2000) 400 2 (TAACHAFAACHASSE) (2000) (2000) (2000) (2000) 400 2 (TAACHAFAACHASSE) (2000) (2000) (2000) (2000) 400 2 (TAACHAFAACHASSE) (2000)	

FRUM FIGURE 3, NASA IN D=0996 (DUUBLE INTENP.)

UMAG COEFFICIENT FUR A FINITE LENGTA UNLA FINITE LENGTA UNLER - FIG, 4 NABA TA U-6946 - Andrelse Van Michause Kuse Pale Alfinate, XTG, Jacad, 16,0,0 M(50), Kuse Jale Alfinate, XTG, Jacad, 16,0 Lene, Rie Juliu)	 	9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6	CF08 CF08 CF08 CF08 CF08 CF08 CF08 CF08
FUNCTION ETA(FFAUN) MATTU UN ETA(FFAUN) TU THAT FUH AF IN CUMMUN /FLUN/DUP, 6 COMMUN HLANNARP', \$86(50),MR, 8005F, 8 014831, 41(10),14 054, 17107	DATA MABLO/AL/U/4 DATA MABLO/AL/240 BARP(XL/XU/YL/YU/X)= IMRP(XL/XU/YL/YU/X)= If(FMACM=1,) 20,10,10 Effets	атор (21,22,22,21), мамр Xarr./kuust Gu To (21,22,22,22), мамр Gu To (21,22,22) Gontawu Do 30 (21,21) Do 30 (21,21) Do 30 (21,21) Do 30 (21,21)	
		2 .	04 9 9 9

SUGRIWITAL SIMP(UAL,UXU,MIT,WILL,UTUL,FUN,UAMS) MITTAL MITTAL DefOL.UXL/J2 DSU-2FUV(DAL)+FUV(UXU) DSU-2FUV(DAL+PHUV(UXU) DSU-2FUV(DAL+PHUV(UXU) DSU-2FUV(DAL+PHUV(UXU) DSU-2FUV(DAL+PHUV(UXU) DOT 1 FIL,MIT DOT 1 FIL,MIT DOT 1 FILM DOT 2 MILMUN DEMARDONAS + FUV(DAL + DM+UK) DAMARDONAS + FUV(DAMARDONAS + FU	S CONTINUE Derraas(uans-dambi) Triugarie-le-leb) return	1 08UHZ808UHZ408UH3 11180 11180 11180 210
--	---	---

	GRANDS IN THE EQUATION Nee cases											
FUNCTION FUN(X)	THIS FUNCTION CALCULATES ALL THE INTEGRANDS IN THE EQUATION FOR CN AND FOR CM FOR THE VARYING-BNAPE CADES	COMMON /FF/MLAM/FSB/R/INDLK/INT Common Rdum/Xm	60 TU (1,4,1,4), [N] Fecnab(x)	60 TG (10,20,30,40), INT		GU TO (10,20.50,40), INT		_		F UNBF 47 4 X 4 X 4 X 4 X 4 X 4 X 4 X 4 X 4 X	RETURK	END
U		م	-		~		2	~	3			

IF (AMI-GEU-1, L-44AAWI)9,9,0 600-807166U-AAMI) 600-800-60 600-80-660 7 00 10 7 00 10 7 00 10 7 00 800 800 TEST UF ACCURALY COMPUTE INTEGRAL GFINE 3QHT (GEU) ARIBGEO+ARI Anew/ARI+AN AAWAN AAR]war] RETURY

• •

.....

•

000

-

ŝ 2 202 32 22 ŝ 3 Ξ 333 i Ē 555555 555 111 11 55 METHOD DEFINITION SUFFICIANC(A+BATAT)/(BORT((1+1=T)=(1+(CK+T)=2))=(1+T+1)) REBAINTERAL((A+BATAT)/(BORT((1+1=))=(1+(CK+T)=2))=(1+T+1)) REBAINTED VALUATION REALATION RE POBITIVE, TO -LIFENDATE BIRGATIVE. POBITIVE, TO -LIFENDATE BIRGATIVE. KKI ORTARD MITM A = 1, 8 = 1 CKI ORTARD MITM A = 1, 8 = CKACK WHENE CK 18 CKI ORTARD MITM A = 1, 8 = 0 CKI OBTARD MITM A = 0, 8 = 0 CKI OBTARD MITM A = 0, 8 = 0 CKI OBTARD MITM A = 0, 8 = 0 CKI OBTARD MITM A = 0, 8 = 0 CMMLETE ELLIPTIC INTEGRAL OF SECOND FUND IN THE USULL NOTATION. AND THE ARQUMENT K OF THESE FUNCTIONS MEANS THE MODULUS. FUR AK ■ +1,-1 THE REQULT VALUE 38 BET TO 1,E30 IP B 18 PoblitVe, TO =1,E30 IF B 18 MEGATIVE, 3 PURPUSE Cupputs the Generalized Cumplete Elliptic integral Securd Mind. REULT VALUE
REULT VALUE
RODULOS (INVUT)
CUNSTANT TERM IN NUMERATOR
PACTOR UP QUADRATIC TERM IN NUMERATOR
REULIANT ENROR CUDE NMERE
RENG NG ERNUR
IERBI AN NOT IN NAMEE =1 TO +1 SUBROUTINES AND FUNCTION SUBPROGRAMS REGUTATO None BUBRUUTINE CELZ(RES,AK,A,B,IER) CALL CEL2(RE8, AK, A, W, IER) DESCHIPTION OF PAHAMETERS BET REBULT VALUE = UVERFLOM SUBRUUTINE CELZ 660#1.•AK*AK If (660)1.2.4 TEST HODULUS IF (8) 3, 5, 4 RE8=1, E30 RETURN RE8=1, E30 RETURN RE1URM REMARKS 4 15 15 1 UBABE IER-1 RETURN IER.O

61

....

υυ

....

Π	Ţ						
	F			R	5	F	R
	xc			61	3	61	
	۲ وا						
	1 AP ⁵¹			12	19	14	14
	11 AR 41	*		8			
	²¹ AB	21 26		²¹ X(3)	¹¹ R(3)	²¹ A(3)	²¹ B(3)
); 1 card	.5) 1 ¹¹ XM	11 K INWING NOSE		, 5) 11 X(2)	0.5) NXS 11 R(2)	0.5) 11 11 12 12 12 12	1, NXS 11 B(2)
FORMAT (20A4); ¹ LHEAD	FORMAT (8F10.5) ¹ RL ¹¹	FORMAT (815) 11 NSHP NVAR INWING	FORMAT (15) ¹ NXS	FORMAT (8F10.5) X(I), I = 1, NXS X(1)	FORMAT (8F10.5) A(I), I = 1, NXS $\frac{1}{1}R(1)$	FORMAT (BF10.5) $\begin{array}{c} \mathbf{A}(\mathbf{I}), \mathbf{I} = 1, \mathbf{MXS} \\ \mathbf{A}(\mathbf{I}), \mathbf{A}(\mathbf{I}) \end{array}$	B(I), I = 1
ITEM 1	ITEM 2	ITEM 3	ITEM 4	ITEN 5	ITEM 6a (NSHP = 1)	ITTM 6b (NSHP = 2 Or 3)	

Figure 1.- Input format for CRSFLM program.

(a) Page 1.

62

				Ţ			T	
",				R			ц Н	
e1				19			⁶¹ FMACH	
8				S E E			^{si} RE	
14				* ¹ SSPAN			1 GAM	
	4.			T	.0.		CASF ⁴¹	Page 2.
ssg(3) ³¹	7 if NOSE =			8 if NWING = 0. XTET ³¹ XTE	9 if NWING =		DALF ³¹	(q)
.0.5)	5) Omit Item 7 if		BNOSE	5) Omit Item XLET ²¹	5) Omit Item 9	BLE	5) ALFF ²¹	
FORMAT (8F10.5) $\frac{1}{1}$ RK (8F10.5) $\frac{1}{1}$ SSQ(1), I = 1, $\frac{1}{1}$ SSQ(1)	FORMAT (2F10.5) ¹ SNOSE	I RNOSE	¹ ANOSE ¹¹	FORMAT (BF10.5) ¹ XLE ¹¹ X	FORMAT (8F10.5)	I ALE II	FORMAT (8F10.5) ¹ ALFI ¹¹ A	
ITEM 6c (NSHP = 4) (NSHP = 4)	ITEM 7	ITEM 7a (NSHP = 1)	ITEM 7b (NSHP = 2 or 3)		ITEM 9a	ITEM 9b (NSHP = 2 or 3)		

Figure 1.- Concluded.

Figure 2.- Algebraic notation defining configuration.

BODY NO. 2 FLATENUAL 14-13 347,32 15,24 SAMPLE CASE 1 NASA TN D=6996 FLAT-NOSE CYLINDER 15,24 30.48 11.40 11.40 3.81 Ó 1 1 2 0.0 30.48 1,905 1,905 0,0 125000. 0,0 180.0 10.0 1.4 2,86 NASA TN D-6996 BODY NU, 5 SAMPLE CASE 2 CONE-CYLINDER 20,96 11,40 390,74 23.66 41.91 11.40 137.90 3.81 1 1 0 1 3 0,0 11,43 41.91 0.0 1,905 1,905 11,43 1,905 180.0 10.0 0.0 1.4 125000, 0.0 2,86 SAMPLE CASE 3 NASA TN D=7228 WING+CONICAL BODY 1.5 ASPECT RATIU 25,18 25,18 36,96 36,96 237,95 310.22 18,88 25,18 1 1 1 1 2 0.0 25,18 Ù.O 3.43 25,18 3,43 0,0 25,18 25,18 25.18 9.45 ,359 0,0 90.0 0.0 0.0 1,4 2180000. 1.97 5.0 SAMPLE CASE 4 NASA TN D=7228 WING+ELLIPTICAL BODY , MAJOR AXIS HORIZONTAL 25,18 25,18 36,96 36,96 310.22 18.88 237.95 25,18 2 1 1 1 2 0.0 25,18 0.0 5,94 4.0 1,98 25,18 5,94 1.98 25,18 ,359 0,0 25,18 25,18 9,45 0,0 0,0 5. 0.0 1.4 2180000, 1.77 NASA TN U+7228 WING+ELLIPTICAL BODY , MAJOR AXI8 VERTICAL 36.96 36.96 237.95 310.22 18.88 25.1 ٥. 90, SAMPLE CASE 5 25,18 25,18 25,18 3 1 1 1 2 0.0 25,18 0.0 5.94 1,98 0.0 25,18 5,94 1.98 0.0 25,18 25,18 25,18 9,45 .359 0.0 0.0 0.0 90.0 5.0 0.0 1.4 2180000 1.97

Figure 3.- Sample input decks for CRSFLW program.

Figure 4.- Configurations used in sample cases for CRSFIW program.

25,18000 , EPSILON = SAMPLE CASE & NASA 1% U-1/28 %ING-ELLIPTICAL BUDY , MAJUR AXIS MUHIZUNTAL BODY INPUT DATA .00000 AND THAILING EDGE AT X . BODY SHAPE SIMILAR OVER LENGTH 3,42946 RADIUS AFT OF NUSE = AP = 237,95000 XR = 25,18000 WING IS PRESENT WITH LEADING EDGE AT X = 8(1) . 980 25.16000 36.96000 18.88000 ELLIPTICAL BUOY (NSHP = 2) Tabulation uf a and b x(1) a(1) FLUM CUMDITIONS Reynolds Number = ___21800E+07 000 5.940 CONICAL NOSE (NOSE = 1) NOSE LENGTH = 25.18000 X A X X A X N N N 25,1000 36,96000 310,22000 .000 25.180 ۲ ۲ ۲ ۲ ۳ ۲ ۲

н ---- ,35900

MACH NUMBER = 1.970

GAMMA # 1.400

Figure 5.- Output from CRSFLW program.

(a) Page 1.

NASA IN D-1228 WING-ELLIPIICAL BUDY , MAJOR AXIS HUHLZUNIAL 3 SAMPLE CASE

4,6050 1,9076 2,4140 1,818t=01 1,655t+00 5,570t=01 1,588t+00 5,9402 2,9930 1,9947 1,818E#01 1,956E#00 9,132E#01 1,705E+U0 7,7113 4,6648 1,6531 1,818E-01 2,188E+00 1,546E+00 2,063E+00 8,1262 5,8908 1,3795 1,818E=01 2,344E+00 1,784E+00 8,3499 7,1935 1,1607 1,518E=01 2,424E+00 2,061E+00 1,664E+00 8,3083 8,4803 ,9797 1,8185*01 2,4175+00 2,5475+00 1,5665+00 8.0739 9.7775 .0258 1.8186=01 2.3352+00 2.671E+00 1.518E+00 7,6163 11,0145 ,6915 1,818E-01 2,181E+00 3,011E+00 1,497E+00 6.8803 12.0349 5717 1.818E=01 1.962E+00 3.314E+U0 1.474E+00 5,9300 12,6142 4628 1,8186=01 1,6916+00 3,5806+00 1,4546+00 4,8226 13,5249 ,3619 1,818E=01 1,378E+00 3,800EE+00 1,4457E+00 3,6187 13,5557 ,2669 1.818E=01 1,059E+00 3,985E+00 1,424E+00 2,3783 14,5101 ,1760 1,818E=01 6,864E=01 4,115E=00 ,0038 12,6658 ,0003 1.8182=01 1.0965=05 4,2215+00 1.4085+00 3,2425 1,1070 2,9292 1,818E=01 1,2962+00 2,759E=01 1,3742+00 .9556 .2294 2.9017 1.818E=01 4.537E=01 2.471E=02 1.085E+00 1,8537 ,5698 3,2535 1,818L-01 8,910E-01 4,792L-02 5,301E-01 1 * 200E + 00 202 0000. 0. L/D CH2 .2467 CD CM1 .0000 1.818£ = 01 CA3 CL 16.5756 14,8234 15.4179 16,1645 .0 16,7859 .0 0000* 0* 12,6950 •0 13,5990 •0 14,3138 •0 14,9405 •0 15,0756 •0 15,2389 •0 15,5968 •0 15.7802 15,9692 .0 10,5001 •⁰ 12,898/ 13,9925 •0 14.7458 0 XAC CA2 12,0658 ,0000 4,2225 2,1916-03 1,2666+01 6,4916-02 -,0000 6,491£-02 10.0354 ,1656 4,1270 4.684E+00 5.351E+00 6,491E=02 11.0203 .1448 4.4814 4.837E+U0 6.183E+00 6.491E=02 11.6713 .1254 4.7636 4.830E+00 7.042E+00 6.491E-02 12.6798 .1020 5.0060 4.6666+00 8.0146+00 6.4916-02 13.3910 ,0812 5.1916 4,3586+00 9,0336+00 6,4916-02 13,8627 0617 5,2759 3,922E+00 9,941E+00 6,491E=02 14,1197 0441 5,2709 3,379E+00 1,074E+01 6,491E+02 14,1708 .0289 5,1846 2,7542+00 1,1425+01 6,4915-02 14,0304 ,0166 5,0235 2,0766+00 1,1956+01 6,4916-02 13,7178 .0075 4.8017 1.3726+00 1.2356+01 6.4916-02 13,2551 0019 4.5305 6,7156*01 1,2586+01 6,4916*02 3,4185 ,2302 1,5725 2,591E+00 8,276E=01 6,491E=02 4,9797 ,2179 2,2125 3,309E+00 1,671E+00 6,491E=02 9,0105 ,1851 3,7338 4,3726+00 4,6386+00 6,4916+02 1,781E+00 1,458E-01 6,491E-02 6,0485 .2027 2,8691 3,9092+00 2,740E+00 6.491E=02 9.0676-01 7.4136-02 6.4916-02 دم] دما ,2467 ,ú CN2 CN2 000n***-** ^* CN1 CN1 55,000 000* 60,000 65.000 70,000 000.41 80.000 85.000 90,000 35,000 40.000 45,000 50,000 5,000 10.000 15.000 20,000 25,000 30.000 ALPHA

Figure 5.- Concluded. Page 2.

(q

PART III - SUBSON COMPUTER PROGRAM

Introduction

This computer program predicts the static longitudinal aerodynamic characteristics of wing-body-tail combinations at subsonic speeds. It is an extension of the method of reference 2 to angles of attack for which symmetrical body vortices are shed from the nose of the configuration and leading-edge and side-edge separation vortices are shed from the wing and tail. The body is limited to circular cross-section shapes.

The program is written in FORTRAN IV for the IBM 360 series machines. No tapes, drums, or disks other than the standard input/output units are required. Minor changes are required to run the program on other machines such as the CDC 6600. Typical running time on the IBM 360/67 for a wingbody-tail configuration is the order of one to two minutes. Actual time is dependent on the type of vortex lattice used to represent the lifting surfaces and whether or not a trim condition is calculated. Some specific running times are noted in the discussion of the sample cases.

The following sections present a description of the program, a description of the input, a description of the output, a program listing, and sample cases. The algebraic notation used in this section is the same as that used in reference 1. A list of symbols from reference 1 is included for reference.

List of Symbols

A R	aspect ratio
a	local body radius
b	semispan
C _A	axial-force coefficient
c _{dc}	crossflow drag coefficient
c _{Di}	induced drag coefficient
CL	lift coefficient, $\frac{L}{qS}$
c _m	pitching-moment coefficient, $\frac{M}{qS \ell}$

c _N	normal-force coefficient, $\frac{N}{qS}$
с	local chord
c _l	section-lift coefficient
с _s	section leading-edge suction coefficient
к *	vortex-lift ratio, figure 4
L	lift force
l	reference length
M	pitching moment about center of moments, or free-stream Mach number
N	normal force
đ	free-stream dynamic pressure
r	body radius
r _N	radius of base of nose
S	reference area
-	
u,v,w	perturbation velocities along x,y,z directions, respectively
-	perturbation velocities along x,y,z directions, respectively free-stream velocity
u,v,w	
u,v,w V	free-stream velocity
u, v, w V x, y, z	free-stream velocity configuration coordinates with origin at body nose, figure 2
u,v,w V x,y,z x _m	free-stream velocity configuration coordinates with origin at body nose, figure 2 x location of center of moments
u,v,w V x,y,z x _m x _s	<pre>free-stream velocity configuration coordinates with origin at body nose, figure 2 x location of center of moments x position for onset of separation from body nose</pre>
u,v,w V x,y,z x _m x _s x	<pre>free-stream velocity configuration coordinates with origin at body nose, figure 2 x location of center of moments x position for onset of separation from body nose center-of-pressure location</pre>
u, v, w V x, y, z x _m x _s \overline{x} z _m	<pre>free-stream velocity configuration coordinates with origin at body nose, figure 2 x location of center of moments x position for onset of separation from body nose center-of-pressure location z location of center of moments</pre>
u, v, w v x, y, z x_m x_s \overline{x} \overline{x} z_m α	<pre>free-stream velocity configuration coordinates with origin at body nose, figure 2 x location of center of moments x position for onset of separation from body nose center-of-pressure location z location of center of moments body angle of attack</pre>
u,v,w V x,y,z x _m x _s \overline{x} \overline{x} z_m α	free-stream velocity configuration coordinates with origin at body nose, figure 2 x location of center of moments x position for onset of separation from body nose center-of-pressure location z location of center of moments body angle of attack $\sqrt{1 - M^2}$ right body-vortex strength, positive counterclockwise when
u, v, w V x, y, z xm x_s \overline{x} \overline{x} z_m α β Γ_B	free-stream velocity configuration coordinates with origin at body nose, figure 2 x location of center of moments x position for onset of separation from body nose center-of-pressure location z location of center of moments body angle of attack $\sqrt{1 - M^2}$ right body-vortex strength, positive counterclockwise when viewed from rear of configuration

	lifting-surface deflection angle, positive trailing edge down	L
δ	nose angle, degrees	
$\theta_{\mathbf{N}}$	nose angre, degrees	
Λ	sweep angle	
ρ	density	
σ	complex vortex position, y + iz	
φ	dihedral angle	
	Subscripts	
A	afterbody	
avg	average	
В	body	
в(Т)	body in presence of tail	
B (W)	body in presence of wing	
с	canard	
CP	center of pressure	
e	tail or empennage	
HL	hinge line	
LE	leading edge	
N	nose	
P	potential	
root	root chord	
SE	side edge	
Т(В)	tail in presence of body	
TE	trailing edge	
t	trailing vortex	
tip	tip chord	
v	vortex	
W(B)	wing in presence of body	
w	wing	_
		7

Description of Method

A brief description of the method is presented herein. The user should consult reference 1 for a complete description and details of the theoretical approach.

An axisymmetric nose at some moderate angle of attack sheds a symmetric pair of body vortices. These shed body vortices, whose strength and position are determined from data correlations, are tracked downstream past the wing using slender-body techniques in the crossflow plane. The vortex-induced velocities are computed at the wing control points and combined with the Beskin upwash induced by the body to obtain the total upwash induced on each wing panel. This, added to the free-stream contribution, results in a total local incidence angle distribution over the wing.

The lifting surfaces (wing and horizontal tail or canard) are modeled by a vortex-lattice scheme (ref. 8) which has the capability to include velocity fields from external sources. The total upwash at the control points must be cancelled by the wing-circulation-induced velocity to satisfy the tangency boundary condition of the vortex-lattice method. The wing loading and trailing-vortex strength and position are obtained from this vortex-lattice calculation. The distribution of leading-edge suction and side-edge suction (if present) and their associated vortex positions and strengths are also obtained from the vortex-lattice calculations. The leading-edge separation vortex lift is obtained from the suction distribution with the help of the Polhamus vortex-lift analogy (ref. 9) and correlation curves.

The trajectories of the body vortices, the wing trailing vortex, and the wing leading-edge separation vortices are computed downstream past the afterbody and horizontal tail. These trajectories are computed in the crossflow plane considering mutual interference between the vortices and interference from their images in the body. The induced velocity field at the tail is computed, and the tail loading is obtained in a manner similar to that just described for the wing. The forces on the body due to the presence of the wing and tail are computed by the method of reference 2. The free vortex-induced forces on the body are computed using the method of Sacks (ref. 10).

The forces and moments on the entire configuration are obtained by summing the contributions of the various components. These forces are resolved into normal and axial force (excluding frictional drag), and lift and induced drag.

The subsonic prediction method includes an option to compute the trim conditions of a wing-body-tail configuration at some specified angle of attack. This is carried out by an iterative process in which the incidence of the tail or wing (canard) is varied until a zero pitching moment is achieved.

Description of Program

The SUBSON computer program consists of a main program and fifteen subroutines. The main program (SBO1) accepts all the input, prints most of the output, and generally directs the flow of the calculation. The subroutines or groups of subroutines provide specific services to the main program during the calculation procedure. The following is a list of the subroutines and their general purpose.

Subroutine LATTUS sets up the horseshoe vortex-lattice arrangement for the lifting surfaces. It locates the coordinates of the control points, calculates the influence coefficient matrix, and computes any geometry-related parameters connected with the lifting surfaces.

Subroutine SHAPE does a table look-up for the body radius and slope and local lifting-surface semispan at any prescribed axial station.

Subroutine BDYVTX uses tables derived from data correlations to look up the strength and position of the pair of symmetric vortices shed from the body nose.

Subroutine CNVNZ computes the nose vortex-induced normal force and pitching moment on the nose of the body using the method of reference 10.

Subroutine TRJTRY computes the trajectories of the free vortices past the configuration using the subroutines FCT, OUTP, HPCG, and SHAPE.

Subroutine FCT computes the derivatives in the equations of motion for each free vortex.

Subroutine HPCG is a predictor-corrector integration package which uses a Runge-Kutta starting procedure.

Subroutine OUTP stores the vortex positions in a table at specified intervals in x. When necessary, some diagnostic information on the vortex trajectories is available as optional output.

Subroutine EXTVEL computes the vortex-induced velocity at wing or tail control points.

Subroutine VTXLAT computes the strengths of the bound vortices on the lifting surface. It also computes the leading-edge suction distribution, the strength and spanwise position of the associated separation vortex, and the strength and position of the trailing vortex. This subroutine calls subroutines LOAD1 and INVERS.

Subroutine LOADI uses the circulation distribution from the previous subroutine to compute the span-loading distribution and the forces and center of pressure on the lifting surface.

Subroutine INVERS solves a system of linear simultaneous equations for the circulation strengths.

Subroutine INFWW computes the influence function for a horseshoe vortex.

Subroutine ZVTX determines the vertical position of the leading-edge separation vortex using a table look-up of correlated data for delta wings.

Subroutine CNVTX computes the vortex-induced force and center of pressure on the afterbody using the method of reference 10.

Description of Input

<u>Variable definitions.</u>- The format of the input cards for the SUBSON program is shown in figure 1. In this figure the program variable name is shown as well as the card columns in which the value is punched and the format in which it is punched. The following is a table of the input variables along with the algebraic symbol where applicable. The input length and area quantities are dimensional and should have consistent dimensions. The variable is defined and its limits shown where necessary. The algebraic notation used in defining the configuration is shown in figure 2. A discussion of the preparation of the input is presented in the section following the table.

Item 1NHEADNumber of heading cards.NTBLNumber of entries in table of body coordinates. $5 \leq NTBL \leq (96 - MSWW - MSWT)$ NPRINTOutput option: NPRINT < 0 Minimum output, final aero dynamic characteristics only. = 0 Standard output.	
NTBLNumber of entries in table of body coordinates. $5 \leq NTBL \leq (96 - MSWW - MSWT)$ NPRINTOutput option: NPRINT < 0 Minimum output, final aero- dynamic characteristics only.	
$\begin{array}{c} \text{coordinates.} \\ 5 \leq \text{NTBL} \leq (96 - \text{MSWW} - \text{MSWT}) \\ \\ \text{NPRINT} & \text{Output option:} \\ \text{NPRINT} < 0 & \text{Minimum output, final aero-} \\ & \text{dynamic characteristics} \\ & \text{only.} \end{array}$	
NPRINT $\overline{\langle}$ 0 Minimum output, final aero dynamic characteristics only.	
= 10 Optional additional output	S
MPRINT Output option in trajectory calculation MPRINT = 0 No additional output. > 0 Output vortex trajectories as calculated. (This opt should be used as diagnost only if program has prema- turely terminated execution during a previous trajectories calculation.)	ies option nostic ema- ution
NOSEV NOSEV = 0 No nose separation vortex pair.	ex
= 1 Nose separation vortex pai: included.	pair
NTRIM NTRIM = 0 No trim calculation. > 0 Trim condition calculation as follows. = 1 Wing incidence variable.	•
= 2 Tail incidence variable.	•
NCWW Number of chordwise vortices on wing. $2 \leq$ NCWW ≤ 10	•
MSWW Number of spanwise vortices on wing. $2 \leq MSWW \leq 25$	
<u>NOTE</u> : (NCWW \times MSWW) \leq 100.	
NCAMW = 0 No wing camberline slopes be input.	es to
= 1 Camberline slope at each w control points to be input	
NPSIW NPSIW = 0 Unbroken wing leading edge and trailing edge.	dge
> 0 Input leading- and trailing edge sweep angles at each specified spanwise station	ach

1100101	GEBRAIC DTATION	DEFINITION
NSEPW		Number of leading-edge separation vortices shed from wing. 1 \leq NSEPW \leq 2
NCWT		Number of chordwise vortices on tail. 2 \leq NCWT \leq 10
MSWT		Number of spanwise vortices on tail. 2 \leq MSWT \leq 25
<u>NOTE</u> : (NCWT \times MSW	T) <u><</u> 100.	
NCAMT		NCAMT = 0 No tail camberline slopes to be input. > 0 Camberline slopes at tail control points to be input.
NPSIT		NPSIT = 0 Straight tail leading edge and trailing edge. > 0 Input leading- and trailing- edge sweep angles at each specified tail spanwise station.
NSEPT		Number of leading-edge separation vortices shed from tail. 1 \leq NSEPT \leq 2
NBODY		<pre>Index controlling body upwash. NBODY < 0 No body upwash included in wing and tail interference calculation. = 0 Body upwash included.</pre>
Item 2		
TITLE		[*] Any alphabetic or numeric identification information. Number of cards equal to NHEAD.
<u>Item 3</u>		
XBDY (J)		x-station at which body coordinates are defined.
RBDY (J)		Body radius at above stations.
Item 4		
ХМ	× _m	x-coordinate of moment center.
ZM	zm	z-coordinate of moment center.
EMACH	М	Mach number.

PROGRAM NOTATION	ALGEBRAIC NOTATION	DEFINITION
REFS	S	Reference area.
REFL	l	Reference length.
THETAN	$\theta_{\mathbf{N}}$	Nose angle, degrees.
DXOUT		x-increment in output table of free vortex trajectories (DXOUT \leq RAVGW), typically.
DXI		Maximum integration interval for vortex trajectory calculation. (DXI \leq DXOUT)
Item 5		
XLEW	\mathbf{x}_{LE} w	x-coordinate of wing leading-edge inter- section with body.
XTEW	× _{TE} w	x-coordinate of wing trailing-edge inter- section with body.
XHLW	$\mathbf{x}_{\mathbf{HL}}$ w	x-coordinate of wing hinge line at wing- body juncture.
ZHLW	^z _{HL} w	z-coordinate of wing hinge line at wing- body juncture.
XCPW	× _{CP} w	x-coordinate of alternate wing center of pressure location.
BS2W	b/2	Wing semispan.
RAVGW	^r avg _w	Average body radius at wing.
YSEPW		Spanwise location of 2 nd leading-edge separation vortex. If NSEPW = 1, YSEPW = b/2.
Item 6		
PHIW	ϕ	Dihedral angle of wing, positive tip up, degrees.
PSILEW(1)	^LEw	Leading-edge sweep angle at first wing station adjacent to body, degrees. Sweepback is positive.
PSITEW(1)	${}^{\Lambda}\mathbf{TE}_{\mathbf{W}}$	Trailing-edge sweep angle at first wing station adjacent to body, degrees. Sweepforward is negative.

PROGRAM NOTATION	ALGEBRAIC NOTATION	DEFINITION
CMTEST		Tolerance for C_m in trim calculation if NTRIM \neq 0, CMTEST > 0.0.
<u>Item 7</u>		
ХM	У	y-coordinate of outboard side of lifting- surface panels on wing. Last value must equal b/2. MSWW values must be input.
Item 8		Delete if NPSIW = 0.
PSILEW	$^{\Lambda}$ LE _w	Leading-edge sweep angle corresponding to values of y in Item 7, degrees. MSWW values must be input.
Item 9		Delete if NPSIW = 0.
PSITEW	^_ _{TE} w	Trailing-edge sweep angle corresponding to values of y in Item 7, degrees. MSWW values must be input.
Item 10		
ALPHLW(J)	aw.	Tangent of local angle on wing due to camber and twist. (Values are input from leading edge to trailing edge, from root to tip.) MSWW × NCWW values are required.
<u>Item 11</u>		
XLET	^x LE _e	x-coordinate of tail leading-edge inter- section with body.
XTET	× _{TE} e	x-coordinate of tail trailing-edge inter- section with body.
XHLT	× _{HL} e	x-coordinate of tail hinge line.
ZHLT	^z _{HL} e	z-coordinate of tail hinge line.
XCPT	^x CP _e	x-coordinate of alternate tail center of pressure location.
BS2T	b/2	Semispan of tail.
RAVGT	ravge	Average body radius at tail.
YSEPT		Spanwise location of second leading-edge separation vortex. If NSEPT = 1, YSEPT = b/2.

PROGRAM NOTATION	ALGEBRAIC NOTATION	DEFINITION
<u>Item 12</u>		
PHIT	^ф е	Tail dihedral angle, degrees.
PSILET(1)	^ _{LEe ^_{TE}e}	Leading-edge sweep angle of tail at first station adjacent to body, degrees.
PSITET(1)	${}^{\Lambda}{}_{\mathbf{TE}}{}_{\mathbf{e}}$	Trailing-edge sweep angle of tail at first station adjacent to body, degrees.
<u>Item 13</u>		
YT	У	y-coordinate of outboard side of lifting- surface panels on tail. Last value must equal b/2.
Item 14		Delete if MPSIT = 0.
PSIL ET (J)		Leading-edge sweep angle corresponding to values of y in Item 13, degrees.
<u>Item 15</u>		Delete if MPSIT = 0.
PSITET (J)		Trailing-edge sweep angle corresponding to values of y in Item 13, degrees.
Item 16		
Alpht (J)	^a e	Tangent of local angle on tail due to camber and twist. (Values are input from leading edge to trailing edge, from root to tip.) MSWT × NCWT values are required.
<u>Item 17</u>		
NDEX		Index controlling next case of input. NDEX = 1 Execute program using variables on this card. = 0 Ignore this card and return to beginning for new case.
ALPHAD	α	Angle of attack of configuration, degrees.
ALPIW	δ _w	Incidence angle of wing relative to body axis, degrees.
AKVLWI	K* VLEw	Fraction of leading-edge suction converted to lift in inboard wing region. (0 $\leq K_{VLE}^{*} \leq 1.0$)

PROGRAM NOTATION	ALGEBRAIC NOTATION	DEFINITION
akvlw2	κ* ^v LE _w	Fraction of leading-edge suction converted to lift in outboard wing region. (0 $\leq \kappa_{v_{LE}} \leq 1.0$)
AKVSW	^K * ^V SE _w	Fraction of side-edge suction converted to lift on wing. (0 \leq K $_{ m VSE}^{\star}$ \leq 1.0)
ALPIT	^δ e	Incidence angle of tail relative to body axis, degrees.
AKVLTl	к* ^v LE _e	Fraction of leading-edge suction converted to lift in inboard tail region. (0 $\leq \kappa_{v_{\rm LE}}^* \leq 1.0$)
AKVLT2	κ [*] ^v LE _e	Fraction of leading-edge suction converted to lift in outboard tail region. ($0 \leq \kappa_{v_{LE}} \leq 1.0$)
AKVST	к* ^V SE _e	Fraction of side-edge suction converted to lift on tail. (0 \leq K_{VSE}^{*} \leq 1.0)
WLIMIT	w/V max	Limit on vortex-induced velocities at wing and tail control points. (0 \leq WLIMIT \leq 1.0)

<u>Input preparation.</u>- A discussion of the input variables is presented in this section as an aid in the preparation of the input data deck. If a configuration has one set of lifting surfaces, this is denoted the wing regardless of its axial location on the body and data describing this lifting surface are input as wing data. If there are two lifting surfaces, the set nearest the nose is the wing and the aft set is the tail. For example, in a canard-body-wing configuration, the canard data are input as wing data and the wing data are input as tail data. In the following discussion, necessary geometric relations are illustrated in figure 2.

Item number 1 of the input data deck (fig. 1) is a card containing indices specifying particular program options. NHEAD indicates the number of identification cards following in Item 2. NTBL is the number of entries in the table describing the body shape. Note again that only circular cross-sectional bodies are permitted. NPRINT is an index which determines the quantity of output obtained from the program. Typically, this number is zero. For diagnostic purposes, a provision for detailed output information on lattice slopes, induced velocities, and circulation strengths is provided with NPRINT = 10. An abbreviated output summary is obtained by setting NPRINT = -1. Examples of the output variatons are described further in the sample case output. MPRINT is a special index controlling the quantity of output obtained during vortex trajectory calculations. Typically, MPRINT = 0, but if it is greater than zero, the trajectory information is printed as it is computed. The additional trajectory information is useful only if the program fails to compute a trajectory for some particular case, and the additional output may give some clue as to why the calculation failed. This option should only be used after a computational problem has been discovered.

The index NOSEV specifies whether or not there is (NOSEV = 1) or is not (NOSEV = 0) a symmetrical pair of vortices shed from the nose of the configuration. If the nose angle (THETAN) is less than or equal to four degrees, NOSEV is automatically set equal to zero. The next index, NTRIM, determines whether or not a trim calculation is made. No trim calculation is made when NTRIM = 0, and when NTRIM > 0, a trim condition is calculated. If NTRIM = 1, the wing incidence is varied to achieve trim and if NTRIM = 2, the tail incidence is varied.

The following five indices are associated with the wing. NCWW is the number of chordwise rows in the wing lattice. The only quantitative restrictions is that $2 \leq$ NCWW ≤ 10 . MSWW is the number of spanwise columns in the wing lattice, and it must fall within the range $2 \leq$ MSWW \leq 25. The total number of wing panels (NCWW imes MSWW) must be less than or equal to 100. Some guidance in choosing a proper lattice arrangement for various shape wings is provided in reference 8. NCAMW specifies if wing camberline slopes are nonzero and must be input (NCAMW = 1) or are zero and need not be input (NCAMW = 0). The index NPSIW identifies straight leading edges and trailing edges (NPSIW = 0) which requires input of only one value for leading-edge and trailing-edge sweep angles, or broken leading and trailing edges (NPSIW = 1) which require input of the sweep angles at each spanwise station on the wing. NSEPW specifies the number of leading-edge separation vortices shed from the wing, and it must be either 1 or 2. If NSEPW = 2, a special value of YSEPW is required in Item 5.

The provision for multiple separation vortices is included to handle wings with breaks in leading-edge sweep. It has been observed that

leading-edge separation vortices are shed from the wing regions inboard and outboard of the break. A maximum of two leading-edge separation vortices are allowed.

The next five indices in Item 1, NCWT, MSWT, NCAMT, NPSIT, and NSEPT are tail indices analogous to the previous five wing indices and subject to exactly the same restrictions. If no tail is present, all five must be zero.

The last index in Item 1, NBODY, determines whether or not the upwash field around the body is included (NBODY ≥ 0) in the wing and tail interference calculation or not included (NBODY < 0). This index is used to aid in determining the magnitude of the body-interference effect and generally should be set equal to zero.

Item 2 is a group of NHEAD cards containing identification information which is printed at the beginning of the output.

Item 3 is a group of NTBL cards describing the body shape. Each card contains an x-station, XBDY, and the corresponding body radius, RBDY. The cards should be in ascending order in x and there should be less than 100 cards in this item. The program internally sets up its own table of coordinates which is stored in the XBDY and RBDY arrays and is limited to 100 entries. A good rule of thumb to follow in inputting Item 3 is the following.

NTBL < (96 - MSWW - MSWT)

Some care is required when describing the body shape via XBDY and RBDY. Linear interpolation is used throughout; therefore, where the body shape is changing rapidly, more points are required. There should be a minimum of five entries in the nose region ahead of the wing and there must be entries at x-stations identically equal to XWLE and XWTE, and XTLE and XTTE if a tail is present. The last entry in the table must be greater than XWTE or XTTE, whichever is greater, by an amount not less than DXI. If the body is made up of a nose section followed by a cylindrical afterbody, there should be two points on the cylinder very close together near the beginning of the cylinder. Points on a cylinder can be spaced large distances apart, but if the cylinder is followed by a section with changing radius, the last two points on the cylinder should be close together.

Item 4 consists of a single card containing XM and ZM, the coordinates of the center of moments, EMACH, the free-stream Mach number (0 \leq EMACH < 1.0), and the reference area and reference length, REFS and REFL, respectively. THETAN is the nose semiapex angle in degrees (see fig. 2). The final two variables are associated with the free vortex trajectory calculations. DXOUT is the approximate increment in x at which trajectory coordinates are stored for use in induced velocity calculations. A lower limit for this variable is about 0.5 percent of the overall length of the body because of storage limitations. Typically, a reasonable value for DXOUT is about one half the maximum radius of the body. DXI is the initial integration interval for the trajectory calculations. The integration package will cut the interval in half if necessary for reasonable accuracy, and this halving process can occur ten times before the program automatically terminates execution with an appropriate message. If DXI is made too large, the program will stop because of unacceptable accuracy, and if DXI is made too small, the running time will become large. Experience has indicated that a value of DXI between 2 and 5 percent of the body length will work for most cases. Under rare circumstances when two vortices get very close together or when a vortex gets very near the wing or body, a smaller value of DXI may be required.

Item 5 contains geometric information for the wing. XLEW is the distance from the nose of the body to the intersection of the wing leading edge with the body. XTEW is the location of the trailing-edge intersection with the body. The wing hinge line at the wing-body juncture is located by the next two variables, XHLW and ZHLW. If an experimental center of pressure location is to be used for moment calculations, XCPW must contain the appropriate value. Otherwise, the program computes a center of pressure and XCPW must be identically zero. BS2W is the wing semispan measured from the centerline of the body. RAVGW is the average body radius in the vicinity of the wing. YSEPW is the y-station at which the wing is assumed broken for purposes of having two leading-edge separation vortices. If NSEPW = 1, then YSEPW must be equal to BS2W. If NSEPW = 2, YSEPW must be given some value greater than RAVGW and less than BS2W and the chosen value should coincide with one of the breaks in the lattice layout. That is, YSEPW will be equal to one of the values of YW to be described in Item 7. It is advised that there be at least three values of YW on either side of YSEPW to achieve reasonable accuracy in the separation vortex strength and position calculation.

Wing parameters are contined in Item 6. The first variable PHIW, is the dihedral angle in degrees for the entire wing. No breaks in dihedral are permitted. The second variable, PSIWLE(1), is the sweep angle, in degrees, of the leading edge at the wing-body juncture. If the leading edge has no breaks in sweep (NPSIW = 0), this value is the only sweep angle associated with the leading edge. PSITEW(1) is the sweep angle, in degrees, of the trailing edge at the wing-body juncture. If there are no breaks in sweep, it must be the trailing-edge sweep angle. Remember that a swept forward trailing edge has a negative sweep angle. The last variable in this item, CMTEST, is the convergence tolerance on pitching moment for a trim calculation (NTRIM > 0). A typical value for this quantity is about 1 percent of the magnitude of the untrimmed pitching moment. If it is made too small, the computer time required to converge to a trimmed solution can be very large.

Item 7 is a list of the spanwise locations, YW, of the outboard side of each column of vortices. These quantities are dimensional spanwise distances measured from the body centerline. There are MSWW values input. The last value must be equal to the wing semispan, BS2W. These spanwise columns forming the wing lattice need not be equally spaced, but for convenience in preparing input, it is quite acceptable to use an equal spacing along the wing.

Items 8 and 9 are optional and are included in the input deck only if there are breaks in sweep of the wing leading and trailing edges (NPSIW > 0) Item 8 includes the leading-edge sweep angle, in degrees, of each column of vortices from the wing-body juncture to the tip. If the wing sweep angle is continuously changing as in an ogee wing, the sweep angle at the center of each column of the lattice should be used.

Item 9 contains the wing trailing-edge sweep angle corresponding to the leading-edge angles in Item 8. If the trailing edge is unbroken and has constant sweep, the values must still be input even though they are all the same.

Item 10 is also optional and is included only if the wing is cambered or twisted (NCAMW > 0). If such is the case, ALPHLW, the tangent of the local camber angle α_{ℓ} of each element of the lattice is input. There are MSWW cards corresponding to the number of spanwise columns forming the lattice, one card for each column. The camber angles on each card

run from leading edge to trailing edge with NCWW values per card. If there are more than eight chordwise rows, the ninth and tenth values follow on the next card. The ALPHLW value for the most forward area element in each column must start on a new card.

Values of ALPHLW are obtained as follows. Consider the sketch in figure 3 which shows the cambered and twisted section of the lifting surface at some spanwise station. At point P, corresponding to a control point on the wing mean surface, a tangent to the wing mean surface is constructed, which makes an angle α_{ℓ} with the wing root chord. The positive sense of α_{ℓ} is shown in this figure. The input value required is ALPHLW = tan α_{ℓ} . Near the leading edge of the section shown in figure 3, α_{ℓ} is negative. Item 10 completes the input description of the wing.

If a tail or aft lifting surface is not present on the configuration (MSWT = 0), the next portion of input is Item 17 which specifies angle of attack and other nongeometric-related parameters. If a tail is present (MSWT > 1), Items 11 through 16 are required input. These items specifying the tail geometry are analogous to the equivalent wing parameters in Items 5 through 10 and the rules and restrictions regarding preparation of tail input are the same as those described above for the wing.

Item 17 is a group of cards, one card for each run, which specifies the variables which are considered changeable for a given geometric configuration. The first entry on the card is the index, NDEX, which is simply used to control the stacking of additional cases. NDEX = 1 on each card represents a new angle of attack or incidence angle condition. If NDEX = 0, the card is ignored and the program returns to read in a new case beginning with Item 1. Thus, a blank card is used to separate different cases. When NDEX \neq 0, the next value on the card is the configuration angle of attack in degrees, ALPHAD, taken as the angle between the axis of the body and the free-stream velocity. The second quantity is the incidence angle of the wing root chord in degrees, ALPIW. Its sense is such that a positive incidence is a leading edge up condition. The next three variables are the $K_{\mathbf{v}}^{\star}$ factors which relate the actual realized vortex lift from the leading and side edges to that which is theoretically available. AKVLW1 is the fraction of leading-edge separation vortex lift which is obtained on the inboard portion of the wing if NSEPW = 2 or on the entire wing if NSEPW = 1. AKVLWl is a number between

zero and one and is generally geometry dependent. Its value can be obtained for sharp-edged delta wings from the correlation curves in figure 4. The source of figure 4 is described in detail in reference 1. The correlation curve can be used to get AKVLWl for any swept wing, but since figure 4 was obtained for sharp-edged delta wings specifically, some judgement is necessary when other wings are considered. Instead of using the actual wing aspect ratio for nondelta wings, it is possible that some equivalent aspect ratio given by the delta wing expression

$$\mathbf{A}\mathbf{R} = \frac{4}{\tan\Lambda_{\rm LE}} \tag{1}$$

would give a more reliable value. The factor is included as an input variable so that its effect can easily be examined by making a series of runs with AKVLW1 varied between zero and one.

If a wing is broken into two leading-edge vortex regions (NSEPW = 2), then AKVLW2 is the K_{VLE}^* factor which applies to the outboard portion of the wing. It is acceptable for AKVLW1 and AKVLW2 to be equal. In the case of wings with breaks in sweep, the appropriate values can be obtained from figure 4 using an effective aspect ratio in each region as calculated by equation (1). At the present stage in the development of program SUBSON, there is no reliable method of choosing the correct K_{VLE}^* factor. Many more data comparisons for double-delta wings or variable sweep wings should be made for this purpose.

For unswept leading edges, the vortex lift from the leading edge is usually small. In this case, the full amount of vortex lift should be retained and both AKVLW1 and AKVLW2 should be unity. For a wing with nonzero tip chord, the side-edge suction lift is generally very small compared to the potential lift except for very low-aspect-ratio wings. Comparisons with rectangular wing data indicate that the side-edge factor, AKVSW, should be unity at all times. When the tip chord is zero, such as on a delta wing, AKVSW should be identically zero.

The next four variables, ALPIT, AKVLT1, AKVLT2, and AKVST are the corresponding tail parameters. They fall under the same rules and guidelines set up for the respective wing parameters. If no tail is present, all four values should be set equal to zero.

The final quantity on this card is WLIMIT, the maximum allowable vortex-induced velocity nondimensionalized by free-stream velocity. The purpose of this variable is to limit the magnitude of the vortex-induced velocities on the wing or tail. In the course of program development, a canard-wing-body configuration developed a lift curve which appeared to exhibit a discontinuity around $\alpha = 8^{\circ}$. Close investigation showed that this occurred when the canard trailing-vortex trajectory abruptly changed from passing beneath the wing to passing over the wing. At this point, the vortex-induced velocities changed character rapidly and, because of the close proximity of the vortex to the wing, the velocities were large. This created very large local angles of attack on the wing, and the vortexlattice scheme predicted large changes in wing loading. This, of course, is an unrealistic situation because a true viscous vortex does not behave as a potential vortex and induce infinite velocities at its center. For this reason a limit was introduced which arbitrarily sets any vortexinduced velocity greater than WLIMIT, equal to WLIMIT.

Generally, WLIMIT should be set equal to 1.0. If, in the process of running the program, unusual variations in the lift or pitching moment with angle of attack occur which can be attributed to unrealistic vortexinduced interference, WLIMIT can be used to limit the magnitude of the large induced velocities causing the problem. A value of WLIMIT = 0.1 has been used in some specific examples to reduce the apparent discontinuity in the predicted lift and moment curves and resulted in good agreement with experiment.

This discussion is not meant to suggest that an arbitrary velocity limit will cure the problems with the near flow fields of potential vortices. It is simply included to note that a simple, approximate fix is available. If WLIMIT = 0.0, the effect of the free vortices on the lifting surfaces is completely eliminated.

The above discussion includes all the input required for a typical run. The sample cases in the following section cover the options available in the program.

<u>Sample cases.</u>- Some sample cases are now presented to illustrate the preparation of input decks for various types of configurations. The airplane

configurations chosen for these examples are the canard-wing-body combinations of reference 6 shown in figure 5 and the wing-body-tail configuration from reference 11 shown in figure 6.

In figure 7(a), the complete input deck for a canard-wing-body configuration is shown for sample case 1. The geometry corresponds to the sketch in figure 5 and this sample case considers the presence of both lifting surfaces. This series runs is for four angles of attack ($\alpha = 4^{\circ}$, 8° , 12° , and 16°) with no canard deflection ($\delta_{w} = 0^{\circ}$) and five angles of attack ($\alpha = 0^{\circ}$, 4° , 8° , 12° , and 16°) with positive canard deflection ($\delta_{w} = 10^{\circ}$). Sample case 1 requires approximately 720 seconds on the IBM 360/67 computer; however, this time is much less than would be required if each run were made individually. A single run of this type requires approximately 100 seconds.

The input deck for the second sample case is shown in figure 7(b). This deck is for the same configuration examined in the case above, but with the canard removed. In this case, the leading- and trailing-edge sweep angles are input at each spanwise station to illustrate the procedure for a wing with breaks in sweep.

Sample case 3 is the wing-body-tail combination shown in figure 6. This input deck specifies a minimum amount of output and a trim calculation with the tail incidence variable. Only one angle of attack is specified because of the uncertainty in the amount of time required to converge on a trimmed solution. This particular run requires approximately 100 seconds on the IBM 360/67. Note that the vortex-induced velocity is limited to 0.1 by the variable WLIMIT on the last card. This was necessary because of the large effect the wing shed vorticity had on the tail loading. The relative position between the trailing vortices and the tail was such that small changes in tail angle resulted in large nonlinear changes in tail loading which prevented convergence on a trim condition.

Description of Output

The output produced by the SUBSON computer program for sample case 1 is shown in figure 8. The first page of output from the program, figure 8(a is a tabulation of the input data in Items 1 and 2 of figure 1. The next page of output, figure 8(b), is a summary of the geometry of the configuration by component. The first quantities at the top of the page are the

first angle of attack to be considered, the Mach number, and beta. The next two items are the reference area and the reference length from Item 4 of figure 1. If the wing and /or tail have alternate center-of-pressure locations input in Items 5 and 11 of figure 1, these are printed here. If a trim calculation is requested (NTRIM > 0), the value of CMTEST specified in Item 6 of figure 1 is printed here. These are followed by the geometry of the wing.

The wing quantities which are tabulated are:

OUTPUT NOTATION	ALGEBRAIC NOTATION
XLE	× _{LE} root
XTE	× _{TE} root
B/2	b/2
XHL	× _{HL}
ZHL	z _{HL}
C (ROOT)	croot
C(TIP)	ctip
Y(SEP)	YSEPW (Item 5)

The following block of data contains the wing dihedral angle in degrees and the leading-edge and trailing-edge sweep angles at the various ystations. The first entry denoted Y(RT) represents the wing-body juncture and the corresponding initial sweep angles of the wing leading and trailing edges. The following entries under the heading Y(WING) represent the ystations defining the spanwise lattice layout on the wing. The sweep angles at these stations are noted in the next two columns.

The same quantities are tabulated for the tail surface if one is present. The following quantities are listed for the body.

OUTPUT NOTATION	ALGEBRAIC NOTATION
THETA	$ heta_{ m N}$ (Item 4)
FINENESS	x_{LE_W}/r_N
R(BASE)	r _N
AVERAGE RADIUS WING	r _{avgw}
AVERAGE RADIUS TAIL	r _{avge}
CENTER OF MOMENTS X	×m
CENTER OF MOMENTS Z	^z m
DXI	∆×) Itom 4
DXOUT	- Item 4
x	x
R	r
S	s or s w e
DR/DX	dr/dx

This concludes the general geometric description of the configuration. This information is output once at the beginning of each case. The following output is dependent on the information input on each card of Item 17; that is, the angle of attack, incidence angles, K_y^* factors, and induced velocity limit.

Figure 8(c) is the first page of output for each run within the series of runs making up sample case 1. The first line summarizes the information input in Item 17 as follows:

OUTPUT NOTATION	ALGEBRAIC NOTATION
ALPHA	α
М	Μ

OUTPUT <u>NOTATION</u>	ALGEBRAIC NOTATION
INCIDENCE WING	δ _w
INCIDENCE TAIL	^گ е
WING KVLE*	K [★] ^V LE _W
WING KVSE*	^{K*} vsew
TAIL KVLE*	κ* v _{LE} e
TAIL KVSE*	к* ^v SE _e
W/V LIMIT	(w/V) max

The next block of output on this page is a summary of the strength and position of the right-hand vortex (if present) of the symmetrical pair of vortices shed from the nose of the body. The last entry, XS/RB, is the body-vortex separation location.

OUTPUT NOTATION	ALGEBRAIC NOTATION
GAM/2*PI*V*RB	$\frac{\Gamma_{\rm B}}{2\pi {\rm Vr}_{\rm N}}$
Y/RB	y _B /r _N
Z/RB	z _B /r _N
XS/RB	× _s /r _N

The following block of output is the induced Beskin upwash at the wing control points (x,y,z) due to the presence of the body. The induced velocities, V/V(INF) and W/V(INF), expressed as a fraction of the free-stream velocity, are positive in the positive y- and z-directions, respectively. A summary of the nose-vortex position at the wing leading edge follows. The next block of data are the velocities induced at the same

wing control points by the vortex pair shed from the nose of the body. These velocities have the same positive sense as the body-induced upwash above. The final block of data in figure 8(c) is the total induced velocity at each control point.

The next page of output, figure 8(d), contains the results from the lifting-surface calculations for the wing in a wing-alone coordinate system. Under FLOW CONDITIONS, the angle of attack is the incompressible angle of attack of the wing, including incidence. The next printed information is the lattice layout followed by the heading REFERENCE QUANTITIES. Under this heading, the actual exposed planform area of the wing and the average chord are listed. The aerodynamic coefficients on this page are based on these reference quantities.

The following block of information contains wing geometry for the wing alone. If the Mach number is nonzero, the geometry is for the wing in the incompressible plane.

The last half of this page contains the predicted aerodynamic characteristics of the wing in the presence of the body and other external interference velocity fields. Most of these quantities are self-explanatory and will not be described herein. It should be noted that in the coordinate system for the wing alone, x_w is measured from the leading edge of the root chord, positive forward. The same positive direction is taken for all x_w direction coefficients. A few of the more important coefficients are defined as follows:

OUTPUT <u>NOTATION</u>	ALGEBRAIC NOTATION
CNP	C _N W(B),p
CNV	$^{\rm C}{}_{\rm W(B)}$, $^{\rm v}{}_{\rm LE}$
CNVS	° _{N₩(B),v_{SE}}
CL*C/(2*B)	$\frac{cc_{\ell}}{2b}$
CSUC*C/(2*B)	$\frac{cc_s}{2b}$

OUTPUT NOTATION	ALGEBRAIC NOTATION
KVLE	^K vle
KVSE	K _v se
GAM/V2PI	$\frac{\Gamma}{2\pi V}$

The last line of figure 8(d) contains the predicted leading-edge and side-edge vortex-lift constants, K_{VLE} and K_{VSE} , respectively. Since these values include effects of external interference on the wing, they are useful only in cases of wings alone with no interference effects included. The last two items are the lateral position and strength of the trailing vortex and the leading-edge separation vortex at the wing trailing edge.

Figure 8(e) is headed by a summary of the strengths and positions of the vortices shed from the configuration ahead of the wing trailing edge. The pairs of vortices are listed in the following order. Vortex 1 is the right-side body vortex shed from the nose. Vortex 2 is the trailing vortex shed from the wing. Vortex 3 is the leading-edge separation vortex shed from the wing. If more than one separation vortex is requested, vortex 3 is the vortex associated with the inboard region and vortex 4 is shed from the outboard region. If a vortex is missing for any reason, all following vortices are moved up in the table. For example, if no vortices are shed by the nose, vortex 1 becomes the trailing vortex shed by the wing, and so on. The remainder of figure 8(e) is the induced velocities at the tail control points. These velocities are analogous to the induced velocities on the wing shown in figure 8(c).

Figure 8(f) contains calculated results for the tail surface. All the quantities on this page are analogous to those described for the wing in figure 8(d). The last entry on this figure is a summary of the strengths and positions of all the vortices in the field just aft of the tail trailing edge. The first group of vortices are the same as described in connection with figure 8(e). The second group of vortices are defined as follows. Vortex 4 is the trailing vortex corresponding to the potential lift on the tail. Vortex 5 is the leading-edge separation vortex shed from the tail. If multiple vortices are shed from the tail leading edge, this

vortex would be shed from the inboard tail region and vortex 6 would be shed from the outboard tail region.

The next page of output, figure 8(g), is a summary page of the force coefficients, pitching-moment coefficients, and centers of pressure of each component of the configuration and of the total configuration. The coefficients for the individual components are described in Table I. The total configuration variables are defined as follows:

OUTPUT NOTATION	ALGEBRAIC NOTATION
CN	$C_{N} = \frac{N}{qS}$
	м

СМ	$C_m = \frac{M}{qS\ell}$	

 $x_{CP} = x_{m} - \frac{C_{m}}{C_{N}} \ell$

CL	$C_{L} = \frac{L}{qS}$

 $CDI \qquad C_{D_i} = C_{L_i} \tan \alpha$

CA

CDI/CL**2 C_{D_i}/C_L^2

The last page of output for this run, figure 8(h), contains a summary of the trajectories of the shed vortices. At the top of the page the vortices are identified and their strengths listed. This is followed by blocks of output, one block for each x-station, describing the local crossflow geometry of the configuration and the position of the right-side vortices. The x stations of each block of results are approximately DXOUT apart. Notice that the trajectory calculation starts at the wing leading edge with a pair of body vortices. As the calculation moves downstream, other vortices are shed and added to the calculation. The trajectory calculation is carried downstream to a point aft of the tail trailing edge. For purposes of saving space in figure 8, only selected portions of the trajectory calculation is presented herein. The variables in each block are defined as follows:

 $C_A = \frac{A}{qS}$

OUTPUT NOTATION	ALGEBRAIC NOTATION
х	x
DX	$\Delta \mathbf{x}$
А	a
S	s _w or s _e
RO	r _o , transformed circle radius
DA/DX	da/dx
SIGMA (REAL)	Ŷ
SIGMA (IMAG)	z

This completes the output for one card in Item 17 of the input deck. Additional runs will repeat the output of figures 8(c) through (h). The above set of output obtained with NPRINT = 0 is a considerable amount of output for production runs; therefore, an optional set of output can be obtained by setting NPRINT = -1. In this case, the complete output consists of figures 8(a), (b), and (g), with some shed vortex positions and strengths added.

Some extra output over and above that shown in figure 8 can be obtained when NPRINT = 10. This additional output is useful only for diagnostic purposes and is not described herein. This output is labeled and the user should have no trouble interpreting the results.

Program Listing

The SUBSON computer program consists of the main program and fifteen subroutine subprograms. Each source deck is identified in columns 73 through 80 by a four-character identification and a three-digit number sequencing the cards within that deck. The program listing is given on the following pages. The table below will act as a table of contents for the listing.

PROGRAM	IDENTIFICATION	PAGE NO.
MAIN	SB01	97
LATTUS	SB02	104

PROGRAM	IDENTIFICATION	PAGE NO.
SHAPE	SB03	104
BDYVTX	SB04	105
CNVNZ	SB05	105
TRJTRY	SB06	105
FCT	SB07	106
HPCG	SB08	106
OUTP	SB09	108
EXTVEL	SB10	109
VTXLAT	SB11	109
LOADI	SB12	110
INVERS	SB13	113
INFWW	SB14	113
ZVIX	SB15	114
CNVTX	SB16	114

019	100	190		1	990	3	53	290	5	600	10	201	10	107	35			53	33	12.	12	12	25	25	1	23	12	25	1	212	3	13	34		22		12	4		53		11	<u>.</u>	1.	-	
100	109	108	286.)»5X4HH146.»44H111./7X1H14.9414.945494.545494.24745494.247494.2474949494 745. FORMAT//5X15044484.244444.44444.94549444.545494444.945494444494944444444		101	101		101		109		100	09		1015	101	100	1095	109	10		55	108	100	10			109	10	108	104	109	108		109	101	109	100	1	109	0	109	1048	1096	101	3601
2112	87 8 7	CHAS CHAS		• •		ц.			7 40			***	5	2 2 2 2 3	4 0 30	• •	FHUM CSHO	37 89	60 el	nova	0 80 9	0 10	a) 41			40) 47.		40) H				0 40	භා		10 er		9 60	67 Q		**			40 z			
, BAZMIL		1417				I HAD				1	5		i EC 1	1111			FRC		134	T.N																										
うっちょく						10,01			_ ~	1.15		2	1	101			ATEC	~	, a a .	191																										
Š		Ne v					-			ind c		2	A H	1 to			1-1-	ŝ	4.415	E									ļ																	
7 (+1)		110	0.20			7.4	1770	5	-	11413		~ ~ ~	ITES	111			3	E RR(51 N - 2	2								14.1																		
		86 - 74.5	1 S X S		Q N J		-	1141	5	16.0		Ď, 7	ELOC	BPEC.			EKRO	ABLE	NOSE	NCA.								7.4.7	00																	
1, 2 X R		i i i	110			PHA		-	58	1.15		LNE	50 <	AT.			101	0 1	INT.	T N N									£ 9.7 .				•													
יושיט אשר טואר	3	202				12HAL			TAH	5.5			DD DN DN D	11.0			1180	. 80	HPH.	1								LINT.					****													
	47×9	1418	2H12		14. 1	2		- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	1	PE12		9×11	TEA	VELI			Ĩ.	1 0	NING	01824-140074-140424-140424-14024-14024-14024-14024-1402-1402								RADELGO.//3.1415920 Read (5.701) Rmead.4751.KPRint.MPRint.WCRFV.KT014.Kfm	S d N				2													
34669 ANGLE/18249 58,00100,53	1	2.27	30 20 20	2	:			33	33	1.1		E12.	VUN	UCED		5.	N,	1104	91 . N	82 . #								Pein	CAPT				NTRIM.66.2)													
j,				10	LUENC		6	52	2	1		2017	1	ING.	2	F10	100	xtcu	TO.NT	19.44								PL.N				ļ	-141.													
4.0		5			INC		Ĭ		i	VEL OC		3.51	Ĭ	101	r	/ 10X, XF 10		5:	NHE	LANK,	ŝ							50°.41	Ĩ				ç													
UHHAI (8241 1 MSAEEP /15x, 05		100	A N N	24710				8118	0×, 3	Xeer	8	1011	4484	HACX	6.2,	10.5	X 63	HOH I	108	ž	.0.1.0.							NHE	Ū.				ONV. O	Xun				• •	¥							
1121				10/22	(10E)	SILS	51.4		~	(135×			(//SX	ŝ	1.2.1	45×F	1	N N	1 /CA		× (0.						5926		NBEP	RINT	26			i		•••			A N	••	_ ^		•••			
			PXC.	1 SXH			TAN		I.			Ī					Į.		AMELIBT		i i	NT ING I		AL240.0 WMX=100	2		PI03.1415926			ONTINUE PRNTENPRINT	1mITIALIZE			5008			5		5	76(J)=0°0 26(J)=0°0	100	-	CNNV 80.0	10.10		11 12
5		1 AGE	382	1545			, rok		5	55		55	5	5	14 / 44) 750 FORMAT (12,46.2,968.4)		Đ.	15	MAN	-	E YE	Ē	10	22	A N N		-	REAU	2		INI			8	vel(1)=0*0	191	1			202		i.		22		
15	13	5	7 65		55		1.54	100					7.6	2	150	122	796		5									10		•								30.08			•					
																			-	-												-														
- 9	<u>.</u>	<u>.</u>			• -		•*		•	• •		- N				• •		- 01	22	<u>.</u>	125		9 7	2 1		<u>.</u>	101			- 11			• •	•	2 9			4 v					N M		n .e :	- 0
	500 10 10 007											-							-	-	10			01 042 01 843				01 044 01 049			01 053			950 10		01 001		01 004 01 005					01 072 01 073			
3401 5401		109 8		1046	1086	1095	1045	1046	1078	1085			1085			3601 028 3601 029			110 1020 110 1020	-				5801 042 3801 843						3801 051 8801 052	8001 023 8001 054	1045,	8801 050 8801 057	1098		5801 061 2801 062				3801 081 380 1085					1095	1098
		109 8		1046	1086	1095	1045	1046	1078	1085			1085							-				_						, 3801 1080	1098	X = , 3801		1098	1098 //	1016									1095	1098
3001 200/5 3401		109 8		1046	1086	1095	1045	1046	1078	1085			1085						1026 .	1028				_						, 3801 1080	1018	AT X = , 3801		1098	1098 //	1016			1012	2601					1095	1098
3001 200/5 3401		109 8		1046	1086	1095	1045	1046	1078	1085			1085						1026 .	1028				_						, 3801 1080	1018	[110N AT X = , \$801	5002 5001	1090 · stilling	CTTLLERIS // 8801 (246A) 3801	1096 1095	1098	5601 8601	2401	1//) 2R01	3801 8601			2801		1098
3001 200/5 3401		109 8		1046	1086	1095	1045	1046	1078	1085			1085						1026 .	1028				_						, 3801 1080	1018	[110N AT X = , \$801	5002 5001	1090 · stilling	CTTLLERIS // 8801 (246A) 3801	1096 1095	1098	5601 8601	2801	1//) 2R01	3801 8601			2801		1098
1005 3/007 \$001 1005		109 8		1046	1086	1095	1095	1046	1078	1085			1085			1020			1026 .	1028				_						, 3801 1080	1018	[110N AT X = , \$801	5002 5002	1090 · stilling	CTTLLERIS // 8801 (246A) 3801	1096 1095	1098	5601 8601	2801	1//) 2R01	3801 8601			2801		1098
3001 200/5 3401		109 8		1046	1086	1095	1045	1046	1078	1085			1085						500P ,XCOPLE ,XCOP4E , 3601	1038 4182			1086	1028			SX18MREFERENCE AREA = 801	, F 9 . 5) Pia . 4 % antach . 4 % 4 % 46 ° 4 / 20% . 460 1		1029 · JIX · FXIXE · FXIXE · F029		[110N AT X = , \$801	5002 5001	1090 · stilling	CTTLLERIS // 8801 (246A) 3801	1096 1095	1098	5601 8601	2401	1//) 2R01	3801 8601			2801		1098
1005 3/007 \$001 1005		109 8		1046	1086	1095	1095	1046	1078	1085			1085						500P ,XCOPLE ,XCOP4E , 3601	1038 4182			1086	1028			SX18MREFERENCE AREA = 801	, F 4 . 5) Pia . 4 % antach . 4 % 4 % 46 ° 4 / 20% . 460 1		1029 · JIX · FXIXE · FXIXE · F029		[110N AT X = , \$801	5002 5001	1090 · stilling	CTTLLERIS // 8801 (246A) 3801	1096 1095	1098	5601 8601	2401	1//) 2R01	3801 8601			2801		1098
1005 3/007 \$001 1005		109 8		1046	1086	1095	1095	1046	1078	1085			1085						500P ,XCOPLE ,XCOP4E , 3601	1038 4182			1086	1028			SX18MREFERENCE AREA = 801	, F 4 . 5) Pia . 4 % antach . 4 % 4 % 46 ° 4 / 20% . 460 1		1029 · JIX · FXIXE · FXIXE · F029		[110N AT X = , \$801	5002 5001	1090 · stilling	CTTLLERIS // 8801 (246A) 3801	1096 1095	1098	5601 8601	2801	1//) 2R01	3801 8601			2801		1098
		109 8		1046	1086	1095	1095	1046	1078	1085			1085						500P ,XCOPLE ,XCOP4E , 3601	1038 4182			1086	1028			SX18MREFERENCE AREA = 801	, F 4 . 5) Pia . 4 % antach . 4 % 4 % 46 ° 4 / 20% . 460 1		1029 · JIX · FXIXE · FXIXE · F029		[110N AT X = , \$801	5002 5002	1090 · stilling	CTTLLERIS // 8801 (246A) 3801	1096 1095	1098	5601 8601	2401	1//) 2R01	3801 8601			2801		1098
	1025 1025	109 8		1046	1086	1095	1045	1046	1078	1085			1085						500P ,XCOPLE ,XCOP4E , 3601	1038 4182			1086	1028			SX18MREFERENCE AREA = 801	, F 9 . 5) Pia . 4 % antach . 4 % 4 % 46 ° 4 / 20% . 460 1		1029 · JIX · FXIXE · FXIXE · F029		[110N AT X = , \$801	5002 5001	1090 · stilling	CTTLLERIS // 8801 (246A) 3801	1096 1095	1098	5601 8601	2401	1//) 2R01	3801 8601			2801		1098
	1025 1025	109 8		1046	1086	1095	1045	1046	1078	1085			1085						500P ,XCOPLE ,XCOP4E , 3601	1038 4182			1086	1028			SX18MREFERENCE AREA = 801	, F 9 . 5) Pia . 4 % antach . 4 % 4 % 46 ° 4 / 20% . 460 1		1029 · JIX · FXIXE · FXIXE · F029		[110N AT X = , \$801	5002 5001	1090 · stilling	CTTLLERIS // 8801 (246A) 3801	1096 1095	1098	5601 8601	2801	1//) 2R01	3801 8601			2801		1098
	1025 1025	109 8		1046	1086	1095	1045	1046	1078	1085			1085						500P ,XCOPLE ,XCOP4E , 3601	1038 4182			1086	1028			SX18MREFERENCE AREA = 801	, F 9 . 5) Pia . 4 % antach . 4 % 4 % 46 ° 4 / 20% . 460 1		1029 · JIX · FXIXE · FXIXE · F029		[110N AT X = , \$801	5002 5001	1090 · stilling	CTTLLERIS // 8801 (246A) 3801	1096 1095	1098	5601 8601	2401	1//) 2R01	3801 8601			2801		1098
	1040	109 8		1046	1086	1095	1045	1046	1078	1085			1085						500P ,XCOPLE ,XCOP4E , 3601	1038 4182			1086	1028			SX18MREFERENCE AREA = 801	, F 9 . 5) Pia . 4 % antach . 4 % 4 % 46 ° 4 / 20% . 460 1		1029 · JIX · FXIXE · FXIXE · F029		[110N AT X = , \$801	5002 5001	1090 · stilling	CTTLLERIS // 8801 (246A) 3801	1096 1095	1098	5601 8601	2401	1//) 2R01	3801 8601			2801		1098
	1040	109 8		1046	1086	1095	1045	1046	1078	1085			1085						500P ,XCOPLE ,XCOP4E , 3601	1038 4182			1086	1028			SX18MREFERENCE AREA = 801	, F 9 . 5) Pia . 4 % antach . 4 % 4 % 46 ° 4 / 20% . 460 1		1029 · JIX · FXIXE · FXIXE · F029		[110N AT X = , \$801	5002 5001	1090 · stilling	CTTLLERIS // 8801 (246A) 3801	1096 1095	1098	5601 8601	2401	1//) 2R01	3801 8601			2801		1098
1045 3/007 \$001 1045	,vP.SI644.E.t. 3401	109 8		1046	1086	1095	1045	1046	1078	1085			1085						500P ,XCOPLE ,XCOP4E , 3601	1038 4182	1986 1985		1086	1028			SX18MREFERENCE AREA = 801	, F 4 . 5) Pia . 4 % antach . 4 % 4 % 46 ° 4 / 20% . 460 1		1029 · JIX · FXIXE · FXIXE · F029		[110N AT X = , \$801	5002 5001	1090 · stilling	CTTLLERIS // 8801 (246A) 3801	1096 1095	1098	5601 8601	2801	1//) 2R01	3801 8601			2801		1098
	COTFLEX GF, YP, SILETA, EYE	3601 01mE4310m 717Lt (2v),6am(4),56(4),26(4),71(3),6am1(2) 3861		1046	1086	1095	1095	1046	1078	1085			1085		COMMUN /TRAUL/ NI.KF.UXI/ITL.MPRNT				500P ,XCOPLE ,XCOP4E , 3601	1038 4182			1086	1028			SX18MREFERENCE AREA = 801	, F 4 . 5) Pia . 4 % antach . 4 % 4 % 46 ° 4 / 20% . 460 1		, 3801 1080		[110N AT X = , \$801	5002 5001	1090 · stilling	CTTLLERIS // 8801 (246A) 3801	1096 1095	1098	5601 8601	2401	1//) 2R01	3801 8601			2801		1098

		157	
Sub1 101 Sub1 101 Sub1 101 Sub1 100 Sub1 100 Sub1 100 Sub1 100 S	0.08	158	
SHOL 161 SHOL 164 SHOL 164 SHOL 164 SHOL 164 SHOL 164 SHOL 164 SHOL 164 SHOL 164 SHOL 164 SHOL 171 SHOL 171 SHOL 174 SHOL 270 SHOL 271 SHOL 2	7 80.0 V180.0		
BUOL 100 BUOL 200 BUOL 200 BUOL 201	0 ° 0 # 0 7	101	
AVG: 104 Stort 105 Stort 107 Stort 208 Stort 208 S	19 80.0 14 80.0	163	
Average and the second	0.0107	164	
Archy 125 Archy 127 Archy 127 Arch 127		201 1	
And and a second		167	
And File and			
Avdf Avd Trist State 200 200 171 200 171 200 177 200 177 200 177 200 177 200 177 200 177 200 177 200 177 200 177 200 177 200 177 200 177 200 177 200 177 200 170 170 177 200 170 170 170 170 170 170 170 170 170 1		170	ANGLEB DUE TU CAMBER AND THIRT Thermords
AvGe, vac and vac 200 Revol 177 8001 177 8001 177 8001 177 8001 177 8001 177 8001 177 8001 185 8001 205 8001 210 8001 225 8001 226 8001 200 8001 200 8001 200 80		1/1	
174 8801 174 8801 177 8801 177 8801 177 8801 177 8801 177 8801 177 8801 177 8801 181 8801 181 8801 181 8801 187 8801 187 8801 197 8801 197 8801 201 8801 201 8801 201 8801 201 8801 201 8801 201 8801 201 8801 201 8801 201 8801 201 8801 201 8801 201 8801 201 8801 201 8801 201 8801 201 8801 201 8801 201 8801 201 8801 211 8801 211 8801 211 8801 211 8801 211 8801 211 <			IF (NCAMT_E4,0) 60 10 20
Arch, 75 Arch, 76 Arch, 76 Arch, 76 Arch, 76 Arch, 77 Arch, 127 Arch, 77 Arch, 77 Arch, 127 Arch, 77 Arch, 77 Arch, 77 Arch, 127 Arch, 77 Arch, 77 Arch, 127 Arch, 77 Arch, 77 Ar	0.0		
UT, DYI 9801 177 9801 178 9801 180 9801 181 9801 181 9801 181 9801 181 9801 181 9801 181 9801 181 9801 181 9801 181 9801 181 9801 181 9801 181 9801 181 9801 181 9801 181 9801 181 9801 201 9801 201 9801 201 9801 201 9801 201 9801 201 9801 201 9801 201 9801 201 9801 201 9801 201 9801 211 9801 211 9801 201 9801 212 9801 214 9801 214 9801 214 9801 214 9801 214 9801 214 9801 <td></td> <td>176</td> <td>1 2 1 2 4 2 2 2 4 2 2 2 2 2 2 2 2 2 2 2</td>		176	1 2 1 2 4 2 2 2 4 2 2 2 2 2 2 2 2 2 2 2
0011170 178 0011170 1801116 0011161 181 0011161 201 0011161 201 0011161 201 0011161 201 0011161 201 0011161 201 0011161 201 0011161 201 0011161 201 0011161 201 0011161 201 0011161 201 0011161 201 0011161 <td></td> <td>11</td> <td>2 20 20 (0,104) (2 2 2 1 (1),06 2 2 2 2) 2 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2</td>		11	2 20 20 (0,104) (2 2 2 1 (1),06 2 2 2 2) 2 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
Ards R And Frist Store 200 RAVGe, V8E PM, 5801 201 Read 185 8801 185 8801 185 8801 185 8801 185 8801 186 8801 189 8801 199 8801 199 8801 201 8801 201 8801 201 8801 201 8801 201 8801 211 8801 211 8801 211 144X) 144X		1 176	
Aven 252 Beol 161 Beol 165 Beol 165 Beol 165 Beol 166 Beol 166 Beol 166 Beol 166 Beol 199 Beol 199 Beol 199 Beol 201 Beol 201 Beol 201 Beol 201 Beol 201 Beol 201 Beol 210 Beol 210 Beol 216 Beol 226 Beol 2			READ (5,750) ROEX.ALPIAD.ALPIA.AKVLA1.ARVLA2.AKV34.
And Tripped and the second and and and and and and and and and a	0.08 %		alpitatobit(). Defmacméthacm) stratobit(). Defmacméthacm)
Autor 200 Autor 200			
AvGr, VSE Ph., 500 200 200 200 200 200 200 200 200 200	0,01100		LAY OUT WING VURTEX LATTICE GEUMETRY
AVGR, VSE PM, 98001 109 8001 109 8001 109 8001 109 8001 109 8001 109 8001 109 8001 109 8001 109 8001 201 8001 201 8001 200 8001 200 8001 210 8001 210 8001 210 8001 210 8001 210 8001 210 8001 210 8001 220 8001 200 8001 200 8001 200 8001 200 8001 200 8001 200 8	9 * 0 * 0 * 0	5	
And Friday (1997) (1998) (1998) (1998) (1999			ARAY(1, 1) PP8164 1)
ANGR, 785 P. 200 200 200 200 200 200 200 200 200 20			APAY(2,1)=P\$17E#(1)
AvGe, Y8E M, 100 200 200 200 200 200 200 200 200 200	91 Y 80,0	189	DD EE JHEATTAA Abay[1.j]mpsileu(j]
AVGR, VSE PM, 9801 201 201 201 201 201 201 201 201 201 2		0.0	()) EDG116.() EDG146.()
AND TAILS SHOT 200 2001 199 2001 199 2001 199 2001 199 2001 200 201 200 202 202 203 202 203 202 203 202 203 202 204 201 204 212 204 214 204 2			2 X Z (C) Z X Z (C) Z X Z X Z X Z X Z X Z X Z X X Z X X Z X
ANGR, '95 9901 195 9901 195 9901 195 9901 195 9901 195 9901 195 9801 195 9801 195 9801 195 9801 201 201 201 201 201 201 201 201 201 2	0 * 0 = 84.82	1	JF (EMACH.LL.0.0) 60 TO 241 Commectaniaria
AVGr, DYI, DYI 201 197 201 197 201 197 201 199 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 212 201 212 201 212 201 222 201 222 201 221 201 222 201 222 201 221 201 222 201 221 201 221 201 221 201 222 201 222 201 221 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 20			DO 21 151, IMAX
AVGR, V8E PN, 98001 197 8001 197 8001 208 8001 208 8001 208 8001 208 8001 208 8001 208 8001 208 8001 208 8001 218 1002 218 1002 218 1002 218 1002 218 1001 218 1001 228 8001 218 8001 228 8001 230 8001 230 8001 230 8			POILER(1)84147(148(P01LER(1)/840)/8614)8420
AVGR, VSE PF, 9801 201 200 200 200 200 200 200 200 200 2			JF (NGAMA 66.0) 60 TO 221
401 201 201 201 201 201 201 201 201 201 2	6.150°0 1140°0		DO 121 Jm1, Mm
AND TAISE AND TAISE SHOT 202 SHOT 203 SHOT 204 SHOT 204 SHOT 204 SHOT 204 SHOT 204 SHOT 204 SHOT 214 SHOT 214 SHOT 214 SHOT 214 SHOT 224 SHOT 2	FI	002	I ALTRUITSAALTAUTISTOLIA 1. Continue
4001 203 8001 204 8001 204 8001 206 8001 209 8001 209 8001 208 8001 211 8001 211 8001 214 144X) 144X) 144X) 144X) 8001 219 8001 219 8001 221 8001 221 8001 228 8001 228	HRITE (D.G.ARVI) Arite(d.703)	202	ALPHANBO.0
AVGR, VEEP, 9801 200 801 200 9801 200 9801 200 9801 200 9801 200 9801 212 9801 212 144X) 144X) 144X) 144X) 144X) 144X) 144X) 144X 144X		203	「そくてんごく、こくスケットのでは、アスペッシューンパッシューンのションの「オイン」の「「アメーシー」の「「「「」」」で、「オレース」、「オレース」、「ストーン」、「ストーン」、「ストース」、「「ストース」、「「」」、「ストース」、「「」、「ストース」、「「」、「ストース」、「「」、「ストース」、「」、「ストース」、「「」、「ストース」、「」、「ストース」、「」、「ストース」、「」、「ストース」、「」、「ストース」、「」、「ストース」、「」、「ストース」、「」、「ストース」、「」、「ストース」、「
AVGR, V8E PN, 9801 207 8401 207 8401 207 9401 209 9401 210 9401 212 9401 214 144x) 144x) 144x) 9401 224 4406 7 7137 9401 224 9401 224	DQ 11 Jalenkead Bear fr. 700) Title	502	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
AVGR, YEEF, 9801 207 AVGR, YEEF, 9801 200 AVGR, YEEF, 9801 200 ANGR, 9801 211 B001 212 B001 214 B001 216 B001 216 B001 226 B001 226 B000 226 B000 226 B000 226 B000 226 B000 200 B000 2000000000	ITE (6,702) TITLE	206) PLX5.PLX5.PLX5.PLX5.PLX5.PLX5.PLX5.PLX5.
CUT,DXI CUT,DXI RAVGR, 'BEFN, 5801 210 8001 211 9001 213 9001 214 144X) 5801 217 144X) 5801 217 144X 3801 224 3801 228 3801 238 3801 238 3801 238 3801 238 3801 238 3801 23	12 Jels/246. 12 je tost testing service	207	
RAVGR, Y8E PF, 9801 210 8401 211 9401 211 9401 213 9401 213 9401 214 144X) 9401 214 144X) 9401 224 9401 224	KU (5,704) XAVI(J)XNOVIU) KD (5,704) Xm,2m,Emacm,Hefs,Refl,Thetan,DxOut,DxI	209	IF (DX1,67,1,04=03) 60 TO 541
AMX) MAX) M	AT (5. TOL) XLES.XTES.XTLS.ZLLS.XCPE . BORE AAVGS.YBEPS.	210	DX180.0146788
AND TAIST 2001 220 1 MAX) 1 MAX 1 MAX) 1 MAX 1 MAX) 1 MAX 1 MAX) 1 MAX 1 MAX) 1 MAX 1 MAX) 1 MAX 1	LOBITION(T)THING(T)THICTORE	112	1 1. 10×00-st-s2×4 2×00-s2×4
TMAK) 3801 214 C MRIF(6,70)3LPMACHAETA 3801 216 TF CMLMT1.L000 MRIF(6,703)LPMACHAETA 3801 216 TF CMLMT1.L000 MRIF(6,703)LPMACHAETA 3801 219 TF CMLMT1.L000 MRIF(6,704)SEAREL 3801 219 TF CMLMT1.L000 MRIF(6,704)SEAREL 3801 219 TF CMLMT1.L000 MRIF(6,714)SEAREL 3801 229 TF CKCPAGT0.00 MRIF(6,714)SOAREA 3801 220 TF CKCPAGT0.00 MRIF(6,714)SOAREA 3801 221 TF CKCPAGT0.00 MRIF(6,714)SOAREA 3801 222 MRIF(6,714)SOAREA MRIF(6,714)SOAREA MRIF(6,714)SOAREA 3801 223 MRIF(6,714)SOAREA MRIF(6,714)SOAREA MRIF(6,714)SOAREA 3801 224 MRIF(6,714)SOAREA MRIF(6,714)SOAREA MRIF(1) 3801 224 DUMARAGE DUMARAGE MRAY(1,1)SAAR(1,1)SAAR(1,1)SAARAGE 3801 224 MRIF(6,714)SOAREA MRAY(1,1)SAARA(1,		213	OUTPUT HING CHAMACTEMISTICS
(P31LEn(1),122,1MAX) B001 210 TT (LINTTLE,0,0) HRIT (G,740) LLMTT0,0 (P31LEn(1),122,1MAX) B001 219 TT (LINTTLE,0,0) HRIT (G,740) LLMTT0,0 (P31LEn(1),122,1MAX) B001 219 TT (G,740,0) HRIT (G,740) HRIT (G,740) HRIT (G,740) B001 219 TT (G,700) HRIT (G,710) HRIT (G,730) HRIT (214	
(PSILEn(1),1=2,1MAX) BU01 217 FF (n.[MIT[1,1],0,0) M.[MIT[1,0,0] (PSILEn(1),1=2,1MAX) BU01 210 FF (n.[MIT[1,0,0) M.[MIL[1,0,0] BU01 210 FF (n.[MIT[1,0,0] M.[MIL[1,0,1] MEAD(1),XCPm BU01 220 FF (n.[MIT[0,0] M.[MIL[1,0,1] MEAD(1),XCPm BU01 220 FF (n.[MIT[0,0] M.[MIL[1,0,1] MEAD(1),XCPm BU01 221 FF (n.[MIT[0,0] M.[MIL[1,0,1] MEAD(1),XCPm BU01 221 FF (n.[MIT[0,0] M.[MIL[1,0],MEAV(2,1]) MEAD(1),XCPm BU01 221 FF (n.[MIT[0,0],0] M.[MIL[1,0],MEAV(2,1]) MEAD(1),XCPm BU01 221 FF (n.[MIT[0,0],0] M.[MIL[1,0],MEAV(2,1]) MEAV(1,1]),MEAV(2,1]) AnuLLS DUF TU CAMBER AND TA131 BU01 224 D112,JBZ/HAU(1) BU01 223 MEAT(1,0,0) GU TU 29 D112,JBZ/HAU(1) BU01 224 D0112,JBZ/HAU(1) MEAV(1,0),MEL/2) BU01 224 D0112,JBZ/HAU(1) MEAV(1,0),MEL/2) BU01 229 D0112,JBZ/HAU(1) MEAV(1,0),MEL/2) BU01 229 D0112,JBZ/HAU(1) MEAV(1,0),MEL/2) BU01 229 D012,JBZ/HAU(1) MEAV(1,0),MEL/2) BU01 220 D012,JBZ/HAU(1) MEAV(1,0),MEL/2) BU01 220 D012,MEAV(THE TOTAL (YELL) IN THE ALL TARKS	8801 216	
(PalTEr(1),I=2,IMAX) 900 210 FX (TCP1,G10,0) ARTE (6,738) MED(1),XCP4 900 220 FX (TCP1,G10,0) ARTE (6,738) MED(1),XCP4 900 221 FX (TCP1,G10,0) ARTE (6,739) CHEST 900 222 FX (TCP1,G10,0) ARTE (6,739) CHEST 900 223 FX (TCP1,G10,0) ARTE (6,730) CHEST 900 223 FX (TCP1,G10,0) ARTE (6,730) CHEST 900 223 FX (TCP1,G10,0) ARTE (6,730) CHEST 900 224 FX (TCP1,G10,0) CHEST 90	(PSILE=(1),11	SHO1 217	
Avults DUF TU Carrer of 0 0 mairs Correr of 0 mairs <	(P\$ITE#(1),I	3H01 216	
840.221 FF (NTRIAGTON MATE (a.730) MATE (a.730) 840.222 FFT (a.730) MATE (a.730) MATE (a.730) 840.223 FFT (a.730) MALE (a.740) 840.224 B40.224 840.225 B40.224 840.225 B40.224 840.226 D0.124 J#2.144 840.227 B50.124 840.226 D0.124 J#2.144 840.227 D124 J#2.144 840.227 D124 J#2.144 840.227 D124 J#2.144 840.226 D0.124 J#2.144 840.227 D124 J#2.144 840.227 D124 J#2.144 840.226 D124 J#2.144 840.227 D124 J#2.144 840.226 D124 J#2.144 840.229 C 840.220 C 840.230 C 840.230 C 840.231 D144 840.230 D144 840.230 D144 840.230 D144 840.230 D144 840.230 D144 840.231 D144 840.231 D144 840.2		3601 220	
JJ#93IEm(1) TANGENT UP LUCAL MING ANLES DUE TU CAMBER AND Tw137 3801 224 MILT (60732) PHILMANGE ARAT(1,1), AMAY(2,1) JIMGUENCE SHULLD RE INCLUDED) 3801 224 DU 123 JAZIMAK MMLLUCATE SHULLD RE INCLUDED) 3801 225 DU HATA(1,0) 401 (10 49 JAMELALOD E INCLUDED) 3801 227 123 MILT (60732) UUT (44AT(M,J), VML,2) JAMELALOD I TO 1001 3801 227 123 MILT (60732) UUT (44AT(M,J), VML,2) JAMELALOD (1001 3801 227 123 MILT (60732) UUT (41AT(M,J), VML,2) JAMELALOD (1001 3801 227 123 MILT (60731,0) GO TU 49 JAMELALOD (1001 3801 220 123 MILT (60731,0) GO TU 49 JAMELALOD (1001 3801 230 124 123 123 MILT (60731,0) GO TU 49 JAMELALOD (1001 3801 230 124 123 123 123 124 124 124 121 124 124 124 124 124 124	PSILF+(1)=PSILE+(1)	3801 221	
Tangent UP LUCal Wing and tailst 5801 225 001 120 120 120 120 U metufence 5801 225 001 120 120 120 120 Maile 1001 5801 227 123 125 125 120 Maile 1001 5801 227 125 121 101 29 Janeitan 5801 227 125 121 101 29 Janeitan 5801 227 125 121 101 29 Janeitan 5801 229 12 11 (00-10 29 Janeitan 5801 230 12 11 (00-10 29 Janeitan 530 230 12 11 101 29 Janeitan 530 12 12 11 101 29 Janitan 1001 3901 230 12 10 20 10 Janitan 1001 3001 230 12 10 20 10 20 Janitan 1001 11 1001 10 10 20 10 20 Janitan 10 12 10	11Es(1)sP311Es(1)	3801 223 3601 223	
J INCIVENCE SHULD RE INCLUDED) 5001 225 DU IFY JEXIMAN MM.LQ.O) GU TU 1001 5001 227 123 MITE (0.755) UUR (AAY(N,J).VML/2) JAMMI,MM.NCAM 5001 228 125 125 125 125 UUR (AAY(N,J).VML/2) JAMMI,MM.NCAM 5001 229 C LAY UUT FIL VIRTER LATTICE GEUMETRY 3601 230 C LAY UUT FIL VIRTER LATTICE GEUMETRY 5001 230 C LAY UUT FIL VIRTER LATTICE GEUMETRY 5001 232 C LAY UUT FIL VIRTER LATTICE GEUMETRY 5001 232 C LAY UUT FIL VIRTER LATTICE GEUMETRY 5001 232 C LAY UUT FIL VIRTER LATTICE GEUMETRY 5001 525 C LAY UUT FIL VIRTER LATTICE GEUMETRY	LUCAL WING ANGLES DUE TO CAMBER AND	3801 22th	
M*.L0.0) GU TU 1001 501 221 123 maile (6:755) UUN.(AAY(N.J).VEL.2) JAMELANDACAN 5001 228 17 (MAILET.0) GU TU 29 JAMELANDACAN 5001 229 24 JAMELANDACAN 5001 230 24 JAMELANDACAN 54 54	3¤JULD RE		
Джадьинького 1941 229 С Lav UUT fall VURTEX LaTTICE GEUMETHY 700) (Alfvelo, Jajas, V) 8001 231 С Варалая21808/144001 8001 55 С Варала821408/144001	5	227	(2.187.(D.17.), E.C.) (5.1.) (3.18.)
алианалалалагаа сан 1704) (агрыгаса) (агрыгаса) (агрыгаса) (агрыгаса) (агрыгаса) (агрыгаса) 1704) (агрыгаса) (агрыгаса) (агрыгаса) (агрыгаса) (агрыгаса) 1704) (агрыгаса) (агрыга) (агрыгаса) (агрыгаса) (агрыгаса) (агрыга) (агрыга) (агрыга) (агрыга) (агрыга) (агрыга		246	. 44.0) 60 10 29
(1), (1), (1), (1), (1), (1), (1), (1),	00 4440 421440 4110 421 410 410 410 410 410 410 410 410 410 41	230	UUT FAIL VURTEX LATFICE GEUMETHY
	(5,704) (ALPHL+(J),JEJ	231	
	C 0 A T 4 L E	8401 232 2601 Jik	10×421112000H1241000

		<pre>1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4</pre>	<pre>####################################</pre>
AMAY(Z_1)=F51[E[[1]) 9801 511 AMAY(Z_1)=F51[E[[1]) 5801 512 Z1 5801 512 Z1 5801 512 Z6 5811 514 Z9 5811 514 Z9 5811 514 Z1 5801 512 Z6 5811 511 Z7 5801 512 Z9 5811 511 Z1 5801 512 Z1 5811 511 Z1 5811 511 Z1 5811 511 Z1 5811 511 Z2 5811 512 Z2 5811 512 Z2 5811 52 Z2 5811 52 Z2 5811 52 Z2 5811 52 Z3 58	<pre> Full_Prist_Prist_Full_Full_Full_Full_Full_Full_Full_Ful</pre>	ND TAIL COORDIMATES FOR USE IN 9001 NTUNB COORDIMATES FOR USE IN 9001 9001 9001 9001 9001 9001 9001 9001	<pre>Frequencies: 50 10 135 Frequencies: 50 10 14 Frequencies: 50 11 Freq</pre>

578 •••• 225 576 577 xej 240 tLmertr+(+to)(1)*2 + HoU(1)*HOU(1-1) + Ron'(1-1)**2) 1 (chou(1)*HOU(1)*1)/14,0 241 CPAPERLEm=(HM(HOU(A)**2) 241 CPAPELMPA(HMOT(A)**2) C+PPELMPA(A=*CPAP)/HEFS*51*(ALPMAD/MAU)/CUS(ALPMAU/MAU) C+VPECMPA(A=*CPAP)/HEFL CALL BOYVIX (ALPHAD, IMETAN, FINE, XA, EMACH, GAMV, NG, XGAMA, YGAMA, BEGINNING OF CALCULATIONS DEPENDENT ON HING INCIDENCE ANNLE IF (ABŠČALPHAU).LE.4.0 .04. THETAN.LE.4.0) %NSEVEO IF (NOSEV.LE.0) 60 TU 119 COMPUTE VURTEX INDUCED FORCES AND MUMENTS UN NOBE CALL CNVNZ (XGAMN, YGAMN, ZGAMN, GAMN, NG, XM, CN, CM) F (1055*LE*0) 60 T0 119
 Netties, 55564nk(46), 764nk(46), 264nk(46), 784
 Netties, 755564nk(46), 764nk(46), 264nk(46), 284nk(1)=64nk(4), 284nk(1)=64nk(4), 284nk(1)=740kk(1), 24nk(1), 24 CALCULATE EFFECT OF BUDY VURTEN SHED FROM MUSE ZOUMBZHLWAPVZW())=(XP())=XHL")=SWALlW SP()]=CMPLK(YUUM=20UM) Lat(110) IF (NG.GT.1) XCPNVAXMACHNVAREFL/CNNV ХР(Ĵ)#К[ЕлаРСХн(J)#8ЕТА IF (J %67, ((Jel)#NСна))]#]+1 Youmabumth[] + Ravom COMPUTE BESKIN UPHAGH ON NING IF (X607(J).6T.XLL.) 60 TU 24. IF (NBUV+LT_0) GU TU 540
FT (NPAINTLT_0) GU TU 510
NRIIE (6,145) MLAD(1)
NRIIE (6,746)
NRIIE (6,746)
NRIIE (0,140)
FT 00 0 340 JEL, NEXT
DO 0 340 JEL, NEXT CNNVR2,00P10CN/REF# CMNVR2,00P10CM/(REF80REFL) ZGANN,XSA) ZGANN,XSA) IF (NG,EQ.0) NDSEVED CUNTINUE Alpharalphad+alpi# Salifsesik(alpi#/kad) Galifsecos(alpi#/kad) Houme Nirego VP(J)=CMPLX(0.0.0.0.0) Cannoscant (ng) Yganyosygann (ng) Zganngszgann (ng) NEXTENCALANDIN 182 00 141 JEL, NEXT HRITE (4,798) XABXLL-/RUASE WB(1)=0.0 XCPNVB0.0 XCPNV=0.0 CHNVED.O CONTINUE 02A 300N MTBLE1 NVEC MT8L=1 HeDxI ş 3 141 510 : 11 000 υυυ 110 479 515 1 9 9 7 9 7 7 9 7 480 181 485 ŝ 6,7 5 . 55 105 514 487 207 -1098 9801 1086 3801 8801 8801 1801 1001 1081 108 108 1081 1001 C SULFECUILT C SULF (SULFA/RAD) ALPMAREN(ALPMA/RAD) ALPMAREN(ALPMA/RAD) ALPMAREN(ALPMA/RAD) MRIE (0-732) ALPMAULENACH.ALPIT.AKVLMI.AKV3M.AKVLT1.AKV3T MRIE (0-732) ALPMAULENACH.ALPIT.ALPIT.AKVLMI.AKV3M.AKVLT2 ALMA ALAMI DC 219 JE1.AMA VEMC1300.9 VEMC1300.9 BEGINNING OF CALCULATIONS DEPENDENT ON ANGLE OF ATTACK (ALPHAD) DABDY(1)=(ABDY(2)=ABDY(1))/(XBDY(2)=XBDY(1)) DABDY(4TBL)=(ABDY(ATBL)=ABDY(ATBL=1))/(XBDY(ATBL)=XBDY(ATBL=1)) DABDY(4TBL+1)=DRBDY(ATBL) MRITE (4,744)TMETAN,FIME,RAABE,RAVGW,RAVGT,XH,2H,DXI,DXOUT MRITE (4,794) DO 14 Jas.MYBL 18 MRITE (4,708) J,XBDY(J),RBDY(J),SBDY(J),DNBDY(J) COMPUTE NORMAL FORCE AND MUMENT CUNTRIBUTION OF NOSE 0 45 Jaz,1 Drz∥e (2014)-48DY(J-1)/(X4DY(J)-X8DY(J+1) Drzm (8DY(J+1)-88DY(J))/(X4DY(J+1)-X8DY(J)) Drzm (J)±0,5+(DRZ1+0RZ2) DELTas(xbuY(MT)=xv(J))/(XBDY(MT)=XbUY(MT=1)) v(1,J)skBDY(MT)=DELTas(RbDY(MT)=NHUY(MT=1)) ZV(1,J)sYv(1,J) [f (xv(J)_LL&xv(J-L)) xv(J)#xv(J-L)+U,00] [f (xv(J)-RADY(A1)) 257,457 rv([,J]#ABDY(X1) 2v([,J]#ABDY(X1) vv([,J]#ABUY(A1) MTAAT+1 CALL BHAPE (XLEW,RBABE,DUM,DUM) Finemxlem/(2,0+RBABE) 2v(1,J)=0.0 xodv(nnbL+1)=x8UY(nTbL)+CR== Redv(nnbL+1)=RBDY(nTBL) 36Dv(nTbL+1)=88DV(nTBL) GUTPUT BODY CHARACTERISTICS 15 (NI°LE.NIBL) GU TU 157 HHITE(0,799) **8** 10 40 IF (J .66. 100) 6U TG DU 39 1=41,4TBL XV(J)=XB07(L) HIIL(6,708) J.RV(J) IF (J .66. 100) 60 Continue 00 41 JE1.NTEL XBDY(J)EXY(J) RBDY(J)EXY(1,J) SBDY(J)EXY(1,J) VL460. DD 240 Js2.NTbL VV(1,J)=RHDY(1) ZV(1,J)=NBDY(1) 19 ALPHABALPHAD 0.0=(1,1)44 VEI(J)#0.0 wEI(J)=0.0 HE = (]) = 0. 60 TO 36 MTE41+1 Xv(J)s0.0 CONTINUE x786.6Je1 -181va1 J=457 1+1=5 9115 210 . 5 117 5 437 237 u u

(1), 'P((J)) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2011 201 2011 201 2011 201 2011 201 2011 201 2011 201 2011 201 2011 201 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2			
<pre>cfl.y.urd: (Fe(J).A.)./FACDON CONTENT (Fe(J)) and (Fo(TAT) JAP(J)).SF(J).AF(J) F(UUE:V.LLAU) GU TA WIT (FO'TAT) JAP(J).SF(J).AF(J) F(UUE:V.LLAU) GU TA WIT (FO'TAT) JAP(J).SF(J).AF(J) F(UUE:V.LLAU) GU TA WIT (FO'TAT) JAP(J).SF(J).AF(J) F(UUE:V.LLAU) GU TA WIT (FO'TAT) JAP(J).SF(J).AF(J) F(FOUE: FELLE UN TATA) F(FOUE: FELLE) GU TA WIT (FELLE UN TATA) F(FOUE: FELLE) GU TA F(FOUE: FELLE) FFLELD GU TA F(FOUE: FELLE) GU TA F(FOUE: FELLE) GU TA F(FOUE: FELLE) GU TA F(FOUE: FELLE) FFLELD FF</pre>	CCPANDERLETS-USABL CCPANDERLETS-USABL F (LCP-LETS-USABL) CCPANDERLETS-CULUE CCPANDERLETS-CULUELE CCPANDERLETS-CULUELE CCPANDERLETSCORELES CCULUER DETLETER CANDELLAS DETLETER CCANDELS CALL ZVIX (LLPISAS) CALL ZVIX (LLPISAS) F (TVIX (TVIX (LLPISAS) F (TVIX (IF (AXVL-1.1.L.0.0 .4×04×4.A2.L.0.0) GO TU 520 DO 24	DO 145 11.0820 DUM (KANGAREAL(RAVGARE LUM (KANGAREAL(RAVGARE LIANNENEERVALCEAR(N) 143 CHBAPG(XANACPBHV) DCMBA CHBAPG(XANACPBHV) DCMBA CHBAPG(XANACPBHV) DCMBA CHBAPG(XANACPBHV) DCMBA CHBAPG(XANACPBHV) DCMBA CHBAPG(XANACPBHV) DCMBA CHBAPG(XANACPBHV) DCMBA CHBAPG(XANACPBHV) DCMBA CHBAPG(XANACPHV) DCMBA CHBAPG(XANACHV) DCMBA CHBAPG(XANACHV) DCMBA CHBAPG(XANACHV) DCMBA CHBAPG(XANACHV) DCMBA CHBAPG(XANACPHV) DCMBA CHBAPG(
<pre>cdl. yref (re(j)) cdl. yref(re(j)) cdl. yref(re(j)) cdl. yref(re(j)) cdl. re(re(r)) cdl. re(re(r)) cdl. re(re(r)) cdl. re(re) cdl. re</pre>	5401 019 541 020 541 020 540 022 540 022 540 022 540 022 540 025 540 025 540 052 540 055 540 0		8801 001 8801 001 8801 005 8801 005 8801 005 8801 005 8801 01 8801 071 8801 071 8801 071 8801 077 8801 077 8801 077 8801 077 8801 077 8801 077 8801 077 8801 077 8801 077	
	FL (FL(J), A, U)-A, OUN) FLAL(PR(J)) FLAL(PR(J)) FLAL(PR(J)) A.(FL,U) GU TU 440 V.(L.U) GU TU 440 IRAJECIURT UF YURIER PAST ALNU IRAJECIURT UF YUSF YURIER PAST ALNU ANNG A	V) 60 IN 53 MY) Lici Pusitiun UP Vohiek tu account for Lici Displacement Ry)+Emem Induceu Velucity Field un ming .0) go to 511 Medo(j) Mitti Velu)m vplu)m ming 21	MUQ,(L),3F(L),3F(L),VEK(L),DUM	148.5 THM S8PANT, ALPMANT, 148.5 THM TOCK BUTT AT LELW. 197.5 TIXE PTL AS FTLAN. 191.4 ANVSS) 121.4 ANVSS) 123.4 AVVSS) 12.4 AVVSS) 12.4 AVVSS)

205 007 006 7 8 L 8 7 0 6 6 6 6 -----222 2.99 683 1999 885 000 990 109 895 896 897 594 3 6 A 100 116 916 910 926 923 924 1098 Saul 3801 3801 3801 5901 CONTINUE CUTOTECHNP + CNNUP + CNNBUL + CNNBUB + CNBAP + CNBAV + CVA CHTOTECHNP + CNTBVL + CN1NVB + CNBFV + CNBAV + CNBFV 1 + CNTBP + CNTBVL + CN1NVB + CNBFV + CNBFV + CNBFV + CNBFV CNTOTECHNP + CNNV + CNBVP + CNBVL + CNBFV + CNBFV + CNBFV 1 + CNTOP + CNTBVL + CNTBVS + CMBTP + CNBFV + CHBFV + CNBFV E9969, MIM(TAN(PBILET(1)/RAD) MBETA) MAD CALL ZYYX (ALMAY,E75/BTAZ) T (CVV.L,000 AND, ALPMAT,6T.0.0) BTAZB-BTAZ ZECMTSSIN(BAZ/RAD) ZECMTSSIN(BAZ/RAD) ZECMTSSIN(BAZ/RAD) T (TTGGT, MASSAMT JUR, TTR.LE.0.0) TTRUSSPANTOPI/9,0 TTR2NITCRNVGT T RAVITCRNVGT T ON BODY IN PRESENCE OF TAIL DETERMINE VENTICAL LUCATION OF SEPARATION VONTICES XCPRISTCTVL XCPRISTCTVL DUNSTARVGTRRAVGT/YTRJ/(YTH-RAVGT) DUNSTARVGTRRAVGT/YTRJ/(YTH-RAVGT) CNRTYDUO-C CRRTVD-CATURA CRRTVD-CATURA DUNATRVGT-REAL DUNATRVGT-REAL DUNATRVGT-REAL CRRTPC/AT-SCPRTP-CORTP/AECL SI CHRTPC/AT-SCPRTP-CORTP/AECL SI CHRTPC/AT-SCPRTP-CORTP/AECL CRRTPC/AT-SCPRTP-CORTP/AECL CRRTPC/AT-SCPRTP-CORTP/AECL CRRTPC/AT-SCPRTP-CORTP/AECL Ĩ 244 IF (ABB(GAM1(I)),LT,1,0E=06) GO TO MIBNI+1 WRITE (6,752) MINGAMICI),45(I),Z Continue COMPUTE NORMAL PORCE AND MUANTY CABTVS=(XA=XCPB]S)=CNBTVS/REFL XCPBTP=XCPTBP 344 530 523 2 244 000 000 U, vertication v AF TERBODY DO 348 Jml,MEXT Call BaaPe (2010),AJUUN,DUN) Ho[J]BEFALENAAAAA/(3P(J)ASP(J)) +B[J]Befaley(P(J)) VB(J]Befaley(P(J)) VB(J]Befaley(P(J)) VP(J)GCAP[K(0,0,0,0]) COMPUTE NORMAL FORCE AND MUMENT CONTRIBUTION OF SET UP TUTAL INDUCED VELOCITY FIELU ON TAIL IF (M&HI,LE.0) XLETAXBOY(MTUL) Dummo_s4(ETUL=XINIT)/RAVGH Dummo_s4(ETUL=XINIT)/RAVGH Dummo_s4(ETUL=XINIT)/RAVGH TF (MGLLE.0) GO TO ISO Call Gwyta (11M11,XFIML,MG,XM,CN,CM) Calaze.orpic(/refeshef) Charaze.orpic(/refeshef) CRAINCRAT/NETA Ctatactat/Netta Tatactat/Netta Vacpatage/Tatavat If (MPRIMT-UETA 200482461-0721(J)=(XP(J)=XMLT)=8MALIT 8P(J)&CMPLX(VUV-2004) 00 145 Jal,MEXT ar(J)salet=PCaT(J)=BETa 19 (J 061 ([1=1)=VCmT)) lal+1 YOUMB(AT[[]=YavGT] COMPUTE BESKIN UPASH ON TAIL IF (WPRINT_L1_0) 60 TO 515 Mattle (4,740) HEAD(2) Mattle (4,740) Continue DO 140_MEA DO 140_MEA DUMECA095(PP(J)) IF (WeDUY,L1,0) 60 10 548 IF (WPRIM1,L1,0) 60 10 512 MRITE (0,745) MEAD(2) MRITE (0,746) MEAD(2) (MDUM.61.10) 60 10 55 XCPAEXM-CMANKEFL/CMA IF (M8HT.LE.0) GU TU 50 TAIL CMARACTERISTICS vP(J)=CMPLX(0,0,0,0) DO 45 141,84% DO 45 J41,84% S F VG (1,J) 8f Vaf(1,J) S F VG (0,D) Z T T 20,0 Z T T 20,0 CALL TRJTRY IF (MDUM_67. 64 TU 147 CUNTINUE 1.0=(1)8= CONTINUE CONTINUE CONTINUE 2 11 150 ŝ 1=5 513 146 512

....

....

102

CSACCUSIALPHAN/MAD) CSACCUSIALPHAN/MAD) CSASCUSIALPHAN/MAD) CSASCUSIALPHAN/MAD) Haite (0.103) Haite (0.137) Almad/EmaCH,alpin/alpi1,anvgt Haite (0.137) Almad/EmaCH,alpin/alpi1,anvgt Alfert (0.137) Almad/EmaCH,alpin/alpi1,anvgt 16 (M32P+GG1, UH, N3EPT.GT+1) MMILE (0.751) ANVL+2/ARVLF2 CATUTECANDY + CANDYL + CANHYS + CATUP + CATHYL + CATHYS Jf (msh1,61,0) nkite (6,705) СОБССІЗТІМ МЯТЕ (0/113) НЕДО(4),СИВИР,СНВИР,ХСРВИР,СL,СD1 МЯТЕ (0/114) НЕДО(4),СИВИР,СНВИР,ХСРВИР,СL2,CD2 МЯТЕ (0/117) НЕДО(4),СИВИРОСНВИРВ,СL2,CD3 ССПЕСССИССАТСА ССПЕСССИССАТСА СОВССИЛАСАА НЯТЕ (0/18),СМА,КСРА,СС1,CD1 НЯТЕ (0/18),СМА,КСРА,СС1,CD1 CL@CL+CL4+CL4 #116 [6,115] +EA0(6),C4819,C4817,XCP419,CL1,UD1 #116 [6,7116] +EA0(6),C48179,XCP417,SL2,DD2 #1116 [6,711] +EAD(6),C481708,CM4179,XCP419,SL15,CD3 COISCLATNA HRITE (0./19) CATOT,CHIUT,XCPIUT,CL,CUI ,CATOT IF (CL,ME_0.0) CU2=CU1/(CL=CL) ANIT (6,142) CU2 IF (NTP1:cu2 OL2 - PMBIT_L1.0) GU TO 00 IF (NTP1:cu2 OL2 - PMBIT_L1.0) GU TO 70 XCPTITEX -CrTUTAKEFL/C1101 CLECL+CL hrit (= 0+714) CLIECTT0PCSAT CLIECTT0PCSAT CLIECTT0P26AT CLIECTT0P26CAT CLIECLIEVESCAT TNABTAN (ALPHAU/HAD) CL18CN0379503 CL28CN0379503 CL38CN0344683 CL38CN0344683 CD18CL1347N3 CD2=CL2+TNA CD3=CL3+TNA CO2=CL2+TNA CD SeCL Se INA CD2=CL2+TNA CU280.0 CL=0.U

5-011-04 6011056 READ (5,750) NDEX,ALPHAD,ALPIM,ANLLM),ANVBW, ALAI (5,750) NDEX,ALPHAD,ALPIM,ANVLM),ANVLT2,ANVBM, ALZAALPI (WIIML,GT,2) GO TU 71 CHOUMENTOTOT-CHANGY-CANAVL-GUABVE-CABAV-CABAVE CONVECTIVE CONSTRUCTION CONTROL PARAMED FOR SUCCESS CONTRECTION CALEBARAD FOR FOR SUCCESS CONTRECTION CALEBARAD FOR FOR SUCCESS SUCCESSION (ST CAS SUCCESS) SUCCESSION (ST CAS SUCCESSION (ST CA 18 VAHIABLE ălăaâlpit 16 (mitre,ci «) (u 10 76 couractuut-cribu-cribu-cribuse-cribut-cribut cutractuut-cribu-cribu-cribus) Dumactub-cribut-cribuse-cribuse-Aande-cribut-cribut-criduse-cribuse-Aande-cribut-cribut-criduse-cribuse-CALCULATE THIM ASBUMING TAIL INCIDENCE IS VARIABLE 70 CALCULATE TRIM ASSUMING MING INCLORNCE 5 CONTINUE If (NTRIM.GT.0 .AND. MOUM.LE.10) GU NTIMERI GU TO 72 (AB8(CMTUT).LE.CMTEST) (MTTME.CT.5) 60 70 73 (NTRIM.GE.2) 60 70 75 ŝ IF (NOEX.GT.0) 60 TO 19 2 2 3 (MUSEV.E4.U) 60 16 (6,7273 J IF (J.61.NV) 6U TU HHITE (6,728) J 2 14 (J.61.4V) 40 00 57 48J.4V HRITE (6.729) 4 CONTINUE NTIMEENTIME+1 #111 (0,123) VOSE VENOSE ALIMALZ CH28CH10T IF (AB8CCH IF (NTEME. 2 CUNTINUE CH2=0.0 NFLAGED CHISCHZ 1+ (N) +E11E ALZEO. 5 1.1.2 1+1=1 1=7 3

444

3 N S N

27

ŝ

53

5

ş 20 3

6000 8 **7** 8 7 8003 0 8003 0 8005 0 8005 0 8005 0 0 01510E Rasuos 0 1 % 34APL 35803 0 3602 540 5 540 5 3002 2095 3002 2096 2002 103 1056 2093 5+(J)#{f{]>f{]>f{]}-1}/{{a-1}/{{a-2}/{b-2}}} PvX{J}#ALEL[1-1)~{{a-2}/{b-2}/{{a-2}/{b-2}}} PVZ(J)#LLLL[[-1]=(('[])=r[])]=0,5)#1#NPH PCX(J)#KLLL[]=1)=((#*0,42)#(CHLCL[1=1)/0)]=((Y(I)=Y(I=1)]#0,5)# B SPC PTLx(J) = xLFL(1=1)=((a=0,2))*((MLULL(1=1)/0))=(Y([)=Y(1=1))=3=PC САЦ. ЇМР МАЙЛЯРУРР(JV),РМІ:КМА,YAM(I),ZMM,BA(JV),FUM(I),FVm(l), 1848(1)) Заруурі(JV)задаруур(JV) COLFFICIENI MAIRIX COURDINATES OF 3/4 CHURU ELEMENTAL PANEL LEFT SIDE PUINTAMEL 700 FORMAT (///SX12Mmmana X80Ys/F10,4,2X2MXH, F10,4,47H, X 146E of Table up 800y coordinates /40x,23Mexecution 310P FVX (JC+JV) B (FEX (1)+FX+(2)) = CUPT] = (FVE (1)+FV+(2)) = 671 COMTIXUE DIMERSION XEDY(100), REDY(100), SEDY(100), DREDY(100) COMMON /60DY/ MIBL, MIEL, XEDY, REDY, BEDY, DREDY DESUPROV(K) CO TU 40 CO TU 40 12 f (4.L.1) CU TU 11 14 (1.L.2.MUT(K-1)) CU 120 DELE(XOV(K-1) + DLL(KOV(K)-ROV(K-1)) AERDY(K-1) + DLL(KOV(K)-ROV(K-1)) DEBORDY(K-1) + DLL(KOV(K)-BOV(K-1)) DEBORDY(K-1) + DLL(KORDY(N)-DURDY(K-1)) DEBORDY(K-1) + DLL(KORDY(K)-DLL(KORDY(K-1)) DEBORDY(K-1) + DLL(KORDY(K)-DLL(KORDY(K-1))) DEBORDY(K-1) + DLL(KORDY(K)-DLL(KORDY(K-1))) DEBORDY(K-1) + DLL(KORDY(K)-DLL(KORDY(K-1))) DEBORDY(K-1) + DLL(KORDY(K)-DLL(KORDY(K)-DLL(KORDY(K-1))) DEBORDY(K-1) + DLL(KORDY(K)-DLL(KORDY(K)-DLL(KORDY(K-1)))) DEBORDY(K-1) + DLL(KORDY(K)-DLL(KORDY(K)-DLL(KORDY(K)-DLL(KORDY(K-1)))) DEBORDY(K-1) + DLL(KORDY(K)-DLL(KORDY(K)-DLL(KORDY(K)-DLL(KORDY(K)-DLL(KORDY(K)-DLL(KORDY(K)-DLL(KORDY(K)-DLL(KORDY(K)-DLL(KORDY(K)-DLL(KORDY(K)-DLL(KORDY(K)-DLL(KORDY(K)-DLL(KORDY(K)-DLL(KORDY(K)-DLL(KORDY(K)-DLL(K)-DLL(KORDY(K)-DLL(KORDY(K)-DLL(K)-DLL(K)-DLL(K))) DEBORDY(K-1) + DLL(KORDY(K)-DLL(K)) DEBORDY(K-1) + DLL(KORDY(K)-DLL(K))) DEBORDY(K-1) + DLL(K)) DEBORDY(K) + DLL(K)) DEBORDY(K) + DLL(K)) DEBORDY(K) + DLL(K)) DEBORDY(K) + DLL(K) + DLL(K)) DEBORDY(K) + DLL(K)) DEBORDY(K) + DLL(K)) DEBORDY(K) + DLL(K)) DEBOR BUILD UP L.M.3. UP BUUNDARY CONDIIIUN, IME CONTROL POINTS UN HING, VURTICES UN HING PTL+(J)a+Y(]) PTL2(J)a2LEL(I+1)+(Y(I)+Y(I+1))+TANPH] CONTINUE COUNCINATES OF CONTROL FULLS , PL TABLE LOUK-UP OF BUDY COORDINATES SUBROUTINE SMAPE (X,A,S,US) 10 CONTINUE 11 MRITE (0.700) XBDY(K),X 00 212 JCe1,M D0 212 JCe1,M Straff(1,0)-PYK(JY) Tak(1)2PYY(JC)-PYX(JY) Tak(2)2PYY(JC)-PYZ(JY) D0 261 151,4 D0 261 151,4 (X-X6DY(J)) 12,13,10 CAVERBREF/(2.#85PAN) IF (3.LT.A) 3=A IF (4.61.2) #18.=n=2 CTWBCHLUCL (1MAX) Pvv(1)==SUmv(1) NTENTBL+1 + DG 10 JENTBL,NT 13 ARRDY(K) SasBDY(K) RL TURM MTBL#1 60 TU 9 END CUN I INUL 261 CONTINUE CUNTINUE Hersing RETURN END 3100 22 212 720 2 ş 120 000 υ **U** U 000 34011081 34011081 34011082 34011086 54011085 36011084 36011084 36011084 36011084 36011086 2020 20202 208 5045 5802 **BNIN** DISTINCTION BETHEEN BAEEP IN CHURDAL (SUPVYP) AND PLANFORM (SUPV) 3ukhuutike laitus (fv%,hak,har,hZ,mC#,mS#,CR#,52#2,92Ah,Alpha0, B3ile:551afe;Juhi038fe;Clafe;Juhi2,huu Xeel,Juhi0(59,39PVP*,39, PvX,PVY,PVZ,PCX,PTLX,PTLY,PTLZ,FU&,FV#,FMH) CSPHIECOS(MI) Tarbiteram(PHI) Tarbiteram(PHI) 10 110 111 14AX Saphle(1)stan(PSIHLe(1)=OTR) 0 111 Jestan(PSIHTE(1)=OTR) 0 111 Jestan(PSIHTE(1)=OTR) 0 111 Jestan(PSIHTE(1)=OTR) 0 111 Jestan(PSIHTE(1)=OTR) 10 111 Jestan(PSIHTE(1)=OTR) 10 111 Jestan(PSIHTE(1)=OTR) 10 111 Jestan(PSIHTE(1)=OTR) 11 Jes SUMY(1)#((1)*((1-))/2,0 YLOC(1)#SUMY(1)/83PAN XLE(1)#SUM(1)/83PAN XLE(1)#SUM(1)/81)38PALE(1) + XLEL(1=1) XLE(1)#SUM(1)/81AN CHLOCL(2)#CHLOCL(1)/1 + ZLEL(1=1) CHLOCL(2)#CHLOCL(1)/1 + ZLEL(1=1)/1 CHLOCL(2)#CHLOCL(1)/1 + ZLEL(1=1)/1 F (CHLOCL(1)/2 + CHLOCL(1)/1)/1 F (CHLOCL(1)/2 + CHLOCL(1)/1)/1 F (CHLOCL(1)/2 + CHLOCL(1)/1)/1 SHFP3BF/CCHLOCL(1)/2 + CHLOCL(1)/1)/1 CHLOCL(2)/2 + CCHLOCL(1)/2 + CHLOCL(1)/2 + (1) DIMEMBILM FYW(MME,MMY) DIMEMBILM BUTTAJ,TLIC(M2),XLEL(M2),ZLEL(V2),Y(M2), DIMEMBILM BUTTAJ,TLICL(LNZ),FBIALE(M2),FBIATE(M2), CHLOCE(M2),FILUCL(M2),FPIX(MMZ),FVY(MMZ),FYZ(MMZ), DIMEMBILD BA(MMZ),BATVLC(MXZ),FILZ(MMZ),FYZ(MMZ),FILZ(MMZ),FYM(2) FUMED3),FWIC2),FWIC2),FMIC(Z),SAMMLE(ZZ),SAMMLE(ZZ),FYM(2) &#PC#9#PPLE(1)- ((A+0,25)/0)+(%+P-LE(1)+&#P4TE(1)) Je(1-2)*NC+0/CH Jerve&PPLE(1)-((A+0,75)/0)+(%#P4LE(1)+&¥P4TE(1)) If (ABS(BAUZ).GT.0.70) GU TL \$75 SU2EMABIN(SAU2) ALFITESADC-MAUNALPHAU GU T() 151 GU T() 151 GU T() 151 GU T() 151 GU TU 151 ALPITE(CF2+ALLI-CF1+AL2)/(CH2-CF1) GU TU 151 END SUBRUUTINE TU SET UP LATTICE GEUMETRY COORDINATES OF BOUND VORTEX , PV 82PVVP(J)\$41PV+C4C4PAI 92PVVP(J)\$ A1AX (82PVVP(J)) 701 1=2,1MAX 3047(1)=0,0 7(1)=0,0 7(1)=0,0 7(1)=0,0 7(1)=0,0 7(1)=0,0 7(1)=0,0 6(1)=0,0 87(7=0,0 COMMON/INF/801 P1=1,1419420 012=P1/180.0 1122=19=+1 1132=19=+1 Ph1=Ph1U4DTK SPh1=8[4(Ph1) PLANES Denca 8 -16 110 111 115 375 υu **u** u 000

	308840411×6 847418 (46440)14614×,6144,84,64468,64464 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	10	טטאאניט11×L נאלאל (אנאאא, דנאיי, גיאלא, נאיא, עניאלא, עני, אי, נאי, נאי	100 5045 200 2005
	DY VORTICES	8494 005 C	COMPUTE NUMME FUNCE AND MUMERIC ON NUSE DUE TO SHERE WILLY VURTE.	1 5445 005 3005 004
U		00 00 5	CURPLEX SUGAR SUGERAS STREESING REARENESS REALESS VERALESSON AND SUCCESSON	3H05 005
	012442041C4 X64444(10),464444(10),464444(10),66444(10),66444(10)	101	DIMERSION = (<), %] ===================================	200 000 2002 001
U	9 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			000 SCH0
	DATA GAMT/0, 5,0, 32,0, 34,0, 40,0,48,0,62,0,77,0,90,1,0,1,08,1,15/	04 010	C*D=0.0	010 S088
	DATA YAK/*45/*465/*477/*442/*503/0425/455/45540*5540*5540*20*212/0*202/2 2444 4444 444 444 444 444 444 444 444	104 611 104 612		5405 UII
	DATA ZAL/1.14/1.26/1.50/1.51.010/1.010/1.75/1.04/1.09/1.05/2014/2/201 30	104 013	XIEXGARA(1)	510 5045 5413 5045
U		104 014	CALL SHAPE (X1,A(1),DUM,DUM)	3605 014
	70% FURRAT (//!X5Messee, %X623A0434E1415 OK UNGTEAUY FODY YIRTEX GFPARAG 	04 01 5	0 614(1)=C1FL×(×641×(1),2641×(1)) 416144111=1401×10 0.0 0.	3405 015
L			0.0128(v6442(1))**2 + (/(444/1))**2	010 010
د		104 016	IF (DUP.67.0.0) 916MAU(1)481644(1)44(1)44(1)/CONJC(816MA(1))	380 × 014
		10+ n19		5405 010
		04 020	XIEXGATA(J)	3805 UZU
			「「「」」」」、「「「」」」、「「」」、「」、「」、「」、「」、「」、「」、「」	Ser's 021
L		304 023	016MA8(2)881644(2)84(2)84(2)84(2)70010	3105 UKK
•		104 024	CNDE4.046AM2(J)+REAL (SIGNAP(2)-016NAB(1))	2405 024
	XGABIO./(ALPWA =4.0) + 2.0	104 025		8005 U25
	60 10 13 Version - Eastrings: Astaleus -4 Alithetture Ali	104 020 104 027	XTEO*V+/X6BIX/L-1,+X6AXX(L))	3605 U20
		904 028	A(1) HA(2)	120 CLDC
	NGEO	904 024	816H4(1)#816H4(2)	8405 029
	N N N N N N N N N N N N N N N N N N N	304 050	GIGTAB(L) HGIGTAB(2)	Se05 J30
U	D D D D D D D D D D D D D D D D D D D		50 CUMTIAUC Betlebe	150 - 500 2
		304 035		140 A040
•				
	17 (ALPTA "GT.ALMT) ARITE (6+701)			
	0 24(362122-21/21/21/21/21/21/21/21/21/21/21/21/21/2	505 014 105 014		
		804 038		
	PR/2.0	804 039		
			VATLAT 341100400	
		804 042 C	FREE VORTICE	100 0010
		140		SHOP 007
		B04 044	COMPLEX 30'VP,&IGMA,EYE Evysemai sti.cure	3404 004
				3606 005 3104 005
		804 047	DIMENBIUN GAM(4), 76(4), 26(4), XBD7(100), 4807(100), 5807(100)	SH06 007
	DC 40 JGm1, NG		DIMERGUON PRATI(5), AUX(16/8), Y(8), Z(8) Dimersion version versi april article	3000 008
			DIMENSION SIGNA(4), XY(200), YY(2,00), YY(200), VXXXY(00)	3006 004 1007 004
		804 051	1 ARAY (5, 400)	
	61.1) UUMB(DUM1=1.0)/(DUM2=1.0)	804 052 C		580+ 012
			CORPON /8/ AR/A Postor reserve vi veriovi trati sedita	
			COMMON / TRAUZ/ 8P.×P.×P.×P.×P.×P.×P.×P.×P.×P.×P.×P.×P.×P	200 012
		804 02e	COMMON /BODY/ NTBL, NTBL, XBDY, XBUY, BBDY, DRBDY	5000 010
	IF (XPAR -LT- 0.0) XPARHO.0	804 057 804 056	CUTHON /VORTEX/ NY/NYZ/GAK/YG/ZG Poimeou /Viamit// riv/vy/yv/yv/jg	5806 017 5404 414
		450 108	COMMON /FLUIN ALPHA,CBALP,EYE	510 9016 2809 016
	IF (XPAN-XST(J)) 22,23,20	040	COMMON /PARAM/ UXUUT,XPRNT,MPRINT,XFINAL	3400 020
		0.42	11 FURMAT (//110)	127 9000 127 9000
		140	3 FORMAT (//SX&7MEXECUTION STUP IN THUTRY, INTEGRATION INTERVAL HAS	
		440	OU SMALL //Id.IPtI2.4//) ///frituitionstationstation for an on one	909
		•••	///SA46MVELUEITY INUUCEU AT SPECIFIED FIELD PUINTS UN / 10X1mx/9X1my/9X1m2/11X8mv/v[14F].4x8mm/v(14F)]	200 4000 (14)
		047	717 FURMAT (14, 57 10, 57 SK, 2(1PE12, 4))	360+ 027
	GAMM(JG)86AMT(N+1) + UELTA+(GAMT(X)-GAMT(X-1))	540 540	/IOX/28MFIELD PUINT UUTBIDE UF FABLE,5XI3,3FI0,4,19,F10,	÷.
		0/0	XP INALOXF	8800 029
	•	804 071		
	Y28YAZ(M⇔1) + DELTA#(YAZ(M)=YAZ(M⇔1))	804 0/2 1604 073	PRFT(C)EXF Prit(5)euxi	
		H04 074	PRHT (4) E. 01	
		1804 075	NV2BNY+2 V0145344442	
	J6) ■Z6A44(J6) =F	B04 077	DO 10 Jeleve	
		804 076	Jwezej	

CALCULATE CRUSSFLOM CUNTRIBUTION » G(MY+1,M) , INCLUDING EFFECT Of body da/uk Т (4,60,4) сО ТО 21 семинесьчита/R1 семинесьчита/R1 Doumetsura/R1 Doumetson(17/RENUM-ELUM) = 1,0/(Емин+Семин) i.0/(Емин+Семин) = 1,0/(Емин+Семин) i.0/(Емин+Семин)/CEMUN) = 1,0/(Емин+Семин) i.0/(Emuh+CeMUN)/CEMUN)/CEMUN) = 1,0/(Емин+Семин)/CEMUN+CEMUN)/CEMUN/CEMUN)/CEMUN/CEM DDUMAADUM/BDUM - 1,0 - 2,04£MUM-BUUM/((EMUMAEMUM-1,0)**2) DDUMAEDUM/ADUM E(NV424)1=4:146AM(4)3DDUM GO TO ZZ DDUMH1.0/ADUM - 1.0/(ЕМUM+CEMUM) - 1.0/(ЕМUM+1.0/CEMUM) G(M,N)=-E fE46AM(N)/RZ+DDUM+OMUD8(N) 6(****1.*2)#=474=61.00 + 1.0/(6%U%=6%U%))#D%UD8(%)#ALFXA + D8#A#6044[P/8164A(%) BUBROUTINE MPCG (PRMI,Y,DERY,NUIM,IMLF,FCT,UUTP,AUX) CALCULATE VORTEX INTERFERENCE CONTRIBUTION , G(M,W) CALCULATE TRANSPORMATION CONTRIBUTION , G(NV+2,N) €×∪(J)=0,5×CDU* + 0,5×C02×1(C∪UM=CDUM = 0£4) CfNu(J)=CONJG(E×U(J)) DIMENGIUN PRAT(5),7(8),DEM7(8),AUX(16,8) Cummon /b/ Mn,H COMPUTATION OF ULAY FOR STANTING VALUES D7 20 we1,hV D92K1>SCH2K(0.0,0,0) Enumeku(1,1/KL Enumeku(1,1/KL Enumeku(1,1/KL Adurekum + 1,4/kuu Adurekum + 1,4/kuu Adurekum + 1,1/kuu Guurekuum-1,0/kum(20um 00 26 Ma1,NV 00 25 Ma1,NV2 5 D005(N)300D00(N) + 6(M,N) 6 D105(N)5(D005(M)) 00 27 Ma1,NV N282** 2 (M2)# AIMAG(DHD\$(N)) 7 (N2*1)#REAL(D#D#(N)) 7 Ef URN End IF(Ma(PHMT(2)=X))3,2,4 PRMT(5)=0. DU 1 [=1.4D1M Aux(16,1)=0. Aux(15,1)=DERr(1) Aux(1,1)=1(1) EARON RETURNS | 146412 60 to 4 | 146413 DO 22 HEL.NV X8PRXT(1) 18PRXT(1) 22 CONTINUE 20 CONTINUE IHLF=0 Ĩ _ -21 5.2 27 N 2 • v u u u υu υυ SUBRUUTINE FCT (1,7,2) COMPLEX SIGN-ENUJECKLADUM-BDUM-CDUM-ENUM-ENUM-CENUM-CENUM-ONDOSODA DIREMSIUM SIGA(3):ENU(3).GCENU(3).DADS(4).DUDS(4) DIREMSIUM SIGA(3):ENU(4).GCEN(4).DADS(4).DUDS(4) DIREMSIUM SIGA(3):EAN(4).FG(4).GCEN(4).DADS(4) DIREMSIUM FLUAT SIGNESENTEC CUMMON FLUAT ALFMA.CSALFIETE CUMMON FREUT ALFMA.CSALFIETE CUMMON FREUT ALFMA.CSALFIETE CALCULATE INDUCED VELOCITIES AT SPECIFIED FIELD PUINTS LOUK UP BOUT RADIUS AND LOCAL WING ON TAIL SEMISPAN YP(KK)=YV(KK,KN)=DELTa=(YV(KK,KN)=YV(KK,KN=1)) ZP(KK)=YV(KK,KN)=DELTa=(ZV(KK,KN)=ZV(KK,KN=1)) SIGHA(KK)=GMPLK(YP(KK),ZP(KN)) SIGHA(KK)=GMPLK(YP(KK),ZP(KN)) CALL SHAPE (XP(J),A,8,D8) CALL SHAPE (NY,A,8IGAA,5AM,SP(J),VP(J)) CONTINUE XP#iteX1~.0001 Call mpc2 (thu1.7.7.NU1.4.ImLf.FC1.OUTP.AUX) 18 (iml..67.10) 60 10 40 19 (meX1.06.0) ketumn IF (KN.E0.1) GO TO 54 Deltae(xv(kn)=xp(j))/(xv(kn)=xv(kn=1)) VRITE (4.719) J.KV(J),8P(J),KX,KV(AK) VP(J)=CMPLX(0.0.0.0.0) 60 TO 50 DO 55 KKM1,NV Sigma(kk)=CMPLK(YV(KK,KN),ZV(KK,KN)) DŪ 40 JE1, MEXT VP(J)=CONJ6(VP(J)) 15 (VP2N1,LT,Q) 50 70 40 MAITE (4,717) J.XP(J),4P(J),4P(J) CONTENUE Di 10 JE1.NV Ciuresigma(J) + Ama/Sigra(J) IF (NPRINT_LT_0) GO TU 510 HRITE (4.715) TITL HRITE (4.716) 81644(J)=C#PLx(T(K=1),T(K)) DEHE(2,4K2)442 IF (XV(K)=XP(J)) 51,52,53 Continue CALL BMAPL (X.A,5,05) RZBC.5=(5 + A=A/3) AR2BA/RZ RETURN MRITE (6,713) IMLF,H MMEIMLF Dume1,/Dum Du 15 Je1, ND14 Z(J)edum #TBL=1 DC 50 J#1,NEX1 DC 51 K=1,NT#Y KN#K Y(J~~1)#Y6(J) Y(JN)#26(J) VM.1=L 9 00 GU TO 50 HIGNEHOO CONTINUE RE TURN END Kazaj 0 B N M 5 25 5 38 3 210 2 -10 • 38 v

333 22223 50 . \$ 2 225 3608 3608 8608 Y(1)#AUX(M,1)*,17476028#AUX(5,1)*,551#8066#AUX(6,1)+1,2055356#AUX(9906 17.1)*,1718476#MMBER(1) 8008 9098 808 NA& CAUSES THE RONS OF AUX TO CHANGE THEIR STURAGE LOCATIONS BTARTING VALUEB ANE CUMPUTED. Now Start Mannings mouified Predictum-currectur methud. 1614-51209,202,200 29 00 30 Imi, buin Celtamux(9,1)+mux(10,1) Beltmell+Deli+Jeli 30 Y(17mux(1,1)+,575++(Aux(8,1)+uelf+Aux(11,1)) 60 TU 24 z POSSIBLE BREAK-PUINT FOR LINKAGE N LESS THAN & CAUSES N+1 TO GET COMPUTATION UF NEXT VECTOR DD 205 Imi.Nuim Aux(N=1,1)mV(1) AUX [+++ ,]] = AUX [++7 ,]) AUX [+++ ,]] = AUX [++7 ,]) CALL FC1(Z,Y,DEMY) If(MM.61.1) RETURN D0 104 1=1,ND1M 00 203 ME2,7 DU 205 1=1,ND1M Z=X+H **NBN** 757 27 2 100 101 201 202 102 103 10 203 204 J υ 00 u υ 00 υυ 000 υυ U υυ DU 22 Tei,MDLM Auktii.1)=00RT(1) *{{[]=4uf(i]]=0.255=4uk(6,1]+.79166667=4ux(9,1]=.20855353=Aux(1) *{]=419=41666666144[1]] THERE IS BATISFACTORY ACCURACY AFTEM LEBG. THAN II BISECTIONS. 1 KEACH CALL FCT(X,Y,DEKY) 1 FF(MM_GT_1) RETURN 0 20 Ist.Moth 0 20 Ist.Moth 20 AUT(2).178EER(L) 20 AUT(2).178EER(L) NO SATISFACTORY ACCURACY AFTER 10 BISECTIOMS, ERROR MESSAGE. 16 im. INCREMENT H IN TENTED BY MEANS OF BISECTION Intreimle41 Xenom 15 DELT00 D0 10 121 NUOM D0 10 121 NUOM DELT0000000100L DELT0000000100L 17 FC0EL-PRAT(0)10,10,10 17 FC(140-10)11,10,10 PECUMUI-W OF STANIIAG VALUES Call Untraffortationary.[MLf,"ult",PRMT) [Pepart[5])0,5,0 5 [F(IMLF)]7,7,0 5 [F(IMLF)7,7,0 7 00 8 [M1,00EMV(1) 8 AUX[0,1]0UEMV(1) CALL FET(X,Y,UEMY) [f(mm.61.1) RLTUMN Call Jutp(X,Y,OEMY,]mlf,Muir,PMMI) COMPUTATION OF TEST VALUE DELT COMPUTATION OF AUX(2,1) X#X+M Call FCT(X,Y,UERY) If(MM.GT.1) RETURM CALL PCT(X,Y,UEMY) If(MM.GT.1) RETURN Xeprmt(1) CALL PGT(X, Y, UENY) 10 (MM.GT.1) RETUMN DO 14 I=1,NUIM Aux(2,1)=7(1) 14 Aux(9,1)=DER7(1) 13M=3 00 12 141,4014 Aux(4,1)44ux(2,1) He,5004H % XEX+H 00 10 141,NUIM 10 AUX(2,1)#Y(1) 13-82 60 10 100 60 10 100 60 10 100 GO TU 100 60 70 4 13464 2+383 10181 25 Kak+h Nek+1 N 21 NB1 : 5 22 2 . υu u υu υυ υ uυ uυ ų υυ

			2002 2004 2010 2010 2010 2010 2010 2010
CILLICT(CL) FLET) 17.4C(1) EFUCH 17.4C(1) EFUCH 0.1.25 [ELINUIT 0.1.25 [ELINUIT 0.1.134.04(N+1) 25. Y(1)A4.04(N+1) 26. [ELINULF(CL)] 26. [ELINULF(CL)] 26. [ELINULF(CL)] 26. [ELINULF(CL)] 26. [ELINULF(CL)] 27. A(10,1)P(EFY(1)) 27. A(10,1)P(EFY(<pre>426 40(10)11/06**111 60 60 60 60 60*11*6 10/16 (1,*,',',',',',',',',',',',',',',',',',',</pre>	CONVENT XEGULY GROUPS STRATE WARNARY (03,0003 500 CONVENT YEAR (0401, XPRN, WARNARY (03,0003 500 CONVENT X, WARN, WARNARY (03,000 TP (X,LT, XFNK) HELW 700 FORMT (74,341N, 20,04) 700 FORMT (74,240) 700 FORMT (74,340) 700 FORMT (74,34	IF (HERVIELS FEINAL) KOHMTEKFINAL-H HERVIENS IF (HERVIEL OF VORTEX POBITIONS SAVE TABLE OF VORTEX POBITIONS XV(ATRY)=M MVP(HTRY)=M MVP(HTRY)=M MAT(S-HTRY)=M MAT(S-HTRY)=M MAT(S-HTRY)=M MAT(S-HTRY)=M MAT(S-HTRY)=M MAT(S-HTRY)=M M MAT(S-HTRY)=M M M M M M M M M M M M M M M M M M M
	2000 2000 2000 2000 2000 2000 2000 200		8008 226 8008 226 8008 226 8008 226 8008 231 8008 231 8008 231 8008 231 8008 235 8008 235 8008 235 8008 240 8008 250 8008 260 8008 250 8008 250 8008 260 8008 260 8000 260 8008 260 8008 260 8008 260 8008 200 8008 2008 2
<pre>cutation://original restruction://original On 2017=Inductura Don 2017=Inductura Don 2017=Inductura Inductors Inductors Don Logebooksaux(16,1) 2017/iiideEl 2017/iiideEl 2017/iiideEl 2017/iiideEl 2017/iiideEl 2017/iiideEl 2017/iiideEl 2017/iiideEl 2017/iiideEl 2017/2017=10 2017/2017=2017=2017 2017/2017=2017=2017 2017/2017=2017=2017 2017/2017=2017=2017 2017/2017=2017=2017 2017/2017=2017=2017 2017/2017=2017=2017 2017/2017=2017=2017 2017/2017=2017=2017 2017/2017=2017=2017 2017/2017=2017=2017 2017/2017=2017/2017 2017/2017=2017=2017 2017/2017=2017=2017 2017/2017=2017=2017 2017/2017=2017=2017 2017/2017=2017=2017 2017/2017=2017=2017 2017/2017=2017 2017/2017=2017 2017/2017=2017 2017/2017=2017 2017/2017=2017 2017/2017=2017 2017/2017=2017 2017/2017=2017 2017/2017</pre>	DUT COLLEANNER DELTERING DELTERING AUXIALIJAGUXIA-SIJ)) AUXIALIJAGUXIA-JIJUEL AUXIALIJAGUXIAJJUEL 208 YIJJAGUXIALIJUEL 208 YIJJAGUI-LI-QUADOISSAUXIA.J) FES: WHETHEH MUST UE MALVED UN DUUBLED DELTEG DELTEG 200 COV TALMOIM 200 COV TALMOIM FFOELT-PART(4))210,222,222 M MUST MOT UE MALVED, THAT MEANS Y(1) ANE GODD. 200 CLL FCTIXYTORY) 210 CLL FCTIXYTORY) 15 (ML CLIX TYPURN	CULL UUPCKYTJERT, IMLF, MUIM, PRMT) 211 TF(PRMT(2))22/2112121 213 TF(UM 215 TF(UM 215 TF(UM 215 TF(UM 215 TF(UM) 215 TF(UM)210,210,210,211 215 TF(UM)201,210,210,201 216 TF(UM)201,210,210,201 216 TF(UM)201,210,210 216 TF(UM)201,210,210 217 TF(UM)201,210,210 219 TF(UM)201,210,210 210 TF(UM)201,210,210 210 TF(UM)201,210,210 210 TF(UM)201,210,210 210 TF(UM)201,210,210 211 TF(UM)201,210 211	<pre>Ist.vix(n=2.1) i)suvx(n=4.1) i)suvx(n=4.1) i)suvx(n=4.1) i)suvx(n=4.1) i)suvx(n=4.1) i)suvx(n=4.1) i)suvx(n=4.1) i)suvx(n=2.1) ist.v01 ist.v0</pre>

Control the totally file field house of values and the algo here flaces control from a system server. File house of the algo and the a	•	50940011mt tx1vtl (?~v.a.91644,644,514) 34	5010 001 3410 402	12). 52.13ML:44L (muster). at.12m(L eC/(LeCAVG, pr.10m(LeC/(24B)))	187 1198
CUPPLEN SYVJICHALSOFABEN SET LEVELED CUPPLEN SYVJICHALSOFALSOFULE CUPPLEN STATUS STATUS STATUS STATUS STATUS STATUS CUPPLEN STATUS ST		EX PAJUS AND THEIH IMAGES	500	C BX:IUMCX=C/(C=5), BX,IUMCY=C/(C=5),BX,L2MCSUC=C/(2=8),5%, 3Ameia.DEG.)	3411 048 5311 049
<pre>Discretion it is it</pre>			100	ON FURMAT(/SK.SSMREFERFNCE GUANTITES - PLANFURM AREA AVENAGE EMUN.	12011 050
COMPON //LONY ALPAA.CSALP.FTC SPREAKA SURVEX(0.0.0.0) 0.010 JENNE 0.010 JENNE			909	UVCSALONG BITIO.J.JAGHLAVG BITY.CC/ 67 Fürraf (//Ski4me-ParoiCTED-e.ulimikailing vuricity.2x2um8EPawat)	100 1160 18011 056
<pre>speet/standary s</pre>	0		001	IIUN VURIICITY/SAMARVLE, 6X4HKVSE, 7X1MY5X8HGAM/V2PI, 6X1MY, 5X8HGAM/V2	540 11482
<pre>orgenetations orgenetations stearsteart orgenetations</pre>	•	E.,	400	2PI) AR FARMAT (2010.5.2(014.4.610.5)/44400410.4.610.5)	5011 CV4
00 10 JI.W SUBSERVACIONAL DE CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTINUE CON	-		010	72 FORMAT (1M1, 53%, 27MALRODYNAMIC LOADING MEBUL 18//)	3411 050
<pre>construction: construction: procession: construct procession: construct procession: construct procession: construct procession: construct procession: construct procession: construct procession: construct procession: construct procession: constructio</pre>			110	78 FORMAI (/SKI/MFLOF CONDITIONS ==JASHALPHA,SMANBETA/20K/FLC_3/ 1 fig:41	150 1198
CD1450F4564 Distriction (Distriction) (Dist			013	P183.1415426	960 II98
<pre>Discrete Construct Co</pre>			615 615	DTR#T1/140.0	1145 000
<pre>If (02.611.1.00-00) U TO 40 CONTINU CONTINU CONTINU CONTINU EQUAN FELANUJIVAN (VVVNHT.NYY/NZ/NCF/FELANUJIVANCF) CONTINU EQUAN FELANUJIVAN (VVVNHT.NYY/NZ/NCF/FELANUJIVANCF) FELANUJIVAN (VVVNHT.NYY/NZ/NCF/FELANUJIVANCF) CONTEX LATTCE PROGRAM VURTEX LATTCE PROGRAM VURTEX LATTCE PROGRAM DIMENSION FUNDAMINY) DIMENSION FUNDAMINY FUNDAMINY FUNDAMINY) DIMENSION FUNDAMINY) DIMENSION FUNDAMINY) DIMENSION FUNDAMINY) DIMENSION FUNDAMINY) DIMENSION FUNDAMINY DIMENSION FUNDAMINY) DIMENSION FUNDAMINY) DIMENSION FUNDAMINY) DIMENSION FUNDAMINY FUNDAMINY FUNDAMINY FUNDAMINY) DIMENSION FUNDAMINY FUNDAMINY</pre>			•		3911 Cec
CONCUMPLATION OF CONCOL OF 1,0/(BPP+1,0/SGMC)) CONTINUE RETURN RETU		t-04) 60 10 40	017		SH11 065
<pre>c contivut</pre>		L × 1 1 ° V • U • U	810 018 810 018	LE.G.G) \SEP\81	
<pre>Vev = Efternij - 1,0((58FtsberC) - 1,0((58Ft-1,0/56FC)) 0 CGN11WL EGU 0 CGN11WL 1 (1***********************************</pre>			110 020	[Pva]	
<pre>Continue ReUnim ReUnim Buscurtime vTaLaT (rvw.mma.mmr.mc.mc.mc.mem.cew.cfw.3gPah.alphuD, Patale patale statute patate.patate.phu.rma.cew.cfw.2w.PtCL.3UMY.ALEL VURTEX LaTILEE PAGEAAM VURTEX LATILE PAGEAAM VURTEX LATILEMOLE VURTEX PARALEMOLAL SYSTEMALED VILLE AGEACH VURTEX PAGEAAM VURTEX LATILEMOLE VURTEX PAGEAAM VURTEX LATILEMOLE VURTEX PAGEAAM VURTEX LATILE AGEVER PAGEAAM VURTEX LATILEA AGEVER VILLE AGEVER PAGEAAM VURTEX LANEAM VURTEX AGEVER VILLE VURTEX PAGEAAM VILLE AGEAAM VURTEX LANEAM VURTEX AGEVER VILLE VURTEX PAGEAAM VILLE AGEAAM VILLE AGEAAM VILLE AGEAAM VILLE AGEAAM VILLE AGEAAM VILLE AGEAAM VILLE AGEAAMA VILLE AGEAAM VILLE AGEAAM VILLE AGEAAMA VILLE AGEAAMA VILLE AGEAAMA VILLE AGEAAMA VILLE AGEAAMA VILLE AGEAAMA VILLE VILLE AGEAAMA VILLE AGEAA</pre>		■ EYE=6AT(J)/A=(03/60)	110 021 110 022		-
<pre>#FUGW FGUGW BUBRUUTIAE VTALAT (!vv,MMA,MMY,MZ,MCm,MB,VX,PYLYTY,VYLOC,BUMY,XELL PROFESSION BUBRUUTIAE VTALAT (!vv,MMA,MMY,MZ,MC,ML,MYZ,PYLYTY)/ PUBRUUN BUBRUUN BUBLECCOCCEPERTVEETVET,ACULI,ACULZ,AKVBE) UDIMENSION PAILECKI),PBITE(NZ),VVLD,VLOC(NZ),BUMY(NZ),XLEL(NZ), DIMENSION PAILECKI),PBITE(NZ),VVLZ),VVLDC(NZ),BUMY(NZ),XLEL(NZ), DIMENSION PAILECKI),PBITE(NZ),PVX(MMX),PVY(NMX),PVZ(NMY), DIMENSION PAILECKI),PBITE(NZ),FVX(NMX),PVY(NMX),PVZ(NMY), DIMENSION PAILECKI),PBITE(NZ),FVX(NMX),PVY(NMX),PVZ(NMY), DIMENSION PAILECKI),PBITE(NZ),FVX(NMX),PVY(NMX),PVZ(NMY), DIMENSION PAILECKI),PBITE(NZ),FVX(NMX),PVX(NMX),PVZ(NMY), DIMENSION PAILECKI),PWX(NMX),PVX(NMX),PVX(NMX),PVZ(NMY), DIMENSION FUCCESPICESSI,BUPMTE(ZS),SECSUCCS),BECHTE(NX), DIMENSION FUCCESSI,BUPMTE(ZS),SECSUCCS),BECHTE(NX), DIMENSION FUCCESSI,BUPMTE(ZS),SECSUCCS),BECHTE(NX), DIMENSION FUCCESSI,BUPMTE(ZS),SECSUCCS),BECHTE(NX), DIMENSION FUCCESSI,BUPMTE(ZS),SECSUCCS),BECHTE(NX), DIMENSION FUCCESSI,BUPMTE(ZS),SECSUCCS),BECHTE(NX), DIMENSION FUCCESSI,BUPMTE(ZS),SECSUCCS),BECHTE(NX), DIMENSION FUCCESSI,BUPMTE(ZS),SECSUCCS),BECHTE(NX), DIMENSION FUCCESSI,BUPMTE(ZS),SECSUCCS),BECHTE(SS), DIMENSION FUCCESSI,BUPMTE(ZS),SECSUCCS),BECHTE(SS), DIMENSION FUCCESSI,BUPMTE(ZS),SECSUCCS),BECHTE(SS), DIMENSION FUCCESSI,BUPMTE(ZS),SECSUCCS),BECHTE(SS), DIMENSION FUCCESSI,BUPMTE(ZS),SECSUCCS),SECSUCCSS),SECSUCCS),SECSUCCS), DIMENSION FUCCESSI,BUPMTE(ZS),SECSUCCS),SECSUCCSS),SECSUCCS,SS),SECSUCCS),SECSUCCS),SECSUCCS),SECSUCCS),SECSUCCS),SECSUCCS),SECSUCCS),SECSUCCS,SS),SECSUCCS),SECSUCCS),SECSUCCS,SS),SECSUCCS),SECSUCCS,SS),SECSUCCS,SS),SECSUCCS),SECSUCCS,SS),SECSUCCS,SS),SECSUCCS,SS),SECSUCCS,SS),SECSU</pre>	•]		10 023		
<pre>BUBROUTIAE VTALAT ((rv, MAA, MYY NZ, MCm, M3W, CRW, CTW, S38AN, ALPMAD), BIRLE, PALAT ((rv, MAA, MYY NZ, MCm, M3W, CAVE, YY, UCC, SUMY, XFLL(CCCCC, SUMY, STALET, PALATUE, PALATUL, ANVLEY, PALATUL, STALEL FULATUE, FULATUEL PAGEAA USERVICE, PALATUEL, PALATUL, ANVLEZ, ANVEE USERVICH PALATUEL, PALATUEL, ANVLEZ, ANVEE USERVICH PALATUEL, PALATUR, PYX (MMX), PYX (MX), PYX (MX), DIMENSICH PALALE(X2), PBLATE (NZ), Y (NZ), Y (LZ, ANVEE) DIMENSICH PALALE(X2), PBLATE (X2), Y (NZ), Y (LZ, ANVEE) DIMENSICH PALALE(X2), PBLATE (X2), THYZ, PALALE(MX), DIMENSICH PALALE(X2), PBLATE (X2), THYZ, PALALE(X2), DIMENSICH PALALE(X2), PBLATE (X2), THYZ, PALALE (X2), DIMENSICH PALALE(X2), SECSUC, PSCS, SECSUC, SCS DIMENSICH PALALE(X2), SECSUC, SCS SECSUC, SCS DIMENSICH PALALE(X2), SECSUC, SCS SECSUC, SCS DIMENSICH PALALE VILL (CTAVE), PALATUR, PALALE(X2), SECSUC, SCS DIMENSICH VILL, CTANAL, CONSTANT COMMON / VLJ (CTUO, CUNC), THAC, CAVE, SECSUC, SCS DIMENSICH VILL, SCS SI, SAPALE (ZS), SAPALE (ZS), SECSUC, SS), SECSUC, SS), SECSUC, SS), SECSUC, SS), SECSUC, SS), SECSUC, SS), SAPALE COMMON / VLJ (CTUO, SUCH SCS), SECLIF (ZS), SECSUC, SS), SE</pre>			110 024	AXV[E(1) BAXV[1]	3811 470
<pre>BUBRUUTIME YTRLAT (FVW.MMX.MMY.MZ.MEW.MBW.ERW.CTM.BSPAN.ALPMAD, BERUTEFFELSE FUNCTION FVW.FMW.ELTVE.MET.AKVL1.AKVZ.FXVYETLYFTLX. FUNCTION FVW.FMW.ELTVELS.FLANKL1.AKVZ.FXVYES FUNCTION FVW.FMW.ELTVELS.FLANKL2.AKVES NUMTEK LATTICE FROGRAM DIMENSION FUNCHAX2.AFTLS.FLANKL1.AKVL2.AKVES NUMENSION FVW.FMW.D. DIMENSION FVW.FMW.D. DIMENSION FVW.FXVXIND.AFTLS.FLANKL1.AKVL2.AKVES NUMENSION FVW.FMW2.DFLLS.FMM2.AFTLS.AVEL2.AKVES DIMENSION FVW.FXVXIND.AFTLS.FLANKL1.AKVL2.AKVES DIMENSION FVW.FXVXIND.AFTLS.FLANKL1.AKVL2.AKVES DIMENSION FVW.FXVXIND.AFTLS.FTLS.FCMM2.AFTLS.AVELS.AVELLEREND. DIMENSION FVW.FXVXIND.AFTLS.FTLS.FCMM2.AFTLS.AVELS.AVELLEREND. DIMENSION FVW.FXVXIND.AFTLS.FTLS.FCMM2.AFTLS.AVELS.AVELLEREND. DIMENSION FVW.FXVXIND.AFTLS.FTLS.FCMM2.AFTLS.AVELS.AVELS.AVELS.FX DIMENSION FVW.FXVXIND.AFTLS.FTLS.FCMM2.AFTLS.AVELS.FX DIMENSION FVW.FXVXIND.AFTLS.FXFLS.AVELS.FXCMM2.AVELS.FX DIMENSION FVW.FXVXIND.AFTLS.FXFLS.AVELS.FXCMPLS.FXCMPLS.FX DIMENSION FVW.FXVXIND.AFTLS.FXFLS.AVELS.FXCMPLS.FXCMPLS.FXCMPLS.FX DIMENSION FVM.FXVXIND.AFTLS.AVELS.FXCMPLS.FXCMPLS.FXCMPLS.FXCMFX DIMENSION FVM.FXVXIND.AFTLS.AVELS.FXCMPLS.FXCMPLS.FXCMPLS.FXCMFX DIMENSION FVM.FXVXIND.AFTLS.AVELS.FXCMPLS.FXCMPLS.FXCMFX DIMENSION FVM.FXVXIND.AFTLS.AVELS.FXCMPLS.FXCMPLS.FXCMFX DIMENSION FVM.FXMITER DIMENSION FVM.FXMITER AFTLS.FXCMPLS.FXCMPLS.FXCMPLS.FXCMFX DIMENSION FVM.FXCMTTATES AVELSTATEREDITITION FVM.FXCMFX DIMENSION FVM.FXCMTTATES AVELSTATEREDITITION FVM.FXCMFX DIMENSION FVM.FXCMTTATES AVELSTATEREDITITIC FVM.FXMFCMFX DIMENSION FVM.FXCMTTATES AVELSTATEREDITIC FVM.FXMFCMFX DIFF.FXMFCMFXFXMFVMFCMFX DIMENSION FVM</pre>	•				
<pre>BUBRUUTIAK YTALAT (!YV,MMA,MY/NZ,MCR,ME,FRE,CRE,CTE,BBPAN,ALPMAD, BEIMEL,PHILE,PHIO,BREF,CRVE,TY,FVLOC,BBPAN,ALPMAD, CRLOCE,BAPVP,BF,PVE,TAZ,ALPML,CTY,PTLZ,F CRLOCE,BAPVP,BFT,ALML,ANLZ,ALWLL,ANZ,FVLOC,BUNY, BEIMENSICM FUNIKK,MY) DIMENSICM FUNIKK DIMENSICM FUNI</pre>					_
<pre>BUBRUUTINE YTALAT (!'V.,MMA,MY'NZ,MC,MS,FS,CAVE,Y'LGC,SUMY,XLEL, BIALE,FSIMTL,FNID,SREF,CAVE,Y'LGC,SUMY,XLEL, CHUCES,BATVUS,SV.PHY,VET,APHL,MY,ZN,CLGC,SUMY,XLEL, BUREWSIGN FWLWHY,MY DIMENSIGN FWLWHY DIMENSIGN FWLWHY DIMEN</pre>					
<pre>9UBRUUTIME YTLAT (!VV.MMX,MYY.NZ,MGT,MSV,CR4.CTM,S9PAN,ALPMAD, 924ML,SWYTEP,SATTLEPING,SATTLEPING,SATTLAPML,ZMYYPYZ,FTLX,FLLL CULOCE,BAPVY2,SATTLEVYYEF,STLX,FTLYPTLY, FUSHWATH, 100MENSION PERSENSE 1100ML PERSENSENSE 1100ML PERSENSENSE 1100ML PERSENSENSENSE 1100ML PERSENSENSENSENSENSENSENSE 1100ML PERSENSENSENSENSENSENSENSENSENSENSENSENSENS</pre>					
<pre>1</pre>		()~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			
<pre>UBREASION FULCTORS FANCE TAINATTAINTY TAINTIANT TAINTA TAINTA</pre>	-	PRIMLE, PRINTE, PHID, SREF, CAVE, V, VLOC, SUNY, XLEL,	200		-
<pre>NUTRIENTIEE PROGRAM NUTRIENTIEE PROGRAM UNTER LATTIEE PROGRAM DIMENSION FUNNEXAMY) DIMENSION FUNNEXAMY DIMENSION FUNNEXAMY DIMENSION FUNNEXAMY DIMENSION FUNNEXAMY DIMENSION FUNCAZIOPALE (NZ), PUCICAZIO DIMENSION FUNCAZIOPALE (NZ), PUCICAZIO DIMENSION FUNCAZIONATION FUNCAZIONE DIMENSION FUNCAZIONATION DIMENSION FUNCAZIONATION DIMENSION DIMENSION FUNCAZIONATION DIMENSIONATION DIMENSION DIMENSIONATION DIMENSION</pre>		FYT (FYZ)/FILX/FILT/FILZ/ FI (AL PMA) (YA (74 (PCX)			
VZ), KLEL (VZ VYX), CSF(25), AN1(235), AN1(235), AN1(235), AN1(235), VZ) VZ) VZ) VZ) VZ) VZ) VZ) VZ) VZ) VZ)	-		500	D0 111 JC=1+100	
VE), KLEL (NE 44X), EESF(25), ALE(25), ALE(25), ALE(25), CORE, 25 XCOPE,		LAT-LEE PROGRAM	007 C		
417,74,617,441,444,444,444,444,444,444,444,444,4				ALPHAB ALPHAD+0718	
4mk), Ami(2) Ami	۳.	(X2),8UNY(X2),XLEL(N2),			-
ECSF(235), ANL(2)55), ANL(2)55, ANL(2)55, ANL(2)55, ANNO(2)55, AND(2)55, AND(2)5, AN		"CXWN "PVZ (NHX)"	110	IF (NPRINT<.0) 60 TO 510	
ECSF(25), Ani(2)5), Ani(2)5), Pakuga Pakuga Pakuga Koopac, Anitha/V Cores 111, Cores Cores 111, Co	- 1	7 HAL (NRX), 4x)		HRITE (0,54) TF (8614.LT.1.0) HRITE (4,21)	
LEGR(25) AN1(2) AN1(2) AN1(2) AN1(2) AN1(2) AN1(2) AN1(2) AN1(2) AN1(2) AN1(1) AN1(1) AN1(1) AN1(1) AN1(1) AN1(1) AN1(1) AN1(1) AN1(1) AN1(1) AN1(1) AN1(1) AN1(2) AN1(• -	LKVLE(2)		WAITE (6,70) ALPMAD.0274	
PALE(80FHTE PALE(80FHTE PALE(80FHTE PALE(80FHMA/V) ORTHGAMMA/V ORT	۰.	2846(25),4663F(25), . Viti).644113)		221111 (0.00) 2(12,20) 10111 (1.14) Work (1.25)	-
PALK 04 PALK 0	-			WRITE (6.22) CRH,CTM, 98PAN, PHID, XH, ZM, YSEPV, E1ASEP	
XCOP86. XNGT48. XNGT48. XNGT48. XNG248. XNF6. XNF6. XNF6. XNF6. XNF7. XN		8F。8ECTAR。8HPALE。8HPATE .feclif.akvlp。Axv8P		HRITE (6.10) Do 115 Ie2.imax	3811 095 3811 096
RENGTHS/ 5K RENGTHS/ 5K 0xth6anma/v 0xth6anma/v 0xth6anma/v t correctio t correctio t correctio t correctio t correctio and t correction t correction t correction t correction		COPP, XCOPLE, XCOPSE,	020	(celet	
RENGTHS/ 1 RENGTHS/ 1 017HGANHA/V 017HGANHA/V 1 CORRECTIC 1 CORRECTIC 1 CORRECTIC 1 CORRECTIC 1 CORRECTIC 1 CORRECTIC 1 CORRECTIC 1 CORRECTIC 1 CORRECTIC	~ ۳	28EP	021 022	113 HRITE (%,11)JG/Y(1),FBIHLE(1),FBIHTE(1) 510 continué	-
RENGTH9/ 12 RENGTH9/ 12 017HGAMHA/V 017HGAMHA/V 12,5940 12,533H5(12) 12,533H5(12) 14,533H5(12) 14,53412 14,5343 11(-,345) 11(-,345) 11(-,345)			500		
RENGTN9/ 14 0x7HGAMMA/V 0x7HGAMMA/V V CDRREGTUC V CDRREGTUC 1,5X3HXCM/7 4, 1,5X3HXCM/7 4, 1,1X,1			520		
0 11.553HXCG710 12.553HXCG710 12.553HXCG710 4. 4. 5.111. 12.553HXC 112.553HSU 112.553HSU 110.5354HYU	i	ORMAI (141,27%,324HOUHSESHOE VORTEX CHARACTERISIICS// Sx244BUUMDLEG HIDPOINI CORDINATES,28KHANDRTX STRENGTHS/ 5X 38 	8811 020 8811 027 2011 027	DO 2012 JC=1,4 2012 CIR(JC)=12_506314(SIR(ALPH4ALPMAL(JC)) AC9PH10 (TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	3411 104 3811 104
1%,F0.4) C CORRECTIC L SX3HXCH,J 4. 2. 1. 1. 1. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	~ _	[KU, GK, IKX, IUX, UK, GK, IKK, GKSHUNEFT, SKAHAFMIRIUIN, IUK/IGK/IGKAHA/YJ 90 fursti (/Skyhata/IU2, Skiny, skenaréet [e. skamureft] [e]			
V CORRECTIC L'5X3NXCM/7 4. E8.11X. E8.11X. 1.1Z.8X.5N8L 1.1C.,3X.7MV.		СОРМАТ (IIO,5F10,3) Сормат (IQ,1X,F9,4,2X,F9,4,2X,F0,4,2X,F0,4,2X,F8,4,11X,F8,4) 31	030 031	DO 9411 JCF1.M 9411 FVN(JC,MP1)aClR(JC)	
4, 4, 2,1,4,5,1,4,6 4,5,4,5,4,5,4,5,1 1,4,5,4,5,4,5,4,1,4,1,5,4,1,4,1,4,1,4,1,		TORMAT (//[ZM46HGEUMETHY ADJUSTED FOR COMPRESSIBILITY CORRECTION) 30 Commany filing structures available for the structure of the structure of the structure of the structure of the	032		
4, 68,11%, X,F9,5,1%,F 1H2,8%,5H8L 1H2,8%,5H8L 1(~~,3%,7H7,	<u> </u>		034		
E8,11%, X,F9,5,1%,F 1HZ,8X,5H8L 1HZ,8X,5H8L 1U,V,3X,7HV,		±.		CALL INVERB (FVN.1.8.18X,NAY)	
Х, F9 « 5, 1 Х, F 1 М Z, B X, 5 М BL 1 M Z, B X, 5 М BL A ND « I 3, I L ∿, J X, 7 М Y,		E.S. 11X.	037	00 9812 JCat, H Sand Firstervell . Mais	3611 114
1HZ,8X,5H8L AND,13, 1[-4,3X,7H7,		X,F9,5,1X,F9,5	6.00		
AND.13, 164,3X,74Y,		1 H Z , 8 X , 5 H B L O F L		LINDING CALCULATIONS	
AND, [], [~,]X, 747/				CALL LOADI (PCP,M,MPL,IMAM,MX,MX,Y,YLOC,CMLOCB,XLEL,CR4,CTM, Sopar,Philocofi, Sofil,Abmi,Alphi,Alpha,SREF,CAVE,	3611 119 S611 120
ATTERNET AND AND AND A DATE DATE DATE DATE AND		AND.13,	SH11 044 SH11 045	Z PILX.PTLY.PTLZ.PYX.PYY.PYZ.68%.88PYVP, Jelyel.vel.aflyary.ZM.887A.akyLE Telyediny.10.525.525.555.555.555.555.555.555.555.55	
	-	2X*7HSTATIU**5X*7HY/(8/	_		-

Currence 1. Currence 3. Currence 3. Currence 3. Currence 3. Currence 3. Currence 3. Currence 3. Currence 4. Curre	<pre>BUBROUTINE LUADI (MCw,m,MP; / FMX,MM:MZ,Y,YLUC.CHLUCU,XLEL.L4',</pre>	амрыць/амранце Кчцр,акуар Це,хсорае, ,7мөцццге, ,5х, ,7мөцццге, ,5х, сме,7хансоц, сме,7хансоц,	C TORMI (/IX.TTRUCHAR COPORTINAT/TAL/THELDRCZ ,5X,7HBLDRCS ,5X,6HBLDRCS ,5X,6HBLDRCS ,5X,6HBLDRCS ,5X,6HBLDRCS ,5X,6HBLDRCS ,5X,6HBLDRCS ,5X,6HBLDRCS ,5X,6HBLBRC ,1X,15HBLSY COPPOLENTY) 27 FORATI (/IX.55H M/V AT 300006E MIDPOLNY) 28 FORATI (/IX.55H M/V AT 300000 UF LEFT TALL) 28 FORMI (/IX.55H M/V AT 300000 UF LEFT TALL) 28 FORMI (/IX.55H M/V AT 300000 UF LEFT TALL) 28 FORMI (/IX.55H M/V AT 300000 UF LEFT, 5X,7HBLSF2 ,5X, 3812 28 FORMI (/IX.55H M/V AT 300000 UF LEFT, 5X,7HBLSF2 ,5X, 3812 28 FORMI (/IX.55H M/V AT 37,048LBF7) 28 FORMI (/IX.515HLSF COMPOLENTS) 28 FORMI (/IX.515HLSF COMP
	8811 145 8811 145 8811 146 8811 146 8811 146 8811 155 8811 155 8815 881		
E SLUPLS AND EATEMMALLY Mal(J), vei(J), vei(J), mei(J) VVD , Sa(J), cir(J)	OUTPUT JPAN LUAUING COEFFICIENTS IF (NPPINI,6E.0) NNITE (0.12) IF (NPPINI,6E.0) NNITE (0.45) D0 300 IZZIAAX D1 12211		(1)=Y([=1)) 6.0) EU TO 315 VBE-CVVB 1D+AXVLE(J)+DUM-AAKVBE487)

I.

L

.

9 9 9 9 9	3412 04 3412 04 3412 04 3412 06 3412 062 2010	-080-
က က က ေ		richio K Corteuro Elfan(J1)scrlocii)/>
		TLLIFIELIFT ALTING UN LEFT LLG UF NING VURTEX TAIL AT THE 3/4 Elemental Panel Chord
	0.70	TLDRAGEFORCE ACTING ON LEFT LEG OP NING VORTEX TAIL AT THE 3/4 Elemental Panel Chonuvit acts alung ving Line and Puints Funnahd
	2 072	TLLIFT(J1)#ELPANL(JT)#FAC#V(JT)#(2,0/3REF)#CIMMET#CUSALP
COMPUTE VELUCITIES NEEDED FUR LUAVING CALGULATIONS S	074 075	TLDRA6(JT)=tLPArL(JT)=FAC+Y(JT)=(=2,0/9HFF)=CIRNET=S1~4LP
SIDEMABH V INDUCEU dY mING VORTILES AT THE 3/4 CHORD UP THE LEFIS Trailing ming vortex Legs	2 C 7 8 2 C 7 4 2 C 7 6 7 C 7 7 C 7 6 7 C 7 7 C 7 C 7 C 7 C 7 C 7 C 7 C 7 C 7	TLBF1(J1)=ELPANL(J7)=FAC==K(J1)=(2,0/34F5)=C1#AFT TLBF2(J1)=ELPANL(J7)=FAC=C=S1ALP)=(2,0/34FF)=C1#4ET LBF(J1)=TLBF1(J1)=(1272-(J7)
		BLLIFf a LIFT ACTING UN BUUND LEG UP THE MING VORTEX AT THE Midpolnt
ADD EXTLANALLY INDUCED VELNCITY VEI	-	BLDRAGE -DRAG FURCE ACTING AT SAME FUINT
~ ~ ~	12 064 12 065 112 066	SHPYVTE TAN(\$HPVVP(JT)) Faclome (2.0/SHE)22.048n(JT)=CIR(JT) Bllffittim Faclom-GSMH
	112 087	BLLIFZCJJJM FACLDH+C=U(JJ)+CO3ALP)+(GPH] BLLIFSCJJJM FACLDH+C+U(JJ)+S+PVV1 +CO3ALP
711(2)=PTLY(J)+PYY(RN) 21 21=PTLY(J)+PYY(RN) 21=PTLX(J)+PYX(RN) 31	122 090	BLLIFG(J)]B FACLDH+08(J)SPM125IALP BLLIFG(J)B FACLDH+08(J)) BLLIFG(J)BULLFA(J)+6LLIFZ(J)+6LLIFZ(J)+ALLIFZ(J)+AALIFEZ/F
··##{#P}"+[#(T]"+A#(T)"	12 092 C	BLDR62(J1)= FACLD#+U(J1)+SIMALP+C8PM1
	12 045 240 51	BLDR03(JT)3 FACLUA+(-V8(JT))+8#9VYT #8INAL9 0.00064(JT)3 FACLUA+V8(JT)+89N1+6004AL9 0.0007
СОНТЕЧИЕ *(JT)#V(JT)+((РЧИ(1)+РЧИ(2))ФСДЯ(ЧМ))/12_5ФФ371 *(JT)#V(JT)+((РЧИ(2))ФСДЯ(АМ))/12_5ФФ371	12 091 12 098 12 099	Lectricity functional sectors (1) flower the Long (1) Lectricity of the Long (1) sector (1) sector (1) sector (1) Left(1) of a tender(costification)
VORTEX BOUND LEG MIDPOINT	12 100 12 101 12 102 12 105	BLBF2(JT)#FACLOM=(=GI4ALPegnPvY1) BL#F5(JT)#FACLOM=(=J)#BPN1) BL#F4(JT)#FACLOM=ME(JT)#BPNY1 BLBF4(JT)#HL#F2(JT)=WHFF2(JT)=WHFF2(JT)=WHFF2(JT)=WHFF2(JT)=WHFF2(JT)=WHFF2(JT)=WHFF2(JT)=WHFF2(JT)=WHFF2(JT)=WH
ADD EXTERNALLY INDUCED VELOCITIES UELVEI		TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
	1110	
		BECLIFA(BECTIUN LIFT=LOCAL CHORD)/2=8PAN
		8ECLÍF(1)4CMLJF(1)+(9KEF/2,0+9K(J1)+C9FH144,0+ 95 FAN)) BECQUC(1)# CHOBUC(1)+(9KF/7(2,0+3K(J1)+C9FH144,0+89FAN)) Becard
CALL [X7744(84P44P(XX),PX1,X84,744(L),284,94(2X),744(L),F44(L), F44(L))	119	
	121	SUMLEFEBURLEF2.04654[1F1(1]
00 U(18)=U(18) ([Fu~(1)+FUA(2))→CIK(NN))/12,566371 PG(18)=UW(18)→((Fu~(1)+FUA(2))→CIK(NN))/12,566371 86	9812 124 8812 124 8412 125	BUARRss BUADRE-200406(1) DUMABUT(1,0+8ET42a(BupkLE(1)++2))/(BE142+(1,0+(BnPuLE(1)++2)))) BUMEBUMEP(FARDS(1)+0UM
2 .5643 71		SUMSUCESUMBUC+≷,0+CHUSUC(I)+D∪M If (i.e. imax) 6∪ Tu 4=5 Co 10 1.10
SCALCULATE FORLES UN CHORDWISE RUN UF ELEMENTAL PANELS ON IME MING SE Sterreiteren en seinen sein Sterreiteren seinen s		
		urtinger (J1P) = [LSF(J1) TIPSF(J11P) = [LSF(J1) CUMTINUE
	135	JEFPE] If (1.61.NGFP) LUEPE
		CHDTHK(1)= SGRT(CHOVUC(1)+CHOSUC(1)+CHHOGF(1)+CHROGF(1))

/

3612 5412 3412 5012 5016

 ZLLHUMALLEUMA(=(BLLLFf(J1)*SIVALP*ALDRAG(JT)*GUBALP)*PVT(J1)*
 3912

 184.55(JT)*VX(J1))/CAVE
 3912

 9109
 ZRIVEZADA-(=(BLLLFf(J1)*SIVALP*ALDRAG(JT)*GUBALP)*VV(JT)*WLSF(J #RITE (6.17) (BL&F1(J), BL&F2(J), BL&F3(J), BL&F4(J), BL&F(J), J&JT, MN) IF (APMINILT) IF (APMINILT) MRIE (apis) unupm,cmv,cmvs,cliut,pmur,surdrg,ca,cdncla,cx,8um8f, Mrie (apis) unupm,cmv,cmvs,cliut,pmur,surdrg,ca,cdncla,cx,8um8f, DO 0921 JTal.m.mGm mmanthCm 1921 meite (2,17) (Blurg2(J),Blurg5(J),Blurg6(J),Hlurg5(J),Blúra6(J), 1321/mm) WARNANCM Marte (4,10) (ULLIFI(J),BLLIF2(J),BLLIF3(J),BLLIF4(J),BLLIF5(J), JBLLFT(J),JATI,MN) Marte (4,20) XČŐPŘČCMOŘMAXČOPPAS,048UMTMRAXCUPLAZ,04TJPFYAXCOPBEJ/CMTUT 16 (4PR141,666,0) maite (4,35) xcOPP,xcOple,xcUPSE,xcOP 17(4PR141,11,100) rlturm 1111 (411,111,100) rlturm 672 06L13a(7(1)-948A)/(7(1)-9(1-1))
xcomlesklel(1)-06L1a-(xlel(1))
673 comfinue
673 comfinue HRITE (6.3) (TLORAG(J),JAJT,MN) Hrite (6.25) HRITE (6,5) (ILLIFT(J),JBJT,H~) HRITE (6,21) IF (C1*°LT°IOL) GU TU 068 CPTIP1# (2MUM~ZLEMOM)/TIPFY GU TU 069 XCOPPE (#MOM/CNUKM)*CAVE+XM D0 570 [E4,1MÅX IF (Y(1)=YBAR) 570,671,672 ималиност HKITE (6,3) ((()),јејг,нм) HKITE (6,3) ыдііс (b,3) (a(J),JeJ1,HV) жылт (b,5) COPSEs -COPTIP+CH# 00 6408 J181,1,260 Hrenner 00 8422 JIEL. 4, NCK DU 8904 JIEL, N. NCH DO 8924 JT#1,M,MCH 00 8925 J1#1, M. NCH DO 8907 JIRL.M.MCH 670 CUNTI-UE 671 XCOPLE=XLEL(1) HITE (6,24) (***) CPTIPIE0.0 N RAN + NCH * 32 + 21821 NNEW-NCE 60 10 473 CONTINUE CONTINUE CUNTI VUE HITE 0224 **UNN** OBNE 8924 8925 8908 2298 8926 8068 6907 510 J u 204 290 279 280 283 205 204 208 282 ŝ 272 275 281 3612 3612 3612 KM, YM, ZM JF (SWCTHR, VE,O,O) YBARE -SWNONY/SNCTHM Skuntpel Staticisher(C/2,0)+(SUMSKC/2,0)+KUMSFaSUMSF) skuntpel Stuf Fuker, Munkunkunkunskans, and Alge TP Stuf Fuker, Munkunkunkunkun Forran alge TP Fores on Voreex Tratling Leg Only are accounted Forran alge UNIT Lenden Alung aingitP/use PITCHING MUMENT CALCULATIUN, "UMENTS TAKEN ABUUT POINT and uivided by gashefacane. TIPSFC(JTIP)= ((TIPSF(JTIP)/TIPEP)#SREF)/(4,0485PAN) TIPADME ZTPMDM+ ((TIPSF(JTIP)#PLLK(JT))/CAVE Continue 1186 Ĩ SLDCURSPANLUAU COFFICIENT CLC/CLCAVE FOR CK8LT= 8GRT(8UML)F+8UML)F+8UMDRG=SUMDRG) CHDRM=SUMDRG=SIMALP+8UML)F+CO3ALP CaesumdrG+CU3ALP+8UML)F+8IMALP 10 (485(SULLE),LT,1,0L-07) GU TO 3811 10 (1282) 10 (1282) 10 TU 5010 10 10 5010 IF (88%51%ALP).LT.1.064-07) 60 TO 7001 Akuppa 2.092untmk/(314ALP93NALP) Akuppa (-2.0911PfY)/(31ALP93NALP) 60 TO 7402 60 TO 7402 Akuster0.0 IF (AUS(SUMLIP).LT.:.0E=07) GD 70 311 Colcessindad((Sumlip=Sumlif) GD TU 312 Codcise0.u :-ZTPHUM/TIPFY)+(CAVE/CRH) IF (C40RH.LT.0.0) F==1.0 CNVE2.*SUMTMRAF CNV88+2.011PFY*F CNV88+2.011PFY*F CNTDTE CNURM + CNV8 TOL# (1.06+02)#CR# 15 (CT#.LT.10L) GO TO 000 T1PEPECT#/D XLUC# (AJTIP=0.25)+TIPEP TIPEY#TIP5f(JTIP) 00 662 JIIPEL.MCW JIE(14842)=NC++JIIP AJIIPE JIIP CLT0T = SUMLIP 3LUCU(I)=0.0 ZTPHOMBO.0 TIPFYB0.0 U.0.0.0.412 COPTIP=0.0 667 CONTINUE []PFYE0.0 CONTINUE CONTINUE 647 CONTINUE CUPTIPEC 2 Fel.0 7401 7402 311 2 = **6**66 599 U 000 u

1020

8910	0 +×174 (0.5) (U(J),JaJ1,×2)	3412 509	SURAUUTINE JATAA (PSILAATITITAKKATTA)	
		5612 570 3412 371		201 1195
		3012 312	CUMMUN/INF/UUI	3114 005 Sol4 004
1169	1 ##1TE (0,3) (VB(U),UBUT,MP)	5012 573 SM12 574		
	write (b.22) Wein	3812 575	DATA PSILUAAFAILD/0, 0,/ , FS/FC.FPS/FPC/0,1,0,0,1./	3414
	DC 8943 JIEL.A.NC.	3812 370 Shi2 472	IF (PUIL "EL" PUILD) GU TU 10 FA E STREPSITI	9614
992	MABANARGM . 6923 ARITE (4.5) (Abil).jejt.mm)	3612 576	FC = COS(F811)	7 8 7 4 3 8 7 4
J		3612 379 3612 380		1198
		5612 561 5412 561	10 CONTINUE	#195
		Jac Sian	IT (AFTILICUAPTILO) GU TU 20 FPS4SIX(AFXII)	5614
			FPCECUS(APHII) APHITOAAPHII	195
			20 CONTINUE	7195
				1195
			F468XXX60UT¥7 D1247888XN45PC	2014
				1 H C
	SUBROUTINE IAVERS(A, NGYO, N, NAAX)	100 E188		9014
00	CORPOLIZATIO COLAT SINGLIFACOOS CACALICAS	5013 003	F 3822240UTY F 6872240UXY	9814
	DIMENSION A(NMAX,MMAX),X(300)	3615 004 5414 005	DUMYZEYYY=F65e24ZaFPC	7198
		561 1 00e	FF REFZAFTOWLITTEFFOR LACEFER FB) 498,44600742400742	3115
	1+28 [dz	5815 007 5615 005	FFB650RT (F14F)+FFL) FF04F54F464-64	19
		600 S188		9195
•	DO 14 JEL-NHI TRISI+1	110 1198 110 1198		9195 9195
		8813 012		1 1 1
	ATAX4AGG(A(1+1)) Do io xelpisi	3613 014 3813 014		914
	AXTAXEBOO(A(X,1))	8815 015 8811 015	IF(AUS(FFA),LT,TULRAC) GO TU 262 Annuales fea	3814 024
	JF TATTANGTANANAN BU - C - C - C - C - C - C - C - C - C -	8815 017	FUORES(22569664448999)=FC50054	9614 040
:		8615 018	FVORES(XXX=DUMYS=ZZZ=FS)=DUMY	3814 042
01	IF(AMAX,LT,1,00E-12) GO TÚ 10 If(AMAX,LT,1,00E-12) GO TÚ 10	3813 020	60 TO 265	
	IF(MAX_E0.1) 60 TO 12 00 11 1=1-00187	8813 021 5813 022	Zez fuonteo. Fvonteo.	540 5198
	76 RPEA(1.4)	520 5185	F 2076 80.	
:	A (I , L) HA (MAX, L) A (MAX , L) HITEMP	8815 025 8815 025	Zes If(ABU(FFQ),LT,IULANC) 60 TO 263 C	8814 048
	2910-8-0102	8613 026		050 t185
2	7 00 14 JHT1.7 IF (A(J,1)) 30,14,30	920 TIA		3814 U51 3414 U51
-	50 CONSTRACT(J,[)/A([,[) 50 13 14[44]44	3813 029 3613 030	50 T0 206 243 \$vtw0m0.	
13	1 A(J,L)BA(J,L)+A(],L)+60NS1	5813 031		2014 024 2014 055
7.	1 COVIIAUE DD 15 141.N	5015 015 3415 035	Z06 IF(AB3(FFE),LT ₆ TOLANC) GO TU Z04 C	
		8815 034 8411 015	DUXYE(1, = F1/FFB)/FFE #18104-1-1014-1-11	3614 056
-	IF (ALLIA) JUNITORS	3813 036		3614 059 3614 060
-		5615 037 5615 038	C 60 10 267	3814 041
		8615 059 5415 059	264 FV114280 61510100	2014 003 2014 003
8	B CO 21 IBAPPIAPLSY Di 20 kkelar	3815 041 3815 041	201 FULAFUONE 201 FULAFUONE	9014 004 9111 004
		3813 042 2813 043	F V 186 V O VE 46 V T × 0 46 V T × 0 46 V V × 0 46 V V × 0 46 V ×	3814 066
	IF(H.EB.N) 60 TO 20	361 5 044		
	jak jaioj	361 5 045		3414 064
•		251 5 047		
20	IF(J.+KE.W) 60 T0 10 D x(x)ex(x)/A(K.*)	940 7 198 707 0 4 6		
		3613 050 3414 051		
•	rtuttertut Retuk:	3813 U52		
	END	SCV 2195		

COMPONENTS	TYPE	NORMAL-FORCE COEFFICIENT	LIFT COEFFICIENT	PITCHING-MOMENT COEFFICIENT	CENTER OF PRESSURE LOCATION	AXIAL-FORCE COEFFICIENT
NOSE	Potential Viscous	c _{NN,p} c _{NN,v}	с _{LN,P} с _{LN,P}	c ^m N;P c ^m N,v	x, v, b	
WING IN PRESENCE OF BODY	Potential Viscous	^С N _W (B), р С _{NW(B)} , v	с _{LW(B), P} с _{LW(B), v}	cm _{W(B)} ,p cm _{W(B)} ,v	x _{W(B)} ,p x _{W(B)} ,v	CAW(B), P CAW(B), V CAW(B), V
BODY IN PRESENCE OF WING	Potential Viscous	^с _N B(w),р с _N B(w),v	с _L B(W), P с _L B(W), v	c _m B(W),P c ^m B(W),v	x _B (W),P x _B (W),V	
AFTERBODY		c _n à	c _{LA}	ч л	Ч Ч	
TAIL IN PRESENCE OF BODY	Potential Viscous	^C N _T (B),P ^C N _T (B),v	с _L T(B), р с _L T(B), v	с ^т т(B), р с ^т т(B), v	x _T (B),P x _T (B),γ	с _А т(в), р с _А т(в), v
BODY IN PRESENCE OF TAIL	Potential Viscous	^{С_М_В(т),р с_М_{В(т),v}}	с _{тв(т)} , р с _{тв(т)} , у	С _м в(т), р С _м в(т), р С _м в(т), v	х ^в (т), р Х _в (т), v	
COMPLETE CONFIGURATION			r, c	υ ^ε	I×	c _A

Table I.- Summary of force and moment coefficient notation.

Figure 1.- Input format for SUBSON program.

If NCAMW = 0, go to Item 11.

ITEM 10 FORMAT (8F10.5); MSWW cards.

Treated (J)	21	- -	- -	ی ۲	6 1	-	
If $MSWT = 0$, go to Item 17.	17.						

ITEM 11 FORMAT (8F10.5)

I ⁷ YSEPT	
61 RAVGT	
1 ³ BS2T	
*1 XCPT	
² ZHLT	
²¹ XHLT	
¹¹ XTET	
¹ XLET	
	-

ITEM 12 FORMAT (8F10.5)

1 ⁷¹		
1e1		
Dİ		
-		
-	┝	┥
E		
1 ²¹ PSITET(1)		
L ¹¹ PSILET (1)		
¹ PHIT		
_		

ITEM 13 FORMAT (8F10.5)

-		-
F_		
1		
2 		
, ,	_	
21		
1 <u>Y</u> T (J)		
		-

If NPSIT = 0, go to Item 16. ITEM 14 FORWAT (8F10.5)

	Г	Π
r,	L	Ц
61		
ß		Ц
-		
21		
11		
¹ PSILET (J)		
	-	-

ITEM 15 FORMAT (8F10.5)

PSITET(J)	"	1	н н	-	 61 6	r
	I					

If NCANT = 0, go to Item 17. ITEM 16 FORMAT (8F10.5); MSWT cards

1 ²¹			
L'ALPHLT(J) ¹¹			

ITEM 17 FORMAT (12, F6.2, 9F8.3) CNDEX

: : :	I"'AKVLT2 ["AKVST "WLIMIT		
	T. ALPIT "AKVLT]		
:	- AKVSW		
	AKVTM2		
	AKVIMI		
	ALPIN		
	ALFEND		
-	-		

(b) Page 2.

Figure 1.- Concluded.

Figure 2.- Geometric nomenclature for SUBSON program.

Figure 3.- Mean surface detail for a wing with camber, twist, and dihedral.

Figure 5.- Canard-body-wing configuration for sample cases 1 and 2.

Figure 6.- Wing-body-tail configuration for sample case 3.

2 SAMP RE 0, 2. 4. 6. 7.5 8. 10, 12, 14, 16, 18, 20, 24, 26, 28, 29, 30, 32, 34, 36, 38,	35 0 LE CASE 1 F. NASA T 0.02 .30 .53 .72 .84 .88 1.03 1.18 1.33 1.46 1.58 1.68 1.92 1.935 1.95 1.95 1.95 1.98 2.02 2.03	0 M X - 6 4 3	1		10 O CANARD + PAGE, AND	0 1 BUDY - WIN KOENIG	IG CUN	10 FIGURATJ UARY 196	0 0	1	0
44, 46, 48, 50, 52, 54, 56, 58, 60, 64, 67, 59, 37, 50, 1,43, 4,63, 29, 0, 5,355, 14,195, 14,	2,03 2,01 1,98 1,93 1,67 1,67 1,67 1,67 1,67 1,67 1,67 1,67	U. 11. 0, 2,2 39. -10 6,0	3	446, 0, 2,63 0,0 7,42	8,775	8, 5,03 3,43 15,55 10,12	1	1,485	0.5 5.03 4.23 15.55 12.84		
1 4. 1 8. 1 12. 1 16. 1 0. 1 4. 1 8. 1 12. 1 12. 1 16.	0 0 0 10 10 10 10 10	,53 ,53 ,53 ,53 ,53 ,53 ,53 ,53 ,53 ,53				• 4 1 • 4 1					

(a) Sample case 1.

Figure 7.- Sample input decks for SUBSON program.

2 35 SAMPLE	0 CASE 2	0 1	0	8	10 WING	0 - BUDY	1 1 CONFIGURA	0 D	0	0 0	0
REF.	NASA TM	X=643	BR	ADY,	PAGE,	AND KUE	ENIG	JANUARY	1495		
0	0.02										
2.	.30										
4	53										
6	,72										
7,5	.84										
6	88										
10.	1.03										
12.	1,18										
14	1,33										
16,	1.46										
18,	1,58										
20.	1,68										
22.	1.76										
24.	1,83										
26.	1,88										
28.	1,92										
29,	1,935										
50.	1.95										
52.	1.98										
54.	5.										
36.	5.05										
38.	2.03										
44.	2,03										
40.	2.01										
48.	1,98										
50.	1.93										
52,	1,87										
54.	1.77										
56.	1.63										
58.	1.48										
60.	1.27										
62.	1.03										
04.	0,77										
66. 67	0.43 0.02										
67. 39.3	0,02	υ.		446.		19,11	8.	1.0		0,5	
29.	54.	39.3		0.		0	15,55	Ź,		15,55	
£7. V.	59.0	-10,		0,0		•••				- 0	
3,355	4,71	6,065		7,42		8,775	10,12	11.4	85	12,84	
14,195	15.55	••••				•					
59.0	59.0	59,0		59.	0	59,0	59,0	59.	0	59:0	
59.0	59.0			•		-				<i>a</i> -	
-10.0	-10,0	-10,0	0	-10	.0	-10.0	-10.0	-10) . 0	-10.0	
=10.0 =10.0	=10,0	• - •									
1 4,0	0.0	0,41	0.0		0,0	0.0	0.0	0.0	0,0	1.0	
1 8.0	0.0	0.41	0,0		0,0	0.0	0.0	0.0	0.0	1.0	
1 12 0	0.0	0 41	0.0		0.0	0.0	0 + 0	0.0	0.0	1.0	
1 16.0	0,0	0.41	0.0		0.0	0.0	0.0	0.0	0.0	1.0	j ^
1 20.0	0,0	0.41	0.0		0.0	0.0	0,0	0.0	0.0	1,0	J
*	* • •	· •	-								

(b) Sample case 2.

Figure 7.- Continued.

	3 -1 Le case e Ref, nac	3 Da RM A52115	D. KUEN	IG AP	0 1 DDY = TAIL PRIL 1953		0 0 1 0 IUN
ο,	.01	inthe c	ALCULATION				
35	.146						
1.4	.393						
5.6	1.04						
8,4	1,35						
11,23	1.61						
14,04	1,81						
14,7	1.85						
16,85	1,97						
19,66	2.09						
22,46	2,18						
25,27	2,23						
28,08	2,25						
30,89	2,23						
33,67 36,5	2,18						
39,3	2 .09 1.97						
42.12	1,81						
44.92	1,61						
47.74	1,35						
50 5	1.04						
54,8	39						
56,2	.01						
25,05	0.	0,13	313,76	13,65	22,	1.0	0.5
14.7	32,5	25,05	Q .	0.	15,32	5.	15,32
0.	53,2	0.	0.01				
3,332	4.664	5,996	7.328	8.66	9,992	11,324	12,056
13,988	15,32						
44,92	50.37	46,21	0.	0.0	9.25	1,22	9,22
0, 2 3 3 3	9,5	=9,5	6 33	4 33	7 33	8 25	9,22
2,22	3,22	• ² • ⁴ • ²	5,22 1,0	6,22 ~6,	7,22	55,8	0,1
	0.	•50 0.	1.0	~~•	1.	0, 1,	v ę •

(c) Sample case 3.

Figure 7.- Concluded.

SCARD1 NHEAD= 2 NTBL= 35 NPRINT = 0MPRINT= 0 NOSEV= 1NTRIM= 0 NCWW= 4 MSWW= 10 NCAMW= 0 NPSIW= 0 NSFPW= 1 NCWT= 8 MSWT = 10NCAMT= 0 NPSIT= 0 NSEPT = 1NBODY= 0 & END CANARD - BODY - WING CONFIGURATION SAMPLE CASE 1 REF. NASA TH X-643 BRADY, PAGE, AND KOENIG JANUARY 1962

(a) Page 1.

Figure 8.- Sample case from SUBSON program.

FLOW CONDITIONS -	ALPHA	MACH	BETA
	16.00	0.0000	1.0000

CONFIGURATION GEONETRY -

REFFRENCE AREA = 446.000 REFERENCE LENGTH = 19.110

WING	XLF 7.5000	X TE 15.5500	8/2 5.0300	XHL	ZHIL	C(ROAT)	C (T1P)	Y(SEP)
	7.5000	12.3300		11.0000 ANGLE	0.0000	8.0500	0.0000	5.0300
	DIHEDRAL	Y(RT)	LE	TE				
	0.000	1.030	63.430	0.000				
		Y (WENG)	LE	TE				
		1.430	63.430	0.000				
		1.830	63.430	0.000				
		2.230	63.430	0.000				
		2.630	63.430	0.000				
		3.030	63.430	0.000				
		3.430	63.430	0.000				
		3.830	63.430	0.000				
		4.230	63.430	0.000				
		4.630	63.430	0.000				
		5.030	63.430	0.000				
TAIL	XLE	XTE						
TAIL	29.0000	54.0000	8/2 15.5500	XHL	ZHL	C(ROOT)	C(TIP)	Y(SEP)
	24.0000	54.0000	SWEEP	39-3000 ANGLE	0.0000	25.0000	0.0000	15.5500
	DIHEDRAL	Y(RT)	LE	TE				
	0.000	2.000	59.000	-10.000				
	0.000	Y(TAIL)	LE	-10.000 TE				
		3.355	59.000	-10.000				
		4.710	59.000	-10.000				
		6.065	59.000	-10.000				
		7.420	59.000	-10.000				
		8.775	59.000	-10.000				
		10.120	59.000	-10.000				
		11.485	59.000	-10.000				
		12.840	59.000	-10.000				
		14.195	59.000	-10.000				
		15.550	59.000	-10.000				
800V		MORE						
800Y		NOSE		AVERAG	ERADIUS	CENTER OF	MOMENTS	

THETA FINENESS R(BASE) WING TAIL X Z DXI 8.000 4.464 0.840 1.030 2.000 39.300 0.000 0.500	DX001	UT 00
--	-------	----------

.

TABLE OF BODY COORDINATES

	X	R	s	DR/DX
1	0.00000	0.02000	0.02000	0.14000
2	2.00000	0.30000	0.30000	0.12750
3	4.00000	0.53000	0.53000	0.10500
- 4	6.00000	0. 72000	0.72000	0.08750
- 5	7.50000	0.54000	0.84000	0.07906
6	8.29982	0.90249	1.43000	0.07656
7	9.09965	0.96247	1.83000	0.07500
8	9.89947	1.02746	2.23000	0.07500
9	10.69930	1.08245	2.63000	0.07500
10	11.49912	1.14243	3.03000	0.07500
11	12.29895	1.20242	3.43000	0.07500
12	13.09877	1.26241	3.83000	0.07500
13	13.89860	1.32239	4.23000	0.07063
14	14.69842	1.37540	4.63000	0.06563
15	15.49825	1-42738	5-03000	0.06500
16 17	15.55100	1.43081	1.43081	0.06500
	16.00000	1.46000	1.46000	0.06250
18 19	18.00000 20.00000	1.58000	1.58000	0.05500
20	20.00000	1.58000	1.68000	0.04500
21	24.00000	1.83000	1.76000	0.03750
22	26.00000	1.88000	1.83000	0.03000
23	28.00000	1.92000	1.88000	0.02250
24	29.00000	1.93500	1.93500	0.01750
25	31.25508	1.96883	3.35500	0.01500 0.01333
26	33.51018	1.99510	4.71000	0.01083
27	35.76527	2.01765	6.06500	0.00774
28	38.02036	2.03000	7-42000	0.00274
29	40.27545	2.03000	8.77500	0.00000
30	42.51390	2.03000	10.12000	-0.00173
31	44.78564	2.02214	11.48500	-0.00788
32	47.04073	1.99439	12.84000	-0.01653
33	49.29581	1.94760	14.19500	-0.02459
34	51.55089	1.88347	15.55000	-0.03739
35	54.00099	1.76993	1.76993	-0.05817
36	56.00000	1.63000	1.63000	-0.07250
37	58.00000	1.49000	1.48000	-0.09000
38	60.00000	1.27000	1.27000	-0.11250
39	62.00000	1.03000	1.03000	-0.12500
40	64.00000	0.77000	0.77000	-0.15000
41	66.00000	0.43000	0.43000	-0.29000
42	67.00000	0.02000	0.02000	-0.41000

(b) Page 2.

Figure 8.- Continued.

.

	INCIDENCE		WI	WING		TAIL		
AL PHA 16.00	м 0.00	W1NG 10.000	TAIL 0.000	KVLF* 0.530	KVSE* 0.000	KVLF* 0.410	KVSE* 0+000	W/V LIMIT 1.000

NOSE VORTICES -	GAM/2*PI*V*RR	Y/PR	ZIRB	XS/RB
	0.1013	0.484	1.435	0.000

VELOCITY INDUCED AT SPECIFIED FIELD POINTS ON WING (BESKIN)

	x	Y	Z	v.	/V(INF)	W/V(INF)
1	9.334	1.230	0.289	7.3	3907E-02	1.4845E-01
2	11.247	1.230	-0.043	-1.	5989E-02	2.2914E-01
7	13.159	1.230	-0.375	-1.4	49278-01	2.2207E-01
4	15.07?	1.230	-0.707	-2.	3183E-01	1.3501E-01
5	9.984	1.630	0.176		3220E-02	1.0602F-01
6	11.697	1.630	-0.121		0400E-02	1.3666E-01
7	13.409	1.630	-0.419		7487E-02	1.4100E-01
8	15.122	1.630	-0.716		26036-01	1.1584E-01
ģ	10.634	2.030	0.064		8533E-03	7.7436E-02
10	12.147	2.030	-0.199		8259E-02	9.2183F-02
	13.659	2.030	-0.462		5810E-02	9.7566E-02
11		2.030	-0.724		4273E-02	9.0812E-02
12	15.172				4004E-03	5.9141E-02
13	11.284	2.430	-0.049			6.7343E-02
14	12.597	2.430	-0.277		5569E-02	7.1841E-02
15	13.909	2.430	-0.505		1219E-02	
16	15.222	2.430	-0.733		7004E-02	7.0810E-02
17	11.934	2.830	-0.162		4094E-03	4.7053E-02
18	13.046	2.830	-0.355		3267E-02	5.1996E-02
19	14.159	2.830	-0.549		2243E-02	5.5218E-02
20	15.272	2.830	-0.74?		1525E-02	5.6004E-02
21	12.584	3.230	-0.275		6405E-03	3.8717E-02
22	13.496	3.230	-0.433		1426E-02	4.1803E-02
23	14.409	3.230	-0.592		6674E-02	4.3960E-02
24	15.322	3.230	-0.750		21576-02	4.5106E-02
25	13.233	3.630	-0.388		07556-03	3.2734E-02
26	13.946	3.630	-0.512		96098-03	3.4635E-02
27	14.659	3.630	-0.635		2992E-02	3.5975E-02
28	15.372	3.630	-0.759		6176E-02	3.6982E-02
29	13.883	4.030	-0.501		1396E-03	2.8290E-02
30	14.396	4.030	-0.590		7461E-03	7.9244E-02
31	14.909	4.030	-0.679	-1.0	0431E-02	3.0087E-02
32	15.422	4.030	-0.768	-1.	2184E-02	3.0814E-02
33	14.533	4.430	-0.614	-6.	97276-03	2.4690F-02
34	14.846	4.430	-0.668		7663E-03	2.5172E-02
35	15.159	4.430	-0.722	-8.1	5818E-03	2.5622E-02
36	15.472	4.430	-0.777	-9.	4201E-03	2.6045E-02
37	15.183	4.830	-0.726	-6.	7264E-03	2.1858E-02
38	15.296	4.830	-0.746	-6.9	9634E-03	2.2005E-02
39	15.409	4.830	-0.766	-7.	2029E-03	2.2150E-02
40	15.522	4.830	-0.785	-7.4	4449E-03	2.2293E-02
	SUMMARY OF	VORTEX ST	RENGTHS A	ND POSIT	ION AT X	= 7.500
	VORTEX	GAMMA/2	*PI*V	Y	z	
	1	0.08		0.406	1.206	
	•					

		•	
1	0.085127	0.406	1.2

(c) Page 3.

Figure 8.- Continued.

VELOCITY INDUCED AT SPECIFIED FIELD POINTS ON WING

	x	Y	2	V/V(INF) W/V(INF)
1	9.334	1.730	0.289	1.36856-02 -1.43666-02
ż	11.247	1.230	-0.043	1.3146E-03 -9.5434E-03
3	13.159	1.230	-0.375	-1.2206E-03 -4.4134E-03
4	15.072	1.230	-0.707	-1.1452E+03 -2.1045E-03
5	9.984	1.630	0.176	8.6317E-03 -5.4274E-03
6	11.697	1.630	-0.121	3.24718-03 -5.18938-03
7	13.409	1.630	-0.418	7.99046-04 -3.52656-03
8	15.122	1.630	-0.716	-9.2118E-06 -2.2802E-03
ğ	10.634	2.030	0.064	5.6603E-03 -2.2443E-03
10	12.147	2.030	-0.199	3.1833E-03 -2.7330E-03
iĭ	13.659	2.030	-0.462	1.5972E-03 -2.3859E-03
12	15.172	2.030	-0.724	7.7890E-04 -1.9164E-03
13	11.284	2.430	-0.049	3.8802E-03 -9.4032E-04
14	12.597	2.430	-0.277	2.6784E-03 -1.4122E-03
15	13.909	2.430	-0.505	1.7609E-03 -1.4827E-03
16	15.222	2.430	-0.733	1.1751E-03 -1.3987E-03
17	11.934	2.830	-0.162	2.7675E-03 -3.6009E-04
18	13.046	2.830	-0.355	2.1667E-03 -7.0150E-04
19	14.159	2.830	-0.549	1.6644E-03 -8.6118E-04
20	15.272	2.830	-0.742	1.2976E-03 -9.2238E-04
21	12.584	3.230	-0.275	2.0382E-03 -8.9085E-05
22	13.496	3.230	-0.433	1.7328E-03 -3.1138E-04
23	14.409	3.230	-0.592	1.4742E-03 -4.5484E-04
24	15.322	3.230	-0.750	1.2671E-03 -5.4875E-04
25	13.233	3.630	-0.388	1.5491E-03 4.0093E-05
26	13.946	3.630	-0.517	1.3995E-03 -9.5439E-05
27	14.659	3.630	-0.635	1.2743E-03 -1.9726E-04
28	15.372	3.630	-0.759	1.1650E-03 -2.7801E-04
29	13.883	4.030	-0.501	1.2079E-03 1.0062E-04
30	14.396	4.030	-0.590	1.1455E-03 2.7879E-05
31	14.909	4.030	-0.679	1.0917E-03 -3.5315E-05
32	15.422	4.030	-0.768	1.0378E-03 -9.0684E-05
33	14.533	4.430	-0.614	9.7275E-04 1.3155E-04
34	14.846	4.430	-0.668	9.5290E-04 9.7355E-05
35	15.159	4.430	-0.722	9.3188E-04 6.5137E-05
36	15.472	4.430	-0.777	9.0940E-04 3.4764E-05
37	15.183	4.830	-0.726	8.0665E-04 1.4557E-04
3.6	15.296	4.830	-0.746	8.0142E-04 1.3565E-04
39	15.409	4.830	-0.766	7.9604E-04 1.2591E-04
40	15.522	4.830	-0.785	7.9090E-04 1.1633E-04

TOTAL INDUCED VELOCITY AT SPECIFIED FIELD POINTS ON WING

	×	Y	z	V/V(INF)	W/V(INF)
1	9.334	1.230	0.289	8.75926-02	1.3409E-01
2	11.247	1.230	-0.043	-1.4674E-02	2.1960E-01
3	13.159	1.230	-0.375	-1.5049E-01	2.1766E-01
4	15.072	1.230	-0.707	-2.3297E-01	1.3290E-01
5	9.984	1.630	0.176	3.1852E-02	1.0060E-01
6	11.697	1.630	-0.121	-1.7152E-02	1.31476-01
7	13.409	1.630	-0.418	-7.6687E-02	1.3748E-01
8	15.122	1.630	-0.716	-1.2604E-01	1.1356E-01
9	10.634	2.030	0.064	1-0514E-02	7.5192E-02
10	12.147	2.030	-0.199	-1.5076E-02	8.9450E-0Z
11	13.659	2.030	-0.462	-4.5213E-02	9.5180E-02
12	15.172	2.030	-0.724	-7.3495E-02	8.8895E-02
13	11.284	2.430	-0.049	1.47986-03	5.82016-02
14	12.597	2.430	-0.277	-1.2890E-02	6.59308-02
15	13.909	2.430	-0.505	-2.9458E-02	7.0358E-07
16	15.222	2.430	-0.733	-4.58296-02	6.9411E-02
17	11.934	2.830	-0.162	-2.6420E-03	4.6693E-02
18	13.046	2.830	-0.355	-1.1100E-02	5.1294E-02
19	14.159	2.830	~0.549	-2.0579E-02	5.43578-02
20	15.272	2.630	-0.742	-3.0227E-02	5.5081E-02
21	12.584	3.230	-0.275	-4.6022E-03	3.8628E-02
22	13.496	3.230	-0.433	-9.6934E-03	4.1492E-02
23	14.409	3.230	-0.592	-1.5199E-02	4.3505E-02
24	15.322	3.230	-0.750	-2.0889E-02	4.4558E-02
75	13.233	3.630	-0.388	-5.5263E-03	3.2774E-02
26	13.946	3.630	-0.512	-8.5613E-03	3.4540E-02
27	14.659	3.630	-0.635	-1.1718E-02	3.5778E-02
28	15.372	3.630	-0.759	-1.5011E-0Z	3.6704E-02
29	13.883	4.030	-0.501	-5.9317E-03	2.83918-02
30	14.396	4.030	-0.590	-7.6007E-03	2.9272E-02
31	14.909	4.030	-0.679	-9.3397E-03	3.0052E-02
32	15.422	4.030	-0.768	-1.1146E-02	3.0723E-02
33	14.533	4.430	-0.614	-5.9999E-03	2.4822E-02
34	14.846	4.430	-0.668	-6.8134E-03	2.5269E-02
35	15.159	4.430	-0.722	-7.6499E-03	2.5687E-02
36	15.472	4.430	-0.777	-8.5107E-03	2.6080E-02
37	15.183	4.830	-0.726	-5.9198E-03	2.2003E-02
38	15.296	4.830	-0.746	-6.1620E-03	2.2141E-02
39	15.409	4.830	-0.766	-6.4069E-03	2.2276E-02
40	15.522	4.830	-0.785	-6.6540E-03	2.24098-02

(c) Concluded.

.

Figure 8.- Continued.

,

M I NG	LIFTING S	URFACF CAL	CULAT INN							
FLOW CO	NDITIONS	- ALPHA 26.000	BETA 1.0000							
LATTICE	ARPANGE	IENT - 4 C	HORDWISE AN	D 10 SPANK	ISE ELEME	NTS				
REFFREN	CE QUANTI	TIES - PL S	ANFORM AREA = 32.386		CHORD 4.05					
C(PDOT) 8.050	C(T1P) 0.000	8/2 4.000	DIHEDPAL 0.000	XCM 0.000	ZCM 0.000	Y(SEP) 4.000	ETA(SEP) 1.000			
STATION	Y	SWEEP LE	SWEEP TE							
1	0.400	63.430	0.000							
2	0.800	63.430	0.000							
3	1.200	63.430	0.000							
4	1.600	63.430	0.000							
5	2.000	63+430	0.000							
6	2.400	63.430	0.000							
1	2.800	63.430	0.000							
R	3.200	63.430	0.000							
9 10	3.600	63.430 63.430	0.000							
10	4.000	63.430	0.000							
CNP 1-00133	CNV 0.79972	CNV S 0-00000	CLP 1.07112	CMP -1.11890	CD I 0.08809	CA -0.39037	CD1/CL2 0.07678	CXV CVV 0.19519 -0.34899	CRP 1.07474	
x		IFS OF CENT	ERS OF PRES	SURE DUE 1	0			,		
POTENTIAL		EADING EDG		SIDE EDGE		OVERALL				
-4.5	736	-4.	3412	-0.0	000	-4.4426	•			
SP	ANWISE LO	AD DISTRIB	UTION							
STATION	Y/(8/2)	LOCAL CHO	RD.C CI+	C/CL+CAVG	C1.#C	/{2+R}	CX+C/(2+8)	CY+C/(2+B)	C SUC +C/{ 2+1}	ETA.DEG.
1	0.0500	7.6501		.1919		230	0.0225	-0.0443	0.0497	90.3978
2	0.1500	6.8503		.2551		402	0.0832	-0.1434	0.1658	93.5590
						111				

1	0.0500	7.6501	1.1919	0.3230	0.0225	-0.0443	0.0497	90.3978
2	0.1500	6.8503	1.2551	0.3402	0.0832	-0.1434	0.1658	93.5590
3	0.2500	6.0504	1.2371	0.3353	0.0973	-0.1709	0.1966	93.0956
4	0.3500	5-2506	1.2043	0.3264	0.1106	-0.1966	0.2256	92.7838
Ś	0.4500	4-4508	1.1505	0.3118	0-1195	-0.2139	0.2450	92.6166
6	0.5500	3.6510	1.0746	0.2912	0.1241	-0.2230	0.2552	92.5148
7	0.6500	2.8511	0.9743	0.2641	0.1246	-0.2245	0.2568	92.4564
8	0.7500	2-0513	0.8438	0.2287	0.1205	-0.2172	0.2484	92.4529
9	0.8500	1.2515	0.6676	0.1809	0.1085	-0.1952	0.2233	97.5091
10	0.9500	0.4258	0.4008	0.1086	0.0768	-0.1369	0-1570	92.7293

PRE	DICTED	TRAILING	VORTICITY	SÉPARATI	ON VORTICITY
KVLF	KVSE	Y	GAM/V2P1	۷	GAM/V2PI
4.16155	-0.00000	3.3559	0.34558	2.1711	0.22611

(d) Page 4.Figure 8.- Continued.

SUMMARY OF VORTEX STRENGTHS AND POSITION AT X = 16+001

VORTEX	GAMMA/2*PI*V	¥	z
1	0.085127	0.397	1.788
2	0.345578	4.386	-0.790
3	0.226110	3.701	0.162

VELOCITY INDUCED AT SPECIFIED FIELD POINTS ON TAIL (BESKIN)

			_		
	X 32.354	¥ 2.677	z 0.000	V/V(1NF) 0.0000	W/V(INF)
1 2	35.324	2.677	0.000	0.0000	1.5098E-01 1.5584E-01
3	38.293	2.677	0.000	0.0000	1.5844E-01
4	41.262	2.677	0.000	0.0000	1.5844E-01
5	44.231	2.677	0.000	0.0000	1.5752E-01
6 7	47.200	2.677	0.000	0.0000	1.5243E-01
	50.169	2.677	0.000	0.0000	1.4215E-01
8 9	53.138 34.376	2.677 4.032	0.000	0.0000	1.2595E-01
10	37.033	4.032	0.000	0.0000	6.8058E-02 6.9481E-02
ìĭ	39.690	4.032	0.000	0.0000	6.9852E-02
12	42.348	4.032	0.000	0.0000	6.9852E-02
13	45.005	4.032	0.000	0.0000	6.9128E-02
14	47.662	4-032	0.000	0.0000	6.6554E-02
15 16	50.320 52.977	4.032 4.032	0.000	0.0000	6.2388E-02 5.5986E-02
17	36.397	5.387	0.000	0.0300	3.87928-02
18	38.743	5.387	0.000	0.0000	3.9134E-02
19	41.088	5.387	0.000	0.0000	3.9134E-02
20	43.434	5.387	0.000	0.0000	3.9011E-02
21	45.779	5.387	0.000	0.0000	3.8363E-02
22 23	48.125 50.471	5.387	0.000	0.0000	3.69268-02
24	52.816	5.387 5.387	0.000	0.0000 0.0000	3.4796E-02 3.1623E-02
25	38.418	6.742	0.000	0.0000	2.49858-02
26	40.452	6.742	0.000	0.0000	2.4985E-02
27	42.486	6.742	0.000	0.0000	2.4985E-02
28	44.520	6.742	0.000	0.0000	2.4815E-02
29 30	46.554 48.588	6.742	0.000	0.0000	2.4262E-02
31	50.621	6.742 6.742	0.000	0.0000	2.3347E-02 2.2117E-02
32	52.655	6.742	0.000	0.0000	2.0356E-02
33	40.439	8.097	0.000	0.0000	1.7323E-02
34	42.162	8.097	0.000	0.0000	1.7323E-02
35	43.884	8.097	0.000	0.0000	1.7242E-02 1.7018E-02
36 37	45.606 47.328	8.097 8.097	0.000	0.0000	1.7018E-02
38	49.050	8.097	0.000	0.0000	1.6621E-02 1.6029E-02
39	50.772	8.097	0.000	0.0000	1.5265E-02
40	52.494	8.097	0.000	0.0000	1.4228E-02
41	47.453	9.447	0.000	0.0000	1.27268-02
42	43.865	9.447	0.000	0.0000	1.2668E-02
43 44	45.276 46.688	9.447 9.447	0.000 0.000	0.0000	1.2552E-02 1.2337E-02
45	48.099	9.447	0.000	0.0000	1.2014E-02
46	49.511	9.447	0.000	0.0000	1.1641E-02
47	50.922	9.447	0.000	0.0000	1.1164E-02
48	52.334	9.447	0.000	0.0000	1.0537E-02
49 50	44.475 45.574	10.802	0.000	0.0000	9.66885-03
51	46.674	10.802	0.000	0.0000	9.5661E-03 9.4378E-03
52	47.774	10.802	0.000	0.0000	9.2525E-03
53	48.874	10.802	0.000	0.0000	9.2525E-03 9.0404E-03
54	49.973	10.802	0.000	0.0000	8.7832E-03
55 56	51.073 52.173	10.802	0.000	0.0000	8.5006E-03 8.1248E-03
57	46.503	12.162	0.000	0.0000	7.4608E-03
58	47.290	12.162	0.000	0.0000	7.3732E-03
59	48.077	12.162	0.000	0.0000	7.2527E-03 7.1331E-03
60	48.864	12.162	0.000	0.0000	7.1331F-03
61 62	49.651 50.438	12.162	0.000	0.0000	6.9949E-03 6.8342E-03
63	51.224	12.162	0.000	0.0000	6.6755E-03
64	52.011	12.162	0.000	0.0000	6.4612E-03
65	48.575	13.517	0.000	0.0000	5.8164E-03
66	49.000	13.517	0.000	0.0000	5.7581E-03
67	49.475	13.517	0.000	0.0000	5.6921E-03
68 69	49.950 50.425	13.517 13.517	0.000	0.0000	5.6132E-03
70	50.900	13.517	0.000	0.0000	5.5348E-03 5.4570E-03
71	51.375	13.517	0.000	0.0000	5.4570E-03 5.3798E-03
72	51.850	13,517	0.000	0.0000	5.2728E-03
73	50.546	14.872	0.000	0.0000	4.5559E-03
74	50.709	14.872	0.000	0.0000	4.5337E-03
75 76	50.873 51.036	14.872 14.872	0.000	0.0000	4.5117E-03 4.4897E-03
77	51.199	14.872	0.000	0.0000	4.46778-03
78	51.363	14.872	0.000	0.0000	4.4458E-03
79	51.526	14.872	0.000	0.0000	4.4240E-03
80	51.689	14.872	0.000	0.0000	4.3906E-03

(e) Page 5. Figure 8.- Continued.

.

VELOCITY INDUCED AT SPECIFIED FIELD POINTS ON TAIL

	x	Y	z	V/V(INF)	W/V(INF)
1	32.354	2.677	0.000	1.7874E-01	-2.2402E-01
2	35.324	2.677	0.000	3.1029F-01	-3.2266E-01
3	38.293	2.677	0.000	1.0757E-01	-3.3855E-01
	41.262	7.677	0.000	7.0380E-02	-2.6807E-01
5	44.231	2.677	0.000	5.8058E~02	-2.2844E-01
Á	47.200	2.677	0.000	5.3841E-02	-2.0138E-01
67	50.169	2.677	0.000	5.7258E-02	-1.8460E-01
8	53.138	2.677	0.000	6.5031E-02	-1.7365E-01
ğ	34.376	4.032	0.000	1.48476-01	-6.5528E-02
10	37.033	4.032	0.000	1.4903E-01	-2.93896-02
ii	19.690	4.032	0.000	2.4147E-01	3-1539E-02
12	42.348	4.032	0.000	2.58158-01	-2.1987E-01
13	45.005	4.032	0.000	1.31258-01	-1.8253E-01
14	47.662	4.032	0.000	1.0230E-01	-1.4819E-01
15				9.37876-02	-1.2672E-01
	50.320 52.977	4.032	0.000		-1.20/20-01
16		4.032	0.000	9.5011E-02	-1.1363E-01
17	36.397	5.387	0.000	1.1078E-01 1.0657E-01	3.4582E-03
18	38.743	5.307	0.000	1.06576-01	1-17296-02
19	41.088	5.387	0.000	1.0651E-01	2.54126-02
20	43.434	5.387	0.000	1.1753E-01	4.7628E-02
21	45.779	5.387	0.000	1.6110E-01	7.2286E-02
22	48.125	5.387	0.000	2.4523E-01	3.5050E-02
73	50.471	5.387	0.000	2.3979E-01	-6.7861E-02
24	52.816	5.387	0.000	1.9439E-01	-8.6268E-02
25	38.418	6.742	0.000	7.2975E-02	2.6455E-02
26	40.452	6.742	0.000	7.1481E-02	2.8525E-02
27	42.486	6.742	0.000	7.0389E-02	3.1153E-02
28	44.520	6.742	0.000	6.9659E-02	3.4714E-0Z
29	46.554	6.742	0.000	6.9646E-02	3.9654E-02
30	48.589	6.742	0.000	7.1254E-02	4.6268E-02
31	50.671	6.742	0.000	7.5934E-02	5.4384E-02
32	57.655	6.742	0.000	8.1855E-0Z	5.9478E-02
33	40.439	8.097	0.000	4.7903E-02	3.0158E-02
34	42.162	8.097	0.000	4.7487E-02	3.0621E-02
35	43.884	8.097	0-000	4.7044E-02	3.1046E-02
36	45.606	8.097	0.000	4.6421E-02	3.1524E-02
37	47.328	8.097	0.000	4.5594E-02	3.2300E-02
38	49.050	8.097	0.000	4.4744E-02	3.3695E-02
39	50.772	8.097	0.000	4.4245E-02	3.5946E-02
40	52.494	8.097	0.000	4.4111E-02	3-8053E-02
41	42.453	9.447	0.000	3.2506E-02	2.7844E-02
42	43.865	9.447	0.000	3-2397E-02	2.7858E-02
43	45.276	9.447	0.000	3.2397E-02 3.2203E-02	2.7784E-02
44	46.688	9.447	0.000	3.1867E-02	2.7712E-02
45	48.099	9.447	0.000	3-1380E-02	2.7769E-02
46	49.511	9.447	0.000	3.0789E-02	2.8095E-02
47	50.922	9-447	0.000	3.0231E-02	2.8818E-02
48	52.334	9.447	0.000	2.9763E-02	2.9621E-02
49	44.475	10.802	0.000	2.28348-02	2.4144E-02
50	45.574	10.802	0.000	2.27826-02	2.4041E-02
51	46.674	10.602	0.000	2.2666E-02	2.3903E-02
52	47.774	10.802	0.000	2.2474E-02	2.3790E-02
53	48.874	10.802	0.000	2.22046-02	2.3743E-02
54	49.973	10.802	0.000	2.1881E-02	2.38326-02
55	51.073	10.802	0.000	2.1540E-02	2.4088E-02
56	52.173	10.802	0.000	2.1216E-02	2.4417E-02
57	46.503	12.162	0.000	1.6526E-02	2.0513E-02
58	47.290	12.162	0.000	1.6472E-02	2.0416F-02
59	48.077	12.162	0.000	1.6389E-02	2.03358-02
60	48.864	12.162	0.000	1.6269E-02	2.0270E-02
61	49.651	12.162	0.000	1.6122E-02	2.02516-02
62	50.438	12.162	0.000	1.5955E-02	
63	51.224		0.000	1 67766-02	2.0292E-02 2.0380E-02
64		12.162	0.000	1.5775E-02 1.5597E-02	2.03346-02
65	52.011 48.525	13.517	0.000	1.2250E-02	1.7405E-02
	40.727	13.317	0.000	1.2204E-02	1.7366E-02
66	49.000	13.517	0.000	1.22040-02	1.73000-02
67	49.475	13-517	0.000	1-2145E-02	1.7343E-02
68	49.950	13.517	0.000	1.2082E-02	1.7334E-02
69	50.425	13.517	0.000	1.2009E-02	1.7342E-02
70	50.900	13.517	0.000	1.1933E-02	1.7358E-02
71	51.375	13.517	0.000	1.1851E-02	1.7387E-02
72	51.850	13.517	0.000	1.1770E-02	1.7442E-02
73	50.546	14.872	0.000	1.1770E-02 9.2179E-03 9.1990E-03	1.4923E-02 1.4924E-02
74	50.709	14.872	0.000	9.1990E-03	1.49Z4E-02
75	50.873	14.872	0.000	9.1798E-03	1.4926E-02
76	51.036	14.872	0.000	9.1600E-03	1.4928E-02
77	51.199	14.872	0.000	9.1388E-03	1.4933E-02
78	51.363	14-872	0.000	9.1174E-03 9.0959E-03	1.4938E-02 1.4943E-02
79	51.526	14.872	0.000	9.0959E-03	1.4943E-02
80	51.689	14.872	0.000	9.0750E-03	1.4956E-02

(e) Continued.Figure 8.- Continued.

TOTAL INDUCED VELOCITY AT SPECIFIED FIELD POINTS ON TAIL

	x	Y	2	V/V(INF)	W/V(INF)
1	32.354	2.677	0.000	1.7874E-01	
2	35.324	2.677	0.000	3.1029E-01 1.0757E-01	-1.6683E-01
3	38.293	2.677 2.677	0.000	7.0380E-02	-1.8011E-01 -1.0962E-01
4	41.262 44.231	2.677	0.000		-7.0923E-02
6	47.200	2.677	0.000		-4.8957E-02
7	50.169	2.677	0.000		-4.2450E-02
8	53.138	2.677	0.000		-4.7702E-02
ġ	34.376	4.032	0.000	1.4847E-01	2.5303E-03
10	37.033	4.037	0.000	1.4903E-01	4.0092E-02
11	39.690	4.032	0.000	2.4147E-01	1.0139E-01
12	42.348	4.032	0.000		-1.5002E-01
13	45.005	4.032	0.000	1.3125E-01	-1.1340E-01
14	47.662	4.032	0.000	1.0230E-01	-8.16418-02
15	50.320	4.032	0.000	9.3787E-02	-6.4330E-02
16	52.977	4.032 5.387	0.000	1.1078E-02	-5.7645E-02 4.2250E-02
17	36.397 38.743	5.387	0.000	1.06576-01	5.08638-02
19	41.088		0.000	1.06518-01	6.4546E-02
20	43.434	5.387 5.387	0.000	1.1753E-01	8.66395-02
20	45.779	5.387	0.000	1.6110E-01	8.6639E-02 1.1065E-01
22	48.125	5.387	0.000	2.4523E-01	7.1976E-02
23	50.471	5.387	0.000		-3.3064E-02
24	52.816	5.387	0.000	1.9439E-01	-5.4644E-02
25	38.418	6.742	0.000	7.29756-02	5.1441E-02
26	40.452	6.742	0.000	7.1481E-02	5.3511E-02
27	42.486	6.742	0.000	7.0389E-02	5.6139E-02
28	44.520	6.742	0.000	6.9659E-02	5.9529E-02
29	46.554	6.742	0.000	6.9646E-02	6.3915E-02
30	48.588	6.742	0.000	7.1254E-02	6.9615E-02
31	50.621	6.742 6.742	0.000	7.5934E-02 8.1855E-02	7.6501E-02 7.9833E-02
32 33	52.655 40.439	8.097	0.000	4.7903E-02	4.74816-02
34	42.162	8.097	0.000	4.7487E-02	4.7944E-02
35	43.884	8.097	0.000	4.7044E-02	4.8288E-02
36	45.606	8.097	0.000	4.6421E-02	4.8542E-02
37	47.328	8.097	0.000	4.5594E-02	4.8921E-02
38	49,050	8.097	0+000	4.4744E-02	4.9724E-02
39	50.772	8.097	0.000	4.42458-02	5.1212E-02
40	52.494	8.097	0.000	4.4111E-02	5.2282E-02
41	42.453	9.447	0.000	3.2506E-02	4.0570E-02
42	43.865	9-447	0.000	3.2397E-02	4.0526E-02 4.0337E-02
43 44	45.276 46.688	9.447 9.447	0.000	3.2203E-02 3.1867E-02	4.0049E-02
45	48.099	9.447	0.000	3.1380E-02	3.9784E-02
46	49.511	9.447	0.000	3.0789E-02	3.9736E-02
47	50.922	9.447	0.000	3.02316-02	3.99828-02
48	52.334	9.447	0.000	2.9763E-02	4.0158E-02
49	44.475	10.802	0.000	2.2834E-02	3.3813E-02
50	45.574	10.802	0.000	2.2782E-02	3.3607E-02
51	46.674	10.802	0.000	2.2666E-02	3-3341E-02
52	47.774	10.802	0.000	2.2474E-02	3.3042E-02 3.2783E-02
53	48.874	10.802	0.000	2.2204E-02	
54	49.973	10.802	0.000	2.1881E-02	3.2616E-02
55 56	51.073	10.802	0.000	2.1540E-02 2.1216E-02	3.2589E-02 3.2542E-02
57	52.173 46.503	12.162	0.000	1.65268-02	2.7974E-02
58	47.290	12.162	0.000	1.6472E-02	2.77898-02
59	48.077	12.162	0.000	1.6389E-02	2.7588E-02
60	48.864	12.162	0.000	1.6269E-02	2.7403E-02
61	49.641	12.162	0.000	1.6122E-02	2.7246E-02
62	50.438	12.162	0.000	1.5955E-02	2.7126E-02
63	51.224	12.162	0.000	1.5775E-02	2.7055E-02 2.6996E-02
64	52.011	12.162	0.000	1.5597E-02 1.2250E-02	2.32228-02
65 66	48.525	13.517	0.000	1.22048-02	2.31248-02
67	49.475	13.517	0.000	1.21456-02	2.3036F-02
68	49.950	13.517	0.000	1.2082E-02	2.29478-02
69	50.425	13.517	0.000	1.2009E-02	2.2876E-02
70	50.900	13.517	0.000	1.19336-02	2.2815E-02
71	51.375	13.517	0.000	1.1851E-02 1.1770E-02	2.2767E-02
72	51.850	13.517	0.000	1.1770E-02	2.2714E-02
73	50.546	14.872	0.000	9.2179E-03	1.94796-02
74	50.709	14.872	0.000	9.1990E-03	1.94586-02
75	50.873	14.872	0.000	9.1798E-03 9.1600E-03	1.9437E-02 1.9418E-02
76 77	51.036 51.199	14.872 14.872	0.000	9.1388E-03	1.9400E-02
78	51.363	14-872	0.000	9.1174E-03	1.9383E-02
79	51.526	14.872	0.000	9.0959E-03	
80	51.689	14.872	0.000	9.0750E-03	1.9346E-02

(e) Concluded.Figure 8.- Continued.

TATL	IFTING S	URFACE CAL	CULATION						
FLOW COP	DETIONS	- ALPHA 16.000	BETA 1.0000						
LATTICE	ARPANGEP	IENT - 8 C	HORDWISE AND	10 SPANW	ISE ELEMEN	ITS			
REFERENC	E QUANTI	TIES - PL S	ANFORM AREA = 339.479	AVERAGE CAVG =					
C (RONT) 25.000	C (7 [P) 0-000	R/2 13.550	DIHEDRAL 0.000	XCM 0.000	ZCM 0= 000	Y(SEP) 13.550	ETA (SEP) 1.000		
STATION	Y	SWEEP LE	SWEEP TE						
	1.355	59.000	-10.000						
1	2.710	59.000	-10.000						
3	4.065	59.000	-10.000						
3	5.420	59.000	-10.000						
5	6.775	59.000	-10.000						
6	8.120	59.000	-10.000						
ž	9.485	59.000	-10.000						
	10.840	59.000	-10.000						
9	12.195	59.000	-10.000						
10	13.550	59.000	-10.000						
				C 110		~	CD1/C/ 3	 C W W	C D D

CNP CNY CNYS CLP CMP CDI CA CDI/CL2 CXY CYV CRP 0.69736 0.24320 0.00000 0.70679 -0.75117 0.06511 -0.13223 0.13035 0.06611 -0.10206 0.70978

X CONRDINATES OF CENTERS OF PRESSURE DUE TO POTENTIAL LIFT LEADING EDGE SUCTION SIDE EDGE SUCTION OVERALL -13.4937 -12.7614 -0.0000 -13.3043

SPANWISE LOAD DISTRIBUTION

STATION	Y/(8/2)	LOCAL CHOPD,C	CL+C/CL+CAVG	CL+C/(2+B)	CX+C/(2+B)	CY+C/(2+B)	CSUC+C/(2+B)	ETA, DEG.
1	0.0500	23.7530	1.1358	0.1855	0.0076	-0.0101	0.0126	96.2013
2	0.1500	21.2590	1.1961	0.1954	0.0175	-0.0258	0.0312	93.1809
3	0.2500	18.7650	1.2785	0.2089	0.0257	-0.0397	0.0473	91.8755
4	0.3500	16.2709	1.2946	0.2115	0.0331	-0.0513	0.0611	91.8737
5	0.4500	13.7769	1.2120	0.1980	0.0379	-0.0589	0.0700	91.7272
6	0.5496	11.2921	1.1069	0.1808	0.0406	-0.0633	0.0753	91.6849
7	0.6496	8.7981	0.9797	0.1600	0.0416	-0.0648	0.0770	91.6808
8	0.7500	6.2949	0.8243	0.1347	0.0404	-0.0629	0.0745	91.6962
9	0.8500	3.8009	0.6268	0.1024	0.0361	-0.0562	0.0668	91.7396
10	0.9500	1.2769	0.3463	0.0566	0.0251	-0.0387	0.0461	91.8927

SUMMARY OF VORTEX STRENGTHS AND POSITION AT X = 55.001

VORTEX	GAMMA/2*PI*V	¥	z
1	0.085127	5.660	1.135
2	0.345578	2.941	5.499
3	0.226110	3.062	3.738
4	0.758969	13.930	0.000
5	0.168842	9.668	1.918

(f) Page 6.

Figure 8.- Continued.

		INCIDENCE -	W1	NG	TAIL		
ALPHA	M	WING TA1		KVSE* 0.000	KVLE# 0.410	KVSE* W/V L 0.000 1.0	
16.00	0.00	10.000 0.00	0.530	0.000	0.410	0.000 1.0	00
SUMMARY OF FOR	CE AND PI	TCHING MOMENT CO	DEFFICIENTS				
		CN	CM	XCP	CL	CDI	CA
NOSE							
NUJLEES	POTENTIAL	2.8508-03	5.191E-03	4.497E 00	2.740E-03	7.857E-04	
	VORTEX	1.005E-0		4.026E 00			
WING							
W(B)	POTENTIAL	7.1616-02	2 1.022E-01	1.202E 01			
W(B)	VORTEX,LE	3.0316-02		1.184E 01			5.345E-03
W(B)	VORTEX, SE	0.000	0.000	7.500E 00	0.000	0.000	0.000
80DY							
	POTENTIAL	1.682E-0		1.202E 01			
	VORTEX,LE	9.765E-03		1.184E 01			
B(W)	VORTEX, SE	0.000	0.000	7.500E 00	0.000	0.000	
AFTERBODY	•••	1.755E-0	3 4.069E-04	3.487E 01	1.687E-03	4.836E-04	
TAIL							
T(B)	POTENTIAL	5.308E-0				1.463E-01	0.000
T(B)	VORTFX,LE	7.590F-02	2 -9.776E-03	4.176E 01		2.092E-02	0.000
T(B)	VORTEX, SE	0.000	0.000	2.900E 01	0.000	0.000	0.000
B00Y							
	POTENTIAL	7.621E-02		4.249E 01			
	VORTEX,LE	1.586E-02		4.176E 01			
8(T)	VORTEX, SE	0.000	0.000	2.900E 01	0.000	0.000	
TOTAL COM	FIGURATIO	N 8.329E-01	1 7.798E-02	3.751E 01	7.942E-01	2.277E-01	1.797E-02
		CDI/CL**2	2 = 3.610E-	-01			

Figure 8.- Continued.

SUMMARY OF FREE V	ORTEX TRA	JECTORIES		
VORTEX 1 VORTEX 2 VORTEX 3	WING TRA	ILING VORT	EX	
VORTEY GAMMA/2* 1 0.0851 2 0.3455 3 0.2261	27 78			
X DX 7.5000 0.5000000	A 0.8400	S 0.8400	R0 0.9400	DA/DX 0.0791
VORTEX SIGMA(REAL) (1 4.065F-01 1.2				
X DX 8.5000 0.2500000	A 0.9175	s 1.5301	R0 1.0401	DA/DX 0.0762
VORTEX SIGMA(RFAL) (1 3.893F-01 1.3				
X DX 9.5000 0.5000000	A 0+9925		R0 1.2577	DA/DX 0.0750
VOPTEX SIGMA(REAL) (1 3.735F-01 1.4				
	• •	•		
X NX 16.0000 0.5000000	A 1.4600	S 1•4600	R0 1.4600	DA/DX 0.0625
VORTEX SIGMA(REAL) (1 3.973E-01 1.7	IMAG) 88E 00			
X DX 16.0010 0.5000000	A 1.4601	5 1•4601	R0 1.4601	DA/DX 0+0625
VORTEX SIGMA(REAL) (1 3.973E-01 1.7 2 4.386E 00 -7.9 3 3.201E 00 1.6	88E 00 01F-01			
X DX 17.0010 0.2500000	4 1.5201	5 1•5201	R0 1.5201	DA/DX 0+0587
1 4.430E-01 1.8 2 4.481F 00 -4.6	IMAG) 10E 00 10E-01 70E-01			

(h) Page 8.

Figure 8.- Continued.

29.0010	0.5000000	1.9350	1.9356	1.9350	0.0150
	GMA(PEAL) (.909E 00 1.0				
2 3.	.55?F CO 2.5 .880E OO 1.84	39E 00			
x 30.0010	DX 0.5000000	A 1.9500	5 2•5653	R0 2.0238	DA/DX 0.0143
	GMA(REAL) { .051E 00 8.23				
2 3.	.489E 00 2.60	DOE 00			
					
x 31.0010	DX 0.5000000	A 1.9650	s 3.1950	R0 2.2018	DA/DX 0.0135
	GMA(REAL) (1 1658 00 6.69	[MAG] 90E-01			
2 3.	457E 00 2.64	48E 00			
			•		
		•••	•		
x 51.0010	DX 0.5000000	A 1.8991	s 15•2196	RO 7.7283	DA/NX -0.0343
	MA(RFAL) (1 553E 00 4.83				
23.	557F 00 4.99	93E 00			
v	C Y		c		04 (0¥
x 52.0010	DX C.5000000	A 1.8626	S 13.0185	R0 6•6425	DA/DX -0.0412
	MA(REAL) (1				
	410F 00 5.08 668F 00 3.58				
×	οx	Δ	5	RO	DA/DX
	0.5000000		7.3942		-0.0497
1 5.	MA(REAL) [1 655E 00 5.48	2E-01			
	243E 00 5-19 800E 00 3-53	7E 00 6E 00			
×	DX	A	s	RO	D4/DX
	0.1250000		1.7699	1.7699	-0.0582
1 5.	MA(REAL) (1 607E 00 8.39 085E 00 5.35	0E-01			
	923E 00 3.60				
х '	DX	A	s	RO	DA/DX
	0.2500000		1.6999	1.6999	-0.0653
	660F 00 1+13	MAG) 5E 00 9E 00			
		8E 00			

(h) Concluded.

Figure 8.- Concluded.

PART IV - SUPSON COMPUTER PROGRAM

Introduction

This computer program predicts the static longitudinal aerodynamic characteristics of wing-body-tail combinations at supersonic speeds. It is an extension of the method of reference 2 to angles of attack for which symmetrical body vortices are shed from the nose of the configuration and leading-edge and side-edge separation vortices are shed from the wing and tail. A lifting-surface method (refs. 12 and 13), modified to include interference velocity fields in the form of induced camber and modified to compute leading-edge suction distributions, represents the wing and tail surfaces.

The program is written in FORTRAN IV for the IBM 360 series machines. No tapes, drums, or disks other than the standard input/output units are required. Minor changes are required to run the program on other machines such as the CDC 6600. Typical running time on the IBM 360/67 for a wingbody-tail configuration is approximately 1 minute per angle of attack. Actual running time depends on the number of panels representing the lifting-surfaces. Some specific running times are noted in the discussion of the sample cases.

The following sections present descriptions of the method, program, input, and output. A program listing and sample cases are included. The algebraic notation used in this section is the same as that used in reference 1. A list of symbols from reference 1 is included.

List of Symbols

AR.	aspect ratio
a	local body radius
b	semispan
c _{Di}	induced drag coefficient
c _L	lift coefficient, $\frac{L}{qS}$
C _A	axial-force coefficient
с _m 138	pitching-moment coefficient, $\frac{M}{qS \ell}$

с _N	normal-force coefficient, $\frac{N}{qS}$
c	local chord
° _n	section normal-force coefficient, $\frac{1}{c} \int_{LE}^{TE} \frac{\Delta p}{q} dx$
с s	section leading-edge suction coefficient
с _х	x-direction section suction coefficient
с _у	y-direction section suction coefficient
к * v	vortex-lift ratio
L	lift force
L	reference length
Μ	pitching moment about center of moments, or free-stream Mach number
N	normal force
Δ p	static pressure difference between lower and upper surfaces of lifting surface
đ	free-stream dynamic pressure
r	body radius
r _N	radius of base of nose
S	reference area
S	semispan of lifting surface
u,v,w	perturbation velocities along x,y,z directions, respectively
v	free-stream velocity
x,y,z	configuration coordinates with origin at body nose
× _{ac}	x location of aerodynamic center
× _{HL}	x location of lifting-surface hinge line
×m	x location of center of moments

×s	x position for onset of separation from body nose
x	center-of-pressure location
z _{HL}	height of lifting-surface hinge line
α	body angle of attack
β	$\sqrt{M^2 - 1}$
Г _В	right body-vortex strength, positive counterclockwise when viewed from rear of configurations
г _n	n'th separation vortex strength on right wing panel
^г t	trailing-vortex strength on right wing panel
δ	lifting-surface deflection angle, positive trailing edge down
$\theta_{\mathbf{N}}$	nose angle, degrees
Λ	sweep angle
ρ	density
σ	complex vortex position, y + iz
	Subscripts
А	afterbody
avg	average
В(Т)	body in presence of tail
B(W)	body in presence of wing
е	tail or empennage
HL	hinge line
LE	leading edge
N	nose
p	potential
root	root chord
SE	side edge

i

Т(В)	tail in presence of body
TE	trailing edge
tip	tip chord
v	vortex
W(B)	wing in presence of body
w	wing

Description of Method

A brief description of the method is presented herein. The user should consult reference 1 for a complete description and details of the theoretical approach.

An axisymmetric nose at some moderate angle of attack sheds a symmetric pair of body vortices. These shed body vortices, whose strength and initial position are determined from data correlations, are tracked downstream past the wing using slender-body techniques in the crossflow plane. One exception to this trajectory calculation is that the vortices move parallel to the wing if the leading edge is supersonic. The vortex-induced velocities are computed at the wing control points and combined with the Beskin upwash induced by the body to obtain the total upwash induced on each wing panel. This, added to the free-stream contribution, results in a total local incidence angle distribution over the wing.

The wing is modeled by a constant pressure panel scheme in the form of a prediction program obtained from R. Carmichael of the NASA, Ames Research Center. The result from this method is a pressure distribution on the wing. An equivalent circulation distribution on the wing is obtained from the pressure loading and this is used to compute a distribution of leading-edge suction and side-edge suction (if present) and their associated vortex positions and strengths. The vortex lift on the leading edge and side edge is obtained from the suction distribution through the Polhamus vortex-lift analogy (ref. 9) and correlation curves.

The trajectories of the body vortices, the wing trailing vortex, and the wing leading-edge separation vortices are computed downstream past the afterbody and horizontal tail. These trajectories are computed in the crossflow plane considering mutual interference between the vortices and interference from their images in the body. If the tail leading edge is supersonic, the vortices move parallel to the tail surface. The induced velocity field on the tail panels is computed, and the tail loading is obtained in a manner similar to that just described for the wing. The forces on the body in the presence of a wing and tail are computed by the method of reference 2. The free vortex-induced forces on the nose and afterbody are computed using the method of Sacks (ref. 10).

The forces and moments on the entire configuration are obtained by summing the contributions of the various components. The forces are resolved into normal force and axial force (excluding frictional drag and wave drag), and lift and induced drag.

Description of Program

The SUPSON computer program consists of a main program, nine function subprograms, and twenty-five subroutine subprograms. The main program (SPO1) accepts most of the input, prints a portion of the output, and generally directs the flow of the calculation. The subprograms provide specific services to the main program during the calculation procedure. Since the lifting-surface portion of the program was a separate wing-alone prediction program which was incorporated into the prediction scheme, there are several options present in this part of the program which are not used. These were left in the program so that the original lifting-surface procedure could be left intact as much as possible; however, this does result in portions of subprograms being carried along but never used. These surplus calculations are short and do not cause a large core storage penalty by their presence. The following is a list of subprograms and their general purpose.

Subroutine SSWING is the former main program of the Carmichael-Woodward lifting-surface method. It accepts description of the wing (or tail) geometry through namelist input and then sets up locations of control points and divides the wing up into the specified number of constant pressure panels. It then calculates an array of influence functions which are used later in computing wing-loading distributions.

Subroutine TABLE sets up a table of coordinates describing the configuration at specific axial stations required in the vortex trajectory calculations. The body radius at the required stations are obtained by

linear interpolation in the input table of body coordinates. Body slopes are computed by a simple differencing scheme.

Subroutine FORCE computes the loading on the lifting surface considering both the geometric camber and induced camber. The bound circulation distribution corresponding to the potential loading is computed as is the strength and position of the equivalent trailing vortex.

Subroutine EDGFRC computes the distribution of leading-edge and sideedge suction. The leading-edge and side-edge vortex lift is computed along with the strength and lateral position of the associated separation vortex.

Subroutine MATRIX computes the aerodynamic influence matrix for each lifting surface.

Subroutine CNVTX computes the vortex-induced force and center of pressure on the afterbody using the method of reference 10.

Subroutine BDYVTX uses tables derived from data correlations to look up the strength and position of the pair of symmetric vortices shed from the body nose.

Subroutine CNVNZ computes the nose vortex-induced normal force and center of pressure on the body nose using the method of reference 10.

Subroutine SHAPE does a table look-up for the body radius and slope and local lifting-surface semispan at any prescribed axial station.

Subroutine FILL is used to fill in intermediate locations in an array using a linear interpolation procedure.

Subroutine ZSECT is a general airfoil section calculation routine which is used only when the lifting surfaces are assumed to have finite thickness. The available section shapes are specified by the variable SECT as described in the discussion of input preparation.

Subroutine TCOMP computes the pressure function for a wedge-shaped airfoil of triangular planform. This routine is used only when the lifting surface has a finite thickness.

Subroutine TAINT is used to interpolate in tables of airfoil section thicknesses and surface slopes.

Subroutines LINEQS and SOLVE are used together to solve the set of linear simultaneous equations for the loading on the lifting surfaces.

Subroutine COMP computes the downwash function for a uniformly loaded triangular shaped panel.

Subroutine EXTVEL computes the free vortex-induced velocity at wing or tail control points.

Subroutine TRJTRY computes the trajectories of the free vortices past the configuration using the subroutines FCT, OUTP, HPCG, and SHAPE.

Subroutine FCT computes the derivatives for the equations of motion for each free vortex.

Subroutine HPCG is a predictor-corrector integration package which uses a Runge-Kutta starting procedure.

Subroutine OUTPUT stores the vortex positions in a table at specified intervals in x. When necessary, some diagnostic information on the vortex trajectories is available as optional output.

Subroutine ZVTX determines the vertical position of the leading-edge separation vortex using a table look-up of correlated data for delta wings.

Subroutine WPANL calculates the upwash induced by the constant pressure panels comprising the lifting surface.

Subprograms KFACT, CH1416, EQ14, CHRT8, EQ21, EQ24, EQ24L, EQ26, EQ30, EQ30L, and EQ31 are used to compute the lift and center of pressure on the body in the presence of a lifting surface. These subprograms perform the same functions in SUPSON as they do in R1307 and the individual descriptions are not repeated here.

Description of Input

<u>Variable definitions.</u>- The format of the input cards for the SUBSON program is shown in figure 1. In this figure the program variable name is shown as well as the card columns in which the value is punched and the format in which it is punched. The following is a table of the input variables along with the algebraic symbol where applicable. The variable is defined and its limits shown where necessary. The algebraic notation used in defining the configuration is shown in figure 2. A discussion of the preparation of the input is presented in the section following the table.

PROGRAM NOTATION	ALGEBRAIC NOTATION	DEFINITION
<u>Item l</u>		
NHEAD		Number of heading cards.
NTBL		Number of entries in table of body coordinates. $5 \le \text{NTBL} \le (96 less the total number of columns on both wing and tail).$
NPRINT		<pre>Index controlling optional output: NPRINT = -2 Minimum output. Final aero- dynamic characteristics only. = -1 Abbreviated output. Final aerodynamic characteristics plus details of lifting- surface results. = 0 No optional output. = 1 Some optional output. = 4 Large amount of optional output. > 4 All optional output including diagnostic information (not recommended for general use).</pre>
MPRINT		<pre>Index controlling diagnostic output: MPRINT = 0 No additional output. = 1 Output vortex trajectories during calculations. (This option should be used only if program has terminated execution during a previous trajectory calculation.)</pre>
NOSEV		NOSEV = 0 No nose separation vortex pair. = 1 Nose separation vortex pair included.
NREGNW		Number of regions into which wing is divided. 1 \leq NREGNW \leq 20
NALPW		NALPW = 0 Uncambered and untwisted wing. > 0 Cambered and/or twisted wing, local angles must be input.
NSE PW		Number of leading-edge separation vortices shed from wing. 1 \leq NSEPW \leq 2
NREGNT		Number of regions into which tail is divided. $1 \le \text{NREGNT} \le 20$ NREGNT = 0 No tail.

PROGRAM NOTATION	ALGEBRAIC NOTATION	DEFINITION
NALPT		NALPT = 0 Uncambered and untwisted tail. > 0 Cambered and/or twisted tail, local angles must be input.
NSEPT		Number of leading-edge separation vortices shed from tail. 1 \leq NSEPT \leq 2
NBODY		Index controlling body upwash: NBODY = 0 Body upwash included in wing and tail interference calculation. < 0 Body upwash not included.
NAFT		<pre>Index controlling presence of afterbody behind rear lifting surface. NAFT = 0 No afterbody. = 1 Afterbody included.</pre>
Item 2		
TITLE		Any alphabetical or numerical identifi- cation information.
Item 3		
EM	М	Mach number, $M > 1.0$.
REFS	S	Reference area.
REFL	l	Reference length.
ХМ	×m	x-location of center of moments
THETAN	$\theta_{\mathbf{N}}$	Nose semiapex angle, degrees.
DXOUT		x-increment in table of free vortex trajectories. DXOUT \leq RAVGW , typically.
DXI		Maximum integration interval for vortex trajectory calculation. DXI \leq DXOUT, typically.
Item 4		
XBDY	x	x-stations at which body coordinates are defined.
RBDY	r	Body radius at above x-station.

PROGRAM NOTATION	ALGEBRAIC NOTATION	DEFINITION
Item 5		
RAVGW	^r avg _w	Average body radius at wing.
YSEPW	^y sep _w	Spanwise location of second leading-edge separation vortex. If NSEPW = 1, YSEPW = b/2.
XHLW	× _{HL} w	x-coordinate of wing hinge line at wing- body juncture.
ZHLW	^z _{HL} w	z-coordinate of wing hinge line at wing- body juncture.
XWCP	× _{CP} w	x-coordinate of alternate wing center-of- pressure location.
<u>Item 6</u>		Item 6 is made up of NREGNW namelist decks.
\$INPUT		Namelist identification.
PER		Location of wing control point in fraction of panel chord. Typically, PER = 0.95.
ROWS		Number of chordwise divisions into which wing region is divided. 1 \leq ROWS \leq 10
COLS		Number of spanwise divisions into which wing region is divided. 1 \leq COLS \leq 20
<u>NOTE</u> : Sum of total	ROWS × COLS ove number of columns	er all wing regions must not exceed 100 and s on wing semispan must not exceed 20.
ROOTLE	×LEw	x-coordinate of leading-edge of root chord of wing region now under consideration.
ROOTTE	× _{TE} w	x-coordinate of trailing edge of root chord. $x_{TE}^{} > x_{LE}^{}$
ROOTY		y-coordinate of root chord. Typically, ROOTY = RAVGW in first wing region.
TIPLE	${}^{x_{LE}}_{tip}$	x-coordinate of leading edge of tip chord.
TIPTE	x_{TE} tip	x-coordinate of trailing edge of tip chord. $x_{TE} \ge x_{LE}$
TIPY		y-coordinate of tip chord of this wing region. If NREGNW = 1, TIPY = b/2.

PROGRAM NOTATION	ALGEBRAIC NOTATION	DEFINITION
TCROOT	t/c root	Root chord thickness ratio. May be equal to zero.
TCTIP	t/c _{tip}	Tip chord thickness ratio. May be equal to zero.
SECT		<pre>Specification of airfoil section. SECT = 1 Parabolic arc. = 2 Double wedge. = 3 30-70 hexagon. = 4 Wedge. = 5 NACA 000X = 6 NACA 6400X = 7 NACA 6500X = 8 RAE 101</pre>
\$END		End of namelist.
Item 7		
ALPHAW	α _w	Local angle of wing mean surface due to camber and twist, radians.
Item 8		
RAVGT	r _{avge}	Average body radius at tail.
YSEPT	^y sep _e	Spanwise location of second leading-edge separation vortex. If NSEPT = 1, YSEPT = b/2.
XHLT	× _{HL} e	x-coordinate of tail hinge line at wing- tail juncture.
ZHLT	^z ^{HL} e	z-coordinate of tail hinge line at wing- tail juncture.
XTCP	× _{CP} e	x-coordinate of alternate tail center-of- pressure location.
Item 9		Item 9 is made up of NREGNT namelist decks.
\$ IN PUT		Namelist identification.
PER		Location of tail control point in fraction of panel chord. Typically, PER = 0.95.

PROGRAM NOTATION	ALGEBRAIC NOTATION	DEFINITION
ROWS COLS ROOTLE ROOTTE ROOTY TIPLE TIPTE TIPY TCROOT TCTIP SECT \$END		Corresponding tail variables having same limits and restrictions as those on wing.
<u>Item 10</u>		
ALPHAT	α _e	Local angle of tail mean surface due to camber and twist, radians.
Item 11		
NDEX		<pre>Index controlling next case of input. NDEX = 1 Execute program using variables on this card. = 0 Ignore this card and return to beginning for new case.</pre>
ALPHAD	α	Angle of attack of configuration, degrees.
ALPIW	^ô w	Incidence angle of wing relative to body axis, degrees.
AKVLW1	^K * ^V LE _w	Fraction of leading-edge suction converted to lift in inboard wing region. (0 $\leq \kappa_{VLE}^* \leq 1.0$)
AKVLW2	κ [*] ν _{LE} w	Fraction of leading-edge suction converted to lift in outboard wing region. (0 $\leq K_{VLE}^{*} \leq 1.0$)
AKVSW	κ* ^v se _w	Fraction of side-edge suction converted to lift on wing. (0 $\leq K_{VSE}^* \leq 1.0$)
ALPIT	δe	Incidence angle of tail relative to body axis, degrees.
AKVLT1	к* ^v LE _e	Fraction of leading-edge suction converted to lift in inboard tail region. (0 $\leq \kappa_{VLE}^{*} \leq 1.0$)

PROGRAM NOTATION	ALGEBRAIC NOTATION	DEFINITION
AKVLT2	^{K*} vLE _e	Fraction of leading-edge suction converted to lift in outboard tail region. ($0 \leq K_{VLE}^* \leq 1.0$)
AKVST	^{K*} vse _e	Fraction of side-edge suction converted to lift on tail. (0 $\leq K_{\rm VSE}^{\star} \leq 1.0$)
WLIMIT	(w/V) _{max}	Limit on vortex-induced velocities at wing and tail control points. (0 \leq WLIMIT \leq 1.0)

Input preparation.- A discussion of the input variables is presented in this section as an aid in the preparation of the input data deck. If a configuration has one set of lifting surfaces, this is denoted the wing regardless of its axial location on the body and data describing this lifting surface are input as wing data. If there are two lifting surfaces, the set nearest the nose is the wing and the aft set is the tail. For example, in a canard-body-wing configuration, the canard data are input as wing data and the wing data are input as tail data. In the following discussion, necessary geometric relations are illustrated in figure 2.

Item number 1 of the input data deck (fig. 1) is a card containing indices specifying particular program options. NHEAD indicates the number of identification cards following in Item 2. NTBL is the number of entries in the table describing the body shape. NPRINT is an index which determines the quantity of output obtained from the program. Typically, this number is zero, but varying degrees of additional output can be obtained by increasing this index from 1 to 4. An abbreviated output summary is obtained by setting NPRINT = -1 or -2. MPRINT is a special index controlling the quantity of output obtained during vortex trajectory calculations. Typically, this index is zero, but if it is greater than zero, the trajectory coordinates are printed as they are computed. This additional trajectory information is useful only if the program fails to compute a trajectory for some particular case, and the additional output may give some clue as to why the calculation failed. This option should only be used after a computational problem has been discovered.

The index NOSEV specifies whether there is (NOSEV = 1) or is not (NOSEV = 0) a symmetrical pair of vortices shed from the nose of the

configuration. If the nose angle (THETAN) is less than or equal to four degrees, NOSEV is automatically set equal to zero.

The following three indices are associated with the wing. NREGNW is the number of spanwise regions describing the wing. This number is typically equal to zero unless there are breaks in sweep or it is desired that the panel spacing be different in different wing regions. NALPW specifies if wing camberline slopes are nonzero and must be input (NALPW = 1) or are zero and need not be input (NALPW = 0). NSEPW specifies the number of leading-edge separation vortices shed from the wing. This index must be either 1 or 2, and if NSEPW = 2, a special value of YSEPW is required in Item 5.

The provision for multiple separation vortices is included to handle wings with breaks in leading-edge sweep. It has been observed that leadingedge separation vortices are shed from the wing regions inboard and outboard of the break. A maximum of two leading-edge separation vortices are allowed.

The next three indices in Item 1, NREGNT, NALPT, and NSEPT are tail indices analogous to the preceeding wing indices and subject to exactly the same restrictions. If no tail is present, all three must be zero.

The next index in Item 1, NBODY, determines whether the upwash field around the body is included (NBODY = 0) in the wing-and tail-interference calculations or not included (NBODY < 0). This index is used to determine the magnitude of the body-interference effect and generally should be equal to zero.

The last index, NAFT, is used to specify the presence of an afterbody behind the aft lifting surface. If there is an afterbody, NAFT = 1, and if not, NAFT = 0.

Item 2 is a group of NHEAD cards containing identification information which is printed on the first page of output. The information on the last card of this group is retained and printed as a heading card at various points in the output.

Item 3 is a single card containing EM, the free-stream Mach number (greater than 1); REFS and REFL, the reference area and reference length, respectively; XM, the x-coordinate of the center of moments; and THETAN, the nose semiapex angle in degrees. The final two variables are associated with the free vortex trajectory calculations. DXOUT is the approximate increment in x at which trajectory coordinates are stored for use in induced velocity calculations. A lower limit for this variable is about 0.5 percent of the overall length of the body because of storage limitations Typically, a reasonable value for DXOUT is about one half the maximum radius of the body. DXI is the initial integration interval for the trajectory calculations. The integration package will cut the interval in half if necessary for reasonable accuracy, and this halving process can occur ten times before the program automatically terminates execution with an appropriate message. If the input value of DXI is too large, the program will stop because of unacceptable accuracy, and if DXI is too small, the running time will become large. Experience has indicated a value of DXI between 2 and 5 percent of the body length will work for most cases. Under rare circumstances when two vortices get very close together or when a vortex gets very near the wing or body, a smaller value of DXI may be required. DXI should not be larger than DXOUT.

Item 4 is a group of NTBL cards describing the body shape. Each card contains an x-station, XBDY, and the corresponding body radius, RBDY. The cards should be in ascending order in x and there should be less than 75 cards in this item in a typical run. The program internally sets up its own table of coordinates which is stored in the XBDY and RBDY arrays and is limited to 100 entries. A good rule of thumb to follow in inputting Item 4 is the following.

NTBL < (96 - Total number of spanwise columns on wing and tail)

Some care is required when describing the body shape via XBDY and RBDY. Linear interpolation is used throughout; therefore, if the body shape is changing rapidly, more points are required. There should be a minimum of five entries in the nose region ahead of the wing and there must be entries at x-stations identically equal to XWLE and XWTE, and XTLE and XTTE if a tail is present. The last entry in the table must be greater than XWTE or XTTE, whichever is greater, by an amount not less than DXI. If the body is made up of a nose section followed by a cylindrical afterbody, there should be two points on the cylinder very close together near the beginning of the cylinder. Points on a cylinder can be spaced large distances apart, but if the cylinder is followed by a section with changing radius, the last two points on the cylinder should be close together.

Item 5 contains geometric information for the wing. RAVGW is the average body radius in the vicinity of the wing. YSEPW is the y-station at which the wing is assumed broken for purposes of having two leadingedge separation vortices. If NSEPW = 1, then YSEPW must be equal to the wing semispan. If NSEPW = 2, YSEPW must have some value greater than RAVGW and less than the wing semispan. The chosen value should coincide with one of the breaks in the panel layout. It is advised that there be at least three columns of panels on either side of YSEPW to achieve some reasonable accuracy in the separation vortex strength and position calculation. The next two variables, XHLW and ZHLW, are the coordinates of the wing hinge line at the wing-body juncture. The last variable, XWCP, is an experimental center-of-pressure location for the wing potential lift which may be used if desired. If this is not to be used, XWCP must be identically zero.

Item 6 is a namelist (INPUT) describing the geometry of the wing and the panel arrangement. There must be one complete namelist deck for each region of the wing (NREGNW) and they must be in order from wing root to wing tip. The first variable, PER, is the chordwise location of the control point of each constant pressure panel presented as a fraction of the local panel chord. This number is typically 0.95 for supersonic flow. The next two variables, ROWS and COLS, are the number of chordwise and spanwise divisions into which the wing region is divided. Thus, ROWS \times COLS is the number of panels in the wing region under consideration. There are certain limitations on the size of these numbers, as the total number of panels on the entire wing semispan cannot exceed 100 and the total number of spanwise divisions on the entire wing semispan cannot exceed 20.

The following six variables specify the planform geometry of the wing region. ROOTLE is the x-station of the leading edge of the root chord of the region, ROOTTE is the x-station of the trailing edge of the root chord, and ROOTY is the y-station of the root chord. If this is the first wing region, these values correspond to the actual wing root chord where ROOTLE and ROOTTE are the intersections of the leading and trailing edges with the body, and ROOTY has the same value as RAVGW in Item 5. If NREGNW > 1, these values specify the chord of the inboard side of the wing region. In a similar manner, TIPLE and TIPTE are the x-stations of the tip leading and trailing edges, respectively. TIPY is the y-station of the outboard side of the region. If the region under consideration is the last (or only)

region of the wing, TIPY must be equal to the semispan of the wing. Note that on wings with multiple regions and continuous leading and trailing edges, the tip chord of one region is identical to the root chord of the adjacent region.

The remaining variables in the namelist are optional. TCROOT and TCTIP are the thickness-to-chord ratios of the root and tip of the wing region. These values may be input as zero or omitted entirely from the deck. Since wing thickness is not a prime consideration in the calculation procedure, it is suggested that these values be omitted. If wing thickness is to be input, a value of SECT must be input to specify the wing section shape. The options available for airfoil sections are noted in the tables of variable definitions. This ends the namelist description of the wing region. All other regions should follow in the input deck immediately; therefore, there will be NREGNW sets of the namelist INPUT decks.

Item 7 is optional input and is included only if the wing is cambered or twisted (NALFW > 0). If such is the case, ALPHAW, the local panel angle, α_{ℓ} , of each element of the wing must be input. These angles, in radians, are relative to the wing root chord and thus do not include any wing incidence. There are eight values per card and the angles are input from leading edge to trailing edge, from wing root to tip. There are a total of NPANLW values, where NPANLW is the total number of panels on the wing and is computed internally in the program.

Values of ALPHAW are obtained as follows. Consider the sketch in figure 2(b) which shows the cambered and twisted section of the lifting surface at some spanwise station. At point P, corresponding to a control point on the wing mean surface, a tangent to the wing mean surface is constructed, which makes an angle α_{ℓ} with the wing root chord. The positive sense of α_{ℓ} is shown in this figure. The input value required is α_{ℓ} in radians. Near the leading edge of the section shown in figure 2(b), α_{ℓ} is negative. Item 10 completes the input description of the wing.

If NREGNT = 0; that is, no tail is present, go directly to Item 11. If a tail is present, Item 8 is the next card in the input deck. The variables in Item 8, RAVGT, YSEPT, XHLT, ZHLT, and XTCP are analogous to the wing parameters in Item 5 and subject to the same restrictions and limitations.

Item 9 is a namelist INPUT describing the tail and there must be NREGNT decks of this namelist. The tail variables in this namelist are in direct correspondence with the wing variables described in Item 6.

If NALPT is not zero, the local panel incidence angles in radians of the tail are input in Item 10 in an analogous manner to Item 7 for the wing.

Item 11 is a group of cards, one card for each run, which specifies the variables which are considered changeable for a given geometric con-The first entry on the card is the index NDEX which is simply figuration. used to control the stacking of additional cases. NDEX = 1 on each card represents a new flow condition. If NDEX = 0, the card is ignored and the program returns to read in a completely new case beginning with Item 1. Thus, a blank card is used to separate calculations with different configurations. When NDEX \neq 0, the next value on the card is the configuration angle of attack in degrees, ALPHAD, taken as the angle between the axis of the body and the free-stream velocity. The second quantity is the incidence angle of the wing root chord in degrees, ALPIW. Its sense is such that a positive incidence is a leading-edge up condition. The next three variables are the K_v^* factors which relate the actual realized vortex lift from the leading and side edges to that which is theoretically available. AKVLW1 is the fraction of leading-edge separation vortex lift which is obtained on the inboard portion of the wing if NSEPW = 2 or on the entire wing if NSEPW = 1. If NSEPW = 2, AKVLW2 is the leading-edge suction factor for the outboard portion of the wing. The values of AKVLW1 and AKVLW2 are obtained from the correlation curve in figure 3. This figure is reproduced from figure 9 of reference 1. The data on which the curve is based are for sharp-edged delta wings. To use this curve for another wing shape, an effective aspect ratio computed as

$$AR = \frac{4}{\tan \Lambda_{LE}}$$

should be used. As described in reference 1, care must be taken when using this correlation curve for anything other than sharp-edged wings. A rounded leading edge can cause the suction factor, K_{VLE}^* , to go to zero.

AKVSW is the side-edge suction factor for wings with tips. The sideedge suction lift is usually small compared to the potential lift except for very low-aspect-ratio wings. Comparisons with subsonic rectangular wing data indicate that this factor should be unity, but the magnitude for supersonic flow is not known because of a lack of appropriate data for correlation purposes. Unless other information is available to the user, it is suggested that a value of 1.0 be used for all wings with nonzero tip chords. When there is no wing tip chord, such as on a delta wing, AKVSW should be identically zero.

The next four variables in Item 11, ALPIT, AKVLT1, AKVLT2, and AKVST are the corresponding tail parameters. They fall under the same rules and guidelines set up for the respective wing parameters. If no tail is present, all four values should be set equal to zero.

The final quantity on this card is WLIMIT, the maximum allowable vortex-induced velocity nondimensionalized by the free-stream velocity. The purpose of this variable is to limit the magnitude of the vortexinduced velocities on the wing or tail. In the course of program development, a canard-body-wing configuration exhibited a discontinuous lift curve at some angle of attack around 8°. Close investigation showed that this occurred when the canard trailing vortex passed very near to some wing control points, inducing inordinately large velocities, which resulted in large local angles of attack. The lifting-surface method reacted accordingly and large loading gradients were predicted. This, of course, is an unrealistic situation because a true viscous vortex does not behave as a potential vortex and induce infinite velocities at its center. For this reason a limit was introduced which arbitrarily sets any vortexinduced velocity greater than WLIMIT, equal to WLIMIT.

Generally, WLIMIT should be set equal to 1.0. If , in the process of running the program, unusual variations in the lift or pitching moment with angle of attack occur which can be attributed to unrealistic vortexinduced interference, WLIMIT can be used to limit the magnitude of the large induced velocities causing the problem. A value of WLIMIT = 0.1 has been used in some specific examples to reduce the apparent discontinuity in the predicted lift and moment curves and resulted in good agreement with experiment. This discussion is not meant to suggest that an arbitrary velocity limit will cure the problems with the near flow fields of potential vortices. It is simply included to note that a simple, approximate fix is available. If WLIMIT = 0.0, the effect of the free vortices on the lifting surfaces is completely eliminated. The above discussion includes all the input required for a typical run. The sample cases in the following section cover most of the options available in the program.

<u>Sample cases.</u>- Listings of the input data decks for three sample cases are presented in figure 4 and sketches of the configurations chosen for these sample cases are shown in figures 5 and 6. These configurations were used in the tests of references 14 and 15, respectively.

Sample case 1 is the canard-body-wing combination shown in figure 5 at a Mach number of 2.01. No optional output is requested and the canard and wing are each defined by a single region. A complete range of angles of attack for one canard deflection angle is specified. This input deck, shown in figure 4(a), requires approximately 300 seconds running time on the IBM 360/67.

Sample case 2, shown in figure 4(b), is the same configuration with the canard removed. No optional output is requested. For demonstration purposes, the wing is specified by two regions. The inboard and outboard regions are given the same panel spacing as that used in sample case 1. This is not normally the situation in laying out this type of lifting surface in multiple regions. Generally, some change in spacing between the regions is necessary. Of course, a break in the sweep angle of the leading or trailing edge dictates the use of multiple regions and the panel spacing may or may not be changed.

Sample case 3 is the wing-body-tail combination shown in figure 6. Minimum output is requested and the wing and tail surfaces are each defined by a single region. A complete range in angle of attack for three tail deflection angles is specified. This input deck, shown in figure 4(c), requires approximately 540 seconds on the IBM 360/67.

Description of Output

The output produced by the SUPSON computer program for sample case 1 is shown in figure 7. The first page of output from the program, figure 7(a), is a tabulation of most of the input data in Items 1, 2, and 3 of figure 1. The next page of output, figure 7(b), is a listing of the namelist INPUT which describes the geometry of the wing. If the wing is divided into more than one region, the variables in namelist INPUT describing each region are listed here. The next page of output, figure 7(c), is a similar listing of the namelist INPUT describing the geometry of the tail. The first entry in the namelist distinguishes between the wing (NSF = 1) or the tail (NSF = 2).

The following page of output, figure 7(d), summarizes the geometry of the configuration by component. The first line at the top of the page is the last identification card from the heading in Item 2 of figure 1. The wing quantities which are tabulated are:

OUTPUT NOTATION	ALGEBRAIC NOTATION
XLE	× _{LE} root
XTE	× _{TE} root
XLE(TIP)	x_{LE} tip
XTE (TIP)	$x_{\rm TE}_{\rm tip}$
CROOT	^c root
CTIP	c _{tip}
в/2	b/2
RAVG	^r avg _w
YSEP	YSEPW (Item 5)
XHL	× _{HL} w
ZHL	$z_{\rm HL}$
ХСР	x _{CP} or XWCP (Item

The same quantities are tabulated for the tail surface if one is present. The following quantities are listed for the body.

5)

OUTPUT NOTATION	ALGEBRAIC NOTATION
THETA	$\theta_{\mathbf{N}}$ (Item 3)
FINENESS	x_{LE_w}/r_N
R(BASE)	r _N
AVERAGE RADIUS WING	^r avg _w
AVERAGE RADIUS TAIL	r _{avgw r_{avge}}
CENTER OF MOMENTS X	× _m
CENTER OF MOMENTS Z	z _m
DXI	∆×Ĵ
DXOUT	- JItem 3
х	x
R	r
S	s or s _e
DR/DX	dr/dx

This concludes the general geometric description of the configuration. This information is output once at the beginning of each case. The following output is dependent on the information input on Item 11; that is, the angle of attack, incidence angles, K_v^* factors, and induced velocity limit.

Figure 7(e) is the first page of output for each run within the series of runs making up sample case 1. The first line summarizes the information input in Item 11 as follows:

OUTPUT NOTATION	ALGEBRAIC NOTATION
ALPHA	α
Μ	М
INCIDENCE WING	δ w

OUTPUT NOTATION	ALGEBRAIC NOTATION
INCIDENCE TAIL	δe
WING KVLE*	K [*] ^V LE _w
WING KVSE*	^{K*} ^v SE _w
TAIL KVLE*	K [*] v _{LE} e
TAIL KVSE*	^{K*} ^v SE _e
W/V LIMIT	(w/V) _{max}

The next block of output on this page is a summary of the strength and position of the right-hand vortex (if present) of the symmetrical pair of vortices shed from the nose of the body.

OUTPUT NOTATION	ALGEBRAIC NOTATION
GAM/2*PI*V*RB	$\frac{\Gamma_{\rm B}}{2\pi {\rm Vr}_{\rm N}}$
Y/RB	y _B /r _N
Z/RB	z _B /r _N
XS/RB	x _s /r _N
GAM/2*PI*V	$\frac{\Gamma_{\rm B}}{2\pi V}$
Y	У _В
Z	^z B

The following block of output is the induced Beskin upwash at the wing control points (x,y,z) due to the presence of the body. The induced velocities, V/V(INF) and W/V(INF), expressed as a fraction of the free-

stream velocity, are positive in the positive y and z directions, respectively. The next block of data are the induced velocities induced at the same wing control points by the vortex pair shed from the nose of the body. These velocities have the same positive sense as the bodyinduced upwash above. The final block of data in figure 7(e) is the total induced velocity at each control point.

The next page of output, figure 7(f), contains the results from the lifting-surface calculations for the wing. The first several lines are reiteration of some input quantities. The remainder of the results are calculated quantities associated with the potential forces and moments on the wing. The potential span-loading distribution is followed by the spanwise position and strength of the trailing vortex. The above output in figure 7(f) is printed in subroutine FORCE. The definitions of this output are as follows.

OUTPUT NOTATION	ALGEBRAIC NOTATION
CNP	C _N W(B),p
DCN/DALPHA	$dc_N^{\prime}/d\alpha$
СМР	C _m W(B),p
dcm/dcn	dc_m/dc_N
XAC	×ac
ХСР	× _{CP}
YCP	У _{СР}
В	b
CCN/2B	$\frac{cc_n}{2b}$
GAM/V2PI	$\frac{\Gamma_{t}}{2\pi V}$

The next block of output on this page is the spanwise distribution of the leading-edge suction. If the wing has a nonzero tip chord, a second block of output containing the distribution of side-edge suction is printed. This latter output is printed in subroutine EDGFRC and is defined as follows.

OUTPUT NOTATION	ALGEBRAIC <u>NOTATION</u>
Y/(B/2)	$\frac{y}{b/2}$
CCS/2B	$\frac{cc_s}{2b}$
EPS (DEG)	e
CCX/2B	$\left(\frac{cc_x}{2b}\right)_{LE}$
ССУ/2В	$\left(\frac{cc_y}{2b}\right)_{LE}$
CYC/2B	$\left(\frac{cc_{y}}{2b}\right)_{SE}$

(This variable does not appear in the sample case because c_{tip} = 0.)

Figure 7(g) is headed by a summary of the strengths and positions of the vortices shed from the configuration ahead of the wing trailing edge. The pairs of vortices are listed in the following order. Vortex 1 is the right-side body vortex shed from the nose. Vortex 2 is the trailing vortex shed from the wing. Vortex 3 is the leading-edge separation vortex shed from the wing. If more than one separation vortex is requested, vortex 3 is the vortex associated with the inboard region and vortex 4 is shed from the outboard region. If a vortex is missing for any reason, all following vortices are moved up in the table. For example, if no vortices are shed by the nose, vortex 1 becomes the trailing vortex shed by the wing, and so on. The remainder of figure 7(g) indicates the induced velocities at the tail control points. These velocities are analogous to the induced velocities on the wing shown in figure 7(e).

Figure 7(h) contains calculated results for the tail surface. All the quantities on this page are analogous to those described for the wing

in figure 7(f). The last entry on this figure is a summary of the strengths and positions of all the vortices in the field just aft of the tail trailing edge. The first group of vortices are the same as described in connection with figure 7(g). The second group of vortices are defined as follows. Vortex 4 is the trailing vortex corresponding to the potential lift on the tail. Vortex 5 is the leading-edge separation vortex shed from the tail. If multiple vortices are shed from the tail leading edge, this vortex would be shed from the inboard tail region and vortex 6 would be shed from the outboard tail region.

The next page of output, figure 7(i), is a summary page of the force coefficients, pitching-moment coefficients, and centers of pressure on each component of the configuration and of the total configuration. The coefficients for the individual components are described in Table I. The total configuration variables are defined as follows.

OUTPUT NOTATION	ALGEBRAIC NOTATION
CN	$C_{N} = \frac{N}{qS}$
СМ	$C_m = \frac{M}{qS \ell}$
ХСР	$\overline{\mathbf{x}}_{\mathbf{CP}} = \mathbf{x}_{\mathbf{m}} - \frac{\mathbf{C}_{\mathbf{m}}}{\mathbf{C}_{\mathbf{N}}} \ \ell$
CL	$C_{L} = \frac{L}{qS}$

 $CDI C_{D_i} = C_{L} \tan \alpha$

 $CA C_A = \frac{A}{qS}$

CDI/CL**2

 c_{D_i}/c_L^2

The last page of output for this run, figure 7(j), contains a summary of the trajectories of the shed vortices. At the top of the page the vortices are identified and their strengths listed. This is followed by blocks of output, one block for each x station, describing the local crossflow geometry of the configuration and the position of the right-side vortices. Each block of results is separated by approximately DXOUT. Notice that the trajectory calculation starts at the wing leading edge with a pair of body vortices. As the calculation moves downstream, other vortices are shed and added to the calculation. The trajectory calculation is carried downstream to a point aft of the tail trailing edge. The variables in each block are defined as follows.

OUTPUT NOTATION	ALGEBRAIC NOTATION
x	x
DX	$ riangle \mathbf{x}$
A	a
S	s or s
RO	ro
DA/DX	da/dx
SIGMA (REAL)	У
SIGMA (IMAG)	z

This completes the output for one card in Item 11 of the input deck. Additional runs will repeat the output of figures 7(e) through (j). The above set of output obtained with NPRINT = 0 is a considerable amount of output for production runs; therefore, an optional set of output can be obtained by setting NPRINT = -2. In this case, the complete output consists of figures 7(a), (b), (c), (d), and (i) with some shed vortex positions and strengths added.

Some extra output over and above that shown in figure 7 can be obtained when NPRINT > 0. This additional output is useful only for diagnostic purposes and is not described herein. This output is labeled and the user should have no trouble interpreting the results.

Program Listing

The SUPSON computer program consists of the main program, nine function subprograms, and twenty-five subroutine subprograms. Each source deck is identified in columns 73 through 80 by a four-character identification and a three-digit number sequencing the cards within that deck. The program listing is given on the following pages. The table below will act as a table of contents for the listing.

PROGRAM	IDENTIFICATION	PAGE NO.
MAIN	SPOL	167
Subroutines:		
SSWING	SP02	172
TABLE	SP03	175
FORCE	SP04	176
EDGFRC	SP05	177
MATRIX	SP06	179
CNVTX	SP07	181
BDYVTX	SP08	181
CNVNZ	SP09	182
SHAPE	SP10	182
FILL	SP11	182
ZSECT	SP12	182
TCOMP	SP13	183
TAINT	SP14	183
LINEQS	SP15	184
SOLVE	SP16	184
COMP	SP17	184
EXTVEL	SP18	185
TRJTRY	SP19	185
FCT	SP20	185
HPCG	SP21	186
OUTP	SP22	188
ZVTX	SP23	188
WPANL	SP24	188

PROGRAM	IDENTIFICATION	PAGE NO.
KFACT	SP25	190
СН1416	SP26	190
Functions:		
EQ14	SP27	192
EQ21	SP28	192
EQ24	SP29	192
EQ24L	SP30	192
EQ26	SP31	192
EQ30	SP32	192
EQ30L	SP33	193
EQ31	SP34	193
CHRT8	SP35	193

070-1475-040-040-040-040-040-040-040-040-040-04	
លក្រក្សល្អនាស់សំខាងលេសនានាក្រភាសាលាស្គាត់សំខាងលើសំខាងលើសំខាងលើសំខាងលើសំខាងលើសំខាងលើ ។ ហេកក្សល្អនាស់សំខាងលេសនានាក់ការបាលនាស់សំខាងលើសំខាងលើសំខាងលើសំខាងលើ ហើយ ហើយ ហើយ ហើយ ហើយ ហើយ ហើយ ហើយ ហើយ ហើ	
LL AT SPECIFIED FILL PUINTS UN .A LU AT SPECIFIED FILL PUINTS UN .A LU AT SPECIFIED FILL PUINTS EK INULEU VELOCITY AT SPECIFIED FILL PUINTS LEUCITY AT SPECIFIED FILL PUINTS ************************************	CTETTION CONTRACTOR CO
	194749 19
<pre>Suptame.LC MetulLIU: AtTNUU Suptame.LC MetulLIU: AtTNUU CUPLX Syn Art100001 AT110000 DIEFNSIUM Art101001 SUT010000 TCDNT(100) AT4AC(100) AT4AC(100) SU DIEFNSIUM Art101001 SUT010000 TCDNT(100) AT4AC(100) AT4AC(100) SU AttNEST(100) SUT01000 TCDNT(100) AT4AC(100) AL4 At4AC(100) AT4AC(100) TCDNT(100) AT4AC(100) AL4 At4AC(100) AT4AC(100) AT4AC(100) AT4AC(100) AT4AC(100) AL4 At4AC(100) AT4AC(100) AT4</pre>	<pre>FORMT [[WX,MAI]OF VONFEXIE AXIOFFETZ_3) FORMT [[WX,MAI]OF VONFEXIE AXIOFFETZ_3) FORMT [/10212ATTOWTCHBOOY 1021.01FETZ_3)) FORMT [/10212ATTOWTC CONTENTION - AXIOFFETZ_3)) FORMT [/10212ATTOWTC CONTENTION - AXIOFFETZ_3)) FORMT [C112AZATTOWTC CONTENTION - AXIOFFETZ_3)) FORMT [C112AZATTOWTC CONTENTION - AXIOFFETZ_3) FORMT [C12AZATTOWTC CONTENTION - AXIOFFETZ_3) FORMT [[102AZATTOWTC CONTENTION - AXIOFFETZ_3] FORMT [[102AZATTOWTC CONTENTION - AXIOFFETZ] FORMT [[102AZATTOWTC CONTENTION - AXIOFFETZ_3] FORMT [[102AZATTOWTC CONTENTION - AXIOFFETZ_3] FORMT [[102AZATTOWTC CONTENTION - AXIOFFETZ] FORMT [[102</pre>

N & N & N & N & N & N & N & N & N & N &			
.\$\$44.1) \$\$£\$741 (alpmai(1),i=1,NP44LT) (1),AHEAT(1),ALPMAT(1),I=1,44A4LT)	<pre>SET UP TABLE OF GOUNDINATES ANU SLUPES SET UP TABLE OF GOUNT COUNDINATES ANU SLUPES Call Table (alf-att-cran.clar.sSPANT,xSPANT,YS</pre>	DOIL JUINT DOIL JUINT MRIE (4.700) J.X80Y(J).R8DY(J).98UY(J).OH8UY(J) BEGIWING UF CALCULATIONS UEFENDING UN ANGLE OF ATTACK READ (5.707) MOEK,ALPNAD.ALPIT.AKVLHI.AKVLT2.AKV8H. IF (40Ex.LE.0) GO TO 200 ALPIT.AKVLHI.AKVLT2.AKV8H. IF (40EX.LE.0) GO TO 200 ALPIT.AKVLHI.AKVLHI.AKVLT1.AKVLT1.AKV8T. IF (40EP.GT1 UR. MEEPIC.0.0) UU UU Y MRIE (6.737) ALPHOSEM.ALPIT.AKVLHI.AKVLHI.AKV8T. MRIE (6.737) ALPHOSEM.ALPIT.AKVLHI.AKVLHI.AKVBT. IF (40EP.GT1 UR. MEEPIC.1.1) MRIF (6.751) AKVLY2.AKVLT2. MRIE (6.737) ALPHOSEM.ALPIT.AKVLHI.AKV2H.AKVLT1.AKV8T. MRIE (6.737) ALPHOSEM.ALPIT.ALPIT.AKVLHI.AKV2H.AVVLT2.AKTVLT2.AKVLT2.A	0,0 Mument Comtribution of mobe 241 (J)=44Ut(J=1) + Rødt(J=1)=2) 1=1)/5,0 553-81m(alpmad/fau)/Cus(alpmad/fau) 553-81m(alpmad/fau)/Cus(alpmad/fau) 578-81m(alpmad/fau)/Cus(alpmad/fau)
<pre>IF (SEFT.FULC .avo. YSEP1.ut.SSW.i) IF (NUEP1.Ed.1) YSEP1859AA1 CHATELUUIT CHATELUUIT XEETAWAY(1) XEETAWAY(2) XEETAWAY(2) XEETAWAY(2) XEETAWAY(2) XEETAWAY(2) XEETAWAY(2) XEETAWAY(2) XEETAWAY(3) XEETUWAY(3) /pre>	<pre>55 UP 14BLE 0F 40UY COUNDINATES 54LL 144LE (XLE-,XTE-,CRM),CT-7,53 54LL 344PE (XLE-,XTE-,CRM),CT-7,53 54LL 34APE (XLE-,44848,0UW,0UM) F1MERLLEY(2,048482,0UW,0UM) F1MERLLEY(2,048482,0UW,0UM) F1MERLEY(2,048482,00U) F1MERLEY(2,048482,00U) F1MERLE (4,171 F1MERLE (4,171) F1MERLE (4,170) F1MERLE (4,170</pre>	DOIL JEJNYEL DOIL JEJNYEL A WRIE (5.700) J.XBDY(J),BBDY(J),DHBUY(J) BEGIWKIG UF CALCULATIONS UEPENDING UN ANGLE OF READ (5.707) MDEXALPHAD.ALPIA.AKVLHI.AKVLTZ.AKV F (1000 - 100 - 20 ALPII.AKVLHI.AKVLTZ.AKV F (1000 - 20 - 20 - 20 - 20 - 20 - 20 - 20	CGALPECORCALED F (ULMITLL'0.0) -LIMIFO.0 COMPUTE NORMAL FURCE AND MUMENT CONTRIBUT COMPUTE NORMAL FURCE AND MUMENT CONTRIBUT VLACAD - 20 F (X8DY(J).6T, KLE.) GO TU 241 F (X8DY(J).6T, KLE.) GO TU 241 I (X8DY(J).6T, KLE.) GO TU 241 CONVED.0 F (NUSE'LE.0) GU TO 119 F (NUSE'LE.0) GU TO 119 F (NUSE'LE.0) GU TO 119
19 [19] 19 [19] 19 [19] 19 [19] 19 [19] 10	C C ALL 140L (X C ALL 344PE (X C ALL 344PE (X C ALL 344PE (X 7 14E1C (C) 7 14E1C (C) 7 14E1C (C) 7 14E1C (C) 7 14E1C (C) 7 15 7 1	DO 14 LEN LA	CEALTRECONTEL PURCE CEALTRECONTEL PURCE C CUMPUTE MORMAL FURCE C VUMAG, VUMAG, JAZANTEL T (X80Y(J),67,XLEA) 240 VLANTLH+(H80Y(J),867,XLEA) 241 XCPMPAZ,0PPA(H90Y(J) 241 XCPMPAZ,0P
11111111111111111111111111111111111111		19962555000000000000000000000000000000000	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		710 710 710 710 710 710 710 710 710 710	1. NPANL=) 200 200 200 200 200 200 200 20
		AC [R R] I [C 8 L = J'AL = , X = C 9 L = J'AL = , X = C 9 . N = L = N = T = N = , N = , N = , N = , N = , C = T = n , X = , X = , N = ,	<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>
		GEGMETRIC CHARACTER1911C8 Raven, y 38 m, xml, xmc 1807, ymr. Gnn, nn ymr, ymr, ymr 1807, ymr. Gnn, xm, ymr 1811, 127 Yanl, xmr, ymr, xm, xr 182, x8 pm, xy, x8 pm, ymr 2018, y 38 pm, cr 2018, y	<pre>Head (5,705) (ALPMAH(1)) 60 10 204 1.127CPh(1).7CPh(1).AHEAM() 60 10 50 4.0metric Cmaracteristics avef.ruget.rmml.rite.lipy avef.ref.rmml.rmml.rite.lipy avef.rat.rvt.rcp1.rc ().avef.rat.rvt.rite.lipy avef.rat.rvt.rite.lipy avef.rat.rvt.rut.rite.lipy avef.rat.rvt.rite.lipy avef.rat.rvt.rite.lipy avef.rat.rvt.rut.rut.rut.rut.rut.rut.rut.rut.rut.ru</pre>
			XLETARDY(NINL) XLETARDY(NINL) IT TALLETALE() IT (NALTAGIO) HED (5,709) (ALPMAH(1) IT (NALTAGIO) GO 10 50 HITT (0,752) (1,XCPh(1),YCPH(1),ANEAM(11T (0,752) (1,XCPh(1),YCPH(1),ANEAM(11T (0,793) (1,XCPh(1),YCPH(1),ANEAM(COMPUTE 1AIL 6LOMETRIC CMANACTERISTICS WAUNF & WAUNF & WAU

M18[#1] Xaexi f = / H048£		IF (EMS.LT., EMU) 60 TU 15 C	-
CALL UDYVIN (ALPMAD, INEIAN, FINE XA, EM, GAMA, MI, XGAMA, YGAMA,		C SUPERSUNIC LEADING EDGE	
(GAMA,134) (44, 60, 0) mistred	5P01 315 3P01 416	C NTHYENTHYAI	242 1042
(+U3Ev.LE.0) +U 11 19			
7 4 (8, 7 5 5) 6 4 7 7 (80) , 7 6 4 7 7 (80) , 2 6 4 7 7 (80) , 7 8 4		ARKAY(1,2%)KY)8M 10011111 1001100	
00 10 JEL017 Gate(j)56afr(j)258ayE			
322(C) 826537(C) 848506		128(X14)(4)(X14)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)	
LL GAAFE (PERAF(L).KL,GodO) Ark(L)et(Ark(L)erL			TOAS
ZGATP (J)=ZGAMP (J)+RL		YV(1,214Y)=Y6(1)	
DUTESURT(YGARA(76)+42 + /GARA(56)444) Te foin ot trades /co fo fo i.e		<pre>Z<(%,*)=Z(0(*) Linexevit</pre>	-
		XY(NTRY)EXTER+0.001	-
NGET	\$P01 328	IF (XYE(4.5PARLE),6f.xTEE) XY(5TRY)8XYE(4.2PANLE)+0,001 X110.14883-0711.1	1045
WRITE (\$,740) Cominue			
CARNERGARS (NG)		CALL SHAPE (X+(NTXY),A,SKD)	
YGALAGEYGAN(MG) yeangeygalaety			
		ARRAY (2. NTRY) BA	
		A 2 2 4 4 (), N 1 7 4) 8 8 4 5 5 4 4 4 5 4 4 5 4 4 5 4 4 5 4 4 5 4 5 4 5 5 4 5	1048
(I)=26AMVG			
HRITE (0/711) KLEM Hrite (0/712) (1/6Am(1),76(1),26(1)/101.NV)	SP01 340	CALL FTUTT 60 TO 37	
		15 X1eXLE* Verytrator	104
COMPUTE VOMIEX INDUCED FORCES AND MUMENTS UN NOSE		ATEXICATONALTS. 14 (XYSCA-PPARIX).61.487) XF6XYSCA.2PANIA1+0.600	
LL CAVAZ (XGAMN,YGAMN,YGAMN,GAAN,KGAMN,NG,XH,CN,CN) 		IF (MDUNY_6T.10) 60 TO 953	101
544444,00F1454474675 512444,00F14544/(RFF84RF4)	747 1048		
PARD. 0 111 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1			1048
JI CONTINUE			
al[==@] %(alP]=/RaD)	8P01 552 8P01 552	C 26(1)#2A(1*W1HK) + 2M2#	8701 429 3701 430
C\$ALIwsCO\$(ALPIw/RAU)		C met up induced veincriv field in that	-
nevit Miryeo			
		14 (APRIAT, LT, 0) 60 TU 511 Meite (4. 140) Head)	
1101 e 1 XEXT 64 P 44 L F			
DO 141 JAL.MEXT		511 CONTINUE Do 142 Jei. Next	
		DUMSCABS(YP(J))	
ZOUTEZZE SE (XP(L) = XX] =) + 8XAL I = 200 - 20		IF (DUM-67°NFLITI) VP(U)=VP(U)=NFLITIVOUX NV(U)=AIMAG(VP/U))	
87 (J) 8(37 (7 (7) 1 / 2) 1 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 /		AEREAL (VP(U))	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		IF (NPMINY_LT.0) 60 TO 142 Dumenvely a busi	
		WAITE (4,747) J.XP(J),SP(J),A,DUR	
COTPUTE BEBAIN UPLAGE ON HING		142 CONTINUE 446 CONTINUE	
T1TL#MEA0(1)			
DUMAL, O		C COMPUTE LOADS AND FUNCE UN MING	5
FFERTO,FAIARCELET(1),DUTJENAD If (Nendt.L1.0) 60 10 540			::
(NPRINI.LT.0) 60 TJ 510		31 ALPYA(J)#ALPYA=(J) + ALPD + ALPI + #B(J) + FV(J) Visetari	1
ITE (0,745) MEAU(1) ITE (0,746)			5 3
		CDFuelo. Fais fitters futures versus purt restor income contents of	5
J10 01117641 LL \$MAPE(XP(J),4,0UM,DUM)		1214 - 0144 - 41901 - 41141 - 4144 -	5 3
VP(L)=EVEAAAAVC9P(L)=0P(L)) Versitestestest		2 SLEAF STEY, DZDXH, NRCA, CDFH, ALPHA, LIN, IPH) Fixederi Dafrai ti	3P01 458
(JURTATION STATISTIC)		IF (X=CP.61.0.0.0) XCP=X=CP	
IRTIE (6.747) J.XP(J),8P(J),4P(J) Continue		X(7*8074X(7* 1440741(74457441)*/(4441)*	::
CONTINUE			3001 402
IF (*U3EV.LE.0) 6U 70 440		CALL HYAN. (NUCRI-ARACATLARACATLARACATLARACALESCES,XYE,XCPE,YCPE, XGARA-ADELEDELET.ST.ST.A.115 V.UDELET. (255,557)	:

	CALL LUGPHG (NBUH),XAANPL,XXALXXLAXLAXXALAXXAFF5, XTAATCTASLEA,5TEA,2ULUXANNKCB,Y5FANA,PALCX, 1 TIPPA,2UCALIJOLA,T170,CLUXANNKCB,Y5FANA,PALTY, 5 T5EPA,25FDA,AXVLM1,AKVLM2,AKVSH)	947 1049 10497 1049 907 1049	[F (^UUSFV_U(U) A[EAV(\]MY) → _UOL [F (VP4]NT_UL_U) A[EAV(\]NU]) AMITE (07711) X1 AMITE (07711) X1 (110,111),111,111,111,111,111,111)	1040 1040 1040 1040 1040 1040 1040
	00 1400 181°24797 Suiteo.o	_	M [M] M] M] M] M] M] M] M] M]	
	1F (Y1(1)。61。v。V) UUY#1。0/(8。0+F1++1(1)) 54×1(1)#64×1(1)+R1FKs=CS4[PaUU*		<pre>[f (weight)_LE.go) xfElaxgur(.fxL)=uxl xfertt = .ii</pre>	
				255 1045
			IF (XTT(4,NPAPLT)。GT。XF) XF8XTT(4,PPAPLT)+0.001 149 Continue	
	C 2 5 5 1 C 4 D 5 1 C 4 D 5 1 C 4 D 5 C 4 D 5 C 4 D 5 C 5 C 5 C 5 C 5 C 5 C 5 C 5 C 5 C 5			
	XCP1 VSECUPTIV	8401 474	NEXTERPART T	
	J_4JK/J>A4★4JK+4)#J×AKKJ J_4JK/J>A4★4JK+4K)#J×AKKJ		IF (REXT,6T.0) GO TJ 148 Call Frithy	-
			IF (HOUPY, 61, 10) GO T. 53	
U			60 TC 147 146 CUNTINUE	3801 562 3801 562
	DETERMINE VENTICAL LUCATION OF SEPARATION VONTICES		00 445 441 AEXT	
•	CALL ZVTX (ALP", EPS, BIAZ)			
	IF (CARBVE.FI.C.O JANJ. ALP.GI.C.O.D) BIAZHOBIAZ Garinveijegari		2DUM82HLT=(XP(J)=XHLT)=\$HAL1 90/11=fHD+YrV0HH-PRHH	-
	1. (1.1.2.6), UGPAZEY (1.2.4), (1.1.2.4)			
	76/2741/91/14 26/2741/92/4549(X1444/X154)4024534		N(J)60,0 145 CONTINUE	8001 564 8001 574
		4 0 U		3P01 573
	IF (AKVLMI.LE.O.O .AND, AKVLMZ.LE.O.O) GU TO 520 Do but thi.nefed			
	CO K41 96441(1)		EPG#40,+ATANK(GKET(1),CUM)+KAO 17 (76004.L1.0) 60 t0 540	
	0CTGPTE0CTGPT+GPT(T<+) 		IF (NPRINT, LT. 0) 60 TU 512	
	IF (1.61.1) (B(CTEX+(CREM=CTEX)=Y&EFF/\$0PAKE)+\$IN(BTA2/FAD)		HRITE (0,745) HEAD(2) Hrite (0,746)	
	26(474)=2422[x4(X16x4X]x)+88X4[]x x4644(x)=6284 X(Y16x44),76(XX44)	8P01 502 8P01 502	512 CONTINUE	SP01 580
			CO 546 JH1.MEXI Call Shaft (XP(J).A.CUI.DUY)	
245	Ô,	3P01 505 3P01 506	VP(J)AEVE AALPD(AAA/(SP(J)ABV(J)) Walijaentaa(VP(J))	
υι				595 1048
, u			AALTE (*****) USAT (US*UF(U)***(U) Vie Cortire	
	I APERACTIN/CRAM			
	CUMEL.O Gerletentarre(blett).Cumjerad	512		
	0180181,02408 TE SEPTER 11 S S BERTERETSTATES 61815.52		SUPERBONIC LLADING EDGE	
	IF (\$PETERSON) \$PERSONSONSONSONSONSONSONSONSONSONSONSONSONS	515		3P01 592
			XFEXLET XFEXLET	
	861144466,04861446(\$8748747674764)442)/684 8050555677449,0464761/5843		CALL TRUTRY TH JEDNEY OT TO TO TO TO TH	
	PARATEBE TAATE (1.041.041.01.041.041.041.041.041.041.041			
	CALL Criste (000PANE)rafter@stringter.Cree.Cree.Franer.rafter@ocree. XCF002P.05275.05275.Troft.roft.		XV(NTRY)EXTET+0,001 If [xytte4.NPan[t].Gt.xTet] xv(ntry)exytte.NPan[t]+0.001	865 TO48
	XCPBSPSXCPBXPSCRSS+XLFS VCBSS		CALL STAPE (XV(ATRY),A.S.80)	
				3P01 002 SP01 002
	CLARECHATS (BETAAN, SGPANN, RAVEN, CTMA, CREE, BEPLE)/(BETAARAU) Fi adhii amadad		AAAA(2,27474)#A	
	CALL RAACT (ROSM, CKMB, EM, PARAM, CKBM, NAFTH, SMBH, TAPER, BOCHM, CLAR,			
	8 5614.44516.961445.005.005 Cystoficytyscortists		ARAAY(S.PTRY)440 50 444 (S.PTRY)440	3PUL 606
521			345 ZV(J,MTRY)=ZV(J,MTRY=1)+CN(J)TT+8NAL1T MEXTEMPTRIT	
:				
U	」↓J&/@//@/X@&GL(@+@4.04.)X@&X)@0/1.224.)		CALL PAJIKY Go to 547	
	4LP7#4LPHAD+4LP11 **D7#41D177944			
			TF (MDUMY_GT_LU) GO T() 53	010 1048
U			BET UP TUTAL INDUCED VELOCITY FIELD ON TAIL	
υu	COMPUTE TRAJECTURY OF NUBE VORTEX AND "ING VORTICES PAST TAIL	54.	347	
I	x1#x1t± + °002	301 545	IF (NPRINT.LT.0) GO TU 515	SP01 621

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

Method is a first of the set 510 510

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0001 1001 v υ v ***** WHIE (0,/14) HEAU(8) CLISCONSPORTS MRITE (6.719) CNTOT,CATOT,XCPTOT,CL,CO1 ,CATOT C220.0 If (CLME.o.a. -----***** (8:721) (6:722) XV(U),(ARRAV(2,U),NE1,5) (6:723) 2 IF (CL.ME.0.0) CD2#CD1/(CL=CL) 14.11E (0.742) CD2 14.11E (0.742) CD2 14.11E (0.742) CD2 14.11E (0.720) GU \$ The second secon : 2 2 IF (MOBEV.E0.0) 6U T(HRITE (6.727) J J4141 (1.61,NV) 90 T0 91 HRITE (6.720) J Ę 32 \$ 58 5 **

<pre>FGLL ASETICULIENTLIPLEL)/CITE_INF.CLAMP.SECT) FGLL FGLP THE ARC LLWGTH OF RODI UPPER BURFACE. FFLARTINITI) DISTURCTION THIS WILLIPLE OF THIS REGION. FFLATION FOR THIS REGION. FFLATION F</pre>	(*80014) 16.14) .ExGTH / .ExGTH / .e0)/((TU
<pre>Provide the provided of t</pre>	00 00 01 11/11 YEDYSPAK(1) THETACTYHOUTY)(TTPYFHOUTY) SC322THETAOSIA(1, THETA) SC32THETAOSIA(1, THETA) SC32THETAOSIA(1, THETA) SC32545446 ST814040(ST87)-1 ZE1,000/LISPANCHATACH ZE1,000/LISPANCHATAC

174

I

W. (100) W. (100) <td< th=""><th>2 2000 2 2000 2 2000</th><th>0 1010 0 1010 0 1010 0 1010</th><th></th><th></th><th>(NT=1)) SP05 0 (NT=1)) SP05 0 (NT=1)) SP05 0</th><th>2003 2005</th><th></th><th></th><th></th><th></th><th>1 5046</th><th>1 1040 1040</th><th>1 2048</th><th>1 1040 1 3040</th><th></th><th>1 4010 1 4010</th><th> 2 1048 (X1-1)</th><th>1 60 80</th><th>1 NOL0</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>17 1000 17 1000</th><th></th><th></th><th></th></td<>	2 2000 2 2000 2 2000	0 1010 0 1010 0 1010 0 1010			(NT=1)) SP05 0 (NT=1)) SP05 0 (NT=1)) SP05 0	2003 2005					1 5046	1 1040 1040	1 2048	1 1040 1 3040		1 4010 1 4010	 2 1048 (X1-1)	1 60 80	1 NOL0													17 1000 17 1000			
	2 v (1, 4) aRgUY (21) 2 tan141 2 tan141		1111 (0°144) 1111 (0°109) (°174 (C)				• •• 0	IF (PSILET .G1, 1,00-02) GO TU Imineimaxi	100°-(1-1)/X(1-1)/X 100°-(1-1)/X(1-1)/X			Se IF (XV(J)=XBUT(21)) ZUE,536,456 Je VY(1,J)=R4DY(X1) :		NTRWITHI IF (NT.LE.NTBL) 60 TO	ждіте (6,799) ждіте (6,708) ј,ху(ј)	18436 171145 (8-108) J			24(8,4)58884A41 34 if [x4(4)=x804(21)] 434,446,834	34 YY(1,4)EREDY(A1) Jelei	IF (J .66. 100) 80 TO 40	NTENT+1 TE / HT / E LTEI / 60 40	2					以く (2, 7) 言不思ひ 人 (2 4) とせま アイト・レード アイト・レード	60 10 38 17 NTENT+1	IF (NT.LE.NTBL) 60 TO	11111 (P. 104) J. X. (J)	UARNY ERITE (4.704) J			
		-			~	•	-		-	•				-						•		-			•	-	1		•	r			~		
<pre>k (ktb-aftw.cfm.gSPA4.ykt.ktb.ym.jmax;pSutu ktb://wtb.commicsTemisSPa4.yktb.ymercool BUOY: itw, not Tall CUURDIABDY(100).ABDY(100).ABDY(100) http://bl.kbor(100).RBDY(100).ABDY(100).ABDY(100).ABDY(100) http://bl.kbor(100).RBDY(100).ABDY(100).ABDY(100). http://bl.kbor(100).RBDY(100).ABDY(100).ABDY(100). http://bl.kbor(100).RBDY(100).ABDY(100).ABDY(100). http://bl.kbor(100).RBDY(100).ABDY(100).ABDY(100). http://bl.kbor(100).RBDY(100).ABDY(100).ABDY(100). http://bl.kbor(100).RBDY(100).ABDY(100).ABDY(100). http://bl.kbor(100).RBDY(100).ABDY(100).ABDY(100). http://bl.kbor(100).RBDY(100).ABDY(100).ABDY(100). http://bl.kbor(100).RBDV(100).ABDY(100).ABD(100). http://bl.kbor(41).ABDV(41-4)] http://bl.kbor(41)-ABDV(41-4)] http://bl.kbor(41-4)]</pre>																																	803 071 803 072		003
SUBHUUTIME TABLE (XLE-JAT	SUBHDUTINË TABLE 1			COPPED A CONTRACT A CO	708 FURNAT (110,4F10,5) 708 FORMAT (//SX63Meraes ERROW IN BUBHOULINE TABLE, TOD FEW ENTRIES	I BODY TABLE) 799 Furmat (//5x4umatt kxEcutiun Stur. Budy table exferded)		BETAB1.0 Nysi	Jet 16 CONTINUE	(LZ)		IF (XY(J),61,8454) 60 10 21881+1 2180-1-1	JEJAI If (NTGLE.NTGL) GU TO 30	GO TO 40 If (XV(J).GT.ATEM .AND. XY(J).LE.XLET) GO TO	IF (AV(U)+61+ALET) 60 TO \$5 Imine2	IF (PVILEM	IF (J .66. 100) 60 TO 40 Kvijskieluij	ZV([,.J)=TM(2) 155 [F (Xv(J)=KBDY(AT]) 245,555,455	100 Y ((1,1))848DY (21)			HAITE(6,708) J.XY(J)	MAITE (0.700) J	0107 DELTAE(XBDY(N1)+XY(J))/(XBDY(21)+X) UUT:	 		62. 100) 60 TO 4	033 MTEMT+1 2F (MT_LEEMTBL) 6U TU 533	HAITE (6799) Haite (6799)	11111111111111111111111111111111111111		DELTA#(X80Y(M1)#XY(J))(X80Y(M1)#X) YY(1:J)#R80Y(NT)#DELTA#(R80Y(M1)#R)		XY(JJ#X14H + 0001 JP (XY(J).6E.XY(J=1)) XY(J)#XY(J=1)	154 IF TERTENDER 254 Pr(c)-abdr(rt)) 254,534,434 354 Pr(1.J)#Abdr(rt)

142 CUTIENC.1.0) GO TO 500 16 TCCARE.60.100 TO 200 17 CCARE.60.102 OD 200 18 CCARE.60.105 UF CARE UPPER BURFACE CP.CONVERT TO DELTA-CP. 202 Contine.0.105 UF CARE.9 202 Contine.0.4(CTI)-CP(I)) 202 CO 202 SILFAMEL8 TP (OUTCOOLI--4) 60 TO 148 MRTE (5-17) MACAUMURP//TTLE MRTE (5-17) MACAURURP//TTLE MRTE (5-713) MACAURUR/XY(6/PAMELB/PAMELB MRTTE (6/713) BRE/CBAR,REPUUH,XY(6/PAMELB)/PAMELB COTE2.0.COT/3MALF Call 30.Ve(F/A,PANEL8,NPL,IP) Acao. Class. Xxaarea(1).0.(1) Xxaarea(1).0.(1) SOLVE (CP, A, PANELS, NPL, 1P) CPT([]==UT([]=UT([]) CDT=CDT+CPT([]=DZDX([]=AREA([]) ALPHA([)#ALPHA([)+A([J)+CP(J) 60 T0 250 CLAD#CLA+.0174555 BETA#80RT(A88(MACM+MACM+1.0)) IF("NDI"A8YH)8HALFE0"548HALF Aince0,0 C====compute clealpha and a.c. 715 FORMAT (5X0010,5/3F10,3) 00 616 [81, PANELS Alpha[] 44[] 44[] 00 62 181, PANELS CHCLW(REFNDH-AC)/CBAR KPOLARE1./CLA IF (CA3E+2)615,610,621 XX#CL/CLA CPVBÅRGO. Du 700 141, Panels 141, PANELS DO 210 JEL, PANELS DO 210 JEL, PANELS COTEO. DO 15 INI, PANELS CLABCLA+XX ACBAC+XBAR(1)+XX S-ALPHA(1) CLASCLA78HALF BCLASCLA+BETA ALPHA(I)=XX ALPHA(1)=0. SHALF SREF CPX8AKE0. F(I)==1.0 ACEAC/CLA CONTINUE CONTINUE 00 011 280. 0=^1 CP(I) CALL 8 ~~~ 2 5 52 123 210 1000 1048 1048 ALPHAR ARRAY OF POINTS CONTAINING THE INCIDENCE OF EACH PANEL, SPAN Poblitive Alpha is Positive Angle of Attack, there are apartlespan Pulues Calaray of Delta-cp Values on Each Individual Panel, there span are aparels values 3P04 3 1049 DR&DY(1)s(R&DY(2)=R&DY(1))/(X&OY(2)=X&DY(1)) DR&DY(MT&L)s(X&DY(MT&L=1))/(X&DY(MT&L)=X&DY(MT&L=1)) DIMEMBIGM CFT(100),CPU(100),CPL(100),LG(100) DIMEMBIGM XY(6,MPL),XCFT(MPL),YCFT(MPL),XCBY(MPL),AMEA(MPL) DIMEMBIGM ACHEL,AFT(CMPL),MGMCCL(2,MR),DZBX(MPL) DIMEMBIGM ACHMATJ,APH4(MPL),UT(MPL),IF(MPL) DIMEMBIGM YALD(20),ALGAD(20),TITLE(20),YXIDE(20),MEAD(2) DIMEMBIGM YALD(20),ALGAD(20),TITLE(20),YXIDE(20),MEAD(2) REAL MACM.LG.MPGLAR Inteer Panels.case.region, Homs, cols.romcol, outcod Duc 45 Ja24[]-m807(J-13)/(1907(J)-1807(J-4)) Ducie (m807(J-13)/(1007(J)-1807(J)) Ducie (m807(J-1)-m807(J))/(1007(J+1)-1807(J)) Ducie (m807(J-1)-m817L(0,748) Jf (M71L,LE.1) -m17L(0,748) Ff UMA COMMON /REBLTZ/ TTE.GAMT.CL,CM.CPXBAR Common/Arataj Aby Common/Arafe/CL.m Common/Press/CP(100) X80Y(NT8L+1)=X80Y(NT8L)+CR== R80Y(NT8L+1)=R80Y(NT8L) 880Y(NT8L+1)=880Y(NT8L) DATA HEAD / 4MHING, 4MTAIL/ TENTEL-1 DRBDY(NTBL+1) 5DRBDY(NTBL) **8** 2 xv(J)#xW0r(1) vv(1,J)#RWDV(1) Zv(1,J)#RWDY(1) Juje1 Jeje1 Jr (J 66, 100) Gu T(COMTINUE NTBL#J+1 DU 41 J#1,MT&L X8DY(J)#XY(J) R@DY(J)#YY(1,J) 80DY(J)#XY(1,J) LOGICAL ABYM 0.0=(2.1)/ 24(1,1)=0.0 1 (()) = 0 . 0 CONTINUE -----; Å 9 Ŧ υ υ ы ... υ

<u>:</u>

=== ::

210

7.5

28 503

* * * *

100 8 0000

1110 0
8004 180 8004 180 8004 180 8004 180 8004 191 8004 190 8004 190 8004 190 8004 190 8004 190 8004 190 8004 100 8004 100 8000 000000

, i

L

		1 1 1 1 1 1 1 1 1 1 1 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
<pre>And the second sec</pre>		TIP EGGE FONLE UISTRIAUTION AND CENTFR OF Royge Romedul (1,M.GION) Raye Megiupeni Arins e Rums
<pre>Pinking P</pre>		
<pre>Intering Intering intering Intering intering intering Intering intering interin</pre>		2000000 2000000 2000000 2000000
	<pre>CINKING 0 101 Km J Aug 0 101 Km J Aug 1 101 Km J Km</pre>	MUTE (6.2)JJALFMADJPNLC(J).PNLMUL(J).T Continue Spanise Uistnibuttum um mung Plane Fur and Lewing Euge Sictium (Evien GP Pres [F (YPWIN].be.d) Arif (0.3)

THICKNOZDA(1).ME.0. Been Immer Lode. J 18 The Index Of The Influenced Famel Do 89 JairPamele Jajja. Jajja. Yeskefija C 18 1402 09 18,7AMEL8 C 18 1402 09 18,1VELGRCING PAMEL B194L6(1)965741 B244T6(1)965741 B164M28 9087(A48(824824X762M)) B164M38 9087(A48(819814X762M)) X18XY(1,2)96574 920 CONSERTATION (4,0+P1) CONSERTATION (4,0+P1) 50 TU 4 50 1 CALL COMP Bumaeum-real.r Bumaeum-real.r If(.mot.th[ck]go to 12 Fall Toom Fall Toom 2 2 IF (81, LT. ZERU) 60 TO 8=81 CALL COMP (TOLRAC) Bumarebult If("Not"Thick)go to 1: XtekGT=X1 CALL COMP (TOLANC) Sumsaum-Result If(.Not.Thick)GU TO 1 XtaxCt-x2 XCT#X8AR(J)+8ETA1 BTERM8BTERM5 CALL TCOMP Call TCOMP BUNTEUTHICK IF(ABYH)GO TO 12 X2=XY(2,1)+8E741 X3=XY(3,1)+8E741 X4=XY(4,1)+8E741 CALL TCOMP Sumtesum1=utmick UHTEZENO 1=XY(S,I) Yaeky (6.1 = VC = V (axc-x1 K=XC=X2 SYC=72 7=74=7 ~ = 1000 COMPUTE POSITION AND STRENGTH OF L.E. SEPARATION VORTICES Tip vortex is included with duter region L.E. vortex (YIDAAKVLE(J) + DUMAAKV8E48F) XLOCAATTPATTPER XLOCAATTPATTPEL TEPYATTEPYATEL TEPYATEL TEPYATEL TEPYATEL MOMATMON + (FT2(JTEP/TIPERL)ACMAT MOMATMON + (FT2(JTEP/TIPERL)ACMATTP/TEPERC(JTEP) SFMAPH + TT8PE(CUTEP)ATTPERL SFMAPH + TT8PE(CUTEP)ATTPERLOW,JTTP,TTPAFC(JTEP) SFMAPH + TT8PE(CUTEP)ATTPERLOW,JTTP,TTPAFC(JTEP) F (akvLE(J).LE.0.0 , aND, DUM=AkV8E.LE.0.0) GO TO 313 Gam(J)=akvLE(J)=GNvet10/Y80 ← DUM=AkV8E.GNV8 Y1(J)=(Y1(J)=akvLE(J) ← DUM=AkV8E.0FH)/ DO 301 1411,4027 Tetarudici)488AN - Ravg Tijatija) + 8600uc(1)*Vitating4C(1) Yidatig + 8600uc(1)*Tigge(1) Continue TOLACIAE-2)=CAOUT PLANARTEARLSANUNGI IPCHORTY(6,PALLS)=TY(2,PALSAN) IF (IPCHOLICOL) GO TO 067 IFFCHOLANOUS If (MPRINT,6E.0) WRITE (0.0) IF (MPRINT,6E.0) WRITE (0.0) AJIPEJIP AJIPEJIP COPTIPE(YMGM/TIPFY) + XY(2,PNLSMR) CNVIECNV If (KBEPLT,IMAX) CNV2BYID/YBD If (KBEPLT,IMAX) IIGKBEP+1 KBEPLAX If (AKVLE(J)-LE.0.0 AND, DUMe/ If (AKVLE(J)-LE.0.0 AND, DUMe/ 8*88* 8448**(11**44v6) 8468*48*/89** 800 300 184.144X 17 (888-81 ¥LOC(1)) ×88#1 1900*00 * 86544(1)=1408C(1) DUME0.0 If (Kaep.eg.imax) dume1.0 Y1060.0 DO 505 Ja1, NBEPV Y1(1)=0.0 Y1(2)=0.0 Gam1(1)=0.0 Gam1(2)=0.0 Gam1(2)=0.0 Cave2=0.0 Cave2 RAVGEXY(5,1) 8F=0.U COPTIP=0.U YHOM#0.0 TIPFY**#0.0** MAX CONTINUE CONTINUE CONTINUE 3F ME0.0 180=0.0 Iseas . 299 199 100 101 0000

:1	1F (A3YM)60 TU 825	9010
	eyCev2	0040
	CALL TORY (TOLKAL) Buraburartbuli	3104
	1F(, NUT , THICK) 60 TO 845	
	CALL TCOMP	-
. –		904
920		
-	x = x = x = x = x = x = x = x = x = x =	4010
	CALL COMP (TOLRMC)	3706 3706
	GUMBEREGULT TFC.NDT.TMICK)GD TD 15	8 P 0 6
	,	0045
	CALL TCOMP	
51	IF(ABYM)60 T0 10	0010
	CALL COMP (TUGKAC) Bumbbumoreåvet	
	IF(,NOT, THICKIGO TO 10	404 8
	CALL TCOMP Augradimiantance	4046
		-04
	24aYavC	
	CALL COMP (TOLRAC) 4.14-24.14-24.24.1	
	IF(_KDT_THICK)60 TO 17	010
	x1sxGT=x2	
	CALL IGUTY Sumteburgeursch	040
11	IF(48YM)60 T0 825	904
	Y=Y2+YC routh /101 buf	
	CALL SURF - SUBARCA Buirdeurorfeult	8048
	IF (, NOT , FMICK) BU TO BES	
	CALL TCOMP Buint Buint Put Nick	010
825	BTERNEDTERNZ	048
	IF (62,L1,ZERO) 60 TO 650	
	Gee2 XexCexS	
	Y=2=41	
	CALL COMP (TOLANG)	
	XTEXCT=X5	
	CALL TCUMP Buktbbukt-utwick	048
12	IF(A2YH)60 TO 22	
	₩847(64) Fil FOMB (101.846)	
		048
	IF(, NOT, THICK\$60 TO 22	
	CALL TCOMP Buntebunteutnick	
22	r xexCexe	
	YSYC=YZ Call Comp (Tolyrc)	
	IF(.evol.e.Twick)50 fo ks Ktekcteke	
	CALL TCOMP	
10	0.2186.214-C1216.2	
3		
	CALL COMP (TOLRAC)	
	IF(.WOT.IMICK)60 TO 840	
	CALL TCOMP Auntebungtungtungtu	
830		
	=V]-YC	
	CALL COMP (TULNNE)	

\$PC0 079 \$UPENTRELL \$PC0 079 \$UPENTRELL \$PC0 000 TEX.MUT.FICAIGU TO 25 TEX.MUT.FICAIGU TO 26 TEX.L COMP (TQLANC)
-----597 110 070 ***** DATA X#1/0,Uvi.0/2,0.4.0/4.0/5.0/0.0.7.0.8.0/9.0/10.0/ \$700 DATA GAMTYO,310.22.0.34.0.800.0.48.0.62.0.777.0.4011.011.08.1.15/ \$708 DATA X41/~45.405.477.442.4505.0.22.425.0240.0550.0595.0908 DATA X41/49.445.477.442.4505.0.22.42.4505.055.05908 DATA XA2/49.404.485.407.407.07.1715.775.7751.772 DATA XA2/49.404.485.407.407.07.115.775.7751.7755.755.7751.972 80-38 80-08 8048 8104 8704 701 FORMAT (//1X5Marara,)462MASYMAEIRIC OR UNSTEADY BODY VORTEX SEPARASON 11104 Possible #4444//) 9908 8088001144 804414 (ALPMAU, 146144,FIAF, XA, 6446, 46, 86, 800 COMPUTE THE STRENGTH AND PUSITION OF BUDY VUHTICES COMPUTE UPPER LIMIT FOR SYMMETHIC VOHTEX SEPARATION UINENSIUM X87(11), ZA1(11), YA1(11), GANT(1)) DINENSIUM X6AAN(10), Y6AAN(11), Z6AAN(10), GANZ(10) IF (THETANLE, 50.0) GO TO 10 EARIO/(ALPHA =4.0) + 2.0 EO TO 12 = 80H((1024.0+(ALPHA =4.U)/(THLTAN-4.0)) IF (XAA.LT.0.0) XAABO.0 IF (XAA.LT.0.0) XAABO.0 GC TC 39 Deltaerskyt(n=1))/(xsf(n)-xsf(n=1)) Gamu(ug)ggarn((n=1) • deltae(gart(x)-gart(x=1)) Gamu(ug)ggarn(ug)_sbartp /1=Y1(K=1) + DELTA(Y1(K)-Y1(K=1)) (GANU(JG)=Z1(K=1) + DELTA(Z1(K)-Z2(K=1)) Z=Y42(K=1) + DELTA(Y1Z(K)-Y4Z(K=1)) DUMBO,0 17 (46,01,1) DUMA(DUM1=1,0)/(DUM2=1,0) Xrarsaa - Oum-dxpr 17 (46,10,1) xparsaa Xramsaa Xrams(Jo)WXTar 12 ALMT#((FINE=12,0)##21/3,57 + 12,0 17 (ALPMA 3(F14T) WRTFC (4,01) 18 MALP#41M(ALPM2)57,2557795)#F 18 (DNTM.17 1,05=02) GO TO 15 18 (DNTM.17 1,05=02) GO TO 15 28 MADDRTAC XPARE(XPAR-XBA)+BMALP If (XPAR .LT. 0.0) XPARE0.0 DO 20 Jel,Ntaele IF (ALPHAD.LT.0.0) F8+1.0 Alphaefaalphad (XPAR=X8T(J)) 22,23,20 CONTINUE Gami(Jg)86amt(k)=3nalp Zgami(Jg)82a1(k) IF (X8A.6L.XA) RETURN NGRXPAR If (NG.67.10) NG410 If (NG.16.1) NG82 80 TO 10 XPARO.0 Continue DD 40 Jeel, NG 30 YGAMN(JG)=Y1 IF (EMACH .G NTABLE#11 DELTA#0.0 F#1.0 If (ALPHAD Y2=YA2(K) DXPR64.0 V1=VA1(X) 95=1400 DUNZENC 0802 . . 22 22 ş U υ v v 222 СОМРЦЕХ ЗІДМА.ЗІСНАВ Dimensiun жерківоріяног(100), #ырт(100), окябрт(100) Dimensiun xv(200), yv(4,200), 2x(4,200), имогозо), Алах (5,200) Dimensiun Gam(4), yg(4), 2g(4), silma(4,2), signab(2), A(2) СНD20,0 DD 20 мина;иv DD 21 мина;иv Sigmab(MX)#B16M(NVV,MK)=A(MK)+A(MX)/CONJG(Sigma(NVM,MK)) Sigmab(N)#4,0f6Am(MVV)+REAL(B16MAB(2)-B16MAB(1)) COMPUTE THE FREE VURTEX INDUCED AURMAL FURCE AND MUMLAT COMPUTE NORMAL FORCE AND MOMENT UN UNE BECTOR OF BODY 13 Г (М.:60.1) 60 Г и и 13 Г (М.:60.1) 60 Г и и Del Tar(1-0.1) 50 Г и и Del Tar(1-0.1) 50 Г и и 00 113 мина.) № С.Гак(т (им.ии)-уу(ичи,инец) 2227(ичи,инец) • Del[Так[7, (ичи,ии)-ду(ичи,инец)] 215 Bicha(ичи,ик)-спер.к(1, 2) 11 F (М.:67.1) Мизимец SUBPOUTINE ENVIX (XINII,XFINL, ASEC, XM, CA, CM) СОММИМ / МИОР/ МІНЬ,МТВЦ,КВОУ,АВОУ,ОRВОҮ Соммом /Vortex/ Ny,NV2,6ан,Y6,26 соммом /Vtable/ Мтгу,XV,YV,2V,WVP,ARAY 00 TO 18 17 (1.46.1) 40 TO 15 DELTACKI-MBDY(1.46.1)/(ABDY(EN)-XBDY(EN-1)) A(N)=MBDY(EN-1)OELTA-(RBDY(EN)-RBDY(EN-1)) A(N)=MBDY(EN-1)OELTA-(RBDY(EN)-RBDY(EN-1)) IF (En-6T+1) INELMAL XIERTOPX JMain Do a jejk,Nfw. Ini If (1.460'(1) je,15,14 a continue 5 d(M).ampt(1N) LOOK UP LOCAL BODY RADIUS DO 22 NUMBI,NY \$16MA(NVN,1)B&16MA(NVN,2) Contimue Return END 2=2V(NVN,AN) 112 81644(NVN,NK)=CAPLK(Y,Z) IF (KI-KV(M)) 15,12,11 Continue Do 112 Nymel,NV Yevv(Nym,MN) DUMENSEC DXm(XFINL=XINIT)/DUM X1mXln]T 1841 DO 30 Ja1,M&EC DO 10 NK&K,2 Murin DO 11 Menn,NTRY Ham CHECH+CND+(XH+XP) XPEXI-DX-DX/2. CNECN+CND 4(1)#A(2) C IN SAL 5 :2 35 • <u>.</u>. 50 ĩ ខ្ល **u** u u υ v

000

....

- 1 M - 1 A A A A B A - 2 B B 		м м м м м м м м м м м м м м м м м м м
SUBHOUTINE FILL(AFILL, MALL) REAL ATILL(1) TELES INTERVENEL FFLLLE ALTERVENEL OLLEGAFILL(MALL+1)-AFILL(1))/FLOAT(MFILL) OLLEGAFILL(MALL+1)-AFILL(1))/FLOAT(MFILL) 20 20120120121 20 451L(1)#451LL(1=1)+0EL RETURN FOUND	BUBROUTIME ZSECT (x,4,020x,13ECT) BUBROUTIME ZSECT (x,4,020x,13ECT) SUB THE FRACTION CALCULATION AUUTIME X TS THE FRACTION OF CALOR SSECT 15 THE VARIABLE ANTCH DETERMINES THE CHUICE OF ALMFOIL SECT DOUBLE AEC SECT DOUBLE FEDGE (OIAMUND) SECT DOUBLE FEDGE (OIAMUND) SECT DOUBLE AEC SECT DOUBLE AEC SECT SOOTO FEX SECT DOUBLE AEC SECT D	<pre> Contained and and and and and and and and and an</pre>
2009 001 5909 001 5909 005 5909 005 5909 005 5909 005 5909 005 8909 011 8909 011 8909 011 8909 011 8909 011 8909 011		
,1",C%,C") . 10 3mid Hody Vurtex .(10)	Cill Anternation Cill Anter (11, A(1), DUM, DUM) Signal(11)Free (11), Zahw(1)) Signal(11)Free (0, 00, 0) Dume(Frank(1))Free (0, 00, 10) Froume(Frank(1)) Froume(Frank(1)) Do 90 Jarwe Do 90 Jarwe Signal(2)Segma(1)) Signal(2)Segma(2) Commence Commence Commence Signal(2)Segma(2)Segma(2) Signal(2)Segma(2)Segm	BUBROUTINE BARF (X.A.B.DB) TABLE LOOK-UP OF BODY COORDINATED TABLE LOOK-UP OF BODY COORDINATED DIALE LOOK-UP OF BODY COORDINATED DIALE LOOK-VEOV N'BL.ATDY.ABDY.ABDY.ABDY.ABDY.ABDY.ABDY.ABDY.AB

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
4 4 50 10 980 1/202/2015/2011 1/202/2015/2011 1/1718/27186/72/19/2) MI(XT88/27186/72/19/2) MI(XT88/27186/72/19/2) MI(XT88/2186/72/19/2) MI(XT88/2186/72/19/2) MI(XT88/2186/72/19/2) MI(XT88/2186/72/19/2) WI(XT88/2000/2) WI(XT88/2000/2) WI(XT88/2000/2) WI(XT88/200	<pre>BUBROUTIME TCUMP BUBROUTIME TCUMP ====================================</pre>
4 8 1 UK 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Mail Mail

<pre>% [Alwickrab, * Kiasilistras, * Kiasilistras, * 9,5,4 * 4,4,5 * 1,4,4,5 * 1,4,4,5 * 1,4,1,4,17 * 1,4,17,17 * 1,4,17,17 * 1,4,1,4,13 * 1,4,1,2 * 1,4,1,2,1,2 * 1,4,1,2,1,2 * 1,4,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,</pre>	14141(x148 (14161),F14 1,1,2 1,1,2 3,1 1,4,5 1,4,5	TAB(1+1)	([)) 14,17,1 (2) 14,40 21,41,22	461 33 43 43 43 45,25 42 45,25 42
SUBWUUTINE TAINT DUMBUUTINE TAINT TE (* Statt) HERZ	UURUUIIME TAINT IMENSIUN XTAUGI F (N = K) 1,1,2 ERE ERUN F (K=0) 3,3,1 F (K=0) 4,4,5 F (MUN) 4,5 F		5 5 6 6 1)/2 19/2 19/19,20 19/19,20 19/19,20	7)]][] 7 0 254 8 34 0 522 2 8 9 2 4 4 4 4 100 42 7 3 4 7 4 4 4 4 100 42 7 3 4 7 10 10 2 10 2 10 2 10 2 10 2 10 2 10 2

- NUNS - 0 00 NF 3 N 4 F 400 00 N - N N N N N N

A.

SUBMINUTAL CUMP (TALMAL) SUBMINUTAL CUMP (TALMAL) COMPANDIAL FTC CUPULE THE UNDARAM HUMCTION FINA A UNIFORMEL UNAUEU SUTTO COMPANDIATION FLAT UNITALIAN SUBMIC THANGE FLAT COMPANDIATION OF LAST UNU-DEC 1908 COMPANDIATION OF LEADING TOGE COMPANDIATION OF LEADING EUGE COMPANDIATION COMPAN RE**BULTD-(YF6-BTER**MAALOG(A**BB(8**0×+++**BTE**RM+D)/A)+8+ALOG(YF6+A/(8+Y)) 30 IF (VILI,2EHD,UM,M,LT,8+V,0%,AB\$(DIF8+G),LT,TULR+C) GU 10 Mebult===Tern+P1 Meture IF (авайтамыср).цглоцамс) б∪ TU 50 Кеоцітесктейна Атам2(втейна0,00×т)+0°ацыб((х+U)/R)+U/T) Кетойн COMMUN /MAIL/ X,MT,V,U,HTERM,REBULT,UTMICA,SUB IP ((485(0UMARG))_LI_TOLR4C) G0 T0 50
REBUT=={@=4L06((x+0)/R)+D/Y
=BTERMe4LU6((x=4E-Y+0)/ABB(X=8+Y))) C-----BUPERADNIC FLUM, SUBBONIC LADING EDGt. 60 If(X_LL,01900 IO 50 08 BORT(XAX-YAY) 101 RETURN 102 REBULT=-((N+0)/Y=ALUG((Y+0)/ ABS(R))) RETURN RETURN END IF (ABS(YBMGLP),LT,TOLPHC) 60 TO 50 Dumargest-Bat LOGICAL 8U8 Data Zeko/0,0/,Ume/1,0/,P1/3,141593/ Reaus(Y) IF (X,LI,IULMMC) GO TU 50 RSNGLPER C-----BUBBOHIC FLOW 100 De Sent(xax4444) 16(8,40,2840)50 TO 102 Ae ABB(x-8*4) C----DUTSIDE MACH CONE IF (BUB)60 TU 100 20 DIF BNGeBAYek 50 REBULT-ZERD Return YF 6= (X+D)/Y RETURN _ 514 SUBROUTIME BOLVE (B,A,W,MPL,IP) DIMENSION BLJ DIMENSION BLJ DIMENSION AKMAN,IP(MPL) DIMENSION AKMAN,IP(MPL) DIMENSION DI 9 PPERSION DI 9 MATPAN BLANDARDAN BLANDAN BLANDARDAN BLANDANDAN BLANDARDAN BLANDANDANDAN SURRUUTINE LINEUS[N.A.NPL.IP] DIMENSIUN A(N.M),IP(NPL) CONTINUE 1f(A(K,K),E0,0,)[P(~)=0 Continue A(1, J)=A(1, J)+A(1,K)+T IF (H.HE.K)]P(N)=-IP(%) Ted(T.K) U 8 141,KM1 8 8(1)96(1)44(1,K)47 4 8(1)98(1)/4(1,1) 8 8(1)98(1)/4(1,1) 8 10 8 10 8 10 00 7 18673,4 01 7 18623,4 1 8(1)94(1)44(1,K)47 00 8 5841,841 54148454 IF(T,E0.0.)6U TU 5 00 2 16491,4 00 4 16491,4)/1 00 4 J6491,4 IF (T. E0.0.)60 TO . X#X%\+1 8(x)#8(x)/4(x,x) 7#+8(x) 00 6 441,4 1f{4,40,4)60 10 5 KP18441 A(H, N) SA(K, K) A(N,J)BA(K,J) DO 1 JEKPLAN CONTINUE DO 3 TEKPIAN A(K,K)#T 1=(,,,)=1 L.M.Ast RE TURN F(X)=1 [#(N)4] . ----~

515

270 50 52 55

Lides

114

F

		101	CALL MPCG (PRMT.Y.Z.WITH.IMIF.FCT.CUTP.ANY)	
			IF (IALF 661,10) 60 TO 40	
, u	TAG SAGEE MIGHT DE SELEN KAING IN SAGE SALANA SA	200	IF (NEX1°LE,0) RFJURN	8P19 050
	COMPLEX 8, V, SIGMA, 3PR, 3GM, 3GMC, LYE, CO1 3013		CALCULATE INDUCED VELOCITTER AT SUBFITTED FIELD BOTHTA	0714 051 8010 251
		900		8014 050 8019 051
L			20 CUNTINUE	SP19 054
•		800		3P14 055
		A 90		8719 054
		011		150 6148
		012	TF (XY(K)=XP(J1) \$1.52.53	
		013		
		014	34 HRITE (6,719) J.XP(J),8P(J),KN,XV(KN)	5P19 061
		510	YP (J) =CHPLX(0.0.0.0)	3P19 062
	IF (D2.67.1.05-04) 60 TO 20			9P19 063
			AG OU 33 FARLARM VIEW VIEW VIEW VIEW VIEW VIEW VIEW VIEW	
	03e0.0	010	23 84877777777777777777777777777777777777	
-		020	55 IF (KW.E0.1) 60 TD 54	
	VEV = EYE+6AM(J)/A+(D3/CD1 + 1.0/(8PA+1.0/80M)	121	DELTA=(XV(KN)=XP(J))/(XV(KN)=XV(KN=L))	
-	I * 0/(\$P\$+\$5MC) + 1 * 0/(\$P\$=1*0/\$5MC))	220	DD 54 KKel,NV	3P14 049
		023	YP(XX) HYY(XX,XN) BOELTA4(YY(XX,X2) BYY(XX,X381))	SP19 070
			((1+NX,XX)A2+CNX,XX)42)+2((2)(XX,XX)A2+(XX,X)A2+	110 01d
			20 01514/14/36/14/54/17/54/3/2/54/3/2 24 541 - 51455 - 24411 - 4 541	5P19 072
			DO GARE STATE ANTON AND AND AND AND AND AND AND AND AND AN	510 0145
				SP14 076
			NRITE (6,715) TITL	2010 077
L				819 078
U U	TE TATAG UT TARE VUNTIONS IN THE Debitations		210 CUTLERUS D0 A0 141.KEXT	010 01dS
			IF (MPRINT_LT_P) 60 TO 40	
U			WRITE (4.717) J.XP(J).8P(J), VP(J)	5P19 061
	(100), SBDY (100)		40 COMTINUE	3719 084
			RETURN AA marger (4.2010) sij e 1	20 0142
	* (ANY) 444 * (AN)			
U		612 612		
		013		
	CUMMON /144J/ 41/4//0X1/111L/NPR1NT	914		
	/BODY/ NTOL.MTEL.YEDY.BEDY.BEDY.DEENY			
	/YORTEX/ NV. NY2. 64N. Y6. 26			
	/YTABLE/ NTRY.XV.YV.ZV.HVP.AHAY	018	AUGOUTING FET (Y.V.)	
	/FLOW/ ALPMA, CBALP, EYE	4 10	COMPLEX BIGHA.FNU.CFNU.G.FVF.ANUM.MDUM.FNUM.FNUM.FNUM	100 0248
ų		020	L CENUM, CENUM, DAUDS, DADS	8P20 001
		120	DIMENSION SIGNA(4), ENU(4), G(6, 6), GENU(4), DHOS(4), DNUDS(4)	8P20 004
2	INTERVAL HAB	221	DIFERBION 7(8)/2(8)/644(4)/76(4)/26(4)	200 024t
;		924	COMMON /YOOTTEN NY AV2.648.YG.75	900 0249
-	DINTS ON , A4,	025	COMMON /FLOW/ ALPHA, CBALP, EYE	
5	6 FORMAT (/ SOXIMK.9X1MY.9X1MZ.11X8MV/V(INF).4X8MM/V(INF)) 8014	929	COMMON /AEBULI/ 6,0408,81844,ENU,UNUD8,4,8,42,08	8720 009
	717 FORMAT (14.5F10.5/5K/2(1PE12.4)) 8P19 718 FORMAT (14.5 244515,0 BOTHT (140005 24 2445)		RNa (3P20 010
	V TURNEL (VAVANAME ALLE TURNE UNIGIUE UF TAGLE,SXI3,3F10,4,10,4)8919			8020 012
,	IF (XF.LT.=99.0) 60 TU 20	030 031	LOOM UP BODY RADIUS AND LOCAL FING OR TAIL SEMISPAN	8P20 015
			CALL BWAPE (X.A.B.DB)	\$P20 014
		03.5		8720 016
		034		8P20 017
		036		8720 018
		037	9 31644(J)86MPLX(Y(K=1),Y(K))	610 0748
		036	DE 44 (2 + 4 K 2) + 4 2	3020 021
		040	DD JD JETFART Poisterarin - Alakerikkii	8P20 022
-		140		5720 024 5720 024
		043	10 CENU(J)=CUNJ6(ENU(J))	3920 025
	3P14 3P1, V01M 3P14 3P14 3P14 3P14 3P14 3P14 3P14 3P14	340	COMPUTE G-FUNCTIONS FOR COMPLEX VELOCITY FXPAPASIDAS	3720 UZ9
-				3P20 028
	XPR41EX_+.0001 5P14	047		

F THLFaiMLF9 TF(THL=1)223,233,210 H = 20 D0 22 = 14, NDTH D0 22 = 14, NDTH D0 22 = 11, DELTEX=(M+M) Call FCICOLLI,Y,DERY) ICHM.G[1]) RETURN DO 235 IE1,MDIM Aux(M=2,1)#Y(I) 222 223 224 υu υu υu If (==); /, / ... // ... ------7.4.200 121 222 Y(I)=AUX(#/1)+,1747628aAUX(5,I)-,551860664AUX(6,I)+(,20535964AUX(5721 1711-4171364794440247(1) 8021 (0(1)-4171347),1584 124 1248 1812PPIST&P+1 1812PPIST&P+1 DO 207 Is1,MD1M DELTSAUX(N=9,1)+1,5353533+H+(AUX(N+0,1)+AUX(N+0,1)=AUX(N+5,1)+AUX\$P21 DELTSAUX(N=9,1)+1,5353533+H+(AUX(N+0,1)+AUX(N+0,1))=AUX(N+5,1)+AUX\$P21 524 124 121 121 AUX(7,1)92 Y [1]#4UX(M,1)+_21410039+AUX(5,1)=4,0509+515+AUX(+,1)+5,8328+47+2 Net CAUSES THE ROMS OF AUX TO CHANGE THEIR STORAGE LOCATIONS BTARTING VALUEB ARE COMPUTED. Now Birrt Hamming Hodified Fredictor-Corrector Method. 16(M=0)204,202,204 z POSSIBLE BREAK-POINT FOR LINKAGE N LESS THAN & CAUSES N+1 TO GET COMPUTATION OF NEXT VECTOR OU 205 Int.NDIM DO 205 NH2,7 DO 201 141,NDIM Aux(N=1,1)HAux(M,1) Aux(N+6,1)HAux(N+7,1) CALL FCT(Z,Y,DERY) IF(MM.GT.1) ALTURN DO 104 141,NDIM AUX(N+1,I)#Y(I) AUX(N+6,I)#DEHY(I)

H+X=Z

5

00

5

U

102

u

~~~~

211

28 27

J

2 2

v

100 101

υu

.......

H+X=X

205 208

204 NAN+1

υu

L ....

| <pre>Z25 Y(1)au(rv5,1)au(rv(1)<br/>DELTau(LTC/rv4,1)<br/>DELTau(LTC/rv4,1)<br/>CALLTC/rv4<br/>CALLFC/ru2<br/>CALLFC/ru2<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DO 26 T31.NU1<br/>DO 26 T31.NU1<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(rv5,1)*UU/rv4,1)<br/>DELTau(r</pre> | 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                              | SUBBUUTIVE LVIX (ALPMAD,FP3,0142)<br>Cupput Veniical Publium uf Aine Berartion Vortex<br>Dupunyium ale(9),622(4)<br>Data ale(0,010,220,440,00,401,011,211,47<br>Data ale(0,010,220,440,00,510,510,45,00,522,0,5757<br>Patalema/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Tailena/(2,449)<br>Taile                                                                                          | 2725 012<br>2725 002<br>2725 002<br>2725 002<br>2725 007<br>2725 007<br>2725 012<br>2725 012<br>2725 012<br>2725 012<br>2725 012<br>2725 012<br>272 017<br>272 017<br>272 017    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 84880071NE UUTP (X,Y,Z,IMLP,MD1M,PRMT)<br>COMPLEX G.S1544,EUU,PDS,PMU08<br>DIMENSION Y(a),CG(A),SG(A=),PDB(A),S15MA(A),EUU(A),<br>CMA(A),G(GA),Z2(GA),DDB(A),<br>X V(200),YV(4,200),YV(4,200),MVP(200),AAAY(S,200)<br>COMMON /YURTEX NN/WZ,GCM,DG,Z124,200,DU08,A,8,RZ,OB<br>COMMON /YEARA/ DXUUT,ARAY,MRTIN',XTIMAL<br>COMMON /FRAA/ DXUUT,ARAY,MVP,ARAY<br>COMMON /FXAALL / NTAY,XV,YV,ZV,MVP,ARAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8722 001<br>8722 005<br>8722 005<br>8722 004<br>8722 004<br>8722 009<br>8722 009<br>8722 009<br>8722 009<br>8722 009 | 16 FLURA<br>16 FLURA<br>FLURA<br>17 JLTACTAZE(K+1))/(AZE(K)-AZE(K+1))<br>12 DLTACTAZE(K+1) + DLLTAA(BZE(K)-82E(K+1))<br>12 JLTACTAZE(K+1) + DLLTAA(BZE(K)-82E(K+1))<br>12 JLTACTAZE(F3+F<br>12 JLTACTAZE(F3+F)<br>12 JLTACTAZE(F3+F | 220 220<br>1220 222<br>1220 222<br>1220 222<br>1220 222<br>1220 222<br>1220 222<br>1220 222                                                                                      |
| To f(L[,XPAN]) RLURN<br>700 FORMAT (//SLHW,SPADD,11X1M,9X1MB,9X2MR0,6X5MDA/DX)<br>701 FORMAT (//SLHW,OFFL,11119020A(REL),3X0H(IMAG),<br>702 FORMAT (/YSUNUORICHAE),311100A050A(REL),3X0H(IMAG),<br>703 FORMAT (14,244012,34511,3)/9X,6(E11,3,510,3))<br>703 FORMAT (14,244012,34511,3)/9X,6(E11,3,510,3))<br>703 FORMAT (14,244012,34511,3)/9X,6(E11,3,510,3))<br>704 FORMAT (14,24401,3,500,300,000,000,000,000,000,000,000,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                      | BUBROUTINE NPANL (NBURF, NR, NPL, NNAT, NPRINT, PANELS, PACH,<br>THIS BUBROUTINE CALCUTATES THE UPARAN NY THOUTCOLATC / PANEF,<br>THIS BUBROUTHE CALCULATES THE UPARAN NY THOUCED BY CONSTA<br>PRESSONE PANELS HITH KNOHN DETA PAS AT THE LUNER OUTBOARD<br>AND CENTROID OF AN ELENENTAL PANEL<br>DINENBION X(6,100), XCPT(NPL), XCPAGNPL), XBAN(NPL), SLE(NPL),<br>DINENBION X(6,100), XCPT(NPL), YCPG(NPL), XBAN(NPL), SLE(NPL),<br>DINENBION X(6,100), MCT(100)<br>DINENBION AUTOR (SOL), XPMLG(NPL), XBAN(NPL), SLE(NPL),<br>DINENBION AUTOR (SOL), XCPT(NPL), XCPT(NPL), XBAN(NPL), SLE(NPL),<br>DINENBION X(6,100), MCT(100)<br>CONNON/NELPASANA ANY<br>CONNON/NELPAS/CF(100)<br>CONNON/NELPAS/CF(100)<br>CONNON/NELPAS/CF(100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BP24 005<br>8P24 005<br>8P24 005<br>8P24 005<br>8P24 005<br>8P24 009<br>8P24 009<br>8P24 009<br>8P24 011<br>8P24 011<br>8P24 015<br>8P24 015<br>8P24 015<br>8P24 015<br>8P24 015 |
| C C ANY CATTANA<br>SF (MTRV, 87, 200) REJURN<br>BAVE TABLE OF VORTEX POBITIONS<br>ARAY(S, MTRY)BH<br>ARAY(S, MTRY)BH                                                                                                                           |                                                                                                                      | CREAL MACH<br>LOGICL AND<br>INTELS PANLS-UUTCOD<br>Data PI/S.141593/,ZERO/0.0/<br>Data PI/S.141593/,ZERO/0.0/<br>C BETABLDATASANACHMACH-1,0))<br>C BETABLDATASANACHMACH-1,0))<br>C BETABLTA/(1.081/24/2004)<br>C POMMAT (1.15%,25%,190,15%,750,00)<br>1 POMMAT (1.7%,25%,197,10%,15%,750,00)<br>C POMMAT (1.7%,25%,197,10%,15%,750,00)<br>C POMMAT (1.7%,25%,197,10%,15%,750,00)<br>C POMMAT (1.7%,25%,197,10%,15%,750,00)<br>C POMMAT (1.7%,25%,197,10%,15%,750,00)<br>C POMMAT (1.7%,25%,197,10%,15%,750,00)<br>C POMMAT (1.7%,25%,197,10%,15%,100,00)<br>C POMMAT (1.7%,25%,197,10%,15%,15%,150,00)<br>C POMMAT (1.7%,25%,197,10%,15%,15%,10%,15%,15%,10%,15%,15%,10%,15%,15%,10%,15%,15%,10%,15%,15%,10%,15%,15%,10%,15%,15%,10%,15%,15%,10%,15%,15%,10%,15%,15%,10%,15%,10%,15%,15%,10%,15%,15%,10%,15%,15%,10%,15%,15%,10%,15%,15%,10%,15%,15%,10%,15%,10%,15%,15%,10%,15%,15%,10%,15%,15%,15%,10%,15%,15%,10%,15%,15%,10%,15%,15%,15%,10%,15%,15%,10%,15%,15%,10%,15%,15%,15%,10%,15%,15%,10%,15%,15%,10%,15%,15%,10%,15%,15%,10%,15%,15%,10%,15%,15%,15%,10%,15%,15%,10%,15%,10%,15%,15%,15%,10%,15%,15%,10%,15%,15%,15%,15%,10%,15%,15%,10%,15%,15%,15%,15%,15%,15%,15%,15%,15%,15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                      | 11 AL PANELS//22,143,04%,14%,14%,14%,19%,204171VE UTARDO 1<br>101 FORMAT(//20%,28),148,04%,1<br>102 FORMAT(//22%,519,4))<br>102 FORMAT(/12%,55,94,04%,1)<br>103 FORMAT(12%,55,94,04%,1)<br>104 FORMAT(12%,55,94,04%,1)<br>100 180 Jal,PANELS<br>100 180 Jal,PANELS<br>10 900 Jal,PANELE<br>0 900 Jal,PANELE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                  |

| CALL CAMP (TULRAC)<br>SUMMET = -RESUL<br>T(ASN) 60 1J 1<br>YAY1 + YET<br>CALL CAMP (TULRAC)<br>SUMLERSUMET = 24<br>SUMLERSUMMET = 24<br>SUMLE | gumt Casultance + REBULT $YVZ = YCT = COMPCT + REBULT gumt Casult T + REBULT F(ASYM) GD T0 522 gumt Casult T + REBULT F(ASYM) GD T0 522 SUMMCTBUMMCT + REBULT F(ASYM) GD T0 522 F(ASYM) GD T0 303 SUMMCTBUMMC + REBULT F(ASYM) GD T0 414 F(ASYM) GD T0 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ГГ (1474) СО ТО 23<br>1447(1474)<br>САLL СОИР (10, ML)<br>САLL СОИР (10, ML)<br>235 СОИТИЧЕ<br>САLL СОИР (10, ML)<br>247 САЧА<br>САLL СОИР (10, ML)<br>141 САЧА) СО ТО 415<br>САLL СОИР (10, ML)<br>142 САLL СОИР (10, ML)<br>143 САLL СОИР (10, ML)<br>144 САЦС СОИР (10, ML)<br>144 САЦС СОИР (10, ML)<br>244 САLL (10, ML)<br>244 С                                                                                                                 | CLL COMP (TOLANC)<br>CLL COMP (TOLANC)<br>CLL COMP (TOLANC)<br>CO TO 964<br>CO TO 964<br>CO TO 964<br>CLL COMP (TOLANC)<br>TAYS-TOP<br>CLL COMP (TOLANC)<br>CLL COMP |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2000 0000 0000 00000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 13 INDEX UF INFLUENCING CUNGTANI PREBBURE PANEL<br>ssle(i)=betai<br>aste(i)=betai<br>femis dort (abs(be=be=atern))<br>femis dort (abs(be=be=atern))<br>atv(i,i)=betai<br>atv(i,i)=betai<br>atv(i,i)=atv(s,i)<br>atv(i,i)=atv(s,i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | J 18 NUEK UF THE PAMEL WITH THE TWU FIELDPUINT3 AT WHICH UPWASH<br>J 18 U 8E CALEULATED<br>00 450 J#1, PAMEL<br>Surt(J)=0.<br>Surt(J)=0.<br>Surt(J)=0.<br>Surt(J)=0.<br>Surt(J)=0.<br>Surt(J)=0.<br>Surt(J)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(Si)=0.<br>Surt(S |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| C 1 13 INDEX UF INFLUENCING CUNSTAN<br>HISSLE(1)=UETAI<br>BIERNIA SORT(AS(UE=01+ATERN))<br>BIERNIA SORT(AS(UE=02+ATERN))<br>XIXY(L,1)=UETAI<br>XIXY(L,1)=UETAI<br>XIXY(L,1)=UETAI<br>YIXY(S,1)=UF(S,1)<br>YIXY(S,1)=UF(S,1)<br>YIXY(S,1)=UF(S,1)<br>YIXY(S,1)=UF(S,1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CC 13 100 EC CALCULATED<br>13 100 EC CALCULATED<br>00 450 Ja1,PAMELA<br>00 450 Ja1,PAMELA<br>01 450 Ja1,PAMELA<br>01 450 Ja1,PAMELA<br>01 450 Ja1,PAMELA<br>CALL COMP (TOLAMC)<br>0 10 412<br>17 (ANV) 50 U 412<br>17 (ANV) 50                                                                                                                                                                                                                                                                                           | 412 X34CC341<br>412 X34CC741<br>412 X34CC741<br>CALC COMP (T0LAMC)<br>744CC741<br>104ACC7424<br>104ACC7424<br>104AC7424<br>104AC7424<br>112 COMTAUE<br>112 COMTAUE<br>112 COMTAUE<br>112 COMTAUE<br>112 COMTAUE<br>112 COMTAUE<br>112 COMTAUE<br>112 COMTAUE<br>112 COMPANY<br>112 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

189

| 9745 ·                                    | 5 11 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                        |               | ిని                                     | 2 2                                | 2                  | ŝ a                                                               |                                       | 2.2                                                                             | **                                         | 8920 025        | :2                                | ໍລໍ ຄື                                                                         | 2             | 5P20 030  | 5P26 031                                     | 3P20 035   |                                                            |             |                                         |        | 5P26 041<br>8P26 042       | 8726 043<br>8726 043         |            |           |                                                                                                       | 5726 050<br>5726 051                                 |             |            |                                                               |                                           |         | 8726 061<br>3725 062 |                                                                        |             | 8726 066<br>8826 067                                                         |                                                                           |           |                                                                | 5726 073                                                 |            | 8726 076<br>8726 077       | SP26 078  |
|-------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------|------------------------------------|--------------------|-------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------|-----------------|-----------------------------------|--------------------------------------------------------------------------------|---------------|-----------|----------------------------------------------|------------|------------------------------------------------------------|-------------|-----------------------------------------|--------|----------------------------|------------------------------|------------|-----------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------|------------|---------------------------------------------------------------|-------------------------------------------|---------|----------------------|------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------|----------------------------------------------------------------|----------------------------------------------------------|------------|----------------------------|-----------|
| NAF TF R, HUCH, XBCR                      | 0.06 TU +1.<br>In Tast t 1                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1415(7,<br>47.7616(7,41)                                                                                                                               | 1910(9-9)9181 |                                         |                                    | 1.1)21415(1.1)     |                                                                   |                                       | .2),7816(1,1                                                                    |                                            |                 |                                   | . 667 .                                                                        | 0.647/        | /0.000    | 0.50.                                        |            | 1.00                                                       | 0.90        | 2.51/                                   | 1.00   | 2.98/                      | 0.50.                        | 1.15       |           |                                                                                                       | 2.43/                                                | 0.77.       |            |                                                               |                                           |         |                      |                                                                        |             |                                                                              |                                                                           |           |                                                                |                                                          |            | 215, 275, 285, 285,        |           |
| насн, дкрапп,                             | UP PRESSURF<br>EPGRT 1507.                                    | 11 HU 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ()),<br>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                             | · (**9)9141   | ×8155(7.4.5                             | .3)                                | ), (x815A(1,1      | 11121111111                                                       | ·2),TH15(1,1                          | ), (X81+A(1,1                                                                   | .1),7016(1,1<br>.3),7616(1,1               | ,2), THIGGIN    |                                   | 1.0/<br>50, 0.005, 0                                                           |               |           | 191 0                                        |            |                                                            | 0.62.       |                                         |        | 2.24                       | . 0.50,                      |            | 0.50      | 1.23                                                                                                  |                                                      | . 0.71.     | 1.52       |                                                               |                                           |         | 191                  |                                                                        | 502         | 197.                                                                         | 210, 250,                                                                 | 210. 230. | 290, 250,                                                      | 104. 121.                                                | 225. 242.  | .250, .269,<br>.260, .279, | 266, 207, |
| 5,4,5aPLE,C1,LK,F                         | CENTER<br>B UF H                                              | 11 15 11 BUX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 48(6,2),4415(<br>1517.4),11115                                                                                                                         |               | ,x8158(7,4,3)                           | , 3), x816C(8,4<br>3,3J            | (1), TAIS(1,1)     | )),(x8156(1,1                                                     | )),(X815C(1,1                         | .1),TAIG(1,1)                                                                   | )),(x6168(1,1<br>)),(x4166(1,1             | ), (XB16C(1,1   |                                   | 4, 0, 4, 0, 8,<br>0, 0, 637, 0, 6                                              | 5, 0, 622, 0, |           | 0.25, 0.54                                   |            | 0.27, 0.38,                                                | 0.40. 0.57. | 0.97, 1.24,                             |        | 0.75, 0.45,<br>1.17, 1.50, | 0.43, 0.47,                  | 0.63, 0.75 |           |                                                                                                       | 1.00, 1.2<br>0.50, 0.5                               | 0.58. 0.6   |            |                                                               | 1.04, 1.2                                 | 140, 15 | 110, 11<br>099.      | 123                                                                    | 125, 1      | 1156. 19                                                                     | 158, 190,                                                                 | 158.140.  | 275. 254.                                                      | 286. 300.                                                | 190, 210,  | 220. 241.                  | .250253.  |
| . [H1416(S,K);<br>HUS,BAR)                | 14 CALCULATE BUDY (<br>CMART 14, 15, 14 10                    | THIS WUNT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 80148(6),X81                                                                                                                                           | .4).9416(B).  | X8154(7,4,3)                            | .3),XA165(8,4<br>VA(4,3,5),V(      | E (X815A(1.1       | 1,2), TE15(1,1                                                    | 1,1),1615(1,1                         | E (XHI6A(1,1                                                                    |                                            | .1),7616(1,1    | 17.29578/                         | 1/0.0, 0.2, 0<br>1/0.500, 0.59                                                 | 0.500. 0.57   |           |                                              |            | 0.00, 0.14,                                                | 0.00. 0.21. |                                         |        | 0.00, 0.48,                | 7 0.26, 0.35,<br>0.26, 0.40, | 0.26.0.47  |           |                                                                                                       | 0.14.0.47                                            | 0.50. 0.54. | 0.50       | 120                                                           | 0.27,                                     |         | .000070.             | .000                                                                   | .000, .075, |                                                                              |                                                                           |           | 250.                                                           | 250, 270,                                                | 140.       | .140, .177,                | 140, 195, |
| SUBROUT14E [11416]<br>1948,12PEN,KUS,BAR) | SUBRUUTINE IU CA<br>Tail, Cmart                               | REPUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0]MEM9]ON BU148(0),48148(0,2),4415(7), 1415(7,4), 341118(7,4), 341118(5(7,4), 341118(5(7,4),7),7),701118(5(7,4),7),70111111111111111111111111111111111 | 2.4),7115(    | DIMENSION                               | DIMENSIUN                          | EQUIVALEN          | 2(x8158(1,                                                        | 3(XB15C(1,                            | EQUIVALEN                                                                       | 1 (X814A(1,))<br>2 (X814B(1,))             | 3 ( X816C ( 1 . | DATA RAD                          | 0ATA 60140<br>Data x0140                                                       | 1             | DATA BALA | DATA                                         | - 14       | DATA TELS                                                  | N           | B TTT TTTE                              |        | ~ ~                        | DATA TO15                    | • 14 •     | OATA TEIS |                                                                                                       | B<br>DATA TG15,                                      | - 11        | DATA THIEV | N                                                             | 3<br>0474 74147                           |         | ~ ~                  | DATA 1814/                                                             | - N         | 3<br>DATA TC16/                                                              | 2                                                                         |           | DATA 1016/                                                     | • •••                                                    | DATA TELO/ | 16                         | ~         |
|                                           | 202                                                           | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                                                                                                                                      |               |                                         |                                    |                    |                                                                   |                                       |                                                                                 |                                            |                 |                                   |                                                                                |               |           |                                              |            |                                                            | 235         | 57<br>58                                |        | 2                          |                              |            |           | 20<br>10                                                                                              | 22                                                   |             |            | <b>4 6 6</b>                                                  | 13                                        |         | 1                    | <u>.</u> .                                                             | 17          |                                                                              | 20                                                                        | 22        |                                                                | <b>5</b> 2                                               | 27         |                            |           |
|                                           |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3P24 20                                                                                                                                                |               | 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 5724 KI                            | 5P24 2             |                                                                   | 3 9245                                | 2 12 18                                                                         | 2 2248                                     |                 | 8924 2                            | 2 5248                                                                         | 8924 2        | 2924      |                                              |            |                                                            |             | 5 774<br>7 774<br>7 774                 |        |                            |                              |            |           | 2248 'N<br>2248 'N                                                                                    |                                                      |             |            |                                                               | 9248                                      | 0 5748  | 0 5248               | 0 5248                                                                 | 0 5248      | 0 5248                                                                       | 0 5248                                                                    | 0 5248    | 8925 0                                                         | 0 5240                                                   | 0 5245     |                            |           |
| 21 XBXC4 + X4<br>2444774                  | CALL COMP(TULMML)<br>Sumactasumact = Rlsul<br>Plasty do Tu /2 | Y # 4 # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C # 4 C | SUPRESUMACE - RESULT                                                                                                                                   |               |                                         | 11(×04×1) 50 10 705<br>4 4 4 4 701 | CALL COMP (IULANC) | 8073451 8 8073751 8 XC9051<br>504 808(0)868(1)9808868460898464(3) | IC1(C)BCP(I)=80CIIC1=CCIR0+IC1(C)<br> | きとうしょうひょう しょうちょう しょう ちょう しょう ちょう しょう ちょう しゅう しゅう しゅう しゅう しゅう しゅう しゅう しゅう しゅう しゅ | 850 CONTINUE<br>Te voutend.it.e. en ti 900 |                 | MAITE(0,703) (SUMTA(K),KELPANELS) | MRITE(6,70%) (\$UNTC(%),%41,\$PANEL®)<br>Mrite(6,70%) (\$UNTC(%),%41,\$PANEL®) | 400 CONTINUE  |           | PRINT UPHASH INDUCED AT VARIOUS PANEL PDINTS | HRITE(6,1) | 00 000 451,744554<br>00 48175(6,2)(,X648(U),Y671(U),#67(U) |             | 601 ##XTTE(6"2)J.XT(4"J)"XT(6"J)"#G#CJ) | RETURN | END                        |                              |            |           | SUBROUTIME NFACT (ROS.CKN8.FMACH.PAKAH.CKSM.MAFTER.SM8.TAPEN.BDC)<br>1014.BET4.SMPLL.HETAA.SKN8.SK00) | ATTACTOR AT A AT AT |             |            | IF (PMACM.6T.1.0.AMD.PAMAM.6T.4.0] 60 TO 16<br>Creweeq21(MOS) | 60 70 100<br>10 17 (nafter.eg.d) 60 70 30 |         | 60 TO 100            | 15 IF (B#PLE.GT.0.0) GO TO 30<br>Eksweeq24L(TAPER.BOCR.ROB)/(BETA+CLA) | DO TO 100   | <pre>K0 LK0metuter(Sheringter) = 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2</pre> | 36 IF (\$M8.6T.1.0) 60 TO 35<br>Ckreme¢citeme.taper.bdcr.kd\$)/(@Ela∘Cla) |           | 99 IT (STTTE, STAURY 90 10 10 10 10 10 10 10 10 10 10 10 10 10 | GU TO 100<br>40 CKB#44Q30(8M8,TAP4A,BDCR,RU8)/(8£IA+CLA) |            |                            |           |

DX84.(BAR-MA1.(14))/(BA16(1P)=MA1.(14)) DC 20 HENL.FP DC 20 HENL.FP DC 20 HENL.FP VA(J.K.)]#XB16A([M.J.K)+DX84.(XB16A([P.J.K)-XB164([M.J.K]) VA(J.K.)]#XB16A([M.J.K)+DX84.(XB166([P.J.K)-XB168([N.J.K]) VA(J.K.)]#XB16A([M.J.K)+DX84.(XB166([P.J.K)-XB166([N.J.K]) DC 250 LmLM.FP DC 2 TEI01 IP (BAR.66, BA16(I)) GO 70 210 Imuzel IPezel ]=1+1 17 (8A8,62,8A15(1)) 60 TO 140 17#1[-1 17#1 10 200 ¢×S[mf4PtH∕0¢5 IF (RU3,6T,0¢2) G∪ T∪ 125 JHai JHai 130 5 9 60 10 155 1F (RU8,61,0,4) 60 JMm2 DXR8#(RU\$=0.2)/0.2 GO TU 135 JMES DXR3m(RU8=0.4)/0.2 If (PMACH.LE.1.0) G 01488403/0.2 CHART 15 CHART 16 210 1=0 N P B V : 120 135 130 125 140 22 20 115 .... .... 

 15.
 0.51.
 0.01.
 524.
 404.
 104.

 16.
 17.
 17.
 17.
 17.
 17.

 17.
 17.
 17.
 17.
 17.
 17.

 18.
 17.
 18.
 17.
 18.
 17.

 18.
 17.
 18.
 19.
 19.
 19.

 18.
 17.
 18.
 19.
 19.
 19.
 19.

 18.
 17.
 18.
 19.
 19.
 19.
 19.
 10.

 18.
 17.
 18.
 19.
 19.
 19.
 10.
 19.
 10.
 10.
 10.
 10.
 10.
 10.
 10.
 10.
 10.
 10.
 10.
 10.
 10.
 10.
 10.
 10.
 10.
 10.
 10.
 10.
 10.
 10.
 10.
 10.
 10.
 10.
 10.
 10.
 10.
 10.
 10.
 10.
 10.
 10.
 10.
 10.
 10.
 10.
 10.
 10.
 10.
 10.
 10.
 10.
 10.
 10.
 00 1 July 1115(Jr)MT(15(JrY) 1 T115(Jr)MT(15(JrY) 00 2 July 00 2 Kaiw 1116(Jr)MT(16(JrY) 1116(Jr)MT(16(JrY) 2 T116(Jr)MT(16(JrY) 2 T116(Jr)MT(16MLL/RAD) 2 T116(Jr)MT(16ML/RAD) 2 T116(Jr)MT(17ML/RAD) 2 T ÖXCLB1.0 IF (TABER.ME.1.0) DXCLBBHPLE/(BHPLE-BHPHC) IF (TAPER.LE.0.5) GO TO 115 14141 14 (8064,61,80148(J)) 80 10 40 148141 IF (84PMC.LE.0.0) 60 10 105 Lwb2 X MELTIN X MELTIN X TURN X TURN X TURN X CANA, 000, 3796 (BDCR01, 0) X CANA, 000, 3796 (BDCR01, 0) X CANA, 000, 4116 (BDCR01, 0) X CANA, 000, 4116 (BDCR01, 0) X KTURN, 000, 4116 (BD ŝ 23 RETURN 17 (BOCR.61.0.8) 60 70 15 X86480,72+0.54(BDCR-0.4) 2 DXCLeswPMC/(8#PHC=8#PTE) GU TO 110 LMs1 IF (BDCR.GT.1.0) 60 T0 IF (BUCR.GT.0.4) 60 T0 XBCRE0.5+0.55+HDCR 5 IF (MAFTER.EQ.0) 60 TO D IF (80CR.LT.1.0) GD T( X8CR00.007 REIURN REIURN S Lei If (8M8.6T.1.0) Le2 Je0 DX8Le(TAPER=0.5)/0.5 60 10 120 CHART 15 AND 10 CHART 14(A) CHART 14(8) DATA TG16/ DATA 1-16/ CHART 14 RE TURN 20HX 2 5 ñ 20 5 5 ŝ ; 100 105 110 .... 000 • • • ....

 

 PUNCTION (B30(GM))IAPER.BDCRA.A08)
 #913
 001

 CALCULATE KR(M)+BCLA\* OF MR() - BCLATE FAM STER TAAN#922
 002

 1.0. ALLUE OF THE AAPECT RATIO PARAMETER GREATER THAN 9. AND SP12
 001

 1.0. ALLUE OF THE AAPECT RATIO PARAMETER GREATER THAN 9. AND SP12
 001

 1.0. ALLUE OF THE AAPECT RATIO PARAMETER GREATER THAN 9. AND SP12
 001

 1.1. ALL ADD ATTERBOOV
 972
 001

 1.1. ALL
 00
 01
 972
 001

 1.1. ALL
 00
 10
 972
 001

 1.1. (ADB-LE 4.0)
 00
 10
 972
 001

 1.1. (ADB-LE 4.1.0)
 10
 10
 972
 <td FUNCTION EGAG(WM.TAFEM.MDCR.AGA)
FUNCTION EGAG(WM.TAFEM.MDCR.AGA)
FUNCTION EGAG(WM.TAFEM.MDCR.AGA)
CALCULATE RE(A)=86LAT OR AB(T)=96LAT FROM EQ & FOR M GREATER THAN 44. AND
10. YALUE UF ASPECT RATIO
FACTOR AGA
10. YALUE UF ASPECT RATIO
FACTOR
IF (R03.4E.0.0) B0 T0 10
IF (R03.4E.1.0) B0 T0 10
IF (R03.4E.1.0) B0 T0 20
IF (R03.4E.1.0) G0 T0 20
IF (1007.4E.1.0) G0 T0 1
IF (1007.4E.1.0) G0 T0 1
IF (1007.4E.1.0)
IF ( IF (RUS.LE.0.0) &G TU 10 IF (RUS.EE.1.v) &U TO 20 Tami.orbubCr Temi.ori.ori.orbubCr TemiatarGus(BDCr/1)>Surt(1,u+2,0\*BOCR)-1,0~BDCR\*RDCK\*ALDG(To+ 19ART(REF41=10))11,3708 Eg2al\_80~07C(4))31,3708 LIMITING FORM OF EQ 24 AMEN BM EWUAL INFINITY, NO L.E. Satip PUNCTICH EQUAL (TAPEHINDCHIRUS) 10 6240400 46748000 20 6424620 20 6424620 867480 800 10 63580.0 Return 20 685082.0 Return End RE TURN 2 2 00000 00000 U U U CALCULATE (440)-06CLAM ON NG(T)-06CLAT FROM EQ 24 FOR H GREATER THANNARY 003 10. VALUE OF THE ADPECT RATIO PARAMETER GREATER THAN 4, AND 2020 M GREATER THAN 1 17 (103.LE.0.0) GO TO 10 17 (103.LE.0.0) GO TO 10 17 (103.LE.0.0) GO TO 10 18 (A00.EE.1.1) GO TO 20 18 (A00.EE.1.1) (A00.EE.1.0)/AM 18 (A00.EE.1.1) (A00.EE.1.1) (A00.EE.1.1) (A00.EE.1.0)/AM 18 (A00.EE.1.1) (A00.EE.1.1) (A00.EE.1.1) (A00.EE.1.1) (A00.EE.1.1) (A00.EE.1.1) (A00.EE.1.1) (A00.EE.1.1) (A00.EE.1.1) (A00 -----5:56 013 5 ĩ 22 2220 CALCULATE K=(8) ()4 +1(8) FROM FG, 14 UF REPGRT 1307 REPORT 1307 7880,5≤1Å×(0,5≤(1,0/x=x))+3,1¤159/a,0 16x2=(1,0/x=x+2,0¤17m(x1) 161æ2,0≤(1×170=10)/(3,1¤159≤(1,0=x)+2) #F1URM E9 21 OF ]F (X.LE.0.0) 80 TO 10 ]F (X.6E.1.0) 60 TO 20 10 (X.6E.1.0) 60 TO 20 2016(1.0°×××)↔≥/(1,0°×)↔≥=E014(X) Relurm FUNCTION EGGE(BM, TAPER, BDCR, RUB) CALCULATE KB(#) DR KB(T) FROM IF (K.(F.0.0) GU TO 10 IF (K.GE.1.0) GU TU 20 FUNCTION EQ21(x) FUNCTION EDIA(F) 1 AB1+12+K2 FUIANI.0 RETURN E 014#2.0 RETURN END EG2180.0 RETURN E02102.0 Return XZEXAX ŝ 2 ° 8 · · ..... .... 000

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | UNCILIM EQ30L(IArtw.MUCMa.mus)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5755 001<br>5755 002 |   | FUNCT1    | -     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---|-----------|-------|
| 10. 20     9.93     000     9.93     000       10. 1     9.93     000     9.93     000       0. 10. 1     9.93     000     9.93     000       0. 10. 2     9.93     000     9.93     000       0. 10. 2     9.93     000     9.93     000       0. 10. 3     9.93     000     9.93     000       1.0     9.93     000     9.93     000       1.0     9.93     000     9.93     000       1.0     9.93     9.93     9.93     000       1.0     9.93     9.93     9.93     9.93       0.0     10. 3     9.93     9.93     9.93       0.0     10. 40     9.93     9.93     9.93       1.1     000     10. 40     9.93     9.93       1.1     000     10. 40     9.93     9.93       1.1     000     9.93     9.93     9.93       1.1     000     10. 40     9.93     9.93       1.1     100     47     40.43     40.44       1.1     100     9.93     9.93       1.1     100     9.93     9.93       1.1     100     9.93       1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TING FORM OF EQUATION SO ANT'N BA EQUAL INFINITY, AN LOE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |   |           | 35    |
| 10       1       911       011         11       1       911       011         11       1       911       011         11       1       911       011         11       1       911       011         12       1       911       011         140       911       911       011         140       911       911       911         140       911       911       911         140       1       911       911         140       1       1       911         140       1       1       911       911         141       10       1       1       911       911         141       10       1       1       911       911         141       10       1       911       911       911         10       1       1       911       911       911       911         10       1       1       911       911       911       911         10       1       1       911       911       911       911         11       1       911       911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (#US.Lt.u.0) GU 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      | U | 1 1 H F N |       |
| T0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |   | DATA      |       |
| 10.1       10.1         11.1       10.1         12.1       10.1         12.1       10.1         12.1       10.1         12.1       10.1         12.1       10.1         12.1       10.1         12.1       10.1         12.1       10.1         12.1       10.1         12.1       10.1         12.1       10.1         12.1       10.1         12.1       10.1         13.1       10.1         14.1       10.1         14.1       10.1         14.1       10.1         14.1       10.1         14.1       10.1         14.1       10.1         15.1       10.1         16.1       10.1         17.1       10.1         18.1       10.1         19.1       10.1         10.1       11.1         10.1       11.1         10.1       11.1         10.1       11.1         10.1       11.1         10.1       11.1         10.1       11.1         10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |   | DATA      | - i i |
| Antilaterel_Olot(Lo/MOS-L_O)+MAK     #11       DGFartLOG(La+BB#L[LarTa-L_O))+MOCK     #11       DGFartLOG(La+BB#L[LarTa-L_O))+MOCK     #11       DG     #12       DG     #13       DG     #14       DG     #12       DG <td< td=""><td>1.03 60 19</td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.03 60 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |   |           |       |
| Marc(IAPERFL_0)=(I_0,0/MODS-1_0))=00CCM       913       012         00CReat_OG((I = 000 (I_0 = 1,0))=00CCM       913       014         0.10       913       015         0.10       913       015         0.10       913       015         0.10       913       015         0.10       913       015         0.10       913       025         0.10       913       025         0.10       913       025         0.10       913       025         0.10       913       025         0.10       913       025         0.10       913       025         0.10       913       025         0.10       913       025         0.10       913       025         0.10       913       025         0.10       913       025         0.11       914       914         0.12       914       914         0.13       914       914         0.14       914       914         0.15       914       914         0.16       914       914         0.16       9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FacDCRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                    |   | 2 0.0     |       |
| DGGerat_DGC(1x+NGer](1x+Tx-1,0))+BOCK P333 015 015 015 015 015 015 015 015 015 015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .0+TC/(3.14159+(fAPER+1.0)+(1.0/H03+1.0)+RHF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                    |   |           |       |
| DGGeat_OG(12x080*1(12x7x-1.0))+00CA 0:000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                    |   |           | - 2   |
| 0.000     0.000     0.000     0.000     0.000     0.000       0.10     2     2     2     2     2       0.10     2     2     2     2     2       0.10     2     2     2     2     2       0.10     2     2     2     2     2       0.10     2     2     2     2     2       0.10     2     2     2     2     2       0.10     2     2     2     2     2       0.10     2     2     2     2     2       0.10     2     2     2     2     2       0.10     2     2     2     2     2       0.10     2     2     2     2     2       0.10     2     2     2     2     2       0.10     2     2     2     2     2       0.11     2     2     2     2     2       10     2     2     2     2     2       10     2     2     2     2     2       10     2     2     2     2     2       10     2     2     2     2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5 3                  |   | CHRTB     | i 🖷   |
| 110)<br>10 10 2<br>110)<br>110 2<br>110 2<br>110 2<br>110 2<br>110 1<br>11 40 AFTU PANAMETER MERTER THANKY 001<br>11 40 AFTU PANAMETER MERTER THAN 27 001<br>11 40 AFTU PANAMETER MERTER THAN 27 001<br>12 20<br>10 1<br>10 10 10 10 10 10 10 10 10 10 10 10 10 1                                                                                                                                                                                                                                                                       | 22.0+ARCOS(BOCR)-806R+4606(14+8081(14+1-0))+806K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                    |   |           | *     |
| 1.0)<br>1.0)<br>1.0)<br>1.0 2<br>1.0)<br>1.0 2<br>1.0 1<br>1.0 1                                                                                                 | =1,0-76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                    |   | •         |       |
| L, 0)<br>1,                                                                                                | #10=BUCR/2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                    |   |           |       |
| 10)<br>10 10 2<br>11 10 2<br>10 10 2<br>11 10 2<br>12 10<br>10 1<br>10 10 1<br>10           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                    |   |           | È m   |
| L.0.)<br>1.0.1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |   | I ad I    |       |
| 0 T0 2     0 T0 2     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | #70#FN#78#715/(FN#1 = 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |   | DXBA      | -     |
| 0 TO 2     0 TO 2     00 TO 2     00 TO 2     00 TO 2     00 TO 20     00 TO 20 <td></td> <td></td> <td></td> <td>TAPER</td> <td>• •</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |   | TAPER     | • •   |
| MK.ADCCA.ACD3     20       MK.ADCCA.ACD3     21       MK.ADCA.ACD3     21       MK.ADCA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 01 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |   |           | ÷ •   |
| RR. BDCRA.RUB)       8733       027       20         RR. BDCRA.RUB)       8733       025       8733       025         RR. BDCRA.RUB)       8734       001       30       8734       20         APP Constraint       8734       001       30       8734       001       30         APP Constraint       8734       001       8734       001       30       30         APP Constraint       8734       001       8734       001       30       30         APP Constraint       8734       8734       001       8734       001       30         APP Constraint       8734       8734       8734       8734       814       814         TO       1       8734       8734       8734       814       814       814       814         TO       1       8734       8734       8734       814       814       814       814       814       814       814       814       814       814       814       814       814       814       814       814       814       814       814       814       814       814       814       814       814       814       814       814                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |   | TARCH     |       |
| CTARER.BDCRA.MED3)<br>TARER.BDCRA.MED3)<br>CLAIPE OF MELT FROM ED 31 FOR IN DFEATER THANADYS 001<br>CLAIPE OF MELT FROM ED 31 FOR IN DFEATER THANADYS 001<br>CLAIPE OF MELT FROM ED 31 FOR IN DFEATER THANADYS 001<br>CLAIPE OF MELT FROM ED 31 FOR IN DFEATER THANADYS 001<br>CLAIPE OF MELT FROM ED 31 FOR IN DFEATER THANADYS 001<br>CLAIPE OF MELT FROM ED 31 FOR IN DFEATER THANADYS 001<br>CLAIPE OF MELT FROM ED 31 FOR IN DFEATER THANADYS 001<br>CLAIPE OF MELT FROM ED 31 FOR IN DFEATER THANADYS 001<br>CLAIPE OF MELT FROM ED 31 FOR IN DFEATER THANADYS 001<br>CLAIPE OF MELT FROM ED 31 FOR IN DFEATER THANADYS 001<br>CLAIPE OF MELT FROM ED 31 FOR IN DFEATER THANADYS 001<br>CLAIPE OF MELT FROM ED 31 FOR IN DFEATER THANADYS 001<br>CLAIPE OF MELT FROM ED 31 FOR IN DFEATER THANADYS 001<br>CLAIPE OF MELT FROM ED 31 FOR IN DFEATER THANADYS 001<br>CLAIPE OF MELT FROM ED 31 FOR IN DFEATER THANADYS 001<br>CLAIPE OF MELT FROM ED 31 FOR IN DFEATER THANADYS 001<br>CLAIPE OF MELT FROM ED 31 FOR IN DFEATER THANADYS 001<br>CLAIPE OF MELT FROM ED 31 FOR INTERCENTS 001<br>CLAIPE OF MELT FROM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10 P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |   | TBRCH     |       |
| CLAN DR Ma(1) = 000 E0 31 PG M BEATER THANBYS 001 FOR TANK POINT 001 FOR E0 31 PG M B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |   | CHRTO     |       |
| TARKA.ADCRA.RG3)<br>TARKA.ADCRA.RG3)<br>ELAN OR Na[1:=0LaT FROM ED 31 /0R N AREATER THAN 924 001<br>ELAN OR Na[1:=0LaT FROM ED 31 /0R N AREATER THAN 924 001<br>HAN 1, NO AFTERBOOY.<br>DO TO 10<br>DO TO 20<br>DO TO 1<br>DO TO 20<br>DO TO 2                                                                                                                                                                                                                                                                                                        | 130Lo2,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |   |           | - 2   |
| Tartr.abCra.m03)<br>C. Tartr.abCra.m03)<br>C. To Di appr.abl. Foon ED 31 706 m Strartr Thans 201 002<br>C. Aspect Ariju Sacht From ED 31 706 m Strartr Than 201 002<br>C. Aspect Ariju Sacht From ED 31 706 m Strartr Than 201 002<br>So To 1<br>So To 2<br>So To 1<br>So To 2<br>So To 1<br>So To 2<br>So To 2<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |   |           |       |
| TAPER.BOCRA.RG3)<br>CLAN OR NG(T)=9CLAT FROM EQ 31 700 N BREATER THANB914 001<br>DF ABPECT RATUL PARAMETER FRAM 4. AND<br>10 TO 10<br>20 TO 10<br>20 TO 10<br>20 TO 14<br>20 TO 14                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |   | BHPTE     |       |
| TAPER. = DC.RA. FG.D.) 50<br>CLAN DR RE(1) = 5C.A.T FROM ED 31 708 N BREATER THAN \$74 002<br>DA APEC R RE(1) = 5C.A.T FROM ED 31 708 N BREATER THAN \$74 002<br>PARA 1, NO AFTERBOOY. 9934 001<br>DO TO 10<br>DO TO 10<br>DO TO 10<br>DO TO 1<br>DO TO 2<br>DO TO 1<br>DO TO 2<br>DO T                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |   | 0×9Le     | -     |
| TTARK. BUCRA.RUB)<br>TTARK. BUCRA.RUB)<br>ELAM ON WEIT: BELAT FROM EB 31 POR M BREATER THAM 994 001<br>ELAM ON ATTERBOOY.<br>DO TO 10<br>DO TO 20<br>DO TO 1<br>DO TO 2<br>DO TO 2<br>D                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |   |           | R     |
| TAMER.BDCMA.RD3)<br>CLANET ANTU DATERON ED 31 700 N BREATER THAND 002<br>CLANET ANTU DATERBOOY.<br>HAN 1. NO AFTERBOOY.<br>BO TO 1.<br>BO TO 1.<br>CO TO 2.<br>CO TO 1.<br>CO TO 2.<br>CO TO 1.<br>CO TO 2.<br>CO TO 2.<br>C                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |   | 1847      |       |
| <pre>-TAPER.BCCRA.PG01 C0 11 /OR N STATER THAN 974 001 00 CLAN OR RE[1:=CLAT CR ATTL FROM E0 11 00 FIAM 11 NO AFTER THAN 4. AND 9944 00 FIAM 11 NO AFTER THAN 4. AND 9944 00 FIAM 12 NO AFTERBOOY. E0 TO 1 E0 TO 1 E0 TO 1 E0 TO 1 E0 TO 2 E0 TO 1 E0 TO 2 E0</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |   |           |       |
| CLAN OR NE(1)=9CLAT FROM ED 31 YOR N BREATER THAN 02<br>CLAN OR NETTROOV.<br>HAN 1, NO AFTERBOOV.<br>DO 10 20<br>DO 10 20<br>D                                                                                                                                                                                                                                                                                            | E011 (8M. TAPER, SDCRA, RUS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |   | Ę         |       |
| Contraction and the first that 1, 400 were were were were were were were we                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X8(X)~86(4) 00 x8(1)~8()47 8800 50 1, 400 8 8854750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |   | 5007      |       |
| Fian 1, "O AFTERDOV."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ADLET DE ADDELT DAULTER FROMENE DE DE ALTER ANDELEN<br>Later de Abbert Batterberter Bonater teatre alber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |   |           |       |
| 0 10 10<br>0 10 10<br>0 10 10<br>0 10 11<br>0 10 10<br>0 10 10 10<br>0 10 10 10<br>0 10 10 10 10<br>0 10 10 10<br>0 10 10 10 10                                                                                                                                                                                                                                          | AFIERBODY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |   |           |       |
| 0 10 10<br>0 10 20<br>0 10 1<br>0 10 10 1<br>0 10 10 1<br>0 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |   |           |       |
| 0 TO 20<br>6 TO 1<br>60 T                                                                                                                                                                                                                                  | 80 70 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |   |           |       |
| 60 T0 1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>2000mT1<br>200                                                                                                                                                                                                                                  | <b>80 10 %</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |   | CHRTO     |       |
| <pre>c0 T0 1 c0 T0 c1 c0</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |   | RCTUR     | 2     |
| 8934<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>89444<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944<br>8944 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |   | QNJ       |       |
| <pre></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |   |           |       |
| <pre></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |   |           |       |
| 00CR<br>R=1,0<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC:=12)<br>CTC                                                                                                                                                                                                                                                                              | ABBORT ( 87 )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |   |           |       |
| R=1.0 891<br>(TC=TW) 891<br>(TC=TW) 891<br>0.001=#23=04TP<(ATA4(80AT(1,0/84))=ATA4(80AT(TC/T0)) 873<br>0.001=81=82<br>0.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.01=10<br>1.0                                                                                                                                                                                                                                                | 8=1,0+81/80CR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |   |           |       |
| <pre>(TG=1W)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C=1,0/805#=1,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |   |           |       |
| (TCF14)<br>CCC)=23-084474<br>C/BCC)=23-084474<br>C/BCC)=23-084647(1,0/84))-ATAN(80R1(TC/T8))<br>ATC/T8<br>ATC/T8<br>TA:00CH*(TE=TF+TG=T1)/(5,12159+TD*(TAPER+1,0)+(1,0/ROB<br>P34<br>P34<br>P34<br>P34<br>P34<br>P34<br>P34<br>P34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M8+0,180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |   |           |       |
| 2000:20-423-476-(ATAN(BORT(1,0/84))-ATAN(BORT(TC/T0)))<br>475:4-10(10)<br>470(10)<br>470(10-11)-0.5ALOG(1,0-TH))/TA<br>473:4-10(1,0-11)-0.5ALOG(1,0-TH))/TA<br>473:4-10(1,0-11)-0.5ALOG(1,0-TH)<br>473:4-10(1,0-11)-0.5ALOG(1,0-TH)<br>473:4-10(1,0-11)-0.5ALOG(1,0-TH)<br>473:4-10(1,0-11)-0.5ALOG(1,0-TH)<br>473:4-10(1,0-11)-0.5ALOG(1,0-TH)<br>473:4-10(1,0-11)-0.5ALOG(1,0-TH)<br>473:4-10(1,0-11)-0.5ALOG(1,0-TH)<br>473:4-10(1,0-11)-0.5ALOG(1,0-TH)<br>473:4-10(1,0-11)-0.5ALOG(1,0-TH)<br>473:4-10(1,0-11)-0.5ALOG(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(1,0-TH)<br>474:4-10(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E=75+64R1 (7C+78)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |   |           |       |
| 410/11)/14<br>410/11)/14<br>410/11.0/11)00,94100(1.0-14))/14<br>410/11.0)4(1.0/10)<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4734<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744<br>4744                    | チョ(()。0/80003)=32)=9月13人<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |   |           |       |
| #4106(1.0+14)=0.544L08(1.0=T4))/TA<br>#4106(1.0+14)=0.544L08(1.0=T4))/(3.[41594T0+(TAPER+1.0)+(1.0/ROB #754<br>#754<br>#754<br>#754<br>#754<br>#754<br>#754<br>#754                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ويوويد فرار مرد ورار وروار المعارية - والريم - ومعارية - موجد - موجد مود مرد مود - مرد - م |                      |   |           |       |
| TANDCHA(TENTPOTE)(1)/(3,1359+T0=(TAPER+1,0)+(1,0/R03 8734<br>8734<br>8734<br>8734<br>8734<br>8734<br>8734<br>8734                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T-2041 (07-15/12)<br>T-20470 (444 06/1 04/14)-0. 444 06/1 06/14/24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |   |           |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 011116.0=TAABDCH4(TE=TF+TG=T1)/(3,14159=TD+(TAPER+1.0)+(1.0/RD1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |   |           |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0) +RMF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |   |           |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ETURN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |   |           |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |   |           |       |
| 1460<br>1460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |   |           |       |
| 8634                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |   |           |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |   |           |       |

**...**.

.....

| .K SUPERBUNIC -ACH NUMBEWS, CHANT<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                             | <b>14 1 2 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</b> |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                             | 4 = 5 = 5 = 5 = 5 = 5 = 5 = 5 = 5 = 5 =               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                             |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                             | → + + + + + + + + + + + + + + + + + + +               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                             | 4 ~ 8 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0             |
| 3.0.4.0.5.0.4.0.10.0/<br>2.4.1.4.00.4.00.4.00.4.00<br>5.5.3.52.3.70.3.79.3.42.4.0<br>3.5.3.3.70.3.79.3.42.4.0<br>2.6.3.3.52.3.70.3.57.4.0<br>2.5.3.3.54.3.51.3.50.3.4.0<br>5.5.4.13)<br>5.5.4.43)<br>5.5.4.43)<br>5.5.4.43)<br>5.5.4.43)<br>5.5.4.43)<br>5.5.4.43)<br>5.5.4.43)<br>5.5.4.43)<br>5.5.4.43)<br>5.5.4.43)<br>5.5.4.43)<br>5.5.4.43)<br>5.5.4.433<br>5.5.4.433<br>5.5.4.433<br>5.5.4.433<br>5.5.4.433<br>5.5.4.433<br>5.5.4.433<br>5.5.4.433<br>5.5.4.433<br>5.5.4.433<br>5.5.4.433<br>5.5.4.433<br>5.5.4.433<br>5.5.4.433<br>5.5.4.433<br>5.5.4.433<br>5.5.4.433<br>5.5.4.433<br>5.5.4.433<br>5.5.4.433<br>5.5.4.433<br>5.5.4.433<br>5.5.4.433<br>5.5.4.433<br>5.5.4.433<br>5.5.4.433<br>5.5.4.433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4433<br>5.5.4.4                                                                                                                                                                                                                                                                                                                 |                                                                             |                                                       |
| 3.0.4.0.5.0.4.0.10.0/<br>02. 3.41. 4.00. 4.00. 4.00<br>02. 3.45. 3.45. 3.46. 3.40<br>3.95. 3.55. 3.40<br>2.0. 3.95. 3.70<br>2.0. 3.95. 3.51, 3.40<br>2.1, 3.95<br>2.1, 3.55<br>2.1, 5.55<br>2.1, 5.55<br>2.1, 5.55<br>2.1, 5.55<br>2.1, 5.55<br>2.1, 5                                                                                                                                                                                                                                                                                       | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                       |                                                       |
| Cuev<br>Cuev<br>0.0%, 1.0%, 2.0%, 2.5%, 3.5%, 3.6%, 3.6%, 3.6%, 4.00<br>0.0%, 1.0%, 2.0%, 2.0%, 3.1%, 3.5%, 3.6%, 3.6%, 4.00<br>0.0%, 2.06%, 2.0%, 3.1%, 3.5%, 3.5%, 3.6%, 4.00<br>0.0%, 2.06%, 2.0%, 3.0%, 3.7%, 3.5%, 3.6%, 4.00<br>0.0%, 1.0%, 1.0%, 1.2%, 3.5%, 3.5%, 3.6%, 4.0%<br>1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 4.0%<br>1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0%, 1.0\%, 1.0\%, 1.0\%, 1.0\%, 1.0\%, 1.0\%, 1.0\%, 1.0\%, 1.0\%, 1.0\%, 1.0\%, 1.0\%, 1.0\%, 1.0\%, 1.0\%, 1.0\%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                             | 44, # # # # # # # # # # # # # # # # # #               |
| 022 3.41, 4.00, 4.00, 4.00<br>022 3.55, 1.55, 1.50, 1.62, 1.40<br>1.51, 1.51, 1.51, 1.55, 1.55, 4.00<br>1.51, 1.51, 1.51, 1.55, 1.55, 4.00<br>1.51, 1.55, 1.55, 1.55, 1.55, 4.00<br>1.51, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, 1.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                             |                                                       |
| 55: 3:55: 176: 3:62:<br>26: 3:52: 3:70: 3:62: 3:62:<br>26: 3:52: 3:51: 3:60: 3:65: 4:00<br>26: 4:00: 3:51: 3:60: 3:65: 4:00<br>26: 4:00: 3:65: 4:00<br>20: 4:00: 4:00: 4:00<br>20: 4:00: 4:00: 4:00<br>20: 4:00: 4:00: 4:00: 4:00<br>20: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:00: 4:0                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ***************************************                                     | 4 • A • A • A • A • A • A • A • A • A •               |
| 10. 3.25. 3.75. 3.50. 3.50. 3.50. 3.50. 3.50. 4.00<br>11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                             | NK 1 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5            |
| 20. 3.14. 3.11. 3.60. 3.60. 4.00<br>(14.5))<br>(14.5))<br>(14.5))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                             | 1 1 1 4 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1               |
| 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                             |                                                       |
| ()<br>(((,,)))<br>((,,)))<br>((,,)))<br>((,,)))<br>((,,)))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                             |                                                       |
| ()<br>((4,4))<br>((4,4))<br>((6,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))<br>((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((1,4))((                                                                                                                                                                | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                      |                                                       |
| )<br>(([+,]))<br>(([+,]))<br>((]+,]))<br>((]=R)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                             | 00000000000000000000000000000000000000                |
| ()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                             |                                                       |
| ()<br>((1,4,4))<br>((1,4,4))<br>((1,4,4))<br>(1,4,4))<br>((1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))<br>(1,4,4))(1,4))<br>(1,4,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,4))(1,                                                                                                                            |                                                                             |                                                       |
| ))<br>((H,J))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G))<br>((H,G)))<br>((H,G))((H,G))<br>((H,G)))<br>((H,G))((H,G))((H,G)))<br>((H,G))((H,G))((H,G)))<br>((H,G))((H,G))((H,G)))<br>((H,G))((H,G)))((H,G))((H,G)))((H,G))((H,G)))((H,G))((H,G)))((H,G)))((H,G))((H,G)))((H,G))((H,G)))((H,G))((H,G)))((H,G))((H,G)))((H,G))((H,G)))((H,G))((H,G)))((H,G))((H,G)))((H,G))((H,G)))((H,G))((H,G)))((H,G))((H,G)))((H,G))((H,G)))((H,G))((H,G)))((H,G)))((H,G)))((H,G)))((H,G)))((H,G)))((H,G)))((H,G |                                                                             |                                                       |
| 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             | 0 - N - T - S - F - F - F - F - F - F - F - F - F     |
| 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                             | 120025                                                |
| )<br>(12,4))<br>(12,4))<br>(13,4))<br>(13,4))<br>(13,4))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                             | N 1 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4             |
| 5(14,5))<br>5(14,4))<br>5(14,4))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                             | 1111                                                  |
| 5(14, 5))<br>5(14, 4))<br>5(14, 4))<br>(14, 4))<br>(14, 4))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8 9 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                   | ****                                                  |
| 5(14,3))<br>5(14,4))<br>5(14,4))<br>())<br>())<br>())                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                             |                                                       |
| 5(14, 5))<br>5(14, 4))<br>5(14, 4))<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                             | 020                                                   |
| 5(1+++))<br>(1) / (4++))<br>(1) / (4++))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 545<br>54<br>54<br>54<br>54<br>54<br>54<br>54<br>54<br>54<br>54<br>54<br>54 | 027                                                   |
| ()) (( <b>**</b> ))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8735<br>8735                                                                |                                                       |
| ()<br>()<br>()<br>()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8135                                                                        | 020                                                   |
| 0) ( ( <b>4</b> -R.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                             | 029                                                   |
| ( <b>1-1</b> )<br>(1-1)<br>(1-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8735                                                                        | 030                                                   |
| ê                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3935                                                                        | 031                                                   |
| Х8цатревио.5<br>1942 - Правитс.16.0,0) бо то 30<br>1941 - Правитс.164рис.48мрте)<br>2014 - Правитс.164рис.48мрте)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SP35                                                                        | 036                                                   |
| IF (3MPMC,LE,0,0) GO TO 30<br>3482<br>Diclesupmc/(3mpmcmsmpt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3935                                                                        | 133                                                   |
| жае<br>1941<br>Эрен Баррис (Змрис-Алете)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8P35                                                                        | 034                                                   |
| 39≈1<br>DXC[sårpac/(\$#Pac-sarte)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8P35                                                                        | 035                                                   |
| DXCLEBEFAC/(BEFAC+BEFAC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8035                                                                        | 03.                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8235                                                                        | 037                                                   |
| 50 T0 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 512                                                                         | 038                                                   |
| 1887                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8P35                                                                        | 039                                                   |
| 2962                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3935                                                                        | 040                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>3</b> P35                                                                | 1 # 0                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5649                                                                        | 042                                                   |
| C[(X) HC20(X1*X)+0X844(C30(270(X7*)-C10(X1*X))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3935                                                                        |                                                       |
| 7 ABCL (JM)+0XCL+(CL(JP)=CL(JM))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8235                                                                        | 440                                                   |
| 70-cL(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8135                                                                        | Ó                                                     |
| CIRT0014+DX01+C100+14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8135                                                                        | •                                                     |
| R 2 1 2 4 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8935                                                                        |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                           | 840                                                   |

| COMPONENTS                     | aq yi                       | NORMAL-FORCE<br>COEFFICIENT                      | LIFT<br>LIFT<br>COEFFICIENT                        | PITCHING-MOMENT<br>COEFFICIENT                     | CENTER OF<br>PRESSURE<br>LOCATION              | AXIAL-FORCE<br>COEFFICIENT                       |
|--------------------------------|-----------------------------|--------------------------------------------------|----------------------------------------------------|----------------------------------------------------|------------------------------------------------|--------------------------------------------------|
| E SON                          | <b>Potential</b><br>Viscous | c <sub>N</sub> N,P<br>c <sub>N</sub> N,V         | d * N<br>U<br>N<br>N<br>D                          | с <sup>т</sup> N, Р<br>С <sup>т</sup> N, Р         | х, х, р<br>И, р                                |                                                  |
| WING IN<br>PRESENCE<br>OF BODY | <b>Potential</b><br>Viscous | с <sub>N</sub> w(в),р<br>с <sub>Nw(в)</sub> ,v   | С <sub>1</sub> W(B), р<br>С <sub>1</sub> W(B), v   | с <sup>т</sup> w(в),р<br>с <sup>т</sup> w(в),v     | x <sup>w</sup> (B), P<br>x <sup>w</sup> (B), ν | С <sub>А</sub> W(B), P<br>САW(B), v              |
| BODY IN<br>PRESENCE<br>OF WING | <b>Potential</b><br>Viscous | с <sub>N</sub> в(W), р<br>С <sub>N</sub> в(W), v | с <sub>ів (W)</sub> , р<br>с <sub>ів (W)</sub> , v | с <sup>m</sup> B (W), P<br>с <sup>m</sup> B (W), v | x <sub>B</sub> (W),P<br>x <sub>B</sub> (W),v   |                                                  |
| AFTERBODY                      |                             | c <sub>NA</sub>                                  | с <sub>г</sub> д                                   | c <sup>m</sup> A                                   | ×_A                                            |                                                  |
| TAIL IN<br>PRESENCE<br>OF BODY | Potential<br>Viscous        | с <sub>М</sub> т(в),р<br>С <sub>М</sub> т(в),v   | с <sub>LT(B)</sub> , р<br>с <sub>LT(B)</sub> , у   | с <sub>мт</sub> (в), р<br>с <sub>мт(В)</sub> , v   | x <sub>T</sub> (B),P<br>x <sub>T</sub> (B),ν   | с <sub>А</sub> т(в), р<br>С <sub>А</sub> т(в), v |
| BODY IN<br>PRESENCE<br>OF TAIL | Potential<br>Viscous        | С <sub>МВ</sub> (Т), р<br>С <sub>МВ</sub> (Т), v | с <sub>тв(т)</sub> , р<br>с <sub>тв(т)</sub> , у   | с <sub>тв</sub> (т),р<br>с <sub>тв</sub> (т),у     | x <sub>B</sub> (T), p<br>x <sub>B</sub> (T), v |                                                  |
| COMPLETE<br>CONFIGURATION      |                             | и<br>С                                           | с <sup>г</sup>                                     | ບ <sup>E</sup>                                     | ١×                                             | <sup>لا</sup><br>ت                               |

Table I.- Summary of force and moment coefficient notation.

194

ļ

ITEM 1 FORMAT

۲. 

ITEM 2 FORMAT (20A4); NHEAD cards

•

NOTE: Last card saved for additional output in various subroutines. <sup>1</sup> TITLE

ITEM 3 FORMAT (8F10.5)

| _                   |    |
|---------------------|----|
| DXI                 |    |
| 19 <sup>1</sup>     |    |
| <sup>si</sup> DXOUT |    |
| " THETAN            |    |
| ы<br>ЖХ<br>я        |    |
| 21 REFL             |    |
| II REFS             |    |
|                     |    |
| -                   | IJ |
|                     |    |

ITEM 4 FORMAT (2F10.5); NTBL cards

-

| " RBDY (J)            |  |  |
|-----------------------|--|--|
| <sup>1</sup> XBDY (J) |  |  |
|                       |  |  |

ITEM 5 FORMAT (5F10.5)

| _        | _ |
|----------|---|
| L" XWCP  |   |
|          |   |
| ZHLW     |   |
|          | Н |
| ZHLW     |   |
|          |   |
| 11 YSEPW |   |
| -        | Π |
| I RAVGW  |   |
|          |   |
|          |   |

ITEM 6 NAMELIST, NREGNW blocks

| \$ IN PUT | PER=0.95, | SBCT | ROWS= | COLS= | ROOTLE- | ROOT'E- | ROOTY- | TIPLE | TIPTE- | TIPY= | TCROOT- | TCTIP- | ŞERID |
|-----------|-----------|------|-------|-------|---------|---------|--------|-------|--------|-------|---------|--------|-------|



Figure 1.- Input format for SUPSON program.

ζ

| 51 61 71 61 1                                                             | XICP                                             |                                           |                                                                                                                                                           | 2<br>61                                                                    | <sup>11</sup> ALPIT <sup>19</sup> AKULT1 <sup>57</sup> AKULT2 <sup>65</sup> AKUST <sup>7</sup> MLIMIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ₹                                                                         | ┝┥╶┧┥                                            |                                           |                                                                                                                                                           | Ĩ                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| R                                                                         | T. ZHLT                                          | _                                         |                                                                                                                                                           | , <u>н</u>                                                                 | akvsw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| = 0.                                                                      | THX <sup>12</sup>                                | ks                                        |                                                                                                                                                           | т - 0.                                                                     | 3.3)<br><sup>17</sup> Акулия 2<br>Акулия 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| if NALFW =                                                                | if<br>'YS                                        | REGNT bloc                                |                                                                                                                                                           | 0 if NALPT =<br>0.5)<br><sup>11</sup>                                      | F6.2,9F8.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Omit Item 7 if<br>FORWAT (8F10.5)<br><sup>1</sup> ALTHAW(I) <sup>11</sup> | Go to Item 11<br><sup>1</sup> RAVGT <sup>1</sup> | NAMELIST, NREGNT blocks<br>  <sup>2</sup> | \$ IN PUT<br>PER-0.95,<br>SECT-<br>ROMS-<br>ROMS-<br>ROOTLE-<br>ROOTLE-<br>ROOTLE-<br>ROOTLE-<br>TIPTE-<br>TIPTE-<br>TIPTE-<br>TCROOT-<br>TCROOT-<br>SEND | Omit Item 10 if<br>FORMAT (8F10.5)<br><sup>1</sup> ALPHAT(I) <sup>11</sup> | FORMAT (12, F6. 2, 9F8. 3)<br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>17</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>1</sup> |
| 7 Mati                                                                    | ITEM 8                                           | 1 TEM 9                                   |                                                                                                                                                           | ITEM 10                                                                    | ITEM 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

(b) Page 2.

.

Figure 1.- Concluded.





(a) Total configuration.





### (b) Detail of local wing section.

Figure 2.- Concluded.



Figure 3.- Vortex-lift ratio on delta wings in supersonic flow.

| 2 PÚ<br>Sample (       | ASE             | 0 1<br>REF. 44           | SA In X=3 | 28 SEPT.   | 1 0<br>• 1960  | 1 0<br>C. DRIVER | 0              |   |
|------------------------|-----------------|--------------------------|-----------|------------|----------------|------------------|----------------|---|
| CANARU<br>2,01         | - 41NG<br>192.0 | <ul> <li>BEDA</li> </ul> | LUNEIGUNA | TICN       | 1,             | , 1              | •              |   |
| 0,                     | - C.            | 1-4                      |           |            |                |                  |                |   |
| ,297                   | .076            |                          |           |            |                |                  |                |   |
| +956                   | .255            |                          |           |            |                |                  |                |   |
| 1.945                  | 445             |                          |           |            |                |                  |                |   |
| 2.605<br>3.267         | .5/3            |                          |           |            |                |                  |                |   |
| 5,929                  | .682            |                          |           |            |                |                  |                |   |
| 4.275                  | .826            |                          |           |            |                |                  |                |   |
| 5,255                  | .94             |                          |           |            |                |                  |                |   |
| 5.92                   | .996            |                          |           |            |                |                  |                |   |
| 0.583                  | 1.042           |                          |           |            |                |                  |                |   |
| 11,375                 | 1.51            | •                        |           |            |                |                  |                |   |
| 17.749                 | 1.66            |                          |           |            |                |                  |                |   |
| 17,6                   | 1,00            |                          |           |            |                |                  |                |   |
| 18,61                  | 1.66            |                          |           |            |                |                  |                |   |
| 25                     | 1,00            |                          |           |            |                |                  |                |   |
| 50.                    | 1,66            |                          |           |            |                |                  |                |   |
| 57.                    | 1.66            | 7                        |           |            |                |                  |                |   |
| 58.                    | 1,667           | 0.135                    | 0         | 0          |                |                  |                |   |
| 1.34                   | 3,37            | 9,125                    | ο.        | Ο.         |                |                  |                |   |
| +INPUT<br>PEH= 0.45    |                 |                          |           |            |                |                  |                |   |
| RUNSE 4,               | •               |                          |           |            |                |                  |                |   |
| CULS= 4,               |                 |                          |           |            |                |                  |                |   |
| RUUTLE= 4              |                 |                          |           |            |                |                  |                |   |
| RUUTTE=11              | .375.           |                          |           |            |                |                  |                |   |
| RUUTY= 1.              |                 |                          |           |            |                |                  |                |   |
| TIPLE=11.<br>TIPTE=11. |                 |                          |           |            |                |                  |                |   |
| T1PY= 5.3              |                 |                          |           |            |                |                  |                |   |
| TCHOUTE O              |                 |                          |           |            |                |                  |                |   |
| TUTIPE U.              |                 |                          |           |            |                |                  |                |   |
| +END                   |                 |                          |           | -          |                |                  |                |   |
|                        | 5.0135          | 25,                      | ۰.        | 0.         |                |                  |                |   |
| +INPUT                 |                 |                          |           |            |                |                  |                |   |
| PER= 0,95<br>RUWS= 6,  |                 |                          |           |            |                |                  |                |   |
| CUL8=10,               |                 |                          |           |            |                |                  |                |   |
| HUUTLESIE              | .61,            |                          |           |            |                |                  |                |   |
| RUUTTEESI              |                 |                          |           |            |                |                  |                |   |
| RUUTY= 1.              |                 |                          |           |            |                |                  |                |   |
| TIPLE=3/.              |                 |                          |           |            |                |                  |                |   |
| T1PTE=37.              |                 |                          |           |            |                |                  |                |   |
| TIPYE 8,3<br>TCROUTE U |                 |                          |           |            |                |                  |                |   |
| TCTIPE 0.              |                 |                          |           |            |                |                  |                |   |
| +END                   |                 |                          |           |            |                |                  |                |   |
|                        | 0.              |                          | • •       |            | .5             | 0.               | 0. 1.          |   |
|                        | 10.             |                          | • •       |            | ,5<br>,5<br>,5 | 0.               | 0. 1.          |   |
|                        | 10.             |                          | • 0,      | . <u> </u> | - 2            | ٥.               | 0. 1.<br>0. 1. |   |
|                        | 10.             |                          | · 0.      | 0.         | .5             | 0.<br>0.         |                |   |
|                        | 10.             |                          | · 0.      |            | .5             | 0,               | 0, 1,          |   |
|                        | 10.             | ,5 0                     | . 0       |            | 5              | ٥,               | 0, 1,          |   |
|                        | 10              | .5 0                     | . 0       | 0,         | *2             | 0,               | 0, 1,          |   |
|                        | 10.             |                          | . 0.      |            | , 5            | 0.               | 0. 1.          | , |
|                        | 0               | .C 0                     | 0         |            | .0             | 0.               | 0, 1,          |   |
|                        |                 |                          |           |            |                |                  |                |   |

### (a) Sample case 1.

Figure 4.- Sample input decks for SUPSON program.

| 2 20                   |        |            | e0      | 1 0       | 0     | 0 (    | 0 0    |     |
|------------------------|--------|------------|---------|-----------|-------|--------|--------|-----|
|                        | CASE 2 | PHI-GRAM S |         | REF. MASA | TM 8- | 124 C  | 001.60 |     |
|                        | - HÚUY | LINFIGUMAT | 25.0    | 10.       | 1.    | 360 64 | 1,     |     |
| <b>2.</b> 01<br>∪.     | 192.0  | 1,0,0,0    | 1 2 . 0 | 10.       | ••    |        | ••     |     |
| 297                    | .076   |            |         |           |       |        |        |     |
| .950                   | .235   |            |         |           |       |        |        |     |
| 1.945                  | 445    |            |         |           |       |        |        |     |
| 2.005                  | 573    |            |         |           |       |        |        |     |
| 3.267                  | 682    |            |         |           |       |        |        |     |
| 5.929                  | .7 M   |            |         |           |       |        |        |     |
| 4.275                  | .820   |            |         |           |       |        |        |     |
| 5.255                  | .94    |            |         |           |       |        |        |     |
| 5.92                   | ,996   |            |         |           |       |        |        |     |
| 6,583                  | 1.042  |            |         |           |       |        |        |     |
| 11.375                 | 1.31   |            |         |           |       |        |        |     |
| 17,749                 | 1,06/  |            |         |           |       |        |        |     |
| 17.75                  | 1.667  |            |         |           |       |        |        |     |
| 17.8<br>10.61          | 1.00/  |            |         |           |       |        |        |     |
| 25.                    | 1.067  |            |         |           |       |        |        |     |
| 30                     | 1.667  |            |         |           |       |        |        |     |
| 57.                    | 1.667  |            |         |           |       |        |        |     |
| 38                     | 1.667  |            |         |           |       |        |        |     |
| 1.657                  | 8.30   | 25.        | e .     | 0.        |       |        |        |     |
| +INPUT                 | • • •  |            | ·       | ••        |       |        |        |     |
| HUrS=6,                |        |            |         |           |       |        |        |     |
| CULS=5,                |        |            |         |           |       |        |        |     |
| SELIE1.                |        |            |         |           |       |        |        |     |
| ROUTLE=15              |        |            |         |           |       |        |        |     |
| RUUT1E#57              |        |            |         |           |       |        |        |     |
| RUUTY=1.6              |        |            |         |           |       |        |        |     |
| TIPLE=27.              |        |            |         |           |       |        |        |     |
| T1016#37,              |        |            |         |           |       |        |        |     |
| T1PY=5.01              |        |            |         |           |       |        |        |     |
| TCRDNT=0.<br>TCTIP=0.0 |        |            |         |           |       |        |        |     |
| +END                   | •      |            |         |           |       |        |        |     |
| +INPUT                 |        |            |         |           |       |        |        |     |
| RU#S=6,                |        |            |         |           |       |        |        |     |
| LULS=5,                |        |            |         |           |       |        |        |     |
| SELIZ],                |        |            |         |           |       |        |        |     |
| RUUILE=27              | .805,  |            |         |           |       |        |        |     |
| 200116=37              |        |            |         |           |       |        |        |     |
| RUU17=5.0              |        |            |         |           |       |        |        |     |
| 11PLE=57.              |        |            |         |           |       |        |        |     |
| TIPTEES7+              |        |            |         |           |       |        |        |     |
| T1PV#8+36              |        |            |         |           |       |        |        |     |
| 10800120.              |        |            |         |           |       |        |        |     |
| TCTIPE0.0<br>+END      | •      |            |         |           |       |        |        |     |
| 1 10. 0                |        | 5 0.0      | 0.0     | 0.0       | 0.0   | 0.0    | 0.0    | 1.0 |
| 0                      | • •    |            | 0.0     |           |       |        |        |     |

(b) Sample case 2.

Figure 4.- Continued.

| 2 14 -2<br>SAMPLE CASE 3       | REF. NASA PE   | 1 0 1<br>ME 6=11=59A | 1 0<br>May 1959 |          | 0 0<br>ION AND MENEES |          |
|--------------------------------|----------------|----------------------|-----------------|----------|-----------------------|----------|
| кіна - нору -<br>1.30 - 349.   | TAIL CUNFIG    | 23,59                | 12.             | 1.       | 1.                    |          |
| 00                             |                |                      |                 | •        | •                     |          |
| 5, 984<br>10, 1,54             |                |                      |                 |          |                       |          |
| 15, 1,93                       |                |                      |                 |          |                       |          |
| 20.29 2.2 25.16 2.34           |                |                      |                 |          |                       |          |
| 29,75 2.38                     |                |                      |                 |          |                       |          |
| 51.11 2.376<br>54.26 2.34      |                |                      |                 |          |                       |          |
| 38, 2,24                       |                |                      |                 |          |                       |          |
| 40,85 2,13                     |                |                      |                 |          |                       |          |
| 42.43 2.05<br>46.11 1.42       |                |                      |                 |          |                       |          |
| 47. 1,75                       |                | -                    | •               |          |                       |          |
| 2,38 16,42<br>+11-PUT          | 23,59          | 0.                   | 0.              |          |                       |          |
| PER=0,95,                      |                |                      |                 |          |                       |          |
| RUNS=6,<br>Culs=10,            |                |                      |                 |          |                       |          |
| ROUTLE=20,29,                  |                |                      |                 |          |                       |          |
| RUUTTE=34,26,<br>RUUTY=2,38,   |                |                      |                 |          |                       |          |
| TIPLE=25,16,                   |                |                      |                 |          |                       |          |
| TIPTE=31,11,                   |                |                      |                 |          |                       |          |
| TIPY=16,42,<br>TCROOT=0.0,     |                |                      |                 |          |                       |          |
| 1C112=0.0,                     |                |                      |                 |          |                       |          |
| +END<br>2. 8,34                | 42.43          | ٥.                   | 0.              |          |                       |          |
| +INPUT                         |                |                      | -               |          |                       |          |
| PER=0.95,<br>RU#S=4,           |                |                      |                 |          |                       |          |
| CULS=8,                        |                |                      |                 |          |                       |          |
| RUUTLE=40,85,<br>RUUTTE=46,11, |                |                      |                 |          |                       |          |
| RUU1Y#2.0,                     |                |                      |                 |          |                       |          |
| TIPLE=41.8,<br>TIPTE=43,89,    |                |                      |                 |          |                       |          |
| TIPY =8.34,                    |                |                      |                 |          |                       |          |
| TCRUUT=0.0,                    |                |                      |                 |          |                       |          |
| TCTIP=0.0,<br>+End             |                |                      |                 |          |                       |          |
| 1 2. 0.                        | 0. 0.          |                      | 0.              | 0.       | 0. 0.                 | 1+       |
| 1 4. 0.                        | 0. 0.<br>0. 0. | 0.                   | 0.<br>0.        | 0.<br>0. | 0. 0.<br>0. 0.        | 1.       |
| 1 8, 0,                        | 0. 0.          | ა.                   | 0               | 0.       | 0, 0,                 | 1.       |
| 1 10. 0.                       | 0. 0.<br>0. 0. |                      | 0.<br>0.        | 0.<br>0. | 0. 0.<br>0. 0.        | 1.       |
| 1 10. 0.                       | 0, 0,          | 0.                   | Ο.              | ٥.       | 0. 0.                 | 1.       |
| 1 2. 0.                        | 0. 0.          |                      | -10,<br>-10,    | 0.<br>0. | 0.0.<br>0.0.          | 1.       |
| 14,0,                          | 0. 0.<br>0. 0. | 0.                   | -10             | 0.       | 0, 0,                 | 1.       |
| 1 8, 0,                        | o. o.          | 0.                   | -10.            | 0.       | 0, 0,                 | 1.       |
| 1 10, 0,<br>1 12, 0,           | 0, 0,<br>0, 0, | 0.                   | -10,            | 0.       | 0. 0.<br>0. 0.        | 1.       |
| 1 16, 0,                       | 0 <b>.</b> V.  | 0.                   | -10.            | 0.       | 0. 0.                 | 1.       |
| 1 2. 0.                        | 0. 0.          | 0.                   | -20.            | 0,<br>0, | 0. 0.<br>0. 0.        | 1.       |
| 1 4. 0.<br>1 6. 0.             | 0, U,<br>0, 0, | 0.<br>0.             | -20,            | ٥.       | o. O.                 | 1.       |
| 1 8, 0,                        | 0. 0.          | 0                    | -20,            | 0,       | 0 0 0 1<br>0 0 0      | i.<br>1. |
| 1 10. 0.                       | 0 0.<br>0 0    | 0.<br>0.             | -20.            | 0.       | 0. 0.                 | 1.       |
| 1 16, 0,                       | υ, Ο,          | 0.                   | -20.            | 0        | 0. <b>0</b> .         | 1.       |

(c) Sample case 3.

Figure 4.- Concluded.







Figure 6.- Wing-body-tail configuration for sample case 3.

| EINPUTM<br>NHEAD= 2<br>NTBL= 20<br>NPRINT= 0<br>NDSEV= 1<br>NRFGNW= 1<br>NALPW= 0<br>NSEPW= 1<br>NFGNT= 1<br>NALPT= 0<br>NSEPT= 1<br>NRODY= 0<br>NAFT= 0<br>& FND |              | ASE 1 REF         |                  | •••••           | EPT. 1960        | C. DRIVER      |         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|------------------|-----------------|------------------|----------------|---------|
|                                                                                                                                                                   |              | - WING - B        |                  | GURATION        |                  |                |         |
|                                                                                                                                                                   | M<br>2.01000 | REFS<br>192.00000 | REFL<br>15.33000 | XCM<br>25.00000 | DXOUT<br>1.00000 | DXI<br>1.00000 | 1.74359 |

(a) Page l.

Figure 7.- Output from SUPSON program for sample case 1.

&INPUT NSF = 1ROWS = 4COLS = 4PER= 0.950 ROOTLE= 4.2750 ROOTTE= 11.3750 ROOTY= 1.339999 TIPLE= 11.3750 TIPTE= 11.3750 TIPY = 3.370TCROOT = 0.0TCTIP = 0.0ASYM= F SECT = 1ALT= -1.0 SCALE= 1.0 TYPE= 4& END

(b) Page 2.

Figure 7.- Continued.

ļ.

```
EINPUT
NSF = 2
ROWS = 6
COLS = 10
PER= 0.950
ROOTLE= 18.60999
ROOTTE= 37.0
RONTY= 1.6670
TIPLE= 37.0
TIPTE= 37.0
TIPY= 8.360
TCROOT = 0.0
TCTIP = 0.0
ASYM= F
SECT = 1
ALT= -1.0
SCALE= 1.0
TYPE = 4
```

&END

I I

(c) Page 3.

Figure 7.- Continued.

| CANARD   | - WING - B           | DDY CONFI | GURATION           |          |         |         |           |       |       |       |
|----------|----------------------|-----------|--------------------|----------|---------|---------|-----------|-------|-------|-------|
|          |                      |           |                    |          |         |         |           |       |       |       |
| WING     | XLF                  | XTE       | XLE(TIP)           | XTE(TIP  | ) CROO  | T CT    | IP 8/     | 2     |       |       |
|          | 4.27500              | 11.37500  | 11.37500           | 11.37500 |         |         |           | 00    |       |       |
|          | 7.21700              |           |                    |          |         |         |           |       |       |       |
|          | RAVG                 | YSEP      | XHL                | ZHL      | XCP     |         |           |       |       |       |
|          | 1.34000              | 3.37000   | 9.12500            | 0.00000  | 0.0000  | 0       |           |       |       |       |
|          |                      |           |                    |          |         |         |           |       |       |       |
| TAIL     |                      |           |                    |          |         | т ст    | [P B/     | •     |       |       |
|          | XLE                  | XTE       | XLE(TIP)           |          |         |         | -         |       |       |       |
|          | 18,60999             | 37.00000  | 37.00000           | 37.00000 | 18.3400 | 1 0.000 | 000 81300 |       |       |       |
|          | PAVG                 | YSEP      | XHL                | ZHL      | XCP     |         |           |       |       |       |
|          | 1.66700              | 8.36000   | 25.00000           | 0.00000  |         | D       |           |       |       |       |
|          | 1.00/00              | 8+30000   | 2 3. 00000         | 0.00000  | 000000  | •       |           |       |       |       |
|          |                      |           |                    |          |         |         |           |       |       |       |
| BODY .   |                      | N         | IOSE               |          | AVERAGE | RADIUS  | CENTER OF |       |       |       |
|          | т                    | HETA FIN  |                    | BASEI    | WING    | TAIL    | X         | Z     | DXI   | DXOUT |
|          | 10                   | .000 2    | .588 0             | .826     | 1.340   | 1.667   | 25.000    | 0.000 | 1.000 | 1.000 |
|          |                      |           |                    | •        |         |         |           |       |       |       |
|          |                      |           |                    |          |         |         |           |       |       |       |
| TABLE    | OF BODY CO           | R         | s                  | DR/OX    |         |         |           |       |       |       |
| 1        | 0.00000              | 0.00000   | 0.00000            | 0.25589  |         |         |           |       |       |       |
| 2        | 0.29700              | 0.07600   | 0.07600            | 0.24707  |         |         |           |       |       |       |
| 3        | 0.95600              | 0.23300   | 0.23300            | 0.22630  |         |         |           |       |       |       |
| 4        | 1.94500              | 0.44500   | 0.44500            | 0.20415  |         |         |           |       |       |       |
| 5        | 2.60500              | 0.57300   | 0.57300            | 0.17930  | l       |         |           |       |       |       |
| 6        | 3.26700              | 0.68200   | 0.68200            | 0.15634  |         |         |           |       |       |       |
| 7        | 3.92900              | 0.78000   | 0.78000            | 0.14049  |         |         |           |       |       |       |
| 8        | 4.27500              | 0.82600   | 0.82600            | 0.11690  |         |         |           |       |       |       |
| 9        | 6.05000              | 1.00502   | 1.84750            | 0.08041  |         |         |           |       |       |       |
| 10       | 7.82500              | 1.11146   | 2.35500            | 0.05795  |         |         |           |       |       |       |
| 11       | 9.60000              | 1.21073   | 2.86250<br>3.37000 | 0.05561  |         |         |           |       |       |       |
| 12<br>13 | 11.37500             | 1.31000   | 1.31005            | 0.05565  |         |         |           |       |       |       |
| 13       | 17.74899             | 1.66700   | 1.66700            | 0.02800  |         |         |           |       |       |       |
| 15       | 17.75000             | 1.66700   | 1.66700            | 0.00000  |         |         |           |       |       |       |
| 16       | 17.79999             | 1.66700   | 1.66700            | 0.00000  |         |         |           |       |       |       |
| 17       | 18.60999             | 1.66700   | 1.66700            | 0.00000  | )       |         |           |       |       |       |
| 18       | 20.44897             | 1.66700   | 2.33630            | 0.00000  | )       |         |           |       |       |       |
| 19       | 22.28798             | 1.66700   | 3.00560            | 0.00000  |         |         |           |       |       |       |
| 20       | 24.12698             | 1.66700   | 3.67490            | 0.00000  |         |         |           |       |       |       |
| 21       | 25.96597             | 1.66700   | 4.34470            | 0.00000  |         |         |           |       |       |       |
| 22       | 27.80498             | 1.66700   | 5.01350            | 0.00000  |         |         |           |       |       |       |
| 23       | 29.64397             | 1.66700   | 5.68280            | 0.00000  |         |         |           |       |       |       |
| 24       | 31.48297             | 1.66700   | 6.35209<br>7.02139 | 0.0000   |         |         |           |       |       |       |
| 25       | 33.32198             | 1.66700   | 7.69069            | 0.00000  |         |         |           |       |       |       |
| 26<br>27 | 35.16096<br>36.99998 | 1.66700   | 8.36000            | 0.00000  |         |         |           |       |       |       |
| 21       | 37.00099             | 1.66700   | 1.66700            | 0.00000  |         |         |           |       |       |       |
| 29       | 38.00000             | 1.66700   | 1.66700            | 0.00000  |         |         |           |       |       |       |
| - /      |                      |           |                    |          |         |         |           |       |       |       |

(d) Page 4.

Figure 7.- Continued.

ļ

|      |            |      | INC             | IDENCE        | W             | ING            | TA I  | L     |           |
|------|------------|------|-----------------|---------------|---------------|----------------|-------|-------|-----------|
|      | AL PHA     | M    | WING            | TAIL          | KVLE*         | KVSE*          | KVLE# | KVSE* | W/V LIMIT |
|      | 16.00      | 2.01 | 10.000          | 0.000         | 0.500         | 0.000          | 0.500 | 0.000 | 1.000     |
| NOSE | VORTICES - |      | PI*V*RB<br>0906 | ¥/RB<br>0.646 | Z/RB<br>1.311 | XS/RB<br>0+000 |       |       |           |

SUMMARY OF VORTEX STRENGTHS AND POSITION AT x = 4.275

| VORTEX | GAMMA/2*PI*V | Y     | Z     |
|--------|--------------|-------|-------|
| 1      | 0.074799     | 0.533 | 1.083 |

VELOCITY INDUCED AT SPECIFIED FIELD POINTS ON WING (BESKIN)

|    | x      | Y     | Z      | V/V(INF)    | W/V(INF)   |
|----|--------|-------|--------|-------------|------------|
| 1  | 6.606  | 1.582 | 0.437  | 5.7449E-02  | 9.5909E-02 |
| 2  | 8.169  | 1.582 | 0.166  | 2.9297E-02  | 1.3809E-01 |
| 3  | 9.733  | 1.582 | -0.106 | -2.1923E-02 | 1.6345E-01 |
| 4  | 11.297 | 1.582 | -0.377 | -8.1243E-02 | 1.6068F-01 |
| 5  | 7.946  | 2.084 | 0.205  | 1.5486E-02  | 7.8089E-02 |
| 6  | 9.070  | 2.084 | 0.009  | 8.1490E-04  | 8.9664E-02 |
| 7  | 10.195 | 2.084 | -0.186 | -1.7450E-02 | 9.7132E-02 |
| 8  | 11.319 | 2.084 | -0.381 | -3.7576E-02 | 9.9363E-02 |
| 9  | 9.270  | 2.581 | -0.025 | -1.1602E-03 | 5.95928-02 |
| 10 | 9.960  | 2.581 | -0.145 | -7.0939E-03 | 6.2933E-02 |
| 11 | 10.650 | 2.581 | -0.265 | -1.3584E-02 | 6.5480E-02 |
| 12 | 11.340 | 2.581 | -0.385 | -2.0474E-02 | 6.7140E-02 |
| 13 | 10.473 | 3.032 | -0.234 | -7.3537E-03 | 4.7348E-02 |
| 14 | 10.769 | 3.032 | -0.285 | -9.1522E-03 | 4.8180E-02 |
| 15 | 11.064 | 3.032 | -0.337 | -1.1005E-02 | 4.8926E-02 |
| 16 | 11.360 | 3.032 | -0.388 | -1.2907E-02 | 4.9582E-02 |

VELOCITY INDUCED AT SPECIFIED FIELD POINTS ON WING (VORTEX)

|    | x      | Y     | Z      | V/V(INF) W/V(INF)      |
|----|--------|-------|--------|------------------------|
| 1  | 6.606  | 1.582 | 0.437  | 1.6056E-02 -5.3901E-03 |
| 2  | 8.169  | 1.582 | 0.166  | 7.6823E-03 -7.9791E-03 |
| 3  | 9.733  | 1.582 | -0.106 | 2.7704E-03 -6.3888E-03 |
| 4  | 11.297 | 1.582 | -0.377 | 6.1840E-04 -4.2710E-03 |
| 5  | 7.946  | 2.084 | 0.205  | 7.2136E-03 -2.1890E-03 |
| 6  | 9.070  | 2.084 | 0.009  | 5.0521E-03 -3.0338E-03 |
| 7  | 10.195 | 2.084 | -0.186 | 3.3162E-03 -3.0911E-03 |
| Ŗ  | 11.319 | 2.084 | -0.381 | 2.0716E-03 -2.7641E-03 |
| 9  | 9.270  | 2.581 | -0.025 | 4.0101E-03 -9.7394E-04 |
| 10 | 9.960  | 2.581 | -0.145 | 3.3966E-03 -1.2613E-03 |
| 11 | 10.650 | 2.581 | -0.265 | 2.8322E-03 -1.4172E-03 |
| 12 | 11.340 | 2.581 | -0.385 | 2.3305E-03 -1.4747E-03 |
| 13 | 10.473 | 3.032 | -0.234 | 2.5851E-03 -4.9036E-04 |
| 14 | 10.769 | 3.032 | -0.285 | 2.4367E-03 -5.6838E-04 |
| 15 | 11.064 | 3.032 | -0.337 | 2.2920E-03 -6.3389E-04 |
| 16 | 11.360 | 3+032 | -0.388 | 2.1511E-03 -6.8815E-04 |

TOTAL INDUCED VELOCITY AT SPECIFIED FIELD POINTS ON WING

|    | x      | Y     | z      | V/V(INF)   | W/V(INE)   |
|----|--------|-------|--------|------------|------------|
| 1  | 6.606  | 1.582 | 0.437  | 1.6056E-02 | 9.0519E-02 |
| 2  | 8.169  | 1.582 | 0.166  | 7.6823E-03 | 1.3011E-01 |
| 3  | 9.733  | 1.582 | -0.106 | 2.7704E-03 | 1.5706E-01 |
| 4  | 11.297 | 1.582 | -0.377 | 6.1840E-04 | 1.5641E-01 |
| 5  | 7.946  | 2.084 | 0.205  | 7.2136E-03 | 7.5900E-02 |
| 6  | 9.070  | 2.084 | 0.009  | 5.0521E-03 | 8.6630E-02 |
| 7  | 10.195 | 2.084 | -0.186 | 3.31628-03 | 9.4041E-02 |
| 8  | 11.319 | 2.084 | -0.381 | 2.0716E-03 | 9.6599E-02 |
| 9  | 9.270  | 2.581 | -0.025 | 4.0101E-03 | 5.8618E-02 |
| 10 | 9.960  | 2.581 | -0.145 | 3.3966E-03 | 6.1672E-02 |
| 11 | 10.650 | 2.581 | -0.265 | 2.8322E-03 | 6.4063E-02 |
| 12 | 11.340 | 2.581 | -0.385 | 2.3305E-03 | 6.5665E-02 |
| 13 | 10.473 | 3.032 | -0.234 | 2.5851E-03 | 4.6858E-02 |
| 14 | 10.769 | 3.032 | -0.285 | 2.4367E-03 | 4.7611E-02 |
| 15 | 11.064 | 3.032 | -0.337 | 2.2920E-03 | 4.8292E-02 |
| 16 | 11.360 | 3.032 | -0.388 | 2.1511E-03 | 4.8894E-02 |

#### (e) Page 5.

Figure 7.- Continued.

-

\*\*\*\*\*WING\*\*\*\*\* NASA/AMES WING PROGRAM CANARD - WING - BODY CONFIGURATION FLOW CONDITIONS - MACH BETA 1.74359 2.01000 XMOM PANELS B/2 REFERENCE QUANTITIES - APEA LFNGTH 192.000 15.330 25.000 3.370 16 -----DCN/DALPHA------CNP (RAD\*\*-1) (DEG\*\*-1) \* BETA 0.06369 0.11375 0.00199 0.19833 DCM/DCN XAC XCP YCP CMP 8.977 8.978 2.145 0.06657 1.04514 SPAN LOAD DISTRIBUTION 2R = 13.4800CCN/2B Y 1.58167 0.30599 2.08431 9.26667 2.58055 0.21207 3.03166 0.10898 TPAILING VORTEX ..... Y = 2.8223 GAM/V2PI = 3.2823E-01 SPANWISE DISTRIBUTION OF L.E. SUCTION CCS/2B EPS(DEG) CCX/2B CCY/2B PEGION COL Y/(B/2) 90.460 -0.02170 0.07366 0.07680 0.47292 1 1 89.745 -0.03905 88.989 -0.05855 90.778 -0.08027 0.13892

0.21934

0.26696

(f) Page 6.

Figure 7.- Continued.

210

0.62352 0.14431

0.22702

0.27876

0.77411

0.92470

2

3

4

1

1

l

SUMMARY OF VORTEX STRENGTHS AND POSITION AT X = 11.776

| VORTEX | GAMMA/2*PI*V | Y     | Z      |
|--------|--------------|-------|--------|
| 1      | 0.074799     | 0.373 | 1.968  |
| 2      | 0.328235     | 2.822 | -0.391 |
| 3      | 0.150326     | 2.595 | 0.360  |

VELOCITY INDUCED AT SPECIFIED FIELD POINTS ON TAIL (BESKIN)

|          | x                | Y              | Z              | V/V(INF)         | W/V(INF)                 |
|----------|------------------|----------------|----------------|------------------|--------------------------|
| 1        | 22.282           | 1.996          | 0.000          | 0.0000           | 1.94826-01               |
| ż        | 25.196           | 1.996          | 0.000          | 0.0000           | 1.9482E-01               |
| 3        | 28.111           | 1.996          | 0.000          | 0.0000           | 1.9482E-01               |
| 4        | 31.025           | 1.996          | 0.000          | 0.0000           | 1.9482E-01               |
| 5        | 33.940           | 1.996          | 0.000          | 0.0000           | 1.94826-01               |
| 6        | 36.854           | 1.996          | 0.000          | 0.0000           | 1.9482E-01               |
| 7        | 23.828           | 2.664          | 0.000          | 0.0000           | 1.0931E-01               |
| 8        | 26.437           | 2.664          | 0.000          | 0.0000           | 1.0931E-01               |
| ğ        | 29.045           | 2.664          | 0.000          | 0.0000           | 1.0931E-01               |
| 10       | 31.653           | 2.664          | 0.000          | 0.0000           | 1.09316-01               |
| 11       | 34.261           | 2.664          | 0.000          | 0.0000           | 1.0931E-01               |
| 12       | 36.870           | 2.664          | 0.000          | 0.0000           | 1.0931E-01               |
| 13       | 25.374           | 3.333          | 0.000          | 0.0000           | 6.9863E-02               |
| 14       | 27.676           | 3.333          | 0.000          | 0.0000           | 6.9863E-02               |
| 15       | 29.978           | 3.333          | 0.000          | 0.0000           | 6.9863E-02               |
| 16       | 32.281           | 3.333          | 0.000          | 0.0000           | 6.9863E-02               |
| 17       | 34.583           | 3.333          | 0.000          | 0.0000           | 6.9863E-02               |
| 18       | 36.885           | 3.333          | 0.000          | 0.0000           | 6.9863E-02               |
| 19       | 26.919           | 4.001          | 0.000          | 0.0000           | 4.8477E-02               |
| 20       | 28.915           | 4.001          | 0.000          | 0.0000           | 4.8477E-02               |
| 21       | 30.912           | 4.001          | 0.000          | 0.0000           | 4.8477E-02               |
| 22       | 32.908           | 4.001          | 0.000          | 0.0000           | 4.8477E-02               |
| 23       | 34.904           | 4.001          | 0.000          | 0.0000           | 4.8477E-02               |
| 24       | 36.900           | 4.001          | 0.000          | 0.0000           | 4.8477E-02               |
| 25       | 28.463           | 4.669          | 0.000          | 0.0000           | 3.5602E-02               |
| 26       | 30.154           | 4.669          | 0.000          | 0.0000           | 3.5602E-02               |
| 27       | 31.844           | 4.669          | 0.000          | 0.0000           | 3.5602E-02               |
| 28       | 33.535           | 4.669          | 0.000          | 0.0000           | 3.5602E-02               |
| 29       | 35.225           | 4.669          | 0.000          | 0.0000           | 3.5602E-02               |
| 30       | 36.915           | 4.669          | 0.000          | 0.0000           | 3.5602E-02               |
| 31       | 30.006           | 5.336          | 0.000          | 0.0000           | 2.72576-02               |
| 32       | 31.391           | 5.336          | 0.000          | 0.0000           | 2.7257E-02               |
| 33       | 32.776           | 5.336          | 0.000          | 0.0000           | 2.7257E-02               |
| 34       | 34.161           | 5.336          | 0.000          | 0.0000           | 2.7257E-02               |
| 35       | 35.546           | 5.336          | 0.000          | 0.0000           | 2.7257E-02               |
| 36       | 36.931           | 5.336          | 0.000          | 0.0000           | 2.7257E-02               |
| 37       | 31.546           | 6.002          | 0.000          | 0.0000           | 2.1545E-02               |
| 38       | 32.626           | 6.002          | 0.000          | 0.0000           | 2.1545E-02               |
| 39       | 33.706           | 6.002          | 0.000          | 0.0000           | 2.1545E-02               |
| 40       | 34.786           | 6.002          | 0.000          | 0.0000           | 2.1545E-02               |
| 41       | 35-866           | 6.002          | 0.000          | 0.0000           | 2.1545E-02               |
| 42<br>43 | 36.946<br>33.079 | 6.002          | 0.000          | 0.0000           | 2.1545E-02               |
| 44       | 33.855           | 6.664<br>6.664 | 0.000          | 0.0000           | 1.7472E-02               |
| 45       | 34.632           | 6.664          | 0.000<br>0.000 | 0.0000<br>0.0000 | 1.7472E-02<br>1.7472E-02 |
| 46       | 35.408           | 6.664          | 0.000          | 0.0000           | 1.7472E-02               |
| 47       | 36.185           | 6.664          | 0.000          | 0.0000           | 1.7472E-02               |
| 48       | 36.961           | 6.664          | 0.000          | 0.0000           | 1.74726-02               |
| 49       | 34.592           | 7.319          | 0.000          | 0.0000           | 1.4487E-02               |
| 50       | 35.069           | 7.319          | 0.000          | 0.0000           | 1.44876-02               |
| 51       | 35.546           | 7.319          | 0.000          | 0.0000           | 1.4487E-02               |
| 52       | 36.023           | 7.319          | 0.000          | 0.0000           | 1.4487E-02               |
| 53       | 36.499           | 7.319          | 0.000          | 0.0000           | 1.4487E-02               |
| 54       | 36.976           | 7.319          | 0.000          | 0.0000           | 1.4487E-02               |
| 55       | 35.968           | 7.914          | 0.000          | 0.0000           | 1.23918-02               |
| 56       | 36.172           | 7.914          | 0.000          | 0.0000           | 1.2391E-02               |
| 57       | 36.377           | 7.914          | 0-000          | 0.0000           | 1.2391E-02               |
| 58       | 36.581           | 7.914          | 0.000          | 0.0000           | 1.2391E-02               |
| 59       | 36.785           | 7.914          | 0.000          | 0.0000           | 1.2391E-02               |
| 60       | 36.990           | 7.914          | 0.000          | 0.0000           | 1.2391E-02               |
|          |                  |                |                |                  |                          |

### (g) Page 7.

Figure 7.- Continued.

# VELOCITY INDUCED AT SPECIFIED FIELD POINTS ON TAIL (VORTEX)

|    | ¥           | Y     | Z     | V/V(INF) W/V(INF)      |
|----|-------------|-------|-------|------------------------|
| •  | X<br>22•282 | 1.996 | 0.000 | 1.1757E-01 -3.8098E-01 |
| 1  | 25.196      | 1.996 | 0.000 | 1.3732E-01 -3.1656E-01 |
| 2  | 28.111      | 1.996 | 0.000 | 1.3330E-01 -4.6734E-01 |
| 3  |             | 1.996 | 0.000 | 6.8128E-02 -3.2909E-01 |
| 4  | 31.025      | 1.996 | 0.000 | 5.6476E-02 -2.7537E-01 |
| 5  | 33.940      |       | 0.000 | 5.1282E-02 -2.5169E-01 |
| 6  | 36.854      | 1.996 |       | 1.9245E-01 -1.9361E-01 |
| 7  | 23.828      | 2.664 | 0.000 | 1.7936E-01 -1.1332E-01 |
| 8  | 26.437      | 2.664 | 0.000 | 4.7276E-01 -1.7480E-01 |
| 9  | 29.045      | 2.664 | 0.000 |                        |
| 10 | 31.653      | 2.664 | 0.000 |                        |
| 11 | 34.261      | 2.664 | 0.000 |                        |
| 12 | 36.870      | 2.664 | 0.000 | 1.0179E-01 -1.7988E-01 |
| 13 | 25.374      | 3.333 | 0.000 | 1.6672E-01 -5.9287E-02 |
| 14 | 27.676      | 3.333 | 0.000 | 1.5478E-01 -2.8686E-02 |
| 15 | 29.978      | 3.333 | 0.000 | 1.9363E-01 5.7063E-02  |
| 16 | 32.281      | 3.333 | 0.000 | 3.2934E-01 -1.9808E-01 |
| 17 | 34.583      | 3.333 | 0.000 | 1.6661E-01 -1.7577E-01 |
|    | 36.885      | 3.333 | 0.000 | 1.3429E-01 -1.4616E-01 |
| 18 |             | 4.001 | 0-000 | 1.2679E-01 3.8934E-03  |
| 19 | 26.919      | 4.001 | 0.000 | 1.1837E-01 1.4526E-02  |
| 20 | 28.915      |       | 0.000 | 1.2399E-01 4.8676E-02  |
| 21 | 30.912      | 4.001 | 0.000 | 1.8053E-01 8.6594E-02  |
| 22 | 32.908      | 4.001 | 0.000 | 2.8443E-01 2.4177E-02  |
| 23 | 34.904      | 4.001 | 0.000 | 2.4060E-01 -8.0302E-02 |
| 24 | 36.900      | 4.001 |       | 9.2526E-02 2.6850E-02  |
| 25 | 28.463      | 4.669 | 0.000 | 8.6790E-02 3.3516E-02  |
| 26 | 30.154      | 4.669 | 0.000 | 9.0593E-02 4.7019E-02  |
| 27 | 31.844      | 4.669 | 0.000 | 9.5842E-02 5.8034E-02  |
| 28 | 33.535      | 4.669 | 0.000 |                        |
| 29 | 35.225      | 4.669 | 0.000 |                        |
| 30 | 36.915      | 4.669 | 0.000 |                        |
| 31 | 30.006      | 5.336 | 0.000 |                        |
| 32 | 31.391      | 5.336 | 0.000 | 6.5420E-02 3.9962E-02  |
| 33 | 32.776      | 5.336 | 0.000 | 6.6716E-02 4.3205E-02  |
| 34 | 34.161      | 5.336 | 0.000 | 6.6593E-02 4.6975E-02  |
| 35 | 35.546      | 5.336 | 0.000 | 7.0247E-02 5.2231E-02  |
| 36 | 36.931      | 5.336 | 0.000 | 7.5330E-02 5.4015E-02  |
| 37 | 31.546      | 6.002 | 0.000 | 4.9274E-02 3.7214E-02  |
| 38 | 32.626      | 6.002 | 0.000 | 4.9898E-02 3.8327E-02  |
| 39 | 33.706      | 6.002 | 0.000 | 4.9317E-02 3.8843E-02  |
|    | 34.786      | 6.002 | 0.000 | 4.9281E-02 4.0998E-02  |
| 40 | 35.866      | 6.002 | 0.000 | 5.0686E-02 4.3004E-02  |
| 41 |             | 6.002 | 0.000 | 5.2233E-02 4.3356E-02  |
| 42 | 36.946      | 6.664 | 0.000 | 3.8066E-02 3.4316E-02  |
| 43 | 33.079      |       | 0.000 | 3.7679E-02 3.4392E-02  |
| 44 | 33.855      | 6.664 | 0.000 | 3.7439E-02 3.5232E-02  |
| 45 | 34.632      | 6.664 | 0.000 | 3.7757E-02 3.6245E-02  |
| 46 | 35.408      | 6.664 |       | 3.8319E-02 3.6853E-02  |
| 47 | 36.185      | 6.664 | 0.000 | 3.8964E-02 3.6811E-02  |
| 48 | 36.961      | 6.664 | 0.000 | 2.9216E-02 3.0988E-02  |
| 49 | 34.592      | 7.319 | 0.000 |                        |
| 50 | 35.069      | 7.319 | 0.000 |                        |
| 51 | 35.546      | 7.319 | 0.000 |                        |
| 52 | 36.023      | 7.319 | 0.000 | 2.9593E-02 3.2080E-02  |
| 53 | 36.499      | 7.319 | 0.000 | 2.9813E-02 3.2163E-02  |
| 54 | 36.976      | 7.319 | 0.000 | 3.0125E-02 3.2031E-02  |
| 55 | 35.968      | 7.914 | 0.000 | 2.3844E-02 2.8540E-02  |
| 56 | 36.172      | 7.914 | 0.000 | 2.3916E-02 2.8576E-02  |
| 57 | 36.377      | 7.914 | 0.000 | 2.3987E-02 2.8600E-02  |
| 58 | 36.581      | 7.914 | 0.000 | 2.4055E-02 2.8612E-02  |
| 59 | 36.785      | 7.914 | 0.000 | 2.4127E-02 2.8607E-02  |
|    | 36.990      | 7.914 | 0.000 | 2.4282E-02 2.8490E-02  |
| 60 | 300770      |       |       |                        |

(g) Continued.

Figure 7.- Continued.

### TOTAL INDUCED VELOCITY AT SPECIFIED FIELD POINTS ON TAIL

|    | X      | Y        | Z              | V/V(INF) W/V(INF)                               |
|----|--------|----------|----------------|-------------------------------------------------|
| 1  | 22.282 | 1.996    | 0.000          | 1.1757E-01 -1.8615E-01                          |
| 2  | 25.196 | 1.996    | 0.000          | 1.3732E-01 -1.2174E-01                          |
| 3  | 28.111 | 1.996    | 0.000          | 1.3330E-01 -2.7251E-01                          |
| 4  | 31.025 | 1.996    | 0.000          | 6.8128E-02 -1.3427E-01                          |
| 5  | 33.940 | 1.996    | 0.000          | 5.6476E-02 -8.0545E-02                          |
| 6  | 36.854 | 1.996    | 0.000          | 5.1282E-02 -5.6861E-02                          |
| 7  | 23.828 | 2.664    | 0.000          | 1.9245E-01 -8.4293E-02                          |
| 8  | 26.437 | 2.664    | 0.000          | 1.7936E-01 -4.0053E-03                          |
| 9  | 29.045 | 2.664    | 0.000          | 4.7276E-01 -6.5490E-02                          |
| 10 | 31.653 | 2.664    | 0.000          | 1.4355E-01 -1.4389E-01                          |
| 11 | 34.261 | 2.664    | 0.000          | 1.1303E-01 -9.0713E-02                          |
| 12 | 36.870 | 2.664    | 0.000          | 1.0179E-01 -7.0564E-02                          |
| 13 | 25.374 | 3.333    | 0.000          | 1.6672E-01 1.0576E-02                           |
| 14 | 27.676 | 3.333    | 0.000          | 1.5478E-01 4.1177E-02                           |
| 15 | 29.978 | 3.333    | 0.000          | 1.9363E-01 1.2693E-01                           |
| 16 | 32.281 | 3.333    | 0.000          | 3.2934E-01 -1.2822E-01                          |
| 17 | 34.583 | 3.333    | 0.000          | 1.6661E-01 -1.0590E-01                          |
| 18 | 36.885 | 3.333    | 0.000          | 1.3429E-01 -7.6296E-02                          |
| 19 | 26.919 | 4.001    | 0.000          | 1.2679E-01 5.2371E-02                           |
| 20 | 28.915 | 4.001    | 0.000          |                                                 |
| 21 | 30.912 | 4.001    | 0.000          | 1.1837E-01 6.3003E-02<br>1.2399E-01 9.7154E-02  |
| 22 | 32.908 | 4.001    | 0.000          |                                                 |
| 23 | 34.904 | 4.001    | 0.000          |                                                 |
| 24 | 36.900 | 4.001    | 0.000          | 2.8443E-01 7.2655E-02<br>2.4060E-01 -3.1824E-02 |
| 25 | 28.463 | 4.669    | 0.000          | 9.2526E-02 6.2452E-02                           |
| 26 | 30.154 | 4.669    | 0.000          |                                                 |
| 27 | 31.844 | 4.669    | 0.000          |                                                 |
| 28 | 33.535 | 4.669    | 0.000          |                                                 |
| 29 | 35.225 | 4.669    | 0.000          |                                                 |
| 30 | 36.915 | 4.669    | 0.000          | 1.1234E-01 1.0669E-01                           |
| 31 | 30.006 | 5.336    | 0.000          | 1.3756E-01 1.0528E-01                           |
| 32 | 31.391 | 5.336    | 0.000          | 6.5651E-02 6.1592E-02                           |
| 33 | 32.776 | 5.336    | 0.000          | 6.5420E-02 6.7219E-02                           |
| 34 | 34.161 | 5.336    | 0.000          | 6.6716E-02 7.0462E-02                           |
| 35 | 35.546 | 5.336    | 0.000          | 6.6593E-02 7.4232E-02                           |
| 36 | 36.931 | 5.336    | 0.000          | 7.0247E-02 7.9488E-02                           |
| 37 | 31.546 | 6.002    | 0.000          | 7.5330E-02 8.1272E-02                           |
| 38 | 32.626 | 6.002    | 0.000          | 4.9274E-02 5.8759E-02                           |
| 39 | 33.706 | 6.002    | 0.000          | 4.9898E-02 5.9872E-02                           |
| 40 | 34.786 | 6.002    | 0.000          | 4.9317E-02 6.0388E-02                           |
| 41 | 35.866 | 6.002    | 0.000          | 4.9281E-02 6.2543E-02                           |
| 42 | 36.946 | 6.002    | 0.000          | 5.0686E-02 6.4549E-02                           |
| 43 | 33.079 | 6.664    | 0.000          | 5.2233E-02 6.4901E-02<br>3.8066E-02 5.1788E-02  |
| 44 | 33.855 | 6.664    | 0.000          | 3.8066E-02 5.1788E-02<br>3.7679E-02 5.1864E-02  |
| 45 | 34.632 | 6.664    | 0.000          |                                                 |
| 46 | 35.408 | 6.664    | 0.000          | 3•7439E-02 5•2704E-02<br>3•7757E-02 5•3717E-02  |
| 47 | 36.185 | 6.664    | 0.000          |                                                 |
| 48 | 36.961 | 6.664    | 0.000          | 3•8319E-02 5•4325E-02<br>3•8964E-02 5•4283E-02  |
| 49 | 34.592 | 7.319    | 0.000          |                                                 |
| 50 | 35.069 | 7.319    | 0.000          | 2•9216E-02 4•5475E-02<br>2•9235E-02 4•5894E-02  |
| 51 | 35.546 | 7.319    | 0.000          |                                                 |
| 52 | 36.023 | 7.319    | 0.000          |                                                 |
| 53 | 36.499 | 7.319    | 0.000          |                                                 |
| 54 | 36.976 | 7.319    | 0.000          |                                                 |
| 55 | 35.968 | 7.914    | 0.000          | 3.0125E-02 4.6519E-02<br>2.3866E-02 6.0921E-02  |
| 56 | 36.172 | 7.914    |                | 2.3844E-02 4.0931E-02                           |
| 57 | 36.377 | 7.914    | 0.000<br>0.000 | 2.3916E-02 4.0967E-02                           |
| 58 | 36.581 | 7.914    |                | 2.3987E-02 4.0991E-02                           |
| 59 | 36.785 | 7.914    | 0.000          | 2.4055E-02 4.1003E-02                           |
| 60 | 36.990 | 7.914    | 0.000          | 2.4127E-02 4.0998E-02                           |
|    |        | 1 0 71 7 | 0.000          | 2.4282E-02 4.0881E-02                           |

(g) Concluded.

Figure 7.- Continued.

\*\*\*\*\*TAIL \*\*\*\*\* NASA/AMES WING PROGRAM CANARD - WING - BODY CONFIGURATION FLOW CONDITIONS - MACH BETA 1.74359 2.01000 X NOM 8/2 PANELS LENGTH AREA REFERENCE QUANTITIES -8.360 60 15.330 25.000 192.000 -----DCN/DALPHA-----(RAD\*\*-1) (DEG\*\*-1) \* BETA CMP DCM/DCN 1.12533 0.01964 1.96210 -0.12993 -0.39058 YCP XAC XC P CNP 4.599 31.439 30.988 0.30934 SPAN LOAD DISTRIBUTION 2B = 33.4400CCN/2B 1.99578 0.15634 0.15320 2.66439 3.33281 0.15181 0.15348 4.00097 0.15809 4.66870 0.15104 5.33575 6.00151 0.13822 6.66443 0.11990 0.09521 7.31886 0.04957 7.91379 GAM/V2PI = 4.1602E-01 TRAILING VORTEX .... Y = 7.3476SPANWISE DISTRIBUTION OF L.E. SUCTION CCX/2B CCY/2B REGION COL Y/(B/2) CCS/2B EPS(DEG) 0.23943 0.00666 86.565 -0.00190 0.00638 1 1 92.983 -0.00166 0.00391 0.31949 0.00425 ı 2 104.707 -0.00486 0.00702 0.39955 0.00854 3 1 0.47961 0.01521 0.01663 93.895 -0.00674 1 4 92.705 -0.01107 0.02645 0.55967 0.02867 1 5 90.049 -0.01417 0.03882 0.63973 6 0.04133 ı 0.04984 0.71979 0.05274 89.082 -0.01724 7 1 0.06132 0.79985 88.450 -0.02045 0.06464 8 1 0.87991 0.07851 -0.02405 0.07474 87.837 9 1 90.052 -0.03083 0.08448 0.95997 0.08993 1 10 SUMMARY OF VORTEX STRENGTHS AND POSITION AT X = 37.276 7 VORTEX GAMMA/2\*PI\*V Y 0.546 0.074799 4.162 1 0.328235 2.552 3.083 2 1.794 2.933 3 0.150326 0.416016 7.348 0.000 4 5 6.440 1.411 0.069799

(h) Page 8.

Figure 7.- Continued.

|               |            | INCIDENCE -     | WI           | NG        | TAIL                   |                        |           |
|---------------|------------|-----------------|--------------|-----------|------------------------|------------------------|-----------|
| AL PHA        | M          | WING TA         | IL KVLE*     | KVSE*     | KVLE*                  | KVSE* W/V L            | IMIT      |
| 16.00         | 2.01       | 10.000 0.00     | 00 0.500     | 0.000     | 0.500                  | 0.000 1.0              | 00        |
| SUMMARY OF FO | RCE AND PI | TCHING MOMENT C | DEFFICIENTS  |           |                        |                        |           |
|               |            | CN              | CM           | XCP       | CL                     | 100                    | CA        |
|               |            |                 | •            |           |                        |                        | CA .      |
| NOSE          |            |                 |              |           |                        |                        |           |
|               | POTENTIAL  | 6.402E-0        |              | 2.596E 00 | 6.154E-03              | 1.765E-03              |           |
|               | VORTEX     | 2.777E-0        | 3 4.141E-03  | 2.138E 00 | 2.669E-03              | 7.653E-04              |           |
| WING          |            |                 |              |           |                        |                        |           |
| W(B)          | POTENTIAL  | 6.2728-02       | 2 6.5558-02  | 8.977E 00 | 5.637E-02              | 1.616E-02              | 1.106E-02 |
| W(B)          | VORTEX,LE  | 2.531E-02       |              | 8.505E 00 | 2.275E-02              |                        | 4.462E-03 |
| W(B)          | VORTEX, SE | 0.000           | 0.000        | 0.000     | 0.000                  | 0.000                  | 0.000     |
| 80DY          |            |                 |              |           |                        |                        |           |
|               | POTENTIAL  | 2.319E-02       | 2 2.223E-02  | 1.030E 01 | 2 2205 02              | ( 3036                 |           |
|               | VORTEX.LE  | 9.358E-01       |              | 1.030E 01 | 2.229E-02<br>8.995E-03 |                        |           |
|               | VORTEX, SE | 0.000           | 0.000        | 1.030E 01 | 0.000                  | 0.000                  |           |
| AFTEPBOD      | Y          | -6.246E-03      | 3 -4.384E-03 | 1.424E 01 | -6.004E-03             | -1.722E-03             |           |
|               |            |                 |              | 1.4246 01 | -0.0046-03             | -1.7228-03             |           |
| TAIL          |            |                 |              |           |                        |                        |           |
| T(B)          | POTENTIAL  | 3.093E-01       | -1.299E-01   | 3.144E 01 | 2.974E-01              | 8.527E-02              | 0.000     |
| T(8)          | VORTEX,LE  | 4.537E-02       |              | 3.161E 01 | 4.3618-02              |                        | 0.000     |
| T(B)          | VORTEX, SE | 0.000           | 0.000        | 0.000     | 0.000                  | 0.000                  | 0.000     |
| BODY          |            |                 |              |           |                        |                        |           |
| B(T)          | POTENTIAL  | 5.034E-02       | -1.6298-02   | 2.996E 01 | 4.839E-02              | 1 3005 03              |           |
|               | VORTEX.LE  | 7.383E-03       |              | 2.9968 01 | 7.097E-02              | 1.388E-02<br>2.035E-03 |           |
|               | VORTEX, SE | 0.000           | 0.000        | 2.996E 01 | 0.000                  | 2.0352-03              |           |
|               | /          |                 |              |           |                        |                        |           |
| TOTAL CON     | FIGURATION | 5.359E-01       | -3.508E-02   | 2.600E 01 | 5.097E-01              | 1.461E-01              | 1.552E-02 |
|               |            | CDI/CL*+2       | = 5.676E-    | 01        |                        |                        |           |

(i) Page 9.

Figure 7.- Continued.

| SUMMARY OF FREI                                                   | E VORTEX TRA.                      | JECTORIES   |              |                 |
|-------------------------------------------------------------------|------------------------------------|-------------|--------------|-----------------|
| VORTEX 2 -                                                        | BODY VOR<br>WING TRA<br>WING SEP   | ILING VORT  | EX           |                 |
| 1 0.0<br>2 0.3                                                    | /2*P1*V<br>74799<br>28235<br>50326 |             |              |                 |
| X DX<br>4.2750 1.0000000                                          | A<br>0.8260                        | S<br>0.8260 | R0<br>0.8260 | DA/DX<br>0.1169 |
| VORTEX SIGMA(REAL)<br>1 5.332E-01                                 | (IMAG)<br>1.083E 00                |             |              |                 |
| X DX<br>5.2750 0.5000000                                          | Å<br>0• 9269                       | s<br>1•4015 | R0<br>1.0072 | DA/DX<br>0.0963 |
| VORTEX SIGMA(REAL)<br>1 5.171E-01                                 | (IMAG)<br>1.276E 00                |             |              |                 |
| X DX<br>6.2750 0.5000000                                          | A<br>1.0185                        | S<br>1.9118 | RO<br>1.2272 | DA/DX<br>0.0776 |
| VORTEX SIGMA(REAL)<br>I 4.963E-01                                 | (IMAG)<br>1.432E 00                |             |              |                 |
| X DX<br>7.2750 0.500000                                           | A<br>1.0785                        | s<br>2.1977 | R0<br>1.3635 | DA/DX<br>0.0649 |
| VORTEX SIGMA(REAL)<br>1 4.731E-01                                 | (IMAG)<br>1.562E 00                |             |              |                 |
| X DX<br>11.7750 0.5000000                                         | A                                  | S<br>1.3324 | R0<br>1.3324 | DA/DX<br>0.0539 |
| VORTEX SIGMA(REAL)<br>1 3.732E-01                                 |                                    |             |              |                 |
| X DX<br>11.7760 0.5000000                                         | A<br>1.3325                        | S<br>1.3325 | R0<br>1+3325 | DA/DX<br>0.0539 |
| VORTEX SIGMA(REAL)<br>1 3.732E-01<br>2 2.822E 00 -<br>3 2.595E 00 | 1.968E 00<br>3.907E-01             |             |              |                 |
| X DX<br>12.7760 0.2500000                                         | A<br>1.3885                        | S<br>1•3885 | R0<br>1.3885 | DA/DX<br>0.0496 |
| VORTEX SIGMA(REAL)<br>1 3.622E-01<br>2 2.988E 00 -<br>3 2.321E 00 | (IMAG)<br>1.984E 00<br>-9.758E-02  |             |              |                 |
|                                                                   |                                    | •           |              |                 |

#### . .

(j) Page 10.

Figure 7.- Continued.

| X<br>24•7760                                                                                                                           | DX<br>0•5000000                                                                                                                                                                                                 | А<br>1•6670                                                                                                                                                           | s<br>3.9111           | P.)<br>2.3108                | DA/DX<br>0.0000           |
|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------|---------------------------|
| 1 1<br>2 2                                                                                                                             | •551E 00 2.                                                                                                                                                                                                     | (IMAG)<br>512E-01<br>158E 00<br>953E 00                                                                                                                               |                       |                              |                           |
| X<br>25•7760                                                                                                                           | DX<br>0.5000000                                                                                                                                                                                                 | ۵<br>1.6670                                                                                                                                                           | s<br>4•2751           | R0<br>2.4625                 | DA/DX<br>0.0000           |
| 1 1<br>2 2                                                                                                                             | .544E 00 2.                                                                                                                                                                                                     | (IMAG)<br>794E-01<br>087F 00<br>528E 00                                                                                                                               |                       |                              |                           |
| X<br>26.7760                                                                                                                           | DX<br>0.5000000                                                                                                                                                                                                 | A<br>1.6670                                                                                                                                                           | S<br>4.6390           | R0<br>2•61 <del>9</del> 0    | DA/DX<br>0.0000           |
| 1 2<br>2 7                                                                                                                             | •051E 00 2.                                                                                                                                                                                                     | (IMAG)<br>585E-01<br>096E 00<br>879E 00                                                                                                                               |                       |                              |                           |
|                                                                                                                                        |                                                                                                                                                                                                                 | • •                                                                                                                                                                   | •                     |                              |                           |
|                                                                                                                                        |                                                                                                                                                                                                                 |                                                                                                                                                                       |                       |                              |                           |
| X<br>36•7760                                                                                                                           | DX<br>0.5000000                                                                                                                                                                                                 | A<br>1.6670                                                                                                                                                           | S<br>8•2785           | R0<br>4.3071                 | DA/DX<br>0.0000           |
| 36.7760<br>VORTEX SI<br>1 4<br>2 2                                                                                                     | 0.5000000<br>GMA(REAL)<br>.116E 00 4.<br>.565F 00 2.                                                                                                                                                            | 1.6670<br>(IMAG)                                                                                                                                                      |                       |                              |                           |
| 36.7760<br>VORTEX SI<br>1 4<br>2 2                                                                                                     | 0.5000000<br>GMA(REAL)<br>.116E 00 4.<br>.565F 00 2.                                                                                                                                                            | 1.6670<br>(IMAG)<br>262E-01<br>927E 00                                                                                                                                | 8•2785<br>S           | 4.3071<br>R0                 | 0.0000<br>DA/DX           |
| 36.7760<br>VORTEX SI<br>1 4<br>2 2<br>3 1<br>X<br>37.0260<br>VORTEX SI<br>1 4<br>2 2                                                   | 0.5000000<br>GMA(REAL)<br>.116E 00 4.<br>.565F 00 2.<br>.804E 00 3.<br>DX<br>0.2500000<br>GMA(REAL)<br>.140F 00 4.<br>.562F 00 2.                                                                               | 1.6670<br>(IMAG)<br>262E-01<br>927E 00<br>094E 00<br>L.6670<br>(IMAG)                                                                                                 | 8.2785                | 4.3071                       | 0.0000                    |
| 36.7760<br>VORTEX SI<br>1 4<br>2 2<br>3 1<br>X<br>37.0260<br>VORTEX SI<br>1 4<br>2 2                                                   | 0.5000000<br>GMA(REAL)<br>.116E 00 4.<br>.565F 00 2.<br>.804E 00 3.<br>DX<br>0.2500000<br>GMA(REAL)<br>.140F 00 4.<br>.562F 00 2.                                                                               | 1.6670<br>(IMAG)<br>262E-01<br>927E 00<br>094E 00<br>                                                                                                                 | 8•2785<br>S           | 4.3071<br>R0<br>1.6670<br>R0 | 0.0000<br>DA/DX<br>0.0000 |
| 36.7760<br>VORTEX SI<br>1 4<br>2 2<br>3 1<br>X<br>37.0260<br>VORTEX SI<br>1 4<br>7 7<br>3 1<br>X<br>37.1510<br>VORTEX SI<br>1 4<br>2 2 | 0.5000000<br>GMA(REAL)<br>.116E 00 4.<br>.565F 00 2.<br>.804E 00 3.<br>DX<br>0.2500000<br>GMA(REAL)<br>.140F 00 4.<br>.562F 00 2.<br>.789E 00 3.<br>DX<br>0.1250000<br>GMA(REAL)<br>.151E 00 5.1<br>.558E 00 3. | 1.6670<br>(IMAG)<br>262E-01<br>927E 00<br>094E 00<br>A<br>1.6670<br>(IMAG)<br>597E-01<br>992E 00<br>004E 00                                                           | 8.2785<br>S<br>1.6670 | 4.3071<br>R0<br>1.6670       | 0.0000<br>DA/DX<br>0.0000 |
| 36.7760<br>VORTEX SI<br>1 4<br>2 2<br>3 1<br>X<br>37.0260<br>VORTEX SI<br>1 4<br>7 7<br>3 1<br>X<br>37.1510<br>VORTEX SI<br>1 4<br>2 2 | 0.5000000<br>GMA(REAL)<br>.116E 00 4.<br>.565F 00 2.<br>.804E 00 3.<br>DX<br>0.2500000<br>GMA(REAL)<br>.140F 00 4.<br>.562F 00 2.<br>.789E 00 3.<br>DX<br>0.1250000<br>GMA(REAL)<br>.151E 00 5.1<br>.558E 00 3. | 1.6670<br>(IMAG)<br>262E-01<br>927E 00<br>094E 00<br>A<br>1.6670<br>(IMAG)<br>597E-01<br>992E 00<br>004E 00<br>A<br>1.6670<br>(IMAG)<br>068E-01<br>039E 00<br>970E 00 | 8.2785<br>S<br>1.6670 | 4.3071<br>R0<br>1.6670<br>R0 | 0.0000<br>DA/DX<br>0.0000 |

Figure 7.- Concluded.

#### REFERENCES

- Mendenhall, M. R. and Nielsen, J. N.: Effect of Symmetrical Vortex Shedding on the Longitudinal Aerodynamic Characteristics of Wing-Body-Tail Combinations. NEAR TR 69, May 1974; NASA CR 2473, 1974.
- Pitts, W. C., Nielsen, J. N., and Kaattari, C. E.: Lift and Center of Pressure of Wing-Body-Tail Combinations at Subsonic, Transonic, and Supersonic Speeds. NACA Rept. No. 1307, 1957.
- Jorgensen, L. H.: Prediction of Static Aerodynamic Characteristics for Space-Shuttle-Like and Other Bodies at Angles of Attack from 0<sup>o</sup> to 180<sup>o</sup>. NASA TN D-6996, Jan. 1973.
- 4. Jorgensen, L. H.: A Method for Estimating Static Aerodynamic Characteristics for Slender Bodies of Circular and Noncircular Cross Section Alone and With Lifting Surfaces at Angles of Attack From 0° to 90°. NASA TN D-7228, Apr. 1973.
- DeYoung, J. and Harper, C. W.: Theoretical Symmetric Span Loading at Subsonic Speeds for Wings Having Arbitrary Planform. NACA Rept. 921, 1948.
- Brady, J. A., Page, V. R., and Koenig, D. G.: Large-Scale Low-Speed Wind-Tunnel Tests of a Delta Winged Supersonic Transport Model with a Delta Canard Control Surface. NASA TM X-643, Jan. 1962.
- 7. Allen, H. J.: Estimation of the Forces and Moments Acting on Inclined Bodies of Revolution of High Fineness Ratio. NACA RMA9126, 1949.
- 8. Dillenius, M. F. E., Mendenhall, M. R. and Spangler, S. B.: Calculation of the Longitudinal Aerodynamic Characteristics of STOL Aircraft with Externally-Blown Jet-Augmented Flaps. NASA CR-2358, Feb. 1974.
- 9. Polhamus, E. C.: Predictions of Vortex-Lift Characteristics Based on a Leading-Edge Suction Analogy. AIAA Paper No. 69-1133, Oct. 1969.
- Sacks, A. H.: Vortex Interference on Slender Airplanes. NACA TN 3525, Nov. 1955.
- 11. Koenig, D. G.: Tests in the Ames 40- by 80-Foot Wind Tunnel of an Airplane Configuration With an Aspect Ratio 3 Triangular Wing and an All-Movable Horizontal Tail - Longitudinal and Lateral Characteristics. NACA RM A52L15, Apr. 1953.
- Woodward, F. A. and Larsen, J. V.: A Method of Optimizing Camber Surfaces for Wing-Body Combinations at Supersonic Speeds. Part I -Theory and Applications. Rept. D6-10741, The Boeing Co., 1965.
- Carmichael, R. L. and Woodward, F. A.: An Integrated Approach to the Analysis and Design of Wings and Wing-Body Combinations in Supersonic Flow. NASA TN D-3685, Oct. 1966.

- 14. Driver, C.: Effects of Wing Height on the Stability and Control Characteristics at a Mach Number of 2.01 of a Canard Airplane Configuration with a 70<sup>o</sup> Delta Wing. NASA TM X-328, Sept. 1960.
- Peterson, V. L. and Menees, G. P.: Static Longitudinal Stability and Control Characteristics of an Unswept Wing and Unswept Horizontal-Tail Configuration at Mach Numbers 0.70 to 2.22. NASA MEMO 6-11-59A, May 1959.

☆ U.S. GOVERNMENT PRINTING OFFICE: 1975-635-047 / 52