NASACONTRACTOR REPORT

NASA CR-2474

NASA (R-2474

COMPUTER PROGRAMS FOR
CALCULATING THE STATIC LONGITUDINAL AERODYNAMIC CHARAC'TERISTICS OF
WING-BODY-TAIL CONFIGURATIONS
by Michael R. Mendenhall, Frederick K. Goodwin, Marnix F. E. Dillenius, and David M. Kline

Prejared by
NIIISEN ENGINEERING \& RESEARCH, INC.
Monntain View, Calif. 94043
for Ames Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D.C. • JANUARY 1975

1. Report No. NASA CR 2474	2. Government Accession No.		3. Recipient's Catalog No.	
4. Title and Subtitle COMPUTER PROGRAMS FOR CALCULATING THE STATIC LONGITUDINAL AERODYNAMIC CHARACTERISTICS OF WING-BODY-TAIL CONFIGURATIONS			6. Performing Organization Code	
7. Author(s) Michael R. Mendenhall, Frederick K. Goodwin, Marnix F.E. Dillenius, and David M. Kline			8. Performing Organization Report No.	
9. Performing Organization Name and Address Nielsen Engineering and Research, Inc. 510 Clyde Avenue Mountain View, CA 94043			11. Contract or Grant No. NAS 2-7347	
12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546			13. Type of Report and Period Covered Contractor Report	14. Sponsoring Agency Code
15. Supplementary Notes				
16. Abstract This document is a user's manual for four computer programs developed to calculate the longitudinal aerodynamic characteristics of wing-body and wing-body-tail combinations. The R1307 program is based on a linear method and is limited to the small range of angles of attack for which the lift and moment characteristics of wings and bodies are linear with angle of attack. The CRSFLW program is based on a crossflow method of predicting the forces and moments on bodies alone or wing-body combinations over a large angle of attack range. The method states that the normal-force distribution on a body is made up of a potential term given by slender-body theory and a viscous crossflow term modified by Newtonian theory. The SUBSON program predicts the longitudinal aerodynamic characteristics of wing-body-tail combinations at subsonic speeds and at angles of attack for which symmetrical pairs of vortices are shed from the body nose and the leading and side edges of the lifting surfaces. Program SUPSON predicts the longitudinal aerodynamic characteristics of wing-body-tail combinations at supersonic speeds in the same angle-of-attack range. This program manual contains a description of the use of each program, instructions for preparation of input, a description of the output, program listings, and sample cases for each program.				
17. Key Words (Suggested by Author(s)) Computer programs to calculate longitudinal aerodynamic characteristics of wing-body-tail combinations		18. Distribution Statement Unclassified - Unlimited		
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified		$\begin{aligned} & \text { 21. No. of Pages } \\ & 219 \end{aligned}$	$\begin{aligned} & \text { 22. Price* } \\ & 5.75 \end{aligned}$

[^0]
TABLE OF CONTENTS

Page
Section NO.
SUMMARY 1
INTRODUCTION 1
PART I - Rl307 COMPUTER PROGRAM 3
Introduction 3
List of Symbols 3
Description of Program 6
Description of Input 8
Variable definitions 8
Input preparation 11
Sample cases 13
Description of Output 13
Program Listing 16
FIGURES 1 THROUGH 7 27
PART II - CRSFLW COMPUTER PROGRAM 40
Introduction 40
List of Symbols 40
Description of Program 42
Description of Input 44
Variable definitions 44
Input preparation 48
Sample cases 50
Description of Output 50
Program Listing 52
FIGURES 1 THROUGH 5 62
PART III - SUBSON COMPUTER PROGRAM 69
Introduction 69
List of Symbols 69
Description of Method 72
Description of Program 73
Description of Input 74
Variable definitions 74
Input preparation 80
Sample cases 87
Description of Output 88
Program Listing 95

TABLE OF CONTENTS (CONCLUDED)
Page
SectionNo.
TABLE I 115
FIGURES 1 THROUGH 8 116
PART IV - SUPSON COMPUTER PROGRAM 138
Introduction 138
List of Symbols 138
Description of Method
Description of Method 141 141
Description of Program 142
Description of Input 144
Variable definitions 144
Input preparation 150
Sample cases 157
Description of Output 157
Program Listing 164
TABLE I 194
FIGURES 1 THROUGH 7 195
REFERENCES 218

OF WING-BODY-TAIL CONFIGURATIONS
by Michael R. Mendenhall, Frederick K. Goodwin, Marnix F. E. Dillenius, and David M. Kline Nielsen Engineering \& Research, Inc.

SUMMARY

This document is a user's manual for four computer programs developed to calculate the longitudinal aerodynamic characteristics of wing-body and wing-body-tail combinations. The Rl307 program is based on a linear method and is limited to the small range of angles of attack for which the lift and moment characteristics of wings and bodies are linear with angle of attack. The CRSFLW program is based on a crossflow method of predicting the forces and moments on bodies alone or wing-body combinations over a large angle-of-attack range. The method states that the normal-force distribution on a body is made up of a potential term given by slenderbody theory and a viscous crossflow term modified by Newtonian theory. The SUBSON program predicts the longitudinal aerodynamic characteristics of wing-body-tail combinations at subsonic speeds and at angles of attack for which symmetrical pairs of vortices are shed from the body nose and the leading and side edges of the lifting surfaces. Program SUPSON predicts the longitudinal aerodynamic characteristics of wing-body-tail combinations at supersonic speeds in the same angle-of-attack range.

This program manual contains a description of the use of each program, instructions for preparation of input, a description of the output, program listings, and sample cases for each program.

INTRODUCTION

An engineering prediction method for determining the longitudinal aerodynamic characteristics of wing-body-tail configurations including nonlinear aerodynamics of components and interference between them is presented in reference l. Specifically, particular attention is paid to the nonlinearities associated with symmetrical vortex shedding from the nose of the fuselage and with leading-edge and side-edge separation
vortices from the lifting surfaces. Four computer programs were developed to calculate the longitudinal aerodynamic characteristics of wing-body and wing-body-tail combinations. This document is a user's manual for these four computer programs. Principal reliance is made herein to reference 1 for a description of the methods and calculation procedures. Reference 1 also contains calculated results and comparisons with data for various types of configurations.

The first program, called Rl307, is based on the method of reference 2. Use of this program is limited to the small range of angles of attack for which the lift and moment characteristics of wings and bodies are linear with angle of attack. In most cases, the upper angle limit of usefulness of R1307 is approximately 10°.

The second program, called CRSFLW, is a crossflow method of predicting the forces and moments on bodies-alone or wing-body combinations over a large angle-of-attack range. This program is based on the method described in references 3 and 4 which states that the normal-force distribution on a body is made up of a potential term given by slender-body theory and a viscous crossflow term modified by Newtonian theory. Nonlinear effects due to vortex shedding from the nose of the fuselage or the leading edge of the lifting surface are not included in this method.

The third program, called SUBSON, predicts the longitudinal aerodynamic characteristics of wing-body-tail combinations at subsonic speeds. It is based on the extension of the method of reference 2 to angles of attack for which symmetrical vortices are shed from the body nose and the leading and side edges of the lifting surfaces. The lifting surfaces are described by a vortex-lattice scheme.

The fourth program, called SUPSON, predicts the longitudinal aerodynamic characteristics of wing-body-tail combinations at supersonic speeds. It uses the same procedure as program SUBSON with the exception that a constant-pressure-panel lifting-surface theory describes the wing and tail surfaces.

Each of the above programs is presented in a separate self-contained section of this manual which contains a description of the use of the program, instructions for preparation of input, a description of the output, a complete program listing, and sample cases. A common list of references follows the fourth section.

PART I - R1307 COMPUTER PROGRAM

Introduction

This computer program automates the method presented in NACA Report 1307, reference 2 , for determining the lift, pitching moment, and center of pressure of wing-body-tail combinations. The method is restricted to bodies of circular cross section with wings and tails which do not have swept-forward leading edges or swept-back trailing edges. It is further restricted to small angles of attack and small angles of wing and tail incidence in which the forces are linear with angle. For a complete description of the method the user of this program should consult reference 2.

The following sections of this write-up will present a description of the program, a description of the input, a description of the output, a program listing, and sample cases. The notation used is that of reference 2. The list of symbols from reference 2 is included herein for reference purposes.

The program is written in Fortran IV for the IBM 360 series machines. No tapes, drums, or disks other than the standard input/output units are required. The running time for a typical case on the IBM 360/67 is two to three seconds. To run the program on other machines such as the CDC 6600 minor changes are required since the inverse sine and cosine routines are used. On the IBM 360 these are called by ARSIN and ARCOS while on the CDC 6600 they are ASIN and ACOS. One or both of these routines are used in the following subprograms:

EQ19	EQ24
EQ24L	EQ30
EQ30L	VOLOG

List of Symbols

$\mathrm{A}_{\mathrm{T}} \quad$ tail-alone aspect ratio

A w wing-alone aspect ratio
C_{r}
chord at wing-body juncture or tail-body juncture

c_{t}	tip chord of wing or tail
C_{L}	lift coefficient based on wing-alone area except tail-alone lift coefficient based on tail-alone area
$\mathrm{C}_{\mathrm{L}_{\alpha}}$	lift-curve slope for angle of attack, per radian
$\mathrm{C}_{\mathrm{L}_{\delta}}$	lift-curve slope for wing or tail incidence, per radian
C_{m}	pitching-moment coefficient based on wing-alone area
$c_{m_{\alpha}}$	pitching-moment-curve slope for angle of attack
$c_{m_{\delta}}$	pitching-moment-curve slope for wing-incidence angle
d	body diameter
\pm	wing vortex semispan
k	ratio of lift component to lift of wing alone or tail alone for variable wing or tail incidence
K	ratio of lift component to lift of wing alone or tail alone for variable angle of attack
K_{N}	ratio of lift of body nose to lift of wing alone
ℓ	length of wing-body-tail combination
ℓ_{W}	distance from most forward point of body to intersection of wing leading edge and body
ℓ_{M}	distance from most forward point of body to center of moments
ℓ_{R}	reference length
ℓ_{S}	distance from most forward point of body to shoulder of body nose
ℓ_{T}	distance from most forward point of body to intersection of tail leading edge and body
$\bar{\ell}$	distance from most forward point of body to center of pressure position
L	lift force
m	cotangent of leading-edge sweep angle

M_{∞}	free-stream Mach number
r	body radius
${ }^{\text {N }}$	body radius at shoulder of nose
${ }^{\text {W }}$	body radius at wing
r_{T}	body radius at tail
s	maximum semispan of wing or tail in combination with body
S_{N}	cross-sectional area of nose at maximum section
$S_{\text {R }}$	reference area
S_{T}	tail-alone area
S_{W}	wing-alone area
v_{s}	volume of body nose up to shoulder
x, y, z	streamwise, spanwise, and vertical coordinates, respectively
$\overline{\mathrm{x}}$	distance to center of pressure measured from intersection of wing leading edge and body for wing quantities and from intersection of tail leading edge and body for tail quantities
x_{h}	distance from intersection of wing leading edge and body to wing hinge line
α	angle of attack of body centerline
B	$\sqrt{\left\|M_{\infty}^{2}-1\right\|}$
BA	wing-alone or tail-alone effective aspect ratio
δ	wing-or tail-incidence angle, degrees
λ	taper ratio, $\left(\frac{c_{t}}{c_{r}}\right)$
$\Lambda_{L E}$	sweep angle of leading edge, degrees
	Subscripts
N	body nose
T	tail

W wing
$B(T) \quad$ body in presence of tail
$B(W) \quad$ body in presence of wing
$T(B) \quad$ tail in presence of body
$W(B) \quad$ wing in presence of body

Description of Program

The Rl307 computer program consists of a main program, thirteen function subprograms, and four subroutine subprograms. The main program performs the calculations as shown on the calculating form presented in Table I of reference 2. All input and output takes place in the main program. The function and subroutine subprograms provide the quantities which are obtained from the charts and equations of reference 2 when following the procedure outlined in Table I of that reference. Unless otherwise noted, equations, figures, charts, and appendices referred to in this section are those in reference 2.

Function APENB calculates the tail interference factor using the equations of Appendix B. These values are plotted in Chart 7.

Function APENC calculates the tail interference factor using the equations of Appendix C. This function is used at supersonic speeds for rectangular tails when the wing vortex is inboard of the tip of the tail.

Function CHRT8 calculates the wing or tail lift-curve slope at supersonic speeds from the curves of Chart 8 . Values of $B C_{L_{\alpha}}$ from the curves are tabulated in CHRT8 and linear interpolation in BA, λ, and zero sweep location is performed.

Function EQ14 calculates the value of $K_{W(B)}$ or $K_{T(B)}$ using equation (14). Values obtained from this equation are plotted in Chart 1.

Function EQ19 calculates the value of $\mathrm{k}_{\mathrm{W}(\mathrm{B})}$ or $\mathrm{k}_{\mathrm{T}(\mathrm{B})}$ using equation (19). Values obtained from this equation are also plotted in Chart 1.

Function EQ21 calculates the value of $K_{B(W)}$ or $K_{B(T)}$ using equation (21). Values obtained from this equation are plotted in Chart 1.

Function EQ24 calculates the value of $K_{B(W)}\left(B C_{L_{\alpha}}\right)$ or $K_{B(T)}\left(B C_{L_{\alpha}}\right)_{T}$ using equation (24). This function is used for the high-aspect-ratio range
at supersonic speeds when there is an afterbody behind the wing or tail and $B m_{W}$ or $B m_{T}$ is greater than one. Values are plotted in Chart 4(a). Function $E Q 24 L$ calculates the same quantity as $E Q 24$ for the case where there is no leading-edge sweep, $B \mathrm{~m}_{\mathrm{W}}=\infty$ or $\Delta \mathrm{m}_{\mathrm{T}}=\infty$. The limiting form of equation (24) for this case is

$$
\begin{aligned}
K_{B(W)}\left(B C_{L_{\alpha}}\right)_{W}= & \frac{8}{\pi(1+\lambda)\left(\frac{\beta d}{c_{r}}\right)\left(\frac{s}{r}-1\right)}\left\{\left(1+\frac{\beta d}{c_{r}}\right)^{2} \cos ^{-1}\left(\frac{\frac{\beta d}{c_{r}}}{1+\frac{\beta d}{c_{r}}}\right)\right. \\
& \left.+\sqrt{1+2 \frac{\beta d}{c_{r}}}-1-\left(\frac{\beta d}{c_{r}}\right)^{2} \cosh ^{-1}\left(1+\frac{c_{r}}{B d}\right)-\frac{\pi}{2}\right\}
\end{aligned}
$$

Function EQ26 also calculates the same quantity of EQ24 but for values of $\beta m_{W} \leq 1.0$ or $\beta m_{T} \leq 1.0$. Equation (26) is used for this calculation and values are plotted in Chart 4(a).

Functions EQ30, EQ30L, and EQ31 are analogous EQ24, EQ24L, and EQ26, respectively, for the case where there is no afterbody behind the wing or tail. Equations (30) and (31) are used for the calculations and values are plotted in Chart $4(b)$. The limiting form of equation (30) when $\beta \mathrm{m}_{\mathrm{W}}=\infty$ or $\beta \mathrm{m}_{\mathrm{T}}=\infty$ is

$$
\begin{aligned}
K_{B(W)}\left(\beta C_{L_{\alpha}}\right) W & =\frac{8}{\pi(1+\lambda)\left(\frac{\beta \alpha}{c_{r}}\right)\left(\frac{s}{r}-1\right)}\left\{2 \cos ^{-1}\left(\frac{\beta d}{c_{r}}\right)-\frac{\beta d}{C_{r}} \cosh ^{-1}\left(\frac{c_{r}}{\beta d}\right)+\frac{\beta d}{c_{r}}\right. \\
& \left.-\left[1-\left(\frac{\beta \alpha}{c_{r}}\right)^{2}\right]\left[\frac{1}{2} \frac{\beta d}{c_{r}}+\frac{1 \cdot 3}{2 \cdot 4}\left(\frac{\beta d}{c_{r}}\right)^{3}+\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}\left(\frac{\beta d}{c_{r}}\right)^{5}+\ldots\right]\right\}
\end{aligned}
$$

Function VOLOG calculates the volume of an ogive nose using the equations in the appendix of reference 3. In the notation of reference 2 , the volume is

$$
v_{S}=8 \pi r_{N}^{3}\left[\frac{2}{3}\left(\frac{\ell_{S}}{2 r_{N}}\right)^{3}-\left(A_{1}-\frac{1}{2}\right) A_{2}\right]
$$

where

$$
A_{1}=\left(\frac{\ell_{S}}{2 r_{N}}\right)^{2}+\frac{1}{4}
$$

and

$$
A_{2}=\frac{\ell_{S}}{2 r_{N}} \sqrt{A_{1}^{2}-\left(\frac{\ell_{S}}{2 r_{N}}\right)^{2}}+A_{1}^{2} \sin ^{-1}\left(\frac{\ell_{S}}{2 r_{N}^{A} A_{1}}\right)-2\left(\frac{\ell_{S}}{2 r_{N}}\right)\left(A_{1}-\frac{1}{2}\right)
$$

Subroutine CHlO11 calculates the wing-or tail-alone center of pressure at supersonic or subsonic speed. Curves for determining this quantity are given in Chart 10 and Chart 11 of reference 2. Values obtained from these curves are tabulated in the subroutine and linear interpolation in $B A, \lambda$, and zero sweep location is performed.

Subroutine CH14l6 determines the center of pressure of the lift transferred to the body by the wing or tail. This quantity is presented in Charts 14, 15, and 16 of reference 2. For large aspect ratios at supersonic speeds, Chart 14 is used. For all other supersonic cases, Chart 15 is used. For all subsonic cases, Chart 16 is used. Values have been read from these charts and are tabulated in the subroutine. The subroutine selects the chart to be used on the basis of the Mach number and aspect-ratio parameter and then determines the value of $\left(\bar{x} / c_{r}\right)_{B(W)}$ or $\left(\bar{x} / C_{r}\right)_{B(T)}$ by linear interpolation in the tables.

Subroutine CH56 calculates the lateral position of the wing vortex $(f-r)_{W} /(s-r)_{W}$ at the wing location using Chart 5 for subsonic speeds and Chart 6 for supersonic speeds. Values have been read from these charts and are tabulated in the subroutine. Linear interpolation in $B A$, λ, and zero sweep location is performed.

Subroutine KFACT calls the appropriate function subprograms used to calculate $K_{W(B)}, K_{B(W)}$, and $k_{W(B)}$ or $K_{T(B)}, K_{B(T)}$, and $k_{T(B)}$. After these are determined, equation (33) of reference 2 is used to calculate $k_{B(W)}$ or $k_{B(T)}$.

Description of Input

Variable definitions.- The format of the input cards for the R1307 program is shown in figure 1. In this figure the program variable name is shown as well as the card columns in which the value is punched and
the format in which it is punched. The remainder of this section consists of a table listing these program input variables along with the algebraic symbol used in reference 2, if applicable, and the input variable definition. The algebraic notation used in defining the configuration is shown in figure 2. A discussion of the preparation of the input is presented in the section following the table. All input length and area quantities are dimensional and should have consistent dimensions.

PROGRAM	ALGEBRAIC
NOTATION	NOTATION

Item 1
NHEAD
Number of cards of information which identify run.

Item 2
HEAD
Identifying information.
Item 3
NTAIL

NOSE

NAFTBW

NAFTBT

> Is a tail present? NTAIL $=0 ;$ no NTAIL $=1 ;$ yes

Ogive nose?
NOSE $=0$; no NOSE = 1; yes

Afterbody behind wing trailing edge? NAFTBW $=0$; no NAFTBW = 1; yes

Afterbody behind tail trailing edge? NAFTBT $=0$; no NAFTBT $=1$; yes

Item 4

FMACH	M_{∞}	Free-stream Mach number.
SLM	ℓ_{M}	Distance from most forward point of body to center of moments.
REFS	S_{R}	Reference area to be used in calculated lift and moment coefficients.
REFL	ℓ_{R}	Reference length to be used in calculated moment coefficients.

PROGRAM
NOTATION

ALGEBRAIC NOTATION

DEFINITION

Item 5

RW	r_{W}	Average body radius at wing location.
SW	${ }^{\text {S }}$ W	Maximum semispan of wing in combination with body.
CTW	c_{t}	Tip chord of wing.
CRW	c_{r}	Chord at wing-body juncture.
WLESWP	$\Lambda_{L E}$	Sweep angle of wing leading edge, degrees.
SLW	${ }^{\ell}$ W	Distance from most forward point of body to intersection of wing leading edge and body
XHW	x_{h}	Distance from intersection of wing leading edge and body to wing-hinge line

Item 6

RT	$\mathbf{r}_{\mathbf{T}}$
ST	$\mathbf{S}_{\mathbf{T}}$
CTT	$\mathbf{c}_{\mathbf{t}}$
CRT	$\mathbf{c}_{\mathbf{r}}$
TLESWP	$\Lambda_{L E}$
SLT	ℓ_{T}

Item 7

RN	r_{N}	Body radius at shoulder of nose.
SLS	ℓ_{S}	Distance from most forward point of body to shoulder of body nose.
VS	V_{S}	Volume of body nose up to shoulder.

PROGRAM
NOTATION

Item 8

CLAW	$\left(\mathrm{C}_{\mathrm{L}_{\alpha}}\right)_{\mathrm{W}}$
CLAT	$\left(\mathrm{C}_{\mathrm{L}_{\alpha}}\right)_{\mathrm{T}}$
CLAN	$\left(\mathrm{C}_{\mathrm{L}_{\alpha}}\right)_{\mathrm{N}}$

Item 9

ALFI	α_{i}
ALFF	α_{f}
DALF	$\Delta \alpha$

Item 10

DWI	$\delta_{W_{i}}$
DWF	$\delta_{W_{f}}$
DDW	$\Delta \delta_{W}$

Item 11
DTI

DTF

DDT

Wing lift-curve slope based on exposed wing area, per degree.

Tail lift-curve slope based on exposed tail area, per degree.

Nose lift-curve slope based on body cross-sectional area at shoulder of body nose, per degree.

Initial body angle of attack for which calculation is to be performed, degrees.

Final body angle of attack for which calculation is to be performed, degrees.

Angle-of-attack increment to be used between α_{i} and α_{f}, degrees.

Initial wing incidence angle for which calculation is to be performed, degrees.

Final wing incidence angle for which calculation is to be performed, degrees.

Wing incidence angle increment to be used between $\delta_{W_{i}}$ and $\delta_{W_{f}}$, degrees.

> Initial tail incidence angle for which calculation is to be performed, degrees.
> Final tail incidence angle for which calculation is to be performed, degrees.
> Tail incidence angle increment to be used between $\delta_{T_{i}}$ and $\delta_{T_{f}}$, degrees.

Input preparation.- A discussion of the input variables will be presented in this section as an aid in the preparation of the data deck. Before beginning this discussion a few words need to be said as to what the computer program treats as the wing and what it treats as the tail. If a configuration has one set of lifting surfaces, this is the wing
regardless of its axial location on the body, and data describing the set are input as wing data. If there are two sets of lifting surfaces, the set closest to the nose is the wing and the aft set the tail. For example, if the configuration has a set of canards near the nose and a wing further aft on the body, the canard data are input as wing data and the wing data input as tail data.

Item number 1 of the input data is an index NHEAD which indicates how many cards of information, item number 2, are to follow to identify the run. The value of NHEAD must be one or greater. Item number 2 is a set of NHEAD cards containing hollerith information which the user wishes to use to identify the run. This information can be punched anywhere in the cards and is reproduced in the output just as it is read in.

Item number 3 contains four indices. The first, NTAIL, specifies whether a tail is (NTAIL = l) or is not (NTAIL = 0) present. The second index, NOSE, specifies whether the nose is (NOSE $=1$) or is not (NOSE = 0) an ogive. The purpose of this index is to provide a computation within the program of the nose volume for an ogive. For non-ogive noses, the volume must be input in Item 7. The third index, NAFTBW, specifies whether the body extends (NAFTBW $=1$) or does not extend (NAFTBW $=0$) behind the wing trailing edge. The last index, NAFTBT, specifies the same thing with respect to the tail. If NTAIL $=0$ then NAFTBT should be input as zero. These last two indices are only used at supersonic Mach numbers. Thus, their values are immaterial at subsonic speeds.

Item numbers 4 through 7 are self explanatory if the table in the preceeding section and figure 2 are referred to. Item number 6, which contains the tail data, is omitted from the input deck if there is no tail, NTAIL $=0$, in item number 3. If the nose is an ogive, NOSE $=1$ in item number 3, then the nose volume, vS of item number 7 , is input as zero and the program calculates the volume.

Item number 8 contains the lift-curve slopes, per degree, of the wing alone, CLAW, tail alone, CLAT, and nose, CLAN. The first two are determined by joining the exposed panels together. If experimental values of these quantities are known, they should be used. At subsonic Mach numbers CLAW and CLAT must be input. They can be obtained from, for example, reference 5. At supersonic speeds they can be input as zero and the program will determine them using Chart 8 of reference 2. If there
is no tail, NTAIL $=0$, CLAT is input as zero. If the nose lift-curve slope is not known, it is input as zero and the program uses the slenderbody value of 0.0349 per degree.

The last three items of input, item numbers 9, 10 , and 11 , specify the ranges of angle of attack, wing incidence angle, and tail incidence angle for which calculations are to be performed. The first number on each card is the initial value of the angle, the second number is the final value, and the third number is the increment to be used in going from the initial to the final value. Calculations are performed for all combinations of these angles. If there is no tail, NTAIL $=0$, zeros should be input for all three numbers in item ll.

Sample cases.- Listings of the input data decks for two sample cases are presented in figure 3 and sketches of the two configurations are shown in figures 4 and 5. Sample case 1 is the example used in the computing form presented as Table I in reference 2. Sample case 2 is the configuration used in the tests of reference 6 .

Sample case 1 is a wing-body-tail combination. The nose is not an ogive, $N O S E=0$, so that the nose volume, VS, is input. The Mach number, FMACH, is 1.99. Thus, the lift-curve slopes, CLAW, CLAT, and CLAN, are input as zero and the program is allowed to calculate them.

Sample case 2 is a canard-body-wing combination. The nose is an ogive, $\operatorname{NOSE}=1$, so that the nose volume, VS, is input as zero and the program calculates this quantity. The Mach number for this case is subsonic, FMACH $=0.13$, so that the wing (canard) and tail (wing) lift-curve slope values, CLAW and CLAT, are input. In this example the nose liftcurve slope value, CLAN, is also input.

Description of Output

The output produced by the Rl307 computer program for sample case 1 is shown in figure 6. The first output produced by the program, figure 6(a), is a tabulation of most of the input data, Items 1,2 , and 4 through 7 of figure 1. The next output, figure $6(b)$, lists quantities which are calculated by the program for the wing, tail, and nose and the lift-curve slopes which were either read in or calculated. The wing quantities which are tabulated are on the following page.

OUTPUT	ALGEBRAIC
NOTATION	NOTATION
EXPOSED AREA	S_{W}
BETA*AR	${ }^{\text {BA }}$ W
BETA *D/CR	$B d / c_{r}$
AR PARAM	$\beta A_{W}(1+1 / m B)(1+\lambda)$
TAPER RATIO	λ
R/S	$(\mathrm{r} / \mathrm{s})_{W}$
SM*BETA	$m \beta$
CKWB	$K_{W(B)}$
CKBW	$K_{B(W)}$
SKBW	$k_{W(B)}$
SKBW	$k_{B(W)}$
(XBAR/CR) W (B)	$\left(\bar{x} / C_{r}\right)_{W(B)}$
(XBAR/CR) B (W)	$\left(\bar{x} / C_{r}\right)_{B(W)}$
$(F-R) W /(S-R) W$	$(f-r)_{W} /(s-r)_{W}$

Except for the last quantity in the above list, the same quantities are tabulated for the tail. The listed nose quantities are:

OUTPUT
NOTATION
BASE AREA

CKN

NOSE CENTER
OF PRESSURE

ALGEBRAIC

NOTATION

$$
S_{N}=\pi r_{N}^{2}
$$

K_{N}

$\bar{\ell}_{N}$

The definitions of the three lift-curve slopes are:

$$
\begin{aligned}
& (C L A) W=\frac{d}{d \alpha}\left(C_{L}\right)_{W}=\frac{d}{d \alpha}\left(\frac{L_{W}}{q_{\infty} S_{W}}\right) \\
& (C L A) T=\frac{d}{d \alpha}\left(C_{L}\right)_{T}=\frac{d}{d \alpha}\left(\frac{L_{T}}{q_{\infty} S_{T}}\right) \\
& (C L A) N=\frac{d}{d \alpha}\left(C_{L}\right)_{N}=\frac{d}{d \alpha}\left(\frac{L_{N}}{q_{\infty} S_{N}}\right)
\end{aligned}
$$

The first output on figure $6(c)$ is a series of lift and moment curve slopes for the complete configuration without including wing-tail interference. These six quantities appear in boxes 88 through 93 of Table I of reference 2. All of these slopes are evaluated at $\alpha=\delta_{W}=\delta_{T}=0$ ($\mathrm{A}=\mathrm{DW}=\mathrm{DT}=0$ in the output notation) and the coefficients are formed using the input reference area S_{R} and reference length ℓ_{R}. For example

$$
D(C L) / D(D W)=\frac{d}{d \delta_{W}}\left(C_{L_{C}}\right)=\frac{d}{d \delta_{W}}\left(\frac{L_{C}}{q_{\infty} S_{R}}\right)
$$

and

$$
D(C M) / D(D W)=\frac{d}{d \delta_{W}}\left(C_{m_{C}}\right)=\frac{d}{d \delta_{W}}\left(\frac{M_{C}}{q_{\infty} S_{R} \ell_{R}}\right)
$$

The next quantities tabulated are lift and moment curve slopes for configuration components and the complete configuration including interference of the wing vortices on the tail. These are also evaluated at $\alpha=\delta_{W}=\delta_{T}=0$. The column identified "BODY" is the nose component and that identified "WING-BODY" is the wing-body combination including the nose and wing-body interference. The column identified "TAIL-BODY MINUS NOSE" includes only the tail lift and that produced by tail-body interference. The last column pertains to the complete configuration including wing-tail interference. The quantities tabulated in this block of output appear in boxes 124 through 127 of Table I of reference 2.

The last output listed in figure 6(c) gives the lift and pitchingmoment coefficients and the center of pressure of the complete configuration, both with and without wing-tail interference, as a function of angle of attack, A, wing incidence angle, DW, and tail incidence angle, DT. The
quantity denoted as $L M-L / L R$ is the center of pressure measured from the center of moments and made dimensionless by the reference length. It is calculated as CMC/CLC. The ranges of these three angles for which calculations were to be performed were read in as Items 9, 10, and 11 of the input data, see figure 1. The nine quantities in this table appear in boxes $94,95,96,100,104,105,120,122$, and 123 of Table I of reference 2.

The last page of output, figure 6(d), tabulates for the same angle ranges the lift and pitching-moment coefficient components including those due to wing interference on the tail. The columns headed "NOSE" are nosealone quantities due to angle of attack. The columns headed "WING A+DW" are wing quantities, including wing-body interference, due to angle of attack and wing incidence. The columns headed "TAIL A+DT" are tail quantities, including tail-body interference, due to angle of attack and tail incidence. The remaining two columns headed "TAIL WING INT" are the coefficients produced by the tail due to wing vortex interference. The quantities tabulated on this page are not included in Table I of reference 2.

Figure 7 contains the output for sample case 2. The format is identical to that which has just been described. Since the configuration for sample case 2 is a canard-body-wing combination, "WING" in the output refers to the canard and "TAIL" refers to the wing.

Program Listing

The R1307 computer program consists of the main program, thirteen function subprograms, and four subroutine subprograms. Each source deck is identified in columns 73 through 80 by a four-character identification and a three-digit number sequencing the cards within that deck. The program listing is given on the following pages. The table below will act as a table of contents for the listing.

PROGRAM	IDENTIFICATION	PAGE NO.
MAIN	LNO1	18
Functions:		
APENB	LNO2	21
APENC	LNO3	21

PROGRAM	IDENTIFICATION	PAGE NO.
CHRT8	LNO4	21
EQ14	LNO5	22
EQ19	LNO6	22
EQ21	LNO7	22
EQ24	LN08	22
EQ24L	LNO9	22
EQ26	LN10	22
EQ30	LN11	23
EQ30L	LN12	23
EQ31	LN13	23
VOLOG	LN14	23
Subroutines:		24
CH1011	LN15	24
CH1416	LN16	26
CH56	LN17	$2 N 18$

 C READ ANU WRITE MEADING INFDRMATIUN
C
C C REAO AND WRITE TAIL INPUT DATA IF TAIL PRESENT
C IF (NTAIL,EG.O) GU TO 10 IF (NTAIL, EG, O) GU TO 10
READ $(5,707)$
RT, ST, CTT,GRT, TLESMP, SLT WRITE (6,711) \quad WRIPE $(6,709)$ RT,ST,CTT,CRT, TLESWF, SLT inPut nose data

ChECK input data for cases nut handled by program
nerreo
응

¿ ~ ~ ~ ~

35 CONTINNHE (UETAAT, ST, RT, CTT, CRT, TLESMP)/(VETA-RAD)

Calcugate nuse ouantitice as reduinto by hoxes 30-42 amd 19-85 of so comes 141 ISPARNaRN

WRITE (0,125) CBN.CKN.BLN
output liftecunve slopes

응
 そ̌až

いいロール

punction eabol(traper, bocra, Rob)
Limiting torm of equation 30 when an equal infinity, no b.e. buetping

 Toidiopro

为

\therefore ㅇ

竍


```
SUGROUTINE KFACT (RUS,CKWE,FMACH,PARAM,CKBN,NAFTER,SME,TAPEN,GOCR,
lol
ハール
```


 BUBROUTINK CHSO（S，K，BMPLE，CT，CN，HMACH，TAPER，BAR，FHBR）

ưư
ITEM 1
FORMAT (I5); 1 card
12 MISAD
PORNAT (20A4); MHEAD CaSg
\boldsymbol{H}^{2} HEAD

FORMAT (4F10.5); 1 card

| PMACH | SLM |
| :--- | :--- | :--- |

ITEM 5 FORGAT (7F10.5); 1 card
ITEM 3
ITEM 4
ITEM 4
ITEM 5
ITEM 2
ITEM 3
ITEM 6
ITEM 6

FORMAT (3F10.5); 1 card
1 CLAA CLAT CLAN

ITEM 7
ITEM 8
ITEM 9
ITEM 10
ITEM 11
Figure 1.- Input format for Rl307 program.

SAMPLE CASE I WING - BUDY TAIL CONFIGURATION
SAMPLE CALCULATION OF TABLE I OF REPURT 1307
this is no. 101 of table ili of that report
1010

1.99	5.25	5.062	10.5			
0.562	2.812	0.0	2.25	45.0	3.75	1.375
0.562	1.812	0.0	1.25	45.0	9.16	
0.562	3.19	1.56				
0.0	0.0	0.0				
0.0	15.0	5.0				
0.0	4.9	4.9				
0.0	4.9	4.9				

```
(a) Sample case 1.


Figure 3.- Sample input decks for R1307 program.


LIFT AND CENTER OF PRESSURE OF WING-BODY-TAIL COMBINATIONS
SAMPLE CASE 1 WING - BODY - TAIL CONFIGURATION
SAMPLE CALCULATION OF TABLE I OF REPDRT 1307
THIS IS ND. 101 OF TABLE III OF THAT REPORT
FLIGHT CONDITIONS
MACH NUMBER \(=1.990\)
\(\begin{array}{rr}\text { REFERENCE QUANTITIES } \\ \text { AREA }= & 5.06200\end{array}\)
AREA \(=\quad 5.06200\)
LENGTH \(=10.50000\)
MOMENT CENTER RELATIVE TO TIP OF NOSE IS AT 5.25000


\footnotetext{
TAIL INPUT DATA
BODY RADIUS IN REGION =

-T əses ətdures xof urexboxd Loعty woxf fndzno -•9 əxnbṭs

CALCULATED WING OUANTITIES EXPOSED ADEA \(=5.0625\)

LIFT AND MOMENT CURVE SLOPES OF COMPLETE CDNFIGURATION
LIFT AND MJMENT CURVE SLOPES IG CONFIGURATION COMPONFNTS

D(CM NO WING-TAIL INTERFERENCF


I. IFT AND MDMENT COEFFICIENTS AND CENTER OF PRESSURE
NO WING-TAIL INTERFERENCE WITH WING-TAIL INTERFERFNCE
 \(\begin{array}{cc}0 & n \\ 0 & n \\ 0 & n \\ 0 \\ 0 \\ 0 \\ 1 \\ \\ m \\ \vdots \\ \vdots \\ 0 \\ 0 \\ 0 \\ 1\end{array}\) \(\begin{array}{ll}n & n \\ n & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 1 \\ 1 & \\ 0 & m \\ 4 & n \\ m & n \\ 0 & 0 \\ 0 & 0\end{array}\)
\(1.1395-0.0583-0.0512\) 0.0568 \begin{tabular}{ll}
0 & 0 \\
0 & 0 \\
\multirow{1}{n}{} \\
0 \\
0 \\
0 \\
0 \\
1 & 0 \\
1 & 1
\end{tabular} \(\begin{array}{lll}0.9529 & -0.0244 & -0.0256 \\ 1.3473 & -0.0504 & -0.0374\end{array}\) \(-0.0350-0.4518\)
 \(1.2169-0.0933-0.0767\) \(-0.0236 \quad-0.0852\) -1
\(o\)
0
0
0
0
1
\(N\)
0
0
0
0
0
0 10
10
00
0
10
1
0
0
10
0
0
0
\(i\) 0
0
0
0
0
0
1
\(i\)
in
0
0
0 0.2776
0.6466
1.0304
1.4247
\[
\text { Page } 3 .
\]

\section*{}
LIFT AND MOMENT COEFFICIENT COMPONENTS WITH WING-TAIL INTFRFERENCE
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{MOMENT COEFFICIENTS} \\
\hline NOSE & WING & TAIL & TAIL \\
\hline A & A+DW & \(A+D T\) & WING INT \\
\hline 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
\hline 0.0118 & -0.0029 & -0.0393 & 0.0160 \\
\hline 0.0237 & -0.0056 & -0.0787 & 0.0266 \\
\hline 0.0355 & -0.0094 & -0.1180 & 0.0326 \\
\hline 0.0000 & -0.0026 & 0.0000 & 0.0139 \\
\hline 0.0118 & -0.0054 & -0.0393 & 0.0297 \\
\hline 0.0237 & -0.0082 & -0.0737 & 0.0388 \\
\hline 0.0355 & -0.0110 & -0.1130 & 0.04 .31 \\
\hline 0.0000 & 0.0000 & -0.0350 & 0.0000 \\
\hline 0.0118 & -0.0028 & -0.0743 & 0.0160 \\
\hline 0.0237 & -0.0056 & -0.1137 & 0.0266 \\
\hline 0.0355 & -0.0084 & -0.1530 & 0.0326 \\
\hline 0.0000 & -0.0026 & -0.0350 & 0.0139 \\
\hline 0.0118 & -0.0054 & -0.0743 & 0.0297 \\
\hline 0.0237 & -0.0082 & -0.1137 & 0.0388 \\
\hline 0.0355 & -0.0110 & -0.1530 & 0.0 \\
\hline
\end{tabular}






LIFT AND CENTER OF PRESSURE OF WING-BODY-TAIL COMBINATIONS
METHOD OF NACA REPORT 1307,1957
 REF. NASA TM X-643
FLIGHT CONDITIONS
MACH NUMBER \(=0.130\)
REFERENCE QUANTITIES
AREA \(=446.00000\)
LFNGTH \(=19.10999\)
moment center relative to tip of nose is at 39.29999


\footnotetext{
TAIL INPUT DATA


BODY RAOIUS IN REGION \(=2.00000\)
SEMISPAN \(=15.55000\)
TXPOSED ROOT CHORD \(=25.00000\)
FXPOSED ROOT CHORD \(=25.00000\)
LEADING EDGE SWEEP ANGLE \(=59.00000\)
DISTANCE FROM TIP OF NOSF TO BODY, LE
RADIUS AT SHOULDER \(=0.84000\)
DISTANCE FROM TIP OF NOSE TO SHOULDER \(=\mathbf{7 . 5 0 0 0 0}\)
NOSE INPUT DATA
}
(a) Page 1.
Figure 7.- Output from R1307 program for sample case 2.

CALCULATED NOSE QUANTITIES
BASE AREA \(=2.21670\)
CKN \(=0.06097\)
NOSE CENTER OF PRESSURE -
\(\begin{array}{cc}\text { LIFT-CURVE SLOPES, PER DEGREE } \\ \text { (CLA)W } & \text { (CLA)T } \\ 0.03850 & 0.04180\end{array}\)

\title{
CALCULATED WING DUANTITIES \\ 
}
CALCULATED TAIL QUANTITIES
BETA*AR \(=2.14960\)
9LLSL.5 = WVYVd YV
R/S = 0.12862

3.46735
ICLAIN
0.03410
LIFT AND MDMENT CUPVE SLOPES JF COMPLETE CONFIGUHATION

\section*{WING-BODV-TAIL
0.0382 .4 \\ 0.03824
0.00270
-0.00194
0.00533 \\ LIFT AND MOMFNT COEFFICIENTS AND CENTER OF PRESSURE}
NO WING-TAIL INTERFERENCE WITH WING-TAIL INTERFERENCE







Page 3
Figure 7.- Continued.
OT
0.00


8889808
000000
8980898
0.0
0
0




888880
ninninning



\section*{}

0.00
4.00
8.00
12.00
16.00
20.00
24.00
(c) 3
LIft and migent coefficient components with wing－tail interference

.0031
.0052


 \(\dot{\circ} \dot{0} 0^{\circ} 0_{0}^{\circ} 0^{\circ}\)








LIFT CDEFFICIENTS

\section*{4
\(n\)
\(n\)
0}





○mロッーm



 －0 \(0^{\circ} 0^{\circ} 0^{\circ}\)

ㅇ8ㅇ8ㅇㅇㅇ 9088908
0.800000

ㅇ8ㅇ8ㅇㅇ
\(0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ}\)

응ㅇㅇㅇ
\(180889 \%\)
\(000808 \%\)
0000000


용8ㅇㅇㅇ
\(\therefore \dot{\circ} \dot{0} 00^{\circ}\)

응ㅇㅇㅇㅇㅇㅇㅇ응




\section*{PART II - CRSFLW COMPUTER PROGRAM}

\section*{Introduction}

This computer program is based on the method presented in NASA TN D-6996 and TN D-7228 (refs. 3 and 4) to calculate the normal force, axial force, and pitching moment of a body alone or wing-body combination. The bodies must be slender but may have circular or noncircular cross sections, and the method is not restricted to small angles of attack. The method of calculation of normal-force and pitching-moment coefficients is based on the concept from reference 7 that the normal-force distribution over a body is made up of a potential term given by slender-body theory and a viscous crossflow term modified by Newtonian theory. Empirical information on crossflow drag coefficients as a function of Mach number and Reynolds number is incorporated into the program. This allows the procedure to be applied over a wide range of angles of attack, Mach numbers, and Reynolds numbers.

The following sections present a description of the program, a description of the input, a description of the output, a program listing, and sample cases. A list of symbols from references 3 and 4 is included for reference.

The program is written in FORTRAN IV for the IBM 360 series machines. No tapes, drums, or disks other than the standard input/output units are required. The running time for a typical case on the IBM 360/67 is three seconds. The program will run on other machines such as the CDC 6600 with no modifications.

\section*{List of Symbols}
\begin{tabular}{ll}
\(A_{b}\) & body base area \((\) at \(x=\ell)\) \\
\(A_{p}\) & planform area \\
\(A_{r}\) & reference area \\
\(a, b\) & semimajor and semiminor axes of elliptic cross section \\
\(C_{A}\) & axial-force coefficient, \(\frac{F_{a}}{q_{o} A_{r}}\)
\end{tabular}
\begin{tabular}{|c|c|}
\hline \[
c_{d_{n}}
\] & crossflow drag coefficient of circular cylinder section,
\[
\frac{F_{n}}{q_{n}\left(\Delta \ell_{c y}\right) d_{c y}}
\] \\
\hline \(C_{\text {D }}\) & drag coefficient, \(\frac{\text { drag }}{\mathrm{q}_{\infty} \mathrm{A}_{r}}\) \\
\hline \(\mathrm{C}_{\text {L }}\) & lift coefficient, \(\frac{\text { lift }}{\mathrm{q}_{\infty} \mathrm{A}_{r}}\) \\
\hline \(C_{m}\) & ```
pitching-moment coefficient about station }\mp@subsup{x}{m}{}\mathrm{ from nose,
    pitching moment
``` \\
\hline \(\mathrm{C}_{\mathrm{N}}\) & normal-force coefficient, \(\frac{F_{n}}{q_{\infty} A_{r}}\) \\
\hline \(C_{n}\) & local normal-force coefficient per unit length \\
\hline d & body cross-section diameter \\
\hline D & drag \\
\hline k & ratio of corner radius to body width for bodies of square cross section \\
\hline \(\ell\) & body length \\
\hline L & lift \\
\hline \(M_{\infty}\) & free-stream Mach number \\
\hline \(\mathrm{q}_{\infty}\) & free-stream dynamic pressure, \(\frac{1}{2} \rho \mathrm{~V}_{\infty}^{2}\) \\
\hline r & body cross-section radius \\
\hline Re & \[
\text { free-stream Reynolds number, } \frac{\rho V_{\infty} d}{\mu}
\] \\
\hline s & wing semispan \\
\hline v & body volume \\
\hline \(\mathrm{V}_{\infty}\) & free-stream velocity \\
\hline w & body width \\
\hline x & reference length \\
\hline x & axial distance from body nose \\
\hline
\end{tabular}
\begin{tabular}{ll}
\(\mathbf{x}_{\mathrm{ac}}\) & distance from nose to aerodynamic force center \\
\(\mathbf{x}_{\mathrm{c}}\) & distance from nose to centroid of body planform area \\
\(\mathrm{x}_{\mathrm{m}}\) & distance from nose to pitching-moment reference center \\
\(\alpha\) & angle of attack \\
\(\gamma\) & ratio of specific heats (taken as l.4 for air) \\
\(\epsilon\) & wing planform semiapex angle \\
\(\eta\) & crossflow drag proportionality factor \\
\(\mu\) & viscosity coefficient of air \\
\(\rho\) & density of air
\end{tabular}

\section*{Subscripts}
\begin{tabular}{ll}
cy & cylinder \\
LE & leading edge \\
Newt & Newtonian theory \\
SB & slender-body theory \\
SF & skin friction \\
\(T E\) & trailing edge \\
\(W\) & wave or pressure
\end{tabular}

Description of Program
The CRSFLW computer program consists of a main program, eight function subprograms, and two subroutine subprograms. All input and output takes place in the main program. The function and subroutine subprograms provide quantities from the curves and equations of references 3 and 4 and other specific services to the main program.

Function subprogram CNSB computes the ratio \(\left(C_{n} / C_{n_{0}}\right)\) SB for winged circular cross-section bodies and winged elliptic cross-section bodies with the major axis parallel to the crossflow velocity or normal to the crossflow using equations (13), (14), and (15) of reference 4, respectively. This same routine is used for winged-bodies with varying cross sections in which the above ratio changes with \(x\)-distance.

Function CNNT computes the ratio (\(C_{n} / C_{n_{0}}\)) Newt for the same wing-body configurations considered above using equations (16), (17), and (18) of reference 4.

Function CNRSB computes \(\left(C_{n} / C_{n_{0}}\right)_{S B}\) for bodies alone with similar cross sections over their length. The result is identically 1.0 for circular bodies, and results for elliptic bodies with their major axis perpendicular to the crossflow velocity, or normal to it, are computed using equations (21) and (22) of reference 3, respectively. For bodies with square cross sections with rounded corners, \(\left(C_{n} / C_{n_{O}}\right)_{S B}=1.19\) at \(k=0\) (no corner radius) and \(\left(C_{n} / C_{n_{O}}\right) S_{S B}=1.0\) at \(k=0.5\) (circular cross section); therefore, linear interpolation between these two end points is used for intermediate cases.

Function CNRNT computes (\(C_{n} / C_{n_{0}}\)) Newt for bodies alone with similar cross section over their length. The result is identically 1.0 for circular bodies, and results for elliptic bodies with their major axis perpendicular to the crossflow, or normal to it, are computed using equations (21) and (22) of reference 3, respectively. Bodies with square cross sections with rounded corners are considered using equation (23) of the same reference.

Function CAW computes the wave or pressure contribution to the axial force, \(C_{A_{W}}\), for various nose shapes and body combinations at \(M>1\). Forward facing conical-nosed bodies are considered using equation (10) of reference 3. \(C_{A_{W}}\) for tangent ogive noses and for Newtonian minimum drag noses are obtained from correlation curves in figure 6 of the above reference. For circular bodies with flat noses, it is assumed that \(C_{A_{W}}\) is equal to the stagnation pressure coefficient and figure 7 of reference 3 is used. \(C_{A_{W}}\) for conical-nosed bodies of elliptic cross section is computed using equation (28) of the same reference.

Function CDN computes the crossflow drag coefficient, \(C_{d_{n}}\), of a circular body as a function of crossflow Mach number and crossflow Reynolds number from figures 1,2 , and 3 of reference 3.

Function ETA computes the ratio of the crossflow drag coefficient for a finite length cylinder to that for an infinite length cylinder using figure 4 in reference 3.

Function FUN calculates the integrand in equations (7) and (8) of reference 4 for \(C_{N}\) and \(C_{m}\) for the cases with variaiole cross-sectional shapes over the length of the body or wing-body combinations.

Subroutine SIMP is a Simpson's Rule integration package used to evaluate the integrals for \(C_{N}\) and \(C_{m}\) when the crosis-sectional shape is variable over the length of the body.

Subroutine CEL2 computes the complete elliptic :integral of the second kind, E. This is used in equation (10) of reference 4 to compute a modification factor, \(\lambda\), defined as the ratio of the lift of the triangular wing alone by linearized theory to that by slender-body theory.

\section*{Description of Input}

Variable definitions.- The format of the input cards for the CRSFLW program is shown in figure 1. The variable names are shown as well as the card columns in which the value is punched and the format in which it is punched. The remainder of this section consists of a table listing the program input variable along with the appropriate algebraic symbol, and the variable definition. A discussion of the preparation of the input is presented following the table. The algebraic notation used to define the configuration and described in the input table is shown in figure 2. All input length and area quantities are dimensional and should have consistent units. Also shown in figure 2 are sketches of a body alone with the positive sense of the forces and moments illustrated.
\begin{tabular}{cc}
PROGRAM & ALGEBRAIC \\
NOTATION & NOTATION
\end{tabular}

\section*{DEF INITION}

Item 1
LHEAD 80 columns of alphanumeric information used for identificat:ion.

Item 2
\begin{tabular}{lll}
RL & \(\ell\) & \begin{tabular}{l}
Length of the body. \\
XM
\end{tabular} \\
AB & \(\mathrm{x}_{\mathrm{m}}\) & \begin{tabular}{l}
position about which the pitching moments \\
are to be taken.
\end{tabular} \\
AR & \(\mathrm{A}_{\mathrm{b}}\) & Base area. \\
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline PROGRAM NOTATION & ALGEBRAIC NOTATION & DEFINITION \\
\hline AP & \({ }^{\text {A }} \mathrm{p}\) & Planform area. \\
\hline V & V & Volume of body. \\
\hline XC & \(\mathrm{x}_{\mathrm{c}}\) & x-coordinate of body centroid. \\
\hline xx & x & Reference length. \\
\hline Item 3 & & \\
\hline NSHP & & \begin{tabular}{l}
Body shape index: \\
NSHP \(=1\) Circular body. \\
\(=2\) Elliptical body with major axis horizontal. \\
\(=3\) Elliptical body with major axis vertical. \\
\(=4\) Square body with rounded corners.
\end{tabular} \\
\hline NVAR & & \[
\begin{aligned}
& \text { NVAR }=1 \quad \begin{array}{l}
\text { Body shape similar over entire } \\
\text { length. }
\end{array} \\
&=2 \text { Body shape varies with length. } \\
& \text { (This option used only when } \\
&\text { NSHP }=2 \text { or } 3 .)
\end{aligned}
\] \\
\hline NWING & & \[
\begin{aligned}
\text { NWING } & =0 \quad \text { No wing present. } \\
& \neq 0
\end{aligned}
\] \\
\hline NOSE & & ```
NOSE = 1 Conical nose.
 = 2 Ogive nose.
 = 3 Newtonian minimum drag nose.
 =4 Flat nose.
``` \\
\hline
\end{tabular}

NOTE: If NSHP \(=4\), then NOSE \(=4\) and NWING \(=0\) is the only acceptable combination of variables.

\section*{Item 4}

NXS
Number of \(x\)-stations along the body where body shape information is input. \(2 \leq\) NXS \(\leq 50\)

\section*{Item 5}
\(X(I), I=1\), NXS \(\quad x\)

\footnotetext{
Values of \(x\) at each station at which body information is to be input. (If there are more than 8, continue on following cards.) \(X(1)=0.0\) and \(\mathrm{X}(\mathrm{NXS})=\mathrm{RL}\).
}

PROGRAM
NOTATION
Item 6
(a) Circular Body (NSHP = 1)
\(R(I), I=1, N X S \quad r(x)\)
--- or ---
(b) Elliptical Body (NSHP \(=2\) or 3 )
(1) \(A(I), I=1\), NXS
(2) \(\mathrm{B}(\mathrm{I}), \mathrm{I}=1\), NXS
\(b(x)\)
(c) Square Body
(1) RK
(2) \(\operatorname{SSQ}(\mathrm{I})\), \(I=1, N X S\)

Item 7

SNOSE
(a) Circular Body (NSHP = 1)

RNOSE
(b) Elliptical Body
(b) Elliptical Body

ANOSE
a

BNOSE

\section*{(NSHP \(=4\) )}
k
w
\(r\)
b

Item 6 consists of parts (a), (b), or (c) depending on body shape.

The radius of the body at each \(x\) station.

The value of the semimajor axis at x-station; use as many cards as necessary, 8 values per card.

The value of the semiminor axis at each x-station.

Length of nose.
Ratio of the corner radius to the body width. Only one value allowed for entire body. ( \(0 \leq k \leq 0.5\) )

Length of square side at each \(x\) station.

Item 7 consists of one card plus parts (a) or (b) depending on type of body. Omit Item 7 for blunt-nosed body. (NOSE \(=4\) )

Radius of body at: base of nose.

Semiminor axis at base of nose.

\section*{Item 8}

XLE

XLET

XTET

XTE

SS PAN
EPS
Item 9
(a) Circular Body
(NSHP = 1)

RLE
(b) Elliptical Body (NSHP \(=2\) or 3 )

ALE

BLE
a
b
\(\alpha_{i}\)
\(\alpha_{f}\)
\(\Delta \alpha\)
(NSHP 1)
r

Item 10

Omit Item 8 if no wing is present. (NWING \(=0\) )
\(x\)-coordinate of the wing leading edge at the wing-body juncture.
\(x\)-coordinate of leading edge of wing tip. \(\quad x_{L E_{\text {tip }}} \geq x_{\text {LE }}\)
\(x\)-coordinate of trailing edge of wing tip. \(x_{T E_{t i p}} \geq x_{L E_{t i p}}\)
x-coordinate of wing trailing edge at the wing-body juncture. \(\mathrm{x}_{\mathrm{TE}} \geq \mathrm{x}_{\mathrm{TE}}^{\mathrm{tip}}{ }\)

Wing semispan.
Wing planform semiapex angle, radians.
Item 9 consists of (a) or (b) depending on body shape. Omit if no wing is present. (NWING \(=0\) )

Radius of the body at the juncture of the wing leading edge and the body.
\begin{tabular}{lcc} 
ALFI & \(\alpha_{i}\) & \begin{tabular}{c} 
Initial value of angle of attack, \\
degrees.
\end{tabular} \\
ALFF & \(\alpha_{f}\) & \begin{tabular}{c} 
Final value of angle of attack, \\
degrees.
\end{tabular} \\
DALF & \(\Delta \alpha\) & Increment in angle of attack.
\end{tabular}

PROGRAM
NOTATION

GAM

RE

FMACH

\(\gamma\)

Re
\(M_{\infty}\)

\section*{DEFINITION}

Axial-force coefficient due to skin friction.

Ratio of specific heats, typically 1.4 for air.

Reynolds number based on body diameter and free-stream properties.

Mach number.
NOTE: The angle-of-attack range for bodies alone is \(0 \leq \alpha \leq 180^{\circ}\). The angle-of-attack range for wing-body combinations is \(0 \leq \alpha \leq 90^{\circ}\).

Input preparation.- A discussion of the input variables is presented in this section as an aid in the preparation of the data deck.

Item number 1 is a single card containing any information which the user wishes to use to identify the run. This information is reproduced in the output exactly as it is punched on this card.

Item 2 is geometry and reference information and all the variables are explained in the previous table or in figure 2.

Item 3 contains four indices controlling the type of body to be considered. The first, NSHP, specifies the body cross-sectional shape to be circular (NSHP = 1), elliptical (NSHP = 2 or 3 ), or square with rounded corners (NSHP = 4). The second index, NVAR, specifies whether the body shape is similar (NVAR \(=1\) ) or not (NVAR \(=2\) ) over the length. This index is concerned only with elliptical cross sections (NSHP \(=2\) or 3 ). The third index, NWING, specifies whether a wing is (NWING > 0) or is not (NWING \(=0\) ) present. The last index, NOSE, specifies the nose shape to be a cone (NOSE = 1), an ogive (NOSE = 2), a Newtonian minimum drag shape (NOSE = 3), or a flat nose (NOSE = 4).

Item 4 is a single index, NXS, specifying the number of stations along the body at which shape information is to be input. This number must be equal to or less than 50.

Item 5 contains the x-stations at which the body information is to be input. The first value should be the tip of the nose and the last should be the base of the body. There are eight values per card in increasing order of \(x\) distance up to the total of NXS stations.

Item 6 contains the variables defining the body shape at the x-stations in Item 5. For a circular cross section (NSHP = 1), Item 6 is the radius of each station. For an elliptic station, (NSHP \(=2\) or 3 ), Item 6 is made up of two cards. Part (1) contains lengths of the semimajor axis at the
 same stations. If the body is square with rounded corners, the first part of Item 6 is a single card containing the ratio of the corner radius to the body width. Part (2) of Item 6 is the length of the side at each x-station.

Item 7 is made up of two cards, the first of which contains the length of the nose, SNOSE. If the body cross section is circular, (NSHP = l), the second card of Item 7 contains the radius of the nose at the base, (RNOSE). If the body cross section is elliptic (NSHP \(=2\) or 3 ), the second card of Item 7 contains the length of the semimajor axis, ANOSE, and the length of the semiminor axis, BNOSE. Item 7 is omitted if NOSE \(=4\).

Item 8 contains the variables describing the geometry of the wing. If no wing is present (NWING \(=0\) ), Item 8 is omitted. The six variables in Item 8 are self explanatory.

The variables in Item 9 are a function of the body shape in the vicinity of the wing. If no wing is present, Item 9 is omitted. For a circular body (NSHP \(=1\) ), Item 9 contains the radius of the body (RLE) at the juncture of the wing leading edge and the body. for an elliptic body (NSHP \(=2\) or 3 ), Item 9 contains the lengths of the semimajor and semiminor axes, \(A L E\) and \(B L E\), respectively, at the juncture of the wing leading edge and the body.

Item 10 is the last card making up a particular run. The first three variables are the initial angle of attack, ALFI, the final angle of attack, ALFF, and the increment in angle of attack DALF. The next quantity is the axial-force coefficient due to skin friction, CASF. GAM is the ratio of specific heats. RE is the free-stream Reynolds number based on body diameter and FMACH is the free-stream Mach number. The angle-of-attack range for bodies alone is \(0^{\circ}\) to \(180^{\circ}\) and that for wing-body combinations is 00 to \(90^{\circ}\).

Input decks may be stacked for multiple runs. A second case starting with Item 1 can be placed directly after Item 10.

Sample cases.- Listings of the input decks for five sample cases are presented in figure 3 and sketches of the configurations are shown in figure 4. Sample cases 1 and 2 are body-alone configurations taken from figure 9 of reference 3.

Sample case 1 is body number 2 of that reference and is a flat-nosed cylinder. Sample case 2 is body number 5 of the same reference and is the same cylindrical body with a conical nose attached. Sample cases 3, 4, and 5 are wing-body configurations taken from figure 6 of reference 4. These latter configurations all have the same body length, base area, and aspect ratio.

\section*{Description of Output}

The output produced by the CRSFLW computer program for sample case 4 is shown in figure 5. The first page of output is a summary of input quantities. Various notes are printed describing the specified components of the configuration. The last items printed on this first page are the flow conditions: \(\operatorname{Re}, \gamma\) and \(M_{\infty}\).

The next page is headed by the identification information on the first card of the input deck. Following this are the calculated results printed on two lines. As indicated by the heading, the first line contains \(\alpha\), \(C_{N}, C_{A}, C_{m}, x_{a c}, C_{L}, C_{D}\), and \(L / D\). The second line contains components of \(C_{N}, C_{A}\), and \(C_{m} . C N 1\) and \(C M I\) are the potential portions of the normal force and pitching moments, and CN2 and CM2 are the viscous crossflow portions of the lift and pitching moments. The axial-force components are defined in the following table. The last variable is the crossflow drag coefficient, \(C_{d_{C}}\). The output variables are defined as follows.
\begin{tabular}{ll}
\begin{tabular}{ll} 
OUTPUT \\
NOTATION
\end{tabular} & \begin{tabular}{l} 
ALBEGRAIC \\
NOTATION
\end{tabular} \\
ALPHA & \(\alpha\), degrees \\
\(C N\) & \(C_{N}=\frac{N}{q^{A} r_{r}}\) \\
\(C A\) & \(C_{A}=\frac{A}{q^{A}}\) \\
\(C M\) & \(C_{m}=\frac{M}{q^{A} X_{r}}\)
\end{tabular}

OUTPUT
NOTATION

WAC

CL
\(C D\)
\(L / D\)

CDC

ALGEBRAIC
NOTATION
\(x_{a c}=\left(\frac{x_{m}}{x}-\frac{c_{m}}{C_{N}}\right) X\)
\(C_{L}=C_{N} \cos \alpha-C_{A} \sin \alpha\)
\(C_{D}=C_{N} \sin \alpha+C_{A} \cos \alpha\)
\(C_{L} / C_{D}\)
\(c_{d_{n}}\)
I. For nonvarying cross-sectional shape and no wing present.

OUTPUT
NOTATION

CN1

CW

CMl

CM 2
\[
\eta c_{d_{n}} \sin ^{2} \alpha\left(\frac{c_{n}}{c_{n_{0}}}\right)_{\text {Newt }}
\]
\[
\left\{\left[\frac{v-A_{b}\left(\ell-x_{m}\right)}{A_{r} x}\right] \sin 2 \alpha \cos \frac{\alpha}{2}\right\}\left(\frac{C_{m}}{C_{m o}}\right)_{S B}
\]

CA 1
\(C_{A_{W}}\)
CA 2
\(\mathrm{C}_{\mathrm{A}_{\mathrm{SF}}}\)
CA 3
ALGEBRAIC
NOTATION
\(\frac{A_{D}}{A_{r}} \sin 2 \alpha \cos \frac{\alpha}{2}\left(\frac{C_{n}}{C_{n_{0}}}\right)_{S B}\)
\[
\left[\eta C_{d_{n}} \frac{{ }^{A} p}{{ }^{A}}\left(\frac{x_{m}-x_{c}}{x}\right) \sin ^{2} \alpha\right]\left(\frac{C_{m}}{C_{m}}\right)_{\text {Newt }}
\]
\(C_{A_{B}}\)
II. For a varying cross-sectional shape or a body with lifting surfaces.

OUTPUT
NOTATION

CN1

CN 2

CMI

CM2

ALGEBRAIC
NOTATION
\[
\left(\frac{A_{b}}{A_{r}} \sin 2 \alpha \cos \frac{\alpha}{2}\right) \frac{1}{\ell} \int_{0}^{\ell} \lambda\left(\frac{c_{n}}{C_{n_{0}}}\right)_{S B} d x
\]
\[
\frac{2 \eta c_{d_{n}} \sin ^{2} \alpha}{A_{r}} \int_{0}^{\ell}\left(\frac{c_{n}}{C_{n_{0}}}\right)_{N e w t} r d x
\]
\[
\left(\frac{\mathrm{A}_{\mathrm{b}}}{\mathrm{~A}_{\mathrm{r}}} \sin 2 \alpha \cos \frac{\alpha}{2}\right) \frac{1}{\ell X} \int_{0}^{\ell} \lambda\left(\frac{\mathrm{C}_{\mathrm{n}}}{\mathrm{C}_{\mathrm{n}_{\mathrm{O}}}}\right)_{\mathrm{SB}}\left(\mathrm{x}_{\mathrm{m}}-\mathrm{x}\right) \mathrm{dx}
\]
\[
\frac{2 \eta c_{d_{n}} \sin ^{2} \alpha}{A_{r} x} \int_{0}^{\ell}\left(\frac{c_{n}}{C_{n_{0}}}\right)_{N \text { Nwt }} r\left(x_{m}-x\right) d x
\]

\section*{Program Listing}

The CRSFLW computer program consists of the main program, eight function subprograms and two subroutine subprograms. Each source deck is identified in columns 73 through 80 by a four-character identification and a three-digit number sequencing the cards within that deck. The program listing is given on the following pages. The table below will act as a table of contents for the listing.
\begin{tabular}{lcc} 
PROGRAM & IDENTIFICATION & PAGE NO. \\
\cline { 2 - 3 } MAIN & CFO1 & 54 \\
CNSB & CFO2 & 56 \\
CNNT & CF03 & 57 \\
CNRSB & CF04 & 58 \\
CNRNT & CFO5 & 58 \\
CAW & CF06 & 58 \\
CDN & CF07 & 59 \\
ETA & CF08 & 60
\end{tabular}

CFll
61







progran enshlm - crubsflom preoiction methoo
 coll EDTERML FUN LUN (20),


- " agaig





드츠출

40































\section*{Function conctrachn, Ren)}




ITEM 1 FORMAT (20A4); 1 card
\({ }^{1}\) LHEAD


FORMAT (I5)
\({ }^{1}\) NXS
ITEM 4
ITEM 3
ITEM 2

\(\left.\left.\begin{array}{r}\text { ITEM } \\ (\text { NSHP }\end{array}\right)=4\right)\)
ITEM 7

ITEM \(7 \mathrm{7a}\)
(NSHP \(=1\) )
ITEM 7 b
(NSHP \(=2\)
Or 3 )
ITEM 8
ITEM 9a
\(\begin{aligned} \text { ITEM } & 9 b \\ \text { (NSHP } & 2 \\ \text { Or } & 2 \text { ) }\end{aligned}\)
(b) Page 2.
Figure 1.- Concluded.


Figure 2.- Algebraic notation defining configuration.


Figure 3.- Sample input decks for CRSFLW program.

\(\ell=30.48 \mathrm{~cm}\)
\(d=3.81\)

\(\ell=41.91\)
\(d=3.81\)


Figure 4.- Configurations used in sample cases for CRSFLW program.
\[
\theta(1)
\]
(a) Page 1.
MTASAO Moxj 7ndzno --S axnbta

\[
25,10000 \quad X N=25,10000
\]

\section*{\(\triangle P=231,95000\)}
sody shape similat over length
gamma \(=1.400\) mach number \(=1,070\)
RADIUS APT OF NUSE \(=3,42946\)
and tral
25,10000 , EPSILON =


RE YNOLDS NUMBER: \(21800 \mathrm{E}=07\)


\section*{号}
\begin{tabular}{l}
0 \\
\hline \\
\(\vdots\) \\
0 \\
0 \\
0 \\
0
\end{tabular} \(50.000 \begin{array}{r}12.6798 \\ 4.606 E \$ 00\end{array}\)
\[
\begin{array}{r}
6.491 t-02 \\
5.2759 \\
0.4915=02 \\
5.2709 \\
0.4915-02 \\
5.1850 \\
0.491 E=02 \\
5,0235
\end{array}
\]
\[
\begin{array}{r}
5,1850 \\
6.491 E=02 \\
5,0235 \\
6,491 E=02 \\
4.8017 \\
0.4916=02 \\
4.5305 \\
0.491 t=02 \\
4.2223 \\
0.491 t=02
\end{array}
\]
\[
\mathrm{CMI}_{0.2407}^{\mathrm{CD}}
\]
\(\begin{array}{rrrr}3,9105698 & 3,2535 \\ 4,792 t-02 & 5,301 t-01\end{array}\)
\(\begin{array}{rrr}1,1070 & 2,9292 \\ 1,296 t+00 & 2,759 E=01 & 1,374 t+00\end{array}\)
\(\begin{array}{rrr}1,9076 & 2,4140 \\ 1,655 E+00 & 5,570 E=01 \quad 1,588 E+00\end{array}\)
\(\begin{array}{rrrr}2,9930 & 1,9847 \\ 1,956 E+00 & 9,132 E-01 & 1,705 E+00\end{array}\)

\(\begin{array}{rrrr}5,8908 & 1,3795 \\ 2,544 E+00 & 1,784 E+00 & 1,808 E+00\end{array}\)
\(\begin{array}{rrr}7.1955 & 1.1607 \\ 2.420 E+00 & 2,061 E \$ 00 \quad 1,064 E * 00\end{array}\)
\(\begin{array}{rl}8.4803 \\ 2.417 E+00 & 2.347 E+00 \quad 1.500 E * 00\end{array}\)

\(11.0145 \quad .0915\)



\(\begin{array}{rl}13.5557 & .2069 \\ 1.059 E+00 & 3.985 E * 00 \quad 1.424 t+00\end{array}\)
\(\begin{array}{rrr}15.5101 \\ 6.804 E 001 & 4.115 E+00 & 1.415 E+00\end{array}\)



\(10-3818^{\circ}\)
\(52 \pi 29\)
\(10-7890^{\circ} 1\)
\(0509^{4}\)
\(10-3919^{\circ} 8\)
\(2921^{\prime} \mathrm{g}\)
\[
1.235 E+01
\]
\[
.13,9692
\]
\[
16,5061
\]
\[
\begin{aligned}
& 16.7859 \\
& .0
\end{aligned}
\]
7.6163
\(1.818 E=01\)
1.1578
\(1.810 E=01\) \(\begin{array}{r}.1020 \\ \hline\end{array}\)
\[
\begin{array}{r}
.0160 \\
1.195 t+01
\end{array}
\]
\[
\begin{array}{r}
.0019 \\
1.258 t+01
\end{array}
\]
\[
.^{16,1645}
\]
2.181E+00 3.011t+00 1.497t*00
5,9402
1.818 BEOL
\(10-381 \theta^{\circ} \mathrm{I}\)
c11 \(1 \mathrm{C}^{\circ} \mathrm{L}\)
8,3499
\(1.818 \mathrm{E}=01\)

\[
1.142 t+01
\]
6,8803
1.818 k 01
4,8226
\(1,818 E=02\) 5,0000
\[
\begin{aligned}
& 16,5730 \\
& .0
\end{aligned}
\]
8.0739
1.818 E 01
5,9300
1.8185001
3,6107
\(1.818 E=01\)
2,3783
\(1,818 E=01\)

\[

\]

\(\mathrm{CNO}^{\mathrm{CA}}\)


21
10.000
15.000
\[
\begin{aligned}
& 2343 \\
& A E=01
\end{aligned}
\]
\[
\begin{array}{r}
0.49 i=4784 \\
0.491 E=02 \\
0.9389
\end{array}
\]
\[
\begin{aligned}
& 10=39 \angle 7^{\circ} 8 \\
& 20 ร 2^{\prime}
\end{aligned}
\]


\[
\begin{array}{r}
6,0485 \\
3.909 t+00
\end{array}
\] \(\begin{array}{lrrr}25,000 & 6,0485 & 2027 & 2.8091 \\ & 3,909 t+00 & 2,740 E+00 & 0.491 E-02\end{array}\)
\(\begin{array}{rr}3,7338 \\ 4.634 E+00 & 6,4915-02\end{array}\)
9.0105
\(4.372 k+00\) \(35,000 \quad 10.0354\)
\(4.084 E+00\) \(\begin{array}{rrr}10.0354 & \\ 4.684 E+00 & 5.35 I E 56 & 4.1216 \\ 11.0203 & & 0.491 E=02 \\ 4.837 E+00 & 6.183 E+00 & 0.491 E=02\end{array}\) \(\begin{array}{rr}\quad 1254 & 4.7638 \\ 7.042 E 400 & 0.4015=02\end{array}\) \(6.491 E=02\)
5.1916 8,0812
\(9.033 t+00\) \(60.000 \quad \begin{array}{r}13,8027 \\ 3,9226 \rightarrow 00\end{array}\)
\[
1.200 E+00
\]
\[
\begin{array}{r}
80 \\
0 . \\
0 \pm \\
0 . \\
0 \\
0 \\
0 \\
0
\end{array}
\] 11.0713
\(4.830 E+00\)
 30
3
3
30
30
3
\(n\)
0
0
\(n\)
\(n\)
\[
\begin{array}{lr}
80,000 & 13,7178 \\
& 1.3726+00 \\
85.000 & 13,2551 \\
& 6.715 t=01 \\
& 12,0058 \\
80.000 & 2.1915=03
\end{array}
\]
\(\cdot z\) obed (q)
Figure 5.- Concluded.

\section*{PART III - SUBSON COMPUTER PROGRAM}

\section*{Introduction}

This computer program predicts the static longitudinal aerodynamic characteristics of wing-body-tail combinations at subsonic speeds. It is an extension of the method of reference 2 to angles of attack for which symmetrical body vortices are shed from the nose of the configuration and leading-edge and side-edge separation vortices are shed from the wing and tail. The body is limited to circular cross-section shapes.

The program is written in FORTRAN IV for the IBM 360 series machines. No tapes, drums, or disks other than the standard input/output units are required. Minor changes are required to run the program on other machines such as the CDC 6600. Typical running time on the IBM \(360 / 67\) for a wing-body-tail configuration is the order of one to two minutes. Actual time is dependent on the type of vortex lattice used to represent the lifting surfaces and whether or not a trim condition is calculated. Some specific running times are noted in the discussion of the sample cases.

The following sections present a description of the program, a description of the input, a description of the output, a program listing, and sample cases. The algebraic notation used in this section is the same as that used in reference 1. A list of symbols from reference 1 is included for reference.

\section*{List of Symbols}

FR aspect ratio
a local body radius
b semispan
\(C_{A} \quad\) axial-force coefficient
\(C_{d} \quad\) crossflow drag coefficient
\(C_{D_{i}} \quad\) induced drag coefficient
\(C_{L} \quad\) lift coefficient, \(\frac{L}{q S}\)
\(C_{m} \quad\) pitching-moment coefficient, \(\frac{M}{q S \ell}\)
\begin{tabular}{|c|c|}
\hline \(\mathrm{C}_{\mathrm{N}}\) & normal-force coefficient, \(\frac{N}{q S}\) \\
\hline c & local chord \\
\hline \(\mathrm{c}_{\ell}\) & section-lift coefficient \\
\hline \(\mathrm{c}_{\text {S }}\) & section leading-edge suction coefficient \\
\hline \(\mathrm{K}_{\mathrm{v}}^{*}\) & vortex-lift ratio, figure 4 \\
\hline L & lift force \\
\hline \(\ell\) & reference length \\
\hline M & pitching moment about center of moments, or free-stream Mach number \\
\hline N & normal force \\
\hline q & free-stream dynamic pressure \\
\hline \(r\) & body radius \\
\hline \(\mathrm{r}_{\mathrm{N}}\) & radius of base of nose \\
\hline S & reference area \\
\hline u, v,w & perturbation velocities along \(x, y, z\) directions, respectively \\
\hline V & free-stream velocity \\
\hline \(x, y, z\) & configuration coordinates with origin at body nose, figure 2 \\
\hline \(\mathrm{x}_{\mathrm{m}}\) & \(x\) location of center of moments \\
\hline \(\mathrm{x}_{\text {S }}\) & \(x\) position for onset of separation from body nose \\
\hline \(\overline{\mathrm{x}}\) & center-of-pressure location \\
\hline \(\mathbf{z}_{\text {m }}\) & \(z\) location of center of moments \\
\hline \(\alpha\) & body angle of attack \\
\hline B & \(\sqrt{1-M^{2}}\) \\
\hline \(\Gamma_{B}\) & right body-vortex strength, positive counterclockwise when viewed from rear of configuration \\
\hline \(\Gamma_{\mathrm{n}}\) & n'th separation-vortex strength on right wing panel \\
\hline \(\Gamma_{t}\) & trailing-vortex strength on right wing panel \\
\hline
\end{tabular}

A
avg
B
\(B(T)\)
\(B(W)\)
c

\section*{CP}
e
HL
LE
N
p
root
SE
\(T\) (B)
TE
t
tip
v
\(\mathrm{W}(\mathrm{B}) \quad\) wing in presence of body
w nose angle, degrees
sweep angle
density
complex vortex position, \(y+i z\)
dihedral angle
\begin{tabular}{ll} 
A & afterbody \\
avg & average \\
B & body \\
B(T) & body in presence of tail \\
B(W) & body in presence of wing \\
C & canard \\
CP & center of pressure \\
e & tail or empennage \\
HL & hinge line \\
LE & leading edge \\
N & nose \\
p & potential \\
root & root chord \\
SE & side edge \\
\(T(B)\) & tail in presence of body \\
TE & trailing edge \\
t & trailing vortex \\
tip & tip chord \\
v & vortex \\
W(B) & wing in presence of body \\
w & wing
\end{tabular}
lifting-surface deflection angle, positive trailing edge down

Subscripts

A brief description of the method is presented herein. The user should consult reference 1 for a complete description and details of the theoretical approach.

An axisymmetric nose at some moderate angle of attack sheds a symmetric pair of body vortices. These shed body vortices, whose strength and position are determined from data correlations, are tracked downstream past the wing using slender-body techniques in the crossflow plane. The vortex-induced velocities are computed at the wing control points and combined with the Beskin upwash induced by the body to obtain the total upwash induced on each wing panel. This, added to the free-stream contribution, results in a total local incidence angle distribution over the wing.

The lifting surfaces (wing and horizontal tail or canard) are modeled by a vortex-lattice scheme (ref. 8) which has the capability to include velocity fields from external sources. The total upwash at the control points must be cancelled by the wing-circulation-induced velocity to satisfy the tangency boundary condition of the vortex-lattice method. The wing loading and trailing-vortex strength and position are obtained from this vortex-lattice calculation. The distribution of leading-edge suction and side-edge suction (if present) and their associated vortex positions and strengths are also obtained from the vortex-lattice calculations. The leading-edge separation vortex lift is obtained from the suction distribution with the help of the Polhamus vortex-lift analogy (ref. 9) and correlation curves.

The trajectories of the body vortices, the wing trailing vortex, and the wing leading-edge separation vortices are computed downstream past the afterbody and horizontal tail. These trajectories are computed in the crossflow plane considering mutual interference between the vortices and interference from their images in the body. The induced velocity field at the tail is computed, and the tail loading is obtained in a manner similar to that just described for the wing. The forces on the body due to the presence of the wing and tail are computed by the method of reference 2. The free vortex-induced forces on the body are computed using the method of Sacks (ref. 10).

The forces and moments on the entire configuration are obtained by summing the contributions of the various components. These forces are resolved into normal and axial force (excluding frictional drag), and lift and induced drag.

The subsonic prediction method includes an option to compute the trim conditions of a wing-body-tail configuration at some specified angle of attack. This is carried out by an iterative process in which the incidence of the tail or wing (canard) is varied until a zero pitching moment is achieved.

\section*{Description of Program}

The SUBSON computer program consists of a main program and fifteen subroutines. The main program (SBOl) accepts all the input, prints most of the output, and generally directs the flow of the calculation. The subroutines or groups of subroutines provide specific services to the main program during the calculation procedure. The following is a list of the subroutines and their general purpose.

Subroutine LATTUS sets up the horseshoe vortex-lattice arrangement for the lifting surfaces. It locates the coordinates of the control points, calculates the influence coefficient matrix, and computes any geometry-related parameters connected with the lifting surfaces.

Subroutine SHAPE does a table look-up for the body radius and slope and local lifting-surface semispan at any prescribed axial station.

Subroutine BDYVTX uses tables derived from data correlations to look up the strength and position of the pair of symmetric vortices shed from the body nose.

Subroutine CNVNZ computes the nose vortex-induced normal force and pitching moment on the nose of the body using the method of reference 10.

Subroutine TRJTRY computes the trajectories of the free vortices past the configuration using the subroutines FCT, OUTP, HPCG, and SHAPE.

Subroutine FCT computes the derivatives in the equations of motion for each free vortex.

Subroutine HPCG is a predictor-corrector integration package which uses a Runge-Kutta starting procedure.

Subroutine OUTP stores the vortex positions in a table at specified intervals in \(x\). When necessary, some diagnostic information on the vortex trajectories is available as optional output.

Subroutine EXTVEL computes the vortex-induced velocity at wing or tail control points.

Subroutine VTXLAT computes the strengths of the bound vortices on the lifting surface. It also computes the leading-edge suction distribution, the strength and spanwise position of the associated separation vortex, and the strength and position of the trailing vortex. This subroutine calls subroutines LOADl and INVERS.

Subroutine LOADl uses the circulation distribution from the previous subroutine to compute the span-loading distribution and the forces and center of pressure on the lifting surface.

Subroutine INVERS solves a system of linear simultaneous equations for the circulation strengths.

Subroutine INFWW computes the influence function for a horseshoe vortex.

Subroutine ZVTX determines the vertical position of the leading-edge separation vortex using a table look-up of correlated data for delta wings.

Subroutine CNVTX computes the vortex-induced force and center of pressure on the afterbody using the method of reference 10.

\section*{Description of Input}

Variable definitions.- The format of the input cards for the SUBSON program is shown in figure l. In this figure the program variable name is shown as well as the card columns in which the value is punched and the format in which it is punched. The following is a table of the input variables along with the algebraic symbol where applicable. The input length and area quantities are dimensional and should have consistent dimensions. The variable is defined and its limits shown where necessary. The algebraic notation used in defining the configuration is shown in figure 2. A discussion of the preparation of the input is presented in the section following the table.

Item 1
NHEAD

NTBL

NPRINT

MPRINT

NOSEV

NTRIM

NCWW

MSWW

NOTE: (NCWW \(\times\) MSWW) \(\leq 100\).
NCAMW

NPSIW

Number of heading cards.
Number of entries in table of body coordinates.
\(5 \leq\) NTBL \(\leq(96-M S W W-M S W T)\)
Output option:
NPRINT < 0 Minimum output, final aerodynamic characteristics only.
\(=0\) Standard output.
\(=10\) Optional additional output.
Output option in trajectory calculation: MPRINT \(=0\) No additional output.
\(>0\) Output vortex trajectories as calculated. (This option should be used as diagnostic only if program has prematurely terminated execution during a previous trajectory calculation.)

NOSEV \(=0\) No nose separation vortex pair.
\(=1\) Nose separation vortex pair included.
\[
\begin{aligned}
\text { NTRIM } & =0 \text { No trim calculation. } \\
& >0 \text { Trim condition calculation, } \\
& \text { as follows. }
\end{aligned}
\]
\(=1\) Wing incidence variable.
\(=2\) Tail incidence variable.
Number of chordwise vortices on wing. \(2 \leq\) NCWW \(\leq 10\)

Number of spanwise vortices on wing. \(2 \leq M S W W \leq 25\)
```

NCAMW $=0$ No wing camberline slopes to
be input.
$=1$ Camberline slope at each wing
control points to be input.
NPSIW $=0$ Unbroken wing leading edge
and trailing edge.
>0 Input leading- and trailing-
edge sweep angles at each
specified spanwise station.

```

PROGRAM
NOTATION
ALGEBRAIC
NOTATION

NSEPW

NCWT

MSWT

NOTE: (NCWT \(\times\) MSWT) \(\leq 100\).
NCAMT

NPSIT

NSEPT

NBODY
tem 2
TITLE

\section*{Item 3}
\(\mathbf{X B D Y}(J)\)

RBDY (J)
Item 4
XM
ZM

EMACH
\(\mathbf{x}_{\mathrm{m}}\)
\(z_{m}\)
M

Any alphabetic or numeric identification information. Number of cards equal to NHEAD.
x-station at which body coordinates are defined.

Body radius at above stations.
\(x\)-coordinate of moment center.
z-coordinate of moment center.

Mach number.
PROGRAM
NOTATION

ALgebraic
NOTATION

\section*{DEFINITION}
\begin{tabular}{lll} 
REFS & S & Reference area. \\
REFL & \(\ell\) & Reference length. \\
THETAN & \(\theta_{N}\) & Nose angle, degrees. \\
DXOUT & & \begin{tabular}{l} 
x-increment in output table of free vortex \\
trajectories (DXOUT \(\leq\) RAVGW) , typically.
\end{tabular} \\
DXI & & \begin{tabular}{l} 
Maximum integration interval for vortex \\
trajectory calculation. (DXI \(\leq\) DXOUT)
\end{tabular} \\
& &
\end{tabular}

Item 5
\begin{tabular}{|c|c|}
\hline XLEW & \[
\mathbf{x}_{\mathrm{LE}}^{\mathrm{w}} \text { }
\] \\
\hline XTEW & \[
\mathrm{x}_{\mathrm{TE}}^{\mathrm{w}} \text { }
\] \\
\hline XHLW & \[
\mathrm{x}_{\mathrm{HL}}^{\mathrm{w}} \text { }
\] \\
\hline ZHLW & \[
\mathrm{z}_{\mathrm{HL}}^{\mathbf{w}}
\] \\
\hline XCPW & \[
\mathbf{x}_{\mathbf{C P}}^{\mathbf{w}}
\] \\
\hline BS 2W & b/2 \\
\hline RAVGW & \(\mathrm{ravg}_{\mathrm{W}}\) \\
\hline
\end{tabular}

YSEPW

Item 6
PHIW

PSILEW(1)

PSITEW (1)
\[
\begin{gathered}
\phi \\
\Lambda_{L E_{W}}
\end{gathered}
\]
\[
\Lambda_{T E}
\]
\(x\)-coordinate of wing leading-edge intersection with body.
\(x\)-coordinate of wing trailing-edge intersection with body.
\(x\)-coordinate of wing hinge line at wingbody juncture.
\(z-c o o r d i n a t e\) of wing hinge line at wingbody juncture.
\(x\)-coordinate of alternate wing center of pressure location.

Wing semispan.
Average body radius at wing.

Spanwise location of \(2^{\text {nd }}\) leading-edge separation vortex. If NSEPW \(=1\), YSEPW \(=\mathrm{b} / 2\).

Dihedral angle of wing, positive tip up,
degrees.
Leading-edge sweep angle at first wing station adjacent to body, degrees. Sweepback is positive.

Trailing-edge sweep angle at first wing station adjacent to body, degrees. Sweepforward is negative.

PROGRAM NOTATION

CMTEST

Item 7
YW

Item 8
PSILEW

Item 9
PSITEW
PSITEW

ALGEBRAIC NOTATION

Y
\(\Lambda_{L E}\)

Item 10
AL PHLW (J) \(\quad a_{w}\)

Item 11
\begin{tabular}{|c|c|}
\hline XLET & \[
x_{L_{E}}
\] \\
\hline XTET & \[
x_{T E}
\] \\
\hline XHLT & L \\
\hline ZHLT & HI \\
\hline XCPT & CP \\
\hline BS 2T & b/2 \\
\hline RAVGT & \(\mathrm{r}_{\text {avg }^{\text {e }}}\) \\
\hline
\end{tabular}

YSEPT
\[
r_{\operatorname{avg}_{e}}
\]

PROGRAM
NOTATION

ALGEBRAIC NOTATION

\section*{DEFINITION}

Item 12
\begin{tabular}{lc} 
PHIT & \(\phi_{\mathrm{e}}\) \\
\(\operatorname{PSILET}(1)\) & \(\Lambda_{\mathrm{LE}}\) \\
\(\operatorname{PSITET}(1)\) & \(\Lambda_{\mathrm{TE}}\)
\end{tabular}

Item 13
Tail dihedral angle, degrees. station adjacent to body, degrees. station adjacent to body, degrees.

Item 14
PSILET (J)

Item 15
PSITET (J)

Item 16
\(\operatorname{ALPHT}(J) \quad a_{e}\)

Item 17
NDEX

AL PHAD
\(\alpha\)
ALPIW \(\delta_{w}\)

AKVLWI


Leading-edge sweep angle of tail at first

Trailing-edge sweep angle of tail at first
\(y\)-coordinate of outboard side of liftingsurface panels on tail. Last value must equal b/2.

Delete if MPSIT \(=0\).
Leading-edge sweep angle corresponding to values of \(y\) in Item 13, degrees.

Delete if MPSIT \(=0\).
Trailing-edge sweep angle corresponding to values of \(y\) in Item 13, degrees.

Tangent of local angle on tail due to camber and twist. (Values are input from leading edge to trailing edge, from root to tip.) MSWT \(\times\) NCWT values are required.
```

Index controlling next case of input.
NDEX = l Execute program using variables
on this card.
=0 Ignore this card and return to beginning for new case.

```

Angle of attack of configuration, degrees.
Incidence angle of wing relative to body axis, degrees.

Fraction of leading-edge suction converted to lift in inboard wing region.
\(\left(0 \leq K_{V_{L E}}^{*} \leq 1.0\right)\)
\begin{tabular}{|c|c|}
\hline PROGRAM NOTATION & ALGEBRAIC NOTATION \\
\hline AKVLW2 & \[
\mathrm{K}_{\mathrm{v}_{\mathrm{LE}}^{*}}
\] \\
\hline AKVSW & \[
\mathrm{K}_{\mathrm{v}_{\mathrm{SE}}}^{*}
\] \\
\hline ALPIT & \(\delta_{e}\) \\
\hline AKVLTl & \[
K_{v_{L E}}^{*}
\] \\
\hline AKVLT2 & \[
K_{v_{L E}}^{*}
\] \\
\hline AKVST & \[
\mathrm{K}_{\mathrm{v}_{\mathrm{SE}}}^{*}
\] \\
\hline WLIMIT & w/V \(\left.\right|_{\text {max }}\) \\
\hline
\end{tabular}

\section*{DEFINITION}

Fraction of leading-edge suction converted to lift in outboard wing region. \(\left(0 \leq K_{V_{L E}}^{*} \leq 1.0\right)\)

Fraction of side-edge suction converted to lift on wing. \(\left(0 \leq K_{V_{S E}}^{*} \leq 1.0\right)\)

Incidence angle of tail relative to body axis, degrees.

Fraction of leading-edge suction converted to lift in inboard tail region. \(\left(0 \leq K_{\mathrm{V},}^{*} \leq 1.0\right)\)

Fraction of leading-edge suction converted to lift in outboard tail region. \(\left(0 \leq K_{\mathrm{V} \mathrm{LE}}^{\star} \leq 1.0\right)\)

Fraction of side-edge suction converted to lift on tail. \(\quad\left(0 \leq K_{\text {VSE }}^{*} \leq 1.0\right)\)

Limit on vortex-induced velocities at wing and tail control points. ( \(0 \leq\) WLIMIT \(\leq 1.0\) )

Input preparation.- A discussion of the input variables is presented in this section as an aid in the preparation of the input data deck. If a configuration has one set of lifting surfaces, this is denoted the wing regardless of its axial location on the body and data describing this lifting surface are input as wing data. If there are two lifting surfaces, the set nearest the nose is the wing and the aft set is the tail. For example, in a canard-body-wing configuration, the canard data are input as wing data and the wing data are input as tail data. In the following discussion, necessary geometric relations are illustrated in figure 2.

Item number 1 of the input data deck (fig. l) is a card containing indices specifying particular program options. NHEAD indicates the number of identification cards following in Item 2. NTBL is the number of entries in the table describing the body shape. Note again that only circular cross-sectional bodies are permitted. NPRINT is an index which determines the quantity of output obtained from the program. Typically, this number is zero. For diagnostic purposes, a provision for detailed output
information on lattice slopes, induced velocities, and circulation strengths is provided with NPRINT = 10. An abbreviated output summary is obtained by setting NPRINT = -1. Examples of the output variatons are described further in the sample case output. MPRINT is a special index controlling the quantity of output obtained during vortex trajectory calculations. Typically, MPRINT \(=0\), but if it is greater than zero, the trajectory information is printed as it is computed. The additional trajectory information is useful only if the program fails to compute a trajectory for some particular case, and the additional output may give some clue as to why the calculation failed. This option should only be used after a computational problem has been discovered.

The index NOSEV specifies whether or not there is ( \(N O S E V=1\) ) or is not (NOSEV \(=0\) ) a symmetrical pair of vortices shed from the nose of the configuration. If the nose angle (THETAN) is less than or equal to four degrees, NOSEV is automatically set equal to zero. The next index, NTRIM, determines whether or not a trim calculation is made. No trim calculation is made when NTRIM \(=0\), and when NTRIM \(>0\), a trim condition is calculated. If NTRIM \(=1\), the wing incidence is varied to achieve trim and if NTRIM \(=2\), the tail incidence is varied.

The following five indices are associated with the wing. NCWW is the number of chordwise rows in the wing lattice. The only quantitative restrictions is that \(2 \leq N C W W \leq 10\). MSWW is the number of spanwise columns in the wing lattice, and it must fall within the range \(2 \leq M S W W\) \(\leq 25\). The total number of wing panels ( \(N C W W \times M S W W\) ) must be less than or equal to 100. Some guidance in choosing a proper lattice arrangement for various shape wings is provided in reference 8 . NCAMW specifies if wing camberline slopes are nonzero and must be input (NCAMW = 1) or are zero and need not be input (NCAMW \(=0\) ). The index NPSIW identifies straight leading edges and trailing edges ( \(\mathrm{NPSIW}=0\) ) which requires input of only one value for leading-edge and trailing-edge sweep angles, or broken leading and trailing edges (NPSIW \(=1\) ) which require input of the sweep angles at each spanwise station on the wing. NSEPW specifies the number of leading-edge separation vortices shed from the wing, and it must be either 1 or 2. If NSEPW \(=2\), a special value of YSEPW is required in Item 5.

The provision for multiple separation vortices is included to handle wings with breaks in leading-edge sweep. It has been observed that
leading-edge separation vortices are shed from the wing regions inboard and outboard of the break. A maximum of two leading-edge separation vortices are allowed.

The next five indices in Item 1, NCWT, MSWT, NCAMT, NPSIT, and NSEPT are tail indices analogous to the previous five wing indices and subject to exactly the same restrictions. If no tail is present, all five must be zero.

The last index in Item 1, NBODY, determines whether or not the upwash field around the body is included (NBODY \(\geq 0\) ) in the wing and tail interference calculation or not included (NBODY \(<0\) ). This index is used to aid in determining the magnitude of the body-interference effect and generally should be set equal to zero.

Item 2 is a group of NHEAD cards containing identification information which is printed at the beginning of the output.

Item 3 is a group of NTBL cards describing the body shape. Each card contains an x-station, XBDY, and the corresponding body radius, RBDY. The cards should be in ascending order in \(x\) and there should be less than 100 cards in this item. The program internally sets up its own table of coordinates which is stored in the XBDY and RBDY arrays and is limited to 100 entries. A good rule of thumb to follow in inputting Item 3 is the following.
NTBL < (96-MSWW - MSWT)

Some care is required when describing the body shape via XBDY and RBDY. Linear interpolation is used throughout; therefore, where the body shape is changing rapidly, more points are required. There should be a minimum of five entries in the nose region ahead of the wing and there must be entries at x-stations identically equal to XWLE and XWTE, and XTLE and XTTE if a tail is present. The last entry in the table must be greater than XWTE or XTTE, whichever is greater, by an amount not less than DXI. If the body is made up of a nose section followed by a cylindrical afterbody, there should be two points on the cylinder very close together near the beginning of the cylinder. Points on a cylinder can be spaced large distances apart, but if the cylinder is followed by a section with changing radius, the last two points on the cylinder should be close together.

Item 4 consists of a single card containing \(X M\) and \(Z M\), the coordinates of the center of moments, EMACH, the free-stream Mach number ( \(0 \leq\) EMACH < l.0), and the reference area and reference length, REFS and REFL, respectively. THETAN is the nose semiapex angle in degrees (see fig. 2). The final two variables are associated with the free vortex trajectory calculations. DXOUT is the approximate increment in \(x\) at which trajectory coordinates are stored for use in induced velocity calculations. A lower limit for this variable is about 0.5 percent of the overall length of the body because of storage limitations. Typically, a reasonable value for DXOUT is about one half the maximum radius of the body. DXI is the initial integration interval for the trajectory calculations. The integration package will cut the interval in half if necessary for reasonable accuracy, and this halving process can occur ten times before the program automatically terminates execution with an appropriate message. If DXI is made too large, the program will stop because of unacceptable accuracy, and if DXI is made too small, the running time will become large. Experience has indicated that a value of DXI between 2 and 5 percent of the body length will work for most cases. Under rare circumstances when two vortices get very close together or when a vortex gets very near the wing or body, a smaller value of \(D X I\) may be required.

Item 5 contains geometric information for the wing. XLEW is the distance from the nose of the body to the intersection of the wing leading edge with the body. XTEW is the location of the trailing-edge intersection with the body. The wing hinge line at the wing-body juncture is located by the next two variables, XHLW and ZHLW. If an experimental center of pressure location is to be used for moment calculations, XCPW must contain the appropriate value. Otherwise, the program computes a center of pressure and XCPW must be identically zero. BS 2 W is the wing semispan measured from the centerline of the body. RAVGW is the average body radius in the vicinity of the wing. YSEPW is the \(y\)-station at which the wing is assumed broken for purposes of having two leading-edge separation vortices. If NSEPW \(=1\), then YSEPW must be equal to BS \(2 W\). If NSEPW \(=2\), YSEPW must be given some value greater than RAVGW and less than BS \(2 W\) and the chosen value should coincide with one of the breaks in the lattice layout. That is, YSEPW will be equal to one of the values of YW to be described in Item 7. It is advised that there be at least three values of YW on either side of YSEPW to achieve reasonable accuracy in the separation vortex strength and position calculation.

Wing parameters are contined in Item 6. The first variable PHIW, is the dihedral angle in degrees for the entire wing. No breaks in dihedral are permitted. The second variable, PSIWLE(l), is the sweep angle, in degrees, of the leading edge at the wing-body juncture. If the leading edge has no breaks in sweep (NPSIW \(=0\) ), this value is the only sweep angle associated with the leading edge. PSITEW(1) is the sweep angle, in degrees, of the trailing edge at the wing-body juncture. If there are no breaks in sweep, it must be the trailing-edge sweep angle. Remember that a swept forward trailing edge has a negative sweep angle. The last variable in this item, CMTEST, is the convergence tolerance on pitching moment for a trim calculation (NTRIM \(>0\) ). A typical value for this quantity is about 1 percent of the magnitude of the untrimmed pitching moment. If it is made too small, the computer time required to converge to a trimmed solution can be very large.

Item 7 is a list of the spanwise locations, \(Y W\), of the outboard side of each column of vortices. These quantities are dimensional spanwise distances measured from the body centerline. There are MSWW values input. The last value must be equal to the wing semispan, BS 2 W . These spanwise columns forming the wing lattice need not be equally spaced, but for convenience in preparing input, it is quite acceptable to use an equal spacing along the wing.

Items 8 and 9 are optional and are included in the input deck only if there are breaks in sweep of the wing leading and trailing edges (NPSIW >0) Item 8 includes the leading-edge sweep angle, in degrees, of each column of vortices from the wing-body juncture to the tip. If the wing sweep angle is continuously changing as in an ogee wing, the sweep angle at the center of each column of the lattice should be used.

Item 9 contains the wing trailing-edge sweep angle corresponding to the leading-edge angles in Item 8. If the trailing edge is unbroken and has constant sweep, the values must still be input even though they are all the same.

Item 10 is also optional and is included only if the wing is cambered or twisted (NCAMW \(>0\) ). If such is the case, ALPHLW, the tangent of the local camber angle \(\alpha_{\ell}\) of each element of the lattice is input. There are MSWW cards corresponding to the number of spanwise columns forming the lattice, one card for each column. The camber angles on each card
run from leading edge to trailing edge with NCWW values per card. If there are more than eight chordwise rows, the ninth and tenth values follow on the next card. The ALPHLW value for the most forward area element in each column must start on a new card.

Values of ALPHLW are obtained as follows. Consider the sketch in figure 3 which shows the cambered and twisted section of the lifting surface at some spanwise station. At point \(P\), corresponding to a control point on the wing mean surface, a tangent to the wing mean surface is constructed, which makes an angle \(\alpha_{l}\) with the wing root chord. The positive sense of \(\alpha_{\ell}\) is shown in this figure. The input value required is \(A L P H L W=\tan \alpha_{\ell}\). Near the leading edge of the section shown in figure \(3, \alpha_{\ell}\) is negative. Item 10 completes the input description of the wing.

If a tail or aft lifting surface is not present on the configuration \((M S W T=0)\), the next portion of input is Item 17 which specifies angle of attack and other nongeometric-related parameters. If a tail is present (MSWT \(>1\) ), Items 11 through 16 are required input. These items specifying the tail geometry are analogous to the equivalent wing parameters in Items 5 through 10 and the rules and restrictions regarding preparation of tail input are the same as those described above for the wing.

Item 17 is a group of cards, one card for each run, which specifies the variables which are considered changeable for a given geometric configuration. The first entry on the card is the index, NDEX, which is simply used to control the stacking of additional cases. NDEX \(=1\) on each card represents a new angle of attack or incidence angle condition. If \(N D E X=0\), the card is ignored and the program returns to read in a new case beginning with Item 1 . Thus, a blank card is used to separate different cases. When NDEX \(\neq 0\), the next value on the card is the configuration angle of attack in degrees, ALPHAD, taken as the angle between the axis of the body and the free-stream velocity. The second quantity is the incidence angle of the wing root chord in degrees, ALPIW. Its sense is such that a positive incidence is a leading edge up condition. The next three variables are the \(K_{v}^{*}\) factors which relate the actual realized vortex lift from the leading and side edges to that which is theoretically available. AKVLW1 is the fraction of leading-edge separation vortex lift which is obtained on the inboard portion of the wing if NSEPW \(=2\) or on the entire wing if NSEPW \(=1\). AKVLWl is a number between
zero and one and is generally geometry dependent. Its value can be obtained for sharp-edged delta wings from the correlation curves in figure 4. The source of figure 4 is described in detail in reference 1. The correlation curve can be used to get AKVLWl for any swept wing, but since figure 4 was obtained for sharp-edged delta wings specifically, some judgement is necessary when other wings are considered. Instead of using the actual wing aspect ratio for nondelta wings, it is possible that some equivalent aspect ratio given by the delta wing expression
\[
\begin{equation*}
A R=\frac{4}{\tan \Lambda_{L E}} \tag{1}
\end{equation*}
\]
would give a more reliable value. The factor is included as an input variable so that its effect can easily be examined by making a series of runs with AKVLWl varied between zero and one.

If a wing is broken into two leading-edge vortex regions (NSEPW \(=2\) ), then AKVLW2 is the \(\mathrm{K}_{\mathrm{v}_{\mathrm{L}}}^{*}\) factor which applies to the outboard portion of the wing. It is acceptable for AKVLWl and AKVLW2 to be equal. In the case of wings with breaks in sweep, the appropriate values can be obtained from figure 4 using an effective aspect ratio in each region as calculated by equation (1). At the present stage in the development of program SUBSON, there is no reliable method of choosing the correct \(K_{V_{L E}}^{*}\) factor. Many more data comparisons for double-delta wings or variable sweep wings should be made for this purpose.

For unswept leading edges, the vortex lift from the leading edge is usually small. In this case, the full amount of vortex lift should be retained and both AKVLWl and AKVLW2 should be unity. For a wing with nonzero tip chord, the side-edge suction lift is generally very small compared to the potential lift except for very low-aspect-ratio wings. Comparisons with rectangular wing data indicate that the side-edge factor, AKVSW, should be unity at all times. When the tip chord is zero, such as on a delta wing, AKVSW should be identically zero.

The next four variables, ALPIT, AKVLT1, AKVLT2, and AKVST are the corresponding tail parameters. They fall under the same rules and guidelines set up for the respective wing parameters. If no tail is present, all four values should be set equal to zero.

The final quantity on this card is WLIMIT, the maximum allowable vortex-induced velocity nondimensionalized by free-stream velocity. The purpose of this variable is to limit the magnitude of the vortex-induced velocities on the wing or tail. In the course of program development, a canard-wing-body configuration developed a lift curve which appeared to exhibit a discontinuity around \(\alpha=8^{\circ}\). Close investigation showed that this occurred when the canard trailing-vortex trajectory abruptly changed from passing beneath the wing to passing over the wing. At this point, the vortex-induced velocities changed character rapidly and, because of the close proximity of the vortex to the wing, the velocities were large. This created very large local angles of attack on the wing, and the vortexlattice scheme predicted large changes in wing loading. This, of course, is an unrealistic situation because'a true viscous vortex does not behave as a potential vortex and induce infinite velocities at its center. For this reason a limit was introduced which arbitrarily sets any vortexinduced velocity greater than WLIMIT, equal to WLIMIT.

Generally, WLIMIT should be set equal to l.0. If, in the process of running the program, unusual variations in the lift or pitching moment with angle of attack occur which can be attributed to unrealistic vortexinduced interference, WLIMIT can be used to limit the magnitude of the large induced velocities causing the problem. A value of \(\mathrm{WLIMIT}=0.1\) has been used in some specific examples to reduce the apparent discontinuity in the predicted lift and moment curves and resulted in good agreement with experiment.

This discussion is not meant to suggest that an arbitrary velocity limit will cure the problems with the near flow fields of potential vortices. It is simply included to note that a simple, approximate fix is available. If WLIMIT \(=0.0\), the effect of the free vortices on the lifting surfaces is completely eliminated.

The above discussion includes all the input required for a typical run. The sample cases in the following section cover the options available in the program.

Sample cases.- Some sample cases are now presented to illustrate the preparation of input decks for various types of configurations. The airplane
configurations chosen for these examples are the canard-wing-body combinations of reference 6 shown in figure 5 and the wing-body-tail configuration from reference 11 shown in figure 6.

In figure 7 (a), the complete input deck for a canard-wing-body configuration is shown for sample case 1. The geometry corresponds to the sketch in figure 5 and this sample case considers the presence of both lifting surfaces. This series runs is for four angles of attack ( \(\alpha=4^{\circ}\), \(8^{\circ}, 12^{\circ}\), and \(16^{\circ}\) ) with no canard deflection ( \(\delta_{w}=0^{\circ}\) ) and five angles of attack \(\left(\alpha=0^{\circ}, 4^{\circ}, 8^{\circ}, 12^{\circ}\right.\), and \(16^{\circ}\) ) with positive canard deflection ( \(\delta_{w}=10^{\circ}\) ). Sample case 1 requires approximately 720 seconds on the IBM 360/67 computer; however, this time is much less than would be required if each run were made individually. A single run of this type requires approximately 100 seconds.

The input deck for the second sample case is shown in figure 7 (b). This deck is for the same configuration examined in the case above, but with the canard removed. In this case, the leading- and trailing-edge sweep angles are input at each spanwise station to illustrate the procedure for a wing with breaks in sweep.

Sample case 3 is the wing-body-tail combination shown in figure 6. This input deck specifies a minimum amount of output and a trim calculation with the tail incidence variable. Only one angle of attack is specified because of the uncertainty in the amount of time required to converge on a trimmed solution. This particular run requires approximately 100 seconds on the IBM 360/67. Note that the vortex-induced velocity is limited to 0.1 by the variable WLIMIT on the last card. This was necessary because of the large effect the wing shed vorticity had on the tail loading. The relative position between the trailing vortices and the tail was such that small changes in tail angle resulted in large nonlinear changes in tail loading which prevented convergence on a trim condition.

\section*{Description of Output}

The output produced by the SUBSON computer program for sample case 1 is shown in figure 8. The first page of output from the program, figure 8 (a is a tabulation of the input data in Items 1 and 2 of figure 1 . The next page of output, figure \(8(\mathrm{~b})\), is a summary of the geometry of the configuration by component. The first quantities at the top of the page are the
first angle of attack to be considered, the Mach number, and beta. The next two items are the reference area and the reference length from Item 4 of figure 1. If the wing and /or tail have alternate center-of-pressure locations input in Items 5 and 11 of figure \(l\), these are printed here. If a trim calculation is requested (NTRIM \(>0\) ), the value of CMTEST specified in Item 6 of figure 1 is printed here. These are followed by the geometry of the wing.

The wing quantities which are tabulated are:


The following block of data contains the wing dihedral angle in degrees and the leading-edge and trailing-edge sweep angles at the various \(y\) stations. The first entry denoted \(Y(R T)\) represents the wing-body juncture and the corresponding initial sweep angles of the wing leading and trailing edges. The following entries under the heading \(Y\) (WING) represent the \(Y\) stations defining the spanwise lattice layout on the wing. The sweep angles at these stations are noted in the next two columns.

The same quantities are tabulated for the tail surface if one is present. The following quantities are listed for the body.
OUTPUT
NOTATION

THETA

FINENESS

R(BASE)
AVERAGE RADIUS WING

AVERAGE RADIUS TAIL

CENTER OF MOMENTS X

CENTER OF MOMENTS Z
DXI
DXOUT
X

R

S

DR/DX

ALGEBRAIC
NOTATION
\(\theta_{\mathrm{N}}\) (Item 4)
\(X_{L E} / r_{N}\)
\(r_{N}\)
\(\mathrm{r}_{\mathrm{avg}}^{\mathrm{w}}\)
\(\mathrm{ravg}_{e}\)
\(x_{m}\)
\(z_{m}\)
\(\left.\begin{array}{c}\Delta x \\ -\end{array}\right\}\) Item 4
x
r
\(s_{w}\) or \(s_{e}\)
\(d r / d x\)

This concludes the general geometric description of the configuration. This information is output once at the beginning of each case. The following output is dependent on the information input on each card of Item 17; that is, the angle of attack, incidence angles, \(K_{v}^{*}\) factors, and induced velocity limit.

Figure \(8(c)\) is the first page of output for each run within the series of runs making up sample case 1 . The first line summarizes the information input in Item 17 as follows:
\begin{tabular}{ll}
\begin{tabular}{c} 
OUTPUT \\
NOTATION
\end{tabular} & \begin{tabular}{l} 
ALGEBRAIC \\
NOTATION
\end{tabular} \\
\hline AL PHA & \(\alpha\) \\
M & \(M\)
\end{tabular}
\begin{tabular}{|c|c|}
\hline OUTPUT & ALGEBRAIC \\
\hline NOTATION & NOTATION \\
\hline INCIDENCE WING & \(\delta_{w}\) \\
\hline INCIDENCE TAIL & \(\delta^{e}\) \\
\hline WING KVLE* & \[
\mathrm{K}_{\mathrm{v}_{\mathrm{LE}}^{\mathrm{w}}}^{*}
\] \\
\hline WING KVSE* & \[
\mathrm{K}_{\mathrm{v}_{\mathrm{SE}}}^{*}
\] \\
\hline TAIL KVLE* & \[
\mathrm{K}_{\mathrm{v}_{\mathrm{LE}}}^{*}
\] \\
\hline TAIL KVSE* & \[
\mathrm{K}_{\mathrm{v}_{\mathrm{SE}}}^{*}
\] \\
\hline W/V LIMIT & \((\mathrm{w} / \mathrm{V})_{\text {max }}\) \\
\hline
\end{tabular}

The next block of output on this page is a summary of the strength and position of the right-hand vortex (if present) of the symmetrical pair of vortices shed from the nose of the body. The last entry, \(X S / R B\), is the body-vortex separation location.
\begin{tabular}{ll} 
OUTPUT & ALGEBRAIC \\
NOTATION & NOTATION \\
GAM/2*PI*V*RB & \(\frac{\Gamma_{B}}{2 \pi V r_{N}}\) \\
\(Y / R B\) & \(y_{B} / r_{N}\) \\
\(Z / R B\) & \(z_{B} / r_{N}\) \\
\(X S / R B\) & \(x_{S} / r_{N}\)
\end{tabular}

The following block of output is the induced Beskin upwash at the wing control points \((x, y, z)\) due to the presence of the body. The induced velocities, \(V / V\) (INF) and \(W / V(I N F)\), expressed as a fraction of the freestream velocity, are positive in the positive \(y\) - and \(z-d i r e c t i o n s, ~ r e s p e c-\) tively. A summary of the nose-vortex position at the wing leading edge follows. The next block of data are the velocities induced at the same
wing control points by the vortex pair shed from the nose of the body. These velocities have the same positive sense as the body-induced upwash above. The final block of data in figure \(8(c)\) is the total induced velocity at each control point.

The next page of output, figure \(8(\mathrm{~d})\), contains the results from the lifting-surface calculations for the wing in a wing-alone coordinate system. Under FLOW CONDITIONS, the angle of attack is the incompressible angle of attack of the wing, including incidence. The next printed information is the lattice layout followed by the heading REFERENCE QUANTITIES. Under this heading, the actual exposed planform area of the wing and the average chord are listed. The aerodynamic coefficients on this page are based on these reference quantities.

The following block of information contains wing geometry for the wing alone. If the Mach number is nonzero, the geometry is for the wing in the incompressible plane.

The last half of this page contains the predicted aerodynamic characteristics of the wing in the presence of the body and other external interference velocity fields. Most of these quantities are self-explanatory and will not be described herein. It should be noted that in the coordinate system for the wing alone, \(x_{w}\) is measured from the leading edge of the root chord, positive forward. The same positive direction is taken for all \(x_{w}\) direction coefficients. A few of the more important coefficients are defined as follows:
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
OUTPUT \\
NOTATION
\end{tabular} & ALGEBRAIC NOTATION \\
\hline CNP & \[
\mathrm{C}_{\mathrm{N}_{\mathrm{W}(\mathrm{~B}), \mathrm{p}}}
\] \\
\hline CNV & \[
\mathrm{C}_{\mathrm{N}_{\mathrm{W}(\mathrm{~B})}, v_{\mathrm{LE}}}
\] \\
\hline CNVS & \[
\mathrm{C}_{\mathrm{N}_{\mathrm{W}(\mathrm{~B})}, \mathrm{v}_{\mathrm{SE}}}
\] \\
\hline \(\mathrm{CL} * \mathrm{C} /(2 * B)\) & \[
\frac{c c_{\ell}}{2 b}
\] \\
\hline CSUC*C/(2*B) & \[
\frac{c c_{s}}{2 b}
\] \\
\hline
\end{tabular}
OUTPUT
NOTATION

KVLE

\section*{KVSE}

GAM/V2PI

ALGEBRAIC
NOTATION

 \(\frac{\Gamma}{2 \pi V}\)

The last line of figure \(8(d)\) contains the predicted leading-edge and side-edge vortex-lift constants, \(\mathrm{K}_{\mathrm{V}_{\mathrm{LE}}}\) and \(\mathrm{K}_{\mathrm{v}_{\mathrm{SE}}}\), respectively. Since these values include effects of external interference on the wing, they are useful only in cases of wings alone with no interference effects included. The last two items are the lateral position and strength of the trailing vortex and the leading-edge separation vortex at the wing trailing edge.

Figure \(8(e)\) is headed by a summary of the strengths and positions of the vortices shed from the configuration ahead of the wing trailing edge. The pairs of vortices are listed in the following order. Vortex 1 is the right-side body vortex shed from the nose. Vortex 2 is the trailing vortex shed from the wing. Vortex 3 is the leading-edge separation vortex shed from the wing. If more than one separation vortex is requested, vortex 3 is the vortex associated with the inboard region and vortex 4 is shed from the outboard region. If a vortex is missing for any reason, all following vortices are moved up in the table. For example, if no vortices are shed by the nose, vortex \(l\) becomes the trailing vortex shed by the wing, and so on. The remainder of figure \(8(e)\) is the induced velocities at the tail control points. These velocities are analogous to the induced velocities on the wing shown in figure \(8(c)\).

Figure \(8(f)\) contains calculated results for the tail surface. All the quantities on this page are analogous to those described for the wing in figure \(8(\mathrm{~d})\). The last entry on this figure is a summary of the strengths and positions of all the vortices in the field just aft of the tail trailing edge. The first group of vortices are the same as described in connection with figure \(8(e)\). The second group of vortices are defined as follows. Vortex 4 is the trailing vortex corresponding to the potential lift on the tail. Vortex 5 is the leading-edge separation vortex shed from the tail. If multiple vortices are shed from the tail leading edge, this
vortex would be shed from the inboard tail region and vortex 6 would be shed from the outboard tail region.

The next page of output, figure \(8(\mathrm{~g})\), is a summary page of the force coefficients, pitching-moment coefficients, and centers of pressure of each component of the configuration and of the total configuration. The coefficients for the individual components are described in Table I. The total configuration variables are defined as follows:
\begin{tabular}{ll}
\begin{tabular}{l} 
OUTPUT \\
NOTATION
\end{tabular} & \begin{tabular}{l} 
ALGEEBRAIC \\
NOTATION
\end{tabular} \\
CN & \(C_{N}=\frac{N}{q S}\) \\
XCP & \(C_{m}=\frac{M}{q S \ell}\) \\
\(C L\) & \(\bar{x}_{C P}=x_{m}-\frac{C_{m}}{C_{N}} \ell\) \\
\(C D I\) & \(C_{L}=\frac{L}{q S}\) \\
\(C A\) & \(C_{D_{i}}=C_{L}\) tan \(\alpha\) \\
\(C D I / C L * * 2\) & \(C_{A}=\frac{A}{q S}\) \\
& \(C_{D_{i}} / C_{L}^{2}\)
\end{tabular}

The last page of output for this run, figure \(8(h)\), contains a summary of the trajectories of the shed vortices. At the top of the page the vortices are identified and their strengths listed. This is followed by blocks of output, one block for each x-station, describing the local crossflow geometry of the configuration and the position of the right-side vortices. The \(x\) stations of each block of results are approximately DXOUT apart. Notice that the trajectory calculation starts at the wing leading edge with a pair of body vortices. As the calculation moves downstream, other vortices are shed and added to the calculation. The trajectory calculation is carried downstream to a point aft of the tail trailing edge. For purposes of saving space in figure 8, only selected portions of the trajectory calculation is presented herein. The variables in each block are defined as follows:
\begin{tabular}{|c|c|}
\hline OUTPUT & ALGEBRAIC \\
\hline NOTATION & NOTATION \\
\hline X & \(\mathbf{x}\) \\
\hline DX & \(\Delta \mathrm{x}\) \\
\hline A & a \\
\hline S & \(s_{w}\) or \(s_{e}\) \\
\hline RO & \(r_{0}\), transformed circle radius \\
\hline DA/DX & \(d a / d x\) \\
\hline SIGMA (REAL) & Y \\
\hline SIGMA (IMAG) & \(z\) \\
\hline
\end{tabular}

This completes the output for one card in Item 17 of the input deck. Additional runs will repeat the output of figures \(8(c)\) through ( \(h\) ). The above set of output obtained with NPRINT \(=0\) is a considerable amount of output for production runs; therefore, an optional set of output can be obtained by setting NPRINT \(=-1\). In this case, the complete output consists of figures \(8(a),(b)\), and ( \(g\) ), with some shed vortex positions and strengths added.

Some extra output over and above that shown in figure 8 can be obtained when NPRINT \(=\) 10. This additional output is useful only for diagnostic purposes and is not described herein. This output is labeled and the user should have no trouble interpreting the results.

\section*{Program Listing}

The SUBSON computer program consists of the main program and fifteen subroutine subprograms. Each source deck is identified in columns 73 through 80 by a four-character identification and a three-digit number sequencing the cards within that deck. The program listing is given on the following pages. The table below will act as a table of contents for the listing.
\begin{tabular}{lcr} 
PROGRAM & IDENTIFICATION & PAGE N \\
MAIN & SBO1 & 97 \\
LATTUS & SBO2 & 104
\end{tabular}
\begin{tabular}{lcc} 
PROGRAM & IDENTIFICATION & PAGE NO. \\
SHAPE & SB03 & 104 \\
BDYVTX & SB04 & 105 \\
CNVNZ & SB05 & 105 \\
TRJTRY & SB06 & 105 \\
FCT & SB07 & 106 \\
HPCG & SB08 & 106 \\
OUTP & SB09 & 108 \\
EXTVEL & SB10 & 109 \\
VTXIAT & SB11 & 109 \\
LOAD1 & SB12 & 110 \\
INVERS & SB13 & 113 \\
INFWW & SB14 & 113 \\
ZVTX & SB16 & 114 \\
CNVTX & 114
\end{tabular}








input tangeti of lucal tajl angleb due to camber and thiat
 betansort (i, oeemacmatmachs
lay out ming vuriex lattice geumetay SAPANmeBSZN-RAVG*




 CAWMACRMWABETA
CTWMECTMM*BETA


541 IF (DxCUT.LI.DXD) DXUUTBOXI
\(\begin{array}{ll}c \\ c & \text { output ming thahactenisilics } \\ c\end{array}\)
















MMIt \((0.709)\)
MRITE \((6.708)\) J.MV(J)

云


\section*{}

\section*{}

※
m

\section*{}

1J. 6E. 100 50 00
\(\square\)
1N-1
-

ORODY(NTGL+1)=DRBOY(NTHL)


\section*{}

QUTPUT YOOY CMARACTERISTICS
C WRIPE (O, TSE)TMETAN,FINE, RUABE, RAVGM,RAVGT, XM, ZH, DKI, OXOUT

c beginning of calculations depenotet on angle of attack (alphad)





 OLFLHMINE VERIICAL LICATINI. UF


 If GYYMARAVGM
usu

\(\stackrel{\text { ñ }}{ }\)

compute trajectory of nose vurtty and in ing vurtices past tail

ジ
unu

IF (NHIN \((0,111)\)
WRITI
WRITE \((0,712)(1,6 A M(1), Y 6(1), 2 G(1), 1=1, N V)\) WRITE (0,712)
XINITMXI
TITL MNEAD(2)
IF
 IF (XF,LE, XI \()\) GU 1050
OXIMM










e SET UP TUTAL induced Velocity Fiklu on tail

\section*{}

\section*{}


-EEE (J) Min
 104 coninuve
c conpute mormal fonce ano mument contribution of aftersoay If (nant Le, 0) xLETEXHOY(NTHL)



150 If (MSNTMLEOS) LO TO So
c Tail cmanacteristics


\(\stackrel{n}{*}\)





TMABIAM(ALPMAU/KAD)
CSAECUS(ALHMAU/KAD)
WHITE (0.103)
WNITE ( 0,137 ) ALPMAD,EMAEM,ALPINAALPII,AKVLMI, AKVSM,AKVLTI,AKVST
 ARITE \((0,103)\)
WRITE \((0,113)\) WITE ( 0,114 ) MEAUCT)
IIACONPCgA
IICCNAPACBA
LISCONVACBA
OIICLITMA
\(\$\)


cDzeclezima
 CLECL*CLI*CLZ*CL
CLIECNAGCBA

WRITE (O,TIA) CNA,CNA, XGPA,CLI,CDI RIIE ( 0,114 ) MEAD(2)


+TMA
重
CLECLOCLIACL2+CL3



号
 WITE (G,III) MEAD(6),CNBTVS,CMGTVS, XCPBTS,CLS,CO QITE (O.11O) CATOY,CMTUT,XGPTUT,CL,CUI, CATOT









NTONTBLHE
DO 10 JENTHLONT

1F (xexsor(J)) 12,13,10 10 CONTINUE
II WRITE \((6,100) \quad x \in D Y(K), x\)
SPOP
SUSMOUTINE SNAME \((X, A, S, 0 S)\)
\({ }_{C}^{c}\) TABLE LOUKOUN OF BUOY COOROINATES
\(\bullet\)











\section*{
}







C INCREMEMT M IS IESTEO BY MEANS UF BISECTION

\begin{tabular}{c} 
ISnaz \\
60 \\
\hline 0
\end{tabular}

\section*{}

 13 Na
\(60 \quad 100\) c computation of test value delt







\(\begin{array}{ll}\text { ISWFA } \\ 60 & 100\end{array}\)

21 mal
CALL
IF (MM, GT, 1) RETUHN
CALL UUTP(X,Y, OERY, IMLF, NUIT, PRMMI)

\(\boldsymbol{\omega}\)











SUBNUUIINE EXTVEL (N,V,A,SIGMA,GAM,S,V)
compute velucity fitlo induceio or viontex pajhs and tmfin images







\section*{}
> \(03=00^{\circ}\)
CONTINUE






 COMMON NLI' CIA, SLUCO, SECLIF, SECSUC, SECSF, AECTHR, BMPMLEE,BNPWTE








 31 :OHMAT ( \(30 X, 1\) SHAEAN SUHFACE/3X,1HJ, OX, IHX, 10 SO FORMAT ( \(12 X 2\) PTMLIFII'GG BURFACE CALCULATION )


0






\footnotetext{










CAL4 INFi,


uuuu
-ロ



 Sapup(NN



(1)










\section*{
}







\footnotetext{
subhuutine <vix (aldmadeps.alas)
c(impiit ventilal positiua ub ing sepatation unktex uImenalúts act( \(H\) ), ozt( \(B\) )


}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline COMPONENTS & TYPE & NORMAL-FORCE COEFFICIENT & \[
\begin{gathered}
\text { LIFT } \\
\text { COEFFICIENT }
\end{gathered}
\] & PITCHING-MOMENT COEFFICIENT & CENTER OF PRESSURE LOCATION & AXIAL-FORCE COEFFICIENT \\
\hline NOSE & \begin{tabular}{l}
Potential \\
Viscous
\end{tabular} & \[
\begin{aligned}
& C_{N_{N, p}} \\
& C_{N, ~}{ }_{N}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{C}_{\mathrm{L}_{\mathrm{N}, \mathrm{p}}} \\
& \mathrm{C}_{\mathrm{L}_{\mathrm{N}, \mathrm{v}}}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{c}_{\mathrm{m}_{\mathrm{N} ; \mathrm{p}}} \\
& \mathrm{c}_{\mathrm{m}_{\mathrm{N}, \mathrm{v}}}
\end{aligned}
\] & \[
\begin{aligned}
& \bar{x}_{N, p} \\
& \bar{x}_{N, v}
\end{aligned}
\] & \(\qquad\) \\
\hline WING IN PRESENCE OF BODY & \begin{tabular}{l}
Potential \\
Viscous
\end{tabular} & \[
\begin{aligned}
& C_{N_{W(B)}, p} \\
& C_{N_{W(B), ~}}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{C}_{\mathrm{I}_{\mathrm{W}(B), p}} \\
& \mathrm{C}_{\mathrm{I}_{\mathrm{W}(B), \mathrm{B}}}
\end{aligned}
\] & \[
\begin{aligned}
& c_{m_{W(B)}, p} \\
& c_{m_{W(B)}}
\end{aligned}
\] & \[
\begin{aligned}
& \bar{x}_{W(B), p} \\
& \bar{x}_{W(B), v}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{c}_{A_{W(B), p}} \\
& c_{A_{W(B)}}, v
\end{aligned}
\] \\
\hline BODY IN PRESENCE OF WING & \begin{tabular}{l}
Potential \\
Viscous
\end{tabular} & \[
\begin{aligned}
& c_{N_{B}(w), p} \\
& C_{N_{B}(w), v}
\end{aligned}
\] & \[
\begin{aligned}
& C_{L_{B(W), p}} \\
& C_{L_{B(W), v}}
\end{aligned}
\] & \[
\begin{aligned}
& c_{m_{B}(w), p} \\
& c_{m_{B}(w), v}
\end{aligned}
\] & \[
\begin{aligned}
& \bar{x}_{B(W), p} \\
& \bar{x}_{B(w), v}
\end{aligned}
\] &  \\
\hline AFTERBODY & ------- & \(\mathrm{C}_{\mathrm{N}_{\mathrm{A}}}\) & \({ }^{c} L_{\text {A }}\) & \(\mathrm{c}_{\mathrm{m}_{\text {A }}}\) & \(\bar{x}_{\text {A }}\) & -------- \\
\hline TAII IN PRESENCE OF BODY & \begin{tabular}{l}
Potential \\
Viscous
\end{tabular} & \[
\begin{aligned}
& \mathrm{C}_{\mathrm{N}_{\mathrm{T}(\mathrm{~B}), \mathrm{p}}} \\
& \mathrm{C}_{\mathrm{N}_{\mathrm{T}(\mathrm{~B}), \mathrm{v}}}
\end{aligned}
\] & \[
\begin{aligned}
& c_{L_{T(B)}, p} \\
& c_{L_{T(B), V}}
\end{aligned}
\] & \[
\begin{aligned}
& c_{m_{T}(B), p} \\
& c_{m_{T(B)}}
\end{aligned}
\] & \[
\begin{aligned}
& \bar{x}_{T(B), p} \\
& \bar{x}_{T(B), v}
\end{aligned}
\] & \[
\begin{aligned}
& C_{A_{T}(B), p} \\
& C_{A_{T}(B), v}
\end{aligned}
\] \\
\hline BODY IN PRESENCE OF TAIL & \begin{tabular}{l}
Potential \\
Viscous
\end{tabular} & \[
\begin{aligned}
& \mathrm{C}_{\mathrm{N}_{\mathrm{B}(\mathrm{~T}), \mathrm{p}}} \\
& \mathrm{C}_{\mathrm{N}_{\mathrm{B}(\mathrm{~T}), \mathrm{v}}}
\end{aligned}
\] & \[
\begin{aligned}
& C_{L_{B(T), ~}} \\
& C_{L_{B(T)}}
\end{aligned}
\] & \[
\begin{aligned}
& c_{m_{B(T)}, p} \\
& c_{m_{B(T), v}}
\end{aligned}
\] & \[
\begin{aligned}
& \bar{x}_{B(T), p} \\
& \bar{x}_{B(T), v}
\end{aligned}
\] & ---------- \\
\hline COMPLETE CONFIGURATION & ------- & \(\mathrm{C}_{\mathrm{N}}\) & \(C_{L}\) & \(C_{m}\) & \(\overline{\mathrm{x}}\) & \(\mathrm{C}_{\text {A }}\) \\
\hline
\end{tabular}
Table I.- Summary of force and moment coefficient notation.

FORMAT (20A4); NHEAL cards
FORMAT (2F10.5); NTBL cards





ITEM 2
ITEM 3
ITEM 4
ITEM 5
ITEM 6
ITEM 7
ITEM 8

Item 9

If \(\operatorname{NCAMW}=0\), go to Item 11 .
ITEM 10 FORMAT (8F10.5); MSWW cards


\section*{FORMAT (I2,F6.2,9F8.3)}

(b) Page 2.
Figure 1.- Concluded.


Figure 2.- Geometric nomenclature for SUBSON program.


Figure 3.- Mean surface detail for a wing with camber, twist, and dihedral.


Figure 4.- Correlation curve for vortex-lift ratio on delta wings in incompressible flow.



Figure 6.- Wing-body-tail configuration for sample case 3.


(b) Sample case 2.

Figure 7.- Continued.

(c) Sample case 3.

Figure 7.- Concluded.

ECARDI
NHFAD \(=2\) NTBL \(=35\) NPRINT \(=0\) MPRINT \(=0\) NOSEV \(=1\) NTRIM \(=0\) NCWW= 4 MSWW= 10 NC AMW=0 NPSIW= 0 NSFPW = 1 NCWT \(=8\) MSWT \(=10\) NCAMT \(=0\) NPSIT \(=0\) NSEPT \(=1\) NPODY \(=0\) \& FND
(a) Page 1.

Figure 8.- Sample case from SUBSON program.


Figure B.- Continued.


VIIDCITY INDUCED AT SPFCIFIED FIELO POINTS ON WING IBESKIN.
\begin{tabular}{|c|c|c|c|c|}
\hline X & \(Y\) & 2 & V/V(INF) & W/V (INF) \\
\hline 9.334 & 1.230 & 0.289 & 7.3907E-02 & 1.4R45E-01 \\
\hline 11.247 & 1.230 & -0.043 & -1.5989E-02 & 2.2914E-01 \\
\hline 13.159 & 1.230 & -0.375 & -1.4927E-01 & 2.2207E-01 \\
\hline 15.07 ? & 1.730 & -0.707 & -2.3183E-01 & 1.3501E-01 \\
\hline 9.984 & 1.630 & 0.176 & 2.3220E-02 & 1.0602F-01 \\
\hline 11.697 & 1.630 & -0.121 & -2.0400E-02 & \(1.3666 \mathrm{E}-01\) \\
\hline 13.400 & 1.630 & -0.419 & -7.7487E-02 & 1.4100F-01 \\
\hline 15.12? & 1.630 & -0.716 & -1.2603E-01 & 1.1584E-01 \\
\hline 10.634 & 2.030 & 0.064 & \(4.8533 \mathrm{E}-03\) & 7.7436E-02 \\
\hline 12.147 & 2.030 & -0.199 & -1.8259E-0? & 9.2183F-02 \\
\hline 13.659 & 2.030 & -0.462 & -4.6810E-02 & 9.7566E-02 \\
\hline 15.17? & 2.030 & -0.724 & -7.4273E-02 & \(9.0812 \mathrm{E}-02\) \\
\hline 11.28\% & 2.430 & -0.049 & -7.4004E-03 & 5.9141E-02 \\
\hline 12.597 & 2.430 & -0.277 & -1.5569E-02 & \(6.7343 \mathrm{E}-02\) \\
\hline 13.909 & 2.430 & -0.505 & -3.1219E-02 & 7.1841E-02 \\
\hline 15.222 & 2.430 & -0.733 & -4.7004E-02 & 7.0810E-02 \\
\hline 11.834 & 2.830 & -0.162 & -5.4094E-03 & 4.7053E-02 \\
\hline 13.046 & 2.830 & -0.355 & -1.3267E-02 & 5.1996E-02 \\
\hline 14.159 & 2.830 & -0.549 & -2.2243E-02 & 5.5218E-02 \\
\hline 15.272 & 2.830 & -0.747 & -3.1525E-02 & 5.6004E-02 \\
\hline 12.584 & 3.230 & -0.275 & -6.6405E-03 & 3.8717E-02 \\
\hline 13.496 & 3.230 & -0.433 & -1.1426E-02. & \(4.1803 \mathrm{E}-02\) \\
\hline 14.409 & 3.230 & -0.592 & -1.6674E-02 & 4.3960E-02 \\
\hline 15.32 ? & 3.230 & -0.750 & -2.2157E-02 & 4.5106E-02 \\
\hline 13.233 & 3.630 & -0.388 & -7.0755E-03 & 3.2734E-02 \\
\hline 13.946 & 3.630 & -0.517 & -9.9609E-03 & 3.4635E-02 \\
\hline 14.659 & 3.630 & -0.635 & -1.2992F-02 & 3.5975E-02 \\
\hline 15.777 & 3.630 & -0.759 & -1.6176E-02 & 3.6982E-02 \\
\hline 13.883 & 4.030 & -0.501 & -7.1396E-03 & 2.8290E-02 \\
\hline 14.396 & 4.030 & -0.590 & -8.7461E-03 & ?.9244E-02 \\
\hline 14.909 & 4.030 & -0.679 & -1.0431E-02 & 3.0087E-02 \\
\hline 15.422 & 4.030 & -0.768 & -1.2184E-02 & 3.0814E-02 \\
\hline 14.533 & 4.430 & -0.614 & -6.9727E-03 & 2.4690F-02 \\
\hline 14.846 & 4.430 & -0.668 & -7.7663E-03 & 2.5172E-02 \\
\hline 15.157 & 4.430 & -0.722 & -8.5818E-03 & 2.5622E-02 \\
\hline 15.472 & 4.430 & -0.777 & -9.4201E-03 & 2.6045E-02 \\
\hline 15.183 & 4.830 & -0.726 & -6.7264E-03 & 2.1858E-02 \\
\hline 15.296 & 4.830 & -0.746 & -6.9634F-03 & 2.2005E-0? \\
\hline 15.409 & 4.830 & -0.766 & -7.2079E-03 & 2.2.150E-02 \\
\hline 15.522 & 4.830 & -0.785 & -7.4449E-03 & 2.2293E-02 \\
\hline
\end{tabular}

SUMMARY OF VORTFX STRENGTHS AND POSITION AT \(X=7.500\)
\begin{tabular}{cccc} 
VORTEX & GAMMA/2*PI*V & \(Y\) & 2 \\
1 & 0.085127 & 0.406 & 1.206
\end{tabular}
(c) Page 3 .

Figure 8.- Continued.

VELOCITY INOUCED AT SPECIFIED FIELD DOINTS ON WING
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\times\) & \(Y\) & 2 & V/VIINF) & W/VI(NF) \\
\hline 1 & 9.334 & 1.730 & 0.289 & 1.3685E-02 & -1.4366E-02 \\
\hline 2 & 11.747 & 1.230 & -0.043 & 1.3146E-03 & -9.54.34F-03 \\
\hline 3 & 13.159 & 1.230 & -0.375 & -1.2206E-03 & -4.4134E-03 \\
\hline 4 & 15.072 & 1.230 & -0.707 & -1.1452E-03 & -2.1045E-03 \\
\hline 5 & 9.984 & 1.630 & 0.176 & 6.6317E-03 & -5.4274E-03 \\
\hline 6 & 11.697 & 1.630 & -0.121 & 3.2471E-03 & -5.1893E-03 \\
\hline 7 & 13.409 & 1.630 & -0.418 & 7.9904E-04 & -3.5265E-03 \\
\hline 8 & 15.122 & 1.630 & -0.716 & -9.2118E-06 & -2. \(2802 \mathrm{f}-03\) \\
\hline 9 & 10.634 & 7.030 & 0.064 & \(5.6603 \mathrm{E}-03\) & -2.2443E-03 \\
\hline 10 & 12.147 & 2.030 & -0.199 & 3.1833E-07 & -2.7330E-03 \\
\hline 11 & 13.659 & 2.030 & -0.462 & 1.5972E-03 & -2.3859E-03 \\
\hline 12 & 15.172 & 2.030 & -0.724 & 7.7890E-04 & -1.9164E-03 \\
\hline 13 & 11.284 & 2.430 & -0.049 & 3.8802E-03 & -9.4032E-04 \\
\hline 14 & 12.597 & 2.430 & -0.277 & \(2.6784 \mathrm{E}-03\) & -1.4122E-03 \\
\hline 15 & 13.909 & 2.430 & -0.505 & 1.7609E-03 & -1.4827E-03 \\
\hline 16 & 15.222 & 2.430 & -0.733 & 1.1751E-03 & -1.3987E-03 \\
\hline 17 & 11.934 & 2.830 & -0.162 & 2.7675E-03 & -3.6009E-04 \\
\hline 18 & 13.046 & 2.830 & -0.355 & \(2.1667 \mathrm{E}-03\) & -7.0150E-04 \\
\hline 19 & 14.159 & 2.830 & -0.549 & \(1.6644 \mathrm{E}-03\) & -8.6118E-04 \\
\hline 20 & 15.272 & 2.830 & -0.742 & 1.2976E-03 & -9.2238E-04 \\
\hline 21 & 12.5A4 & 3.230 & -0.275 & 2.0382E-03 & -8.9085E-05 \\
\hline 22 & 13.496 & 3.730 & -0.433 & \(1.7328 \mathrm{E}=03\) & -3.1138E-04 \\
\hline 23 & 14.409 & 3.730 & -0.592 & \(1.4742 \mathrm{E}-03\) & -4.5484F-04 \\
\hline 24 & 15.322 & 3.230 & -0.750 & 1.2671 E-03 & -5.4875E-04 \\
\hline 25 & 13.233 & 3.630 & -0.3n日 & 1.5491E-03 & \(4.0093 \mathrm{E}-05\) \\
\hline 26 & 13.946 & 3.670 & -0.512 & 1.3995E-03 & -9. \(5439 \mathrm{~F}-05\) \\
\hline 27 & 14.659 & 3.630 & -0.635 & 1.2743E-03 & -1.9726E-04 \\
\hline 28 & 15.372 & 3.630 & -0.759 & \(1.1650 \mathrm{E}-03\) & -2.7801E-04 \\
\hline 29 & 13.883 & 4.030 & -0.501 & \(1.2079 \mathrm{E}-03\) & 1.0062E-04 \\
\hline 30 & 14.396 & 4.030 & -0.590 & \(1.1455 E-03\) & 2.7879E-05 \\
\hline 31 & 14.909 & 4.030 & -0.679 & \(1.0917 \mathrm{E}-03\) & -3.5315E-05 \\
\hline 32 & 15.422 & 4.030 & -0.768 & \(1.0378 \mathrm{E}-03\) & -9.0684E-05 \\
\hline 33 & 14.533 & 4.430 & -0.614 & 9.7275E-04 & \(1.3155 \mathrm{E}-04\) \\
\hline 34 & 14.846 & 4.430 & -0.668 & \(9.5290 \mathrm{E}-04\) & 9.7359E-05 \\
\hline 35 & 15.159 & 4.430 & -0.722 & \(9.31818-04\) & 6.5137E-05 \\
\hline 36 & 15.472 & 4.430 & -0.777 & \(9.0940 E-04\) & 3.4764E-05 \\
\hline 37 & 15.183 & 4.830 & -0.726 & 8.0665E-04 & \(1.4557 E-04\) \\
\hline 36 & 15.296 & 4.830 & -0.746 & 8.0142E-04 & \(1.3565 \mathrm{E}-04\) \\
\hline 39 & 15.409 & 4.830 & -0.766 & \(7.9604 \mathrm{E}-04\) & 1.7591E-04 \\
\hline 40 & 15.527 & 4.830 & -0.785 & 7.9090E-04 & \(1.1633 \mathrm{E}-04\) \\
\hline
\end{tabular}

TOTAL INDUCED VELOCITY AT SPECIFIED FIELD POINTS ON WING
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(x\) & Y & 2 & V/VIINF) & W/VITNF) \\
\hline 1 & 9.334 & 1.230 & 0.289 & 8.7592E-02 & 1.3409E-01 \\
\hline 2 & 11.247 & 1.230 & -0.043 & -1.4674E-02 & 2.1960E-01 \\
\hline 3 & 13.159 & 1.230 & -0.375 & -1.5049E-01 & 2.1766E-01 \\
\hline 4 & 15.07? & 1.230 & -0.107 & -2.3297E-01 & 1.3290E-01 \\
\hline 5 & 9.984 & 1.630 & 0.176 & 3.1852E-02 & 1.0080E-01 \\
\hline 6 & 11.697 & 1.630 & -0.121 & -1.7152E-0? & 1.3147E-01 \\
\hline 7 & 13.409 & 1.630 & -0.418 & -7.6687E-02 & \(1.3748 \mathrm{E}-01\) \\
\hline 8 & 15.122 & 1.630 & -0.716 & -1.2604E-01 & 1.1356E-01 \\
\hline 9 & 10.694 & 2.030 & 0.064 & \(1.0514 \mathrm{E}-02\) & 7.5192E-02 \\
\hline 10 & 12.147 & 2.030 & -0.199 & -1.5076E-02 & 8.9450E-02 \\
\hline 11 & 13.659 & 2.030 & -0.462 & -4.5213E-02 & \(9.5180 \mathrm{E}-02\) \\
\hline 12 & 15.172 & 2.030 & -0.724 & -7.3495E-02 & -.8895E-02 \\
\hline 13 & 11.784 & 2.430 & -0.049 & \(1.4798 \mathrm{E}-03\) & 5.8201E-02 \\
\hline 14 & 12.397 & 2.430 & -0.277 & -1.2890E-02 & 6.5930E-02 \\
\hline 15 & 13.909 & 2.430 & -0.505 & -2.9458E-02 & 7.0358E-07 \\
\hline 16 & 15.222 & 2.430 & -0.733 & -4.5829E-02 & 6.9411E-02 \\
\hline 17 & 11.934 & 2.830 & -0.162 & -2.6420E-03 & 4.6693E-02 \\
\hline 18 & 13.046 & 2.830 & -0.355 & -1.1100E-02 & 5.1294E-02 \\
\hline 19 & 14.159 & 2.830 & -0.549 & -2.0579E-02 & 5.4357E-02 \\
\hline 20 & 15.272 & 2.830 & -0.742 & -3.0227E-02 & 5.5081E-02 \\
\hline \(? 1\) & 12.584 & 3.230 & -0.275 & -4.6022E-03 & 3.8628E-02 \\
\hline 22 & 13.496 & 3.230 & -0.433 & -9.6934E-03 & 4.1492E-02 \\
\hline 23 & 14.409 & 3.230 & -0.592 & -1.5199E-02 & \(4.3505 E-02\) \\
\hline 24 & 15.322 & 3.230 & -0.750 & -2.0809E-02 & 4.4558E-02 \\
\hline 75 & 13.233 & 3.630 & -0.388 & -5.5263E-03 & 3.2774E-02 \\
\hline 76 & 13.946 & 3.630 & -0.512 & -8.5613E-03 & 3.4540E-02 \\
\hline 27 & 16.659 & 3.630 & -0.635 & -1.1718E-02 & 3.5778E-02 \\
\hline 28 & 15.372 & 3.630 & -0.759 & -1.5011E-02 & 3.6704E-02 \\
\hline 29 & 13.883 & 4.030 & -0.501 & -5.9317E-03 & 2.8391E-02 \\
\hline 30 & 14.396 & 4.030 & -0.590 & -7.6007E-03 & 2.9272E-02 \\
\hline 31 & 14.909 & 4.030 & -0.679 & -9.3397E-03 & 3.0052E-02 \\
\hline 32 & 15.422 & 4.030 & -0.768 & -1.1146E-02 & 3.0123E-02 \\
\hline 33 & 14.533 & 4.430 & -0.614 & -5.9999E-03 & 2.4822E-02 \\
\hline 34 & 14.846 & 4.430 & -0.660 & -6.8134E-03 & 2.5269E-02 \\
\hline 35 & 15.159 & 4.430 & -0.722 & -7.6499E-03 & 2.5687E-02 \\
\hline 36 & 15.472 & 4.430 & -0.717 & -8.5107E-03 & 2.6080E-02 \\
\hline 37 & 15,183 & 4.830 & -0.726 & -5.9198E-03 & 2.2003F-02 \\
\hline 38 & 15.296 & 4.830 & -0.746 & -6.162 0E-03 & 2.2141E-02 \\
\hline 39 & 15.409 & 4.830 & -0.766 & -6.4069E-03 & 2.2276E-02 \\
\hline 40 & 15.52? & 4.830 & -0.785 & -6.6540E-03 & 2.2409E-02 \\
\hline
\end{tabular}
(c) Concluded.

Figure 8.- Continued.

(d) Page 4 .

Figure 8.- Continued.
\begin{tabular}{cccr} 
VORTEX & GAMMA/2FPI*V & \(Y\) & \multicolumn{1}{c}{2} \\
1 & 0.085127 & 0.397 & 1.788 \\
2 & 0.345576 & 4.386 & -0.790 \\
3 & 0.226110 & 3.701 & 0.162
\end{tabular}

VELOCITY INDUCED AT SPECIFIED FIELD PDINTS ON TAIL (BESKINS
\begin{tabular}{|c|c|c|c|c|c|}
\hline & X & \(Y\) & 2 & V/VIINFI & W/V (INF) \\
\hline 1 & 32.354 & 2.677 & 0.000 & 0.0000 & 1.5098E-01 \\
\hline 2 & 35.324 & 2.677 & 0.000 & 0.0000 & 1.5584E-01 \\
\hline 3 & 38.293 & 2.677 & 0.000 & 0.0000 & 1.5844E-01 \\
\hline 4 & 41.762 & 2.677 & 0.000 & 0.0000 & 1.5844E-01 \\
\hline 5 & 44.231 & 2.677 & 0.000 & 0.0000 & \(1.5752 \mathrm{E}-01\) \\
\hline 6 & 47.200 & 2.677 & 0.000 & 0.0000 & \(1.5243 \mathrm{E}-01\) \\
\hline 7 & 50.169 & 2.677 & 0.000 & 0.0000 & 1.4215E-01 \\
\hline 8 & 53.138 & 2.677 & 0.000 & 0.0000 & \(1.2595 \mathrm{E}-01\) \\
\hline 9 & 34.376 & 4.032 & 0.000 & 0.0000 & 6. \(8058 \mathrm{E}-0\) ? \\
\hline 10 & 37.033 & 4.032 & 0.000 & 0.0000 & \(6.9481 \mathrm{~F}-07\) \\
\hline 11 & 39.690 & 4.032 & 0.000 & 0.0000 & \(6.9852 \mathrm{E}-02\) \\
\hline 12 & 42.348 & 4.032 & 0.000 & 0.0000 & 6.9852E-02 \\
\hline 13 & 45.005 & 4.032 & 0.000 & 0.0000 & 6.9128E-02 \\
\hline 14 & 47.662 & 4.032 & 0.000 & 0.0000 & \(6.6554 \mathrm{E}-02\) \\
\hline 15 & 50.320 & 4.032 & 0.000 & 0.0000 & 6.2388E-02 \\
\hline 16 & 52.977 & 4.032 & 0.000 & 0.0300 & \(5.5946 \mathrm{E}-02\) \\
\hline 17 & 36.397 & 5.387 & 0.000 & 0.0000 & 3.6792E-02 \\
\hline 18 & 38.743 & 5.387 & 0.000 & 0.0000 & 3.9134E-02 \\
\hline 19 & 41.088 & 5.387 & 0.000 & 0.0000 & \(3.9134 \mathrm{E}-02\) \\
\hline 20 & 43.434 & 5.387 & 0.000 & 0.0000 & 3.9011E-02 \\
\hline 21 & 45.779 & 5.387 & 0.000 & 0.0000 & \(3.8363 \mathrm{E}-02\) \\
\hline 22 & 48.125 & 5.387 & 0.000 & 0.0000 & 3.6926E-02 \\
\hline 23 & 50.471 & 5.387 & 0.000 & 0.0000 & 3.4796E-02 \\
\hline 2.4 & 52.816 & 5.387 & 0.000 & 0.0000 & 3.1623E-02 \\
\hline 25 & 38.418 & 6.742 & 0.000 & 0.0000 & 2.4985E-02 \\
\hline 26 & 40.452 & 6.742 & 0.000 & 0.0000 & 2.4985E-02 \\
\hline 27 & 42.486 & 6.742 & 0.000 & 0.0000 & 2.4985E-02 \\
\hline 28 & 44.520 & 6.742 & 0.000 & 0.0000 & 2.4815E-02 \\
\hline 29 & 46.554 & 6.742 & 0.000 & 0.0000 & 2.4262E-02 \\
\hline 30 & 48.588 & 6.742 & 0.000 & 0.0000 & 2.3347E-02 \\
\hline 31 & 50.621 & 6.742 & 0.000 & 0.0000 & 2.2117E-02 \\
\hline 32 & 52.655 & 6.742 & 0.000 & 0.0000 & \(2.0356 \mathrm{E}-02\) \\
\hline 33 & 40.439 & 8.097 & 0.000 & 0.0000 & \(1.7323 \mathrm{E}-07\) \\
\hline 34 & 42.162 & 8.097 & 0.000 & 0.0000 & \(1.7323 \mathrm{E}-07\) \\
\hline 35 & 43.884 & 8.097 & 0.000 & 0.0000 & 1.7242E-02 \\
\hline 36 & 45.606 & 8.097 & 0.000 & 0.0000 & 1.7018E-02 \\
\hline 37 & 47.328 & 8.097 & 0.000 & 0.0000 & 1.6621E-02 \\
\hline 38 & 49.050 & 8.097 & 0.000 & 0.0000 & 1.8029E-02 \\
\hline 39 & 50.772 & 8.097 & 0.000 & 0.0000 & 1.5265E-02 \\
\hline 40 & 52.494 & 8.097 & 0.000 & 0.0000 & 1.4228E-02 \\
\hline 41 & 47.453 & 9.447 & 0.000 & 0.0000 & 1.2726F-02 \\
\hline 42 & 43.865 & 9.447 & 0.000 & 0.0000 & 1.2668E-02 \\
\hline 43 & 45.276 & 9.447 & 0.000 & 0.0000 & 1.2552E-02 \\
\hline 44 & 46.688 & 9.447 & 0.000 & 0.0000 & 1.2337E-02 \\
\hline 45 & 48.099 & 9.447 & 0.000 & 0.0000 & 1.2014E-02 \\
\hline 46 & 49.511 & 9.447 & 0.000 & 0.0000 & 1.1641E-02 \\
\hline 47 & 50.922 & 9.447 & 0.000 & 0.0000 & 1.1164E-02 \\
\hline 48 & 52.334 & 9.447 & 0.000 & 0.0000 & \(1.0537 \mathrm{E}-02\) \\
\hline 49 & 44.475 & 10.802 & 0.000 & 0.0000 & 9.6888E-03 \\
\hline 50 & 45.576 & 10.802 & 0.000 & 0.0000 & 9.5661E-03 \\
\hline 51 & 46.674 & 10.802 & 0.000 & 0.0000 & \(9.4378 E-03\) \\
\hline 52 & 41.774 & 10.802 & 0.000 & 0.0000 & 9.2525E-03 \\
\hline 53 & 48.874 & 10.802 & 0.000 & 0.0000 & \(9.0404 \mathrm{E}-03\) \\
\hline 54 & 49.973 & 10.802 & 0.000 & 0.0000 & 8.7832E-03 \\
\hline 55 & 51.073 & t0.802 & 0.000 & 0.0000 & 8. \(5006 \mathrm{E}-03\) \\
\hline 56 & 52.173 & 10.802 & 0.000 & 0.0000 & 8. \(1248 \mathrm{EE}-03\) \\
\hline 57 & 46.503 & 12.162 & 0.000 & 0.0000 & 7.4608E-03 \\
\hline 58 & 47.290 & 12.162 & 0.000 & 0.0000 & 7.3732E-03 \\
\hline 59 & 48.077 & 12.162 & 0.000 & 0.0000 & 7.2527E-03 \\
\hline 60 & 48.864 & 12.162 & 0.000 & 0.0000 & \(7.13315-03\) \\
\hline 61 & 49.651 & 12.162 & 0.000 & 0.0000 & 6.9949E-03 \\
\hline 62 & 50.438 & 12.162 & 0.000 & 0.0000 & 6. \(8342 \mathrm{E}-03\) \\
\hline 63 & 51.224 & 12.162 & 0.000 & 0.0000 & 6.6755E-03 \\
\hline 64 & 52.011 & 12.162 & 0.000 & 0.0000 & 6.4612E-03 \\
\hline 65 & \(4 \mathrm{A.575}\) & 13.517 & 0.000 & 0.0000 & 5.8164E-03 \\
\hline 66 & 49.000 & 13.517 & 0.000 & 0.0000 & 5.7581E-03 \\
\hline 67 & 49.475 & 13.517 & 0.000 & 0.0000 & 5.6921E-03 \\
\hline 68 & 49.950 & 13.517 & 0.000 & 0.0000 & 5.6132E-03 \\
\hline 69 & 50.425 & 13.517 & 0.000 & 0.0000 & 5.5348E-03 \\
\hline 70 & 50.900 & 13.517 & 0.000 & 0.0000 & \(5.4570 \mathrm{E}-03\) \\
\hline 71 & 51.375 & 13.517 & 0.000 & 0.0000 & 5.3788E-03 \\
\hline 72 & 51.850 & 13.517 & 0.000 & 0.0000 & 5.2728E-03 \\
\hline 73 & 50.546 & 14.872 & 0.000 & 0.0000 & 4.5559E-03 \\
\hline 74 & 50.709 & 14.872 & 0.000 & 0.0000 & \(4.5337 E-03\) \\
\hline 75 & 50.873 & 14.872 & 0.000 & 0.0000 & 4.5117E-03 \\
\hline 76 & 51.036 & 14.872 & 0.000 & 0.0000 & 4.4897F-03 \\
\hline 77 & 51.199 & 14.872 & 0.000 & 0.0000 & \(4.4677 E-03\) \\
\hline 78 & 51.363 & 14.872 & 0.000 & 0.0000 & \(4.4458 E-03\) \\
\hline 79 & 51.526 & 14.872 & 0.000 & 0.0000 & \(4.4240 \mathrm{E}-03\) \\
\hline 80 & 51.689 & 14.872 & 0.000 & 0.0000 & 4.3906 E-03 \\
\hline
\end{tabular}
(e) Page 5 .

Figure 8.- Continued.

VELOCITY INOUCED AT SPECIFIED FIELD POINTS ON TAIL
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\times\) & \(Y\) & 2 & V/V(INF) & W/V (IMF) \\
\hline 1 & 32.354 & 2.677 & 0.000 & \(1.7874 \mathrm{E}-01\) & -2.2402E-01 \\
\hline 2 & 35.324 & 2.677 & 0.000 & 3.1029F-01 & -3.2266E-01 \\
\hline 3 & 18.297 & 2.677 & 0.000 & 1.0757E-01 & -3.3855E-01 \\
\hline 4 & 41.262 & 7.677 & 0.000 & 7.0380E-02 & -2.6807E-01 \\
\hline 5 & 44.231 & 2.677 & 0.000 & 5.8058E~02 & -2.2844E-01 \\
\hline 6 & 47.200 & 2.877 & 0.000 & 5.3841E-02 & -2.0138E-01 \\
\hline 7 & 50.169 & 2.677 & 0.000 & \(5.725 \mathrm{AE}-02\) & -1.8460E-01 \\
\hline 8 & 53.13A & 2.677 & 0.000 & \(6.5031 \mathrm{E}-02\) & -1.7365E-01 \\
\hline 9 & 34.376 & 4.032 & 0.000 & 1.4847E-01 & -6.5328E-02 \\
\hline 10 & 37.033 & 4.032 & 0.000 & \(1.4903 \mathrm{E}=01\) & -2.9389E-02 \\
\hline 11 & 79.690 & 4.032 & 0.000 & 2.4147E-01 & 3.1539E-02 \\
\hline 12 & 42.346 & 4.032 & 0.000 & \(2.5815 \mathrm{E}-01\) & -2.1987E-01 \\
\hline 13 & 45.005 & 4.032 & 0.000 & 1.3125E-01 & -1.8253E-01 \\
\hline 14 & 47.662 & 4.032 & 0.000 & \(1.0230 E-01\) & \(-1.4819 \mathrm{E}-01\) \\
\hline 15 & 50.320 & 4.032 & 0.000 & \(9.3787 E-02\) & -1.26 72F-01 \\
\hline 16 & 52.977 & 4.032 & 0. 000 & \(9.5011 E-02\) & \(-1.1363 E-01\) \\
\hline 17 & 36.397 & 5.387 & 0. 000 & 1.1078E-01 & 3.4582E-03 \\
\hline 18 & 38.743 & 5.367 & 0.000 & \(1.0657 \mathrm{E}-01\) & 1.1729E-02 \\
\hline 19 & 41.088 & 5.387 & 0.000 & \(1.0651 E-01\) & 2.5412E-02 \\
\hline 20 & 43.434 & 5.387 & 0.000 & \(1.1753 \mathrm{E}-01\) & 4.7628E-02 \\
\hline 21 & 45.779 & 5.387 & 0.000 & 1.6110E-01 & 7.2286F-02 \\
\hline 22 & 48.125 & 5.387 & 0.000 & 2.4523E-01 & 3.5050E-02 \\
\hline 73 & 50.471 & 5.387 & 0,000 & 2.3979E-01 & -6.7861E-02 \\
\hline 24 & 52.816 & 5.387 & 0.000 & \(1.9439 \mathrm{E}-01\) & -8.6268E-02 \\
\hline 25 & 38.418 & 6.742 & 0.000 & 7.2975E-02 & 2.6455E-02 \\
\hline 76 & 40.452 & 6.742 & 0.000 & 7.1481E-02 & 2.8525E-02 \\
\hline 27 & 42.486 & 6.742 & 0.000 & 7.0389E-02 & 3.1153E-02 \\
\hline 28 & 44.520 & 6.742 & 0.000 & 6.9659E-02 & 3.4714F-02 \\
\hline 29 & 46.554 & 6.742 & 0.000 & 6.9646E-02 & 3.9654E-02 \\
\hline 30 & 48.589 & 6.742 & 0.000 & 7.1254E-02 & 4.6268E-02 \\
\hline 31 & 50.621 & 6.742 & 0.000 & 7.5934E-02 & 5.4384E-02 \\
\hline 32 & 57.655 & 6.742 & 0.000 & 6.1855E-02 & 5.9478E-02 \\
\hline 33 & 40.439 & 8.097 & 0.000 & \(4.7903 E-02\) & \(3.0158 E-02\) \\
\hline 34 & 42.162 & 0.097 & 0.000 & 4.7487E-02 & 3.0621E-02 \\
\hline 35 & 43.884 & 0.097 & 0.000 & 4.7044E-02 & \(3.1046 \mathrm{E}-02\) \\
\hline 36 & 45.606 & 0.097 & 0.000 & 4.6421E-02 & 3.1524E-02 \\
\hline 37 & 47.328 & 8. 097 & 0.000 & \(4.5594 \mathrm{E}-02\) & 3.2300E-02 \\
\hline 38 & 49.050 & 8. 097 & 0.000 & 4.4744E-02 & 3.3695E-02 \\
\hline 39 & 50.772 & 8. 097 & 0.000 & 4.4245E-02 & 3.5946E-02 \\
\hline 40 & 52.494 & 0.097 & 0.000 & \(4.4111 \mathrm{E}-02\) & 3.8053E-02 \\
\hline 41 & 42.453 & 9.447 & 0.000 & 3.2506E-02 & 2.7844E-02 \\
\hline 42 & 43.865 & 9.447 & 0.000 & 3.2397E-02 & 2.7858E-02 \\
\hline 43 & 45.276 & 9.447 & 0.000 & 3.2203E-02 & 2.7764E-02 \\
\hline 44 & 46.68 C & 9.447 & 0.000 & 3.1867E-02 & 2.7712E-02 \\
\hline 45 & 48.099 & 9.447 & 0.000 & \(3.1380 \mathrm{E}-02\) & 2.7769E-02 \\
\hline 46 & 49.511 & 9.447 & 0.000 & 3.0789E-02 & 2.8095E-02 \\
\hline 47 & 50.922 & 9.447 & 0.000 & \(3.0231 E-02\) & 2.8818E-02 \\
\hline 48 & 52.334 & 9.447 & 0.000 & 2.9763E-02 & \(2.9621 E-02\) \\
\hline 49 & 44.475 & 10.802 & 0.000 & 2.2034E-02 & 2.4144E-02 \\
\hline 50 & 45.574 & 10.802 & 0.000 & 2.27a2E-02 & 2.4041E-02 \\
\hline 51 & 46.674 & 10.802 & 0.000 & 2.2666E-02 & 2.3903E-02 \\
\hline 52 & 47.774 & 10.802 & 0.000 & 2.2474E-02 & 2.3790E-02 \\
\hline 53 & 48.874 & 10.802 & 0.000 & 2.2204E-02 & 2.3743E-02 \\
\hline 54 & 49.973 & 10.802 & 0.000 & 2.1881E-02 & 2.3832E-02 \\
\hline 55 & 51.073 & 10.802 & 0.000 & 2.1540E-02 & 2.408EE-02 \\
\hline 56 & 52.173 & 10.802 & 0.000 & 2.1216E-02 & 2.4417E-02 \\
\hline 57 & 46.503 & 12.162 & 0.000 & 1.6526E-02 & \(2.0513 \mathrm{E}-02\) \\
\hline 58 & 47.290 & 12.162 & 0.000 & \(1.6472 \mathrm{E}-02\) & 2.0416F-02 \\
\hline 59 & 48.077 & 12.162 & 0.000 & 1.6389E-02 & \(2.0335 E-02\) \\
\hline 60 & 48.864 & 12.162 & 0.000 & 1.6269E-02 & \(2.0270 \mathrm{E}-02\) \\
\hline 61 & 49.651 & 12.162 & 0.000 & 1.6122E-02 & \(2.0251 \mathrm{E}-02\) \\
\hline 62 & 50.438 & 12.162 & 0.000 & 1.5955E-02 & 2.0292E-02 \\
\hline 63 & 51.224 & 12.162 & 0.000 & 1.5775E-02 & \(2.0380 E-02\) \\
\hline 64 & 52.011 & 12.162 & 0.000 & 1.5597E-02 & \(2.0534 E-02\) \\
\hline 65 & 48.525 & 13.517 & 0.000 & 1.2250E-02 & 1.7405E-02 \\
\hline 66 & 49.000 & 13.517 & 0.000 & \(1.2204 \mathrm{E}-02\) & 1.7366E-02 \\
\hline 67 & 49.475 & 13.517 & 0.000 & 1.2145E-02 & \(1.7343 \mathrm{E}-02\) \\
\hline 68 & 49.950 & 13.517 & 0.000 & 1.2082E-02 & \(1.7334 \mathrm{~F}-02\) \\
\hline 69 & 50.425 & 13.517 & 0.000 & 1.2009E-02 & 1.7342E-02 \\
\hline 70 & 50.900 & 13.517 & 0.000 & 1.1933E-02 & 1.7358E-02 \\
\hline 11 & 51.375 & 13.517 & 0.000 & \(1.1851 \mathrm{E}-02\) & 1.7387E-02 \\
\hline 12 & 51.850 & 13.517 & 0.000 & 1.17TOE-02 & \(1.7442 \mathrm{E}=02\) \\
\hline 73 & 50.546 & 14.872 & 0.000 & 9.2179E-03 & 1.4923E-02 \\
\hline 74 & 50.709 & 14.872 & 0.000 & 9.1990 E-03 & 1.4924E-02 \\
\hline 75 & 50.873 & 14.872 & 0.000 & 9.1798E-03 & 1.4926E-02 \\
\hline 76 & 51.036 & 14.872 & 0.000 & 9.1600f-03 & 1.4928E-02 \\
\hline 17 & 51.199 & 14.072 & 0.000 & 9.1388E-03 & 1.4933E-02 \\
\hline 18 & 51.363 & 14.872 & 0.000 & \(9.1174 E-03\) & \(1.4938 \mathrm{E}-02\) \\
\hline 79 & 51.526 & 14.872 & 0.000 & 9.0959E-03 & 1.4943E-02 \\
\hline 0 & 51.689 & 14.872 & 0.000 & 9.0750E-03 & 1.4956E-02 \\
\hline
\end{tabular}
(e) Continued.

Figure 8.- Continued.

TOTAL INDUCED VELOCITY AT SPECIFIED FIELD POINTS ON TAIL
\begin{tabular}{|c|c|c|c|c|c|}
\hline & x & \(Y\) & 2 & V/VIINF) & W/VIINF) \\
\hline 1 & 32.354 & 2.677 & 0.000 & 1.7874E-01 & -7.3040E-02 \\
\hline 2 & 35.374 & 2.677 & 0.000 & 3.1029E-01 & -1.6683F-01 \\
\hline 3 & 38.293 & 2.677 & 0.000 & 1.0757E-01 & -1.8011E-01 \\
\hline 4 & 41.262 & 2.677 & 0.000 & 7.0380E-02 & \(-1.0962 \mathrm{E}-01\) \\
\hline 5 & 44.231 & 2.677 & 0.000 & 5.805 EE-02 & -7.0923E-02 \\
\hline 6 & 47.200 & 2.677 & 0.000 & 5.3841E-02 & -4.8957E-02 \\
\hline 7 & 50.169 & 2.677 & 0.000 & S. \(725 \mathrm{BE}-0\) ? & -4.2450E-02 \\
\hline 8 & 53.138 & 2.677 & 0.000 & 6.5031E-02 & -4.7102E-02 \\
\hline 9 & 34.376 & 4.032 & 0.000 & \(1.4847 E-01\) & \(2.5303 \mathrm{E}-03\) \\
\hline 10 & 37.033 & 4.037 & 0.000 & 1.4903E-01 & \(4.0092 \mathrm{E}-02\) \\
\hline 11 & 39.690 & 4.032 & 0.000 & 2.4147E-01 & 1.0139E-01 \\
\hline 12 & 42.348 & 4.032 & 0.000 & 2.5815 E -01 & -1.5002F-01 \\
\hline 13 & 45.005 & 4.032 & 0.000 & \(1.3125 E-01\) & -1.1340E-01 \\
\hline 14 & 47.662 & 4.032 & 0.000 & 1.0230E-01 & -0.1641E-02 \\
\hline 15 & 50.720 & 4.032 & 0.000 & 9.3787E-02 & -6.4330E-02 \\
\hline 16 & 52.977 & 4.032 & 0.000 & \(9.50118-02\) & \(-5.7645 E-02\) \\
\hline 17 & 36.397 & 5.387 & 0.000 & 1.1078E-01 & 4.2250E-02 \\
\hline 18 & 38.743 & 5.387 & 0.000 & \(1.0657 E-01\) & \(5.0863 \mathrm{E}-02\) \\
\hline 19 & 41.088 & 5.387 & 0.000 & 1.0651E-01 & 6.4546E-02 \\
\hline 20 & 43.434 & 5.387 & 0.000 & \(1.1753 \mathrm{E}-01\) & 8.6639E-02 \\
\hline 21 & 45.779 & 5.381 & 0.000 & 1.6110E-01 & \(1.1065 \mathrm{E}-01\) \\
\hline 22 & 48.125 & 5.387 & 0.000 & 2.4523E-01 & 7.1976E-02 \\
\hline 73 & 50.471 & 5.387 & 0.000 & 2.3979E-01 & -3.3064E-02 \\
\hline 24 & 52.816 & 5.387 & 0.000 & 1.9439E-01 & -5.4644E-02 \\
\hline 25 & 38.418 & 6.742 & 0.000 & 7.2975E-02 & 5.1441E-02 \\
\hline 26 & 40.45? & 6.742 & 0.000 & 7.1461E-02 & 5.3511E-02 \\
\hline 27 & 42.486 & 6.742 & 0.000 & 7.0389E-02 & 5.6139E-02 \\
\hline 28 & 44.520 & 6.742 & 0.000 & \(6.9659 E-02\) & 5.9529E-02 \\
\hline 29 & 46.554 & 6.742 & 0.000 & 6.9646E-02 & 6.3915E-02 \\
\hline 30 & 48.588 & 6.742 & 0.000 & 7.1254E-02 & \(6.9615 \mathrm{E}-02\) \\
\hline 31 & 50.621 & 6.742 & 0.000 & 7.5934E-02 & \(7.6501 \mathrm{E}-02\) \\
\hline 32 & 52.655 & 6.742 & 0.000 & 8.1855E-02 & 7.9833E-02 \\
\hline 33 & 40.439 & 8.097 & 0.000 & 4.7903E-02 & 4.7481E-02 \\
\hline 34 & 42.162 & A. 097 & 0.000 & 4.7487E-02 & 4.7944E-02 \\
\hline 35 & 43.884 & 0.097 & 0.000 & \(4.7044 E-02\) & 4.8288E-02 \\
\hline 36 & 45.606 & 8.097 & 0.000 & 4.6421E-02 & \(4.8542 \mathrm{E}-02\) \\
\hline 37 & 47.328 & 0.097 & 0.000 & 4.5594E-02 & \(4.8921 E-02\) \\
\hline 38 & 49.050 & 8.097 & 0.000 & 4.4744E-02 & \(4.9724 \mathrm{E}-02\) \\
\hline 39 & 50.772 & 8.097 & 0.000 & 4.4245E-02 & 5.1212E-02 \\
\hline 40 & 52.494 & 8.097 & 0.000 & 4.4111E-02 & 5.22B2E-02 \\
\hline 41 & 42.453 & 9.447 & 0.000 & 3.2506E-02 & \(4.0570 \mathrm{E}-02\) \\
\hline 42 & 43.865 & 9.447 & 0.000 & 3.2397E-02 & \(4.0526 E-02\) \\
\hline 43 & 45.276 & 9.447 & 0.000 & 3.2203E-02 & \(4.0337 \mathrm{E}-02\) \\
\hline 44 & 46.688 & 9.447 & 0.000 & 3.1867E-02 & \(4.0049 \mathrm{E}-02\) \\
\hline 45 & 48.099 & 9.447 & 0.000 & 3.1380E-02 & 3.9784E-02 \\
\hline 46 & 49.511 & 9.447 & 0.000 & 3.0789E-02 & 3.9736E-02 \\
\hline 47 & 50.927 & 9.447 & 0.000 & 3.0231E-02 & 3.9982E-0? \\
\hline 48 & 52.334 & 9.447 & 0.000 & 2.9763E-02 & \(4.0158 \mathrm{E}-02\) \\
\hline 49 & 44.475 & 10.802 & 0.000 & 2.2834E-02 & 3.3813E-02 \\
\hline 50 & 45.574 & 10.802 & 0.000 & 2.2782E-02 & 3.3607E-02 \\
\hline 51 & 46.674 & 10.802 & 0.000 & 2.2666E-02 & 3.3341E-02 \\
\hline 52 & 47.774 & 10.802 & 0.000 & 2.2474E-02 & 3.3042E-0? \\
\hline 53 & 48.874 & 10.802 & 0.000 & 2.2204E-02 & 3.2783E-02 \\
\hline 54 & 49.973 & 10.802 & 0.000 & 2.1881E-02 & 3.2616E-02 \\
\hline 55 & 51.073 & 10.802 & 0.000 & 2.1540E-02 & 3.2589E-02 \\
\hline 56 & 52.173 & 10.802 & 0.000 & 2.1216E-02 & 3.2542E-02 \\
\hline 57 & 46.503 & 12.162 & 0.000 & 1.6526E-02 & 2.7974E-02 \\
\hline 58 & 47.290 & 12.162 & 0.000 & 1.6472E-02 & 2.7789E-02 \\
\hline 59 & 48.077 & 12.162 & 0.000 & 1.6389E-02 & 2.7588E-02 \\
\hline 60 & 48.864 & 12.162 & 0.000 & 1.6269E-02 & 2.7403E-02 \\
\hline 61 & 49.641 & 12.162 & 0.000 & 1.6122E-02 & \(2.7246 \mathrm{E}-02\) \\
\hline 62 & 50.438 & 12.162 & 0.000 & 1.5955E-02 & 2.7126E-02 \\
\hline 63 & 51.224 & 12.162 & 0.000 & 1.5775E-07 & 2.7055E-0? \\
\hline 64 & 52.011 & 12.162 & 0.000 & 1.5597E-02 & 2.6996E-07. \\
\hline 85 & 48.525 & 13.517 & 0.000 & 1.2250E-02 & 2.3222E-02 \\
\hline 66 & 49.000 & 13.517 & 0.000 & 1.2204E-02 & \(2.3124 E-02\) \\
\hline 67 & 49.475 & 13.517 & 0.000 & 1.2145E-02 & 2.3036F-02 \\
\hline 68 & 49.950 & 13.517 & 0.000 & 1.2082E-02 & 2.2947E-02 \\
\hline 69 & 50.425 & 13.517 & 0.000 & \(1.2009 \mathrm{E}-02\) & 2.2876E-02 \\
\hline 70 & 50.900 & 13.517 & 0.000 & \(1.1933 \mathrm{E}-02\) & 2.2815E-02 \\
\hline 71 & 51.375 & 13.517 & 0.000 & 1.1851E-02 & 2.2767E-02 \\
\hline 72 & 51.850 & 13.517 & 0.000 & 1.1770E-02 & \(2.2714 E-02\) \\
\hline 73 & 50.546 & 14.812 & 0.000 & \(9.2179 \mathrm{E}-03\) & \(1.9479 E-02\) \\
\hline 74 & 50.709 & 14.872 & 0.000 & \(9.1990 \mathrm{E}-03\) & \(1.9458 \mathrm{E}-02\) \\
\hline 15 & 50.873 & 14.812 & 0.000 & \(9.1798 E-03\) & \(1.9437 \mathrm{E}-02\) \\
\hline 76 & 51.036 & 14.872 & 0.000 & 9. 1600E-03 & 1.941 EE-02 \\
\hline 77 & 51.199 & 14.872 & 0.000 & \(9.1388 \mathrm{E}-03\) & 1.9400E-02 \\
\hline 78 & 51.363 & 14.872 & 0.000 & \(9.1174 E-03\) & 1.93 BE -02 \\
\hline 79 & 51.526 & 14.872 & 0.000 & \(9.0959 \mathrm{E}-03\) & 1.9367E-02 \\
\hline 80 & 51.689 & 14.872 & 0,000 & \(9.0750 \mathrm{E}-03\) & 1.9346E-02 \\
\hline
\end{tabular}
(e) Concluded.

Figure B.- Continued


SUMMARY GF YORTEX STRENGTHS ANO POSITION AT \(X=55.001\)
\begin{tabular}{cccc} 
VORTFX & CAMMA/2EPI\#V & V & 2 \\
1 & 0.085127 & 5.660 & 1.135 \\
2 & 0.345578 & 2.941 & 5.499 \\
3 & 0.226110 & 3.062 & 3.738 \\
& & 0.758969 & 13.930 \\
4 & 0.168842 & 9.668 & 0.000 \\
5 & & &
\end{tabular}
(f) Page 6.

Pigure 8.- Continued.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & INC & E & - & & -- & --- & \\
\hline ALPHA & M & WING & TAIL & KVLF* & KVSEF & RVLE* & KVSE* & W/V LIMIT \\
\hline 16.00 & 0.00 & 10.000 & 0.000 & 0.530 & 0.000 & 0.410 & 0.000 & 1.000 \\
\hline
\end{tabular}

SUMMARY OF FORCE ANO PITCHING MOMENT COEFFICIENTS

(g) Page 7.

Figure 8.- Continued.

(h) Page 8 .

Figure 8.- Continued.
\begin{tabular}{|c|c|c|c|c|c|}
\hline 29.0010 & \(0 \quad 0.5000300\) & 1.9350 & 1.9356 & 1.9350 & 0.0150 \\
\hline VIPTEX S & Stgmalpeali & ( [MAG ) & & & \\
\hline 1 & 1.909 O & 1.010E 00 & & & \\
\hline 7 & 3.557 F 00 & 2.539 F 00 & & & \\
\hline 3 & 4.880 F 00 & 1.847 E 00 & & & \\
\hline \(x\) & nx & A & \(S\) & RO & \multirow[b]{2}{*}{\[
0.0143
\]} \\
\hline 30.5010 & \(0 \quad 0.5000000\) & 1.7500 & 2.5653 & 2.0238 & \\
\hline VIRRTEX & SIgMalreali & \multirow[t]{2}{*}{(IMAG )
\(8.237 \mathrm{E}-01\)} & & & \\
\hline 1 & 2.051E 00 & & & & \\
\hline 7 & 3.489 F 00 & 7.600E 00 & & & \\
\hline 3 & 4.950 E 00 & 2.284 E 0 & & & \\
\hline \(x\) & nx & \multirow[t]{2}{*}{\[
1.9650
\]} & \(\checkmark\) & R 0 & DA/OX \\
\hline 31.0010 & 0.0 .5000000 & & 3.1950 & 2.2018 & 0.0135 \\
\hline VORTEX S & SIGMA (REAL) & \multirow[t]{2}{*}{\[
\begin{gathered}
(I M A G) \\
6.690 E-01
\end{gathered}
\]} & & & \\
\hline 1 & \(2.165 E 00\) & & & & \\
\hline 2 & 3.457 E 00 & 2.648 E 00 & & & \\
\hline \multirow[t]{2}{*}{3} & 4.957 E 00 & 2.733 E 00 & & & \\
\hline & & - & - & & \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
x \\
51.0010
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
D x \\
0.5000000
\end{gathered}
\]} & 4 & 5 & RO & DA/7x \\
\hline & & 1.8991 & 15.2196 & 7. 7283 & -0.0343 \\
\hline \multirow[t]{2}{*}{VERTEX} & SIGMA(PFAL) & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { (IMAG) } \\
4.832 E-01
\end{gathered}
\]} & & & \\
\hline & 5.553 F 00 & & & & \\
\hline 7 & \(3.557 F 00\) & 4.993 E 00 & & & \\
\hline 3 & 2.579E 00 & 3.710 O 0 & & & \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
x \\
52.0010
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
D x \\
C .5000000
\end{gathered}
\]} & A & S & RO & DA/OX \\
\hline & & 1.8626 & 13.0185 & 6.6425 & -0.0412 \\
\hline \multirow[t]{2}{*}{VORTEX} & SIGMA(RFALI & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { IIMAGI } \\
5.058 E-01
\end{gathered}
\]} & & & \\
\hline & 5.650 O O 5 & & & & \\
\hline \multirow[t]{2}{*}{3} & 3.410 F no & \(5.087 E 00\) & & & \\
\hline & 2.668 F 00 & \(3.586 \mathrm{E} \quad 00\) & & & \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
x \\
53.0010
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
n x \\
0.5000000
\end{gathered}
\]} & A & 5 & R 0 & DA/ \(/ \mathrm{X}\) \\
\hline & & 1.8163 & 7.3742 & 3.9202 & -0.0497 \\
\hline VIRTEX S & SIGMA(PEAL) & (IMAG) & & & \\
\hline 1 & 5.655F 005 & 5.48PE-01 & & & \\
\hline \multirow[t]{2}{*}{3} & 2.743 F 005 & 5.197 E 00 & & & \\
\hline & 2.800 F 00 & 3.536E 00 & & & \\
\hline \[
\begin{gathered}
x \\
54.0010
\end{gathered}
\] & \[
\begin{gathered}
D x \\
0.1250000
\end{gathered}
\] & \[
\begin{gathered}
A \\
1.7699
\end{gathered}
\] & \[
1.7899
\] & RO & \[
\begin{array}{r}
04 / 0 x \\
-0.0587
\end{array}
\] \\
\hline VORTEX S & SIGMA(REAL) & (IMAG) & & & \\
\hline 1 & 5.607E 00 & 8.390E-01 & & & \\
\hline 7 & 3.085 E 00 & \(5.350 E 00\) & & & \\
\hline 3 & 2.923E 00 & 3.603 E 00 & & & \\
\hline \[
\frac{x}{55.0010}
\] & \[
\begin{gathered}
D x \\
0.2500000
\end{gathered}
\] & \[
\begin{gathered}
4 \\
1.6999
\end{gathered}
\] & \[
1.6999
\] & \[
\begin{gathered}
\text { RO } \\
1.6999
\end{gathered}
\] & \[
\begin{array}{r}
04 / 0 x \\
-0.0653
\end{array}
\] \\
\hline VOPTEX S & SIGMA(REAL) & (IMAG) & & & \\
\hline 1 & 5.660F 001 & 1.135 E 00 & & & \\
\hline 2 & 2.941 E 005 & 5.499 E 00 & & & \\
\hline 3 & \(2.062 E 003\) & 3.738800 & & & \\
\hline
\end{tabular}
(h) Concluded.

Figure 8.- Concluded.

\section*{Introduction}

This computer program predicts the static longitudinal aerodynamic characteristics of wing-body-tail combinations at supersonic speeds. It is an extension of the method of reference 2 to angles of attack for which symmetrical body vortices are shed from the nose of the configuration and leading-edge and side-edge separation vortices are shed from the wing and tail. A lifting-surface method (refs. 12 and 13), modified to include interference velocity fields in the form of induced camber and modified to compute leading-edge suction distributions, represents the wing and tail surfaces.

The program is written in FORTRAN IV for the IBM 360 series machines. No tapes, drums, or disks other than the standard input/output units are required. Minor changes are required to run the program on other machines such as the CDC 6600. Typical running time on the IBM \(360 / 67\) for a wing-body-tail configuration is approximately \(l\) minute per angle of attack. Actual running time depends on the number of panels representing the lifting-surfaces. Some specific running times are noted in the discussion of the sample cases.

The following sections present descriptions of the method, program, input, and output. A program listing and sample cases are included. The algebraic notation used in this section is the same as that used in reference 1. A list of symbols from reference 1 is included.

\section*{List of Symbols}

AR aspect ratio
a local body radius
b semispan
\(C_{D_{i}}\)
induced drag coefficient
\(C_{L}\)
lift coefficient, \(\frac{L}{q S}\)
\(C_{A}\)
axial-force coefficient
\(C_{m}\)
pitching-moment coefficient, \(\frac{M}{q S \ell}\)
\begin{tabular}{|c|c|}
\hline \(\mathrm{C}_{\mathrm{N}}\) & \[
\text { normal-force coefficient, } \frac{N}{q S}
\] \\
\hline c & local chord \\
\hline \(c_{n}\) & \[
\text { section normal-force coefficient, } \frac{1}{c} \int_{L E}^{T E} \frac{\Delta p}{q} d x
\] \\
\hline \(\mathrm{C}_{s}\) & section leading-edge suction coefficient \\
\hline \({ }^{C} \times\) & x-direction section suction coefficient \\
\hline \(\mathrm{c}_{\mathrm{Y}}\) & Y -direction section suction coefficient \\
\hline \(\mathrm{K}_{\mathrm{v}}^{*}\) & vortex-lift ratio \\
\hline L & lift force \\
\hline \(\ell\) & reference length \\
\hline M & pitching moment about center of moments, or free-stream Mach number \\
\hline N & normal force \\
\hline \(\Delta \mathrm{p}\) & static pressure difference between lower and upper surfaces of lifting surface \\
\hline q & free-stream dynamic pressure \\
\hline \(r\) & body radius \\
\hline \(r_{\text {N }}\) & radius of base of nose \\
\hline S & reference area \\
\hline \(s\) & semispan of lifting surface \\
\hline u, v,w & perturbation velocities along \(x, y, z\) directions, respectively \\
\hline V & free-stream velocity \\
\hline \(x, y, z\) & configuration coordinates with origin at body nose \\
\hline \(\mathrm{x}_{\mathrm{ac}}\) & \(x\) location of aerodynamic center \\
\hline \(\mathrm{x}_{\mathrm{HL}}\) & \(x\) location of lifting-surface hinge line \\
\hline \(\mathrm{x}_{\mathrm{m}}\) & \(x\) location of center of moments \\
\hline
\end{tabular}
complex vortex position, \(Y+i z\)

Subscripts

A
avg
\(B(T)\)
\(B(W)\)
e

HL
LE
N
p
root

SE
afterbody
average
body in presence of tail
body in presence of wing
tail or empennage
hinge line
leading edge
nose
potential
root chord
side edge
\begin{tabular}{ll}
\(T(B)\) & tail in presence of body \\
TE & trailing edge \\
tip & tip chord \\
V & vortex \\
W(B) & wing in presence of body \\
\(W\) & wing
\end{tabular}

\section*{Description of Method}

A brief description of the method is presented herein. The user should consult reference 1 for a complete description and details of the theoretical approach.

An axisymmetric nose at some moderate angle of attack sheds a symmetric pair of body vortices. These shed body vortices, whose strength and initial position are determined from data correlations, are tracked downstream past the wing using slender-body techniques in the crossflow plane. One exception to this trajectory calculation is that the vortices move parallel to the wing if the leading edge is supersonic. The vortex-induced velocities are computed at the wing control points and combined with the Beskin upwash induced by the body to obtain the total upwash induced on each wing panel. This, added to the free-stream contribution, results in a total local incidence angle distribution over the wing.

The wing is modeled by a constant pressure panel scheme in the form of a prediction program obtained from R. Carmichael of the NASA, Ames Research Center. The result from this method is a pressure distribution on the wing. An equivalent circulation distribution on the wing is obtained from the pressure loading and this is used to compute a distribution of leading-edge suction and side-edge suction (if present) and their associated vortex positions and strengths. The vortex lift on the leading edge and side edge is obtained from the suction distribution through the polhamus vortex-lift analogy (ref. 9) and correlation curves.

The trajectories of the body vortices, the wing tralling vortex, and the wing leading-edge separation vortices are computed downstream past the afterbody and horizontal tail. These trajectories are computed in the crossflow plane considering mutual interference between the vortices and
interference from their images in the body. If the tail leading edge is supersonic, the vortices move parallel to the tail surface. The induced velocity field on the tail panels is computed, and the tail loading is obtained in a manner similar to that just described for the wing. The forces on the body in the presence of a wing and tail are computed by the method of reference 2. The free vortex-induced forces on the nose and afterbody are computed using the method of Sacks (ref. 10).

The forces and moments on the entire configuration are obtained by summing the contributions of the various components. The forces are resolved into normal force and axial force (excluding frictional drag and wave drag), and lift and induced drag.

\section*{Description of Program}

The SUPSON computer program consists of a main program, nine function subprograms, and twenty-five subroutine subprograms. The main program (SPO1) accepts most of the input, prints a portion of the output, and generally directs the flow of the calculation. The subprograms provide specific services to the main program during the calculation procedure. Since the lifting-surface portion of the program was a separate wing-alone prediction program which was incorporated into the prediction scheme, there are several options present in this part of the program which are not used. These were left in the program so that the original lifting-surface procedure could be left intact as much as possible; however, this does result in portions of subprograms being carried along but never used. These surplus calculations are short and do not cause a large core storage penalty by their presence. The following is a list of subprograms and their general purpose.

Subroutine SSWING is the former main program of the Carmichaelwoodward lifting-surface method. It accepts description of the wing (or tail) geometry through namelist input and then sets up locations of control points and divides the wing up into the specified number of constant pressure panels. It then calculates an array of influence functions which are used later in computing wing-loading distributions.

Subroutine TABLE sets up a table of coordinates describing the configuration at specific axial stations required in the vortex trajectory calculations. The body radius at the required stations are obtained by
linear interpolation in the input table of body coordinates. Body slopes are computed by a simple differencing scheme.

Subroutine FORCE computes the loading on the lifting surface considering both the geometric camber and induced camber. The bound circulation distribution corresponding to the potential loading is computed as is the strength and position of the equivalent trailing vortex.

Subroutine EDGFRC computes the distribution of leading-edge and sideedge suction. The leading-edge and side-edge vortex lift is computed along with the strength and lateral position of the associated separation vortex.

Subroutine MATRIX computes the aerodynamic influence matrix for each lifting surface.

Subroutine CNVTX computes the vortex-induced force and center of pressure on the afterbody using the method of reference 10 .

Subroutine BDYVTX uses tables derived from data correlations to look up the strength and position of the pair of symmetric vortices shed from the body nose.

Subroutine CNVNZ computes the nose vortex-induced normal force and center of pressure on the body nose using the method of reference 10.

Subroutine SHAPE does a table look-up for the body radius and slope and local lifting-surface semispan at any prescribed axial station.

Subroutine FILL is used to fill in intermediate locations in an array using a linear interpolation procedure.

Subroutine ZSECT is a general airfoil section calculation routine which is used only when the lifting surfaces are assumed to have finite thickness. The available section shapes are specified by the variable SECT as described in the discussion of input preparation.

Subroutine TCOMP computes the pressure function for a wedge-shaped airfoil of triangular planform. This routine is used only when the lifting surface has a finite thickness.

Subroutine TAINT is used to interpolate in tables of airfoil section thicknesses and surface slopes.

Subroutines LINEQS and SOLVE are used together to solve the set of linear simultaneous equations for the loading on the lifting surfaces.

Subroutine COMP computes the downwash function for a uniformly loaded triangular shaped panel.

Subroutine EXTVEL computes the free vortex-induced velocity at wing or tail control points.

Subroutine TRJTRY computes the trajectories of the free vortices past the configuration using the subroutines FCT, OUTP, HPCG, and SHAPE.

Subroutine FCT computes the derivatives for the equations of motion for each free vortex.

Subroutine HPCG is a predictor-corrector integration package which uses a Runge-Kutta starting procedure.

Subroutine OUTPUT stores the vortex positions in a table at specified intervals in \(x\). When necessary, some diagnostic information on the vortex trajectories is available as optional output.

Subroutine ZVTX determines the vertical position of the leading-edge separation vortex using a table look-up of correlated data for delta wings.

Subroutine WPANL calculates the upwash induced by the constant pressure panels comprising the lifting surface.

Subprograms KFACT, CH1416, EQ14, CHRT8, EQ21, EQ24, EQ24L, EQ26, EQ30, EQ30L, and EQ31 are used to compute the lift and center of pressure on the body in the presence of a lifting surface. These subprograms perform the same functions in SUPSON as they do in R1307 and the individual descriptions are not repeated here.

\section*{Description of Input}

Variable definitions.- The format of the input cards for the SUBSON program is shown in figure 1. In this figure the program variable name is shown as well as the card columns in which the value is punched and the format in which it is punched. The following is a table of the input variables along with the algebraic symbol where applicable. The variable is defined and its limits shown where necessary. The algebraic notation used in defining the configuration is shown in figure 2. A discussion of the preparation of the input is presented in the section following the table.
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
PROGRAM \\
NOTATION
\end{tabular} & ALGEBRAIC & \\
\hline NOTATION & NOTATION & DEFINITION \\
\hline \multicolumn{3}{|l|}{Item 1} \\
\hline NHEAD & & Number of heading cards. \\
\hline NTBL & & Number of entries in table of body coordinates. \(5 \leq N T B L \leq(96\) less the total number of columns on both wing and tail). \\
\hline NPRINT & & ```
Index controlling optional output:
    NPRINT = -2 Minimum output. Final aero-
                            dynamic characteristics only.
    = -1 Abbreviated output. Final
                aerodynamic characteristics
                plus details of lifting-
                surface results.
    =0 No optional output.
    =1 Some optional output.
    = 4 Large amount of optional
                output.
    >4 All optional output including
                diagnostic information (not
                recommended for general use).
``` \\
\hline MPRINT & & Index controlling diagnostic output:
\[
\begin{aligned}
\text { MPRINT }= & 0 \\
=1 & \text { No additional output. } \\
& \text { Output vortex trajectories } \\
& \text { during calculations. (This } \\
& \text { option should be used only } \\
& \text { if program has terminated } \\
& \text { execution during a previous } \\
& \text { trajectory calculation.) }
\end{aligned}
\] \\
\hline NOSEV & & ```
NOSEV = 0 No nose separation vortex
 pair.
 = l Nose separation vortex pair
 included.
``` \\
\hline NREGNW & & Number of regions into which wing is divided. \(1 \leq N R E G N W \leq 20\) \\
\hline NAL PW & & \[
\begin{aligned}
\text { NALPW } & =0 \text { Uncambered and untwisted wing. } \\
& >0 \text { Cambered and/or twisted wing, } \\
& \text { local angles must be input. }
\end{aligned}
\] \\
\hline NSEPW & & Number of leading-edge separation vortices shed from wing. \(1 \leq N S E P W \leq 2\) \\
\hline NREGNT & & Number of regions into which tail is divided. \(1 \leq\) NREGNT \(\leq 20\) NREGNT \(=0\) No tail. \\
\hline
\end{tabular}

\section*{PROGRAM NOTATION}

\section*{NALPT}

NSEPT

NBODY

NAFT

\section*{DEFINITION}

NALPT \(=0\) Uncambered and untwisted tail. \(>0\) Cambered and/or twisted tail, local angles must be input.

Number of leading-edge separation vortices shed from tail. \(1 \leq N S E P T \leq 2\)

Index controlling body upwash:
NBODY \(=0\) Body upwash included in wing
and tail interference calculation.
\(<0\) Body upwash not included.
Index controlling presence of afterbody behind rear lifting surface. NAFT \(=0\) NO afterbody.
\(=1\) Afterbody included.
Item 2
TITLE

Item 3
\begin{tabular}{|c|c|c|}
\hline EM & M & Mach number, \(\quad \mathrm{M}>1.0\). \\
\hline REFS & S & Reference area. \\
\hline REFL & \(\ell\) & Reference length. \\
\hline XM & \(\mathrm{x}_{\mathrm{m}}\) & \(x\)-location of center of moments \\
\hline THETAN & \(\theta_{N}\) & Nose semiapex angle, degrees. \\
\hline DXOUT & & ```
x-increment in table of free vortex
    trajectories. DXOUT \leq RAVGW,
    typically.
``` \\
\hline DXI & & ```
Maximum integration interval for vortex
 trajectory calculation. DXI \leq DXOUT,
 typically.
``` \\
\hline
\end{tabular}

Item 4
\begin{tabular}{ll} 
XBDY & \(\mathbf{x}\) \\
RBDY & \(\mathbf{r}\)
\end{tabular}

Any alphabetical or numerical identification information.

Reference length. \(x\)-location of center of moments

Nose semiapex angle, degrees.
\(x\)-increment in table of free vortex trajectories. DXOUT \(\leq\) RAVGW, typically.

Maximum integration interval for vortex trajectory calculation. DXI \(\leq\) DXOUT, typically.
x-stations at which body coordinates are defined.

Body radius at above x-station.
PROGRAM
NOTATION \(\quad\)\begin{tabular}{c} 
ALGEBRAIC \\
Item 5
\end{tabular}

TCROOT

TCTIP

SECT
\$END
Item 7
ALPHAW

Item 8
\begin{tabular}{ll} 
RAVGT & \(r_{\text {avg }}\) \\
YSEPT & \(Y_{\text {sep }_{e}}\) \\
XHLT & \(\mathbf{x}_{H_{e}}\) \\
ZHLT & \(\mathbf{z}_{\mathrm{HL}_{e}}\) \\
XTCP & \(\mathbf{x}_{\mathrm{CP}}\) \\
&
\end{tabular}

Item 9
\$INPUT
PER
ALGEBRAIC NOTATION \(t / c \mid r o o t\) \(t /\left.c\right|_{\text {tip }}\)
\(\alpha_{w}\)
\(Y_{s_{e}}\)
\({ }^{X_{H L}}{ }_{e}\)
\({ }^{2} \mathrm{HL}_{e}\)
\({ }^{\mathrm{X}} \mathrm{CP}_{\mathrm{e}}\)

\section*{DEFINITION}

Root chord thickness ratio. May be equal to zero.

Tip chord thickness ratio. May be equal to zero.

Specification of airfoil section. \(\mathrm{SECT}=1\) Parabolic arc.
\(=2\) Double wedge.
\(=3\) 30-70 hexagon.
\(=4\) Wedge.
\(=5\) NACA 000X
\(=6\) NACA 6400X
\(=7\) NACA 6500X \(=8\) RAE 101

End of namelist.

Local angle of wing mean surface due to camber and twist, radians.

Average body radius at tail.

Spanwise location of second leading-edge separation vortex. If NSEPT \(=1\), YSEPT \(=\mathrm{b} / 2\).
\(x\)-coordinate of tail hinge line at wingtail juncture.
\(z\)-coordinate of tail hinge line at wingtail juncture.
\(x\)-coordinate of alternate tail center-ofpressure location.

Item 9 is made up of NREGNT namelist decks. Namelist identification.

Location of tail control point in fraction of panel chord. Typically, \(P E R=0.95\).

\section*{DEFINITION}
\(\left.\begin{array}{l}\text { ROWS } \\ \text { COLS } \\ \text { ROOTLE } \\ \text { ROOTTE } \\ \text { ROOTY } \\ \text { TIPLE } \\ \text { TIPTE } \\ \text { TIPY } \\ \text { TCROOT } \\ \text { TCTIP } \\ \text { SECT } \\ \text { \$END }\end{array}\right\}\)

Item 10

AL PHAT

Item 11
NDEX
\begin{tabular}{lc} 
ALPHAD & \(\alpha\) \\
ALPIW & \(\delta_{W}\) \\
AKVLW1 & \(K_{V_{\text {LE }}^{W}}^{*}\)
\end{tabular}

AKVLW2

AKVSW

ALPIT

AKVLT1
\(\alpha_{e}\)

Local angle of tail mean surface due to camber and twist, radians.

Index controlling next case of input. NDEX \(=1\) Execute program using variables on this card.
\(=0\) Ignore this card and return to beginning for new case.

Angle of attack of configuration, degrees.
Incidence angle of wing relative to body axis, degrees.

Fraction of leading-edge suction converted to lift in inboard wing region. ( \(0 \leq K_{\text {VLE }}^{*} \leq 1.0\) )

Fraction of leading-edge suction converted to lift in outboard wing region. \(\left(0 \leq K_{\text {VEE }}^{*} \leq 1.0\right)\)

Fraction of side-edge suction converted to lift on wing. \(\left(0 \leq \mathrm{K}_{\mathrm{v}_{\mathrm{SE}}}^{*} \leq 1.0\right)\)

Incidence angle of tail relative to body axis, degrees.

Fraction of leading-edge suction converted to lift in inboard tail region. \(\left(0 \leq K_{\mathrm{V}_{\mathrm{LE}}}^{*} \leq 1.0\right)\)
PROGRAM
NOTATION

AKVLT2

ALGEBRAIC
NOTATION

\(\mathrm{K}_{\mathrm{v}_{\mathrm{SE}}}^{*}\)
\((w / V)_{\text {max }}\)

DEFINITION
Fraction of leading-edge suction converted to lift in outboard tail region. \(\left(0 \leq \mathrm{K}_{\mathrm{VLE}}^{*} \leq 1.0\right)\)

Fraction of side-edge suction converted to lift on tail. ( \(0 \leq \mathrm{K}_{\mathrm{VE}}^{*} \leq 1.0\) )

Limit on vortex-induced velocities at wing and tail control points.
( \(0 \leq\) WLIMIT \(\leq 1.0\) )

Input preparation.- A discussion of the input variables is presented in this section as an aid in the preparation of the input data deck. If a configuration has one set of lifting surfaces, this is denoted the wing regardless of its axial location on the body and data describing this lifting surface are input as wing data. If there are two lifting surfaces, the set nearest the nose is the wing and the aft set is the tail. For example, in a canard-body-wing configuration, the canard data are input as wing data and the wing data are input as tail data. In the following discussion, necessary geometric relations are illustrated in figure 2.

Item number 1 of the input data deck (fig. 1) is a card containing indices specifying particular program options. NHEAD indicates the number of identification cards following in Item 2. NTBL is the number of entries in the table describing the body shape. NPRINT is an index which determines the quantity of output obtained from the program. Typically, this number is zero, but varying degrees of additional output can be obtained by increasing this index from 1 to 4. An abbreviated output summary is obtained by setting NPRINT \(=-1\) or -2 . MPRINT is a special index controlling the quantity of output obtained during vortex trajectory calculations. Typically, this index is zero, but if it is greater than zero, the trajectory coordinates are printed as they are computed. This additional trajectory information is useful only if the program fails to compute a trajectory for some particular case, and the additional output may give some clue as to why the calculation failed. This option should only be used after a computational problem has been discovered.

The index NOSEV specifies whether there is (NOSEV \(=1\) ) or is not (NOSEV \(=0\) ) a symmetrical pair of vortices shed from the nose of the
configuration. If the nose angle (THETAN) is less than or equal to four degrees, NOSEV is automatically set equal to zero.

The following three indices are associated with the wing. NREGNW is the number of spanwise regions describing the wing. This number is typically equal to zero unless there are breaks in sweep or it is desired that the panel spacing be different in different wing regions. NALPW specifies if wing camberline slopes are nonzero and must be input (NALPW=1) or are zero and need not be input (NALPW \(=0\) ). NSEPW specifies the number of leading-edge separation vortices shed from the wing. This index must be either 1 or 2, and if \(\operatorname{NSEPW}=2\), a special value of YSEPW is required in Item 5.

The provision for multiple separation vortices is included to handle wings with breaks in leading-edge sweep. It has been observed that leadingedge separation vortices are shed from the wing regions inboard and outboard of the break. A maximum of two leading-edge separation vortices are allowed.

The next three indices in Item l, NREGNT, NALPT, and NSEPT are tail indices analogous to the preceeding wing indices and subject to exactly the same restrictions. If no tail is present, all three must be zero.

The next index in Item 1 , NBODY, determines whether the upwash field around the body is included (NBODY \(=0\) ) in the wing-and tail-interference calculations or not included (NBODY \(<0\) ). This index is used to determine the magnitude of the body-interference effect and generally should be equal to zero.

The last index, NAFT, is used to specify the presence of an afterbody behind the aft lifting surface. If there is an afterbody, NAFT \(=1\), and if not, NAFT \(=0\).

Item 2 is a group of NHEAD cards containing identification information which is printed on the first page of output. The information on the last card of this group is retained and printed as a heading card at various points in the output.

Item 3 is a single card containing EM, the free-stream Mach number (greater than 1); REFS and REFL, the reference area and reference length, respectively; \(X M\), the \(x\)-coordinate of the center of moments; and THETAN, the nose semiapex angle in degrees. The final two variables are associated
with the free vortex trajectory calculations. DXOUT is the approximate increment in \(x\) at which trajectory coordinates are stored for use in induced velocity calculations. A lower limit for this variable is about 0.5 percent of the overall length of the body because of storage limitations Typically, a reasonable value for DXOUT is about one half the maximum radius of the body. DXI is the initial integration interval for the trajectory calculations. The integration package will cut the interval in half if necessary for reasonable accuracy, and this halving process can occur ten times before the program automatically terminates execution with an appropriate message. If the input value of DXI is too large, the program will stop because of unacceptable accuracy, and if DXI is too small, the running time will become large. Experience has indicated a value of DXI between 2 and 5 percent of the body length will work for most cases. Under rare circumstances when two vortices get very close together or when a vortex gets very near the wing or body, a smaller value of DXI may be required. DXI should not be larger than DXOUT.

Item 4 is a group of NTBL cards describing the body shape. Each card contains an x-station, XBDY, and the corresponding body radius, RBDY. The cards should be in ascending order in \(x\) and there should be less than 75 cards in this item in a typical run. The program internally sets up its own table of coordinates which is stored in the XBDY and RBDY arrays and is limited to 100 entries. A good rule of thumb to follow in inputting Item 4 is the following.

NTBL < (96-Total number of spanwise columns on wing and tail)
Some care is required when describing the body shape via XBDY and RBDY. Linear interpolation is used throughout; therefore, if the body shape is changing rapidly, more points are required. There should be a minimum of five entries in the nose region ahead of the wing and there must be entries at x-stations identically equal to XWLE and XWTE, and XTLE and XTTE if a tail is present. The last entry in the table must be greater than XWTE or XTTE, whichever is greater, by an amount not less than DXI. If the body is made up of a nose section followed by a cylindrical afterbody, there should be two points on the cylinder very close together near the beginning of the cylinder. Points on a cylinder can be spaced large distances apart, but if the cylinder is followed by a section with changing radius, the last two points on the cylinder should be close together.

Item 5 contains geometric information for the wing. RAVGW is the average body radius in the vicinity of the wing. YSEPW is the y-station at which the wing is assumed broken for purposes of having two leadingedge separation vortices. If NSEPW \(=1\), then YSEPW must be equal to the wing semispan. If \(N S E P W=2\), YSEPW must have some value greater than RAVGW and less than the wing semispan. The chosen value should coincide with one of the breaks in the panel layout. It is advised that there be at least three columns of panels on either side of YSEPW to achieve some reasonable accuracy in the separation vortex strength and position calculation. The next two variables, XHLW and ZHWW, are the coordinates of the wing hinge line at the wing-body juncture. The last variable, XWCP, is an experimental center-of-pressure location for the wing potential lift which may be used if desired. If this is not to be used, XWCP must be identically zero.

Item 6 is a namelist (INPUT) describing the geometry of the wing and the panel arrangement. There must be one complete namelist deck for each region of the wing (NREGNW) and they must be in order from wing root to wing tip. The first variable, PER, is the chordwise location of the control point of each constant pressure panel presented as a fraction of the local panel chord. This number is typically 0.95 for supersonic flow. The next two variables, ROWS and COLS, are the number of chordwise and spanwise divisions into which the wing region is divided. Thus, ROWS \(\times\) COLS is the number of panels in the wing region under consideration. There are certain limitations on the size of these numbers, as the total number of panels on the entire wing semispan cannot exceed 100 and the total number of spanwise divisions on the entire wing semispan cannot exceed 20 .

The following six variables specify the planform geometry of the wing region. ROOTLE is the x-station of the leading edge of the root chord of the region, ROOTTE is the x-station of the trailing edge of the root chord, and ROOTY is the \(y\)-station of the root chord. If this is the first wing region, these values correspond to the actual wing root chord where ROOTLE and ROOTTE are the intersections of the leading and trailing edges with the body, and ROOTY has the same value as RAVGW in Item 5. If NREGNW \(>1\), these values specify the chord of the inboard side of the wing region. In a similar manner, TIPLE and TIPTE are the x-stations of the tip leading and trailing edges, respectively. TIPY is the y-station of the outboard side of the region. If the region under consideration is the last (or only)
region of the wing, TIPY must be equal to the semispan of the wing. Note that on wings with multiple regions and continuous leading and trailing edges, the tip chord of one region is identical to the root chord of the adjacent region.

The remaining variables in the namelist are optional. TCROOT and TCTIP are the thickness-to-chord ratios of the root and tip of the wing region. These values may be input as zero or omitted entirely from the deck. Since wing thickness is not a prime consideration in the calculation procedure, it is suggested that these values be omitted. If wing thickness is to be input, a value of SECT must be input to specify the wing section shape. The options available for airfoil sections are noted in the tables of variable definitions. This ends the namelist description of the wing region. All other regions should follow in the input deck immediately; therefore, there will be NREGNW sets of the namelist INPUT decks.

Item 7 is optional input and is included only if the wing is cambered or twisted (NALPW \(>0\) ). If such is the case, ALPHAW, the local panel angle, \(\alpha_{\ell}\), of each element of the wing must be input. These angles, in radians, are relative to the wing root chord and thus do not include any wing incidence. There are eight values per card and the angles are input from leading edge to trailing edge, from wing root to tip. There are a total of NPANLW values, where NPANLW is the total number of panels on the wing and is computed internally in the program.

Values of ALPHAW are obtained as follows. Consider the sketch in figure \(2(b)\) which shows the cambered and twisted section of the lifting surface at some spanwise station. At point \(P\), corresponding to a control point on the wing mean surface, a tangent to the wing mean surface is constructed, which makes an angle \(\alpha_{\ell}\) with the wing root chord. The positive sense of \(\alpha_{\ell}\) is shown in this figure. The input value required is \(\alpha_{\ell}\) in radians. Near the leading edge of the section shown in figure \(2(\mathrm{~b}), \alpha_{\ell}\) is negative. Item 10 completes the input description of the wing.

If \(\operatorname{NREGNT}=0\); that is, no tail is present, go directly to Item 11. If a tail is present, Item 8 is the next card in the input deck. The variables in Item 8, RAVGT, YSEPT, XHLT, ZHLT, and XTCP are analogous to the wing parameters in Item 5 and subject to the same restrictions and limitations.

Item 9 is a namelist INPUT describing the tail and there must be NREGNT decks of this namelist. The tail variables in this namelist are in direct correspondence with the wing variables described in Item 6.

If NALPT is not zero, the local panel incidence angles in radians of the tail are input in Item 10 in an analogous manner to Item 7 for the wing.

Item 11 is a group of cards, one card for each run, which specifies the variables which are considered changeable for a given geometric configuration. The first entry on the card is the index NDEX which is simply used to control the stacking of additional cases. \(N D E X=1\) on each card represents a new flow condition. If \(N D E X=0\), the card is ignored and the program returns to read in a completely new case beginning with Item 1. Thus, a blank card is used to separate calculations with different configurations. When NDEX \(\neq 0\), the next value on the card is the configuration angle of attack in degrees, ALPHAD, taken as the angle between the axis of the body and the free-stream velocity. The second quantity is the incidence angle of the wing root chord in degrees, ALPIW. Its sense is such that a positive incidence is a leading-edge up condition. The next three variables are the \(K_{v}^{*}\) factors which relate the actual realized vortex lift from the leading and side edges to that which is theoretically available. AKVLWl is the fraction of leading-edge separation vortex lift which is obtained on the inboard portion of the wing if NSEPW \(=2\) or on the entire wing if NSEPW = 1. If NSEPW \(=2\), AKVLW2 is the leading-edge suction factor for the outboard portion of the wing. The values of AKVLWl and AKVLW2 are obtained from the correlation curve in figure 3. This figure is reproduced from figure 9 of reference l. The data on which the curve is based are for sharp-edged delta wings. To use this curve for another wing shape, an effective aspect ratio computed as
\[
A R=\frac{4}{\tan \Lambda_{L E}}
\]
should be used. As described in reference l, care must be taken when using this correlation curve for anything other than sharp-edged wings. A rounded leading edge can cause the suction factor, \(K_{v L E}^{*}\), to go to zero.

AKVSW is the side-edge suction factor for wings with tips. The sideedge suction lift is usually small compared to the potential lift except
for very low-aspect-ratio wings. Comparisons with subsonic rectangular wing data indicate that this factor should be unity, but the magnitude for supersonic flow is not known because of a lack of appropriate data for correlation purposes. Unless other information is available to the user, it is suggested that a value of 1.0 be used for all wings with nonzero tip chords. When there is no wing tip chord, such as on a delta wing, AKVSW should be identically zero.

The next four variables in Item 1l, ALPIT, AKVLTl, AKVLT2, and AKVST are the corresponding tail parameters. They fall under the same rules and guidelines set up for the respective wing parameters. If no tail is present, all four values should be set equal to zero.

The final quantity on this card is WLIMIT, the maximum allowable vortex-induced velocity nondimensionalized by the free-stream velocity. The purpose of this variable is to limit the magnitude of the vortexinduced velocities on the wing or tail. In the course of program development, a canard-body-wing configuration exhibited a discontinuous lift curve at some angle of attack around \(8^{\circ}\). Close investigation showed that this occurred when the canard trailing vortex passed very near to some wing control points, inducing inordinately large velocities, which resulted in large local angles of attack. The lifting-surface method reacted accordingly and large loading gradients were predicted. This, of course, is an unrealistic situation because a true viscous vortex does not behave as a potential vortex and induce infinite velocities at its center. For this reason a limit was introduced which arbitrarily sets any vortexinduced velocity greater than WLIMIT, equal to WLIMIT.

Generally, WLIMIT should be set equal to l.0. If, in the process of running the program, unusual variations in the lift or pitching moment with angle of attack occur which can be attributed to unrealistic vortexinduced interference, WLIMIT can be used to limit the magnitude of the large induced velocities causing the problem. A value of WLIMIT \(=0.1\) has been used in some specific examples to reduce the apparent discontinuity in the predicted lift and moment curves and resulted in good agreement with experiment. This discussion is not meant to suggest that an arbitrary velocity limit will cure the problems with the near flow fields of potential vortices. It is simply included to note that a simple, approximate fix is available. If WLIMIT \(=0.0\), the effect of the free vortices on the lifting surfaces is completely eliminated.

The above discussion includes all the input required for a typical run. The sample cases in the following section cover most of the options available in the program.

Sample cases.- Listings of the input data decks for three sample cases are presented in figure 4 and sketches of the configurations chosen for these sample cases are shown in figures 5 and 6 . These configurations were used in the tests of references 14 and 15 , respectively.

Sample case 1 is the canard-body-wing combination shown in figure 5 at a Mach number of 2.01. No optional output is requested and the canard and wing are each defined by a single region. A complete range of angles of attack for one canard deflection angle is specified. This input deck, shown in figure 4(a), requires approximately 300 seconds running time on the IBM 360/67.

Sample case 2, shown in figure 4 (b), is the same configuration with the canard removed. No optional output is requested. For demonstration purposes, the wing is specified by two regions. The inboard and outboard regions are given the same panel spacing as that used in sample case 1. This is not normally the situation in laying out this type of lifting surface in multiple regions. Generally, some change in spacing between the regions is necessary. Of course, a break in the sweep angle of the leading or trailing edge dictates the use of multiple regions and the panel spacing may or may not be changed.

Sample case 3 is the wing-body-tail combination shown in figure 6. Minimum output is requested and the wing and tail surfaces are each defined by a single region. A complete range in angle of attack for three tail deflection angles is specified. This input deck, shown in figure 4(c), requires approximately 540 seconds on the IBM 360/67.

\section*{Description of Output}

The output produced by the SUPSON computer program for sample case 1 is shown in figure 7. The first page of output from the program, figure 7 (a), is a tabulation of most of the input data in Items 1,2 , and 3 of figure 1. The next page of output, figure \(7(b)\), is a listing of the namelist INPUT which describes the geometry of the wing. If the wing is divided into more than one region, the variables in namelist INPUT describing each region are listed here. The next page of output, figure 7(c),
is a similar listing of the namelist INPUT describing the geometry of the tail. The first entry in the namelist distinguishes between the wing (NSF \(=1\) ) or the tail (NSF = 2).

The following page of output, figure \(7(d)\), summarizes the geometry of the configuration by component. The first line at the top of the page is the last identification card from the heading in Item 2 of figure 1 . The wing quantities which are tabulated are:
\begin{tabular}{c} 
OUTPUT \\
NOTATION \\
\hline
\end{tabular}

XLE

XTE

XLE (TIP)

XTE (TIP)

CROOT

CTIP

B/2
RAVG

YSEP
XHL

ZHL

XCP

ALGEBRAIC
NOTATION
\({ }^{X_{\text {LE }}}\) root
\(\mathrm{X}_{\mathrm{TE}}\) root
\(x_{\text {LE }}\) tip
\(\mathbf{x}^{T E}{ }_{\text {tip }}\)
\(c_{\text {root }}\)
\(c_{\text {tip }}\)
b/2
\(\mathrm{r}_{\mathrm{avg}}^{\mathrm{w}}\)
YSEPW (Item 5)
\(\mathrm{X}_{\mathrm{HL}}{ }_{\mathrm{W}}\)
\(\mathrm{z}_{\mathrm{HL}}{ }_{\mathrm{w}}\)
\(\bar{x}_{C P}\) or XWCP (Item 5)

The same quantities are tabulated for the tail surface if one is present. The following quantities are listed for the body.
\begin{tabular}{c} 
OUTPUT \\
NOTATION \\
\hline \hline
\end{tabular}

ALGEBRAIC
NOTATION
\(\theta_{\mathrm{N}}\) (Item 3)
\(x_{L E} / r_{N}\)
\(r_{N}\)

AVERAGE RADIUS WING

AVERAGE RADIUS TAIL

CENTER OF MOMENTS X

CENTER OF MOMENTS \(\mathbf{Z}\)
\(r^{r a v g}\)
\(r_{\text {avg }}\)
\(x_{m}\)
\(z_{m}\)
DXI
DXOUT
\(\left.\begin{array}{c}\Delta x \\ -\end{array}\right\}\) Item 3
X
R
S

DR/DX
\(s_{w}\) or \(s_{e}\)
x
\(r\)
\(d r / d x\)

This concludes the general geometric description of the configuration. This information is output once at the beginning of each case. The following output is dependent on the information input on Item ll; that is, the angle of attack, incidence angles, \(K_{v}^{*}\) factors, and induced velocity limit.

Figure 7 (e) is the first page of output for each run within the series of runs making up sample case l. The first line summarizes the information input in Item 11 as follows:
\begin{tabular}{ll}
\begin{tabular}{l} 
OUTPUT \\
NOTATION
\end{tabular} & \begin{tabular}{l} 
ALGEBRAIC \\
NOTATION
\end{tabular} \\
ALPHA & \(\alpha\) \\
\(M\) & M \\
INCIDENCE WING & \(\delta_{\mathbf{w}}\)
\end{tabular}
\begin{tabular}{|c|c|}
\hline OUTPUT & ALGEBRAIC \\
\hline NOTATION & NOTATION \\
\hline INCIDENCE TAIL & \(\delta_{e}\) \\
\hline WING KVLE* & \[
\mathrm{K}_{\mathrm{v}_{\mathrm{LE}}^{*}}
\] \\
\hline WING KVSE* & \[
\mathrm{K}_{\mathrm{v}_{\mathrm{SE}}}^{*}
\] \\
\hline TAIL KVLE* & \[
K_{v_{L E}}^{*}
\] \\
\hline TAIL KVSE* & \[
\mathrm{K}_{\mathrm{v}_{\mathrm{SE}}}^{*}
\] \\
\hline W/V LIMIT & \((\mathrm{w} / \mathrm{V})_{\max }\) \\
\hline
\end{tabular}

The next block of output on this page is a summary of the strength and position of the right-hand vortex (if present) of the symmetrical pair of vortices shed from the nose of the body.
\begin{tabular}{ll}
\begin{tabular}{l} 
OUTPUT \\
NOTATION
\end{tabular} & \begin{tabular}{c} 
ALGEBRAIC \\
NOTATION
\end{tabular} \\
GAM/2*PI*V*RB & \(\frac{\Gamma_{B}}{2 \pi V r_{N}}\) \\
Y/RB & \(\mathrm{Y}_{\mathrm{B}} / r_{\mathrm{N}}\) \\
\(\mathrm{Z} / \mathrm{RB}\) & \(\mathrm{z}_{\mathrm{B}} / r_{\mathrm{N}}\) \\
\(\mathrm{XS} / \mathrm{RB}\) & \(\mathrm{x}_{\mathrm{S}} / r_{\mathrm{N}}\) \\
\(\mathrm{GAM} / 2 * \mathrm{PI} * \mathrm{~V}\) & \(\frac{\Gamma_{B}}{2 \pi V}\) \\
Y & \(\mathrm{y}_{\mathrm{B}}\) \\
Z & \(z_{\mathrm{B}}\)
\end{tabular}

The following block of output is the induced Beskin upwash at the wing control points ( \(x, y, z\) ) due to the presence of the body. The induced velocities, \(V / V(I N F)\) and \(W / V(I N F)\), expressed as a fraction of the free-
stream velocity, are positive in the positive \(y\) and \(z\) directions, respectively. The next block of data are the induced velocities induced at the same wing control points by the vortex pair shed from the nose of the body. These velocities have the same positive sense as the bodyinduced upwash above. The final block of data in figure 7 (e) is the total induced velocity at each control point.

The next page of output, figure 7(f), contains the results from the lifting-surface calculations for the wing. The first several lines are reiteration of some input quantities. The remainder of the results are calculated quantities associated with the potential forces and moments on the wing. The potential span-loading distribution is followed by the spanwise position and strength of the trailing vortex. The above output in figure \(7(f)\) is printed in subroutine FORCE. The definitions of this output are as follows.
\begin{tabular}{|c|c|}
\hline OUTPUT & ALGEBRAIC \\
\hline NOTATION & NOTATION \\
\hline CNP & \[
\mathrm{C}_{\mathrm{N}_{\mathrm{W}(\mathrm{~B}), \mathrm{p}}}
\] \\
\hline DCN/DALPHA & \(\mathrm{dC}_{\mathrm{N}} / \mathrm{d} \alpha\) \\
\hline CMP & \[
c_{m_{W(B)}, p}
\] \\
\hline DCM/DCN & \(\mathrm{dc}_{\mathrm{m}} / \mathrm{dc}_{\mathrm{N}}\) \\
\hline XAC & \(\mathrm{x}_{\mathrm{ac}}\) \\
\hline XCP & \(\mathrm{x}_{C P}\) \\
\hline YCP & \(Y_{C P}\) \\
\hline B & b \\
\hline CCN/2B & \[
\frac{c c_{n}}{2 b}
\] \\
\hline GAM/V2PI & \[
\frac{\Gamma_{t}}{2 \pi v}
\] \\
\hline
\end{tabular}

The next block of output on this page is the spanwise distribution of the leading-edge suction. If the wing has a nonzero tip chord, a second block of output containing the distribution of side-edge suction is printed. This latter output is printed in subroutine EDGFRC and is defined as follows.
\begin{tabular}{|c|c|c|}
\hline OUTPUT & ALGEBRAIC & \\
\hline NOTATION & NOTATION & \\
\hline \(\mathrm{Y} /(\mathrm{B} / 2)\) & \[
\frac{\mathrm{y}}{\mathrm{~b} / 2}
\] & \\
\hline CCS/2B & \[
\frac{\mathrm{cc}_{\mathrm{s}}}{2 \mathrm{~b}}
\] & \\
\hline EPS (DEG) & \(\epsilon\) & \\
\hline CCX/2B & \(\left(\frac{c c}{2 b}\right)_{L E}\) & \\
\hline CCY/2B & \(\left(\frac{c c}{} \frac{y}{2 b}\right)_{L E}\) & \\
\hline CYC/2B & \(\left(\frac{c c}{} \frac{y}{2 b}\right)_{S E}\) & (This variable does not appear in the sample case because \(c_{\text {tip }}=0\).) \\
\hline
\end{tabular}

Figure \(7(g)\) is headed by a summary of the strengths and positions of the vortices shed from the configuration ahead of the wing trailing edge. The pairs of vortices are listed in the following order. Vortex lis the right-side body vortex shed from the nose. Vortex 2 is the trailing vortex shed from the wing. Vortex 3 is the leading-edge separation vortex shed from the wing. If more than one separation vortex is requested, vortex 3 is the vortex associated with the inboard region and vortex 4 is shed from the outboard region. If a vortex is missing for any reason, all following vortices are moved up in the table. For example, if no vortices are shed by the nose, vortex \(l\) becomes the trailing vortex shed by the wing, and so on. The remainder of figure \(7(g)\) indicates the induced velocities at the tail control points. These velocities are analogous to the induced velocities on the wing shown in figure \(7(e)\).

Figure \(7(h)\) contains calculated results for the tail surface. All the quantities on this page are analogous to those described for the wing
in figure 7(f). The last entry on this figure is a summary of the strengths and positions of all the vortices in the field just aft of the tail trailing edge. The first group of vortices are the same as described in connection with figure \(7(\mathrm{~g})\). The second group of vortices are defined as follows. Vortex 4 is the trailing vortex corresponding to the potential lift on the tail. Vortex 5 is the leading-edge separation vortex shed from the tail. If multiple vortices are shed from the tail leading edge, this vortex would be shed from the inboard tail region and vortex 6 would be shed from the outboard tail region.

The next page of output, figure 7 (i), is a summary page of the force coefficients, pitching-moment coefficients, and centers of pressure on each component of the configuration and of the total configuration. The coefficients for the individual components are described in Table I. The total configuration variables are defined as follows.
\begin{tabular}{ll}
\begin{tabular}{l} 
OUTPUT \\
NOTATION
\end{tabular} & \begin{tabular}{l} 
ALGEBRAIC \\
NOTATION
\end{tabular} \\
CN & \(\mathrm{C}_{\mathrm{N}}=\frac{\mathrm{N}}{\mathrm{qS}}\) \\
CM & \(\mathrm{C}_{\mathrm{m}}=\frac{\mathrm{M}}{\mathrm{qS} \ell}\) \\
XCP & \(\bar{x}_{\mathrm{CP}}=\mathrm{x}_{\mathrm{m}}-\frac{\mathrm{C}_{\mathrm{m}}}{\mathrm{C}_{\mathrm{N}}} \ell\) \\
CL & \(\mathrm{C}_{\mathrm{L}}=\frac{\mathrm{L}}{\mathrm{qS}}\) \\
CDI & \(\mathrm{C}_{\mathrm{D}_{\mathrm{i}}}=\mathrm{C}_{\mathrm{L}} \tan \alpha\) \\
CA & \(\mathrm{C}_{\mathrm{A}}=\frac{A}{\mathrm{qS}}\) \\
\(\mathrm{CDI/CL**2}\) & \(\mathrm{C}_{\mathrm{D}_{\mathrm{i}}} / \mathrm{C}_{\mathrm{L}}^{2}\)
\end{tabular}

The last page of output for this run, figure \(7(j)\), contains a summary of the trajectories of the shed vortices. At the top of the page the vortices are identified and their strengths listed. This is followed by blocks of output, one block for each \(x\) station, describing the local crossflow geometry of the configuration and the position of the right-side
vortices. Each block of results is separated by approximately DXOUT. Notice that the trajectory calculation starts at the wing leading edge with a pair of body vortices. As the calculation moves downstream, other vortices are shed and added to the calculation. The trajectory calculation is carried downstream to a point aft of the tail trailing edge. The variables in each block are defined as follows.
\begin{tabular}{ll}
\begin{tabular}{l} 
OUTPUT \\
NOTATION
\end{tabular} & \begin{tabular}{l} 
ALGEBRAIC \\
NOTATION
\end{tabular} \\
X & x \\
DX & \(\Delta \mathrm{x}\) \\
A & a \\
S & \(\mathrm{s}_{\mathrm{w}}\) or \(\mathrm{s}_{\mathrm{e}}\) \\
RO & \(\mathrm{r}_{\mathrm{o}}\) \\
DA/DX & \(\mathrm{da} / \mathrm{dx}\) \\
SIGMA (REAL) & y \\
SIGMA (IMAG) & z
\end{tabular}

This completes the output for one card in Item 11 of the input deck. Additional runs will repeat the output of figures 7 (e) through (j). The above set of output obtained with NPRINT \(=0\) is a considerable amount of output for production runs; therefore, an optional set of output can be obtained by setting NPRINT = -2. In this case, the complete output consists of figures 7 (a), (b), (c), (d), and (i) with some shed vortex positions and strengths added.

Some extra output over and above that shown in figure 7 can be obtained when NPRINT \(>0\). This additional output is useful only for diagnostic purposes and is not described herein. This output is labeled and the user should have no trouble interpreting the results.

\section*{Program Listing}

The SUPSON computer program consists of the main program, nine function subprograms, and twenty-five subroutine subprograms. Each source deck is identified in columns 73 through 80 by a four-character identification and a three-digit number sequencing the cards within that deck.

The program listing is given on the following pages. The table below will act as a table of contents for the listing.
\begin{tabular}{|c|c|c|}
\hline PROGRAM & IDENTIFICATION & PAGE NO. \\
\hline MAIN & SpO1 & 167 \\
\hline \multicolumn{3}{|l|}{Subroutines:} \\
\hline SSWING & SPO2 & 172 \\
\hline table & SP03 & 175 \\
\hline FORCE & SP04 & 176 \\
\hline EDGFRC & SP05 & 177 \\
\hline MATRIX & SP06 & 179 \\
\hline CNVTX & SP07 & 181 \\
\hline BDYVTX & SP08 & 181 \\
\hline CNVNZ & SP09 & 182 \\
\hline SHAPE & SPl0 & 182 \\
\hline FILL & SPll & 182 \\
\hline ZSECT & SPl2 & 182 \\
\hline TCOMP & SP13 & 183 \\
\hline TAINT & SP14 & 183 \\
\hline LINEQS & SP15 & 184 \\
\hline SOLVE & SP16 & 184 \\
\hline COMP & SP17 & 184 \\
\hline EXTVEL & SPl8 & 185 \\
\hline TRJTRY & SP19 & 185 \\
\hline FCT & SP20 & 185 \\
\hline HPCG & SP21 & 186 \\
\hline OUTP & SP22 & 188 \\
\hline zVTX & SP23 & 188 \\
\hline WPANL & SP24 & 188 \\
\hline
\end{tabular}
\begin{tabular}{lcc} 
PROGRAM & IDENTIFICATION & PAGE NO. \\
\cline { 2 - 3 } KFACT & SP25 & 190 \\
CH1416 & SP26 & 190 \\
Functions: & & \\
EQ14 & SP27 & 192 \\
EQ21 & SP28 & 192 \\
EQ24 & SP29 & 192 \\
EQ24L & SP30 & 192 \\
EQ26 & SP31 & 192 \\
EQ30 & SP32 & 192 \\
EQ30L & \(S P 33\) & 193 \\
EQ31 & \(S P 34\) & 193 \\
CHRT8 & \(S P 35\) & 193
\end{tabular}




 COMMUN BY MOUMY,

COMMUN IPARAM, OXOUT,XPRNT,MPRNT,XFINAL
 NAMELIST IINPUTM/ NHEAU,NIEL,NPRINT, MPRINT, NUSEV, NREGNM,NALPW,
NSE WW, NREGNT, NALPT, NSEPT, NBODY, NAFT
 114 FORMAT (/10x,A4,3N..i')


 IIXOFII, T:4FIO:4) \((14,2 X, 4(1 P E 12,3, E 11,3)\)
\((10 X G H V O R P E X, 3 \times 12 H G A M A / 2 * H I * V)\)
\((110,5 x, F 10,0)\)










\section*{ Humbur meitue}

COMPUTE NING CEOMETRIC CMARACTERISIICS COMPUTE AING CEOMETRIC CMARACTERISIICS




CAMNEC
CTMWECTIPM
CIT











\section*{ \\  \\ }
determine vertigal lucation
determine vehtigal lucation of separation vontices


 NVNVGI
ZERNMBIN(GTAZ/RAD)






245 CONTINUE
320 NVZONV 2
\(c\)
\(c\) compute normal fore and mument un boot in presence of wing





 ~
































 REAL MACM,LQ, KPOAAR, coescal Aurn
 comonncriciclin (S.014

























 compute int fret vurtex inoueto numal fuact and meiment



 Con

é compute nermal porce ano moment on one aecton of booy










uルu u





























E
들

\(k=k n(k)\)
\(B(x)=0(k) / A(k, k)\)

1F (MELF 67,10 GO TO

 OIMENBION SISMA(4),ENU(4),6(6,0), CENU(8), DNDS(4), ONUDS(4)

LDOK up Booy aadius and local ming or tail skmzgpan
 NO \(<0\) NEI,NV












calculart cruagsflum contritution , binuaion). Ineluding effect






 ジロジ





















FUNCTLOM EESO(Bn, TAPER, DOCRA, ROB)




```

lun
u*uu

```






\begin{tabular}{|c|c|c|c|c|c|c|}
\hline COMPONENTS & TYPE & NORMAL-FORCE COEFFICIENT & \[
\begin{gathered}
\text { LIFT } \\
\text { COEFFICIENT }
\end{gathered}
\] & \[
\begin{aligned}
& \text { PITCHING-MOMENT } \\
& \text { COEFFICIENT }
\end{aligned}
\] & CENTER OF PRESSURE LOCATION & AXIAL-FORCE COEFFICIENT \\
\hline NOSE & \begin{tabular}{l}
Potential \\
Viscous
\end{tabular} & \[
\begin{aligned}
& \mathrm{C}_{\mathrm{N}_{\mathrm{N}, \mathrm{p}}} \\
& \mathrm{C}_{\mathrm{N}_{\mathrm{N}, \mathrm{v}}}
\end{aligned}
\] & \[
\begin{aligned}
& C_{L_{N, p}} \\
& C_{L_{N, V}}
\end{aligned}
\] & \[
\begin{aligned}
& c_{m_{N, p}} \\
& c_{m_{N, v}}
\end{aligned}
\] & \[
\begin{aligned}
& \bar{x}_{N, p} \\
& \bar{x}_{N, v}
\end{aligned}
\] &  \\
\hline WING IN PRESENCE OF BODY & \begin{tabular}{l}
potential \\
Viscous
\end{tabular} & \[
\begin{aligned}
& \mathrm{C}_{\mathrm{N}_{\mathrm{W}(\mathrm{~B}), \mathrm{p}}} \\
& \mathrm{C}_{\mathrm{N}_{\mathrm{W}(\mathrm{~B}), \mathrm{v}}}
\end{aligned}
\] & \[
\begin{aligned}
& c_{L_{W(B)}, p} \\
& c_{L_{W(B)}, v}
\end{aligned}
\] & \[
\begin{aligned}
& c_{m_{W(B)}, p} \\
& c_{m_{W(B)}, v}
\end{aligned}
\] & \[
\begin{aligned}
& \bar{x}_{W}(B), p \\
& \bar{x}_{W(B)}, v
\end{aligned}
\] & \[
\begin{aligned}
& c_{A_{W(B)}}, p \\
& c_{A_{W(B)}}, v
\end{aligned}
\] \\
\hline BODY IN PRESENCE of WING & \begin{tabular}{l}
potential \\
Viscous
\end{tabular} & \[
\begin{aligned}
& C_{N_{B}(W), p} \\
& C_{N_{B}(W), v}
\end{aligned}
\] & \[
\begin{aligned}
& C_{L_{B(W), ~}} \\
& C_{L_{B(W), V}}
\end{aligned}
\] & \[
\begin{aligned}
& c_{m_{B(W), p}} \\
& c_{m_{B(W), v}}
\end{aligned}
\] & \[
\begin{aligned}
& \bar{x}_{B}(W), p \\
& \bar{x}_{B}(W), v
\end{aligned}
\] &  \\
\hline AFterbody & ----- & \(\mathrm{C}_{\mathrm{N}_{\mathrm{A}}}\) & \({ }^{\text {C }}{ }_{\text {A }}\) & \(\mathrm{cm}_{\mathrm{m}}\) & \(\bar{x}_{\text {A }}\) & ---- \\
\hline TAIL IN PRESENCE of BODY & \begin{tabular}{l}
Potential \\
Viscous
\end{tabular} & \[
\begin{aligned}
& C_{N_{T(B)}, p} \\
& C_{N_{T(B), ~}}
\end{aligned}
\] & \[
\begin{aligned}
& C_{L_{T(B), P}} \\
& C_{L_{T(B), V}}
\end{aligned}
\] & \[
\begin{aligned}
& c_{m_{T}(B), p} \\
& c_{m_{T}(B), v}
\end{aligned}
\] & \[
\begin{aligned}
& \bar{x}_{T(B), p} \\
& \bar{x}_{T(B), v}
\end{aligned}
\] & \[
\begin{aligned}
& C_{A_{T(B)}, p} \\
& C_{A_{T(B)}}, v
\end{aligned}
\] \\
\hline BODY IN PRESENCE of tail & \begin{tabular}{l}
Potential \\
Viscous
\end{tabular} & \[
\begin{aligned}
& \mathrm{C}_{\mathrm{N}_{\mathrm{B}}(\mathrm{~T}), \mathrm{p}} \\
& \mathrm{C}_{\mathrm{N}_{\mathrm{B}(\mathrm{~T}), \mathrm{v}}}
\end{aligned}
\] & \[
\begin{aligned}
& C_{L_{B(T), p}} \\
& C_{L_{B(T), V}}
\end{aligned}
\] & \[
\begin{aligned}
& c_{m_{B}(T), p} \\
& C_{m_{B}(T), v}
\end{aligned}
\] & \[
\begin{aligned}
& \bar{x}_{B}(T), p \\
& \bar{x}_{B}(T), v
\end{aligned}
\] &  \\
\hline COMPLETE
CONFIGURATION & ---m--- & \(\mathrm{C}_{\mathrm{N}}\) & \(C_{L}\) & \(\mathrm{c}_{\mathrm{m}}\) & \(\overline{\mathbf{x}}\) & \(\mathrm{C}_{\text {A }}\) \\
\hline
\end{tabular}
Table I.- Sumary of force and moment coefficient notation.


\begin{tabular}{l} 
FORMAT (8F10.5) \\
\(\mathbf{1}^{1} \quad\) EM \(1^{11}\) REFS \\
\hline
\end{tabular}

(a) Page 1.
Figure 1.- Input format for SUPSON program.




(b) Page 2.
Figure 1.- Concluded.
ITEM 7
ITEM 8
ITEM 9
ITEM 10
ITEM 11


Figure 2.- Geometric nomenclature for SUPSON program.

(b) Detail of local wing section.

Figure 2.- Concluded.


Figure 3.- Vortex-lift ratio on delta wings in supersonic flow.

(a) Sample case 1.

Figure 4.- Sample input decks for SUPSON program.

```

2.01 0.
.297 0.018
.450 .233
1.945 ..44'
<.005 .573
3.267 .0N2
5.929 .7N
4.275 .080
5.255 -44
5.92 ,940
0.563 1.042
11.375 1.31
17.749 1.061
17.7% 1.067
17.0 l.0nl
10.01 l.n月1
23. 1.007
30.
37. 1.067
30. 1.607
1.007 F.3F 25. N. 0.
+1S.0UT
HUMS=6,
CulS=S,
Stl!こ!,
KいいTLE=:h,hl.
fUUIItz37.0.
RWUTr=1.8.ol.
IINLE=27.A\cup5,
THPTE=37.O.
flWy=5,01s5,
TCFOHI=U.1.
TCIt'su.0.
+ENO
+INPUT
RUNSE6,
LULSE5,
SELIエ1,
RUUILEEC7.HOS,
RUい11E=37.0.
RUUIY=5.0135,
1!PLE=S7.0.
T\mp@code{IF.玉37.0.}
flure\&,3n.
TLFIUI=@.0,
TCIIMEO.0.
+ENU
11u. u. . . % 0.0 0.0.0 0.0 0.0 0.0 0.0 0.0 1.0

```
（b）Sample case 2.
Figure 4．－Continued．

(c) Sample case 3.

Figure 4.- Concluded.


Figure 5.- Canard-body-wing configuration
for sample cases 1 and 2.


Figure 6.- Wing-body-tail configuration for sample case 3.
```

\&INPUTM
NHEAD= 2
NTBL= 20
NPRINT= 0
MPRINT=0
NOSEV=1
NRFGNW=1
NALPW=0
NSFPW=1
NRFGNT=1
NALPT=0
NSEPT=1
NRODY= 0
NAFT= 0
\&FND

```

(a) Page 1.

Figure 7.- Output from SupSON program for sample case 1.
```

EINPUT
NSF=1
ROWS=4
COLS=4
PER=0.950
ROOTLE=4.2750
ROOTTE = 11.3750
ROCTY = 1.339999
TIPLE=11.3750
TIPTF=11.3750
TIPY= 3.370
TCROOT = 0.0
TCTIP= 0.0
ASYM=F
SFCT=1
ALT= -1.0
SCALE=1.0
TYPE=4
EEND

```
(b) Page 2.

Figure 7.- Continued.
```

EINPUT
NSF= ?
ROWS=6
COLS = 10
PFR=0.950
ROOTLE= 18.60999
ROOTTE= 37.0
ROOTY= 1.6670
TIPLE= 37.0
TIPTE= 37.0
TIPY= 8.360
TCROOT = 0.0
TCTIP=0.0
ASYM=F
SECT=1
ALT= -1.0
SCALE= 1.0
TYPE=4
f,ENO

```
(c) Page 3 .

Figure 7.- Continued.

(d) Page 4.

Figure 7.- Continued.


VFICCITY INDUCED AT SPECIFIED FIELD POINTS ON WING (BESKIN)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(x\) & \(\gamma\) & 2 & V/V (INF) & W/V(INF) \\
\hline 1 & 6.606 & 1.582 & 0.437 & 5.7449E-02 & \(9.5909 E-02\) \\
\hline 2 & 8. 169 & 1.582 & 0.166 & 2.9297E-02 & 1.3809E-01 \\
\hline 3 & 9.733 & 1.582 & -0.106 & -2.1923E-02 & \(1.6345 \mathrm{E}-01\) \\
\hline 4 & 11.797 & 1.587 & -0.377 & -8.1243E-02 & 1.6068f-01 \\
\hline 5 & 7.946 & 2.084 & 0.205 & 1.5486E-02 & 7.8089E-02 \\
\hline 6 & 9.070 & 2.084 & 0.009 & 8.1490E-04 & 8.9664E-02 \\
\hline 7 & 10.195 & 2.084 & -0.186 & -1.7450E-02 & \(9.7132 \mathrm{E}-02\) \\
\hline 8 & 11.319 & ?.084 & -0.381 & -3.7576E-02 & \(9.9363 \mathrm{E}-02\) \\
\hline 9 & 9.270 & 2.581 & -0.025 & -1.1602E-03 & 5.9592E-02 \\
\hline 10 & 9.960 & 2.581 & -0.145 & -7.0939E-03 & 6.2933E-02 \\
\hline 11 & 10.650 & 2.581 & -0.265 & -1.3584E-02 & \(6.5480 E-02\) \\
\hline 12 & 11.340 & 2.581 & -0.385 & -2.0474E-02 & 6.7140E-02 \\
\hline 13 & 10.473 & 3.032 & -0.234 & -7.3537E-03 & \(4.734 \mathrm{BE}-02\) \\
\hline 14 & 10.769 & 3.032 & -0.285 & -9.1522E-03 & \(4.8180 \mathrm{E}-02\) \\
\hline 15 & 11.064 & 3.032 & -0.337 & -1.1005E-02 & 4.8926E-02 \\
\hline 16 & 11.360 & 3.032 & -0.388 & -1.2907E-02 & \(4.9582 \mathrm{E}-02\) \\
\hline
\end{tabular}

VELOCITY INDUCED AT SPECIfIED FIELD POINTS ON WING (VORTEX)
\begin{tabular}{|c|c|c|c|c|}
\hline \(x\) & \(Y\) & Z & V/V(INF) & W/V(INF) \\
\hline 6.606 & 1.582 & 0.437 & 1.6056E-02 & -5.3901E-03 \\
\hline 9.169 & 1.582 & 0.166 & 7.6823E-03 & -7.9791E-03 \\
\hline 9.733 & 1.582 & -0.106 & \(2.7704 \mathrm{E}-03\) & -6-3888E-03 \\
\hline 11.297 & 1.582 & -0.377 & 6.1840E-04 & -4.2710E-03 \\
\hline 7.946 & 2.084 & 0.205 & \(7.2136 \mathrm{E}-03\) & -2.1890E-03 \\
\hline 9.070 & 2.084 & 0.009 & \(5.0521 E-03\) & -3.0338E-03 \\
\hline 10.195 & 2.084 & -0.186 & 3.3162E-03 & -3.0911E-03 \\
\hline 11.319 & 2.084 & -0.381 & 2.0716 E-03 & -2.7641E-03 \\
\hline 9.270 & 2.581 & -0.025 & \(4.0101 E-03\) & -9.7394E-04 \\
\hline 9.960 & 2.581 & -0.145 & 3.3966E-03 & -1.2613E-03 \\
\hline 10.650 & 2.581 & -0.265 & 2.8322E-03 & -1.4172E-03 \\
\hline 11.340 & 2.581 & -0.385 & 2.3305E-03 & -1.4747E-03 \\
\hline 10.473 & 3.032 & -0.234 & 2.5851E-03 & -4.9036E-04 \\
\hline 10.769 & 3.032 & -0.285 & \(2.4367 E-03\) & -5.6838E-04 \\
\hline 11.064 & 3.032 & -0.337 & 2.2920E-03 & -6.3389E-04 \\
\hline 11.360 & 3.03 ? & -0.388 & 2.1511E-03 & -6.8815E-04 \\
\hline
\end{tabular}

TOTAL INDUCED VELOCITY AT SPECIFIED FIELD POINTS ON WING
\begin{tabular}{rrr}
\(x\) & \multicolumn{1}{c}{\(Y\)} & \multicolumn{1}{c}{\(Z\)} \\
6.606 & 1.582 & 0.437 \\
8.169 & 1.582 & 0.166 \\
9.733 & 1.587 & -0.106 \\
11.297 & 1.582 & -0.377 \\
7.946 & 2.084 & 0.205 \\
9.070 & 2.084 & 0.009 \\
10.195 & 2.084 & -0.186 \\
11.319 & 2.084 & -0.381 \\
9.270 & 2.581 & -0.025 \\
9.960 & 2.581 & -0.145 \\
10.650 & 2.581 & -0.265 \\
11.340 & 2.581 & -0.385 \\
10.473 & 3.032 & -0.234 \\
10.769 & 3.032 & -0.285 \\
11.064 & 3.032 & -0.337 \\
11.360 & 3.032 & -0.388
\end{tabular}
\begin{tabular}{cc} 
V/V(INF) & W/V(INF) \\
\(1.6056 \mathrm{E}-02\) & \(9.0519 \mathrm{E}-02\) \\
\(7.6823 \mathrm{E}-03\) & \(1.3011 \mathrm{E}-01\) \\
\(2.7704 \mathrm{E}-03\) & \(1.5706 \mathrm{E}-01\) \\
\(6.1840 \mathrm{E}-04\) & \(1.5641 \mathrm{E}-01\) \\
\(7.2136 \mathrm{E}-03\) & \(7.5900 \mathrm{E}-02\) \\
\(5.0521 \mathrm{E}-03\) & \(8.6630 \mathrm{E}-02\) \\
\(3.3167 \mathrm{E}-03\) & \(9.4041 \mathrm{E}-02\) \\
\(2.0716 \mathrm{E}-03\) & \(9.6599 \mathrm{E}-02\) \\
\(4.0101 \mathrm{E}-03\) & \(5.8618 \mathrm{E}-02\) \\
\(3.3966 \mathrm{E}-03\) & \(6.1672 \mathrm{E}-02\) \\
\(2.9322 \mathrm{E}-03\) & \(6.4063 \mathrm{E}-02\) \\
\(2.3305 \mathrm{E}-03\) & \(6.5665 \mathrm{E}-02\) \\
\(2.5851 \mathrm{E}-03\) & \(4.6858 \mathrm{E}-02\) \\
\(2.4367 \mathrm{E}-03\) & \(4.7611 \mathrm{E}-02\) \\
\(2.2920 \mathrm{E}-03\) & \(4.8292 \mathrm{E}-02\) \\
\(7.1511 \mathrm{E}-03\) & \(4.8894 \mathrm{E}-02\)
\end{tabular}
(e) Page 5.

Figure 7.- Continued.

\begin{tabular}{cccc} 
VORTEX & GAMMA/2*PI*V & \(Y\) & \(Z\) \\
1 & 0.074799 & 0.373 & 1.968 \\
2 & 0.32 A235 & 2.872 & -0.391 \\
3 & 0.150326 & 2.595 & 0.360
\end{tabular}

VELOCITY INDUCED AT SPECIFIEO FIELD POINTS ON TAIL IBESKINI
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(x\) & \(Y\) & 2 & V/VIINF) & W/V (INF) \\
\hline 1 & 22.282 & 1.996 & 0.000 & 0.0000 & 1.9482E-01 \\
\hline 2 & 25.196 & 1.996 & 0.000 & 0.0000 & 1.9482E-01 \\
\hline 3 & 28.111 & 1.996 & 0.000 & 0.0000 & 1.9482E-01 \\
\hline 4 & 31.025 & 1.996 & 0.000 & 0.0000 & 1.9482F-01 \\
\hline 5 & 33.940 & 1.996 & 0.000 & 0.0000 & 1.9482E-01 \\
\hline 6 & 36.854 & 1.996 & 0.000 & 0.0000 & \(1.9482 \mathrm{E}-01\) \\
\hline 7 & 23.828 & 2.664 & 0.000 & 0.0000 & 1.0931E-01 \\
\hline 8 & 26.437 & 2.664 & 0.000 & 0.0000 & \(1.0931 \mathrm{E}-01\) \\
\hline 9 & 29.045 & 2.664 & 0.000 & 0.0000 & \(1.0931 E-01\) \\
\hline 10 & 31.653 & 2.664 & 0.000 & 0.0000 & \(1.0931 \mathrm{E}-01\) \\
\hline 11 & 34.261 & 2.664 & 0.000 & 0.0000 & \(1.0931 \mathrm{E}-01\) \\
\hline 12 & 36.870 & 2.664 & 0.000 & 0.0000 & 1.0931E-01 \\
\hline 13 & 25.374 & 3.333 & 0.000 & 0.0000 & 6.9863E-02 \\
\hline 14 & 27.676 & 3.333 & 0.000 & 0.0000 & \(6.9863 \mathrm{E}-02\) \\
\hline 15 & 79.978 & 3.333 & 0.000 & 0.0000 & \(6.9863 \mathrm{E}-02\) \\
\hline 16 & 32.281 & 3.333 & 0.000 & 0.0000 & \(6.9863 \mathrm{E}-02\) \\
\hline 17 & 34.583 & 3.333 & 0.000 & 0.0000 & \(6.9863 \mathrm{E}-02\) \\
\hline 18 & 36.885 & 3.333 & 0.000 & 0.0000 & 6.9863E-02 \\
\hline 19 & 26.919 & 4.001 & 0.000 & 0.0000 & \(4.8477 \mathrm{E}-02\) \\
\hline 20 & 28.915 & 4.001 & 0.000 & 0.0000 & 4.8477E-02 \\
\hline 21 & 30.912 & 4.001 & 0.000 & 0.0000 & \(4.8477 E-02\) \\
\hline 22 & 37.908 & 4.001 & 0.000 & 0.0000 & \(4.8477 \mathrm{E}-02\) \\
\hline 23 & 34.904 & 4.001 & 0.000 & 0.0000 & \(4.8477 \mathrm{E}-02\) \\
\hline 24 & 36.900 & 4.001 & 0.000 & 0.0000 & 4.8477E-02 \\
\hline 25 & 28.463 & 4.669 & 0.000 & 0.0000 & 3.5602E-02 \\
\hline 26 & 30.154 & 4.669 & 0.000 & 0.0000 & 3.5602E-02 \\
\hline 27 & 31.844 & 4.669 & 0.000 & 0.0000 & 3.5602E-02 \\
\hline 28 & 33.535 & 4.669 & 0.000 & 0.0000 & 3.5602E-02 \\
\hline 29 & 35.225 & 4.669 & 0.000 & 0.0000 & 3.5602E-02 \\
\hline 30 & 36.915 & 4.669 & 0.000 & 0.0000 & 3.5602E-02 \\
\hline 31 & 30.006 & 5.336 & 0.000 & 0.0000 & 2.7257E-02 \\
\hline 32 & 31.391 & 5.336 & 0.000 & 0.0000 & 2.7257E-02 \\
\hline 33 & 32.776 & 5.336 & 0.000 & 0.0000 & 2.7257E-02 \\
\hline 34 & 34.161 & 5.336 & 0.000 & 0.0000 & 2.7257E-02 \\
\hline 35 & 35.546 & 5.336 & 0.000 & 0.0000 & 2.7257E-02 \\
\hline 36 & 36.931 & 5.336 & 0.000 & 0.0000 & 2.7257E-02 \\
\hline 37 & 31.546 & 6.002 & 0.000 & 0.0000 & 2.1545E-02 \\
\hline 38 & 32.626 & 6.002 & 0.000 & 0.0000 & \(2.1545 \mathrm{E}-02\) \\
\hline 39 & 33.706 & 6.002 & 0.000 & 0.0000 & 2.1545E-02 \\
\hline 40 & 34.786 & 6.002 & 0.000 & 0.0000 & 2.1545E-02 \\
\hline 41 & 35.866 & 6.002 & 0.000 & 0.0000 & 2.1545E-02 \\
\hline 42 & 36.946 & 6.00 ? & 0.000 & 0.0000 & \(2.1545 \mathrm{E}-02\) \\
\hline 43 & 33.079 & 6.664 & 0.000 & 0.0000 & \(1.7472 \mathrm{E}-02\) \\
\hline 44 & 33.855 & 6.664 & 0.000 & 0.0000 & 1.7472E-02 \\
\hline 45 & 34.632 & 6.664 & 0.000 & 0.0000 & 1.7472E-02 \\
\hline 46 & 35.408 & 6.664 & 0.000 & 0.0000 & \(1.7472 \mathrm{E}-02\) \\
\hline 47 & 36.185 & 6.664 & 0.000 & 0.0000 & 1.7472E-0? \\
\hline 48 & 36.961 & 6.664 & 0.000 & 0.0000 & 1.7472E-02 \\
\hline 49 & 34.592 & 7.319 & 0.000 & 0.0000 & 1.4487E-02 \\
\hline 50 & 35.069 & 7.319 & 0.000 & 0.0000 & 1.4487E-02 \\
\hline 51 & 35.546 & 7.319 & 0.000 & 0.0000 & \(1.4487 \mathrm{E}-02\) \\
\hline 52 & 36.023 & 7.319 & 0.000 & 0.0000 & 1.4487E-02 \\
\hline 53 & 36.499 & 7.319 & 0.000 & 0.0000 & 1.4487E-02 \\
\hline 54 & 36.976 & 7.319 & 0.000 & 0.0000 & 1.4487E-02 \\
\hline 55 & 35.968 & 7.914 & 0.000 & 0.0000 & 1.2391E-02 \\
\hline 56 & 36.172 & 7.914 & 0.000 & 0.0000 & 1.2391E-02 \\
\hline 57 & 36.377 & 7.914 & 0.000 & 0.0000 & 1.2391E-02 \\
\hline 58 & 36.581 & 7.914 & 0.000 & 0.0000 & 1.2391E-02 \\
\hline 59 & 36.785 & 7.914 & 0.000 & 0.0000 & 1.2391E-02 \\
\hline 60 & 36.990 & 7.914 & 0.000 & 0.0000 & 1.2391E-02 \\
\hline
\end{tabular}
(g) Page 7.

Figure 7.- Continued.

VELOCITY INDUCED AT SPECIFIED FIELD POINTS ON TAIL (VORTEX)
\begin{tabular}{|c|c|c|c|}
\hline & X & \(Y\) & \(z\) \\
\hline 1 & 22.282 & 1.996 & 0.000 \\
\hline 2 & 25.196 & 1.996 & 0.000 \\
\hline 3 & 28.111 & 1.996 & 0.000 \\
\hline 4 & 31.025 & 1.996 & 0.000 \\
\hline 5 & 33.940 & 1.996 & 0.000 \\
\hline 6 & 36.854 & 1.996 & 0.000 \\
\hline 7 & 23.828 & 2.664 & 0.000 \\
\hline 8 & 26.437 & 2.664 & 0.000 \\
\hline 9 & 29.045 & 2.664 & 0.000 \\
\hline 10 & 31.653 & 2.664 & 0.000 \\
\hline 11 & 34.261 & 2.664 & 0.000 \\
\hline 12 & 36.870 & 2.664 & 0.000 \\
\hline 13 & 25.374 & 3.333 & 0.000 \\
\hline 14 & 27.676 & 3.333 & 0.000 \\
\hline 15 & 29.978 & 3.333 & 0.000 \\
\hline 16 & 32.281 & 3.333 & 0.000 \\
\hline 17 & 34.583 & 3.333 & 0.000 \\
\hline 18 & 36.885 & 3.333 & 0.000 \\
\hline 19 & 26.919 & 4.001 & 0.000 \\
\hline 20 & 28.915 & 4.001 & 0.000 \\
\hline 21 & 30.912 & 4.001 & 0.000 \\
\hline 22 & 32.908 & 4.001 & 0.000 \\
\hline 23 & 34.904 & 4.001 & 0.000 \\
\hline 24 & 36.900 & 4.001 & 0.000 \\
\hline 25 & 28.463 & 4.669 & 0.000 \\
\hline 26 & 30.154 & 4.669 & 0.000 \\
\hline 27 & 31.844 & 4.669 & 0.000 \\
\hline 28 & 33.535 & 4.669 & 0.000 \\
\hline 29 & 35.225 & 4.669 & 0.000 \\
\hline 30 & 36.915 & 4.669 & 0.000 \\
\hline 31 & 30.006 & 5.336 & 0.000 \\
\hline 32 & 31.391 & 5.336 & 0.000 \\
\hline 33 & 32.776 & 5.336 & 0.000 \\
\hline 34 & 34.161 & 5.336 & 0.000 \\
\hline 35 & 35.546 & 5.336 & 0.000 \\
\hline 36 & 36.931 & 5.336 & 0.000 \\
\hline 37 & 31.546 & 6.002 & 0.000 \\
\hline 38 & 32.626 & 6.002 & 0.000 \\
\hline 39 & 33.706 & 6.002 & 0.000 \\
\hline 40 & 34.786 & 6.002 & 0.000 \\
\hline 41 & 35.866 & 6.002 & 0.000 \\
\hline 42 & 36.946 & 6.002 & 0.000 \\
\hline 43 & 33.079 & 6.664 & 0.000 \\
\hline 44 & 33.855 & 6.664 & 0.000 \\
\hline 45 & 34.632 & 6.664 & 0.000 \\
\hline 46 & 35.408 & 6.664 & 0.000 \\
\hline 47 & 36.185 & 6.664 & 0.000 \\
\hline 48 & 36.961 & 6.664 & 0.000 \\
\hline 49 & 34.592 & 7.319 & 0.000 \\
\hline 50 & 35.069 & 7.319 & 0.000 \\
\hline 51 & 35.546 & 7.319 & 0.000 \\
\hline 52 & 36.023 & 7.319 & 0.000 \\
\hline 53 & 36.499 & 7.319 & 0.000 \\
\hline 54 & 36.976 & 7.319 & 0.000 \\
\hline 55 & 35.968 & 7.914 & 0.000 \\
\hline 56 & 36.172 & 7.914 & 0.000 \\
\hline 57 & 36.377 & 7.914 & 0.000 \\
\hline 58 & 36.581 & 7.914 & 0.000 \\
\hline 59 & 36.785 & 7.914 & 0.000 \\
\hline 60 & 36.990 & 7.914 & 0.000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline V/V(INF) & W/V (INF) \\
\hline 1.1757E-01 - & -3.8098E-01 \\
\hline 1.3732E-01 - & -3.1656E-01 \\
\hline 1.3330E-OL & -4.6734E-01 \\
\hline \(6.8128 \mathrm{E}-02\) & -3.2909E-01 \\
\hline 5.6476E-02 - & -2.7537E-01 \\
\hline 5.1282E-02 - & -2.5169E-01 \\
\hline \(1.9245 \mathrm{E}-01\) - & -1.9361E-01 \\
\hline 1.7936E-01 & -1.1332E-01 \\
\hline 4.7276E-01 - & -1.7480E-01 \\
\hline 1.4355E-01 & -2.5320E-01 \\
\hline \(1.1303 \mathrm{E}-01\) & -2.0003E-01 \\
\hline 1.0179E-01 - & -1.7988E-01 \\
\hline 1.6672E-01 & -5.9287E-02 \\
\hline 1.5478E-01 & \(-2.8686 E-02\) \\
\hline \(1.9363 \mathrm{E}-01\) & 5.7063E-02 \\
\hline 3.2934E-01 & -1.9808E-01 \\
\hline 1.6661E-01 & -1.7577E-01 \\
\hline 1.3429E-01 & -1.4616E-01 \\
\hline 1.2679E-01 & 3.8934E-03 \\
\hline \(1.1837 \mathrm{E}-01\) & 1.4526E-02 \\
\hline 1.2399E-01 & \(4.8676 \mathrm{E}-02\) \\
\hline 1.8053E-01 & \(8.6594 \mathrm{E}-02\) \\
\hline 2.8443E-01 & \(2.4177 \mathrm{E}-02\) \\
\hline 2.4060E-01 & -8.0302E-02 \\
\hline 9.2526E-02 & 2.6850F-02 \\
\hline 8.6790E-0? & \(3.3516 E-02\) \\
\hline 9.0593E-02 & 4.7019E-02 \\
\hline \(9.5842 \mathrm{E}-02\) & 5.8034E-02 \\
\hline 1.1234E-01 & 7.1089E-02 \\
\hline 1.3756E-01 & 6.9675E-02 \\
\hline 6.5651E-02 & 3.4335E-02 \\
\hline 6.5420E-02 & 3.9962E-02 \\
\hline \(6.6716 \mathrm{E}-02\) & 4.32.05E-02 \\
\hline 6.6593E-02 & 4.6975E-02 \\
\hline 7.0247E-02 & \(5.2231 \mathrm{E}-02\) \\
\hline 7.5330E-02 & 5.4015E-02 \\
\hline \(4.9274 \mathrm{E}-02\) & \(3.7214 \mathrm{E}-02\) \\
\hline \(4.9898 \mathrm{E}-02\) & 3.8327E-02 \\
\hline \(4.9317 \mathrm{E}-02\) & 3.8843E-02 \\
\hline \(4.9281 E-02\) & 4.0998E-02 \\
\hline 5.0686E-0? & 4.3004E-02 \\
\hline 5.2233E-02 & 4.3356E-02 \\
\hline 3.8066E-02 & 3.4316E-02 \\
\hline 3.7679E-02. & 3.4392E-02 \\
\hline 3.7439E-02 & 3.5232E-02 \\
\hline 3.7757E-02 & 3.6245E-02 \\
\hline \(3.8319 E-02\) & 3.6853E-02 \\
\hline 3.8964E-02 & 2.6811E-02 \\
\hline 2.9216E-02 & 3.0988E-02 \\
\hline 2.9235E-02 & 2 3.1407E-02 \\
\hline 2.9378E-02 & \(3.1817 \mathrm{E}-02\) \\
\hline 2.9593E-02 & 3.2080E-02 \\
\hline 2.9813E-02 & 2.2163E-02 \\
\hline 3.0125E-02 & 2 3.2031E-02 \\
\hline 2.3844E-02 & 2 2.8540F-02 \\
\hline 2.3916E-02 & 2 2.8576E-02. \\
\hline 2.3987E-02 & 2 2.8600E-02 \\
\hline 2.4055E-02 & 2 2.8612E-02 \\
\hline 2.4127E-02 & 2 2.8607E-02 \\
\hline 2.4282E-02 & 2 2.8490E-02 \\
\hline
\end{tabular}
(g) Continued.

Figure 7.- Continued.

TOTAL INDUCED VELOCITY AT SPECIFIED FIELD POINTS ON TAIL
\begin{tabular}{|c|c|c|c|c|c|}
\hline & X & \(Y\) & 2 & V/VIINFI & W/VIINF) \\
\hline 1 & 22.28? & 1.996 & 0.000 & 1.1757E-01 & -1.8615E-01 \\
\hline 2 & 25.196 & 1.996 & 0.000 & 1.3732E-01 & -1.2174E-01 \\
\hline 3 & 29.111 & 1.996 & 0.000 & 1.3330E-01 & -2.7751E-01 \\
\hline 4 & 31.025 & 1.996 & 0.000 & \(6.8128 \mathrm{E}-02\) & -1.3427E-01 \\
\hline 5 & 33.940 & 1.996 & 0.000 & \(5.6476 E-02\) & -8.0545E-02 \\
\hline 6 & 36.854 & 1.996 & 0.000 & 5. \(1282 \mathrm{E}-02\) & -5.6861E-02 \\
\hline 7 & 23.828 & 2.664 & 0.000 & \(1.9245 \mathrm{E}-01\) & -8.4293E-02 \\
\hline 8 & 26.437 & 2.664 & 0.000 & 1.7936E-01 & -4.0053E-03 \\
\hline 9 & 79.045 & 2.664 & 0.000 & 4.7276E-01 & -6.5490E-02 \\
\hline 10 & 31.653 & 2.664 & 0.000 & \(1.4355 \mathrm{E}-01\) & -1.4389E-01 \\
\hline 11 & 34.261 & 2.664 & 0.000 & 1.1303E-01 & -9.0713E-02 \\
\hline 12 & 36.870 & 2.664 & 0.000 & 1.0179E-01 & -7.0564E-02 \\
\hline 13 & 25.374 & 3. 333 & 0.000 & 1.6672E-01 & 1.0576E-02 \\
\hline 14 & 27.676 & 3.333 & 0.000 & 1.5478E-01 & 4.1177E-02 \\
\hline 15 & 29.978 & 3.333 & 0.000 & \(1.9363 \mathrm{E}-01\) & \(1.2693 E-01\) \\
\hline 16 & 32.281 & 3.333 & 0.000 & 3.2934E-01 & -1.2822E-01 \\
\hline 17 & 34.583 & 3.333 & 0.000 & \(1.6661 \mathrm{E}-01\) & -1.0590E-01 \\
\hline 18 & 36.885 & 3.333 & 0.000 & 1.3429E-01 & -7.6296E-02 \\
\hline 19 & 26.919 & 4.001 & 0.000 & 1.2679E-01 & 5.2371E-02 \\
\hline 20 & 28.915 & 4.001 & 0.000 & \(1.1837 E-01\) & 6.3003E-02 \\
\hline 21 & 30.912 & 4.001 & 0.000 & 1.2399E-01 & \(9.7154 \mathrm{E}-02\) \\
\hline 22 & 32.908 & 4.001 & 0.000 & \(1.8053 \mathrm{E}-01\) & 1.3507E-01 \\
\hline 23 & 34.904 & 4.001 & 0.000 & \(2.8443 \mathrm{E}-01\) & 7.2655E-02 \\
\hline 24 & 36.900 & 4.001 & 0.000 & \(2.4060 \mathrm{E}-01\) & -3.1824E-02 \\
\hline 25 & 28.463 & 4.669 & 0.000 & \(9.2526 E-02\) & 6.2452f-02 \\
\hline 26 & 30.154 & 4.669 & 0.000 & 8.6790E-02 & \(6.9118 E-02\) \\
\hline 27 & 31.844 & 4.669 & 0.000 & 9.0593E-02 & 8.2621E-02 \\
\hline 28 & 33.535 & 4.669 & 0.000 & \(9.5842 \mathrm{E}-02\) & \(9.3636 E-02\) \\
\hline 29 & 35.225 & 4.669 & 0.000 & 1.1234E-01 & 1.0669E-01 \\
\hline 30 & 36.915 & 4.669 & 0.000 & \(1.3756 \mathrm{E}-01\) & \(1.0528 \mathrm{E}-01\) \\
\hline 31 & 30.006 & 5.336 & 0.000 & 6.5651E-02 & 6.1592E-02 \\
\hline 32 & 31.391 & 5.336 & 0.000 & 6.5420E-02 & 6.7219E-02 \\
\hline 33 & 32.776 & 5.336 & 0.000 & 6.6716E-02 & 7.0462E-02 \\
\hline 34 & 34.161 & 5.336 & 0.000 & \(6.6593 \mathrm{E}-02\) & 7.4232E-02 \\
\hline 35 & 35.546 & 5.336 & 0.000 & 7.0247E-02 & 7.9488E-0? \\
\hline 36 & 36.931 & 5.336 & 0.000 & 7.5330E-02 & 8.1272E-02 \\
\hline 37 & 31.546 & 6.002 & 0.000 & \(4.9274 \mathrm{E}-02\) & 5.8759E-02 \\
\hline 38 & 32.626 & 6.002 & 0.000 & \(4.9898 \mathrm{E}-02\) & 5.9872F-02 \\
\hline 39 & 33.706 & 6.002 & 0.000 & \(4.9317 E-02\) & 6.0388E-02 \\
\hline 40 & 34.786 & 6.002 & 0.000 & 4.928LE-02 & \(6.2543 E-02\) \\
\hline 41 & 35.866 & 6.002 & 0.000 & 5.0686E-02 & 6.4549E-02 \\
\hline 42 & 36.946 & 6.002 & 0.000 & 5.2233E-02 & 6.4901E-02 \\
\hline 43 & 33.079 & 6.664 & 0.000 & 3.8066E-0? & 5.1788E-02 \\
\hline 44
45 & 33.855 & 6.664 & 0.000 & 3.7679E-02 & 5.1864E-02 \\
\hline 45 & 34.632 & 6.664 & 0.000 & 3.7439E-02 & 5.2704E-02 \\
\hline 46 & 35.408 & 6.664 & 0.000 & 3.7757E-02 & 5.3717E-02 \\
\hline 47 & 36.185 & 6.664 & 0.000 & \(3.8319 \mathrm{E}-02\) & \(5.4325 \mathrm{E}-02\) \\
\hline 48 & 36.961 & 6.664 & 0.000 & 3.8964E-02 & 5.4283E-02 \\
\hline 49 & 34.592 & 7.319 & 0.100 & \(2.9216 \mathrm{E}-02\) & 4.5475E-02 \\
\hline 50 & 35.069 & 7.319 & 0.000 & \(2.9235 \mathrm{E}-02\) & \(4.5894 \mathrm{E}-02\) \\
\hline 51 & 35.546 & 7.319 & 0.000 & \(2.9378 \mathrm{E}-02\) & \(4.6304 E-02\) \\
\hline 52 & 36.023 & 7.319 & 0.000 & 2.9593E-02 & 4.6567E-02 \\
\hline 53 & 36.499 & 7.319 & 0.000 & 2.9813E-02 & \(4.6650 E-02\) \\
\hline 54 & 36.976 & 7.319 & 0.000 & 3.0125E-02 & \(4.6519 E-02\) \\
\hline 55 & 35.968 & 7.914 & 0.000 & \(2.3844 \mathrm{E}-02\) & \(4.0931 \mathrm{E}-02\) \\
\hline 56 & 36.172 & 7.914 & 0.000 & 2.3916E-02 & 4.0967E-02 \\
\hline 57 & 36.377 & 7.914 & 0.000 & 2.3987E-02 & 4.0991E-02 \\
\hline 58 & 36.581 & 7.914 & 0.000 & 2.4055E-02 & \(4.1003 \mathrm{E}-02\) \\
\hline 59 & 36.785 & 7.914 & 0.000 & 2.4127E-02 & \(4.0998 E-02\) \\
\hline 60 & 36.990 & 7.914 & 0.000 & 2.4282E-02 & 4.0881E-02 \\
\hline
\end{tabular}
(g) Concluded.

\footnotetext{
Figure 7.- Continued.
}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{SPANWI SE} & \multicolumn{2}{|l|}{OF L.E. SUCTION} \\
\hline REGION & COL & \(Y /(8 / 2)\) & CCS/28 & EPS(DEG) & CCX/2B \\
\hline 1 & 1 & 0.23943 & 30.00666 & 86.565 & -0.00190 \\
\hline 1 & 2 & 0.31949 & 90.00425 & 92.983 & -0.00166 \\
\hline 1 & 3 & 0.39955 & 50.00854 & 104.707 & -0.00486 \\
\hline 1 & 4 & 0.47961 & 10.01663 & 93.895 & -0.00674 \\
\hline 1 & 5 & 0.55967 & \(7 \quad 0.02867\) & 92.705 & -0.01107 \\
\hline 1 & 6 & 0.63973 & 30.04133 & 90.049 & -0.01417 \\
\hline 1 & 7 & 0.71979 & \(9 \quad 0.05274\) & 89.082 & -0.01724 \\
\hline 1 & 8 & 0.79985 & \(5 \quad 0.06464\) & 88.450 & -0.02045 \\
\hline 1 & 9 & 0.87991 & 10.07851 & 87.837 & -0.02405 \\
\hline 1 & 10 & 0.95997 & \(7 \quad 0.08993\) & 90.052 & \(-0.03083\) \\
\hline \multicolumn{4}{|r|}{SUMMARY OF VORTEX STRENGTHS} & \multicolumn{2}{|l|}{AND POSITION AT \(X\)} \\
\hline \multicolumn{3}{|r|}{\multirow[t]{2}{*}{VORTEX}} & GAMMA/2*PI*V & \({ }_{4} \mathrm{Y}\) & \({ }^{2}\) \\
\hline & & & 0.074799 & 4.162 & 0.546 \\
\hline \multirow[b]{4}{*}{} & & \(?\) & 0.328235 & 2.552 & 3.083 \\
\hline & & 3 & 0.150326 & 1.794 & 2.933 \\
\hline & & 4 & 0.416016 & 7.348 & 0.000 \\
\hline & & 5 & 0.069799 & 6.440 & 1.411 \\
\hline
\end{tabular}
(h) page 8.

Figure 7.- Continued.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & INC & HCE -- & ---- & ----- & - & ----- & \\
\hline ALPHA & \({ }_{201}^{\text {M }}\) & WING & TAIL & KVLE* & KVSE* & KVLE* & VSE* & IT \\
\hline 16.00 & 2.01 & 10.000 & 0.000 & 0.500 & 0.000 & 0.500 & 0.000 & 1.000 \\
\hline
\end{tabular}
summary of force and pitching moment coefficients
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & CN & CM & XCP & & CL & COI & CA \\
\hline \multicolumn{9}{|l|}{NOSE...} \\
\hline & PDTENTIAL & \[
6.402 \mathrm{E}-03
\] & & \(2.596 E\) & 00 & \(6.154 E-03\) & 1.765E-03 & \\
\hline & VORTEX & \[
2.777 \mathrm{E}-03
\] & \[
4.141 E-03
\] & 2.138 E & 00 & 2.669E-03 & \(7.653 \mathrm{E}-04\) & \\
\hline \multicolumn{9}{|l|}{WING...} \\
\hline \[
W(B)
\] & POTENTIAL & \(6.272 E-02\) & \(6.555 E-02\) & 8.977 E & 00 & 5.637E-02 & \(1.616 \mathrm{E}-02\) & 1.106E-02 \\
\hline \(W(B)\) & VORTEX.LE & 2.531E-02 & 2.723E-02 & B.505E & 00 & 2.275E-02 & 6.523E-03 & 4.462E-03 \\
\hline W(B) & VORTEX,SE & 0.000 & 0.000 & 0.000 & & 0.000 & 0.000 & 0.000 \\
\hline \multicolumn{9}{|l|}{BODY...} \\
\hline 8(W) & POTENTIAL & 2. \(319 \mathrm{E}-02\) & 2.223E-02 & 1.030E & 01 & 2.229E-02 & 6.392f-03 & \\
\hline E(H) & VORTEX,LE & 9.35 EE-03 & \(8.971 E-03\) & \(1.030 E\) & 01 & 8.995E-03 & 2.579E-03 & \\
\hline B(W) & VORTEX, SE & 0.000 & 0.000 & \(1.030 E\) & 01 & 0.000 & 0.000 & \\
\hline AFTEPBODY & -.. & -6.246E-03 & -4.384E-03 & \(1.424 E\) & 01 & -6.004E-03 & -1.722E-03 & \\
\hline \multicolumn{9}{|l|}{TAIL...} \\
\hline T(B) & POTENTIAL & 3.093E-01 & -1.299E-01 & \(3.144 E\) & 01 & 2.974E-01 & 8.527E-02 & \\
\hline \[
r(B)
\] & VORTEX,LE & \(4.537 E-02\) & -1.956E-02 & \(3.161 E\) & 01 & 4.361 E-02 & 1.251E-02 & 0.000
0.000 \\
\hline T(B) & VARTEX,SE & 0.000 & 0.000 & 0.000 & & 0.000 & 0.000 & 0.000 \\
\hline \multicolumn{9}{|l|}{RחOY...} \\
\hline B(T) & POTENTIAL & 5.034E-02 & -1.629E-02 & \(2.996 E\) & & & 1.388E-02 & \\
\hline B(T) & VORTEX,LE & \(7.383 \mathrm{E}-03\) & -2.390E-03 & 2.996 E & 01 & 7.097E-03 & 2.035E-03 & \\
\hline BIT) & VORTEX,SE & 0.000 & 0.000 & 2.996 E & 01 & 0.000 & 0.000 & \\
\hline \multirow[t]{2}{*}{TOTAL CON} & FIGURATION. & 5.359E-01 & -3.508E-02 & 2.600 E & 01 & 5.097E-01 & 1.461 -01 & 1.552E-02 \\
\hline & & CDI/CL**2 & 5.626E- & & & & & \\
\hline
\end{tabular}

\section*{(i) Page 9.}

Figure 7.- Continued.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{\begin{tabular}{llll} 
VORTEX \(1-\infty\) & BODY VORTEX FROM NOSE \\
VORTEX \(2--\) & WING TRAILING VORTEX \\
VORTEX \(3--\) & HING SEPARATION VORTEX
\end{tabular}} \\
\hline & \[
\begin{gathered}
\text { OR TEX } \\
1 \\
2 \\
3
\end{gathered}
\] & gamma/
0.07
0.32
0.15 & \(2 * P 1 * V\)
74799
28235
50326 & & & \\
\hline \multicolumn{3}{|l|}{\[
\begin{array}{cc}
x & D X \\
4.2750 & 1.0000000
\end{array}
\]} & \[
\begin{gathered}
A \\
0.8260
\end{gathered}
\] & \[
\begin{gathered}
S \\
0.8260
\end{gathered}
\] & \[
\begin{gathered}
R O \\
0.8260
\end{gathered}
\] & \[
\begin{array}{r}
0 A / D X \\
0.1169
\end{array}
\] \\
\hline \multicolumn{7}{|l|}{\begin{tabular}{ccc} 
vortex SIGMa(real) & IIMAGI \\
1 & \(5.332 \mathrm{E}-01\) & 1.083 E 00
\end{tabular}} \\
\hline \multicolumn{3}{|l|}{\[
\begin{array}{cc}
x & 0 x \\
5.2750 & 0.5000000
\end{array}
\]} & \[
0.9269
\] & \[
\stackrel{S}{1.4015}
\] & \[
\begin{gathered}
\text { RO } \\
1.0072
\end{gathered}
\] & \[
\begin{array}{r}
D A / D X \\
0.0963
\end{array}
\] \\
\hline \multicolumn{7}{|l|}{\(\underset{1}{\text { VORTEX SIGMA(REAL) (IMAG) }} \underset{5.171 E-01}{ } 1.276 E 00\)} \\
\hline \multicolumn{3}{|l|}{\[
\begin{array}{cc}
x & D x \\
6.2750 & 0.5000000
\end{array}
\]} & \[
1 .{ }^{A}
\] & \[
\stackrel{S}{1.9118}
\] & \[
\begin{gathered}
\text { RO } \\
1.2272
\end{gathered}
\] & \[
\begin{array}{r}
0, / 0 x \\
0.0776
\end{array}
\] \\
\hline \multicolumn{7}{|l|}{\begin{tabular}{ccc} 
vortex SIGMA(REALI & (IMAG) \\
1 & \(4.963 E-01\) & \(1.437 E 00\)
\end{tabular}} \\
\hline \multicolumn{3}{|l|}{\[
\begin{array}{cc}
X & D x \\
7.2750 & 0.5000000
\end{array}
\]} & \[
1.0785
\] & \[
\underset{2.1977}{S}
\] & \[
\begin{gathered}
R 0 \\
1.3635
\end{gathered}
\] & \[
\begin{array}{r}
\text { DA/0X } \\
0.0649
\end{array}
\] \\
\hline \multicolumn{7}{|l|}{\begin{tabular}{ccc} 
VORTEX SIGMA(REAL) (IMAGI \\
1 & \(4.731 \mathrm{E}-01\) & 1.562 E 00
\end{tabular}} \\
\hline & & & - - & - & & \\
\hline \multicolumn{3}{|l|}{\[
\begin{array}{cc}
x & D x \\
11.7750 & 0.5000000
\end{array}
\]} & \[
1.3324
\] & \[
\begin{gathered}
s \\
1.3324
\end{gathered}
\] & \[
\begin{gathered}
\text { RO } \\
1.3324
\end{gathered}
\] & \[
\begin{array}{r}
\text { DA/DX } \\
0.0539
\end{array}
\] \\
\hline \multicolumn{7}{|l|}{\begin{tabular}{ccc} 
VORTEX SIGMA(REAL) & (IMAGI \\
1 & \(3.732 E-01\) & \(1.968 E 00\)
\end{tabular}} \\
\hline \multicolumn{3}{|l|}{\[
\begin{array}{cc}
X & D X \\
11.7760 & 0.5000000
\end{array}
\]} & \[
\stackrel{A}{A}
\] & \[
\stackrel{S}{1.3325}
\] & \[
\begin{gathered}
R 0 \\
1.3325
\end{gathered}
\] & \[
\begin{array}{r}
\text { DA/DX } \\
0.0539
\end{array}
\] \\
\hline \multicolumn{7}{|l|}{\begin{tabular}{ccc} 
VORTEX SIGMA(REAL) & (IMAG) \\
1 & \(3.732 E-01\) & \(1.968 E 00\) \\
2 & \(2.822 E 00\) & \(-3.907 E-01\) \\
3 & \(2.595 E 00\) & \(3.603 E-01\)
\end{tabular}} \\
\hline \multicolumn{3}{|l|}{\[
\begin{array}{cc}
x & D X \\
12.7760 & 0.2500000
\end{array}
\]} & \[
1.3885
\] & \[
\underset{1.3885}{S}
\] & \[
\begin{gathered}
R O \\
1.3885
\end{gathered}
\] & \[
\begin{array}{r}
\text { DA/DX } \\
0.0496
\end{array}
\] \\
\hline \multicolumn{7}{|l|}{\begin{tabular}{ccr} 
VORTEX & SIGMA(REALI & \multicolumn{1}{c}{ (IMAGI } \\
1 & \(3.622 E-01\) & \(1.984 E\) OO \\
2 & \(2.988 E 00\) & \(-9.758 E-02\) \\
3 & \(2.321 E 00\) & \(2.655 E-01\)
\end{tabular}} \\
\hline \multicolumn{7}{|c|}{(J) Page 10.} \\
\hline
\end{tabular}


\section*{REFERENCES}
1. Mendenhall, M. R. and Nielsen, J. N.: Effect of Symmetrical Vortex Shedding on the Longitudinal Aerodynamic Characteristics of Wing-BodyTail Combinations. NEAR TR 69, May 1974; NASA CR 2473, 1974.
2. Pitts, W. C., Nielsen, J. N., and Kaattari, C. E.: Lift and Center of Pressure of Wing-Body-Tail Combinations at Subsonic, Transonic, and Supersonic Speeds. NACA Rept. No. 1307, 1957.
3. Jorgensen, L. H.: Prediction of Static Aerodynamic Characteristics for Space-Shuttle-Like and Other Bodies at Angles of Attack from \(0^{\circ}\) to \(180^{\circ}\). NASA TN D-6996, Jan. 1973.
4. Jorgensen, L. H.: A Method for Estimating Static Aerodynamic Characteristics for Slender Bodies of Circular and Noncircular Cross Section Alone and With Lifting Surfaces at Angles of Attack From \(0^{\circ}\) to \(90^{\circ}\). NASA TN D-7228, Apr. 1973.
5. DeYoung, J. and Harper, C. W.: Theoretical Symmetric Span Loading at Subsonic Speeds for Wings Having Arbitrary Planform. NACA Rept. 921, 1948.
6. Brady, J. A., Page, V. R., and Koenig, D. G.: Large-Scale Low-Speed Wind-Tunnel Tests of a Delta Winged Supersonic Transport Model with a Delta Canard Control Surface. NASA TM X-643, Jan. 1962.
7. Allen, H. J.: Estimation of the Forces and Moments Acting on Inclined Bodies of Revolution of High Fineness Ratio. NACA RMA9I26, 1949.
8. Dillenius, M. F. E., Mendenhall, M. R. and Spangler, S. B.: Calculation of the Longitudinal Aerodynamic Characteristics of STOL Aircraft with Externally-Blown Jet-Augmented Flaps. NASA CR-2358, Feb. 1974.
9. Polhamus, E. C.: Predictions of Vortex-Lift Characteristics Based on a Leading-Edge Suction Analogy. AIAA Paper No. 69-1133, Oct. 1969.
10. Sacks, A. H.: Vortex Interference on Slender Airplanes. NACA TN 3525, Nov. 1955.
11. Koenig, D. G.: Tests in the Ames 40 - by 80-Foot Wind Tunnel of an Airplane Configuration With an Aspect Ratio 3 Triangular Wing and an All-Movable Horizontal Tail - Longitudinal and Lateral Characteristics. NACA RM A52L15, Apr. 1953.
12. Woodward, F. A. and Larsen, J. V.: A Method of Optimizing Camber Surfaces for Wing-Body Combinations at Supersonic speeds. part I Theory and Applications. Rept. D6-10741, The Boeing Co., 1965.
13. Carmichael, R. L. and Woodward, F. A.: An Integrated Approach to the Analysis and Design of Wings and Wing-Body Combinations in Supersonic Flow. NASA TN D-3685, Oct. 1966.
14. Driver, C.: Effects of Wing Height on the stability and Control Characteristics at a Mach Number of 2.01 of a Canard Airplane Configuration with a \(70^{\circ}\) Delta Wing. NASA TM X-328, Sept. 1960.
15. Peterson, V. L. and Menees, G. P.: Static Longitudinal Stability and Control Characteristics of an Unswept Wing and Unswept Horizontal-Tail Configuration at Mach Numbers 0.70 to 2.22. NASA MEMO 6-11-59A, May 1959.

ఓ U. S. GOVERNMENT PRINTING OFFICE: \(1975-635-047 / 52\)```


[^0]:    *For sale by the National Technical Information Service, Springfield, Virginia 22151

