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ABSTRACT

This report presents a feasibility analysis, trade-offs and

implementation for a One Way Doppler Extractor system. A

doppler error analysis is discussed which shows that quantiza-

tion error is a primary source of doppler measurement error.

Several competing extraction techniques are compared and a new

"Vernier" technique presented which obtains high doppler

resolution with low speed logic. Parameter trade-offs and

sensitivities for this Vernier tec-hnique are discussed, lead-

ing to a hardware design configuration. A detailed design,

operation and performance evaluation of the resulting bread-

board model is presented which verifies the theoretical

performance predictions. The breadboard model contains the

circuitry to interface with an S-band transponder, to extract

the doppler and time interval counts, to compute navigational

parameters, by means of a microprocessor, from these counts

and to display the results. Performance tests have verified

that the breadboard is capable of extracting doppler, on an

S-band signal, to an accuracy of less than 0.02 hertz for a

one second averaging period. This corresponds to a range rate

error of no more than 3 millimeters per second. Finally, a

design for a flight hardware doppler extractor is presented,

which can extract the doppler from any one of four S-band

input frequencies. The flight hardware is projected at 410

cubic.inches, 10.2 pounds and consuming 8 watts of prime power.



FOREWORD

This ,is a final report for NASA Contract NAS 9-13517 covering

the period from 1 July 197.3 to 1 November 1974. The program

consisted of the following three phases:

1. Feasibility study and tradeoff analysis

2. Breadboard development

3. Feasibility study of digital VCO techniques

The overall program was conducted under the direction of

Edward iossen. Both feasibility studies were carried out by

Eug.ene Starner. The breadboard development was directed by

Seymour Klein; major contributors to the breadboard develop-

ment were Richard Blasco, Daniel Hampel and John Yanosov. The

preliminary design of flight hardware was also headed up by

Seymour Klein.

Volume 1 of this report contains 3 parts:

Part 1 - The feasibility study and tradeoff analysis.

Part 2 - Breadboard development

Part 3 - Flight hardware design

Volume 2 of this report covers the feasibility study of digital

VCO techniques.
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SYMBOLS AND ABBREVIATIONS USED IN THIS REPORT

AGC Automatic Gain Control

APL/JHU Applied Physics Laboratory/John Hopkins
University

ARO Anytime Readout

Limiter Signal Suppression Factor

BL BLO Phase Lock Loop One Sided Bandwidth

BIF Intermediate Frequency Bandwidth

C, DC Value of and Error in Measured Value of
Speed of Light

CAD

EXT FUN External Function

EXT FUN REQ External Function Request

EXT INT External Internal

ECL Emitter Coupled Logic

Ex  Error in X also Ax

FD Doppler Off-set Frequency

F, fT S-Band Transmitter Frequency

FB  Bias Frequency

FB + FD or FB+D Bias Plus Doppler Frequency

F Clock Reference Frequency (either primary
o frequency or a derivative of the master clock)

FPS, FT/SEC Feet per second

GT, Gr Transmit or Receive Antenna Gain

OWD One Way Doppler

NB + D Counted Values of Bias Plus Doppler
Frequencies (FB .+ FD)

N Counted Values of the Clock Reference (Fo )

PLL Phase Locked Loop

PLO Phase Lock Oscillator

R Range or Variable Multiplier

RF Radio Frequency

RSS Root Sum Squared Value

RMS Root Mean Squared Value

iv



RX Performance to Receiver

RQ Performance to Parameter

R Range Rate

AR Change in- Range

Ss', Ss Actual and One Sigma Values for that
Short Term Oscillator Drift

S , SL Actual and One Sigma Values for Long Term
Oscillator Drift

S Drift

S/N Signal to Noise Ratio

SOW Statement of Work

a Standard Deviation of x
x

-i, T, t Doppler Integration or Averaging Period

t Time as a variable

TX Reference to Transmitter or Transmitter
Parameter

USB Unified S-band Transponder

VCO Voltage Controlled Oscillator

VXC.O Voltage Controlled Crystal Oscillator

VR Range rate (same as R)

W orw Phase Lock Loop Natural Frequency

WBD (Section 4)

V



SECTION I

INTRODUCTION AND SUMMARY

One way doppler navigation is a technique whereby an orbiting

vehicle's position is inferred from a knowledge of the line of

sight range rate history to a known reference point. The

range rate history is determined by accurately measuring the

doppler shift received from a stable transmitter located at

the reference point. Figure 1-1 shows the geometrical rela-

tionships for a space vehicle receiver 
and a ground based

transmitter. The advantages of one way doppler navigation

are the ability of the space vehicle to determine positional

and navigational data autonomously and eliminate the need for

special application navigational aids. The feature of only

requiring a one way RF link may also be desirable for certain

applications where two way links are not always desirable or

practicable.

One way doppler navigation requires very accurate measurements

of the vehicle's range rate with typical values of 3 cm/sec

being required over a one second integration interval. To

obtain a range-rate accuracy of 3 cm/sec (0.1 ft/sec) using

S-band frequencies, requires that the doppler frequency be

measured to within 0-.2 Hz. This requires the use of stable

oscillators and accurate receivers as shown in the block

diagram of Figure 1-2.

The S-band frequency must be controlled to within 0.2 Hz over

the period of the doppler measurement. Also, other error

sources such as caused by Gaussian noise, digital processes

and propagation path variations should be controlled where

practical to obtain the 0.2 Hz accuracy.

This report presents an error analysis of the one-way doppler

measurement, and feasibility/trade-off evaluations 
for several

doppler extractor and receiver concepts. 
The results of the

error analysis show that the quantization error resulting from

digitizing the doppler information can be the most significant

source of error when conventional frequency counting 
techniques

are employed. To reduce the quantization error the doppler

1-1
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ft+fd

ft fd

H(V = Fa(H,R,R)

ITERATIVE H = Fb(V,RR)
PROCESS Fb(RR)

R = Fc(H,VR)

STABLE TRANSMITTER

FIGURE 1-1 ONE-WAY DOPPLER GEOMETRY

S-BAND DOPPLER COMPUTER

RECEIVER fBIAS 
+ 

fd EXTRACTOR fd
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FoS POSITION

ORBITING OSCILLATOR & VELOCITY
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GROUND
BASED
TRANSMITTE ft

S-BAND STABLE

TRANSMITTER OSCILLATOR

FIGURE 1-2 BLOCK DIAGRAM OF A ONE-WAY DOPPLER NAVIGATION SYSTEM

1-2



should have some means of determining fractional cycle counts

in order that the total error budget is within the required

3 cm/sec(0.l ft/sec) accuracy.

A new technique has been developed whereby fractional cycle

counts are obtained within short integration periods. This

technique which has been disclosed as new technology, employs

a vernier approach in that the doppler frequency is compared

with a stable reference oscillator frequency by means of a

zero crossing coincidence detector. The technique offers

low weight, low power consumption and simple construction

without sacrificing accuracy or reliability. The analysis

and breadboard test results show that this technique can

supply range-rate resolution of at least 3 cm/sec(O.l0 ft/sec)

under all reasonable conditions of velocity (0-8230 m/sec.,

0-27,000 ft/sec), acceleration (0-610 m/sec2  0-2000 ft/sec 2 ),

loop signal-to-noise ratio (-7 10 dB) and for all integration

periods of 0.5 seconds or more.

The breadboard one-way doppler extractor which was delivered to

NASA, is shown in Figure 1-3. The functional features of this

breadboard are tabulated in Table 1-1. The breadboard was

interfaced with an Apollo USB transponder, specifically LM

serial number 127, operating at a receive frequency of

2101.8 MHz. The breadboard was also provided with an inter-

face for use with a Univac 1218 Computer. The breadboard

doppler extractor, the S-band transponder and the associated

test instrumentation are shown in Figure 1-4. The breadboard

met or exceeded all the performance requirements called for in

the Statement of Work as shown in Table 1-2. It was delivered

with a 200 nanosecond time aperture setting which resulted in

the performance listed in the last column of the table. As

shown, even better accuracy performance can be achieved with a

15 nanosecond time aperture. However, this is at the expense

of the delay time between a measurement command and command

execution. In applications where the exact time of the

measurement's execution is unimportant, this improved accuracy

is readily available.
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FIGURE 1-3 ONE-WAY DOPPLER EXTRACTOR BREADBOARD



TABLE 1-1 Breadboard Functional Summary

Parameter Remarks

Non-destruction readout Manual or Computer Selection. Counts

continuously for up to 600 seconds

with overflow indication.

Destructive readout Manual or Computer Selection. Resets

counters to zero at start of each new

measurement interval.

Fixed integration periods Manual or Computer Selection of the

of 0.5, 1,2,10,60 and 600 period with automatic display of

seconds. results.

Anytime readout Manual or Computer control of the

measurement interval from - 0 to

600 seconds.

Self Test Injects a known frequency near front

end of extractor and checks the

computed doppler for accuracy. Test

is passed if error 0.3 Hz.

Displays Any one of these results is displayed

Raw bias plus doppler by push button switches.

or clock counts.

Doppler frequency in

Hertz.

Range rate in meters/

second.

Slant range difference

in meters

Time delay between stop

command and actual stop Switch selectable between either

execution. display.

Integration time

variation in microsecond
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FIGURE 1-4 ONE-WAY DOPPLER EXTRACTOR TEST INSTRUMENTATION



A pre imi na rY design nfiguration for flight hardware has been

established, which satisfies the Rockwell International Space

Shuttle requirements. The equipment necessary for doppler

extraction from multiple carrier frequency 
receivers was

estimated to be 5.6X6.9XI0.6 inches, weighs 10.2 
lbs and

consumes no more than 8 watts of prime power.

TABLE 1-2 Breadboard Performance Summary

Breadboard Performance

15 ns 200 ns

SOW a erture a erture
Parameter

Noise error at the

integration period.

0.6 Hz 0.03 Hz 0.24 Hz

2 sec. 0.25 Hz 0.009 Hz 0.05 Hz

10 sec. 0.23 Hz 0.003 Hz 0.01 Hz

60 sec. 0.20 Hz 0.0025 Hz 0.002 Hz

60 sec. 0.20 Hz 0.0025 Hz 0.002 Hz
600 sec.

Maximum time 4 us

Interval variation 100 us
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PART 1

FEASIBILITY/TRADE-OFF ANALYSIS

This part of the report includes a discussion of

the Feasibility and Trade-off analysis of candidate

one way doppler extractor systems. IMajor topics

include a discussion of theoretical considerations,

such as an error analysis and methods for error

reduction, and implementation considerations, which

include the trade-offs of various receiver and

doppler extractor options.

A system is selected for a one-way doppler extractor

breadboard and a performance sensitivity analysis is

presented for this system. Major sections included

in this part are:

2.0 THEORETICAL CO SILRATIOiS

3.0 I PL ElENTAT TI ON

4.0 SYSTEI1 TRADE-OFFS AiNi) OPTIIZATIO S



SECTION 2

THEORETICAL CONSIDERATIONS

2.1 ERROR ANALYSIS

The error budget for a doppler measuring device consists of

three types of errors; deterministic error, bias error and ran-

dom error.

The deterministic errors are due to predictable effects such as

refraction and multipath. These values can be predicted from

estimates of satellite locations and only residual random errors

result. It is assumed that these residual errors are independent

between each doppler measurement and their contribution to the

total error budget is discussed along with the other random error

sources.

The bias error does not change significantly during a satellite

pass or longer and is due to long term frequency.drift of the

stable oscillators and uncertainty in the measured value of the

speed of light. Since these errors change only slowly with time,

if at all, they cannot be removed by filtering (e.g., long aver-

aging times) the individual doppler measurements. It may be

possible to reduce the bias error in predicted range, however,

by averaging the predicted location over many satellite passes.

The random errors change between each doppler measurement(frac-

tions of a second) and are caused by short term oscillator insta-

bilities, quantization error, phase lock loop tracking errors,

noise induced errors in the doppler counter and residuals from the

deterministic errors. These errors can be reduced by some form

of filtering (e.g., long averaging times) of each doppler measure-

ment.

Previous efforts in the area of ground to satellite one-way

doppler measurement errors have been investigated. K. Bures and

G. Smith of the Ames Research Center (reference 1) derive formulas

for the error sources for a two way doppler measurement. Where

applicable to the one-way doppler measurement these formulas have

been used in this report for developing the error budget. RCA

2-1



describes (reference 2) the effects of ionospheric and tropo-

spheric refraction on range measurements. W. Guier and G.

Weiffenback of APL/JHU (reference 3) describe the errors

resulting from ionospheric refraction. This section of the

report summarizes the results of these references where appli-

cable to the one-way doppler technique, and derives other

error sources peculiar to one-way doppler.

2.1.1 DETERMINISTIC ERRORS

The deterministic errors have a mean value and a random component.

As is generally assumed, the mean value can be predicted for each

satellite pass so that only the random component enters into the

error analysis. The resultant residual errors in range-rate are

assumed to be independent for each doppler measurement and their

contribution to the total error budget is discussed under the

random errors.

2.1.2 BIAS ERROR

Reference (1) derives the bias error caused by uncertainty in

the speed of light with the following result:

= = 3.33X10 - 7 R
, C

Since R maximum = 8230 meters/sec. (SOW Specification)

0"F (max.) = 2.75X10 - 3 meters/sec

= 9.0X10 -3  ft/sec.

The range-rate error caused by long term oscillator instability

is not defined in the references for the one-way doppler case.

However, the resultant error iseasily calculated by assuming

the oscillator drifts by an amount SL' ft; where SL is the long

term stability and ft the transmitted frequency. The error in

the doppler measurement is then:

fd = SL f.d L t

C i-

t d f.C SL
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If SL is the RMS frequency stability, then:

(- = C SL C = velocity of light.

Since both the ground station and satellite oscillators will

drift, the combined error due to long term instability is given

by:

S =  LG + LS

A
where SL G = ground oscillator drift

SG = satellite oscillator drift

A A A

If SLG 4 <- S S and SLS 10 -9  (From discussions with

NASA)

Then:

R = 3 0 CM/Sec. = 1 . O Ft/Sec.

The total RSS range rate bias error is then:

30 CM/Sec = 1.0 Ft/Sec.

2.1.3 RANDOM ERRORS

The short term instability error is derived in the same manner

as the long term factor. The resultant range rate error is:

S \"'2 ' 2CRs = C S + S

where SSG is the short term RMS stability of the ground oscillator

and S is the stability of the satellite oscillator.
SS

A A A
If SSG - SSS and S = 10 1

Then OR = 3.0 CM/Sec = 0.10 Ft/Sec.

The quantization error contribution can be.derived from the

count error as follows:

C fd =/T
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where e fd is the doppler error, C = fractional cycle lost in

the quantization process, T = doppler averaging time.

The range rate error is uniformly distributed over the interval

from zero to:

c
RE(Max) f T

and C
Q ft T FTT

The quantization error can occur at both the beginning and ending

of the counting period, and since these errors are independent,

their variances add. Thus, the resultant quantization error is

fi = cEv'T ~c

ft T \, ft T V

If doppler cycles are counted then e has a maximum value of 1.

For a 0.5 second counting period, (shortest value specified in

SOW), the total quantization error is:

0- = 12 CM/Sec. = 0.41 Ft/Sec.

Generally a phase lock loop (PLL) is used to track carrier plus

doppler frequencies. The PLL introduces a timing jitter on the

output frequency which results in a frequency error in the

doppler counters. The range-rate error resulting from the use

of a PLL is defined in Reference (1) as:

' C
2 TT ftT V(S/N)loop

If (S/N) loop = 10 dB

(A minimum requirement for accurate PLL track)

and T= 0.5 seconds

Then:

UTR = 1.5 CM/Sec -0.050 Ft/Sec.

The range rate error caused by noise at the input of the doppler

counter is given in reference (4) as:
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C _

N 2.6 ftT /(S/N) counter

if ft = 2X10 9 , T = 0.5 sec.

= .5 CM/Sec = ft./sec.
N VS/N NsN

if S/N = 60 dB, a typical VCO output value

LN = 1.15X10-2CM/Sec=3.78X10-4Ft/Sec.

Other random error sources - The residual errors from atmospheric

effects will be root sum squared with the other random errors if

they appear to be of significant value. Reference (4) shows that

at 2 GHiz, the doppler error due to ionospheric refraction has

a maximum value of 0.25 Hz, or a range-rate error of .12 feet

per second. However, since this is the maximum error the RMS

error over the complete path will be significantly less than

this value.

Likewise, from reference (2) a doppler error can be derived from

range errors due to tropospheric scatter. Computing the standard

deviation of the change in range for each degree change in

elevation, and deriving the time required for each degree change

results in a maximum random range-rate error of .16 meters per

second for elevation angles greater than 5 degrees. This is the

maximum error for a 100 mile orbit. At 300 mile altitude the

range rate error caused by the ionosphere should be half this

value and will be reduced even further at higher elevation

angles.

The total root sum squared random error for the nominal parameters

chosen is:

RSS = 12.8 cm/sec.= .424 Ft/Sec.

(The effects of the residual errors have been ignored in this

summation)
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The quantization error accounts for over 90% of this total error.
Thus, techniques which reduce the quantization error would be

of significant advantage in controlling the overall error budget

for the doppler extractor.

The various errors encountered in the one way doppler measure-

ments are summarized in Tables 2-1, 2-2 and 2-3.

TABLE 2-1 DETERMINISTIC ERRORS

ERROR SOURCE ERROR MAGNITUDE/REMARKS

Ionospheric Refraction Residual error random
1 0 = 3.7 cm/sec(.12 Ft./sec)

Tropospheric Scatter Residual error random

1 W = 6.1 cm/sec.(.2 Ft./sec).

Multipath Requires knowledge of ground
station environment.

Vehicle Depends on degree of data processing
'Acceleration No error is .A range computer.
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TABLE 2-2 BIAS ERRORS

ERROR SOURCE ERROR MAGNITUDE

-7 '
Measured Velocity 1 = 3.33X10 - R

of Light = 0.28 CM/Sec (.009 Ft/Sec)

1 o = C *Sr
Long Term LS
Oscillator

= 30 CM/SEC (1 FT/SEC),

SLS <10-9

TABLE 2-3 RANDOM ERRORS

ERROR SOURCE RANDOM IAGNITUDE

Short Term 1 = C SS
Oscilla tor

Stability = 3 CM/Sec (.1Ft/Sec.)

( S = 10 )

Quantization C
Error 1 =

f Tv6t
= 12.2 CM/Sec (. 41 Ft/Sec.)

S=, T=0.5 Sec.

Jitter in -1 - C oop

Phase Lock 2 Yr ftT oop
1.5 CM/Sec (.05 Ft/Sec.) t

(S/N)loop = 10 dB

Noise on VCO 1 = 2.6 f T v'S/a) VCO

Output t
.012 CM/Sec (.0004 Ft/Sec .)

(S/N)VCO = 60 dB
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2.2 METHODS OF ERROR REDUCTION

Several techniques have been investigated for reducing the

measurement errors from the doppler extractor. Of the three

primary random error sources, quantization error is the most

significant and many techniques have been devised to reduce

this error source. The other error sources (jitter and fre-

quency stability) can only be reduced by brute force techniques,

i.e., improved S/N ratio, increased averaging time or improved

oscillator stability. These techniques are costly for signifi-

cant error reduction and require a trade-off of desired accuracy

vs cost to achieve that accuracy. The quantization error, how-

ever, can be reduced by proper hardware changes, and although

these may add to the hardware cost, the resultant large improve-

ment can be attained with only small changes in cost.

2.2.1 TECHNIQUES FOR REDUCTION OF QUANTIZATION ERROR

2.2.1.1 Averaging Time

For reduced quantization error in range-rate it is desirable to

have long averaging times. However, if the Orbiting Vehicle

is experiencing a changing range rate acceleration, long aver-

aging times will result in a range rate error due to assuming

constant acceleration. This error can be reduced to zero by

computing change in range. As the following analysis shows,

regardless of the length of the averaging time or the velocity

history of the vehicle, the change in slant range is exactly

proportional to the change in cycle count.

It "
NRa = R dt = actual change in slant

range.
J t fd dtBut: 6Nd = fo dt = change in cycle count

and, fd =
C t

.j ANd = R dt = ft aR
C C a

0

A Ra = -- *AZ Nd (independent of t)
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Thus, if changes in slant range are computed, no errors are

introduced by using very long averaging times, regardless of

the motion of the orbiting vehicle during the averaging period.

The change in slant range from the ground transmitter is iden-

tically proportional to the change in doppler count.

Long averaging times will affect the total cycle count if the

oscillator drift is significant over the averaging period.

For short time intervals, the short term stability becomes

worse as the interval becomes shorter. For many typical

oscillators, the stability becomes constant, independent of

the averaging time, when the averaging time is in the range of

I to 100 sec. Figure 2-1 shows the results of all errors as

a function of averaging time. Above 2.2 seconds averaging, SS
becomes the dominant error in R, if whole cycles are counted.

Below 2.2 seconds, quantization becomes the dominant error.

If cycles are counted to a resolution of 0.1 cycles, the quanti-

zation error is only significant for averaging periods less

than 0.1 seconds.

2.2.1.2 Period Measurement

W. H..Guier (et al) describes a technique (Reference 5) to

reduce quantization error by the method of measuring the period

between N cycles of the doppler frequency (or doppler + bias).

This method is used by APL in the TRANET ground tracking system,

and the technique is represented in Figure 2-2. The period

of N cycles of bias plus doppler is measured by counting the

clock cycles, with a resultant quantization on the clock cycle

count.

The resultant range-rate error is developed in the figure and

indicates that the error is reduced by the ratio of the bias

to clock frequencies. Thus, for nominal 1 MHz bias and a

5 MHz clock the range rate error can be reduced by 2.4 cm/sec

(0.08 ft/sec) in a 0.5 second averaging time.

This technique is attractive from the standpoint of simplicity,
but the time interval over which the doppler count is made

becomes a variable. This is due to the fact that N is generally
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Typical Oscillator Drift
Versus t

•01 Averaging Time (Seconds)

Resultant \ Range Error Versus Averaging Time

t GcR (Drift) aTR (Quant.) UR (Jitter) F RMS

0.1 0.95 CM 6.1 CM* 0.76 CM*** 6.22 CM

0.5 2.10 " 6.1 " 0.76 " 6.50 "

1.0 3.00 " 6.1 " 0.76 " 6.84 "

2.0 6.00 " 6.1 " 0.76 " 8.59

5.0 15.00 " 6.1 " 0.76 " 16.21

10.0 30.00 " 6.1 " 0.76 " 30.62

0.1 0.95 " 0.61 "** 0.76 " 1.36 "

0.5 2.10 " 0.61 " 0.76 " 2.32 "

1.0 3.00 " 0.61 " 0.76 " 3.15 "

2.0 6.00 " 0.61 " 0.76 " 6.08 "

5.0 15.00 " 0.61 " 0.76 " 15.03

10.0 30.00 " 0.61 " 0.76 " 30.02

* Whole Cycle Count ( = 1)

** Fractional Cycle Count (E =0.1)

*** S/N = 10 dB

FIGURE 2-1 EFFECT OF AVERAGING TIME ON DELTA
RANGE ERRORS
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ERROR ANALYSIS
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d r B NO (1 + 1/N 0 ) 0 B

N +N
B d TRIANGULAR

d 2 0 DISTRIBUTION

0

r = No/Fo

F B + Fd

0

I F +F

OF B d
1 FB + F d

OFd r6 F 0

FIGURE 2-2 PERIOD MEASURING TECHNIQUE TO REDUCE
QUANTIZATION ERROR.
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a fixed number and the time required for the doppler counter to

reach depends on the doppler frequency. If the bias frequency

is 1 MHz and the maximum doppler frequency is + 60 kHz, then,

for a 1 second nominal-averaging time (No  = 10 nominal), the

actual averaging time would range from 940 ms to 1060 ms.

It is possible to reduce the averaging time variation to no more

than one period of the bias frequency by making N a variable

number. For example, if doppler frequency is desired at regular

intervals (t), the clock counter could output a stop command when

the No count reaches a pre-determined value (based on t). Both

counters would continue to run until the next bias plus doppler

zero crossing. At this zero crossing both counters would be

stopped. The bias plus doppler count would be an exact integer

since its counter would count from exactly one zero crossing to

another zero crossing. The clock count, however, would be in

error by + 1 count. The time interval variation would be no

more than + 1 cycle of the bias frequency.

If the bias frequency were 1 MHz, the time interval would vary

no more than + 1 us. However, a 10 MHz clock and counter would

be required to achieve a one sigma doppler resolution of 0.08 Hz.

A lower bias frequency could be used, however, it must be high

enough to carry the full range of the doppler signal. A 100 kHz

bias frequency could attain a doppler resolution of 0.13 Hz

minimum (at FB + FD = 160 kHz) with a 1 MHz clock, but the

time interval variation could then be as high as + 25 us

[1/(FB - FD) = 1/40 kHz].

2.2.1.3 Frequency Multiplication

Another technique to reduce the quantization error is to

multiply the doppler frequency by some factor N. For the

time interval there are N times as many counts but the quanti-

zation error remains at + one count. In converting to doppler

frequency, range rate, or change in range, the count must be

divided by N. Thus, the net quantization error in range rate

(for example) is reduced by a factor of N. This technique is

represented in Figure 2-3
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SNFB+NFd FB+NFd COUNTER
Fb+ Fd XN

REFERENCE FO 0  XM
OSCILLATOR NB + N Nd ± 1

*MULTIPLIER STAGES CAN BE CASCADED
TO KEEP NFB LOW AT HIGH MULT..

ERROR ANALYSIS

NB + N Nd + 1

-FB

1
1d (TRIANGULAR

eFd = + N DISTRIBUTION

1 1

0d= r- N

FIGURE 2-3 ERROR REDUCTION BY FREQUENCY MULTIPLICATION,
BLOCK DIAGRAM AND EQUATIONS.
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In the multiplication process the errors due to jitter and long

and short term frequency instabilities are increased by the

factor N. However, in computing range-rate or change in range

the resultant count is divided by N. The errors also are divided

by N so that the net result of the multiplication process is that

the errors in range rate due to jitter and frequency insta-

bilities are not affected, but the quantization error is reduced

by a factor of N. The multiplication process decreases the

signal to noise ratio by a factor of N2 . Thus, to obtain high

resolution (high N), the S/N into the multiplier stage must be

high, For example, if N=100, the S/N ratio into the multiplier

should be greater than 50 dB if the S/N into the frequency

counters is to be at least 10 dB.

The multiplication can be accomplished in alternate stages of

multiplication and mixing to prevent the generation of high

frequencies. Thus, two decade multipliers and two mixers with

9 MHz reference frequencies could be used to obtain a multipli-

cation of 100 without generating frequencies in excess of 10 MHz

(assuming a 1 MHz bias frequency).

2.2.1.4 Fractional Cycle Techniques

The fractional cycle technique employs a high frequency clock

to divide the doppler cycle into many small fractions. The

process is represented in Figure 2-4. The fractional cycle

count is used to estimate the doppler quantization error to

within the quantization error of the clock. The resultant

improvement is equal to the ratio of the bias frequency to the

clock frequency. The errors resulting from jitter and frequency

instability are unaffected by this process.

This technique also causes an averaging time interval (t)

variation of + one bias frequency cycle. To simultaneously

achieve high resolution and small time interval variations,

the bias frequency must be large and the clock frequency must

be even larger. Thus, a high speed clock counter must be

employed to achieve doppler resolution improvements of more

than about 10. If the bias frequency were chosen to be 1 MHz,
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START STOP

Q- NB + Nd

FB + Fd
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FO
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ERROR ANALYSIS

NFC + (Q2 -1)
NB + Nd+ NWC (Q3 - Q1)

Fd = -FB

F1 (TRIANGULAR
Fd= Nwc \DISTRIBUTIONJ

NWC= Fo + F WHOLE CYCLE COUNT
Fo FB + FD

,r- FB + FD 1 at t= 0, r
Fd Fo Nwe

1 (FB + FD)
Ord =Fo

FIGURE 2-4 FRACTIONAL CYCLE TECHNIQUES TO REDUCE
QUANTIZATION ERROR.
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the clock frequency would need to be about 14 MHz to achieve a

one sigma doppler resolution of 0.08 Hz. The time interval

variation would be no more than about 1 us.

2.2.1.5 Vernier Technique by Coincidence Detection

The vernier technique is represented in Figure 2-5 and 2-6.

This technique employs comparison of zero crossing coincidences

between the bias plus doppler and clock frequencies to arrive

at the doppler frequency. By counting both frequencies between

coincidences, each counter is started and stopped on zero

crossings. Thus, the + 1 cycle count error is eliminated if

the coincidence is defined with infinite precision. In

practice, a coincidence would be declared whenever the two

zero crossings are within some time interval which is small

compared to the period of either frequency. The resultant

error in doppler cycle count is distributed uniformly over the

range + P (where P is the time difference within which the two

zero crossings are declared to be coincident). The resultant

standard deviation of the doppler frequency error is:

1 2P 1
F - 2P(F
D t 7 T(B+D) t 6 2P(FB+FD)

Since 1/t , 6 is the nominal quantization error, the resultant

error is reduced by a factor 2P (F(8+D) )

The vernier technique has the advantage that high resolutions

can be obtained without the need for high speed counters, since

all counted frequencies can be near one megahertz. The time

interval variation occurs with the vernier technique as with

some of the other techniques previously described. The time

delay depends, in a non-linear fashion, on the selection of the

bias and clock frequencies and the width of the coincidence

aperture (2P). Typical values of delay are described and shown

in a later section (Section 4.4)

2.2.1.6 Analog Technique

The analog technique employs an energy storing device to stretch

the quantization interval and hence measure it with lower

frequency clocks. Hewlett-Packard's computing (model HP 5360,
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FB + FD , TIME

COUNT BOTH
FREQ. FOR

F TIMEr

S [PULSES (FB + FD)

"AND" BA N(B+D)
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I ZERO CROSSING
PULSES (F0)

I L - NO  -- AN O

COUNTER I II COINCIDENCE
TRIGGERS I PULSES

-- 1 D - ------ r STOP
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FIGURE 2-6 TIMING SCHEME FOR COINCIDENCE DOPPLER
EXTRACTOR.
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Reference 6) employs this technique using a capacitor as the

energy storing device. Figure 2-7 is a functional diagram of

the technique. The quantization intervals (Tl  & T2 ) are

stretched by a factor of 1000 and the clock's frequency is

counted over the stretched time intervals. The actual period

for exactly N(B+D) whole cycles is then:

S=T o T1 -2 1000 F

and

N N
N(B+D) N(B+D) FFB + FD N *

B D N1 - N2 1 o
N +o 1000

The quantization error is

N
(B+D) 1

eFD N o 1000 No

but N = Fo ; N B+D) = (FB + F )

F +F
e 1 B D

FD r 1000 F0

1 FB + FD
Fd T 4 1000 F

The quantization error is reduced by a factor of 1000 relative

to the nominal counting method. This technique requires that
the bias frequency counter begins and ends on zero crossings

of the bias frequency (since the technique .is measuring the

period of exactly N(B=D) cycles). The averaging time will vary

by one bias frequency cycle resulting in a delay between the

commands and the execution of the command similar to the other

techniques described in this section. However, the delay will
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COMMAND ACTUAL COMMAND ACTUAL
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(No + 1000

FIGURE 2-7 ANALOG TECHNIQUE FOR REDUCED
QUANTIZATION ERROR.
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not exceed one cycle of FB+FD or I micro-second for a nominal

1 MHz bias.

An additional delay in calculating the doppler shift results

from the 1000 times stretching of the clock quantization interval.

With the 1000 times expansion, the doppler shift cannot be

calculated until up to 1000 clock periods have elapsed. This

could be as high as I millisecond if a 1 MHz clock is employed.

It is not necessary in the one way doppler extractor to use a

1000 fold stretching and 10 would suffice. Thus, the delay in

making a doppler calculation would then only be 10 us for a

I MHz clock.

2.2.2 JITTER ERROR REDUCTION

The phase jitter from the VCO output results in a random doppler

count error which is inversely proportional to the averaging time

and the S/N ratio in the phase lock loop bandwidth. Thus, the

jitter error can be reduced by increasing the S/N ratio (higher

received power or lower receiver noise) and/or increasing the

averaging time. Increasing the averaging time has the added

advantage of reducing the quantization error, however, other

total system errors may make it desirable to have short

averaging times. This section is thus mainly concerned with

the impact of methods to increase the receiver S/N ratio.

From the receiver design standpoint, the S/N ratio can be

improved by decreasing either the receiver bandwidth or noise

figure (noise temperature). Assuming the latter has been de-

signed to its lowest practical limit, the bandwidth is the only

receiver parameter which can be used to increase the S/N ratio.

Since the receiver need only extract the carrier frequency

(as far as doppler measurements are concerned), the receiver

bandwidth could be made arbitrarily small if vehicle .motion

is uniform. Since doppler rates are expected, a minimum r

receiver bandwidth is required to allow the PLL to maintain

lock on the signal. Trade-off discussions of this minimum

bandwidth are discussed in detail under Receiver Design

Considerations (Section 3.1) and under System Trade-offs and

Optimizations (Section 4.0).
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The other parameters that can be varied to increase the S/N

ratio (transmitter power and antenna gains) involve trade-offs

in cost and complexity. Also, the reduction of jitter error

must be weighed against other errors such as quantization and

frequency drift errors.
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SECTION 3

IMPLEMENTATION CONSIDERATIONS

3.1 RECEIVER DESIGN CONSIDERATIONS

An analysis of S/N levels and phase-lock loop bandwidths was

conducted to determine receiver parameter requirements (bandwidth,
acquisition time, tracking errors). Table 3-1 shows the link

analysis and resultant signal-to-noise ratio for a typical

S-band receiver. For this analysis it was assumed that the.

satellite was at a maximum range of 1000 nmi. (2XO16 meters).

This corresponds to a satellite at zero degrees elevation for

a 100 nmi. orbit, or 50 elevation for a 300 nmi. orbit, The

other link parameters are actual values used in other analyses

(e.g. an RCA Study Reference 7), or are USB equipment parameters

(reference 6). The modulation loss (LM) is discussed in

Section 3.1.3.

For the particular receiver of Table 3-1, the S/N level is

seen to be 45 dB. This receiver has a threshold noise bandwidth

of 800 Hz (USB parameter) and a bandwidth of 3000 Hz at a high

S/N ratio. If a special receiver were built for the one-way

doppler extractor, a different value of receiver bandwidth may

be desirable. Narrower bandwidths increase the S/N ratio

but will require longer acquisition times. Furthermore, there

is a minimum bandwidth which will allow accurate tracking through

the high doppler rate region.

3.1.1 DOPPLER LIMITS AND RATES

The receiver must be designed to acquire and track the trans-

mitter signal under all practical circumstances. In particular,

during acquisition the receiver must be designed to rapidly

acquire the signal, even when the received frequency is at

maximum off-set (doppler limit) and changing at a maximum rate
(doppler rate). The receiver must also track the signal

accurately in the region of maximum doppler rate. The

maximum frequency off-set (for the acquisition analysis) is

twice the maximum doppler limit (+ 60 kHz, reference SOW)

plus possible frequency drifts. The maximum doppler rate
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TABLE 3-1 LINK ANALYSIS (Range = 1,000 nmi.) (2000 km)

*TX Power (pt) 10 dBW

*TX Ant. Gain (Gt) 43.5 dB

TX Losses (Lt) 2 dB

Space Loss (Ls) 164.4 de

Polarization Loss (Lp) 2 dB

Power at RX Ant. (P ) -114.9 dBW

RX Ant Gain (Gr) 10 dB

RX Losses (Lr ) 5 dB

Modulation Loss (Jm) 7 dB

**Noise Figure/Temp. (NF/t) 8 dB/15400

**IF Bandwidth (BIF) 16 kHz

**Loop Bandwidth
(High S/N) 2 BL 3000 Hz

Noise Power (N) -161.9 dBW

Loop S/N (S/N)L 45' dB

Min, Allowable Sweep 8000 Hz/Sec

Rate (=2 d) ( F)

* From Technical Discussions with NASA Personnel

** USB Data

is + 4000 Hz/sec also derived from the SOW.

3.1.2 ACQUISITION AND TRACKING LIMITS

The analysis used the parameter values of Table 3-1 with the

loop threshold bandwidth as an independent variable. At a

loop S/N ratio of 20 dB or more, the actual loop bandwidth is

approximately 3 to 5 times the threshold bandwidth. Figure

3-1 shows the results of the analysis. The maximum acquisition

time is inversely proportional to the threshold bandwidths.

To determine the minimum bandwidth requirements it was.assumed

that the VCO was swept through a 200 kHz band at a rate of
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one-half the 90% probability of lock-on value (this value is

suggested by Gardner in reference 9). This sweep rate depends

on the threshold loop bandwidth through the expression:

AF MAX = 1 -(S/N)L-/2 2
2 (2 BLO )  0

where 2 BLO = threshold loop bandwidth.

c', o = Limiter suppression factors at threshold and

high S/N ratio.

With a high S/N level, this formula reduces to

SF 08 (2B )2 4 BIF
" o LO 7(2 BLO)

BIF = IF Bandwidth prior to limiter.

The minimum sweep rate is determined by the maximum doppler rate

expected since the sweep must be able to catch up to the signal.

For this analysis, the minimum sweep rate is assumed to be twice

the maximum doppler rate (4 kHz/sec. for an acceleration of

610 meters/sec.). The minimum sweep rate is then 8 kHz/sec.

Putting this value of sweep rate into the above equation results

in a minimum acquisition bandwidth of 70 Hz and an acquisition
time of almost 40 seconds. However, acquisition times of 1
or. 2 seconds or less would be desirable. Thus, from the figure
it is seen that the minimum bandwidth should not be less than

400 Hz for an acquisition time of 2 seconds.

The minimum allowable tracking bandwidth depends on the desired
tracking error during the high doppler rate region. From
formulas given in Reference 9, this minimum bandwidth can be
derived as: L---ET

(2 BLO)

where f = max. doppler rate
lao = signal suppression ratio of the limiter

S~= tracking error for the loop
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: V (2 BLO) y (2 BLO)

for the receiver characteristics of Table 3-1. Thus, if the

tracking error is desired to be less than .1 radians, then the

minimum loop threshold tracking bandwidth must be at least

150 Hz.

The 70 liz acquisition and 150 Hz tracking bandwidths are minimum

values. Wider bandwidths would be desirable for both low tracking

error and fast acquisition. The 800 Hz bandwidth of the present

S-band transponders would provide a maximum acquisition of time of

0,7 second and a tracking error no larger than 0.01 radians

(.60).

3.1.3 MODULATION EFFECTS

Since modulation is expected to be present on the carrier

frequency, the receiver must be designed to extract a carrier

reference frequency for the doppler extractor circuits.

Assuming phase modulation, two techniques are generally used

to extract the carrier reference. Each of these methods

results in a loss of S/N ratio in the receiver loop bandwidth

(this S/N loss is based on the link analysis assumption that

all of the transmitter power is devoted to the carrier frequency).

The first technique uses a suppressed carrier from the trans-

mitter to supply the receiver with a reference frequency. Using

this technique the receiver can lock to the carrier reference,

using a simple phase lock loop as shown in the block diagram

of Figure 3-2. In order for the transmitter to devote as much

power as possible to the sidebands, the transmitted carrier

reference is suppressed by as much as 10 dB. As a result the

receiver loop S/N ratio is reduced by the same 10 dB.

In addition to this loss, the modulation will cause sideband

frequencies to be present which may increase the noise in the

loop ba.ndwidth and may also cause false locks to occur. The

sideband noise in the loop bandwidth can be eliminated by using

high repetition rate digital modulation (phase shift, frequency

shift). This will displace the side lobe spectral lines outside
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the loop bandwidth when carrier lock is achieved. For this

to occur, the repetition rate should be much greater than the

strong signal loop bandwidth. This is generally the case for

high speed digital communications so that the noise contributed

by sideband energy is expected to be negligible. False locks

can also be reduced by employing high repetition rates and

allowing the VCO to sweep only in the vicinity of the expected

carrier frequency.

A second technique to extract a carrier reference frequency,

when bi-phase or quadra-phase modulation is employed, is to use

a squaring loop or Costas loop. For quadra-phase modulation two

square law devices would be used to quadruple the IF frequency

or a dual Costas loop would be used. A receiver block diagram

that extracts a carrier from bi-phase modulated signals, using

the squaring loop, is shown in Figure 3-3. For similar modu-

lation, Figure 3-4 shows a receiver which uses a Costas loop.

The main advantage to using a squaring loop or Costas loop is

that the sidelobe information is removed leaving only a carrier

reference frequency into the phase detector. Thus, no sidelobe

signals will be present into the phase detector, resulting in

less noise in the loop filter. Also, since no sidelobes are

present the VCO cannot falsely lock on to a sidelobe frequency,

Both of these loops have similar effects on the extracted carrier

so that only the simpler squaring loop receiver will be

discussed.

The transmitter suppresses the carrier frequency to a high

degree resulting in primarily sideband information being trans-

mitted. The square law device strips away the modulation

resulting in a carrier reference frequency at twice the input

IF..frequency. As a result of the squaring device the loop

S/N ratio is .reduced by 6 dB. Other losses resulting from

phase noise and the use of narrow band filters accumulate to

less than one dB.

In the link analysis shown in Table 3-1 the effect of modulation

was accounted for by assuming a total modulation loss of 7 dB.

This assumes that either a squaring loop or Costas loop is
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employed to extract the carrier or else a conventional PLL is

employed with a carrier that is suppressed by no more than 7 dB.

3.1.4 OPTIONAL CARRIER FREQUENCY ACQUISITION TECHNIQUES

The present S-band transponders rely on passive acquisition in

that the ground transmitter sweeps in frequency until a signal is

received from the orbiting vehicle that acquisition is complete.

This method has several disadvantages. The technique requires

that two way communication is established before acquisition

can be completed and it is difficult for more than one user to

acquire and track the same transmitter. Further, if the

receiver breaks lock or falsely locks to a sidelobe signal,

two way communication must be re-established to repeat the

acquisition phase.

A more attractive technique is to fix the ground transmitter

frequency and provide for self acquisition in the S-band receiver.

The receiver could have its own oscillator sweep in frequency and

have means for detecting break lock or false locks. If these

occur, the receiver can immediately revert to the acquisition

phase without ground station cooperation. Further, many

receivers could acquire and lock to the transmitter frequency

without disturbing other communication links.

Two techniques are available for receiver acquisition of a

stable transmitter frequency, namely; coherent and non-collerent

acquisition. Coherent acquisition is the technique of sweeping

the PLL oscillator. When the signal is present in the loop

bandwidth, the PLL automatically acquires the signal, due to

its feedback circuits, and the sweep is removed. For a given

loop bandwidth there are maximum limits to the sweep rate which

can be applied and still allow the PLL to automatically acquire

the signal. This is the technique described briefly in section

3.1.2 where it was shown that acquisition could require several

seconds to complete. Non-coherent acquisition time can be

significantly less than this, especially for receiver bandwidths

below one kilo-hertz and at high S/N ratio.
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3.1.4.1 Non-Coherent Acquisition

Non-coherent acquisition is a technique of scanning the frequency
band with a narrow bandwidth filter measuring the energy output
and stopping the sweep when a desired energy threshold is achieved.

High sweep rates can be achieved by this technique. However,
for a given filter bandwidth and signal power level, the faster
the sweep, the lower is the signal energy that is coupled to
the energy detector circuits. The energy loss, relative to a
zero sweep rate, is dependent on the sweep rate and the filter
bandwidth as shown in Figure 3-5.

From this figure it would appear that a wide bandwidth is
desirable since this would result in the least amount of energy
loss. However, as the bandwidth is increased the noise level
increases.

Although the sweep loss decreases as the bandwidth is increased,
if the bandwidth is sufficiently high the improvement in sweep
loss becomes negligible compared to the increase in noise.
Thus, for a given sweep rate, an optimum filter bandwidth exists
which maximizes the swept S/N ratio into the energy detector.
This optimum filter bandwidth is shown in Figure 3-6. In this
figure signal power requirements are plott.ed against receiver
bandwidth and acquisition times (inverse of the sweep rate)
for constant S/N ratio into the detector. Figure 3-6 shows that
in order to acquire in 0.1 seconds (2 MHz/sec sweep over
200 kHz band), a bandwidth of about 1 kHz makes optimum use
of the available signal power. For other acquisition times,
the optimum bandwidth can be selected from the figure by
referring to the line of minimum power.

In order for the phase lock loop to lock to the signal, the sweep
is stopped at the frequency of highest energy (or some similar
other criteria). The PLL will be pulled into lock if its
bandwidth is not too narrow relative to the sweep bandwidths.
Assuming the VCO frequency, when sweep is stopped, does not
differ from the signal frequency by more than the swept bandwidth,
then the PLL pull in time will depend on the sweep bandwidth
as shown in Figure 3-7.
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Since the pull in time increases as the sweep bandwidth increases

(high LZ F uncertainty when VCO sweep is stopped) but the time to

sweep the total band (200 kHz) decreases, there is an optimum

sweep bandwidth that minimizes the total acquisition time. For

the assumptions made (S/N = 10 dB, 5 = 0.5, swept bandwidth

= 200 kHz, tracking bandwidth = 800 Hz) the optimum sweep band-

width is about I kHz, resulting in a total acquisition time

0.2 seconds. At higher S/N ratios the acquisition time

would be less than this value. Also, use of a higher PLL thres-

hold bandwidth would result in acquisition times smaller than

the above value.

3.1.4.2 Coherent Acquisition

Coherent acquisition was described briefly in section 3.1.2

assuming the received high signal to noise level shown in

Table 3-1. This section expands on that analysis to include

the effects of S/N ratio on the sweep rate and develops a trade-
off of sweep rate (or acquisition time) for transmitter power

requirements for direct comparison with non-coherent acquisition.

Coherent acquisition is the technique of sweeping the VCO
frequency and allowing the phase lock loop to automatically

acquire and track the signal. As in section 3.1.2, the maximum
allowable sweep rate is assumed to be half of the desired rate
for 90% probability of acquisition. That is:

1 2
F max 1 (1 - ) , (2 BLO) 2

Figure 3-8 shows the resultant acquisition times (200 kHz
swept band) as a function of receiver threshold bandwidth,
S/N level and transmitter power. From the figure it can be
seen that the acquisition time is not very sensitive to S/N

ratio (100 fold increase in signal level results in one third
the acquisition time) but is sensitive to receiver bandwidth
(doubling the bandwidth reduces acquisition time by a factor
of three). Also, for a given acquisition time the transmitter

power requirement is minimized at a S/N ratio of 10 dB.
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Thus, during acquisition, the receiver bandwidth should be as
wide as possible to produce a 10 dB signal to noise ratio in
the loop.

Figure 3-9 shows the resultant acquisition times and relative
transmitter power levels when the receiver bandwidth is maximized
as defined above. The results show that the receiver bandwidth
should exceed 1 kHz for coherent acquisition times less than one
second.

Figure 3-10 compares the coherent and non-coherent acquisition
times in terms receiver bandwidth and transmitter power require-
ments. The curves show for equivalent power requirements, the
non-coherent technique acquires in about one-tenth the time for
acquisition bandwidths of 1 kHz or less.

3.1.5 RECEIVER REQUIREMENTS

The results of this section have defined the following receiver
parameters.

(1) Receiver tracking bandwidth

Threshold bandwidth should be no less than 150 Hz in order to
track during the high doppler rate region. Higher bandwidths
would be desirable both for tracking accuracy and acquisition.

(2) Acquisition bandwidth

In order to acquire the signal in a fraction of a second, it is
necessary that the acquisition threshold bandwidth should also
be above 300 hertz for non-coherent acquisition and above 1 kHz
for coherent acquisition.

The above requirements are minimum values. Wider bandwidths
would be desirable for both faster acquisition and accurate
tracking of the signal. The S-band transponder, with its
800 Hz threshold bandwidth and 3,000 Hz strong signal bandwidth
easily meets the minimum requirements. If VCO sweep is applied
to this receiver, and non-coherent acquisition is employed,
(with a 1,000 Hz bandwidth) it could acquire the carrier
frequency in a few tenths of a second. For coherent acqui-
sition the maximum acquisition time would be nearly 2 seconds
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(since acquisition bandwidth would be 800 Hz). To reduce the

coherent acquisition time to a few tenths of a second, the

S-band transponder acquisition bandwidth would need to be

increased above 2,000 Hz.
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SECTION 4

SYSTEM TRADE-OFFS AND OPTIMIZATIONS

4.1 SYSTEM SELECTION CRITERIA

A shuttle doppler navigation system requires the use of high

performance, low weight systems for the extraction of doppler

information. The doppler extraction system most desirable

for shuttle applications is one which can meet the perform-

ance requirements at least cost, weight, size and power

consumption. The system should also be reliable in meeting

the performance requirements under all expected conditions

of velocity, acceleration and environmental factors.

The overall system accuracy is considered the prime perform-

ance measure for the candidate systems. From the Statement

of Work (SOW) the required accuracy is (0.1 ft/sec) random

error for 2 or more seconds of integration time and 30 cm/sec

(0.98 ft/sec) maximum bias error per day. As a minimum the

accuracy of the candidate systems will meet these require-

ments. Thus, the criteria for system selection will be to

select the candidate system which can achieve the above

accuracy requirements without sacrificing cost, weight,

size or reliability.

4.2 CANDIDATE SYSTEMS

This section of the report describes various techniques to

acquire, track and measure the doppler shifted carrier

signal. The options involve various levels of cost and

complexity but with resultant improvements in system

performance. The candidate systems are divided into three

classes of options that deal with specific and generally

independent components of the total doppler extraction

system. Three classes are, 1. Receiver options, 2. Quantiza-

tion resolver options, and 3. Reference oscillator options.

The following paragraphs discuss these options and their

impact on the total system operation.
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The data demodulation function of the receiver is not

considered in the following discussions since it does not

impact directly on the doppler extraction process. It is

assumed that a phase lock loop receiver will be employed

to remove the modulation and extract a carrier reference for

injection into the doppler extractor.

4.2.1 RECEIVER OPiIONS

The requirements on the S-Band receiver are to accurately

track the transmitter signal and supply highly accurate

doppler signals to the doppler extractor. To achieve this

goal, three receiver options have been considered as candidates

for the total doppler extractor system. These include:

(1) Using an unmodified 5 band transponder

transmit port to derive a signal for

the doppler extractor.

(2) Modifying the transponder to obtain a

VCO signal for the extractor,

(3) Designing a new receiver to optimize

doppler extraction performance and

carrier frequency acquisition.

Each of these three possibilities are discussed in the

following sections.

4.2.1.1 Doppler Signal Obtained From S-Band Transponder
Transmit Port

A technique for obtaining full doppler from the S-Band

transponder would be to use the transmit port. A method for

obtaining a doppler signal is shown in Figure 4-1. Since

the S-Band signal into the doppler extractor could have

down link data modulation present, a Costas loop (or similar

demodulation circuit) would be necessary to extract the

carrier reference frequency. Full doppler is obtained by

using fixed reference oscillators for the mixer injection

frequencies.
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Although full doppler is available to the counters, this

technique has the disadvantage that the doppler extractor

would contain an S-Band Receiver (including demodulators).

This would make the extractor costly in both design and

cons tructi on.

4.2.1.2 Doppler Signal Obtained from VCO Output

Figure 4-2 shows a block diagram of the S-Band transponder.

The VCO output is available at a frequency of four times the

VCO frequency (76.083 MHz), but only fractional doppler is

available on this carrier. Since the S/N ratio from the

VCO is high, frequency multipliers and mixers could. be used

to obtain full doppler on a low frequency carrier. Such a

technique is outlined in Figure 4-3.

With this scheme, nearly full doppler can be obtained without

employing demodulators and S-Band components. All frequencies

are less than 100 MHz, allowing the use of lower cost, lower

power and high reliability components in the doppler

extractor.

4.2.1.3 New Receiver Designs

In order to achieve faster acquisition and higher accuracy

doppler extraction, it may be desirable to design a new

receiver optimized for doppler extraction. A new receiver

could be designed to have a wide acquisition bandwidth and

high VCO sweep rates. For an acquisition bandwidth of

5000 Hz, for example, the PLL could acquire the signal,

coherently, in less than a tenth of a second. A new

receiver could also be designed to acquire non-coherently,

resulting in even faster acquisition times.

A new receiver could also be designed to achieve full

doppler frequency or higher on the VCO output. This would

simplify the circuits for the reduction of quantization

error, since requirements for frequency multipliers and/or

high frequency clocks would not be as critical.
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A new receiver could also be designed for multichannel

operation, allowing selection of a clear channel by the user

and allowing.sequential tracking of several ground trans-

mitters, on different frequencies, for triangulation measure-

ments.

Four candidate receiver designs have been evaluated for this

analysis. Each receiver design attempts to optimize one or

more of the selection criteria parameters. Thus, System 1

attempts to minimize system cost, weight, and power require-

ments at the expense of system accuracy. Systems 2 and 3

trade-off low cost for increased accuracy. System 4 trades

low cost and weight for increased utility.

The following pages discuss each system in detail and

derives system trade-off data for each candidate.

4.2.1.3.1 System 1 Configuration

Shown in Figure 4.4 this system has a narrowband IF resulting

from direct beating of a VCO harmonic with the RF signal.

This receiver is relatively low cost but has the disadvantage

that only a small fraction of the doppler frequency is

injected into the extractor. This is representative of the

Apollo USB receiver.

a. Frequency drift effects

Af = flS 1 ; AF0 = Fo S So,S1 = Random

Afo = (fd + S fl)/(N+1) Drift Factors

S=(N+1)C b + Afb - f
f1 1 + S0

11 1 S
R (N+)C Af - S ( + Afb )  SINCE 1 1f b b b 1+S0

SINCE Afb (fd + Slfl)/(N+I) - F So, THEN;
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,/-> TRUE DOPPLER TERM

S(N+)C fd S S 1  f d+Sl - F S
N +  N+ + N+l 0 So(tb, N+l 0

SINCE f= f - fo', and E' = R R TRUE
b 0 0 R TRUE

(N+1C S1 - S ofd + So S 1 - F S 2 (1)
R fl N+1 o o (N+I)

E() N+)C F S 2 < 101 FT/SEC 0
R f 00

Neglecting 2nd Order Terms in S (Eq. 1)

(,N+1)C _s fl S
f Sofd

R f N+1- oo N+1

(N+1)f fd
R = C S - S f - S

SINCE (N+l)f o =fl and fd/fl << 1

ER = C [S1 - 0]

S= C S12 + S 2 S

E ) = C2 ( + 2) WHERES = SRe!S

.2 E(s 2) - E2  (:R )

- aR = C S + S
.... .... .... .. .. ..... DRIFT

IF SI = S2 = S, THEN

1 ^ 2J
a R = CS
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b. quantization error

This error in the counted frequency of the VCO is

CA = v- - WHERE E = FRACTION OF A CYCLE LOST
T

f :

SINCE = (N+)C THEN;

S (N+1)C _

R fl T 6-

e has the range from 0 to 1 cycle if full cycles

are counted. Thus,

(N+l)C QUANTIZATION
R OR fl T 6-

Thus the quantization error is multiplied by the

ratio of the received frequency to VCO frequency.

c. Jitter error

In the narrow band loop the frequency relationship are:

f - (N+l)(f +0 ) 1
2 7r T /(S/N) LOOP

SINCE fl  (N+l)f o

THEN:

1

J = 2 (N+1) T S-S/N

AND:

1 C
S N+ 27 fl T S -/N JITTER
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4.2.1.3.2 System 2 Configuration

Shown in Figure 4-5 this system beats a reference oscillator

with the RF signal to produce a wideband IF. The VCO is

phase locked to this IF frequency, with the result that full

doppler is available on the VCO. A disadvantage of this

system is that a low S/N ratio is injected into the limiter.

Higher power transmitters may then be required if the loop

bandwidth is narrow.

The minimum IF bandwidth to pass full doppler is 120 KHz.

Even if the loop tracking bandwidth was as low as 200 Hz,

then the S/N into the limiter would be -18 dB for a 10 dB

loop S/N ratio. This is sufficient to be above the nominal

phase detector threshold of -30 dB.

The addition of data modulation to the carrier signal will

require that the IF be wider than 120 KHz. Thus, at a

typical data modulation rate of about 80 Kbps the IF band-

width should be increased by 160 KHz to 280 KHz. .However,

for accurate data demodulation the S/N ratio in this wider

IF should be 10 dB or higher with the result that the

limiter receives a S/N level higher than the -18 dB deter-.

mined above.

a. Frequency drift effect

AF° = SoFo; Af = Slf 1

Afb = fd + Slfl - (N+1)S Fo

R = (-S ) ( 'b + fb) fb

R =- (Af b -Sfb

f = fo- F

b o o TRUE DOPPLER

R C fd 4 1f - (N+l)FS o - Sof o + SF

-o Sofd + - (N+1)F 0 S0

4-11



120 KHz

fl d 1 WIDE LIM. FILT.

I I F

XN

f +Af VCO
0 0

REF. F +AF
OSC. o o

FREQ.
DIFFER. k----- --

fb+ fb

TIMING COUNT RANGE-RATE

K
T = F +AF

0 0

FREQUENCY RELATIONSHIPS

f I NF + f1 o  o

f = fo -Fo

DOPPLER & RANGE-RATE

Afb = fd + Af - (N+1)AFo

K KFC +aF (f +Afb) F b

f 1 K/f

FIGURE 4-5 CONFIGURATION - SYSTEM 2

4-12



subtracting out the true doppler, and neglecting second

order terms in S, results in the range rate error:

E = C S1 - S (NF0 +f0) - S fd

SINCE Nf +f fl

AND fd <<f 1, THEN;

S = C(S 1 - S )

'2 = C2 (S 2 +S 2 -2S S

E(E 2 ) = C2(S 2+S 2
R1 o o

C S 02(N+ 1) F0
SINCE E(ER) - fl o <1011 FPS = 0

THEN:

a'2 = E(c'2)

thus, if S1 and So are the RMS stability factors for the

oscillators, then:

C 2 2
S= C + S 2 DRIFT

Is

If the frequency stabilities of the ground station and

satellite oscillators are .equal, then the range rate

error due to drift becomes:

R = C S 2
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b. Quantization error

The error in the counted frequency of the VCO, caused

by quantization is:

LA f 2 L/T

CAf = E/T

AND
C CO = - aAf

R f f fl T

If E is uniform over 0 - 1 cycle

C
_' = QUANTIZATION

Q fl T

c. Jitter error

In the PLL narrowband filter the frequency relation-

ships are:

(fl-NF) - (f +a.)
2nT /(S/N) LOOP

BUT f = NFo + f

1
0. 02rT (S/N)LOOP

AND

__ _ JITTER

R 2nfT (S/N)LOOP JITTER
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4.2.1.3.3 System 3 Configuration

Shown in Figure 4-6 this system has both wideband and

narrowband IF's, resulting from beating of a master

reference oscillator with the RF signal. This receiver

has full doppler on the VCO and also a high S/N ratio

into the limiter.

a. Frequency drift effect

AF° = S Fo; Afl = Slf1

fb = fd + Slfl - (M+N+1)S Fo

R = 1 (1-S ) (b b b

C 1 b-So (fb+ fb)

fb = F - Fo

.. C fd+S1F -(M+N+1)SFo Sf +S o F o

S-So fd+S1fl - (M+N+I)S f

Subtracting out the true. doppler and neglecting second

order terms in S, the resultant error is:

=R S 1 - (M+N) F 0 +fo So- fdS 0
* = fl o o , - do)

SINCE fl = (M+N)F + fo

AND fd << fl
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FIGURE 4-6 CONFIGURATION - SYSTEM 3
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THEN:

SR = C(S1 - S )

E 2 = C2 (S12 + So 2 2S

E(:R2) = C2  jE(S12) + E(S 2) + 0

SINCE: E(eR) <10 -  FPS 0, THEN

a 2 = E(ER2)

If So and S1 are the RMS stability factors, then

a = C 2 + 2 DRIFTR1 o

for equal stability factors

o C S 1Z

b. quantization error

Since full doppler is available on the VCO, the

quantization error is the same as for system (2).

thus:

a R CO Q -f T  QUANTIZATION

c. Jitter error

The frequency relationships in the PLL are:

(f MF ) - (f + .) - NF = 1o 2nT (S/N)LOOP

OR

fl - (M+N)F - f - aJ =  1
2nT (S/N)LOOP

4-17



BUT

fl = (M+N)F +f0

S = 1 JITTER
J 2nT /(S/N) LOOP

4.2.1.3.4 System 4 Configuration (Multi-Channel Receiver)

Shown in Figure 4-7 this receiver uses wide bandwidth IF

amplifiers and a fixed reference oscillator to obtain

20 channel capability. A variable multiplier stage in the

2nd mixer loop allows switch selectability of any one of

the 20 channels. Since fixed reference oscillator

frequencies are used for all but the final phase detector

stage, full doppler frequency is available on the VCO out-

put. Mixing of the VCO output with a 68 MHz reference

oscillator frequency could be added to obtain the full

doppler on approximately a 1 MHz bias frequency.

The error analysis for this receiver is similar to receiver

types 2 and 3 previously described. That is:

a. Frequency drift error

Rs= C 1 + S2

b. quantization error

C
a R -

Q flT 4/

c. Jitter error

' C
aR

J 2nfl T /(S/N)LOOP
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4.2.2 QUANTIZATION ERROR REDUCTION OPTIONS

The various ootions for reducing quantization error have

been discussed in Section 2.2.1. The method of using

long averaging times is not considered here as a system

option since the doppler extractor must operate at averaging

times as short as 0.5 seconds. However, for instances where

long averaging times are used, this technique does have

impact on the other system options (such as oscillator

selection, since long term oscillator drifts may be

significant sources of error in the extraction process).

Thus, long averaging times will be considered on'y for those

systems that are affected directly by its use. The other

five options discussed in Section 2.2 will be discussed in

the system selection process.

4.2.3 CANDIDATE REFERENCE OSCILLATORS

The requirement to measure doppler frequencies accurately

to.a fraction of a hertz over a one second integration time

requires short term oscillator stabilities of at least one

part in 1010. The long term bias error requirement of

less than 2 Hz requires a long term stability of one part

of 10. To meet these requirements, the oscillator could

be of three typ, s:

1. High stability ovenized quartz crystal oscillator

2. Rubidium gas oscillator

3. Cesium beam oscillator

Table 4-1 compares some of the parameters of these

oscillators. The cesium beam standard is very desirable

from the standpoint of stability and environmental effects.

However, its size, weight and cost are prohibitive for

Shuttle use and there is little hope that any of these

characteristics will be significantly improved in the near

future. Thus, the candidate oscillators for Shuttle

use is limited to either quartz or rubidium gas.
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TABLE 4-1 CHARACTERISTICS OF REPRESENTATIVE STABLE REFERENCE OSCILLATOR

TYPE QUARTZ QUARTZ RUBIDIUM RUBIDIUM CESIUM

MA\NUFACTURER HEWLETT-PACKARD FREQUENCY HE9LETT- EFRATOM HEWLETT-
ELECTRONICS PACKARD PAC KARD

---------------------------------------------- ------------------------------------------

MODEL NO. HP 10543A FE-1800DS HP 5065A FRK HP 5062C
----------------------------------------------------------------------------------------------------------

SHORT TERM 10-11  10-12 5X iO-12  5X10 -11 7X10-1 1

STARILITY (1 S )
----------------------------------------------------------------------------------------------------------------

LONG TERM 5X10-10  <10-10  Ixio-12  IXio-10  -11

STABILITY (MONTH) (3 YRS)
------------------------------------------------------------------- 

- -----------------

OUTPUT LEVEL (5OJL) 20 MW 20 MW 20 MW 20 MW 20 MW

------------------------------------------------------------------------------------------ ---------------------

P(74ER CONSUMPTION 24V, 3.5,. 12.5V, 1.54 24V,35W 24V,13W 24V,3OW

------------------------------------------------------------------------------------------ ---------------------

---------------------------------------------------------------------------------------------------------

SIZE 30 IN3  130 IN3  1700 IN3  73 IN3  1700 IN3

80 $1200 $7,500 $6,00 $15,000---------------------------------------------------------------------------------------------------------------

PRICE $850 $12,000 $7,500 $6,o $15,000



Of the quartz oscillators available, the characteristics

of the Hewlett-Packard model HP 10543A, or Frequency

Electronics model FE-1800D have characteristics desirable

for Shuttle application. In terms of stability, weight

and size, these units are representative of the state-of-

the-art for quartz oscillators.

Of the rubidium oscillators, Frequency and Time Systems

Inc., model FRK represents state-of-the-art development.

This unit is low in weight and is suitable for airborne

application. An evaluation of this unit has been made by

NRL (reference 10) and several deficiencies noted. However,

the reference suggests some design changes which may make

the unit attractive for high stability airborne doppler

measurements.

4.3 SYSTEM SELECTION

This section of the report discusses the system recommended

for Shuttle applications and for breadboarding of a

demonstration unit. The system is shown in a simplified

block diagram in Figure 4-8. A more detailed description

is included in Part II. The systems consists of an S-band

transponder, a coincidence detection doppler extractor

and either a quartz or rubidium reference oscillator (clock).

This system was selected based on the criteria of high

accuracy at minimum cost, weight, complexity and development

effort.

Use of the S-band transponder VCO output offers an

economical method of obtaining a carrier plus doppler

reference frequency without adding significantly to total

system weight, complexity or development effort. As

Section 4.2 has shown, full doppler can be obtained by the

addition of low frequency multiplier and mixer stages in

the doppler extractor. Use of the S-band transponder in

this manner will result in system accuracies equivalent to

the other receiver options without the need to modify the

RF or IF sections of the receiver. The transponder also
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offers the least technical risk since it has been flight

proven in many lunar and orbital missions.

For Shuttle applications it would be desirable to modify

the S-Band transponder to achieve a VCO sweep for rapid and

autonomous acquisition. As shown in Section 3.1.4, the

transponder could acquire the carrier reference frequency

in one to two seconds coherently or about 0..2 seconds

non-coherently.

The coincidence detection doppler extractor was selected

to reduce the quantization error without the need for

high speed counters. Even when full doppler frequencies

are available to a conventional counter the desired range-

rate accuracy of 3 cm/sec (0.1 ft/sec) can only be obtained

with integration periods of 5 sneconds or longer. Thus , a

quantization resolving extractor would be desirable for

reduced error at short integration times. The coincidence

detection technique is recommended since this extractor can
ta.ke advantage of low cost, low power and high reliability

CMOS components, without sacrificing accuracy.

4.4 VERNIER DOPPLER EXTRACTOR ANALYSIS

This section analyzes the accuracy and time delays associated

with the coincidence detection technique and shows the
limiting effects of this delay on the extractor resolution

capability. Also described is the effect of the time delay
on the total system errors when the doppler extractor

measurements are compared (or averaged) with other range

rate measuring equipment (such as accelerometers).

4.4.1 -EXTRACTOR ACCURACY ANALYSIS

The vernier doppler extractor uses narrow detection windows

to define the coincidence of positive zero crossings of the

desired doppler plus bias frequency and a known reference

frequency (stable clock). The principle of op.eration is

similar to the familiar vernier caliper measuring instruments
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which can obtain a resolving power much greater than the

smallest quantized measurement interval. In the vernier

doppler extractor the positive zero crossings of the

signals serve as reference marks and conventional frequency

counters supply the measured cycle counts. If the known and

unknown frequency counters are both simultaneously started

and stopped on zero crossings the quantization is eliminated

and the unknown frequency can be resolved to a very high

accuracy. Figure 4-9 shows a functional block diagram of

the implementation required to achieve the coincidence

detection and control of the frequency counters, and Figure,

4-10 shows the resultant signals and timing schemes.

In Figure 4-9, a zero crossing detector triggers a pulse

gener--tor to emit a very narrow and stable pulse at each

zero crossing of the unknown and clock frequencies. An

"AND" gate detects the coincidence of the pulses when they

occur and emits a control pulse to start or stop counters

which separately count the unknown and clock frequencies.

Figure 4-10 shows how the circuit would operate when discrete

measurement intervals are desired. A command to start the

counters is received from the computer.

The counters are actually started immediately following the

next detected pulse coincidence. Thus, both the bias plus

doppler and clock counters are started immediately after a

zero crossing. After a defined measurement period (), both

counters are commanded to read out the accumulated counts to

the computer. The counters, however, continue to count

until the next pulse coincidence at which time the desired

counts are read into buffers. Since both counters were

started and read at zero crossings, both counts are very

accurate and the doppler frequency can be calculated with

high precision. The doppler frequency is given by:
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Fd ="- D)  F FB  .RN o

where: N(B+D) = bias plus doppler count

N = clock, count

F = clock frequency and

FB = bias frequency

R = Doppler division ratio from the

S-Band transponder.

An inaccuracy exists in the counts due to the finite widths

of the pulses. Thus, the "AND" gate will respond to a near

coincidence if the two pulses overlap to any degree. With

reference to the clock count and the pulse rise times, the

integer representing the bias plus doppler count could be

in error by a fractional cycle count varying over the

range -P/T(B+D) to +P/T(B+D) cycles, where P is the pulse

width from the bias plus doppler pulse generator, and the

clock pulse generator and T(B+D) is the period of the bias

plus doppler frequency.

This error which occurs at both the start and stop times of

the counters, is uniformly distributed over the interval

+P.(FB+FD) and each error is independent if T is mich larger

than the interval between coincidences. The combined error

results in a maximum doppler error defined by:

2P(FB+FD) R
d T

and a standard deviation defined by:

2P(FB+FD)
Fd =

whe-.eR is the ratio of S-band doppler to counted dopple'r

and T is the measured period.
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If the doppler extractor were only concerned with obtaining

an accurate doppler measurement over a period of 1 second,

say, with no regard to how much the 1 second time interval

could vary, then P could be made arbitrarily small. A one

nanosecond pulse, for example, and a 1 MHz bias frequency

would result in a doppler error of 0.002 cycles or 0.002 Hz

in a second period, provided full doppler is available into

the doppler counters (R=1), Such a pulse width is feasible

with stable rise times of 0.1 ns.

4.4.2 TIME DELAY ANALYSES

A coincidence of zero crossings occurs whenever the two

pulses have some overlap into the "AND" gate. The probability

of a coincidence depends on the pulse widths and the inter-

pulse periods. The average period between coincidences can

be shown to be given by:

1
Tc (Po +PB) (FB+FD)Fo

This formula assumes that the clock and bias plus doppler

frequencies are not harmonically related, or if so, enough

random variation in their frequencies is present to assure

that the maximum period between coincidences is not

excessi ve.

With random variations in pulse timing due to noise jitter,

Figure 4-11 shows the sensitivity of obtaining at least one

coincidence in 100 us as a function of pulse width and bias

frequency. The curves show that the highest probability

of coincidence and the shortest pulse widths are obtained

when the bias frequency is chosen as close as possible to

the clock frequency. Since the doppler shift will shift

the bias frequency closer to FO, it is necessary that the

bias frequency be at least 60 KHz (maximum doppler) less than

F0O

If a 100 kHz difference in the frequencies is more desirable

to allow for drifts (etc.), Figure 4-12 shows the coincidence
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probability when the bias frequency is 100 kHz less than FO.
The curves are plotted for the nominal (zero doppler) bias

frequency and for the worst case harmonic relationship (near

maximum negative doppler where N/M = 7/8 FO). The

probability is also plotted as a function of S/N ratio

(timing jitter). The results show that under worst case

conditions (lowest possible harmonic ratio and zero timing

jitter) pulse widths of 60 ns would be needed to guarantee a

coincidence. At this pulse width AT < 0 and a pulse coin-

cidence is certain to occur in a maximum of eight clock

periods (6.4 1iS). The resultant range rate resolution is

less than 1.8 cm/sec (0.06 ft/sec).

If the bias plus doppler frequency is an exact rational

fraction of the clock frequency, a coincidence may never

occur if the pulse width is made too narrow, or the S/N

ratio is too high (random phase jitter too small for

statistical treatment of time delay). This is shown in the

diagram of Figure 4-13.

If the frequency ratio (FB+FD) is defined by the integers

N/M (N/M is reduced to its lowest form and N M), a coincidence

wil occur in MT0 seconds if the pulse width is greater than

or equal to T /2N (T = clock period). With P - To/2N, the

doppler error equation becomes:

= + 2P(FB+FD)

but 2P = T /N

and F +FD = N F (by definition)

T
eF = + ( ) = + 1 since T F = 1

D N Mo T o

M is the resolving power of the vernier extractor. The

time delay has a maximum value of

td(MAX) - MTo (td is uniformly distributed from zero

to M To
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Since the time delay is random, the actual measurement

interval can vary from t-MTo to t+MT o . To keep the time

interval variation small M should be small. But for high

doppler accuracy M should be large. Thus, a compromise is

required between acceptable time interval variations and

desired doppler measurement accuracies.

If the time delay must be kept below some upper limit

[(td(max.)], then M must not exceed a limit defined by:

M < td (MAX)
- T

For example, if the clock period is 1 us (F = 1 MHz) and

the time delay must be less than 100 ps, then M < 100.

If the doppler shift varies, then the ratio N/M will vary,

and the integer values of N and M will both vary. In this

case the minimum allowable pulse width is defined when N

is a minimum (P > To )or when F B+Fd is furthest from
min 2Nmin

F o . The maximum resolving power is also defined at this

greatest separation of the two frequencies. If the doppler

shift is too large, then the ratio FB-Fd max = N min

F M min

will be small. N and M will also have small values. Thus,

if M is to be large, then N must also be large and FB-Fd
max. Fo.

In summary, the vernier extractor can achieve high resolution

only over a narrow bias plus doppler frequency range, if

short time delays are required. Moderately high resolution

can be achieved over a wider doppler range without increasing

the time delays. To achieve the highest resoltuion and

shortest time delays the clock and bias frequencies should

be chosen as large as possible and the pulse widths as

narrow as possible. Figure 4-14 shows the sensitivity of

the doppler resolution to the clock reference frequency

when the bias frequency is chosen to be off-set from the

clock frequency by 100 kHz (full doppler is assumed into the
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doppler counters). This off-set allows the bias plus

doppler signal to remain always below the clock frequency

and thus prevents long delays from occurring when FB+FD=F o

As shown in the figure, doppler resolutions to 0.02 cycles

can be obtained with a maximum possible delay of 25 us, if the

clock and bias frequencies are chosen at about 10 MHz. The

pulse width, however, would need to be one nanosecond or

less. The maximum delay can be shown to be 25 ps regardless

of the clock frequency by the following analysis. With a

100 kHz nominal separation between Fo and FB , the two

frequencies can approach each other to within 40 kHz (with

a maximum positive doppler of 60 KHz.) M will then have

a maximum value given by:

N Mrmax- _ FB+Fd(max)
M Mmax  Fomax m

(Mmax -1) Fo = Mmax (FB+F d max.)

or:

F
M = o

o (F+Fd max)

The maximum time delay is Mmax. (T ), therefore:
FTo 1

td(max) = 0 0 1
F_ -(F -F F -(F -FFo- B d max) o B -Fd max

With Fo-(FB+Fd max.) > 40 kHz, the maximum time delay is

less than or equal to 1/40 kHz - 25 us.

If only fractional doppler is available (for example, on the

19 MHz VCO output the doppler could be 110 times lower than

the S-band doppler), the resolution shown in the figure

must be multiplied by the ratio of S-band doppler to counted

doppler. However, with fractional doppler, it is not

necessary to off-set the bias frequency by 100 kHz since the

maximum doppler swing would only be about + 600 Hz. The

bias -frequency could be placed within about 1 kHz of the
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clock frequency. With a 1 MHz clock frequency, a 999 kHz

bias frequency and + 600 Hz of doppler, ,/M would have a

minimum value of 998400 > 624.
1,000,000 625

The extractor could operate with pulse widths of 0.8 ns

(T o = 1 Ps, 2N = 1248) and the resolution on the fractional

doppler would be .0032 Hertz. When converted to S-band

doppler, the resolution would be increased to 0.32 Hertz.

The maximum delay would be 625 us (MTo). To reduce the

requirements for narrow pulse widths and to decrease the

maximum time delay it is desirable to have some large portion

of the S-band doppler present on the counted bias frequency.

4.4.3 EXTRACTOR ACCURACY/TIME DELAY TRADE-OFFS

Narrow pulses or a low bias oscillator frequency reduce

the quantization error; low values for these parameters

will increase the average period between coincidences.

Since measurements are taken at coincidence, narrow pulses

or. a low bias frequency will cause increased delay between

the time when a measurement is desired and when it is actually

obtained.

If the pulse widths are chosen to be at the minimum values

to guarantee a coincidence (P+P < T/N then, aso T 0/N NF

shown in the previous section, the maximum time delay will

be given by

td (,max) < F -(F

o B dmax)

The worst case resolution (maximum error) of -the extractor

is defined when M is minimum. That is:

C . 1
R - ft- Mmin.

The minimum value of M occurs at maximum separation of the

clock and bias plus doppler frequencies. At this maximum

separation, M min. has a value given by:

4-37



min - F-F d m a x

Mmin F

or
F

Mmin F -F - Fo B dmax)

Therefore:

. C . Fo- ( FB - F d m ax )

R ft r6 F

Figure 4-15 shows the sensitivity of the extractor resolution

and time delay to selected values of clock and bias frequencies.

The curves show that the extractor resolution improves as

the clock and bias frequencies are increased, and also

improves as the bias frequency approaches the clock

frequency.

The maximum time delay, however, is only dependent on the

closeness of the bias plus doppler frequency and the clock

frequency. Thus, in curve (b), the bias frequency is

offset from the clock.frequency by 100 kHz and the maximum

time delay is 25 ps , independent of either the clock or

bias frequency (as long as the two frequencies always differ

by 100 kHz). However, as curve (b) shows, the resolution

improves as the bias and clock frequencies are increased.

The specification of 3 cm/sec maximum error can be met if the

clock frequency is greater than about 1 MHz. The bias

frequency would then be greater than about 900 kHz.

Combining the equations of time delay and resolution results

in-the relationship'between resolution and time delay given

by:
2F +1/td

C 2Fdmax+ /td(max)
R = ft - Fo

Curves of the sensitivity of this maximum achievable

resolution as a function of the maximum allowable time

delay are shown in Figure 4-16. These curves show that the
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resolution is not sensitive to time delay if the maximum

time delay is allowed to be 100 js or longer. Further, the

extractor resolution is independent of the bias frequency,

as indicated by the above equation, when the time delay must

be kept below a maximum value.

4.4.4 EXTRACTOR IMPACT ON OTHER RANGE RATE MEASUREMENTS

This part of the report evaluates the sensitivity of total

system error t.o values of pulse widths and counter frequencies

when the doppler measurement is compared with other sensor

data (e.g. accelerometers). The sensitivity to delays

between the doppler and accelerometer measurements is

evaluated and it is shown that delay times in excess of 100

ps are permissible without affecting the overall system

accuracy.

The effect of the time delay may be to cause an increase in

the total error when the doppler measurement is compared

with other sensor measurements taken over a slightly

different time interval. Since the coincidence counter

counts both the time interval and the doppler frequency

the true time interval is known and only velocity changes

occurring during the delay (which would not be. included in

the other sensor measurements) result. in an actual error

in the calculated doppler frequency. However, as the

following analysis shows, the error increase resulting

from the delay is negligible for pulse widths greater than

about 0.5 nanoseconds (zero to 600 microseconds delay).

If it is assumed that the doppler frequency is constant for

t seconds of integration, and the maximum acceleration

occurs only during the delay interval (td seconds) then

the maximum.possible error caused by the delay is as shown

in Figure 4-17. Assuming the shortest integration period

of 0.5 seconds (highest error) and the maximum acceleration

during the delay of 610 meters/second 2, the resultant range

rate error caused by the delay is:
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2
ER max. = 61,000 td cm/sec

= 2,000 td2 ft/sec

where td = delay time in seconds

Even if the maximum likely delay time is less than one

millisecond it is seen that the maximum possible error

caused by the delay will not exceed 0.06 cm/sec (0.004

ft/sec). Figure 4-18 shows that for the nominal system

parameters assumed throughout this report (i.e. SS = 10- 10

S/N > 10 dB and z integration = 0.5 seconds) the effect of

the delay on the total system error is negligible for

time delays in the range from 100 to 1000 microseconds.

At a maximum time delay of about 5000 us, the range rate

error from acceleration effects becomes as high as 1.52 cm/sec,

making this a significant error source. Thus, as long as

the time delay is less than 1000 us, the errors caused by

acceleration effects are small when comparedwith the other

error sources.

If the clock stability is reduced to 10- 11 the total RSS

error is reduced by a factor of 2, as shown in Figure 4.19.

At this clock stability the effect of the delay is still

negligible for allowable time delays of 100 to 1000 micro-

seconds. The quantization error becomes the most significant

error if the S/N ratio > 10 dB.

Thus-, it is seen that for the coincidence extractor that

supplies both clock and doppler counts, the effects of the

time delay on total error is negligible if the time delay

is in the range from 100 to 1000.is. For good range rate

resol uti on (quanti zati on error) the maximum time delay

limitation should be no less than 100 us.

4.4.5 CARRIER FREQUENCY ACCOMMODATION

In order to prevent resonances between the bias frequency

and clock frequency in the coincidence detector, it is

desirable to maintain a nearly constant bias frequency if

the S-band frequency is changed. The S-band transponder
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VCO frequency maintains a constant ratio to the S-band

frequency, so that, if the S-band frequency is changed, the

VCO injection frequency to the extractor also changes.

For example, if the S-band frequency is increased by 4.6.04

MHz, 221 (5 MHz)1 the VCO output frequency increases by 1/6

MHz. If no changes were made in the extractor injection

frequencies the bias frequency would increase from the

nominal 1 MHz to 5.00 MHz (4 MHz change or 24 x 1/6).

To compensate for these changes and maintain a constant

bias frequency, the reference oscillator injection

frequencies should be changed by the same ratio as the VCO

frequency.

A block diagram of a technique to accomplish this in t;he

doppler extractor is shown in Figure 4.20. The fixed

multiplier stage for the first mixer injection frequency

(X 15 nominal), is replaced by divider and variable

multiplier stages. The injection frequency is changed i-n

1/6 MHz steps as K is varied in unit steps, resulting in

complete compensation of the change in the VCO output

.frequency, and a constant bias frequdncy of 1 MHz.

As the S-band frequency is increased, the doppler shift (for

the same range rate) is increased proportionately. If the

S-band frequency is changed over a 100 MHz range (5%), the

maximum doppler shift on the bias frequency will change

by less than 3 kHz. The extractor circuits can easily

handle this increase without modification, but the software,

which computes range rate (etc.), would need to compensite

for the different proportionality between doppler and range

rate.
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An alternate technique would be to use the multi-channel

receiver described in Section 4.2.1.3. This receiver

changes the reference oscillator injection frequencies

and maintains a constant VCO output indepedent of the

input S-band frequency. The doppler shift would still

change with the input frequency so that software compensation

would be required.
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PART II

BREADBOARD DEVELOPMENT

This part of the report discusses the design,

development and performance testing of the Vernier

One Way Doppler Extractor. The operation of the

breadboard unit and detailed schematics are also

presented to aid the user in the operation and

trouble shooting of the extractor. Major sections

included in this part are:

5.0 BREADBOARD REQUIREMENTS

6.0 BREADBOARD DESIGN DESCRIPTION

7.0 BREADBOARD OPERATION

8.0 PERFORMANCE RESULTS
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SECTION 5

BREADBOARD REQUIREMENTS

The doppler extractor breadboard is required to meet specific

performance and functional requirements as described in the

Statement of Work and RCA proposals. A summary of these

requirements are presented in this section.

5.1 PERFORMANCE REQUIREMENTS

The doppler extractor is required to measure and extract the

doppler frequency from an S-band reference frequency derived

from an S-band transponder. The accuracy and conditions under

which the accuracy must be obtained is as shown in Table 5-1.

As the table indicates, the doppler frequency must be measured.

to a fraction of a cycle. To achieve this precision requires

that the S-band frequency and internally generated mixing

frequencies be stable to at least one part in 10 O. Further,

the error requirements prohibit the use of conventional frequency

counting techniques since these techniques produce a quanti-

zation error of up to one whole cycle.

5.2 FUNCTIOi'NAL REQUIREMENTS

In addition to the performance requirements, the breadboard

model of the doppler extractor is required to provide the

following functions.

1. Nondestructive doppler and time counters for periods up

to 60-0 seconds shall be provided ,including an overflow

indication when the 600 second period is exceeded.

2. Destructive doppler and time counters shall be provided,

with the counters being reset to zero at the start of each

new integration period.

3. Switch or computer selectable non-destructive and

destructive counting modes shall be provided.

4. Switch selectable integration and readout periods of 0.5,

1, 2, 10, 60 and 600 seconds shall be provided with automatic

display of each new measurement.
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TABLE 5-1

BREADBOARD PERFORMANCE REQUIREMENTS

MAXIMUM VALUE
ERROR INTEGRATION A RANGE
TYPE PERIOD (SEC) CYCLES FREQUENCY (Hz) RATE (CM/SEC)

NOISE 0.5 0.3 0.6 8.6
ERROR
(RANDOM) 2 0.5 0.25 3.6

10 2.3 0.23 3.3

60 12 0.20 2.9

600 120 0.20 2.9

BIAS 24 HOURS - 2.0 28.5
ERROR

RANGE RATE: 0 to + 8230 Meters/Sec

0 to + 60,000 Hertz

LINE OF SIGHT ACCELERATION:

0 to + 610 Meters/Sec 2

0 to + 4300 Hz/Sec

MAXIMUM INTEGRATION INTERVAL VARIATION:

+ 100 Microseconds

MAXIMUM ERROR IN MEASURED INTEGRATION INTERVALS:

+ 100 Nanoseconds
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5. A manual mode shall be provided with an anytime start

command and an anytime stop command. The time between these

successive commands shall be used as the integration period

and the desired data shall be displayed after the stop command.

6. A computer controlled mode shall be provided with an

anytime start command and an anytime stop command. Doppler

and time count data shall be transferred to the computer

after the stop command.

7. A computer controlled mode shall be provided where the

computer selects a fixed integration time of 0.5, 1, 2, 10,

60 or 600 seconds. At the end of the integration period

data shall be available for transfer to the computer.

8. Test points shall be provided for external monitoring

of the readout time synchronization.

9. The breadboard model will be tested and test document-

ation prepared to verify that these performance/and functional

requirements are met.

5.2.1 EXTRACTOR DISPLAYS

The doppler extractor breadboard shall include a micro-

processor to calculate a number of parameters for display

purposes. Any of the following parameters shall be switch

selected for readout on a 9 decimal digit display.

a. Bias plus doppler frequency counts

b. Clock counts for the integration interval

c. Doppler frequency in Hertz

d. Velocity in meters/second based on the actual

transponder frequency

e. Slant range difference in meters based on the

actual transponder.frequency.

A second 3 decimal digit display shall be provided which

will show, by switch selection, either:

a. Time delay between the stop command and the

actual stop execution, or

b. The difference between the nominal and the actual

integration time for any of the fixed integration periods.
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5.2.2 SELF TEST FUNCTION

The breadboard shall have an end-to-end self test capability

which can be initiated either manually or under computer

control. A known frequency. shall be injected near the front

of the doppler extractor. This frequency shall be measured

and any of the parameters listed under 5.2.1 shall be

displayed. In addition, a comparison against a stored reference

value shall be performed. Agreement between the test signal

and the reference shall result in lighting a "Data Good"

light and providing a discrete output to the computer.
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SECTION 6

BREADBOARD DESIG4 D0LSCRIPTIO

6.1 BREADBOARD CONFIGURATION

The doppler extractor breadboard implemented by RCA uses the

vernier extraction technique to resolve the quantization error.

The breadboard unit accepts a 76,083 MHz signal from an S-band

transponder and contains the necessary circuitry to perform

RF and digital processing to extract the doppler and doppler
related information from the input.

The RF processor translates and multiplies the input frequency
to obtain a suitable bias frequency containing approximately
the full S-band signal. It also generates a self test signal

for the self test modes. The digital processor performs the

functions of coincidence detection, digital counting, timing,
data processing and display, and interface formatting for a
UNIVAC 1218 computer.

The photograph of Figure 6-1 s'hows the extractor as delivered
to NASA. The unit measures 21 inches wide, 17 inches high and
18 inches deep. The front panel contains push buttons to
select any of the functions described in Section 5. Computer
control of the functions override the push buttons and is
obtained through cable connectors at the rear of the unit.
Multicolored LED lamps indicate whether the unit is in the manual

mode (red LED's) or the computer mode (green LED's). A nine

digit LED display indicates one of the following switch select-

able quantities: raw doppler or time interval counts, computed

doppler shift (Her.tz),computed range rate (meters/second) or
computed change in range (meters). An.additional 3 digit LED
display indicates the time interval delay in either raw clock
counts or in microseconds.

A view of the extractor chassis is shown in the photograph

of Figure 6-2. The RF and digital processing sub-chassis are
indicated. The input and output connectors are shown in the
rear panel photograph of Figure 6-3. Reading from left to
right these connectors are computer input (from 1218 output),
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coincidence clock frequency input (Fo), S-band transponder

frequency input (76 MHz), counter start/stop commands (STROBE),

5 MHz clock reference frequency (5 MHz), coincidence detector

output (COINC) and 115V AC.

6.1.1 TECHNIQUE DESCRIPTION

A top flow diagram of the one-way doppler extractor environment

is shown in Figure 6-4. The S-band transponder receives the

doppler shifted transmitted frequency and outputs a 76.083 MHz

reference signal containing 8/221 parts of the original S-band

doppler. The doppler extractor performs RF processing to restore

approximately full doppler on a 1 MHz bias frequency and performs

digital processing to extract doppler counts, time interval counts,

display data and computer interface logic to a UNIVAC 1218

computer. The timing circuits operate from an: external 5 MHz

frequency standard.

A block diagram of the extractor is presented in Figure 6-5

showing some of the internal functions performed by the RF and
digital processors. As shown in the figure, the transponder
signal enters the RF processor which performs frequency shifting

and multiplication resulting in a doppler shift up to + 60 kHz
superimposed on a 1.00 MHz bias signal. The 76.083 MHz is

mixed with a 75 MHz fixed injection frequency to obtain a

1.083 MHz plus fractional doppler (fd/ 27 .625 ) S-band reference

signal. This frequency is then multiplied by 24,-resulting

in a 26 MHz output containing 192/221 parts of the original

S-band doppler shift. The 26 MHz signal is then mixed with a

25 MHz fixed injection to obtain the desired I MHz containing
nearly the full S-band doppler shift. The coincidence clock

frequency. (Fo) of 1.25 MHz is obtained, by dividing the 5.MHz
clock by a factor of 4.

The above frequencies were chosen for the breadboard unit for

the following reasons:

i. The coincidence clock and bias frequencies

should be approximately equal and at about

1 MHz for best utilization of CMOS logic and
the coincidence technique.
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2. The injection frequencies should be low integer
multiples of the clock for ease of generation

and to obtain very clean injection frequencies.

3. The multiplying phase locked loop should have a

multiplication factor that restores most of the

original S-band doppler.

Other frequencies could be used in the extractor at the expense

of increased circuit complexity.

The digital processor circuits of Figure 6-5 contain the pulse

generators and coincidence detector required for the vernier
extractor concept. The bias plus doppler and coincidence clock

frequencies are converted to narrow pulses at each zero crossing

and these pulses are fed to the coincidence detector. The
coincidence detector responds to a pulse coincidence by gener-

ating a timing pulse. This pulse plus internal timing logic

causes the counters to transfer their counts to the buffers
at desired intervals. At coincidence, the quantization error is
reduced to a small timing error due to a finite pulse width.

Two counters count zero crossings of the FB+D and F signals.

For non-destructive readout( NDRO ), the counters run con-
tinuously. For destructive-readout (DRO), the counters are
reset at the beginning of each count interval. The two counter
outputs (N(B+D and N ) are stored in the buffers for computer
sampling as desired. The buffer circuits also contain inter-
face circuitry to c.onvert the counts into coded words for the
UNIVAC 1218 computer.

The self test function tests the operation of the doppler

extractor from the output of the first mixer to the computer
interface. A block diagram of the technique is shown in
Figure 6-6. A test frequency is obtained from the 75 MHz first
mixer injection oscillator by dividing this frequency by 70.
Derivation of the test frequency from the 75 MHz oscillator is
preferred over up converting from the 5 MHz standard, since
the former technique also tests the lock condition of the
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75 MHz oscillator to the 5 MHz standard. The resultant frequency
of 1,071,428.57 Hz is substituted for the nominal mixer output
frequency of 1.083,333,33 Hz. After multiplication by 24 and
differencing with the 25 MHz injection frequency, the resultant
bias plus doppler frequency into the coincidence detector is
714,285.7 Hz. Since the nominal bias frequency is 1 MHz, the
resultant equivalent doppler frequency at the extractor display
will be -285,714.3 Hz when all components are working correctly.
When converted to an equivalent S-band doppler shift (X 221/192)
the self test signal will represent a doppler shift of
-328,869.05 Hz.

During the self test the extractor compares the actual measured
doppler with a stored value of -285,714.3 Hz. If the two
frequencies agree within a few Hertz a data good signal is
sent to the 1218 computer and a "data good" indication lights
on the front panel of the extractor.

The self test technique described above tests all components
of the extractor with the exception of the first mixer. A
highly stable test signal could have been injected at the input
of the first mixer to also test this component. To obtain a
test signal of adequate spectral purity and stability would
require circuitry too complex to be incorporated into the present
chassis. The test signal frequency must be within a few kilo-
hertz of 76.083 MHz due to the bandwidth limitations of the X24
phase locked oscillator. The resultant increase in hardware to
generate a stable test signal at the input was not worth the
added advantage of testing the operation of a high reliability
mixer.

6.2 RF PROCESSOR DESCRIPTION

The RF processor accepts the 76.083 MHz plus fractional doppler
transponder signal and converts it to a 1 MHz bias frequency
containing approximately the full S-band doppler shift. The
RF processor generates the required injection frequencies, the
doppler multiplication, the desired 1.25 MHz coincidence clock
frequency and the self test injection frequency. A detailed
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design description of each of these functions is included in

the following paragraphs'.

6.2.1 75 MHz PHASE LOCKED OSCILLATOR

The 75 MHz first injection frequency is generated from the

5 MHz reference using a phase locked oscillator and divider

circuit. A block diagram of the 75 MHz phase locked oscillator

is shown in Figure 6-7 . The 5 MHz clock input is amplified by

Ql to obtain the TTL input requirement of the MC 4344L phase

detector. The Ql amplifier also served as isolation from other

5 MHz clock circuitry. In addition to a phase detector the

MC 4344L also includes a charge pump and an amplifier circuit.

The output of the MC4344L is fed to the varactor tuned voltage
controlled oscillator (VCO) which is nominally tuned to 75 MHz.
Two stages of amplification and a seven pole 75 MHz low pass
filter follow the VCO output. The output of the 75 MHz filter
provides + 10 dBm at 50 ohms as an injection frequency to be
mixed with the 76.083 MHz from the transponder. Spurious out-
puts and harmonic related signals at the 75 MHz port are greater
than 60 dB below the output level. The output of the first
amplifier following the VCO is an emitter follower which
supplies drive to the -j- N circuitry associated with the
phase locked loop. A divide by 5 (SP622B) and divide by 3
(S54H76J) counter are cascaded to provide the proper division
in the. N circuitry. A level translator Q3 is used to
obtain the TTL input requirement of the divide by 3 counter.

Figure 6-8is a detailed schematic of the 75 MHz/1.0714 MHz
phase locked oscillator. The 1.0714 MHz output is used for
the self test function. The MC4344L is used as a second order
low pass loop filter as shown in the diagram below.
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CHARGE A= 30 VCO

PUMP

75 MHz Loop Filter Design

The loop transfer function for a second order system is given by

G(s) H(S) = KpKoKnK

where

K = gain constant of phase detector in Volts/Rad.ian

(.1V/radian for MC 4344L)

Ko K /s = gain constant of the VCO in radian/sec/volt

Measured as 1.4287X106 radian/sec/volt

K = Counter divide ratio = 1 = 5

(5)(3) 15

Kf = Amplifier/Filter Gain

The Kf design is based on a maximum lock up time of 1.5 msec and

a maximum overshoot of 15%. The amplifier in the MC 4344L has

a gain of 30.

For a second order system with a dampening ratio of 1, a peak

overshoot of less than 15% and settling to within 5% will occur

at Wnt= 4.5.

Wn = nt = 4.5 = 3 (103) rad/sec

t 1.5 msec
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where Wn  = loop bandwidth of the system

k k = (.1)(1.4287)(106) 1.05 (10- 3 )
Rt C= P v 2

WR2N [3(103 (15)

With R1 = 1 k JL-

C1  1 ,f

R2 -

C. W (10(3)(103)

,* Kf A (R2 C1 S+1)

C1 (R1+R2 - A Rl ) S+1

Kf = 30 1470

5 +] N

35.,31

The loop transfer function is

G(s) H(s) KpKo K K

[.43 ( 1 06]_ S= (.1) " 1 30S - j5 _j 1470 +1

S +1

35.31

'. Gain = 109.13 dB

1

S = - 20 dB/Decade @ W=1

S -20 dB/ Decade' @ W=35.31

+135.3i

S

1470 + 1 = 20 dB/Decade @ W=1470
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6.2.2 25 MHz PHASE LOCKED OSCILLATOR

A block diagram of the 25 MHz phase locked oscillator is shown
in Figure 6-9. The block diagram and associated circuitry
are similar to the 75 MHz phase locked oscillator with the
exception of the -•- N circuitry which simply becomes a divide
by 5 counter.

The output of the 25 MHz low pass filter provides +10 dBm into
50 ohms to be used as the injection signal when mixed with

the output of the Doppler multiplier circuit.

A detailed schematic of the 25 MHz phase locked oscillator is
shown in Figure 6-10. The loop transfer function is

G(s) H(s) = K K K K
P o n f

= (.1) 5.049 (106) 1 30 S 255
S 5 12255

S +1
219

The loop bandwidth is designed for W n 4000n

* Gain = 129.63 dB

1

S =  -20 dB/Decade @ W = I

-20 dB/Decade @ W=219
S

- +1
219

S

12255 + 1 = +20 dB/Decade @ W = 12255

6.2.3 DOPPLER MULTIPLIER PHASE LOCKED OSCILLATOR

The 76.083 MHz signal from the Transponder is mixed with 75 MHz
from the phase locked oscillator and produces 1.083 MHz input
signal to the Doppler multiplier phase locked oscillator. The
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1.083 MHz signal plus associated doppler frequency is then

filtered and multiplied by 24 in the phase locked oscillator

to produce a 26.0 MHz signal + 24 times the doppler frequency

present at the transponder 76.083 MHz port.

The emitter follower output of the doppler multiplier is fed

to both a 5 pole 26 MHz low pass filter and the - 24 circuit

of the loop. The divide by 24 circuit consists of a --- 4

counter (MC 1232L) 3 counter (S54H76J), and a - 2

counter (S8291A) cascaded to produce the proper division.

Q6 translates the ECL output level of the - 4 to the TTL

input level of the - 3 counter.

The output of the 26 MHz low pass filter provides 0 dBM at

50 ohms to be mixed with the 25 MHz phase locked oscillator to

produce the 1.0 MHz bias plus doppler signal. This 1 MHz bias

plus doppler frequency is filtered, amplified and again filtered

to produce a 1.0 volt peak signal to the digital extractor

circuit. A block diagram of the doppler multiplier is shown

in Figure 6-11.

A detailed schematic is shown in Figure 6-12. The bandwidth of

the Doppler Multiplier is 4 kHz. The transfer function is:

G(s) H(s) = K po K n K S

G(s) H(S) = .1 [5.52(106) 1 25615 I 24J 2

Gain = 116.77 dB

I/s = - 20 dB/Decade @ W=l

S = -20 dB/Decade @ W=1024
+1

1024
.S 

+ I = +20 dB/Decade @ W=12561
1 2561
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6.2.4 SELF TEST SIGNAL

The self test frequency of 1.0714 MHz is generated in the 75 MHz

phase locked oscillator circuit of Figure 6-8. In the self test

mode, the 75 MHz divide by 5 counter, in addition to feeding the

divide by 3 counter, also feeds a divide by 14 counter. The

divide by 14 circuit is not part of the 'N circuitry of the

loop and does not affect the 75 MHz phase locked operation.

The divide by 14 counter is activated by switching "ON" the

5 volts to the counter during self test operation. The 75 MHz

signal, divided by 70 (or 1.0714 MHz), is then fed to the doppler

multiplier input. Relay KI in the doppler multiplier switches

the input from the 1.083 MHz mixer output to the 1.0714 MHz self

test frequency. The self test frequency is multiplied by 24 in

the doppler multiplier producing a 25.714 MHz. This signal when

mixed with the 25 MHz injection frequency, produces a 0.714 MHz

bias plus doppler frequency input to the digital processor. The

digital processor counts the self test frequency and makes a

go-no go decision based on the.computed equivalent doppler shift.

6.3 DIGITAL PROCESSOR

The digital processor accepts the 1 MHz plus doppler (FB + FD)
signal from the RF processor and detects zero crossing coinci-

dences between this signal and a clock reference frequency (Fo).

The digital processor also includes the frequency counters,
interval timing logic, micro-pro'cessor and computer interface

logic necessary to supply the doppler and time counts to the

UNIVAC 1218 computer. The micro-processor also computes naviga-

tional parameters for the extractor display. Figure 6-13 is a

simplified block diagram of the digital extractor logic. A
clock generator accepts the 5 MHz standard signal and generates
clock frequencies required for operation of the digital logic.

A coincidence detector produces an output whenever zero-crossing
coincidence of the RF processor signal (FB+D) and the clock
signal (F O ) occurs. An interval timer counts the 1.25 MHz (F o )
pulses to produce accurate interval markers. When an interval
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marker is generated, a strobe pulse will be produced synchronous

with the next coincidence pulse. This strobe is used to load the

contents of the FB+D and F0 counters into latches and initiates

the data transfer sequencers within the extractor.

Since the strobe is synchronized to the zero-crossings of the

FB+D and F0 signals, the counters will always count an integral

number of cycles of the two signals. In this way quantization

error in the counts is reduced to the resolution of the coinci-

dence detector. Separate binary'and BCD counters produce data

in the forms useful to the 1218 computer and to the display

microprocessor.

Interval skewing (deviation of the actual measurement periods

from their nominal positions) is principally caused by the de-

lay between the interval marker and the following coincidence

pulse. The intervals (or integration periods') will be slightly

longer or shorter than nominal as a result of interval skew.

Since the interval markers are independent of the coincidence

pulses, however, the interval skew does not accumulate.

The interval timer will also generate readout strobes upon receipt

of anytime readout (ARO) commands from the mode control logic.

In this mode of operation the integration periods are established

either by the operator or by the 1218 computer.

The extractor operates in several modes. Integration pertiods of

0.5, 1, 2, 10, 60 or 600-seconds may be selected. Integration

periods may be contolled externally, using the ARO mode. Readout

from the FB+D and F0 counters may be destructive (DRO) wherein

the counters are reset.following each readout, or non-destructive

(NDRO) wherein the counters are not disturbed by the readout

strobe. .The extractor can perform a single measurement and then

stop (SINGLE COUNT), or it can produce continuous periodic out-

put (CONTINUOUS COUNT). Several options are available when using

the front panel display. Internal self-test of the extractor

6-24



circuits may be performed. The mode control logic provides the

necessary internal control signals to implement the selected

modes. (A complete description of extractor modes of operation

is given in Section 7.)

The status of the mode control logic is displayed on the extrac-

tor front panel using LED indicators.

Computer interface logic receives binary data from the counter/

latches and provides the formatting, level-shifting, and hand-

shaking necessary to transfer this data to the 1218 computer.

A special-purpose microprocessor receives BCD data from the

counter/latches and calculates key navigation parameters from

this data. The microprocessor calculations are displayed on a

front panel digital readout.

The digital logic uses a mixture of ECL, TTL, MOS, and CMOS

integrated circuit components to achieve a balance between per-
formance and total power dissipation. The 233 integrated
circuits used in the digital logic are packaged on fifteen
circuit boards. "Fourteen of the boards are located in the-

digital nest, and may be unplugged for servicing. A card extrac-
tor is provided with the unit to permit probing of working
circuits.. By mixing technologies, high-speed performance is
provided only where essential. The bulk of the logic is low-

power CMOS. The CMOS logic provides excellent noise immunity,
enhancing the reliability of the digital circuitry.

The design philosophy for the breadboard was to implement the
desired functions with a minimum of development effort, con-
sistent with reasonable design practice. Circuits within the
breadboard, while functional, may not always, therefore, be
optimal. With this caveat in mind, the breadboard circuts will
now be described in detail.

/
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6.3.1 DIGITAL CIRCUITS

Complete layout drawings for the fifteen digital logic boards

are presented in Figures 6-21 through 6-26. The schematics

for these boards are shown in Figures 6-30 through 6-41. These

figures are grouped together at the end of this section for easy

reference. Interconnection of the boards is detailed in

Figure 6-27 while details of the front panel wiring are shown

in Figure 6-28.

Every attempt was made to partition the digital logic so that

each board is a functional module. While this is generally true,

some functions do, nonetheless,' overlap onto several boards. The

circuits are described on a functional basis. The following

notation is used:

When a particular input or output pin is referred to, the

format kXp will represent board k, package position X, and

pin p. For example, 8G11 identifies pin 11 of package G on

board 8 (the serial input of a CD4021 shift register in

this case).,

When a package contains a single logic element, it will be

identified as kX, where k is the board number and X is the

package position. For example, 8G will identify the CD4021

shift register in position G of board 8.

When a package contains more than one logic element (such

as quad gates or dual flip-flops), the particular element

will be identified as kXp, where k is the board number, X

is the package position, and p is an output pin of the

particular element. For example, 1OL13 identified a flip-
flop on board 10, while 10L2 identifies the other flip-flop
in position L of board 10.

6.3.1.1 Coincidence Detector

The coincidence detector circuits are located on card number 1.

A layout is shown in Figure 6- 21 and the schematic is shown in

Figure 6-30. The coincidence detector will p.roduce an output
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pulse whenever the zero-crossings of the FB+D and F0 signals

coincide within a preset tolerance, or coincidence aperture.

High-speed comparators 1A and 1D accurately determine zero-cross-

ings of the two input signals. The comparators produce ECL outputs

which drive delay lines IB and LC, and gates lE2 and 1E15. This

combination results in precision one-shots, whose output pulse

width is primarily a function of the lB and IC delay settings.

Tapped delay lines are used to provide adjustable pulse width,

high absolute accuracy (within 5%), and good stability (60ppm/
OC). Pulse widths from 4 to 100 nanoseconds in 2-nanosecond

increments are available by proper selection of delay line and

tap. The coincidence aperture is the sum of the two delay line

settings.

If the input .zero-crossings coincide within the coincidence

aperture, 1E2 and 1E15 will be low simultaneously, producing a

positive pulse at 1G3. The one-shot pulses are ANDed in this

way, establishing coincidence. 1614 and 1615 form a 1-micro-

second one-shot, stretching the-narrow coincidence pulses into

pulses wide enough to operate the CMOS interval timing logic.

Level shifters 1H and 1F convert the ECL coincidence detector

levels to 12-volt CMOS levels for use by the remaining digital

logic. The NB+D and NO signals are buffered by drivers 2Q and

2R and operate the counters on boards 4 through 8.

ECL-III logic and stripline circuit interconnection techniques

are used to provide maximum commercially-available speed while

maintaining waveform integrity. The use of 1-nanosecond logic

insures that the coincidence aperture depends only on the delay

lines (assuming the delay line settings are significantly

greater than 1-nanosecond), and provides maximum resolution in

the coincidence detector. Since the accuracy of the zero-

crossing coincidence technique depends primarily on the accuracy

of the coincidence detector, this approach results in breadboard

performance closely approaching the theoretical limit of the

technique. Performance may be hardware-limited as
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the aperture is reduced to values much less than 20-nanoseconds.

Three test-points, TPA, TPB and TPC enable monitoring of the

precision ECL one-shot outputs and of the ECL coincidence pulses.

Figure 6-14 shows a timing diagram for the coincidence detector

circuits.

6.3.1.2 Clock Reference Generator

The clock reference generator is located on card number 10 shown

in Figure 6-24. A schematic is shown in Figure 6-36. The clock

reference generator accepts the '5 MHz standard signal and gener-

ates clock signals for use by the digital logic circuits. A

20-dB attenuator at the digital ne:st '5 MHz' input connector

provides isolation between the (sensitive) RF processor circuits

and the (noisy) digital circuits. This pad is shown in Figure

6-27. Comparator 1OS squares up the resulting low-level sinu'soid,

which is then amplified by 10T15 (operating as a "linear." ampli-

fier) and further shaped by 10T12. High-speeddivider 10OU derives

a 1.25 MHz reference clock and a 156-kHz display clock from this

signal. The display clock is buffered by 1OT4.

The breadboard design provides for the use of either the internal

1.25 MHz signal at 10OU1 or an external 12-volt signal as the F0
reference signal. The external signal is squared up by 10M6.

The circuit at 10G6 detects the presence of the external signal

as follows: With no signal present, 10M6 will be clamped high

by the, 620-ohm resistor. O1G6 will rise to a high level as the

300-picofarad capacitor-is charged through the 47 K resistor.

This enables gate 10G4, allowing the internal 1.25 MHz signal to

operate gate 10G10. With a square-wave signal present at the

external FO input, the 300-picofarad capacitor will be discharged

through the diode as 10M6 goes low. The time constant is such

that an external F0 signal on the.order of 1-MHz will readily

keep 10G6 at a low level, disabling the internal 1.25 MHz refer-

ence. Gate 1OGlO is then operated directly by 10M6. In this

way the presence of the external reference is detected and swich-

ing of the F0 input is accomplished. Buffer 10T6 dri'ves the

resistor network which provides a 50-ohm F0 signal for use by
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the coincidence detector.

Inverters 10OB2 and 1OB12 form an 800-kHz multivibrator. The 800-

kHz signal is divided by flip-flop 1OH13 and buffered by 1OT2 to

provide a 400-kHz clock for the microprocessor. The microproces-

sor clock is generated in this way because the 311-kHz signal at

10U6 is too slow to enable the navigation parameter calculations

to be completed in 2-seconds. The significance of this will be

apparent when the microprocessor is described.

The internal 1.25 MHz signal is buffered by O1T10 and 1ON2 to

provide a "system" clock for the digital logic.

6.3.1.3 Interval Timer

The interval timer is located on board number 2 shown in Figure

6-21. A schematic is shown in Figure 6-31. The interval timer

logic produces a STROBE pulse, which marks the start and stop

of a measurement interval (or successive intervals in the

CONTINUOUS COUNT mode). This strobe must be synchronized to the

zero-crossing coincidence of the FB+D and FO signals, and is
initiated either by an internal marker generator or by external
ARO readout commands. A COUNTER RESET pulse is also generated

by the interval timer to reset the FB+ D and F0 counters fol-
lowing readout in DRO operation.

The 1.25 MHz system clock is counted down by counters 2E , 2F,
and associated logic to produce a 4 Hertz clock. Counter

20 will divide this 4-Hz signal by the appropriate 'N' to produce
markers at the interval spacing indicated by the ABC interval

select leads. The markers appear as an inverted interval strobe
(S) at 2J4. The CLR TIMER lead clears the marker generator,
permitting the markers to be synchronized by commands from the
mode control logic. This lead also disables the markers, and
is used to stop the doppler measurements when in the SINGLE
COUNT mode.

The use of CMOS ripple counters for the marker generator results
in a 10-microsecond worst-case delay from the. INTERVAL START
command to the output of the first marker. This delay contri-
butes to the overall measurement delay of the extractor.
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Gate 2N4 provides a marker at the start of a measurement, so that

start-of-measurement data transfer can occur. The interval mark-

ers set the STROBE REQ flip-flop 2113 when not in the ARO mode.

Flip-flop 2113 is set by the ARO STROBE REQ signal (produced by

the mode control logic) in the ARO mode. 1ihen a strobe request

has been given, the first COINCIDENCE pulse thereafter will set

the STR ENABLE flip-flop 211. Gate 2K10 will then generate the

STROBE pulse, synchronous with the NO clock. The strobe is buf-

fered by 2NI0 and drivers 2S and 2Q15. The strobe initiates counter

readout and data transfer operations.

The strobe will set flip-flops 2HI and 2G15. 2H1 will reset 211

and 2113, ensuring that only one strobe results from each strobe

request. In the DRO mode, gate 2K4 permits output 2H1 to produce

a counter reset pulse. 2HI is reset on the next NO transition,

resulting in a reset pulse widt.h of 400-nanoseconds. 2G15 pro-

duces a 10-microsecond PSEUDO RESET pulse which is used to clear

a counter in the mode control logic.

The timing of the strobe and reset pulses (Figure 6-15) is.quite

critical. High-'speed CM1OS and CMOS/SOS components are used to

reduce propagation delay effects. The strobe pulse is produced

400-nanoseconds after- the final increment of the NB+D and NB+D 0
counters, but before readout. The reset pulse immediately follows

the strobe in DRO operation. (The counters will "skip" the

next count transition due to the reset-pulse. They are therefore

reset to a count of 1.) Any skewing of the strobe and reset

pulses from the positions shown in Figure 6-15 will result in

erratic operation of the counters. The output buffer circuits

for the strobe, counter reset, NO, and NB+D circuits were matched

to reduce pulse skew. Maximum pulse skew for the breadboard was

measured as 40 nanoseconds. This skew permits the CMOS counters

to operate reliably up to 1.5 MHz.

The strobe and reset pulses are based on the F0 signal only.

These signals are used to control both the No.and NB+D counters.

The NB+D readout command skew will be tolerable as long as

2< FB+D < 2
3 F0
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This limits the range of external F0 frequencies for proper

operation of the extractor. The lower bound is established by

excessive skew of the reset pulse, while the upper bound is

established by the strobe. Both FB+D and F0 must be kept below

1.5-MHz for proper operation of the readout sequence. (Observe

that the 714.3-kHz self-test signal from the RF preconditioner

i.s below the lower limit. For this reason the self-test measure-

ment is NDRO to avoid possible trouble with the reset pulse skew.)

The STROBE and COINCIDENCE outputs are buffered and made available

at the rear chassis lip of the breadboard.

6.3.1.4 Counter/Latch Circuits

NB+D and No pulses are counted by CMOS synchronous counters.

Separate binary and BCD counters are provided for each signal

to relieve the display microprocessor of the binary-to-uCD con-

version otherwise necessary. This is in keeping with the design

philosophy, wherein extra packages are provided to reduce the

software development for the microprocessor. In a production

unit, the conversion would be more efficiently performed in

software.

The counters increment on the positive transition of the clock

inputs. The counters will reset to 1 when the CTR RESET lead is

high. The binary counters have a maximum capacity of 32 bits,

while the BCD counters have a capacity of 9 digits. This capac-

ity permits the counters to run more than 800-seconds before over-

flow (recycle through-zero) occurs. The counters are found on boards

4 through 8, shown ih the layout drawings of Figures 6-22 and

6-23. The schematic of the counters is shown in Figures 6-33

and 6-34. The counter arrangement is best seen in Figure 6-27.

LED readouts are provided on the counter boards to indicate

proper operation of the binary counters. Operation of the BCD

counters is indicated on the front panel digital display. The

binary LEDs do not operate through latches. To enable the

operator to interpret the readout, therefore, counter 8E controls

the start and stop operation of the counters when the RUN/HOLD

switch on board 8 is in the HOLD position. When this switch is
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operated, 8E will ENABLE the counters for a single measurement

interval (two successive strobes) and then DISABLE the counters.

When in the SINGLE COUNT mode and using NDRO, the results of the

BCD count will appear on the front panel display, while the binary

results are available on the LED indicators.

The counter results are loaded into the CD4021 parallel-to-serial

registers on the positive transition of the strobe. Due to the

timing of the strobe pulse, the counters have approximately 400

nanoseconds to "settle" before the readout takes place. The

registers are arranged in serial'strings, one for each counter.

Data are outputted in serial form, MSB first, upon clocking of

the registers by the appropriate shift pulses. SHIFT 1 controls

the BCD data, while SHIFT 2 controls the binary data. The shift

bursts are generated in the microprocessor and computer interface

logic, respectively. The data streams are concatenated, so that

two successive shift bursts will output the NO count, followed by

the NB+Dcount,on a single lead.

Extractor flag bits, used to indicate extractor status to the 1218

computer, are inserted into the MSB positions of the binary data

stream via register 8C and gate 8B4. Register 8A inserts zeroes

into the binary stream to avoid conflicts with the flag bits.

LEDs L1 throguh L4 on board 8 indicate the status of the flag

bits.

6.3.1.5 Mode Control Logic

The mode control logic is located on board 3 shown in the layout

drawing of Figure 6-22. A schematic is shown in Figure 6-32.

The mode control logic receives extractor commands either from

the 1218 computer or from an operator via the front panel push-

buttons. The mode control logic interprets these commands and

generates the internal control signals necessary to implement

the commands. This logic was desig.ned to be as "fail-safe" as

possible, in that contradictory instructions (generated by

pressing the wrong pushbutton, for example) are generally

resolved in a known way.
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Figure 6-28 shows the front panel wiring. Manual control instruc-

tions are produced by pressing pushbuttons on the .front panel..

The MODE, READOUT, and INTERVAL CONTROL .instructions proceed

directly to board 3, while the INTEGRATION PERIOD command is first

encoded into the ABC format used by the interval timer. This en-

coding is accomplished by 151, and helps reduce the number of

leads into the crowded POWER/CONTROL connector. The ABC code

is given on the diagram for board 2.

Control of the unit is accomplished using eight leads. The ABC

leads determine the integration period. The COUNT lead indicates

the continuous count mode when high, and single count operation

when low. The ARO command is generated by a momentary-contact

pushbotton and is de-bounced by 3Q9. anytime readout is per-

formed following the positive transition of this lead, and the

unit becomes locked in the ARO mode (markers from the interval

timer do not produce strobes) until the unit is reset using the

interval start command. The unit is in the self-test mode when

the TEST lead is high. A high .on the DRO/NDRO lead indicates

destructive readout, while a low on this lead indicates non-

destructive readout. The INTERVAL START command is generated by

a momentary-contact pushbutton, and is de-bounced by 3Q1. A

negative transition on this lead will initialize the extractor,

resetting all counters and producing a MASTER RESET pulse.

Interlocking push-buttons on the front panel enhance the fail-

safe operation of the unit. Commands in contradiction to the

current mode of operation are ignored (overridden) by' the mode

control logic.

The eight command leads produced by the front panel pushbuttons

correspond directly to an eight-bit code used by the 1218 com-

puter to control the unit. The computer command code is stored

in latches 3T and 3U.

Depending on the status of the CONTROL lead, either the push-

button commands are selected (when this lead is low) or the com-

puter command word is selected (when this lead is high) by

.multiplexers 3S and 3M.

The integration period and readout mode are established by the
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contents of 3R. This latch is updated upon receipt of a strobe,

permitting the integration period and readout mode to change only

at the end of a measurement interval. In this way the measure-

ments are made self-completing. When self-test is selected, the

unit is forced into a 2-second, NDRO readout mode by resetting

3R and activating gate 3D4.

The positive transition of the 1218 computer EXTERNAL FUNCTION

lead is used to update latches 3T and 3U, and to simulate the

momentary-contact action of the front panel INTERVAL CONTROL push-

buttons when under computer control. The external function signal

is delayed a few microseconds to permit the latches to receive the

concurrent command word, and then produces a negative transition

at 3D10. If the interval start bit is up (3M13) a positive transi-

tion will be produced at 3011, firing one-shot 3N1. If the ARO

bit is up (3MlO), a positive transition will result at 3B4, setting

strobe request flip-flop 2113 (which in turn produces a readout

strobe).

In the manual control mode, the transition caused by pressing

one of the interval control pushbuttons propagates through" to

3B4 or 3D1.

Counter 3F and the interval timer combine to perform two basic

extractor functions. Normally, counter 3F will produce the

single count operation by ac'tivating the CLR TIMER lead upon

receipt of two successive IS pulses from the interval timer.

This will terminate the generation of interval markers (and thus

strobes). The counter is initialized by the master reset pulse

(via 3A10) to produce a new measurement when the INTERVAL START

command is given. The single count operation depends on gate

3A9, which will inhibit the clear timer pulses if in the ARO

mode or if in the continuous count mode.

In the ARO mode, the interval timer is used to determine when

the duration between ARO commands exceeds the setting of the

timer. Two successive IS pulses into 3F indicates that the

present maximum duration has been exceeded, and an OVERFLOW

indication is given via 3Ell and 3E2. The overflow indication

is haritless, and merely lights a lamp and produces a flag bit
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at the computer interface to indicate that something has gone amiss.

When an ARO command is given, the PSEUDO RESET pulse is produced.

In the ARO mode, gate 3E4 permits this pulse to reset the interval

timer via 3A6 and to reset counter 3F via gate 3A10. This resets

the overflow indication and starts a new overflow count. Since

the pseudo reset pulse occurs after the strobe, the overflow flag

is loaded into register 8C for transfer to the computer before

the flag is taken down.

Once an ARO command is given, the unit is locked into the ARO

mode by setting flip-flop 3Q10. This flip-flop is reset by the

master reset pulse (produced by the INTERVAL START command).

The SELF-TEST command forces the unit into a 2-second, NDRO read-

out mode, as described earlier. Gate 3E1O forces the unit into

SINGLE COUNT operation, while gate 
303 inhibits any erroneous ARO

commands. The self-test command is buffered by 16G12 and 11G15,

and operates the self-test relays in the RF processor (which

cause the generation of the precise test signal) via driver

transistor 11H.

Flip-flops 3J and 3K form the self-test sequencer. 
One-shot 3K13

is triggered by the self-test command. A 1.4-second period is used

to provide a lamp test (via 3C10, 14AA3, and 3B3) while the RF

processor PLLs are allowed to stabilize. A MASTER RESET

signal is generated via 3B11 to initialize the unit (the master-

reset is also produced by one-shot 3N1 when an interval start

command is given).

When 3K13 times out, the unit performs a single 2-second 
NDRO

count of the test signal. Upon completion of the measurement,

.3F12 will go high, triggering one-shot 31Jl. After 3.5 seconds

elapse (permitting the microprocessor 
to complete its calcula-

tions) 3J1 times out, setting 3J13 and 3K2. Flip-flop 3K2

enables the pass-fail result via gates 10P3 and 10OP4. The

appropriate pass or fail lamp is lit, and the pass-fail bit is

jammed .i-nto the computer output data word via 9A13. Flip-flop

3313 raises the EXTERNAL INTERRUPT lead to alert the 1218 com-

puter that the pass-fail result is available at the interface.

3313 is reset by an INPUT ACKNOWLEDGE from the computer
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(adhering to the 1218 handshaking format), while 3K2 resets when

the unit is taken out of the self-test mode.

6.3.1.6 Status Indicators

The status of the extractor mode control logic is indicated by

seventeen multicolored LEDs on the front panel.

The mode status bits are loaded into registers 3P and 3V. The ABC

integration period code is decoded by 3W to operate the integration

period indicators. Gate 3D3 forces a continuous count indication

when in the self-test mode. The other status leads are available

on board 3.

A logic 1 in the 3P and 3V registers will light a corresponding

lamp on the extractor front panel. Gate 3B3 forces all indicators

to light during the lamp test portion of the self-test sequence.

Counter 3G and flip-flops 3H13 and 3N9 produce 16-cycle bursts

of the NO clock (via 3B10 and following buffers) to transfer the

status information to registers 15B and 15J. During this data

transfer the indicators are blanked by taking down the PANEL

DISPLAY ENABLE lead. At the completion of the transfer, one-

shot 3H1 is fired to energize the indicators.

The serial data transfer is necessary due to pin limitations on

board 3. The transfer sequence provides a l-kHz display update

rate, with an indicator duty cycle of 98.7%. The resistor-diode

networks at pins 28, 29, 40 and 42 of board 3 provide TTL-com-

patible.output levels (the board 3 logic operates at 12-volts).

Drivers 15A, 15C, 15E, 15L, 15K, 15G and 15H (Figure 6-41)

energize the LED indicators by sinking the LED current. The

position of switch SlA is used (see Figure 6-28)by gates 15D

to determine whether the red or green segments of the multi-

colored diodes should be lit. The color is changed by re

versing the current flow through the diodes. Green is used to

indicate computer-controlled operation.

The red portions of D2 , D3 , and D4 are energized directly when

the corresponding button of S1 is pressed. The green portio'ns

of these diodes are energized via the board 15 drivers. D1 is

energized directly by S1A.
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6.3.1.7 Computer Interface

The computer interface circuits are located on boards numbered

9 and 10 shown in Figures 6-23 and 6-24. Schematics of these

boards are shown in Figures 6-35 and 6-36. The computer inter-

face logic performs the data formatting, level-shifting, and

handshaking required to interface with a 1218 computer port.

Figure 6-16 shows the timing of the interface leads. A strobe

indicates that new data are available in 'the .extractor registers

(boards 4-8), and initiates a burst of 1.25 MHz clock to shift

the first word into the serial-to-parallel registers on board 9.

Once'the data is loaded (and stable), the INPUT DATA REQUEST

lead is raised. The computer responds with an INPUT ACKNOWLEDGE,

which initiates another SHIFT 2 burst to load the second word.

The exchange continues until four 18-bit words are sent to the

computer, completing the sequence.

If the extractor is performing a self-test, the EXTERNAL INTER-

RUPT lead will be raised after 3.5-seconds to alert the computer

that the pass-fail flag bit is available. The computer responds

with another INPUT ACKNOWLEDGE, completing the sequence.

The EXTERNAL FUNCTION lead must be toggled to access new com-

mands from the 1218 computer. During data transfer from the

extractor to the computer, this lead is taken down, preventing

a command from being given. The positive transition of the

EXTERNAL FUNCTION REQUEST lead following the transfer allows

the computer to transmit a new command to the extractor. The

EXTERNAL FUNCTION lead is raised by the computer to indicate

that a new command is present on the data lines.

.The timing of Figure 6-16 meets the requirements specified in

the 1218 computer technical manual. Risetimes and falltimes are

approximately 5-microseconds on all extractor-generated leads.

Counters and flip-flops 10OL, 10K, 10J, IOC, 10D, and associated

gates (card layout Figure 6-24) form a high-speed synchronous

burst generator, producing the SHIFT 2 bursts. Operation of

this burst generator is illustrated by the state diagram of

Figure 6-17. Flip-flop 10L13 is set while the data transfer

-sequence is in progress. Shift pulses are enabled when 10L2 is
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low. 1OCI will become a high when an 18-pulse burst has been

completed. 1OCI provides the INPUT DATA REQUEST signal, while

10L12 is used to produce the EXTERNAL FUNCTION REQUEST signal.

The SHIFT 2 bursts transfer data from the binary data registers

on boards 4 through 8 into registers 9A, 9B and 9C. The 18-bit

parallel data are then transferred to the computer. Self-test

results are inserted in the data word via 9A8 or 9A10.

Level shifters/line drivers are provided on the extractor output

leads. As shown in Detail A for board 9, a zener diode and resis-

tor shifts the 0-12 volt CMOS levels to (-15)-0 volt 1218 com-

puter levels. The CD4050 buffers drive R-C networks (which limit

the rise and fall times) and emitter followers. The emitter

followers drive the computer input cable.

Detail B shows the line receiver circuit. Incoming computer

levels are shifted to CMOS levels by the zener diodes and

resistors. R-C networks filter high-frequency noise which may

be present on the line. A CD4050 functions as buffers. -Positive

feedback, via the 180 K resistors provies 2.5 volts of hysteresis,

improving the noise immunity of the line receivers. The line

receivers are located on boards 9 and 10.

Table 6-3 details the wiring of the computer interface connec-

tions.

A computer interface test unit was shipped with the extractor

to provide rapid verification of the interface logic when a

1218 tomputer is not available. The front panel layout of this

unit is shown in Figure 6-18. The test unit plugs into the

computer connectors at the rear of the extractor and is powered

from the extractor. Use of the test unit is discussed in the

section "Breadboard Operation."

6.3.1.8 Microprocessor Hardware

The microprocessor circuits perform calculations on the BCD

counter data to provide direct display of doppler frequency

(FD), range rate (R), change in range (L R), self-test error,
and coincidence delay. The following paragraphs destribe the

hardware implementation of the microprocessor. The microprocessor
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algorithms are discussed later under microprocessor software.

New and powerful microprocessor chip sets were appearing on the

market during the design period of the extractor. These general-

purpose chips were relatively expensive, difficult to program,

and difficult to interface. The Texas Instruments TMS-0117

calculator chip provided the computational capability required

for the extractor display, while at the same time being easy to

program, easy to interface, readily available, a nd very low cost.

With the design philosophy to mind, the TMS-0117 was selected as

the central processing element in a special-purpose micro-

processor arrangement.

Figure 6-19 shows the microprocessor and display approach. The

TMS-0117 functions as a central processing unit. A random-access

memory (RAM) provides storage of intermediate and final calculation

results. A programmable read-only memory (PROM) holds a series

of instructions referred to as a microsequence or microprogram.

The microsequence is the detailed set of data transfers and in-

structions required to compute the navigation parameters for

display. The microsequence timing logic generates clock bursts

used to operate the central processor, transfer data, and incre-

ment the microsequence memory. Input and output gating logic

provides the multiplexing and serial-parallel conversion

required to interface the TMS-0117 with the RAM, ROM, and

extractor data registers.

This microprocessor approach has a speed disadvantage. Compu-

tation time for the navigation parameters is on the order of

1.8 seconds. Holding a number in the output registers of the

TMS-0117 calculator chip would permit display of the output,

but would "tie up" this chip during the display period. For

this reason, the internal display scanning and blanking circuitry

of the TMS-0117 was not utilized, permitting the chip to be

used full time as a processor.

As shown in Figure 6-19, separate display timing, formatting

and zero-suppression circuits are provided. The display logic

shares the RAM with the microprocessor. In operation, the

display circuits select and access the multiplexed display data

by stepping through the appropriate block of RAM addresses.
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The microprocessor accesses the RAM on an interrupt basis,

"stealing" the address and data leads to read or write a data word.

The display is blanked during this interrupt. Upon completion of

the interrupt, the RAM address and data leads are switched back

to the display control circuits, where display scanning is resumed.

Due to the low duty cycle of the interrupt action, the display

appears undisturbed to the eye.

The RAM addressing is organized such that the microprocessor

accesses one portion of the memory while the display logic

accesses another. Intermediate calculations and new parameter

results are stored in one half of the memory. Previously calcu-

lated results are stored in the other half. The display logic

only accesses previous results, while both current and previous

results are used by the microprocessor.

A strobe from the interval timer initiates the microsequence.

Upon receipt of the strobe, the microprocessor will access the

BCD data from the extractor and calculate all navigation para-

meters, storing the results in the RAM. At the completion of the

microsequence, a bit of the RAM address will be inverted.. This

inversion has the effect of interchanging the new and old data

within the RAM, so that the just-completed calculations appear on

the display, while the other half of the memory becomes available

for the next set of calculations.

This approach provides a sample-and-hold type of display, and

permits viewing of previous calculations while new parameters

are being calculated. With integration periods under, 2-seconds,

the microprocessor will be constantly calculating, necessitating

the sample-and-hold display.

If the extractor is operating with integration periods under

2-seconds, the microsequence will not be completed before the next

strobe occurs. The current microsequence is aborted, allowing

the new sequence to begin. In this way the new data cannot be

lost, and will be available for display as long as the integration

period exceeds 0.5 seconds. The navigation parameters are

calculated in sequence, with FD, Rc0, R, test error, and
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coincidence delay progressively available as the integration period

is increased from 0.5 to 2-seconds.

Flag bits are provided in the PROM at the completion of each
parameter calculation. A counter in the microsequence timing logic

counts these flags to determine the status of the microsequence.
The output of this counter is used to determine the completion of

the sequence, causing the display to be updated. If the sequence

is aborted, the sequence status information is used by the display
control logic to blank the display of uncalculated parameters.

Digit-scan multiplexing is used to reduce the latch/decoder/driver
package count for the 12-digit readout. This multiplexing approach
is compatible with the digit-scanned input/output multiplexing of

the TMS-0117 data.

The microsequence is implemented whithout branching. Address

registers and logic normally provided for this function are not

required for this microprocessor.

The central processor and associated logic are contained on board
II. The layout for board II is shown in Figure 6-24. A schematic

is shown in Figure 6-37. This processor operates in four-modes:

Mode 1 - Instructions or data are read directly from

the PROM into the TSM-0117 processor chip.

Mode 2 - Data are transferred from the extractor shift
registers to the processor chip.

Mode 3 - Data are read from the RAM and transferred
into the processor chip.

Mode 4 - Data in the processor chip output register

are written into the RAM.

The data transfer is one digit per Mode 1 instruction, and one
blo.ck of digits, or word, per Mode 2, 3 or 4 instruction. The
basic data word consists of a sign and ten significant digits, for
a total of eleven digit positions. The extractor data does not
carry a sign bit. A Mode 2 transfer therefore consists of 10
digits from the extractor registers. The most significant digit
(MSD or sign) is made zero by 81 and 8G.
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The TMS-0117 NO-OP Code (control bit followed by 1111) is used

to indicate a positive number, while negative numbers are pre-

ceded by the TMS-0117 SUBTRACT code (control bit followed by

0110). The processor chip interprets these codes as a sign bit

when properly used in the microsequence. Decoding is provided

in the display logic to detect the minus sign code.

The interfaces and operation codes for the TMS-0117 are de-

scribed in Appendix C. Processor 11J operates with + 7.6

volt supplies, provided by series regulators 11T and 11I,

Buffers 11Q convert 0- to 12-volt CMOS logic levels to the

+ 7.6 volt levels for the processor chip. Networks, each

consisting of 3.9K resistor, a 5.1 volt zener diode, and a

47K resistor, restore the 11J output signals to CMOS levels.

The input/output format and timing for 11J are described in

Appendix C. Input words consist of a control bit followed by

a four-bit code. A zero in the control bit position indicates

the presence of a BCD digit, while a one in the control bit

position indicates a control operation, such as 'add,- subtract,

etc.

Chip 113 uses a bit-serial input format and a bit-parallel output

format. Register 11R provides parallel-to-serial conversion, so

that the processor input and output are both bit-parallel.

Parallel data are entered into 11R by raising 11R9 to a high.

Returning 11R9 to a low permits .the serial input clock to shift

the 11J input data out of 11R3. The serial input clock is

produced by wire-ORing digit scan leads available on 11J.

The 11J multiplexing scheme is described in the appendix. A

DIGIT CLOCK is used to indicate the center of the digit-scan

positions. 11 output data are valid on either transition of

the digit clock. Time slot Dll is used for access of the

sign bit and other flag bits.available at 113. D10 through Dl

indicate access (on output) to the ISD through LSD, respectively,

of the output register. The output digits appear in parallel

form on the SA, SB, SC, and SD leads, with the MSB of the BCD

.formatted digit appearing on the SA output.
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The input control bit, followed by the input word (MSB first)
are accessed during time slots D10, D7, D5, D3, and D1 respec-

tively. With the positive transition of each of these indicators,
a new bit.is shifted out of 11R. Since the TMS-0117 scans in

the order D11, DO1, D9,...D1, data are handled MSD and MSB-first.
This order of data flow is maintained throughout the micro-
processor and display circuits.

RAM 12K is organized as 1024 x 1 -bits. This organization implies

bit-serial transfer of RAM data. 11A provides the conversion

from the parallel format of llJ to the serial format required by

12K.

The bit-parallel interface provided by 11R permits the use
of an independent clock for serial data transfer into the micro-

processor. Register 121: converts serial extractor and RAM data
to parallel form using the external transfer (BURST) clock. The
PROM data are in parallel form, and do not pass through 121.

Table 6-1 shows the assignment of the RAM address leads. This
assignment minimizes the external logic required to generate the
RAM addresses, at the expense of unused bit positions within the
RAM. The MSD/MSB-first ordering of data is reflected in the
address assignments. The assignment of word blocks is the order
in which the navigation parameter calculations are made. The
N/O bit indicates the access of new or old (previously calculated)
data from the RAM.

Chip 11J provides four flag bits. These flag bits are active
during time D11, and indicate the status of the processor. The
SE output indicates that the processor is busy (data in the
output register are not valid) when it is high during Dll. SF
represents the sign of the output number, a high indicating a
negative number. SG will be high if the processor is latched
in an error condition. The SH flag can be used to provide
leading zero suppression of the output data. The leading zero
suppression function is provided by separate hardware in the
display control logic, and the SH output is not used.
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TABLE 6-1 RPM LOCATION ASSIGNMENTS

N/O WORD DIGIT BIT

A9 A8 A7 A6 A5 A4 A3 A2 Ai Ao

0 = Previous 0 0 0 = N 0 0 0 0 = Sign 0 0 = MSB
Value.

O 0 1 = N 0 0 0 1 = MSB 0 1
1 = New Value

0 1 0 = F 0 0 1 0 1 0

0 1 1= VR  0 0 1 1 1 1 1 1=LSB

1 0 0= R 0 1 0 0
1 0. 0 6z R

1 0 1 = Test 0 1 0 1
Error

o 1 1 0 = Spare

1 1 1 = Coinc 0 1 1 1
Delay 1 0 0 0

1 0 0 1 = LSB
Display

1 0 1 0 = LSB

1 0 1 1

1 1 0 0 NOT

1 1 0 1 USED

1 1 1 0

lll



Gate 11P11 provides a transition used to latch the pulse-type
flag outputs. The SE flag is latched by 1OH2, and SG is latched
by 11013. The SF flag is converted into a NO-OP or SUBTRACT code
by 11C4, and is inserted into the bit-parallel output data stream
by multiplexer 11B. The SF flag is also used on board 10.

The KO input lead of 11J provides a master reset for the chip, and
must be exercised to unlatch the processor from an error condition.
The KO lead is activated by the STROBE, clearing the processor at
the start of each sequence of calculations. Tile 400-nanosecond
strobe pulse from board 2 is stretched by one-shot l0Q1 to ensure
proper clearing of processor 11J. This stretched pulse is used
to reset the sequencers on boards 11, 12, and 13, re-initializing
the microsequence and display control logic with each new strobe.

The KP lead is used to indicate that data are being read into
11J via the KQ(input data) lead. KP is activated either by flip-
flop 11K9 (in Mode 1) or by 11K2 (in Modes 2or 3) when a new word
is strobed into register 11R. The 11K outputs are combined by
11P4. The 11J input is inhibited in iode 4.

Bit counter 11E, digit counter 11U, and associated gating form
an address counter/burst generator for the microprocessor. These
counters operate in Mode 2 to produce a series of 4-bit bursts
to shift a BCD word from the counter/latch boards into 11J via
register 121 and surrounding multiplexer logic. In Mode 3, these
counters increment the address of 12K to access a serial word
from memory, and provide the BURST pulses to shift this word,
one digit at a time, into 121. In Mode 4 the RAM address is again
incremented while the BURST pulses operate through 12D9 to
exercise 12K3, writing data bits into the RAM. The burst counters
are not used in Mode 1, since data are transferred in parallel in
this mode.

One-shots 1202 and 12012 produce a HICRO-INSTRUCTIOI. CLOCK which
increments microsequence counter 12G and triggers the board 11
burst generators when required.
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A special mode is provided with the TMS-0117 wherein data input

is accelerated by activating the KP lead for the duration of a

number entry. In this mode, input data are changed upon the

positive transition of the SR lead. The control logic surrounding

the burst generator and micro-instruction clock generator imple-
ments this special mode. It is interesting to note that, even

with the special mode of data entry, the time required to enter
data into the processor consumes 1.5 seconds out of the 1.8-second

total microsequence execution time.

Mode I. In this mode, data are transferred directly from
PROHs 12M, 12N into processor 11J. The data are in a parallel

format consisting of a control bit and a four-bit code. The data
are level shifted by 12U and 12L from the 5-volt PRO'l levels to

12-volt CMOS levels. The control bit pulses through 11S3 to

11R15. The four-bit code passes through multiplexer 12Q to the

11R parallel inputs.

The mode 1 instruction is accessed on the positive transition of

MICRO-INSTRUCTION CLOCK by advancing counter 12G.. The PROM

address is incremented, level shifted by buffers 12E and 12F, and

is applied to 12M, 12N to access the instruction. The MICRO-

INSTRUCTION CLOCK disables the bit counter 11E by setting flip-

flop 11D1 via 11S13. The digit counter will be disabled with

11U5 at a high level in Mode 1. Burst generation is therefore
inhibited in this mode.

One shots 120 are allowed to time out, permitting the PROM data
to stabilize. Gates 1IL10 and 11L4 will then become active,
permitting the next SF STROBE to read the.data into 11R and to
set flip-flop 11K9 via 11L3.

This action initiates a data entry into 113, with the data bits
shifted out of 11R.

With data entry in progress, a positive transition will occur on
the CHIP BUSY latch outpu.t 10H1. One-shot 1202 is fired,
producing a MIICRO-INSTRUCTION! CLOCK pulse, incrementing 12G.

If the newly-accessed instruction also calls for a Mode 1 operation,
llLlO will again permit the instruction to be loaded into 11R
via .the action of 11L3. Flip-flop 11K12 will remain set as long
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as Mode 1 instructions are received, permitting the Mode 1 data

to be rapidly entered into the processor. VWhen a Mode 2, 3 or

4 instruction is received, 11K12 will be reset and lIL10 disabled,

terminating the data entry.

Mode 2. This mode provides data entry into the processor

chip from the registers on boards 4 through 8. These registers

are concatenated, providing No followed by N B+ D with two

successive Mode 2 instructions. The data format is bit-serial

BCD, with 'MSD/MSB appearing first in the data stream. The MSD

of each number is made zero by OG .and 81. Nine additional. digits

are provided by the BCD counters. This provides ten digits of

data per count, compatible with the microprocessor data format.

While a bit-parallel format would have been preferred for the

counter data, the bit-serial format permitted the use of pre-

viously-built counter/latch boards in the extractor.

The BCD data stream appears at 813 and passes through 12T4,12T11

to 12115. A BURST of four pulsesloads a digit into 121, where

the parallel BCD data passes through 120 to register 11R.

The counter data represents numerical information. The control

bit is correspondingly a. zero, with 1lSl and 11S2 both high in

this mode.

Counters 11E and 11U are self-completing. Once triggered, these

counters will produce a complete burst sequence, and "hang up",
with gates 11S10 and 11C11 activating count inhibit leads li1E5

and l]U5. The burst generators are triggered by resetting 11E

and 11U.

In Mode2, counter 11U will initially be hung up at a count of 12

via IISIO. The MICRO-INSTRUCTION CLOCK will hold IlE at a

count of zero via 11S11 and l1Dl. The PROM instruction is allowed

to stabilize while one- shoot 120 times out.

When the MICRO-INSTRUCTION CLOCK goes low,.11N5, 11N13, and 11N4

will be low. The CHIP BUSY lead is monitored to ensure that the

processor is ready to accept new data. When. this lead goes low,

all inputs to 11Nl will be low, activating llU1. Digit counter

11U is preset to a.count of one due to the wiring of jam lead

11U4. 11010 will now go low, enabling the digit counter. The
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bit counter is enabled via 11CIl and 11015. Flip-flop 1101

is reset via 11P3, triggering a burst sequence. 
Observe that

llPlO and 11M10 are always 
low in Mode. 2.

Gates 11M3 and 11M4 form a set-reset flip-flop. M113 provides

a gate for the four-pulse bit-c-lock bursts. 11M3 is set low when

counter liE counts to four, providing guard time to avoid any

spikes in the burst. The 156-kHz clock is gated by 1ILl to

produce the BURST signal. The BURST is gated by 11V9 and allowed

to produce SHIFT I pulses in Mode 2. The SHIFT 1 pulses shift

four bits of data (one BCD digit) out of the counter/latch

registers. The BURST signal clocks these bits into register 121.

When bit counter 11E counts to eight, the burst is complete.

Gate 11CII will inhibit 11E, while 11M3 will go high. Gate IILIO

is low in Mode 2, so 11L4 will go low, permitting the SF STROBE

to clock the BCD digit into IIR and set flip-flop IIK2 via gate

11L3. As in Miode 1, this action initiates the TM S-Oi7 input

sequence, entering the digit into the processor. IIK2 will

remain low for the remainder of the burst sequence, providing

the special fast data entry operation of processor IlJ. The

positive transition on 11E2 increments counter 11U.

A positive transition on the CHIP BUSY lead will set 1101, which

in turn resets 11E. Gate IICII goes low, enabling counter 11E

and resetting 11D1 via 11P3. A new four-bit burst is generated.

In this way bursts are produced and digits are read into 11.

Data are updated with positive transitions of the CHIP BUSY 1

lead, in keeping with the special mode of data entry. When

lIU counts to eleven, 11V6 will go low, disabling SHIFT 1 pulses

via 11V9. Ten digits of valid data are shifted out of the

counter/latch registers.

Since the BURST is still enabled when 11V6 goes 
low, invalid data

will be shifted into 121. Completion of the final burst will jam

the invalid data into 11R. However, gate IISIO detects that

lLU has incremented to twelve, and that the burst sequence is

therefore complete. Flip-flop 11K2 is immediately reset, 
taking

down the 1li KP lead and causing the processor to ignore the

invalid data on the KG lead. Counter 11U is disabled via 11010,
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and 11E is inhibited via 11C0l and 11015.

The positive transition at 11010 fires one-shot 12012, accessing

the next micro-instruction.

Mode 3. This mode allows an eleven-digit word to be read

from the RAM into the processor. The address of the desired word

location is contained in the micro-instruction requesting the

transfer. The microprocessor timing logic must provide a series

of eleven four-bit bursts to access the bit-serial RAH data one

digit at a time. The bit and digit addresses 
within the desired

word block are provided by the microprocessor timing logic.

The MICRO-INSTRUCTION clock will set 11Dl, holding l1E at zero.

11U5 will be locked in a high state, as in the other modes.

When one-shot 120 times out, 11Nli will go high as soon as CHIP

BUSY goes low. Counter 11U is preset to zero, causing 11010,

11015, and 111D to go low, initiating the burst sequence.

The BURST siqnal is generated in the same way as tMode 2. SHIFT 1

pulses are inhibited by 11V9 in Mode 3. 11U is preset to zero

instead of one, producing eleven valid 
bursts instea.d of ten. RA!

data from 12K12 passes through 12A3, 12D6 and 12Tll to 12115.

The data are clocked into 121 with the BURST pulses, and loaded

into.11R when 11E2 goes high. 11K2 activates the KP lead of 11J,

providing the special rapid data entry in this mode.also. The

data are loaded into 11J. A twelfth data burst is produced,

representing invalid data at the end of the sequence. The

invalid data are ignored by resetting 11K2 when 11010 goes high.

The first "digit" of the RAM data represents the sign of the

incoming number. The sign is presented to the TMS-0117 as either

a NO-OP or SUBTRACT code, causing the processor to handle the

number properly. The RAM does not store the control bit.

In.stead, N1113 detects when the sign is being entered into 11J,

and forces.the control bit to a one via 11S4 and 11S3.

The RAM address and data leads are normally accessed by the dis-

play control logic. When a Mode 3 sequence is in progress, 11Cll

will be high, producing an INTERRUPT signal (inverted) at 11F4.

The INTERRUPT signal causes multiplexers 11R, llS, and 11T to
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switch the RAM address inputs and data leads to the microprocessor

logic. The RAM is thus "stolen" for about 0.5 milliseconds. The

display is blanked by the INTERRUPT signal.

The most significant bits of the RAM address, representing the

word block address, are provided directly by PROM 12M. The RAM

address assignment of Table 6-1 permits the 1E and 11U outputs

to be used directly as the bit and digit address leads.

Gating is provided on board 12 to force RAM data to zero under

certain conditions. When the mode control logic of board 3

produces a MASTER RESET signal, the RAM must be cleared. Since

the 2602 does not provide a clear lead, this function is provided

indirectly. Flip-flops 12C are cleared by the iASTER 'ESLT signal.

Immediately following the MASTER RESET, 12C13 will be low. When-

ever previously calculated RAM data are addressed, represented

by a low at 12R13, 12A10 will go high, forcing 12A3 to zero.

Data entered into the RAM during the current micro-sequence are

not affected, since 12R13 will be high when this-data are accessed.
The RAM data appears exactly as if the RAN had been.cleared

directly by the MASTER RESET pulse.

At the completion of each series of calculations, a positive tran-

sition is produced on the N/0 lead by the board 10 logic. The

toggling action of 12C2 inverts the new/old address lead via gate

12J10. This provides the effect of interchanging new and old data

without actually moving bits. Wi'th the completion of the initial

calculations, the first N/O transition will set 12C13, enabling

previously calculated RAM data, which is valid from that point on.

When the extractor is in the DRO readout mode, the counters are

reset following each STROBE. A branch would normally be required

in the micro-program, subtracting previous NB+D and NO values from

current values to obtain a net count for the just-completed inter-

val in NDRO operation, wihile directly using the new values (with-

out subtracting) as the net interval count in DRO operation. This

branch (and corresponding branch hardware) is avoided by setting

12H13 in the DRO mode, causing gates 12B4 and 1205 to zero the

RAM data when 12A4 detects that previous NB+D or NO data are being
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addressed. The microprocessor subtracts the previous values from

current values, regardless of the DRO/NDRO setting, with the DRO

subtraction rendered harmless by the above gates.

The micro-program provides for accumulation of AR by adding the

previous AR value to the new AR result. The accumulator action

can be disabled in hardware, once again avoiding a branch in the

micro-program. When the DISABLE AR ACCUM lead is high, 12D10 will

go low whenever the AR address is detected via 12A11, forcing pre-

vious AR data to zero via 12D6.

Logic on board 2 provides the DISABLE AR ACCUM signal. Pin 2C6

will disable the accumulator when in the DRO mode or when the

rear chassis lip switch is set to the DISABLE position. In cer-

tain cases, the accumulator can overflow, exceeding the capacity

of the processor. This would 'cause the processor to lock up in

an error condition, disrupting other calculations until the next

STROBE cleared 11J.

A test is provided in the micro-program to detect when the AR

accumulator is about to overflow. Jhen the accumulator contents

exceed 4,000,000 meters, this test will produce a positive num-

ber in the 11J.output register. The SF lead of 11J is sampled

by a AR STROBE, generated when the test result is in the output

register. If the output register contents are positive, 2G2 will

go low, disabling the accumulator to prevent the overflow. Gate

3E3 will produce an OVERFLOW indication when this happens. The

overfl'ow condition is cleared by resetting 2G2 whenever the accumu-

lator is cleared. Gate 2K11 provides the proper pulse to clear

2G2, since the accumulator is cleared either by a MASTER RESET or

by a DRO readout.

When the Mode 3 sequence has been completed, one-shot.12012 will

fire, accessing the next.micro-instruction.

Mode 4. This mode permits the contents of the 11J output register

to be written into RAM 12K. Burst generators 11E and 11U are

again used. Since the write sequence must be synchronized with

the 11J digit scan leads, however, the bursts are triggered in a

different manner than in the other modes.
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The MICRO-INSTRUCTION CLOCK will initially force 11D1 to a high.

Unlike the other modes, 11D1 is not cleared when the MICRO-

INSTRUCTION CLOCK goes low. llVIO will hold 11D1 high while the

DIGIT CLOCK from 11J is high. Gate llPlO will reset llD111 when

the DIGIT CLOCK goes low. In this way BURST pulses are triggered

by the DIGIT CLOCK.

Digit counter 11U must be synchronized with the 11J digit scan

leads. :,hen the MICRO-INSTRUCTION CLOCK goes low, 11N3 and 11N5

will be low. 11N2 will be low when the 11J register contents are

valid. Gate 1M10I will produce a low output when the SF STROBE

is active. Thus the positive transition of 11N1, which initiates

the Mode 4 sequence by resetting 11U, is synchronized with the

D11 clock.

The eleven-digit BURST is gene'rated in a manner similar to Mode

3, except that each four-bit burst is initiated by a negative

transition on the DIGIT- CLOCK. With the output of each new digit,

indicated by the DIGIT CLOCK, the BURST loads this digit into the

RAM.

Since the bit and digit counters are synchronized to the 11J digit

scan leads, these counter outputs are used directly as the bit-
and digit- address locations for the RAM. Gate 11F4 provides the

INTERRUPT signal while the write operation is in progress, causing

the board 12 multiplexers to switch the RAM to microprocessor con-

trol. The word block address is stored in PROM 12M, as an inte-

gral p.art of the write instruction.

Late 12D9 activates the'read/write lead of RAM 12K, so that the

BURST pulses cause the data to be shifted out of 11A and written

into the RAM. Multiplexer 11lB inserts the sign code into the data

stream, as previously described. Register 11A is loaded with the

DIGIT CLOCK.

At the completion of the Mode 4 sequence, 12012 will fire, access-

ing the next micro-instruction. Since this causes the MICRO-

INSTRUCTION CLOCK to go high, 11N1 will be di.sabled, providing a

single write burst. The sign code is actually writte.n twice (at

the beginning and end of the sequence), .ut this is harmless.
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The micro-instruction format is shown in Figure 6-20. The two-

bit op-code specifies the microprocessor mode, and is decoded by

gates 12P and 12J4. The flag bit is latched by 12H1 to prevent

spikes, and increments sequence counte.r 1OR. The remaining five

bits provide Mode 1 data or Mode 3 and 4 address information.

Sequence counter 1OR is initialized either by MASTER RESET or

STROBE. The flag bits from PROM 12N are placed at the completion

of each calculation, incrementing lOR. When 10OR counts to eight,

the micro-sequence is complete. 10M2 will activate the STOP lead,

which inhibits further advancing of the micro-sequence. The eighth

flag is coincident with a Mode 4 instruction. This instruction is

executed, the next instruction accessed (a NO-OP instruction),

12H2 will then go high, allowing 12B3, 12V4 and 12V3 to freeze the

sequence.

A new STROBE will reset 12G, 12H1, 120, and lOR, in.itializing the

micro-sequence for a new series of calculations. Gate 10G3 gen-

erates the N/O signal, indicating w'hen a new sequence has begun.

When the integration period of the extractor is less than 2

seconds, the STROBE will occur before the previous micro-sequence

is complete. In this case register lOA stores the count of 1OR

at the time of the STROBE. This information is used to blank the

display should non-calculated parameters be selected.

Flip-flop 10Q13 latches the ERROR signal from the TMS-0117. This

signal produces a special code on the display and sends a flag to

the computer to indicate the error condition. The presence of

this signal will force a self-test to fail by setting 1001 and

10013.

Three tests are provided in the micro-program. These tests are

used to check the AR accumulator for overflow, as described ear-

lier, and to produce the self-test pass/fail indication. The sign

of the 11J output is sampled (SF lead) to indicate the results of

the tests. Flag bits are placed in the micro-program when the
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test results are available. With a flag present and the 11J data

valid (10H2 high), lOG13 is high, allowing the SF STROBE to pro-

duce a negative pulse at 1OGll.

Should the flag represent the presence of AR accumulator test data,

1.OF6 will be low, resulting in a AR STROBE at 10E4. Should the

result of the self-test frequency error check be present, 1OF10

will be low, causing the 11J sign information to be latched by

10013. 10M2 permits the coincidence delay test result to be

stored in 1001. The R-C filter at 10G13 allows the sequence coun-

ter to stabilize before the flag bit is recognized.

The self-test results indicate a pass condition when the signs

of the two test numbers are bo.th negative. Should this be the

case, the P/F ENABLE lead, activated by the board 3 logic, ;:ill

produce a PASS indication at 10P4. Otherwise a FAIL indication

will be given at 10OP3,

Buffers 12E and 12F provide level shifting from CMOS to TTL levels

to operate the PROM and RAM chips.

6.3.1.9 Microprocessor software. The microprocessor software

is the set of instructions stored in the PROMs, which when exe-

cuted produce the navigation parameter calculations.

The development of the microprocessor hardware and software was

done simultaneously, and the two are very closely linked. This

minimized the total development time. The software was written

to provide maximum possible accuracy, eliminate branching, to

provide test result indicators where required, and to handle the

quirks of the microprocessor hardware.
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The instruction format of the TMS-0117 is presented in Appendix C.

The TMS-0117 performs fixed-point arithmetic operations to ten-

digit accuracy. Calculation results are truncated to ten digits.

The contents of the output register may be shifted left or right,.

and operands may be interchanged with proper commands. An implied

constant feature reduces the number of data entries.

The features of the TMS-0117 are expanded by the microprocessor

hardware to implement the micro-instruction set summarized in

Table 6-2. This micro-instruction set results in a relatively

simple and straightforward micro-program.

The micro-program is designed to operate without branching. The

complete sequence is executed, regardless of extractor mode of

operation. Gating is provided to avoid branching based on DRO/

NDRO operation. The shift-left/shift-right instructions possess

a characteristic which is exploited to avoid other branch deci-

sions. If the TMS-0117 contents are shifted left and then right,

a zero will result in the MSD position. Similarly, a shift right

followed by a shift left results in a zero in the LSD position.

Zeroes may be placed in MSD or LSD positions by proper combina-

tions of left- or right-.shift instructions. This characteristic

permits manipulation .of a portion of the register contents by

selectively setting the remaining digits to zero.

The microprocessor hardware fixes the decimal point for all cal-

culations to the right of the MSD. This decimal position pro-

vides -the maximum dynamic range for the fixed-point multiplica-

tions and divisions. Sealing is provided within the software to

avoid overflow during these operations. Scaling is accomplished

with shift left or right commands.

During software development, a breadboard TMS-0117 calculator

was built to test the algorithms. Work with the breadboard un-

covered a "bug" in the TMS-0117 internal program. Certain com-

vinations of multipliers and multiplicands will -result in erro-

neous overflow. In particular, if the multiplicand (first num-

ber) is between 1 and 10, and the multiplier is between 1.4 and
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TABLE 6-2. MICRO-iNSTRUCTION SUMMARY

Execution
Time

Instruction Mode Codel (mSec) Description

ENT (Y) 1 00-OYYYY 3.25 Enter BCD Digit Y
into Processor.

DOPP 2 01------ 35.75 Enter Ten Digits
from Extractor
Registers into
Processor.

READ (Y) 3 10-OYYYY 40.06 Read Ten Digits
and Sign from RAM
Word Location Y
into Processor.

WRITE (Y) 4 11-OYYYY 2.15 Write Contents of
Processor Output
Register (Ten
Digits and Sign)
into RAM Word
Location Y.

CLR 1 00-10000 5.39 Clear Processor
Output Register.

EQ 1 00-10001 4.31 + T Execute Instruc-
INSTR on 2 .

MULT 1 00-10010 48.06 Multiply Register
Contents by Follow-
ing Entry.

DIV 1 00-10011 54.31 Divide Register
Contents by Follow-
ing Entry.

ADD 1 00-10100 9.68 Add Following
Entry to Register
Content's.

INC 1 00-10101 6.44 Increment Register
Contents by 1-LSD.

SUB 1 00-10110 9.b8 Subtract Following
Entry from Register
Contents.

DEC 1 00-10111 6:44 Decrement Register
Contents by 1-LSD.

ADOVF 1 00-11000 4.13 + 1.075 Increment Register
(1010 REG) Contents to Over-
(0 REG) flow.

DEZRO 1 00-10001 4.13 + 1.075 Decrement Register
(REG) Conternts to Zero.
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TABLE 6-2. MICRO-iNSTRUCTION SUMMARY
(Cont'd)

Execution
Time

Instruction Mode Code (mSec) Description

SR 1 00-11010 5.39 Shift Register
Contents to Right.

SL 1 00-11011 5.39 Shift Register
Contents to Left.

EXO 1 00-11100 7.56 Exchange Operands.

No-oP 1 00-11111 4.31 No Operation.

NOTES:

1. See Figure 6-20 for MICRO-INSTRUCTION format.

2. Implied Constant (Last Instruction and Operator)
Available by Using this Operator.
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1.7, an overflow occurs, even though the product is less than ten.

The software is written such that the multiplier is always less

than 1, avoiding the "bug". The only penal.ty paid is the loss of

one significant digit in the AR calculations.

Display of meaningless calculations, such as TEST ERROR when not

in the self-test mode, or COINCIDENCE DELAY when in the ARO mode,

is inhibited by the extractor hardware.

The micro-program is detailed in Fi gures 6-42 through 6-51. The

following sequence of operations is performed:

1. Read and .store new NO count.

2. Calculate and store new ANO for the interval.

3. Read and store new NB+D count.

4. Calculate and store ANB+ for the interval.

5. Calculate and store FD, where

F ANB+D 6  6 221
FD = N x 1 .25x10 6  x 221

6. Calculate and store VR, where

N F B+D 21

V =--t e F x 1.25x10 - 1 x 1

Rt F0 1292 t
and 1 = 0.1641799015 meters

192. t

7. Calculate and store AR, ,here

[AN- Fb O 221AR =- NB+D - F AN x

and Fb = 0.8

0

8. Test the AR value for magnitude greater than 4,000,000

meters, and allow sign of test to be picked up by micro-

:processor hardware.

9. Calculate and store the TEST ERROR, which is the differ-

ence between FD and its nominal self-test value of

-328.8690477 kHz (translated to equivalent transponder
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input shift).

10. Determine whether the TEST ERROR magnitude is greater than

0.3 Hz, and allow sign of this check to be picked up by

microprocessor hardware.

11. Calculate and store the COINCIDENCE DELAY associated with

the strobe initiating the calculations.

12. Test the COINCIDENCE DELAY for values greater than 100-

microseconds. Allow the sign representing this test re-

sult to be picked up by microprocessor hardware.

Micro-instruction 0 provides a "dummy" write, permitting the self-

completing burst generators to time out in case a sequence abor-

tion occurred during a Mode 2, 3 or 4 operation.

The calculation of AN0 and ANB+D must take into account the over-

flow of the extractor counters. This is done by incrementing the

new counts as if overflow had occurred. The MSD of the data was

made zero by the hardware. Adding a 1 in the MSD position pro-

vides the assumed overflow resu.lt. The net counts for the inter-

val are calculated, using the actual previous counts. If -over-

flow occurred in the counters, the result is correct. If not, the

result is in error by a 1 in the MSD position. Selectively zero-

ing the MSD through the shift left--then right-- operation pro-

duces the correct net count, whether or not the overflow actually

occurred.

The scaling operations are illustrated by the input-output format

entry to the right of the micro-instruction listing. 'The corre-

lation between digits in the 11J output register, the RAM, and the

display is shown in Figures 6-42 through 6-49 to indicate the

effect of shifting operations on the RAM and display contents.

The three software tests are performed as follows: The AR result

is shifted right and multiplied by itself to provide AR2 with as

many significant digits as possible without overflow. The maxi-

mum allowable AR2 is subtracted. The sign of the difference will

be negative if the AR value is within limits.

Similarly, the TEST ERROR is shifted left and right to retain only

the five LSDs. The result is multiplied by the unmodified TEST
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ERROR to provide a number which corresponds to the square of the

TEST ERROR. This approach provides full test accuracy for small

errors up to 9.9999 Hz, while at the same time detecting large

errors which may have zeroes in the LSD positions. The resolution

of the test is thus ten digi-ts, while at the same time overflows

are avoided.

The COINCIDENCE DELAY test simply subtracts 100 microseconds from

the always-positive delay value.

The delay calculation itself is based on nominal counts for the

integration period. Six integration periods are possible, normally

requiring a branch. However, all integration periods are multiples

of 100-milliseconds. The six LSDs only may be used to calculate

the delay, independent of the integration period. This places an

upper bound of 100-milliseconds on the range of delays handled by

this algorithm. Since the capacity of the display is only 100-

microseconds, the limit is of no consequence. This approach does

not work in ARO operation, since in the ARO mode the nominal inte-

gration period is not known. The COINCIDENCE DELAY display is

blanked in the ARO mode for this reason.

Since the extractor counters are reset to one instead of zero,

the minimum delay appearing on the display will be 1-microsecond.

The display indicates an actual delay between the displayed value

and that value minus 1-microsecond. Resetting the extractor coun-

ters to one avoids division by zero in the micro-sequence.

Calculation results are truncated to ten digits by the TMS-0117.

Inaccuracies resulting from truncation are partially corrected by

adjusting the values of the micro-program constants.

6.3.1.10 Display. The display logic provides simultaneous dis-

play of up to two parameters stored in the RAM. The displays are.

digit-scanned, with the display logic providing the address in-

formation to step through the RAM. Leading zero suppression is

provided to enhance display readability. The display is blanked

should uncalculated or invalid parameters be selected. An error

symbol is provided in the event of a microprocessor error.

The display logic layout is shown in Figures 6-25 and 6-26. Sche-

matics are shown in Figures 6-39 and 6-40.
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Gates 15F encode the selection for Display A into a 3-bit binary

number. This number corresponds to the sequence count representing

the calculation of the desired parameter. The representation of

the Display B selection is either zero or seven, and the encoding

is done directly.

The A and B displays are alternately scanned, based on the toggling

action of 13J12. Multiplexer 13N selects the code for the display

word to be scanned, and provides the word-block address information

to the RAM. The MSB of the address is always zero, causing only

previously-calculated results to be displayed.

The SEQUENCE STATUS is ones-complemented by register 10A. When

the DISPLAY WORD is added to the complemented SEQUENCE STATUS in

adder 13M, the result represents the difference of these numbers

minus one. 13M14 will be high if the SEQUENCE STATUS is less than

the DISPLAY WORD plus 1, and low otherwise. Since the sequence

counter increments following the calculation of each parameter,

13M14 indicates whether or not the selected parameter 
was calcu-

lated. If 13M14 is high, the display is blanked.

The bit- and digit- scanning of the RAM is provided by 13X- and

13W, respectively. A 156-kHz clock increments the bit counter on

positive transitions. The RAM data enters 13H via gate 12A3,

which zeroes the display data at the start of a measurement se-

quence.

The correspondence between display digit and RAM address is not

always one-to-one, as indicated on Figures 6-42 through 6-49.

This condition arises because a previously-built 9-digit display

is used to display the ten-digit-plus-sign RAM contents.

When displaying the NO, NB+D , and COINCIDENCE DELAY parameters,

the display digit and RAM address agree. Addresses 1 through 9

correspond to the nine MSD positions in memory. These parameters

do not carry a sign.

The remaining parameters carry a sign, which occupies digit posi-

tion 1 of-the display. Display digits 2 through 9 correspond to

RAM addresses 1 through 8, the eight MSDs of the RAM word.

Counters 13R, 13T and 14BB scan the display. 13R scans the B
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display, while 13T and 14BB scan the A display. Counter 14BB is

functionally identical to 13T, and was provided to reduce the num-

ber of output leads on pin-limited board 13. The display and RAM

address counters increment on the positive transition of the 156-

kHz clock. The resulting se.rial data at 13H7 are clocked into 13H

on the negative transition of the 156-.kHz clock. On the next posi-

tive 156-kHz transition the parallel BCD data are clocked into

register 13G, where the data are held for display. Observe that

13R and 13T increment on this second positive transition, and that

these counters energize the digit scan for data corresponding to

the previous count of 13W. The correct synchronization for the

display of signed parameters is obtained by setting the digit scan

and RAM address counters to the same value.

Decoding gates 130, 13P6, 13111, and 1314 detect the selection of

a signed parameter and place a zero at 13U6, leaving the DISPLAY

DIGIT address at the 13U outputs unchanged.

When NO, NB+D, ANO , or COINCIDENCE DELAY is selected, 13U6 will be

high. Adder 13U will increment the 13W count by one to form the

correct DISPLAY DIGIT address.

Observe that the RAM will always carry at least one significant

digit more than will appear on the display. This provides maxi-

mum accuracy when multiple calculations are made.

The A and B displays are alternately scanned, with the A or B digit

counter enabled and the corresponding display select code accessed

depending on the state of 13J13. When operating in synchronization,

one of counters 13R and 13T will be enabled via 13L13 and count

through to zero, whereupon 13J13 toggles and the other counter

will be enabled. The use of 13L13 allows the counters to count

to zero before being disabled. One of -13R or 13T will be count-

ing, with the other counter disabled in the zero state. Should

the counters lose synchronization (both counters out of the zero

state), 13L1 will be set, re-synchronizing them. The STROBE is

also used to set 13L1, synchronizing the counters with each new

data readout.

The decoded outputs of 13R and 14BB drive the digit scan circuits

on board 14. When activated by a high input level, the digit
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drivers (detail YY on board 14) place about 4.4-volts on the cor-

responding LED display digit anodes, activating them. Counter

position 0 is used for synchronization, as just described. Posi-

tions 1 through 9 are used to scan the 9-digit A display, while

positions 7 through 9 (corresponding to the three LSDs of the full

display word) are used to scan the 3-digit B display. The 12-digit

display is scanned every 0.512-milliseconds.

Display data held in 13G normally passes through multiplexer 13F

and 12- to 5-volt level shifters 13E to decoder 14AA. The result-

ing decoded outputs operate the segment drivers (detail XX on

board 14). These drivers ground the cathodes of the LED displays,

causing the appropriate segments of the activated digit to light.

The decimal points on the two LSDs of Display A are used. When

AR is displayed, 13A4 will be low, causing driver 13V to activate

the LSD decimal point. When FD, VR , or TEST ERROR are displayed,

13A6 will be low, causing driver 13S to activate the other deci-

mal point.

The Display A sign is generated as follows: When one of the signed

parameters is selected, 13111 will be high. Wihen the Display A

scan counters are in the digit 1 (sign) position, 13B4 will go low,

activating the blanking input of decoder 14AA. This input forces

the 14AA open-collector outputs. to be "off" (high level), regard-

less of the levels at any other inputs. The sign is stored as a

TMS-0117 NO-OP code (1111) if positive, and as a SUBTRACT code

(0110) if negative. If a positive sign is present, the sign dis-

play is left blank. If a negative sign is present, decoder out-

put 13D7 will go'high, grounding the segment g cathode via driver

13A2 and the diode. This will cause the minus sign to appear on

the display. Since segment g is also lit when decimal 6 (also

coded 0110) appears on the display, the OR arrangemen.t formed by

the open-collector 14AA output and the diode provides proper oper-

ation of the segment g driver.

When 10Q12 indicates a microprocessor ERROR, multiplexer 13F will

force 1100 onto the display data lines, causing the error symbol

(L) to appear on the display. This symbol will not.appear in the

sign position, since the blanking action of the 14AA4 input will
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override it.

When flip-flop 3K13 provides the DISPLAY TEST signal, this signal

is level-shifted by 3C10 and the associated resistor-diode network

and activates 14AA3. This action lights all of the display seg-

ments (with the exception of' the Display A sign position, where

the 14AA4 input again overrides). The sign position may be tested

by selecting one of the unsigned parameters.

The extractor display must be blanked under certain conditions.

If the display parameter was not calculated, or if the TEST ERROR

parameter is selected when not in the self-test mode, or if the

COINCIDENCE DELAY parameter is selected when in the ARO mode, or

if the display logic receives an INTERRUPT from the microprocessor,

the display is blanked. Leading zeroes of displayed parameters

are blanked. These blanking operations are provided by logic on

board 13.

If the display parameter was not calculated, 13Q4 will be low.

If the TEST ERROR parameter is improperly selected, 13110 will be

low. When the microprocessor provides an INTERRUPT, input pin 18

of board 13 will be low. A low at any of these points will cause

13C10 to go high, causing 13A15 to go low.

If the COINCIDENCE DELAY parameter is improperly selected, 1313

will be low. ihen the two display counters are in the initial

position (representing the start of a new scan) 13B11 will be low.

If any of 13A15, 1313 or 13B11 are low, 13C9 will be high, blank-

ing the display through 13K4, 13E4 and 14AA5. The 14AA5 input

will not blank the display unless the BCD lines are zero. Gates

13Q3 and 13Q11 disable multiplexer 13F, forcing the BCD lines to

zero.

Output 13C9 will set flip-flop 13J2. Due to the feedback through

gate 13P10, 13J2 will remain set until either 13K3 or 13C6 go high.

Output 13K3 will be high when a non-zero/non-sign digit is present

on the BCD lines. Output 13C6 will be high when the last display

digit (least-significant). is being scanned or when the digit pre-

ceding a decimal point is being scanned. With 3P10 high, the

display remains blanked until one of these conditions is met.

Leading-zero blanking is thus provided, with the display blanked

6-71



at the start of each new scan, and unblanked either by a non-zero

digit or by the scan of the "units" display position.

The minus sign display is not blanked. The microprocessor error

indication and the display test will override the blanking of lead-

ing digit positions.

Due to the storage in registers 13H and 13G, these registers must

be Iceared to prevent data from INTERRUPT operations or data rep-

resenting uncalculated parameters from improperly unblanking the

display. At the same time, register 13H must be allowed to store

the sign of a valid word (which is available while 13Bll is low).

Output 13C10 is therefore used to clear the data registers.

The zero-blanking circuits will not unblank the display following

an INTERRUPT until the start of a new scan. The display scan rate

is a compromise between noticeable disturbance caused by the blank-

ing action (scan rate too slow) and background "noise" caused by

the relatively slow display driver switching (scan rate too fast).

The display drivers introduce excessive noise on the display power

input leads. This noise is decoupled from the other extractor

circuits by the filters shown in Figure 6-29.

Table 6-4 details the wiring of the display drivers.
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TABLE 6-3. COMPUTER INTERFACE CONNECTIONS

COMPUTER DIGITAL NEST BOARD
DESIGNATION CONNECTOR CONNECTOR CONNECTOR BUFFER DRIVER
1218 INPUT PIN PIN PIN (INPUT/OUTPUT) (INPUT/OUTPUT) NETWORK

INPUT REQUEST 1 19 9:40 K: 7/6 J:16/1 *

INPUT ACKNOWLEDGE 2 20 7 G:14/15 --- N9

EXTERNAL INTERRUPT. 3 30 29 K: 5/4 J:13/14 *

20 9 18 11 F: 7/6 J:11/12. N22

21 10 17 12 F: 9/10 J: 8/7 N1 8

22 22 16 13 F:11/12 J: 6/4 N17

23 23 15 14 F:14/15 J: 3/2 N5

24 24 14 15 F: 3/2 J:10/9 N6

25 . 25 . 13 16 F: 5/4 1:13/14 N15

26 26 12 17 E: 9/10 1:16/1 N16

27 27 11 18 E:14/15 1:10/9 N3

28 28 10 19 E:11/12 1:11/12 N4

29 29 9 30 E: 7/6 I: 8/7 N21

210 30 8 31 E: 5/4 I: 6/4 N14

211 31 .7 32 E: 3/2 I: 3/2 N13

212 32 6 33 D:11/12 H:11/12 N19

213 47 5 34 D: 9/10 H: 8/7 N20

214 48 4 35 D: 7/6 H: 6/4 N1 2

215 49 3 36 D: 5/4 H: 3/2 N11

216 50 2 37 D:14/15 H:13/14 N2
217 51 1 38 H:16/1 N .



TABLE 6-3. COMPUTER INTERFACE CONNECTIONS (Cont'd)

COMPUTER DIGITAL NEST BOARD
DESIGNATION CONNECTOR CONNECTOR CONNECTOR BUFFER DRIVER

PIN PIN PIN (INPUT/OUTPUT) (INPUT/OUTPUT) NETWORK

-15VDC 88 Wired Directly to Power Supply

Returns 11-13,19-20 32-37 Wired to Ground at Digital Nest Input
33-43,58-62

Shield 45,69 Grounded at Computer Connector

1218 OUTPUT

Ext. Function 3 25 9:6 G:11/12 - N10

Ext. Function Req. 4 26 21 K: 3/2 H:10/9 *

co 20 9 24 2 G: 3/2 N7

21 • 10 23 3 G:.5/4 ----- N8
22 22 22 4 G: 7/6 N2 4

23 23 21 5 G: 9/10 N----- 2 3

24 24 27 10:40 1:11/12 +

25 25 28 41 1 I: 9/10 ----- +

26 26 29. 42 I: 7/6 ----- +

2 27 31 43 I: 5/4 +

Returns 13-14,19-20 32-37 Wired to Ground at Digital Nest Input
33-38

Shield 45,69 .Grounded at Computer Connector

* Network Components Wired Point-to-Point on Wiring Side of Board

- Network Assignment Not Documented for Board 10.
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TABLE 6-4

LED DRIVER PIN ASSIGNMENTS

BOARD 14

SEGMENT DRIVERS

SEGMENT Q1 Q2 LED CATHODE

(B/C) (B/C)

a A: 13/14 M: 13/14 B-J, N-P : 1
b 11/12. 11/12 13
c 6/4 6/4 10
d 3/2 3/2 8
e 16/1 16/1 7
f 10/9 10/9 2
g 8/7 8/7 11

DIGIT DRIVERS

DIGIT Q3 Q4 Q5 LED ANODE
(B/E) (B/E)

DISPLAY A:MSD DD: 16/12 FF: 11/12 S B: 3, 14
6/4 6/4 V C

10/9 •10/9 U D
CC: 16/1 EE: 16/1 X E

3/2 3/2 W F
13/14 13/4 Z G
11/12 11/12 Y H
6/4 6/4 L I
10/9 ' 10/9 K J

DISPLAY B:MSD DD: 16/1 FF: 16/1 R N
3/2 3/2 Q 0
13/14 13/14 T P
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SECTION 7

BREADBOARD OPERATION

7.1 GENERAL DESCRIPTION

The breadboard model of the vernier doppler extractor contains

the analog circuitry required to obtain a 1 MHz bias frequency

containing approximately the full S band doppler shift. This

is accomplished by translation and multiplication of the

76.083 MHz transponder output frequency. The transponder out-

put contains 8/221 of the S band doppler shift and after trans-

lation and multiplication by 24, the bias frequency contains

192/221 of the S band doppler shift.

The digital portion of the one-way.doppler extractor recovers

the doppler shift information from the 1 MHz bias frequency

and passes this information to the spacecraft computer-via a

suitable interface, and to an operator via a visual display.

Doppler extraction is accomplished using the zero-crossing

coincidence technique. Simultaneous zero-crossing of the 1 MHz

input signal and a 1.25 MHz reference signal is used to define

the start and stop of each measurement interval. In this way

the quantization error in the measurement is reduced to the

resolution of the coincidence detector. high-resolution is

obtained without the use of high clock frequencies.

Two counters count zero crossings of the input signal (FB+D)
and the reference signal (FO), respectively. Since the counts

of both counters always contain an integral number of zero

crossings, the ratio of.the two counts will be proportional to

the ratio of the two input frequencies.. The doppler shift on

FB+D can be obtained by solving:

B+DFD N x F - FD N 0 B0

WHERE: FD  = input doppler shift,

F0  = reference frequency (1.25 MHz),
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F B = input bias frequency (1.00 MHz),

NB+D = count of input signal counter and,

NO  = count of reference signal counter

Once the input doppler shift is obtained, other navigation

parameters (such as range rate and change in range) may be

derived using standard formulas.

The counter outputs NB+D and N0 are sent directly to the space-

craft computer, which uses these numbers to obtain the naviga-

tion parameters desired. To provide a useful display to the

operator, the digital extractor contains a microprocessor which

calculates and displays the navigation parameters.

The extractor may be controlled either from computer commands

or from push-buttons located .on the front panel.

7.2 FUNCTIONAL CHARACTERISTICS

The breadboard extractor meets or. exceeds the following per-

formance characteristics:

1. The coincidence aperture (resolution) adjustable from 8

to 200 nanoseconds in 2 nanosecond increments. Adjust-

ment is made by using plug-in tapped delay lines and mov-

able straps. Absolute accuracy of the coincidence aper-

ture is + 10%.

2. The input (FB+D) and reference (FO) frequencies may be

varied, as long as FB+D and F0 are less than 1.5 MHz and

2/3 < FB+D < 2. (Front panel display of navigation para-
F
0

meters is accurate only for FB = 1.00 MHz and F0  1.25

MHz.)

3. The reference frequency (Fo) is internally generated using

an external 5.00 MHz standard. A rear panel connector is

provided for an external F0 input which can be different

from the internal 1.25 MHz. The external source should

provide a 12-volt square wave into a 600-ohm load.

4. The 5.00 MHz standard input level should be from 1-2 volts

peak into a 50-ohm load.
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5. The Integration (measurement) time can be fixed or adjust-

able. Fixed integration periods of 0.5, 1, 2, 10, 60, or

600 seconds are internally generated from the 5.00 MHz

standard. Integration periods are synchronized to an ex-

ternal command and to zero-crossing coincidence. Anytime

readout commands may be given to provide externally-

generated integration periods from 0.5 seconds to 600

seconds.

6. The measurement delay (from external command to actual

start or stop of the integration period) is less than 100

microseconds for coincidence apertures of 180 ns or more.

7. The doppler frequency resolution is better than 0.25 Hz

for a 200 nanosecond coincidence aperture and a 1-second

integration period.

8. The actual integration period is known to 10- 7 seconds or

better.

9. Computer interface: compatible with Univac Type 1218

computer "single port" mode.

10. Control - either via computer interface or via manual push-

button.

11. Test points are provid.ed for external monitoring of zero-

crossing coincidence and readout time synchronization.

Test point levels are 0 and 12-volts into a 600-ohm load.

12. The maximum doppler shift is + 60 kHz at the 1.00 MHz

input frequency. This corresponds to greater than + 8230

meters/second range rate.

13. Power requirements: 115 VAC 60 cycles.

14. Self test: a reference test frequency of 5/7 MHz is

generated from the 5.00 MHz standard. A fixed 2-second

doppler count is performed and FD is extracted. FD is

transformed to the transponder input frequency and checked

for accuracy. A go-no go signal is generated and will

indicate a "pass" condition if the transformed FD is within
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0.3 Hz of its nominal value, and if the measurement delay

is less than 100 microseconds.

15. ihe counter readout is either destructive or non-destructive.

16. Front panel display:

a. Light-emitting diodes (LEDs) indicate mode, self-test

results, counter readout, interval control, integra-

tion period of the unit and navigation parameters

selected for visual display. The LEDs are multi-

colored, and will be green when the unit is operating

normally under computer control. Red LEDs will light

whenever an error condition occurs or when the unit

is under manual control.

b. A 9-digit decimal readout displays the following:

1) NO , the period count

2) NB+D, the bias plus doppler count.

3) FD (doppler shift transformed 
to transponder input

frequency) in Hertz, displayed to .01 Hz. Accu-

racy better than 0.25 Hz.

4) VR (range rate) in meters per second, displayed

to .01 meters/sec. Accuracy better than .04

meters/sec.

5) AR (range change) in meters, displayed to 0.1 meters,

either for given integration period (DRO) or

optional cumulative measurement in NDRO mode

selected by rear panel switch. The accumulator

capacity is + 4 x 106 meters. Accuracy of non-

cumulative display is better than 0.2 meters.

Accuracy of cumulative display depends on the

number of integration periods accumulated 
and is

approximately 0.1 meters per period plus 0.1

meters fixed error.

6) Self-test error in Hz displayed to .01 .Hz. The

accuracy is .01 Hz.
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c. A 3-digit decimal readout displays the following:

1) Three least-significant digits of NO.

2) Measurement delay in microseconds, displayed to

1 us accuracy.

Leading zero suppression is provided on the decimal dis-

plays. The display will be blanked if the parameter

selected has not been calculattd by the microprocessor.

An error symbol (half size U's) will appear on the dis-

play if the microprocessor produces an error signal dur-

ing the calculation of the navigation parameters.

17. Measurements are either repetitive (successive integra-

tion periods) or non-repetitive (single integration

period).

18. An overflow indicator is provided to indicate when the

time between anytime readout commands exceeds 0.5, 1, 2,

10, 60, or 600 seconds (computer or manually selected)

or when the AR accumulator is full.

19. Flag bits are sent through the computer interface to

alert the computer when the unit is under manual control,

when an overflow condition occurs, or when the display

microprocessor produces an error signal.

20. Self-test pass/fail results are sent to the computer

using an external interrupt command.

21. Measurement data are sent to the computer regardless of

mode or manual/computer control selection. The computer

must acknowledge all data to enable subsequent data output.

7.3 OPERATION OF THE BREADBOARD

7.3.1 MANUAL OPERATION

The extractor may be manually operated by using the push-button

switches-on the front panel as shown in Figure 7-1. The unit

is connected to a 115-volt, 60 Hertz power source and is turned

on using the POWER switch on the front panel. The lamp adja-

cent to the power switch indicates the presence of power in.to
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the unit. The fuse located next to the power lamp protects

the circuits at the 115-volt input. It should be replaced with

a 3-Ampere fuse when required.

The extractor MODE is selected by operating the proper push-

button:

COMPUTER - places the unit under computer control (see

Section 7.3.3 on "computer controlled operation" for more

information). When pressed, this button disables all of

the remaining push-buttons on the panel, except for the

"display select" buttons, which are always manually oper-

ated. When released the extractor is in the manual mode

and all the other push-buttons are activated.

SINGLE COUNT - will cause the unit to perform a non-

repetitive measurement. The unit will perform a single

count of the doppler frequency and will stop. This mode

is useful when manually recording measurements from the

visual display, since the measurement results are "held"

until the unit is reset.

CONTINUOUS COUNT - will cause the unit to perform repeti-

tive measurements. The unit will produce an output every

N seconds, where N is the selected integration period.

The unit will be stopped and the display cleared if the

reset button or the "self-test" button is pressed. The

unit may be stopped and the latest results held in the

display by pressing the "single count" button after the

completion of at least one count. The counting will then

stop immediately.

SELF-TEST - initiates the self-test sequence. This sequence

will be described later in this section.

The type of counter READOUT is selected by operating the proper

button:

NDRO - When pressed, the NB+D and NO counters will be read

out non-destructively. Both counters have sufficient capa-

city to accommodate a single 600-second integration period
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without overflow (in the continuous count mode) this con-

dition is detected and corrected by the computer and the

display microprocessor.

DRO - Pressing this button causes the NB+D and NO counters

to reset after each measurement.

Readout may be changed in the course of a series of continuous

counts. When the readout is changed by pressing the proper

READOUT button, the readout operation will change with the

.start of the next integration period. The measurement in pro-

gress when the buttons are changed is undisturbed.

The INTEGRATION PERIOD is selected by operating the appropri-

ate button (0.5, 1, 2, 10, 60 or 600 seconds). When using the

unit in the "anytime readout" function, the "integration period"

buttons select the maximum time lapse between anytime readout

commands before an overflow condition is indicated. The in-

tegration period will self-complete) and the period will change

with the start of the next measurement. In this way integra-

tion periods may be concatenated to form a net integration

period anywhere from 0.5 to 600 seconds in 0.5 second incre-

ments. The period may be changed to speed up the display up-

date (such as.when landing or docking) or to slow down the dis-

play update (for best measurement accuracy).

Note that when the integration period is changed from .5 second or

1-second to 2, 10, 60 or 600-seconds the AR cumulative readout

and coincidence delay readout may be in error. The operator

will not receive an indication of the erroneous readouts in

this instance.

The INTERVAL CONTROL buttons are momentary-contact types which

function as follows:

INTERVAL START - Pressing this button causes a master

reset to be given. All counters and registers within the

unit are initialized. The unit does not contain power-on

initialization circuits. The interval start button must

therefore be operated when power is turned on. This button

is used:
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a. To initialize a single count measurement.

b. To reset the NB+ D and NO counters when using NDRO.

c. To stop a continuous count measurement destructively.

d. To synchronize the integration period with external

events.

ANYTIME READOUT (ARO) - this button is pressed after a

count has begun to cause an anytime readout. The over-

flow timer is set by selecting the proper integration

period button. The count is initiated by pressing the

interval start button. Anytime readout is accomplished

by pressing the anytime readout button before the inte-

gration period timer times out. Once an anytime readout

is requested, the unit is forced into a continuous count

mode (regardless of the setting of the mode buttons) and

readouts will occur only when the anytime readout button

is pressed. An overflow indication will be given if the

time between ARO commands exceeds the setting of the in-

tegration period timer. The integration period timer is

reset with each new ARO command. This overflow indication

is harmless, and only warns the operator that the display

data may be invalid. The unit remains in ARO operation

until the interval star-t button is pressed to reset it.

7.3.2 SELF-TEST OPERATION

The self-test sequence is initiated by transfer of the proper

code from the computer or by pushing the "self-test" button on

the front panel. The sequence is as follows:

1. Initialization phase - The digital circuitry is held in. a

-master reset condition while the phase-locked loops are

allowed to lock to the self-test frequency of 714,285.7 Hz.

During this phase a "lamp test" signal is given and all

segments of the digital readouts will be lit, along with

all of the status indicator lamps (except the mode lamps

if the test was manually initiated). The color of the

status lamps will depend on whether the self-test was

initiated manually or by the computer. This phase will

7-9



last approximately 1.5 seconds.

2. Measurement phase - The unit makes a single count, NDRO,

fixed 2-second measurement of the self-test signal. The

microprocessor will then calculate all parameters and load

appropriate latches if the accuracy and delay tests are

passed. The digital self-test data will appear on the

display as soon as the micro-sequence is complete. Data

from the start of the measurement will be displayed in a

manner similar to normal unit operation. Raw data is pro-

vided to the computer in the normal manner during this

phase.

3. Decision phase - A 3.5 second timer is started upon com-

pletion of the 2-second fixed measurement. When this

times out, the contents of the pass/fail latches will

appear on the front panel and will be sent to the computer

via an interrupt signal. The "pass" indication will be

given only if both the accuracy and delay tests are passed

and the display microprocessor has successfully completed

its operations without an error indication.

The self-test results will remain on the display until the uni.t

is returned to either the single or continuous count modes or

the self-test is repeated.

The measurement phase of the self-test sequence may be repeated

by pressing the "interval start" button. The pass-fail indi-

cation will appear immediately. This is a non-standa'rd use of

the self-test mode, and is provided only as a convenience to a

manual operator. When under computer control, the self-test

should be repeated only by leaving and. then re-entering the

self-test mode.

7.3.3 COMPUTER-CONTROLLED OPERATION

Control of the OWD extractor by the 1218 computer may be accom-

plished by pressing the COMPUTER mode button on the extractor

front panel. Operation is functionally identical to operation

in the manual mode. All front panel buttons (except the display
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select buttons) are disabled.

7.3.3.1 Output Format

The format of the 1218 output used to control the extractor

is as follows. A logic one on the EXTERNAL FUNCTION REQUEST

lead indicates that the extractor is ready to accept a con-

trol command. The 20 through 27 data leads define the com-

mand, according to Table 7-1. The command .is read into the

extractor on the positive transition of the EXTERNAL FUNCTION

lead. The positive transition of the external function lead

is used to start and stop measurements when using "interval

start" or "ARO" commands.

7.3.3.2 Input Format

The extractor will provide data to the computer input in the

form of four 18-bit words. The format is as follows:

Word 1 - Bits 20 through 213 equal bits 218 through 231

of NO , respectively.

Bit 214 will be a "1" if the display micropr'o-

cessor has made an error.

Bit 215 will be a "1" if the overflow lamp was

lit during the measurement interval.

Bit 216 will be "1" if the extractor is under

computer control. 'This bit will be "0" if the

unit is under manual control.

Bit 217 will be a "1" if the RUN/HOLD switch on

Board 8 of the digital logic is in the run

position. This bit will be "O" if the switch

is in the hold position. Data is invalid if this

bit is "0".

Word 2 - Bits 20 through 217 equal bits 20 through 21 of

NO , respectively.

Word 3 - its 20 through 213 equal bits 218 through 231

of NB+D, respectively. Bits 214 through 217

should be "0".
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TABLE 7-1. OWD EXTRACTOR COMMAND FORMAT

COMPUTER COMPUTER 1 2 3 4 5 6 7
OUTPUT BIT 2 2 2 2 2 2 2 2

INTEGRATION INTERVAL
FUNCTION PERIOD COUNT ARO SELF-TEST READOUT START

INTEGRATION
PERIOD

0.5 Sec 0 1 1 1-= Contin. 1 = Anytime 1 = Self- 1 = DRO 1 = Interval
Count Readout Test Start1 Sec 1 1 0 Single Mode 0 = NDRO

2 Sec 0 0 1 Count
10 Sec 0 1 0

60 Sec 1 0 0

600 Sec 0 0 0

Bit 25 = 1 will override all other bits except bit 27

Bit 24 1 will override bit 2 Bits 2 and 27 must never be 1 simultaneously.



Word 4 - Bits 20 through 217 equal bits 20 through 21

of NB+D , respectively.

The INPUT DATA REQUEST lead will be high when valid data is

at the input cable connector. All four input words must be

read and acknowledged using the INPUT ACKNOWLEDGE lead. The

input data request lead will toggle to zero and back to logic

one when a new data word is at the interface. The input words

must be acknowledged whether they are used or not, otherwise

subseq'uent data will not be valid. Input data is present at

the start and completion of each measurement interval, in

both computer-controlled and manual operation.

The EXTERNAL FUNCTION REQUEST lead on the output cable will

be a "0" while input data is being read into the computer,

and will return to the "1" level when all four input words

have been acknowledged. This prevents new control commands

from being given to the extractor until the data from the

previous command has been acknowledged.

Self-test results are provided to the computer using the

EXTERNAL INTERRUPT lead. When this lead is a "1", the 217

data bit will indicate the results. A "1" at the 217 bit

position indicates the self-test has FAILED; a "0" indicates

that the self-test was PASSED. All other data bits should be

ignored by the computer. The external interrupt lead will

return to a "0" when the computer acknowledges the self-test

resul-t. To obtain subsequent data from the extractor, the

unit must be taken out-of the self-test mode.

Input data in the four-word format described above will be

present at the start and completion of the self-test measure-

ment interval, and must be acknowledged as described.earlier.

The raw data may be used by the computer to independently

check the self-test results.

7.3.3.2 Computer Interface Test-Unit

An interface test-unit is supplied with the extractor for two

purposes: 1) to. allow the user to empirically determine effects
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of various command sequences on the extractor; and 2) to verify

the operation of the interface logic. The unit is plugged into

the input and output connectorsat the rear of the extractor,

and is powered via pin 88 of the input connector. LEDs indi-

cate the status of bits from the extractor to the computer.

Switches control bits from the computer to the extractor.

Command codes may be set up using the eight toggle switches,

as shown by the front panel layout of Figure 7-2, and read in-

to the extractor using the EXT FUN button. The INPUT ACK but-

ton is pressed to acknowledge data from the extractor. Refer

to Table 7-1 for the conversion of computer commands to the

appropriate toggle switch positions.

Operation of the computer interface logic in the extractor

may be verified with the test unit in the following manner:

1) Remove the cover from the digital nest.

2) Throw the switch on Board 8 to the HOLD position.

3) Push the COMPUTER button on the front panel.

4) Set up a command word for a SINGLE COUNT, NDRO measurement.

A self-test command may be used.

5) Press the EXT FUN button and then immediately press the

INPUT ACK button four times. The EXT FUN REQ lamp should

now be lit.

6) Permit the selected interval to time out. The INPUT DATA

REQ lamp should now be. lit. Input word 1 will appear on

the LEDs in the test unit. Pressing the INPUT ACK button

should access words 2, 3, and 4 in succession. The EXT

FUN REQ lamp should be extinguished during this period.

This lamp should once again be lit after INPUT ACK is

pressed for the fourth time.

7) Compare the data words at the test-unit with the extractor

data: There should be a one-to-one correspondence between

the test-unit indicators and the LED indicators on Boards

4-8 as shown in Figure 7-3. The data should represent the
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binary equivalent of the corresponding raw data appearing

on the front panel decimal display.

8) If a self-test was used for (4) wait for the self-test

result. The EXT INT lamp should be lit when the front

panel pass/fail indication is given. The 217 indicator

should indicate the proper result. Pressing the INPUT ACK

*button should extinguish the EXT INT lamp.

9) This completes the interface logic validation. BE SURE

to return the switch on Boa-rd8 to the RUN position before

replacing the digital nest cover.

7.4 STATUS INDICATORS

LED indicators are provided to. indicate the status of the unit.

These indicators are associated with the appropriate control

buttons, and indicate the actual status. If the control. but-

tons are overridden (when under computer control, during a

self-test, when using ARO, or when the integration period is

changed and the current period is not complete) the indicators

show the current status of the unit, regardless of the over-

ridden button settings. (Exception: the single/continuous

count indicators are not overridden in manual operation, al-

though the push-buttons are overridden.)

When the unit is under computer control, the status indicators

will be GREEN. When the unit is under manual control, the

status indicators will be RED.

LEDs display the results of a self-test when in the self-test

mode, and indicate an overflow condition when the AR accumula-

tor is full or when the ARO interval timer has timed out. The

PASS indicator is GREEN, while the FAIL and OVERFLOW indicators

are RED.

The overflow indicator warns that the display data may be in-

valid. -If it was set due to an ARO .time-out, it will be reset

with the next ARO command. If it was set because the AR accu-

mulator is full, the LED will remain on to indicate'that the

AR accumulator has been disabled. (The readout for AR will be
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forced back to indicating the change in range for the given

integration period only.) In this latter case the overflow

indicator will be reset only when the counters are reset either

by use of the interval start button or by changing to DRO.

This indicator is "harmless", in that-other measurements are

not disturbed when it is set.

The "interval start" indicator will be lit when counting is

in progress. The ARO indicator will be on when the unit is

"locked" in the ARO mode.

Integration period indicators display the actual integration

period of the unit.

7.5 DIGITAL DISPLAYS

A dual display is provided on the unit to allow direct readout

of important parameters.

A 9-digit display (designated display A) displays one of the

following, depending on the DI.SPLAY SELECT button pushed:

a) NO  - 9 digits

b) NB+D - 9 digits

c) FD (in Hz) - sign, 8 digits, and decimal point

d) VR (in meters/sec) - sign, 8 digits, and decimal point

d) AR (in meters) - sign,,8 digits, and decimal point

f) TEST ERROR (in Hz) - sign, 8 digits, and deqimal point

A 3-digit display simultaneously displays one of the following,

depending on the DISPLAY SELECT button pushed:

a) AN0  - last 3 digits of NO

b) COINCIDENCE DELAY (in microseconds) - 3 digits

Green LEDs above the display select buttons indicate the para-

meters appearing on the displays.

An option is provided when using NDRO and viewing AR. By

throwing the AR ACCUMULATOR switch, located on the rear lip,

to the ENABLE position, the AR display will be the cumulative
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total change in range since the last master reset. The accu-

mulator capacity is + 4 x 106 meters. If this capacity is

exceeded, the accumulator will be disabled by the digital logic,

and the overflow lamp will be lit. With the accumulator dis-

abled, the display AR will indicate the change in range for a

given integration period only, and not the cumulative total.

The accumulator may be reset in one of two ways:

a) Depressing the INTERVAL START button (resets all

counters).

b) Selecting DRO, and then returning to NDRO operation

(this maintains the synchronization of the integra-

tion period timer).

The overflow indicator will be extinguished when the accumu-

lator has been reset.

The TEST ERROR display will be blanked unless the self-test

mode is selected. The COINCIDENCE DELAY display will be

blanked in the ARO operation, since coincidence delay calcula-

tions depend on a priori knowledge of the nominal integration

period.

Leading zeroes (except for zeroes in the last digit position

or immediately preceding a decimal point) are blanked on both

displays. An error symbol (u) will appear on both displays

if the microprocessor gives an error indication during the

calculation of the parameters that otherwise would have appeared

on the display. This error may be caused by erroneous input to

the microprocessor from the counters or from the microprocessor

memory, or by a malfunction of the microprocessor itself.

The display microprocessor may not complete all of the para-

meter calculations before the data for the next calculations

are ready. This condition occurs when the integration period

is less than 2 seconds, and continuous measurements are being

made. In this case, the microprocessor will reset with the

receipt of the new. data, and abandon the remainder of the micro-

sequence. The display will be blanked for those parameters
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which were not calculated when the micro-sequence was aborted.

The blanking function overrides the microprocessor error in-

dication. Error symbols will appear only for those parameters

calculated before the error-occurred. The parameter calcula-

tion where the error occurred may thus be isolated.

The displays will occur in the following sequence:

1) The display'will initially be blanked following an interval

start command.

2) The display will then indicate the results for the start

of the first interval, either when the microprocessor has

completed the micro-sequence for the initial data, or when

the micro-sequence is aborted due to the receipt of new

data (representing the completion of the initial count).

3) The display will next indicate the results for the com-

pletion of the first integration period, either when the

micro-sequence is completed or aborted only if continuous

measurements are being made.

4) If continuous count measurements are being made, the dis-

play will indicate the results of subsequent measurements,

in a manner similar to (3).

The delay from the completi-on of a measurement to the comple--

tion of the micro-sequence (when the results of that measure-

ment are displayed) is approximately 1.8 seconds. When using

the unit in the 0.5 second continuous count mode, only NB+D

and NO will be displayed. When using the unit in the 1-second

continuous count mode, N0, IB+D' FD' and VR will be calculated.

When using larger integration periods, or when in the single

count mode, all parameters are calculated.

When in the single count mode with a 0.5- or 1-second inte-

gration period, the AR and coincidence delay calculations are

not made on the data at the start of the measurement. The

data appearing after the completion of the integration period

will always be invalid for the coincidence delay, and will be

invalid for the AR display if the AR accumulator was in use.
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Since no indication of this erroneous condition is given to

the user, data should not be used. Similarly, ignore the AR

accumulator and coincidence delay data if the integration

period was extended from the 0.5- or 1-second periods in the

continuous count mode.

The microprocessor calculations should be the same whether in

the DRO or NDRO modes of operation, with the exception of the

AR accumulator display. Only the change in NO and NB+ D over

the given integration period is used in the calculations. The

resolution of the displayed navigation parameters will not

improve with subsequent continuous measurements. The NDRO

raw data is, of course, available to the 1218 computer, and

improved resolution may be obtained with appropriate algorithms

in the computer software. The improvement in resolution by

using the NDRO mode of operation may be observed by comparing

the computer results to the OWD extractor display.

When comparing the extractor display to external parameter

measurements, the following parameters are to be used:

FB - input bias frequency = 1.00 MHz

F0  - input reference frequency = 1.25 MHz

FD (at transponder input) = FD (at digital input) x 221/192

FD (at transponder input) appears on the extractor

display.

AT - transponder input wavelength = 0.1641799015 meters

Nominal self-test equivalent doppler off-set frequency =

-328,869.0477 Hz (at transponder input)
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7.6 EXTERNAL CONNECTIONS

Connection of the extractor unit is illustrated in Figure 7-4.

Input and output cables for the 1218 computer plug into the

appropriately marked connectors at the rear of the extractor.

The AC power cable is plugged into the 115 VAC connector.

The 76.0833 MHz transponder intermediate frequency output is

connected to the "76 MHz" input. A 5-MHz precision frequency

standard should be connected to the "5 MHz" input. The 5 MHz

input levels are sensitive, and should be no less than 1-volt

peak and no more than 2-volts peak into a 50 ohm impedance.

Input levels outside of this range will cause erroneous

operation of the extractor.

The 1.25 MHz F0  signal is internally generated in the extractor.

If a different F0 is desired, such as 'when making resonance

or accuracy tests, a 12-volt square wave signal (never greater.

in frequency than 1.5 MHz) may be connected t.o the "F0 "
connector. The connector input impedance is 600 ohms. The

extractor will automatically detect the presence of the

signal at the F0 input and switch to the external reference.

The extractor will switch back to the internal 1.25 MHz signal

upon loss of signal at the F0 input. Remember that the display

microprocessor assumes a 1.25 MHz reference frequency, and

displayed parameters will be correspondingly in error when
using different reference frequencies.

Two other connectors are provided at the rear of the extractor.
The COINCIDENCE output provides a 12-volt, 1 - microsecond
positive pulse whenever zero-crossing coincidence of the F0
and FB+D signals occurs (within the aperture of the coincidence

detector). This output is useful when observing measurement

delays and resonance effects.

The STROBE output provides a 12-volt, 300 nanosecond, positive
pulse at the beginning and end of the actual integration periods.

The positive transition of this pulse may be used to measure
the actual integration period length, or to synchronize the

measurement period of an external counter (such as the HP
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computing counter) to the extractor measurement period. In

this way accurate comparisons may be made when sweeping the

transponder input frequency.

The coincidence and strobe-outputs are capable of driving a
600-ohm load.

7.7 CHANGING COINCIDENCE APERTURE

The coincidence aperture may be changed by moving the straps

located on the coincidence detector board (Board 1). Remove

Board 1 from the digital nest, .and set the straps as desired.

The straps (one per delay line) are located on the wiring

side of the board in back of the delay lines. From the

wiring side, the delay line to the left controls the NB+D
pulse width, while the delay line to the right controls the

NO pulse width. Strap Positions 1 through 10 correspond to

10% through 100% of the total delay (in nanoseconds) stamped

on the delay line. The straps are run from the desired delay

line tap to the path running between the taps.

The coincidence aperture is the sum of the NB+D and NO pulse
widths. It is preset at 200 nanoseconds, the minimum aperture

to eliminate resonance effects over the doppler range.
Smaller apertures will result in greater frequency resolution
at the expense of increased time delays. The test points on the

coincidence board may be used to verify board operation. Test

point A corresponds to NB+D and the width of the pulse at this
point should match the delay line setting. Test point B

corresponds to the NO pulses. Test.point C represents

the coincidence of the pulses at points A and B. The test

point signals are .standard ECL level outputs.

100-nanosecond delay lines are normally used on the coincidence

board. 20-nanosecond delay lines are also supplied with the
unit. These delay lines may be plugged in the desired delay
line sockets to obtain very narrow pulse widths.
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When using the 20-nanosecond delay lines, do not set the

taps below 4-nanoseconds (Tap 2), since the 1-nanosecond

propagation delay and rise time of the coincidence logic

will severely distort the coincidence pulses.

A data sheet for the delay lines is shown in Figure 7-5

for the users information.
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SECTION 8

PERFORMANCE RESULTS

8.1 PERFORMANCE TEST PROCEDURE

The vernier doppler extractor breadboard was tested to

verify that required specifications were met and that the

performance analysis of Part I was valid. The test procedure

included five separate tests of accuracy and time delay

under various conditions of coincidence aperture width

(coincidence pulse width into the "AND" gate), doppler

off-sets, doppler rates, integration period length and S-

Band signal level.

The test procedure used the test equipment configuration

of Figure 8-1. The Hewlett-Packard L-Band frequency

synthesizer was used, along with a frequency doubler, to

generate a reference S-band signal for the S-band trans-

ponder. The extractor breadboard obtained the doppler

measurement from the 76.083 MHz transponder output (J7

of Chassis Sub-Assembly Al). The Hewlett-Packard computing

counter supplied a comparison doppler measurement from the

one megahertz bias frequency in the extractor. A common

quartz oscillator supplied clock and synthesizer reference

signals to all units through the distribution amplifier.

Since a common oscillator was used the tests did not

include frequency drift effects in the measured results.

The purpose and procedure for obtaining the five extractor

sensitivity tests follows:

8.1.i TEST #1 -- COINCIDENCE APERTURE SELECTION

Purpose:

To initially define an operational coincidence aperture

which will produce the greatest doppler measurement accuracy

for a'maximum time delay (skewness) of 100 /us.
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Procedure:

The time delay (skewness) statistics depend on the coin-

-cidence aperture and the ratio of the bias plus doppler

frequency to the clock frequency. At the clock frequency

of 1.25 MHz the maximum delay occurs at zero doppler where

F(B+D)/F = 4/5. Thus, at zero doppler about 100 measure-

ments of time delay will be made to determine the delay

statistics for coincidence aperture (sum of the two pulse

widths) of 50, 70, 90 and 100 ns. From these measurements

the expected time delay and 95 and 99 percentiles will be

computed. From these computations a minimum aperture will

be selected which produces a 99 percentile time delay of

less than 100 us. The selected aperture will then be used

for all other accuracy measurements of the doppler extractor.

At the selected aperture, about 400 additional measurements

of the time delay will be made to construct detailed

statistics of the time delay such as histograms, cummulative

probability curves as well as mean and percentile levels

of time delay.

8.1.2 TEST #2 - DOPPLER SENSITIVITY TESTS

Purpose:

To verify the extractor accuracy at various values of

doppler off-set.

Procedure:

The doppler accuracy measurements will be made using an

integration time of 0.5 seconds and a S/N ratio into the

S-band transponder of about 30-40 dB.

Approximately 30 measurements will be made at doppler off-

sets of approximately 0, 30,0-0 and 60,000 Hz.

8.1.3 TEST #3 - SENSITIVITY OF DOPPLER ACCURACY TO SIGNAL
LEVEL

Purpose:

To determine the range of signal levels over which the

doppler extractor is capable of meeting the accuracy

requirements.
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Procedure:

The S-band transponder threshold signal level which

maintains continuous lock will be determined. Approximately

30 measurements of doppler accuracy will be made at signal

levels of 3 dB, 10 dB and 30 dB above this threshold

level, using an integration period of 0.5 seconds and a

nominal doppler off-set value.

8.1.4 TEST #4 - SENSITIVITY OF DOPPLER ACCURACY TO
INTEGRATION PERIOD

Purpose:

To verify that the doppler extractor can meet the accuracy

requirements at integration periods of 0.5, 2, 10, 60 and

600 seconds.

Procedure:

Using a nominal signal level 30 dB above threshold and a

nominal doppler off-set, approximately 30 measurements of

doppler accuracy will be made at integration periods of

0.5, 2 and 10 seconds. At integration periods of 60 and

600 seconds approximately 10 doppler measurements will be

made.

8.1.5 TEST #5 - SENSITIVITY OF DOPPLER ACCURACY TO
DOPPLER RATES

Purpose:

To verify that the extractor can meet the accuracy require-

ments at the maximum doppler rate of about 4000 Hz/second.

Procedure:

The L-Band synthesizer will be frequency swept at approx-

imately 2000 Hz/sec (4000 Hz./sec at S-Band). S-band signal

level about 30 dB above threshold and a doppler integration

period of 0.5 seconds will be used. Doppler measurements

will then be obtained simultaneously using both the OWD

extractor and the computing counter. The computing counter

will be used to define the actual average value of doppler

over the integration period. These values will be. compared

to the extractor values to determine the measurement errors.
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Since it is important to have a small time delay for good

doppler accuracy, when a doppler rate is present, the

initial and final time delays will also be measured. With

the time delay measurements, any large doppler errors can be

analyzed to determine if they wt~'e caused by large time

delays.

8.2 PERFORMANCE RESULTS

8.2.1 DOPPLER EXTRACTOR ACCURACY

Figure 8-2 shows the results of the sensitivity of doppler

accuracy to integration time and coincidence detector

aperture (twice. the pulse width). The results indicate

that the extractor is capable of measuring the S-band

doppler to an accuracy of 0.-03 Hz or better if aperture

widths of 15 ns are used. This error is primarily caused

by the quantization error for short averaging intervals

as shown by comparison with the expected quantization e.rror.

At long averaging intervals (>5 seconds), the error is

greater than the expected quantization error primarily due

to clock and reference frequency instability. With an

aperture of 180 ns, the accuracy degrades to about 0.3 Hz

in a 0.5 second averaging period. This can be compared to a

conveiitional zero crossing counter which would normally

have a peak error of 2 Hz in a 0.5 second averaging period.

Measurements of doppler accuracy with apertures less than

15 ns were not made although the breadboard was designed

to operate with an aperture as low as 2 ns. Had this

aperture been used in the measurements the expected peak

quantization error would be 0.008 Hz in a 0.5 second

averaging period.

8.2.2 TIME DELAY STATISTICS

As described in Part I, the peak time delay between a

command and actual start of the counters, or time between

coincidences, is sensitivie to the aperture width and the

ratio of.the bias frequency to clock frequency (N/M).
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If the aperture width (2P) is made shorter than T /N(To=1/F

clock period) the time delay could be infinite. That is,

a coincidence will never occur and the logic circuits

would receive no command to start the counters. In a

practical system, however, phase jitter will eventually

cause a coincidence to occur.

If the aperture width is made less than To/N, the maximum

delay will occur when N is a minimum value. Over the

doppler range of + 60 KHz, N is a minimum at zero doppler

[(FB + Fd)/F ° = 1.00/1.25 = 4/5] and has a value of 4. There-

fore, large delays can be expected whenever the aperture

is less than 200 ns CTo/N = 800 ns/4).

Figures 8-3, 8-4 and 8-5 show the statistics of the time

delay for apertures of 200 ns, 180 ns and 15 ns, respectively.

With an aperture of 200 ns the delay is uniformly distributed

with a maximum delay of four microseconds. As the aperture

is decreased to 180 ns the distribution of delays appears to

follow a Rayleigh distribution with large values of delay

occurring occasionally. At an aperture of 15 ns very large

delays are common. With this aperture delays above 30

milliseconds occur half of the time.

Figure 8-6 shows the sensitivity of the 95 percentile value

of time delay to the aperture width. The results show a

nearly linear relationship between the logarithm of the time

delay and the value of the aperture width.

As the doppler shift changes from the highly resonant

condition of zero doppler the time delays decrease rapidly.

For example, at an aperture of 15 ns, the 95 percentile time

delay is about 50 us at zero doppler. However, at a

doppler off-set of less than 500 Hertz, the 95 percentile

delay decreases to only 300 us.

If there would be a range rate when the doppler shift is

near zero, the zero doppler resonant condition would be

short lived. For example, a doppler rate of 1 KHz/second
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would cause a shift from +500 Hz of doppler to -500 Hz in

1 second. Thus, the resonance would not last more than

one second and time delays in excess of 300 microseconds

would occur only rarely even with aperture widths of 15 ns.

8.2.3 SENSITIVITY TO S-BAND SIGNAL LEVEL

The results of the error sensitivity tests to S-band signal

level are shown in Figure 8-7. These results show that the

error is constant(primarily due to quantization error at the

wide aperture of 200 nanoseconds-) at less than 0.5 Hertz

as long as the signal level is about -118 dBm or larger.

These measurements were made at an integration period of 0.5

seconds. The threshold signal level of the S-band transponder

(serial number 127) was determined to be about -128 dBm.

This is the signal level at which phase lock was sporadic.

Thus the doppler extractor is capable of resolving the

S-band doppler offset to an accuracy of 0.5 Hertz with
S-band signal levels only 10 dB above the transponder thres-

ho.ld signal level.

8.2.4 SENSITIVITY OF EXTRACTOR ACCURACY-TO DOPPLER OFFSET

The extractor accuracy was determined for three different

doppler offsets (10,30,000 and 60,000 Hertz) at a constant

integration period of 0.5 seconds. These results are

presented in Figure 8-8 along with the predicted variation.

The predicted variation is 2P (FB+Fd). Since a 60 KHz

variation in Fd varies FB + Fd by 6%, a 6% variation in

the doppler error is expected. The actual variation was

observed to Le about 30%. These results, however, agree
within.the statistical accuracy .of the tests. With 50

measurements at each doppler offset, the actual error could

differ from the measured errorby. as much as 20%. The

curves of Figure 2.6 show that no large deviation from

the predicted results is present.

The curves also show that the measured error is less than

the predicted error for all doppler offsets. This could
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be due to an actual coincidence aperture different from the

200 ns assumed in the tests. The aperture results from a

tap on a 200 ns delay line and the actual delay was not

measured.

8.2.5 SENSITIVITY TO DOPPLER RATES.

The accuracy of the doppler extractor was also tested with

doppler sweep rates of 4600 Hz/sec. The doppler extractor

measured the net doppler shift over a period of 0.5 second

in the range of zero doppler. That is, the extractor

began counting when the doppler shift was in the range of

+ 10 KHz and was stopped 0.5 seconds later. The Hewlett-

Packard computing counter was simultaneously (within the

time delay statistics) started and stopped over the same

time intervals. The peak averaging time difference between

the two counters could have been as high as 11.6 vs. (+4.8

ps variation for the extractor time interval and + 1 ps

for the computing counter). .At a sweep rate of 4600 Hz/sec

and an 11.6 ls time skewness, the peak error caused by the
-6

time interval skewness should not exceed 106 Hz. Thus,

the extractor error should not.increase with a sweep rate of

4600 Hz/sec.

Based on 50 measurements of doppler, the peak extractor

error was 0.409 Hz when compared to the computing counter.

The standard deviation was 0.185 Hz. This compares with

predicted values of 0.4 Hz peak error and 0.163 Hz f'or the

standard deviation. These predictions are based on an

averaging time of 0.5 seconds and a coincidence aperture

of 200 ns. Thus, even with 'the high sweep rates the

vernier extractor is able to measure the doppler to within

+ 0.4 Hz peak error over an integration period of 0.5 seconds.

This corresponds to a peak cycle count error of + 0.2

cycles regardless of the averaging time.
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PART III

FLIGHT HARDWARE DESIGN.

This part of the report discusses a preliminary

flight hardware design of the vernier doppler

extractor. This design was in response to a

Rockwell International specification for an

extractor to interface with TDN and SGLS trans-

ponders and extract doppler to an accuracy of

0.3 cycles. Additional extractor specifications

and a design approach are discussed. A descrip-

tion of the preliminary design is presented

showing both the electrical and mrecianical designs.

Topics discussed in this part include:

SECTION 9 EXTRACTOR SPECIFICATIOiNS

SECTION 10TO DESIGN APPROACH

SECTION 11 PRELIMINARY DESIGN



SECTION 9

EXTRACTOR SPECIFICATIONS

9.1 SPECIFICATIONS FOR A FLIGHT MODEL DOPPLER EXTRACTOR

A preliminary design of a flight hardware vernier doppler

extractor has been made in response to a Rockwell International

specification. The specification calls for an extractor

capable of obtaining doppler measurements to an accuracy of

approximately 0.3 cycles (9 cm/sec in a half second averaging

period) referenced to the S-band frequency. The extractor

is required to interface with STDN or SGLS transponder output

frequencies. Two output frequencies are specified which

could have lowest values of 18.47917 and 19.0625 MHz,

respectively. Additional Rockwell specifications which

directly affect the doppler extractor performance and design

are shown in Tables 9-1, 9-2 and 9-3. These specifications

include extractor performance requirements (Table 9-1),

extractor interface requirements (Table 9-2) and environ-
mental conditions in which the extractor.must operate

(Table 9-3).

The extractor is further specified to perform the functions

of RF mixing and translation, frequency synthesis, control

logic and timing, digital counting, storage, buffering

and digital input/output. These functions are to be

performed with the following requirements:

a) Receive and select from one of two inputs the

RF output signal from the associate energized

S-Band receiver from which doppler is to be

determined.

b) Receive from an external frequency standard a

4.608 MHz reference signal.

c) Generate, in synchronization with the 4.608 MHz

reference, the internal frequencies and timing

signals required for the functional operation.

9-1



TABLE 9-1

PERFORMANCE REQUIREMENTS

OPERATIWG RANGE RATE: 0 to + 8230 mtrs/second

RANGE (+ 60 kHz)

ACCELERATION: 0 to + 610 mtrs/second
2

(+ 4500 Hz/sec)

ACCURACY INTEGRATION 3 SIGMA 3 SIGMA
INTERVAL (SEC.) MEASUREMENT MEASUREMENT

ERROR (CYCLES)i ERROR (HERTZ)j

0.1 0.3 3 Hz

0.5 0.3 0.6 Hz

1.0 0.4 0.4 Hz

2.0 0.5 0.25 Hz

10.0 2.3 0.23 Hz

30.0 6.0 0.20 Hz

60.0 12.0 0.20 Hz

600.0 120.0 0.20 Hz

The maximum bias error of the doppler shall

not exceed the effect of a 2 Hz drift of the

stable reference frequency (at S-band) per day.

MEASUREMENT The start time of the doppler and time interval

TIME counts shall be synchronized to within 100

CORRELATION microseconds of the initiation of the start

interval time discrete. The data output from

the doppler extractor shall be the actual time

interval specified to an accuracy of 100 nano-

seconds. The doppler and interval counter shall

start within 1.0 nanoseconds of each other, and

shall be outputted within 1.0 nanoseconds of

each other.
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TABLE 9-2

INTERFACES

S-BAND MODE S-BAND FREQ. FVCO

TRANSPONDER SGLS-LO 1775.733 MHz 18.479166 MHz
EXTRACTOR SGLS-HI 1831.787 MHz 19.062500 MHz
INTERFACE

STDN/TDRS- 2041.947 MHz 18.479166 MHz
FREQUENCIES LO

(ZERO DOPPLER) STDN/,TDRS- 2106.406 MHz 19.062500 MHz
HI

TDRS STDN SCFTRACKING

STATION SHORT TERM 2.X 10- 12  TBD*

FREQUENCY (ONE SEC)

-1212UNCERTAINITY 2 X 10

LONG TERM 5 X 10- TBD*

(ONE YEAR)

5 X 10-12

* NOTE: THOUGHT TO BE COMPARABLE TO
TDRS AND STDN

MASTER FREQUENCY 4.608 X 106 Hz

TIMING STABILITY (1 SECOND) 1 X 10-10

UNIT (24 HOURS) 1 X 10-9

(MTU) AFTER FULL MTU STABILIZATION

IMPEDANCE

MTU OUTPUT = 75 OHMS PLUS OR MINUS 7 OHM

EXTRACTOR INPUT = 75 OHM PLUS OR MINUS 7 OHM

POWER LEVEL (INPUT TO EXTRACTOR) 6 DBM
OR MINUS 3 DB
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TABLE 9-3

ENVIRONMENTAL CONDITIONS

Performance shall be within specification under the

operational conditions, and subsequent to the nonoperational

conditions, given below:

Operational

Temperature: Mounting surface from 350 to 120'F

Pressure: 12 to 18 psia

Humidity: 8 to 100 percent relative

Lightning: In accordance with MFO04-002 for

indirect effects

Random Vibration (Qualification)

20 - 150 Hz, +6 dB/oct. to 0.09 g2 /Hz

150 - 900 Hz, 0.09 g2 /Hz

900 - 2000 Hz, -9 dB/oct.

Duration, 48 minutes/axis

Random Vibration (Acceptance)

20 - 80 Hz, +3 dB/oct. to 0.067 g2 /Hz

80 - 350 Hz, 0.067 g2 /Hz

350 - 2000 Hz, -3 dB/oct.

Duration, TBD minutes/axis

Acceleration: + 5 g, all axes

Nonoperational (Packaged)

Temperature: -65 to +1500F

Pressure: 3 to 16 psia

Sand and Dust: Desert and ocean beach area

conditions; also suspended dust

Shock: 20 g terminal sawtooth shock pulse

of 11 ms duration in all axes.

Other: Sun, rain, hail, snow, ozone, fungus.

Detailed requirements are TBD.
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d) Provide RF mixing and frequency translation as
required to obtain a known bias frequency upon

which a known fraction of the S-band doppler

shift is impressed.

e) Provide continuous digital counting capability to

simultaneously count both the bias frequency plus
doppler shift and some multiple of the stable

reference frequency. Both counters shall operate

for a continuous period of time of not less than

10 minutes before counter recycle and the counting

process shall not be disturbed or interrupted by the

data read out process. The counter which counts

bias frequency plus doppler shift hereafter shall

be referred to as the doppler counter and the

counter which counts some multiple of the stable

reference frequency shall be referred to as the inter-

val counter. The interval counter shall be

continuous and have the same type recycle character-

istics as the doppler counter.

f) Provide two modes of counter opertion:

1. Continuous counting of bias frequency plus.

doppler and continuous counting of the multiple

of the reference stable frequency with independent

automatic recycle to zero when either register

is full without stopping continuous count.

2. Continuous counting of bias frequency plus

doppler and continuous counting of the multiple

of the reference stable frequency after the

doppler counter has been reset to zero at

computer command. The interval counter shall be

reset to zero when the doppler counter is reset

to zero at computer command.
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g) Provide for transfer of the count number from the

doppler and interval counters to temporary digital

storage upon receipt of an externally computer

generated transfer pulse or an internally generated

transfer, pulse discrete, without interrupting the

continuous doppler and interval count.

h) Provide for generation of the doppler counter transfer

pulses at precise intervals of. time as commanded

in advance by receipt and storage of digital command

words from the computer. Measure the required command

time interval by counting cycles from a clock

synchronized to the external frequency standard

input signal.

i) Initiate the start of the time interval measurement

upon receipt of a "start interval time" discrete

signal from the computer interface.

j) Temporarily store the .oppler counter measurements

along with any required auxiliary digital measurements

in input/output buffers within the extractor.

k) Accept input digital command read out digital data

from/to the external computer as specified herein.

1) Accept digital and discrete mode status information

from each of the two associated S-band receivers.

Adjust mode operation within the extractor to the

proper operational mode to match the S-band receiver

mode in use. Output the mode status to the computer

along with each associate doppler data digital

readout. The receiver mode status shall identify

SGLS, STDN, or TDRS mode, high or low frequency

in use, and VCO coherency condition.

m) Receive and select from one of two inputs the

digital signal containing ground station identification

data and clock from the associate energized Network

Signal Processor (NSP).
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n) Temporarily store the inputted eight bits of digital

ground station data which shall be updated at a 9 Kbps

rate at successive 20 milliseconds time intervals

from the network signal processor.

o) Provide for transfer of the eight bits of ground

station data to the input/output buffers -within the

extractor to permit readout of this data to the

external computer along with the doppler, time

interval, and discretes block of words.

p) Initiate the start time of the transfer of the

eight bit ground station data from temporary input

storage to the extractor computer input/output

buffers as follows:

1. Monitor the 8-bit input ground station data

and the start AT discrete signal from the

computer as input to logic.

2. Logic shall initiate data transfer pulse within

one millisecond following conclusion of the-8-bit

read-in period provided that a start AT discrete

has been received from the computer.

q) Provide two instrumentation outputs.

r) Perform an end-to-end self-test of all functional

paths within the unit upon receipt of a test

mode discrete.

s) The extractor shall operate from main DC power in

accordance with MFO004-002. The maximum power shall

not exceed 10 watts at 28 volts DC main bus. The

extractor shall be designed for continuous operation.
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SECTION 10

DESIGN APPROACH

10.1 VERNIER DOPPLER EXTRACTOR REQUIREMENT

The transponder output frequencies contain only a fraction of

the S-band doppler frequency )less than 1% typical). Thus,

to achieve a 0.3 cycle accuracy for the S-band doppler

frequency, the extractor must be capable of measuring the

transponder output doppler to an accuracy up to 100 times

better than 0.3 cycles (i.e., up to 0.003 cycles). Further,

if the transponder VCO loop S/N ratio is 10 dB, then VCO

phase jitter will contribute about .0015 cycles (3a) to the

total error at the VCO output frequency or ..15 cycles referenced

to S-band. To maintain a total error of 0..003 cycles on the

VCO reference frequency the vernier extractor quantization

error must be less than .0026 cycles. The time delays

associated with the doppler measurements are not to exceed

100 us. The selected vernier extractor approach is capable

of meeting theaccuracy requirement by obtaining a 1 MHz

bias frequency containing the -partial doppler, and using

"AND" gate apertures of 2.6 nanoseconds. However, the time

delays associated with this .narrow aperture would result

in measurement delays of as much as 714 microseconds. This

is obtained from the relationship between doppler-accuracy

and time delay discussed in Part I. That is:

2F +dmax td
eN max = .0026 cycles

N F

where eN is the cycle count error (<.0026 cycles), Fd max
is the maximum doppler shift on the bias frequency (.600

Hz maximum), td max is the maximum time delay, and Fo is

the clock reference frequency.

Re-arranging the above equation and using a clock reference

frequency of 1 MHz results in the following. relationship.

10-1



t =1d max = NF - 2 Fd

or

td max 1400 < 714 ps.

It is possible to obtain the required resolution within the

required time delay limits by operating the extractor with

higher clock and bias frequencies and shorter coincidence

apertures. However, from the above expression, the clock

frequency (and hence the bias frequency) would need to have

a value of about 4.3 MHz, and the coincidence aperture would

need to be 0.6 nanoseconds. These requirements would place

extreme demands on circuit power, complexity and reliability

for a flight hardware extractor. To relax the requirements

for high clock and bias frequencies and short coincidence

apertures, the transponder doppler reference frequency could,

be multiplied to achieve a doppler signal closer to the true

S band doppler". With such a multiplied doppler reference,

the extractor resolution (quantization) requirements could be

increased above the required 0.0026 cycles, resulting in

less time delay for the same clock frequency. For example,

if the doppler frequency were multiplied by 10, then the

maximum time delay would be decreased by 10. Tha.t is:

t = < 71 psdmax (.0026)(10)(1x10 6 Hz) - 2(10)600

for a 1 MHz clock frequency.

This delay assumes that the bias frequency is carefully

chosen very close to the clock frequency. In practical

systems with small integer frequency multipliers and dividers

it is not always possible to select the optimum bias

frequency. Thus, additional doppler multiplication may be

required to simultaneously obtain the resolution and

time delay requirements.
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In addition to operating with a preferred bias frequency no

greater than about 1 MHz, the flight hardware vernier extractor

should operate with coincidence apertures that do not impose

severe hardware constraints on the coincidence circuits.

Pulse widths of about 5 to 10 nanoseconds, which result in

coincidence apertures of 10 to 20 nanoseconds, would not be

difficult to obtain for a high reliability low power extractor.

A pulse width of 5 nanoseconds (aperture = 10 nanoseconds) would

limit the vernier extractor re.solution to about 0.01 cycles

with a 1 MHz bias frequency. These restrictions would thus

require a doppler multiplication of about 4 to achieve the

desired S-band doppler resolution of 0.26 cycles.

10.2 DESIGN DESCRIPTION

A response to the Rockweell specification is shown by the

general circuit configuration of Figure 10-1. The objectives

of this circuit will be to obtain a suitable, injection

frequency which will allow high multiplication and obtain the

multiplied doppler on approximately a 1 MHz bias. If the

vernier extractor is to obtain the required doppler resolution

of about 0.2 cycles (so that the RMS error < 0.3 cycles) with

pulse widths of 10 ns or more, then the required multiplication

must be at least the following:

1D 10 .5
cF (2PFB) < 0.2 cycles

or K > 1.105P where P is in nanoseconds and FB = 1 MHz.

with P 10 ns

K> II

To obtain high multiplication (of 11 or more) the frequency

output of the first mixer should be nearly the same regard-

less of which VCO input frequency is selected, to allow

the multiplying loop to easily acquire the signals with

narrow bandwidths. A system which meets the desired goals

and can obtain doppler resolutions of 0.2 Hz or better

with l MHz counters is shown in Figure 10.2 A variable
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multiplier is used in the circuit to obtain nearly identical

multiplied output frequencies. Thus, the multiplier VCO

.oop,can use a very stable VXCO allowing the use of relatively

narrow loop bandwidths. The bias frequency output to the

vernier extractor is approximately 1.4 MHz containing

approximately 1/2.to 3/4 of the full S-band doppler. To

obtain the required resolution of 0.2 Hz, the vernier

extractor must provide an additional resolution improvement

factor of at least 9. From the accuracy/time delay trade-

offs of Part I, M must be at least 9, so that the ratio

N/M (the ratio of bias plus doppler to clock frequencies)

cannot be less than 8/9. Thus, the clock frequency must be

no more than 9/8 of the minimum bias plus doppler frequency

( 9/8 of 1.357 = 1.515 MHz) if the clock reference frequency

is chosen greater than the bias frequency. If the clock

reference is chosen below the bias plus doppler frequency,

it must be no smaller than 8/9 of the maximum bias plus

doppler fr.equency. That is, the clock frequency must be

greater than or equal to 1.286 MHz (8/9 of 1.447 MHz).

In the system of Figure 10-2, a clock reference frequency

greater than the bias frequency was chosen since a convenient

ratio of the available clock frequency could be obtained

which nearly meets the restrictions described above. The

chosen clock reference frequency of 1.536 MHz is slightly

above the maximum allowed frequency of 1.515 MHz, however,

this simply means that the extractor error will be slightly

more than the desired 0.2 cycles (0.26 cycles is the

maximum allowable quanitzation error). With the selected

clock frequency, the following paragraphs will show that

the extractor quantization error will be no greater than 0.216

-cycles.. Thus, selection of a more desirable clock reference

(for improved accuracy) is probably not wor'th the added

circuitry required to generate the more desirable frequency.

With a clock reference frequency of 1.536 MHz, the ratio

of the bias plus doppler to clock frequency (N/M) will vary

over the limits from 0.87695 to 0.94206. In terms of the
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ratio of the smallest integers for N and M, the ratio N/M

will not exceed the range from 8/9 to 16/17. Thus , N has a

minimum value of 8, and the minimum pulse width in the

vernier extractor (to allow short time delays) must be 40.7

ns (P>T /2N, To=651ns and N=8). Since M ranges from 9 to 17,

the maximum possible delay will be less than 11 Ps (MTo).

10.3 DOPPLER EXTRACTION ACCURACY

Selecting a pulse width of 41 ns, the quantization errors of

Table 10-1 will result, It is seen that the maximum quant-

ization error will not exceed 0.216 cycles. The combined

quantization error and noise induced jitter error is also

shown in the table. This total error will be no greater

than 0.27 cycles which is below the required maximum value

of 0-.3 cycles. The error resulting from the clock oscillator

drift is not included in the table since this error depends

on the selected clock oscillator. If the clock is only

stable to one part in 1010, the maximum oscillator drift

error (30) could be as high as 0.6 cycles in a one second

averaging period (0.6 Hz for all averaging periods). This

error alone would exceed the specifications, so that it is

.assumed that either the clock stability error is not part

of the total error specifi-cation or a better oscillator will.

be selected. An oscillator stability of about 2X10 -  would

be required to obtain a maximum (3a) root mean squared

error of 0.3 cycles or less.
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TABLE 10-1

MAXIMUM ONE WAY DOPPLER EXTRACTOR ERRORS

INPUT FREQUENCY RATIO OF S-BAND RESULTANT PEAK MAXIMUM NOISE COMBINED
FROM S-BAND DOPPLER TO COUNTED QUANTIZATION INDUCED JITTER ROOT SUM
TRANSPONDER DOPPLER (R/K) ERROR FROM ERROR SQUARED ERROR

COMPUTER DOPPLER
? (E:=+2P(F +F D)R* (S/N = 10 dB)

18.479167 MHz 110.5 < 1.842 <0.216 Cycles <0.158 Cycles <0.268 Cycles

60

19.0625 MHz 110.5 < 1.348 <0.160 Cycles <0.158 Cycles <0.225 Cycles
82

*P=41 ns (82 ns APERTURE)



SECTION 11

PRELIMINARY DESIGN

11.1 ELECTRICAL DESIGN

The doppler extractor illustrated in Figure 11-1 contains

-the circuitry necessary to perform the following functions:

a. RF preconditioning and frequency synthesis

b. Doppler extraction

c. Control and output data formatting

The RF preconditioner selects the appropriate transponder

VCO signal upon command of the transponder mode logic. It

provides the appropriate frequency translation and multi-

plication required to produce the bias and scaled doppler

frequency.necessary to meet the specifications as outlined

in the previous sections. The multiplication ratio is

modified to produce the desired doppler frequency scale

factor for the various transponder modes. In addition, the

unit derives the reference frequency for the doppler extractor

and the injection frequency required to perform the end-to-

end self test function.

The doppler extractor utilizes the coincidence detection

technique developed by RCA. This technique has the advantage

in that it achieves the required precision at relatively low

counting rates (approximately 1.54 MHz). The doppler extractor

circuitry consists of 'the doppler plus bias frequency and

reference frequency counters, associated parallel to serial

shift registers, and coincidence detector. The fixed time

interval counter provides the selectable time intervals of

0.1 second, 10 seconds, and 60 seconds, required in the

fixed time interval readout mode. The extractor mode logic

provides the necessary configuration modification required,

in order that the extractor may operate in either the

Computer) bmmand or the Fixed Time Interval mode.
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The transponder mode logic accepts the transponder #1 and #2

mode discretes which define the transponder frequency and

associated receiver circuit ratio "R". The transponder #1

Data Good and transponder #2 Data Good discretes indicate

the phase coherency of the phase-lock loop receivers. The

transponder select discretes #1 and #2 selects the associated

-transponder mode status and data good discrete to control

the RF preconditioner, and provides the mode and status

conditions to the output buffer registers. The MTU good

discrete and the selected Data Good discrete are combined

to provide a Data Valid discrete to the instrumentation MDM.

The MTU Oscillator Switch discrete is strobed as a status

condition to the serial data output buffers. The self test

discrete input to the transponder mode logic places the system

in the self test mode, and the status is indicated to the

output buffers for transmission to the MDM interface.

Selection of the NSP #1 or the NSP #2 ground station dat.a

and associated clocks is accomplished by the presence of

either the NSP #1 or NSP #2 select discretes in the NSP

select logic. The ground station data is temporarily stored

for subsequent readout to the MDM interface.

The measurement mode command data is demodulated in the

Manchester II data decoder and transferred to the auxiliary

storage register after a parity check is performed. The

command data indicates whether the measurement is to be

made in the Computer C.ommand Mode or in the Fixed Time

Interval Mode. The Fixed Time Interval Mode command

indicates the integration period.

In the Computer Command Mode, the data is read out at time

intervals determined by the computer. The Start AT discrete

from the MDM initiates the readout cycle. The first doppler

extractor coincidence pulse after the receipt of the Start

Ar transfers the data in the FB+FD and FR counters to the

parallel to serial shift register for temporary storage

and initiates .the data transfer cycle. The maximum delay
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of the first coincidence pulse with respect to the Start

AT discrete is 11 microseconds.

Upon r.eceipt of the data transfer command, the message

formatting and data readout timing logic initiates the

transfer of the transponder and measurement mode status and

the selected NSP data to the output buffer registers.

Transfer of the status data to the output buffers results

in a data ready discrete. Receipt of the MSG out and

word discretes initiate the transfer of data to the MDM.

Upon receipt of the word discrete, the message formatter

initiates the generation of the Manchester II Synch. pattern

and the necessary strobes to transfer the extractor mode and

status from the output buffers to the MOM at a 1 MHz rate.

The data word is encoded in the Manchester II data format,

and the 1 bit parity is generated by the serial parity

generator at the appropriate time. This results in a 20 bit

data word.

Subsequent word discretes transfer the NSP ground st-ation

data and the contents of the doppler FB+FD and FR counters

in a similar fashion.

In the Fixed Time Interval Mode, the data is repeatedly read

out at the specified time intervals. The Start AT discrete

resets the doppler extractor fixed time interval counter and

the FB+FD and FR counters. The first coincidence pulse

following the Start AT discrete initiates the fixed time

interval counter.

At the selected time interval, the fixed time interval

counter initiates the mode logic readout cycle. The first

extractor coincidence pulse following the termination of the

integration period transfers the data in the FB+FD and FR

counters .to the parallel to serial shift registers for

temporary storage, and indicates the data transfer cycle.

The data-transfer cycle is the same as in the Computer

Command Mode. The fixed time interval counter continues to

initiate the readout cycle until the mode is changed.
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The computer has.the capability of changing the doppler

extractor measurement mode at any time except when the

FB+FD and FR registers are being updated by an internally

generated read command. In this condition, the mode change

is delayed by 100 nanoseconds.

The presence of the self test discrete places the extractor

in the self test mode. The measurement mode logic is

placed in the Fixed Time Interval Mode with an integration

period of 1 second, and the BITE detector is activated.

A synthesized frequency is injected at the input to the RF

preconditioner to simulate a transponder signal. Data is

read out to the MDM in the normal manner, and the mode

status word indicates that the system is in the self test

mode. The BITE detector provides the necessary logic to

perform a GO/NO-GO test and provides a BITE discrete to

the MODM interface.

The doppler extractor contains a power converter which derives

the required voltages from the'28 volt supply. A voltage

comparator provides an ON/OFF discrete to the instrumentation

MDM and a Power ON discrete to the MDM when the input voltage

exceeds 24 volts.

11.1.1 RF PRECONDITIONER

The RF preconditioner provides the necessary signal processing

for the doppler circuitry. It translates the transponder VCO

RF signal to a suitable frequency range which makes the use

of low power CMOS logic in the extractor design feasible.

The RF signal is multiplied so that the doppler scale factor

approaches its S-band value and reduces the resolution require-

ments of the extractor logic. To perform the necessary

translations, a local oscillator signal is generated by

frequency synthesis from a frequency standard. The reference

clock signal for the doppler extractor is also de rived from

the same source. A self test feature is included. Figure

11-2 is a block diagram of the RF preconditioner.
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As shown in the Figure 11-2 the RF input signals from the

transponders are buffered prior to the first translation.

Selection is accomplished by a switch, Sl, which is under

control of the Transponder.Mode Logic. The first translation

with mixer, M1, develops a down-conversion. Following this

conversion, the signal frequency is multiplied by a program-

mable multiplier. After this process, the signal is down-

converted again, and provided as a.buffered output signal to

the doppler extractor unit. Both conversions are developed

by injections from a common local oscillator with adequate

isolation between mixers. The local oscillator frequency

is established by frequency synthesis related to a reference

standard.

The doppler extractor reference clock signal is also derived

from this standard and provided as a buffered output to the

extractor.

A self test signal (normally disabled) is provided by the

BITE generator which is synthesized from the reference

standard. When the Self Test Mode is initiated, a switch

S2, immediately following the first mixer, Ml, interrupts the

normal signal path. This test checks the operational

integrity of all the networks, except for the first mixer

and input buffers which are regarded as reliable circuits.

The test has been implemented in this manner and provides

the most cost-effective approach.

When, for example, the transponder mode logic selects the

TDRS/STDN signals, the first translation converts the high

signal to HI (+) 0.246500 MHz and the low signal to LO (-)

0.336842 MHz (the negative sign indicates a sideband inversion).

The programmable multiplier multiplies these frequencies by

a factor of 82 or 60 respectisvely, depending on whether a

HI or a LO RF signal is being processed. The resulting

frequencies at the input to the second mixer are:
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HI 20.213000 MHz

LO 20.210520 MHz

After the second conversion, the output signals have the

following frequencies:

(FB + FD)HI = 1.397000 MHz (+)

+49.2 kHz

and

(FB +-FD)LO = 1.394570 MHz (-)

+36 kHz

The designation, FB, indicates the bias frequency which

develops in each instance in the presence of zero doppler.

To positive and negative deviations indicate the values of

the respective multiplied dopplers, FD.

The BITE test signal of 0.246857 MHz is synthesized from the

4.608 MHz reference. The unit is placed in the HI mode, and

the above signal is injected into the programmable multiplier.

The resultant BITE test signal is:

(FB + FD) BITE-= 1.426274 MHz

Th.e above design utilizes a single injection frequency for

down and up-conversion and results in a relatively narrow

bandwidth programmable multiplier.

11.1.1.1 Input Selector Buffers and Mixers

The input buffers are used to isolate one RF channel from

the other, and provide the required attenuation to develop a

signal level of 0 dBm at the mixer. The presence of.the

synthesized local oscillator at either RF port is significantly

reduced to acceptable levels.

Output buffering is also provided for the signals to the

extractor which include (FB+FD), the bias-doppler signal,

and FR, the reference clock signal. In the latter instance,

special precautions are taken to ensure that operations in the
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extractor will not be reflected as virtual in-band Components

with recirculation in the multiplier chain.

The choice for the mixer networks in the present application

favors a conventional ring-di.ode arrangement, using Schottky-

barrier type diodes. Typical operation prescribes an

oscillator injection of +10 dBm to ensure adequate linearity

when related to the signal level of 0 dBm. Variations of +

3 dB for the RF signal are of little consequence since 
the IF

signal is developed well above the threshold of a, :logical

conversion in a digitally controlled phase-locked 
loop,

corresponding to the 82/60 multiplier chain.

11.1.1.2 Programmable Multiplier

Following the low pass filter, the translated signal is

limited, and frequency multiplication 
is accomplished by

the programmable multiplier. 
In one mode, conforming to the

conditions that the HI signal is selected or the self test mode

is initiated, the multiplier network operates with a factor

82. In its other mode, when the LO signal is selected, it

operates with a factor, 60.

Figure 11-3 shows a block diagram.of the programmable

multiplier which is devised as a phase lock lo-p. The phase

lock loop consists of a phase-frequency detector, 
loop filter,.

VCO, a programmable divide-by-N counter, 
and a divide-by-2

prescaler.

The phase-frequency discriminator 
alleviates the needfor

acquisition circuitry. The bandwidth of the loop is approx-

imately 5 KHz and therefore, the multiplier does not impair

the overall system accuracy.

The VCO signal, which operates nominally at 20.213 
MHz, would

normally include undesirable modulation sidebands 
corresponding

to the input signal to the phase discriminator. These

sidebands are very effectively eliminated by including two

resonant traps.
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11.1.1.5 Bite Generator

The self test feature of the preconditioner provides an

equivalent Ist IF signal which is normally disabled by
switch, S2, as previously described. This signal is

synthesized from the reference standard by the following

relationship.

FBITE = F (56

FBITE = 0.246857 MHz

The divide-by-56 operation is implemented by a digital divider

and a conventional x3 multiplier.

11.1.2 DOPPLER EXTRACTOR CIRCUITRY

The doppler extractor circuitry counts cycles of the analog

doppler-plus bias (FB+D) and reference (FR) signals from the

RF preconditioner in such a way as to permit accurate recovery

of doppler information from the analog signals. The resulting

counts (NB+D and NR) are held in buffer registers for insertion

into the output data stream. The spacecraft computer operates

on the doppler and reference counts to recover the desired

doppler shift information.

11.1.2.1 Coincidence Detector

The coincidence detector accepts the analog signals from the
RF preprocessor and outputs a pulse whenever the zero-

crossings of the two signals are coincident within a

predetermined resolution or coincidence aperture. This

pulse can then be used to start and stop the doppler and

reference counters at or near the zero crossings of the

respective input signals. In this way, the quantization

error in the NB+D and NR counts is reduced to the resolution

of the coincidence detector.

It was shown in Section 10 that a coincidence aperture of

41 nanoseconds is required to meet the accuracy and delay

requirements of the specification. This aperture must be
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The multiplier is terminated in a bandpass crystdl filter

with a passband of about 0.5%. This assures that the

doppler signal with full deviation for both channel selections

will be faithfully transferred to the 2nd mixer. The

corresponding band limits for the filter are:

20.262200 MHz

20.164200 MHz

The filter is also characterized by a 40 dB rejection band-

width of less than 2%, a condition which virtually eliminates

all reference-rate sideband components.

11.1.1.3 Extractor Reference Clock

The extractor reference clock signal is generated very simply

by dividing the reference standard frequency by three. Thus,

FR = FS/3 = 1.536 MHz.

This signal is supplied as an output to the extractor via

several stages of isolation.

11.1.1.4 Local Oscillator

The local oscillator signal is developed at 18.816 MHz and

is derived by the following rational operations, relating

to the reference standard:
F

FLO = ( ) ( . (49)

Since the first factor is also developed as the extractor

reference clock, the latter signal is made common to 'the

synthesis chain for the LO. This process is also implemented

by TTL logic, and after division by 4, the fixed multiplicative

factor, 49, is evolved in a manner similar to that used for

the programmable multiplier with a PLL. The LO signal,

however, is developed as a single spectral line, so that

the terminating crystal filter is designed with a very narrow

bandwidth. Otherwise, the PLL with the phase-frequency digital

discriminator and a fixed divide-by-49 feedback loop operating

with a reference signal of 384 KHz is quite similar.
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maintained within a few nanoseconds under all conditions.

Figure 11-4 is a functional diagram of the coincidence

detector. Two high-speed comparators square up the analog

signals. The comparator outputs drive the doppler and

reference counters, and also trigger two one-shots on

negative transitions. The one-shots produce precise output

pulses. Coincidence is declared when the two pulses coincide,

setting the output flip-flop. The output flip-flop is reset

.on the positive transition of the reference signal. 'In this

way, a coincidence pulse is produced whenever the negative

zero-crossings of the input signals are within the coincidence

aperture. The output pulse width is one-half of the FR
period and is readily handled by the mode control logic.

High-speed logic is required in the coincidence detector

to insure that component and temperature variations in the

logic propagation delays do not produce a coincidence aperture

outside acceptable limits. Logic rise time must be fast

compared to the coincidence aperture so that the aperture is

not disturbed by threshold variations.

Worst-case analysis has revealed that ECL logic is required

to meet the above standards. ECL comparators and ECL 10,000

series devices are proposed. The ECL 10,000-series has

relatively low power dissipation, 2 nanosecond rise time,

and less than 0.2 nano second variation in propagation

delay (per gate) over the specified ambient temperature

range.

The precision one-shots are implemented using -the standard

ECL delay-line technique. Availability of precision delay

lines with 60 ppm/oC temperature coefficients make this

approach feasible. The delay lines will contribute less

than 0.5 nanosecond variation to the coincidence aperture

over the specified temperature range. Coupled with the

propagation delay and threshold characteristics of the ECL

10,000 logic, this guarantees that the aperture can be held

within. a few nanoseconds of its nominal value under worst-case

conditions.
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The ECL logic, with its inherently low output impedance,

readily drives the delay lines (which have nominal impedances

on th. order of 100 ohms).

The width of the coincidence output pulse is approximately

325 nanoseconds with a 1.536 MHz FR. This pulse width is

sufficient to operate TTL logic or CMOS logic operated at

12 volts.

11.1.2.2 Doppler and Reference Counters and Data Storage

Figure 11-5 depicts the counting and data storage arrangement

for the doppler and reference frequencies. Square wave
signals from the coincidence detector drive two 32-stage

synchronous counters. This counter capacity will result in
an overflow period in excess of 46 minutes.

The counters increment on the positive transition of the input
signals. A strobe is generated in the mode control logic

corresponding to the second half-cycle of the input signals.

This strobe will operate the parallel/serial control- on the

parallel to serial shift registers, causing the counter
results to be stored in these registers. Circuit parameters
are adjusted to guarantee that the storage registers are

latched before the counter outputs change due to subsequent
zero crossings.

The message formatter circuit will access the counter data

in the form of four 16-bit serial words, as shown in Figure
11-5. The message formatter will produce four bursts of 1 MHz

clock, 16 cycles per burst. A word selector in the formatter

circuit will insert the desired word into the output data

stream, while the remaining registers will simply recirculate.

In this way, the counter data is held in the parallel/serial

registers until it is inserted in the output data stream.

The timing arrangement described above permits nearly a full

cycle (651 nanoseconds at the 1.536 MHz reference frequency)

to elapse before the data storage registers latch the
counter outputs. This represents the minimum acceptable worst-
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case driver plus counter propagation delay plus register set-
up time requirement. Worst-case specifications for CMOS
components indicate that CMOS counters and registers (operated
at 12 volts) can be used for most stages.

The standard CMOS counters are not quite fast enough (worst
case) to operate synchronously at 1.536 MHz. It is, there-
fore, proposed to use high-speed CMOS or low-power Schottky
TTL components for the initial (hig'h-speed) counter stages,
implementing the remaining stages with standard CMOS. A
technology mix is feasible due to the ready availability of
TTL/CMOS level shifters. Power and package count estimates
for this proposal were based on the use of TTL counters and
appropriate level shifters for the initial counter stages.
The mixed-technology approach results in a substantial power
dissipation saving (compared to an all-TTL approach) at the
expense of two packages for level shifters.

Observe that the approach of Figure 11-5 extracts counter
data non-destructively. The counters are unaffected by the
readout strobe.

11.1.2.3 Fixed Interval Timer and Mode Control

The mode control logic and interval timer are functionally
illustrated in Figure 11-6. There are two basic modes of
operation: Mode a -- .computer commanded readout,!and Mode b --
fixed time interval readout.

In Mode a, the positive transitions of the AT discrete from
the MDM will set a "Strobe Request" flip-flop. The first
coincidence following the strobe request will set a "Strobe
Enable" flip-flop. The strobe enable output will reset the
strobe request flip-flop (insuring that only one readout strobe
is produced for each positive AT transition) and allow the
generation of the readout strobe.
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The readout strobe is used to latch the doppler and reference

counts and to activate the BITE detector in the self-test mode.

The readout strobe also sets a "Data Transfer" flip-flop, which

generates the data transfer command to the message formatter.

The data transfer command is reset upon receipt of data shift

pulses from the message formatter.

In Mode b, strobe requests are generated by markers from an

interval counter. The interval counter counts cycles of a

precision 1 MHz clock from the message formatter. Markers are

produced every 10 5 , 107 or 6 x 107 cycles, depending on the

ratio select leads. The resulting 0.1-, 10-, or 60-second

markers activate the strobe request flip-flop, initiating

strobe generation as in Mode a.

A "Reset" flip-flop is set in Mode b with each positive

transition of the At discrete. This action will reset and

hold the doppler, reference, and interval counters until

receipt of the next coincidence pulse, when the counters

are again permitted to count. In this way, all counting.

is synchronized to zero-crossing coincidence of the extractor

input signals, reducing quantization error as described in

Part I.

A latch is provided to hold the mode select and fixed interval

select leads constant while data is being transferred to the

message formatter. The latch is activated by the data transfer

command. At other times, changes in mode or fixed interval

length select leads are allowed to pass through the latch.

Logic is provided to force the mode control logic to a 1

second fixed readout mode when the sel.f-test command is given.

Propagation delay requirements for generation of the readout

strobe dictate the use of low-power Schottky TTL components

in the strobe logic. The remaining portions of the interval

timer and mode control are implemented with CMOS logic.

CMOS ripple counters are used to generate the interval

markers. These devices readily operate at a 1 MHz clock rate
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(under worst case conditions). The skewing of the interval

markers with respect to At transitions will be less than

13 microseconds (worst case) due to ripple delay in the

counters.

It was shown in Section 10 that the worst-case delay for

the coincidence pulses is 11 microseconds. The coincidence

delay will cause skewing at the start of a measurement and at

each readout. Since the interval timer functions independently

of the coincidence pulses, however, the readout skew is not

cumulative. The total worst-case skew due to interval timer

ripple delay and coincidence is 35 microseconds, well within

the specifications.

11.1.2.4 Doppler Extractor Package Count

A preliminary design (based on the design of the NASA bread-

board unit) was prepared for worst-case analysis and to obtain

accurate package count and power dissipation estimates.

The preliminary design results indicate that the doppler

extraction circuits will require 5 ECL, 7 TTL, and 39 CMOS

packages. Of the 51 total packages, 5 are required for shifting

between the various logic levels

The mixing of technologies results in a substantial reduction

in total power dissipation.

11.1.3 INPUT DATA PROCESSING AND CONTROL

The input data processing and control "Logic must monitor the

S-Band Transponder status, the NSP status, the MTU status,

and the 28 VDC extractor power input. It must generate

signals to select the proper transponder and Network Signal

Processor (NSP) inputs and generate status data for subsequent

transmissionto the computer. The input data processor and

control must also accept serial data from the computer through

the Multiplexer/Demultiplexer (MDM). The data must be decoded

and checked for proper parity. The decoded signals are then

used to select measurement mode and in Mobe b, select the

measurement interval.
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11.1.3.1 Input Status Monitoring

The extractor must receive and select one of two RF output

signals from two-S-band transponders and accept digital

information concerning the .transponder operating mode. In

addition, it must monitor the transponder Data Good line to

insure that a valid signal is being received from the

transponder over the entire measurement period. If the trans-

ponder Data Good signal goes low for a period of greater than

10 i sec., the measurement must be considered invalid.

In addition, the Master Timing Unit (MTU) status and NSP

status must be monitored in a similar manner. If both the

Data Good and MTU status are high during the entire measure-

ment period, the measurement is valid and a Data Valid signal

is generated and sent to the instrumentation MDM. The mode

status truth table is shown in Table 11-1. The mode status is

decoded and used to control the mode of the RF preconditioner.

Outputs A, B, and C are sent to the message ftrmatter wh-ere

they are strobed at the proper time and transferred to the

computer via the MDM.

11.1.3.2 Computer Input Data Processing

Computer input data processing includes message synch.

detection, Manchester II decoding, parity checking, data

storage and decoding. The decoded data selects the measure-

ment mode and the measurement interval in the fixed time

interval mode. The measurement mode status and time

interval are also sent' to the message formatter for

transmission to the computer.

The computer data processing circuits consist basically of

an input register, parity checker, auxiliary storage and

time interval decode. The input register is an 18-bit shift

register. Seventeen bits are used to receive data, one bit

for parity, and one locally generated control bit. When

the Word Discrete goes high, an initialization pulse is generated.

This sets the control bit to a logic one and resets.the rest

of the register bits to logic zeros. Data and a clock are
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TABLE 11-1

TRANSPONDER MODE STATUS TRUTH TABLE

MODE OUTPUTS PRIME MODE FREQ. MODE

A B C

0 0 0 X

0 0 1 X X

0 1 0 SGLS LOW

0 1 1 SGLS HIGH

1 0 0 STDN LOW

1 0 1 STDN HIGH

1 1 0 TDRS LOW

1 1 1 TDRS HIGH
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received from the Manchester decoder. The clock pulses

shift in the data. When the logic one control bit reaches

the last stage of the shift register, a pulse is generated

which samples the output of the parity checker. If parity

is correct, a store pulse is generated. This transfers the

three bits of data defining the measurement mode and time

interval to the auxiliary storage register. The stored bit

defines the measurement mode. The other two bits are.decoded

to specify the measurement interval for the fixed time

interval mode. The contents of the auxiliary storage

register are sent to the message formatter output buffers

for serial transmission to the computer. The measurement

mode status is used in the mode control circuitry to set up

the desired time interval.

Measurement mode commands that arrive during a doppler count

transfer are not read into the auxiliary storage register

until after the doppler transfer is complete.' Therefore,

a one-shot, uses the Data Transfer signal to generate a 200

nanosecond pulse that delays transfer to the auxiliary

storage register until after the doppler count is transferred.

11.1.3.3 Output Data Transfer

The message formatting and data readout timing logic must

assemble the extractor status data into two 16-bit words.

Upon command from the computer, the status words and doppler

count words are encoded and serially transferred to the

computer MDM. Each 16-bit word must be preceded by a

synch. pattern and followed by a parity bit.

Transponder status data is formatted into two 16-bit words.

The last 8 bits of word 2 are used for NSP ground station

data while the remaining 24 bits are used for status data.

Status data will include measurement mode, time interval,

MTU Good, MTU switch, Data Good, Data Valid, transponder

mode, self-test mode. This is only a tentative list of

status data to be reported out. Additional outputs.will be

added as required.
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11.1.4 SELF TEST MODE

Self test is initiated upon receipt of a self test discrete

from the MDM. A precise, known frequency is synthesized by

the RF preconditioner. The doppler extractor is switched to

the fixed time interval mode with a 1 second integration

period. The doppler and reference counts are outputted in

the normal manner to the spacecraft computer, where frequency

and delay information is recovered.'

The self test approach verifies the operation of all extractor

circuits with the exception of the RF preconditioner first

mixer and certain control inputs.

Verification of the extractor performance is made by the

spacecraft computer. It is also desirable to have a stand

alone self-test capability within the extractor. This

stand alone capability is provided by the BITE detector

circuit.

The BITE detector monitors the doppler and reference

count outputs and determines whether these outputs represent

reasonable counts. A BITE discrete is generated to indicate

the GO/NO-GO results of the BITE test.

Both the doppler and refere.nce frequencies are fixed in the

self test mode. The only variations in the doppler and

reference counts result from skewing of the actual measurement

intervals. The maximum intervals skew is 35 microseconds.

The 35 microsecond-maximum skew indicates that a valid NR

count should deviate no more than 54 counts from its nominal

1,536,000 value. The NB+D count should deviate no more than

51.c'ounts from its nominal 1,426,274 value. Since the interval

skew affects both counts in the same way (both counts will

increase in porportion to the actual interval length), an

effective indicator is the difference between the two counts

(nominally 109,726). This difference will deviate no more

than 4 counts from its nominal value as a result of interval

skew. These numbers are based on a nominal 1 second integration

pe riod.
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The BITE decoder will, therefore, perform the fol'lowing two

tests on the counter output data:

a. Verify the NR is within 54 counts of its nominal

value.

b. Calculate NR - NB+ D and verify that this difference

is within 4 counts of its nominal value.

These two tests will verify that interval skew is less than

35 microseconds, and that the doppler frequency, as

synthesized by the RF preconditioner and counted by the

doppler counters, is within 11.5 hertz of its nominal value.

This provides a reasonable check of the extractor performance.

The BITE tests are repeated at 1 second intervals as long

as the unit receives the self test discrete. The use of

latches to sample the test results at the proper time results

in a BITE discrete output that will change at 1 second inter-

vals, depending on the results of each BITE test.

The BITE detector is implemented entirely with CMOS

components. It is estimated that 16 packages are required

to implement the circuit.

An alternate BITE detector approach would use a small dedicated

microprocessor to precisely calculate the interval skew and

frequency error. This approach was used in the NASA bread-

board, primarily because the microprocessor was required for

display of the navigation parameters. The microprocessor

self-test was essentially free in that case.

It is estimated that 25 packages would be required to

implement a microprocessor BITE detector. This approach

would involve the use of read-only-memories and a calculator

chip. The availability of these components tested to MIL-

STD-833 levels is not known. The use of the microprocessor

approach would require software development, increasing

cost by a modest amount. The microprocessor would provide

an exact rzsult. It is not felt that this precision is

requi red.
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11.1.5 POWER SUPPLY

The doppler extractor circuitry, including the RF pre-

conditioner, coincidence detector and counters and control

and output formatters, have been estimated to require

approximately 8 watts of DC power. Table 11-2 shows the

characteristics of the power supply which generates the

required voltage levels at a combined output power of 8

watts.

11.2 MECHANICAL DESIGN

The objective of the mechanical design effort on the

doppler extractor is to provide an equipment that will

functionally meet the specified requirements. To achieve

this objective, the mechanical design must provide the

necessary environmental protection to the electronic circuits

during the entire 12-year equipment life. The equipment

life includes the manufacturing process, earth transportation

and storage, checkout, launch .pad environment, launch boost,

flight, operation, and return.

A pressurized case is used to provide a controlled environment

for the electronics. Thermal control is provided by

conduction cooling to the cold plate on the spacecraft.

The methods employed for pressure cont'rol (Parker Seal) and

thermal control have been space qualified and pro.ven on such

programs as the CM VHF Transceiver, LCRU, and CSAR. Special

consideration has been given to the vibration and stringent

shock requirements.

The packaging design for the Doppler Extractor equipment

has the following. characteristics:

a. Size: 5.6 inches wide, 6.9 inches high, 10.6

inches long.

b. Weight: 10.2 pounds

c. Center of Gravity: The C.G. is located approximately

in the geometric center of the package.
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TABLE 11-2

POWER SUPPLY REQUIREMENTS AND SPECIFICATIONS

CHARACTERISTICS REQUIRED LEVEL

Input voltage: 24-32 volts

Outputs: +12 V +2%

+5 V +5%

-5.2V +5%

Ripple: 5 mV PP max.

Input Power: Less than 8 watts

Efficiency: 80%

DC isolation: Input power leads to outputs

1 megohm min.

Reverse polarization: No performance degradation after

application of reverse polarity

voltages up to 32 volts
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d. Type of Construction: Unitized chassis with modular

subassemblies.

e. Thermal Interface: Heat transfer by conduction

from subassemblies to the base of the case. Heat

transfer by conduction from its mounting base by

conduction to the cold plate in the spacecraft.

The-packaging concept for the Doppler Extractor represents

the implementation of the following design objectives:

Minimum weight No special tools required for

installation

Minimum volume Optimized thermal design

Minimum cost Optimized structural design

Maximum reliability Short delivery cycle

Withstand environ-
mental extremes.

The outline drawings for the Doppler. Extractor is shown in

Figure 11-7.

The Doppler Extractor units are divided into the following

major elements:

Case Modules

Pressure case DC/DC Converter

Pressure cover RF Preconditioner

Wiring and connectors Doppler Extractor/Control

Hardware, Data Processor/Control

The Doppler Extractor case is fabricated from aluminum alloy

6061 because of its ease of machinability, good strength

characteristics, and its superior ability to withstand

corrosion. The case wi.ll be machined from a solid block of

material as opposed to other types of fabrication such as

forming and welding, to obtain the following advantages:

o Better packaging efficiency through the elimination

of lap joints, radius and weld or braze fillets.
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o Better structural integrity - the continuous and

homogenous nature of the material provides a stronger

and more predictable structure.

o Closer control of tolerances effecting the positioning

of components.

o Almost limitless possibilities for partitioning and

cavities as required by the electrical design.

o Excellent shielding characteristics through the

continuous nature of the enclosure.

o Better thermal characteristics through continuous

walls, and flatter interface surfaces.

o Homogenous wall characteristics eliminate potential

leak sources.

The shock and vibration spectrum that is imposed on the

Extractor will be given special consideration in the packag-

ing design. The shock pulse will be transmitted through the

mounting of the case to the subassemblies, and in turn to

the individual electronic components. The level of shock

that will actually reach the individual components is a

function of the input shock pulse spectrum and the combined

natural frequencies of the.series of mounting interfaces

from the equipment mounting to the component. The mechanical

system, in effect, behaves as a series of cascaded amplifiers,

each amplifier being a mechanical interface with its own

frequency response. characteristic. .In general, mechanical

systems of this nature have a tendency to attenuate all

frequencies above the natural frequency. This behavior is

favorable since by the time the shock pulse reaches the

electronic components the higher levels will be attenuated.

By proper control of the design of the interfa ces and

structures from the case to the component, the levels that

the components see can be brought within safe limits.
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The natural frequency of the case and other structural

members will be below 1000 Hz. Since the G level increases

with increasing frequency, the high peak shock levels will

not be transmitted and the-equipment will be capable of

withstanding the imposed vibration and shock levels.
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APPENIDICES

Appendix A discusses the errors associated with

the conventionally used linear relationship be-

tween doppler off-set and range rate, when the

receiver is moving at orbital velocities. The

exact, relativistic relationship is also discussed

and it is shown that errors in range rate as high

as 13 cm/sec can result from the linear approxi-

mation. A second order approximation to the exact

formulation is also presented. It is shown that

this second order approximation results in an error

no greater than 10 - 7 cm/sec, at velocit'ies as high

as 100,000 ft/sec.

Appendix'B is a brief description of the Vernier

doppler extraction system as presented in the New

Technology Disclosure to NASA.

Appendix C is a reproduction of Texas Instrument's

data sheet on the 10 digit processor which was used

in the one way doppler extractor micro-processor.



APPENDIX A

EFFECTS OF RELATIVISTIC VELOCITIES ON DOPPLER ACCURACY

The breadboard of the vernier extractor contains a micro-

procesSor to compute the range rate and change in range from the

measured doppler shifts. The processor computes these

quantities based on the conventionally used linear relationship

between doppler and range rate.

That is:

C .
f dt • fd

ft

where ft is the S-band frequency, /-t is the S-band

wavelength,

C is the velocity of light

fd is the measured doppler and

R is the computed range rate.

The change in range is computed from the doppler count (Nd) over

the measured time interval. That is:

C
AR = Nd = Nd " kt

t
These formulas assume that the actual velocity of the S-band

receiver is sufficiently small that the relativistic effects

can be neglected. However, for a vehicle moving at velocities

approaching 30,000 ft/sec the relativistic effects can be

significant when doppler accuracies to a fraction.of a Hertz

(or range rate accuracies to a few centimeters per second)

are desired.

Considering the effects of relativistic velocities, the true.

received frequency, as given in Reference (1) is:

C+R
fR 't d C t

where fR is the received S-band frequency and the other

parameters are defined above.

The doppler shift is:
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fd t - 1i eq. (A-1)

Expressing the range rate in terms of the doppler shifts

results in the equation:

S(1 + fd /ft ) 2-1
R ( eq. (A-2)

(1 + fd/ft ) 2+1

Expanding the terms in parenthesis results in:f1
R = C [ 2 + fd/ftt .2 + 2(fd/ft) + (fd/ft 2 "

Neglecting the third order effect of the term (fd/ft)2, and

noting that 1/(1+X) - (l-X) if x i, then the above
equation can be simplified to:

R = 'C. fd fd

ft 2 f eq. (A-3)

The first term in parenthesis is the conventional linear
relationship betwee.n doppler and range rate. The second term

is a 2nd order correction to the linear approximation. The

above.expression is a second order approximation to the actual

relativistic equation (equation A-2) and is in error from the

true value by no more than (C/4) (fd/ft) 4 . Even if (fd/ft) is

as high as 1X10-4(corresponding to a range rate of about

100,000 ft/sec), the error in equation (A-3) is no more than
-61 x 10 6  m/sec.

Table A-1 compares the calculations of range rate from
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TABLE A-i

EFFECTS OF RELATIVISTIC DOPPLER ON COMPUTED RANGE-RATE

Measured Linear Compu- 2nd Order True Error in Error in

Doppler tation of Computation Range-Rate Linear 2nd Order

Shift Range-Rate Approximation Approximation

Hz Meters/sec Meters/sec Meters/sec cm/sec cm/sec

20,000 3,000 2,999.9850 2,999.9850 1.5 <7..5XIO-1 1

-9
40,000 6,000 5,999.9400 5,999.9400 6 <1.2X10

60,000 9,000 8,999.8650 8,999.8650 13.5 <6.0X10 - 9

80,000 12,000 11,999.7600 11,999.7600 24.0 <11.92X108

100,000 15,000 14,999.6250 14,999.6250 37.5 <4.7X10 -8

Equations R=C(fd/ft) R=C(fd/ft) (+FFt 2 11 C < C

or (1-1/2 fdft) C+F Ft2+1 (fdft)2 (f d/ft4
doppler/error (l+Fd/ (t

NOTE: ft = 2X10 9 Hz

C assumed equal to 3X10 8 meters/second for simplicity of the calculations



measurements of the doppler shift, when the conventional linear

formula is used, as well as the result of applying the 2nd

order approximation (equation A-3-) arnd the true expression

(equation A-2). The results shown in the table indicate that

for doppler shifts of 60,000 Hertz (corresponding to range rates

of about 9000 meters/sec or 30,000 ft/sec) the linear approxi-

mation can be in error by 13.5 cm/sec. The 2nd order approxi-

mation, however, is in error by no more than 6X10-9 cm/sec.

The linear approximation can give errors significantly greater

than the desired maximum range rate error of 3 cm/sec. The

2nd order approximation, however, produces an error well below

the desired bounds, even for range rates as high as 15,000

meters/sec (50,000 ft/sec). It is recommended that the 2nd

order approximation be used for all range rate computations

requiring knowledge of range rate to within about 15 cm/sec

(0.5 ft/sec) of the actual value at orbital velocities.
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APPENDIX B

NEW TECHNOLOGY DISCLOSURE

B.1 INTRODUCTION

In man electronic systems employing digital techniques to measure

frequency or range rate (radar, collision avoidance systems, navi-

gation aids, etc.) the primary source of error is very often the

quantization (± 1 cycle) resulting from the digitizing process.

In measuring frequency using conventional counters, for example,

the unknown frequency zero crossings are counted for a time

period determined by simultaneo.usly counting a known stable

reference frequency. If the measurement period is one second.

the frequency error will be ± one Hertz.

Several techniques have been developed to reduce the quanti-

zation error but most are either time consuming, do not offer

sufficient improvement, may increase other error sources, require

high frequencies and/or require high power, high speed counters.

The technique described in this report can achieve a quantization

error reduction of 1000 or more without the use of high speed

counters and the majority of circuit elements can employ low

power, low cost, high reliability CMOS circuitry. The tech-

nique has been implemented in a breadboard model and measure-

ments made with the breadboard indicate that frequency can be

resolved to at least .02 Hertz over a one second counting peri.od.

Higher resolutions are achievable with the breadboard but the

ultimate resolution capability has not yet been measured.

B.2 SYSTEM DESCRIPTION

The RCA developed technique to achieve high resolution measure-

ments of frequency uses an electronic equivalent to the

mechanical vernier caliper. In the mechanical version, the

measurement precision is expanded by means of reading the

coincidence of the scale markings of two nearly equal scales.

The RCA developed technique employs the zero crossing of a known

stable frequency and the unknown frequency as the scale markings,

and a coincidence detector circuit to determine when a zero
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crossing coincidence has occurred between the two.frequencies.

A simple block diagram of the technique is represented in

Figure B-1.

A timing scheme to control the start and stop times of the

counters is shown in Figure B-2. The unknown frequency is repre-

sented by (FB+FD) or F (B+D) for convenience, since it often

develops from a known bias frequency shifted by an unknown

frequency (e.g. doppler). From Figures 8-1 and B-2, the-unknown

frequency and the known clock frequency are compared for a zero

crossing coincidence by means of an "AND" gate. Since the in-

put frequencies are typically sine waves, pulse generators are

used to generate very narrow zero crossing markers so that the

"AND" gate can precisely measure the time of coincidence. The

counters are started and stopped at coincidence signals from

the "AND" gate. At the end of the counting period, the refer-

ence frequency counter contains a precise measure of the

measurement time interval since this counter counted from one

zero crossing to a later zero crossing. The u'nknown frequency

counter contains a precise measure of the unknown frequency

since it is counted from one zero crossing to a later zero

crossing. Since both counters were started and stopped on

zero crossings, and were started and stopped simultaneously, the

quantization error is virtually eliminated. A small quanti-

zation error does remain, however, due to the fact that the

"AND" gate will trigger on any amount of overlap between the

unknown and reference signal pulses. The residual quanti-

zation error is given by:

Q = + (Po+B) (FB+FD) cycles

2

where q = residual quantization error

PoP B are the pulse widths for the

reference and unknown signals,

respectively.

(FB+FD) is the unknown frequency
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Figure B-2 Timing Scheme For Coincidence Doppler Extractor
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Since the quantization error occurs at both the beginning and end

of the measurement period, the total quantization error over the

measurement period is distributed over twice the above range. The

standard deviation of the quantization frequency error assuming

a uniform distribution, is given by

FF Q (Po+ B) (FB+FD) HERTZ

where 'C is the measurement period.

B.3 BREADBOARD PERFORMANCE

The technique described in this report has been implemented by

RCA under a contract with NASA (contract number NAS 9-13517).

Measurements have been made using an unknown frequency of 1 MHz

(down converted from about 2 GHz) which had a 1 second short

term stability of about .01 Hertz.

The pulse widths into the "AND" gate were 7.5ns (15ns aperture).

The resultant standard deviation of the measurements is shown in

Figure B-3. These results indicate that the breadboard unit

performed as expected and could measure the unknown frequency.

to within .02 Hertz over a one second measurement period.

Higher accuracies could be achieved with shorter pulse widths

into the "AND" gate. The breadboard unit is capable of oper-

ating with pulses as short as one nanosecond, which should

result in frequency resolutions of less than .001.Hertz over a

one second measurement period. Measurements of this small a

quantization error is difficult, since oscillator drift and noise

jitter will now become predominant system errors.
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APPENDIX C

M0S TMS 0117 NC

LSI 10-DIGIT DECIMAL ARITHMETIC PROCESSOR

S10 Digits, 3 Registers
. * BCD Input and Output

* Direct Add, Subtract, Multiply, Divide
* Implied Constant in 4 Basic Modes
* Add to Overflow, Subtract to Zero
* Shift Left, Shift Right
* Exchange Registers
* Busy/Ready Interlocks
* On-Chip Digit Clock
* 100 ms Maximum Operation Time
* TTL Compatibility

description

The TMS 0117 NC is an MOS/LSI digital building block designed to process numerical data in BCD format. The device

performs the most commonly required arithmetic operations, and numbers of up to ten digits can be processed in

under 100 milliseconds.

Even when only partially utilized, the TMS 0117 provides a considerable cost saving when compared with more con-

ventional arithmetic techniques. Its applications include automatic control systems, on-line data analysis, digital

correlators, weighing machines, and computing counters/frequency meters. The device requires a minimal amount of

external control logic, and complex problems may be solved by using it as a 'mini' central processor unit (CPU) in

conjunction with SN74188 bipolar integrated circuit Programmable Read Only Memories (PROMs) as the micro-
program store.

In addition to the four basic processes (Add, Subtract, Multiply, Divide), the TMS 0117 performs operations such as

Increment, Decrement, Shift Left, Shift Right, Exchange Operands, Add to Overflow, and Subtract to Zero.

A BUSY/READY signal generated on the chip discriminates between the BUSY condition (output data invalid, no

data can be entered) and the READY condition (output data valid, data can be entered).

Data input and output are in serial form.

An output clock generated on the chip can be used to off load the output data into a memory.

operation

Functions that the processor will perform may be classified into three types - arithmetic, register, and internal
control ('housekeeping'). Register and simple arithmetic operations, such as data interchange and add/subtract 1,
require a minimal amount of internal microprograms and are rapidly executed. More complex arithmetic operations,
such as multiplication and division, use a considerable portion of the program space and take proportionately longer

to execute. The time taken.to carry out housekeeping instructions, e.g. reset after error flag, is variable, being depen-
dent on the state of the internal program.

The operations are defined as follows:

* Multiply

Multiply the contents of the output register (multiplicand) by the last data entry (multiplier) and transfer the
product to the output register;

- continued

PRELIMINARY DATA SHEET: TEXAS N ST R U M ENTS
Supplementary data may be IhCOHIOR ATEO
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TMS 0117 NC
10-DIGIT DECIMAL ARITHMETIC PROCESSOR

operation (continued)

* Divide

Divide the contents of the output register (dividend) by the last data entry (divisor) and transfer the quotient to
the output register.

* Add

Add the last data entry to the contents of the output register.

* Subtract

Subtract the last data entry from the contents of the output register.

* Increment

Add 1 to the contents of the output register. (Decimal point and sign are ignored in this operation.)

* Decrement

Subtract 1 from the contents of the output register. (Decimal point and sign are ignored.)

* Add to Overflow

Continuously increment at the rate of 1 per D scan, the contents of the output register until overflow is reached.

* Subtract to Zero
Continuously subtract 1 at the rate of 1-per D scan from the contents of the output register until zero is reached.

* Equal

Execute instruction. Causes the processor to carry out the last stored instruction. Equal also sets up implied
constant (last data entry and last function).

* Right Shift

Move the contents of the output register one place toward the least significant digit (LSD).

* Left Shift

Move the contents of the output register one place toward the most significant digit (MSD).

* Exchange Operands

Interchange the last pair of numeric entries, e.g. a + b becomes b + a.

* Clear

Clear all stored instructions and data registers.

* Reset

Reset is a master clear and will operate under all conditions. It is used when the processor has entered a locked
state, i.e. error flag, and it resets the internal programs.

timing

The basis for the timing is an external clock applied to the device. Nominal frequency of the clock is 250 kHz.
An internal state time is equivalent to 3 external clock cycles. A digit time is equivalent to 13 internal state times or
39 clock cycles or nominally 156 microseconds. A digit time (D-time) corresponds to the time during which each digit
is displayed. A blanking of one state time is on the leading and trailing edge of each D output signal. Eleven digit
terminals are used to scan the data entry logic and to multiplex a display. Only one digit time is high at any given point.

Digits are displayed in scanning mode, thus any digit it displayed for one D-time and displayed again one D-cycle later.
(A D-cycle is equivalent to 11 D-times - i.e. 1.72 milliseconds.)

A digit clock is brought out on SP (pin 24) to be used for clocking data to be stored from the TMS 0117 to a memory.
The clock pulse is two state times wide (S4 and Ssout of 13 state times) and the data is valid on either edge of the
clock as shown below. The period of the clock is one digit time (13 state times).

- continued
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TMS 0117 NC

10-DIGIT DECIMAL ARITHMETIC PROCESSOR

timing (continued)

TIMING DIAGRAM
One Digit Time

* I1SU1SIJqJJJJJq 1 (EXTERNAL CLOCK)

2 (INTERNALCLOCK)

03

S1 1S$3 54 S6wISS Se 1 S S 1 STATE TIMES

SEG A
SEG B

SEG C

SEG D

DIG N

DIG (N-l)

DIG CLOCK

Two Digit Times, Displaying Number 97

9 7
(8) SA 0
(4) SB 0

(2) SC

(1) SD 0 p .0

DIGIT CLOCK SP ----- Q

Dn-1 -----

The table below shows the time required to complete the functions indicated for a nominal 250-kHz clock rate.

FUNCTION TIME

Numer entry, single digit 5.2 ms maximum

Operation instruction entry 6.9 ms maximum

Shift left or right 1.72 ms

Increment or decrement 3.4 ms

Exchange operands 5.2 ms

Add, subtract 8.6 ms

Multiplication 70 ms (worst-case numeric inputs)

Division 80 ms (worst-case numeric inputs)

Digit cycle time 1.72 ms

Digit time 1566 s

TEXAS INSTRUMENTS
I L( ()R )t A I L )

POST OFFICE BOX 5012 * DALLAS. TEXAS 7S22I
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TMS 0117 NC
10-DI0GIT DECIMAL ARITHMETIC PROCESSOR

TMS 0117 INPUTS, OUTPUTS, CONTROL TERMINALS

SA 8 ) DATA OUTPUT
RESET - KO SB - --4 PARALLEL BCD, DECADESC --- 2

SD --- 1 SERIAL
SERIAL DATA IN KO--- KQ SE - BUSY/READY STATUS

SF --- 4SIGN
SG E - ERROR INFORMATION

DECIMAL POINT - KN
iSP ---- DIGIT CLOCK

ENABLE -- KP D1

CLOCK * INPUT/OUTPUT TIMING
* DIGIT SCAN

* I
011

There are two types of data input, both of which are entered on the KQ terminal. They are:

* Numerical data

* Operation commands

data input

The serial data input line requires its information in the form of a serial five-bit word. Four bits are used as a data/
instruction code and the fifth bit as a control. The control determines whether the four-bit code is interpreted as data
or as an instruction.

INPUT CODING

CONTROL BIT -INPUT NOTATION

2
3  22 21 20

AS A4 A3 A2 Al

0 0 0 0 0 0
0 0 0 0 1 1
O 0 0 1 0 2
0 0 0 1 1 3

0 0 1 0 0 5. Numeric Data0 0 1 0 1 5
0 0 1 1 0 6
0 0 1 1 1 7
0 1 0 0 0 8
0 1 0 0 1 9

1 0 0 0 0 Clear
1 0 0 0 1 Equals
1 0 0 1 0 Multiply

.1 0 0 1 1 Divide
1 0 1 0 0 Add
1 0 1 0 1 Add 1
1 0 1 1 0 Subtract Instruction Codes
1 0 1 1 1 Subtract 1
1 1 0 0 0 Add 1 to overflow

1 0 0 1 Subtract 1 to zero
1 1 0 1 0 Shift right
1 1 0 1 1 Shift left
1 1 1 0 0 Exchange operands

1 1 1 0 1 No operation
1 I I 1 0 No operation Not Used
1 1 1 1 1 No operation continued

TEXAS INSTRUMENTS
1%(()HI')R A rC l)

P0S? OFFCE 3ox 5012 * DALLAS, TCXAS 7Saa2
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IMS 0117 INC
10-DIGIT'DECIMAL ARITHMETIC PROCESSOR

data input (continued)

In order to reduce the number of package pins required for data entry, the five-bit code is serialized. The processor

generates sequential digit strobes, D1 to D011, that enable the input data to be serialized.

The data input lines are KN, KO, KP and KQ. The boxes represent a logical or direct switch connection between the

digit lines D1 to D11 and K inputs.

DATA INPUT AND DIGIT LINES
VSS

KP ENABLE

KO---- RESET

CONTROL 23 22 21 20

DATA ENTRY KQ A
5  

A4 A3 A2 Al

DECIMAL POINT' KN 0 .9 8 7 6 5 4 3 2 1

D11 D10 D9 DS 07 06 05 D4 D3 D2 Dl

*Decimal point - one switch and only one switch permanently closed.

A gate implementation of the entry function and a simplified timing diagram are shown below.

ENTRY FUNCTION TIMING DIAGRAM

v20 Vc c  
Vss t

0101
21 KIQ T- -K .D3

DATA D3 TMS0117
IN 22N D, D5

DS * 07
23 D10

D7

CONTROL D;D1

D10

KQ INPUT - INST. SUB. 1

KO INPUT - DATA 6-

The data entries are controlled by the enable input, as described under Input Coding. Numeric entries are limited to

ten digits. Any zeros that are required to fill the unused most-significant-digit positions preceding number entry (leading

zeros) need not be entered; but if, from a systems point of view, it is necessary to enter them, they will be ignored by

the processor. Data are entered most-significant-digit first.

- continued
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TMS 0117 NC
10-DIGIT DECIMAL ARITHMETIC PROCESSOR

data input (continued)

The RESET terminal is an interrupt signal. It will clear all registers and status information under any conditions. This
is the only key operational after the machine enters a locked state. The CLEAR opcode clears in the same manner but
cannot be used once in the locked state (overflow). RESET operates independently and does not need to be followed
by an ENABLE.

data output

The TMS 0117 has two types of data output - numeric and status.

numeric data

Numeric data is presented as digit serial, bit parallel, Binary Coded Decimal (BCD) during digit times D10 (MSD) to
D1 (LSD) on outputs SA to SD. This serial information repeats after 11 digit times, i.e. once every digit cycle. Outputs
D1 to D10 can be used to strobe an external display or indicate the beginning and end of the output data word. An
output digit clock is provided on output SP to enable the user to clock output data into an external register. The digit
clock timing is arranged such that output data is valid on either edge of the digit clock. Similarly digit strobes D1 to
D11 also inset the data outputs.

SA SB SC SD . SE SF SG DIGIT

,0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0, 2
0 0 1 1 0 0 0 3
0 1 0 0 0 0 0 4
0 1 0 1 0 0 0 5

1 1 0 0 0 0 6
0 1 1 1 0 0 0 7
1 0 0 0 0 0 0 8
1 0 0 1 0 0 0 9

NOTE: Data is extracted from MSD 1010) first to LSD (Dt) last.

status information

Status information, i.e. the internal state of the processor (housekeeping), is available on outputs SE to SG during D11
time. Output D11 may be used to clock outputs SE to SG into an external register.

STATUS CODING

SA SB SC SD SE SF SG

0 0 0 0 1 X 0 Busy
0 0 0 0 0 X 0 Ready INTERPRETATION
0 0 0 0 0 0" 0 Sign Positive (where X represents a
0 0 0 0 0 1 0 Sign Negative don't-care condition)
0 0 0 0 X X 1 Error

Error

Sign OUTPUT
usy/Ready

- continued
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TMS 0117,NC
10-DIGIT DECIMAL ARITHMETIC PROCESSOR

data output (continued)

During Dll time, outputs SA to SD are zero. Output SG indicates an error, such as numeric overflow or an invalid
operation. Status outputs have the following priorities:

1) Error output SG invalidates all other numeric and status outputs. If an error indication occurs, the proces-
sor enters a locked state and must be reset.

2) Busy/ready output SE invalidates numeric and sign data, unless it indicates that the processor is ready to
accept new data or instructions, i.e. only wpen there is no error and the ready signal is present are the sign
and numeric outputs valid.

An example of the data output timing is shown below.

DATA OUTPUT TIMING EXAMPLE

D2

D3

D4 [-'-L.

D5

D7 _.

09

010

011

SB
SA

DIGITCLOCK

SE

SF

SG

0 3 -SIGN 0 1 9 0 6 5 4 0 0 3
NO ERROR

READY

As shown, the serial output data represents -0190654003. The numeric and sign outputs are valid since the processor
indicates that it is READY and there is no ERROR during D11 'time.

decimal point (DP)

The processor operates in fixed-point mode on input and output. The point is not interposed between input digits, i.e..
there is no input or output data code representing DP. DP is, in fact, implied by the digit time at which input KN is
taken to a logic High. Decimal-point format is shown below.

- continued
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TMS 0117 NC
10-DIGIT DECIMAL ARITHMETIC PROCESSOR

decimal point (DP) (continued)

DECIMAL POINT-FORMAT

OUTPUT
REGISTER :

MSD LSD

X X X X X X X X X D10
X0X X X X X X X X D9
X XoX X X X X X X D8
X X X.X X X X X X D7

X X X X X X X X X D6 Digit time at which KN = VSS

X X X X X X*X X X D4
X X X X X X X.X X D3
X X X X X X X X.X D1

KN may be taken to a logic High by means of a fixed link with the required digit output D1 to DtO. If the position is to
be determined by means of logic inputs, then open collector gates can be used to determine the KN-digit connection
in a manner similar to data entry.

The decimal point is not input in the normal flow of erntering numbers but is set for any calculation by a switch. The
position of the switch does not affect an addition or subtraction problem, but it.does affect multiplication and division
(see the problem set below). The decimal is not stored internally; therefore, erroneous answers will result if the decimal
switch is changed while performing a series of calculations. To prevent errors, RESET or CLEAR the chip after changing
the decimal-point switch.

PROBLEM SET

DISPLAY
NUMBER E NTRY DECIMAL POINT AT POSITION:

0 2 4
500000 500000. 5000.00 50.0000
+ 500000. 5000.00 50.0000
400 400. 4.00 0.0400
X 500400. 5004.00 50.0400

30000 30000. 300.00 3.0000
(OVF) 0. 1501200.00 150.1200

400 (OVF) 0. 4.00 0.0400
(OVF) 0. 375300.00 3753.0000

RESET 0. 0.00 0.0000
1 1. 0.01 0.0001

1. 0.01 0.0001
3 3. 0.03 0.0003

0. 0.33 0.3333
90 . 90. 0.90 0.0090
- 30. 30.00 30.0000
4 .4. 0.04 0.0004
EXCH OP 3. 0.03 0.0003
, 0. 0.75 0.7500

NOTES: 1. Decimal point is external to chip.

2. For clarity, insignificant leading zeros are not shown.

TEXAS INSTRUMENTS
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TMS 0117 NC
10-DIGIT DECIMAL ARITHMETIC PROCESSOR

overall operation

The timing of the data entry and control is determined by the enable input in conjunction with the status outputs. It
is best expressed in 'digit times', ie. the time between leading edges of successive digit pulses, and 'digit cycles', i.e. the
time between leading edges of successive D1 pulses.

To initiate a data entry cycle, the enable input KP is taken to a logic High (VSS). After a variable delay, the satus out-
puts will indicate that the processor is in the BUSY mode. Data entry will be possible during the READY mode only:
The TMS 0117 will ignore inputs when performing an operation. The entry cycle will last 14 to 23 D-times, deoending
on which digit is On when the enable connects to VSS. Enable must be released within 5 D-times from BUSY signal
unless a special mode of operation is desired. In the speciai mode the enable is kept High throughout the operatron.
Data inputs are changed each time the processor goes from the READY to the BUSY state until the entire sequence is
completed. This speeds up data input since the processor may be ready internally to accept new data, but, becaus of
the multiplexed output, the READY output cannot be given until D11 time. Since data entry and some operations,
such as Add 1, Shift Right, etc., are short, the BUSY time will only be 1 to 3 digit cycles.

Data and instructions are entered in the same order as with a +, -, = type of keyboard. In addition to chain operations.
e.g. z x b x c =, there is an implied constant. The processor retains the last operator and number entry before an
Equal operation, as a constant.

The + and - code is interpreted as a sign after a Multiply or Divide operation, and as an operation at any other time.
Successive Equal operations cause multiple executions of the previously stored instructions and the associated data, i.e.
constant mode operation.

Examples:

Entry Display Comments Entry Display Comments

1) 100 100 Display entry :3) - 0 Stored as sign/instruction
- 100 Stored as instruction 5 5 Display entry
3 3 Display entry X -5 Enters instruction and interprets-

97 Executes previous instruction as sign and displays
S 94 Constant mode, instruction is 3 3 Display entry

sub 3, executes and displays -- 15 Executes previous instruction and
- 94 Stored as instruction displays result

50 50 Display entry
. 44 Executes previous instruction 4) - 0 Stored as sign/instruction

-6 Constant mode instruction is 5 5 Display entry
sub 50 X -5 Enters instruction and interorets-

-56 Constant mode instruction is as sign and displays
sub 50 - -0 Enters sign and displays

5 -5 Enters data and displays with
2) 100 100 Display entry associated sign

- 100 Stored as instruction - 25 Executes previous instruction and
3 3 Display entry displays result
+ 97 Causes previous instruction to

be carried out and stores 5) 100 100 Display entry
current instruction. + . 100 Enters add instruction

10 10 Display entry -- 200 Enters sub instruction and executes
+ 107 Previous instruction carried out previous instruction

and stores current instruction 3 3 Display entry
3 3 Display entry 197 Executes previous instruction and
- 110 Executes previous instruction and displays result

stores current instruction
99 99 Display entry 6) 100 . 100 Display entry
- 11 Executes previous instruction and - 100 Enters sub instruction

stores current instruction 0 Enters sub instruction and executes
12 12 Display entry previous instruction

- . -1 Executes previous instruction and .5 Display entry
displays result -5 Executes previous instruction and

displays result
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TMS 0117 NC
10-DIGIT DECIMAL ARITHMETIC PROCESSOR

absolute maximum ratings over operating-free-air temperature range (unless otherwise noted)

Supply voltage VDD range (See Note 1) ..................... . . . . . . -20 V to 0.3 V

Supply voltage VGG range (See Note 1) . ................ . . . . -20 V to 0.3 V

Clock input voltage range (See Note 1) . ............. . . . . . . . . . -20 V to 0.3 V

Data input voltage range (See Note 1 ) . ............. . . . . . . . . .- 20 V to 0.3 V

Applied output voltage range (See Note 1. . . . . . . . . . .- 20 V to 0.3 V

Operating free-air temperature range ........ . .......... . . 0C to +70C

Storage temperature range . . . . . . . . . . . . . . . . . . .. .. . . . . -550C to +150-C

NOTE 1: These voltage values are with respect to VSS (substrate).

recommended operating conditions

CHARACTERISTICS CONDITIONS MIN NOM MAX (UNIT

Operating Voltages (See Note 2)

Drain supply VDD (See Note 3) 0 0 0 V

Substrate supply VSS 6.6 7.2 8.1 V

Gate supply VGG -8.1 -7.2 -6.6 V

Clock Levels

Clock high level V0 H VSS -1.5 VSS -0.5 VSS V

Clock low level VoL VGG -1 VGG VGG '1 V

Applied Output Voltage -0.3 18 V

Clock Timing (See Clock Timing Diagram)

Frequency 100 250 400 kHz

Period T 1  
2.5 4 10 ps

Half-period T 2  
1.25 2 5 ps

Half-period T 3  
1.25 2 5 us

Clock T r and Tf f clock 
= 

100 kHz 30 1000 ns

Clock Tr and Tf f clock = 250 kHz 30 650 ns

Clock Tr and Tf f clock = 400 kHz 30 300 ns

Input Level K Lines

Low VGG VDD VSS -6 V

High VSS -1.5 VSS -0.5 VSS V

NOTES: 2. Effective zero suppression depends on a transient free rise of VSS and VGG during power-up. With certain supply systems it rhay

be necessary to capacitively damp the supplies to ensure zero suppression.

3. Voo is voltage reference.

CLOCK TIMING DIAGRAM

Vss -

VGG

tHL 1" tLH

T2 I IT3

1. T1
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TMS 0117 NC
10-DIGIT DECIMAL ARITHMETIC PROCESSOR

electrical characteristics at nominal conditions over 0: C to 70 C temperature range

CONDITION MIN TYP
t  

MAX UNIT

Input current on K lines (K input low) (All other pins GND) 0.1 10 MA
Input-pull-up resistance 30

Output leakage (off state with VOU T = VSS -10 V) (See Note 4) 0.1 100 A

Output resistance R0 (on state with VOUT 
= 
VSS -0.5 V) ISee Typical

Output Buffer Characteristics) 250 500 n

Output saturation current ISAT 15 mA

Clock leakage (Low Levell 0.1 100 ;A

K line input capacitance (VK 
= 
VSS, f 

= 
100 kHz) 2.5 5 {F

Output capacitance (f 
= 
100 kHz) 2.0 5 oFf

Clock capacitance (f 
= 
100 kHz) 10 20 ! F

Average supply current IGG (See Note 4) 10 15 mA

Average supply current IDD (See Note 4) 17 25 mA

Power dissipation (See Notes 4 and 5) 265 400 mW

NOTES: 4. At 25
0

C. Output leakage cannot be measured with a curve tracer because capacitive coupling will turn on the output.

5. Power saving techniques, including pulsing of power supplies and reduction of clocking cycle may reduce power to 100 mW. These

techniques involve special screening of the device.
t
All typical values are at TA 

= 
25C.

TYPICAL OUTPUT BUFFER CHARACTERISTICS
Ro

SAT

16 1

101

0 
8

VOUT
4 I R,- *

2

-2 -4 -6 -8 -10 -12 -14 -16 -18 -20

VOUT (RELATIVE TO VSS)

computation times (see timing section)

TTL interface

The K inputs will interpret as a logic High a voltage that lies between the substrate supply voltage VSS and VSS -1.5 V,
and as logic Low a voltage between the gate supply voltage VGG and drain supply voltage VDD +1.2 V. The simplest
input interface may be a TTL open-collector gate with a pull-up resistor to VSS.

All data and control inputs have an internal pull-up resistor to VDD. The load presented to an external driver is the

internal resistor (30 kQ) and the capacitance of the gate clamp protection diode.

- continued
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TMS 0117 NC
10-DIGIT DECIMAL ARITHMETIC PROCESSOR

TTL interface (continued)

All outputs, D1 to Dl1 (data and status) are open-drain buffers. The output buffers have a typical channel resistance
rDS(on) of 250 12 and can supply in excess of 5 mA to VSS. An economical output interface compatible with TTL is
shown below.

Any output, e.g. digit clock, that is required to drive a TTL clock input should be interfaced with a Schmitt trigger,
such as the SN7414N integrated circuit. The Schmitt trigger is required because the fall time of the open-drain output
is of the order of 150 nanoseconds and is not directly compatible with edge-triggered TTL inputs.

INPUTINTERFACE OUTPUT INTERFACE

4.7 ki - *Vss
VSS

SN7405A OR OTHER
OPEN COLLECTOR TTL SN7404N

mechanical data

The TMS 0117 NC is mounted in a 28-pin plastic dual-in-line package, designed for insertion in mouriting-hole rows on
0,600-inch centers.

Clock input 1 U 28 VSS substrate supply

Enable input KP 2 27 Serial data input KQ

Digit output 1 3 26 Decimal point input KN

Digit output 2 4 25 Master reset KO

Digit output 3 5 24 Digit clock output SP

Digit output 4 6 23 Display dipstick output SH

Digit output 5 7 22 Error output SG

Digit output 6 8 E 21 Sign output - Status SF

Digit output 7 9 20 Busy/ready output SE

Digit output 8 10 19 Numeric output 20 (LSB) SD

Digit output 9 11 E 18 Numeric output 21 SC

Digit output 10 12 E 17 Numeric output 22 SB

Digit output 11 13 E 16 Numeric output 23 (MSB) SA

VDD drain supply 14 15 VGG gate supply

NOTES: 1. Digit outputs 01. D3, 05. D7 and D10 are used to serialize input data.
2. Digit outputs D1 - D10 are used as digit enable for numeric display.
3. Status outputs are valid during 011 time.
4. K input and S output notation per TMS O100 NC specifications.
5. Display dipstick SH indicates the number of digits displayed in the output register by being at logic High for the relevant portion

of the digit cycle. It acts as a zero suppress latch.
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