

STUDY OF THE DETAIL CONTENT OF APOLLO ORBITAL PHOTOGRAPHY

Submitted by: Robert E. Kinzly
Calspan Report No. YB-5224-M-1

Prepared For:
HEADQUARTERS
NATIONAL AERONAUTICS AND SPACE
ADMINISTRATION
WASHINGTON, D.C.

15 AUGUST 1974
CONTRACT NO. NASW-2434
FINAL REPORT

ABSTRACT

This final report documents the results achieved during a study of the Detail Content of Apollo Orbital Photography under contract NASW-2434 with NASA Headquarters. This study spanned an 18 month period and was composed of three tasks whose objectives were to assess the effect of anomalous V/H (Velocity to Height ratio) sensor operation or photoreproduction processes upon the detail content of lunar surface photography obtained from the orbiting Command Module. This report includes data and conclusions obtaiend from the Apollo 15, 16 and 17 missions.

The specific tasks undertaken included (1) an evaluation of the residual motion smear in Apollo 15 panoramic photography due to intermittent V/H sensor operation and (2) intercomparison of the detail content of multiple generations of Apollo 16 and 17 photography.

During the Apollo 15 mission the panoramic camera V/H sensor did not operate properly and resulted in anomalously high or pre-set nominal command V / H rates. In some cases a transition between the anomalous rate and the nominal rate occurred during the exposure of a frame. Two such frames (316 and 360) were examined to determine the subsequent effect on the detail content. The evaluation showed that a loss in resolution due to image motion blur and exposure differences within a frame could occur due to the intermittent V/H sensor operation. The lack of correct compensation reduced the resolution by $1 / 3$ (to about 6 meters on the lunar surface). Only when the commanded V / H is equal to the nominal value can the full resolution potential of the panoramic camera be realized; but this may not always occur. Consequently it is concluded that a significant portion of the Apollo 15 panoramic imagery may have lower resolution than the nominal 2 meter value. The user of this imagery should refer to the telemetry data to determine the V / H command situation for the frames he is exploiting and account for the effects of poor resolution if necessary.

An assessment of the detail content of multiple generations of Apollo 16 and 17 photography was made to determine the degradation, if any, in the quality of the photographic products furnished to various users. The original flight film is copied to produce a Master Positive (2P) or Direct Negative (2 N) copy. These are the earliest generations which the user may exploit and only a limited number of such copies are produced. Most investigators are likely to use 3rd Generation or 4th Generation Positive copies. Unfortunately 3P and 4P copies of the same type of photography were not available thus preventing a direct comparison of the most likely user products. The evaluation showed that the tone quality of the Master Positive is superior to that of the Direct Negative for the panoramic photography. This superiority results from a greater dynamic range which means that the 2P photography contains higher contrast images over a wider range of average exposure levels than the 2iN photography. The data indicates that this difference is preserved in the higher generation products which the user is likely to employ. Tonal quality differences were also present in 2nd Generation copies of metric photography, however, it is not clear that these differences are preserved in the user products. MTF measurements were made in order to compare the fine detail content of the various generations of photography evaluated. Approximately half of these frames showed some loss in fine detail content which is attributed to the reproduction process. An increase in the ground resolution element by a factor of 1.5 was observed; 3 meters for the panoramic photography and 30 meters for the metric photography.

This study successfully demonstrated the development and application of image evaluation methods for orbital photography of the lunar surface. Descriptions of the various elements of software used in this study are included in this report. It is recommended that the development of these techniques be continued for application to future manned and unmanned spacecraft involved in planetary exploration.

FOREWORD

The research reported herein is the result of a series of tasks performed over an 18 month period under Contract Number NASW-2434 with NASA Headquarters and monitored by Mr. Leon Kosofsky (Code: MAL).

The author is grateful to Mr. Kenneth Hancock of the NASA Johnson Space Center and Mr. Daniel Kinsler of the Lunar Science Institute for furnishing the Apollo orbital photography needed to perform the study. The telemetry data used in the evaluation of the Apollo 15 panoramic photography was obtained from Mr. Bernard Moleburg of the NASA Johnson Space Center while other auxiliary data were obtained from the microfilm files at the Lunar Science Institute. Contributions by others at Calspan Corporation include Mr. Timothy Gallagher who performed the microdensitometry required for the evaluation of the Apollo 16 and 17 photography and Mr. Larry Perletz for assistance in the microdensitometry and analysis associated with the evaluation of the Apollo 15 photography.

TABLE OF CONTENTS

\because
Section Page
ABSTRACT iii
FOREWORD v
1 INTRODUCTION 1
2 EVALUATION TECHNIQUES 3
2.1 Frame Selection 4
2.2 Calculating the MTF from Edges 4
2.3 Tone Quality Evaluation Methods 10
3 EVALUATION OF APOLLO 15 PANORAMIC CAMERA V/H ANOMALY 13
3.1 Residual Blur Estimation 16
3.2 Modulation Transfer Function Estimation 30
4 COMPARISON AMONG MULTTPLE GENERATIONS OF APOLLO 16 AND 17 PHOTOGRAPHY 34
4.1 Product Tonal Quality 34
4.2 Fine Detail Content 43
5 CONCLUSIONS 49
REFERENCES 51
Appendix SOFTWARE DESCRIPTIONS 53

LIST OF FIGURES

Figure No. Page
1 APOLLO ORBITAL PHOTOGRAPHY REPRODUCTION SEQUENCE 2
23
4.5678MODULATION TRANSFER FUNCTIONS - APOLLO 17 METRICPHOTOGRAPHY45
Figure No. Page
18 MODULATION TRANSFER FUNCTIONS - APOLLO 17 PANORAMIC PHOTOGRAPHY 47
19 MODULATION TRANSFER FUNCTIONS - APOLLO 16 PANORAMIC PHOTOGRAPHY 48
20 SOURCE AND CROSS REFERENCE LISTINGS FOR MAIN PROGRAM DTAPE 54
21 TYPICAL DTAPE PROGRAM INPUT DATA SET 57
22
SOURCE AND CROSS REFERENCE LISTINGS FOR EXPOS FUNCTION SUBPROGRAM (3 pages) 60
23 SOURCE AND CROSS REFERENCE LISTINGS FOR MAIN PROGRAM EGSA (12 pages) 64
24 TYPICAL EGSA PROGRAM INPUT DATA CARD 78
EXAMPLE OF INDIVIDUAL FUNCTION PLOTS FROM THE EGSA PROGRAM 80
2627SOURCE AND CROSS REFERENCE LISTINGS FOR SUBROUTINE CONVLV
(4 pages) 83
28
SOURCE AND CROSS REFERENCE LISTINGS FOR SUBROUTINE FORINV(4 pages)90
29 SOURCE AND CROSS REFERENCE LISTINGS FOR SUBROUTINE FOURTR(4 pages)97
30 SOURCE AND CROSS REFERENCE LISTINGS FOR MAIN PROGRAM TONEQ
(4 pages) 105
TYPICAL TONEQ PROGRAM INPUT DATA SET 110
EXAMPLE OF TONEQ PROGRAM PRINTED OUTPUT 112

LIST OF TABLES

Table No. Page
1TONE QUALITY COMPARISON (High Contrast Objects)43
9 EDGE DATA COLLECTED AND PROPOSED FOR APOLLO 16 AND 17 PHOTOGRAPHY . 44

1. INTRODUCTION

This final report documents the results achieved during a study of the Detail Content of Apollo Orbital Photography under Contract NASW-2434 with NASA Headquarters. This study was composed of three tasks whose objectives were to assess the effect of a V / H anomaly or photo reproduction process upon the detail content of lunar surface photography obtained from the orbiting Command Module. The report includes results from the photo evaluation of the Apollo 15,16 and 17 missions. An earlier report ${ }^{(1)}$ presented the results of a similar study of photography from the Apollo 8, 12, 14 and 15 missions. This report also contains a detailed description of the Edge Gradient Spectral Analyses (EGSA) computer program that was employed extensively during these studies.

The specific tasks completed include (1) an evaluation of the residual motion smear in several Apollo 15 panoramic photographs due to intermittent V/H sensor operation and (2) intercomparison of the detail content of multiple generations of Apollo 16 and 17 photography.

Before proceeding we will briefly review the photography obtained during these Apollo missions and its reproduction sequence. In all these missions the Scientific Instrument Module (SIM) Bay contained two cameras; an Optical Bar Panoramic Camera and a Mapping (or Metric) Camera. The Panoramic Camera had a 610 mm (24 inch) focal length lens and employed EK Type 3414 film yielding an approximate resolution capability of 130 cycles $/ \mathrm{mm}$. The Mapping Camera had a 76 mm (3 inch) focal length lens and employed EK Type 3400 film. . Its resolution capability was about 90 cycles $/ \mathrm{mm}$. Both cameras contained internal image motion compensation (IMC) mechanisms. The effect of erratic operation of the Apollo 15 panoramic IMC was assessed in the study.

The original flight film is reproduced for distribution to potential users. Figure 1 shows the reproduction sequence and terminology used. The
flight film is copied to produce a Second Generation or Master Positive (2P) copy. Only a limited number of such copies are generated. They are subsequently copied twice to produce a Fourth Generation (4P). copy which many investigators are likely to use. The flight film is also copied on to reversal film to obtain a Second Generation Direct (2 N) Negative. This is copied once to produce a Third Generation (3P) Positive which is also available to investigators. This sequence eliminates one copy step in the hope of improving product quality and reducing production time. An assessment was made of the effect of both reproduction sequences on the detail content of Apollo 16 and 17 photography.

Figure 1 APOLLO ORBITAL PHOTOGRAPHY REPRODUCTION SEQUENCE

2. : EVALUATION TECHNIQUES

All of the methods used in this study to evaluate the Apollo orbital photography were developed during previous contracted studies for NASA and others. These methods are briefly described in this section of the report. In some cases complex computer programs are required. Their operation is discussed and the software detailed in the appendix:

The evaluation of the quality of Apollo Orbital photography can require the measurement of variaus properties of the imagery. The properties which define image quality can be divided into four general categories: (1) "resolution" or fine detail content, (2) contrast or tone quality, (3) noise level and (4) metric quality. Overall performance can be based upon a composite measure which includes several (or all) of the categories but must be determined with the intended use of the imagery in mind.

The modulation transfer function (MTF) is often used as a measure of image resolution or fine detail content. In this study we used this image quality measure to determine the image blur resulting from erratic operation of the Apollo 15 panoramic camera IMC and to evaluate the nominal resolution in multiple generations of Apollo 16 and 17 metric and panoramic photography.

Contrast or tonal quality can be described as the fluctuation in density due to large area intensity differences in the scene (i.e. low frequency brightness variations). Such fluctuations are frequently used to classify areas or delineate regional boundaries. The most common measure of tonal quality is the Hurter-Driffield or D-Log E response curve. It describes how the apparent scene brightness is reproduced as density in the photograph. The D-Log E response curve was measured for each generation of Apollo 16 and 17 . imagery evaluated to assess the effect of the reproduction sequence on tonal quality or large scale detail content.
2.1 Frame Selection - In selecting the frames to be analyzed the primary consideration is the availability of test targets for estimating the MTF. A shadow-to-sunlight edge inside craters will occur in the low. sun angle photography. If the sun angle is too high this edge either does not exist or is too close to the rim of the crater to be useful. Similarly at extremely low sun angles the edge will be sufficiently close to the far rim of the crater to make edge analyses impractical. Sun elevation angles between 10° to 15° yield the most satisfactory shadow-to-sunlight edge. Table 1 indicates the frames analyzed during the study.

Table 1
APOLLO FRAMES SELECTED AND ANALYIZED

MISSION NO.	CAMERA	FRAME NO.	GENERATIONS ANALYIZED	OBJECTIVE
15	PANORAMIC	$\begin{aligned} & 316 \\ & 360 \end{aligned}$	$\begin{aligned} & 4 P \\ & 4 P \\ & \hline \end{aligned}$	V/H ANOMALY
16	PANORAMIC	$\begin{aligned} & 4127 \\ & 5460 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \mathrm{P}, 2 \mathrm{~N}, 3 \mathrm{P} \\ & 2 \mathrm{P}, 2 \mathrm{~N}, 3 \mathrm{P} \end{aligned}$	REPRODUCTION EVAULATION
	PANORAMIC	$\begin{aligned} & 1633 \\ & 3111 \end{aligned}$	$\begin{aligned} & 2 \mathrm{P}, 2 \mathrm{~N}, 3 \mathrm{P} \\ & 2 \mathrm{P}, 2 \mathrm{~N}, 3 \mathrm{P} \end{aligned}$	
17	MAPPING	$\begin{array}{r} 180 \\ 2923 \end{array}$	$\begin{aligned} & 2 P, 2 N, 4 P \\ & 2 P, 2 N, 4 P \end{aligned}$	

\because
2.2 Calculating the MTF from Edges. It is common practice to use edges to calculate the MTF of an optical imaging system both in the laboratory and operationally. The MTF can be calculated using any target by dividing the measured image spectrum by the known spectrum of the object. In the case of an edge gradient analysis no correction for the target is necessary. The derivative of a sharp edge (i.e. gradient) is a narrow pulse (Dirac delta function) whose Fourier transform or spectrum is a constant proportional to the peak-to-peak amplitude of the edge. In selecting the edge for analysis we only require that it be much sharper than the degradation introduced by the optical system being evaluated. In the present case the shadow-to-sunlight edge sharpness is determined by the penumbra effect produced by the finite angular size of the sun. This effect is proportional to the diameter of the
crater.: To insure sufficient sharpness we selected craters about 10 resolution elements wide (about 80 microns on panoramic imagery).

The edges are scanned using a microdensitometer and recorded on a strip chart or magnetic tape. The edge sharpness requirement produces targets that are short and curved. Consequently the microdensitometer scanning aperture must be small in both dimensions. If the edges were long, a long but narrow slit could be used to minimize the noise in the edge trace. Since this is not possible the density traces on the strip chart were hand-smoothed and digitized using a Calma digitizer. The data flow is summarized in Figure 2. A special software package, not shown in the figure, supports the Calma to generate a card deck containing the edge traces. The Edge Gradient Spectral Analyses (EGSA) software package shown in the figure consists of two major programs. The initial program reads the digitized density trace, converts it to exposure (illuminance trace) and writes an output tape for subsequent processing by the EGSA program itself. The latter is composed of a main program and several subprograms whose linkage is shown in the macro-flow diagram in Figure 3. In the discussion below we identify the purpose of each of these programs while detailed information is presented in the appendix. This was included in this report for those readers who may be interested in evaluating the detail content of other NASA imagery.

The first major step in the EGSA main program is the input of user data on punched cards in format 2 F 10.0 , $7 \mathrm{~A} 4, \mathrm{~F} 10.0$. The following variables or arrays are specified for each data set to be processed:

FINV - spatial frequency interval desired for output OTF data in cycles/mm

FMAX - maximum spatial frequency of output OTF data in cycles/mm
OPTION (7) - alpha-numeric array identifying the types of output. data desired by user

FCO - cutoff spatial frequency in cycles/mm used in smoothing the line spread

Figure 2 DATA FLOW FOR MTF DETERMINATION FROM EDGE TRACES

Figure 3 MACRO FLOW DIAGRAM FOR EGSA MAIN PROGRAM

The edge data is read from an unformatted input data tape and differentiated by Subroutine CONVLV. A special Fourier transform algorithm is employed in Subroutine FOURTR to compute the modulus (MTF) and phase of the Optical Transfer Function (OTF). If requested by the user as an option a smoothed Line Spread is computed using truncation of the OTF at frequency "FCO." The remainder of the main program provides plotted, printed or punched card output data depending upon the options identified by the user. The options available include: plots of the individual edge data, line spreads, smoothed line spreads and transfer functions (MTF only); plots of the average line spreads and MTF; and punched values of the individual and average MTFs.

Provision is made for processing multiple edge data sets under multiple options. The input data tape is read until a null record is encountered indicating the end of the current data set. The output requirements are then completed for that edge data set: The input data tape is read a second time for the next edge data set. If one exists it is processed under the same user specified data and options' as the previous set. If a second null record is encountered, however, the program recycles to read new user input data. If no input is provided execution is terminated. For a single edge data set the null records may be deleted and execution will be terminated by the same sequence of operations through recognition of the end of identified files on the data tape and the main stream input.

In order to exercise the EGSA main program sixteen subprograms are required in addition to the standard FORTRAN I/O subprogram. Four of these programs are user supplied and their listings are included in the Appendix. CONVLV performs the convolution between two input functions or an input function and an internally specified function. These include an 11-point smoothing function and an 11 -point differentiating function. DXSCAL computes the increment or scale factor (inches/point) for the x-axes of the individual function plots (edges, line spreads and smoothed line spreads). . FORINV performs an inverse Fourier transform based upon a special algorithms for
transforming a complex function, inputed as modulus and phase, to a real output functions (i.e. OTF to Line Spread). FOURTR performs a Fourier transform of a real inputed function providing a complex output function as modulus and phase (i.e. Line Spread to OTF). The restrictions on the type of functions permits the use time saving algorithms in both FORINV and FOURTR without restricting the number of points in the input function as the more popular Fast Fourier Transform (FFT) algorithms does.

Ten of the required subprograms are part of the Calspan Corporation Program Library; all but one are used to generate graphic output. AXIS draws an axis with tick marks at one inch intervals, annotates the value of the variable at each of these marks, and provides an identification label. CLEAR fills each byte of a specified block of storage with zeros. This operation could be accomplished, less efficiently, by a sequence of do loops in the EGSA program, EFPLOT is used to close the plot output file after all plot output is completed. LINE actually causes a plot to be drawn, consisting of line segments connecting specified data point coordinates expressed in inches through two data arrays. MGRID provides a grid of variable dimensions and interval size in the X and Y directions independently. NUMBER converts a floating point number and draws the resulting alphanumeric characters on a plot. In the EGSA program it is used to place identification data and scale factors on the output plots. PLOT is a basic plotting routine used to control pen position. In the EGSA program it is used to reset the plotter origin. PLOTER is used to specify the plotting instrument, lined or unlined paper and the type and color of pen desired. SCALE scan the elements in a data array to find maximum and minimum values, computes a optimum scale value based upon plot dimensions (inches) and then changes the array values to corresponding "plotter inches." SYMBOL draws selected symbols or special special characters on a plot. In the EGSA program it is used to title some of the plots.

The remaining two subprograms are IBM supplied FORTRAN IV LIBRARY Subprograms. AMAX1 locates the largest value in an array of real variables. SQRT is a mathematical function that computes the square root of a real argument.

Listings of the first group of subprograms are included in the appendix. The subprograms in the remaining two groups are not included since the user is likely to have access to the same or equivalent programs within his computing facility. The appendix also includes examples of the user supplied input data cards, description of the record sequence for the unformatted input data tape and examples of the output data generated.
2.3 Tone Quality Evaluation Methods - Tone quality is related to density differences of large objects in an image. As the object area decreases in size the OTF reduces the density differences achieved between the object and background. Tone quality is expressed by the net D-Log E response curve which determines the density difference between a large object and the background as illustrated by the sketch in Figure 4. If we assume that apparent scene

Figure 4 EFFECT OF D-LOG E RESPONSE CURVE UPON OBJECT CONTRAST AND TONE QUALITY
brightness is such that the difference in \log exposure between the object and background is

$$
\begin{equation*}
\Delta \equiv \log \frac{E_{0}}{E_{B}} \tag{1}
\end{equation*}
$$

then the average exposure level $\left(=\frac{\left.E_{0}+E_{B}\right)}{2}\right.$ influences the density difference. This average exposure level includes the camera parameters (f-number, shutter speed, lens transmission, etc.) as well as the exposure settings used to copy the original film. If the level is too high or too low the density difference (i.e. δ_{1} or δ_{3} indicated in the Figure) is less than δ_{2} achieved by exploiting the middle portion of the $D-\log E$ response curve. This portion is nearly linear and is customarily represented by a straight line equation, namely

$$
\begin{equation*}
D=\gamma \log E+k \tag{2}
\end{equation*}
$$

where γ^{μ} is the net film gamma and represents a constant gain between log exposure and density. At the higher and lower exposure levels the response curve departs from linearity; the gain is reduced and no longer is constant.

$$
\text { Differences in } \log \text { exposure, } \Delta \text {, can be related to object contrast, }
$$

$$
\begin{equation*}
C=\frac{E_{0}-E_{B}}{E_{B}} \tag{3}
\end{equation*}
$$

namely,

$$
\begin{equation*}
\Delta=\log (c+1) \tag{4}
\end{equation*}
$$

and the resulting density difference, δ, in the constant gain portion of the curve determined by using Eqs. (2) and (4);

$$
\begin{equation*}
\delta=r \Delta=r \log (c+1) \tag{5}
\end{equation*}
$$

The ability of the eye to detect an object is approximately proportional to its density difference. In this case the density difference depends only on
the object "contrast and the net film gain. In the non-constant gain regions the density difference is reduced and also depends upon the exposure levels. Therefore an appropriate measure of tone quality is the gain achieved as a function of object contrast and average exposure level, namely

$$
\begin{equation*}
\gamma\left(C, E_{A}\right)=\delta\left(C, E_{A}\right) / \Delta \tag{6}
\end{equation*}
$$

This quality parameter was calculated in this study using a spline interpolation between the measured step wedge densities (sensitometric calibration). The reader should be made aware that the step wedge densities and resulting response curve can depend upon the type of instrument used in measurement. In general macro-densities measured by a densitometer: (such as a MacBeth Model TD102) are not always equal to micro-densities measured by a microdensitometer. The first instrument measures "diffuse". density while the latter generally measures "specular" density. The data in this study were obtained using a microdensitometer and our tone quality evaluation is more appropriate to the use of magnifications (i.e. microscope) when viewing the image rather than unaided viewing.

Calculations of gain factors, Eq. (6), were made at three levels of object/background contrast indicated in Table 2. The high contrast object would represent shadow/sunlight boundaries in Apollo imagery; the mid-contrast, albedo variations associated with bright rays; while the low contrast represents albedo changes caused by 1% reflectance variation about a 10% background reflectance.

Table 2
OBJECT CONTRASTS USED IN TONE QUALITY EVALUATION

CONTRAST LEVEL	$\mathrm{E}_{\mathrm{o}} / \mathrm{E}_{\mathrm{B}}$	C	Δ	TYPICAL LUNAR OBJECT
HIGH	$6: 1$	5.0	0.778	SUNLIGHT/SHADOW BOUNDARY
MID	$1.3: 1$	0.30	0.114	BRIGHT RAY
LOW	$1.1: 1$	0.10	0.041	1\% ALBEDO CHANGE

3. EVALUATION OF APOLLO 15 PANORAMIC CAMERA V/H ANOMALY

The Panoramic Camera flown on several Apollo missions was a modified Itek KA-80A camera. During operation its lens system is rotated about the velocity axis of the Command Module at a rate related to the apparent ground speed. When a photograph was taken a capping shutter opened while the lens scanned a 108° arc below the spacecraft producing a frame about 45 inches long. A variable width slit located next to the film acted as a scanning shutter. Its velocity (scanning rate) and width determined the instantaneous exposure time. Image motion compensation (IMC) is provided by a complex electro-mechanical subsystem. Forward motion is compensated by a gimbal that rocks a lens group to stabilize the image. A V/H (velocity/height) sensor measures the apparent ground motion to determine the rate of rocking needed. This sensor also controls the speed of lens system rotation and consequently the rate of film advance which is perpendicular to the flight direction. A second sensor, an exposure meter, measures the brightness of the lunar scene which is combined with the V / H data to control the width of the scanning slit.

During the Apollo 15 mission intermittent operation of the V / H sensor produced an anomaly in a number of the panoramic photographs. One of the tasks undertaken was to assess the effect of these anomalies on the detail content. In the photographs examined they resulted in (1) a loss of resolution due to image blur from uncompensated motion and (2) exposure differences within the frame. The latter effect is clearly visible in Figure 5 which shows Frames 316 and 360 evaluated in this task. These frames were taken at low sun elevation angle and selected to provide shadow-to-sunlight edges for evaluation. The exposure differences are thought to be a direct consequence of the low sun angle. Telemetry data shows that the camera exposure meter estimated the average lunar surface brightness to be about 200 foot-Lamberts for Frame 316 and less than 100 foot-Lamberts for Frame 360. In both cases the telemetry data reproduced in Figure $6(c)$ shows that the focal plane or scanning slit remained at maximum width (0.3 inches) during the complete exposure of both frames due to the low surface brightness. Thus the abrupt change in the V / H rate

Figure 5 TYPICAL APPOLLO 15 PANORAMIC PHOTOGRAPHS WITH V/H ANOMALIES

FRAME 316
FRAME 360

indicated in 6 (b) produced a corresponding change in lens rotation and the velocity of the slit relative to the film without a compensating change in slit width. This resulted in the exposure differences. In frames taken at higher sun angles or brighter lunar surfaces the slit width could be adjusted permitting reduction or elimination of these exposure changes.

The abrupt change in the commanded V / H rate was produced by the V / H sensor signal "going into" or "coming out of" saturation. When the signal exceeded $19.5 \mathrm{mrad} / \mathrm{sec}$ (established as the maximum rate that could be encountered in the Apollo missions) the commanded V/H rate was automatically reset to $13.0 \mathrm{mrad} / \mathrm{sec}$ (a nominal value) producing the abrupt changes shown in Figure 6 (b). When these changes occurred while the capping shutter was open, Figure $6(a)$, the detail content of the photography was reduced.

To estimate the amount of residual motion blur produced by this V/H rate anomaly, microdensitometer traces were made of the shadow-tosunlight edges on both sides of the abrupt change in commanded V / H rate. From the telemetry data presented in Figure 6 we see that the V/H sensor signal reached the saturation value and the V / H command was set to the nominal value for both of the frames evaluated. The first portion of Frame 316 is dark and has a commanded V/H rate varying from 17.6 to 19.3 $\mathrm{mrad} / \mathrm{sec}$ and the latter portion is light with a V / H rate of $13.0 \mathrm{mrad} / \mathrm{sec}$. Similar conditions exist for Frame 360 except that the commanded V / H rate is nearly constant equal to $19.2 \mathrm{mrad} / \mathrm{sec}$ in the dark portion of the frame. None of the commanded V/H rates resulted in full compensation of the image motion. The residual blur was measured using the EGSA program and also calculated directly from telemetry and auxiliary data. The results of both of these estimates are compared in this section.

3.1 Residual Blur Estimation - Telemetry and auxillary data was used

 to estimate the residual blur in both the dark and light portions of each of the frames evaluated. This was achieved by calculating the difference between the uncompensated angular blur and the amount of compensation provided. In performing these calculations, estimates of the angular blur rates andexposure times were made using the available data sources and measurements of the photographs themselves. We discuss the calculations of the uncompensated angular blur rate, the compensation rate, the exposure time and the residual blur separately in the subsections below.
3.1.1 Uncompensated Angular Blur Rate - In order to compute the angular blur rate due to the velocity of the Command Module provision must be made for the curvature of the lunar surface. In a previous study ${ }^{\text {(1) }}$ expressions for the angular blur near the principal point in vertical and forward or aft oblique photography were developed. The expression for the ground blur at the lunar surface is

$$
\begin{equation*}
B_{G}=\frac{V t_{e}}{1+h / \tau_{m}} \tag{7}
\end{equation*}
$$

where V is the velocity of the Command Module, t_{e} is the exposure time, h is the altitude of the Command Module and τ_{m} is the nominal lunar radius ($=1738.1$ kilometers). As the altitude decreases, this expression is asymptotic to the more familiar expression in which the blur is proportional to the product of the platform velocity and the exposure time. For Apollo orbital photography, the reduction in the blur due to the interaction of the Command Module altitude and the lunar surface curvature is approximately 6%.

In our earlier study, all assessments were made near the principal point in each photograph and the theoretical expressions developed are only valid under these conditions. In order to evaluate the Apollo $15 \mathrm{~V} / \mathrm{H}$ nominally, our assessments had to be made away from the principal point in order to evaluate the MTF and residual blur on both sides of the V/H anomaly. Figure 7 shows a sketch where a point in a forward oblique pan photograph is under evaluation. The point is specified by a pitch angle, \varnothing, and a roll angle, w. In general the pitch angle would be the sum of the camera pitch angle plus an additional term due to the location of the point across the width of the photograph. In the present case however, all assessments were made near the optical axis ground track where the additional term is negligible. The pitch

Figure 7 • PAN PHOTO GEOMETRY
angle will result in a decrease in the apparent ground blur due to foreshortening as discussed below. The roll angle, on the other hand, being perpendicular to the Command Module ground track does not produce any foreshortening effects, however, the ground blur distance will be decreased from that expressed by Eq. (7) due to the fact that the point under assessment is away from the principal point by an amount expressed through the roll angle. For a vertical photograph an additional reduction factor, $\cos \theta$, must be included in Eq. (7) so that

$$
\begin{equation*}
B_{G}=\frac{V t_{e} \cos \theta}{l+h_{r_{m}}} \tag{8a}
\end{equation*}
$$

where

$$
\begin{equation*}
\theta=\sin ^{-1}\left[\frac{R_{s} \sin w}{\tau_{m}}\right] \tag{8b}
\end{equation*}
$$

and R_{s} is the slant range from the Command Module to the point under evaluation. The altitude of the Command Module is sufficiently small
compared to the lunar radius in this case so that this reduction factor is negligible in vertical panoramic photography. For oblique photography, the pitch and roll angles interact producing a more complicated expression for the reduction factor, however, its effect remains negligible.

The next step is the computation of the apparent ground blur by including the effects of foreshortening on the actual ground blur given by Eq. (7). Both the roll and the pitch angle can contribute to the foreshortening effect through the tilt angle given by

$$
\begin{equation*}
\cos t=\cos \phi \cos w \tag{9}
\end{equation*}
$$

When the pitch angle is zero, however, the roll angle produces no foreshortening effect since all of the ground blur is perpendicular to the line of sight. The foreshortening factor, $\cos \phi$, was included in the expressions presented in our previous study. In the presence of a roll angle the foreshortening factor is cost as presented by Eq. (9). However, this factor should only be applied to the portion of the blur in the viewing direction. This requires knowledge of the azimuth angle between the direction of flight and the direction of tilt. Kawachi ${ }^{(3)}$ presents the required transformation equations permitting us to write the apparent blur as

$$
\begin{equation*}
B_{A}=\frac{V t_{e}\left(\sin ^{2} \alpha+\cos ^{2} \alpha \cos ^{2} t\right)^{1 / 2}}{1+h / r_{m}} \tag{10a}
\end{equation*}
$$

where the azimuth angle, α, is given by,

$$
\begin{equation*}
\alpha=\tan ^{-1}\left[\frac{\sin \omega}{\tan \phi}\right] \tag{10b}
\end{equation*}
$$

For the values of roll angles which we are considering, however, this expression can be approximated by the original on-axis equation, namely

$$
\begin{equation*}
B_{A} \approx \frac{V t_{e} \cos \phi}{1+h_{r_{m}}} \tag{10c}
\end{equation*}
$$

This expression is a valid approximation because of two opposing effects; although the foreshortening factor is smaller, i.e. $\cos t$ compared to $\cos \phi$, it is only applied to a smaller portion of the actual ground blur. These two facts compensate for each other, allowing the foreshortening effect to be approximated by $\cos \phi$ with an error less than 0.1%.

The foreshortening effects, including the geometrical equations developed by Kawachi, assume a flat planetary surface. As a result of this assumption, the apparent ground blur will be slightly overestimated. Figure 8a shows the percentage error by which the blur is overestimated for two representative Command Module altitudes. For the present case, the error is less than 0.5% since the pitch angle will be either 0° or 12.5° determined by the mode of camera operation.

The next step in the calculation of the uncompensated angular blur rate is the conversion of the apparent ground blur to an apparent angular blur by the use of the slant range from the Command Module to the ground point under evaluation. In our earlier study, the expression for slant range employed was

$$
\begin{equation*}
R_{s} \simeq \frac{h}{\cos t} \tag{11}
\end{equation*}
$$

which is based upon the assumption of a flat planetary surface. The actual slant range is larger due to the curvature of the lunar surface and is given by

$$
\begin{equation*}
R_{s}=\left(h+r_{m}\right) \cos t-\left[r_{m}^{2}-\left(h+r_{m}\right)^{2} \sin ^{2} t\right]^{1 / 2} \tag{12}
\end{equation*}
$$

Figure 8 b shows the error produced in the estimation of slant range by assuming a flat lunar surface. The net effect of the assumption is to overestimate the angular blur similar to the effect on foreshortening. In this case, however, errors on the order of 1% are expected since tilt angles can become ashigh as 30°. Finally, the uncompensated angular blur rate is determined by taking the apparent ground blur of Eq. (10c) and dividing by the slant

Figure 8 ERRORS RESULTING FROM THE ASSUMPTION OF A FLAT LUNAR SURFACE
range expressed by Eq. (12) and the exposure time, te. The uncompensated angular blur rate, $\dot{\beta}$, is

$$
\begin{equation*}
\dot{\beta}=\frac{V \cos \phi}{\left(1+h / r_{m}\right)\left\{\left(h+r_{m}\right) \cos t-\left[r_{m}^{2}-\left(h+r_{m}\right)^{2} \sin ^{2} t\right]^{1 / 2}\right\}} \tag{13}
\end{equation*}
$$

This expression was employed with the numerical values shown in Table 3 to calculate the blur rate for both the dark and light portions of the frames under evaluation. The values of the Command Module velocity and altitude and the pitch angle were obtained from auxillary data furnished by Mr. K. Hancock at the NASA Johnson Space Center. The roll angles were estimated by measuring the distance of the dark and light evaluation regions from the center of the frame which is directly proportional to the roll angle. The tilt angles are subsequently calculated from Eq. (9).

Table 3
NUMERICAL VALUES USED TO COMPUTE UNCOMPENSATED ANGULAR BLUR RATE

VARIABLE	SYMBOL	VALUES	
		FRAME \#316	FRAME \#360
CM VELOCITY	\checkmark	$1.6279 \mathrm{~km} / \mathrm{sec}$	$1.6305 \mathrm{~km} / \mathrm{sec}$
CM ALTITUDE	h	109.22 km	106.14 km
LUNAR RADIUS	${ }^{\text {m }}$	1738.1 km	1738.1 km
PITCH ANGLE	\varnothing	$12.45{ }^{\circ}$	0
ROLL ANGLES	$W_{\text {D }}$	$20.4{ }^{\circ}$	6.0°
	W_{L}	$25.2{ }^{\circ}$	$10.8{ }^{\circ}$
TILT ANGLES	${ }^{t}$ D	$23.8{ }^{\circ}$	6.0°
	t_{L}	27.9°	$10.8{ }^{\circ}$

The following values resulted; Frame 316

$$
\begin{align*}
& \dot{\beta}_{\mathrm{D}}=12.45 \mathrm{mrad} / \mathrm{sec} \tag{14a}\\
& \dot{\beta}_{L}=11.99 \mathrm{~m} \mathrm{rad} / \mathrm{sec}
\end{align*}
$$

and for Frame 360

$$
\begin{array}{ll}
\dot{\beta}_{D}=14.39 \mathrm{mrad} / \mathrm{sec} \\
\dot{\beta}_{L}=14.20 \mathrm{mrad} / \mathrm{sec} \tag{14b}
\end{array}
$$

An expression equivalent to Eq. (13) could also have been developed by employing the work of Kawachi ${ }^{(3,4)}$. He derives expressions for the image velocity for an oblique frame camera and notes ${ }^{(4)}$ that "the image velocity for the panoramic photograph is the same as for a frame photograph tangent to it at the point in question." If we are interested in evaluating the velocity near the center of the width of the panoramic frame we can set the transformed film coordinates equal to zero, i.e. $x^{\prime}=y^{\prime}=0$, in Eqs. (7) and (8) of Ref. 4 and obtain the net image velocity as

$$
\begin{equation*}
V_{I}=\frac{V F}{h} \cos t\left[\sin ^{2} \alpha+\cos ^{2} \alpha \cos ^{2} t\right]^{t / 2} \tag{15}
\end{equation*}
$$

where F is the focal length of the camera and α is defined by Eq. (10b). The uncompensated angular blur rate is determined by dividing by the product of the focal length and the factor $1+h / r_{m}$ included previously in Eq. (7). This factor is the principal correction for the curvature of the lunar surface. The resulting expression can also be obtained from Eqs. (10a) and (11) and is therefore equivalent to Eq. (13) except for the neglection of the effect of surface curvature upon slant range.
3.1.2 Blur Compensation Rate - The next step in computing the residual blur is the determination of the compensation rate applied by the camera. In the case of a panoramic camera ${ }^{(2)}$ the blur compensation rate is proportional to the instantaneous rotation angle of the lens, namely,

$$
\begin{equation*}
\dot{\beta}_{c}=\left(\frac{V}{h}\right)_{C} \cos w \tag{16}
\end{equation*}
$$

This reflects the decrease in angular blur due to the slant range assuming a flat planetary surface. It is not known whether the panoramic camera IMC computer was reprogrammed for the more complex effect of the slant range due
to the curvature of the lunar surface (c.f. Eq. (12)). If so, the compensation rate would be

$$
\begin{equation*}
\dot{\beta}_{c}=\frac{\left(\frac{V}{H}\right)_{C}}{\left\{\left(1+r_{m} / n\right) \cos w-\left[\left(\frac{r_{m}}{h}\right)^{2}\left(1+\frac{r m}{n}\right)^{2} \sin ^{2} w\right]^{1 / 2}\right\}} \tag{17}
\end{equation*}
$$

where $\mathrm{rm} / \mathrm{h} \sim 16$ can be assumed to be constant. Referring back to Figure 8 b , we see that the effect is less than 1% for the rotation or roll angles we are considering. However, near the edge of the frame where the rotation angle approaches 54° the error would be as large as 7%. Conversely, the uncompensated blur rate is considerably less in this portion of the panoramic frame and the need for an accurate compensation rate diminished. Consequently, it is assumed that such a modification of the IMC computer was not undertaken since it would offer little advantage. Using Eq. (16), the roll angles presented in Table 3 and the V / H command values from the telemetry data presented in Figure 6, the compensation estimates were estimated for Frame 316 to be

$$
\begin{align*}
& \dot{\beta}_{C_{D}}=18.00 \mathrm{mrad} / \mathrm{sec} \tag{18a}\\
& \dot{\beta}_{C_{L}}=11.76 \quad \mathrm{mrad} / \mathrm{sec}
\end{align*}
$$

and for Frame 360

$$
\begin{align*}
& \dot{\beta}_{C_{D}}=1909 \mathrm{mrad} / \mathrm{sec} \tag{18b}\\
& \dot{\beta}_{C_{L}}=12.77 \mathrm{mrzd} / \mathrm{sec}
\end{align*}
$$

We note that these results are only an approximation since the compensation rate is proportional to the instantaneous rotation angle and a given point in the panoramic frame will receive a varying amount of image motion compensation due the finite width of the scanning slit. Consequently, Eq. (16) should be integrated over the exposure time of the point under evaluation to determine an average compensation rate, namely

$$
\begin{equation*}
\left\langle\dot{\beta}_{c}\right\rangle=\frac{1}{t_{e}} \int_{t_{e}} \dot{\beta}_{c}(t) d t \tag{19}
\end{equation*}
$$

This procedure was executed and the resulting average compensation rates were less than those presented in Eqs. (18a and 18b) by approximately 0.6%. In this case, therefore, the dynamic effect of the motion compensation can be neglected.
3.1.3 Exposure Time Estimation - Three different methods were used to estimate the exposure time of the dark or light portions of each frame under evaluation. As noted previously, the abrupt change in the average density across the V / H anomaly was attributed to a change in exposure time between these two portions of the frames. One method for determining the exposure times is based upon this fact, that is, the density difference is related to the ratio of the exposure times by the expression

$$
\begin{equation*}
Q \equiv \frac{t_{e D}}{t_{e_{L}}}=10^{\delta / \gamma} \tag{20}
\end{equation*}
$$

where δ is the density difference and γ is the gain of the $D-\log E$ response curve. The length of time that the capping shutter is open, t_{c} is equal to the sum of the times required to expose each portion of the frame, that is,

$$
\begin{align*}
t_{C} & =\frac{L_{D}}{V_{D}}+\frac{L_{L}}{V_{L}} \\
& =\frac{L_{D} V_{L}+L_{L} V_{D}}{V_{L} V_{D}} \tag{21}
\end{align*}
$$

where L_{D} is the length of the dark portion of the exposed frame, L_{L} is the length of the light portion of the exposed frame, and $V_{\mathcal{D}}, V_{L}$ are the velocities of the scanning slit in the respective portions of the frame. Since the width of the scanning slit, W_{S}, is constant these velocities are inversely proportional to the exposure time and consequently we can equate the variable θ of $E q$. (20) to the ratio of the velocities, namely

$$
\begin{equation*}
Q=V_{L} / V_{D} \tag{22}
\end{equation*}
$$

Combining Eqs. (21) and (22) and eliminating the velocity of the scanning slit
in favor of the ratio of the slit width to the exposure time, we can derive an equation for the exposure in the light portion of the frame

$$
\begin{equation*}
t_{e_{L}}=\frac{W_{S}}{Q L_{D}+L_{L}} t_{C} \tag{23a}
\end{equation*}
$$

as well as an expression for exposure in the dark portion

$$
\begin{equation*}
t_{e D} \circledast t_{e L} \tag{23b}
\end{equation*}
$$

These equations were employed with the numerical values shown in Table 4 to calculate the exposure times for both the dark and light portions of the frames under evaluation. The density difference was measured directly from the frames under evaluation while the gain of the response curve was obtained from Figure 31 of Reference 1 using the curve labeled "4th GEN POS (4P)". The capping shutter time and the scanning slit width were obtained from telemetry data shown previously in Figure 6. The values of the exposure time obtained using these expression are presented in Table 5 along with error estimates derived from first order analyses.

Table 4
NUMERICAL VALUES USED TO ESTIMATE EXPOSURE TIMES

VARIABLE (UNITS)	VALUE		
		FRAME \# 316	FRAME \# 360
DARK-LIGHT DENSITY DIFFERENCE	δ	0.42	0.36
RESPONSE CURVE GAIN	γ	-2.0	-2.0
EXPOSURE TIME RATIO	R	0.61660	0.66069
SECTION LENGTHS (INCHES)	L_{D}	32	26
CAPPING SHUTTER TIME (SECONDS)	L_{L}	13	19
SCANNING SLIT WIDTH (INCHES)	t_{c}	1.5	3.1

Table 5
EXPOSURE TIME ESTIMATES

SOURCE	FRAME \#316		FRAME \#360	
	DARK	LIGHT	DARK	LIGHT
EQS (23a) AND (23b)	$\begin{aligned} & 8.5 \mathrm{msec} \\ & \pm 9.3 \% \end{aligned}$	$\begin{aligned} & 13.7 \text { msec } \\ & \pm 7.7 \% \end{aligned}$	$\begin{aligned} & 17.0 \mathrm{msec} \\ & \pm 5.3 \% \end{aligned}$	$\begin{aligned} & 25.7 \mathrm{msec} \\ & \pm 4.2 \% \end{aligned}$
MOLEBURG EQ. (25)	$\begin{aligned} & 9.2 \mathrm{msec} \\ & \pm 2.9 \% \end{aligned}$	$\begin{aligned} & 13.6 \mathrm{msec} \\ & \pm 2.6 \% \end{aligned}$	$\begin{aligned} & 17.6 \mathrm{msec} \\ & \pm 2.3 \% \end{aligned}$	$\begin{aligned} & 26.0 \mathrm{msec} \\ & \pm 2.6 \% \end{aligned}$
ADJACENT FRAME	N/A	$\begin{aligned} & 14.0 \mathrm{msec} \\ & \pm 5.0 \% \end{aligned}$	N/A	$\begin{aligned} & 25.3 \mathrm{msec} \\ & \pm 3.2 \% \end{aligned}$

The second method used to estimate the exposure times is based upon an approximate formula which was furnished by Mr. B. Moleburg at the NASA Johnson Space Center, namely

$$
\begin{equation*}
t_{e}=\frac{K W s}{(V / H)_{C}} \tag{24}
\end{equation*}
$$

where $\mathbb{K}=0.59$ for the stereo mode and 1.127 for the mono mode. The V/H factor in the denominator of this expression is the command V / H rate obtained Erom telemetry data; 19.2 milliradians/second for the dark portion and 13.0 milliradians/second for the light portion. The exposure times obtained using this expression are also presented in Table 5 with their associated error estimates.

The final method used to estimate the exposure time is only applicable to the light portion of each frame under evaluation. In both cases, the adjacent frame had an exposure level equivalent to the light portion of the frames under evaluation and consequently the exposure time in the light portion is equal to the exposure time of either adjacent frame. The equation for calculating the exposure time for a frame with a constant V / H command rate is obtained by setting $Q=1, L_{D}=0$ and $L_{L}=L=45$ inches in Eq. (23a), namely

$$
\begin{equation*}
t_{e}=\frac{W_{s}}{45} t_{c} \tag{25}
\end{equation*}
$$

The results obtained using this method are also included in Table 5, and we note that the results from all three methods are in excellent agreement. In subsequent evaluations, results obtained from Eqs. (23a) and (23b) are employed.
3.1.4 Residual Blur - It is a straightforward procedure to combine the results derived above in order to determine the residual motion blur at the film plane. The equation for the residual image blur is

$$
\begin{equation*}
\sigma_{r}=\left|\dot{\beta}-\dot{\beta}_{c}\right| t_{R} F \tag{26}
\end{equation*}
$$

where F is the focal length of the camera ($=610$ millimeters). This blur produces a Modulation Transfer Function described by the equation

$$
\begin{equation*}
\tau(\nu)=\frac{\sin \left(\pi \nu / \nu_{0}\right)}{\pi \nu / \nu_{0}} \tag{27}
\end{equation*}
$$

which degrades the nominal fine detail content of the photograph. The parameter ν_{0} is simply the reciprocal of the residual image blur in cycles $/ \mathrm{mm}$. Values obtained for both the residual image blur and the "cutoff" spatial frequency are presented in Table 6.

Table 6
RESIDUAL IMAGE BLUR

VARIABLE (UNITS)	FRAME \#316		FRAME \#360	
	DARK	LIGHT	DARK	LIGHT
RESIDUAL IMAGE BLUR (mm)	.0288 $\pm 12 \%$.0020 $\pm 44 \%$.0224	.0488
CUTOFF FREQUENCY (CYCLES/mm)	34.7 ± 4.2	512 ± 230	44.5 ± 3.1	20.5 ± 3.5

The expected value of the net MTF can be determined by multiplying the values obtained from Eq. (27) by the product of the MTF for the flight and subsequent copy films and the camera lens. Unfortunately, an MTF for the panoramic camera lens was not available, however, such lenses are noted for their high quality performance and it is very likely that the net MTF is dominated by the performance of the flight and copy films and any residual blur. Consequently, in determining the expected MTF the lens MTF was assumed to be 1.0 at all spatial frequencies evaluated.

A final comment is required concerning the precision of the approximations used in the expressions for the uncompensated angular blur rate and the compensation rate. In both cases only those approximations whose errors were less than 1% were retained. However, since we are employing difference between these two quantities in Eq. (26) a small error can be magnified when a small difference occurs. Eq. (13) for the uncompensated angular blur rate employs two approximations for the inclusion of foreshortening effects; the assumption of a flat planetary surface and equivalence between the off-axis and on-axis reduction factors. For vertical photography, these approximations introduce no errors. However, for oblique photography, the net effect is to over estimate the blur rate by about 0.5%. Eq. (16) for the blur compensation rate neglects the dynamic effects of motion compensation and over estimates by 0.6% compared to the average compensation rate. This occurs for both the oblique and vertical photography. In the case of oblique photography, since both the blur rate and compensation rate are over estimated by about the same percentage, the effect upon the residual image blur is negligible (i.e., about 0.6%) even when there are small differences between the rates. In the case of the vertical photography, only the compensation rate is in error and this is subsequently magnified by the differencing operation resulting in an under estimate of the residual -image blur by 5% in the light portion of Frame 360 and an over estimate of the residual image blur by 3% in the dark portion of Frame 360. These errors are still less than the net accuracy of the residual blur estimates shown in Table 6.

3.2 Modulation Transfer Function Estimation - As noted previously

 in Section. 2, a net MTF was estimated for each photo under evaluation. This was accomplished by tracing shadow-to-sunlit edges interior to craters using a microdensitometer and subsequently processing this edge data using the Edge Gradient Spectral Analysis (EGSA) software package described in Section 2.2.A Mann microdensitometer was used to obtain the required edge data.
For this purpose the microdensitometer was used in an improved but unconventional mode of operation. A $41 \mu \mathrm{~m}$ by $41 \mu \mathrm{~m}$ source aperture was employed with a $0.4 \mathrm{~N} . \mathrm{A}$. influx objective. This offered a magnification of approximately $40 x$ producing a $1.0 \mu \mathrm{~m}$ square geometric image at the film plane. This image is subsequently broadened by the diffraction effects of the objective whose airy disc has a diameter of $1.5 \mu \mathrm{~m}$. Consequently, the image of the source aperture will be a gaussian-like light distribution with a diameter of several micrometers. A 0.25 N.A. objective was used for the efflux optics and the subsequent sensor aperture chosen to minimize stray light and not further define the scanning aperture. In this mode of operation the distorted image of the source aperture is the scanning aperture and the spatial frequency response of the microdensitometer determined accordingly. The over filling of the efflux optics by the influx optics offers an improvement in instrument performance.

Edge data was collected in both the dark and light portions of each of the frames about 1 inch on either side of the suspected V / H discontinuity. This edge data was then hand smoothed and digitized for processing by the EGSA software. The average MTFs resulting from these measurements are presented in Figures 9 and 10 along with the expected MTF determined by the procedures described in Section 3.1.4. In estimating the average MTF through modulus averaging, 10 edges were measured in the dark portion of Frame 316 while 7 edges were measured in the light portion. Similarly, ll edges were measured in the dark portion of Frame 360 and 10 edges in the light portion.

Figure 9 MEASURED AND EXPECTED MTF's FOR APOLLO 15 FRAME 316 WITH V/H ANOMOLY

Figure 10 MEASURED AND EXPECTED MTF's FOR APOLLO 15 FRAME 360 WITH V/H ANOMOLY

Also shown in the Figures is the net film MTF limit for the 4th Generation Positive copies employed in the evaluation. We note that there is excellent agreement between the expected and measured MTF values in all four instances. For the light portion of Frame 316 the measured and expected MTF values are essentially identical and equal to the net film MTF limit over the range of spatial frequencies shown. This is a result of the nearly perfect compensation provided in this case. In all the other cases the compensation was poor and the resolution reduced by $1 / 3$ (to about 6 meters on the lunar surface).

Other low sun angle photography known to have V / H discontinuities include Frames 8852 (Rev. 4) and 344 (Rev. 72). When such a discontinuity did not occur the V / H command signal was either at the nominal value (13.0 mrad/sec) similar to the light portions of the frames evaluated or varying about an anomalously high value similar to the dark portions. Telemetry data indicates that the latter situation occurred at least for Frames 345, 346 and 347 (Rev. 72). Only when it is equal to the nominal value can the full "resolution" potential of the panoramic camera be realized; but this may not always occur (refer to the MTF for the light portion of Frame 360). The user of Apollo 15 panoramic data should refer to the telemetry data to determine the V / H command situation for the frames he is exploiting and account for the effects of poorer resolution if necessary.

4. COMPARISON AMONG MULTIPLE GENERATIONS OF APOLLO 16 AND 17 PHOTOGRAPHY

One of the specific tasks accomplished during this study was an assessment of the detailed content of multiple generations of Apollo 16 and 17 photography. The purpose of this assessment was to determine the degradation, if any, in the quality of the photographic products furnished to varigus users. The original flight film is copied to produce a master Positive (2P) or Direct Negative (2 N) copy. These are the earliest generations which a user may exploit and only a limited number of such copies are generated. The Master Positive is subsequently copied twice to produce a 4th Generation Positive (4P) which most investigators are likely to use. The Direct Negative is also copied once to produce a Third Generation Positive (3P) which is also available to investigators. This latter sequence eliminates one copy step in the hope of improving product quality or reducing production time. Unfortunately the characteristics of the reversal film required to produce the 2 N copy may limit the detail content and no actual improvement in product quality obtained. The purpose of this task was to assess the effect of both reproduction sequences on the detail content of Apollo 16 and 17 photography.

An inter-comparison of the total quality and the fine detail content was made for Apoilo 16 panoramic photography, Apollo 17 panoramic photography and Apollo 17 metric photography. The frames selected and subsequently evaluated were shown previously in Table 1. Unfortunately 3P and 4P copies of the same type of photography were not available at the Lunar Science Institute thus preventing a direct comparison of the most likely user products. Instead a comparison of preceeding generations (2 N and 2 P) was made. The results of the evaluations are discussed in detail in the subsections below.
4.1 Product Tonal Quality. - The methodology used to assess the tonal quality of the Apollo 16 and 17 photography was discussed previously in Section 2. The most common measure of tonal quality is the Hurter-Driffield or D-Log E response curve. It specifies how the apparent scene brightness is reproduced as density in the photograph. The D-Log E response curve was measured for each frame evaluated. The results obtained are presented in

Figures 11 through 13. These curves were generated from microdensitometer scans of step wedges placed on the original flight film and subsequently copied during each duplication step. Consequently, the relative exposure refers to the apparent brightness of scene elements at the original flight film. The exposure of the first step was arbitrarily assigned a value of 1.0. Since there is an increment of 0.15 in the \log exposure between the 21 steps, the last step has a relative exposure of 1000 .

A software program was written that calculates the gain factors expressed by Eq. (6) using step wedge densities (sensitometric calibration) supplied as input. The input values were obtained from the curves shown in Figures 10 through 13 created by visually passing a smooth curve through the actual measured step wedge densities. Spline interpolation functions are used to compute density values for exposure levels between the individual steps. These interpolation functions yield results equivalent to forcing a flexible straight line (spline) through the data points and tend to avoid the "waviness" often encountered by other curve fitting techniques.

The tone quality evaluation program uses the resulting coefficients of the spline regression to estimate the density difference between the image and the background for various contrast levels identified previously in Table 2. The average exposure levels, i.e. the average of the object and background exposure values, were set equal to the relative exposure levels of each of the steps in the step tablet. The density difference at each average exposure level is divided by \triangle (c.f. Table 2) to determine the gain.

The gain as a function of the average exposure level was identical for the low and mid-contrast objects for all the cases examined. The gain functions for the second generation photography are presented in Figures 14 through 16. In describing tonal quality the term "dynamic range" is frequently employed. This is loosely defined as the exposure region corresponding to the linear portion of the $D-\log E$ curve. In this study we defined the dynamic

(a) FRAME 4127

(b) FRAME 5460

Figure 11 SENSITOMETRIC CALIBRATION - APOLLO 16 PANORAMIC PHOTOGRAPHY

Figure 12 SENSITOMETRIC CALIBRATION - APOLLO 17 PANORAMIC PHOTOGRAPHY

(a) FRAME 180

(b) FRAME 2923

Figure 13 SENSITOMETRIC CALIBRATION - APOLLO 17 METRIC PHOTOGRAPHY

Figure 14 GAIN FOR LOW AND MID-CONTRAST OBJECTS - APOLLLO 16 2nd GENERATION

Figure 15 GAIN FOR LOW AND MID-CONTRAST OBJECTS - APOLLO 17 2nd GENERATION

Figure 16 GAIN for low and mid.contrast objects - Apollo 17 2nd Generation
range more quantitatively as the exposure interval between the points where the gain functions dropped to 50% of their peak value. The average value for the peak gain and the dynamic range for each type of photograph evaluated is presented in Table 7. It is clear from examination of Figures 14 and 15 that both the 2 P and 2 N photography have about the same peak gain but the 2 P photography has a much greater dynamic range. This is also evident from the numerical values presented in Table 7. We can conclude, therefore, that the tone quality of the Master Positive is superior to the Direct Negative for the panoramic photography. In the case of the metric photography, it is not clear from Figure 16 that a difference in dynamic range exists and the values in Table 7 show an equivalence of the dynamic range. However, the peak gain of the Master Positive photography is clearly greater. The roll containing Frame 180 was, in fact, processed to yield a "high gamma" copy. In this case we conclude that the Master Positive is superior due to the peak gain rather than any difference in dynamic range.

Table 7
TONE QUALITY COMPARISON
(LOW AND MID CONTRAST OBJECTS)

PHOTO TYPE		PEAK GAIN	DYNAMIC RANGE (dB)
APOLLO 16	2N	1.8	9.9
PAN	$2 P$	1.9	15.5
	$3 P$	1.8	9.6
	$2 N$	2.1	7.5
APOLLO 17	$2 P$	2.2	11.1
PAN	$3 P$	2.4	6.5
	$3 P$	1.9	8.3
APOLLO 17	$2 N$	$2 P$	2.7
METRIC	$4 P$	2.1	8.4
	4.5		

Similar measurements were made on the $3 P$ and 4P copies where they were available. These data were not included in Figures 14 through 16 for the sake of clarity but are presented in Table 7. The quality of these products generally correlates with the corresponding Second Generation photography. There is little change in the peak gain between these generations, but a definite decrease in the dynamic range for the higher generation products. An exception is the 2 P to 4 P reproduction of the Apollo 17 metric photograph where an apparent drop in the peak gain is noted. Consequently, we cannot infer that the tonal quality differences present in the Second Generations are preserved in the 3P and 4P user products for the metric photography.

The gain functions for a high contrast object (e.g. sunlight-shadow boundary) have lower peak gains and greater dynamic range (c.f. Table 8) but support the conclusions reached above.

Table 8
TONE QUALITY COMPARISON
(HIGH CONTRAST OBJECTS)

PHOTO TYPE		PEAK GAIN	DYNAMIC RANGE (dB)
APOLLO 16	2N	1.5	13.0
PAN	2P	1.7	>15.7
	3P	1.5	12.0
APOLLO 17	2N	1.7	9.7
PAN	2P	2.0	12.3
	3P	1.9	9.2
APOLLO 17	2N	1.6	10.7
METRIC	$2 P$	2.6	10.7
	$4 P$	1.6	10.7

4.2 Fine Detail Content - MTF measurements were made in order to compare the detail content of the various generations of photography evaluated. These measurements were made by scanning shadow-to-sunlit edges near the center of each frame using a microdensitometer. The mode in which the instrument was operated was described previously in Section 3.2 in connection with similar measurements on Apollo 15 panoramic photography. The edge data
obtained were processed using the EGSA software as discussed previously in Section 2.2. Table 9 shows the amount of edge data collected and processed for each of the photographs evaluated.. The MTFs measured for the Apollo 17 metric photography are presented in Figure 17. Included in the Figure is the MTF limit for the film alone. The significance of the departure of the measured MTFs from the film limit was assessed using the 95% confidence bands calculated by the EGSA main program (see the Appendix). The systematic affect at the low spatial frequencies $(0-30$ cycles $/ \mathrm{mm})$ where the measured functions exceed the limit is a result of the manual smoothing and the noise level. The top and bottom of the edge are masked by the noise and the observer tends to employ small radii of curvature thereby truncating the tails of the spread functions and producing this effect. Consequently the confidence bands are examined only above 30 cycles $/ \mathrm{mm}$ to assess significance. Both the Direct Negative (a) and Master Positive (b) MTF's are not significantly lower than the film limit except for the 2 P copy of Frame 180. The 4 th Generation Positive MTF's (c) are both significantly less than the film imposed limit. In these three cases the estimated ground resolution is about 30 meters (versus a nominal 20 meter resolution). Since half of the copies have nominal resolution the loss in fine detail must have occurred during the reproduction processes.

Table 9
EDGE DATA COLLECTED AND PROPOSED FOR APOLLO 16 AND 17 PHOTOGRAPHY

FRAME	TYPE DIRECT NEGATIVE	MASTER POSITIVE	3rd GEN. POSITIVE	4th GEN. POSITIVE
180	8	7	-	10
2293	8	8	-	8
1633	10	9	6	-
3111	6	6	3	-
4127	5	10	9	-
5460	10	8	7	-

4th GENERATION POSITIVE (4P)
(C)
Figure 17 MODULATION TRANSFER FUNCTIONS - APOLLO 17 METRIC PHOTOGRAPHY

Figure 18 presents the MTF results for the Apollo 17 panoramic photography. For both frames the Direct Negative, Master Positive and 3rd Generation Positive MTF's are not significantly different from the respective film limits. This photography has the maximum possible fine detail content or about 2 meter "resolution."

Figure 19 shows the MTFs obtained for the Apollo 16 panoramic photography evaluated. In this case all of the copies examined showed a significantly lower response than that imposed by the photographic films involved. For the Direct Negative copies the ground resolution element is estimated to be 4 meters while the Master Positive and 3rd Generation Positive copies have a 3 meter resolution. Whether this reduced fine detail content is' present in the original flight film it is unknown since that photography was not available for evaluation. We note that the Direct Negative copies evaluated are not necessarily those used to produce the 3rd Generation Positive copies (which apparently have better resolution).

Based upon the results presented above it is concluded the reproduction. processes may have produced a loss in fine detail. About half the frames evaluated showed some loss. In these cases the ground resolution element increased by a factor of 1.5 to 2 .

Figure 18 MODULATION TRANSFER FUNCTIONS - APOLLO 17 PANORAMIC PHOTOGRAPHY

Figure 19 MODULATION TRANSFER FUNCTIONS - APOLLO 16 PANORAMIC PHOTOGRAPHY

5. CONCLUSIONS

The development and application of image evaluation methods for assessing the detail content of Apollo Orbital Photography has been demonstrated. Edge analyses using shadow-to-sunlight edges interior to craters was successfully used to evaluate the fine detail content for Apollo 15, 16 and 17 imagery. A method for evaluating tone quality was developed using a gain factor as a function of object contrast and average exposure level that can be related to object detectability.

The anomalous operation of the V/H sensor during the Apollo 15 mission introduced several degrading effects into the panoramic imagery; a loss in resolution due to image motion blur and exposure differences within a frame. The latter effect is present in those frames where an abrupt change in the V/H rate occurs. Two such frames were evaluated and exhibited a 0.4 density difference. It is estimated that this difference would be less in high sun angle photography although no such frames were examined.

The fine detail content was seriously degraded by the anomalous V / H sensor operation. The commanded V / H rate was either anomalously high or equal to the pre-set nominal rate. This resulted in either over or under compensation and a reduction in the resolution by $1 / 3$ (to about 6 meters on the lunar surface). In one instance the nominal V / H rate was sufficiently close to the actual rate to permit nearly perfect compensation. Only when the commanded V/H rate is equal to the nominal value can the full resolution potential of the panoramic camera be realized; but this may not always occur. When the command rate varies about an anomalously high value a loss in resolution can be expected for the full frame. The user of Apollo 15 panoramic imagery should refer to the telemetry data to determine the V / H command situation for the frames he is exploiting and account for the effects of poorer resolution if necessary.

As a result of the comparison among multiple generations of Apollo 16 and 17 photography it was concluded that the tone quality of the Master Positive is superior to that of the Direct Negative for the panoramic photography. This difference is attributed to a greater dynamic range of the 2 P photography. This means that lunar objects have a greater contrast over a wider range of average exposure levels in the 2 P photography compared to the 2 N photography. Unfortunately 3P and 4P copies of the same type of photography were not available thus preventing a direct comparison of the most likely user products. However, the quality of these products generally correlates with the corresponding 2nd Generation Photography, and we can infer that the tonal quality differences are preserved in higher generation user products. Such differences were not evident in the metric photography.

MTF measurements made to compare the detail content of the various generations revealed that half of the imagery examined had a significant loss in fine detail content. These losses were found in both the metric and panoramic photography and are probably introduced during the reproduction process. In the case of the Apollo 16 panoramic imagery all copies showed loss of fine detail and it was not possible to assess whether this loss was present in the flight imagery since it was not available for evaluation. The net effect was an increase in the ground resolution element by an approximate factor of 1.5; 3 meters for the panoramic photography and 30 meters for the metric photography.

The success of the image evaluation methods in assessing the detail content of Apollo orbital photography and the importance of this detail content to potential users suggests that NASA should continue to develop the methods for applications for the future manned and unmanned spacecraft involved in planetary or earth exploration.

REFERENCES

1. Kinzly, R. E., Study of the Detail Content of Apollo Orbital Photography. Report No. VT-2912-0-1, Calspan Corporation (formerly Cornell Aeronautical Laboratory, Inc.), 29 September 1972.

2. Jensen, N., Optical and Photographic Reconnaissance Systems. J. Wiley and Sons, Inc., 1968.
3. Kawachi, D. A., Image Motion and Its Compensation for the Oblique Frame Camera. Photogrammetric Engineering, Vol. 31, No. 1, January 1965, pp. 154.
4. Kawachi, D. A., Image Motion Due to Camera Rotation. Photogrammetric Engineering, Vol. 31, No. 5, September 1965, pp. $\overline{861 .}$

APPENDIX
 SOFTWARE DESCRIPTIONS

This Appendix contains descriptions of eight programs used in the evaluation of the Detail Content of the Apollo Orbital Photography. The purpose, description of inputs, logic and processing, and a sample of the input and output data are included, if appropriate, for each of the programs. All of the programs were written using FORTRAN IV Language. Source and cross reference listings are included for seven of these programs.

Seven of the programs are part of the Edge Gradient Spectral Analysis (EGSA) software package. This package consists of two main programs and five subprograms and is described in Sections 1.0 through 2.0 of this Appendix. Section 8.0 describes the main program used to evaluate the tone quality of Apollo Orbital Photography.
1.0 Main Program DTAPE - This program is part of the Edge Gradient Spectral Analysis software package. It is one of two main programs in the package and is used to create an input data tape for subsequent processing by the main EGSA program. The input to this program is assumed to be edge trace data (i.e., density values at uniform spatial increments) supplied on card input. Sensitometric calibration (step wedge data) is also required for program execution. These data are used by function subprogram EXPOS to convert the density values to relative exposure values which are subsequently written onto an output data tape. No printed output data is furnished by this program.

Fiugre 20 is a listing of program DTAPE. The function of the major blocks are identified by the comments included in the coding. The program initially reads the sensitometric calibration data supplied by the user in card form. An example of a typical input data set is shown in Figure 21. The initial card of this data deck specifies the number of points, NSW, and the sense of the photographic image (i.e., positive or negative). The variable SENSE is actually a dual purpose variable. It is used to indicate the sense of the image; a positive value corresponds to a positive image and a negative

OIMENSION E (500), SWD(21)
DATA DUM $/ 0.0 /$, NOUM/O
1 FORMAT $3 I 5, F 9.0)$
2 FORMAT $4(10 X, F 10.01)$
3 FORMAT $(12, F 6.0)$
4 FORMAT $(14 F 5 . C, 10 X)$

Figure 20 SOURCE AND CROSS REFERENCE LISTINGS FOR MAIN PROGRAM DTAPE

**
READ EDGE IOENTI FICATION PARAMETERS, NUMRER OF POINTS AND INCREMENT
$* *$ 6 READ(5,1) NED,NID,NP,OX
IF(NP.EQ.O) GO TO 20
טuvuטu

READ(5,2) $(E(1), 1=1, N P)$

**

* WRITE OUTPUT DATA TAPE RECORDS
*

NP, DX

20 END FILE
GO TO 5

30 WRITESI) NCUM, NDUM, NDUM, OUM
END FILE 1
品号
Figure 20. SOURCE AND CROSS REFERENCE LISTINGS FOR MAIN PROGRAM DTAPE
REFERENCE
LISTING*****

$$
\begin{aligned}
& \infty \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

$$
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

$$
\begin{aligned}
& 4 \\
& \hdashline-1 \\
& 0
\end{aligned}
$$

[^0]（ NMOHS ヨコVYㄴ）$\forall \perp \forall 0 ~ 300 ヨ$

Figure 21 TYPICAL DTAPE PROGRAM INPUT DATA SET
value to a negative and to control the difference in log exposure between the points in the sensitometric calibration data. The difference in log exposure between points is computed as $0.15 *$ SENSE and consequently if this difference is 0.15 , the most likely value, the magnitude of SENSE should be set equal to 1.0 . The subsequent cards in ths data deck contain density values for each point which are read into the $\operatorname{SWD}(\mathrm{I})$ array.

The next two major steps in the program involve reading edge identification parameters, the number of points in the edge data and the increment between points as well as the edge data itself. These data must also be supplied by the user in card deck form. The initial card shown in Figure 21 contains two integer identification parameters, the integer NP equal to the number of points in the edge data and DX, the increment between points. In the Apollo photographic evaluation the identification parameters were set equal to the frame number and a sequential number identifying the edge trace made on that frame of photography. This card is followed by a sequence of cards containing the actual edge data. Provision is made for multiple edge traces in any one edge data set. After the last trace a blank card must be inserted to separate edge data sets. The user is free to add other edge data sets to the input by following this blank card with the new sensitometric calibration data and the associated edge data.

After reading the edge data, the program converts the density values to relative exposure by calling function subprogram EXPOS. The converted edge data are written onto an output tape and the program recycled to read the next edge trace identification parameters and data. This process is repeated until a zero is encountered for the number of points in an edge trace. This identifies the end of the current data set and the program places an end file on the output data tape. It then recycles to read new sensitometric calibration data for the next data set. If no data is encountered, the program writes a dummy output record as the last file on the output tape and terminates execution.
2.0 Function Subprogram EXPOS - This program is part of the Edge Gradient Spectral Analysis software package. It supports Program DTAPE in the creation of an input data tape for subsequent processing by the main EGSA program. The purpose of this function subprogram is to convert a density value supplied as input into a relative exposure value using sensitometric calibration data. No direct input data must be furnished by the user. The input data is supplied through the calling program. No printed output data is furnished by this program.

Figure 22 is a listing of program EXPOS. The function of the major blocks are identified by the comments included in the coding. The computing path branches depending upon the difference between the input value of density to be converted and the density value of the current point in the sensitometric data. That point is identified by the integer variable I. If these two density values are equal, the exposure for that point is computed and returned to the calling program. If the input density value is greater, the value of I is increased by one and a comparison between the input density and the density value of the next point in the step wedge is made. This process is repeated until the density of the point in the sensitometric calibration is greater than the input density or until the last point of the data is reached. If the latter occurs, the exposure for this last point is computed and returned to the calling program. If a point in the sensitometric calibration data of greater density than the input value is found the program performs a linear interpolation between that point and the previous adjacent point which bracket the value of the input density. If the current point in the sensitometric calibration data has a value which exceeds the input density, a check is made to determine, if the density value lies between the current point and the adjacent point and if not, the index I is decreased by one and the comparison made again. This process is repeated until the input density value is bracketed by two points in the sensitometric calibration. Should the input density value be less than the first point in the calibration data (lowest density value) the relative exposure is set equal to one and returned to the calling program.
FUNCTION EXPOS(D,SENSE,SWD,NSW)

> (1) STM

Figure 22 SOURCE AND CROSS REFERENCE LISTINGS FOR EXPOS FUNCTION SUBPROGRAM

ISN 0010 ISN OOP		$51=1+1 \text {. }$
ISN 0013		7. IFid-SWDIIII 15,10.5
	\xrightarrow{C}	
	c	
	$\stackrel{C}{c}$	* compute exposure for input density equal to density of smotil *
	c	* ${ }^{\text {a }}$
	${ }_{c}$	**
ISN 0014		16 EXPOS 1 IC .**(-DLE*(1-1)
ISN 0015		IFII.GT.1) $1=1-1$
ISN 2017		RETURN
	c	
	c	***
	c	
		* COMPUTE EXPOSURE FOR INPUT DENSITY BETWEEN SWD(I-1) AND SWD(I) BY * using linear interpolation
	c	
	c	***)
	c	
ISN 0018		15 IFIIEEO.1) 60 TO 25
ISN 0020		IFIO.LT. SWD(I-1) 60 TO 30
ISN 0022		
ISN 3023		$\mathrm{I}=\mathrm{I}-1$.
1SN 0024		return
	${ }_{c}^{6}$	
	c	* compute exposure for input density beyono maximum wedge density *
	c	**
	c	
ISN 0025		20 EXPOS $=10 . * * 1-\mathrm{DLE} *(\mathrm{NSH}-1)$
ISN 0026		$1=1-1$
ISN 0027		RETURN
15 N 0028		25 ExPOS $=1.0$
ISN 0029		RETURN
ISN 0030		3 C 1=1-1
1SN 0031		Go to 7
ISN 0032		END

Figure 22 SOURCE AND CROSS REFERENCE LISTINGS FOR EXPOS FUNCTION SUBPROGRAM

Figure 22 SOURCE AND CROSS REFERENCE LISTINGS FOR EXPOS FUNCTION SUBPROGRAM

The relative exposures supplied by this program are 1.0 or greater for negative imagery and between 1.0 and 0.0 for positive imagery. The points in the sensitometric calibration data must be provided in order of increasing density.
3.0 Main Program EGSA - This program is part of the Edge Gradient Spectral Analysis software package. It is one of two main programs in the package and is used to compute an Optical Transfer Function (OTF) from edge trace data. The complex OTF is expressed as modulus and phase functions. The edge data is read from an unformatted data tape created by program DTAPE described previously in Section 1.0 of this Appendix. In addition to these data, the user must supply card input which identifies various data options he elects to receive from the program. Both printed and plotted output data are furnished as output options.

Figure 23 is a listing of program EGSA. The function of the major blocks are identified by the comments included in the coding. A macro flow diagram for this program was presented as Figure 3 on page 7 of the main text.

In order to exercise this program, sixteen subprograms are required. Four of these programs are user supplied and are discussed in detail in the following subsections. These include CONVLV which convolves an input function with an ll-point differentiating filter, DXSCAL which determines the increment or scale factor (inches/point) for the x-axis of several plots, FORINV which performs an inverse Fourier transform and FOURTR which calculates a Fourier transform of a real input function providing the complex output function as modulus and phase.

Of the twelve remaining subprograms, nine are used to generate graphic output. A brief description of the purpose of each of these programs is presented in Section 2.2 of the main text. Since these programs are peculiar to the data processing facility, no further discussion is provided in this Appendix. Two of the subprograms are IBM supplied FORTRAN IV Library subprograms

Figure 23 SOURCE AND CROSS REFERENCE LISTINGS FOR MAIN PROGRAM EGSA (PAGE 1 OF 12)

Figure 23 SOURCE AND CROSS REFERENCE LISTINGS FOR MAIN PROGRAM EGSA (PAGE 2 OF 12)

Figure 23 SOURCE AND CROSS REFERENCE LISTINGS FOR MAIN PROGRAM EGSA (PAGE 3 OF 12)

	$\begin{aligned} & c \\ & c \end{aligned}$	
ISN 0041		NPLS $=1 . /(F I N V * D X)+0.5$
	$\begin{aligned} & c \\ & c \end{aligned}$	**
	c	*
	C	* SET UP X-axis intervals and arrays for inoividual edges and line *
	C	* SPREADS AND AVERAGE LINE SPREAD IF REQUESTED 8Y USER *
	c	*
ISN 0042		IFI.NOT.(LTV(5). OR.LTV(2).OR.LTV(1)1) G0 TO 70
ISN 0044		IFIKNT.EQ.1) CALL DXSCAL (2.5.NPLS, DX, DXTI, DXI
ISN 0046		CALL DXSCAL (2.5,NP, DX, DXTE, DXE)
ISN 0047		DO 60 Imi,NPLS
1SN 0048		$\chi(1)=(1-I-N P L S / 2) * D X$
ISN 0049		
ISN 0050		IFIKNT.NE.1) GO TO 62
ISN 0052		DO $61 \mathrm{I}=1$, NPLS
ISN 0053		61 KLI(I) $=(1-1) * 0 \times 1$
ISN 0054		62 CALL SCALE(XL, NPLS,6.,XM, DI, 1)
ISN 0055		70 CALL CLEAR(SL(1),SL(NPLS))
ISN 0056		CALL CLEAR(SSL(1),SSL(NPLS))
	C	
	C	
	${ }_{6}$	
	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	TEST FOR OECREASIMG EDGE DATA AND ADJUST IF NECESSARY
	$\begin{aligned} & c \\ & c \\ & c \end{aligned}$	
ISN 0057		IF(E)(NP)-E(1).GT.0.) 60 TD 72
ISN 0059		D0 $71.1=1$,NCF
ISN 0060		71 CFIIJ=-CFIII
	C	
	C	********
	c	
	c	* locate the maximun value of the derivative of the edge data
	C	
	${ }^{C}$	
15N 0061		72 BGL 00.0
ISN 0062		DO $801=1, \mathrm{NCF}$
ISN 0063		IFICFII).LT.BGL) G0 T0 80
ISN 0065		BGL=CF(I)
ISN 0066		LBIGEI
ISN 0067		- 8 O CONTINUE
	c	
	c	*
	6	* locate and smooth the negative values in the tails of the
	c	* Derivative, if any
	c	*

Figure 23 SOURCE AND CROSS REFERENCE LISTINGS FOR MAIN PROGRAM EGSA (PAGE 4 OF 12)

Figure 23 SOURCE AND CROSS REFERENCE LISTINGS FOR MAIN PROGRAM EGSA (PAGE 5 OF 12)

Figure 23 SOURCE AND CROSS REFERENCE LISTINGS FOR MAIN PROGRAM EGSA (PAGE 6 OF 12)

Figure 23 SOURCE AND CROSS REFERENCE LISTINGS FOR MAIN PROGRAM EGSA (PAGE 7 OF 12)

```
ISN O177
ISN 0178
ISN O179
ISN 0180
ISN 0181
ISN 0182
ISN O182
ISN 0183
ISN 0184
ISN 0185
ISN 0187
ISN 0188
ISN 0190
ISN 0191
ISN 0192
ISN 0194
ISN 0195
ISN 0196
ISN 0197
ISN 0198
ISN 0199
ISN 0201
ISN 0201
ISN 0203
ISN 0207
ISN 0208
ISN 0209
ISN 0210
ISN O211
ISN 0212
ISN 0213
ISN 0214
ISN 0216
ISN 0217
ISN 0217
ISN 0218
ISN 0219
ISN 0220
ISN 0222
ISN 0223
ISN 0224
ISN 0225
ISN 0225
ISN 0226
ISN 0228
ISN 0230
ISN 0232
ISN 0233
ISN 0234
ISN 0235
```

 00 214 I=1,NPL
    ```
    00 214 I=1,NPL
    XPL =XPL L 8.5
    XPL =XPL L 8.5
    CALL MGRID(0.5,XPL+5,6,10.,2.5,2,.2.5,1)
    CALL MGRID(0.5,XPL+5,6,10.,2.5,2,.2.5,1)
    CALL MGRIO(0.5,XPL*3.0,10.,2.5,2.,2.5,1)
    CALL MGRIO(0.5,XPL*3.0,10.,2.5,2.,2.5,1)
    CALL MGRID(0.5,XPL*0.4,10.,2.5,2.,2.5,1)
    CALL MGRID(0.5,XPL*0.4,10.,2.5,2.,2.5,1)
    214 CALL NUMBER{0.15,XPL*4.5,0.14,FNED*-90.,-1)
    214 CALL NUMBER{0.15,XPL*4.5,0.14,FNED*-90.,-1)
    XR=0.0
    XR=0.0
    CALL PLOTI8.5.5.6,-3)
    CALL PLOTI8.5.5.6,-3)
    XOR =0.0
    XOR =0.0
    XOR=0.0
    XOR=0.0
    YOR=0.0
    YOR=0.0
    CO TO 218
    CO TO 218
    216 IFINPL.EQ.OI GO TO 50
    216 IFINPL.EQ.OI GO TO 50
    YOR=0.0
    YOR=0.0
    ODR=-2.0
    ODR=-2.0
    IF(MOD(KNT +5).NE . 1) 60.TO 218
    IF(MOD(KNT +5).NE . 1) 60.TO 218
    MOR=8.0
    MOR=8.0
    YOR=-2.6
    YOR=-2.6
    218 CALL PLOT (XOR;YOR&XR,-3)
    218 CALL PLOT (XOR;YOR&XR,-3)
    XR=0.0
    XR=0.0
    MPLTENPL
    MPLTENPL
    IF|LTVI1|) GO TO 230
    IF|LTVI1|) GO TO 230
    221 IFILTV(2)) 60 to 231
    221 IFILTV(2)) 60 to 231
    221 IFILTV(2)) 60 T0 231
    221 IFILTV(2)) 60 T0 231
    223 IF(LTVI4i) GO T0 233
    223 IF(LTVI4i) GO T0 233
    230 MPLT=APLT-1
    230 MPLT=APLT-1
        CALL LINEIE,XLE,NP,1)
        CALL LINEIE,XLE,NP,1)
        CALL MUMBER(0.8,2.6,0.07,0XTE,-90.,3)
        CALL MUMBER(0.8,2.6,0.07,0XTE,-90.,3)
        KCO1
        KCO1
        60 T0 240
        60 T0 240
    232 NPLT=NPLT-1
    232 NPLT=NPLT-1
        CALL LINETSSL,XLI,NPLS,I)
        CALL LINETSSL,XLI,NPLS,I)
        IF(KNT.EQ.1) CALL NUMBER(0.8,2.4,0.07,DXTI, -90. . 3)
        IF(KNT.EQ.1) CALL NUMBER(0.8,2.4,0.07,DXTI, -90. . 3)
        KC=2
        KC=2
    60 10 240
    60 10 240
    232 MPLT:NPLT-1
    232 MPLT:NPLT-1
        CALL LINEITF,XPI,NPTF,I)
        CALL LINEITF,XPI,NPTF,I)
        IF(KNT.EQ.1) CALL NUMBER(1.8.0.75,.07,FMAX, -90.,1)
        IF(KNT.EQ.1) CALL NUMBER(1.8.0.75,.07,FMAX, -90.,1)
        KC=3
        KC=3
        60 T0 240
        60 T0 240
    233 MPLT&NPLT-1
    233 MPLT&NPLT-1
            CALL LINE(SL,XS,NSL,1)
            CALL LINE(SL,XS,NSL,1)
            IF{KNT.EQ.1) CALL NUNBER(0.8,2.4..07,DXSI,-90.,31
            IF{KNT.EQ.1) CALL NUNBER(0.8,2.4..07,DXSI,-90.,31
            IF{KNT.EQ.1) CALL NUNBER(0.8,2.4,.07,0XSI,-90.,3)
            IF{KNT.EQ.1) CALL NUNBER(0.8,2.4,.07,0XSI,-90.,3)
        240 IF(NPLT.EO.OI GO TO 50
        240 IF(NPLT.EO.OI GO TO 50
            CALL PLOT(0., 8.5,-3)
            CALL PLOT(0., 8.5,-3)
            XRMxR-8.5
            XRMxR-8.5
            C0 70 (221,222,223),KC
            C0 70 (221,222,223),KC
    400 IF{KNT.EO.O) 60 T0 10
    400 IF{KNT.EO.O) 60 T0 10
    IF(.MOT.(LTV(5),OR.LTV(6))\ 60 TO 20
    IF(.MOT.(LTV(5),OR.LTV(6))\ 60 TO 20
C
```



```
C *
```

C *
C CALCULATE AVERAGE MTF AND 95S CONFIDENCE BAND

```
C CALCULATE AVERAGE MTF AND 95S CONFIDENCE BAND
```



```
C
    IF{ NOT-LTV(6): GO TO 460
    IF{ NOT-LTV(6): GO TO 460
    DO 450 I=I,NPTF
```

 DO 450 I=I,NPTF
    ```

Figure 23 SOURCE AND CROSS REFERENCE LISTINGS FOR MAIN PROGRAM EGSA (PAGE 8 OF 12)
```

ISN 0242
ISN 0243
ISN 0244
ISN O245
ISN O246
ISN 0247
ISN 0248
SN 0250
ISN 0251
ISN 0251
ISN O252
ISN 0254
ISN 0255
1SN 0256
ISN 0256
ISN 0257
ISN 0258
ISN 0259
ISN 0261
ISN 0262
ISN 0263
ISN 0263
15N 0264
15M 0265
ISN 0266
ISN 026T
1SN }026
ISN 0269
ISN 0271
ISN 0271
15N 0273
ISN 0277
ISN 0278
ISN 0279
ISN 0279
ISN 0280
ISN 0281
ISN 0282
15N 0283
ISN 0284

```

ISN 0242 ISN O243 ISN 0244 ISN O246 ISN 0248

```

00495 I=1, MPTF

```

```

ATFP\{I\}=5.O*ATFP(I)
495 ATFMIIJes.0*ATFMis)
CALL PLOT(0.,0.00)
CALL PLOT(2.5,6.5,-3)

```



Figure 23 SOURCE AND CROSS REFERENCE LISTINGS FOR MAIN PROGRAM EGGA (PAGE 9 OF 12)

ISN 0294
ISN 0295
ISN 0296
ISN 0297
ISN 0298
ISN 0298
ISN 0299
ISN 0300
ISN 0300
ISN 0301
ISN 0302
ISN 0303
ISN 0304 ISN 0305 ISN 0306

SN

CALL MGRIO(0., \(-5, .5 \ldots, 5 \cdot, 1 ., 1, \cdot 1)\)
CALL LINE\{ATFP,XP,NPTF, 1 \}
CALL LINE\{ATF,XP,NPTF, I)
CALL LINE (ATFM, XP, NPYF, 1 )
CALL SYMBOL \(1-1.5,-1.2,0.14,22 H A V E R A G E\) OF SAMPLES, -90.221
CALL NUMBER( \(-1.5,-2.52,0.14, F L O A T K N T 1,-90,0-11\)
CALL NUMBER(5,5,-2.16,0.14,FNED,-90.,-1)
IF(.NOT.LTVI5I) GO TO 20
\(C\)
\(C\)
\(C\)
\(C\)
\(C\)
\(C\)







\(C\)
\(C\)
\(C\)
ISN 0307
ISN 0308 ISN 0309
```

IF(.NOT.LTV(5)I GO TO 20
C *
500 CALL PLOT(0.,0.,0)
CALL PLOT(2.5,7,:-3)
CALL AXIS(0.,0., 1HX,-1,6., -90.oXM,DI)
CALL AXIS(0.,0.,4HL{XI,4,5., 0., SLM,OL)
CALL PLOT(0.,-6.,-3)
CALL LINEIALS,XL,MPLS.
CALL LINE\ALS,XL,NPLS,II)
CALL LINE{ALSP,XL,NPLS,I)
CALL LINE\ALSM;XL,NP
CALL SYMBOL{-1.5,-1.7.0.14,22HAVERAGE OF SAMPLES,-90.,22)
CALL NUHBER(-1.5,-3.02,0.14,FLDAT(RNTI,-90.,-1)
CALL NUMBER(5,5,-2,66,0.14,FHED,-90.,-1)
CALIN 20
C
550 CALL EFPLOT
STOP
END

```


Figure 23 SOURCE AND CROSS REFERENCE LISTINGS FOR MAIN PROGRAM EGSA (PAGE 11 OF 12)


Figure 23 SOURCE AND CROSS REFERENCE LISTINGS FOR MAIN PROGRAM EGSA (PAGE 12 OF 12)
and should be available to most users: The last subprogram, CLEAR, fills a specified block of storage with zeros. If necessary, an equivalent operation can be accomplished by a sequence of do loops in Progran EGSA.

The program initially reads user supplied input data on punched cards. The following variables are specified for each data set to be processed:

FINV - spatial frequency interval desired for output OTF data in cycles/mm

FMAX - maximum spatial frequency of output OTF data.in cycles/mm
OPTION (7) - alpha-numeric array identifying the types of output data desired by user

FCO - cutoff spatial frequency in cycles/mm used in smoothing the line spread

Seven output options are available to the user. These are specified by employing one or more of a set of alpha-numeric characters on the punched card input. These characters must be right hand justified in the appropriate field and may be listed in any order. The following characters are allowed:

E - specifies plots of the individual input edge traces of the data set

L - specifies plots of the individual line spread data resulting from differentiation of the edge data

T - specifies plots of the individual MTFs* resulting from Fourier transformation of the line spread functions

SL - specifies plots of smooth line spread functions
AL - specifies a plot of the average line spread and its associated confidence bands

AT - requests a plot of the average MTF and its confidence bands

PT - requests the values of the individual and average MTFs

\footnotetext{
* The Modulation Transfer Function (MTF) is simply the modulus of the complex OTF.
}
on punched cards and printed values of the average MTF. The values of the average MTF are not punched or printed unless the option for a plot is also specified.

The program sets elements in a logical array, LTV, to true for the options requested if they are properly specified on the input data card. Figure 24 contains an example of this data card where the user has selected plots of the individual MTFs and the average MTF. This input card also specifies the spatial frequency interval as 5 cycles \(/ \mathrm{mm}\) and a maximum spatial frequency of 150 cycles \(/ \mathrm{mm}\). The cutoff spatial frequency variable is unspecified or equal to zero, indicating that the user has not elected to smooth the line spreads consistent with the deletion of the SL option on the card. The value for the frequency cutoff is, in fact, ignored if this option is not specified.

The next major step in the program is the initialization of parameters and clearing of arrays prior to beginning the actual processing of an edge data set. Identification and data records are then read from an input data tape created using main program DTAPE described previously in Section 1.0. The edge data are then adjusted for the number of points that will be lost due to differentiation. The differentiation is accomplished by subroutine CONVLV described in the next section. Although the current version contains an 11-point, internally specified differentiating filter the dimensions allow a maximum of a 25 -point filter. The adjustment in the edge data is commensurate with the maximum size filter.

After differentiation the next major step in the execution involves the set-up of \(x\)-axis arrays for the output plots of several of the individual functions. This is followed by manipulation of the differentiated edge data including a non-stationary 3 -point smoothing of negative values in its tails. Only the non-negative portion of the edge data is retained and equated to the smoothed and unsmoothed line spread functions. The line spread function is then Fourier transformed by calling FOURTR to obtain the modulus and phase functions of the OTF. If the user has requested a smooth line spread, this is computed by truncation of the OTF and subsequent inverse Fourier transformation. The

inverse transformation is accomplished by subroutine FORINV. This calculation is primarily a cosmetic operation and produces no new information about the optical system performance that is not contained in the unsmoothed line spread or the complex OTF.

The next steps in the program involve the production of output data as requested by the user. These include punched cards of the individual MTF and plots of the individual edges, line spreads, smoothed line spreads or MTF. The program then recycles to read the next edge trace in the current edge data set and repeats the processing cycle. If no additional edge data exists, the calculation and plotting of the average line spread and a \(95 \%\) confidence band and the average MTF and its confidence band are accomplished if these options were requested by the user. The program recycles to process the next edge data set, if any, in the same manner. If no additional data sets are identified the program terminates.

Examples of the plots of individual function data generated by the program are presented in Figure 25. Part (a) shows individual line spread functions which resulted during an analysis of the reproduction of Apollo 15 photography and Part (b) shows individual MTF data resulting during a similar analysis of Apollo 17 photography. The original plots fill an \(8 \times 111 / 2\) inch page and were reduced for reproduction here. Similar plots are generated for the individual edges and smoothed line spreads if requested. A number is placed at the bottom of each page which corresponds to the identification number NED specified by the user. In the examples shown this is the number of the frame from which the edge data was acquired. The top left hand plot in both cases also contains a number specifying the total length of the x-axis. In the case of edges, line spreads or smoothed line spreads, this length is expressed in millimeters and for MTFs as spatial frequency in cycles/millimeters. Figure 26 contains an example of an average MTF plot generated from the individual MTFs in Figure 25 (b) as part of the evaluation of Apollo 17 photography. The upper and lower curves define the \(95 \%\) confidence band. The number placed at the top of a plot corresponds to the user specified variable NED and

Figure 25 EXAMPLE OF INDIVIDUAL FUNCTION PLOTS FROM THE EGSA PROGRAM


Figure 26 EXAMPLE OF AN AVERAGE MTF PLOT FROM THE EGSA PROGRAM
in this case is equal to the corresponding frame number. The number of individual edge traces which were used to compute the average MTF is indicated on the bottom of the plot. A plot with a similar format is generated for the average line spread function if that output option is requested.
4.0 Subroutine CONVLV - This program is part of the Edge Gradient Spectral Analysis software package. It supports Program EGSA in the calculation of an OTF from edge trace data. The purpose of this subroutine is to differentiate the edge trace data using an internally specified differentiation filter. No direct input data must be furnished by the user. The input data is supplied through the calling program. No printed output data is furnished by this program.

Figure 27 is a listing of subroutine CONVLV. The function of the major blocks are identified by the comments included in the coding. This subroutine has capabilities that are not exploited by the EGSA main program. It can perform the convolution between two input functions or an input function and an internally stored filter. The internal filter options include an 11 -point smoothing filter and an 11 -point differentiating filter. A maximum of 25 -point filters are permitted by the dimension statement and can be inserted by changing the appropriate data statement. The options available in the convolving operation are controlled by the variable KCNTRL as follows:

1 - specifies the convolution between two input functions
2 - causes the primary input function to be smoothed by the internal filter

3 - specifies differentiation of the primary input function by the appropriate internal filter

4 - indicates smoothing of the primary input function followed by differentiation.

The computing task branches depending upon the value of the variable KCNTRL. When the specified option involves the convolution between two input functions

SUBROUTINE CONVLVIFUN1,N1, FUN2,N2,CFUN,NC,KCNTRL)
DIMENSION FUN1(1), FUN2(1), CFUN(1), FIL(25), SMF(25), DIF(25).







IF(KCNTRL.EQ. 3\()\)
OO \(33 I=1\),N 1
FUN1 \(\{I\rangle=\) CFUN \(\{I)\)
KCNTRL=3
GO TO 22

CFFUN(1) \(=0.0\)
\(K K=1-\operatorname{Coss}\)
\(K L=1+\operatorname{LOSS}\)
\(\begin{array}{ll}\mathrm{KL}=0 \\ \mathrm{JI} \\ \mathrm{DO} \\ 47 & \mathrm{~J}=\mathrm{KK}, \mathrm{KL}\end{array}\)

Figure 27 SOURCE AND CROSS REFERENCE LISTINGS FOR SUBROUTINE CONVLV
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
 \\
응̊ㅇㅇㅇㅇ
\end{tabular} &  & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline  &  &  \\
\hline
\end{tabular}

expressed mathematically as
\[
\begin{equation*}
f_{c}(x)=\int_{D_{g}} f(y) g(x-y) d_{y} \tag{28}
\end{equation*}
\]
the first or primary function in the calling list must contain more points than the second function. If this is not the case the program returns zeros for all points in the convolved function. Equation 28 is implemented as
\[
\begin{equation*}
f_{c, i}=\sum_{n=1}^{n_{g}} f_{i-n_{g}+n-1} \cdot g_{n_{g}-n+1} ; i=1, \cdots, n_{f}+n_{g}+1 \tag{29}
\end{equation*}
\]
where \(f_{n}=0.0\) for \(n \leq 0 \quad\) or \(n \geq n_{f}+1\) and \(f_{c}, n_{f}+n_{g}+1\) \(f_{c, 1}=0.0\). The assumption that the primary function is zero outside of the range of its input should be compensated for in the calling program if it is not valid. This is accomplished by deleting points at the beginning and/or the end of the convolved function array returned to the calling program. Note that the total number of points in the returned function is one more than the sum of the number of points in each individual input function.

When either the differentiation or smoothing operations have been. specified Equation 28 is implemented as
\[
f_{c, i}=\sum_{n=1}^{n_{g}} f_{i ;-n_{g}+n-1} \cdot g_{n} ; i=\frac{n_{g}+1}{2}, \cdots, n_{f}-\frac{n_{g}-1}{2}
\]
and
\[
\begin{aligned}
& f_{c, 1}=f_{c, 2}=\cdots=f_{c, \frac{n_{g}+1}{2}} \\
& f_{c, n_{f}}=f_{c, n_{f}-1}=\cdots=f_{c, n_{f}}-\frac{n_{g}-1}{2}
\end{aligned}
\]
where \(g_{n}\) is set equal to the appropriate internally stored filter and \(n_{g}\) is the number of points in the filter array. Note that \(n_{g}-1\) points, divided equally between the beginning and the end of the convolved function
are not computed by Equation 30 but arbitrarily set to the nearest computable point. Therefore, although \(n_{f}\) points are returned in the convolved function array, some of these points contain artificial information and may require special treatment in the calling program.

The major difference between Equations 29 and 30 , beside the method of treatment of the points at the beginning and end of the convolved function array, is the folding of the secondary function \(g\). In Equation 29 this folding is accomplished through manipulation of the index while this is not required in Equation 30 because of symmetry properties of the internally stored smoothing and differentiating filters. The secondary function is actually set equal to the negative of the stored differentiating filter in order to accomplish the required folding.

Note that both Equation 29 and Equation 30 do not account for the effect of the differential, \(d_{y}\), present in Equation 28 . This must be accomplished in the calling program if required.
5.0 Subroutine DXSCAL - This program is part of the Edge Gradient Spectral Analysis software package. It supports Program EGSA in the calculation of the OTF from edge trace data. The purpose of this subroutine is to determine the best scale factor for the \(x\)-axis for plots of individual functions requested by the user as an output option. No direct input data must be furnished by the user. The input data is supplied through the calling program. No printed output data is furnished by this program.

No explicit listing of this program is provided since its requirements may depend upon the user's computing facility similar to the other plotting subroutines. Its operation, however, is straightforward and will permit a user to code an equivalent program.

Three calls to DXSCAL are made by Program EGSA. The calling sequence is DXSCAL (XL, NP, DX, DXT, DXI) where
\(\mathrm{XL}=\) the length of the x -axis in inches (input variable)
\(N P=\) the number of points in the array to be plotted (input variable)
\(D X=\) the increment between points (input variable)
DXT \(=\) the total length of the \(x\)-axis in units of \(D X\) (output variable)
DXI \(=\) the scale for plotting in inches/point (output variable)
The purpose of the subrouting is to compute "convenient" values for DXT and DXI. DXI is chosen so that DX/DXI is the smallest number in the set \(\left(10^{m}\right.\); \(1.5 * 10^{\mathrm{m}}, 2 * 10^{\mathrm{m}}, 2.5 * 10^{\mathrm{m}}, 4 * 10^{\mathrm{m}}, 5 * 10^{\mathrm{m}}, 8 * 10^{\mathrm{m}}, \mathrm{m}\) an integer) that makes the data fit an axis of length XL , i.e. subject to the restriction that (NP-1) * DXI \(\leq \mathrm{XL}\) : This scaling ensures that the ploted function will fill at least half of the XL inches.

DXI is used directly by Program EGSA to compute an x-axis array for the plots of individual edges, line spreads or smoothed line spreads. The DXT variable is placed on the plots so that the axis can be labeled by user if desired. The units of \(D X\) and hence DXT in these cases are mm.
6.0 Subroutine FORINV - This program is part of the Edge Gradient Spectral Analysis software package. It supports Program EGSA in the calculation of an OTF from edge trace data. The purpose of this subroutine is to Fourier transform complex spectra (modulus and phase) to obtain a real output function. Specifically it is used by Program EGSA to compute the smooth line spread function from the truncated OTF. No direct input data must be furnished by the user. The input data is supplied through the calling program. No printed output data is furnished by this program.

Figure 28 is a listing of subroutine FORINV. The function of the major blocks are identified by the comments included in the coding. The algorithm employed in this program is specifically designed for transforming a complex to a real function. The function to be transformed is expressed as modulus and phase functions. Consequently the inverse Fourier transform can be written as
\[
\begin{equation*}
I(x)=\int \tau(\nu) e^{-i(2 \pi \nu x-\phi(\nu))} d \nu \tag{31a}
\end{equation*}
\]



Figure 28 SOURCE AND CROSS REFERENCE LISTINGS FOR SUBROUTINE FORINV (PAGE 3 OF 4)

and the discrete representation as
\[
\begin{equation*}
I(x)=\sum_{n=-n^{*}}^{n} x_{n} e^{-i\left(2 \pi \nu_{n} x-\phi_{n}\right)} \tag{31b}
\end{equation*}
\]
where \(\tau_{n}=\tau\left(\nu_{n}\right), \phi_{n}=\phi\left(\nu_{n}\right)\), and \(\nu_{n}=-\nu_{n}\). Note that the effect of the differential, \(d \nu\), in Equation 31a has been suppressed in Equation 31b. Since \(I(x)\) is real the following conditions must be met
\[
\begin{align*}
\tau_{n} & =\tau_{-n}  \tag{32}\\
\phi_{n} & =-\phi_{-n} \\
\phi_{0} & =0.0
\end{align*}
\]

Expanding Equation 31 b and using these conditions we can write the discrete form of the inverse transform as
\[
\begin{equation*}
I(x)=\sum_{n=0}^{n^{*}} A_{n} \cos \left(2 \pi \nu_{n} x\right)+\sum_{n=0}^{n^{*}} B_{n} \sin \left(2 \pi \nu_{n} x\right) \tag{33}
\end{equation*}
\]
where \(A_{0}=r_{0}, A_{n}=2 \tau_{n} \cos \phi_{n}, B_{0}=0.0, B_{n}=2 \tau_{n} \sin \phi_{n}\) and the factor of 2 accounts for the summation over the negative values of \(n\). For coding purposes this equation is rewritten with summation over positive indices by. letting \(i=n+1\), namely
\[
\begin{equation*}
I(x)=\sum_{i=1}^{n^{*}+1} A_{i} \cos \left(2 \pi \nu_{i} x\right)+\sum_{i=1}^{n^{*}+1} B_{i} \sin \left(2 \pi \nu_{i} x\right) \tag{34}
\end{equation*}
\]
and the coefficients \(A_{i}\) and \(B_{i}\) are appropriately redefined. Letting
\[
\begin{align*}
& x_{j}=\left(-n^{*}+j\right) \Delta_{x} ; j=1, \cdots, 2 n^{*}  \tag{35a}\\
& \nu_{i}=(i-1) \Delta_{\nu} ; i=1, \cdots, n^{*}+1 \tag{35b}
\end{align*}
\]
and requiring that
\[
\begin{equation*}
\Delta_{x}=\frac{1}{2 n^{*} \Delta_{\nu}} \tag{35c}
\end{equation*}
\]
we can write
\[
\begin{equation*}
2 \pi v_{i} x_{j}=\frac{\pi(i-1)\left(-n^{*}+j\right)}{n^{*}} \tag{35d}
\end{equation*}
\]

Setting \(\quad m_{i j}=(i-1)\left(-n^{*}+j\right)\) in Equation \(35 d\), the expression for the inverse transform can be written,
\[
\begin{equation*}
I\left(x_{j}\right)=\sum_{i=1}^{n^{*}+1} A_{i} \cos \left(\frac{\pi m_{i j}}{n^{*}}\right)+\sum_{i=1}^{n^{*}+1} B_{i} \sin \left(\frac{\pi m_{i j}}{n^{*}}\right) \tag{36}
\end{equation*}
\]

The sine and cosine terms need only be computed over the first quadrant, i.e. \(0 \leq m_{i j} \leq \frac{n^{*}}{2}\) and an appropriate algorithm developed for selecting the appropriate element from this array when the argument lies in another quadrant. Note that \(m_{i j}\), can be less than zero and is accounted for in the coding by changing the sign of the second summation in Equation 36. In order to select the appropriate sine or cosine term and identify the quadrant the initial step involves a transformation of \(m_{i j}\) from the range \(\left[0, n^{* 2}\right]\) to \(\left[0,2 n^{*}\right)\) through the expression
\[
\begin{equation*}
L=m_{i j}-2 n^{*} \llbracket \frac{m_{i j}}{2 n^{*}} \rrbracket \tag{37}
\end{equation*}
\]
where [] ] represents the greatest integer which is less than the enclosed argument. The quadrant can then be subsequently specified by the expression
\[
\begin{equation*}
K=\llbracket \frac{2 L}{n^{*}} \|+1 ; 0 \leq K \leq 4 \tag{38}
\end{equation*}
\]
and the value of \(L\) given by Equation 37 appropriately modified depending upon the quadrant to select the appropriate sine and cosine terms to perform the summations indicated by Equation 36.

The restriction of performing an inverse transform from a complex to a real function, i.e. conditions of Equation 32 and the required relationship between the spatial and frequency increments, Equation 35 c , permit the development of this algorithm which results in a considerable savings in computation
time. As the listing in Figure 28 indicates the user has an option of smoothing the modulus prior to inverse transformation. If this option is elected the initial step in the program is the setup of the smoothing factors SIGF(I). This is followed by the calculation of the coefficients \(A(I)\) and \(B(I)\) identified at Equation 33. The sine and cosine factors appearing in Equation 36 are then computed for argument values in the first quadrant and the calculation of both sum terms of the inverse transform of Equation 36 completed. In calculating the sums the program branches depending upon the value of KSIGN which is equivalent to Equation 38. After all the sum terms are computed, the spatial increment is defined using Equation \(35 c\) and execution is returned to the calling program.
7.0 Subroutine FOURTR - This program is part of the Edge Gradient Spectral Analysis software package. It supports Program EGSA in the calculation of an OTF from edge trace data. The purpose of this subroutine is to Fourier transform a real input function to obtain a complex spectrum expressed by modulus and phase functions. It is specifically employed by Program EGSA to calculate individual OTF from differentiated edge trace data. No direct input data must be furnished by the user. The input data is supplied through the calling program. No printed output data is furnished by this program.

Figure 29 is a listing of subroutine FOURTR. The function of the major blocks are identified by the comments included in the coding. The algorithm employed in this program is specifically designed for transforming a real to a complex function and results in considerable savings in execution time compared to a more direct implementation. If we assume that the transformed function will be written in terms of a modulus function \(\tau(\nu)\) and a phase function \(\phi(\nu)\) the Fourier transform can be expressed by the equation
\[
\begin{equation*}
r(\nu) e^{i \phi(\nu)}=\int_{-\infty}^{\infty} I(x) e^{2 \pi i \nu x} d x \tag{39a}
\end{equation*}
\]

The corresponding discrete representation is
\[
\begin{equation*}
\tau(v) e^{i \phi(v)}=\Delta_{x} \sum_{n=-n^{*}}^{n^{*}} I\left(x_{n}\right) e^{2 \pi i v x_{n}} \tag{39b}
\end{equation*}
\]

\begin{tabular}{|c|}
\hline ```
    SUBROUTINE FDURTR(DATA,NDATA,DX,TAU,PHI,DELNU,NHARM)
    GIMENSION DATA(1),TAU(1),PH1(1),F(501),G(501),A(501),B(501),
*VCOS(251),VSIN(251)
    DATA PI/3.14159205/
    DELNU=0.0
    NHARM=0
``` \\
\hline SOURCE AND CROSS REFERENCE LISTINGS FOR SUBROUTINE FOURTR (PAGE 1 OF 4) \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& N \\
& 0.3 \\
& 0.8 \\
& z \\
& z \\
& n \\
& n
\end{aligned}
\]} \\
\hline \\
\hline
\end{tabular}

**
* OELETE EXECUTION IF MNDATAM \(>1000\)
*
** IFINDATA.GT. 1000) RETURN
 1F(NDATA/2.EO.(NDATA+1)/2) GO TO 8
NDATA=NATA+1
DATA(NDATA)=DATA(NDATA-1)
8 NHARMENDATA/2

NHCSENHARM/2 +1
HND \(=\) NHRM
DO \(2 C M=1\) ?NMCS
VCOS \((m)=\cos (p\)

Figure 29 SOURCE AND CROSS REFERENCE LISTINGS FOR SUBROUTINE FOURTR

\footnotetext{
REFERENCES

Figure 29 SOURCE AND CROSS REFERENCE LISTINGS FOR SUBROUTINE FOURTR (PAGE 4 OF 4)
}
where \(x_{0}=0.0, x_{-n}=-x_{n}\), and \(\Delta_{x}\) is the increment between points. Note that the effect of the differential, \(d_{x}\), is included in the discrete representation. Since \(I(x)\) is real, the summation can be divided into real and imaginery terms, namely
\[
\begin{equation*}
\tau(\nu) e^{i \phi(\nu)}=A(\nu)+i B(\nu) \tag{40a}
\end{equation*}
\]
where
\[
\begin{equation*}
A(v)=\Delta_{x} \sum_{n=-n^{*}}^{n^{*}} I\left(x_{n}\right) \cos \left(2 \pi v x_{n}\right) \tag{40b}
\end{equation*}
\]
and
\[
\begin{equation*}
B(\nu)=\Delta_{x} \sum_{n=-n^{*}}^{n^{*}} I\left(x_{n}\right) \sin \left(2 \pi \nu x_{n}\right) \tag{40c}
\end{equation*}
\]

Through algebraic manipulation the sum over the negative and positive indices can be combined and for coding purposes the summation rewritten using positive indices by letting \(j=n+1 ; j=1, \cdots, n^{*}+1\). Equations 40 b and 40 c become
\[
\begin{align*}
& A(\nu)=\Delta_{x} \sum_{j=1}^{n^{*}+1} F_{j} \cos \left(2 \pi \nu x_{j}\right) \tag{41}\\
& B(\nu)=\Delta_{x} \sum_{j=1}^{n^{*+1}} G_{j} \sin \left(2 \pi \nu x_{j}\right) \tag{42}
\end{align*}
\]
where
\[
\begin{align*}
& F_{j}=\left\{\begin{array}{l}
I(0) ; j=1 \\
I\left(x_{j}\right)+I\left(-x_{j}\right) ; j \geq 2
\end{array}\right. \tag{43}\\
& G_{j}=\left\{\begin{array}{l}
0.0 ; j=1 \\
I\left(x_{j}\right)-I\left(-x_{j}\right) ; j \geq 2
\end{array}\right. \tag{44}
\end{align*}
\]

The modulus and phase of the Fourier transform can be written in terms of the real and imaginery terms by referring to Equation 40a, namely
\[
\begin{align*}
& r(\nu)=\left(A(\nu)^{2}+B(\nu)^{2}\right)^{1 / 2} \tag{45}\\
& \phi(\nu)=\tan ^{-1} \frac{B(\nu)}{A(\nu)} \tag{46}
\end{align*}
\]

The arguments of the sine and cosine factors appearing in Equations 41 and 42 are treated in the same fashion described in the previous section, namely setting
\[
\begin{gather*}
x_{j}=(j-1) \Delta_{x} ; j=1, \cdots, n^{*}+1 \tag{47a}\\
v_{i}=(i-1) \Delta_{v} ; i=1, \cdots, n^{*}+1 \tag{47b}
\end{gather*}
\]
and requiring that
\[
\begin{equation*}
\Delta_{x}=\frac{1}{2 n^{*} \Delta_{\nu}} \tag{47c}
\end{equation*}
\]
we can write the argument of the sine and cosine terms as
\[
\begin{equation*}
2 \pi v_{i} x_{j}=\frac{\pi(i-1)(j-1)}{n^{*}}=\frac{\pi m_{i j}}{n^{*}} \tag{47d}
\end{equation*}
\]

In this case, however, \(m_{i j}\) is not negative and has values in the range \(\left[0, n^{* 2}\right]\). The equations for the real and imaginery terms become
\[
\begin{align*}
& A_{i}^{\prime}=A_{i} \Delta_{v}=\frac{1}{2 n^{*}} \sum_{j=1}^{n^{*}+1} F_{j} \cos \left(\frac{\pi m_{i j}}{n^{*}}\right) \tag{48}\\
& B_{i}^{\prime}=B_{i} \Delta_{v}=\frac{1}{2 n^{*}} \sum_{j=1}^{n^{*}+1} G_{j} \sin \left(\frac{\pi m_{i j}}{n^{*}}\right) \tag{49}
\end{align*}
\]

The sine and cosine terms need only be computed over the first quadrant, i.e. \(0 \leqslant m_{i j} \leqslant \frac{n^{*}}{2}\), and an appropriate algorithm developed for selecting the correct element from this array when the argument lies in another quadrant.

We define
\[
\begin{equation*}
L=m_{i j}-2 n^{*} \llbracket\left[\frac{m_{i j}}{2 n^{*}}\right] \tag{50}
\end{equation*}
\]
where 【 】: represents the greatest integer which is less than the enclosed argument. The quadrant is then specified by the expression
\[
\begin{equation*}
K=\llbracket \frac{2 L}{\pi^{*}} \rrbracket+1 ; 0 \leq K \leq 4 \tag{51}
\end{equation*}
\]
and the value of \(L\) from Equation 50 appropriately modified depending upon the quadrant to select the correct sine and cosine terms from the stored arrays.

The restriction of Fourier transforming a real function to obtain a complex spectrum and the required relationship between spatial and frequency increments, Equation 47c, are required to develop the algorithm described and permit a considerable savings in computation time. The elements of the modulus and phase arrays are calculated using a modified form of Equations 45 and 46, namely
\[
\begin{align*}
& \tau_{i}=\left(A_{i}^{\prime}+B_{i}^{\prime 2}\right)^{1 / 2}=A_{\nu}\left(A_{i}^{2}+B_{i}^{2}\right)^{1 / 2} \tag{52}\\
& \phi_{i}=\tan ^{-1} B_{i}^{\prime} / A_{i}^{\prime}=\tan ^{-1} B_{i} / A_{i} \tag{53}
\end{align*}
\]

Note that the phase array is equivalent to that described by Equation 46. However, the modulus has been multiplied by the spatial frequency increment \(\Delta_{\nu}\) and appropriate action should be taken in the calling program if required.

The first step in the program is to adjust the number of points in the input function array to be even. This is not a requirement of the mathematics but executed only as an interface convenience with subroutine FOUINV described in the previous section. The origin of the spatial axis,
i.e. \(x=0\), is assumed to be located at the midpoint of the array. The next step in the program is the establishment of the sum and difference arrays expressed by Equations 43 and 44 and subsequently used to calculate the real and imaginery parts of the Fourier transform. This is followed by the computation of the sine and cosine terms within the first quadrant. The real and imaginery terms can then be computed from Equations 48 and 49 and subsequent branching depending upon the quadrant number specified by the variable KSIGN calculated using Equation 51. The sign of the sine and cosine terms are adjusṭed in accordance with the quadrant number and selected from the corresponding array using the transformed value of \(L\) (c.f. Equation 50). The final step in the program is the calculation of the modulus and phase arrays using Equations 52 and 53 and the definition of the spatial frequency increment based upon Equation 47 c . Execution is then returned to the calling program.
8.0 Main Program TONEQ - This program provides data which can be used to evaluate the tone quality of a photograph. It computes the gain achieved as a function of object contrast and average exposure level. Input data on punched cards must be supplied by the user. Printed values of the gain factors are furnished in tabular form by the program.

Figure 30 is a listing of TONEQ. The function of the major blocks are identified by the comments included in the coding. In order to exercise this program two subprograms that are part of the Calspan Corporation Program Library are required. Detailed descriptions of these programs will not be furnished in this Appendix, however, the user is likely to have equivalent programs available in the library at his computing facility. CLEAR fills each byte of a specified block of storage with zeros. This operation can be accomplished by substituting a sequence of do loops in the TONEQ program. SPLN46 calculates a set of interpolation functions for a set of input points. These interpolation functions produce a continuous function that has a continuous first and second derivative over the interval spanned by the input data. The function tends to avoid waviness often encountered by other curve fitting techniques. The input data points must be reasonably accurate or

SOURCE AND CROSS REFERENCE LISTINGS FOR MAIN PROGRAM TONEO
(PAGE 1 OF 4)

 \({ }_{c} \quad D X=A B S(D X)\)

MI \(=X D / D X\)
IFISENSE.GT.0.0) XD \(=-X D\)
DO \(20 \mathrm{~N}=1\), NSW
טuvuuvuை

\section*{\(\underset{N}{N} \underset{\sim}{n} \underset{N}{N}\) ถัถัะ \\ 紜页}

\section*{ \\ }

C - MRITE(6,6) (TITLEII), \(I=1,171,(\) DEL(J), \(J=1,3)\)
\(004 C I=1\),NSW

GO TO 10
TERMINATE EXECUTION

\(a\)
0
0
a
in
in
ENO
Figure 30 SOURCE AND CROSS REFERENCE LISTINGS FOR MAIN PROGRAM TONEQ
smooth since the subroutine forces the function to pass through these poirts and consequently cannot perform any smoothing of the input data. The interpolation functions are piecewise cubic and yield about the same curve one would obtain by forcing a flexible straight edge (a spline) through the set of input points. For additional information about spline interpolation procedures the reader is referred to DeBoor, Carl; Bicubic Spline Interpolation Journal of Mathematics and Physics, Vol. 41, No. 3, March 1962, pp. 212. Subroutine SPLN46 is used by this program to obtain interpolation functions for the sensitometric calibration data.

The initial step in the program is to read user input data which specifies the number of points in the sensitometric calibration data, the sense of the imagery (i.e. positive or negative) and the number from 1 to 21 of the first step in the calibration data. The user may also include a title to identify the photograph under evaluation if he so desires. Figure 31 shows a typical input data set. This example is taken from that used in the evaluation of the Apollo 17 panoramic photography. The first two cards compose the initial data block and the first card indicates that there are 14 points in the sensitometric calibration data measured on a negative image. The number of the step for the first data point is 8 . The fact that the magnitude of the variable SENSE is 1.0 indicates that the difference in relative log exposure between points in the sensitometric calibration is equal to 0.15 . The optional identification label indicates that the data were obtained from a Direct Negative roll of Apollo 17 panoramic photography that contains Frame 3111. An optional identification tag can be placed in columns 73 through 80 to aid in data set identification. The figure shows a second data block for another photograph; in this case a Third Generation Positive copy of the same frame. This can be followed by additional data blocks for each photograph under evaluation.

The next step in the program is the input of the sensitometric calibration value (density values). This data is contained on the second card of the first data block and the second and third cards in the second data

Figure 31 TYPICAL TONEQ PROGRAM INPUT DATA SET
block. The program then calculates an array of relative log exposure values \(X(N)\) in the range 0.0 to 3.0 that correspond to the input density values. By calling subroutine SPLN46 the coefficients of the spline interpolation functions for the sensitometric calibration data are obtained and subsequently printed out in tabular form. Figure 32 shows the printout generated for the first data block of Figure 31. The next step in the program involves the computation of the gain factors at an average exposure level equal to that of each point in the calibration data and three different object contrast levels. The levels of object contrast are specified by a data statement at the beginning of the program. Once the calculations have been completed the gain factors are printed out in tabular form. An example of this printout is included in Figure 32 for the first data block identified in Figure 31. The program then recycles to process the next data block if one is supplied by the user. If not, the program terminates execution.

D-LOGE RESPONSE CURVE SPLINE REGRESSION
\begin{tabular}{|c|c|c|c|c|}
\hline LOGE & DENSITY & & COEFFICIENTS & \\
\hline 1.05 & 0.28 & 0.0832 & 0.0000 & 2.2274 \\
\hline 1.20 & 0.30 & 0.2336 & 1.0023 & 0.7149 \\
\hline 1.35 & 0.36 & 0.5825 & 1.3241 & 0.8384 \\
\hline 1.50 & C. 48 & 1.0363 & 1.7014 & 4.82 CO \\
\hline 1.65 & 0.69 & 1.8721 & 3.8707 & -11.2321 \\
\hline 1.80 & 1. 02 & 2.2752 & -1.1837 & \(4.55: 9\) \\
\hline 1.95 & 1.35 & 2.2272 & C.4642 & -6.97i8 \\
\hline 2.10 & 1.68 & \(2.016{ }^{\circ}\) & -2. 2726 & -0.3734 \\
\hline 2.25 & 1.93 & 1.3090 & -2.4406 & 2.5386 \\
\hline 2.40 & 2.08 & C. 7482 & -1.2982 & 2.0702 \\
\hline 2.55 & 2.17 & C. 4984 & -0.3066 & -1.93C9 \\
\hline 2.70 & 2.23 & C. 2581 & -1.2355 & 2.6912 \\
\hline 2.85 & 2.25 & 0.0691 & -0.0245 & 0.6544 \\
\hline 3.00 & 2.26 & 0.0654 & C. \({ }^{\text {c }}\) & C. 0 \\
\hline
\end{tabular}

TONE QUALITY EVALUATICN PROGRAM

Figure 32 EXAMPLE OF TONEQ PROGRAM PRINTED OUTPUT```

[^0]: Figure 20 SOURCE AND CROSS REFERENCE LISTINGS FOR MAIN PROGRAM DTAPE

