NORTH CAROLINA STATE UNIVERSITY AT RALEIGH

SCHOOL OF ENGINEERING

DEPARTMENT OF ENGINEERING SCIENCE AND MECHANICS Box 5130, ZIP 27607

October 29, 1974

N75~15329

(NASA-CR-141549) [NETHOD OF CHARACTERISTICS CALCULATIONS AND COMPUTER CODE FOR MATERIALS HITH ARBITRARY EQUATIONS OF STATE AND USING ORTHOGONAL FOLYNOMIAL LEAST SQUARE SURFACE FITS] Final Report (North Carolina State

Dr. Robert G. Thompson Technical Representative of the Contracting Officer (TRCO) Mail Stop 230 NASA-Langley Research Center Hampton, Virginia 23665

RE: Final Report, NASA Research Grant NGL 34-002-084

Dear Bob:

How are you?

I am enclosing two (2) copies of the Final Report of the above Research Grant. Three (3) additional copies have been forwarded directly to:

> NASA Scientific and Technical Information Facility Post Office Box 33 College Park, Maryland 20740

This report is subdivided into three sections as follows:

Section I Journal Papers and Technical Reports of Research Projects directly related to and partially supported by the research grant.

I.1. "Stress Waves Resulting from Hypervelocity Impact," AIAA paper No. 69-355, Presented at the 1969 AIAA Hypervelocity Impact Conference in Cincinnati, Ohio (Authored by R. Madden and T. S. Chang) Results from a numerical scheme based on the method of characteristics are presented for the axially symmetric, hypervelocity impact of similar materials. The analysis is restricted to the early stages of the impact of a right circular cylinder on a halfspace. The resulting rarefaction and shock waves produced by the impact are considered as discrete wavefronts which divide the impacted zone into regions. Numerical diffusion is then controlled by requiring that the values of the dependent variables at a given point in the impacted zone to depend on only the calculated values at earlier times at points in the same region as the point in question. The numerical results give

North Carolina State University at Paleigh is a constituent institution of The University of North Carolina.

accurate representations of the stress wave profiles (i.e., rarefaction and shock waves) which should be useful as inputs for a later stage elastoplastic analysis and/or spallation analysis. The effects of "numerical diffusion" on the calculated pressure and flow fields when the rarefaction wave is not considered as discrete is investigated and the "diffused" results are compared with the more exact analysis.

- I.2. "Nonlinear Waves in a Rate-Sensitive, Elastoplastic Material," International Journal of Engineering Science, Volume 10, pp. 353-367, 1972. (Authored by E. E. Burniston and T. S. Chang). Two classes of closed form solutions of one-dimensional, nonlinear waves in a rate-sensitive, elastoplastic material are reported. One class of these solutions is self-similar and the other class consists of constant speed propagations. Applications of these solutions to unsteady motions behind propagating discontinuities are also considered.
- I.3. "Curved Characteristics Behind Blast Waves," The Physics of Fluids, Volume 15, pp. 502-504, 1972. (Authored by 0. Laporte and T. S. Chang) Exact solutions, expressed in closed form in terms of elementary functions, are presented for the three sets of curved characteristics behind a self-similar, strong blast wave.
- "On Dispersion and Characteristic Motions of Temperature-Rate I.4. Dependent Materials," National Aeronautics and Space Administration Report CR-1795, 1971. A general three-dimensional theory of a thermomechanical material which can be a metallic or polymeric medium, or a structured composite, is developed using the modern techniques of axiomatic continuum mechanics and the laws of thermodynamics. One-dimensional linear spatial gradient temperature-rate dependent theories are presented for both thermoviscoelastic and thermoelastic materials. The characteristic motions are considered and it is shown that, due to the presence of temperature-rate effects, thermal propagation speeds have finite values. A comprehensive study of the dispersion relations is presented and illustrated graphically for typical values of the material constants. Analytical expressions are obtained for both high and low frequency responses. It is demonstrated that the characteristic speeds coincide with the high frequency asymptotic phase velocities in both cases. Physical and numerical limitations on the material constants are obtained for stable wave propagations. A class of self-similar solutions is obtained for the temperature-rate dependent thermoelastic medium using the theory of continuous group of transformations.
- I.5. "Comments on Application of Singular Eigenfunction Expansions to the Propagation of Periodic Disturbances in a Radiating Grey Gas," The Physics of Fluids, Volume 16, pp. 159-160, 1973. (Authored by T. S. Chang, K. H. Kim and M. N. Osizik) Recently, we have been extending our analysis of sound propagation

Dr. R. G. Thompson

-3-

in dissociative, radiative media to include the effects of scattering. It is of interest to note that the set of pertinent integrodifferential equations can also be solved exactly using the singular eigenfunction expansion technique.

- Section II Computer Programs and Numerical Results of Hypervelocity Impact Calculations
 - II.1. Method of Characteristics Calculations and the Computer Code Using Orthogonal Polynomial Least Square Surface Fits. Very recently, we have developed a new numerical scheme using the method of characteristics to calculate the flow properties and pressures behind decaying shock waves for materials under hypervelocity impact. This procedure is quite different from our earlier methods (see paper I.1). We are now able to replace the time-consuming double interpolation subroutines used in paper I.1 by a technique based on Orthogonal Polynomial Least Square Surface Fits. Typical calculated results are given and in Tables 1-19. These results are compared with the double-interpolation results. The complete computer program is also included.
 - II.2. Method of Characteristics Calculations and the Computer Code for Materials with Arbitrary Equations of State. As reported in our earlier status reports, we have developed a numerical code capable of calculating flow properties and pressures behind decaying shock waves for materials under hypervelocity impact with arbitrary equations of state. For comparison purposes, we have made some sample calculations using the new code for impact conditions similar to those reported in I.1. These results are quite encouraging and are displayed graphically in Figures 1-3. A listing of the numerical code is also attached.
- Section III Fundamental Research on Equations of State and Non-Equilibrium Statistical Mechanics Generated by the Research Grant.

Materials under hypervelocity impact experience extreme changes of stresses, strains, and thermodynamic states. We have looked into some basic research areas related to (1) the non-equilibrium statistical mechanical aspects of heat transfer with discontinuous velocity boundary conditions, and (2) the fundamental understanding of the equations of state, phase transitions, and critical phenomena of materials under extreme thermodynamic environments. Our research efforts along these directions are found in the following research papers:

III.1. "Elementary Solutions of Coupled Model Equations in the Kinetic Theory of Gases," International Journal of Engineering Science, Volume 12, pp. 441-470, 1974. (Authors: J. T. Kriese, T. S. Chang, and C. E. Siewert.) The method of elementary solutions is employed to solve two coupled integrodifferential equations sufficient for determining temperature density effects in a linearized BGK model in the kinetic theory of gases. Full-range completeness and orthogonality theorems are proved for the developed normal modes and the infinite-medium Green's function is constructed as an illustration of the full-range formalism. The appropriate homogeneous matrix Riemann problem is discussed, and half-range completeness and orthogonality theorems are proved for a certain subset of the normal modes. The required existence and uniqueness theorems relevant to the H matrix, basic to the half-range analysis, are proved, and an accurate and efficient computational method is discussed. The half-space temperature-slip problem is solved analytically, and a highly accurate value of the temperatureslip coefficient is reported.

III.2. "Tricritical Points in Multicomponent Fluid Mixtures," Physical Review, Volume A9, pp. 2573-2578, 1974. (Authors: A. Hankey, T. S. Chang, and H. E. Stanley)

In view of experimental considerations, we give a model-independent argument that the novel tricritical points in multicomponent fluid mixtures, where three phases simultaneously become critical, are points on the boundary of a single two-dimensional surface of critical points. This result is corroborated by the Landau model suggested by Griffiths. The relationship between these tricritical points and the complex "higher-order" critical points proposed to exist in certain magnetic systems is elucidated.

III.3. "Generalized Scaling Hypothesis in Multicomponent Systems. I. Classification of Critical Points by Order and Scaling at Tricritical Points," Physical Review, Volume B8, pp. 346-364. (Authored by T. S. Chang, A. Hankey, and H. E. Stanley.) The goal of this work is to provide an analysis of spaces of critical points for multicomponent systems. First, we propose the geometric concept of order $\boldsymbol{0}$ for critical points; we distinguish it from a previous definition of a "multicritical" point. Specifically, we may define the intersection of space of critical points of order 0 to be a space of critical points of order (0 + 1). Ordinary critical points are defined to be of order 0 = 2, so that the tricritical points introduced by Griffiths are of order $\theta = 3$. We discuss more general examples of critical spaces of order θ = 3 which are known for a wide variety of systems; we also propose several examples of models of magnetic systems showing critical points of order 0 = 4 - i.e., systems having intersecting lines of tricritical points. The analysis of critical and coexistence spaces also provides a new form of the Gibbs phase rule suitable for complex magnetic models. Next we define for the critical points of order () of which examples have been given special directions in terms of which to make a scaling hypothesis. We give the hypothesis for simple systems and then for tricritical points, and then, in a subsequent paper, part II, the special directions are used to make a scaling hypothesis at spaces of critical points of any order. Certain predictions (e.g., scaling laws and "single-power"

scaling functions) follow in a simple and straightforward fashion. We consider the scaling hypothesis at a critical space of order 0in terms of a group of transformations. We can define a set of invariants of the group. It is possible, for 0 > 3, to make a second scaling hypothesis for the space of order 0 - 1 using certain of these invariants as independent variables. This is advantageous because certain "double-power" scaling functions then follow directly; these predict that for 0 = 3, experimental data collapse from a volume onto a line. This prediction is to be contrasted with ordinary scaling function, which predict that data collapse by only a single dimension (e.g., from a volume onto a surface or from a surface onto a line).

III.4. "Double-Power Scaling Functions Near Tricritical Points," Physical Review, Volume B7, pp. 4263-4266, 1973. (Authored by T. S. Chang, A. Hankey, and H. E. Stanley.) We introduce invariants of the scaling equation about the tricritical point. Using these invariants, a modified version of the scaling hypothesis about the three critical lines meeting at the tricritical point is presented. From it we demonstrate that the thermodynamic equation of state near a tricritical point and near a critical line may be expressed as double-power scaling functions. These imply that experimental data should collapse from a volume onto a line (i.e., by two dimensions). This behavior is in contrast to ordinary "single-power" scaling functions, which predict data collapsing from a volume onto a surface or from a surface onto a line (i.e., by one dimension).

In conclusion, we have obtained much information pertaining to the behavior materials under impact, particularly hypervelocity impact. Two useful numerical des have been developed for calculations of axisymmetric hypervelocity impact for terials with rather general equations of state. Fundamental research in the eas of critical equations of state and non-equilibrium statistical mechanics and at transfer have also been considered.

With best wishes, I am

Very sincerely yours,

Tilen Sun Chang Professor

C:mlm

closures

: NASA Scientific and Technical Information Facility (3 copies)

I.1. "Stress Waves Resulting from Hypervelocity Impact" "Nonlinear Waves in a Rate-Sensitive, Elastoplastic Material" I.2. . . . ------"Curved Characteristics Behind Blast Waves" I.3. :> "On Dispersion and Characteristic Motions of Temperature-Rate I.4. Dependent Materials" NASA Report - copies not enclosed المحافظة فالمتحاد المحادث "Comments on Application of Singular Eigenfunction Expansions I.5. to the Propagation of Periodic Disturbances in a Radiating Grey Gas"

(ø

PAPERS INTENTIONALLY OMITTED

II.1. Method of Characteristics Calculations and the Computer Code Using Orthogonal Polynomial Least Square Surface Fits

List of Symbols

t = time (µsec)

🚣 r = radial coordinate (cm)

Z = axial coordinate (cm)

U = radial velocity (cm/usec)

V = axial velocity (cm/usec)

 ρ = mass density (gm/cm³)

e = internal energy per unit mass (megabar cm^3/gm)

 $a = sound speed (cm/\mu sec)$

P = pressure (megabars)

 $\cos \alpha_0 =$ direction cosine of normal with respect to r axis sin $\alpha_0 =$ direction cosine of normal with respect to Z axis α

Ζ

Table 1. Flow properties in Projectile Shock at t = 1.18 μ sec after impact of a 2.5-cm-diameter projectile at 0.76 cm/ μ sec on an aluminum half-space based on (1) Double Interpolation and (2) Othogonal Polynomials Least Square Surface Fit with Double Interpolation after t = 1.1 μ sec.

	214 						•		
	• •	(1)	. ,				(2)		
Z ·	r	P	U	v	Z	r	Р	U	v
ρ	е	a	cos a	$\sin \alpha$	ρ	e	а	cos a	sin a _o
-0.3532	0.0	1.0869	0.0	0.3800	-0.3532	0.0	1.0869	0.0	0.3800
4.2103	0.0722	1.0038	0.0	1.0000	4.2103	0.0722	1.0038	0.0	1.0000
-0.3532	0.2500	1.0869	0.0	0.3800	-0.3532	0.2500	1.0869	0.0	0.3800
4.2103	0.0722	1.0038	0.0	1.0000	4.2103	0.0722	1.0038	0.0	1.0000
-0.3521	0.5012	1.0412	0.0025	0.3910	-0.3509	0.5009	0.9911	0.0017	0.4033
4.1738	0.0681	0.9934	-0.0068	1.0000	4.1325	0.0636	0.9820	-0.0049	1.0000
-0.3312	0.7611	0.8591	0.0209	0,4372	-0.3312	σ.7630	0.7891	0,0106	0.4554
4.0185	0.0521	0.9500	-0.0648	0.9976	3.9533	0.0463	0.9318	-0.0348	0.9991
-0.2120	1.0183	0.4162	0.0124	0.5679	-0.2117	1.0177	0.4090	0.0116	0.5704
3.5399	0.0183	0.8122	-0.0667	0.9968	3.5303	0.0178	0.8094	-0.0613	0.9972

Table 2. Flow properties in Target Shock at t = 1.18 µsec after impact of a 2.5-cm-diameter projectile at 0.76 cm/µsec on an aluminum half-space based on (1) Double Interpolation and (2) Orthogonal Polynomials Least Square Surface Fit with Double Interpolation after t = 1.1 µsec.

		(1)				r	(2)	, <u></u>	
Z	r	Р	U	v	Z	r	Р	U	v
ρ	e	а	cos a	sin α _o	ρ	e	a	cos a	sin a
1.2500	0.0	1.0869	0.0	0.3800	1.2500	0.0	1.0869	0.0	0.3800
4.2103	0.0722	1.0038	0.0	1.0000	4.2103	0.0722	1.0038	0.0	1.0000
1.2500	0.2500	1.0869	0.0	0.3800	1.2500	0.2500	1.0869	0.0	0.3800
4.2103	0.0722	1.0038	0.0	1.0000	4.2103	0.0722	1.0038	0.0	1.0000
1.2500	0.5007	1.0686	0.0029	0.3756	1.2497	0.5007	1.0685	0.0029	0.3756
4.1957	0.0750	0.9997	0.0078	1.0000	4.1957	0.0705	0,9997	0.0078	1.0000
1.2398	0.7544	0.9647	0.0058	0.3501	1.2398	0.7544	0.9647	0.0058	0.3501
4.1106	0.0613	0.9758	0.0165	0.9998	4.1106	0.0613	0.9758	0.0165	0.9998
1.2143	1.0281	0.8382	0.0192	0.3169	1.2143	1.0281	0.8382	0.0192	0.3169
3.9996	0.0503	0.9446	0.0605	0.9979	3.9996	0.0503	0.9446	0.0605	0.9979
1.1235	1.3139	0.5624	0.0302	0.2368	1.1236	1.3139	0.5679	0.0304	0.2384
3.7190	0.0285	0.8649	0.1265	0.9910	3.7252	0.0290	0.8666	0.1265	0.9910
0.7683	1.7372	0.1558	0.0540	0.0691	0.7678	1.7377	0.1546	0.0528	0.0694
3.1170	0.0038	0.6776	0.6152	0.7870	3.1144	0.0037	0.6768	0.6050	0.7948
0.5808	1.8634	0.0670	0.0330	0.0263	0.5807	1.8634	0.0664	0.0327	0.0261
2.9088	0.0008	0.6045	0.7817	0.6227	2.9071	0.0008	0.6039	0.7816	0.6227
0.3716	1.9378	0.0	0.0	0.0	0.3716	1.9377	0.0	0.0	0.0
2.7000	0.0	0.5277	0.9289	0.3690	2.7000	0.0	0.5277	0.9289	0.3690

Table 3. Flow properties in Rarefaction at t = 1.18 usec after impact of a 2.5-cm-diameter projectile at 0.76 cm/usec on an aluminum half-space based on (1) Double Interpolation and (2) Orthogonal Polynomials Least Square Surface Fit with Double Interpolation after t = 1.1 usec.

-,I , ; •

			<u>-</u>			······································	
	(1)		4		(2)		
Z	r	cos a	sin α _o	Z	r	cos a	sin α o
1.2500	0.3781	0.6768	-0.7362	1.2500	0.3781	0.6768	-0.7362
1.1356	0.2852	0.5801	-0.8145	1.1355	0.2852	0.5801	-0.8145
1.0210	0.2132	0.4834	-0.8754	1.0210	0.2132	0.4834	-0.8754
0.9065	0.1577	0.3867	+0.9222	0.9065	0.1577	0.3867	-0.9222
0.7920	0.1165	0.2901	-0.9570	0.7920	0.1165	0.2901	-0.9570
0.6774	0.0879	0.1934	-0.9811	0.6774	0.0879	0.1934	-0.9811
0.5629	0.0711	0.0967	-0.9953	0.5629	0.0711	0.0967	-0.9953
0.4484	0.0656	-0.0000	-1.0000	0.4484	0.0656	-0.0000	-1.0000
0.3339	0.0711	-0:0967	-0.9953	0.3339	0.0711	-0.0967	-0.9953
0.2194	0.0879	-0.1934	-0.9811	0.2194	0.0879	-0.1934	-0.9811
0.1048	0.1165	-0.2901	-0.9570	0.1048	0,1165	-0.2901	-0.9570
-0.0097	0.1577	-0.3867	-0,9222	-0.0097	0.1577	-0.3867	-0.9222
-0.1242	0.2132	-0.4834	-0.8754	-0.1242	0.2132	-0.4834	-0.8754
-0.2387	0.2852	-0.5801	-0.8145	-0.2387	0.2852	-0.5801	-0.8145
-0.3532	0.3781	-0.6768	-0.7362	-0.3532	0.3781	-0.6768	-0.7362

Table 4. Flow properties in Interior Region at t = 1.18 µsec after impact of a 2.5-cm-diameter projectile at 0.76 cm/µsec on an aluminum half-space based on (1) Double Interpolation and (2) Orthogonal Polynomial Least Square Surfact Fit with Double Interpolation after t = 1.1 µsec at Z = -0.25 cm.

				1	1		1
Z = -0.25 cm	r	P	U U	<u>v</u>	ρ	е	a
<u></u>	0.0	1.0869	0.0	0.3800	4.2103	0.0722	1.0038
	0.2500	1.0869	0.0	0.3800	4.2103	0.0722	1.0038
1 :	0.5000	0.9289	0.0167	0.4159	4.050	0.0622	0.9654
	0.7500	0.6891	0.0558	0.3987	3.8200	0.0422	0.9012
(1)	1.0000	0.0	0.0	0.0	2.7000	0.0	0.5277
	1.2500	0.0	0.0	0.0	2.7000	0.0	0.5277
	1.5000	0.0	0.0	0.0	2.7000	0.0	0.5277
	1.7500	0.0	0.0	0.0	2.7000	0.0	0.5277
	2.0000	0.0	0.0	0.0	2.7000	0.0	0.5277
in the second	0.0	1.0869	0.0	0.3800	4.2103	0.0722	1.0038
	0.2500	1.0869	0.0	0.3800	4.2103	0.0722	1.0038
•	0.5000	0.6710	-0.1555	0.4333	3.7854	0.0425	0.8946
(2)	0.7500	2.2439	-0.0865	0.9374	5.2602	0.1201	1.2174
(2)	1.0000	0.0	0.0	0,0	2.7000	0.0	0.5277
	1.2500	0.0	0.0	0.0	2.7000	0.0	0.5277
_	1.5000	0.0	0.0	0.0	2.7000	0.0	0.5277
-	1.7500'	0.0	0.0	0.0	2.7000	0.0	0.5277
- .	2.0000	0.0	0.0	0.0	2.7000	0.0	0.5277

 \mathcal{L}

Table 5.

5. Flow properties in Interior Region at t = 1.18µsec after impact of a 2.5-cm-diameter projectile at 0.76 cm/µsec on an aluminum half-space based on (1) Double Interpolation and (2) Orthogonal Polynomial Least Square Surface Fit with Double Interpolation after t = 1.1 µsec at Z = 0.0 cm.

Z = 0.0 cm	r	Р	U	v	ρ	е	a
	0.0	1.0869	0.0	0.3800	4.2103	0.0722	1.0038
ين. ا	0.2500	0.9644	0.0130	0.3829	4.0861	0.0646	0.9743
	0.5000	0.6875	0.0985	0.4466	3.7705	0.0478	0.8972
	0.7500	0.4822	0.2065	0.5931	3.5022	0.0348	0.8269
(1)	1.0000	0.1931	0.2829	0.7128	3.0774	0.0132	0.6916
	1.2500	0.0	0.6160	0.3904	2.7000	0.0	0.5277
	1.5000	0.0	0.1923	-0.0971	2.7000	0.0	0.5277
	1.7500	0.0	0.1103	-0.1452	2.7000	0.0	0.5277
	2.0000	0.0	0.0303	-0.0074	2.7000	0.0	0.5277
	0.0	1.0869	0.0	0.3800	4.2103	0.0722	1.0038
	0.2500	0.4956	-0.1726	0.3333	3.5563	0.0318	0.8347
	0.5000	0.5533	0.0033	0.4539	3.6020	0.0395	0.8537
(2)	0.7500	0.7227	0.2308	0.6779	3.8156	0.0497	0.9081
(2)	1.0000	0.0112	0.3021	0.6287	2.6397	0.0053	0.5362
· .	1.2500	0.0	0.3460	0.4024	2.7000	0.0	0.5277
	1.5000	0.0	0.2988	-0,1707	2,7000	0.0	0.5277
	1.7500	0.0	0.0076	0.0333	2.7000	0.0	0.5277
······	2,000	0.0	1.0304	0.0920	2.7000	0.0	0.5277

Table 6. Flow properties in Interior Region at t = 1.18 usec after impact of a 2.5-cm-diameter projectile at 0.76 cm/usec on an aluminum half-space based on (1) Double Interpolation and (2) Orthogonal Polynomial Least Square Surface Fit with Double Interpolation after t = 1.1 usec at Z = 0.25 cm.

Z = 0.25 cm	r	P	U	v	0		T
······································					۳ ۱	e	ä
7	0.0	1.0869	0.0	0.3800	4.2103	0.0722	1.0038
	0.2500	0.9018	0.0414	0.3889	4.0190	0.0608	0.9582
<u></u>	0.5000	0.6611	0.1029	0.3898	3.7383	0.0461	0.8890
	0.7500	0.5468	0.1589	0.4410	3.5875	0.0393	0.8504
(1) ^{† ;}	1.0000	0.4078	0.2552	0.5698	3.3982	0.0296	0.7973
	1.2500	0.2713	0.3356	0.2505	3.1741	0.0216	0.7328
· · · · ·	1.5000	0.1800	0.2782	-0.0038	3.0497	0.0126	0.6831
	1.7500	0.1452	0.1345	-0.0307	3.0979	0.0032	0.6704
:	2.0000	0.0	0.0	0.0	2.7000	0.0	0.5277
	0.0	1.0869	0.0	0.3800	4.2103	0.0722	1.0038
	0.2500	0.9041	0.0405	0.4685	4,0212	0.0610	0,9588
	0.5000	0.6238	0.1083	0.3428	3.6922	0.0436	0.8770
(2)	0.7500	0.4999	0.1591	0.4221	3.5219	0.0365	0.8332
(2)	1.0000	0.4384	0.1553	. 0.5946	3,4452	0.0314	0.8102
	1.2500	0.3310	0.3414	0.2448	3.2767	0.0250	0.7629
	1,5000	0.1820	0.2935	0.0031	3.0507	0.0130	0.68/1
	1.7500	0.1509	0.1379	-0.0592	3.1113	0.0033	0.6746
	2.0000	0.0	0.0	0.0	2.7000	0.0	0.5277

.

- Table 7. Flow properties in Interior Region at t = 1.18 µsec after impact of a 2.5-cm-diameter projectile at 0.76 cm/µsec on an aluminum half-space based on (1) Double Interpolation and (2) Orthogonal
 - Polynomial Least Square Surface Fit with Double Interpolation after $t = 1.1 \ \mu sec$ at $Z = 0.50 \ cm$.

<u>├</u> ────					· · · · · · · · ·	· · · · ·	
z = 0.50 cm	r	Р	U	v	ρ	e	a
	0.0	1.0869	0.0	0.3800	4.2103	0.0722	1.0038
	0.2500	0.9285	0.0338	0.3758	4.0475	0.0625	0.9651
	0,5000	0.7314	0.0768	0.3523	3.8244	0.0504	0.9106
· ·	0.7500	0.6101	0.1090	0.3385	3.6714	0.0432	0.8723
(1)	1.0000	0.5674	0.1441	0.3850	3.6154	0.0406	0.8577
	1.2500	0.3240	0.2039	0,1874	3.2650	0.0246	0.7595
	1.5000	0.2336	0.1796	0.0690	3.2048	0.0115	0.7206
	1.7500	0.1461	0.0865	0.0345	3.1018	0.0031	0.6713
· · · · · · · · · · · · · · · · · · ·	2.0000	0.0	0.0	0.0	2.7000	0.0	0.5277
	0.0	1.0869	0.0	0.3800	4.2103	0.0722	1.0038
· .	0.2500	0.9477	0.0025	0.4235	4.0676	0.0637	0.9700
	_0.5000	0.7109	0.0920	0.3266	3.8004	0.0491	0.9045
	0,7500	0.5934	0.0993	0.3379	3.6493	0.0422	0.8666
(2)	1.0000	0.5876	0.1442	0.3938	3.6421	0.0418	0.8647
	1.2500	0.3056	0.2154	0.1785	3,2283	0.0241	0.7501
, · · ·	1.5000	0.2380	0.1708	0.0771	3.2140	0.0117	0.7232
	1.7500	0.1611	0.1319	0.0292	3.1346	0.0036	0.6820
	2.000	0.0	0.0	0.0	2.7000	0.0	0.5277

Table 8. Flow properties in Interior Region at $t = 1.18 \ \mu sec$ after impact of a 2.5cm-diameter projectile at 0.76 cm/µsec on an aluminum half-space based on (1) Double Interpolation and (2) Orthogonal Polynomial Least Square Surface Fit with Double Interpolation after $t = 1.1 \ \mu sec$ at $Z = 0.75 \ cm$.

. .

Z = 0.75 cm	r	Р	U	V	ρ	e	а
	0.0	1.0869	0.0	0.3800 ′	4.2103	0.0722	1.0038
<u>;</u> ,	0.2500	1.0006	0.0200	0.3730	4.1231	0.0669	0.9832
	0.5000	0.8307	0.0490	0.3472	3.9397	0.0565	0.9391
(1)	0.7500	0.7051	0.0710	0.3163	3:7917	0.0489	0.9026
	1.0000	0.6166	0.0937	0.3127	3.6908	0.0423	0.8752
	1.2500	0.4242	0.1292	0.1985	3.4661	0.0263	0.8077
	1.5000	0.3014	0.1187	0.1145	3.3803	0.0108	0.7624
	1.7500	0.0	0.0	0.0	2.7000	0.0	0.5277
	2.0000	0.0	0.0	0.0	2.7000	0.0	0.5277
	0.0	1.0869	0.0	0.3800	4.2103	0.0722	1.0038
	0.2500	0.9148	-0.0201	0.4072	4.0334	0.0615	0.9616
· ·	0.5000	0.8167	0.0542	0.3333	3.9244	0.0556	0.9352
(2)	0.7500	0.6996	0.0658	0.3149	3.7846	0.0486	0.9009
	_1.0000	0.5993	0,0982	0.3095	3.6667	0.0414	0.8693
	1.2500	0.4229	0.1272	0.1785	3.4620	0.0265	0.8070
	1.5000	0.3248	0.1134	0.1264	3.4247	0.0115	0.7744
	1.7500	0.0	0.0	0.0	2.7000	0.0	0.5277
•	2.0000	0.0	0.0	0.0	2.7000	0.0	0.5277

Table 9. Flow properties in Interior Region at t = 1.18 usec after impact of a 2.5-cmdiameter projectile at 0.76 cm/usec on an aluminum half-space based on (1) Double Interpolation and (2) Orthogonal Polynomial Least Square Surface Fit with Double Interpolation after $t = 1.1 \ \mu sec$ at Z = 1.00 cm.

Z = 1.00 cm	r	Р	U	v	ρ	е	a
	0.0	1.0869	0.0	0.3800	4.2103	0.0722	1.0038
بار	0.2500	1.0869	0.0	0.3800 ′	4.2103	0.0722	1.0038
,	0.5000	0.9551	0.0239	0.3569	4.0754	0.0642	0.9719
	0.7500	0.8458	0.0404	0.3263	3.9658	0,0562	0.9438
	1.0000	0.7492	0.0545	0.3053	3.8760	0.0477	0.9180
	1.2500	0.5566	0.0703	0.2330	3.6866	0.0306	0.8607
	1.5000	0.0	0.0	0.0	2.7000	0.0	0.5277
	1.7500	0.0	0.0	0.0	2.7000	0.0	0.5277
	2.0000	0.0	0.0	0.0	2.7000	0.0	0.5277
4	0.0	1.0869	0.0	0.3800	4.2103	0.0722	1.0038
	0.2500	1.0869	0.0	0.3800	4.2103	0,0722	1.0038
	0.5000	0.9137	0.0337	0.3572	4.0315	0,0616	0.9613
	0.7500	0.8233	0.0460	0.3269	3.9397	0.0549	0.9376
(2)	1.0000	0.7430	0.0646	0.3254	3.8604	0.0465	0.9137
	1.2500	0.5142	0.0880	0.2854	3.6369	0.0275	0.8463
	1,5000	0.0	0.0	0.0	2,7000	0.0	0.5277
	1.7500	0.0	0.0	0.0	2.7000	0.0	0.5277
	2.0000	0.0	0.0	0.0	2.7000	0.0	0.5277

r.*

Table 10. Flow properties in Interior Region at t = $1.18 \ \mu sec$ after impact of a 2.5-cm-diameter projectile at 0.76 cm/µsec on an aluminum half-space based on (1) Double Interpolation and (2) Orthogonal Polynomial Least Square Surface Fit with Double Interpolation after t = 1.1 usec at Z = 1.25 cm.

Z = 1.25 cm	r .	P	Ü	V	ρ	е	a
	0.0	1.0869	0.0	0.3800	4.2103	0.0722	1.0038
	0.2500	1.0869	0.0	0.3800 /	4.2103	0.0722	1.0038
	0.5000	0.0	0.0	0.0	2.7000	0.0	0.5277
	0.7500	0.0	0.0	0.0	2.7000	0.0	0.5277
	1.0000	0.0	0.0	0.0	2.7000	0.0	0.5277
	1.2500	0.0	0.0	0.0	2.7000	0.0	0.5277
	1.5000	0.0	0.0	0.0	2.7000	0.0	0.5277
	1.7500	0.0	0.0	0.0	2.7000	0.0	0.5277
· · · · · · · · · · · · · · · · · · ·	2.0000	0.0	0.0	0.0	2.7000	0.0	0.5277
	0.0	1.0869	0.0	0.3800	4.2103	0.0722	1.0038
	0.2500	1.0869	0.0	0.3800	4.2103	0.0722	1.0038
	0.5000	0.0	0.0	0.0	2.7000	0.0	0.5277
	0.7500	0.0	0.0	0.0	2.7000	0.0	0.5277
(2)	1.0000	0.0	0.0	0.0	2.7000	0.0	0.5277
	1.2500	0.0	0.0	0.0	2.7000	0.0	0.5277
	1.5000	0.0	0.0	0.0	2.7000	0.0	0.5277
	1.7500	0.0	0.0	0.0	2.7000	0.0	0.5277
	2.0000	0.0	0.0	0.0	2.7000	0.0	0.5277

18

Table 11. Flow properties in Projectile Shock at t = 1.25 µsec after impact of a 2.5-cm-diameter projectile 0.76 cm/µsec on an aluminum half-space based on (1) Double Interpolation and (2) Orthogonal Polynomials Least Square Surface Fit with Double Interpolation after t = 1.1 µsec.

					· · · · · · · · · · · · · · · · · · ·		·········		
		(1)					(2)		· · ·
Z	r	P	U	v	Z	r	Р	U	v
ρ	· e	a	cos a	sin a	ρ	е	a	cos a	sin ^Q ò
-0.3742	0.0	1.0869	0.0	0.3800	-0.3742	0.0	1.0869	0.0	.0.3800
4.2103	0.0722	1.0038	0.0	1.0000	4.2103	0.0722	1.0038	0.0	1.0000
-0.3742	0.2500	1.0869	0.0	0.3800	-0.3742	0.2500	1.0869	0.0	0.3800
4.2103	0.0722	1.0038	0.0	1.0000	4.2103	0.0722	1.0038	0.0	1.0000
-0.3713	0.5018	1.0071	0.0029	0.3993	-0.3684	0.5014	0.9280	0.0019	0.4191
4.1460	0.0650	0.9857	-0.0079	0.9999	4.0789	0.0581	0.9670	-0.0057	1.0000
-0.3468	0.7660	0.8343	0.0217	0.4438	-0.3437	0.7655	0.7182	0.0104	0.4750
3.9954	0.0501	0.9436	-0.0685	0.9973	3.8844	0.0405	0.9123	-0.0366	0.9990
-0.2153	1.0232	0.4007	0.0144	0.5731	-0.2140	1.0213	0.3767	0.0113	0.5816
3,5195	0.0173	0.8060	-0.0775	0.9958	3.4869	0.0157	0.7961	-0.0636	0.9970

i.

Table 12. Flow properties in Target Shock at t = 1.25 µsec after impact of a 2.5-cm-diameter projectile at 0.76 cm/µsec or an aluminum halfspace based on (1) Double Interpolation and (2) Orthogonal Polynomials Least Square Surface Fit with Double Interpolation after t = 1.1 µsec.

		(1)						. (2)	(2)
Z ρ	r	P a	U cos a	V sin α	-	Z	Z r	Z r p o e a	Z r P U
1.3242	0.ρ	1.0869	0.0	0.3800	1.	3242	3242 0.0	3242 0.0 1.0869	3242 0.0 1.0869 0.0
4.2103	0.0722	1.0038	0.0	1.0000	4.210	3	3 0.0722	3 0.0722 1.0038	3 0.0722 1.0038 0.0
1.3242	0.2500	1.0869	0.0	0.3800	1.3242		0.2500	0.2500 1.0869	0.2500 1.0869 0.0
4.2103	0.0722	1.0038			4.2103		0.0722	0.0722 1.0038	0.0722 1.0038 0.0
4.1863	0.0695	0.9970	0.0105	0.9999	4.2848		0.0693	0.0693 0.9966	0.5014 1.0550 0.0034 0.0693 0.9966 0.0092
1.3110	0.7558	0.9511	0.0066	0.3467	1.3109	-	0.7558	0.7558 0.9506	0.7558 0.9506 0.0066
4.0991	0.0601	0.9726	0.0190	0.9998	4.0986		0.0600	0.0600 0.9725	0.0600 0.9725 0.0190
1.2823	1.0325	0.8208	0.0203	0.3122	1.2823		1.0325	1.0325 0.8240	1.0325 0.8240 0.0204
3.9830	0.0490	0.9401	0.0650	0.9976	3.9859		0.0492	0.0492 0.9409	0.0492 0.9409 0.0649
3.7041	0.0276	0.5493	0.0312	0.2325	1.1840 3.7174	The second se	1.3224 0.0284	1.3224 0.5610 0.0284 0.8645	1.3224 0.5610 0.0332 0.0284 0.8645 0.1390
0.8044	1.7655	0.1534	0.0550	0.0669	0.8039		1.7655	1.7655 0.1475	1.7655 0.1475 0.0512
3.1120	0.0037	0.6759	0.6341	0.7718	3.0997		0.0035	0.0035 0.6717	0.0035 0.6717 0.6098
0.6060	1.8958	0.0637	0.0318	0.0248	0.6060		1.8957	1.8957 0.0621	1.8957 0.0621 0.0310
2.9000	0.0007	0.6013	0.7876	0.6152	2.8955	Ļ	0,0007	0.0007 0.5997	0.0007 0.5997 0.7875
2 7000	1.9/21	0.0	0.0	0.0	0.3853		1.9722	1.9722 0.0	1.9722 0.0 0.0
2.7000	0.0	0.5277	0.9354	0.3522	2.7000	1	0.0	0.0 0.5277	0.0 0.5277 0.9354

20

. .

Table 13. Flow properties in Rarefaction at t = 1.25 µsec after impact of a 2.5-cm-diameter projectile at 0.76 cm/µsec on an aluminum half-space based on (1) Double Interpolation and (2) Orthogonal Polynomials Least Square Surface Fit with Double Interpolation after t = 1.1 µsec.

۰. 	(1)	· · ·		(2)				
Z	r	cos a	sin a _o	Z	r	cos a	sin a	
1.3242	0.3263	0.6768	-0.7362	1.3242	0.3263	0.6768	-0.7362	
1.2029	0.2280	0.5801	-0.8145	1.2029	0.2280	0.5801	-0.8145	
1.0816	0.1517	0.4834	-0.8754	1.0816	0.1517	0.4834	-0.8754	
0.9602	0.0929	0.3867	-0.9222	0.9602	0.0929	0.3867	-0.9222	
0.8389	0.0493	0.2901	-0.9570	0.8389	0.0493	0.2901	-0.9570	
0.7176	0.0190	0.1934	-0.9811	0.7176	0.0190	0.1934	-0.9811	
0.5963	0.0012	0.0967	-0.9953	0.5963	0.0012	0.0967	-0.9953	
0.4750	-0.0047	0.0000	-1.0000	0.4750	-0.0047		-1 0000	
0.3537	0.0012	-0.0967	-0.9953	0.3537	0.0012	-0.0967	-0.9953	
0,2324	0.0190	-0.1934	-0.9811	0.2324	0.0190	-0.1934	-0.9811	
0.1111	0.0493	-0.2901	-0.9570	0.1111	0.0493	-0.2901	-0.9570	
-0.0102	0.0929	-0.3867	-0.9222	-0.0102	0.0929	-0.3867	-0.9222	
-0.1316	0.1517	-0.4834	-0.8754	-0.1316	0.1517	-0.4834	-0.8754	
-0.2529	0.2280	-0.5801	-0.8145	-0.2529	0.2280	-0 5801	_0 81/5	
-0.3742	0.3263	-0.6768	-0.7362	-0.3742	0.3263	-0.6768	-0.0143	

 $\mathcal{Z}/$

Table 14. Flow properties in Interior Region at $t = 1.11 \mu sec$ after impact of a 2.5-cm-diameter projectile at 0.76 cm/usec on an aluminum half-space based on (1) Double Interpolation and (2) Orthogonal Polynomials Least Square Surface Fit with Double Interpolation afte $t = 1.1 \mu sec$ at Z = -0.25 cm.

r				<u>T</u>			
Z = -0.25 cm	r	P	· U	v	ρ	e	a
بار. 	0.0	1.0869	0.0	0.3800	4.2103	0.0722	1.0038
	0.2500	1.0869	0.0	0.3800	4.2103	0.0722	1.0038
·)	0.5000	1.0000	0.0011	0.3947	4.1232	0.0668	0.9832
(1)	0.7500	0.9432	0,0686	0.4380	4.1035	0.0579	0.9715
	1.0000	0.0	0.0	0.0	2.70000	0.0	0.5277
	1.2500	0.0	0.0	0.0	2.7000	0.0	0.5277
	1.5000	0.0	0.0	0.0	2.7000	0.0	0.5277
÷.	1.7500	0.0	0.0	0.0	2.7000	0.0	0.5277
	2.0000	0.0	0.0	0.0	2.7000	0.0	0.5277
	0.0	1.0869	0.0	0.3800	4.2103	0.0722	1.0038
· ·	0.2500	1.0869	0.0	0.3800	4.2103	0.0722	1.0038
	0.5000	0.9865	-0.0923	0.4746	4,1090	0.0660	0.9798
	0.7500	1.6829	0.0102	0.7228	4.7963	0.0979	1,1264
(2)	1.0000	0.0	0.0	0.0	2.7000	0.0	0.5277
	1.2500	0.0	0.0	0.0	2,7000	0.0	0.5277
	1.5000	0.0	0.0	0.0	2.7000	0.0	0.5277
-	1.7500	0.0	0.0	0.0	2.7000	0.0	0.5277
	2.0000	0.0	0.0	0.0	2.7000	0.0	0.5277

 $\mathcal{A}\mathcal{A}$

2

ł

Table 15. Flow properties in Interior Region at $t = 1.11 \mu sec$ after impact of a 2.5-cm-diameter projectile at 0.76 cm/ μ sec on an aluminum half-space based on (1) Double Interpolation and (2) Orthogonal Polynomials Least Square Surface Fit with Double Interpolation after $t = 1.1 \mu sec$ at Z = 0.0 cm.

Z = 0.0 cm	r	P	U	V	, ρ	·e	a
· · ·	0.0	1.0869	0.0	0.38000	4.2103	0.0722	1.0038
_	0.2500	1,0869	0.0	0.3800	4.2103	0.0722	1.0038
	0.5000	0.7294	0.0887	0.4327	3.8222	0.0503	0.9100
(1)	0.7500	0.5505	0.1836	0.5982	3.5915	0.0396	0.8517
	1.0000	0.1969	0.2836	0.7136	3.0808	0.0137	0.6937
	1.2500	0.0	0.6041	0.3687	2,7000	0.0	0.5277
	1.5000		0.2022	-0.1010	2.7000	0.0	0,5277
. :	1.7500	0.0	0.1250	-0.1445	2.7000	0.0	0.5277
	2.0000	0.0	0.0672	0.0310	2.7000	0.0	0.5277
· · ·	0.0	1.0869	0.0	0.3800	4.2103	0.0722	1.0038
	0.2500	1.0869	0.0	0.3800	4.2103	0.0722	1.0038
	0.5000	0.6684	0.0649	0.4247	3.7487	0.0464	0.8914
	0.7500	0.5433	0.2089	0.5837	3.5837	0.0390	0.8493
(2)	1.0000	0.1233	0.2851	0.6878	2.9268	0.0100	0.6429 -
· · · ·	1.2500	0.0	0.5798	0.3784	2.7000	0.0	0.5277
	1.5000	0.0	0.2384	-0.1266	2.7000	0.0	0.5277
	1.7500	0.0	0.0790	-0.1272	2.7000	0.0	0.5277
	2.0000	0.0	0.7397	0.1453	2,7000	0.0	0 5277

Table 16. Flow properties in Interior Region at $t = 1.11 \mu sec$ after impact of a 2.5-cm-diameter projectile at 0.76 cm/ μ sec on an aluminum half space based on (1) Double Interpolation and (2) Orthogonal Polynomials Least Square Surface Fit with Double Interpolation after $t = 1.1 \mu sec$ at Z = 0.25 cm.

. .

7 - 0 25cm	r	P	U	<u>v</u>	ρ	e	a
L = 0.20 Cm	0.0	1.0869	0.0	0.3800	4.2103	0.0722	1.0038
	0.2500	0.9839	0.0272	0.3851	4.1059	0.0659	0.9791
11	0.5000	0.7084	0.0902	0.3852	3,7971	0.0489	0.9037
	0.7500	0.5403	0.1560	0.4163	3.5790	0.0388	0_8481
(1)	1.0000	0.4323	0.2422	0.5445	3.4320	0.0315	0.8073
	1,2500	0.2618	0.3301	0.2324 ⁱ	3.1521	0.0215	0.7274
			0.2720	0.0015	3.0472 -	0,0120	0.6809
•	1.5000	0.1315	0.2720	-0.0253		0,0025	0,6606
	2.0000	0.0	0.0	0.0	2,7000	0.0	0.5277
ماهین است. ماهین از معرف است و میکند از م	0.0	1.0869	0.0	0.3800	4.2103	0.0722	1.0038
· .	0.2500	0.9982	0.0263	0.4170	4.1207	0.0668	0.9826
	0.5000	0.6946	0.0922	0.3700	3.7806	0,0480	0.8995
		0 5005	0 (1555	0 4128	3.5626	0.0381	0.8439
•	1.0000	0.4507	0.2414	0.5557	3.4600	0.0325	0.8148
(2)	1.2500	0.2818	0.3320	0.2294	3.1875	0.0226	0.7380
	1.5000	0.1784	0.2771	0.0039	3.0516	0.0122	0.6825
• ,	1.7500	0.1331	0.1192	-0.0361	3.0754	0.0025	0.6618
,	2.0000	0.0	0.0	0.0	2.7000	0.0	0.5277

Table 17. Flow properties in Interior Region at $t = 1.11 \mu sec$ after impact of a 2.5-cm-diameter projectile at 0.76 cm/µsec on an aluminum half space based on (1) Double Interpolation and (2) Orthogonal Polynomials Least Square Surface Fit with Double Interpolation after $t = 1.1 \mu sec$ at Z = 2.50 cm.

					و المحمد الم	· · · · · · · · · · · · · · · · · · ·
r		ĬI.	V	ρ	e	a
0.0	1.0869	0.0	0.3800	4.2103	0.0722	1.0038
0.2500	1.0058	0.0224	0.3776	4.1284	0.0672	0.9845
0.5000	0.7873	0.0644	0.3560	3.8904	0.0538	0.9270
0.7500	0.6405	0.1002	0.3370	3.7108	0.0450	0.8823
1.0000	0.5742	0.1362	0.3663	3.6236	0.0410	0.8600
1.2500	0.3283	0.1942	0.1842	3.2750	0.0246	0.7618
1.5000	0.2347	0.1758	0.0773	3.2145	0.0110	• 0.7219
1.7500	0.1343	0.0741	0.0354	3.0770	0.0026	0.6626
2.0000	0.0	0.0	0.0	2.7000	0.0	0.5277
0.0	1.0869	0.0	0.3800	4.2103	0.0722	1.0038
0.2500	1.0122	0.0136	0.3928	4.1350	0.0676	0,9860
0.5000	0.7791	0.0687	0.3477	3.8810	0.0533	0.9246
0.7500	0.6353	0.0971	.0.3368	3.7042	0.0447	0.8806
1.0000	0.5763	0.1374	0.3665	3.6261	0.0412	0.8607
1.2500	0.3191	0.1977	0.1809	3.2574	0.0243	0.7572
1.5000	0.2371	0.1742	0.0802	3.2194	0.0111	0.7233
1.7500	0.1428	0.0846	0.0336	3.0931	0.0028	0.6679
2.0000	0.0	0.0	0.0	2.7000	0.0	0.5277
	r 0.0 0.2500 0.5000 0.7500 1.0000 1.2500 1.5000 1.7500 2.0000 0.2500 0.2500 0.5000 0.7500 1.0000 1.2500 1.7500 2.0000 1.2500 1.2500 1.7500 2.0000 1.2500 1.2500 1.7500 2.0000 1.2500 1.7500 2.0000 1.2500 1.7500 1.7500 2.0000 1.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.7500 0.2500 0.2500 0.2500 0.7500 0.2500 0.7500 0.2500 0.7500 1.2500 0.2500 0.2500 0.7500 1.2500 0.2500 0.2500 0.2500 1.2500 0.2500 0.2500 1.2500 1.2500 0.2500 0.2500 1.2500 1.2500 1.2500 0.2500 0.2500 1.2500	rP 0.0 1.0869 0.2500 1.0058 0.5000 0.7873 0.7500 0.6405 1.0000 0.5742 1.2500 0.3283 1.5000 0.2347 1.7500 0.1343 2.0000 0.0 0.0 1.0869 0.2500 1.0122 0.5000 0.7791 0.7500 0.6353 1.0000 0.5763 1.2500 0.3191 1.5000 0.2371 1.7500 0.1428 2.0000 0.0	rPII 0.0 1.0869 0.0 0.2500 1.0058 0.0224 0.5000 0.7873 0.0644 0.7500 0.6405 0.1002 1.0000 0.5742 0.1362 1.2500 0.3283 0.1942 1.5000 0.2347 0.1758 1.7500 0.1343 0.0741 2.0000 0.0 0.0 0.2500 1.0122 0.0136 0.5000 0.7791 0.0687 0.7500 0.6353 0.0971 1.0000 0.5763 0.1374 1.2500 0.3191 0.1977 1.5000 0.2371 0.1742 1.7500 0.2371 0.1742 1.7500 0.1428 0.0846 2.0000 0.0 0.0	rPIIY 0.0 1.0869 0.0 0.3800 0.2500 1.0058 0.0224 0.3776 0.5000 0.7873 0.0644 0.3560 0.7500 0.6405 0.1002 0.3370 1.0000 0.5742 0.1362 0.3663 1.2500 0.3283 0.1942 0.1842 1.5000 0.2347 0.1758 0.0773 1.7500 0.1343 0.0741 0.0354 2.0000 0.0 0.0 0.0 0.0 1.0122 0.0136 0.3928 0.5000 0.7791 0.0687 0.3477 0.7500 0.6353 0.0971 0.3368 1.0000 0.5763 0.1374 0.3665 1.2500 0.3191 0.1977 0.1809 1.5000 0.2371 0.1742 0.0802 1.7500 0.1428 0.0846 0.0336 2.0000 0.0 0.0 0.0	rPIIy ρ 0.01.08690.00.38004.21030.25001.00580.02240.37764.12840.50000.78730.06440.35603.89040.75000.64050.10020.33703.71081.00000.57420.13620.36633.62361.25000.32830.19420.18423.27501.50000.23470.17580.07733.21451.75000.13430.07410.03543.07702.00000.00.00.00.38004.21030.25001.01220.01360.39284.13500.50000.77910.06870.34773.88100.75000.63530.09710.33683.70421.00000.57630.13740.36653.62611.25000.31910.19770.18093.25741.50000.23710.17420.08023.21941.75000.14280.08460.03363.09312.00000.00.00.02.7000	rpIIy ρ e0.01.08690.00.38004.21030.07220.25001.00580.02240.37764.12840.06720.50000.78730.06440.35603.89040.05380.75000.64050.10020.33703.71080.04501.00000.57420.13620.36633.62360.04101.25000.32830.19420.18423.27500.02461.50000.23470.17580.07733.21450.01101.75000.13430.07410.03543.07700.00262.00000.00.00.00.38004.21030.07220.25001.01220.01360.39284.13500.06760.50000.77910.06870.34773.88100.05330.75000.63530.09710.33683.70420.04471.00000.57630.13740.36653.62610.04121.25000.31910.19770.18093.25740.02431.50000.23710.17420.08023.21940.01111.75000.14280.08460.03363.09310.00282.00000.00.00.00.02.70000.0

Table 18. Flow properties in Interior Region at $t = 1.1 \ \mu sec$ after impact of a 2.5-cm-diameter projectile at 0.76 cm/ μsec on an aluminum half space based on (1) Double Interpolation and (2) Orthogonal Polynomials Least Square Surface Fit with Double Interpolation after $t = 1.1 \ \mu sec$ at $Z = 0.75 \ cm$.

$Z = 0.75 \text{ cm}^{+1}$	r	P.	U	v	· ρ	e	а
	0.0	1.0869	0.0	0.3800	4.2103	0.0722	1.0038
	0.2500	1.0575	0.0069	0.3782	4.1810	0.0704	0.9969
	0.5000	0.8898	0.0374	0.3551	4.0054	0.0601	0.9550
	0.7500	0.7535	0.0622	0.3208	3.8501	0.0518	0.9171
(1)	1.0000	0.6515	0.0859	0.3099	3.7372	0.0442	0.8867
	1.2500	0.4555	0.1199	0.2073	3.5178	0.0276	0.8208
;	1.5000	0.3195	0.1068	0,1168	3.4168	0.0112	0.7720
	1.7500	0.0	0.0	0.0	2.7000	0.0	0.5277
	2.0000	0.0	0.0	0.0	2.7000	0.0	0.5277
	0.0	1.0869	0.0	0.3800	4.2103	0.0722	1.0038
	0.2500	0.9930	-0.0229	0.3930	4.1156	0.0664	0.9814
	0.5000	0.8864	0.0404	0.3514	4.1108	0.0599	0.9541
·	0.7500	0.7504	0.0603	0.3195	3.8462	0.0517	0.9162
(2)	1.0000	0.6505	0.0868	0.3100	3.7355	0.0442	0.8864
	1.2500	0.4552	0.1210	0.2011	3,5168	0.0277	0.8263
	1,5000	0.3313	0.1054	0.1197	3.4382	0.0116	0.7778
	1.7500	0.0	0.0	0.0	2.7000	0.0	0.5277
	2.0000	0.0	0.0	0.0	2.7000	0.0	0.5277

24

Table 19. Flow properties in Interior Region at $t = 1.1 \mu sec$ after impact of a 2.5-cm-diameter projectile at 0.76 cm/usec on an aluminum half space based on (1) Double Interpolation and (2) Orthogonal Polynomials Least Square Surface Fit with Double Interpolation after $t = 1.1 \mu sec$ at Z = 1.00 cm.

· ·							
Z = 1.00 cm	r	Р	U	v	ρ	e	а
	0.0	1.0869	0.0	0.3800	4.2103	0.0722	1.0038
	0.2500	1.0869		0.3800		.0.0722	1.0038
st _e	0.5000	1.0119	0.0131	0.3673	4.1346	0.0676	0.9860
(1)	0.7500	0.8990	0.0297	0.3359	4.0258	0.0593	0.9581
	1.0000	0.7910	0.0414	0.3143	3.9271	0.0499	0.9302
ļ.	1.2500	0.6043	0.0512	0.2428	3.7526	0.0330	0.8773
· ·	1.5000	0.0	0.0	0.0	2.7000	0.0	0.5277
	1.7500	0.0	0.0	0.0	2.7000	0.0	0.5277
-	2.0000	0.0	0.0	0.0	2.7000	0.0	0.5277
	0.0	1.0869	0.0	0.3800	4.2103	0.0722	1.0038
:	0.2500	1.0869	0.0	0.3800	4.2103	0.0722	1.0038
	0.5000	1.0110	0.0122	0.3680	4.1335	0.0676	0.9857
	0.7500	0.8941	0.0332	0.3364	4.0203	0.0590	0.9568
	1.0000	0.7734	0.0489	0.3178	3.9067	0.0488	0.9252
(2)	1.2500	0.6046	0.0551	0.2587	3.7552	0.0328	0.8776
	1.5000	• 0.0	0.0	0.0	2.7000	0.0	0.5277
	1.7500	0.0	0.0	0.0	2.7000	0.0	0.5277
	2.0000	0.0	0.0	0.0	2.7000	0.0	0.5277

	COMMON CASEID(14), ITS1, ITS2, ITS3, ITS4, ITI1, ITI2, ITI3, ITI4, EPS1, EPS	1
	12, EPS3, EPS4, EPS5, EPS6, EPI1, EPI2, EPI3, EPI4, EPI5, EPI6, EPI7, VP, AR, LEN	2
	IGTH, APR, BPR, BIGAPR, BIGBPR, ESTAR, ALPHA, BETA, RHOSTR, EPRS, RHOS	3
	COMMON XMESH(20,20,6), XMESH2(20,20,6), Z(20), R(20), SURF(15,8), SURF2	4
	1(15,8),TAB(15,14,2),TAB2(15,14,2),SPART(15,2,2),RARF(15,11),RARF2(5
	115,4),RPART(15,2)	6
C		7
C		8
	COMMON Z0,R0,P0,U0,V0,L0,M0,RH00,E0,A0,UBAR0,VBAR0	9
С		10
	COMMON NP,NT,NR,NI,NDEL,ISUB	11
С		12
	COMMON ZMIN,ZMAX,RMIN,RMAX,RADIUS,GZ,GR,DELTA,H	13
	COMMON DIRCOS	14
	COMMON TIME	15
	COMMON IRARF	16
	COMMON KSTOP	17
	COMMON TPSI	18
	COMMON KKK	19
С		20
C		21
	REAL LO, MO, LENGTH, MU, KO	22
	DOUBLE PRECISION PHI(20,20,6)	
	KR=7	
	EPS=.0000001	24
_	KSTOP=0	25
1	FORMAT (1H1)	26
	CALL DVCHK(KEY)	27
	KICK=0	28
_	IF (KEY.EQ.1) GO TO 9980	29
C		30
	DO 2 K=1,6	31
	$DO \ 2 \ J=1,20$	32
	DO = I = 1, 20	33
	XMESH(I,J,K)=0.	34
	XMESH2(I,J,K)=0.	35

2	CONTINUE	36
C	KRW=0	37
	NUZON=0	38
C		39
С		40
	WRITE (3,4)	41
С		42
Ċ	DATA INPUT SECTION	43
Ċ	•	44
4	FORMAT (52H1HYPERVELOCITY IMPACT METHOD OF CHARACTERISTICS CODE///	45
c		40
	ID AND FX. FI. CUNSTANTS	41
6		40
•	REAU (1907 GAGEIU91131911329113391134911119111291113911149NUEL	77
0	FUKMA1 \13A0\$A2/313/	20
~	1KAKF=1112	21
		52
	FL. FI. CUNSIANIS	23
L	DEAD (1) 151 EDE1 EDE2 EDE4 EDE6 EDE4 ED11 ED12 ED12 ED14 ED15	24
	KEAU (191); EFS19EFS29EFS39EFS49EFS39EFS09EF119EF129EF139EF149EF13 1 ED14 ED17	22
	1+EF10+EF17 DEAD (1 16) NO NT ND	20
14	KCAU (1914) NY INI INK Eodmat (212)	27
14	FURMAI (JIJ) Dean (1.16) add 200 Dicadd 210200 Cotad Aldua Reta Duncto Coos Dee	50
	READ (1913) AFRYDERYDIOAFRYDIODERYCSIARYACHTMYDEIAYRHUSIRYCFRSYRCF 11	40
	AL DEAD /1 151 7MTN.7MAY.DMTN.DMAY.CD C7.DELTA.VD.LENCTH.DADTHC.WCTAD	41
16	READ 119107 CHIN9CHAA9AHIN9AHAA9OA9OC9OCLIA9979LCNOIH9AAD1U39HJIAA Codwat 14613 ol	40
15	PUNHAI (0512+07 DEAD (1.15) DST	62
	TE (DST CT A) CO TA 16	605
	TE (V21+01+0+1 OD 10 TO	ΨŦ
r	NEWINU D NO 1520 ITD-1 200	4 4
L.	DU 1927 JIF-19200	47
c	TE/ARC/DSTATINE) IT 0011 CO TO 1520	40
č	TEXHOUNDINITELISAVULI OU TU TUUU	00
0	READITION CONTINUE	70
1620		71
1000	CONTINUE	11

.

.

.

.

29

72 С KRW=1 73 READ (5)(((XMESH(I,J,K),I=1,20),J=1,20),K=1,6),(Z(I),I=1,20),(R(I))1.I=1.20}.((SURF(I.J).I=1.15).J=1.8).(((TAB(I.J.K).I=1.15).J=1.14). 74 1K=1.2).((RARF(I.J).I=1.15).J=1.11).TIME.ZMIN.ZMAX.RMIN.RMAX.GR.GZ. 75 76 1AR 77 DO 1500 J=1,20 78 DO 1500 I=1,20 79 DO 1500 K=1,6 1500 XMESH2(1, J, K)=XMESH(1, J, K) 80 81 DD 1501 I=1,15 82 DO 1501 J=1,81501 SURF2(1,J)=SURF(1,J) 83 84 WRITE (3,145) TIME CALL SOUT 85 CALL PRINT(XMESH2,Z,R,1) 86 87 KREFL=0 88 CONTINUE 16 89 WRITE (3,10) CASEID, ITS1, ITS2, ITS3, ITS4, ITI1, ITI2, ITI3, ITI4, NDEL FORMAT (1X13A6,A2//17H SHOCK ITERATIONS6X,4I4//20H INTERIOR ITERAT 90 10 91 1IONS3X,4I4//7H NDEL =,I4///) WRITE (3,18) EPS1.EPS2.EPS3.EPS4.EPS5.EPS6.EPI1.EPI2.EPI3.EPI4.EPI 92 15, EPI6, EPI7, ZMIN, ZMAX, RMIN, RMAX, DELTA, VP, LENGTH, RADIUS, APR, BPR, BIG 93 94 1APR, BIGBPR, ESTAR, ALPHA, BETA, RHOSTR, EPRS, REFL 95 18 FORMAT (///38H ERROR CRITERIA FOR SHOCK COMPUTATIONS//5X8HDELTA Z1 18X8HDELTA RI8X9HDELTA RH07X7HDELTA E9X7HDELTA P9X7HDELTA U/6E16.6/ 96 97 1//41H ERROR CRITERIA FOR INTERIOR COMPUTATIONS//5X8HDELTA ZI8X8HDE ILTA RI8X7HDELTA P9X7HDELTA U9X7HDELTA V9X9HDELTA RH07X7HDELTA E/7E 98 99 116.6///5X4HZMIN12X4HZMAX12X4HRMIN12X4HRMAX12X5HDELTA11X2HVP14X6HLE INGTH10X6HRADIUS/BE16.6///5X2HA*14X2HB*14X6HBIG A*10X6HBIG B*10X2HE 100 101 1*14X5HALPHA11X4HBETA12X4HRHO*/8E16.6//5X3HE*S13X4HREFL/2E16.6///) 102 IF (RST.LT.0.) GO TO 140 103 С С 104 STORE RHO* IN ALL XMESH C 105 106 00 22 J=1.20DO 22 I=1,20 107

22	XMESH(I,J,4)=RHOSTR	108
40	FORMAT (5E12.8)	109
С		110
С	PROJECTILE SHOCK	111
С		112
	CALL EQOS1(PRHD,PPP,PVV,PEE,TEE,TRHD,KICK)	113
	IF (KICK.EQ.2200) GO TO 9980	114
	DD 230 N=1,NP	115
	TAB(N,1,1)=(PRHO*PVV-RHOSTR*VP)*HSTAR/(PRHO-RHOSTR)	116
	EE=N+1	117
	FNP=NP	118
	TAB(N,2,1)=RMIN+EE*(RADIUS-RMIN)/FNP	119
	TAB(N,3,1)=PPP	120
	TAB(N,4,1)=0.0	121
	TAB(N, 5, 1)=PVV	122
	TAB(N,6,1)=PRH0	123
	TAB(N,7,1)=PEE	124
	TAB(N,9,1)=0.0	125
	TAB(N, 10, 1) = 1.0	126
230	CONTINUE	. 127
С		128
С	TARGET SHOCK	129
С		130
	M=0	131
	DO 240 N=1,NT	132
	EE=N-1	133
	FNT=NT-4	134
	TAB(N,2,2)=RMIN+EE*(RADIUS-RMIN)/FNT	135
	TAB(N,7,2)=TEE	136
	TAB(N,6,2)=TRHO	137
	TAB(N,3,2)=PPP	138
	IF (TAB(N,2,2).GT.RADIUS) GO TO 250	139
	TAB(N+1+2)=TRHO*PVV+HSTAR/(TRHO-RHOSTR)	140
	TAB(N,4,2)=0.0	141
	TAB(N,5,2)=PVV	142
	TAB(N+9+2)=0.0	143

3/

.

.

	TAB(N, 10,2)=1.0	144
	GO TO 240	145
250	EF=M	146
	TAB(N,9,2)=SIN(.5236+EF*.2618)	147
	TAB(N, 10, 2)=COS(.5236+EF*.2618)	148
	TAB(N,4,2)=PVV*TAB(N,9,2)	149
	TAB(N, 5, 2) = PVV * TAB(N, 10, 2)	150
	TAB(N,1,2)=TAB(1,1,2)*TAB(N,10,2)	151
	TAB(N, 2, 2)=RADIUS+TAB(1, 1, 2)+TAB(N, 9, 2)	152
	M=M+1	153
240	CONTINUE	154
C		155
Ċ	RAREFACTION	156
С		157
	CALL EQOS2(PPP,PRHO,PEE)	158
	EE=NR-1	159
	ADEL=(TAB(1,1,2)-TAB(1,1,1))/EE	160
	RARF(1,1) = TAB(1,1,2)	161
	DO 205 N=2.NR	162
	RARF(N,1)=RARF(N-1,1)-ADEL	163
205	CONTINUE	164
	DO 210 N=1.NR	165
	RARF(N, 10) = (RARF(N, 1)/HSTAR5 + VP)/AR	166
	RARF(N,9) = -SQRT(1RARF(N,10) + 2)	167
	RARF(N,2)=RADIUS+HSTAR*AR*RARF(N,9)	168
210	CONTINUE	169
	DD 220 N=1.NR	170
	RARF(N,3) = TAB(1,3,1)	171
	RARF(N,4)=0.	172
	RARF(N.5)=TAB(1.5.1)	173
	RARF(N.6) = TAB(1.6.1)	174
	RARF(N,7) = TAB(1,7,1)	175
220	CONTINUE	176
Ċ	REGION INTERIOR TO SHOCKS	177
-	I = -ZMIN/GZ + 1.2	178
	J=0	179

260	J=J+1	180
	XMESH(I,J,1)=PPP	181
	XMESH(I,J,3)=PVV	182
	XMESH(I,J,4)=PRHO	183
	XMESH(I,J,5)=PEE	184
	EE=(J-1)	185
	IF ((EE*GR-RADIUS).LTEPS) GO TO 260	186
	XMESH(I,J,1)=0.	187
	XMESH(1,J,4)=RHOSTR	188
	XMESH(I,J,5)=0.	189
С		190
C	FREE SURFACE	191
C		192
	00 50 I=1,NP	193
	SURF(I,1)=-LENGTH+VP*HSTAR	194
	SURF(1,2)=TAB(1,2,1)	195
	SURF(1,3)=0.	196
	SURF(1,4)=0.	197
	SURF(1,5)=VP	198
	SURF(I,6)=RHOSTR	199
	SURF(1,7)=0.	200
	SURF(1,8)=SQRT(BIGAPR/RHOSTR)	201
50	CONTINUE	202
	DO 51 I=1,NP	203
	DO 51 J=1,8	204
51	SURF2(I,J)=SURF(I,J)	205
	IF (NUZON.EQ.O) GO TO 5001	206
5000	GR=GR+2.	207
	GZ=GZ*2•	208
	ZMAX=ZMAX+2ZMIN	209
	RMAX=RMAX+2.	210
	NUZON=1	211
	WRITE (3,5003)	212
5003	FORMAT (7H REZONE///)	213
5001	CONTINUE	214
C		215

33

`

C		216
	00 55 I=1,20	217
	EE=I-1	219
	Z(I)=ZMIN+EE*GZ	210
	R(I)=RMIN+EE*GR	217
55	CONTINUE	220
	IF (NUZON.EQ.01 GO TO 5101	221
	DD 5100 I=1.10	222
	D0 5100 J=1.10	223
	DD 5100 K=1.6	224
	L=2+1-1	223
	H=2*J−1	220
	XMESH(1.J.K)=XMESH(1.M.K)	221
5100	CONTINUE	228
2000	GO TO 157	229
5101	CONTINUE	230
c.		231
č	COMPLETE & FOR 2 SHOCKS AND MESH	232
č	CON OTE A TON 2 SINCKS AND HESH	233
U	00 86 K=1.3	234
	GO TO (57,59,61).K	235
57	NN=ND	236
21	.1.1=1	237
	GD TO 63	238
50	NN=NT	239
	.1.1=1	240
	GO TO 63	241
61	NN=20	242
01		243
63	DD 94 Not NA	244
05		245
	DU 02 J-19JJ	246
45	UU TU 1009009900798 D-TARIN 2 K1	247
09		248
	NNU-1401N101N1 C-T40/N 7 M1	249
	C= IADIN(/(K)	250
		251

•

.

.

.

34

68	P=XMESH(J,N,1)	252
	RHO=XMESH(J,N,4)	253
	E=XMESH(J,N,5)	254
70	CONTINUE	255
	CALL EQOS3(RHO,AA,E,P)	256
	GD TO (76,76,78),K	257
76	TAB(N, 8, K) = AA	258
	GO TO 82	259
78	XMESH(J,N,6)=AA	260
82	CONTINUE	261
84	CONTINUE	262
86	CONTINUE	263
	KICK=86	264
	CALL DVCHK(KQ)	265
	IF (KQ.EQ.1) GO TO 9980	266
С		267
Ċ	STORE A FOR RAREFACTION	268
С		269
	DD 90 I=1,NR	270
90	RARF(I,8)=AR	271
С	•	272
Ċ	COMPLETE SHOCK TABLES	273
С		274
-	DO 99 K=1,2	275
	GO TO (92,94),K	276
92	NN=NP	277
	GQ TQ 95	278
94	NN=NT	279
	US=0.	280
95	DO 97 N=1,NN	281
	GD TO (93,96),K	282
93	CONTINUE	283
	US=VP*TAB(N,10,1)	284
96	CONTINUE	285
	TAB(N,11,K)=TAB(N,9,K)*TAB(N,4,K)+TAB(N,10,K)*TAB(N,5,K)	286
	TAB(N,12,K)=TAB(N,9,K)*TAB(N,5,K)-TAB(N,10,K)*TAB(N,4,K)	287

	TAB(N,13,K)=((TAB(N,6,K)*ABS(TAB(N,11,K)))/(TAB(N,6,K)-RHOSTR)-US)	288
	1*(-1.)**K	289
	TAB(N,14,K)=1.	290
97	CONTINUE	291
99	CONTINUE	292
C		203
С		294
С	STORE ALL XMESH IN XMESH2	295
С		296
130	DO 135 K=1.6	297
	DO 135 J=1,20	298
	DO 135 I=1,20	299
	XMESH2(I,J,K)=XMESH(I,J,K)	300
135	CONTINUE	301
	TIME=HSTAR	302
	WRITE (3,145) TIME	303
	CALL SOUT	304
C	CALL PRINT(XMESH2,Z,R,1)	591
	CALL PRINT(XMESH2,Z,R,1,PHI,NMAX,MMAX)	
С	• • • • • • • • • • • • • • • • • • • •	306
	KREFL=0	307
139	IF (KREFL.NE.O) GO TO 143	308
С	ENTRY FOR TIME STEP	309
С	·	310
140	READ (1,142) H	311
142	FORMAT (E12.8)	312
143	CONTINUE	313
	TIME=TIME+H	314
	WRITE (3,145) TIME	315
145	FORMAT (1H1///6H TIME=,E15.8///)	316
	WRITE (3,999) KR	317
99 9	FORMAT (5X,4H KR=,15)	318
C		319
С		320
C	ADVANCE SHOCK POINTS	321
С		322

.

36
	DO 159 N=1,NP	323
	IF (TAB(N,14,1).LT.O.) GO TO 156	324
	IF ((TAB(N,1,1)-SURF(N,1)).GT.EPS) GO TO 154	325
156	TAB2(N, 1, 1) = TAB(N, 1, 1)	326
	TAB2(N,2,1)=TAB(N,2,1)	327
	TAB(N,14,1)=-1.	328
	GO TO 159	329
154	TAB2(N,1,1)=TAB(N,1,1)+TAB(N,13,1)*H*TAB(N,10,1)-VP*TAB(N,9,1)*TAB	330
	1(N,10,1)*H	331
150	TAB2(N,2,1)=TAB(N,2,1)+TAB(N,13,1)+H+TAB(N,9,1)-VP*TAB(N,9,1)+*2*H	332
159	CONTINUE	333
	DO 155 N=1,NT	334
	TAB2(N,1,2)=TAB(N,1,2)+TAB(N,13,2)+H+TAB(N,10,2)	335
155	TAB2(N,2,2)=TAB(N,2,2)+TAB(N,13,2)+H+TAB(N,9,2)	336
	DO 158 M=1,NT	337
	IF (TAB2(M,1,2).GT.ZMAX) GO TO 5000	338
	IF (TAB2(M,2,2).GT.RMAX) GO TO 5000	339
158	CONTINUE	340
157	NUZON=0	341
C	ADVANCE RAREFACTION	342
С		343
	IF (RARF(1,2).LT.O.)IRARF=1	344
	IF (IRARF.EQ.1) GO TO 516	345
	ENR=NR-1	346
	ADEL=(TAB2(1,1,2)-TAB2(1,1,1))/ENR	347
	RARF2(1,1)=TAB2(1,1,2)	348
	DO 510 N=2,NR	349
	RARF2(N,1)=RARF2(N-1,1)-ADEL	350
510	CONTINUE	351
	DD 515 N=1,NR	352
	RARF2(N,3)=(RARF2(N,1)/TIME5+VP)/AR	353
	RARF2(N,4)=+SQRT(1RARF2(N,3)**2)	354
	RARF2(N,2)=RADIUS+TIME*AR*RARF2(N,4)	355
515	CONTINUE	356
516	CONTINUE	357
	CALL SHOCK	358

.

ı,

С		359
С		360
	IF (ITS3.EQ.1) GO TO 569	361
C	SHOCK COMPUTATIONS COMPLETED	362
С	COMPUTE PARTICLE CURVES	363
C		364
	TMP=.5+VP+H	365
	00 520 N=1,NP	366
	SPART(N,1,1)=TAB(N,1,1)+TAB(N,5,1)*H	367
520	SPART(N,2,1)=TAB(N,2,1)+TAB(N,4,1)+H	368
	DO 525 N=1,NT	369
	SPART(N,1,2)=TAB(N,1,2)+TAB(N,5,2)+H	370
525	SPART(N,2,2)=TAB(N,2,2)+TAB(N,4,2)+H	371
	IF (IRARF.EQ.1) GO TO 531	372
	DO 530 N=1,NR	373
	RPART(N,1)=RARF(N,1)+TMP	374
530	RPART(N,2)=RARF(N,2)	375
531	CONTINUE	376
C		377
C		378
568	CALL SOUT2	379
569	CONTINUE	380
C	ADVANCE PROJECTILE REAR SURFACE	381
	DO 5300 I=1,NP	382
	DO 5300 J=1,8	383
5300	SURF2(I,J)=SURF(I,J)	384
	KICK=568	385
	CALL DVCHK(KQ)	386
,	IF (KQ.EQ.1) GO TO 9980	387
C		388
C	START INTERIOR REGION COMPUTATIONS	389
C		390
С	CALL INTER	
-	CALL INTER(PHI;NMAX;MMAX)	
C		392
C	INTERIUR REGIUN COMPUTATIONS COMPLETED	393

٠

•

С		394
С	CALL PRINT(XMESH2,Z,R,2)	
	CALL PRINT(XMESH2,Z,R,2,PHI,NMAX,MMAX)	
570	CONTINUE	396
C		397
č	INITIALIZE FOR NEXT TIME STEP	398
Ċ		399
-	DO 920 K=1,6	400
	DO 920 J=1,20	401
	DO 920 I=1,20	402
	XMESH(I, J, K) = XMESH2(I, J, K)	403
920	CONTINUE	404
	DQ 930 J=1+13	405
	DO 930 I=1,NP	406
	TAB(I, J, 1) = TAB2(I, J, 1)	407
930	CONTINUE	408
	DQ 940 J=1,13	409
	DD 940 I=1,NT	410
	TAB(I, J, 2) = TAB2(I, J, 2)	411
940	CONTINUE	412
	IF (IRARF.EQ.1) GO TO 951	413
	DB 950 I=1,NR	414
	RARF(1,1)=RARF2(1,1)	415
	RARF(1,2)=RARF2(1,2)	416
950	CONTINUE	417
951	CONTINUE	418
	DO 960 I=1,NP	419
	00 959 J=1,5	420
	SURF(I,J)=SURF2(I,J)	421
959	CONTINUE	422
960	CONTINUE	423
777	IF (KREFL.EQ.O) GO TO 980	442
	KREFL=0	443
	H=H1	444
	GO TO 143	445
980	CONTINUE	446

	CALL DVCHK(KICK)	447
	IF (KICK.EQ.2) GO TO 140	448
	WRITE (3,970)	449
970	FORMAT (28HODIVIDE CHECK AT END OF CASE/1H1)	450
	CALL EXIT	451
С		452
С	DIVIDE CHECK	453
C	·	454
9980	WRITE (3,9985) KICK	455
9985	FORMAT (32HODIVIDE CHECK NEAR STATEMENT NO., 15/1H1)	456
	RETURN	457
	DEBUG SUBCHK	
	END	458
	SUBROUTINE DBLTRP(ZX,RX,ANS)	1
C		2
C	1ST ORDER DOUBLE INTERPOLATION THAT CONSIDERS	3
C	LINES OF DISCONTINUITY IF IN CONSIDERED REGION	4
С		5
	COMMON CASEID(14), ITS1, ITS2, ITS3, ITS4, ITI1, IT12, IT13, IT14, EPS1, EPS	0
	12, EPS3, EPS4, EPS5, EPS6, EP11, EP12, EP13, EP14, EP15, EP10, EP1(, VP, AK, LEN	(
	IGTH, APR, BPR, BIGAPR, BIGBPR, ESTAR, ALPHA, BETA, RHUSTR, EPRS, RHUS	8
	CUMMUN XMESH(20,20,6), XMESH2(20,20,6), Z(20), K(20), SUKF(10,8), SUKF2(10,6), Z(20,6), Z(2	10
	1(15,8), IAB(15,14,2), IAB2(15,14,2), SPAK ((15,2,2), KAKF(15,11), KAKF2(10
~	110,41, KPAK ((10,2)	12
		12
L	CONMON TO DO DO UO VO LO MO 0000 EO AO UDADO VRADO	14
~	CUMMUN ZUAKUAPUAUUAYUALUAMUAKUUUAEUAAUAUDAKUAYDAKU	15
L	COMMON NO MT NO NT NOEL ISID	16
c	CUMMUM NY ANI ANKANI ANDELAISOD	17
L.	COMMON THIN, THAY, PHIN, PHAY, PADIUS, CT, CP, DELTA, H	18
	COMPON DIPING	19
	COMMON TIME	20
	COMMON TRARF	21
		22
	COMMON TPST	23
	And the second	

 $= \frac{1}{2} \left[\frac{1}{2}$

40

.

	COMMON KKK	24
	REAL LO, MO, LENGTH, MU, KO	25
С		26
	DIMENSION ANS(6),ANS1(2,8),ANS2(2,8),ZI(4),RI(4),IK(4)	27
	CALL DVCHK(KEY)	28
	IF (KEY.EQ.2) GO TO 4	29
	N0=0	30
	GD TO 940	31
С		32
Ō	FIND SUBSCRIPTS FOR GRID	33
Ċ		34
4	I1=(ZX-ZMIN)/GZ+1.000001	35
	12=11+1	36
	J1 = (RX - RMIN)/GR + 1.000001	37
	J2=J1+1	38
	NN=NP	39
	IF (ITS3.EQ.1) GO TO 3	40
	DO 1 K=1,2	41
	IF (K.EQ.2)NN=NT	42
	DO 1 I=1.NN	43
	ALF=SQRT((TAB(I+1+K)-ZX)**2+(TAB(I+2+K)-RX)**2)	44
	IF (ALF.GT.EPS1) GO TO 1	45
	$ANS(1)=TAB(I \cdot 3 \cdot K)$	46
	ANS(2) = TAB(1+4+K)	47
	ANS(3)=TAB(1,5,K)	48
	ANS(4) = TAB(I,6,K)	49
	ANS(5)=TAB(I,7,K)	50
	ANS(6)=TAB(1,8,K)	51
	RETURN	52
1	CONTINUE	53
•	IF (IRARF.EQ.1) GO TO 3	54
	DD 2 I=1,NR	55
	ALF=SQRT((RARF(I,1)+ZX)**2+(RARF(I,2)-RX)**2)	56
	IF (ALF.GT.EPI1) GO TO 2	57
	ANS(1)=RARF(1.3)	58
	ANS(2) = RARF(T, 4)	59

•

41

	ANS(3)=RARF(1,5)	60
	ANS(4) = RARF(1,6)	61
	ANS(5)=RARF(1,7)	62
	ANS(6)=RARF(1,8)	63
	RETURN	64
2	CONTINUE	65
3	CONTINUE	66
C		67
С		68
	ZXX=ZX+.01	69
	RXX=RX+.01	70
C		71
С	I LOOP FOR UPPER AND LOWER Z GRID LINES	72
С		73
	DO 800 I=1,2	74
	IF (ITS3.EQ.1) GO TO 14	75
	IF (1.EQ.2) GO TO 8	76
	II=I1	77
	GO TO 12	78
8	11=12	79
12	M=COMP(ZX,RX,Z(II),R(J1))	80
	IF (M.EQ.1) GO TO 13	81
	MCOM=1	82
	GO TO 20	83
13	M=COMP(ZX,RX,Z(II),R(J2))	84
	IF (M.EQ.1) GO TO 14	85
	NCON=2	86
	GO TO 20	87
C		88
C	GET 6 VALUES ON GRID LINES	89
C		90
14	DO 15 K=1,6	91
	ANS1(I,K+2)=XMESH(II,J1,K)+(XMESH(II,J2,K)-XMESH(II,J1,K))*(RX-R(J	92
	11))/(R(J2)-R(J1))	93
15	CONTINUE	94
	CALL DVCHK(NO)	95

,

•

42

	IF (NO.EQ.2) GO TO 17	96
	NO=15	97
	GD TO 940	98
17	ANS1(1,1)=7(11)	99
- ·	$\Delta NS1(1.2) = RX$	100
	GO TO 800	101
C		102
ř		103
20	77=7(11)	104
2. V	PR=PY	105
	N= NA N= COMP(7X, RX, 77, RR)	106
	1 = 1 1 1 1 1 1 1 1	107
c	TI (MECASTI DO LO DOD	109
r r		100
C	00 25 K-1-2	110
	V 23 N-172	111
	NATUR-V Co. To. (21, 22).K	112
21	OU TU TEIPEEJAN NN-ND	112
21	NN-NF CO TO 32	114
		114
22		114
23	JJJ=700-1	117
	DU 24 M=1,JJJ	
	IF (M.EQ.JJJ) GU (U ZIU	110
	$ \begin{array}{c} \text{IF} \{ (X_* \cup I_*) \land (M^+ I_*) \land (X_* \cup I_*) \land (M^+ I_*) $	114
210	ZI(K)=1AB(M+1+1+K)+(1AB(M+1+K)-1AB(M+1+1+K))+(KX-1AB(M+1+2+K))/(1A	120
	18(M+2+K)-TA8(M+1+2+K))	121
	NO=210	122
	CALL DVCHK(KQ)	123
	IF (KQ.EQ.1) GO TO 940	124
	IF (I.EQ.2) GO TO 211	125
	IF (KATCH.EQ.1) GO TO 212	126
	KATCH=1	127
	GO TO 213	128
212	IF {(ZX-ZI(K)).GT.(ZX-ZM)) GO TO 24	129
	IF (ZI(K).GT.ZX) GO TO 24	130
213	ZM=Z1(K)	131

•

	IF (K.EQ.2) GO TO 215	132
	NP S=M	133
	GO TO 24	134
215	NTS=M	135
	GO TO 24	136
211	CONTINUE	137
	IF (KATCH.EQ.1) GO TO 26	139
	KATCH=1	130
	GO TO 213	140
26	IF ((ZI(K)-ZX).GT.(ZM-ZX)) GO TO 24	141
	IF (ZI(K).LT.ZX) GO TO 24	142
	GO TO 213	143
24	CONTINUE	144
	ZI (K)=ZM	145
	IF (KATCH.NE.O) GO TO 25	146
	ZI(K)=ZMAX+1.	147
25	CONTINUE	148
	IF (IRARF.EQ.1)ZI(3)=ZMAX+1.	149
	IF (IRARF.EQ.1) GO TO 2504	150
	KATCH=0	151
	JJJ=NR-1	152
	DO 27 M≖1+JJJ	153
	ZI(3)=RARF(M+1,1)+(RARF(M,1)-RARF(M+1,1))*(RX-RARF(M+1,2))/(RARF(M	154
	1,2)-RARF(M+1,2))	155
	NO=25	156
	CALL DVCHK(KQ)	157
	IF (KQ.EQ.1) GO TO 940	158
	IF (ABS(ZI(3)-ZX).GT.1.E-5) GO TO 279	159
	DO 2799 LN=1,6	160
	LNN=LN+2	161
	ANS(LN)=RARF(1,LNN)	162
2799	CONTINUE	163
	GO TO 820	164
279	CONTINUE	165
	IF (1.EQ.2) GO TO 28	166
	IF (ZI(3).GT.ZX) GD TO 27	167

. .

	IF (KATCH.EQ.1) GO TO 280	168
	KATCH=1	169
	GD TO 281	170
280	IF ((ZX-ZI(3)).GT.(ZX-ZM)) GO TO 27	171
281	ZH=Z1(3)	172
	MR=M	173
	GO TO 27	174
28	IF (ZI(3).LT.ZX) GO TO 27	175
	IF (KATCH.EQ.1) GO TO 282	176
	KATCH=1	177
	GO TO 281	178
282	IF ((ZI(3)-ZX).GT.(ZM-ZX)) GO TO 27	179
	GO TO 281	180
27	CONTINUE	181
	Z1(3)=ZM	182
2504	CONTINUE	183
	KATCH=0	184
	K=4	185
	JJJ=NP−1	186
	DO 2700 M=1,JJJ	187
	IF (M.EQ.JJJ) GO TO 2710	188
	IF (RX.GT.SURF(M+1,2).OR.RX.LT.SURF(M,2)) GO TO 2700	189
2710	ZI(4)=SURF(M+1,1)+(SURF(M,1)-SURF(M+1,1))*(RX-SURF(M+1,2))/(SURF(M	. 190
	1,2)-SURF(M+1,2))	191
	IF (KQ.EQ.1) GO TO 940	192
	CALL DVCHK(KQ)	193
	NO=2710	194
	IF (I.EQ.2) GO TO 2711	195
	IF (KATCH.EQ.1) GO TO 2712	196
	KATCH=1	197
	GO TO 2713	198
2712	IF ((ZX-ZI(K)).GT.(ZX-ZM)) GO TO 2700	199
2713	ZH=Z1(4)	200
	MS=M	201
	GO TO 2700	202
2711	CONTINUE	203

..

·

s.

45.

	IF (KATCH.EQ.1) GO TO 2726	204
	KATCH=1	205
	GO TO 2713	205
2726	IF ((ZI(K)-ZX).GT.(ZM-ZX)) GD TO 2700	203
	GO TO 2713	208
2700	CONTINUE	208
	ZI (4)=ZM	207
	IF (KATCH.NE.O) GO TO 2701	210
	ZI(4)=ZMAX+1.	241
2701	CONTINUE	212
	RI(1)=RX	243
	RI(2)=RX	214
	RI(3)=RX	212
	RI(4)=RX	210
С	FIND INTERSECTION TO USE	210
C		210
30	KEY=0	217
-	IF (1.EQ.2) GO TO 50	220
C		221
Ċ	UPPER GRID ITNE	222
С		223
-	DO 40 KK=1.4	224
	IF (Z(II).GT.ZI(KK)) GO TO 40	267
	IF (ABS(ZI(KK)-ZX)-LT-1-E-5) GD TD 35	
	IF (ZI(KK).GT.ZX) GO TO 40	221
	IF (KEY.EQ.0) GO TO 35	220
	IF (ZI(KK).LE.ZI(KEEP)) GO TO 40	220
	KEEP=KK	230
	GO TO 40	222
35	KEEP=KK	232
	KEY=1	233 224
40	CONTINUE	234
	GQ TQ 65	237
С		200
C	LOWER GRID LINE	201
С		200
		237

·

.

- - -

.

46

••

50	DO 60 KK=1,4	240
	IF (Z(II).LT.ZI(KK)) GO TO 60	241
	IF (ABS(ZI(KK)-ZX).LT.1.E-5) GO TO 55	242
	IF (ZI(KK).LT.ZX) GO TO 60	243
	IF (KEY.EQ.0) GO TO 55	244
	IF (ZI(KK).GE.ZI(KEEP)) GO TO 60	245
	KEEP=KK	246
	GO TO 60	247
55	KEEP=KK	248
	KEY=1	249
60	CONTINUE	250
C		251
65	IF (KEY.NE.O) GO TO 70	252
	WRITE (6,67) ZX,RX,I,(ZI(KEY),KEY=1,4),(RI(KEY),KEY=1,4)	253
67	FORMAT (34HOERROR NEAR STATEMENT 65 IN DBLTRP/1X3HZX=+E15+8+4X3HRX	254
	1=,E15,8,4X2HI=,I3/1X3HZI=,4E20,8/1X3HRI=,4E20,8/1H1)	255
	XYZ=-2.	256
	ZYX=SQRT(XYZ)	257
	CALL EXIT	258
С		259
С	FIND 6 VALUES ON SELECTED DISCONTINUITY	260
Ċ		261
70	IF (KEEP.EQ.3) GO TO 80	262
	IF (KEEP.EQ.4) GO TO 81	263
	IF (KEEP.EQ.2) GO TO 71	264
	N=NPS	265
	GO TO 72	266
71	N≈NTS	267
72	CONTINUE	268
	ZY=ZI(KEEP)	269
	RY=RX	270
	DO 75 K=3,8	271
	ANS1(I,K)=TAB(N,K,KEEP)+(TAB(N+1,K,KEEP)-TAB(N,K,KEEP))*SQRT(((RY-	272
	1TAB(N,2,KEEP))**2+(ZY-TAB(N,1,KEEP))**2)/((TAB(N+1,2,KEEP)-TAB(N,2	273
	1,KEEP))**2+(TAB(N+1,1,KEEP)-TAB(N,1,KEEP))**2))	274
	NO=75	275

•

IF (KQ.EQ.1) GO TO 940 277 75 CONTINUE 278 GO TO 90 279 80 N=MR 280 ZY=ZI(3) 281 RY=RX 281 D0 85 K=3,8 282 ANSI(1,K)=RAFF(N,K)+(RARF(N+1,K)-RARF(N,K))*SQRT(((RY-RARF(N,2))** 283 ANSI(1,K)=RAFF(N,K)+((RARF(N+1,2)-RARF(N,2))**2+(RARF(N+1,1)-RARF 285 I(M,1))**2)) 287 NO=85 287 CALL DVCHK(KQ) 288 IF (KQ.EQ.1) GO TO 940 289 S0 GO TO 90 290 G0 TO 90 291 N=MS 292 ZY=ZI(4) 293 RY=RX 294 D0 86 K=3,8 294 ANS1(1,k)=SURF(N,K)+(SURF(N+1,K)-SURF(N,K))*SORT(((RY-SURF(N,2))** 296 I2+(ZY-SURF(N,1))**2)/((SURF(N+1,2)-SURF(N,2))**2+(SURF(N+1,1)-SURF 297 1(N,1))**2)) 301 301 ND=90 GO TO 92 301 ND=90 GO TO 940 302 GO TO 800 302 303 GO TO 800 302 303 GO TO 800 303<		CALL DVCHK(KQ)	276
75 CONTINUE 278 GD TO 90 279 80 N=MR 280 ZY=ZI(3) 281 RY=RX 283 DD 85 k=3,8 283 ANS1(1,k)=RAF(N,k)+(RARF(N+1,k)-RARF(N,k))*SQRT(((RY-RARF(N,2))** 284 12+(ZY-RARF(N,1))**2)/((RARF(N+1,2)-RARF(N,2))**2+(RARF(N+1,1)-RARF 285 ND=85 287 CALL DVCHK(KQ) 289 85 CONTINUE 280 GO TO 90 289 86 CONTINUE 290 GO TO 90 289 87 CONTINUE 290 GO TO 90 291 80 RY=RX 292 DD 86 k=3,8 292 ANS1(1,k)=SURF(N,k)+(SURF(N+1,k)-SURF(N,k))*SORT(((RY-SURF(N,2))** 296 12+(ZY-SURF(N,k))*(SURF(N+1,k)-SURF(N,k))*SORT(((RY-SURF(N+1,1)-SURF 297 12+(ZY-SURF(N,k))**2)/((SURF(N+1,2)-SURF(N,k))*SORT(((RY-SURF(N+1,1))-SURF 297 12+(ZY-SURF(N,k))**2)/((SURF(N+1,2)-SURF(N,k))*SORT(((RY-SURF(N+1,1))-SURF 298 86 CONTINUE 299 90 CALL DVCHK(NO) 300 12+(ZY-SURF(IF (KQ.EQ.1) GO TO 940	277
GO TO 90 279 80 N=MR 280 ZY=ZI(13) 281 RY=RX 282 DD 85 K=3,8 283 ANSI(1,K)=RARF(N,K)+(RARF(N+1,K)-RARF(N,K))*SQRT(((RY-RARF(N,2))** 284 12+(ZY-RARF(N,1))**2)/((RARF(N+1,2)-RARF(N,2))**2+(RARF(N+1,1)-RARF 285 1(N,1))**2)) 286 NO=85 287 CALL DVCHK(KQ) 288 IF (KQ-EQ.1) GO TO 940 289 85 CONTINUE 290 GO TO 90 291 81 N=MS 292 ZY=ZI(4) 293 294 DD 86 K=3,8 294 DD 86 CONTINUE 297 1(N,1))**2) 296 ANS1(I,K))*SQRT(((RY-SURF(N,L))*SQRT(((RY-SURF(N+1,L))-SURF ND=90 300 GO TO 940 302 GO TO 940 <td>75</td> <td>CONTINUE</td> <td>278</td>	75	CONTINUE	278
80 N=MR 280 ZY=ZI(3) 281 RY=RX 282 D0 85 K=3,8 283 ANS1(1,K)=RARF(N,K)+(RARF(N+1,K)-RARF(N,K))*SQRT(((RY-RARF(N,2))** 284 12+(ZY-RARF(N,1))**2)/((RARF(N+1,2)-RARF(N,2))**2+(RARF(N+1,1)-RARF 285 CALL DVCHK(KQ) 289 85 CONTINUE 280 GO TO 90 289 81 N=MS 292 ZY=ZI(4) 290 GO TO 90 291 81 N=MS 292 ZY=ZI(4) 293 292 RY=RX 293 293 RY=RX 293 293 RY=RX 293 293 RY=RX 293 294 D0 86 K=3,8 294 295 ANSI(I,K)=SURF(N,K)+(SURF(N+1,K)-SURF(N,K))+SQRT(((RY-SURF(N,2))** 296 12+(ZY-SURF(N,1))**2)/((SURF(N+1,2)-SURF(N,K))*SQRT(((RY-SURF(N,2))** 296 12+(ZY-SURF(N,1))**2)/((SURF(N+1,2)-SURF(N,2))**2+(SURF(N+1,1)-SURF 297 10 10 300 301 NO=90 301 301 <td< td=""><td></td><td>GO TO 90</td><td>270</td></td<>		GO TO 90	270
ZY=ZI(3) 280 RY=RX 282 DD 85 K=3,8 283 ANS1(1,K)=RARF(N,K)+(RARF(N+1,K)-RARF(N,K))*SQRT(((RY-RARF(N,2)))**2) 284 12+(ZY-RARF(N,1))**2)/((RARF(N+1,2)-RARF(N,2))**2+(RARF(N+1,1)-RARF 285 1(N,1))**2)) 286 NO=85 287 CALL DVCHK(KQ) 288 IF (KQ.EQ.1) GO TD 940 289 85 CONTINUE 290 GO TO 90 291 81 N=MS 292 ZY=ZI(4) 293 294 DD 86 K=3,8 294 295 ANS1(1,K)=SURF(N,K)+(SURF(N+1,K)-SURF(N,K))*SQRT({(RY-SURF(N,2))** 296 ANS1(1,K)=SURF(N,K)+(SURF(N+1,2)-SURF(N,K))*SQRT({(RY-SURF(N,2))** 296 90 CALL DVCHK(ND) 299 91 IN(1,1)**2) 301 82 CONTINUE 299 93 301 303 94 301 302 95 GO TO 940 301 96 GO TO 940 302 97 INN=110 304 98 GO TO 800 305	80	N=MR	217
RY=RX 201 D0 85 K=3,8 283 ANS1(1,K)=RARF(N,K)+(RARF(N+1,K)-RARF(N,K))*SQRT(((RY-RARF(N,2))** 283 12+(ZY-RAF(N,1))**2)/((RARF(N+1,2)-RARF(N,2))**2+(RARF(N+1,1)-RARF 285 1(N,1))**2)) 286 ND=85 287 CALL DVCHK(KQ) 288 IF (KQ.EQ.1) GO TO 940 289 85 CONTINUE 290 GQ TO 90 291 81 N=MS 292 ZY=ZI(4) 293 291 RY=RX 294 293 DQ 86 K=3,8 294 295 ANS1(1,K)=SURF(N,K)+(SURF(N+1,K)-SURF(N,K))+SQRT(((RY-SURF(N,2))** 296 12+(ZY-SURF(N,1))**2)/((SURF(N+1,2)-SURF(N,2))**2+(SURF(N+1,1)-SURF 297 1(N,1))**2)/(SURF(N+1,2)-SURF(N,2))**2+(SURF(N+1,1)-SURF 297 1(N,1))**2)/(SURF(N+1,2)-SURF(N,2))**2+(SURF(N+1,1)-SURF 297 1(N,1))**2)/(SURF(N+1,2)-SURF(N,2))**2+(SURF(N+1,1))* 298 90 CALL DVCHK(ND) 300 1F (NO.EQ.2) GO TO 92 301 301 NO=90 302 301 92 ANS1(1,1)=ZY 304 ANS1(1,2)=R		ZY=Z1(3)	200
DD 85 K=3.8 283 ANS1(I,K)=RARF(N,K)+(RARF(N+1,K)=RARF(N,K))*SQRT(((RY=RARF(N,2))** 284 12+(ZY=RARF(N,1))**2)/((RARF(N+1,2)=RARF(N,2))**2+(RARF(N+1,1)=RARF 285 1(N,1))**2)) 286 ND=85 CALL DVCHK(KQ) 287 GD TO 90 80 S5 CONTINUE 290 GD TO 90 80 K=3.8 292 ZY=ZI(4) 293 RY=RX 293 RY=RX 293 RY=RX 294 DD 86 K=3.8 294 DD 86 K=3.8 294 DD 86 K=3.8 295 ANS1(I,K)=SURF(N,K)+(SURF(N+1,K)=SURF(N,K))*SQRT(((RY=SURF(N,2))** 296 12+(ZY=SURF(N,K)+(SURF(N+1,2)=SURF(N,K))*SQRT(((RY=SURF(N,2))** 297 1(N,1))**2)) 298 86 CONTINUE 299 90 CALL DVCHK(ND) 300 IF (NO.EQ.2) GO TO 92 ND=90 302 92 ANS1(I,1)=ZY ANS1 CONTINUITIES AND Z GRID LINE 308 C FIND INTERSECTIONS OF 3 DISCONTINUITIES AND Z GRID LINE 308		RY=RX	201
ANS1(1,K)=RARF(N,K)+(RARF(N+1,K)-RARF(N,K))*SQRT(((RY-RARF(N,2))** 12+(ZY-RARF(N,1))**2)/((RARF(N+1,2)-RARF(N,2))**2+(RARF(N+1,1)-RARF 12+(ZY-RARF(N,1))**2)/((RARF(N+1,2)-RARF(N,2))**2+(RARF(N+1,1)-RARF 285 1(N,1))**2)) NO=05 CALL DVCHK(KQ) IF (KQ.EQ.1) GO TO 940 85 CONTINUE GO TO 90 81 N=MS ZY=ZI(4) RY=RX DO 86 K=3,8 ANS1(I,K)=SURF(N,K)+(SURF(N+1,K)-SURF(N,K))*SORT(((RY-SURF(N,2))** 295 ANS1(I,K)=SURF(N,K)+(SURF(N+1,2)-SURF(N,2))**2+(SURF(N+1,1)-SURF 1(N,1))**2)/((SURF(N+1,2)-SURF(N,2))**2+(SURF(N+1,1)-SURF 297 1(N,1))**2)/((SURF(N+1,2)-SURF(N,2))**2+(SURF(N+1,1)-SURF 298 86 CONTINUE 299 90 CALL DVCHK(NO) IF (NO.EQ.2) GO TO 92 NO=90 GO TO 940 92 ANS1(I,1)=ZY ANS1(I,1)=ZY ANS1(I,2)=RY GO C FIND INTERSECTIONS OF 3 DISCONTINUITIES AND Z GRID LINE 308		DO 85 K=3.8	202
12+12Y-RARF(N,1))**2)/((RARF(N+1,2)-RARF(N,2))**2+(RARF(N+1,1)-RARF 285 1(N,1))**2)) 286 ND=85 287 CALL DVCHK(KQ) 288 IF (KQ.EQ.1) GO TO 940 289 85 CONTINUE 290 GO TO 90 291 81 N=MS 292 ZY=ZI(4) 293 RY=RX 294 DD 86 K=3,8 294 ANS1(I,K)=SURF(N,K)+(SURF(N+1,K)-SURF(N,K))*SQRT(((RY-SURF(N,2))** 296 12+(ZY-SURF(N,1))**2)/((SURF(N+1,2)-SURF(N,2))**2+(SURF(N+1,1)-SURF 297 12+(ZY-SURF(N,1))**2)/((SURF(N+1,2)-SURF(N,2))**2+(SURF(N+1,1)-SURF 296 12+(ZY-SURF(N,2)) 295 ANS1(I,K)=SURF(N,K)+(SURF(N+1,2)-SURF(N,2))**2+(SURF(N+1,1)-SURF 297 12+(ZY-SURF(N,1))**2)/((SURF(N+1,2)-SURF(N,2))**2+(SURF(N+1,1)-SURF 297 12 12+(ZY-SURF(N,2)) 298 86 CONTINUE 299 90 CALL DVCHK(ND) 300 1F (NO.EQ.2) GO TO 92 301 ND=90 302 303 92 ANS1(I,1)=ZY 304 ANS1(I,2)=RY 305 306		$ANSI(I_K) = RARF(N_K) + (RARF(N+1_K) - RAPF(N_K)) + SORT(((RV_RAPS(N_S))) + CONT(((RV_RAPS(N_S)))))$	283
1(N,1):**2) 287 CALL DVCHK(KQ) 287 CALL DVCHK(KQ) 288 IF (KQ.EQ.1) GO TO 940 289 85 CONTINUE 290 GD TO 90 291 81 N=MS 292 ZY=ZI(4) 293 RY=RX 294 DD 86 K=3,8 294 DD 86 K=3,8 295 ANS1(1,K)=SURF(N,K)+(SURF(N+1,K)-SURF(N,K))*SQRT(((RY-SURF(N,2))** 296 12+(ZY-SURF(N,1))**2)/((SURF(N+1,2)-SURF(N,2))**2+(SURF(N+1,1)-SURF 297 10, N,1))**2)) 298 86 CONTINUE 299 90 CALL DVCHK(ND) 300 IF (NO.EQ.2) GO TO 92 301 ND=90 302 GO TO 940 303 92 ANS1(1,1)=ZY 304 ANS1(1,2)=RY 305 GO TO 800 307 C FIND INTERSECTIONS OF 3 DISCONTINUITIES AND Z GRID LINE 308		$\frac{12+(7Y-RARE(N_1))}{2+(7Y-RARE(N_1))} = \frac{12+(7Y-RARE(N_1))}{2+(7Y-RARE(N_1))} = \frac{12+(7Y-RARE(N_1))}{2+(7Y-RARE(N_1$	284
N0=85 286 CALL DVCHK(KQ) 288 IF (KQ.EQ.1) GO TO 940 289 85 CONTINUE GO TO 90 291 81 N=MS ZY=ZI(4) 293 RY=RX 294 DO 86 K=3,8 294 ANS1(I,K)=SURF(N,K)+(SURF(N+1,K)-SURF(N,K))+SQRT(((RY-SURF(N,2))** 296 12+(ZY-SURF(N,1))**2)/((SURF(N+1,2)-SURF(N,2))**2+(SURF(N+1,1)-SURF 297 1(N,1))**2)) 298 CONTINUE 299 90 CALL DVCHK(NO) 300 IF (NO.EQ.2) GO TO 92 301 ND=90 302 303 GO TO 940 303 303 92 ANS1(I,1)=ZY 304 ANS1(I,2)=RY 305 305 GO TO 800 306 306 C FIND INTERSECTIONS OF 3 DISCONTINUITIES AND Z GRID LINE 308		$1 \{N_1\}\} = \{N_1\}\}$	285
CALL DVCHK(KQ) 287 IF (KQ.EQ.1) GO TO 940 289 85 CONTINUE 290 GO TO 90 291 81 N=MS 292 ZY=ZI(4) 293 RY=RX 294 DD 86 K=3,8 295 ANS1(I,K)=SURF(N,K)+(SURF(N+1,K)-SURF(N,K))*SQRT(((RY-SURF(N,2))** 296 12+(ZY-SURF(N,1))**2)/((SURF(N+1,2)-SURF(N,2))**2+(SURF(N+1,1)-SURF 297 1(N,1))**2) 298 60 CONTINUE 299 90 CALL DVCHK(NO) 300 IF (NO.EQ.2) GO TO 92 301 N0=90 302 GO TO 940 303 92 ANS1(I,1)=ZY 304 ANS1(I,2)=RY 305 GO TO 800 306 C FIND INTERSECTIONS OF 3 DISCONTINUITIES AND Z GRID LINE 308		NO=85	286
IF (KQ.EQ.1) GO TO 940 288 85 CONTINUE 290 GO TO 90 291 81 N=MS 292 ZY=ZI(4) 293 RY=RX 294 DD 86 K=3,8 295 ANS1(I,K)=SURF(N,K)+(SURF(N+1,K)-SURF(N,K))+SORT({(RY-SURF(N,2))+* 296 12+(ZY-SURF(N,1))+*2)/((SURF(N+1,2)-SURF(N,2))+*2+(SURF(N+1,1)-SURF 297 1(N,1))+*2) 298 90 CALL DVCHK(ND) 299 91 CONTINUE 299 92 ANS1(I,1)=ZY 301 ANS1(I,1)=ZY 304 305 ANS1(I,1)=ZY 305 306 92 FIND INTERSECTIONS OF 3 DISCONTINUITIES AND Z GRID LINE 308		CALL BYCHK(KO)	287
85 CONTINUE 289 G0 T0 90 291 81 N=MS 292 ZY=ZI(4) 293 RY=RX 294 D0 86 K=3,8 295 ANS1(I,K)=SURF(N,K)+(SURF(N+1,K)-SURF(N,K))*SQRT({(RY-SURF(N,2))** 296 12+(ZY-SURF(N,1))**2)/((SURF(N+1,2)-SURF(N,2))**2+(SURF(N+1,1)-SURF 297 1(N,1))**2) 298 86 CONTINUE 299 90 CALL DVCHK(NO) 300 IF (NO.EQ.2) GO TO 92 301 NO=90 302 GO TO 940 303 92 ANS1(I,1)=ZY 304 ANS1(I,2)=RY 305 GO TO 800 306 C FIND INTERSECTIONS OF 3 DISCONTINUITIES AND Z GRID LINE 308		TE (K0, E0, 1) C0, T0, 040	288
G0 TO 90 290 81 N=MS 292 ZY=ZI(4) 293 RY=RX 294 DD 86 K=3,8 295 ANS1(I,K)=SURF(N,K)+(SURF(N+1,K)-SURF(N,K))*SQRT(((RY-SURF(N,2))** 296 12+(ZY-SURF(N,1))**2)/((SURF(N+1,2)-SURF(N,2))**2+(SURF(N+1,1)-SURF 297 1(N,1))**2)) 298 86 CONTINUE 299 90 CALL DVCHK(NO) 300 IF (NO.EQ.2) GO TO 92 301 NO=90 302 GO TO 940 303 92 ANS1(1,1)=ZY 304 ANS1(1,2)=RY 305 GO TO 800 306 C FIND INTERSECTIONS OF 3 DISCONTINUITIES AND Z GRID LINE 308	85	11 (NV+EV+17 GO (U 740 Fontinie	289
81 N=MS 291 ZY=ZI(4) 293 RY=RX 294 DD 86 K=3,8 295 ANS1(I,K)=SURF(N,K)+(SURF(N+1,K)-SURF(N,K))*SQRT(((RY-SURF(N,2))** 296 12+(ZY-SURF(N,1))**2)/((SURF(N+1,2)-SURF(N,2))**2+(SURF(N+1,1)-SURF 297 1(N,1))**2)) 298 86 CONTINUE 299 90 CALL DVCHK(ND) 300 IF (NO.EQ.2) GO TO 92 301 ND=90 302 GO TO 940 303 92 ANS1(I,1)=ZY 304 ANS1(I,2)=RY 305 GO TO 800 306 C FIND INTERSECTIONS OF 3 DISCONTINUITIES AND Z GRID LINE 308	05		290
01 N=N3 292 ZY=ZI(4) 293 RY=RX 294 DD 86 K=3,8 295 ANS1(I,K)=SURF(N,K)+(SURF(N+1,K)-SURF(N,K))*SQRT(((RY-SURF(N,2))** 296 12+(ZY-SURF(N,1))**2)/((SURF(N+1,2)-SURF(N,2))**2+(SURF(N+1,1)-SURF 297 1(N,1))**2)) 298 86 CONTINUE 299 90 CALL DVCHK(ND) 298 1F (NO-EQ.2) GO TO 92 301 ND=90 GO TO 940 302 92 ANS1(1,1)=ZY 304 ANS1(1,2)=RY 305 305 GO TO 800 306 307 C FIND INTERSECTIONS OF 3 DISCONTINUITIES AND Z GRID LINE 308	81		291
293 293 RY=RX 294 DD 86 K=3,8 295 ANS1(I,K)=SURF(N,K)+(SURF(N+1,K)-SURF(N,K))*SQRT({(RY-SURF(N,2))** 296 12+(ZY-SURF(N,1))**2)/((SURF(N+1,2)-SURF(N,2))**2+(SURF(N+1,1)-SURF 297 1(N,1))**2)) 298 86 CONTINUE 298 90 CALL DVCHK(ND) 300 IF (NO.EQ.2) GO TO 92 301 NO=90 302 GD TO 940 303 92 ANS1(I,1)=ZY 304 ANS1(I,2)=RY 305 GD TO 800 307 C FIND INTERSECTIONS OF 3 DISCONTINUITIES AND Z GRID LINE 308	01	n-n-) 74-71/41	292
KY=RX 294 DD 86 K=3,8 295 ANS1(I,K)=SURF(N,K)+(SURF(N+1,K)-SURF(N,K))*SQRT(((RY-SURF(N,2))** 296 12+(ZY-SURF(N,1))**2)/((SURF(N+1,2)-SURF(N,2))**2+(SURF(N+1,1)-SURF 297 1(N,1))**2)) 298 66 CONTINUE 299 90 CALL DVCHK(ND) 200 1F (NO.EQ.2) GO TO 92 301 ND=90 302 GO TO 940 303 92 ANS1(I,1)=ZY 304 ANS1(I,2)=RY 305 GO TO 800 306 C FIND INTERSECTIONS OF 3 DISCONTINUITIES AND Z GRID LINE 308		27=21(4) DV_DV	293
DU 86 K=3,8 295 ANS1(I,K)=SURF(N,K)+(SURF(N+1,K)-SURF(N,K))*SQRT(((RY-SURF(N,2))** 296 12+(ZY-SURF(N,1))**2)/((SURF(N+1,2)-SURF(N,2))**2+(SURF(N+1,1)-SURF 297 1(N,1))**2)) 298 86 CONTINUE 299 90 CALL DVCHK(ND) 300 IF (NO.EQ.2) GO TO 92 301 NO=90 302 GO TO 940 303 92 ANS1(I,1)=ZY 304 ANS1(I,2)=RY 305 GO TO 800 306 C FIND INTERSECTIONS OF 3 DISCONTINUITIES AND Z GRID LINE 308		KT=KX	294
ANSI(1,K)=SURF(N,K)+(SURF(N+1,K)-SURF(N,K))*SQRT(((RY-SURF(N,2))** 296 12+(ZY-SURF(N,1))**2)/((SURF(N+1,2)-SURF(N,2))**2+(SURF(N+1,1)-SURF 297 1(N,1))**2)) 86 CONTINUE 90 CALL DVCHK(NO) 1F (NO.EQ.2) GO TO 92 GO TO 940 92 ANS1(1,1)=ZY ANS1(1,2)=RY GO TO 800 C FIND INTERSECTIONS OF 3 DISCONTINUITIES AND Z GRID LINE 308			295
12+(ZY-SURF(N,1))**2)/((SURF(N+1,2)-SURF(N,2))**2+(SURF(N+1,1)-SURF 297 1(N,1))**2)) 298 86 CONTINUE 299 90 CALL DVCHK(ND) 299 90 CALL DVCHK(ND) 300 1F (NO-EQ.2) GO TO 92 301 ND=90 302 303 92 ANS1(I,1)=ZY 304 ANS1(I,2)=RY 305 305 GO TO 800 306 307 C FIND INTERSECTIONS OF 3 DISCONTINUITIES AND Z GRID LINE 308		ANS1(1,K)=SURF(N,K)+(SURF(N+1,K)-SURF(N,K))+SQRT(((RY-SURF(N,2))**	296
1(N,1))**2)) 298 86 CONTINUE 299 90 CALL DVCHK(ND) 300 IF (NO.EQ.2) GO TO 92 301 NO=90 302 GO TO 940 303 92 ANS1(I,1)=ZY ANS1(I,2)=RY 305 GO TO 800 306 C FIND INTERSECTIONS OF 3 DISCONTINUITIES AND Z GRID LINE		12+(ZY-SURF(N,1))**2)/((SURF(N+1,2)-SURF(N,2))**2+(SURF(N+1,1)-SURF	297
86 CONTINUE 299 90 CALL DVCHK(ND) 300 IF (NO.EQ.2) GO TO 92 301 ND=90 302 GO TO 940 303 92 ANS1(I,1)=ZY 304 ANS1(I,2)=RY 305 GO TO 800 306 C FIND INTERSECTIONS OF 3 DISCONTINUITIES AND Z GRID LINE 308	• •	1(N _y 1))**2))	298
90 CALL DVCHK(NO) IF (NO.EQ.2) GO TO 92 NO=90 300 GO TO 940 302 92 ANS1(I,1)=ZY ANS1(I,2)=RY GO TO 800 304 GO TO 800 306 C FIND INTERSECTIONS OF 3 DISCONTINUITIES AND Z GRID LINE 308	86	CONTINUE	299
IF (NO.EQ.2) GO TO 92 301 NO=90 302 GO TO 940 303 92 ANSI(I,1)=ZY 304 ANSI(I,2)=RY 305 GO TO 800 306 C FIND INTERSECTIONS OF 3 DISCONTINUITIES AND Z GRID LINE 308	90	CALL DVCHK(NO)	300
N0=90 302 GD TO 940 303 92 ANS1(I,1)=ZY 304 ANS1(I,2)=RY 305 GD TO 800 306 C FIND INTERSECTIONS OF 3 DISCONTINUITIES AND Z GRID LINE 308		IF (NO.EQ.2) GO TO 92	301
GO TO 940 303 92 ANS1(I,1)=ZY 304 ANS1(I,2)=RY 305 GO TO 800 306 C FIND INTERSECTIONS OF 3 DISCONTINUITIES AND Z GRID LINE 308		NO=90	302
92 ANSI(I,1)=ZY 304 ANSI(I,2)=RY 305 GO TO 800 306 C 307 C FIND INTERSECTIONS OF 3 DISCONTINUITIES AND Z GRID LINE 308		GO TO 940	303
ANS1(1,2)=RY GO TO 800 C C FIND INTERSECTIONS OF 3 DISCONTINUITIES AND Z GRID LINE 308	92	ANS1(I,1)=ZY	304
GO TO 800306C307CFIND INTERSECTIONS OF 3 DISCONTINUITIES AND Z GRID LINE308		ANS1(I,2)=RY	305
C FIND INTERSECTIONS OF 3 DISCONTINUITIES AND Z GRID LINE 308		GO TO 800	306
C FIND INTERSECTIONS OF 3 DISCONTINUITIES AND Z GRID LINE 308	C		307
	C	FIND INTERSECTIONS OF 3 DISCONTINUITIES AND Z GRID LINE	308
309	С		309
300 CONTINUE 310	300	CONTINUE	310
KATCHP=0 311		KATCHP=0	311

48

	KATCHR=0	312
	KATCHT=0	313
	KATCHS=0	314
	$DO_{310} K=1.2$	315
	KATCH=0	316
	GO TO (303-301).K	317
303	NN=NP	318
202	GD TO 302	319
301	NN=NT	320
302	.I.I.I=NN-1	321
	DQ 309 M±1.J.J.	322
	$IE ((TAB(M_1,K)-TAB(M+1,1,K)),GT_1,E-6) GD TO 3030$	323
		324
3030	RT(K) = TAB(M+1, 2, K) + (TAB(M, 2, K) - TAB(M+1, 2, K)) + (7(II) - TAB(M+1, 1, K))/	325
5050	$1(TAB(M_1,K) - TAB(M+1,1,K))$	326
		327
	IE (N0.E0.2) G0 T0 3031	328
	NO=3030	329
	GD TD 940	330
3031	CONTINUE	331
	TE (M.EQ.JJJ) GO TO 3022	332
	IF (RI(K), GT.TAB(M+1.2.K), OR.RI(K), LT.TAB(M.2.K)) GO TO 309	333
3022	IF (MCOM.EQ.2) GO TO 305	334
	IF (KATCH.EQ.1) GO TO 304	335
	KATCH=1	336
	GD TD 3050	337
304	IF ((RX-RI(K)).GT.(RX-RM)) GO TO 309	338
3050	RM=RI(K)	339
	IF (K.EQ.2) GO TO 3040	340
	MP S=M	341
	KATCHP=1	342
	GO TO 309	343
3040	MTS=M	344
	KATCHT=1	345
	GO TO 309	346
305	CONTINUE	347

. •

.

. .

	IF (KATCH.EQ.1) GO TO 306	348
	KATCH=1	349
	GO TO 3050	350
306	IF ((RI(K)-RX).GT.(RM-RX)) GO TO 309	351
	GO TO 3050	352
309	CONTINUE	353
	RI(K)=RM	354
	IF (KATCH.NE.0) GO TO 310	355
	RI(K)=RMAX+1.	356
310	CONTINUE	357
	K=3	358
	IF $(IRARF_EQ_1)RI(3)=RMAX+1$.	359
	IF (IRARF.FQ.1) GO TO 315	360
		361
	KATCH=0	362
		363
	$R_{1}^{(3)}=RARE(M+1,2)+(RARE(M,2)-RARE(M+1,2))+(7(TT))-RARE(M+1,2))/(RAR)$	364
	1F(M_1)-RARF(M+1_1))	365
		366
		367
		368
	TE (M. FO. 111.0R. M. FO. 1) CD TO 3122	360
	$IF = \{RI\{K\}, GT, RARF\{M+1, 2\}, GR, RI\{K\}, IT, RARF\{M, 2\}\} = GO = TO = 312$	370
3122	TE $(MCOM, EQ.2)$ GO TO 316	371
<i></i>	$IF (KATCH_F0_1) GO TO 317$	372
	KATCH=1	373
	GO TO 3051	374
317	IE ((RX-RI(K)), GT, (RX-RM)) GO TO 312	375
3051	PM=PI(K)	376
JU J L		277
	KATCHR=1	279
		270
216	CONTINIE	200
310	TE (KATCH_ED_1) CO TO 219	20U 201
	AT INATURELY DU TU DIO VATCHet	201 201
	NATURTI CD TO 2051	202
		202

50

318	IF ((RI(K)-RX).GT.(RM-RX)) GO TO 312	384
	GO TO 3051	385
312	CONTINUE	386
	RI(K)=RM	387
	IF (KATCH.NE.O) GO TO 315	388
	RI(K)=RMAX+1.	389
315	CONTINUE	390
	KATCH=0	391
	JJJ=NP-1	392
	DO 3150 M=1,JJJ	393
	<pre>/ IF ((SURF(M,1)-SURF(M+1,1)).GT.1.E-6) GO TO 3130</pre>	394
	GO TO 3150	395
3130	RI(4)=SURF(M+1,2)+(SURF(M,2)-SURF(M+1,2))*(Z(II)-SURF(M+1,1))/(SUR	396
1	1F(M,1)-SURF(M+1,1))	397
	NO=3130	398
	CALL DVCHK(KQ)	399
	IF (KQ.EQ.1) GD TO 940	400
	IF (N.EQ.JJJ) GO TO 3123	401
	IF (RI(4).GT.SURF(M+1,2).OR.RI(4).LT.SURF(M,2)) GO TO 3150	402
3123	IF (MCOM.EQ.2) GO TO 3105	403
	IF (KATCH.EQ.1) GO TO 3104	404
	KATCH=1	405
	GD TO 3109	406
3104	IF ((RX-RI(4)).GT.(RX-RM)) GO TO 3150	407
3109	RM=RI(4)	408
	MS=M	409
	KATCHS=1	410
	GO TO 3150	411
3105	IF (KATCH.EQ.1) GO TO 3106	412
	KATCH=1	413
	GO TO 3109	414
3106	IF ((RI(4)-RX).GT.(RM-RX)) GO TO 3150	415
	GO TO 3109	416
3150	CUNTINUE	417
		418
	IF (KATCH+NE+O) GO TO 3107	419

1

.

ı

51

	PI(4)=PMAX+1	420
2107		421
2101	TE (KATCHP+KATCHT+KATCHR+KATCHS.EQ.0) GO TO 485	422
	$71(1) \pm 7(11)$	423
	21(2)+7(11)	424
	£1\&/={\1}/ 71/2\=7/71\	425
	21/2/~~~~~	426
~	LINHJALIIJ LIODO SOD LEET AND RIGHT R GRID LINES	427
L C	J LUOP FUR LETT AND RIGHT R ORID CITIES	428
L L	00 700 1-1 2	429
	TE () EO 2) CO TO 350	430
r	IF 13.60.27 60 10 550	431
с c	ICCT & CRID LINE	432
с c	LEFT & ORID LINE	433
L	11-17	434
	13-31 23-31	435
	NET-U DD 340 N=1-4	436
	$16 (P(11), CT_P(1)) = CP (10)$	437
	TE (PI(N) CT PY) GR TR 340	438
	TE (KEV E0.13 CO TO 330)	439
	IF (RE1+LQ+I) 60 10 550	440
	KC (- 1 KCCD=N	441
	CO TO 340	442
c		443
r r	FIND CLOSEST	444
ř		445
220	DIE1=RX-RI(KFFP)	446
550		447
	IE (DIE1 E DIE2) GO TO 340	448
	YEED=N	449
240		450
540	CO TO 375	451
r .		452
C C	PICHT P CRID IINF	453
	NIGHT N ONIO EINE	454
U 250	11-12	455
37V	JJ-VC	

	KEY=0	456
	DD 360 N=1,4	457
	IF (R(J2).LT.RI(N)) GO TO 360	458
	IF (RI(N).LT.RX) GO TO 360	459
	IF (KEY.EQ.1) GO TO 355	460
	KEY=1	461
	KEEP=N	462
	GO TO 360	463
355	DIF1=RI(KEEP)-RX	464
	DIF2=RI(N)-RX	465
	IF (DIF1.LE.DIF2) GO TO 360	466
	KEEP=N	467
360	CONTINUE	468
375	IF (KEY-EQ-1) GO TO 400	469
C		470
č	NO POINTS BETWEEN RX AND GRID POINTS	471
С		472
	ANS2(J,1)=Z(II)	473
	ANS2(J+2)=R(JJ)	474
	ANS2(J,3)=XMESH(II,JJ,1)	475
	ANS2(J,4)=XMESH(II,JJ,2)	476
	ANS2(J,5)=XMESH(II,JJ,3)	477
	ANS2(J+6) = XMESH(II+JJ+4)	478
	ANS2(J,7)=XMESH(II,JJ,5)	479
	ANS2(J.8) = XMESH(II.JJ.6)	480
	GO TO 700	481
С		482
Ċ	POINT FOUND BETWEEN RX AND GRID POINTS	483
Ċ		484
400	GO TO (405,410,470,481),KEEP	485
C		486
Ċ	INTERSECTION ON PROJECTILE SHOCK	487
Č		488
405	N1=MPS	489
	RY=RI(KEEP)	490
	ZY=Z(II)	491

-

.

53

	GO TO 520	492
C		493
С	INTERSECTION ON TARGET SHOCK	494
С		495
410	NI=MTS	496
	RY=RI(KEEP)	497
	ZY=Z([])	498
	GD TO 520	499
C		500
C	INTERSECTION ON RAREFACTION	501
С		502
470	N1=MR	503
	RY=RI(KEEP)	504
	ZY=Z(II)	505
	GO TO 520	506
C		507
C	INTERSECTION ON FREE SURFACE	508
Ç		509
481	N1=MS	510
	RY=RI(KEEP)	511
	ZY=Z(II)	512
	GO TO 520	513
С		514
C		515
485	WRITE (3,488) KEEP,II,JJ,ZX,RX	516
488	FORMAT (25HOERROR NEAR STATEMENT 485/1X5HKEEP=+14+4X3HII=+14+4X3HI	517
	1J=,14/1X3HZX=,E15.8,4X3HRX=,E15.8/1H1)	518
	CALL EXIT	510
C		520
С	FIND TABLE VALUES	521
C		522
520	IF (KEEP.EQ.3) GO TO 580	523
	IF (KEEP.EQ.4) GO TO 591	524
	DO 550 N=3,8	525
	ANS2(J,N)=TAB(N1,N,KEEP)+(TAB(N1+1,N,KEEP)-TAB(N1,N,KEEP))*CORT(()	526
	1RY-TAB(N1,2,KEEP))**2+(ZY-TAB(N1,1,KEEP))**2)/((TAB(N1+1,2,KEEP))-T	527
		261

550 CONTINUE	529
IF (ZX.LT.OAND.ABS(RX-RADIUS).LT.1.E-6) GD TO 552	530
IF (RX.LT.RADIUS.OR.ABS(Z(II)).GT.1.E-6) GO TO 551	531
552 CONTINUE	532
ANS2(J,3)=0.	533
ANS2(J,6)=RHOSTR	534
ANS2(J,7)=0.	535
ANS2(J,8)=SQRT(BIGAPR/RHOSTR)	536
551 CONTINUE	537
GO TO 600	538
580 DO 590 N=3,8	539
ANS2(J,N)=RARF(N1,N)+(RARF(N1+1,N)-RARF(N1,N))+SQRT(((RY-RARF(N))))	N1,2 540
1})**2+(ZY-RARF(N1,1})**2)/((RARF(N1+1,2)-RARF(N1,2))**2+{RARF(N1+1 541
1,1)-RARF(N1,1))**2))	542
590 CONTINUE	543
GO TO 600	544
591 DO 592 N=3,8	545
ANS2(J,N)=SURF(N1,N)+(SURF(N1+1,N)-SURF(N1,N))*SQRT(((RY-SURF(N1+2 546
1))**2+(ZY-SURF(N1,1))**2)/((SURF(N1+1,2)+SURF(N1,2))**2+(SURF(N1+1 547
1,1)-SURF(N1,1))**2))	548
592 CONTINUE	549
600 CALL DVCHK(ND)	550
IF (NO.EQ.2) GO TO 605	551
ND=600	552
GO TO 940	553
605 ANS2(J,1)=ZY	554
ANS2(J,2)=RY	555
C	556
C END OF LOOP FOR BOTH R GRID LINES	557
C	558
700 CONTINUE	559
C	560
C INTERPOLATE FOR UPPER AND LOWER VALUES	561
C	562
DO 720 J=3,8	563

55

	ANS1(I,J)=ANS2(1,J)+(ANS2(2,J)-ANS2(1,J))*(RX-ANS2(1,2))/(ANS2(2,2	564
	1)-ANS2(1,2))	565
/20	CONTINUE	566
	CALL DVCHK(ND)	567
	IF (NO.EQ.2) GO TO 730	568
	NO=720	569
	GO TO 940	570
730	ANS1(I,1)=Z(II)	571
-	ANS1(I,2)=RX	572
C		573
C	END OF LOOP FOR BOTH Z GRID LINES	574
C		575
800	CONTINUE	576
С		577
C	FIND FINAL VALUES	578
C		579
	DD 810 J=1,6	580
	ANS(J)=ANS1(1,J+2)+(ANS1(2,J+2)-ANS1(1,J+2))*(ZX-ANS1(1,1))/(ANS1(581
	12,1)-ANS1(1,1))	582
810	CONTINUE	583
	CALL DVCHK(ND)	584
	IF (NO.EQ.2) GO TO 820	585
	N0=810	586
	GO TO 940	587
820	RETURN	588
С		589
940	WRITE (3,942)	590
942	FORMAT (35HODIVIDE CHECK ERROR IN SUBR. DBLTRP)	591
950	WRITE (3,952) NO,ZX,RX,I1,J1,KEEP,ZI,RI	592
952	FORMAT (19H NEAR STATEMENT NO.,14/1X3HZX=,E15.8,4X3HRX=,E15.8/1X3H	593
	111=, 14,4X3HJ1=, 14,4X5HKEEP=, 14/1X3HZI=,4E18.8/1X3HRI=,4E18.8)	594
	WRITE (3,955) ((ANS1(I,J),J=1,8),I=1,2),((ANS2(I,J),J=1,8),I=1,2)	595
955	FORMAT (1X5HANS1=/8E16.8/8E16.8/1X5HANS2=/8E16.8/8E16.8/1H1)	596
	XYZ=-2.	597
	ZYX=SQRT(XYZ)	598
	CALL EXIT	599

····- · --

54

	RETURN	600
	DEBUG SUBCHK	
	FND	601
	SUBPOUTINE SHOCK	1
· c	COMPUTES SHOCK VALUES	2
U U	COMMON CASEID(14), ITS1, ITS2, ITS3, ITS4, ITI1, ITI2, ITI3, ITI4, EPS1, EPS	3
	12. EDS3. EDS4. EDS5. EDS6. EDI1. EDI2. EDI3. EDI4. EDI5. EDI6. EDI7. VP. AR. LEN	4
	1 CTH- APP- BPR- BIGAPR- BIGAPR- ESTAR. AL PHA- BETA- RHOSTR- EPRS- RHOS	5
	COMMON XMESH(20, 20, 6), XMESH2(20, 20, 6), Z(20), R(20), SURF(15,8), SURF2	6
	1(15, 8), TAR/15, 14, 2), TAR2(15, 14, 2), SPART(15, 2, 2), RARF(15, 11), RARF2(7
	115.4). DDADT(15.2)	8
r	11344)\$RFAR(11342)	9
ι L	COMMON TO BO DO UD VOLIO MOL PHOOLEO, AOLUBARO VEARO	10
<i>c</i>		11
L	COMMON AND AT NO. AT ANDER TOUR	12
~	COMMON NEANIANCANIANDELAISOD	13
L	COMMON THAN THAN DEATH DEAT DADTHS CT. CP. DELTA.H	14
	COMMON DIDIOS	15
	CUMMUN DIRCUS	16
	COMMUN LINE	17
	CUMMUN IKAKF	18
	CUMMUN KSTUP	19
		20
_	COMMON KKK	21
C		22
_	REAL LO, MO, LENGIM, MU, KU	22
C		24
	DIMENSION ANS(6)	25
	EXTERNAL FGOFI	25
	EPS=.0000001	20
C		21
C	BEGIN SHOCK POINT COMPUTATIONS	20
	DO 505 K=1,2	27
	GO TO (158,160),K	20
158	NN=NP	31 22
	GO TO 162	22
160		33

,

,

57

	VBARS=0.	34
162	DO 500 I=1,NN	35
	MPROJ=0	36
	IF (TAB(I,14,K).LT.0.) GO TO 500	37
164	CONTINUE	38
С		39
С	INITIALIZE TO ITERATE ON 1 SHOCK POINT	40
С		41
	NBIC=0	42
	ZO=TAB2(I,1,K)	43
	RO=TAB2(I+2,K)	44
	PO=TAB(1,3,K)	45
	UO=TAB(I,4,K)	46
	VO=TAB(I,5,K)	47
	RHOO=TAB(1,6,K)	48
	E0=TAB(1,7,K)	49
	A0=TAB(I,8,K)	50
	LO=TAB(I,9,K)	51
	MO=TAB(I,10,K)	52
	UBAR0=TAB(1,11,K)	53
	VBAR0=TAB(I,12,K)	54
	UTOH=TAB(I,13,K)	55
	UTO=UTOH	56
	ITS44=ITS4	57
	IF (IRARF.EQ.1) GO TO 170	58
	M=1-(NR-2)*(K-2)	59
	FF=R0-RARF2(M+1,2)-(RARF2(M,2)-RARF2(M+1,2))*(Z0-RARF2(M+1,1))/(RA	60
	1RF2(M,1)-RARF2(M+1,1))	61
169	CONTINUE	62
	IF (FF.LT001) GD TO 350	63
170	IF (I.NE.1) GO TO 180	64
	MO=TAB(1,10,K)	65
	L0=0.	66
	GO TO 190	67
180	IF (I.LT.NN) GO TO 184	68
	UP=H*(TAB(I-1,13,K)-TAB(I,13,K))	69

•

	TMP=SQRT((TAB2(I-1,2,K)-R0)**2+(TAB2(I-1,1,K)-Z0)**2)	70
	DOMEG=UP/TMP	71
	GO TO 186	72
184	DR1=TAB2(I+1+2+K)-R0	73
	DR2=R0-TAB2(I-1,2,K)	74
	DZ1=TAB2(I+1,1,K)-Z0	75
	DZ2=Z0-TAB2(1-1,1,K)	76
	UP=H*(TAB(I-1,13,K)-TAB(I+1,13,K))	77
	TMP=SQRT(DR1**2+DZ1**2)+SQRT(DR2**2+DZ2**2)	78
·	DOMEG=UP/TMP	79
	KICK=184	80
	CALL DVCHK(KQ)	81
	IF (KQ.EQ.1) GO TO 9980	82
С		83
C	COMPUTE NEW LO,MO	84
С		85
186	COMEG=COS(DOMEG)	86
	SOMEG=SIN(DOMEG)	87
	XLO=LO*COMEG+MO*SOMEG	88
	XMO=MO*COMEG-LO*SOMEG	89
	LO=XLO	90
	MO=XMO	91
	IF (P0.GT0025) GO TO 190	92
¢.	P0=0.	93
	U0=0.	94
	VO=VP*(1(-1.)**K)/2.	95
	RHOO=RHOSTR	96
	E0=0.	97
	AQ=SQRT(BIGAPR/RHOSTR)	98
	UBAR 0=M0+V0	99
	VBARO=VBARS	100
	UT0=UBAR0+A0*(-1.)**K	101
	GD TO 350	102
190	IT\$33=IT\$3	103
C		104
C	FIND GUESS TO START ITERATION	105

59

.

С		106
195	CALL GUESS(1.KOD2.Z0.R0.T.K.77.RR.D7.DR)	107
	IF (KOD2.EQ.1) GO TO 200	108
	WRITE (3.198) I.K.ZO.RO	100
	WRITE (3.7002) ZZ.RR.DZ.DR	110
198	FORMAT (31HOND GUESS EDUND FOR SHOCK POINT/3HOT= 14.6Y2HK= 14.10Y3	311
	1HZ0=+E15+8+10X3HR0=+F15+8/1H13	112
	CALL EXIT	112
200	CONTINUE	115
	KY=K	114
	NTW=0	112
	IF (K.F0.2) 60 TO 201	110
	VBARS=VP*LO	110
	DIRCOS=-MO	110
	GO TO 203	117
201	DIRCOS=MO	120
203	CONTINUE	121
	CALL NRIT2(Z1+R1+ZZ+DZ+RR+DR+EPS1+EPS2+EGDE1+ITS1+KODE)	122
	IF (KODE.ED.O) GO TO 205	123
С		124
Č	BICHARACTERISTIC SELECTION SCHEME	125
Č		120
-	IF (NBIC.EQ.O) GD TD 204	120
	IF (NTW.EQ.8)KY=KY+1	120
	IF (NTW-GT-21) GD TO 7000	127
	$ANG1=ANG1+DTPST+(-1_)+*KY$	121
	DIRCOS=SIN(ANG1)	121
	LO=COS(ANG1)	152
	NTW=NTW+1	133
	GO TO 203	125
204	CONTINUE	135
	NBIC=1	130
	CALL DBLTRP(ZZ,RR,ANS)	121
	UA=ANS(2)	130
	VA=ANS(3)	127
	AA=ANS(6)	140

.

,

	ZZZ=ZZ+DZ	142
	CALL DBLTRP(ZZZ,RR,ANS)	143
	UB=ANS(2)	144
	VB=ANS(3)	145
	AB=ANS(6)	146
	RRR=RR+DR	147
	CALL DBLTRP(ZZ,RRR,ANS)	148
	UC=ANS(2)	149
	VC=ANS(3)	150
	AC=ANS(6)	151
	MM=0	152
	TPSI=1.5708*(-1.)**K	153
	XB=ZZ	154
	YB=RR	155
	NOM= 5	156
	CA=NOM	157
6201	DTPS1=.01745	158
	DTPSI=CA*DTPSI	159
	TPSI=TPSI+DTPS1*(-1.)**K	160
	A1=1.+H*(VB-VA+(AB-AA)*SIN(TPSI))/DZ	161
	B1=H*(VC-VA+(AC-AA)*SIN(TPSI))/DR	162
	Cl=-(ZZ-ZO+H*(VA+AA*SIN(TPSI)))	163
	A2=H*{UB-UA+(AB-AA)*COS(TPSI})/DZ	164
	B2=1.+H*(UC-UA+(AC-AA)*COS(TPSI))/DR	165
	C2=-(RR-RO+H*(UA+AA*COS(TPSI))	166
	DET=A1*B2-A2*B1	167
	DELX=(B2*C1-B1*C2)/DET	168
	DELY=(A1*C2-A2*C1)/DET	169
С		170
C	TEST FOR SAME REGION	171
C		172
	XB1=XB+DELX	173
	YB1=YB+DELY	174
	M=COMP(XB,YB,XB1,YB1)	175
	IF (M.EQ.1) GO TO 6203	176
	MM=MM+1	177

6/

	IF (MM.LT.360/NOM) GO TO 6201	179
7000	WRITE (3,7001)	170
7001	FORMAT (41HOBICHARACTERISTIC SELECTION SCHEME FAILED)	190
	WRITE (3.614) ZO.RO	100
614	FORMAT (1X5HZO =.E15.8.4X5HRO =.E15.8)	101
	WRITE (3,7002) UA+VA+AA+UB+VB+AB+UC+VC+AC+77+D7+RR+DR+ANC1	102
7002	FORMAT (4E16.8)	105
	CALL EXIT	104
6203	CONTINUE	105
	WRITE (3,6210)	100
6210	FORMAT (53HOBICHARACTERISTIC SELECTION SCHEME EMPLOYED BY SHOCKY)	100
6204	ANG1=TPSI	100
	T1=DIRCOS	107
	T2=L0	190
	DIRCOS=SIN(ANG1)	102
	LO=COS(ANG1)	192
	GO TO 203	104
205	CONTINUE	105
	UBARS1=0.	196
	IF (K.EQ.1)UBARS1=MO*VP	190
	CALL DBLTRP(Z1,R1,ANS)	100
	P1=ANS(1)	100
	U1=ANS(2)	200
	V1=ANS(3)	201
	RHO1=ANS(4)	202
	E1=ANS(5)	203
	Al=ANS(6)	204
206	CONTINUE	205
	KICK=205	206
	CALL DVCHK(KQ)	207
	IF (KQ.EQ.1) GO TO 9980	208
	IF (NBIC.EQ.O) GO TO 207	209
7003	SINTH=ABS(DIRCOS)	210
	COSTH=ABS(LO)	211
	DIRCOS=T1	212
	L0=T2	213

•

.

•

•

62

207	CONTINUE	214
	UBAR1=L0*U1+M0*V1	215
	IF (K.EQ.2) GO TO 208	216
	IF (UBAR1.LT.VP/2.) GO TO 208	217
	UBAR1=UBARS1-UBAR1	218
208	CONTINUE	219
218	CONTINUE	220
~ × V	M1=PART(1.71.R1.77.RR.DELTA.NDEL)	221
	IF (M1,F0,1) GO TO 210	222
		223
	PVR=0.	224
	GO TO 215	225
210	CALL DRITRP(77-RR-ANS)	226
214	DP=RR-R1	227
	PUR = (ANS(2) - UI) / DP	228
219	CONTINUE	229
21/	PVR = (ANS(3) - V1)/DP	230
215	MI=PART(2.71.R1.ZZ.RR.DELTA.NDEL)	231
	IF (M1.F0.1) GD TO 220	232
	P117=0.	233
	PV7=0.	234
	P47=0.	235
	GO TO 225	236
220	CALL DBLTRP(ZZ.RR.ANS)	237
	DP = 77 - 71	238
	$P_{117} = (ANS(2) - U_1)/DP$	239
	PVZ = (ANS(3) - V1)/DP	240
225	CONTINUE	241
	IF (NBIC.EQ.1) GO TO 7004	242
	PURB1=LO*PUR+MO*PVR	243
	PVR81=LO*PVR-MO*PUR	244
	PV7B1=L0*PV7-M0*PU2	245
	PVFB1=-MO*PVRB1+LO*PVZB1	246
	SBAR1=PVEB1	247
226	CONTINUE	248
	IF (ABS(R1).LE.EPS) GO TO 235	249

- --

.

• • • • • • •

	SBAR1=SBAR1+U1/R1	250
	GO TO 240	251
7004	CONTINUE	252
	IF (V1.GT.VP/2AND.K.EQ.1)V1=VP-V1	253
	SBAR1=SINTH++2+PUR-SINTH+COSTH+(PUZ+PVR)+COSTH++2+PVZ	254
	GO TO 226	255
235	SBAR1=SBAR1+PUR	256
C		257
C		258
240	ITS22=ITS2	250
	MMM=0	260
250	CONTINUE	261
	CALL EQOSS(PFR,PFE)	261
	BIGA1=RHO1*A1	262
	KICK=250	203
	CALL DVCHK(KQ)	207
	IF (KQ.EQ.1) GO TO 9980	200
	TEMP=1RHOSTR/RHOO	200
	TMP=SQRT(PO+TEMP/RHDSTR)	201
	IF (K.EQ.2) GD TD 251	200
	IF (TMP+LT+VP/2+) GO TO 251	207
	MPROJ=1	210
	TMP=UBARS1-TMP	211
251	CONTINUE	212
	TMP6=TMP	213
256	CONTINUE	214
	FNBIC=NBIC	215
	THP1=P1+BIGA1+UBAR1-RH01+H+SBAR1+A1++2+BIGA1+(-UBAR1+COSTUMU1+STAT	210
	1H*V1-SINTH*LO*VBARS+COSTH*MO*VBARS)*(FNBIC)	270
	TMP2=PFR*TEMP+P0*RH0STR/RH00**2	210
	TMP5=PFE*TEMP	217
	GTMP=-RH01*A1	200
	IF (NBIC.EQ.0) GQ TQ 259	201
	GTMP=GTMP+(COSTH+LO+SINTH+MO)	202
259	CONTINUE	203
	BIGG=PO-(GTMP*TMP+TMP1)	204
		/ ~ ~ ~

	PGR=PFR-((GTMP*TMP2)/(2.*RHOSTR*TMP6))	286
	PGE=PFE-((GTMP*TMP5)/(2.*RHOSTR*TMP6))	287
265	TMP=.5*(1./RHOSTR-1./RHOO)	288
	BIGH=E0-TMP*PO	289
	PHR=-TMP*PFR5*P0/RH00*+2	290
	PHE=1,-TNP*PEE	291
	TE (ABS(BIGH).GT.,0001) GO TO 267	292
	RIGH=0.	293
267	TE (ABS(BIGG), GT, 0001) GO TO 269	294
201		295
240		296
207	CONTINUE	297
	CONDUTE DELTA ED DELTA DHOO	298
	COMPUTE DELTA CUIDELTA KNOU	299
L L		300
	DUMN#FVCFFFDK=FVCK*FNC DEA_/_01CC+040A0A03CU+0C01/000UN	301
	DEU#(*DIGG*PAKTDIGA*PGK)/DUWN	302
~	UKHUU= (-BIGH+PGE+BIGG+PHEI/DUWN	302
L		304
	E02=E0+DE0	205
	IF (E02.LT.0.)E02=0.	505 204
	RHOOZ=RHOO+DRHOO	000
	IF (RHOO2.LT.RHOSTR)RHOO2=RHOO	307
	KICK=265	308
	CALL DVCHK(KQ)	309
	IF (KQ.EQ.1) GO TO 9980	310
	CALL EQOSP(RHD02,E02,P02)	311
	UBAR02=(1RHOSTR/RHO02)*(PO2/RHOSTR)	312
	IF (UBAR02.GT.0.) GO TO 2669	313
	WRITE (3,2700) P02,RH002,E02,R0,Z0	314
	WRITE (3,7002) P1,U1,V1,RH01,E1,Z1TR1,SBAR1	315
2700	FORMAT (4E16.8)	316
2669	CONTINUE	317
	UBAR02=SQRT(UBAR02)	318
	IF (E02.LT.1.E-5) GO TO 273	319
	IF (ABS((E02-E0)/E02).LT.EPS4) GO TO 273	320
	IF (ABS(DE0).GT01*EPS4) GD TO 275	321

.

,

272	$T_{\rm c}$ (ARS((PHOD2=PHOD)/PHOD2).(F.FPS3) GO TO 285	322
213	TE (ABS((RROD2-RROD)) TE EPS3) GO TO 285	323
775	IF (ADJ(DKHOU)+CT+L(DJ) 00 10 L03 ITC22+1TC22-1	324
213	11322-11322-1 TE (11632 CT O) CO TO 280	325
	$\frac{11}{11}$	326
	CONMAT (25405 AND PHO FAILED TO CONVERSE AFTER. 14.6H TRIES)	327
218	HOLTE (2. 270) I. K. 70, PO. EO. PHOG. PO. EO2. RHOO2 - PO2	328
	$\frac{1}{1} = \frac{1}{1} = \frac{1}$	329
219	FUKMAT (1X2H1=,14,4X2HK=,14,1X4HE0 = E15.8/1X4HE02= E15.8.4X6HRH002= E	330
	$1_{1} = 1_{2} + 3_{3} + 4_{0} + 3_{0$	331
	L13.8;4X4HPUZ=;E13.0/1HL/	332
		333
280	EV=EV2	334
		335
		336
		337
205	GU TU 200 F0- F00	338
285		339
		340
	UBAKU=UDAKU2 AA=CADT/DED/DA2#DEE/DUDA#2}	341
-	AU=SURI (PPK+PUZ+PFE/Rhuu++2/	342
L A		343
L L		344
		345
	KILK=200 Tr (Vo ro 1) ro to 9990	346
	IF (KU+EU+I) 60 10 7700	347
	$1 + \{K_0 \in \mathbb{Q} \mid \mathbb{Z}\} = \{U \mid U \mid \mathbb{Z} \mid \mathbb{Q}\}$	348
	VBAKU=VP+LU 00 TO 397	349
	GU TU 287	350
286	VBARU=U.	351
287		352
295	P0=P02	353
		354
	ANALANAC ARAKATARAK21-ADAKA	355
296		356
	ALO	357
	AO=WO+ARO+FAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	

66

	UO=LO+UBARO-MO*VBARO	358
	UBAR=.5+(UTOH+UTO)	359
	IF (ABS((UBAR-UTOH)/UBAR).LE.EPS6) GO TO 350	360
	IF (ABS(UBAR-UTOH).LT.EPS6) GO TO 350	361
	ITS44=ITS44-1	362
	IF (ITS44.GT.0) GO TO 325	363
	WRITE (3,297) ITS4,UTOH,UTO	364
297	FORMAT (30HOUBAR FAILED TO CONVERGE AFTER, 14,6H TRIES/1X5HUT0H=, E1	365
	15.8,4X4HUT0=,E15.8)	366
	CALL EXIT	367
	WRITE (3,279) I,K,Z0,R0,E0,RH00,P0,E02,RH002,P02	368
С		369
С	INIT. FOR MORE U BAR ITERATIONS	370
С		371
325	UTOH=UBAR	372
	AVMO=(TAB(I,10,K)+MO)+.5	373
	AVL0=(TAB(I,9,K)+L0)*.5	374
	ZO=TAB{I,1,K}+UBAR*H*AVMO-VBARS*AVLO*H	375
	RO=TAB{I,2,K}+UBAR*H*AVLO-VBARS*AVMO*H	376
	LO=AVLO	377
	MO=AVMO	378
	GO TO 195	379
С		380
C	ONE SHOCK POINT HAS CONVERGED	381
C		382
350	TAB2(1,1,K)=Z0	383
	TAB2(I,2,K)=R0	384
	TAB2(I,3,K)=P0	385
	TAB2(I,4,K)=U0	386
	TAB2(1,5,K)=V0	387
	TAB2(I,6,K)=RH00	388
	TAB2(I,7,K)=E0	389
	TAB2(1,8,K)=A0	390
	TAB2(I,9,K)=L0	391
	TAB2(I,10,K)=M0	392
	TAB2(I+11+K)=UBAR0	393

	TAB2(1,12,K)=VBAR0	394
	TAB2(I,13,K)=UT0	392
	KICK=500	207
	CALL DVCHK(KQ)	391
	IF (KQ.EQ.1) GO TO 9980	370
С		399
C		400
500	CONTINUE	401
505	CONTINUE	402
	RETURN	40.5
9980	WRITE (3,9985) KICK	404
9985	FORMAT (32HODIVIDE CHECK NEAR STATEMENT NO., 15, 15H IN SUBR. SHOCK/	405
	11H1)	406
	CALL EXIT	407
	RETURN	408
	END	409
	SUBROUTINE FGOF1(ZX,RX,SS,QQ)	1
С		2
ē	COMPUTES S1,Q1 FOR SHOCK LINE	3
Ē	ITERATION FOR Z1,R1	4
Č		5
-	COMMON CASEID(14), ITS1, ITS2, ITS3, ITS4, ITI1, ITI2, ITI3, ITI4, EPS1, EPS	. 6
	12, EPS3, EPS4, EPS5, EPS6, EPI1, EPI2, EPI3, EPI4, EPI5, EPI6, EPI7, VP, AR, LEN	7
	1GTH, APR, BPR, BIGAPR, BIGBPR, ESTAR, ALPHA, BETA, RHOSTR, EPRS, RHOS	8
	COMMON XMESH(20,20,6), XMESH2(20,20,6), Z(20), R(20), SURF(15,8), SURF2	9
	1(15,8), TAB(15,14,2), TAB2(15,14,2), SPART(15,2,2), RARF(15,11), RARF2(10
	115.41.RPART(15.2)	11
r		12
č		13
v	COMMON 70-R0-P0-U0-V0-L0-M0-RHD0-E0-A0-UBAR0-VBAR0	14
C		15
C	COMMON NP.NT.NR.NI.NDEL.ISUB	16
c		17
v	COMMON 7MIN.ZMAX.RMIN.RMAX,RADIUS.GZ,GR.DELTA.H	18
	COMMON DIRCOS	19
	COMMON TIME	20

. .

.

Т

- . ~ ·

68

	COMMON IRARF	21
	COMMON KSTOP	22
	COMMON TPSI	23
	COMMON KKK	24
	REAL LO,MO,LENGTH,MU,KO	25
С		26
	DIMENSION ANS(6)	27
C		28
	REAL LO,MO	29
	CALL DBLTRP(ZX,RX,ANS)	30
	U1=ANS(2)	31
	V1=ANS(3)	32
	A1=ANS(6)	33
	SS=ZX-ZO+H*(V1+A1*DIRCOS)	34
	QQ=RX-R0+H*(U1+A1*L0)	35
	RETURN	36
	END	37
	SUBROUTINE INTER(PHI,NMAX,MMAX)	
C	SUBROUTINE INTER	
C	COMPUTES INTERIOR REGION POINTS	2
	COMMON CASEID(14), ITS1, ITS2, ITS3, ITS4, ITI1, ITI2, ITI3, ITI4, EPS1, EPS	3
	12, EPS3, EPS4, EPS5, EPS6, EPI1, EPI2, EPI3, EPI4, EPI5, EPI6, EPI7, VP, AR, LEN	4
	1GTH, APR, BPR, BIGAPR, BIGBPR, ESTAR, ALPHA, BETA, RHOSTR, EPRS, RHOS	5
	COMMON XMESH(20,20,6),XMESH2(20,20,6),Z(20),R(20),SURF(15,8),SURF2	6
	1(15,8),TAB(15,14,2),TAB2(15,14,2),SPART(15,2,2),RARF(15,11),RARF2(7
	115,4),RPART(15,2)	8
С		9
C	· · ·	10
	COMMON Z0,R0,P0,U0,V0,L0,M0,RH00,E0,A0,UBAR0,VBAR0	11
С		12
	COMMON NP,NT,NR,NI,NDEL,ISUB	13
C		14
	COMMON ZMIN,ZMAX,RMIN,RMAX,RADIUS,GZ,GR,DELTA,H	15
	COMMON DIRCOS	16
	COMMON TIME	17
	COMMON IRARF	18

	COMMON KSTOP	19
	COMMON TPSI	20
	COMMON KKK	21
C.		22
č		23
÷	REAL LO,MO,LENGTH,MU,KO	24
	DOUBLE PRECISION PHI(20,20,6)	
	DIMENSION ANS(6),LL(3),ZI(11),RI(11),PI(11),UI(11),VI(11),RHOI(11)	25
	1.EI(11).AI(11),PUR(11),PVR(11),PAR(11),PUZ(11),PVZ(11),PAZ(11),PSI	26
	1(7), SPSI(11), CPSI(11), S(11)	27
Ċ		28
-	EXTERNAL FGOFI+FGOF5	29
	INTEGER CHECK.CHECK2	30
C		31
ĭ	FORMAT (1H1)	32
	TSSS=1.1	
	EPS=.0000001	33
	DD 905 J=1.20	34
	DO 900 I = 1.20	35
	M=TEST(Z(I).R(J))	36
	70=7(1)	37
	RO=R(J)	38
		39
		40
	IE (K0.E0.1) GD TD 9980	41
	IF (M. FO. 3. AND. 70. IT. FPS. AND. ABS(RO-RADIUS). LT. EPS)M=1	42
	$IE (M_{\rm N}E_{\rm I}) = GO TO 900$	43
	$DO = 2 \pm 1 \text{ NP}$	44
	$IE (TAB(1,14,1), T_0 0_0) GO TO 20$	45
2		46
6. -	$IE (IRARE_EO_1) GO TO 20$	47
	$\frac{11}{100} \frac{1}{2} \frac{1}{100} \frac{1}{100} \frac{1}{100} \frac{1}{20}$	48
	TE (P(1), CT, PARE(N, 2)) GO TO 5	49
2		50
2		51
5		52

•

70

	M=PICK(Z{I},R(J),3)	53
	FF=R(J)-RARF(M+1,2)-(RARF(M,2)-RARF(M+1,2))*(Z(I)-RARF(M+1,1))/(RA	54
	1RF(M,1)-RARF(M+1,1))	55
	IF (FF.GT.0.) GO TO 20	56
6	CONTINUE	57
	P02=RARF(1+3)	58
	U02=RARF(1,4)	59
	V02=RARF(1,5)	60
	RH002=RARF(1,6)	61
	E02=RARF(1,7)	62
	A02=RARF(1,8)	63
	GO TO 870	64
20	CONTINUE	65
	CALL GUESS(2,KOD,ZO,RO,I,J,ZZ,RR,DZ,DR)	66
	IF (KOD.EQ.1) GO TO 580	67
	WRITE (3,575) I,J,ZQ,RO	68
575	FORMAT (41HONO GUESS FOUND FOR INTERIOR REGION POINT/3HOI=14,6X2HK	69
	1=,I4,10X3HZO=,E15.8,10X3HRO=,E15.8/1H1)	70
	CALL EXIT	71
580	IF(TIME.GT.TSSS) GO TO 150	
	CALL DBLTRP(ZZ,RR,ANS)	
	GO TO 151	
150	CALL DSURFT(ZZ;RR;ANS;PHI;NMAX;MMAX)	
C		73
С	INITIALIZE FOR 1 POINT	74
C		75
C	PSI(1)=0.	
151	PSI(1)=0.	
	PSI(3)=1.0472	77
	PSI(4)=2.0944	78
	PSI(6)=4.18879	79
•	PSI(7)=5.23599	80
	NBIC=0	81
	IT122=IT12	82
	P0=ANS(1)	83
	UO=ANS(2)	84

71

	VO=ANS(3)	85
	RHDO=ANS(4)	86
	EO=ANS(5)	87
	A0=ANS(6)	88
	KICK=580	. 89
	CALL DVCHK(KQ)	90
	IF (KQ.EQ.1) GO TO 9980	91
590	IF (ABS(RO).GT.EPS) GO TO 594	92
	L1=1	93
	LL(1)=4	94
	LL(2)=6	95
	LLL=2	96
	GO TO 620	97
C		98
C		99
594	IF (ABS(RO-RADIUS).GT.EPS) GO TO 600	100
	IF (Z0.GT.EPS) GO TO 610	101
	L1=2	102
	LL(1)=3	103
	LL(2)=7	104
	LLL=2	105
	GO TO 620	106
600	IF (RO.LE.RADIUS.OR.ABS(ZO).GT.EPS) GO TO 610	107
	L1=3	108
	LL(1)=6	109
	LL(2)=7	110
	LLL=2	111
	GO TO 620	112
C		113
С		114
610	L1=4	115
	LL(1)=1	116
	LL { 2 }=4	117
	LL(3)=6	118
	LLL≠3	119
С		120

72
С	ITERATE FOR I VALUES	121
С		122
619	CONTINUE	123
620	DO 630 KK=1,LLL	124
	LUMP=L1	125
	ISUB=LL (KK)	126
621	CONTINUE	127
	TPSI=PSI(ISUB)	128
	SPSI(ISUB)=SIN(TPSI)	129
	CPSI(ISUB)=COS(TPSI)	130
С	CALL NRIT2(ZI(ISUB),RI(ISUB),ZZ,DZ,RR,DR,EPI1,EPI2,FGOFI,ITI1,KODE	131
C	1)	
	CALL NRIT2(ZI(ISUB),RI(ISUB),ZZ,DZ,RR,DR,EPI1,EPI2,FGOFI,ITI1,KODE	131
	1,PHI,NMAX,MMAX)	
	IF (KODE.NE.0) GD TO 6200	133
62	5 IF(TIME.GT.TSSS) GO TO 125	
	CALL DBLTRP(ZI(ISUB),RI(ISUB),ANS)	
	GO TO 122	
12	5 CALL DSURFT(ZI(ISUB),RI(ISUB),ANS,PHI,NMAX,MMAX)	
12	2 PI(ISUB)=ANS(1)	
С	PI(ISUB)=ANS(1)	
	UI(ISUB)=ANS(2)	136
	VI(ISUB)=ANS(3)	137
	RHOI(ISUB)=ANS(4)	138
	EI(ISUB)=ANS(5)	139
	AI(ISUB)=ANS(6)	140
630	CONTINUE	141
С		142
С		143
	KICK=630	144
	CALL DVCHK(KQ)	145
	1F (KQ.EQ.1) GO TO 9980	146
	GO TO 6400	147
С		148
C	BICHARACTERISTIC SELECTION SCHEME	149
С		150

•

.

(

73

7000	WRITE (3,7001)	151
7001	FORMAT (41HOBICHARACTERISTIC SELECTION SCHEME FAILED)	152
·	WRITE (3.614) ZO.RO	153
	WRITE (3,7002) (PSI(MNMN), MNMN=1,7), UA, VA, AA, UB, VB, AB, UC, VC, AC, ZZ,	154
	1DZ+RR+DR+ANG1+ANG2	155
	SUB=ISUB	156
	WRITE (3,7002) SUB,ZI(ISUB),RI(ISUB)	157
7002	FORMAT (4E16.8)	158
	CALL EXIT	159
6200	CONTINUE	160
	IF (NBIC.NE.O) GO TO 7000	161
	IF (L1.NE.2.OR.LL(1).EQ.1) GO TO 7300	162
	LL(1)=1	163
	GO TO 619	164
7300	CONTINUE	165
	IF (L1.NE.3) GD TO 7310	166
	IF (PSI(6).GT.4.2) GO TO 7310	167
	PSI(6)=5.75959	168
	GO. TO 619	169
7310	CONTINUE	170
	IF(TIME.GT.TSSS) GO TO 222	
	CALL DBLTRP(ZZ,RR,ANS)	
	GO TO 223	
222	CALL DSURFT(ZZ,RR,ANS,PHI,NMAX,MMAX)	
223	UA=ANS(2)	
С	UA=ANS(2)	
	VA=ANS(3)	173
	AA=ANS(6)	174
	ZZZ=ZZ+DZ	175
	IF(TIME.GT.TSSS) GO TO 128	
	CALL DBLTRP(ZZZ,RR,ANS)	
	GO TO 129	
128	CALL DSURFT(ZZZ,RR, ANS,PHI,NMAX,MMAX)	
129	UB=ANS(2)	
С	UB=ANS(2)	
	VB#ANS(3)	178

74

	AB=ANS(6)	179
		180
	IF(TIME.GT.TSSS) GO TO 130	
	CALL DBLTRP(ZZ+RRR+ANS)	
	GO TO 131	
130	CALL DSURFT(ZZ.RRR.ANS.PHI.NMAX.MMAX)	
131	UC=ANS(2)	
C	UC=ANS(2)	
-	VC=ANS(3)	183
	AC = ANS(6)	184
	MM=0	185
	TPSI=PSI(ISUB)	186
	XB=ZZ	187
	YB=RR	188
	NOM=5	189
	CA=NOM	190
	DO 6210 LM=1,2	191
6201	DTPSI=.01745	192
	DTPSI=CA+DTPSI	193
	TPSI=TPSI+DTPSI	194
	A1=1.+H*(VB-VA+(AB-AA)*SIN(TPSI))/DZ	195
	B1=H*(VC-VA+(AC-AA)*SIN(TPSI))/DR	196
	C1=-(ZZ-ZO+H*(VA+AA*SIN(TPSI)))	197
	A2=H*(UB-UA+(AB-AA)*COS(TPSI))/DZ	198
	B2=1.+H*(UC+UA+(AC-AA)*COS(TPSI))/DR	199
	C2=-(RR-RO+H*(UA+AA*COS(TPSI)))	200
	DET=A1*82-A2*81	201
	DELX=(B2*C1-B1*C2)/DET	202
	DELY=(A1*C2-A2*C1)/DET	203
C		204
C	TEST FOR SAME REGION	205
С		206
	XB1=XB+DELX	207
	YB1=YB+DELY	208
	M=COMP(XB,YB,XB1,YB1)	209
	IF (LM.EQ.2) GO TO 6700	210

	IF (M.EQ.1) GD TO 6203	211
	GO TO 6800	212
6700	CONTINUE	213
	IF (M.NE.1) GD TO 6203	214
6800	CONTINUE	215
	MM=MM+1	216
	IF (MM.LE.360/NOM) GO TO 6201	217
612	WRITE (3,613) ITI1	218
613	FORMAT (44HOFAILED TO FIND 2 POINTS IN THE SAME REGION 21H IN SUBR	219
	1. NRIT2 AFTER, 14,6H TRIES)	220
	WRITE (3,614) ZO,RO	221
614	FORMAT (1X5HZO =,E15.8,4X5HRO =,E15.8)	222
	WRITE (3,6144) LM	223
	WRITE (3,6145) M	224
	WRITE (3,6146) KODE	225
	WRITE (3,7002) XB,YB,X81,YB1	226
6144	FORMAT (4H LM=,14)	227
6145	FORMAT (3H M=,I4)	228
6146	FORMAT (6H KODE=,14)	229
	CALL EXIT	230
6203	GO TO (6204,6205),LM	231
6204	ANG1=TPSI	232
	MM=0	233
	GO TO 6210	234
6205	ANG2=TPSI-DTPSI	235
6210	CONTINUE	236
	AL=LLL+1	237
	DO 6300 KK=1,LLL	238
	ISUB=LL(KK)	239
	AK=KK	240
	PSI(ISUB)=ANG1+(ANG2-ANG1)*AK/AL	241
6300	CONTINUE	242
	NBIC=1	243
	GO TO 619	244
C		245
С		246

74

6400	CONTINUE	247
	IF (L1.EQ.2.OR.L1.EQ.3) GO TO 642	248
C	CALL NRIT2(ZI(8),RI(8),ZZ,DZ,RR,OR,EPI1,EPI2,FGOF5,ITI1,KODE)	249
	CALL NRIT2(ZI(8),RI(8),ZZ,DZ,RR,DR,EPI1,EPI2,FGOF5,ITI1,KODE,	
	1 PHI,NMAX,MMAX}	
	IF (KODE.EQ.O) GO TO 635	250
	ISUB=8	251
	WRITE (3,622) ITI1,I,J,ISUB,Z0,R0,ZZ,RR,ZI(8),RI(8)	252
622	FORMAT (27HOFAILED TO FIND ZI, RI AFTER, 14, 6H TRIES, 3X2HI=, 14, 3X2HJ	253
	1=, I4, 3X5HISUB=, I4/1X3HZ0=, E15.8, 6X3HR0=, E15.8/1X3HZZ=, E15.8, 6X3HRR	254
	1=,E15.8/1X3HZI=,E15.8,6X3HRI=,E15.8/1H1)	255
	CALL EXIT	256
C		257
C		258
635	IF(TIME.GT.TSSS) GD TO 132	
	CALL DBLTRP(ZI(8),RI(8),ANS)	
	GO TO 133	
132	CALL DSURFT(ZI(8),RI(8),ANS,PHI,NMAX,MMAX)	
133	PI(8)=ANS(1)	
C	PI(8)=ANS(1)	
	UI(8)=ANS(2)	261
	VI(8)=ANS(3)	262
	RHD1(8)=ANS(4)	263
	EI(8)=ANS(5)	264
	AI(8)=ANS(6)	265
C		266
642	DO 670 IL=1,LLL	267
	NN=LL(IL)	268
	M=PART(1,ZI(NN),RI(NN),ZX,RX,DELTA,NDEL)	269
	IF (M.EQ.1) GO TO 645	270
	PUR (NN)=0.	271
	PVR(NN)=0.	272
	GO TO 648	273
645	IF(TIME.GT.TSSS) GO TO 134	
	CALL DBLTRP(ZX+RX+ANS)	
	GO TO 135	

134	CALL DSURFT(ZX,RX,ANS,PHI,NMAX,MMAX)	
135	DEN=RX-RI(NN)	
C	DEN=RX-RI(NN)	
-	PUR(NN) = (ANS(2) - UI(NN))/DEN	276
	PVR(NN)=(ANS(3)-VI(NN))/DEN	277
648	M=PART(2,ZI(NN),RI(NN),ZX,RX,DELTA,NDEL)	278
	IF (M.EQ.1) GD TO 650	279
	PUZ (NN)=0.	280
	PVZ(NN)=0.	281
	GQ TQ 655	282
650	IF(TIME.GT.TSSS) GD TO 136	
	CALL DBLTRP(ZX,RX,ANS)	
	GO TO 137	
136	CALL DSURFT(ZX,RX,ANS,PHI,NMAX,MMAX)	
137	DEN=ZX-ZI(NN)	
	PUZ(NN)=(ANS(2)-UI(NN))/DEN	285
	PVZ(NN)=(ANS(3)+VI(NN))/DEN	286
655	S(NN)=SPSI(NN)==2*PUR(NN)=CPSI(NN)=SPSI(NN)=(PVR(NN)+PUZ(NN))+CPSI	287
	1(NN)**2*PVZ(NN)	288
C		289
	IF (ABS(RI(NN)).GT.EPS) GO TO 660	290
	CON=PUR(NN)	291
	GD TD 662	292
660	CON=UI(NN)/RI(NN)	293
662	S(NN)=-RHOI(NN)*H*AI(NN)**2*(S{NN}+CON)+PI(NN)+RHOI(NN)*AI(NN)*CPS	294
	ll(NN)*UI(NN)+RHOI(NN)*AI(NN)*SPSI(NN)*VI(NN)	295
670	CONTINUE	296
1005	CONTINUE	297
1002	FORMAT (4E16.8)	298
	KICK=670	299
	CALL DVCHK(KQ)	300
	IF (KQ.EQ.1) GO TO 9980	301
С		302
C	COMPUTE NEW P,U,V	303
С		304
	GD TO (690,692,695,698),L1	305

690	DUO=0.	306
	U02=0.	307
	VO2=(S(4)-S(6))/(RH0I(4)*AI(4)*SPSI(4)-RH0I(6)*AI(6)*SPSI(6))	308
	P02=S(4)-RHDI(4)*AI(4)*SPSI(4)*V02	309
	GO TO 700	310
С		311
C		312
692	DP0=0.	313
	P02=0.	314
	L=LL(1)	315
	TMP1=RHOI(7)*RHOI(L)*AI(7)*AI(L)*(CPSI(7)*SPSI(L)-CPSI(L)*SPSI(7))	316
	VO2=(S(L)*RHOI(7)*AI(7)*CPSI(7)-S(7)*RHOI(L)*AI(L)*CPSI(L))/TMP1	317
	UO2=(S(L)-RHOI(L)*AI(L)*SPSI(L)*VO2)/(RHOI(L)*AI(L)*CPSI(L))	318
	GO TO 700	319
С	-	320
С		321
695	DP0=0.	322
	P02=0.	323
	TMP1=RHOI(7)*RHOI(6)*AI(7)*AI(6)*(CPSI(7)*SPSI(6)-SPSI(7)*CPSI(6))	324
	VO2={S{6}*RHOI{7}*AI{7}*CPSI{7}-S{7}*RHOI{6}*AI{6}*CPSI{6}}/TMP1	325
	UO2=(S(6)-RHOI(6)*AI(6)*SPSI(6)*VO2)/(RHOI(6)*AI(6)*CPSI(6))	326
	GO TO 700	327
698	CONTINUE	328
	L=LL(1)	329
	TMP1=RHOI(4)*AI(4)*CPSI(4)-RHOI(L)*AI(L)*CPSI(L)	330
	TMP2=RHOI(4)*AI(4)*SPSI(4)-RHOI(L)*AI(L)*SPSI(L)	331
	TMP3=RHOI(6)*AI(6)*CPSI(6)-RHOI(L)*AI(L)*CPSI(L)	332
	TMP4=RHOI(6)*AI(6)*SPSI(6)-RHOI(L)*AI(L)*SPSI(L)	333
	VO2=((S(4)-S(L))*TMP3-(S(6)-S(L))*TMP1)/(TMP3*TMP2-TMP1*TMP4)	334
	U02=(S(4)-S(L)-TMP2*V02)/TMP1	335
	P02=S(6)-RH0I(6)*AI(6)*CPSI(6)*U02-RH0I(6)*AI(6)*SPSI(6)*V02	336
700	KICK=700	337
	CALL DVCHK(KQ)	338
_	IF (KQ.EQ.1) GO TO 9980	339
C		340
C		341

ſ	ITERATE FOR RHOD.EO	342
č		343
705	11133=1113	344
	11144=1114	345
	KM=1	346
708		347
100	CALL FORST (PO2.PGRHD.PGE.BIGG.CHECK.KRTT.A02.E02.RHO02.KM, EPS)	348
	$IE (KRTT_FQ.1) GO TO 871$	349
725	T1=RHOO-RHOI(B)	350
127	T2=PI(8)/RHOT(8)**2	351
	BIGH=EI(8)+T2*T1-E0	352
		353
	PHRHO=T2	354
	K1CK=725	355
	CALL DVCHK(KQ)	356
	IF (KQ.EQ.1) GO TO 9980	357
C.		358
č	COMPUTE NEW E0.RHOO	359
č		360
~	DOWN=PGE*PHRHO-PGRHO*PHE	361
	DED=(-BIGG*PHRHO+BIGH*PGRHO)/DOWN	362
	DRHOO= (-BIGH*PGE+BIGG*PHE)/DOWN	363
	E02=E0+DE0	364
	RH002=RH00+DRH00	365
С		366
č	CHECK E02, RHDO2 FOR CONVERGENCE	367
•	K1CK=726	368
	CALL DVCHK(KQ)	369
	IF (KQ.EQ.1) GO TO 9980	370
С		371
-	IF (ABS(DEO/EO).LT.EPI7) GO TO 726	372
	IF (ABS(DE0).GT01*EP17) GO TO 730	373
726	IF (ABS(DRHOO/RHOO).LE.EPI6) GO TO 740	374
	IF (ABS(DRHOO).LT.EPI6) GO TO 740	375
730	ITI33=ITI33-1	376
	IF (IT133.NE.O) GO TO 735	377

,

8Ò

	WRITE (6,732) ITI3,I,J,Z0,R0,P0,U0,V0,RH00,E0,P02,U02,V02,RH002,E0	378
	12	219
732	FORMAT (33HOEO, RHOO FAILED TO CONVERGE AFTER, 14,6H TRIES/12/12,14	201
	1,4X2HJ=,14,4X2HZ=,E15.8,4X2HR=,E15.8/5X2HP018X2H0018X2HV018X4HKH00	202
	116X2HE0/5X3HP0217X3HU0217X3HV0217X5HRH00215X3HE02//15E20+8//	202
	WRITE (3,1)	202
	CALL EXIT	204 295
735	E0=E02	202
	RH00=RH002	300
	KM=0	201
	GO TO 708	200
C		309
C	CHECK FOR PROPER EQUATIONS	390
С		391
740	CONTINUE	392
	PGE=-PGE	393
	PGRHO=∽PGRHO	394
	IF (RHOO2.GE.RHOSTR) GO TO 750	395
	IF (E02.LT.EPRS) GO TO 750	396
742	CHECK2=0	397
	GO TO 752	398
750	CHECK2=1	399
752	A02=SQRT (+PGRH0+P02*PGE/RH002**2)	400
	IF (CHECK.EQ.CHECK2) GO TO 870	401
	ITI44=1TI44-1	402
	IF (ITI44.NE.O) GO TO 770	403
	WRITE (3,755) ITI4,1,J,Z0,R0,P0,U0,V0,RH00,E0,A0,P02,U02,V02,RH002	404
	1,602,402	405
755	FORMAT (38HOFAILED TO USE CORRECT EQUATIONS AFTER, 14, 6H TRIES/1X2H	406
	lI=,I4,4X2HJ=,I4,4X2HZ=,E15.8,4X2HR=,E15.8/5X2HP018X2HU018X2HV018X4	407
	1HRH0016X2HE018X2HA0/5X3HP0217X3HU0217X3HV0217X5HRH00215X3HE0217X3H	408
	1A02//(6E20.8))	409
	WRITE (3.1)	410
	CALL EXIT	411
770	KICK=770	412
		413

•

8/

	IF (KQ.EQ.1) GO TO 9980	414
	11133=1113	415
	GO TO 735	416
C		417
č	ALL VALUES HAVE CONVERGED FOR 1 INTERIOR POINT	418
č		419
871	KRTT=0	420
870	XMESH2(I.J.1)=P02	421
	XMESH2(I.J.2)=U02	422
	XNESH2(1.J.3)=V02	423
	XMESH2(I,J,4)=RH002	424
	XMESH2{I,J.5}=E02	425
	XMESH2(I,J,6)=A02	426
	KICK=900	427
	CALL DVCHK(KQ)	428
	IF (KQ.EQ.1) GO TO 9980	429
900	CONTINUE	430
905	CONTINUE	431
	IF (ITS3.EQ.1) GO TO 950	432
	CALL ITRP	433
	RETURN	434
950	CONTINUE	435
9980	WRITE (3,9985) KICK	436
	WRITE (3,614) ZO,RO	437
9985	FORMAT (32HODIVIDE CHECK NEAR STATEMENT NO., 15, 15H IN SUBR. INTER/	438
	11H1)	439
	CALL EXIT	440
	RETURN	441
	DEBUG SUBCHK	
	END	442
	SUBROUTINE EQOSI(PRHO,PPP,PVV,PEE,TEE,TRHO,KICK)	1
	COMMON CASEID(14), ITS1, ITS2, ITS3, ITS4, ITI1, IT12, IT13, IT14, EPS1, EPS	2
	12, EPS3, EPS4, EPS5, EPS6, EPI1, EPI2, EPI3, EPI4, EPI5, EPI6, EPI7, VP, AR, LEN	3
	1GTH, APR, BPR, BIGAPR, BIGBPR, ESTAR, ALPHA, BETA, RHOSTR, EPRS, RHOS	4
	COMMON XMESH(20,20,6),XMESH2(20,20,6),Z(20),R(20),SURF(15,8),SURF2	5
	1(15,8),TAB(15,14,2),TAB2(15,14,2),SPART(15,2,2),RARF(15,11),RARF2(6

82

•

•

	115,4),RPART(15,2)	7
C		8
Ċ		9
	COMMON ZO,RO,PO,UO,VO,LO,MO,RHOO,EO,AO,UBARO,VBARO	10
C		11
_	COMMON NP, NT, NR, NI, NDEL, ISUB	12
C		10
	COMMON ZMIN,ZMAX,KMIN,KMAX,KAUIUS,GZ,GK,DELIA,H	15
	COMMON DIRCUS	14
	COMMON TIME	17
	CUMMUN IKARP	19
		10
		20
~	CUMMUN KKK	21
ե ^		22
L.	DEAL LO MO EENCTH, MILLYO	23
	KEAL LUYMUYLENUINYMUYNU Duo-duostd	24
		25
	E-VF++2/0+ DO 100 W-1-100	26
	CT A+PHO/PHOSTO	27
	MISEFTA-1_	28
	C==RHDSTR*(VP/2,)**2+((APR+BPR/(E/(ESTAR*ETA**2)+1,))*E*RHO+BIGAPR	29
	1*MU+BTGBPR*MU**2)*(1RHOSTR/RHO)	30
	DERIVG=((APR+BPR/(E/(ESTAR*ETA**2)+1.))*E+BIGAPR/RHDSTR+2.*BIGBPR*	31
	1MU/RHOSTR+2.*E**2*BPR/(ESTAR*ETA**2*(E/(ESTAR*ETA**2)+1.)**2))*(1.	32
	1-RHOSTR/RHO)+((APR+BPR/(E/(ESTAR*ETA**2)+1.))*E*RHO+BIGAPR*MU+BIGB	33
	1PR*MU**2)*RH0STR/RH0**2	-34
	DLTRHO=-G/DERIVG	35
	RHO=RHO+DL TRHO	36
С	IF(ABS(DLTRHO).LT.1.E-07) GO TO 101	37
~	IF (ABS(DLTRHO).LT.1.E-06) GO TO 101	38
100	CONTINUE	39
	KICK=2200	40
	GO TO 9980	41
101	CONTINUE	42

83

	PRHO=RHO	43
	TRHO=RHO	44
	PEE=E	45
	TEE=E	46
	PVV=VP/2.	47
	PPP=(APR+BPR/(E/(ESTAR*ETA**2)+1.))*E*RHO+BIGAPR*MU+BIGBPR*MU**2	48
9980	RETURN	49
	DEBUG SUBCHK	
	FND	50
	SUBROUTINE FORS2(PPP.PRHO.PFF)	1
	COMMON CASEID(14), ITS1, ITS2, ITS3, ITS4, ITI1, ITI2, ITI3, ITI4, FPS1, FPS	2
	12. FPS3. FPS4. FPS5. FPS4. FPI1. FPI2. FPI3. FPI4. FPI5. FPI6. FPI7. VP. AR. (FN	2
	1GTH. APR. BUR. BIGADR. BIGBDR. ESTAR. AL PHA. BETA. RHOSTR. EPRS. RHOS	4
	COMMON_XMESH(20, 20, 6), XMESH2(20, 20, 6), 7(20), 8(20), SURE(15, 8), SURE2	5
	1/15.9) TAR/15.14.2) TAR2/15.14.2) SDADT(15.2.2) DADE(15.11) DADE2(, ,
	115.4, DDADT/15.2	7
r		Å
c c		a
U	CONNON 70.00.00.00.00.0.0.0.0.00.000.00.00.00.0	10
c		11
C C	COMMON NPANTANRANTANDELATSUB	12
r		12
C	COMMON THEN, THAY, PHEN, PHAY, PADEUS, CT. CP. DELTA, H	14
	COMMON DIDCAS	15
	COMMON TIME	16
		10
		19
c		10
C	COMMON TOST	20
	COMMON FEE	20
c		21
C	PEAL LO.MO.LENCTH.MIL.KO	22
	9±000	23
		27 25
	F=DEF	25
	С-ГСС БТА=9H0/9H0ST9	20
	ETA-NU/NUJIN	21

84

,

```
28
      MU=ETA-1.
                                                                                   29
      EE=E/(ESTAR*ETA**2)+1.
      PGRHO=E*(APR+BPR/EE)+BIGAPR/RHOSTR+(2.*BIGBPR*MU)/RHOSTR+(2.*E**2*
                                                                                   30
                                                                                   31
     18PR)/(ESTAR*ETA**2*EE**2)
                                                                                   32
      PGE=(APR+BPR/EE)*RHO-(E*BPR*RHO)/(ESTAR*ETA**2*EE**2)
                                                                                   33
      AR=SORT(PGRH0+PGE*P/RH0**2)
                                                                                   34
      RETURN
      DEBUG SUBCHK
                                                                                   35
      END
      SUBROUTINE EQOS3(RHO, AA, E, P)
                                                                                    1
                                                                                    2
      COMMON CASEID(14), ITS1, ITS2, ITS3, ITS4, ITI1, ITI2, ITI3, ITI4, EPS1, EPS
                                                                                    3
     12.EPS3.EPS4.EPS5.EPS6.EPI1.EPI2.EPI3.EPI4.EPI5.EPI6.EPI7.VP.AR.LEN
                                                                                    4
     1GTH, APR, BPR, BIGAPR, BIGBPR, ESTAR, ALPHA, BETA, RHOSTR, EPRS, RHOS
                                                                                    5
      COMMON XMESH(20,20,6),XMESH2(20,20,6),Z(20),R(20),SURF(15,8),SURF2
     1(15,8),TAB(15,14,2),TAB2(15,14,2),SPART(15,2,2),RARF(15,11),RARF2(
                                                                                    6
                                                                                    7
     115,4),RPART(15,2)
                                                                                    8
                                                                                    9
      COMMON ZO,RO,PO,UO,VO,LO,MO,RHOO,EO,AO,UBARO,VBARO
                                                                                   10
                                                                                   11
                                                                                   12
      COMMON NP, NT, NR, NI, NDEL, ISUB
                                                                                   13
      COMMON ZMIN, ZMAX, RMIN, RMAX, RADIUS, GZ, GR, DELTA, H
                                                                                   14
                                                                                   15
      COMMON DIRCOS
      COMMON TIME
                                                                                   16
      COMMON IRARF
                                                                                   17
                                                                                   18
      COMMON KSTOP
      COMMON TPSI
                                                                                   19
      COMMON KKK
                                                                                   20
                                                                                   21
                                                                                   22
      REAL LO, MO, LENGTH, MU, KO
                                                                                   23
                                                                                   24
70
      ETA=RHO/RHOSTR
                                                                                   25
      MU=ETA-1.
      EE=E/(ESTAR*ETA**2)+1.
                                                                                   26
                                                                                   27
      IF (RHO.GT.RHOSTR) GO TO 72
```

С

C

С

С

С

C

	IF (E.GE.EPRS) GO TO 74	28
72	PGRHO=E*(APR+BPR/EE)+BIGAPR/RHOSTR+(2.*BIGBPR*MU)/RHOSTR+(2.*E**2*	29
	1BPR)/(ESTAK*ETA**2*EE**2)	30
	PGE=(APR+BPR/EE)*RHO-(E*BPR*RHO)/(ESTAR*ETA**2*EE**2)	31
	GO TO 75	32
74	C1=RHOSTR/RHO-1.	33
	C2=EXP(-BETA*C1)	34
	C3=EXP(-ALPHA*C1**2)	35
	T1=(BPR*E*RHO)/EE+BIGAPR*MU*C2	36
	T2=2.*ALPHA+C1+(RHOSTR/(RHO++2))	37
	T3=BPR*E/EE	38
	T4=(2.*E)/(ESTAR*ETA**2*EE)	39
	T4≠T3*T4 [,]	40
	T5=(BIGAPR*C2)/RHOSTR	41
	T6=(BIGAPR*MU*BETA*RHOSTR*C2)/(RHO**2)	42
	PGRH0=APR*E+C3*(T1*T2+T3+T4+T5+T6)	43
	T7=(BPR*RHO)/EE	44
	PGE=APR*RHO+C3*(T7-T7*(E/(ESTAR*ETA**2*EE)))	45
75	AA=SQRT(PGRHO+PGE*P/RHO**2)	46
	RETURN	47
	DEBUG SUBCHK	
	END	48
	SUBROUTINE EQUSS(PFR,PFE)	1
	COMMON CASEID(14), ITS1, ITS2, ITS3, ITS4, ITI1, ITI2, ITI3, ITI4, EPS1, EPS	2
	12, EPS3, EPS4, EPS5, EPS6, EPI1, EPI2, EPI3, EPI4, EPI5, EPI6, EPI7, VP, AR, LEN	3
	1GTH, APR, BPR, BIGAPR, BIGBPR, ESTAR, ALPHA, BETA, RHOSTR, EPRS, RHOS	4
	COMMON XMESH(20,20,6), XMESH2(20,20,6), Z(20), R(20), SURF(15,8), SURF2	5
	1(15,8),TAB(15,14,2),TAB2(15,14,2),SPART(15,2,2),RARF(15,11),RARF2(6
	115+4)+RPART(15+2)	7
С		8
Ċ		9
	COMMON Z0+R0+P0+U0+V0+L0+M0+RH00+E0+A0+UBAR0+VBAR0	10
C		11
*	COMMON NP+NT+NR+N1+NDEL+ISUB	12
C.		13
~	COMMON 7MIN. 7MAY. PMIN. PMAY. PADING. C7. CP. DELTA. H	14

86

	COMMON DIRCOS	15
	COMMON TIME	16
	COMMON IRARF	17
	COMMON KSTOP	18
	COMMON TPSI	19
	COMMON KKK	20
C		21
č		22
÷	REAL LO.MO.LENGTH.MU.KO	23
250	FT A= RHOO/RHOSTR	24
224	MUSETA-1.	25
C		26
ř		27
U	FDD=F0//FSTAD+FTA++21+1.	28
		20
	THE ACTIVE TO A CTAR STARS TARS TARS TARS TO DESCO	20
	1071-078/10378872188727272727 060-TND±584187640042 ±816800±MH1)/DH857042 ±68±2±7801	21
	77 K~ THEFLOFLOIGAFK #2 ##01007 KHUJ/KHUJ/KHUJ/KHUJ/KTZ#FLOFFZ#FRHF1 055-TH0#04040A_50#04047#01	32
	CTUDN CCTUDN	32
	NEDIC CHOCHE	22
		34
	CNU Suppointing E005D/D4002 E02 B021	34
	SUBRUUTINE EQUSPIRAUUZ;EUZ;FUZ; Common caesid(14) its1 its2 its2 its4 itt1 itt2 it12 it14 sps1 sps	1
	GUMMUN GASELULL4771431714327143371434714117141271413714147EP317EP3	2
	12,EP33,EP34,EP30,EP30,EP11,EP12,EP13,EP14,EP10,EP10,EP16,VP,AK,LEN	5
	IGIN, APK, BPK, BIGAPK, BIGBPK, ESIAK, ALPHA, BEIA, KHUSIK, EPKS, KHUS	4
	CUMMUN XMESH(20,20,0), XMESH2(20,20,0), 2(20), 8(20), SURF(15,8), SURF2	5
	1(15,81,1A8(15,14,2),1A82(15,14,2),SPAR((15,2,2),KARF(15,11),RARF2(6
•	115+41+RPART(15+2)	7
C		8
C		9
	COMMON Z0,R0,P0,U0,V0,L0,M0,RH00,E0,A0,UBAR0,VBAR0	10
C		11
_	COMMON NP,NT,NR,NI,NDEL,ISUB	12
C		13
	COMMON ZMIN,ZMAX,RMIN,RMAX,RADIUS,GZ,GR,DELTA,H	14
	COMMON DIRCOS	15

	COMMON TIME	16
	COMMON IRARF	17
	COMMON KSTOP	18
	COMMON TPSI	19
	COMMON KKK	20
C		21
Ċ		22
-	REAL LO.MO.LENGTH.MU.KO	23
	ETA=RH002/RHOSTR	24
	HU=ETA-1.	25
	P02=E02*RH002*(APR+(BPR+ESTAR*ETA**2)/(E02+ESTAR*ETA**2))+BIGAPR*M	26
	1U+BTGBPR*MU**2	27
	RETURN	28
	DEBLIG SUBCHK	
	FND	29
	SUBBOUTINE FORST/PA2.PGPHO.PGE.BIGG.CHECK.KPTT.A02.F02.RHO02.KM.FP	1
	1C)	2
	COMMON CASEID(14), 1751, 1752, 1753, 1754, 1711, 1712, 1713, 1714, EDS1, EDS	2
	12.5052.5054.5055.5054.5011.5012.5012.5014.5015.5014.5017.VD.AP.45N	4
	1CTH, ADD, BDC, BICADD, BICBDD, ESTAD, ALDHA, BETA, DHOSTD, EDDS, DHOS	5
	CONMON VMECH/20.20.61.VMECH2(20.20.61.7/20).0/201.SUPE(15.8).SUPE2	6
	1/15.01 TAD/15 16.31 TAD/15.16.23 CDADT/15.2.31 DADE/15.11 DADE/1	7
	115 A\ DD4DT(16 3) 115 A\ DD4DT(16 3)	r Q
c	1134484KPAKE(13428	å
		10
L	COMMON TO DO DO UN VOLO NO BHOOLEO AD HEADO VEADO	11
r	GUMMUN ZUŞKUŞPUŞUVŞVUŞLUŞMUŞKNUUŞCUŞAVŞUDAKUŞVDAKU	12
L	COMMON AND NT MO ALT MORE TOUR	12
~	COMMUN NY SNI SNKSNI SNUEL SI SUD	10
L	COMMON THIN THAN DHIN DHAN DADING CT CD DELTA L	14
	CUMPUN LPIN; LPAX; KPIN; KPAX; KAUIUS; CL; CK; UEL; A; P	12
	COMMON DIRLOS	10
		1/
		18
	CUMMUN KSTUP	19
	CUMMON TPS1	20
	COMMON KKK	21

C		22
C		23
	REAL LO,MO,LENGTH,MU,KO	24
	INTEGER CHECK, CHECK2	25
	IF (KM.EQ.0) GO TO 708	26
	RHOO=RHOSTR	27
	TMP1=(APR+BPR)*RHOSTR-PO2/ESTAR	28
	TMP2=SQRT(TMP1++2+4.+PO2+APR+RHOSTR/ESTAR)	29
	EO=(-TMP1+TMP2)/(2.*APR*RHOSTR/ESTAR)	30
	IF (P02.GT.EPS) GO TO 708	31
	P02=0.	32
		33
		34
	AUZ=SQK1(BIGAPK/KHUSIK)	35
	KKII=1 CD TD 070	36
300	GU 10 870 Katt-0	37
708	KKII≖U 614-0000 /0000000	38
	ETA=KHUU/KHUSIK	39
	NU=CIA-I↓ FS_FA//FS7AD+FTA++2\+1	40
	EE=EV/(ES)AK+E1A++2/+1.	41
	IF (KNUV-G(-KNUSIK) GU IU 720 IE (EA IT EDDE) CO TO 720	42
716	17 (CV+LT+CPRS) 60 10 720 C1+PHOCTD/PHOA_1	43 44
175	9501-85518/850911 9501-85578±01	44
	TE (REC) IT 10 E10) CO TO 714	40
	17 (θΕCI+CI+IV+CIV) Ου 10 /10 62±0 0	· +0
	C2-0:0 C0 T0 717	41
716	C2=EXP(-BEC1)	07
717	$C3\Delta I = \Delta I PHA + C1 + + 2$	50
	$IE (C3A) = [T_{-}]O_{-}E[2] = GO TO 718$	51
	C3=0.0	52
	GO TO 719	53
718	C3=EXP(-C3AL)	54
719	CONTINUE	
	T1=(BPR*E0*RHOO)/EE+BIGAPR*MU*C2	56
	T2=2.*ALPHA+C1*(RHOSTR/(RHOO++2))	57

	T3=8PR*E0/EE	58
	T4=(2.*E0)/(ESTAR*ETA**2*EE)	59
	T4=T3+T4	60
	T5=(BIGAPR+C2)/RHOSTR	61
	T6=(BIGAPR+MU+BETA+RHOSTR+C2)/(RHOO++2)	62
	T7=(BPR*RHDO)/EE	63
	PGRH0=APR*E0+C3*(T1*T2+T3+T4+T5+T6)	64
	PGE=APR*RH00+C3*(T7-T7*(E0/(ESTAR*ETA**2*EE)))	65
	BIGG=P02-APR*E0*RH00-T1*C3	66
	CHECK=0	67
	GO TO 725	68
720	T1=APR+BPR/EE	69
	T2={BPR*E0}/(ESTAR*ETA**2*EE**2)	70
	BIGG=P02-T1*E0*RH00-BIGAPR*MU-BIGBPR*MU**2	71
	PGRHO=T1*E0+BIGAPR/RHOSTR+2.*BIGBPR*MU/RHOSTR+T2*2.*E0	72
	PGRHO=-PGRHD	73
	PGE=T1*RHDD-RHDO*T2	74
	PGE=-PGE	75
	CHECK=1	76
725	CONTINUE	77
870	CONTINUE	78
	RETURN	79
	DEBUG SUBCHK	
	END	80
	SUBROUTINE SOUT2	1
C		2
C	PRINTS 6 LINES OF DISCONTINUITY AT TO	3
C		4
	COMMON CASEID(14), ITS1, ITS2, ITS3, ITS4, ITI1, ITI2, ITI3, ITI4, EPS1, EPS	5
	12,EPS3,EPS4,EPS5,EPS6,EPI1,EPI2,EPI3,EPI4,EPI5,EPI6,EPI7,VP,AR,LEN	6
	1GTH, APR, BPR, BIGAPR, BIGBPR, ESTAR, ALPHA, BETA, RHOSTR, EPRS, RHOS	7
	COMMON XMESH(20,20,6),XMESH2(20,20,6),Z(20),R(20),SURF(15,8),SURF2	8
	1(15,8),TAB(15,14,2),TAB2(15,14,2),SPART(15,2,2),RARF(15,11),RARF2(9
	115,4),RPART(15,2)	10
C		11
C		12

-

~	COMMON Z0,R0,P0,U0,V0,L0,M0,RH00,E0,A0,UBAR0,VBAR0	13
L	COMMON NO NT NO NT NOEL TEND	14
r	CUMMUN NYANIANKANIANDELAIDUO	16
C I	COMMON 7MIN.7MAX.RMIN.RMAX.RADIUS.G7.GR.DELTA.H	17
	COMMON DIRCOS	18
	COMMON TIME	19
	COMMON TRARE	20
	COMMON KSTOP	21
	COMMON TPSI	22
	COMMON KKK	23
	REAL LO.MO.LENGTH.MU.KO	24
С		25
4	FORMAT (///30H CURVES OF DISCONTINUITY AT TO//40X20HPROJEC	TILE S 26
	1HOCK//)	27
6	FORMAT (//35X29HPROJECTILE PARTICLE CURVE//)	28
8	FORMAT (//42X16HTARGET SHOCK//)	29
10	FORMAT (//38X25HTARGET PARTICLE CURVE//)	30
12	FORMAT (//42X15HRAREFACTION//)	31
14	FORMAT (//35X30HRAREFACTION PARTICLE CURVE//)	32
16	FORMAT (7X1HZ19X1HR19X1HP19X1HU19X1HV/7X3HRHO17X1HE19X1HA19X	1HL19X 33
	11HM//)	34
18	FORMAT (7X1HZ19X1HR//)	35
20	FORMAT (7X1HZ19X1HR19X1HL19X1HM//)	36
30	FORMAT (5E20.8/5E20.8//)	37
35	FORMAT (2E20.8)	38
38	FORMAT (4E20.8)	39
39	FORMAT (//35X16HFREE SURFACE//)	40
40	FORMAT (1H1)	41
	WRITE (3,4)	42
	WRITE (3,16)	43
	WRITE (3,30) ((TAB2(I,J,1),J=1,10),I=1,NP)	44
	WRITE (3,6)	45
	WRITE (3,18)	46
	WRITE (3,35) ((SPART(1,J,1),J=1,2),I=1,NP)	41
	WRITE (3,8)	48

9]

WRITE (3,16)	49
WRITE (3.30) ((TAB2(I,J,2),J=1,10),I=1,NT)	50
WRITE (3,10)	51
WRITE (3.18)	52
WRITE (3.35) ((SPART(I.J.2).J=1.2).I=1.NT)	53
WRITE (3.12)	54
WRITE (3,20)	55
WRITE (3.38) ((RARF2(1.J).J=1.4).I=1.NR)	56
WRITE (3.14)	57
WRITE (3.39)	58
WRITE $(3, 35)$ ((SURF2(I.J), J=1.2), I=1.NP)	59
WRITE (3.40)	60
RETURN	61
DEBUG SUBCHK	
END	62
SUBROUTINE SOUT	1
	2
PRINTS 4 LINES OF DISCONTINUITY AT TO-H	3
	4
COMMON CASEID(14), ITS1, ITS2, ITS3, ITS4, ITI1, ITI2, ITI3, ITI4, EPS1, EF	s 5
12.EPS3.EPS4.EPS5.EPS6.EPI1.EPI2.EPI3.EPI4.EPI5.EPI6.EPI7.VP.AR.LE	EN 6
1GTH. APR. BPR. BIGAPR. BIGBPR. ESTAR. ALPHA. BETA. RHOSTR. EPRS. RHOS	7
COMMON XMESH(20,20,6), XMESH2(20,20,6),Z(20),R(20),SURF(15,8),SURF	÷2 8
1(15.8) • TAB(15.14.2) • TAB2(15.14.2) • SPART(15.2.2) • RARF(15.11) • RARF	21 9
115.4).RPART(15.2)	10
	11
	12
COMMON ZO.RO.PO.UO.VO.LO.MO.RHOO.EO.AO.UBARO.VBARO	13
	14
COMMON NP+NT+NR+NI+NDEL+ISUB	15
	16
COMMON ZMIN.ZMAX.RMIN.RMAX.RADIUS.GZ.GR.DELTA.H	17
COMMON DIRCOS	18
COMMON TIME	19
COMMON IRARF	20
COMMON KSTOP	21

С С С

C C

C

С

.

.

90

	COMMON TPSI	22
	COMMON KKK	23
	REAL LO,MO,LENGTH,MU,KO	24
С		25
4	FORMAT (///32H CURVES OF DISCONTINUITY AT TO-H//40X20HPROJECTILE	26
	1 SHOCK//)	27
6	FORMAT (//42X16HTARGET SHOCK//)	28
8	FORMAT (//42X15HRAREFACTION//)	29
10	FORMAT (7X1HZ19X1HR19X1HP19X1HU19X1HV/7X3HRH017X1HE19X1HA19X1HL19X	30
	11HM//)	31
15	FORMAT (5E20.8/5E20.8//)	32
18	FORMAT (1H1)	33
21	FORMAT (//35X16HFREE SURFACE//)	34
25	FORMAT (2E20.8)	35
	WRITE (3.4)	36
	WRITE (3,10)	37
	WRITE (3,15) ((TAB(I,J,1),J=1,10),I=1,NP)	38
	WRITE (3,6)	39
	WRITE (3,10)	40
	WRITE (3,15) ((TAB(I,J,2),J=1,10),I=1,NT)	41
	WRITE (3,8)	42
	WRITE (3,10)	43
	WRITE (3,15) ((RARF(I,J),J=1,10),I=1,NR)	44
	WRITE (3,21)	45
	WRITE (3,25) ((SURF(I,J),J=1,2),I=1,NP)	46
	WRITE (3,18)	47
	RETURN	48
	DEBUG SUBCHK	
	END	49
	SUBROUTINE PRINT(BL,ZTAB,RTAB,KK,PHI,NMAX,MMAX)	
С	SUBROUTINE PRINT(BL,ZTAB,RTAB,KK)	
	DOUBLE PRECISION XS(20),RU(20),ZU(20,20,6),UU(20),WW(20),	
	12COMP(20,20,6),PHI(20,20,6),CETA(20,20),DENC,POLY	
С	PRINTS INTERIOR REGION	2
С		3
	COMMON CASEID(14), ITS1, ITS2, ITS3, ITS4, ITI1, ITI2, ITI3, ITI4, EPS1, EPS	4

12.FPS3.FPS4.EPS5.EPS6.EPI1.EPI2.EPI3.EPI4.EPI5.EPI6.EPI7.VP.AR.LEN	5
1GTH. APR. BPR. BIGAPR. BIGBPR, ESTAR, ALPHA, BETA, RHOSTR, EPRS, RHOS	6
COMMON XMESH(20,20,6), XMESH2(20,20,6), Z(20), R(20), SURF(15,8), SURF2	7
1(15,8)-TAB(15,14,2), TAB2(15,14,2), SPART(15,2,2), RARF(15,11), RARF2(8
115-4). RPART(15-2)	9
	10
	11
COMMON 20.80.00.00.V0.L0.M0.RH00.E0.A0.UBAR0.VBAR0	12
	13
COMMON NP.NT.NR.NT.NDFL.ISUB	14
Comparent and Anti-Anti-Fire Con	15
COMMON 7MIN, 7MAX, RMIN, RMAX, RADIUS, GZ, GR, DELTA, H	16
	17
COMMON TIME	18
COMMON TRAC	19
COMMON VETOD	20
	21
COMMON FRA	22
CONDUCTION NON	23
REAL LUTHUTLENGINTHOTIC	24
OTHENS TON BL (20, 20, 6), 7 TAB (20), 8 TAB (20)	25
DIMENSION BETZERZOROTALIMBTZOTATTABTZOT	26
1.1=2227	
N-U	
n = 0	27
00 15 1-1720	28
$T_{F} = (ABS(B) (T_{F} -1)) + ABS(B) (T_{F} -2)) + ABS(B) (T_{F} -3))) = 20 \cdot 15 \cdot 20$	29
	30
LONTINOC MOTTE (2.19)	31
WRITE (37107 CODNAT (1541TAD) ES ALL = $0/1411$	32
CALL EVIT	33
5ALL 6A11 T1-1	34
11-1 NO 20 1-11-20	35
$\frac{1}{1} = \frac{1}{1} = \frac{1}$	36
1L / 403/0F/141414144403/0F/14145/14403/0F/14142/14	27
	12, EPS3, EPS4, EPS5, EPS6, EPI1, EPI2, EPI3, EPI4, EPI5, EPI6, EPI7, VP, AR, LEN 1GTH, APR, BPR, BIGAPR, BIGBPR, ESTAR, ALPHA, BETA, RHOSTR, EPRS, RHOS COMMON XMESH(20, 20, 6), XMESH2(20, 20, 6), Z(20), R(20), SURF(15, 8), SURF2 1(15, 8), TAB(15, 14, 2), TAB2(15, 14, 2), SPART(15, 2, 2), RARF(15, 11), RARF2(115, 4), RPART(15, 2) COMMON Z0, R0, PO, UO, VO, LO, MO, RHOO, EO, AO, UBARO, VBARO COMMON Z0, R0, PO, UO, VO, LO, MO, RHOO, EO, AO, UBARO, VBARO COMMON NP, NT, NR, NI, NDEL, ISUB COMMON ZMIN, ZMAX, RMIN, RMAX, RADIUS, GZ, GR, DELTA, H COMMON DIRCOS COMMON TIME COMMON TRAF COMMON KSTOP COMMON TRAF COMMON KKK REAL LO, MO, LENGTH, MU, KO DIMENSION BL(20, 20, 6), ZTAB(20), RTAB(20) TSSS=1.1 M=0 N=0 DD 15 J=1, 20 DO 15 J=1, 20 IF (ABS(BL(1, J, 1))+ABS(BL(1, J, 2))+ABS(BL(1, J, 3))) 20, 15, 20 CONTINUE WRITE (3, 18) FORMAT (15H1TABLES ALL = 0/1H1) CALL EXIT II=I DO 30 I=11, 20 IF (ABS(BL(1, 1, 1))+ABS(BL(1, 1, 2))+ABS(BL(1, 1, 3))) 30, 22, 30

94

 $(1, 1, 2, \dots, 2, n) = (1, 2, \dots, 2, n) + (1, 2,$

	TE (ARC(RL(T. 1.1)) + ARC(RL(T. 1.2)) + ARC(RL(T. 1.3))) 30.25.30	38
25	TP (AB3(DE(14041))+RB3(BE(14042))+RB3(BE(14043))) = 30423430	39
23		40
	CO TO 35	41
30	CONTINUE	42
50	12=20	43
35	12-20 10 45 J=1.20	44
	IF (ABS(BL(11,1,1))+ABS(BL(11,1,2))+ABS(BL(11,1,3))) = 45,37,45	45
37	D0 40 I=11.12	46
	TE (ABS(BL([.J.1))+ABS(BL(I.J.2))+ABS(BL(I.J.3))) 45,40,45	47
40	CONTINUE	48
	$J_{2}=J_{-1}$	49
	GD TO 50	50
45	CONTINUE	51
	J2=20	52
50	J1=1	53
С		54
C	PRINT TABLE	55
С		56
	GO TO (52,56),KK	57
52	WRITE (3,53)	58
53	FORMAT (//24HOINTERIOR REGION AT TO-H///)	59
	GO TO 62	60
56	WRITE (3,57)	61
57	FORMAT (//22HOINTERIOR REGION AT TO///)	62
62	DO 70 I=I1,I2	63
	WRITE (3,64) ZTAB(I)	64
64	FORMAT (///7HOZTAB =,F10.4//7X1HR9X1HP17X1HU17X1HV17X3HRH015X1HE17	65
	1X1HA//)	66
	M=M+1	
	XS(M)=ZTAB(I)	
	UU(M)=1.0	
	DD 69 J=J1,J2	67
	WRITE (3,68) RTAB(J);(BL(1,J;K);K=1,6)	60
	RU(N)=RTAB(J)	

•

,

95

		WW(N)=1.0	
		DO 156 IK=1,6	
	Ċ	ZU(M,N)=BL(I,J,4)	
	Č	ZZ(M,N)=BL(I,J,1)	
	156	ZU(M,N,IK)=BL(I,J,IK)	
	68	FORMAT (F12.4,6E18.8)	69
	69	CONTINUE	70
		MMAX=N	
		N=O	
	70	CONTINUE	71
		NMAX=M	
	C	IF(TIME.LT.TSSS) GO TO 80	
	333	IMAX=12+1-11	
		JMAX=J2+1-J1	
		CALL SURFIT(XS,UU,RU,WW,ZU,NMAX,MMAX,IMAX,JMAX,CETA,PHI,ZCOMP,	
	•	1SQD, SQDC, SDC, DFC)	
		WRITE(3,100)	
	100	FORMAT(* *** *)	
		DO 88 IK=1,6	
		DO 48 I=1, IMAX	
		DO 48 J=1, JMAX	
		DENC=0.DO	
		DO 43 IS=1,NMAX	
		K=NMAX-IS+1	
		POLY≠PHI(K,MMAX,1K)	
		IF(MMAX-1)43,43,46	
	46	DD 42 IT=2,MMAX	
		L=MMAX-IT+1	
	42	POLY=POLY=RU(J)+PHI(K,L,IK)	
	43	DENC=DENC*XS(I)+POLY	
		ZCOMP(I, J, IK)=DENC	
	48	CONTINUE	
	88	CONTINUE	70
	80	WRITE (3,82)	12
	82	FORMAT (1H1)	()
		RETURN	(4
	•		
•			

96

· ··· · ·

	DEBUG SUBCHK	
	END	75
	SUBROUTINE NRIT2(X,Y,X0,DX,Y0,DY,EX,EY,FGOF,IT,KODE,	
	1PHI,NMAX,MMAX)	
С	SUBROUTINE NRIT2(X,Y,X0,DX,Y0,DY,EX,EY,FGOF,IT,KODE)	1
С		2
С	NEWTON-RAPHSON METHOD FOR SOLUTION OF	3
С	TWO NON LINEAR EQUATIONS IN TWO UNKNOWNS	4
C		5
	COMMON CASEID(14), ITS1, ITS2, ITS3, ITS4, ITI1, ITI2, ITI3, ITI4, EPS1, EPS	6
	12, EPS3, EPS4, EPS5, EPS6, EPI1, EPI2, EPI3, EPI4, EPI5, EPI6, EPI7, VP, AR, LEN	7
	1GTH, APR, BPR, BIGAPR, BIGBPR, ESTAR, ALPHA, BETA, RHOSTR, EPRS, RHOS	8
	COMMON XMESH(20,20,6),XMESH2(20,20,6),Z(20),R(20),SURF(15,8),SURF2	9
	1(15,8),TAB(15,14,2),TAB2(15,14,2),SPART(15,2,2),RARF(15,11),RARF2(10
	115.4).RPART(15.2)	11
С		12
Ċ		13
	COMMON Z0,R0,P0,U0,V0,L0,M0,RH00,E0,A0,UBAR0,VBAR0	14
С		15
-	COMMON NP+NT+NR+NI+NDEL+ISUB	16
С		17
	COMMON ZMIN,ZMAX,RMIN,RMAX,RADIUS,GZ,GR,DELTA,H	18
	COMMON DIRCOS	19
	COMMON TIME	20
	COMMON IRARF	21
	COMMON KSTOP	22
	COMMON TPSI	23
	COMMON KKK	24
	REAL LO,MO,LENGTH,MU,KO	25
	DOUBLE PRECISION PHI(20,20,6)	
С		26
	TSSS=1.1	
	XB=X0	27
	Y8=Y0	28
	OXX=DX	29
	DYY=DY	30

C

. 97

		,	
		DELX1=0	31
		DELY1=0	32
		KODE=0	33
	1	CONTINUE	34
		DO 50 I=1,IT	35
		KK=0	36
		XX=XB+DXX	37
		YY=Y8+DYY	38
	С		39
	Ċ	·	40
		IF(TIME.LT.TSSS) GO TO 266	
		CALL FGOF(XB,YY,F2,G2,PHI,NMAX,MMAX)	
		CALL FGOF(XX,YB,F1,G1,PHI,NMAX,MMAX)	
		CALL FGOF(XB,YB,FO,GO,PHI,NMAX,MMAX)	
		GO TO 267	
	266	CALL FGOF(XB,YY,F2,G2)	
		CALL FGOF(XX,YB,F1,G1)	
		CALL FGOF(XB,YB,FO,GO)	
	267	A1=(F1-F0)/DXX	
		B1=(F2-F0)/DYY	45
,		C1=-F0	46
		A2=(G1-G0)/DXX	47
		B2=(G2-G0)/DYY	48
		C2=-G0	49
		DET=A1+B2-A2+B1	50
		IF (DET.EQ.0.) GO TO 920	51
		DELX=(B2*C1-B1*C2)/DET	52
		DELY=(A1*C2-A2*C1)/DET	53
		IF (ABS(DELX).GT001) GO TO 8	54
		DELX=0.	>>
	8	IF (ABS(DELY).GTOO1) GU TO 9	20
	_	DELY=0.	21
	9		28
		SUEL=ABS(UELX+DELX1)+ABS(UELY+DELY1)	27
		DELX1=DELX	6U
		DELY1=DELY	01

1

D

Ъ

γ

98

C		62
C	C TEST FOR SAME REGION	63
· C		64
	DO 10 J=1,IT	65
	XB1=XB+DELX	66
	YB1=YB+DELY	67
	IF (YB1.LE.0.)YB1=0.	68
	M=COMP(XB,YB,XB1,YB1)	69
	IF (M.EQ.1) GO TO 15	70
1	11 CONTINUE	71
	KK=1	72
	DELX=.5+DELX	73
	DELY=.5+DELY	74
1	10 CONTINUE	75
	GO TO 930	76
1	15 IF (ABS(XB-XB1).GT.EX) GO TO 45	77
	IF (ABS(YB-YB1).GT.EY) GO TO 45	78
	IF (KK.NE.O) GO TO 45	79
	X=XB1	80
	Y=YB1	81
	KODE=0	82
	RETURN	83
4	45 CONTINUE	84
	IF (KODE.NE.1) GO TO 46	85
	IF (SDEL.GT.EPI1) GO TO 46	86
	DELX=.5*DELX	87
	DELY≠.5*DELY	88
	GO TO 9	89
4	46 XB=XB1	90
	YB=YB1	91
	DEL=DELTA	92
	DO 70 N=1,NDEL	93
	XB2=XB+DEL	94
	M≖COMP(X8,Y8,X82,Y8)	95
	[F (M.NE.1) GO TO 55	96
	DXX=DEL	97

•

99

	GD TO 80	OR ·	
55	X82=X8-DEL	90	
	M=COMP(XB,YB,XB2,YB)	100	
	IF (M.NE.1) GO TO 60	101	
	DXX=-DEL	102	
	GO TO 80	102	
60	DEL=.5+DEL	103	
70	CONTINUE	104	
	GO TO 980	105	
80	DEL=DELTA	108	
	00 100 N=1.NDEL	107	
	YB2=YB+DFL	108	
	M=COMP(XB,YB,XB,YB2)	109	
	IF (M.NE.1) GO TO 85	110	
	DYY=DFI	111	
	GO TO 50	112	
. 85	YB2=YB-DFI	113	
	N=COMP(XR,YR,XR,YR2)	114	
	$IF (N_{\rm N}E_{\rm s}1) GO TO 90$	115	
		116	
	GD TO 50	117	
90	DEL=.5+0FI	118	
100	CONTINUE	119	
	GO TO 990	120	
50	CONTINUE	121	
	X=XR1	122	
	Y=YB1	123	
	IF (KODE.EG.11 RETURN	124	
		125	
		126	
920	WRITE (3.922) I	127	
922	FARMAT (AGHARETERMINANT IS A IN SURD NOTTO FOR ITTOLETON AND	128	
2 6 . E.	CO TO 950	129	
930	KODE=2	130	
7.7 0 .	RETURN	131	
950	WRITE (2.052) VA VA VA VA VAL VAL DELV AELV	132	
750	WRITE (37734) AUTTUTADTTDTADITDTADITDTADELXJUELY	133	

100

952	FORMAT (1X5HZ0 =,E15.8,4X5HR0 =,E15.8/1X5HZB =,E15.8,4X5HRB =,	134
	1E15.8/1X5HZB1 =, E15.8, 4X5HRB1 =, E15.8/1X5HDELZ=, E15.8, 4X5HDELR=, E1	135
	15.8/1H1)	136
	CALL EXIT	137
	RETURN	138
980	KODE=3	139
	RETURN	140
990	KODE=4	141
	RETURN	142
	DEBUG SUBCHK	
	END	143
	FUNCTION COMP(ZP,RP,ZP1,RP1)	1
С		2
Ċ	DETERMINES IF 2 POINTS ARE IN THE SAME REGION	3
	COMMON CASEID(14), ITS1, ITS2, ITS3, ITS4, ITI1, ITI2, ITI3, ITI4, EPS1, EPS	4
	12, EPS3, EPS4, EPS5, EPS6, EPI1, EPI2, EPI3, EPI4, EPI5, EPI6, EPI7, VP, AR, LEN	5
	1GTH, APR, BPR, BIGAPR, BIGBPR, ESTAR, ALPHA, BETA, RHOSTR, EPRS, RHOS	6
	COMMON XMESH(20,20,6), XMESH2(20,20,6), Z(20), R(20), SURF(15,8), SURF2	7
	1(15,8), TAB(15,14,2), TAB2(15,14,2), SPART(15,2,2), RARF(15,11), RARF2(8
	115,4),RPART(15,2)	9
С		10
	COMMON Z0,R0,P0,U0,V0,L0,M0,RH00,E0,A0,UBAR0,VBAR0	11
C		12
	COMMON NP,NT,NR,NI,NDEL,ISUB	13
С		14
	COMMON ZMIN,ZMAX,RMIN,RMAX,RADIUS,GZ,GR,DELTA,H	15
	COMMON DIRCOS	16
	COMMON TIME	17
	COMMON IRARF	18
	COMMON KSTOP	19
	COMMON TPSI	20
	COMMON KKK	21
•	REAL LO,MO,LENGTH,MU,KO	22
	EPS=.0000001	23
	IF (RP1.LT.0.) GO TO 80	24
	IF (ZP1.GE.0.) GO TO 4	25

10]

r	IF (RP1.GT.RADIUS) GO TO 80	26
ĉ	FIND CONTROL CONSTANTS FOR 7P-RP	27
č		20
4	CONTINUE	30
	IF (ITS3.EQ.1) GO TO 33	31
	IF (IRARF.EQ.1) GO TO 13	32
	M=PICK(ZP,RP,3)	33
	IF (ZP.GT.RARF(M,1).AND.M.NE.1)M=M-1	34
	FF=RP-RARF(M+1,2)-(RARF(M,2)-RARF(M+1,2))*(ZP-RARF(M+1,1))/(RARF(M	35
	1,1)-RARF(M+1,1))	36
	IF (FF.LT.O.) GD TO 11	37
10	NN=1	38
• •	GO TO 13	39
11	NN=0	40
13		41
	UU 22 K=1;2	42
	$\frac{1}{2} \frac{1}{2} \frac{1}$	43
E	IF (KYIOL)OIADIM\$Z\$KJOANUOMONEOI}M=M=1 CONTINUE	44
2	GUNTINUE SC#701_TAR/MA1 1 K1./TAR/M 1 K1.TAR/MA1 1 K114/RR1 TAR/MA1 A K11//	45
	TT+LFITIADIMTISISKJTIADIMSISKJTIADIMTISISKJJA(KPITIABIMTISZ) 1TADIM.2.KI_TADIMII 2.KII	46
	ITAD(M929N)-TAD(MTI929N)) IE (K 50 2) 00 TO 17	41
	17 (N+LQ+2) 00 (0 17 17 (N+LQ+2) 00 (0 17	48
	IF (FF.(TFPS) CO TO 21	49
	GO TO 21	20 51
17	IE (FE.GT.FPS) GO TO TOO	50
21	IF (RP.GT.RADIUS) GO TO 22	52
	M=PICK(ZP1.RP1.4)	54
	FF=ZP1-SURF(M+1,1)-(SURF(M,1)-SURF(M+1,1))*(RP1-SURF(M+1,2))/(SURF	55
	1(N,2)-SURF(M+1,2))	56
	IF (FF) 80,22,22	57
22	CONTINUE	58
	IF (IRARF.EQ.1) GO TO 33	59
	M=PICK(ZP1,RP1,3)	60
	IF (ZP1.GT.RARF(M,1).AND.M.NE.1)M=M-1	61

÷

	FF=RP1-RARF(M+1,2)-(RARF(M,2)-RARF(M+1,2))*(ZP1-RARF(M+1,1))/(RARF	62
	1(M,1)-RARF(M+1,1))	63
	IF (FF.LT.0.) GO TO 31	64
30	NN1=1	65
	GO TO 32	66
31	NN1=0	67
32	IF (NN1.NE.NN) GO TO 110	68
33	CONTINUE	69
	COMP=1	70
	COMP=COMP++2	71
	RETURN	72
80	COMP=2	73
	COMP=COMP++2	74
	RETURN	75
90	COMP=3.	76
	COMP=COMP+.2	77
	RETURN	78
100	COMP=4.	79
	COMP=COMP++2	80
	RETURN	81
110	COMP=5.	82
	COMP=COMP+.2	83
	RETURN	84
	DEBUG SUBCHK	
	END	85
	FUNCTION PICK(ZP+RP+KODE)	1
C		2
č	DETERMINES 2 CLOSEST CONSECUTIVE POINTS ON SPECIFIED	3
č	LINE OF DISCONTINUITY TO A GIVEN POINT	4
č		5
Ŭ	COMMON_CASEID(14).ITS1.ITS2.ITS3.ITS4.IT11.IT12.IT13.IT14.EPS1.EPS	6
	12. FPS3. FPS4. FPS5. FPS6. FPI1. FPI2. FPI3. FPI4. FPI5. FPI6. FPI7. VP. AR. LEN	7
	IGTH. APR. BPR. BIGAPR. BIGBPR. ESTAR. ALPHA. BETA. RHOSTR. EPRS. RHOS	8
	COMMON XMESH(20,20,6),XMESH2(20,20,6),Z(20),R(20),SURF(15,8),SURF2	9
	1(15.8), TAB(15.14.2), TAB2(15.14.2), SPART(15.2.2), RARF(15.11), RARF2(10
	115.4).RPART(15.2)	11
	115,4),RPART(15,2)	11

103

	С		12
	С		13
		COMMON ZO,RO,PO,UO,VO,LO,MO,RHOO,EO,AO,UBARO,VBARO	14
	С		15
		COMMON NP,NT,NR,NI,NDEL,ISUB	16
	С		17
		COMMON ZMIN,ZMAX,RMIN,RMAX,RADIUS,GZ,GR,DELTA,H	18
		COMMON DIRCOS	19
		COMMON TIME	20
		COMMON IRARF	21
		COMMON KSTOP	22
		COMMON TPSI	23
		COMMON KKK	24
		REAL LO,MO,LENGTH,MU,KO	25
	C		26
	·	GO TO (5,10,100,300),KODE	27
	5	NN=NP	28
		K=1	29
		GO TO 15	30
	10	NN=NT	31
		K=2	32
	15	AA=(TAB{1,1,K}-ZP)**2+(TAB(1,2,K)-RP)**2	33
	С		34
	С	SEARCH SHOCK TABLES	35
	С		36
		DO 60 N=2,NN	37
•		A={TAB{N,1,K}-ZP}**2+{TAB{N,2,K}-RP}**2	38
		IF (A.GE.AA) GO TO 23	39
		AA=A	40
	60	CONTINUE	41
		PICK=NN-1	42
		PICK=PICK+.2	43
		RETURN	44
	23	PICK=N-1	45
		PICK=PICK+.2	46
		RETURN	47

100	AA=(RARF(1,1)-ZP)**2+(RARF(1,2)-RP)**2	48
C		49
C	SEARCH RAREFACTION TABLE	50
C		51
	DO 200 N=2+NR	52
	A=(RARF(N,1)-ZP)**2+(RARF(N,2)-RP)**2	53
	IF (A.GE.AA) GO TO 203	54
	AA=A	55
200	CONTINUE	56
	PICK=NR-1	57
	PICK=PICK+.2	58
	RETURN	59
203	PICK=N+1	60
	PICK=PICK+.2	61
	RETURN	62
300	$\Delta A = (SURF(1,1) - ZP) * 2 + (SURF(1,2) - RP) * 2$	63
Č		64
č	SEARCH EREE SURFACE TABLE	65
r r	JERRON TREE DORFROE TROLE	66
v	DD 400 N#2-NP	67
	A= (SHD E (N, 3) = 7D) == 2+1 SHD E (N, 2) = RD) == 7D	68
	$I \in \{A, C \in AA\}$ on th 303	69
	AA-A	70
600		71
400	OTCH-ND_3	72
	FICK-NF-1 BICK-DICKA 3	73
	ΓΙΟΝ-ΓΙΟΝΤΦΖ Ο στ ιόμ	74
20.2	NE I UNN DI CK-N-1	75
505	PICK-NTI	76
207		77
304		70
	RETURN	10
	DEBUG SUBLIK	70
	ENU	19
-	SUBROUTINE GUESS(KOD1+KUD2+ZP+RP+12+K2+ZG+RG+DZ+DR)	1
C		2
C	DETERMINES STARTING POINT AND DELTAS	3

-	TOD NEWTON-DADUSON ITERATION	4
L	FUK MENTUN-KAPHSUN TTENATION	5
C	ANNON ANTERNAL ATEL ATES ATES ATES ATEL ATEL ATES ATEL ATES	6
	CUMMUN CASEIULIAN, ITSINITSZATTSSATTSATTATATATATATATATATATATATATA	7
	12, EPS3, EPS4, EPS0, EPS0, EPS1, EP12, EP13, EP14, EP14, EP12, EP13, EP12, EP13, EP14, EP12, EP13, EP14, EP	8
	1GTH, APR, BPR, BIGAPR, BIGAPR, BIGAPR, ESTAR, ALPHA, BETAKNOSTR, ERROTA, BIGAPR, BIGAPR, BIGAPR, BIGAPR, ESTAR, ALPHA, BETAKNOSTR, ETROTA, BIRFE	9
	COMMON XMESH(20,20,6), XMESH2(20,20,6), 2(20,6), 2(20,7), COMMON XMESH(20,20,6), XMESH2(20,20,6), XMESH2(20,20,6), 2(20,	10
	1(15+8)+TAB(15+14+2)+TAB2(15+14+2)+5PAR1(15+2+2)+RART(15+11)+	11
	115,4),RPART(15,2)	12
С		13
C		14
	COMMON ZO,RO,PO,UO,VO,LO,MO,RHUO,EU,AU,UDAKU,VBAKU	15
C		16
	COMMON NP,NT,NR,NI,NDEL,ISUB	17
C		18
	COMMON ZMIN,ZMAX,RMIN,RMAX,RADIUS,GZ,GR,DELTA,H	19
	COMMON DIRCOS	20
	COMMON TIME	21
	COMMON IRARF	22
	COMMON KSTOP	22
	COMMON TPSI	23
	COMMON KKK	24
	REAL LO, MO, LENGTH, MU, KO	29
. C		20
-	K S=0	21
	IF (KOD1.EQ.2) GO TO 10	20
	ZG=TAB(12,1,K2)	29
	RG = TAB(12, 2, K2)	30
	IF (IRARF.EQ.1) GO TO 9	51
2	M=1-(NR-2)*(K2-2)	32
-	FF=RG-RARF(M+1,2)-(RARF(M,2)-RARF(M+1,2))*(ZG-RARF(M+1,1))/(RARF(M	33
	1.1)-RARF(M+1.1))	34
	IF (FF.GT.0.) GO TO 9	35
	ZG=(1,-,02/(RADIUS-RG))+ZG	36 27
	RG = RG + .02	31
	IF (RG.GT. (RADIUS01)) GO TO 110	38
	GO TO 2	39

• •

104

I

9	CONTINUE	40
	GO TO 50	41
10	JJJ=NT-1	42
	IF (ITS3.EQ.1) GO TO 26	43
	DO 24 M=1,JJJ	44
	IF (RP.GT.TAB(M+1,2,2).OR.RP.LT.TAB(M,2,2)) GO TO 24	45
	GO TO 25	46
24	CONTINUE	47
25	CONTINUE	48
	FF=ZP-TAB(M+1,1,2)-(TAB(M,1,2)-TAB(M+1,1,2))*(RP-TAB(M+1,2,2))/(TA	49
	$1B(M \cdot 2 \cdot 2) - TAB(M + 1 \cdot 2 \cdot 2))$	50
	IF (FF.GT.0.) GO TO 20	51
26	CONTINUE	52
20	7G=7P	53
	RG=RP	54
	GO TO 50	55
20	IK=M	56
F 4	M=CROSS(TAB(IK.1.2).TAB(IK.2.2).TAB(IK+1.1.2).TAB(IK+1.2.2).00	57
	170.RP.7G.RG)	58
	GO TO (50.920.930).M	59
C		60
ř	COMPUTE DELTAS	61
ř		62
50		63
ć		64
č		65
č		66
C C	Ι Ι <u></u> #Λ	67
52	DO 70 N=1-NDFI	68
26	77=7G+DFI	69
	M=COMP(7C,RC,77,RC)	70
	$\mathbf{f} = \mathbf{f} \mathbf{M} \mathbf{N} \mathbf{F} = 1 \mathbf{N} \mathbf{C} \mathbf{T} \mathbf{C} \mathbf{T} \mathbf{C} \mathbf{S} \mathbf{S}$	71
	D7=DEI	72
	CO TO 80	73
55	77=7G=DEF	74
22	M-COMP(7C.PC.77.PC)	75

107

	TE (M NE 1) CO TO 60	76
	D1- D21	. 77
		78
		79
60		80
70	CUNTINUE	81
	LL=LL+1	82
	IF (LL.EQ.3) 60 10 75	83
	RG=RG-DELIA/D+	84
	DEL=DELTA	85
	GO TO 52	86
75	K0D2=2	87
	RETURN	88
80	DEL=DELTA	89
	IF (KS.EQ.1) GO IU 120	90
C		91
C	R DELTA	92
C		93
	LL=0	94
82	DO 100 N=1+NDEL	95
	RR=RG+DEL	96
	M=COMP(ZG,RG,ZG,RR)	97
	IF (M.NE.1) GO TO 85	98
	DR=DEL	99
	IF (KS.EQ.1) GO TO 50	100
	GO TO 120	101
85	RR=RG-DEL	102
	M=COMP(ZG,RG,ZG,RR)	103
	IF (M.NE.I) GD TO 90	104
	DR=-DEL	105
	IF (KS.EQ.1) GO TO 50	106
	GO TO 120	107
90	DEL=.5+DEL	108
100	CONTINUE	109
108	CONTINUE	110
	LL=LL+1	, 111
	FLL=LL	444

. .

158

. . .
		TE (11-E0-5) GO TO 110	112
	C		113
	104	761=76+DFLT&/5_*FLL*{-1_}**!!	114
	104	M=COMP(76, R6, 761, R6)	115
		7C=7C1	116
		IE (M.NE.1) CD TO 108	117
		KC-1	118
		NJ-1 CO TO 92	119
	110	80 10 82 8002-2	120
	110	RUUZ-Z	121
	120		122
	120		122
		KEIUKN	123
	920	WKIIE (3,922) Forwar (couperdo con coincident (ince in curp. Curce)	124
	922	FURMAI (42HOERRUR FUR LUINLIDENT LINES IN SUBR. GUESS)	120
	_	GO TO 950	120
	C		127
	930	WRITE (3,932)	128
	932	FORMAT (40HOERROR FOR PARALLEL LINES IN SUBR. GUESS)	129
	C		130
	950	WRITE (3,952) KOD1,12,K2,ZP,RP	131
	952	FORMAT (1X5HKOD1=,I4,4X3HI2=,I4,4X3HK2=,I4/1X3HZP=,E15.8,4X3HRP=,E	132
		115.8/1H1)	133
		XYZ=-2.	134
		ZYX=SQRT(XYZ)	135
		CALL EXIT	136
		RETURN	137
		END	138
		FUNCTION CROSS(X1,Y1,X2,Y2,X3,Y3,X4,Y4,X,Y)	1
	С		2
,	С	FINDS INTERSECTION OF TWO STRAIGHT LINES	3
	C		4
		EPS=.0000001	5
		A1=Y2-Y1	. 6
		B1=X1-X2	7
		C1 = X1 + A1 + Y1 + B1	8
		A2=Y4-Y3	9

109

,			
		B2=X3-X4	10
		C2=X3*A2+Y3*B2	11
		DET=A1+B2-A2+B1	12
		D1 = C1 + B2 - C2 + B1	13
		D2 = A1 + C2 - A2 + C1	14
		IF (ABS(DET).LE.EPS) GO TO 10	15
		X=D1/DET	16
		Y=D2/DET	17
		CROSS=1	18
		CROSS=CROSS++2	19
		RETURN	20
	10	IF (ABS(D1).GT.EPS) GD TO 20	21
		IF (ABS(D2).LE.EPS) GO TO 30	22
	20	CROSS=3	23
		CROSS=CROSS++2	24
r		RETURN	25
	30	X≠X1	26
		Y=Y1	27
		CROSS=2	28
		CROSS=CROSS+.2	29
	316	CONTINUE	30
		RETURN	31
		DEBUG SUBCHK	24
		END	32
		FUNCTION PART(MODE,ZP,RP,ZX,RX,DELTA,NDEL)	1
	С		2
	С	LOCATES A POINT IN THE SAME REGION AS A GIVEN POINT	3
	C	TO BE USED IN COMPUTING A PARTIAL	4
	С	MODE=1,WITH RESPECT TO R	2
	С	NODE=2,WITH RESPECT TO Z	0
	С		1
		GO TO (2,4),MODE	8
	2	DR=DELTA	10
		DZ=0.	10
		GO TO 8	12
	4	DR≠0.	L C

110

		DZ=DELTA	13	
	8	DO 50 NN=1,NDEL	14	
		RR=RP+DR	15	
		ZZ=ZP+DZ	16	
		M=COMP(ZP,RP,ZZ,RR)	17	
		IF (M.EQ.1) GO TO 60	18	
		RR=RP-DR	19	
		ZZ=ZP-0Z	20	
		M=COMP{ZP,RP,ZZ,RR}	21	
		IF (M.EQ.1) GO TO 60	22	
		DZ=DZ*•5	23	
		DR=DR+.5	24	
	50	CONTINUE	25	
		PART=2	26	
		PART=PART++2	27	
		RETURN	28	
	60	2X=22	29	
		RX=RR	30	
		PART=1	31	
		PART=PART++2	32	
		RETURN	33	
		DEBUG SUBCHK		
		END	34	
		FUNCTION PICK2(ZP,RP,KODE)	1	
	С		2	
	С	DETERMINES 2 CLOSEST CONSECUTIVE POINTS ON SPECIFIED	3	
	С	LINE OF DISCONTINUITY TO A GIVEN POINT	4	
		COMMON CASEID(14), ITS1, ITS2, ITS3, ITS4, ITI1, ITI2, ITI3, ITI4, EPS1, EPS	5	
		12, EPS3, EPS4, EPS5, EPS6, EPI1, EPI2, EPI3, EPI4, EPI5, EPI6, EPI7, VP, AR, LEN	6	
		1GTH, APR, BPR, BIGAPR, BIGBPR, ESTAR, ALPHA, BETA, RHOSTR, EPRS, RHOS	7	
		COMMON XMESH(20,20,6),XMESH2(20,20,6),Z(20),R(20),SURF(15,8),SURF2	8	
		1(15,8),TAB(15,14,2),TAB2(15,14,2),SPART(15,2,2),RARF(15,11),RARF2(9	
		115,4),RPART(15,2)	10	
i.	C		11	
		COMMON ZO, RO, PO, UO, VO, LO, MO, RHOO, EO, AO, UBARO, VBARO	12	
		COMMON NP, NT, NR, NI, NDEL, ISUB	13	

,

11/

C		14
•	COMMON ZMIN.ZMAX.RMIN.RMAX.RADIUS.GZ.GR.DELTA.H	15
	CONMON DIRCOS	16
	COMMON TIME	17
	COMMON TRARF	18
	COMMON KSTOP	19
	COMMON TPST	20
	COMMON KKK	21
	REAL LO.MO.LENGTH.MU.KO	22
r		23
v	GD_TD_(5.10.100.205.210.300.500).KODE	24
5	NN=NP	25
<u> </u>	K=1	26
	GO TO 15	27
10	NN=NT	28
1.0	K=2	29
15	AA=(TAB2(1.1.K)-ZP)**2+(TAB2(1.2.K)-RP)**2	30
c C		31
č	SEARCH SHOCK TABLES	32
č		33
Ŭ	DD 60 N=2.NN	34
	A= (TAB2(N+1+K}-ZP)**2+(TAB2(N+2+K)-RP)**2	35
	IF (A.GE.AA) GO TO 23	36
		37
60	CONTINUE	38
	PICK2=NN-1	39
	PICK2=PICK2+.2	40
	RETURN	41
23	PICK2=N-1	42
	PICK2=PICK2+.2	43
	RETURN	44
100	AA=(RARF2(1,1)-ZP)**2+(RARF2(1,2)-RP)**2	45
c		46
č	SEARCH RAREFACTION TABLE	47
č		48
-	DO 200 N=2,NR	49

	A=(RARF2(N,1)-ZP)**2+(RARF2(N,2)-RP)**2	50
	IF (A.GE.AA) GO TO 203	51
	AA=A	52
200	CONTINUE	53
	PICK2=NR-1	54
	PICK2=PICK2+.2	55
	RETURN	56
203	PICK 2=N-1	57
	PICK2=PICK2+.2	58
	RETURN	59
205	NN=NP	60
	K=1	61
	GO TO 215	62
210	NN=NT	63
	K=2	» 64
215	AA=(SPART(1,1,K)-ZP)**2+(SPART(1,2,K)-RP)**2	× 04 65
C		66
С	SEARCH SHOCK PARTICLE TABLES	67
С		68
	DD 260 N=2,NN	69
	A=(SPART(N,1,K)-ZP)**2+(SPART(N,2,K)-RP)**2	70
	IF (A.GE.AA) GO TO 223	71
	ΔΔ=Δ	72
260	CONTINUE	73
	PICK2=NN-1	74
	PICK2=PICK2+.2	75
	RETURN	76
223	PICK2=N-1	77
	PICK2=PICK2++2	78
	RETURN	79
300	AA=(RPART(1,1)-ZP)**2+(RPART(1,2)-RP)**2	80
С		81
С	SEARCH RAREFACTION PARTICLE TABLE	82
C		83
	DO 400 N=2+NR	84
	A={RPART(N,1}-ZP)**2+(RPART(N,2)-RP)**2	85

	· · ·		
	IF (A.GE.AA) GO TO 403	86	
		87	
400	CONTINUE	86	
	PICK2=NR-1	89	
	PICK2=PICK2+.2	90	
	RETURN	91	
403	PICK2=N-1	92	
	PICK2=PICK2++2	93	
	RETURN	94	
500	AA=(SURF2(1,1)-ZP)**2+(SURF2(1,2)-RP)**2	95	
C		96	
C	SEARCH FREE SURFACE TABLE	97	
C		98	
	DO 520 N=2,NP	99	
	A= (SURF2(N,1)-ZP)++2+(SURF2(N,2)-RP)++2	100	
	IF (A.GE.AA) GO TO 523	101	
		102	
520	CONTINUE	103	
	PICK2=NP-1	104	
	PICK2=PICK2+.2	105	
	RETURN	106	
523	PICK2=N-1	107	
	PICK2=PICK2+.2	108	
	RETURN	109	
	DEBUG SUBCHK		
	END	110	
_	FUNCTION TEST(ZP,RP)	1	
C		2	
C		3	
C	DETERMINES IF A GIVEN INTERIOR POINT IS IN	4	
C	THE REGION TO BE CONSIDERED	5	
C		6	
	COMMON CASEID(14), ITS1, ITS2, ITS3, ITS4, ITI1, ITI2, ITI3, ITI4, EPS1, EPS	7	
	12, EPS3, EPS4, EPS5, EPS6, EPI1, EPI2, EPI3, EPI4, EPI5, EPI6, EPI7, VP, AR, LEN	8	
	1GTH, APR, BPR, BIGAPR, BIGBPR, ESTAR, ALPHA, BETA, RHOSTR, EPRS, RHOS	9	
	COMMON XMESH(20,20,6),XMESH2(20,20,6),Z(20),R(20),SURF(15,8),SURF2	10	

114

1(15,8),TAB(15,14,2),TAB2(15,14,2),SPART(15,2,2),RARF(15,11),RARF2(11 115,4),RPART(15,2) 12 С 13 С 14 COMMON Z0,R0,P0,U0,V0,L0,M0,RH00,E0,A0,UBAR0,VBAR0 15 С 16 COMMON NP, NT, NR, NI, NDEL, ISUB 17 C 18 COMMON ZMIN, ZMAX, RMIN, RMAX, RADIUS, GZ, GR, DELTA, H 19 COMMON DIRCOS 20 COMMON TIME 21 COMMON IRARF 22 COMMON KSTOP 23 COMMON TPSI 24 COMMON KKK 25 REAL LO, MO, LENGTH, MU, KO 26 С 27 EPS=.0001 28 IF (ITS3.EQ.1) GO TO 5 29 IF (RP.GT.(RADIUS+EPS)) GO TO 5 30 M=PICK2(ZP,RP,7) 31 FF=ZP-SURF2(M+1,1)-(SURF2(M,1)-SURF2(M+1,1))*(RP-SURF2(M,2))/(SURF 32 12(M,2)-SURF2(M+1,2)) 33 KICK=5 34 CALL DVCHK(KQ) 35 IF (KQ.EQ.1) GO TO 9980 36 IF (FF) 200,5,5 37 5 CONTINUE 38 IF (ZP.GT.-EPS) GO TO 1 39 IF (RP.GT.(RADIUS+EPS)) GO TO 200 40 1 DO 10 K=1.2 41 IF (ITS3.EQ.1) GO TO 100 42 M=PICK2(ZP,RP,K) 43

 IF
 (TAB2(M,2,K).GT.RP.AND.M.NE.1)M=M-1
 44

 FF=ZP+TAB2(M+1,1,K)-(TAB2(M,1,K)-TAB2(M+1,1,K))*(RP-TAB2(M+1,2,K))
 45

 1/(TAB2(M,2,K)-TAB2(M+1,2,K))
 46

	KICK=50	47
	CALL DVCHK(KQ)	48
	IF (KQ.EQ.1) GO TO 9980	49
	IF (K.EQ.2) GO TO 50	50
	IF (RP.GT.RADIUS) GO TO 10	51
	IF (FF) 200,10,10	52
50	IF (FF) 10,10,200	53
10	CONTINUE	54
	DO 20 K=1,2	55
	J=K+3	56
	M=PICK2(ZP,RP,J)	57
	IF (SPART(M,2,K).GT.RP.AND.M.NE.1)M=M-1	58
	FF=ZP-SPART(M+1,1,K)-(SPART(M,1,K)-SPART(M+1,1,K))*(RP-SPART(M+1,2	59
	1+K})/(SPART(M+2+K)-SPART(M+1+2+K))	60
	KICK=15	61
•	CALL DVCHK(KQ)	62
	IF (KQ.EQ.1) GO TO 9980	63
	IF (K.EQ.2) GO TO 15	64
	IF (RP.GT.RADIUS) GO TO 20	65
	IF (FF.LT001) GD TO 300	66
	GO TO 20	67
15	IF (FF.GT001) GO TO 400	68
20	CONTINUE	69
	IF (IRARF.EQ.1) GO TO 100	70
	M=PICK2(ZP,RP,3)	71
	FF=RP-RARF2(M+1,2)-(RARF2(M,2)-RARF2(M+1,2))*(ZP-RARF2(M+1,1))/(RA	72
	1RF2(M,1)-RARF2(M+1,1))	73
	KICK=20	74
	CALL DVCHK(KQ)	75
4	IF (KQ.EQ.1) GO TO 9980	76
	IF (FF.LT.0.) GO TO 100	11
	$M \neq PICK2(2P_{\phi}RP_{\phi}G)$	78
	FF=RP-RPARI(M+1+2)-(KPARI(M+2)-RPARI(M+1+2))+(2P-RPARI(M+1+1))/(KP	19
	1AKI(M,1)-RPAKI(M+1,1))	80
		.07
	UALL UVCHK(KQ)	82
	116	

. I

	IF (KQ.EQ.1) GO TO 9980	83
	IF (FF.LT.0.) GO TO 500	84
100	TEST=1	85
	TEST=TEST+.2	86
	RETURN	87
200	TEST=2	88
	TEST=TEST+.2	89
	RETURN	90
300	TEST=3	91
	TEST=TEST+.2	92
	RETURN	93
400	TEST=4	94
	TEST=TEST+.2	95
	RETURN	96
500	TEST=5	97
	TEST=TEST+.2	98
	RETURN	99
9980	WRITE (3,9985) KICK	100
9985	FORMAT (32HODIVIDE CHECK NEAR STATEMENT NO., 15, 14H IN SUBR. TEST/1	101
	1H1)	102
	RETURN	103
	DEBUG SUBCHK	
	END	104
	SUBROUTINE FGOF5(Z5,R5,SS,QQ,PHI,NMAX,MMAX)	
С	SUBROUTINE FGOF5(Z5,R5,SS,QQ)	
С		2
С	COMPUTES S5,Q5 FOR INTERIOR REGION	3
С	ITERATION FOR 25,R5	4
С		5
	COMMON CASEID(14), ITS1, ITS2, ITS3, ITS4, ITI1, ITI2, ITI3, ITI4, EPS1, EPS	6
	12, EP\$3, EP\$4, EP\$5, EP\$6, EP11, EP12, EP13, EP14, EP15, EP16, EP17, VP, AR, LEN	7
	1GTH, APR, BPR, BIGAPR, BIGBPR, ESTAR, ALPHA, BETA, RHOSTR, EPRS, RHOS	8
	COMMON XMESH(20,20,6),XMESH2(20,20,6),Z(20),R(20),SURF(15,8),SURF2	9
	1(15,8),TAB(15,14,2),TAB2(15,14,2),SPART(15,2,2),RARF(15,11),RARF2(10
	115,4),RPART(15,2)	11
C		12

Å

117

ι

c		13
CON	MON ZO,RO,PO,UO,VO,LO,MO,RHOO,EO,AO,UBARO,VBARO	14
C .		15
Č COM	IMON NP,NT,NR,NI,NDEL,ISUB	16
C		17
COM	IMON ZMIN,ZMAX,RMIN,RMAX,RADIUS,GZ,GR,DELTA,H	18
CON	IMON DIRCOS	19
CON	IMON TIME	20
CON	IMON IRARF	21
CO	IMON KSTOP	22
00	IMON TPSI	23
COL	AMON KKK	24
RE	LO.MO.LENGTH.MU.KO	25
DOI	IBLE PRECISION PHI(20,20,6)	
с. С		26
БТ/	AENSION ANS(6)	27
с 21.		28
TS:	SS=1.1	
IF	(TIME.GT.TSSS) GD TO 100	
CAI	L DBL TRP (Z5,R5,ANS)	
GO	TO 101	
100 CA	LL DSURFT(Z5,R5,ANS,PHI,NMAX,MMAX)	
101 05	=ANS(2)	
C U5	=ANS(2)	
V5	=ANS (3)	31
SS	=Z5-Z0+H*V5	32
00	=R5-R0+H*U5	33
RE	TURN	34
DE	BUG SUBCHK	
EN	D	35
SU	BROUTINE ITRP	1
CO	MMON CASEID(14), ITS1, ITS2, ITS3, ITS4, ITI1, ITI2, ITI3, ITI4, EPS1, EPS	2
12.	EPS3,EPS4,EPS5,EPS6,EPI1,EPI2,EPI3,EPI4,EPI5,EPI6,EPI7,VP,AR,LEN	3
1GT	H, APR, BPR, BIGAPR, BIGBPR, ESTAR, ALPHA, BETA, RHOSTR, EPRS, RHOS	. 4
co	MMON XMESH(20,20,6), XMESH2(20,20,6), Z(20), R(20), SURF(15,8), SURF2	5
1(1	5.81.TAB(15.14.2).TAB2(15.14.2).SPART(15.2.2).RARF(15.11).RARF2(6

118

.. ~

رند. ... لا

and the second second

1	15,4),RPART(15,2)	
	COMMON Z0,R0,P0,U0,V0,L0,M0,RH00,E0,A0,UBAR0,VBAR0	
	CUMMUN NP9NI9NK9NI9NUEL9ISUB	
	COMMON THEN THAT DHAY DADING CT CO DELTA H	
	COMMON ATACASKAINSKAAASKADIUSSULSUKSUCEIASA Common atacas	
	COMMON KKK	
	REAL LO.MO.LENGTH.MU.KO	
INTE	RPOLATION SCHEME FOR POINTS BETWEEN PARTICLE CURVES	
AND	DISCONTINUITIES	
	EPS=.0000001	
	K0D1=0	
	K0D2=0	
	DO 1000 J=1,20	
	DO 1000 I=1,20	
	M=TEST(Z(I),R(J))	
	IF (M.NE.5) GO TO 906	
	IF (IRARF.EQ.1) GD TO 906	
	NR1=NR-1	
	DO 907 JJ=1,NR1	
	IF (RARF2(JJ,1).LT.Z(I).AND.RARF2(JJ+1,1).GT.Z(I)) GO TO 908	
7	CONTINUE	
8	CONTINUE	
	FF=R(J)-RARF2(JJ+1,2)+(RARF2(JJ,2)-RARF2(JJ+1,2))*(Z(I)-RARF2(JJ+1	
1	(+1))/(RARF2(JJ+1)-RARF2(JJ+1+1))	

÷

.

119

,

x

•

IF (FF.LT.0.) GD TO 1000	43
CONTINUE	44
IF (M.EQ.3.AND.Z(I).LT.EPS.AND.ABS(R(J)-RADIUS).LT.EPS) GO TO 1000	45
IF (M.LT.3) GO TO 8051	46
WRITE (3,8050)	47
FORMAT (30HOINTERPOLATION SCHEME EMPLOYED)	48
FORMAT (1X5HZQ =,E15.8,4X5HRO =,E15.8)	49
ZO=Z(I)	50
R0=R(J)	51
WRITE (3,614) ZO,RO	52
WRITE (3,8888) M	53
FORMAT (1X4HM =,14)	54
CONTINUE	55
GO TO (1000,1000,1001,1010,1100),M	56
IF (IRARF.EQ.1) GO TO 1003	57
M=PICK2(Z(I),R(J),3)	58
FF=R(J)-RARF2(M+1,2)+(RARF2(M,2)-RARF2(M+1,2))*(Z(I)-RARF2(M+1,1))	59
1/(RARF2(M,1)-RARF2(M+1,1))	60
IF (FF.GT.0.) GO TO 1003	61
DD 8002 K=1,6	62
L=K+2	63
XMESH2(I,J,K)=RARF(1,L)	64
GO TO 1000	65
L=I+1	66
N=TEST(Z(L),R(J))	67
GO TO (1004,1007,1030,1030,1050),N	68
M=PICK2(Z(I),R(J),1)	69
DO 1006 K=1,8	70
ANS=TAB2(M,K,1)+(TAB2(M+1,K,1)-TAB2(M,K,1))*(R(J)-TAB2(M,2,1))/(TA	71
182(M+1,2,1)-TAB2(M,2,1))	72
IF (K.NE.1) GD TO 8005	73
ANS1=ANS	74
GO TO 1006	75
CONTINUE	76
IF (K.EQ.2) GO TO 1006	77
KX=K-2	78
	<pre>IF (FF.LT.0.) GO TO 1000 CONTINUE IF (M.EQ.3.AND.2(1).LT.EPS.AND.ABS(R(J)-RADIUS).LT.EPS) GO TO 1000 IF (M.LT.3) GO TO 8051 WRITE (3,8050) FORMAT (30HOINTERPOLATION SCHEME EMPLOYED) FORMAT (1000000000000000000000000000000000000</pre>

*

120

	IF (ABS(R(J)-RADIUS).GT.EPS) GO TO 9024	79
	IF (K.GT.5.0R.K.LT.4) GO TO 9024	80
	ANS=TAB2(M+1,K,1)	81
9024	CONTINUE	82
	XMESH2(I,J,KX)=ANS+(XMESH2(L,J,KX)-ANS)*(Z(I)-ANS1)/(Z(L)-ANS1)	83
	IF (ABS(R(J)-RADIUS).GT.EPS) GD TO 1006	84
	XMESH2(I,J,1)=0.	85
	XMESH2(I,J,4)=RHOSTR	86
	XMESH2(I,J,5)=0.	87
	XMESH2(1,J,6)=SQRT(BIGAPR/RHOSTR)	- 88
1006	CONTINUE	89
	GO TO 1000	90
1007	MM=PICK2(Z(I),R(J),2)	91
·	M=PICK2(Z(1),R(J),1)	92
	DO 1009 K=1,8	93
	ANS=TAB2(M,K,1)+(TAB2(M+1,K,1)-TAB2(M,K,1))*(R(J)-TAB2(M,2,1))/(TA	94
	1B2(M+1,2,1)-TAB2(M,2,1))	95
	ANSW=TAB2(MM,K,2)+{TAB2(MM+1,K,2)+TAB2(MM,K,2))*{R(J)+TAB2(MM,2,2)	96
<i>,</i> .	1)/(TAB2(MM+1,2,2)-TAB2(MM,2,1))	97
	IF (K.NE.1) GO TO 1008	98
	ANS1=ANS	99
	ANS2=ANSW	100
	GO TO 1009	101
1008	CONTINUE	102
	IF (K.EQ.2) GO TO 1009	103
	KX=K-2	104
	XMESH2(I,J,KX)=ANS+(ANSH-ANS)*(Z(I)+ANS1)/(ANS2-ANS1)	105
1009	CONTINUE	106
	GD TO 1000	107
1010	IF (IRARF.EQ.1) GO TO 1013	108
	M=PICK2(Z(I),R(J),3)	109
	FF=R(J)-RARF2(M+1,2)+(RARF2(M,2)-RARF2(M+1,2))*(Z(I)-RARF2(M+1,1))	110
	1/(RARF2(M,1)-RARF2(M+1,1))	111 .
	IF (FF.GT.0.) GO TO 1013	112
	DD 1012 K=1,6	113
	L≖K+2	114

•

12/

1012	XMESH2(I,J,K)=RARF(1,L)	115
	GO TO 1000	116
1013	L=I-1	117
	IF (ABS(Z(I)).LT.EPS) GD TO 1017	118
	N=TEST(Z(L),R(J))	119
	GO TO (1014,1017,1030,1017,1051),N	120
1014	M=PICK2(Z(1),R(J),2)	121
	DO 1016 K=1,8	122
	ANS=TAB2(M,K,2)+(TAB2(M+1,K,2)-TAB2(M,K,2))*(R(J)-TAB2(M,2,2))/(TA	123
	1B2(M+1,2,2)-TAB2(M,2,2))	124
	IF (K.NE.1) GO TO 1015	125
	ANS1=ANS	126
	GO TO 1016	127
1015	CONTINUE	128
	IF (K.EQ.2) GD TO 1016	129
	KX=K-2	130
	XMESH2(I,J,KX)=ANS+(XMESH2(L,J,KX)-ANS)*(Z(I)-ANS1)/(Z(L)-ANS1)	131
1016	CONTINUE	132
	GO TO 1000	133
1017	L=J-1	134
	N=TEST(Z(I),R(L))	135
	GD TO (1024,1030,1030,1030,1051),N	136
1024	M=PICK2(Z(I),R(J),2)	137
	DD 1026 K=2,8	138
	ANS=TAB2(M,K,2)+{TAB2(M+1,K,2)-TAB2(M,K,2))*{Z(I)-TAB2(M,1,2))/(TA	139
	1B2(M+1,1,2)-TAB2(M,1,2))	140
	IF (K.NE.2) GO TO 1025	141
	ANS1=ANS	142
	GD TO 1026	143
1025	CONTINUE	144
	KX=K-2	145
	IF (ABS(Z(I)).GT.EPS) GO TO 9125	146
	IF (K.GT.5.DR.K.LT.4) GO TO 9125	147
	ANS=TAB2(M+1,K,2)	148
9125	CONTINUE	149
	XMESH2(I,J,KX)=ANS+(XMESH2(I,L,KX)-ANS)*(R(J)-ANS1)/(R(L)-ANS1)	150

•

.

and the second second

	IF (ABS(Z(I)).GT.EPS) GO TO 1026	151
	XMESH2(1,J,1)=0.	152
	XMESH2(1,J,4)=RHOSTR	153
	XMESH2(I,J,5)=0.	154
	XMESH2(I,J,6)=SQRT(BIGAPR/RHOSTR)	155
1026	CONTINUE	156
	GD TO 1000	157
1100	M=PICK2(Z(I),R(J),3)	158
	ANS1=RARF2(M+1,2)+(RARF2(M,2)-RARF2(M+1,2))*(Z(I)-RARF2(M+1,1))/(R	159
	1ARF2(M,1)-RARF2(M+1,1))	160
	L=J+1	161
	M=TEST(Z(I),R(L))	162
	GO TO (1101,1030,1051,1030),M	163
1101	CONTINUE	164
	DO 1106 K=1,6	165
	LL=K+2	166
	XMESH2(I,J,K)=RARF(1,LL)+(XMESH2(I,L,K)-RARF(1,LL))*(R(J)-ANS1)/(R	167
	1(L)-ANS1)	168
1106	CONTINUE	169
	GO TO 1000	170
1050	JJ1=J	171
	II1=I	172
	KOD1=1	173
	GO TO 1000	174
1051	JJ2=J	175
	112=1	176
	K0D2=1	177
1000	CONTINUE	178
	IF (KOD1.EQ.0) GD TO 2000	179
	M=PICK2(Z(II1),R{JJ1},1)	180
	DO 2016 K=1,8	181
	ANS=TAB2(M,K,1)+(TAB2(M+1,K,1)-TAB2(M,K,1))*(R(JJ1)+TAB2(M,2.1))/(182
	1TAB2(M+1,2,1)-TAB2(M,2,1))	183
	IF (K.NE.1) GD TO 2005	184
	ANS1=ANS	185
	GO TO 2016	186
	1026 1100 1101 1106 1050 1051 1000	<pre>IF (ABS(2(1)).GT.EPS) GO TO 1026 XMESH2(1,J,1)=0. XMESH2(1,J,1)=ROSTR XMESH2(1,J,5)=0. XMESH2(1,J,5)=0. XMESH2(1,J,5)=0. XMESH2(1,J,5)=0. XMESH2(1,J,5)=0. XMESH2(1,J,6)=SQRT(BIGAPR/RHOSTR) 1026 CONTINUE GO TO 1000 1100 M=PICK2(2(1).R(J),3) ANS1=RARF2(M+1,2)+(RARF2(M,2)-RARF2(M+1,2))*(2(1)-RARF2(M+1,1))/(R 1ARF2(M,1)-RARF2(M+1,1)) L=J+1 M=TEST(2(1).R(L)) GO TO (1101.030.1051.1030),M 1101 CONTINUE DO 1106 K=1.6 LL=K+2 XMESH2(1,J,K)=RARF(1,LL)+(XMESH2(I,L,K)-RARF(1,LL))*(R(J)-ANS1)/(R 1(L)-ANS1) 1106 CONTINUE GO TO 1000 1050 JJ1=J 111=1 KOD1=1 GO TO 1000 1051 JJ2=J 111=1 KOD2=1 1000 CONTINUE IF (KOD1.EQ.0) GO TO 2000 M=PICK2(2(111).R(JJ1).1) DO 2016 K=1.6 ANS=TAB2(M,K,1)+(TAB2(M+1,K,1)-TAB2(M,K,1))*(R(JJ1)-TAB2(M,2,1))/(1 1TAB2(M+1.2,1)-TAB2(M,2,1)) IF (K.NE.1) GO TO 2005 ANS1=ANS GO TO 2016</pre>

•

123

2005	CONTINUE	187
	I=II1	188
	1 U U U U U U U U U U U U U U U U U U U	189
	L=111+1	190
	IF (K.EQ.2) GO TO 2016	191
	KX=K-2	192
	XMESH2(I,J,KX)=ANS+(XMESH2(L,J,KX)-ANS)*(Z(I)-ANS1)/(Z(L)-ANS1)	193
2016	CONTINUE	194
2000	IF (KOD2.EQ.0) GO TO 3000	195
	M=PICK2(Z(II2),R(JJ2),2)	196
	DO 3016 K=1,8	197
	ANS=TAB2(M+K,2)+(TAB2(M+1+K,2)-TAB2(M,K,2))*(R(JJ2)-TAB2(M,2,2))/(198
	1TAB2(M+1,2,2)-TAB2(M,2,2))	199
	IF (K.NE.1) GO TO 3015	200
	ANS1=ANS	201
	GO TO 3016	202
3015	CONTINUE	203
	I=II2	204
	J≖JJ2	205
	L=112-1	206
	IF (K.EQ.2) GO TO 3016	207
	KX=K-2	208
	XMESH2(I,J;KX)=ANS+(XMESH2(L,J;KX)-ANS)*(Z(I)-ANS1)/(Z(L)-ANS1)	209
3016	CONTINUE	210
3000	CONTINUE	211
	GO TO 3017	212
1030	WRITE (3,1040) I,J	213
1040	FORMAT (27HO TIME STEP TOO LARGE AT I=,I4,2HJ=,I4,///)	214
	CALL EXIT	215
3017	CONTINUE	216
С		217
С		218
	RETURN	219
	DEBUG SUBCHK	
	END	220
	SUBROUTINE EXIT	1

, L		2
v	COMMON CASEID(14).ITS1.ITS2.ITS3.ITS4.ITI1.ITI2.ITI3.ITI4.EPS1.EPS	3
	12.EPS3.EPS4.EPS5.EPS6.EPI1.EPI2.EPI3.EPI4.EPI5.EPI6.EPI7.VP.AR.LEN	4
	1GTH. APR. BPR. BIGAPR. BIGBPR. ESTAR. AL PHA. BETA. RHOSTR. EPRS. RHOS	5
	COMMON_XMESH(20.20.6).XMESH2(20.20.6).7(20).R(20).SURE(15.8).SURE2	6
	1(15.8).TAB(15.14.2).TAB2(15.14.2).SPART(15.2.2).RARF(15.11).RARF2(7
	115.4).RPART(15.2)	8
r	TTAL ISAUCUUS (TTATE)	ģ
č		10
Ŭ	COMMON 70.80.90.00.V0.10.M0.8H00.F0.40.UBAR0.VBAR0	11
c		12
v	COMMON NP.NT.NR.NT.NDEL.ISUR	13
r		14
C	COMMON ZMIN, ZMAY, PMIN, PMAY, PADIUS, GZ, GR, DELTA, H	15
	COMMON DIDENS	16
	COMMON DIRCOJ	17
	COMMON TRADE	18
		19
	COMPONENTION RELEASE	20
	COMMON FEST	21
	DEAL FO MO LENCTU NH KA	22
	KEAL LUYRUYLENGINYRUYNU Ketod-1	22
	N31UF#1	23
	SIUP	24
	ENU CHODOLTINE ECOET/77 DY 55 DO DHI NHAY NHAY)	25
~	SUBRUUIINE FOUFILZA, KA, SS, WY, FTI, NMAA, MMAA/	
<u>د</u>	SUBRUUTINE FOUFICZX+KX+SS+QQT	2
د د	CONDUTED OF OF TOT INTERIOR DECION	4
	CUMPUTES SI, VI FUK INTEKTUK KEGTUN	5
C C	ITERATION FOR ZIARI	
C		2
	UMMUN UASEIUU147,1151,1152,1153,1154,1111,112,1113,1114,EPS1,EPS	0
	12, EY33, EY34, EY33, EY30, EY11, EY12, EY13, EY14, EY13, EY10, EY1(, VY, AK, LEN	I D
	IGIH, APR, BPR, BIGAPR, BIGBPR, ESTAR, ALPHA, BETA, KHUSTK, EPRS, KHUS	8
	CUMMUN XMESH120,20,61,XMESH2(20,20,61,2(20),R(20),SURF(15,87,SURF2	9
	1(15,8),1AB(15,14,2),TAB2(15,14,2),SPAK1(15,2,2),KARF(15,11),RARF2(10
	115,4},KPARI(15,Z]	11

125

C		12
L		13
^	CUMMON Z0,R0,P0,U0,V0,L0,M0,RH00,E0,A0,UBAR0,VBAR0	14
C C		15
-	COMMON NP, NT, NR, NI, NDEL, ISUB	16
C		17
	COMMON ZMIN, ZMAX, RMIN, RMAX, RADIUS, GZ, GR, DELTA, H	18
	COMMON DIRCOS	10
	COMMON TIME	20
	COMMON IRARF	20
	COMMON KSTOP	4 L 2 D
	COMMON TPSI	22
	COMMON KKK	23
	REAL LO,MO,LENGTH,MU,KO	24
· C		23
	DIMENSION ANS(6).PSI(4).SPSI(11).CPSI(11)	20
	DOUBLE PRECISION PHI(20.20.6)	21
С		
С		28
C		29
Ċ		30
C		31
-	T\$\$\$\$#1.1	32
	IFLITIME GT TSSS) GO TO 100	
	CALL DRITEP(7X-RY-ANS)	
	GO TO 101	
10	O CALL DEIDET / 74. DV. AND DET AMAY MAAVA	
10	1 HITANCEDI	
· · ·		
6	VI-ANS(2)	
		35
	MITMINU (0) SS-7Y_7A4U+1VIIAA t+67AV/TA67AA	36
	JJ-LA-LUTHT1 VITAITJAN1+2100000000000000000000000000000000000	37
1	delidy Ameuveuventutentendelledi)	38
		39

124

II.2. Method of Characteristics Calculations and the Computer Code for Materials with Arbitrary Equations of State.

.

.

Ł

127

RADIAL COORDINATE -cm-2. 1.5 1. ۰5 0 1 Projectile -.5-• Projectile Shock 1.08 1.08 1.0 .83 Target Shock .86 ▲ .56 . 4 ORIGINAL FREE ▲ Interior Region SURFACE $\mathbf{P} = \mathbf{0}$ O Rarefaction ▲.16 **A**.63 0--.89 AXIAL COORDINATE -cm-**.**53 .18 .81 1.08 **.**15[°] **A**.56 ▲ .85 .5-**▲**.17 **●**,15 ▲.59 ▲ .77 ▲.52 ▲.37 ▲.89 1. -.55 .83 1.05 **1**.82 1.08 1.08 Target 1.5 -

.

Ś

Fig. 1. Pressure distribution from the characteristic solution at t = 1.25 usec after impact of a 2.5 -cm- diameter projectile at 0.76 cm/usec on an aluminum half-space.

128

· · ·

RADIAL COORDINATE -cm-

Fig. 2. Pressure distribution from the characteristic solution at $t = 1.52 \mu sec$ after impact of a 2.5 -cm- diameter projectile at 0.76 cm/µsec on an aluminum half-space.

ı

AXIAL COORDINATE -em-

.

.

Ę

Fig 3. Axial pressure profiles at various times as predicted by the charactersite method for a 2.5 -cm- diameter aluminum projectile impacting on aluminum half-space at 0.76 cm/µsec.

130

PRESSURE -mb-

	COMMON CASEID(14), ITS1, ITS2, ITS3, ITS4, ITI1, ITI2, ITI3, ITI4, EPS	1, EPSMAIN	1
	12. EPS3. EPS4. EPS5. EPS6. EPI1. EPI2. EPI3. EPI4. EPI5. EPI6. EPI7. VP. A	R+LENMAIN	2
	1GTH. APR. BPR. BIGAPR. BIGBPR. ESTAR, ALPHA, BETA, RHOSTR, EPRS, RHOS	MAIN	3
	COMMON XME SH(20,20,6), XMESH2(20,20,6), Z(20), R(20), SURF(15,8),	SURF2MAIN	đ _i
	1(15,8),TAB(15,14,2),TAB2(15,14,2),SPART(15,2,2),RARF(15,11),R	ARF2(MAIN	5
	115,4), RPART(15,2)	MAIN	6
C		MAIN	7
Č		MAIN	8
*	COMMON ZO.RO.PO.UO.VO.LO.MO.RHOO.EO.AO.UBARO.VBARO	MAIN	9
ſ.		MAIN	10
*	COMMON NP.NT.NR.NI.NDEL.ISUB	MAIN	11
C		MAIN	12
	COMMON 7MIN.7MAX.RMIN.RMAX.RADIUS.GZ.GR.DELTA.H	MAIN	13
	COMMON DIRCOS.	MAIN	14
	COMMON TIME	MAIN	15
	COMMON' IRARE	MAIN	16
	COMMON KSTOP	MAIN	17
	COMMON TPSI	MAIN	18
	COMMON KKK	MAIN	19
ſ		MAIN	20
ŕ		MAIN	21
9	RFAL LO.MO.LENGTH.MU.KO	MAIN	22
	KR = 10	MAIN	23
	FP S= . 0000001	MAIN	24
	KSTOP=0	MAIN	25
1	FORMAT (1H1)	MAIN	26
-	CALL DVCHK(KEY)	MAIN	27
	KICK=0	MAIN	28
	1F (KEY_F0.1) GO TO 9980	MAIN	29
C.		MAIN	30
•	DD 2 K=1.6	MAIN	31
	00 2 J = 1.20	MAIN	32
	00 2 1 = 1.20	MAIN	33
	XMFSHII, J.KI=Q.	MAIN	34
	XMF SH2 (I I .K) = 0.	MAIN	35
2	CONTINUE	MAIN	36
e_	CONTRACT	•	

131

.

C		MAIN	37
	NUZON=0	MAIN	38
C		MAIN	39
Č		MAIN	40
-	WRITE (3.4)	MAIN	41
С		MAIN	42
č	DATA INPUT SECTION	MAIN	43
č		MAIN	44
4	FORMAT (52H1HYPERVELOCITY IMPACT METHOD OF CHARACTERISTICS CODE//	/MAIN	45
		MAIN	46
C	ID AND FX. PT. CONSTANTS	MAIN	47
č		MAIN	48
-	READ (1.8) CASEID-ITS1-ITS2-ITS3-ITS4-ITI1-ITI2-ITI3-ITI4-NDEL	MAIN	49
8	FORMAT (1346.42/9[3)	MAIN	50
Ũ	TRARF=ITI2	MAIN	51
r		MAIN	52
č	FL. PT. CONSTANTS	MAIN	53
ř		MAIN	54
U I	8FAD (1.15) FPS1.FPS2.FPS3.FPS4.FPS5.FPS6.EPI1.EPI2.EPI3.EPI4.EPI	5MAIN	55
	1.FP16.FP17	MAIN	56
	READ (1.14) NP.NT.NR	MAIN	57
14	FORMAT (313)	MAIN	58
¥.4	READ (1.15) APR-BPR-BIGAPR-BIGBPR-ESTAR-ALPHA-BETA-RHOSTR-EPRS-RE	FMAIN	59
	1	MAIN	60
	READ (1.15) 7MIN.7MAX.RMIN.RMAX.GR.G7.DELTA.VP.LENGTH.RADIUS.HST	RMATN	61
15	ENGNAT (AF12.8)	MATN	62
1.7	READ (1.15) RST	MAIN	63
	$IE (PST_CT_C_) B B TO 16$	MATN	64
	0 CHIND Q	MATN	65
r	00 1520 179 = 1.200	MATN	66
	DE LJZY JIFFIZZOU	MATN	67
r	TELABELDETATINES IT ONLY CO TO 1530	MAIN	68
r r	DEVD2018108	MAIN	69
- U - C1 5 7 0	NEMDI 770.00 Decatione	MATN	70
1630		MATN	71
1000		MATM	72
L		171 69 T 1 8	12

...

-

132

	READ (9)(((XMESH(1+J+K)+I=1+20)+J=1+20)+K=1+6)+(Z(I)+I=1+20)+(R(I)MAIN	73
	1,I=1,20),((SURF(I,J),I=1,15),J=1,8),(((TAB(I,J,K),I=1,15),J=1,14),MAIN	74
	1K=1,2),((RARF{I,J),I=1,15),J=1,11),TIME,ZMIN,ZMAX,RMIN,RMAX,GR,GZ,MAIN	75
	1AR MAIN	76
	DD 1500 J=1,20 MAIN	77
	DO 1500 I=1,20 MAIN	78
	DD 1500 K=1.6 MAIN	79
1500	$XMESH2(I_{+}J_{+}K) = XMESH(I_{+}J_{+}K) $ MAIN	80
	DD 1501 I=1,15 MAIN	81
	DO 1501 J=1,8 - MAIN	82
1501	SURF2(I,J) = SURF(I,J) MAIN	83
	WRITE (3,145) TIME MAIN	84
	CALL SOUT MAIN	85
	CALL PRINT(XMESH2,Z,R,1) NAIN	86
	KREFL=0 MAIN	87
16	CONTINUE MAIN	88
	WRITE (3,10) CASEID, ITS1, ITS2, ITS3, ITS4, ITI1, ITI2, ITI3, ITI4, NDEL MAIN	89
10	FORMAT (1X13A6,A2//17H SHOCK ITERATIONS6X,4I4//20H INTERIOR ITERATMAIN	90
	110NS3X,414//7H NDEL =,14///) MAIN	91
	WRITE (3,18) EPS1, EPS2, EPS3, EPS4, EPS5, EPS6, EPI1, EPI2, EPI3, EPI4, EPIMAIN	92
	15, EPI6, EPI7, ZMIN, ZMAX, RMIN, RMAX, DELTA, VP, LENGTH, RADIUS, APR, BPR, BIGMAIN	93
	1APR, BIGBPR, ESTAR, ALPHA, BETA, RHOSTR, EPRS, REFL MAIN	94
18	FORMAT (///38H ERROR CRITERIA FOR SHOCK COMPUTATIONS//5X8HDELTA ZIMAIN	95
	18X8HDELTA R18X9HDELTA RHO7X7HDELTA E9X7HDELTA P9X7HDELTA U/6E16.6/MAIN	96
	1//41H ERROR CRITERIA FOR INTERIOR COMPUTATIONS//5X8HDELTA ZI8X8HDEMAIN	97
	ILTA RI8X7HDELTA P9X7HDELTA U9X7HDELTA V9X9HDELTA RH07X7HDELTA E/7EMAIN	98
	116.6///5X4HZMIN12X4HZMAX12X4HRMIN12X4HRMAX12X5HDELTA11X2HVP14X6HLEMAIN	99
	INGTHIOX6HRADIUS/8E16.6///5X2HA*14X2HB*14X6HBIG A*10X6HBIG B*10X2HEMAIN	100
	1*14X5HALPHA11X4HBETA12X4HRHO*/8E16.6//5X3HE*S13X4HREFL/2E16.6///) MAIN	101
	IF (RST-LT-0.) GO TO 140 MAIN	102
C	MAIN	103
C	STORE RHO* IN ALL XMESH MAIN	104
C	MAIN	105
	DO 22 J=1,20 MAIN	106
	DD 22 1=1,20 MAIN	107
22	XMESH(I+J+4)=RHOSTR MAIN	108

133

40	FORMAT (5E12.8)	MAIN 109
С		MAIN 110
С	PROJECTILE SHOCK	MAIN 111 -
С		MAIN 112
	CALL EQOSI(PRHO,PPP,PVV,PEE,TEE,TRHO,KICK)	MAIN 113
	IF (KICK.EQ.2200) GO TO 9980	MAIN 114
	00 230 N=1,NP	MAIN 115
	TAB(N,1,1)=(PRHO*PVV-RHOSTR*VP)*HSTAR/(PRHO-RHOSTR)	MAIN 116
	EE=N-1	MAIN 117
	FNP=NP	MAIN 118
	TAB(N,2,1)=RMIN+EE+(RADIUS-RMIN)/FNP	MAIN 119
	TAB(N, 3, 1)=PPP	MAIN 120
	TAB(N+4+1=0.0	MAIN 121
	TAB(N, 5, 1)=PVV	MAIN 122
	TAB(N.6.1)=PRH0	MAIN 123
	TAB(N.7.1)=PEE	MAIN 124
	TAB(N, 9, 1)=0.0	MAIN 125
	TAB(N, 10, 1)=1.0	MAIN 126
230	CONTINUE	MAIN 127
С		MAIN 128
Ċ	TARGET SHOCK	MAIN 129
Č		MAIN 130
	M=0	MAIN 131
	DD 240 N=1.NT	MAIN 132
	EE=N-1	MAIN 133
	FNT=NT-4	MAIN 134
	TAB(N,2,2)=RMIN+EE*(RADIUS-RMIN)/FNT	MAIN 135
	TAB(N, 7, 2)=TEE	MAIN 136
	TAB(N, 6, 2)=TRH0	MAIN 137
	TA8(N, 3, 2)=PPP	MAIN 138
	IF (TAB(N,2,2).GT.RADIUS) GO TO 250	MAIN 139
	TAB(N,1,2)=TRHO*PVV*HSTAR/(TRHO-RHOSTR)	MAIN 140
	TAB(N,4,2)=0.0	MAIN 141
	TAB(N, 5, 2) = PVV	MAIN 142
	$TAB(N_{9},2)=0.0$	MAIN 143
	TAB(N, 10, 2)=1.0	MAIN 144

	GD TO 240	MAIN 145
250	EF=M	MAIN 146
	TAB(N,9,2)=SIN(.5236+EF*.2618)	MAIN 147
	TAB(N+10+2)=COS(.5236+EF*.2618)	MAIN 148
	TAB(N+4+21=PVV+TAB(N+9+2)	MAIN 149
	TAB(N, 5, 2) = PVV * TAB(N, 10, 2)	MAIN 150
	TAB(N,1,2)=TAB(1,1,2)+TAB(N,10,2)	MAIN 151
	TAB(N,2,2)=RADIUS+TAB(1,1,2)*TAB(N,9,2)	MAIN 152
	M=M+1	MAIN 153
240	CONTINUE	MAIN 154
C		MAIN 155
Ċ	RAREFACTION	MAIN 156
č		MAIN 157
-	CALL EQOS2(PPP+PRHO+PEE)	MAIN 158
	EE=NR+1	MAIN 159
	ADEL=(TAB(1,1,2)-TAB(1,1,1))/EE	MAIN 160
	RARF(1,1) = TAB(1,1,2)	MAIN 161
	DD 205 N=2+NR	MAIN 162
	RARF(N.1)=RARF(N-1.1)-ADEL	MAIN 163
205	CONTINUE	MAIN 164
	DO 210 N=1,NR	MAIN 165
	RARF(N,10)=(RARF(N,1)/HSTAR5*VP1/AR	MAIN 166
	RARF(N,9)=-SQRT(1RARF(N,10)++2)	MAIN 167
	RARF(N,2)=RADIUS+HSTAR*AR*RARF(N,9)	MAIN 168
210	CONTINUE	MAIN 169
	DD 220 N=1,NR	MAIN 170
	RARF(N,3)=TAB(1,3,1)	MAIN 171
	RARF(N,4)=0.	MAIN 172
	RARF(N, 5) = TAB(1, 5, 1)	MAIN 173
	RARF(N, 6) = TAB(1, 6, 1)	MAIN 174
	RARF(N,7)=TAB(1,7,1)	MAIN 175
220	CONTINUE	MAIN 176
C	REGION INTERIOR TO SHOCKS	MAIN 177
	[=-ZMIN/GZ+1.2	MAIN 178
	J=0	MAIN 179
260	1 + L = L	MAIN 180

-

-

٠

٠

135

	XMESH([+J+1)=PPP	MAIN	181
	XMESH(I,J,3)=PVV	MAIN	182
	XMESH(I,J,4)=PRHD	MAIN	183
	XMESH(1,J,5)=PEE	MAIN	184
	EE=(J-1)	MAIN	185
	IF ((EE#GR-RADIUS).LTEPS) GO TO 260	MAIN	186
	XMESH(1, J, 1)=0.	MAIN	187
	XMESH(1, J, 4)=RHOSTR	MAIN	188
	XMESH(1, J, 5)=0.	MAIN	189
C		MAIN	190
С	FREE SURFACE	MAIN	191
С 🗌		MAIN	192
	DD 50 1=1,NP	MAIN	193
	SURF(I,1)=-LENGTH+VP+HSTAR	MAIN	194
	SURF(1,2)=TAB(1,2,1)	MAIN	195
	SURF(1,3)=0.	MAIN	196
	SURF(1,4) =0.	MAIN	197
	SURF(1,5)=VP	MAIN	198
	SURF(1,6)=RHOSTR	MAEN	199
	SURF(1,7)=0.	MAIN	200
	SURF(1,8)=SQRT(BIGAPR/RHOSTR)	MAIN	201
50	CONTINUE	MAIN	202
	DO 51 [=1,NP	MAIN	203
	00 51 J=1,8	MAIN	204
51	SURF2(1,J)=SURF(1,J)	MAIN	205
	IF (NUZON.EQ.0) GO TO 5001	MAIN	206
5000	GR=GR+2.	MAIN	207
	GZ=GZ*2.	MAIN	208
	ZMAX=ZMAX+2ZMIN	MAIN	209
	RMAX=RMAX+2.	MAIN	210
	NUZON=L	MAIN	211
	WRITE (3,5003)	MAIN	212
5003	FORMAT (7H REZONE///)	MAIN	213
5001	CONTINUE	MAIN	214
С		MAIN	215
С		MAIN	216

С С С

Ę.

-

	00 55 1=1.20	MAIN	217
	FF=[-]	MAIN	218
	7(T)=7MIN+FE+GZ	MAIN	219
	$R(1) = RMIN + FF \neq GR$	MAIN	220
55	CONTINUE	MAIN	221
	1F (NUZON_F9.0) GD TO 5101	MAIN	222
	DD 5100 I=1.10	MAIN	223
	005100 J=1.10	MAIN	224
	DD 5100 K=1.6	MAIN	225
	1=2+1-1	MAIN	226
	M=2*J-1	MAIN	227
	$XMESH(I \cdot J \cdot K) = XMESH(L \cdot M \cdot K)$	MAIN	228
5100	CONTINUE	MAIN	229
	GD TO 157	MAIN	230
5101	CONTINUE	MAIN	231
Ć.		MAIN	232
Ċ	COMPUTE A FOR 2 SHOCKS AND MESH	MAIN	233
č		MAIN	234
-	DO 86 K=1+3	MAIN	235
	GD TO (57,59,61),K	MAIN	236
57	NN≖NP	MAIN	237
	j] =]	MAIN	238
	GO TO 63	MAIN	239
59	NN#NT -	MAIN	240
	JJ=1	MAIN	241
	GO TO 63	MAIN	242
61	NN=20	MAIN	243
	JJ=20	MAIN	244
63	DO 84 N=1+NN	MAIN	245
	00 82 J=1,JJ	MAIN	246
	GO TO (65,65,68),K	MAIN	247
65	P=TAB(N+3+K)	MAIN	248
	RHO=TAB(N+6+K)	MAIN	249
	E=TAB(N+7+K)	MAIN	250
	GO TO 70	MAIN	251
68	P=XMESH(J,N,1)	MAIN	252

•

.

.

,

137

	RHO=XMESH(J,N,4)	MAIN	253
	E=XMESH(J,N,5)	MAIN	254
70	CONTINUE	MAIN	255
	CALL EQOS3(RHO, AA, E, P)	MAIN	256
	GO TO (76,76,78),K	MAIN	257
76	TAB(N,8,K)=AA	MAIN	258
	GO TO 82	MAIN	259
78	XMESH(J+N+6)=AA	MAIN	260
82	CONTINUE	MAIN	261
84	CONTINUE	MAIN	262
86	CONTINUE	MAIN	263
	K [C K = 86	MAIN	264
	CALL DVCHK(KQ)	MAIN	265
	IF (KQ.EQ.1) GB TO 9980	MAEN	266
С		MAIN	267
C	STORE A FOR RAREFACTION	MAIN	268
С		MAIN	269
	DD 90 I=1,NR	MAIN	270
90	RARF(I,8)=AR	MAIN	271
С		MAIN	272
C	COMPLETE SHOCK TABLES	MAIN	273
С		MAIN	274
	00 99 K=1,2	MAIN	275
	GD TO (92,94),K	MAIN	276
92	NN≖NP	MAIN	277
	GO TO 95	MAIN	278
94	NN≖NT	MAIN	279
	US≖0.	MAIN	280
95	DO 97 N=1.NN	MAIN	281
	GO TO (93,96),K	MAIN	282
93	CONTINUE	MAIN	283
	US=VP*TAB(N, 10, 1)	MAIN	284
96	CONTINUE	MAIN	285
	TAB(N, 11, K)=TAB(N, 9, K)*TAB(N, 4, K)+TAB(N, 10, K)*TAB(N, 5, K)	MAIN	286
	TAB(N,12,K)=TAB(N,9,K)*TAB(N,5,K)-TAB(N,10,K)*TAB(N,4,K)	MAIN	287
	TAB(N,13,K0=((TAB(N,6,K)*ABS(TAB(N,11,K)))/(TAB(N,6,K)-RHOSTR)-US	IMAIN	288

: 138

·

	1*(- <u>1</u> .)**K	MAIN 289
	TAB(N,14,K)=1.	MAIN 290
97	CONTINUE	MAIN 291
99	CONTINUE	MAIN 292
Ċ		MAIN 293
С		MAIN 294
С	STORE ALL XMESH IN XMESH2	MAIN 295
ċ		MAIN 296
130	00 135 K=1.6	MAIN 297
	DD 135 J=1.20	MAIN 298
	DO = 135 I = 1 + 20	MAIN 299
	$XME SH2 (I \bullet J \bullet K) = XME SH(I \bullet J \bullet K)$	MAIN 300
135	CONTINUE	MAIN 301
	TIME=HSTAR	MAIN 302
	WRITE (3,145) TIME	MAIN 303
	CALL SOUT	MAIN 304
	CALL PRINT(XMESH2+Z+R+1)	MAIN 305
С		MAIN 306
	KREFL=0	MAIN 307
139	IF (KREFL.NE.O) GO TO 143	MAIN 308
С	ENTRY FOR TIME STEP	MAIN 309
Ċ		MAIN 310
140	READ (1,142) H	MAIN 311
142	FORMAT (E12.8)	MAIN 312
143	CONTINUE	MAIN 313
-	TIME=TIME+H	MAIN 314
	WRITE (3,145) TIME	MAIN 315
145	FORMAT (1H1///6H TIME=,E15.8///)	MAIN 316
	WRITE (3,999) KR	MAIN 317
999	FORMAT (5X,4H KR=,15)	MAIN 318
C		MAIN 319
С		MAIN 320
С	ADVANCE SHOCK POINTS	MAIN 321
С		MAIN 322
	DD 159 N=1,NP	MAIN 323
	IF (TAB(N+14+1).LT.0.) GO TO 156	MAIN 324

.

139

	IF ((TAB(N,1,1)-SURF(N,1)).GT.EPS) GO TO 154	MAIN	325
156	TAB2(N,1,1)=TAB(N,1,1)	MAIN	326
	TAB2(N,2,1) = TAB(N,2,1)	MAIN	327
	TAB(N, 14, 1)=-1.	MAIN	328
	GO TO 159	MAIN	329
154	TAB2(N,1,1)=FAB(N,1,1)+TAB(N,13,1)*H*TAB(N,10,1)-VP*TAB(N	,9,1)*TABMAIN	330
	1(N,10,1) #H	MAIN	331
150	TAB2(N,2,1)=TAB(N,2,1)+TAB(N,13,1)+H+TAB(N,9,1)+VP+TAB(N,	9,1)*#2#HMAIN	332
159	CONTINUE	MAIN	333
	DO 155 N=1,NT	MAIN	334
	TAB2(N+1+2)=TAB(N+1+2++TAB(N+13+2)+++TAB(N+10+2)	MAIN	335
155	TAB2(N,2,2)=TAB(N,2,2)+TAB(N,13,2)*H*TAB(N,9,2)	MAIN	336
	DO 158 M=1,NT	MAIN	337
	IF (TAB2(M,1,2).GT.ZMAX) GO TO 5000	MAIN	338
	IF (TAB2(M,2,2).GT.RMAX) GO TO 5000	MAIN	339
158	CONTINUE	MAIN	340
157	NUZON=0	MAIN	341
С	ADVANCE RAREFACTION	MAIN	342
C		MAIN	343
	IF (RARF(1,2).LT.O.) [RARF=1	MAIN	344
	IF (IRARF.EQ.1) GO TO 516	MAIN	345
	ENR=NR+1	MAIN	346
	ADEL=(TAB2(1,1,2)-TAB2(1,1,1))/ENR	MAIN	347
	RARF2(1,1)=TAB2(1,1,2)	MAIN	348
	DD 510 N=2,NR	MAIN	349
	RARF2(N,1)=RARF2(N-1,1)-ADEL	MAIN	350
510	CONTINUE	MAIN	351
	DO 515 N=1+NR	MAIN	352
	RARF2(N,3)=(RARF2(N,1)/TIME5*VP)/AR	MAIN	353
	RARF2(N,4)=-SQRT(LRARF2(N,3)**2)	MAIN	354
	RARF2(Ny2)=RADIUS+TIME*AR*RARF2(Ny4)	MAIN	355
515	CONTINUE	MAIN	356
516	CONTINUE	MAIN	357
	CALL SHOCK	MAIN	358
С		MAIN	359
C		MAIN	360

140

	TE (TTS3.E0.1) GO TO 569	MAIN 361
-	SHOCK COMPUTATIONS COMPLETED	MAIN 362
~	CONDUCE DARTICLE CURVES	MAIN 363
r r	COPPOIL PRATICEL CORVES	MAIN 364
L	THD- 54/1044	MAIN 365
	IMF=+J#¥F#N D0 520 N=1 ND	MAIN 366
	DU DZU NEFANE CDADT/AL 1 11-TAR/AL 1.11-TAR/ALS_11#H	MAIN 367
E 2 A	CDADT(N + 1 + 1) = (RO(N + 1 + 1)) (RO(N + 2	MAIN 368
520	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$	MAIN 369
	UU DZD NALYNY CDADY/N Y DYWTAD/N Y DYATABIN,5,218H	MAIN 370
c	$\frac{2}{2} \frac{2}{2} \frac{2}$	MAIN 371
525	$\frac{5}{10} \frac{1}{10} \frac$	MAIN 372
	IF (IRARF-EQ.II) OU TU DDI	MAIN 373
		MAIN 374
	RPART(N, I)=KARF(N, I)+IMP	MAIN 375
530	$RPART(N_{1}2) = RARF(N_{1}2)$	NATN 376
531	CONTINUE	MAIN 377
C		MAIN 370
C		MAIN 370
568	CALL SOUT2	MAIN 377 Main 390
569	CONTINUE	MATH JOU
C	ADVANCE PROJECTILE REAR SURFACE	TOC MIAM MAIN 303
	DD 5300 I=1,NP	MAIN 302
	00 5300 J≖1+8	MAIN 383
5300	SURF2(I,J)=SURF(I,J)	MAIN 389
	KICK=568	MAIN 385
	CALL DVCHK(KQ)	MAIN 386
	IF (KQ.EQ.1) GO TO 9980	MAIN 387
C		MAIN 388
С	START INTERIOR REGION COMPUTATIONS	MAIN 389
Ĉ		MAIN 390
	CALL INTER	MAIN 391
С		MAIN 392
Ċ.	INTERIOR REGION COMPUTATIONS COMPLETED	MAIN 393
č		MAIN 394
~	CALL PRINT(XMESH2+Z+R+2)	MAIN 395
570	CONTINUE	MAIN 396
- I V	Amili Tilam	

.

·....

]4]

r		MAIN	397
c	INITIALIZE FOR NEXT TIME STEP	MAIN	398
č		MAIN	399
U	DD 920 K=1.6	MAIN	400
	00.920.1=1.20	MAIN	401
	DD 920 I=1.20	MAIN	402
	XMFSH(T+J+K)=XMESH2(T+J+K)	MAIN	403
920	CONTINUE	MAIN	404
	DO 930 J = 1 + 13	MAIN	405
	DD 930 I=1+NP	MAIN	406
	TAB(1,J,1) = TAB2(1,J,1)	MAIN	407
930	CONTINUE	MAIN	408
	00 940 J=1,13	MAIN	409
	DO 940 I=1.NT	MAIN	410
	TAB(1, J, 2) = TAB2(1, J, 2)	MAIN	411
940	CONTINUE	MAIN	412
	IF (IRARF.EQ.1) GO TO 951	MAIN	413
	DD 950 [=1,NR	MAIN	414
	RARF([,1)=RARF2([,1)	MAIN	415
	RARF(1,2)=RARF2(1,2)	MAIN	416
950	CONTINUE	MAIN	417
951	CONTINUE	MAIN	418
	DO 960 [=1,NP	MAIN	419
	DD 959 J=1,5	MAIN	420
	SURF(I,J) = SURF2(I,J)	MAIN	421
959	CONTINUE	MAIN	422
960	CONTINUE	MAIN	423
	IF (KR.EQ.10) GO TO 888	MAIN	424
	REWIND 4	MAIN	425
	WRITE (4)TIME	MAIN	426
	WRITE (4){((XMESH(I,J,K),I=1,20),J=1,20),K=1,6),(Z(I),I=1,20)	}.(R(IMAIN	427
	1)+I=1,20),((SURF(I,J),I=1,15),J=1,8),(((TAB(I,J,K),I=1,15),J=1))	=1,14)MA1N	428
	1,K=1,2),((RARF(I,J),I=1,15),J=1,11),TIME,ZMIN,ZMAX,RMIN,RMAX	, GR, GZ MAIN	429
	1,AR	MAIN	430
	KR≖10	MAIN	431
	GO TO 777	MAIN	432

142

. .

888	REWIND 10 MAIN	433
С	IF(KRW.EQ.1)REWIND10 MAIN	434
С	KRW=0 MAIN	435
	WRITE (10)TIME MAIN	436
	WRITE (10)(((XMESH(I,J,K),I=1,20),J=1,20),K=1,6),(Z(I),I=1,20),(R(MAIN	437
	11), I=1,20), ((SURF(I, J), I=1,15), J=1,8), (((TAB(I, J,K), I=1,15), J=1,14MAIN	438
	1),K=1,2),((RARF{I,J),I=1,15),J=1,11),TIME,ZMIN,ZMAX,RMIN,RMAX,GR,GMAIN	439
	1Z•AR MAIN	440
	KR=4 MAIN	441
777	IF (KREFL.EQ.0) GO TO 980 MAIN	442
	KREFL=0 MAIN	443
	H=H] MAIN	444
	GD TO 143 MAIN	445
980	CONTINUE MAIN	446
	CALL DVCHK(KICK) MAIN	447
	IF (KICK.EQ.2) GO TO 140 NAIN	448
	WRITE (3,970) MAIN	449
970	FORMAT (28HODIVIDE CHECK AT END OF CASE/1H1) MAIN	450
	CALL EXIT MAIN	451
С	MAIN	452
C	DIVIDE CHECK MAIN	453
С	MAIN	454
9980	WRITE (3,9985) KICK MAIN	455
9985	FORMAT (32HODIVIDE CHECK NEAR STATEMENT NO., 15/1H1) MAIN	456
	RETURN MAIN	457
	END MAIN	458
	SUBROUTINE DBLTRP(ZX,RX,ANS) SUB1	1
С	SUB 1	2
С	IST ORDER DOUBLE INTERPOLATION THAT CONSIDERS SUB1	3
С	LINES OF DISCONTINUITY IF IN CONSIDERED REGION SUB1	4
С	SUB 1	5
	COMMON CASEID(14), ITS1, ITS2, ITS3, ITS4, ITI1, ITI2, ITI3, ITI4, EPS1, EPSSUB1	6
	12, EPS3, EPS4, EPS5, EPS6, EPI1, EPI2, EPI3, EPI4, EPI5, EPI6, EPI7, VP, AR, LENSUB1	. 7
	1GTH, APR, BPR, BIGAPR, BIGBPR, ESTAR, ALPHA, BETA, RHOSTR, EPRS, RHOS SUB1	. 8
	COMMON XMESH(20,20,6),XMESH2(20,20,6),Z(20),R(20),SURF(15,8),SURF2SUB1	. 9
	1(15,8),TAB(15,14,2),TAB2(15,14,2),SPART(15,2,2),RARF(15,11),RARF2(SUB1	10

	115.4).RPART(15.2)	SUB 1	11
С		SU8 1	12
Ċ		SUB 1	13
-	COMMON Z0.R0.P0.U0.V0.L0.M0.RH00.E0.A0.UBAR0.VBAR0	SUB 1	14
C		SUB 1	15
-	COMMON NP+NT+NR+NI+NDEL+ISUB	SUB 1	16
С		SUB L	17
-	COMMON ZMIN,ZMAX,RMIN,RMAX,RADIUS,GZ,GR,DELTA,H	SUB1	18
	COMMON DIRCOS	SUB 1	19
	COMMON TIME	SU81	20
	COMMON IRARF	SUB1	21
	COMMON KSTOP	SUB1	22
	COMMON TPSI	SUB 1	23
	COMMON KKK	SUB1	24
	REAL LO.MO.LENGTH.MU.KO	SUB1	25
C		SUB 1	26
·	DIMENSION ANS(6)+ANS1(2.8)+ANS2(2.8)+ZI(4)+RI(4)+IK(4)	SUB1	27
	CALL DVCHK(KFY)	SUB1	28
	TE (KEY_EQ_2) 60 TO 4	SUB1	29
	$N_{1}=0$	SUB 1	30
	GD TO 940	SUB1	31
C		SUB 1	32
č	FIND SUBSCRIPTS FOR GRID	SUB1	33
č		SUB1	34
ŭ	$I1 = (7 \times -2 \times 1) / G2 + 1 .000001$	SUB1	35
•	[2=[]+]	SUB 1	36
	11 = (RX - RMIN)/GR + 1.000001	SUB 1	37
	$J_2 = J_1 + 1$	SUB 1	38
	NN=NP	SUB1	39
	IF (ITS3.EQ.1) GD TO 3	SUB1	40
	DO 1 K = 1.2	SUB1	41
	IF (K_EQ_2)NN=NT	SUB 1	42
	DO = 1 = 1 + NN	SUBI	43
	ALF=SORT((TAB(I+1+K)-ZX)**2+(TAB(1+2+K)-RX)**2)	SUB 1	ly ly
	IF (ALF.GT.EPS1) GO TO 1	SUB1	45
	$ANS(1) = TAB(1 \cdot 3 \cdot K)$	SUB1	46

143

-
	ANS(2)=TAB(I,4,K)	SUB1	47
	ANS(3)=TAB(1,5,K)	SUB1	48
	ANS(4)=TAB(1,6,K)	SUB1	49
	ANS(5)=TAB(1,7,K)	SUB1	50
	ANS(6) = TAB(1,8,K)	SUB1	51
	RETURN	SUB1	52
1	CONTINUE	SUB1	53
	IF (IRARF.EQ.1) GO TO 3	SUB1	54
	DD 2 [=1,NR	SUB 1	55
	ALF=SQRT((RARF(1,1)-ZX)**2+(RARF(1,2)-RX)**2)	SUB1	56
	IF (ALF.GT.EPI1) GO TO 2	SUBI	57
	ANS(1)=RARF(1,3)	SUB 1	58
	ANS(2)=RARF(1,4)	SUB1	59
	ANS(3)=RARF(1,5)	SUB 1	60
	ANS(4)=RARF([,6)	SUB1	61
	ANS(5)=RARF(1,7)	SUB1	62
	ANS(6)=RARF([,8]	SUB 1	63
	RETURN	SUB 1	64
2	CONTINUE	SUB1	65
3	CONTINUE	SUB1	66
С	·	SUB1	67
С		SUB1	68
	ZXX=ZX+.01	SUB 1	69
	RXX=RX+.01	SUB 1	70
C		SUB 1	71
С	I LOOP FOR UPPER AND LOWER Z GRID LINES	SUB1	72
С		SUB 1	73
	DO 800 I=1+2	SUB1	74
	IF (ITS3-EQ-1) GO TO 14	SUB1	75
	IF (1.EQ.2) GO TO 8	SUB1	76
	[]=]]	SUB 1	77
	GO TO 12	SUB 1	78
8	[]=]2	SUB 1	79
12	H=COMP(ZX,RX,Z(II),R(J1))	SUB1	80
	IF (M.EQ.1) GO TO 13	SUB 1	81
	MCCM=1	SU81	82

	CO TO 20	SUB1	83
1 7	00 10 20 Macomp(1y by 7/11)_0/12))	SUB 1	84
10	M=CUMF12A9KA9211139K(J2)) 75 (W 50 1) 50 10	SUB1	85
	IP (MetWell GU GU IM	SUBI	86
		SHR1	87
_	GU 10 20	SUB 1	0 0 0
C		5001	00 90
C	GET 6 VALUES UN GRIU LINES	2001	00
C		5001 5001	90
14	DO 15 $K=1+6$		71 02
	$ANS1(I_{+}K+2) = XMESH(II_{+}JI_{+}K) + (XMESH(II_{+}J2_{+}K) - XMESH(II_{+}JI_{+}K)) =$	(KX-K(J2001	92
	111)/(R(J2)-R(J1))	ZURI	93
15	CONTINUE	SUB1	94
	CALL DVCHK(ND)	SU81	95
	IF (NO.EQ.2) GO TO 17	SUB 1	96
	NO=15	SUB1	97
	GD TO 940	SUB1	98
17	ANSI(I,I)=Z(II)	SUB1	99
	ANS1(1,2)=RX	SUB1	100
	GO TO 800	SUB1	101
ſ		SUB 1	102
ř		SUB1	103
20	77#7(11)	SUB1	104
20		SUB1	105
		SUB1	106
	$I = (M, EO_1) CO TO 300$	SUB1	107
c		SUB 1	108
r r		SUB 1	109
U	NO 25 K-1-2	SU8 1	110
		SUB 1	111
		SUBT	112
~ •		SUB1	113
21		SUBI	114
 22		SURT	115
22		SUB1	116
25	JJJ=NN=1 1	SUBT	117
	UU 24 M=L1JJJ TE 14 EO 113 EO TE 210	SUBL	118
	TH (WORNOUTH ON IN STA	3001	
		•	

.

145

.

	TE (RY GT. TAB(N+1.2.K), DR.RX.LT.TAB(N.2.K)) GO TO 24	SUB1	119
210	$71/K_{\pm}$ TAR(M+1.1.K)+(TAR(M.1.K)-TAR(M+1.1.K))+(RX-TAR(M+1.2.K))/(TA	SUBL	120
610	1R(M, 2, K) + TAR(M+1, 2, K)	SUBT	121
	$N\Omega = 21\Omega$	SUBI	122
	CALL DACHKERU?	SUBI	123
	TE INA EA 31 CO TO 960	SUBT	124
	I = (I = 0, 2) = 0, 10, 211	SUBI	125
	$IF (KATCH_FO_1) GO TO 212$	SUB1	126
	KATCH±1	SUB1	127
	60 TO 213	SUB1	128
212	IE ((7X-71(K)).CT.(7X-7M)) CO TO 24	SUB1	129
C1C	$IF (71(K)_{0}T_{0}7X) = 0.70 24$	SUB1	130
213	7M=714K)	SUB1	131
6.13	1E (K_E0_2) GO TO 215	SUB1	132
	NDS=M	SUB1	133
	60 TO 24	SUB1	134
215	NTS=M	SU81	135
	GO TO 24	SUB1	136
211	CONTINUE	SUB 1	137
	$IF (KATCH_FQ_1) GO TO 26$	SUB1	138
	KATCH=1	SUB1	139
	GO TO 213	SUB1	140
26	IF ((71(K)-7X).GT.(7M-7X)) GO TO 24	SUB1	141
20	IF (71(K).LT.ZX) GO TO 24	SUB1	142
	G0 T0 213	SUB1	143
24	CONTINUE	SUB 1	144
-	Z1(K)=ZM	SUB1	145
	IF (KATCH.NE.0) GO TO 25	SUB1	146
	ZI(K)=2MAX+1.	SU81	147
25	CONTINUE	SUB1	148
	IF (IRARF.EQ.1)ZI(3)=ZMAX+1.	SUB1	149
	IF (IRARF.EQ.1) GO TO 2504	SUB1	150
	KATCH=0	SUB1	151
	JJJ=NR-1	SUB1	152
	00 27 M=1,JJJ	SUB1	153
	ZI(3)=RARF(M+1,1)+(RARF(M,1)-RARF(M+1,1))*(RX-RARF(M+1,2))/(RARF()	4SUB 1	154

-..

146

	1,2)-RARF(M+1,2))	SU81 155
	N0=25	SUB1 156
	CALL DVCHK(KQ)	SUB1 157
	IF (KQ.EQ.1) GO TO 940	SUB1 158
	IF (ABS(ZI(3)-ZX).GT.1.E-5) GO TO 279	SUB1 159
	DO 2799 LN=1.6	SUB1 160
	LNN=LN+2	SUB1 161
	ANS(LN)=RARF(1+LNN)	SUB1 162
2799	CONTINUE	SUB1 163
2	GO TO 820	SUB1 164
279	CONTINUE	SUB1 165
	IF (I.EQ.2) GO TO 28	SUB1 166
	IF (21(3).GT.ZX) GO TO 27	SUB1 167
	IE (KATCH.EQ.1) GO TO 280	SUB1 168
		SUB1 169
	GO TO 281	SUB1 170
280	1F ((7X-71(3)).GT.(ZX-2H)) GO TO 27	SUB1 171
281	74=21(3)	SUB1 172
	MR = M	SUB1 173
	60 TO 27	SUB1 174
28	IF (ZI(3).LT.ZX) GO TO 27	SUB1 175
	IF (KATCH.FO.1) GO TO 282	SUB1 176
	KATCH=1	SUB1 177
	GO TO 281	SUB1 178
282	1F (171(3)-2X).GT.(ZH-ZX)) GO TO 27	SUB1 179
LOL	GD TO 281	SUB1 180
27	CONTINUE	SUB1 181
6 •	71(3)=7M	SUB1 182
2504	CONTINUE	SUB1 183
2501	KATCH=0	SUB1 184
	K=4	SUB1 185
	1.1.1=NP-1	SUB1 186
	DB 2700 M=1.JJJ	SUB1 187
	1F (M.EQ.JJJ) GO TO 2710	SUB1 188
	IF (RX-GT-SURF(N+1+2)-OR-RX-LT-SURF(M+2)) GO TO 2700	SUB1 189
2710	ZI(4)=SURF(M+1+1)+(SURF(M+1)-SURF(M+1+1))*(RX-SURF(M+1+2)	NI/(SURF(MSUB1 190

147

	1.2)-SURF(M+1.2)	SUB1 191
	IF (KQ_FQ_1) GO TO 940	SUB1 192
	CALL DVCHK(KQ)	SUB1 193
	ND=2710	SUB1 194
	IF (I.E0.2) GO TO 2711	SUB1 195
	IF (KATCH-EQ-1) GO TO 2712	SUB1 196
	KATCH=1	SUB1 197
	GO TO 2713	SUB1 198
2712	IF ((ZX-ZI(K)).GT.(ZX-ZM)) GO TO 2700	SUB1 199
2713	7M=71(4)	SUB1 200
	MS=M	SUB1 201
	GO TO 2700	SUB1 202
2711	CONTINUE	SUB1 203
	IF (KATCH.EQ.1) GO TO 2726	SUB1 204
	KATCH=1	SUB1 205
	GO TO 2713	SUB1 206
2726	[F ((ZI(K)-ZX).GT.(ZM-ZX)) GO TO 2700	SUB1 207
	GO TO 2713	SUB1 208
2700	CONTINUE	SUB1 209
-	2[(4)=ZM	SUB1 210
	[F (KATCH.NE.O) GO TO 2701	SUB1 211
	ZI(4)=ZMAX+1.	SUB1 212
2701	CONTINUE	SUB1 213
	RI(1)=RX	SUB1 214
	R[[2]=RX	SUB1 215
	RI(3)=RX	SUB1 216
	RI(4)=RX	SUB1 217
С	FIND INTERSECTION TO USE	SUB1 218
С		SUB1 219
30	KEY=0	SUB1 220
	IF (1.EQ.2) GO TO 50	SUB1 221
С		SUB1 222
С	UPPER GRID LINE	SUB1 223
C		SUB1 224
	00 40 KK=1,4	SUB1 225
	IF (Z(II).GT.ZI(KK)) GO TO 40	SUB1 226

. •

148

	IF (ABS(ZI(KK)-ZX).LT.1.E-5) GO TO 35	SUB1	227
	IF (ZI(KK).GT.ZX) GO TO 40	SUB1	228
	1F (KEY.EQ.0) GO TO 35	SUB1	229
	IF (ZI(KK).LE.ZI(KEEP)) GO TO 40	SUB 1	230
	KEEP=KK	SU81	231
	GO TO 40	SUB1	232
35	KEEP=KK	SUB1	233
	[™] ΚΕΥ≠1	SUB1	234
40	CONTINUE	SUB1	235
	GD TO 65	SUB 1	236
С		SUB 1	237
C	LOWER GRID LINE	SUB1	238
C		SUB 1	239
50	DO 60 KK=1+4	SU8 1	240
	IF (Z(11).LT.ZI(KK)) GO TO 60	SUB 1	241
	IF (ABS(ZI(KK)-ZX).LT.1.E-5) GO TO 55	SUB1	242
	IF (ZI(KK).LT.ZX) GO TO 60	SUB 1	243
	IF (KEY.EQ.0) GO TO 55	SUB 1	244
	IF (ZI(KK).GE.ZI(KEEP)) GD TO 60	SUB 1	245
	KEEP=KK	SUB1	246
	GO TO 60	SUB1	247
55	KEEP=KK	SUB1	248
	KEY=1	SUB1	249
60	CONTINUE	SUB1	250
C		SUB1	251
65	1F (KEY.NE.O) GO TO 70	SUB 1	252
	WRITE (6,67) ZX,RX,I,(ZI(KEY),KEY=1,4),(RI(KEY),KEY=1,4)	SUB 1	253
67	FORMAT (34HOERROR NEAR STATEMENT 65 IN DBLTRP/1X3HZX=,E15.8,4X3H	RXSUB1	254
	1=,F15.8,4X2HI=,[3/1X3HZI=,4E20.8/1X3HRI=,4E20.8/1H1)	SUB1	255
	XYZ=-2.	SU81	256
	ZYX=SQRT(XYZ)	SUB 1	257
	CALL EXIT	SUB1	258
С		SUB1	259
С	FIND 6 VALUES ON SELECTED DISCONTINUITY	SUB1	260
С		SUB1	261
70	IF (KEEP.EQ.3) GO TO 80	SUB 1	262

	IF (KEEP.EQ.4) GO TO 81	SUB 1	263
	IF (KEEP.EQ.2) GO TO 71	SUB 1	264
	N=NP S	SUB 1	265
	GO TO 72	SU8 1	266
71	N=NTS	SUB1	267
72	CONTINUE	SUB 1	268
	ZY=ZI(KEEP)	SUB 1	269
	R Y=R X	SUB 1	270
	DO 75 K=3,8	SUB 1	271
	ANSI(I,K)=TAB(N,K,KEEP)+(TAB(N+1,K,KEEP)-TAB(N,K,KEEP))*SQRT{((RY-	- SUB 1	272
	LTAB(N,2,KEEP))**2+(ZY-TAB(N,1,KEEP))**2)/((TAB(N+1,2,KEEP)-TAB(N,2	2SUB1	273
	1,KEEP))**2+{TAB(N+1,1,KEEP)-TAB(N,1,KEEP))**2})	SUB1	274
	NO=75	SUB 1	275
	CALL DVCHK(KQ)	SUB1	276
	IF (KQ.EQ.1) GO TO 940	SUB 1	277
75	CONTINUE	SUB1	278
	GO TO 90	SUB 1	279
80	N≃MR	SUB 1	280
	ZY=ZI(3)	SUB 1	281
	RY=RX	SUB I	282
	DO 85 K=3,8	SUB 1	283
	ANS1(I,K)=RARF{N,K)+(RARF{N+1,K}-RARF{N,K})*SQRT({{RY-RARF{N,2}}*	×SUB1	284
	12+(ZY-RARF(N,1))**2)/((RARF(N+1,2)-RARF(N,2))**2+(RARF(N+1,1)-RARF	SUB1	285
	1(N,1))**2))	SUB 1	286
	NO=85	SUB 1	287
	CALL DVCHK(KQ)	SUB 1	268
	IF (KQ.EQ.1) GO TO 940	SUB 1	289
85	CONTINUE	SU81	290
	GO TO 90	SUB1	291
81	N≖MS	SUB 1	292
	ZY=ZI(4)	SUB 1	293
	RY=RX	SUB 1	294
	DD 86 K=3,8	SUB1	295
	ANS1(I,K)=SURF(N,K)+(SURF(N+1,K)-SURF(N,K))*SQRT(((RY-SURF(N,2))*	¥SUB1	296
	12+(ZY-SURF(N,1))**2)/((SURF(N+1,2)-SURF(N,2))**2+(SURF(N+1,1)-SUR)	FSUB1	297
	l(N+1))**2))	SUB1	298

150

86	CONTINUE	SUB1 299
90	CALL DVCHK(NO)	SUB1 300
	IF (NO.EQ.2) GD TO 92	SUB1 301
	N0=90	SUB1 302
	GO TO 940	SUB1 303
92	ANS1(I.1)=ZY	SUB1 304
	ANS1(1,2)=RY	SUB1 305
	GO TO 800	SUB1 306
С		SUB1 307
C	FIND INTERSECTIONS OF 3 DISCONTINUITIES AND Z GRID LINE	SUB1 308
C		SUB1 309
300	CONTINUE	SUB1 310
	KATCHP=0	SUB1 311
	KATCHR=0	SUB1 312
	KATCHT=0	SUB1 313
	KATCHS=0	SUB1 314
	DO 310 K=1,2	SUB1 315
	KATCH#0	SUB1 316
	GO TO (303,301),K	SUB1 317
303	NN≠NP	SUB1 318
	GO TO 302	SUB1 319
301	NN≠NT	SUB1 320
302	JJJ=NN-1	SUB1 321
	DD 309 M=1,JJJ	SUB1 322
	IF ((TAB(M,1,K)-TAB(M+1,1,K)).GT.1.E-6) GO TD 3030	SUB1 323
	GO TO 309	SUB1 324
3030	RI(K)=TAB(M+1+2+K)+(TAB(M+2+K)-TAB(M+1+2+K))*(Z(II)-TAB(M+1+1	•K11/SUB1 325
	1(TAB(N+1+K)-TAB(M+1+1+K))	SUB1 326
	CALL DVCHK(NO)	SUB1 327
	IF (NO.EQ.2) GO TO 3031	SUB1 328
	ND=3030	SUB1 329
	GD TO 940	SUB1 330
3031	CONTINUE	SUB1 331
	IF (M.EQ.JJJ) GO TO 3022	SUB1 332
	IF (RI(K).GT.TAB(M+1,2,K).OR.RI(K).LT.TAB(M,2,K)) GO TO 309	SUB1 333
3022	IF (MCOM+EQ+2) GO TO 305	SUB1 334

i i

.

151

	IF (KATCH. FQ. 1) GO TO 304	SUB1 335
	KATCH=1	SUB1 336
	GD TO 3050	SUB1 337
304	IF ((RX-R1(K)).GT.(RX-RM)) GO TO 309	SUB1 338
3050	RM=RI(K)	SUB1 339
	IF (K.EQ.2) GD TD 3040	SUB1 340
•	MP S=H	SUB1 341
	KATCHP=1	SUB1 342
	GD TO 309	SUB1 343
3040	MTS=M	SUB1 344
	KATCHT=1	SUB1 345
	GO TO 309	SUB1 346
305	CONTINUE	SUB1 347
	IF (KATCH.EQ.1) GO TO 306	SUB1 348
	KATCH=1	SUB1 349
	GO TO 3050	SUB1 350
306	IF ((R1(K)-RX).GT.(RM-RX)) GO TO 309	SUB1 351
	GO TO 3050	SUB1 352
309	CONTINUE	SUB1 353
	RI(K)=RM	SUB1 354
	IF (KATCH.NE.O) GO TO 310	SUB1 355
	R1(K)=RMAX+1.	SUB1 356
310	CONTINUE	SUB1 357
	K=3	SUB1 358
	IF (IRARF.EQ.1)RI(3)=RMAX+1.	SUB1 359
	IF (IRARF.EQ.1) GO TO 315	SUB1 360
	JJJ=NR-1	SUB1 361
	KATCH=0	SUB1 362
	DO 312 M=1,JJJ	SUB1 363
	RI(3)=RARF(M+1,2)+(RARF(M,2)-RARF(M+1,2))+(Z(II)-RARF(M+1,2))/	(RARSUB1 364
	1F(H,11-RARF(M+1,1))	SUB1 365
	NO=3122	SUB1 366
	CALL DVCHK(KQ)	SUB1 367
	IF (KQ.EQ.1) GO TO 940	SUB1 368
	IF (M.EQ.JJJ.OR.M.EQ.1) GO TO 3122	SUB1 369
	IF (RI(K).GT.RARF(M+1,2).OR.RI(K).LT.RARF(M,2)) GD TO 312	SUB1 370

.

3122	IF (MCOM.EQ.2) GD TO 316	SUB1	371
	1F (KATCH.EQ.1) GO TO 317	SUB1	372
	KATCH=1	SUB1	373
	GD TO 3051	SUB 1	374
317	IF ((RX-RI(K)).GT.(RX-RM)) GO TO 312	SUB1	375
3051	RM=RI(K)	SUB1	376
	MR = M	SUB1	377
	KATCHR=1	SUB1	378 -
	GO TO 312	SUB1	379
316	CONTINUE	SUB1	380
	IF (KATCH.EQ.1) GO TO 318	SUB1	381
	KATCH=1	SUB 1	382
	GO TO 3051	SUB1	383
318	IF ((RI(K)-RX).GT.(RM-RX)) GO TO 312	SUB1	384
	GD TO 3051	SUB1	385
312	CONTINUE	SUB1	386
		SUB1	387
	IF (KATCH+NE+O) GO TO 315	SUB1	388
	RI(K)=RMAX+1.	SUB1	389
315	CONTINUE	SUB1	390
		SUB1	391
		SUB1	392
	UU 3150 M≈1+JJJ	SUB1	393
	IF ((SURF(M+1)-SURF(M+1,1)).GT.1.E-6) GO TO 3130	SU81	394
		SUBI	395
3130	KI(4)=SUKF(M+1+2)+(SUKF(M+2)-SUKF(M+1+2))*(2))*(2(1))-SUKF(M+1+1))/(SUR	SUBI	396
	1F(M)1J=SUKF(M+1)1/J	SUBI	397
		SUB1	398
	LALL DVUHKIKQJ	2081	399
	17 (KQ+EQ+1) 60 10 940 15 (M 56 11) 60 70 2122	SUBL	400
	IF (MAEWAJJJ) GU IU 3123 TE IBI/() CT EUDE(M:) 2) OD DI/() IT CUDEIN 20) CO TO 2150	SUBL	401
3133	IF (KI(47+61+30KF(M+1+27+0K+KI(47+L1+30KF1M+27) 60 10 3130	20RT	402
3123	IF (MGUM+EQ+2) GU (U 3103 Ke (WATCH 60 1) CO TO 3104	2081	403
	IF INAIUNAEWALA DU AU SLUM	2081	404
	NA 100-10 Co to 3100	2001	403
		2001	700
	153		

•~

.

.

3104 IF ((RX-RI(4)).GT.(RX-RM)) GO TO 3150 SUB1 407 3109 RM=R1(4) SUB1 408 MS=M SUB1 409 KATCHS=1 SUB1 409 GO TO 3150 SUB1 411 3105 IF (RATCH-EQ.1) GO TO 3106 SUB1 412 KATCHS=1 SUB1 413 SUB1 413 GO TO 3109 SUB1 414 SUB1 415 3106 IF (RATCH-EQ.TRAN-RX)) GO TO 3150 SUB1 416 3107 CDNTINUE SUB1 415 GO TO 3109 SUB1 416 SUB1 416 3105 CDNTINUE SUB1 416 RI(4)=RM SUB1 416 SUB1 417 RI(4)=RMAX+1. SUB1 420 SUB1 421 IF (KATCH,PKATCHT+KATCHR+KATCHS.EQ.0) GO TO 485 SUB1 422 ZI(1)=Z(11) SUB1 422 ZI(1)=Z(11) ZI(4)=RMAX+1. SUB1 422 ZI(4)=Z(11) ZI(4)=Z(11) SUB1 422 SUB1 422 ZI(1)=Z(11) SUB1 422 ZI(2)=Z(11) ZI(4)=Z(11) SUB1 423 SUB1 423 ZI(4)=Z(11) SUB1 423 SUB1 423 ZI(4)=Z(10) SUB1 423 SUB1 423				
3104 IF (IXX=RI(4)), GT, (RX=RMI) GO TO 3150 SUB1 407 3109 M=RI(4) SUB1 409 MS=M SUB1 409 KATCHS=1 SUB1 410 GO TO 3150 SUB1 411 3109 IF (RATCH=EQ.1) GO TO 3106 SUB1 412 KATCHS=1 SUB1 413 GO TO 3100 SUB1 413 S105 IF (RATCH=EQ.1) GO TO 3106 SUB1 414 3106 IF (IRI(4)=RX1.GT.(RM=RX)) GO TO 3150 SUB1 415 GO TO 3109 SUB1 415 SUB1 415 3100 GO TO 3109 SUB1 416 3100 IF (RATCH=RX1.GT.(RM=RX)) GO TO 3107 SUB1 416 R1(4)=RMAX+1. SUB1 420 SUB1 421 S107 CONTINUE SUB1 422 IF (KATCH+KATCH+KATCHT+KATCHR=EQ.0) GO TO 485 SUB1 422 II(1)=ZI(1) SUB1 422 II(1)=ZI(1) SUB1 422 II(1)=ZI(1) SUB1 426 C J LOOP FOR LEFT AND RIGHT R GRID LINES SUB1 422 C JUOP FOR LEFT AND RIGHT R GRID LINES SUB1 431 C LEFT R GRID LINE SUB1 431 C SUB1 433 <				-
3109 MM=R1141 SUB1 408 MS=M SUB1 401 GO TO 3150 SUB1 411 3105 IF (KATCH-EQ.1) GO TO 3106 SUB1 412 KATCH=1 SUB1 413 GO TO 3109 SUB1 413 3106 IF (IRT(14)=RX).GT.(RM=RX)) GO TO 3150 SUB1 414 3106 IF (IRT(14)=RX).GT.(RM=RX)) GO TO 3150 SUB1 416 GT TO 3109 SUB1 416 3150 CONTINUE SUB1 416 IF (KATCH_NE.0) GO TO 3107 SUB1 416 R1(14)=RXX+1. SUB1 420 3107 SUB1 421 IF (KATCH_NE.0) GO TO 3107 SUB1 421 IF (KATCHP+KATCHT+KATCHR+KATCHS.EQ.0) GO TO 485 SUB1 422 21(1)=Z(11) SUB1 422 21(1)=Z(11) SUB1 423 21(1)=Z(11) SUB1 422 21(1)=Z(11) SUB1 426 C J LOOP FOR LEFT AND RIGHT R GRID LINES SUB1 426 C SUB1 428 SUB1 433 C LEFT R GRID LINE SUB1 431 C SUB1 432 SUB1 433 GO TO 340 SUB1 435 SUB1 435 SUB1 431<		3104	IF ((RX-RI(4)).GT.(RX-RM)) GO TO 3150	SUB1 407
MS=M SUB1 409 KATCHS-1 SUB1 410 GO TO 3150 SUB1 411 3105 IF (KATCH-EQ.I) GO TO 3106 SUB1 412 KATCH-I SUB1 413 GO TO 3109 SUB1 414 3106 IF (ITH-EQ.I).GT.(RM-RX)) GO TO 3150 SUB1 415 GO TO 3109 SUB1 416 3150 CONTINUE SUB1 417 R1(4)=RMAX+1. SUB1 418 IF (KATCH-NE.O) GO TO 3107 SUB1 419 R1(4)=RMAX+1. SUB1 420 3107 CONTINUE SUB1 421 IF (KATCH-PKATCHT+KATCHS-KATCHS-EQ.O) GO TO 485 SUB1 422 Z111)=Z(11) SUB1 424 Z1(1)=Z(11) SUB1 424 Z1(1)=Z(11) SUB1 424 Z1(1)=Z(11) SUB1 425 Z1(4)=Z(11) SUB1 426 C J LOOP FOR LEFT AND RIGHT R GRID LINES SUB1 423 C J LOOP FOR LEFT AND RIGHT R GRID LINES SUB1 430 C J LOOP FOR LEFT AND RIGHT R GRID LINES SUB1 431 C LEFT R GRID LINE SUB1 433 JJ=J1 SUB1 433 SUB1 433 KEY=0 SUB1 433 SUB1 433		3109	RM≖RI(4)	SUB1 408
KATCHS-1 SUB1 410 GO TO 3150 SUB1 411 3105 IF (KATCH-EQ.1) GO TO 3106 SUB1 412 KATCH-I SUB1 413 GO TO 3109 SUB1 414 3106 IF (IX1(4)-RX1) GT.(RM-RX1) GO TO 3150 SUB1 416 3150 CONTINUE SUB1 416 3150 CONTINUE SUB1 416 RI(4)=RM SUB1 417 RI(4)=RM SUB1 418 IF (KATCH-NE.0) GO TO 3107 SUB1 418 SUB1 CONTINUE SUB1 420 3107 CONTINUE SUB1 421 IF (KATCH)=RAX+1. SUB1 420 3107 CONTINUE SUB1 421 IF (KATCH)=RAXCHT+KATCHR+KATCHS.EQ.01 GO TO 485 SUB1 421 If (KATCHP+KATCHT+KATCHR+KATCHS.EQ.01 GO TO 485 SUB1 422 ZI(1)=Z(11) SUB1 423 ZI(2)=Z(11) SUB1 423 ZI(4)=Z(11) SUB1 424 ZI(4)=Z(11) SUB1 425 ZI(4)=Z(11) SUB1 426 C J LOOP FOR LEFT AND RIGHT R GRID LINES SUB1 423 C SUB1 423 SUB1 423 C LEFT R GRID LINE <t< td=""><td></td><td></td><td>MS=M</td><td>SUB1 409</td></t<>			MS=M	SUB1 409
GD TO 3150 SUB1 411 3105 IF (KATCH-EQ.1) GD TO 3106 SUB1 412 KATCH=1 SUB1 413 GD TO 3109 SUB1 414 3105 IF ((R(14)-RX).GT.(RH-RX)) GO TD 3150 SUB1 415 GD TO 3109 SUB1 416 3150 SUB1 416 S150 SUB1 417 R1(4)=RM SUB1 416 SUD1 416 SUB1 416 S150 SUB1 416 S150 SUB1 417 R1(4)=RM SUB1 417 R1(4)=RMAX+1. SUB1 420 S107 CONTINUE SUB1 421 IF (KATCH-PKATCHT+KATCHR+KATCHS.EQ.0) GO TD 485 SUB1 422 Z1(1)=Z(11) SUB1 422 Z1(1)=Z(11) SUB1 423 Z1(2)=Z(11) SUB1 425 Z1(4)=Z(11) SUB1 425 Z1(4)=Z(11) SUB1 426 C J LOOP FOR LEFT AND RIGHT R GRID LINES SUB1 426 C J LOOP FOR LEFT AND RIGHT R GRID LINES SUB1 430 C SUB1 433 SUB1 430 C SUB1 433			KATCHS=1	SUB1 410
3105 IF (KATCH-Eq.1) GD TO 3106 SUB1 412 KATCH-L SUB1 413 GD TO 3109 SUB1 414 3106 IF ((R(4)-RX).GT.(RM-RX)) GO TO 3150 SUB1 415 GD TO 3109 SUB1 416 3150 CDNTIAUE SUB1 417 R1(4)=RM SUB1 418 IF (KATCH.NE.O) GO TO 3107 SUB1 419 R1(4)=RMAX+1. SUB1 421 SUB1 CONTINUE SUB1 422 IF (KATCH.P*KATCHT+KATCHR+KATCHS.EQ.0) GO TO 485 SUB1 422 II(1)=Z(II) SUB1 422 II(1)=Z(II) SUB1 422 II(1)=Z(II) SUB1 425 ZI(4)=Z(II) SUB1 426 C J LOOP FOR LEFT AND RIGHT R GRID LINES SUB1 427 C SUB1 427 SUB1 427 C SUB1 428 SUB1 427 C SUB1 427 SUB1 430 C LEFT R GRID LINE SUB1 431 C SUB1 431 SUB1 432 C SUB1 433 SUB1 433 JJ=J1 SUB1 435 SUB1 435 SUB1 431 SUB1 436 SUB1 436 IF (R1(N).GT.RX)			GO TO 3150	SUB1 411
KATCH=1 SUB1 413 GO TO 3109 SUB1 414 3106 IF (RI(4)=RX).GT.(RM-RX)) GO TO 3150 SUB1 415 GO TO 3109 SUB1 416 3150 SUB1 416 3150 SUB1 417 RI(4)=RM SUB1 418 IF (KATCH-NE.O) GO TO 3107 SUB1 419 RI(4)=RMAX+1. SUB1 420 3107 CONTINUE IF (KATCHP+KATCHT+KATCHS.EQ.0) GO TO 485 SUB1 422 Z1(1)=Z(II) SUB1 422 Z1(1)=Z(II) SUB1 423 Z1(1)=Z(II) SUB1 423 Z1(1)=Z(II) SUB1 425 Z1(1)=Z(II) SUB1 426 Z1(4)=Z(II) SUB1 431 C SUB1 431 C SUB1 431 C SUB1 433 J=J1 SUB1 433 SUB1 436 SUB1 435 OD 340 N=1.4 SUB1 436 IF (RI(I).GT.RX) GO TO 340 SUB1 436 IF (RI(I).J.GT.RX)		3105	IF (KATCH+EQ+1) GD TO 3106	SUB1 412
GO TO 3109 SUB1 414 3106 IF (IR(14)=RX).GT.(RM=RX)) GO TO 3150 SUB1 415 GO TO 3109 SUB1 416 3150 CONTINUE SUB1 416 R1(4)=RM SUB1 418 IF (KATCH.NE.0) GO TO 3107 SUB1 418 R1(4)=RMAX+1. SUB1 420 3107 CONTINUE SUB1 421 SUB1 421 IF (KATCH.PKATCHT+KATCHR+KATCHS.EQ.0) GO TO 485 SUB1 421 Z1(1)=Z(11) SUB1 421 Z1(2)=Z(11) SUB1 422 Z1(2)=Z(11) SUB1 424 Z1(3)=Z(11) SUB1 426 C J LOOP FOR LEFT AND RIGHT R GRID LINES SUB1 426 C J LOOP FOR LEFT AND RIGHT R GRID LINES SUB1 428 DD 700' J=1,2 SUB1 428 SUB1 429 IF (J_sEQ.2) GO TO 350 SUB1 431 C LEFT R GRID LINE SUB1 432 C JJ=J1 SUB1 432 C JJ=J1 SUB1 436 KEY=0 SUB1 436 SUB1 437 IF (R1(J).GT.RX) GO TO 340 SUB1 437 IF (R1(J).GT.RX) GO TO 340 SUB1 437 IF (KEY-EQ.1) GO			KATCH=1	SUB1 413
3106 IF ((R((4)=RX).GT.(RM=RX)) GO TO 3150 SUB1 415 GD TO 3109 SUB1 416 3150 CDNTINUE SUB1 417 RI(4)=RM SUB1 417 RI(4)=RM SUB1 418 IF (KATCH.NE.0) GO TO 3107 SUB1 419 RI(4)=RMAX+1. SUB1 420 3107 CONTINUE SUB1 421 IF (KATCH.P*KATCHT*KATCHR*KATCHS.EQ.0) GO TO 485 SUB1 422 ZI(1)=Z(11) SUB1 423 ZI(2)=Z(11) SUB1 425 ZI(4)=Z(11) SUB1 425 ZI(4)=Z(11) SUB1 425 ZI(4)=Z(11) SUB1 426 C J LOOP FOR LEFT AND RIGHT R GRID LINES SUB1 428 OD 700' J=1,2 SUB1 428 SUB1 428 C LEFT R GRID LINE SUB1 430 C LEFT R GRID LINE SUB1 431 C JJ=J1 SUB1 433 KE*=0 SUB1 434 SUB1 434 KE*=0 SUB1 433 SUB1 434 KE*=1 SUB1 436 SUB1 437 IF ((R(J1).GT.R1(N)) GO TO 340 SUB1 437 IF ((R(J1).GT.RX) GO TO 340 SUB1 439			GD TO 3109	SUB1 414
GO TO 3109 SUB1 416 3150 CONTINUE SUB1 417 R1(4)=RM SUB1 418 IF (KATCH.NE.0) GO TO 3107 SUB1 419 R1(4)=RMAX+1. SUB1 420 3107 CONTINUE SUB1 420 IF (KATCHP*KATCHT+KATCHR*KATCHS.EQ.0) GO TO 485 SUB1 422 If (1)=2(11) SUB1 423 Z1(2)=2(11) SUB1 424 Z1(2)=2(11) SUB1 426 Z1(4)=2(11) SUB1 427 Z1(4)=2(11) SUB1 426 Z1(4)=2(1) SUB1 427 G SUB1 428 DD 700 J=1,2 SUB1 428 JJ=J1 SUB1 430 C LEFT R GRID LINE SUB1 433 JJ=J1 SUB1 434 SUB1 434 KEY=0 SUB1 434 SUB1 436 IF (R1(N).GT.R1(N)) GO TO 340		3106	IF ((RI(4)-RX).GT.(RM-RX)) GO TO 3150	SUB1 415
3150 CONTINUE SUB1 417 R1(4)=RM SUB1 418 IF (KATCH.NE.0) GO TO 3107 SUB1 419 R1(4)=RMAX+1. SUB1 420 3107 CONTINUE IF (KATCHP+KATCHT+KATCHS.EQ.0) GO TO 485 SUB1 422 Z1(1)=Z(11) SUB1 423 Z1(1)=Z(11) SUB1 425 Z1(4)=Z(11) SUB1 426 C J LOOP FOR LEFT AND RIGHT R GRID LINES SUB1 426 C SUB1 427 SUB1 428 DD 700 J=1,2 SUB1 429 SUB1 428 DD 700 J=1,2 SUB1 429 SUB1 428 C LEFT R GRID LINE SUB1 430 C LEFT R GRID LINE SUB1 432 C JJ=J1 SUB1 433 JJ=J1 SUB1 433 SUB1 434 KEY=0 SUB1 435 SUB1 435 OD 340 N=1,4 SUB1 436 SUB1 437 IF (R(J1).GT.RI(N)) GO TO 340 SUB1 438 SUB1 439 KEY=1 SUB1 440 SUB1 440 KEEP=N SUB1 441 SUB1 441 GO TO 340 SUB1 441 SUB1 441 SUB1 441 SUB			GO TO 3109	SUB1 416
RI(4)=RM SUB1 418 IF (KATCH.NE.0) GO TO 3107 SUB1 419 RI(4)=RMAX+1. SUB1 420 3107 CONTINUE SUB1 421 IF (KATCHP+KATCHT+KATCHR+KATCHS.EQ.0) GO TO 485 SUB1 421 ZI(1)=Z(II) SUB1 422 ZI(1)=Z(II) SUB1 423 ZI(2)=Z(II) SUB1 424 ZI(3)=Z(II) SUB1 425 ZI(4)=Z(II) SUB1 426 C J LOOP FOR LEFT AND RIGHT R GRID LINES SUB1 426 C SUB1 426 SUB1 426 C J LOOP FOR LEFT AND RIGHT R GRID LINES SUB1 427 C SUB1 429 SUB1 429 IF (J.EQ.2) GO TO 350 SUB1 429 SUB1 430 C LEFT R GRID LINE SUB1 431 C SUB1 433 SUB1 433 J=J=J1 SUB1 433 SUB1 433 J=J=J1 SUB1 435 SUB1 436 IF (R(J1).GT.RI(N)) GO TO 340 SUB1 436 SUB1 437 IF (R(I).GT.RI(N) GO TO 340 SUB1 439 SUB1 439 KEY=1 SUB1 440 SUB1 442 GD TO 340 SUB1 442 SUB1 441		3150	CONTINUE	SUB1 417
IF (KATCH.NE.0) GO TO 3107 SUB1 419 R1(4)=RMAX+1. SUB1 420 3107 CONTINUE SUB1 421 IF (KATCHP+KATCHT+KATCHR+KATCHS.EQ.0) GO TO 485 SUB1 422 Z1(1)=Z(11) SUB1 424 Z1(3)=Z(11) SUB1 424 Z1(4)=Z(11) SUB1 426 Z JL00P FOR LEFT AND RIGHT R GRID LINES SUB1 427 C JL00P FOR LEFT AND RIGHT R GRID LINES SUB1 427 C SUB1 420 SUB1 426 D 700 J=1.2 SUB1 427 C SUB1 420 SUB1 427 C SUB1 426 SUB1 429 IF (J_EQ.2) GO TO 350 SUB1 427 C SUB1 428 SUB1 427 C SUB1 427 SUB1 428 D 700 J=1.2 SUB1 427 C SUB1 428 SUB1 429 IF (J_EQ.2) GO TO 350 SUB1 430 C LEFT R GRID LINE SUB1 431 C SUB1 433 SUB1 433 JJ=J1 SUB1 435 SUB1 435 D0 340 N=1.4 SUB1 436 SUB1 436 IF (R[4]).GT.R[4]) GO TO 340 SUB1 43			RI(4)=RM	SUB1 418
RI(4)=RMAX+1. SUB1 420 3107 CONTINUE SUB1 421 IF (KATCHP+KATCHT+KATCHS-EQ.01 GO TO 485 SUB1 422 ZI(1)=Z(II) SUB1 423 ZI(2)=Z(II) SUB1 424 ZI(3)=Z(II) SUB1 425 ZI(4)=Z(II) SUB1 426 C J LOOP FOR LEFT AND RIGHT R GRID LINES SUB1 426 C J LOOP FOR LEFT AND RIGHT R GRID LINES SUB1 428 DD 700 J=1,2 SUB1 429 SUB1 429 IF (J.EQ.2) GO TO 350 SUB1 430 SUB1 432 C LEFT R GRID LINE SUB1 431 C SUB1 432 SUB1 432 C SUB1 433 SUB1 433 JJ=J1 SUB1 435 SUB1 435 OD 340 N=1,4 SUB1 435 SUB1 436 IF (RIAN).GT.RXI GO TO 340 SUB1 436 SUB1 437 IF (RIAN).GT.RXI GO TO 340 SUB1 439 SUB1 442 KEY=1 SUB1 442 SUB1 442			IF (KATCH.NE.O) GO TO 3107	SUB1 419
3107 CONTINUE SUB1 421 IF (KATCHP+KATCHT+KATCHR+KATCHS.EQ.0) GO TO 485 SUB1 422 ZI(1)=Z(II) SUB1 423 ZI(2)=Z(II) SUB1 424 ZI(3)=Z(II) SUB1 424 ZI(3)=Z(II) SUB1 424 ZI(4)=Z(II) SUB1 426 ZI(4)=Z(II) SUB1 426 ZI(4)=Z(II) SUB1 427 C JLOOP FOR LEFT AND RIGHT R GRID LINES SUB1 427 C SUB1 428 SUB1 427 C SUB1 428 SUB1 428 DO 700 J=1,2 SUB1 429 IF (J.EQ.2) GO TO 350 SUB1 430 C LEFT R GRID LINE SUB1 431 SUB1 431 C LEFT R GRID LINE SUB1 432 SUB1 433 JJ=J1 SUB1 434 SUB1 433 SUB1 435 OD 340 N=1,4 SUB1 435 SUB1 436 IF (R(J)).GT.RI(N)) GO TO 340 SUB1 436 IF (KEY=0 SUB1 436 SUB1 436 IF (REY-EQ.1) GO TO 340 SUB1 436 IF (KEY-EQ.1) GO TO 340 SUB1 438 SUB1 439 SUB1 439 KEY=1 SUB1 442 SUB1 442 SUB1 442 GO TO 340			R[{4}=RMAX+1.	SUB1 420
IF (KATCHP+KATCHT+KATCHS.EQ.0) GO TO 485 SUB1 422 ZI(1)=Z(II) SUB1 423 ZI(2)=Z(II) SUB1 424 ZI(3)=Z(II) SUB1 425 ZI(4)=Z(II) SUB1 426 C J LOOP FOR LEFT AND RIGHT R GRID LINES SUB1 426 D0 700 J=1,2 SUB1 428 D0 700 J=1,2 SUB1 429 IF (J.EQ.2) GO TO 350 SUB1 430 C LEFT R GRID LINE SUB1 432 C LEFT R GRID LINE SUB1 432 C Juj=J1 SUB1 433 KEY=0 SUB1 435 SUB1 435 D0 340 N=1,4 SUB1 435 IF (R(J1).GT.RI(N)) GO TO 340 SUB1 436 IF (R(J1).GT.RI(N)) GO TO 340 SUB1 437 IF (KEY=EQ.1) GO TO 330 SUB1 439 KEY=1 SUB1 440 SUB1 440 KEEP=N SUB1 442 SUB1 441 GO TO 340 SUB1 442 SUB1 442		3107	CONTINUE	SUB1 421
ZI(1)+Z(II) SUB1 423 ZI(2)=Z(II) SUB1 424 ZI(3)=Z(II) SUB1 425 ZI(4)=Z(II) SUB1 426 C J LOOP FOR LEFT AND RIGHT R GRID LINES SUB1 426 C SUB1 427 SUB1 428 D0 700 J=1,2 SUB1 429 SUB1 429 IF (J.EQ.2) GO TO 350 SUB1 430 C SUB1 431 C SUB1 431 C SUB1 432 C SUB1 431 C SUB1 433 J=J1 SUB1 433 KEY=0 SUB1 435 D0 340 N=1,4 SUB1 435 IF (R(I)).GT.RX) GO TO 340 SUB1 436 IF (KEY-EQ.1) GO TO 340 SUB1 439 KEY=1 SUB1 441 KEP=N SUB1 441 GO TO 340 SUB1 441			IF {KATCHP+KATCHT+KATCHR+KATCHS.EQ.0} GO TO 485	SUB1 422
Z1(2)=Z(11) SUB1 424 Z1(3)=Z(11) SUB1 425 Z1(4)=Z(11) SUB1 426 Z1(4)=Z(11) SUB1 426 Z1(4)=Z(11) SUB1 426 Z1(4)=Z(11) SUB1 427 SUB1 428 SUB1 428 D0 700 J=1,2 SUB1 428 IF (J.EQ.21 GO TO 350 SUB1 430 C LEFT R GRID LINE SUB1 430 C LEFT R GRID LINE SUB1 431 C JJ=J1 SUB1 432 JJ=J1 SUB1 433 SUB1 434 KEY=0 SUB1 436 SUB1 436 IF (R(J1).GT.RI(N)) GO TO 340 SUB1 436 SUB1 437 IF (RI(N).GT.RX) GO TO 340 SUB1 438 SUB1 439 KEY=1 SUB1 440 SUB1 440 KEEP=N SUB1 441 SUB1 441 GO TO 340 SUB1 441 SUB1 441			ZI(1)=Z(II)	SUB1 423
21(3)=2(11) SUB1 425 21(4)=2(11) SUB1 426 C J LOOP FOR LEFT AND RIGHT R GRID LINES SUB1 427 C SUB1 428 SUB1 429 D0 700 J=1,2 SUB1 429 SUB1 429 IF (J.EQ.2) GO TO 350 SUB1 430 C SUB1 431 C SUB1 432 JJ=J1 SUB1 433 KEY=0 SUB1 435 OD 340 N=1,4 SUB1 436 IF (R(J1).GT.RI(N)) GO TO 340 SUB1 437 IF (KEY-EQ.1) GO TO 330 SUB1 439 KEY=1 SUB1 441 KEEP=N SUB1 442			ZI(2)=Z(II)	SUB1 424
ZI(4)=Z(11) SUB1 426 C J LOOP FOR LEFT AND RIGHT R GRID LINES SUB1 427 C SUB1 428 DD 700 J=1,2 SUB1 429 IF (J.EQ.2) GO TO 350 SUB1 430 C SUB1 431 C SUB1 432 C SUB1 432 C SUB1 432 C SUB1 433 JJ=J1 SUB1 435 SUB1 435 SUB1 435 OD 340 N=1,4 SUB1 435 IF (R(J1).GT.RI(N)) GO TO 340 SUB1 437 IF (R(IN).GT.RX) GO TO 340 SUB1 438 IF (REY=EQ.1) GO TO 330 SUB1 440 KEY=1 SUB1 441 KEEP=N SUB1 442			2[(3)=2(11)	SUB1 425
C J LOOP FOR LEFT AND RIGHT R GRID LINES SUB1 427 C SUB1 428 DD 700 J=1,2 SUB1 429 IF (J.EQ.2) GO TO 350 SUB1 430 C SUB1 431 C SUB1 432 J=J SUB1 433 J=J1 SUB1 434 KEY=0 SUB1 435 OD 340 N=1,4 SUB1 436 IF (R(J1).GT.RI(N)) GO TO 340 SUB1 437 IF (RI(N).GT.RX) GO TO 340 SUB1 438 IF (KEY-EQ.1) GO TO 340 SUB1 439 KEY=1 SUB1 439 KEY=1 SUB1 441 KEP=N SUB1 441 GO TO 340 SUB1 442			ZI(4)=Z(11)	SUB1 426
C SUB1 428 DD 700 J=1,2 SUB1 429 IF (J.EQ.2) GO TO 350 SUB1 430 C SUB1 431 C SUB1 432 J=J1 SUB1 433 KEY=0 SUB1 435 OO 340 N=1,4 SUB1 436 IF (R[J]).GT.RI(N]) GO TO 340 SUB1 437 IF (R[J]).GT.RI(N]) GO TO 340 SUB1 438 IF (R[KY+EQ.1] GO TO 340 SUB1 439 KEY=1 SUB1 439 KEEP=N SUB1 442 GD TO 340 SUB1 441		C	J LOOP FOR LEFT AND RIGHT R GRID LINES	SUB1 427
D0 700 J=1,2 SUB1 429 IF (J.EQ.2) GO TO 350 SUB1 430 C SUB1 431 C SUB1 432 C SUB1 432 C SUB1 433 JJ=J1 SUB1 434 KEY=0 SUB1 435 OD 340 N=1,4 SUB1 436 IF (R(J1).GT.RI(N)) GO TO 340 SUB1 436 IF (R(IN).GT.RX) GO TO 340 SUB1 438 IF (KEY=0.1) GO TO 330 SUB1 439 KEEP=N SUB1 441 GO TO 340 SUB1 441		С		SUB1 428
IF (J.EQ.2) GO TO 350 2 SUB1 430 C SUB1 431 C LEFT R GRID LINE SUB1 432 C SUB1 433 JJ=J1 SUB1 434 KEY=0 SUB1 435 DO 340 N=1.4 SUB1 436 IF (R(J)).GT.RI(N)) GO TO 340 SUB1 437 IF (RI(N).GT.RX) GO TO 340 SUB1 438 IF (KEY=EQ.1) GO TO 330 SUB1 439 KEEP=N SUB1 440 GO TO 340 SUB1 441 SUB1 442 SUB1 442			DD 700 J=1+2	SUB1 429
C LEFT R GRID LINE SUB1 431 C SUB1 432 JJ=J1 SUB1 433 KEY=0 SUB1 435 D0 340 N=1+4 SUB1 436 IF (R(J1).GT.RI(N)) GO TO 340 SUB1 437 IF (RI(N).GT.RX) GO TO 340 SUB1 438 IF (KEY-EQ-1) GO TO 330 SUB1 439 KEY=1 SUB1 440 KEEP=N SUB1 441 GO TO 340 SUB1 442			IF (J.EQ.2) GO TO 350 6	SUB1 430
C LEFT R GRID LINE SUB1 432 C SUB1 433 JJ=J1 SUB1 434 KEY=0 SUB1 435 D0 340 N=1+4 SUB1 436 IF (R(J1).GT.RI(N)) GO TO 340 SUB1 437 IF (RI(N).GT.RX) GO TO 340 SUB1 438 IF (KEY-EQ-1) GO TO 330 SUB1 439 KEY=1 SUB1 440 KEEP=N SUB1 441 GO TO 340 SUB1 442		C		SUB1 431
C JJ=J1 JV=J1 SUB1 433 SUB1 434 SUB1 435 DO 340 N=1+4 IF (R(J1).GT.RI(N)) GO TO 340 IF (RI(N).GT.RX) GO TO 340 IF (KEY.EQ.1) GO TO 340 IF (KEY.EQ.1) GO TO 330 SUB1 439 KEY=1 KEEP=N GO TO 340 SUB1 441 SUB1 442		C	LEFT R GRID LINE	SUB1 432
JJ=J1 SUB1 434 KEY=0 SUB1 435 DD 340 N=1+4 SUB1 436 IF (R(J1)+GT-RI(N)) GO TO 340 SUB1 437 IF (RI(N)-GT-RX) GO TO 340 SUB1 438 IF (KEY-EQ-1) GO TO 330 SUB1 439 KEY=1 SUB1 440 KEEP=N SUB1 441 GO TO 340 SUB1 442		С		SUB1 433
KEY=0 SUB1 435 DD 340 N=1+4 SUB1 436 IF (R(J1).GT.RI(N)) GO TO 340 SUB1 437 IF (RI(N).GT.RX) GO TO 340 SUB1 438 IF (KEY-EQ.1) GO TO 330 SUB1 439 KEY=1 SUB1 440 KEEP=N SUB1 441 GO TO 340 SUB1 442			IL≖LL	SUB1 434
D0 340 N=1.4 SUB1 436 IF (R(J1).GT.RI(N)) G0 T0 340 SUB1 437 IF (RI(N).GT.RX) G0 T0 340 SUB1 438 IF (KEY.EQ.1) G0 T0 330 SUB1 439 KEY=1 SUB1 440 KEEP=N SUB1 441 G0 T0 340 SUB1 442			KEY=0	SUB1 435
IF (R(J1).GT.RI(N)) GO TO 340 SUB1 437 IF (RI(N).GT.RX) GO TO 340 SUB1 438 IF (KEY.EQ.1) GO TO 330 SUB1 439 KEY=1 SUB1 440 KEEP=N SUB1 441 GO TO 340 SUB1 442			00 340 N=1,4	SUB1 436
IF (RI(N).GT.RX) GO TO 340 SUB1 438 IF (KEY.EQ.1) GO TO 330 SUB1 439 KEY=1 SUB1 440 KEEP=N SUB1 441 GO TO 340 SUB1 442			IF (R(J1).GT.RI(N)) GO TO 340	SUB1 437
IF (KEY-EQ.1) GO TO 330 SUB1 439 KEY=1 SUB1 440 KEEP=N SUB1 441 GO TO 340 SUB1 442			IF (RI(N).GT.RX) GO TO 340	SUB1 438
KEY=1 SUB1 440 KEEP=N SUB1 441 GD TD 340 SUB1 442	ν.		IF (KEY.EQ.1) GO TO 330	SUB1 439
KEEP≖N SUB1 441 GD TO 340 SUB1 442			KE Y=1	SUB1 440
GD TD 340 SUB1 442			KEEP≠N	SUB1 441
			GD TD 340	SUB1 442

•• • •

154

r		SUBA	443
č	EIND CLOSEST	SUB1	444
ř		SUB 1	445
330	01F1=8X-81(KFFP)	5001	446
550	DIF 2= R X - RI(N)	SURI	447
	$IE_1DIE_1E_2DIE_2E_0D_1D_340$	SUB1	448
	KFFP=N	SUBI	449
340	CONTINUE	SUBI	450
740	CO TO 375	SUBT	451
r	00 10 375	5081	452
č	PICHT P COID LINE	SUBT	453
C C	KIGHT K OKID LINE	5001	455
250	()- 19	1012	455
500	JJ-JZ VEN-A	5001	456
	NE 1-0 NO 240 N-1 4	100C 1011	457
	16 (0(12) T DIÁNÍ) CO TO 240	5001	450
	15 (NIJZ)+LI+KINN)/ 00 10 300 15 (DI/N) 17 09) 00 10 340	5001	450
	IF (KI(M) + LI + KA) GU IU 360	5001	427
	IF (NET+EW+1) 60 10 333	5001	400
		5001	401
	NEEP - N CD TO 340	5001	402
266	00 10 300 D161-01(K65D)-BV	3001	403
222	DIF1=K1(NCEP/=KA DIF2=D1/N1=DV	5001 CUB1	465
	15 (N151 (5 D152) CD TO 340	5001 CUB1	466
	NEED-W	5001 SUB1	460
34.0		5004	401 A&9
· 300	10 (VEV EO 11 CO TO 400	5001 CH91	-460
515	TE (KE(*E4*1) 00 10 400		470
	NO DOINTS RETWEEN BY AND COLD DOINTS	5001	470
Č	NO POINTS DETWEEN NA AND GRID POINTS	5051	472
Ú,	ANCO(1.1)-7(11)	5001 CHB1	472
		5001	474
	ANG2(J#ZJ=KLJJJ ANG2(J 21-VNECH/11 11 11	SUDI Cilei	414
	ANS21J#J7*AMECANTI.14JJ#17 ANS211.4)-VMECANTI.14.21	CHEN	476
	ANC2/1_51=ANCCUTT_11.21	C1161 2001	477
	ANCOI & ALEVACCAIII AE AA	2001	711
	[#ttinc]#A=10tL110tL126	2001	710

. .

.155

	ANS2(J+7)=XMESH(II,JJ,5)	SUB1 479
	ANS2(J+8) = XMESH(II+JJ+6)	SUB1 480
	GD TO 700	SUB1 481
C		SUB1 482
С	POINT FOUND BETWEEN RX AND GRID POINTS	SUB1 483
C		SUB1 484
400	GD TO (405,410,470,481),KEEP	SUB1 485
, C		SUB1 486
C	INTERSECTION ON PROJECTILE SHOCK	SUB 1 487
C		SUB1 488
405	N1=MPS	SUB1 489
	RY=RI(KEEP)	SUB1 407
	ZY=Z([])	SUD1 470 SUB1 491
	GO TO 520	SUD1 471 SUR1 402
C		SUD1 472 SIIR1 493
Č	INTERSECTION ON TARGET SHOCK	SUD1 475
č		\$UB1 495
410	N1=MTS	SUB1 495
	RY=RI(KEEP)	SUB1 490
	ZY=Z([])	SUB1 497
	GO TO 520	SUB1 490
C		SUB1 500
Ċ	INTERSECTION ON RAREFACTION	SUB1 501
č		SUB1 502
470	N1=MR	SUB1 502 SUB1 503
	RY=R1(KFFP)	SUB1 505
		SUB1 505
	GD TO 520	SUB1 506
C		SUB1 507
č	INTERSECTION ON FREE SURFACE	SUB1 508
Č		SUB1 500
481	N1=MS	SUB1 510
	RY=RI(KEEP)	SUDI 510 SUBI 511
	ZY=Z(II)	SUR1 512
	GD TO 520	SUB1 512
C		SUD1 313
*		2001 214

156

C		SUB1	515
485	WRITE (3,488) KEEP,II,JJ,ZX,RX	SUB1	516
488	FORMAT (25HOERROR NEAR STATEMENT 485/1X5HKEEP=, 14, 4X3H11=, 14, 4X3HJ	SUB1	517
	1J=+I4/1X3HZX=+E15+8+4X3HRX=+E15+8/1H1)	SUB1	518
	CALL EXIT	SUB1	519
С		SU81	520
С	FIND TABLE VALUES	SUB1	521
С		SU81	522
520	IF (KEEP.EQ.31 GO TO 580	SUB1	523
	IF (KEEP.EQ.4) GD TO 591	SUB1	524
	DO 550 N=3,8	SUB1	525
	ANS2(J,N)=TAB(N1,N,KEEP)+(TAB(N1+1,N,KEEP)-TAB(N1,N,KEEP))+SQRT(((SUB1	526
	1RY-TAB(N1,2,KEEP)) **2+(ZY-TAB(N1,1,KEEP)) **2)/((TAB(N1+1,2,KEEP)-T	SUB 1	527
	1AB(N1,2,KEEP)) **2+(TAB(N1+1,1,KEEP)-TAB(N1,1,KEEP))**2))	SUB1	528
550	CONTINUE	SUB1	529
	IF (ZX.LT.OAND.ABS(RX-RADIUS).LT.1.E-6) GO TO 552	SUBI	530
	IF (RX.LT.RADIUS.OR.ABS(Z(II)).GT.1.E-6/ GO TO 551	SUB1	531
552	CONTINUE	SUB1	532
	ANS2(J+3)=0.	SU81	533
	ANS2(J+6)=RHOSTR	SUB1	534
	ANS2(J,7)=0.	SUB1	535
	ANS2(J,8)=SQRT(BIGAPR/RHOSTR)	SUB1	536
551	CONTINUE	SUB1	537
	GO TO 600	SUB1	538
580	00 590 N≠3+8	SUB1	539
	ANS2(J+N)=RARF(N1+N)+(RARF(N1+1+N)-RARF(N1+N))+SQRT(({RY-RARF(N1+2	SUB 1	540
	1) ** 2+ (ZY-RARF (N1, 1)) ** 2) / ((RARF (N1+1, 2) -RARF (N1, 2)) ** 2+ (RARF (N1+1	SUB1	541
	1,1)-RARF(N1,1))##2))	SUB1	542
590	CONTINUE	SUB1	543
	GO TO 600	SUB1	544
591	DD 592 N=3+8	SUB1	545
	ANS2(J+N)=SURF(N1+N)+(SURF(N1+1+N)-SURF(N1+N))+SQRT(((RY+SURF(N1+2	SUB1	546
	1)) **2+(ZY-SURF(N1,1)) **2)/{(SURF(N1+1,2)-SURF(N1,2)) **2+(SURF(N1+1	SUB1	547
	1,1)-SURF(N1,1))**2))	SU81	548
592	CONTINUE	SUB 1	549
600	CALL DVCHK(NO)	SU81	550

•

157

•

	IF (ND-EQ-2) GO TO 605	SUB 1	551
	N0=600	SUBI	552
	GO TO 940	SUB 1	553
605	ANS2(J,1)=ZY	SUB1	554
	ANS2(J,2)=RY	SUB1	555
C		SUB1	556
С	END OF LOOP FOR BOTH R GRID LINES	SUB 1	557
С		SUB1	558
700	CONTINUE	SUB1	559
C		SUB1	560
C	INTERPOLATE FOR UPPER AND LOWER VALUES	SUB 1	561
C		SUB 1	562
	DO 720 J=3,8	SUB1	563
	ANS1(I,J)=ANS2(1,J)+(ANS2(2,J)-ANS2(1,J))*(RX-ANS2(1,2))/(ANS2(2	2.2SUB1	564
	1)-ANS2(1,2))	SUB1	565
720	CONTINUE	SUB 1	566
	CALL DVCHKENDI	SUB1	567
	IF (ND.EQ.2) GO TO 730	SUB 1	568
	N0=720	SUB1	569
	GO TO 940	SUB1	570
730	ANS1([.1)=Z(I])	SUB1	571
	ANS1(1,2)=RX	SUB1	572
С .		SUB1	573
Ċ	END OF LOOP FOR BOTH Z GRID LINES	SUB 1	574
C		SUB1	575
800	CONTINUE	SUB1	576
C		SUB1	577
Ċ	FIND FINAL VALUES	SUB1	578
C		SUB1	579
-	DO 810 J=1,6	SUB1	580
	ANS(J]=ANS1(1, J+2)+(ANS1(2, J+2)-ANS1(1, J+2))*(ZX-ANS1(1, 1))/(ANS	51(SUB1	581
	12.1)-ANS1(1.1))	SUB1	562
810	CONTINUE	SUB1	583
	CALL DVCHK(ND)	SUB1	584
	IF (NO.EQ.2) GO TO 820	SUB1	585
	NO=810	SUB1	586

•

.

.

•

158

	GO TO 940	SUB1	587	
820	RETURN	SUB 1	588	
Ċ		SUB1	589	
940	WRITE (3+942)	SUB1	590	
942	FORMAT (35HODIVIDE CHECK ERROR IN SUBR. DBLTRP)	SUB1	591	
950	WRITE (3.952) NO.7X.RX.11.JI.KEEP.ZI.RI	SUB1	592	
952	FORMAT (19H NEAR STATEMENT NO 14/1X3HZX=, E15.8.4X3HRX=, E15.8/1X3	HSUB1	593	
	111=.14.4X3HJ1=.14.4X5HKEEP=.14/1X3HZI=.4E18.8/1X3HRI=.4E18.8)	SUB1	594	
	WRITE (3.955) ((ANS1(I.J).J=1.8).I=1.2).((ANS2(I.J).J=1.8).I=1.2)	SUB1	595	-
955	FORMAT (1X5HANS1=/8E16.8/8E16.8/1X5HANS2=/8E16.8/8E16.8/1H1)	SUB1	596	
	XY7=-2.	SUB1	597	
	ZYX = SQRT(XYZ)	SUB1	598	
	CALL FXIT	SUB1	599	
	RETURN	SU81	600	
	FND	SU81	601	
	SUBROUTINE SHOCK	SUB2	1	
C	COMPUTES SHOCK VALUES	SUB2	2	
-	COMMON CASEID(14), ITS1, ITS2, ITS3, ITS4, ITI1, ITI2, ITI3, IT14, EPS1, EP	SSU82	3	
	12, EPS3, EPS4, EPS5, EPS6, EPI1, EPI2, EPI3, EPI4, EPI5, EPI6, EPI7, VP, AR, LE	NSUB2	4	
	1GTH, APR, BPR, BIGAPR, BIGBPR, ESTAR, ALPHA, BETA, RHOSTR, EPRS, RHOS	SUB 2	5	
	COMMON XMESH(20,20,6), XMESH2(20,20,6), Z(20), R(20), SURF(15,8), SURF	2 S U B 2	6	
	1(15,8),TAB(15,14,2),TAB2(15,14,2),SPART(15,2,2),RARF(15,11),RARF2	(SUB2	7	
	115,4),RPART(15,2)	SUB 2	8	
С		SUB 2	9	
-	CDMMON Z0,R0,P0,U0,V0,L0,M0,RH00,E0,A0,UBAR0,VBAR0	SUB 2	10	
C		SUB2	11	
	COMMON NP,NT,NR,NI,NDEL,ISUB	SUB2	12	
° C		SUB2	13	
	COMMON ZMIN,ZMAX,RMIN,RMAX,RADIUS,GZ,GR,DELTA,H	SUB 2	14	
	COMMON DIRCOS	SUB 2	15	
	COMMON TIME	SUB 2	16	
	COMMON IRARF	SUB 2	17	
	COMMON KSTOP	SUB2	18	
	COMMON TPSI	SUB 2	19	
	COMMON KKK	SUB2	20	
C		SUB 2	21	

159

С

	DEAL LA MA LENETH MU KA	61103	22
~	KCAL LUARVALERUINARUANU	500Z	22
Ļ		2002	25
	UIMENSIUN ANSIGI	2002	24
	EXTERNAL FOULT	5082	25
_	EPS=•0000001	SUBZ	20
C		SUB 2	21
C	BEGIN SHOCK POINT COMPUTATIONS	SUBZ	28
	DD 505 K=1+2	SUB 2	29
	GO TO (158,160),K	SUB 2	30
158	NN=NP	SU82	31
	GO TO 162	SUB 2	32
160	NN=NT	SUB 2	33
	VBARS=0.	SUB 2	34
162	DO 500 [=1,NN	SUB 2	35
	MPROJ=0	SUB 2	36
	IF (TAB(I,14,K).LT.O.) GO TO 500	SUB2	37
164	CONTINUE	SUB 2	38
C		SUB 2	39
č	INITIALIZE TO ITERATE ON 1 SHOCK POINT	SUB2	40
č		SUB 2	41
0	NBIC=0	SUB2	42
	70=TAB2(1.).K)	SUB 2	43
	$R_0 = TAR_2(1, 2, K)$	SU8.2	44
	PO=TAR(I.3.K)	SUB2	45
	HO=TAB(I_4_K)	SU82	46
	VO=TAB(I_5.K)	SUB2	47
	PHOA=TAB(1.6.K)	SUB2	48
	EC=TAR(1.7.K)	SUB2	49
		SUB2	50
	10=TAB/T.Q.K)	SUB2	51
	NO = TAB(T, 10, K)	SUB 2	52
	NO-IND(1110)N/ NRADO-TAB/T.11.K)	SUB2	53
		SUB 2	54
	*0MNU=:M0(1;12,4) HTAU=:*AR(1,12,4)	SUB2	55
	UTUNTIAUX19139N7 HT0_HT0H	C110 2	56
		SUDZ	50
	11344=1134	2005	21

-

,

160

	IF (IRARF.EQ.1) GO TO 170	SU82	58
	M=1(NR-2)*(K-2)	SUB 2	59
	FF=RO-RARF2(M+1,2)-(RARF2(M,2)+RARF2(M+1,2))*(ZO-RARF2(M+1,1))/(R	ASUB2	60
	1RF2(M,1)-RARF2(M+1,1))	SUB 2	61
169	CONTINUE	SUP-2	62
	IF (FF.LT001) GO TO 350	SUB 2	63
170	IF (I.NF.1) GO TO 180	SUB 2	64
	MO=TAB(1,10,K)	SUB 2	65
	LO=0.	SUB 2	66
	GO TO 190	SUBZ	67
180	IF (I.LT.NN) GO TO 184	SUB 2	68
	UP=H*(TAB(I-1+13+K)-TAB(I+13+K))	SUB 2	69
	TMP=SQRT((TAB2(I-1,2,K)~RO)*#2+(TAB2(I-1,1,K)-ZO)*#2)	SUB2	70
	DOMEG=UP/TMP	SU82	71
	GO TO 186	SUB 2	72
184	DR1=TAB2(1+1+2,K)-R0	SUB2	73
	DR2=R0-TAB2(1-1+2+K)	SUB2	74
	DZ1=TAB2(1+1,1,K)-Z0	SUB2	75
	D22=20-TAB2(I-1+1+K)	SUB2	76
	UP=H*(TAB(I-1,13,K)-TA8(I+1,13,K))	SUB2	77
	TMP=SQRT(DR1**2+DZ1**2)+SQRT(DR2**2+DZ2**2)	SUB2	78
	DOMEG=UP/TMP	SUB2	79
	KICK=184	SUB 2	80
	CALL DVCHK(KQ)	SUB 2	81
	IF (KQ.EQ.1) GO TO 9980	SUB 2	82
С		SUB 2	83
C	COMPUTE NEW LO.MO	SUB 2	84
C		SUB2	85
186	COMEG=COS(DOMEG)	SU82	86
	SOMEG=SIN(DOMEG)	SUB2	87
	XLO=LO*CDMEG+NO*SOMEG	SUB 2	66
	XMO=MO+CDMEG-LO+SOMEG	SUBŽ	89
	LO=XLO	SUB 2	90
	MO=XMO	SUB 2	91
	IF (P0.GT0025) GO TO 190	SUB 2	92
	P0=0.	SUB 2	93

16/

	10=0.	SUB 2	94
	VO = VP + (1 - (-1) + *K)/2.	SU82	95
	RHDO=RHOSTR	SUB2	96
		SUB 2	97
	AO = SORT(BIGAPR/RHOSTR)	SUB 2	98
	$UBARO=MO \neq VO$	SUB 2	99
	VBAR 0=VBAR S	SU8 2	100
	IITO = UBABO + 4 O + (-1.) + + K	SUB 2	101
	GO TO 350	SUB 2	102
190	11533=1153	SUB 2	103
r		SUB 2	104
č	FIND GUESS TO START ITERATION	SUB2	105
č		SUB2	106
195	CALL GUESS(1+K0D2+Z0+R0+L+K+ZZ+RR+DZ+DR)	SU8 2	107
	IE (KOD2 - EQ - 1) GO TO 200	SUB 2	108
	WRITE (3.198) $1.K.Z0.80$	SUB2	109
	WRITE (3.7002) 77.88.DZ.DR	SUB 2	110
198	FORMAT (31HOND GUESS FOUND FOR SHOCK POINT/3HO1=, 14, 6X2HK=, 14, 10	X3SUB2	111
	1H70 = .F15.8.10X3HR0 = .E15.8/1H1)	SUB 2	112
	CALL EXIT	SUB 2	113
200	CONTINUE	SUB 2	114
200	KY=K	SUB 2	115
	NTW=0	SUB 2	116
	(F (K_FQ.2) GO TO 201	SUBZ	117
	VRARS=VP*LO	SUB 2	118
		SUB 2	119
	GD TO 203	SUB2	120
201		SUB 2	121
203	CONTINUE	SUB 2	122
¢. Q .2	CALL NRIT2(Z1.R1.ZZ.DZ.RR.DR.EPS1.EPS2.FGOF1.ITS1.KODE)	SUB 2	123
	IF (KODE.EQ.0) GO TO 205	SUB 2	124
C		SUB 2	125
C	BICHARACTERISTIC SELECTION SCHEME	SUB 2	126
Ē		SUB2	127
-	[F (NBIC.EQ.0) GO TO 204	SUB2	128
	IF (NTW.EQ.8)KY=KY+1	SUB 2	129

-

•

.

162

IF (NTW.GT.21) GO TO 7000 ANG1=ANG1+DTPSI*(-1.)**KY SUB2 130 SUB2 131 DIRCOS=SIN(ANG1) 1 0=COS(ANG1) SUB2 132 SUB2 133 SUB2 134 NTW=NTW+1 SUB2 135 GO TO 203 CONTINUE NBIC=1 SUB2 136 204 CALL DBLTRP(ZZ,RR,ANS) UA=ANS(2) VA=ANS(3) AA=ANS(6) ZZZ=ZZ+DZ CALL DB1TRP(777, BP, ANG) SUB2 137 SUB2 138 SUB2 139 SUB2 140 SUB2 141 SUB2 142 CALL DBLTRP(ZZZ+RR+ANS) SUB2 143 - SUB2 144 UB=ANS(2) SUB2 145 VB=ANS(3) SUB2 146 AB=ANS(6) SUB2 147 RRR=RR+DR CALL DBLTRP(ZZ+RRR+ANS) SUB2 148 SUB2 149 UC = ANS(2)SUB2 150 VC=ANS(3) SUB2 151 AC = ANS(6)MM=0 TPSI=1.5708≠(-1.)≠+K SUB2 152 SUB2 153 SUB2 154 XB≂ZZ SUB2 155 YB=RR . SUB2 156 NOM=5 SUB2 157 CA=NOM CA=NOM 6201 DTPSI=.01745 DTPSI=CA+DTPSI TPSI=TPSI+DTPSI*(-1.)**K SUB2 158 SUB2 159 SUB2 160 A1=1.+H*(VB-VA+(AB-AA)*SIN(TPSI))/DZSUB2 161 SUB2 162 B1=H*(VC-VA+(AC-AA)*SIN(TPSI))/DR SUB2 163 C1 = -(ZZ - ZO + H + (VA + AA + SIN(TPSI)))SUB2 164 A2=H+(UB-UA+(AB-AA)+COS(TPSI))/DZ SUB2 165 B2=1.+H*(UC-UA+(AC-AA)*COS(TPSI))/DR

• • •

163

	C2=-(RR-RO+H*(UA+AA*COS(TPSI)))	SU82	166
	DET=A1+82-A2+81	SUB2	167
	DEL X=(82*C1-B1*C2)/DET	SUB2	168
	DELY=(A1+C2-A2+C1)/DET	SUB2	169
C		SU82	170
C	TEST FOR SAME REGION	SU8.2	171
С	·	SU8 2	172
	XB1=X8+DELX	SUB 2	173
	YB1=YB+DELY	SUB 2	174
	M=COMP(XB,YB,XB1,YB1)	SU8.2	175
	IF (M.EQ.1) GO TO 6203	SUB 2	176
	MM=MM+1	SUB 2	177
•	IF (MM.LT.360/NOM) GO TO 6201	SUB 2	178
7000	WRITE (3,7001)	SUB 2	179
7001	FORMAT (41HOBICHARACTERISTIC SELECTION SCHEME FAILED)	SUB2	180
	WRITE (3,614) 20,R0	SUB2	181
614	FORMAT (1X5HZO =+E15.8+4X5HRO =+E15.8)	SUB 2	182
	WRITE (3,7002) UA, VA, AA, UB, VB, AB, UC, VC, AC, ZZ, DZ, RR, DR, ANGI	SUB2	183
7002	FORMAT (4E16.8)	SUB2	184
	CALL EXIT	SU82	185
6203	CONTINUE	SUB 2	186
	WRITE (3,6210)	SUB 2	187
6210	FORMAT (53HOBICHARACTERISTIC SELECTION SCHEME EMPLOYED BY SHOCKX)	SUB 2	188
6204	ANG1=TPSI	SUB 2	189
	T1=DIRCOS	SUB 2	190
	T2=L0	SUB 2	191
	DIRCOS=SIN(ANG1)	SUB2	192
	LO=COS(ANG1)	SUB 2	193
	GO TO 203	SU8 2	194
205	CONTINUE	SUB2	195
	UBARS1=0.	SUB 2	196
	IF (K.EQ.1)UBARSI=MO*VP	SU8 2	197
	CALL DBLTRP(Z1,R1,ANS)	SU8 2	198
	P1=ANS(1)	SUB 2	199
	U1=ANS(2)	SUB 2	200
	V1=ANS(3)	SUB2	201

164

	RHO1=ANS(4)	SUB2 202	
	F1 = ANS(5)	SUB2 203	
	A1 = ANS(6)	SUB2 204	
206	CONTINUE	SUB2 205	
	K1CK=205	SU82 206	
	CALL DVCHK(KQ)	SUB2 207	
	IF (KQ.EQ.1) GO TO 9980	SUB2 208	
	IF (NBIC.EQ.0) GO TO 207	SUB2 209	
7003	SINTH=ABS(DIRCOS)	SUB2 210	
	COSTH=ABS(LO)	SUB2 211	
	DIRCOS=T1	SUB2 212	
	LO=T2	SUB2 213	
207	CONTINUE	SUB2 214	
	UBAR1=L0*U1+M0*V1	SUB2 215	
	IF (K.EQ.2) GO TO 208	SUB2 216	
	IF (UBAR1.LT.VP/2.) GO TO 208	SUB2 217	
	UBAR1=UBARS1-UBAR1	SUB2 218	
208	CONTINUE	SUB2 219	
218	CONTINUE	SUB2 220	
	M1=PART(1.Z1.R1.ZZ.RR.DELTA.NDEL)	SUB2 221	
	IF (M1.EQ.1) GO TO 210	SUB2 222	
	PUR=0.	SUB2 223	
	PVR=0.	SUB2 224	
	GD TO 215	SUB2 225	
210	CALL DBLTRP(ZZ+RR+ANS)	SUB2 226	
<u></u>	DP = RR - RI	SUB2 227	
	PUR = (ANS(2) - U1) / DP	SUB2 228	
219	CONTINUE	SUB2 229	
	PVR = (ANS(3) - VI)/DP	SUB2 230	
215	M1=PART(2.21.R1.ZZ.RR.DELTA.NDEL)	SUB2 231	
	IE (M1.EQ.1) GO TO 220	SUB2 232	
	P117=0.	SUB2 233	
	PV7=0-	SUB2 234	
	PA7=0.	SUB2 235	
	GD TD 225	SUB2 236	
220	CALL DBLTRP(ZZ+RR+ANS)	SUB2 237	
~			

165

	0P=22-21	SUB2 238
	PUZ=(ANS(2)+UI)/DP	SUB2 239
	PVZ = (ANS(3) - VI)/DP	SUB2 240
225	CONTINUE	SUB2 241
	IF (NBIC.EQ.1) GO TO 7004	SU82 242
	PURB1=L0*PUR+M0*PVR	SUB2 243
	PVRB1=L0*PVR-MO*PUR	SUB2 244
	PVZB1=L0*PVZ-MO*PUZ	SUB2 245
	PVEB1=-MO*PVRB1+LO*PVZB1	SUB2 246
	SBAR1=PVEB1	SUB2 247
226	CONTINUE	SUB2 248
*	IF (ABS(R1).LE.EPS) GO TO 235	SUB2 249
	SBAR1=SBAR1+U1/R1	SUB2 250
	GO TO 240	SUB2 251
7004	CONTINUE	SUB2 252
	IF (V1.GT.VP/2AND.K.EQ.1)V1=VP-V1	SUB2 253
	SBAR1=SINTH**2*PUR-SINTH*COSTH*(PUZ+PVR)+COSTH**2*PVZ	SUB2 254
	GO TO 226	SUB2 255
235	SBAR1=SBAR1+PUR	SUB2 256
C		SUB2 257
C		SUB2 258
240	IT\$22=IT\$2	SUB2 259
	MMM=O	SUB2 260
250	CONTINUE	SUB2 261
	CALL EQOSS(PFR, PFE)	SUB2 262
	BIGA1=RHO1*A1	SUB2 263
	KICK=250	SUB2 264
	CALL DVCHK(KQ)	SUB2 265
	IF (KQ.EQ.1) GO TO 9980	SUB2 266
	TEMP=1RHOSTR/RHOO	SUB2 267
	TMP=SQRT(PO*TEMP/RHOSTR)	SUB2 268
	IF (K+EQ+2) GO TO 251	SUB2 269
	IF (TMP.LT.VP/2.) GO TO 251	SUB2 270
	MPROJ=1	SUB2 271
	TMP=UBARS1-TMP	SUB2 272
251	CONTINUE	SUB2 273

166

	TMP6=TMP	SUE 2	274
256	CONTINUE	SUP 2	275
	FNBIC=NBIC	SUB2	276
	TMP1=P1+8[GA1#UBAR1-RH01#H#SBAR1#A1##2+8[GA1#(-UBAR1+C0STH#U1+S	INTSUB2	277
	1H*V1-SINTH*LO*VBARS+COSTH*MO*VBARS)*(FNB1C)	SU5 2	278
	TMP2=PFP*TEMP+PO*RHOSTR/RHOO**2	SUB2	279
	TMP5=PFE+TFMP	S082	280
•	GTMP=-RHO1*A1	SUB 2	281
4	[F (NBIC.EQ.0) G() TO 259	SUB 2	282
1	GTMP=GTMP*(COSTH*LO+SINTH*MO)	SUB 2	283
259	CONTINUE	SUB 2	234
	BIGG=PO-(GTMP*TMP+TMP1)	SUB 2	285
	PGR=PFR-((GTMP*TMP2)/(2.*RHOSTR*TMP6))	SUB 2	286
	PGE=PFE-((GTMP*TMP5)/(2.*RHOSTR*TMP6))	SUB 2	287
265	TMP=.5*(1./RHOSTR+1./RHOO)	SUB2	288
	8[GH=E0-TMP*P0	SUB 2	289
	PHR=-TMP*PFR5*P0/RH00**2	SUB 2	290
	PHF=1TMP*PFE	SUB2	291
	IF (ABS(RIGH).GT0001) GO TO 267	SUB2	292
	BIGH=0.	SUB 2	293
267	IF (ABS(BIGG).GT0001) GO TO 269	SUB 2	294
	BIGG=0.	SUB 2	295
269	CONTINUE	SUB 2	296
C		SUB 2	297
C	COMPUTE DELTA EO,DELTA RHOO	SUB 2	298
C	·	SUB 2	299
	DOWN=PGE*PHR-PGR*PHE	SU82	300
	DEO=(-BIGG*PHR+BIGH*PGR)/DOWN	SUB2	301
	ORHOO=(-BIGH*PGE+BIGG*PHF)/DOWN	SUB2	302
C		SUB 2	303
	E02=E0+DE0	SUB 2	304
	IF (E02.LT.0.1E02=0.	\$UB2	305
	RH002=RH00+DRH00	SUB2	306
	IF (RHOO2+LT+RHOSTR)RHOO2=RHOO	SUB 2	30 7
	KICK=265	SUB 2	308
	CALL DVCHK(KQ)	SUB 2	309

167

CALL EQOSP(RH002,E02,P02) SUB2 311 UBAR02=(1RH0STR/RH002)*(P02/RH0STR) SUB2 312 IF (UBAR02.GT.0.) GO TO 2669 SUB2 313 WRITE (3,2700) P02,RH002,E02,R0,Z0 SUB2 314 WRITE (3,7002) P1,U1,V1,RH01,E1,Z1TR1,SBAR1 SUB2 315 2700 FORMAT (4E16.8) SUB2 316 2669 CONTINUE SUB2 317 UBAR02=SQRT(UBAR02) SUB2 318 IF (E02,LT.1.E-5) GO TO 273 SUB2 319 IF (ABS((E02-E0)/E02).LT.EPS4) GO TO 273 SUB2 320 IF (ABS(DE0).GT01*EPS4) GO TO 275 SUB2 321 273 IF (ABS((RH002-RH00)/RH002).LE.EPS3) GO TO 285 SUB2 322 IF (ABS(0RH00).LT.EPS3) GO TO 285 SUB2 323 275 ITS22=ITS22-1 SUB2 324 IF (ITS22.GT.0) GO TO 280 SUB2 325
UBAR02=(1RH0STR/RH002)*(P02/RH0STR) SUB2 312 IF (UBAR02.GT.0.) GO TO 2669 SUB2 313 WRITE (3,2700) P02,RH002,E02,R0,Z0 SUB2 314 WRITE (3,7002) P1,U1,V1,RH01,E1,Z1TR1,SBAR1 SUB2 315 2700 FORMAT (4E16.8) SUB2 316 2669 CONTINUE SUB2 317 UBAR02=SQRT(UBAR02) SUB2 318 IF (E02.LT.1.E-5) GO TO 273 SUB2 319 IF (ABS((E02-E0)/E02).LT.EPS4) GO TO 273 SUB2 320 IF (ABS(0E0).GT01*EPS4) GO TO 275 SUB2 321 273 IF (ABS((RH002-RH00)/RH002).LE.EPS3) GO TO 285 SUB2 323 275 ITS22=ITS22-1 SUB2 30 IF (ITS22.GT.0) GO TO 280 SUB2 325
IF (UBAR02.GT.0.) GO TO 2669 SUB2 313 WRITE (3,2700) P02,RH002,E02,R0,Z0 SUB2 314 WRITE (3,7002) P1,UI,V1,RH01,E1,ZITR1,SBAR1 SUB2 315 2700 FORMAT (4E16.8) SUB2 316 2669 CONTINUE SUB2 317 UBAR02=SQRT(UBAR02) SUB2 318 IF (E02.LT.1.E-5) GO TO 273 SUB2 319 IF (ABS((E02-E01/E02).LT.EPS4) GO TO 273 SUB2 320 IF (ABS(0E0).GT01*EPS4) GO TO 275 SUB2 321 273 IF (ABS((RH002-RH00)/RH002).LE.EPS3) GO TO 285 SUB2 322 IF (ABS(0RH00).LT.EPS3) GO TO 285 SUB2 323 275 ITS22=ITS22-1 SUB2 324 IF (ITS22.GT.0) GO TO 280 SUB2 325
WRITE (3,2700) P02,RH002,E02,R0,Z0 SUB2 314 WRITE (3,7002) P1,U1,V1,RH01,E1,ZITR1,SBAR1 SUB2 315 2700 FORMAT (4E16.8) SUB2 316 2669 CONTINUE SUB2 317 UBAR02=SQRT(UBAR02) SUB2 318 IF (E02,LT.1.E-5) GO TO 273 SUB2 319 IF (ABS((E02-E0)/E02).LT.EPS4) GO TO 273 SUB2 320 IF (ABS(DE0).GT01*EPS4) GO TO 275 SUB2 321 273 IF (ABS((RH002-RH00)/RH002).LE.EPS3) GO TO 285 SUB2 322 IF (ABS(ORH00).LT.EPS3) GO TO 285 SUB2 323 275 ITS22=ITS22-1 SUB2 324 IF (ITS22.GT.0) GO TO 280 SUB2 325
WR I TE (3,7002) P1,U1,V1,RH01,E1,Z1TR1,SBAR1 SUB2 315 2700 FORMAT (4E16.8) SUB2 316 2669 CONTINUE SUB2 317 UBAR02=SQRT(UBAR02) SUB2 318 IF (E02.LT.1.E-5) GO TO 273 SUB2 319 IF (ABS((E02-E0)/E02).LT.EPS4) GO TO 273 SUB2 320 IF (ABS(DE0).GT01*EPS4) GO TO 275 SUB2 321 273 IF (ABS((RH002-RH00)/RH002).LE.EPS3) GO TO 285 SUB2 322 IF (ABS(ORH00).LT.EPS3) GO TO 285 SUB2 323 275 ITS22=ITS22-1 SUB2 324 IF (ITS22.GT.0) GO TO 280 SUB2 325
2700 FORMAT (4E16.8) SUB2 316 2669 CONTINUE SUB2 317 UBAR02=SQRT(UBAR02) SUB2 318 IF (E02+LT+1+E-5) GO TO 273 SUB2 319 IF (ABS((E02-E0)/E02)+LT+EPS4) GO TO 273 SUB2 320 IF (ABS(DE0)+GT+01+EPS4) GO TO 275 SUB2 321 273 IF (ABS((RH002-RH00)/RH002)+LE+EPS3) GO TO 285 SUB2 322 IF (ABS(ORH00)+LT+EPS3) GO TO 285 SUB2 323 275 ITS22=ITS22-1 SUB2 324 IF (ITS22+GT+0) GO TO 280 SUB2 325
2669 CONTINUE SUB2 317 UBAR02=SQRT(UBAR02) SUB2 318 IF (E02.LT.1.E-5) GO TO 273 SUB2 319 IF (ABS((E02-E0)/E02).LT.EPS4) GO TO 273 SUB2 320 IF (ABS(DE0).GT01*EPS4) GO TO 275 SUB2 321 273 IF (ABS((RH002-RH00)/RH002).LE.EPS3) GO TO 285 SUB2 322 IF (ABS(0RH00).LT.EPS3) GO TO 285 SUB2 323 275 ITS22=ITS22-1 SUB2 324 IF (ITS22.GT.0) GO TO 280 SUB2 325
UBAR02=SQRT(UBAR02) SUB2 318 IF (E02.LT.1.E-5) GO TO 273 SUB2 319 IF (ABS((E02-E0)/E02).LT.EPS4) GO TO 273 SUB2 320 IF (ABS(DE0).GT01*EPS4) GO TO 275 SUB2 321 273 IF (ABS((RH002-RH00)/RH002).LE.EPS3) GO TO 285 SUB2 322 IF (ABS(ORH00).LT.EPS3) GO TO 285 SUB2 323 275 ITS22=ITS22-1 SUB2 324 IF (ITS22.GT.0) GO TO 280 SUB2 325
IF (E02.LT.1.E-5) G0 T0 273 SUB2 319 IF (ABS((E02-E0)/E02).LT.EPS4) G0 T0 273 SUB2 320 IF (ABS(DE0).GT01*EPS4) G0 T0 275 SUB2 321 273 IF (ABS((RH002-RH00)/RH002).LE.EPS3) G0 T0 285 SUB2 322 IF (ABS(ORH00).LT.EPS3) G0 T0 285 SUB2 323 275 ITS22=ITS22-1 SUB2 324 IF (ITS22.GT.0) G0 T0 280 SUB2 325
IF (ABS((E02-E0)/E02).LT.EPS4) G0 T0 273 SUB2 320 IF (ABS(DE0).GT01*EPS4) G0 T0 275 SUB2 321 273 IF (ABS((RH002-RH00)/RH002).LE.EPS3) G0 T0 285 SUB2 322 IF (ABS(0RH00).LT.EPS3) G0 T0 285 SUB2 323 275 ITS22=ITS22-1 SUB2 324 IF (ITS22.GT.0) G0 T0 280 SUB2 325
IF (ABS(DE0).GT01*EPS4) GO TO 275 SUB2 321 273 IF (ABS((RH002-RH00)/RH002).LE.EPS3) GO TO 285 SUB2 322 IF (ABS(DRH00).LT.EPS3) GO TO 285 SUB2 323 275 ITS22=ITS22-1 SUB2 324 IF (ITS22.GT.0) GO TO 280 SUB2 325
273 IF (ABS((RH002-RH00)/RH002).LE.EPS3) G0 T0 285 SUB2 322 IF (ABS(0RH00).LT.EPS3) G0 T0 285 SUB2 323 275 ITS22=ITS22-1 SUB2 324 IF (ITS22.GT.0) G0 T0 280 SUB2 325
IF (ABS(DRH00).LT.EPS3) GD TO 285 SUB2 323 275 ITS22=ITS22-1 SUB2 324 IF (ITS22.GT.0) GD TO 280 SUB2 325
275 ITS22=ITS22-1 SUB2 324 IF (ITS22-GT-0) GO TO 280 SUB2 325
IF (IT\$22.GT.0) GO TO 280 SUB2 325
WRITE (3,278) ITS2 SUB2 326
278 FORMAT (35HOE AND RHO FAILED TO CONVERGE AFTER, 14, 6H TRIES) SUB2 327
WRITE (3,279) I,K,Z0,R0,E0,RH00,P0,E02,RH002,P02 SUB2 328
279 FORMAT (1X2HI=,I4,4X2HK=,I4/1X4HZ0 =,E15.8,4X4HR0 =,E15.8,4X4HE0 =SUB2 329
1,E15.8,4X6HRHD0 =,E15.8,4X4HP0 =,E15.8/1X4HE02=,E15.8,4X6HRHD02=,ESUB2 330
115.8,4X4HP02=,E15.8/1H1) SUB2 331
STOP SUB2 332
280 E0=E02 SUB2 333
RHOO=RHOO2 SUB2 334
P0=P02 SUB2 335
UBARO=UBARO2 SUB2 336
GO TO 250 SUB2 337
285 E0=E02 SUB2 338
RHD0=RH002 SUB2 339
UBARO=UBARO2 SUB2 340
AO=SQRT(PFR+PO2*PFE/RHOO**2) SUB2 341
C SUB2 342
C SUB2 343
CALL DVCHK(KQ) SUB2 344
KICK=285 SUB2 345

.

168

	IF (KQ.EQ.1) GO TO 9980	SUB 2	346
	IF (K.EQ.2) GD TO 286	SUB 2	347
	VBAR 0=VP*LO	SUB 2	348
	GO TO 287	SUB 2	349
286	VBAR0=0.	SUB 2	350
287	CONTINUE	SUB 2	351
295	P0=P02	SUB 2	352
	[F (K.EQ.2) GO TO 296	SUB 2	353
	UBARO=UBARS1-UBARO	SUB 2	354
296	CONTINUE	SUB2	355
	UTO=(RHGO+U8ARO-RHOSTR+U8ARS1)/(RHOO-RHOSTR)	SUB 2	356
	VO=MO+UBARO+LO+VBARO	SUB2	357
	UO=LO+UBARO-MO+VBARO	SUB 2	358
	UBAR=.5+(UTOH+UTO)	SUB 2	359
	IF (ABS((UBAR-UTOH)/UBAR).LE.EPS61 GO TO 350	SUB 2	360
	IF (ABS(UBAR-UTOH).LT.EPS6) GO TO 350	SUB 2	361
	ITS44=ITS44-1	SUB 2	362
	IF {ITS44.GT.0} GO TO 325	SUB 2	363
	WRITE (3,297) ITS4,UTOH,UTO	SUB 2	364
297	FORMAT (30HOUBAR FAILED TO CONVERGE AFTER, 14, 6H TRIES/1X5HUT0H=, EI	LSUBZ	365
	15.8+4X4HUT0=+E15.8)	SUB2	366
	CALL EXIT	SUB2	367
	WRITE (3,279) I,K,ZO,RO,EO,RHOO,PO,EO2,RHOO2,PO2	SUB 2	368
С		SU8 2	369
С	INIT. FOR MORE U BAR ITERATIONS	SUB 2	370
C		SUB2	371
325	UTOH=UBAR	SUB 2	372
	AVMO={TAB{I,10,K}+MO}*.5	SUB 2	373
	AVL0=(TAB(I,9,K)+L0)*.5	SUB 2	374
	ZO=TAB{I;1,K}+UBAR+H+AVMO-VBARS+AVLO+H	SUB2	375
	RO=TAB(I,2,K)+UBAR+H+AVLO-VBARS+AVMO+H	SUB2	376
	LO=AVLO	SUB2	377
	MO=AVMO	SUB2	378
	GO TO 195	SUB2	379
Ċ		SUB2	380
С	ONE SHOCK POINT HAS CONVERGED	SUBZ	381

169

C		SU8 2	382	
350	TAB2(1,1,K)=20	SUB2	383	
	TAB2(1,2,K)=R0	SUB2	384	
	TAB2(I,3.K)=P0	SUB2	385	
	TAB2(1+4+K)=U0	SUB 2	386	
	TAB2(1+5+K)=V0	SUB 2	387	
	TAB2(1.6.K)=RH00	SUB 2	388	
	TAB2(1,7,K)=E0	SUB 2	389	
	TAB2(1.8.K)=A0	SUB 2	390	•
	TAB2(1.9.K)=L0	SUB2	391	
	TAB2(1+10+K)=M0	SUB2	392	
	TAB2(1.11.K)=UBAR0	SUB 2	393	
	TAB2(I.12.K)=VBAR0	SUB 2	394	
	TAB2(1.13.K)=UTO	SUB2	395	
	K1CK=500	SUB 2	396	
	CALL DVCHK(KQ)	SUB 2	397	
	IF (KQ.EQ.1) GO TO 9980	SUB 2	398	
C		SUB 2	399	
Č		SUB2	400	
500	CONTINUE	SUB 2	401	
505	CONTINUE	SUB2	402	
	RETURN	SUB 2	403	
9980	WRITE (3,9985) KICK	SUB 2	404	
9985	FORMAT (32HODIVIDE CHECK NEAR STATEMENT NO., 15, 15H IN SUBR. SHO	CK/SUB2	405	
	11H1)	SUB2	406	
	CALL EXIT	SUB2	407	
	RETURN	SUB2	408	
·	END	SUB 2	409	
	SUBROUTINE FGOF1(ZX+RX+SS+QQ)	SUB3	1	
C		SUB 3	2	
С	COMPUTES SI,Q1 FOR SHOCK LINE	SUB 3	3	
С	ITERATIÓN FOR 21,R1	SUB 3	4	
C		SUB 3	5	
	COMMON CASEID(14), ITS1, ITS2, ITS3, ITS4, ITI1, ITI2, ITI3, ITI4, EPS1,	EPSSUB3	6	
	12, EPS3, EPS4, EPS5, EPS6, EPI1, EPI2, EPI3, EPI4, EPI5, EPI6, EPI7, VP, AR,	LENSUB3	7	
	1GTH, APR, BPR, BIGAPR, BIGBPR, ESTAR, ALPHA, BETA, RHOSTR, EPRS, RHOS	SUB3	8	

170

λ...

•

•

	COMMON XMESH(20,20,6), XMESH2(20,20,6), Z(20), R(20), SURF(15,8), SURF2SUB3	9
	1(15,8),TAB(15,14,2),TAB2(15,14,2),SPART(15,2,2),RARF(15,11),RARF2(SUB3	10
~	L15,4),RPART(15,2) SUB3	11
C	SUB 3	12
Ç	SUB 3	13
	COMMON ZO,RO,PO,UO,VO,LO,MO,RHOO,EO,AO,UBARO,VBARO SUB3	14
C	SUB3	15
	COMMON NP+NT+NR+NI+NDEL+ISUB SUB3	16 -
C	SUB 3	17
	COMMON ZMIN, ZMAX, RMIN, RMAX, RADIUS, GZ, GR, DELTA, H SUB3	18
	COMMON DIRCOS SUB3	19
	COMMON TIME SUB3	20
	COMMON IRARF SUB3	21
	COMMON KSTOP SUB3	22
	COMMON TPSI SUB3	23
	COMMON KKK SUB3	24
	REAL LO, MO, LENGTH, MU, KO SUB3	25
C	SUB 3	26
	DIMENSION ANS(6) SUB3	27
C	SUB 3	28
	REAL LO.MO SUB3	29
	CALL DBLTRP(ZX,RX,ANS) SUB3	30
	U1=ANS(2) SUB3	31
	V1=ANS(3) SUB3	32
	AL=ANS(6) SUB3	33
	SS=ZX-ZO+H*(V1+A1+DIRCOS) SUB3	34
	QQ=RX-R0+H+(U1+A1+L0) SUB3	35
	RETURN SUB3	36
	END SUB3	37
	SUBROUTINE INTER SUB4	1
C	COMPUTES INTERIOR REGION POINTS SUB4	2
	COMMON CASEID(14), ITS1, ITS2, ITS3, ITS4, ITI1, ITI2, ITI3, ITI4, EPS1, EPSSUB4	3
	12,EPS3,EPS4,EPS5,EPS6,EPI1,EPI2,EPI3,EPI4,EPI5,EPI6,EPI7,VP,AR,LENSUB4	4
	IGTH, APR, BPR, BIGAPR, BIGBPR, ESTAR, ALPHA, BETA, RHOSTR, EPRS, RHOS SUB4	5
	COMMON XMESH(20+20+6)+XMESH2(20+20+6)+Z(20)+R(20)+SURF(15+8)+SURF2SUB4	6
	1(15,8),TAB(15,14,2),TAB2(15,14,2),SPART(15,2,2),RARF(15,11),RARF2(SUB4	7

ţ

17/

115,4),RPART(15,2) SUB4 8 С SUB4 9 С SUB4 10 COMMON Z0,R0,P0,U0,V0,L0,M0,RH00,E0,A0,UBAR0,VBAR0 SUB4 11 С SUB4 12 COMMON NP, NT, NR, NI, NDEL, ISUB SU84 13 С SUB4 14 COMMON ZMIN, ZMAX, RHIN, RMAX, RADIUS, GZ, GR, DELTA, H SUB4 15 COMMON DIRCOS SUB4 16 COMMON TIME SUB4 17 COMMON IRARF SU84 18 COMMON KSTOP SUB4 19 COMMON TPSI SUB4 20 COMMON KKK SUB4 21 C SUB4 22 С REAL LO, MO, LENGTH, MU, KO SUB 4 23 SUB 4 24 DIMENSION ANS(6), LL(3), ZI(11), RI(11), PI(11), UI(11), VI(11), RH0I(11)SUB4 25 1, EI(11), AI(11), PUR(11), PVR(11), PAR(11), PUZ(11), PVZ(11), PAZ(11), PSISUB4 26 1(7), SPSI(11), CPSI(11), S(11) SUB4 27 C SU84 28 EXTERNAL FGOF1, FGOF5 SUB4 29 INTEGER CHECK, CHECK2 SU84 30 С SUB 4 31 1 FORMAT (1H1) SUB4 32 EPS=.0000001 SUB 4 33 DO 905 J=1,20 SUB4 34 DO 900 I=1.20 SU84 35 M=TEST(Z(I),R(J)) SUB4 36 Z0=Z(1) SUB4 37 RO=R(J) SUB4 38 · . . . SUB4 KICK=1 39 CALL DVCHK(KQ) IF (KQ.EQ.1) GO TO 9980 SUB4 40 SUB4 41 IF (M.EQ.3.AND.ZO.LT.EPS.AND.ABS(RO-RADIUS).LT.EPS)M=1 SUB4 42 IF (M.NE.1) GO TO 900 SUB4 43

ĥ.

	D0 2 L=1.NP	SUB4	44
	IF (TAB(L+14+1)+LT+0+) GO TO 20	SUB4	45
2	CONTINUE	SUB 4	46
	IF (IRARF.EQ.1) GO TO 20	SUB4	47
	DO 3 N=1.NR	SUB4	48
	[F (R(J).GT.RARF(N,2)) GO TO 5	SUB4	49
3	CONTINUE	SUB4	50
	GO TO 6	SUB4	51
5	CONTINUE	SUB4	52
	M=PICK(Z(I),R(J),3)	SUB 4	53
	FF=R(J)-RARF(M+1,2)-(RARF(M,2)-RARF(M+1,2))*(Z(I)-RARF(M+1,1))/(R)	ASUB4	54
	1RF(M,1)-RARF(M+1,1))	SUB4	55
	1F (FF.GT.0.) GO TO 20	SUB4	56
6	CONTINUE	SUB 4	57
	P02=RARF(1,3)	SUB4	58
	U02=RARF(1,4)	SUB4	59
	V02=RARF(1,5)	SUB4	60
	RH002=RARF(1+6)	SUB4	61
	E02=RARF(1,7)	SUB4	62
	A02=RARF11,8)	SUB4	63
	GO TO 870	SUB4	64
20	CONTINUE	SUB4	65
	CALL GUESS(2,KOD,ZO,RO,I,J,ZZ,RR,DZ,DR)	SUB4	66
	IF (KOD+EQ+1) GO TO 580	SU84	67
	WRITE {3,575} 1,J,Z0,R0	SU84	68
575	FORMAT (41HOND GUESS FOUND FOR INTERIOR REGION POINT/3HOI=14,6X2H	KSUB4	69
	1=,I4,10X3HZ0=,E15.8,10X3HR0=,E15.8/1H1}	SUB4	70
	CALL EXIT	SUB4	71
580	CALL DBLTRP(ZZ,RR,ANS)	SUB4	72
C		SUB4	73
С	INITIALIZE FOR 1 POINT	SUB4	74
C		SUB4	75
-	PSI(1)=0.	SUB4	76
	PSI(3)=1.0472	SUB 4	77
	PSI(4)=2.0944	SUB4	78
	PSI(6)=4.18879	SUB4	79
	•		

· ·

173

•

		PS1(7)=5.23599	SUB4 80
		NBIC=0	SUB4 81
		IT122=1T12	SUB4 82
		PO=ANS(1)	SUB4 83
		UO=ANS(2)	SUB4 84
		VO=ANS(3)	SUB4 85
		RHOG=ANS(4)	SUB4 86
		EO=ANS(5)	SUB4 87
		AO=ANS(6)	SUB4 88
		KICK=580	SUB4 89
		CALL DVCHK(KQ)	SUB4 90
•		IF (KQ.EQ.1) GO TO 9980	SUB4 91
	590	IF (ABS(RO).GT.EPS) GO TO 594	SUB4 92
		Ll=1	SUB4 93
		LL(1)=4	SUB4 94
		LL(2)=6	SUB4 95
		LLL=2	SUB4 96
		GO TO 620	SUB4 97
	С		SUB4 98
	С		SUB4 99
	594	IF (ABS(RO-RADIUS).GT.EPS) GO TO 600	SUB4 100
		IF (ZO.GT.EPS) GD TO 610	SUB4 101
		L1=2	SUB4 102
		LL(1)=3	SUB4 103
		LL(2)=7	SU84 104
		LLL=2	SUB4 105
		GD TO 620	SUB4 106
	600	IF (RO.LE.RADIUS.OR.ABS(ZO).GT.EPS) GO TO 610	SUB4 107
		L1=3	SUB4 108
		LL(1)=6	SUB4 109
		LL(<u>2</u>)=7	SUB4 110
		LLL=2	SUB4 111
		GO TO 620	SUB4 112
	C		SUB4 113
	C		SUB4 114
	610	L1=4	SUB4 115

174 .

	LL(1)=1	SUB4	116
	LL(2)=4	SUB4	117
	LL(3)=6	SU84	118
		SUB4	119
C		SUB4	120
č	ITERATE FOR 1 VALUES	SUB4	121
č		SUB4	122
619	CONTINUE	SUB4	123
620	DD 630 KK=1+LLL	SUB4	124
	LUMP=L1	SUB4	125
	ISUB=LL(KK)	SUB4	126
621	CONTINUE	SUB 4	127
	TPSI=PSI(1SUB)	SUB4	128
	SPSI(ISUB)=SIN(TPSI)	SUB 4	129
	CPSI(ISUB)=COS(TPSI)	SUB4	130
	CALL NRIT2(ZI(ISUB),RI(ISUB),ZZ,DZ,RR,DR,EPI1,EPI2,FGOF1,ITI1,KC	DESUB4	131
	1)	SUB4	132
	1F (KODE.NE.0) GO TO 6200	SU84	133
625	CALL DBLTRP(ZI(ISUB),RI(ISUB),ANS)	SUB4	134
	PI(ISUB)=ANS(1)	SUB4	135
	UI(ISUB) = ANS(2)	SUB 4	136
	VI(ISUB)=ANS(3)	SUB4	137
	RHOI(ISUB)=ANS(4)	SUB4	138
	EI(ISUB)=ANS(5)	SU84	139
	AI(ISUB)=ANS(6)	SUB4	140
630	CONTINUE	SUB4	141
C		SUB4	142
Ċ		SUB 4	143
	KICK=630	SUB 4	144
	CALL DVCHK(KQ)	SUB4	145
	IF (KQ.EQ.1) GO TO 9980	SUB 4	146
	GD TO 6400	SUB4	147
С		SUB4	148
С	BICHARACTERISTIC SELECTION SCHEME	SUB4	149
С		SUB4	150
7000	WRITE (3,7001)	SUB4	151

-

,

1

-

175

,			
7001	FORMAT (41HOBICHARACTERISTIC SELECTION SCHEME FAILED)	SUB 4	152
	WRITE (3,614) ZO,RO	SUB4	153
•	WRITE (3,7002) (PSI(MNMN), MNMN=1,7), UA, VA, AA, UB, VB, AB, UC, VC, AC, ZZ	.SUB4	154
	1DZ+RR+DR+ANG1+ANG2	SUB4	155
	SUB=ISUB	SUB4	156
	WRITE (3,7002) SUB,ZI(ISUB),RI(ISUB)	SUB4	157
7002	FORMAT (4E16.8)	SUB4	158
	CALL EXIT	SUB4	159
6200	CONTINUE	SUB 4	160
	IF (NBIC.NE.0) GO TO 7000	SUB4	161
	IF (L1.NE.2.OR.LL(1).EQ.1) GO TO 7300	SUB 4	162
	LL(1)=1	SUB4	163
	GO TO 619	SUB4	164
7300	CONTINUE	SU84	165
	IF (L1.NE.3) GO TO 7310	SU8 4	166
•	IF (PSI(6).GT.4.2) GO TO 7310	SUB4	167
	PS1(6)=5.75959	SU84	168
	GO TO 619	SUB 4	169
7310	CONTINUE	SUB4	170
	CALL DBLTRP(ZZ,RR,ANS)	SUB4	171
	UA=ANS(2)	SUB4	172
	VA=ANS(3)	SUB4	173
	AA#ANS(6)	SUB4	174
	222=22+D2	SU84	175
	CALL DBLTRP(ZZZ,RR,ANS)	SUB4	176
	UB=ANS(2)	SUB4	177
	VB=ANS(3)	SUB 4	178
	AB=ANS(6)	SUB4	179
	RRR=RR+DR	SUB4	180
	CALL DBLTRP(ZZ,RRR,ANS)	SUB4	181
	UC=ANS(2)	SUB4	182
	VC=ANS(3)	SUB4	183
	AC=ANS(6)	SUB4	184
	MM=0	SUB4	185
	TPSI=PSI(ISUB)	SUB4	186
	XB=22	SUB4	187

174

· .

. . .

		YB≖RR	SUB4	188
		NOM≈5	SUB4	189
		CA=NON	SUB4	190
		DO 6210 LM=1,2	SUB4	191
	6201	DTPS1=+01745	SUB4	192
		DTPSI=CA+DTPSI	SUB 4	193
		TPS1=TPS1+DTPS1	SUB4	194
		Al=1.+H*(VB-VA+(AB-AA)*SIN(TPSI))/DZ	SUB4	195
		.B1=H*{VC-VA+(AC-AA}*SIN(TPS1})/DR	SUB4	196
		C1=-{ZZ-ZO+H*{VA+AA*SIN(TPS!)}}	SUB4	197
		AZ≖H≠(UB-UA+(AB-AA)*COS(TPSI))/DZ	SUB4	198
		B2=1.+H+(UC-UA+(AC-AA)+COS(TPS1))/DR	SUB4	199
	•	C2=-(RR-RO+H*(UA+AA*COS(TPSI)))	SUB4	200
		DET=A1+82-A2+81	SUB4	201
		DEL X = (B2 + C1 - B1 + C2) / DET	SU84	202
		DE1 Y=(A1+C2-A2+C1) / DET	SUB4	203
	C		SUB4	204
	č	TEST FOR SAME REGION	SUB4	205
	č		SUB4	206
	•	XR3=XR+DFLX	SUR4	207
		YB = YB + DEI Y	SUB4	208
		N=COMP(XB.YB.XB1.YB1)	SUB4	209
		$I = \{I M_{+} \in O_{+} 2\} \in O_{+} T = 6700$	SURA	210
		$IE_{1} = \{N_{1}, E_{1}, I\} = \{0, T_{1}, K_{2}, 0\}$	51184	210
			SUB4	212
	6700	CONTINUE	SUB4	213
	0100	16 (N.NE.11 CO TO 6203	28H2	214
	6800		SUR4	215
	0000		SUR4	216
		TE (NN IE 360/NON) CO TO 6201	5004	217
	612	UPITE (2,612) ITII	5004	219
	412	CODMAT JAANACATICO TO EIND 2 DOINTS IN THE SAME DECION 214 1	A RH 2 GR 1 2 MI	210
1	013	I NOTTO ACTED. 14.44 TRICCI	C110.4	220
		NOTTE 12.6141 70.90	5004	221
	<u> </u>	ECOMAT (195470 ± E15.8.495400 ± E15.8)	SIIRA	222
	014	TURNAN (INJNEU -YELJOOYYNJNAU -YELJOO/ HDITE /2.43441 FM	5004 51124	222
		MUTIC JASOTAAL PU	3004	<i>イビフ</i>

177

	WRITE (3,6145) M	SUB4	224
	WRITE (3,6146) KODE	SUB4	225
	WRITE (3,7002) XB,YB,XB1,YB1	SUB4	226
6144	FORMAT (4H LM=,14)	SU84	227
6145	FDRMAT (3H M=,14)	SUB4	228
6146	FORMAT (6H KODE=,14)	SU84	229
	CALL EXIT	SUB4	230
6203	GD TO (6204,6205),LM	SU84	231
6204	ANG1=TPSI	SU84	232
	MM=Q	SUB4	233
х.	GD TO 6210	SUB4	234
6205	ANG2=TPSI-DTPSI	SUB 4	235
6210	CONTINUE	SUB4	236
	AL=LLL+1	SUB4	237
	DD 6300 KK=1,LLL	SU84	238
	[SUB=LL(KK)	SUB4	239
	AK=KK	SUB4	240
	PSI(ISUB)=ANG1+{ANG2-ANG1}*AK/AL	SU84	241
6300	CONTINUE	SUB4	242
	NBIC=1	SUB 4	243
	GD TO 619	SUB4	244
· C		SUB4	245
С		SUB4	246
6400	CONTINUE	SUB4	247
	IF (L1.EQ.2.OR.L1.EQ.3) GO TO 642	SUB4	248
	CALL NRIT2(ZI(8),RI(8),ZZ,DZ,RR,DR,EPI1,EPI2,FGOF5,ITI1,KODE)	SU84	249
	[F (KODE.EQ.O) GO TO 635	SUB4	250
	I SUB=8	SUB4	251
	WRITE (3,622) ITI1+I+J,ISUB,Z0,R0,ZZ,RR,ZI(8),R1(8)	SUB4	252
622	FORMAT (27HOFAILED TO FIND ZI,RI AFTER, 14,6H TRIES, 3X2HI=, 14, 3X2HJ	SUB4	253
	1=, I4, 3X5HISUB=, I4/1X3HZO=, E15.8, 6X3HRO=, E15.8/1X3HZZ=, E15.8, 6X3HRR	SUB4	254
	1=,E15.8/1X3HZI=,E15.8,6X3HRI=,E15.8/1H1)	SUB4	255
	CALL EXIT	SUB4	256
C		SUB4	257
C		SUB4	258
635	CALL OBLTRP(ZI(8),RI(8),ANS)	SUB4	259

•

	2		
	PI(8)=ANS(1)	SUB4	260
	UI(8)=ANS(2)	SUB4	261
	VI(B)=ANS(3)	SUB4	262
	RHOI(8)=ANS(4)	SUB4	263
	EI(8)=ANS(5)	SUB4	264
	AI(8)=ANS(6)	SUB 4	265
C	· · · · · · · · · · · · · · · · · · ·	SUB4	266
642	00 670 IL=1,LLL	SU84	267
	NN=LL(IL)	SU84	268
	M=PART(1,ZI(NN),RI(NN),ZX,RX,DELTA,NDEL)	SU84	269
	IF (M.EQ.1) GD TO 645	SUB4	270
	PUR(NN)=0.	SUB4	271
	PVR(NN)=0.	SUB4	272
	GD TO 648	SUB4	273
645	CALL DBLTRP(ZX,RX,ANS)	SUB4	274
	DEN=RX-RI(NN)	SUB4	275
	PUR(NN)=(ANS(2)-UI(NN))/DEN	SUB4	276
	PVR(NN)=(ANS(3)-VI(NN))/DEN	SUB4	277
648	M=PART(2,ZI(NN),RI(NN),ZX,RX,DELTA,NDEL)	SUB4	278
	IF (M.EQ.1) GO TO 650	SUB4	279
	PUZ (NN)=0.	SUB4	280
	PV2(NN)=0.	SUB4	281
	GO TO 655	SUB4	282
650	CALL DBLTRP(ZX+RX+ANS)	SUB4	283
	DEN=ZX-ZI(NN)	SUB4	284
	PUZ(NN)=(ANS(2)-UI(NN))/DEN	SUB4	285
	PVZ(NN)=(ANS(3)-VI(NN))/DEN	SUB4	286
655	S(NN)=SPSI(NN)++2+PUR(NN)-CPSI(NN)+SPSI(NN)+(PVR(NN)+PUZ(NN))+CPS	ISUB4	287
	1(NN) ++2+PVZ(NN)	SUB4	288
C		SU84	289
	IF (ABS(RI(NN)).GT.EPS) GO TO 660	SUB4	290
	CON=PUR (NN)	SUB4	291
	GD TO 662	SU84	292
660	CON=UI(NN)/RI(NN)	SU84	293
662	<pre>S(NN)=-RHOI(NN)+H+AI(NN)++2+(S(NN)+CON)+PI(NN)+RHOI(NN)+AI(NN)+CP:</pre>	SSUB4	294
	11(NN)+UI(NN)+RHOI(NN)+AI(NN)+SPSI(NN)+VI(NN)	SUB4	295

-

.

178
670	CONTINUE	SUB4	296
1005	CONTINUE	SUB4	297
1002	FORMAT (4E16.8)	SUB4	298
	KICK=670	SUB4	299
	CALL DVCHK(KQ)	SUB4	300
	IF (KQ.EQ.1) GD TO 9980	SUB-4	301
C		SUB4	302
č	COMPUTE NEW P+U+V	SUB4	303
č		SUB4	304
	GD TD (690+692+695+698)+L1	SUB4	305
0.64		SUB4	306
0.0	102=0.	SUB4	307
	V02={S(4)-S(6))/(RHD1(4)*A1(4)*SPS[(4)-RHD1(6)*A1(6)*SPS1(6))	SUB4	308
	P02=S(4)-RH0I(4)*A1(4)*SPSI(4)*V02	SUB4	309
	GO TO 700	SUB4	310
r		SUB4	311
Ċ		SUB4	312
	DP0≖0.	SUB 4	313
072	P02=0.	SUB4	314
	[z] [{] }	SUB4	315
	TNP1=RHOT(7)*RHOT(1)*AI(7)*AI(L)*(CPSI(7)*SPSI(L)-CPSI(L)*SPSI(7))	SUB 4	316
	V02=(S(1)*RH01(7)*A1(7)*CPSI(7)-S(7)*RH01(L)*AI(L)*CPSI(L))/TMP1	SUB4	317
	(102=(S(1)-RHOT(1)*AT(L)*SPSI(L)*V02)/(RHOT(L)*AT(L)*CPSI(L))	SUB4	318
		SUB4	319
r		SUB4	320
č		SUB4	321
695	DP0=0.	SUB4	322
0.2	P02≈0.	SUB4	323
	TMP1=RHOI(7)*RHOI(6)*AI(7)*AI(6)*(CPSI(7)*SPSI(6)-SPSI(7)*CPSI(6))	SUB4	324
	V02=(S(6)*RHOI(7)*AI(7)*CPSI(7)-S(7)*RHOI(6)*AI(6)*CPSI(6))/THP1	SUB4	325
	U02=(S(6)-RH0I(6)*AI(6)*SPSI(6)*V02)/(RH0I(6)*AI(6)*CPSI(6))	SUB 4	326
	GO TO 700	SU84	327
698	CONTINUE	SUB4	328
	t=(1)	SUB4	329
	TMP1=RHD1(4)+AI(4)+CPSI(4)-RHD1(L)+AI(L)+CPSI(L)	SUB4	330
	TMP2=RHOI(4)+AI(4)+SPSI(4)-RHOI(L)+AI(L)+SPSI(L)	SUB4	331

· .

. 2

179

	TMP3=RHDI(6)+AI(6)+CPSI(6)-RHOI(L)+AI(L)+CPSI(L)	SUB4 332
	TMP4=RHDI(6)+AI(6)+SPSI(6)-RHDI(L)+AI{L)+SPSI(L)	SUB4 333
	V02={{\${4}-\${L}}*TMP3-{\${6}-\${L}}*TMP1}/{TMP3*TMP2-TMP1*TMP4}	SUB4 334
	U02={S(4)-S(L)-TMP2*V02)/TMP1	SUB4 335
	P02=S(6)-RH0I(6)*AI(6]*CPSI(6}*U02-RH0I{6}*AI(6}*SPSI{6}*V02	SUB4 336
700	KICK=700	SUB4 337
	CALL DVCHK(KQ)	SUB4 338
	IF (KQ.EQ.1) GO TO 9980	SUB4 339
C		SUB4 340
С		SUB4 341
Ċ	ETERATE FOR RHOO.EQ	SUB4 342
Č		SUB4 343
705	11133=1113	SUB4 344
	11144=1114	SUB4 345
	KM=1	SUB4 346
708	CONTINUE	SUB4 347
	CALL EQUSI (PO2+PGRH0+PGE+BIGG+CHECK+KRTT+A02+E02+RH002+KM+EPS)	SUB4 348
	IF (KRTT.EQ.1) GO TO 871	SUB4 349
725	T1=RHOO-RHOI(8)	SUB4 350
	$T_{2} = PI(A)/RHOI(A) + 2$	SUB4 351
	B1GH=F1(B)+T2+T1-F0	SUB4 352
	PHF=-1.	SUB4 353
	PHRHD=T2	SUB4 354
	K1CK=725	SU84 355
		SUB4 356
	IF (KD.FD.1) GD TD 9980	SUB4 357
C		SUR4 358
č	COMPUTE NEW ED.RHOO	SUB4 359
č		SUR4 360
C		SUB4 361
		SUB4 367
		SHR4 363
	E02=E0+0E0	SUB4 364
		SUB4 365
r		SUB4 365
ř	CHECK ED2.8HDD2 ED8 CONVERGENCE	SUB4 367
Y	ANEAN FASTINGAT LAN ADMICKATION	4007 JUI

180

.

•

	KICK=726	SUB4	368
	CALL DVCHK(KQ)	SUB4	369
	IF (KQ.EQ.1) GO TO 9980	SUB4	370
С		SUB4	371
	IF (ABS(DEO/EO).LT.EPI7) GO TO 726	SUB4	372
	IF (ABS(DEO).GTO1+EP17) GO TO 730	SUB4	373
726	IF (ABS(DRHOO/RHOO).LE.EPI6) GO TO 740	SU84	374
	IF (ABS(DRHOO).LT.EPI6) GO TO 740	SU84	375
730	ITI33=ITI33-1	SUB4	376
	IF (ITI33.NE.0) GO TO 735	SUB4	377
	WRITE (6,732) ITI3, I, J, ZO, RO, PO, UO, VO, RHOO, EO, PO2, UO2, VO2, RHOO2, E	0SU84	378
	12	SUB4	379
732	FORMAT (33HOEO, RHOO FAILED TO CONVERGE AFTER, 14, 6H TRIES/1X2HI=, 1	45UB4	380
	1.4X2HJ=.I4.4X2HZ=.E15.8.4X2HR=.E15.8/5X2HP018X2HU018X2HV018X4HRHD	OSUB4	381
	116X2HE0/5X3HP0217X3HU0217X3HV0217X5HRH00215X3HE02//(5E20.8))	SUB4	382
	WRITE (3.1)	SUB4	383
	CALL EXIT	SUB4	384
735	E0=E02	SUB4	385
	RH00=RH002	SUB4	386
	KM=0	SUB 4	387
	GO TO 708	SUB4	388
C		SUB4	389
С	CHECK FOR PROPER EQUATIONS	SUB4	390
0		SUB4	391
740	CONTINUE	SU84	392
	PGE=-PGE	SUB4	393
	PGRHO=-PGRHO	SUB 4	394
	IF (RHOO2.GE.RHOSTR) GO TO 750	SUB4	395
	[F (E02.LT.EPRS) GO TO 750	SUB4	396
742	CHECKZ=0	SUB4	397
	GO TO 752	SUB 4	398
750	CHECK2=1	SUB4	399
752	A02=SQRT(+PGRH0+P02+PGE/RH002++2)	SUB4	400
	IF (CHECK.EQ.CHECK2) GO TO 870	SUB4	401
	1T144=IT[44-1	SUB 4	402
	IF (ITI44.NE.0) GO TO 770	SUB4	403
			. –

--

[8]

	WRITE (3,755) ITI4, I, J, ZO, RO, PO, UO, VO, RHOO, EO, AO, POZ, UO2, VOZ, RHOO2SUB4	404
	1+E02+A02 SUB4	405
755	FORMAT (38HOFAILED TO USE CORRECT EQUATIONS AFTER, 14, 6H TRIES/1X2HSUB4	406
	11=,I4,4x2HJ=,I4,4x2HZ=,E15.8,4x2HR=,E15.8/5x2HP018X2HU018X2HV018X4SUB4	407
	1HRH0016X2HE018X2HA0/5X3HP0217X3HU0217X3HV0217X5HRH00215X3HE0217X3HSUB4	408
	1A02//(6E20+8)) SUB4	409
	WRITE (3,1) SUB4	410
	CALL EXIT SUB4	411
770	KICK=770 SUB4	412
	CALL DVCHK(KQ) SUB4	413
	IF (KQ.EQ.1) GO TO 9980 SUB4	414
	ITI33=ITI3 SUB4	415
	GD TD 735 SUB4	416
C	SUB4	417
С	ALL VALUES HAVE CONVERGED FOR 1 INTERIOR POINT SUB4	418
С	SUB4	419
871	KRTT=0 SUB4	420
870	XMESH2(1, J, 1)=P02 SUB4	421
	XMESH2(I,J,2)=U02 SUB4	422
	XMESH2(I+J+3)=V02 SUB4	423
	XMESH2(I+J+4)=RH002 SUB4	424
	XMESH2(1,J,5)≠EO2 SUB4	425
	XMESH2(1,J+6)=A02 SUB4	426
	KICK=900 SUB4	427
	CALL DVCHK(KQ) SUB4	428
	IF (KQ.EQ.1) GO TO 9980 SUB4	429
900	CONTINUE SUB4	430
905	CONTINUE SUB4	431
	IF (ITS3-EQ-1) GO TO 950 SUB4	432
	CALL ITRP SUB4	433
	RETURN SUB-	+ 434
950	CONTINUE SUB-	435
9980	WRITE (3,9985) KICK SUB4	436
	WRITE (3,614) ZO,RO SUB	437
9985	FORMAT (32HODIVIDE CHECK NEAR STATEMENT NO., 15, 15H IN SUBR. INTER/SUB	4 4 3 8
	11H1) SUB4	4 439

.

•

.

182

	CALL EXIT SU	/B4	440	
	RETURN SU	/B4	441	
	END SU	/B 4	442	
	SUBROUTINE EQOSI(PRHO, PPP, PVV, PEE, TEE, TRHO, KICK) SL	185	1	
	COMMON CASEID(14), ITS1, ITS2, ITS3, ITS4, ITI1, ITI2, IT13, IT14, EPS1, EPSL	185	2	
	12, EPS3, EPS4, EPS5, EPS6, EPI1, EPI2, EPI3, EPI4, EPI5, EPI6, EPI7, VP, AR, LENSU	IB 5	3	
	1GTH, APR, BPR, BIGAPR, BIGBPR, ESTAR, ALPHA, BETA, RHOSTR, EPRS, RHOS SU	185	4	
	COMMON XMESH(20.20.6) * XMESH2(20.20.6) * Z(20) * R(20) * SURF(15+8) * SURF2SU	185	5	
	1(15+8) + TAB(15+14+2) + TAB2(15+14+2) + SPART(15+2+2) + RARF(15+11) + RARF2(SU	185	6	-
	115.41.RPART(15.2) SU	JB5	7	
C	SL	185	8	
č	SL	JB 5	9	
•	COMMON 70+R0+P0+U0+V0+L0+M0+RH00+E0+A0+UBAR0+VBAR0 SU	185	10	
C	SU	185	11	
•	COMMON NP+NT+NR+NI+NDEL+ISUB SU	185	12	
c	SL	JB 5	13	
•	COMMON ZMIN.ZMAX.RMIN.RMAX.RADIUS.GZ.GR.DELTA.H	JB5	14	
	COMMON DIRCOS	IB5	15	
	CONMON TIME SL	IB 5	16	
	COMMON TRARF	JB 5	17	
	COMMON KSTOP	JB 5	18	
	COMMON TEST SU	JB 5	19	
	COMMON KKK SL	JB 5	20	
C	SU	185	21	
	SL	185	22	
•	REAL LO.MO.LENGTH.MU.KO SU	J85	23	
	RHD=RHDSTR St	185	24	
•	F=VP++2/8.	185	25	
	DO 100 M=1.100	185	26	
	ETA=RHO/RHOSTR SL	JB 5	27	
	MU=ETA-1. SU	JB5	28	
	G=-RHOSTR*(VP/2.)**2+((APR+BPR/(E/(ESTAR*ETA**2)+1.)*E*RHO+BIGAPRSU	185	29	
	1*MU+BIGBPR*MU+*2)*(1RHOSTR/RHO) SL	185	30	
	DERIVG=((APR+BPR/(E/(ESTAR+ETA++2)+1.))+E+BIGAPR/RHOSTR+2.+BIGBPR+SI	JB5	31	
	1MU/RHOSTR+2.*E**2*BPR/(ESTAR*ETA**2*(E/(ESTAR*ETA**2)+1.)**2))*(1.SU	JB5	32	
	L-RHOSTR/RHO}+({APR+BPR/{E/(ESTAR*ETA**2)+1.})*E*RHO+BIGAPR*MU+BIGBS	JB5	33	

183

ŕ

С

C C

		1PR#MU##2]#RHDSTR/RHD##2	SUB5	34
		DLTRHO=-G/DERIVG	SUB5	35
		RHD=RHO+DLTRHO	SUB5	36
		IF(ABS(DLTRHD).LT.1.E-07) GO TO 101	SUB 5	37
	C	IF (ABS(DLTRHD).LT.1.E-06) GO TO 101	SUB5	38
	100	CONTINUE	SU85	39
		KICK=2200	SUB 5	40
		GD TO 9980	SUB 5	41
<u> </u>	101	CONTINUE	SUB5	42
		PRHO=RHO	SUB5	43
		TR HO=RHO	SUB 5	44
•		PEE=E	SUB 5	45
		TEE=E	SUB5	46
		PVV=VP/2.	SU85	47
		PPP=(APR+BPR/(E/(ESTAR*ETA**21+1.))*E*RHO+BIGAPR*MU+BIGBPR*MU**2	SUB 5	48
	9980	RETURN	SUB5	49
		END	SUB5	50
		SUBROUTINE EQOS2(PPP, PRHO, PEE)	SUB6	1
		COMMON CASEID(14), ITS1, ITS2, ITS3, ITS4, ITI1, IT12, IT13, IT14, EPS1, EP	SSUB6	2
		12, EPS3, EPS4, EPS5, EPS6, EP11, EP12, EP13, EP14, EP15, EP16, EP17, VP, AR, LE	NSUB6	3
		1GTH,APR,BPR,BIGAPR,BIGBPR,ESTAR,ALPHA,BETA,RHOSTR,EPRS,RHOS	SUB 6	4
		COMMON XMESH(20,20,6),XMESH2(20,20,6),Z(20),R(20),SURF(15,8),SURF	2 SUB 6	5
		1(15,8),TAB(15,14,2),TAB2(15,14,2),SPART(15,2,2),RARF(15,11),RARF2	(SUB6	6
		115+4)+RPART(15+2)-	SUB6	7
	C		SUB 6	8
	C		SUB 6	9
		COMMON ZO,RO,PO,UO,VO,LO,MO,RHOO,EO,AO,UBARO,VBARO	SUB6	10
	С		SUB6	11
		COMMON NP+NT+NR+NI+NDEL+ISUB	\$086	12
	C		SUBO	13
		COMMON ZMIN, ZMAX, RMIN, RMAX, RADIUS, GZ, GR, DELTA, H	5086	14
		COMMON DIRCOS	5086	15
		COMMON TIME	2089	10
	ı,	COMMON IRARF	2086	11
	•	COMMON KSTOP	2089	19
	С		2089	1.2

-

.

. .

184

2

	COMMON TPSI	SUB6	20
	COMMON KKK	SUB6	21
C		SUB6	22
•	REAL LO.MO.LENGTH.MU.KO	SUB6	23
	P#PPP	SUB6	24
	RHO=PRHO	SUB6	25
	E≖PEE	SU86	26
	ETA=RHO/RHOSTR	SUB6	27
	MU=ETA-1.	SUB 6	28
	EE=E/(ESTAR+ETA++2)+1.	SUB6	29
	PGRHO=E+(APR+BPR/EE)+BIGAPR/RHOSTR+(2.+BIGBPR+NU)/RHOSTR+(2.+	E*#2*\$UB6	30
	18PR}/(ESTAR+ETA++2+EE++2)	SUB6	31
	PGE={APR+BPR/EE}*RHO-{E*BPR*RHO}/{ESTAR*ETA**2*EE**2}	SUB6	32
•	AR=SQRT(PGRH0+PGE*P/RH0++2)	SUB6	33
	RETURN	SUB6	34
	END	SUB6	35
	SUBROUTINE EQDS3(RHO,AA,E,P)	SUB7	1
	COMMON CASEID(14), ITS1, ITS2, ITS3, ITS4, ITI1, ITI2, ITI3, ITI4, EPS	1+EPSSUB7	2
	12, EPS3, EPS4, EPS5, EPS6, EPI1, EPI2, EPI3, EPI4, EPI5, EPI6, EPI7, VP, A	R+LENSUB7	3
	1GTH,APR,BPR,BIGAPR,BIGBPR,ESTAR,ALPHA,BETA,RHOSTR,EPRS,RHOS	SUB7	4
	COMMON XMESH(20,20,6),XMESH2(20,20,6),Z(20),R(20),SURF(15,8),	SURF2SUB7	5
	1(15,8),TAB(15,14,2),TAB2(15,14,2),SPART(15,2,2),RARF(15,11),R	ARF2(SUB7	6
	115+4)+RPART(15+2)	SUB7	7
C	-	SUB7	8
C		SUB7	9
	COMMON ZO,RO,PO,UO,VO,LO,MO,RHOO,EO,AO,UBARO,VBARO	SUB7	10
С		SUB7	11
	COMMON NP+NT+NR+NI+NDEL+ISUB	SUB 7	12
C		SUB 7	13
	COMMON ZMIN, ZMAX, RMIN, RMAX, RADIUS, GZ, GR, DELTA, H	SUB 7	14
	COMMON DIRCOS	5087	15
	COMMON TIME	5087	10
,	COMMON IRARF	SUB7	17
	COMMON KSTOP	SUB7	19

· · · ·

•

C		SUB7	21	
С		SUB7	22	
	REAL LO,MO,LENGTH,MU,KO	SUB7	23	
70	ETA=RHO/RHOSTR	SUB7	24	
	MU=ETA-1.	SUB7	25	
	EE=E/(ESTAR+ETA++2)+1.	SUB7	26	
	[F (RHO.GT.RHOSTR) GO TO 72	SUB7	27	
	IF (E.GE.EPRS) GO TO 74	SUB7	28	_
72	PGRHD=E*(APR+BPR/EE)+BIGAPR/RHOSTR+(2.+BIGBPR+NU)/RHOSTR+(2.+E*	*2*SUB7	29	•
	1BPR)/(ESTAR+ETA++2+EE++2)	SUB7	30	
	PGE=(APR+BPR/EE)*RHO-(E*BPR*RHO)/(ESTAR*ETA**2*EE**2)	SUB7	31	
	GO TO 75	SUB7	32	
74	Cl=RHOSTR/RHO-1.	SUB7	33	
	C2=EXP(-BETA+C1)	SUB7	34	
	C3=EXP(-ALPHA+C1++2)	SUB7	35	
	T1=(8PR+E+RHO)/EE+BIGAPR+MU+C2	SUB7	36	
	T2=2.+ALPHA+C1+(RHOSTR/(RHO++2))	SUB7	37	
	T3≠BPR≠E/EE	SUB7	38	
	T4=(2.+E)/(ESTAR+ETA++2+EE)	SUB 7	39	
	T4=T3+T4	SUB7	40	
	T5=(BIGAPR+C2)/RHOSTR	SUB7	41	
	T6=(BIGAPR+MU+BETA+RHOSTR+C2}/(RHO++2)	SUB7	42	
	PGRH0=APR*E+C3+(T1*T2+T3+T4+T5+T6)	SUB7	43	
	T7=(BPR+RHO)/EE	SUB7	44	
	PGE=APR*RH0+C3*(T7-T7*(E/(ESTAR*ETA**2*EE)))	SUB7	45	
75	AA=SQRT(PGRHO+PGE*P/RHO**2)	SU87	46	
	RETURN	SUB7	47	
	END	SUB7	48	
	SUBROUTINE EQUSS(PFR,PFE)	SUB 8	1	
	COMMON CASEID(14), ITS1, ITS2, ITS3, ITS4, ITI1, ITI2, ITI3, ITI4, EPS1,	EP\$SU88	2	
	12, EPS3, EPS4, EPS5, EPS6, EPI1, EPI2, EPI3, EPI4, EPI5, EPI6, EPI7, VP, AR,	LENSUB8	3	
	IGTH,APR,BPR,BIGAPR,BIGBPR,ESTAR,ALPHA,BETA,RHOSTR,EPRS,RHOS	SUB8	4	
	COMMON XMESH(20,20,6),XMESH2(20,20,6),Z(20),R(20),SURF(15,8),SU	JRF2SU88	5	
	1(15,8),TAB(15,14,2),TAB2(15,14,2),SPART(15,2,2),RARF(15,11),RAP	RF21 SUB8	6	
	115,4),RPART(15,2)	SUB 8	7	
C		SUB 8	8	

ć

.

..

λ.

. .

186

C		SUB 8	9
	COMMON Z0,R0,P0,U0,V0,L0,M0,RH00,E0,A0,UBAR0,VBAR0	SUB 8	10
C		SUB 8	11
	COMMON NP+NT+NR+NI+NDEL+ISUB	SUB 8	12
C		SUB8	13
	COMMON ZMIN,ZMAX,RMIN,RMAX,RADIUS,GZ,GR,DELTA,H	SUB8	14
	COMMON DIRCOS	SUB8	15
	COMMON TIME	SU88	16
	COMMON IRARF	SU88	17
	COMMON KSTOP	SUB 8	18
	COMMON TPSI	SU8.8	19
	COMMON KKK	SUB 8	20
С	·	SUB8	21
C		SUB 8	22
	REAL LO, MO, LENGTH, MU, KO	SUBB	23
250	ETA=RHOO/RHOSTR	SUB8	24
	MU=ETA-1.	SUB8	25
С		SUB 8	26
C		SUB 8	27
	EPP=E0/(ESTAR+ETA++2)+).	SU88	28
	TMP=APR+BPR/EPP	SU88	29
	TMP1=BPR/{ESTAR+ETA++2+EPP++2}	SUB 8	30
	PFR=TNP*E0+(BIGAPR+2.*BIGBPR*MU)/RHOSTR+2.*E0**2*TNP1	SUB8	31
	PFE=TMP*RH00-E0*RH00*TMP1	SUB8	32
7	RETURN	SU88	33
	END	SUB 8	34
	SUBROUTINE EQOSP(RHOO2,EO2,PO2)	SUB 9	1
	COMMON CASEID(14), ITS1, ITS2, ITS3, ITS4, IT11, IT12, IT13, IT14, EPS1, E	PSSUB9	2
	12. EPS3. EPS4. EPS5. EPS6. EPI1. EPI2. EPI3. EPI4. EPI5, EPI6, EPI7. VP. AR. L	ENSUB9	3
	IGTH, APR, BPR, BIGAPR, BIGBPR, ESTAR, ALPHA, BETA, RHOSTR, EPRS, RHOS	SUB9	4
	COMMON XMESH(20,20,6), XMESH2(20,20,6), Z(20), R(20), SURF(15,8), SUR	F2SUB9	5
	1(15,0),TAB(15,14,2),TAB2(15,14,2),SPART(15,2,2),RARF(15,11),RARF	21 SUB9	6
	115,4), RPART(15,2)	SUB9	7
С		SUB9	8
C	· · ·	SUB 9	9
	COMMON Z0,R0,P0,U0,V0,L0,M0,RH00,E0,A0,UBAR0,VBAR0	SUB 9	10

-

.•

/87

2

	C		SUB9	11	
	•	COMMON NP.NT.NR.NI.NDEL.ISUB	SUB 9	12	
	С		SUB 9	13	
	v	COMMON ZMIN.ZMAX.RMIN.RMAX.RADIUS.GZ.GR.DELTA.H	SUB 9	14	
		COMMON DIRCOS	SUB 9	15	
		COMMON TIME	SUB 9	16	
		COMMON IRARE	SUB9	17	
		COMMON KSTOP	SUB9	18	
		COMMON TPSI	SUB9	19	-
		COMMON KKK	SUB 9	20	
	C		SUB 9	21	
	Ċ		SUB 9	22	
		REAL LO,MO,LENGTH,MU,KO	SUB 9	23	
		ETA=RH002/RH0STR	SUB 9	24	
		MU=ETA-1.	SUB9	25	
		P02=E02*RH002*(APR+(BPR*ESTAR*ETA**2)/(E02+ESTAR*ETA**2))+81G	APR#MSUB9	26	
		1U+BIGBPR+MU++2	SUB 9	27	
		RETURN	SUB 9	28	
		END	SUB 9	29	
		SUBROUTINE EQOSICPO2, PGRHO, PGE, BIGG, CHECK, KRTT, A02, E02, RH002,	KM+EPSU10	1	
		15)	SU10	2	
		COMMON CASEID(14), ITS1, ITS2, ITS3, ITS4, ITI1, IT12, IT13, IT14, EPS	1,EPSSU10	3	
		12, EPS3, EPS4, EPS5, EPS6, EPI1, EP12, EPI3, EPI4, EPI5, EPI6, EPI7, VP, A	R,LENSU10	4	
		1GTH, APR, BPR, BIGAPR, BIGBPR, ESTAR, ALPHA, BETA, RHOSTR, EPRS, RHOS	\$010	5	
		COMMON XMESH(20,20,6),XMESH2(20,20,6),Z(20),R(20),SURF(15,8),	SURF2SU10	6	
		1(15,8),TAB(15,14,2),TAB2(15,14,2),SPART(15,2,2),RARF(15,11),R	ARFZUSULU	1	
		115,41,RPAR T(15,2)	\$010	8	
	C		2010	. 9	
	C		5010	10	
		COMMON Z0,R0,P0,U0,V0,L0,M0,RH00,E0,A0,UBAR0,VBAR0	SULO	11	
	- C		2010	12	
		COMMON NP+NT+NR+NI+NDEL+ISUB	5010	13	
2	C		2010	14	
		COMMON ZMIN, ZMAX, RMIN, RMAX, RADIUS, GZ, GR, DELTA, H	2010	12	
		COMMON DIRCOS	2010	10	
		COMMON TIME	2010	14	

•

• •

		COMNON IRARF	SU10	18
		COMMON KSTOP	SU10	19
		COMMON TPSI	SU10	20
		COMMON KKK	SU10	21
	С		SU10	22
	č		SU10	23
	-	REAL LO, MO, LENGTH, MU, KO	SU10	24
		INTEGER CHECK+CHECK2	SU10	25
		IF (KM.EQ.0) GO TO 708	SU10	26
		RHOO=RHOSTR	SU10	27
		THP1=(APR+BPR)*RHOSTR-P02/ESTAR	SU10	28
		TMP2=SORT(TMP1++2+4.+PO2+APR+RHOSTR/ESTAR)	SU10	29
		EO=(-TMP1+TMP2)/(2.*APR*RHOSTR/ESTAR)	SU10	30
		IF (P02.GT.EPS) GO TO 708	SU10	31
		P02=0.	SU10	32
		F02=0.	SU10	33
		RH002=RH0STR	SUIO	34
		A02=SORT(BIGAPR/RHOSTR)	SU10	35
		KRTT±1	SU10	36
		GD TO 870	SU10	37
	708	KRTT=0	SU10	38
		ETA=RHOO/RHOSTR	SU10	39
		NU=ETA-1.	SU10	40
		EE=E0/(ESTAR*ETA**2)+1.	SU10	41
		IF (RHOO.GT.RHOSTR) GO TO 720	SU10	42
		IF (EO.LT.EPRS) GO TO 720	SU10	43
	715	C1 = RHDSTR/RHOD-1.	SU10	44
		BEC1=BETA+C1	SU10	45
		IF (BEC1.LT.10.E10) GO TO 716	SU10	46
•		C2=0.0	SU10	47
		GO TO 717	SU10	48
	716	C2=EXP(-BEC1)	SU10	49
•	717	C3AL=ALPHA+C1++2	SU10	50
		IF (C3AL.LT.10.E12) GO TO 718	SUIO	51
		C3=0.0	SU10	52
		GO TO 719	SU10	53

· · · ·

189

.

- -

718	C3=EXP(-C3AL)	SU10	54	
719	CONTINUE	SU10	55	
	T1=(8PR+E0+RHD0)/EE+BIGAPR+MU+C2	SU10	56	
	T2=2.+ALPHA+C1+{RHOSTR/{RHOO++2}}	SU10	57	
	T3=BPR+E0/EE	SU10	58	
	T4={2.*E0}/(ESTAR*ETA**2*EE)	SU10	59	
	T4=T3+T4	SU10	60	
	T5={BIGAPR+C2}/RHOSTR	SU10	61	
	T6={BIGAPR+MU+BETA+RHOSTR+C2}/{RHOO++2}	SU10	62	-
	T7=(BPR+RHOO)/EE	SU10	63	
	PGRHD=APR*E0+C3*{T1*T2+T3+T4+T5+T6}	SU10	64	
	PGE=APR*RH00+C3*(T7-T7*(E0/(ESTAR*ETA**2*EE}))	SU10	65	
	BIGG=P02-APR+E0+RH00-T1+C3	SU10	66	
	CHECK=0	SU10	67	
	GO TO 725	SU10	68	
720	T1=APR+BPR/EE	SU10	69	
	T2=(8PR+E0)/{ESTAR+ETA++2+EE++2)	SU10	70	
	BIGG=P02-T1+E0+RH00-BIGAPR+MU-BIGBPR+MU++2	ŞU10	71	
	PGRHO=T1*E0+BIGAPR/RHOSTR+2.*BIGBPR*MU/RHOSTR+T2*2.*E0	SU10	72	
	PGRHO=-PGRHO	SU10	73	
	PGE=T1=RHDO-RHOO=T2	SU10	74	
	PGE=-PGE	SU10	75	
	CHECK=1	SULO	76	
725	CONTINUE	SU10	77	
870	CONTINUE	SU10	78	
	RETURN	SU10	79	
	END	SU10	80	
	SUBROUTINE SOUT2	SU11	1	
· C		SU11	2	
C	PRINTS 6 LINES OF DISCONTINUITY AT TO	SU11	3	
C	· · · · · · · · · · · · · · · · · · ·	SU11	4	
	COMMON CASEID(14), ITS1, ITS2, ITS3, ITS4, ITI1, ITI2, ITI3, ITI4, EPS	51, EPSSU11	5	
1	12, EP \$3, EP \$4, EP \$5, EP \$6, EP 11, EP 12, EP 13, EP 14, EP 15, EP 16, EP 17, VP, A	R.LENSUII	6	
	IGTH, APR, BPR, BIGAPR, BIGBPR, ESTAR, ALPHA, BETA, RHOSTR, EPRS, RHOS	SU11	7	
	COMMON XMESH(20,20,6),XMESH2(20,20,6),Z(20),R(20),SURF(15,8)	SURFZSU11	8	
	1(15,8),TAB(15,14,2),TAB2(15,14,2),SPART(15,2,2),RARF(15,11),	RARF2(SU11	4	

190

	115,4),RPART(15,2)	SU11	10
C		SU11	11
C		SUI I	12
	COMMON Z0,R0,P0,U0,V0,L0,M0,RH00,E0,A0,UBAR0,VBAR0	SU11	13
C		SU11	14
	COMMON NP,NT,NR,NI,NDEL,ISUB	SU11	15
C		SU11	16
	COMMON ZMIN,ZMAX,RMIN,RMAX,RADIUS,GZ,GR,DELTA,H	SU11	17
	COMMON DIRCOS	SU11	18
	COMMON TIME	SUII	19
	COMMON IRARF	SU11	20
	COMMON KSTOP	SU11	21
	COMMON TPSI	SU11	22
	COMMON KKK	SU11	23
	REAL LO, MO, LENGTH, MU, KO	SU11	24
C		SU11	25
	FORMAT (///30H CURVES OF DISCONTINUITY AT TO//40X20HPROJECTILE	SSU11	26
	1HOCK//)	SU11	27
	FORMAT (//35X29HPROJECTILE PARTICLE CURVE//)	SU11	28
8	FORMAT (//42X16HTARGET SHOCK//)	SU11	29
1	O FORMAT (//38X25HTARGET PARTICLE CURVE//)	SU11	30
1	2 FORMAT (//42X15HRAREFACTION//)	5011	31
1	4 FORMAT (//35X30HRAREFACTION PARTICLE CURVE//)	SU11	32
1	6 FORMAT (7X1HZ19X1HR19X1HP19X1HU19X1HV/7X3HRHO17X1HE19X1HA19X1HL1)	9XSU11	33
	11HM//)	SU11	34
1	8 FORMAT (7X1HZ19X1HR//)	SU11	35
2	O FORMAT (7X1HZ19X1HR19X1HL19X1HN//)	SU11	36
3	0 FORMAT (5E20.8/5E20.8//)	SU11	37
3	5 FORMAT (2E20.8)	SU11	38
1	B FORMAT (4E20.8)	SU11	39
3	9 FORMAT (//35X16HFREE SURFACE//)	SU11	40
	O FORMAT (1H1)	SU11	41
	WRITE (3,4)	SU11	42
	WRITE (3,16)	5011	43
	WRITE (3,30) ((TAB2(I,J,1),J=1,10),I=1,NP)	SU11	44
	WRITE (3,6)	2011	45

.

•

.

19/

SU11 46 WRITE (3,18) WRITE (3.35) ((SPART(I, J, 1), J=1, 2), I=1, NP) SU11 47 SU11 48 WRITE (3.8) SUII 49 WRITE (3.16) WRITE (3,30) ((TAB2(I,J+2),J=1,10),I=1,NT) SU11 50 SU11 51 WRITE (3,10) SU11 52 WRITE (3.18) SU11 53 WRITE (3,35) ((SPART(1, J, 2), J=1, 2), I=1, NT) SU11 54 WRITE (3,12) SU11 55 WRITE (3,20) SU11 56 WRITE (3,38) ((RARF2(1,J),J=1,4),I=1,NR) SU11 57 WRITE (3,14) SU11 58 WRITE (3,39) WRITE (3,35) ((SURF2(I,J),J=1,2),I=1,NP) WRITE (3,40) RETURN END SUBROUTINE SOUT SU11 59 SU11 60 SU11 61 SU11 62 SU12 1 2 SU12 3 SU12 PRINTS 4 LINES OF DISCONTINUITY AT TO-H 4 SU12 COMMON CASEID(14), ITS1, ITS2, ITS3, ITS4, ITI1, ITI2, ITI3, ITI4, EPS1, EPSSU12 5 12, EPS3, EPS4, EPS5, EPS6, EPI1, EPI2, EPI3, EPI4, EPI5, EPI6, EPI7, VP, AR, LENSU12 6 1GTH, APR, BPR, BIGAPR, BIGBPR, ESTAR, ALPHA, BETA, RHOSTR, EPRS, RHOS 7 SU12 COMMON XNESH(20,20,6), XMESH2(20,20,6), Z(20), R(20), SURF(15,8), SURF2SU12 8 1(15,8), TAB(15,14,2), TAB2(15,14,2), SPART(15,2,2), RARF(15,11), RARF2(SU12) 9 SU12 10 115,4),RPART(15,2) SU12 11 SU12 12 SU12 13 COMMON ZO, RO, PO, UO, VO, LO, NO, RHOO, EO, AO, UBARO, VBARO 'SU12 14 SU12 15 COMMON NP, NT, NR, NI, NOEL, ISUB SU12 16 COMMON ZMIN,ZMAX,RMIN,RMAX,RADIUS,GZ,GR,DELTA,H SU12 17 SU12 18 COMMON DIRCOS SU12 19 COMMON TIME

C С С

С

C

C

C

COMMON IRARF SU12 20 COMMON KSTOP SU12 21 COMMON TPST SU12 22 SU12 23 COMMON KKK REAL LO, MO, LENGTH, MU, KO SU12 24 SU12 25 C FORMAT (///32H CURVES OF DISCONTINUITY AT TO-H//40X20H--PROJECTILESU12 26 4 1 SHOCK--//) SU12 27 SU12 28 6 FORMAT (//42X16H--TARGET SHOCK--//) FORMAT (//42X15H--RAREFACTION--//) SU12 29 8 FORMAT (7X1HZ19X1HR19X1HP19X1HU19X1HV/7X3HRH017X1HE19X1HA19X1HL19XSU12 30 10 SU12 31 11HM//) FORMAT (5E20.8/5E20.8//) SU12 32 15 SU12 33 18 FORMAT (1H1) FORMAT (//35X16H--FREE SURFACE--//) 21 SU12 34 SU12 35 25 FORMAT (2E20.8) SU12 36 WRITE (3,4) SU12 37 WRITE (3,10) WRITE (3,15) ((TAB(I,J,1),J=1,10),I=1,NP) SU12 38 WRITE (3.6) SU12 39 SU12 40 WRITE (3.10) WRITE (3,15) ((TAB(I,J,2),J=1,10),I=1,NT) SU12 41 SU12 42 WRITE (3.8) WRITE (3,10) SU12 43 WRITE (3,15) ((RARF(I,J),J=1,10),I=1,NR) SU12 44 SU12 45 WRITE (3,21) WRITE (3,25) ((SURF(I,J),J=1,2),I=1,NP) SU12 46 SU12 47 WRITE (3,18) RETURN SU12 48 SU12 49 END SUBROUTINE PRINT(BL.ZTAB.RTAB.KK) SU13 1 PRINTS INTERIOR REGION SU13 2 SU13 3 COMMON CASEID(14), ITS1, ITS2, ITS3, ITS4, ITI1, ITI2, ITI3, ITI4, EPS1, EPSSU13 4 12, EPS3, EPS4, EPS5, EPS6, EPI1, EPI2, EPI3, EPI4, EPI5, EPI6, EPI7, VP, AR, LENSU13 5 1GTH.APR.BPR.BIGAPR.BIGBPR.ESTAR.ALPHA.BETA.RHOSTR.EPRS.RHOS SU13 6

C

С

		COMMON XME SH(20,20,6), XME SH2(20,20,6), Z(20), R(20), SURF(15,81,SURF2SU13	7
		1(15,8),TAB(15,14,2),TAB2(15,14,2),SPART(15,2,2),RARF(15	5,111, RARF2(SU13	8
		115+4}+RPART(15+2)	SU13	9
	C		SU13	10
	Ċ		SU13	11
		COMMON Z0+R0+P0+U0+V0+L0+M0+RH00+E0+A0+UBAR0+VBAR0	SU13	12
	C		SU13	13
		COMMON NP,NT,NR,NI;NDEL,ISUB	SU1 3	14
	C		SU13	15
		COMMON ZMIN,ZMAX,RMIN,RMAX,RADIUS,GZ,GR,DELTA,H	SU13	16
		COMMON DIRCOS	SU13	17
		COMMON TIME	SU13	18
		COMMON IRARF	SU13	19
		COMMON KSTOP	SU13	20
		COMMON TPSI	SU13	21
		COMMON KKK	SU1 3	22
		REAL LO, MO, LENGTH, MU, KO	SU13	23
	C		SU13	.24
		DIMENSION BL(20,20,6),2TAB(20),RTAB(20)	SU13	25
	C		SU13	26
		00 15 I=1,20	SU13	27
		00 15 J=1,20	SU13	28
		IF (ABS(BL(I,J,1))+ABS(BL(I,J,2))+ABS(BL(I,J,3))) 20,1	5,20 SU13	29
	15	CONTINUE	SU13	30
		WRITE (3,18)	SU13	31
	18	FORMAT (15HITABLES ALL = 0/1H1)	SU13	32
		CALL EXIT	SU13	33
	20	[]=[SU13	34
		DO 30 I=I1,20	\$013	35
		IF (ABS(BL(1,1,1))+ABS(BL(1,1,2))+ABS(BL(1,1,3))) 30,2	2,30 SU13	36
	22	00 25 J=1+20	SU13	37
		IF (ABS(BL([+J+1]]+ABS(BL(I+J+2)]+ABS(BL(I+J+3))) 30+2	25,30 SU13	38
-	25	CONTINUE	SU13	39
		12=1-1	SU13	40
		GO TO 35	SU13	41
	30	CONTINUE	SU13	42

.

. .

194

•	12=20	SU13	43
35	DO 45 J≖1,20	SU13	44
	IF (ABS(BL(I1, J, 1))+ABS(BL(I1, J, 2))+ABS(BL(I1, J, 3))) 45,37,45	SU1 3	45
37	DO 40 I=I1+I2	SU13	46
	IF (ABS(BL(I,J,1))+ABS(BL(I,J,2))+ABS(BL(I,J,3))) 45,40,45	SU13	47
40	CONTINUE	SU13	48
	J2=J-1	SU13	49
	GO TO 50	SU13	50
45	CONTINUE	SU13	51
	J2=20	SU13	52
50	J1=1	SU13	53
Ċ		SU13	54
č	PRINT TABLE	SU13	55
č		SU13	56
•	GD TO (52,56).KK	SU13	57
52	WRITE (3.53)	SU13	58
53	FORMAT (//24HOINTERIOR REGION AT TO-H///)	SU13	59
	GQ TQ 62	SU13	60
56	WRITE (3.57)	SU13	61
57	FORMAT (//22HOINTERIOR REGION AT TO///)	SU13	62
62	DD 70 I=11.12	SU13	63
	WRITE (3,64) ZTAB(I)	SU13	64
64	FORMAT (///7HOZTAB =.F10.4//7X1HR9X1HP17X1HU17X1HV17X3HRH015X1HE	175013	65
•	1X1HA//)	SU13	66
	DD 69 J=J1+J2	SU13	67
	WRITE (3,68) RTAB(J), (BL(1, J,K), K=1,6)	SU13	68
68	FORMAT (F12.4.6E18.8)	SU13	69
69	CONTINUE	SU13	70
70	CONTINUE	SU13	71
80	WRITE (3,82)	SU13	72
82	FORMAT (1H1)	SU13	73
	RETURN	SU13	74
	END	SU13	75
	SUBROUTINE NRIT2(X,Y,X0,DX,Y0,DY,EX,EY,FGOF,IT,KODE)	SU14	1
С		SU14	2
С	NEWTON-RAPHSON METHOD FOR SOLUTION OF	SU14	3

195

C	TWO NON LINEAR EQUATIONS IN TWO UNKNOWNS SUI	4 4
	SU1	45
	COMNON CASEID(14), ITS1, ITS2, ITS3, ITS4, ITI1, IT12, ITI3, IT14, EPS1, EPSSUL	4 6
	12, EPS3, EPS4, EPS5, EPS6, EPI1, EPI2, EPI3, EPI4, EPI5, EPI6, EPI7, VP, AR, LENSU1	47
	1GTH, APR, BPR, BIGAPR, BIGBPR, ESTAR, ALPHA, BETA, RHOSTR, EPRS, RHOS SUL	48
	COMMON XMESH(20,20,6),XMESH2(20,20,6),Z(20),R(20),SURF(15,8),SURF2SU1	49
	1(15,8),TAB(15,14,2),TAB2(15,14,2),SPART(15,2,2),RARF(15,11),RARF2(SU1	4 10
	115,4),RPART(15,2) SU1	4 11
	SU1	4 12
(SU1	4 13
	COMMON ZO, RO, PO, UO, VO, LO, MO, RHOO, EO, AO, UBARO, VBARO SUI	4 14
	SUL	4 15
	COMMON NP+NT+NR+NI+NDEL+ISUB SUI	4 16
	SU1	4 17
	COMMON ZMIN, ZMAX, RMIN, RMAX, RADIÚS, GZ, GR, DELTA, H SU1	4 18
	COMMON DIRCOS SUI	4 19
	COMMON TIME SUI	4 20
	COMMON IRARF SUI	4 21
	COMMON KSTOP SUI	4 22
	COMMON TPSI SUI	4 23
	COMMON KKK SUI	4 24
	REAL LO,MO,LENGTH, MU,KO SUI	4 25
(SU1	4 26
	XB=XO SUI	4 27
	YB=YO SUI	4 28
	DXX=DX SUI	4 29
	DYY=DY SUI	4 30
		4 31
		4 32
		• 55
, 1		4 34
		4 37
		4 30
		7 J(1 20
	11=10+D11 201	4 20
L L	,	7 27

	С		SU14 40
		CALL FGOF(XB,YY,F2,G2)	SU14 41
		CALL FGOF(XX,YB,F1,G1)	SU14 42
		CALL FGOF(X8,Y8,F0,G0)	SU14 43
		A1=(F1-F0)/DXX	SU14 44
		B1=(F2-F0)/DYY	SU14 45
		C1=-F0	SU14 46
		A2={G1-G0}/DXX	SU14 47
		B2={G2-G01/DYY	SU14 48
		C2=-G0	SU14 49
		DET=A1+B2-A2+B1	SU14 50
		IF (DET.EQ.0.) GO TO 920	SU14 51
		DELX=(82+C1-81+C2)/DET	SU14 52
		DELY=(A1+C2-A2+C1)/DET	SU14 53
		IF (ABS(DELX).GTOO1) GO TO 8	SU14 54
		DELX=0.	SU14 55
	8	IF (ABS(DELY).GTOO1) GB TD 9	SU14 56
		DELY=0.	SU14 57
	9	CONTINUE	SU14 58
		SDEL=ABS(DELX+DELX1)+ABS(DELY+DELY1)	SU14 59
-		DELX1=DELX	SU14 60
		DELY1=DELY	SU14 61
	С		SU14 62
	C	TEST FOR SAME REGION	SU14 63
	С	*	SU14 64
		DO 10 J=1+IT	SU14 65
		XB1=XB+DELX	SU14 66
		YB1=YB+DELY	SU14 67
		IF (YB1.LE.0.)Y81=0.	SU14 68
		M=COMP(X8,Y8,X81,Y81)	SU14 69
		IF (M.EQ.1) GO TO 15	SU14 70
	11	CONTINUE	SU14 71
		KK=1	SU14 72
		DELX=.5+DELX	SU14 73
		DELY=.5+DELY	SU14 74
	10	CONTINUE	SU14 75

.

197

•

	GD TO 930	SU14 76
15	IF (ABS(XB-XB)).GT.EX) GQ TQ 45	SU14 77
	THE (ABS(YB-YB1).GT.EY) GO TO 45	SU14 78
	1F (KK.NE.0) GO TO 45	SU14 79
	X= XB 1	SU14 80
	Y=Y81	SU14 81
	KODE=0	SU14 82
	RETURN	SU14 83
45	CONTINUE	SU14 84
	IF (KODE-NE-1) GO TO 46	SU14 85
	IF (SOFL-GT-FPILL) GO TO 46	SU14 86
	DELX=_S+DELX	SU14 87
		SU14 88
	GO TO 9	SU14 89
46	XB=XB1	SU14 90
	YB=YB1	SU14 91
	DEL=DELTA	SU14 92
	DD 70 N=1.NDEL	SU14 93
	XB2=XB+DEL	SU14 94
	M=COMP(XB.YB.XB2.YB)	SU14 95
	IF (M.NE.14 GO TO 55	SU14 96
	DXX=DEL	SU14 97
,	GD TO 80	SU14 98
55	XB2=XB-DEL	SU14 99
	M=COMP(X8,Y8,X82,Y8)	SU14 100
	IF (M.NE.1) GO TO 60	SU14 101
	DXX=-DEL	SU14 102
	GD TO 80	SU14 103
60	DEL=.5+DEL	SU14 104
70	CONTINUE	SU14 105
• •	GO TO 980	SU14 106
80	DEL=DELTA	SU14 107
	DO 100 N=1,NDEL	SU14 108
	YB2=YB+DEL	SU14 109
	N=COMP(XB,YB,XB,YB2)	SU14 110
	IF (M.NE.1) GO TO 85	SU14 111

•

• 1

•

.

.

۲

.

198

	OYY=DEL	SU14	112
	GD TO 50	SU14	113
85	YB2=YB-DEL	SU14	114
	N=C GMP (X8, Y8, X8, Y82)	SU14	115
	IF (M.NE.1) GO TO 90	SU14	116
	DYY=-DEL	SU14	117
	GO TO 50	SU14	118
90	DEL=.5+DEL	SU14	119
100	CONTINUE	SU14	120
•	GO TO 990	SU14	121
50	CONTINUE	SU14	122
	X=XB1	SU14	123
	Y=Y81	SU14	124
	IF (KODE.EQ.1) RETURN	SU14	125
	KODF=1	SU14	126
	GO TO 1	SU14	127
920	WRITE (3.922) 1	SU14	128
922	FORMAT (46HODETERMINANT IS O IN SUBR. NRITZ FOR ITERATION, 14)	SU14	129
	GD TD 950	SU14	130
930	KDDE=2	SU14	131
	RETURN	SU14	132
950	WRITE (3,952) X0,Y0,X8,Y8,X81,Y81,DELX,DELY	SU14	133
952	FORMAT (1X5HZO =.E15.8.4X5HRO =.E15.8/1X5HZ8 =.E15.8.4X5HRB	=,SU14	134
	1E15.8/1X5HZ81 *.E15.8.4X5HRB1 *.E15.8/1X5HDELZ=.E15.8.4X5HDELR=	EISU14	135
	15.8/1H1)	SU14	136
	CALL EXIT	SU14	137
	RETURN	SU14	138
980	KODE=3	SU14	139
	RETURN	SU14	140
990	KODE=4	SU14	141
	RETURN	SU14	142
	END	SU14	143
	FUNCTION COMP(ZP,RP,ZP1,RP1)	SU15	1
Ċ		SU15	2
Č	DETERMINES IF 2 POINTS ARE IN THE SAME REGION	SU15	3
	COMMON CASEID(14), ITS1, ITS2, ITS3, ITS4, IT11, IT12, IT13, IT14, EPS1,	EPSSU15	4

-

.

.

÷

199

•

.

	12,EPS3,EPS4,EPS5,EPS6,EPI1,EPI2,EPI3,EPI4,EPI5,EPI6,EPI7,VP,AR	LENSU15	5
	1GTH,APR,BPR,BIGAPR,BIGBPR,ESTAR,ALPHA,BETA,RHOSTR,EPRS,RHOS	SU15	6
	COMMON XMESH(20,20,6),XMESH2(20,20,6),Z(20),R(20),SURF(15,8),S	URF2SU15	7
	1(15,8),TAB(15,14,2),TAB2(15,14,2),SPART(15,2,2),RARF(15,11),RA	RF2(SU15	8
	115,4),RPART(15,2)	SU15	9
C		SU15	10
	COMMON Z0,R0,P0,U0,V0,L0,M0,RH00,E0,A0,UBAR0,VBAR0	SU15	11
C		SU15	12
	COMMON NP+NT+NR+NI+NDEL+ISUB	SU15	13
C	• · · · · · · · · · · · · · · · · · · ·	SU15	14
	COMMON ZMIN, ZMAX, RMIN, RMAX, RADIUS, GZ, GR, DELTA, H	SU15	15
	COMMON DIRCOS	SU15	16
	COMMON TIME	SU15	17
	COMMON IRARF	SU15	18
	COMMON KSTOP	SU15	19
	COMMON TPSI	SU15	20
	COMMON KKK	SU15	21
	REAL LO,MO,LENGTH,MU,KO	SU15	22
	EPS#+0000001	SU15	23
	IF (RP1.LT.0.) GO TO 80	SU15	24
	IF (ZP1.GE.O.) GO TO 4	SU15	25
	IF (RP1.GT.RADIUS) GO TO 80	SU15	26
С		SU15	27
Ċ	FIND CONTROL CONSTANTS FOR ZP, RP	SU15	28
С		SU15	29
4	CONTINUE	SU15	30
	1F (ITS3.EQ.1) GO TO 33	SU15	31
	IF (IRARF.EQ.1) GO TO 13	SU15	32
	N=PICK(ZP+RP+3)	SU15	33
	IF (ZP.GT.RARF(M,1).AND.M.NE.1)M=H-1	SU15	34
	FF=RP-RARF(M+1,2)-(RARF(M,2)-RARF(M+1,2))*(ZP-RARF(M+1,1))/(RA	RF(MSU15	35
	1,1)-RARF(M+1,1))	SU15	36
	IF (FF.LT.0.) GO TO 11	SU15	37
10	NN=1	SU15	38
	GO TO 13	SU15	39
11	NN=0	SU15	40
11		2012	-+0

-

7

200

•

13	CONTINUE	SU15	41
	DO 22 K=1,2	SU15	42
	M=PICK(ZP1,RP1,K)	SU15	43
	IF (RP1.LT.TAB(M.2.K).AND.M.NE.1)M=M-1	SU15	44
5	CONTINUE	SU15	45
	FF=ZP1-TAB(M+1+1+K)-(TAB(M+1+K)-TAB(M+1+1+K))*(RP1-TAB(M+1+2+K))/	(SU15	46
	1TAB(M,2,K)-TAB(M+1,2,K))	SU15	47
	IF (K.EQ.2) GO TO 17	SU15	48
	IF (RP1.GT.RADIUS) GO TO 21	SU15	49 ·
	IF (FF.LTEPS) GO TO 90	SU15	50
	GO TO 21	SU15	51
17	IF (FF.GT.EPS) GO TO 100	SU15	52
21	IF (RP.GT.RADIUS) GO TO 22	SU15	53
	M=PICK(ZP1,RP1,4)	SU15	54
	FF=ZP1-SURF(M+1,1)-(SURF(M,1)-SURF(M+1,1))*(RP1-SURF(M+1,2))/(SUR	FSU15	55
	1(M,2)-SURF(M+1,2))	SU15	56
	IF (FF) 80,22,22	SU15	57
22	CONTINUE	SU15	58
	IF (IRARF+EQ+1) GO TO 33	SU15	59
	M=PICK(ZP1,RP1,3)	SU15	60
	<pre>IF (ZP1.GT.RARF(M.1).AND.M.NE.1)M=M-1</pre>	SU15	61
	FF=RP1-RARF(M+1,2)-(RARF(M,2)-RARF(M+1,2))*(ZP1-RARF(M+1,1))/(RAR	FSU15	62
	1(M,1)-RARF(M+1,1))	SU15	63
	IF (FF.LT.O.) GO TO 31	SU15	64
30	NN1=1	SU15	65
	GD TO 32	SU15	66
31	NN 1 = 0	SU15	67
32	IF (NNI-NE-NN) GO TO 110	SU15	68
33	CONTINUE	SU15	69
	COMP=1	SU15	70
	COMP=COMP+.2	SU15	71
	RETURN	SU15	72
08	COMP=2	SU15	73
	COMP=COMP+.2	SU15	74
	RETURN	SU15	75
90	CDMP=3.	SU15	76

20/

-

	COMP=COMP+.2	SU15	77
	RETURN	SU15	78
100	COMP=4.	SU15	79
	COMP=COMP+.2	SU15	80
	RETURN	SU15	81
110	COMP=5.	SU15	82
	COMP=COMP++2	SU15	83
	RETURN	SU15	84
	END	SU15	85
	FUNCTION PICK(ZP+RP+KODE)	SU16	1
С .		SU16	2
C	DETERMINES 2 CLOSEST CONSECUTIVE POINTS ON SPECIFIED	SU16	3
C	LINE OF DISCONTINUITY TO A GIVEN POINT	SU16	4
C		SU16	5
	COMMON CASEID(14), ITS1, ITS2, ITS3, ITS4, ITI1, ITI2, ITI3, ITI4, EPS1	EPSSU16	6
	12, EPS3, EPS4, EPS5, EPS6, EPI1, EPI2, EPI3, EPI4, EPI5, EPI6, EPI7, VP, AR	LENSU16	7
	IGTH,APR,BPR,BIGAPR,BIGBPR,ESTAR,ALPHA,BETA,RHOSTR,EPRS,RHOS	SU16	8
	COMMON XME SH(20,20,6), XMESH2(20,20,6), Z(20), R(20), SURF(15,8), S	JRF2SU16	9
	1(15,8),TAB(15,14,2),TAB2(15,14,2),SPART(15,2,2),RARF(15,11),RA	RF2(SU16	10
	115,4),RPART(15,2)	SU16	11
C		SU16	12
C		SU16	13
	COMMON Z0+R0+P0+U0+V0+L0+M0+RH00+E0+A0+UBAR0+VBAR0	SU16	14
C	<i>F</i>	SU16	15
	COMMON NP+NT+NR+NI+NDEL+ISUB	SU16	16
C	·	SU16	17
	COMMON ZMIN+ZMAX+RHIN+RMAX+RADIUS+GZ+GR+DELTA+H	SU16	18
	COMMON DIRCOS	SU16	19
	COMMON TIME	SU16	20
	COMMON IRARF	SU16	21
	COMMON KSTOP	SU16	22
	COMMON TPSI	SU16	23
	COMMON KKK	SU16	24
	REAL LO,MO,LENGTH,MU,KO	SU16	25
C		SU16	26
	GD TO (5,10,100,300),KODE	SU16	27

•

2

-

•

202

5	NN=NP	SU16	28
	K=1	SU16	29
	GO TO 15	SU16	30
10	NN≤NT	SU16	31
	K=2	SU16	32
15	AA=(TAB(1+1+K)-ZP)**2+(TAB(1+2+K)-RP)**2	SU16	33
C		SU16	34
Č	SEARCH SHOCK TABLES	SU16	35
C		SU16	36
-	DD 60 N=2+NN	SU16	37
	A=(TAB(N.1.K)-ZP)++2+(TAB(N.2.K)~RP)++2	SULA	38
	IF (A.GE.AA) GO TO 23	5016	39
		SUIA	40
60	CONTINUE	5010	4 1
••	PICK=NN-1	SULA	42
	PICK=PICK+_2	SUIA	47
	RETURN	5010	46
23	PICK=N-1	5010	45
	PICK=PICK+,2	A [1] 2	46
	RETIRN	1010 ATU2	47
100	AA={RARF(1,13-70}**2+&RARF(1,23-RD)**2	A [112	49
c	HH-TURNITETET FLITTETENNI ISTEL ULITE	5010	40
č	SEARCH RAREFACTION TABLE	SUIG	50
č		5010	51
~	DD 200 N=2-NR	2010	52
	A=1RARF(N,1)-7P1++2+(RARF(N,2)-RP1++2	A1113	52
	IF (A_GE_AA) GO TO 203	SUIA	54
		SUIA	55
200	CONTINUE	SUITA	54
~~~	PICK=NR~1	5010	57
	PICK=PICK+_2	5010	58
	RETURN	5100	50
203	PICK=N-1	SU16	60
	PICK=PICK+_2	A 1112	61
	RETURN	A (1)2	62
300	AA=(SURF(1.1)-ZP)++2+(SURF(1.2)-RP)++2	SU16	63

. .

-

. •

•

...

203

C		SU16	64
C	SEARCH FREE SURFACE TABLE	SU16	65
С		SU16	66
	DD 400 N=2,NP	SU16	67
	A=(SURF(N,1)-ZP)++2+(SURF(N,2)-RP)++2	SU16	68
	IF (A.GE.AA) GO TO 303	SU16	69
	<u>дд</u> жд	SU16	70
400	CONTINUE	SU16	71 .
	PICK=NP-1	SU16	72
	PICK=PICK+.2	SU16	73
	RETURN	SU16	74
303	PICK=N-1	SU16	75
	PICK=PICK+.2	SU16	76
304	CONTINUE	SU16	77
	RETURN	SU16	78
	END	SU16	79
	SUBROUTINE GUESS(KOD1,KOD2,ZP,RP,I2,K2,ZG,RG,DZ,DR)	SU17	1
C		SU17	2
C	DETERMINES STARTING POINT AND DELTAS	SU17	3
C	FOR NEWTON-RAPHSON ITERATION	SU17	4
С		SU17	5
	COMMON CASEID(14), ITS1, ITS2, ITS3, ITS4, ITI1, IT12, IT13, IT14, EPS1, EP	SSU17	6
	12, EPS3, EPS4, EPS5, EPS6, EPI1, EPI2, EPI3, EPI4, EPI5, EPI6, EPI7, VP, AR, LE	NSU17	7
	1GTH, APR, BPR, BIGAPR, BIGBPR, ESTAR, ALPHA, BETA, RHOSTR, EPRS, RHOS	SU17	8
	COMMON XMESH(20,20,6), XMESH2(20,20,6), Z(20), R(20), SURF(15,8), SURF	25017	9
	1(15,8),TAB(15,14,2),TAB2(15,14,2),SPART(15,2,2),RARF(15,11),RARF2	CSU17	10
	115,4),RPART(15,2)	SU17	11
С		SU17	12
<b>C</b>		SU17	13
	COMMON ZO,RO,PO,UO,VO,LO,MO,RHOO,EO,AO,UBARO,VBARO	5017	14
· C		SU17	15
	COMMON NP, NT, NR, NI, NDEL, ISUB	SU17	16
с – С		SU17	17
	COMMON ZMIN,ZMAX,RMIN,RMAX,RADIUS,GZ,GR,DELTA,H	SU17	18
	COMMON DIRCOS	SU17	19
	COMMON TIME	SU17	20

204

.

•

		COMMON IRARF	SU17	21
		COMMON KSTOP	SU17	22
		COMMON TPSI	SU17	23
		COMMON KKK	SU17	24
ł.		REAL LO, MO, LENGTH, MU, KO	SU17	25
· ·	C		SU17	26
		K\$=0	SU17	27
		IF (KOD1.EQ.2) GO TO 10	SU17	28
		ZG=TAB(12,1,K2)	SU17	29
		RG=TAB(12+2+K2)	SU17	30
		IF (IRARF.EQ.1) GO TO 9	SU17	31
	2	M=1-(NR-2)+(K2-2)	SU17	32
	-	FF=RG-RARF(M+1+2)-(RARF(M+2)-RARF(M+1+2))+{2G-RARF(M+1+1)}/(R	ARF(MSU17	33
		1.1)-RARF(M+1.1))	SU17	34
		IF (FF.GT.0.) GO TO 9	SU17	35
		ZG=(102/(RADIUS-RG))*ZG	SU17	36
		RG=RG++02	SU17	37
		IF (RG.GT. (RADIUS011) GD TO 110	SU17	38
		GO TO 2	SU17	39
	9	CONTINUE	SU17	40
		GO TO 50	SU17	41
	10	JJJ=NT-1	SU17	42
		IF (ITS3.EQ.1) GO TO 26	SU17	43
		DO 24 M=1+JJJ	SU17	44
		IF (RP.GT.TAB(M+1,2,2).OR.RP.LT.TAB(M,2,2)) GO TO 24	SU17	45
		GO TO 25	SU17	46
	24	CONTINUE	SU17	47
	25	CONTINUE	SU17	48
		FF=ZP-TAB(M+1,1,2)-(TAB(M,1,2)-TAB(M+1,1,2))*{RP-TAB(M+1,2,2)	J/(TASU17	49
		1B{H,2,2}-TAB{H+1,2,2}}	SU17	50
		IF (FF.GT.0.) GO TO 20	SU17	51
	26	CONTINUE	SU17	52
•		ZG=ZP	SU17	53
		RG=RP	SU17	54
		GO TO 50	SU17	55
	20	IK=M	\$U17	56

205

M=CROSS(TAB(IK,1,2),TAB(IK,2,2),TAB(IK+1,1,2),TAB(IK+1,2,2),0.,0.,SU17 57 1ZP,RP,ZG,RG) SU17 58 GO TO (50,920,930),M SU17 59 SU17 С 60 С COMPUTE DELTAS SU17 61 С SU17 62 50 SU17 63 DEL=DELTA С SU17 64 С Z DELTA SU17 65 С SU17 66 SU17 LL=0 67 52 DO 70 N=1,NDEL SU17 68 ZZ=ZG+DEL SU17 69 M=COMP(ZG,RG,ZZ,RG) SU17 70 IF (M.NE.1) GO TO 55 SU17 71 DZ=DEL SU17 72 GD TO 80 ZZ=ZG-DEL SU17 73 55 SU17 74 M=COMP(ZG,RG,ZZ,RG) SU17 75 [F (M.NE.1) GO TO 60 SU17 76 DZ=-DEL SU17 77 GO TO 80 SU17 78 79 60 DEL=.5+DEL SU17 70 CONTINUE SU17 80 **F** SU17 LL=LL+1 81 IF (LL.EQ.3) GO TO 75 SU17 82 RG≖RG-DELTA/5. SU17 83 DEL=DELTA SU17 84 GO TO 52 SU17 65 KOD2=2 SU17 75 86 RETURN SU17 87 80 DEL=DELTA SU17 88 IF (KS.EQ.1) GO TO 120 SU17 89 С SU17 90 С R DELTA SU17 91 С. SU17 92

200

	LL≖0	SU17	93
82	DO 100 N=1,NDEL	SU17	94
	RR=RG+DEL	SU17	95
	M≖COMP{ZG+RG+ZG+RR}	SU17	96
	IF (M.NE.I) GO TO 85	SU17	97
	DR=DEL	SU17	98
	IF (KS.EQ.1) GO TO 50	SU17	99
	GD TO 120	SU17 1	100
85	RR=RG-DEL	SU17 1	101
	M=COMP(ZG,RG,ZG,RR)	SU17 1	102
	IF (M.NE.1) GO TO 90	SU17	L03
	OR≖-DEL	SU17	104
	IF (KS.EQ.1) GO TO 50	SU17 1	105
	GO TO 120	SU17 1	106
90	DEL=+5+DEL	SU17 (	107
100	CONTINUE	SU17 1	108
108	CONTINUE	SU17 1	109
	LL=LL+1	SU17 1	110
	FLL=LL	SU17 1	111
	IF (LL.EQ.5) GO TO 110	SU17 (	112
C	• •	SU17	113
104	ZG1=ZG+DELTA/5.*FLL*(-1.)*+LL	SU17	114
	M=COMP(ZG,RG,ZG1,RG)	SU17 1	115
	ZG=ZG1	SU17	116
	IF (M.NE.1) GD TD 108	SU17	117
	KS=1	SU17	118
	GO TO 82	SU17	119
110	KOD2=2	SU17	120
	RETURN	SU17	121
120	KOD2=1	SU17	122
	RETURN	SU17 (	123
920	WRITE (3,922)	SU17	124
922	FORMAT (42HOERROR FOR COINCIDENT LINES IN SUBR. GUESS)	SU17	125
	GD TO 950	SU17	126
C		SU17	127
930	WRITE (3,932)	SU17	128

· · ·

• •

. . . ŕ

· ·

•

-

•

207

	932	FORMAT (40HOERROR FOR PARALLEL LINES IN SUBR. GUESS)	SU17	129
	C		SU17	130
	950	WRITE (3,952) KOD1,12,K2,ZP,RP	SU17	131
	952	FORMAT (1X5HKOD1=,14,4X3H12=,14,4X3HK2=,14/1X3HZP=,E15.8,4	X3HRP=,ESU17	132
		115.8/1H1)	SU17	133
		XYZ=-2.	SU17	134
		ZYX=SQRT(XYZ)	SU17	135
		CALL EXIT	SU17	136
		RETURN	SU17	137
		END	SU17	138
		FUNCTION CROSS(X1,Y1,X2,Y2,X3,Y3,X4,Y4,X,Y)	SU18	1
	С		SU18	2
	С	FINDS INTERSECTION OF TWO STRAIGHT LINES	5018	3
	Ç		SU18	4
		EPS=.0000001	SU18	5
		A1=Y2-Y1	SU18	6
		B1=X1-X2	SU18	7
		C1=X1+A1+Y1+B1	SU18	8
		A2=Y4-Y3	SU18	9
		B2=X3-X4	SU18	10
		C2=X3+A2+Y3+B2	SU18	11
		DET=A1+B2-A2+B1	SU18	12
		D1=C1+B2-C2+B1	SU18	13
		D2=A1+C2-A2+C1	SU18	14
		IF (ABS(DET).LE.EPS) GO TO 10	SU18	15
		X=O1/DET	SU18	16
		Y=D2/DET	SU18	17
		CROSS=1	SU18	18
		CROSS=CROSS++2	SU18	19
		RETURN	SU18	20
	10	IF (ABS(D1).GT.EPS) GO TO 20	SU18	21
		IF (ABS(D2).LE.EPS) GO TO 30	SU18	22
•	20	CROSS=3	SU10	23
		CROSS=CROSS++2	SU18	24
		RETURN	SU18	25
	30	X=X1	SU18	26

. . ?

-

## 208

	Y= Y1	SU18	27
	CROSS=2	SU18	28
	CROSS=CROSS+.2	SU18	29
316	CONTINUE	SU18	30
	RETURN	SU1B	31
	ÉND	SU18	32
	FUNCTION PART(MODE, ZP, RP, ZX, RX, DELTA, NDEL)	SU19	1
С	,	SU19	2
C	LOCATES A POINT IN THE SAME REGION AS A GIVEN POINT	SU19	3
C	TO BE USED IN COMPUTING A PARTIAL	SU19	4
С	NODE=1,WITH RESPECT TO R	SU19	5
C	MODE=2,WITH RESPECT TO Z	SU19	6
C		SU19	7
	GO TO {2,4},MODE	SU19	8
2	DR=DELTA	SU19	9
	DZ=0.	SU19	10
	GO TO 8	SU19	11
4	DR=0.	SU19	12
	DZ=DELTA	SU19	13
8	DO 50 NN=1,NDEL	SU19	14
	RR=RP+DR	SU19	15
	ZZ=ZP+OZ	SU19	16
	M#COMP(ZP,RP,ZZ,RR)	SU19	17
	IF (M.EQ.1) GO TO 60	SU19	18
	RR=RP-DR	SU19	19
	22=2P-02	SU19	20
	N=COMP(ZP+RP+ZZ+RR)	SU19	21
	IF (N.EQ.1) GD TO 60	SU19	22
	DZ=DZ++5	SU19	23
	DR=DR+.5	SU19	24
50	CONTINUE	SU19	25
	PART=2	SU19	26
	PART=PART+.2	SU19	27
	RETURN	SU19	28
60	ZX=ZZ	SU19	29
	RX=RR	SU19	30

209

.

.

1

		ΥΑΚΙ≖↓ 	5019	31	
		PAR   = PAR   + + 2	SU19	32	
		RETURN	SU19	33	
		END	SU19	34	
		FUNCTION PICK2(ZP,RP,KODE)	SU20	1	
	C		SU20	2	
	C	DETERMINES 2 CLOSEST CONSECUTIVE POINTS ON SPECIFIED	SU20	3	
	C	LINE OF DISCONTINUITY TO A GIVEN POINT	SU20	4	
		COMMON CASEID(14), ITS1, ITS2, ITS3, ITS4, IT11, IT12, IT13, IT14, EPS1, E	PSSU20	5	-
		12, EPS3, EPS4, EPS5, EPS6, EPI1, EPI2, EPI3, EPI4, EPI5, EPI6, EPI7, VP, AR, L	ENSU20	6	
		1GTH, APR, BPR, BIGAPR, BIGBPR, ESTAR, ALPHA, BETA, RHOSTR, EPRS, RHOS	SU20	7	
		COMMON XME SH (20,20,6) + XMESH2 (20,20,6) + Z(20) + R(20) + SURF(15,8) + SUR	F25U20	â	
		1(15-8) . TAB(15-14-2) . TAB2(15-14-2) . SPART(15.2.2) . RARF(15.11). RARF	21 51120	ă	
		115.4). RPART(15.2)	51120	10	
	Ċ		5020	11	
	•	COMMON 70.80.80.10.VO.10.MO.800.50.40.10480.V8480	5020	12	
		COMMON NO.NT.NP.NI.NDEL_ISHA	5020	12	
	r	COMMON NEAVEAUTINEETITAD	5020	15	
	L L	COMMON THTN THAY BUTH DHAY BADTUC OT CO DELTA H	5020	19	
		COMMON DIDEOS	5020	12	
		LUMMUN DIKLUS	5020	16	
			SUZO	17	
		CUMMUN IRARF	SU20	18	
		COMMON KSTOP	SU20	19	
	•	COMMON TPSI	SU20	20	
		COMMON KKK	SU20	21	
		REAL LO,MO,LENGTH,MU,KO	SU20	22	
	С		SU20	23	
		GD TO (5,10,100,205,210,300,500),KODE	SU20	24	
	5	NN=NP	SU20	25	
		K≠1	SU20	26	
		GO TO 15	SU20	27	
	10	NN=NT	5020	28	
÷		<b>X=2</b>	51120	29	
	15		5020	30	
	Č	en e	5020	31	
	ă	SFARCH SHOCK TARLES	5020	22	
	~	Arwan Suday Indra	3424	76	

.

210

C		SU20	33	
	DD 60 N=2,NN	SUZO	34	
	A=(TAB2(N,1,K)-ZP)**2+(TAB2(N,2,K)-RP)**2	SU20	35	
	IF (A.GE.AA) GO TO 23	SU20	36	
	AA=A	SUZO	37	
60	CONTINUE	SU20	38	
	PICK2=NN-1	SU20	39	
	PICK2=PICK2++2	SU20	40	
- · ·	RETURN	SUZO	41	-
23	PICKZ=N-1	SUZO	42	
·	PICK2=PICK2++2	SU20	43	
	RETURN	SU20	44	
10	0 AA={RARF2(1,1)-ZP}==2+{RARF2(1,2)-RP}==2	SUZO	45	
C		SUZO	40	
C C	SEARCH RAREFACTION TABLE	5020	47	
C		5020	48	
	UU ZUU N=Z+NK ·	5020	49	
	A#{\KAKFZ{N;1]=ZY}##Z+{\KAKFZ{N;2]+KY}##Z	5020	50	
	IF (Adde-AA) GU IU ZUJ	5020	21	
		5020	26	
. 20	U CUNTINUE DICV2-40-1	3020	23 E4	
	F1682-8871 01682-016824 2	5020	27 166	
	Y 16KZ=Y 16KZ=+Z ACT10N	5020	27 64	
20	NETUKN 2 DICK2-N-1	5020	20	
20	3 FILK2=0"1 DICK3=DICK34 3	5020	21 60	
		5020	20 60	
37		5020	27	
41		5020	41	
	60 TO 215	5020	62	
21	O NN=NT	5020	63	
<b>-</b> •	Kn7	5020	64	
21	5 AA#(SPART[]_]_K]#7P]##2#(SPART[]_2_K]#RP]##2	5020	65	
	> mm=1 wr mm 11 & Y & Y m F & K & F & T & F & T & F & M & M & M & M & F & F & F & M & M	5020	66	
č	SFARCH SHOCK PARTICLE TABLES	SU20	67	
č		SU20	68	
ų				

	DO 260 N=2+NN	SU20	69
	A={SPART(N+1+K}-ZP)**2+{SPART{N+2+K}-RP}**2	SU20	70
	IF (A.GE.AA) GO TO 223	SU20	71
	<b>Δ Δ = Δ</b>	SU20	72
200	CONTINUE	SU20	73
	PICK2=NN-1	SU20	74
	PICK2=PICK2++2	SU20	75
	RETURN	SU20	76
223	PICK2=N-1	SU20	77
	PICK2=PICK2++2	SU20	78
	RETURN	SU20	79
300	AA=(RPART(1,1)-ZP)*#2+(RPART(1,2)-RP)##2	SU20	80
C		SU20	81
C	SEARCH RAREFACTION PARTICLE TABLE	SU20	82
C		SU20	83
	00 400 N=2 NR	SU20	84
	A = (RPART(N, 1) - ZP) * *2 + (RPART(N, 2) - RP) * *2	SU20	85
	IF (A.GE.AA) GO TO 403	SU20	86
	AA=A	SU20	87
400	CONTINUE	SU20	88
	PICK2=NR-1	SU20	89
	PICK2=PICK2+•2	SU20	90
	RETURN	SU20	91
403	PICK2=N-1	SU20	92
	PICK2=PICK2++2	SU20	93
	RETURN	SU20	94
500	AA=(SURF211,1)-ZP)**2+(SURF2(1,2)-RP)**2	SU20	95
L C		SU20	96
L C	SEARCH FREE SURFACE TABLE	SU20	97
C		SU20	98
		SUZO	99
	A=(SURF2(N+1)+ZP)*+2+(SURF2(N+Z)+RP)++2	SU20	100
	17 (A.UC.AA) 60 10 523	SU20	101
E 2 A		5020	102
<b>72</b> 0		SU20	103
	KICKSENK-I	SU20	104

·

-

212

	PICK2=PICK2+.2	SU20	105	
	RETURN	SU20	106	
523	PICK2=N-1	SU20	107	
	PICK2=PICK2+.2	SU20	108	
	RETURN	SU20	109	
	END	SU20	110	
	FUNCTION TEST(ZP,RP)	SU21	1	
C		SU21	2	
C		SU21	3 -	
C	DETERMINES IF A GIVEN INTERIOR POINT IS IN	· SU21	4	
С	THE REGION TO BE CONSIDERED	SU21	5	
С		5021	6	
	COMMON CASEID(14)+ITS1+ITS2+ITS3+ITS4+IT11+IT12+IT13+IT14+EPS	\$1.EPSSU21	7	
	12, EPS3, EPS4, EPS5, EPS6, EP11, EP12, EP13, EP14, EP15, EP16, EP17, VP. /	R.LENSU21	8	
	1GTH, APR, BPR, BIGAPR, BIGBPR, ESTAR, ALPHA, BETA, RHOSTR, EPRS, RHOS	SU21	9	
	COMMON XME SH(20,20,6), XMESH2(20,20,6), Z(20), R(20), SURF(15,8),	SURF2SU21	10	
	1(15,8), TAB(15,14,2), TAB2(15,14,2), SPART(15,2,2), RARF(15,11),	ARF2(SU21	11	
	115,4),RPART(15,2)	SU21	12	
С		SU21	13	
C		SU21	14	
	COMMON Z0,R0,P0,U0,V0,L0,M0,RH00,E0,A0,UBAR0,VBAR0	SU21	15	
С		SU21	16	
	COMMON NP,NT,NR,NI,NDEL,ISUB	SU21	17	
C		SU21	18	
	COMMON ZMIN,ZMAX,RMIN,RMAX,RADIUS,GZ,GR,DELTA,H	SU21	19	
	COMMON DIRCOS	SU21	20	
	COMMON TIME	SU21	21	
	COMMON IRARF	SU21	22	
	COMMON KSTOP	SU21	23	
	COMMON TPSI	SU21	24	
	COMMON KKK	SU21	25	
	REAL LO,MO,LENGTH,MU,KO	SU21	26	
С		SU21	27	
	EPS=.0001	SU21	28	
	[F (ITS3.EQ.1) GO TO 5	SU21	29	
	IF (RP+GT+(RADIUS+EPS)) GO TO 5	SU21	30	

. .

213

M=PICK2(ZP,RP,7) SU2	21 31
FF=ZP-SURF2(M+1,1)-(SURF2(M,1)-SURF2(M+1,1))*(RP-SURF2(M,2))/(SURFSU2	21 32
12(M,2)-SURF2(M+1,2)) SU2	21 33
KICK=5 SU2	21 34
CALL DVCHK(KQ) SU2	21 35
IF (KQ.EQ.1) GO TO 9980 SU2	21 36
IF (FF) 200,5,5 SU2	21 37
CONTINUE SU2	21 38
IF (ZP.GTEPS) GO TO 1 SU2	21 39
IF (RP.GT.(RADIUS+EPS)) GO TO 200 SU2	21 40
00 10 K=1,2 SU2	21 41
IF (ITS3-EQ-1) GO TO 100 SU2	21 42
M=PICK2(ZP+RP+K) SU2	21 43
IF (TAB2(M,2,K).GT.RP.AND.M.NE.1)M=M-1 SU2	21 44
FF=ZP-TAB2(M+1+1+K)-(TAB2(M+1+K)-TAB2(M+1+1+K))*(RP-TAB2(M+1+2+K))SU2	21 45
1/(TAB2(M+2+K)-TAB2(M+1+2+K)) SU2	21 46
KICK=50 SU2	21 47
CALL DVCHK(KQ) SU2	21 48
IF (KQ.EQ.1) GO TO 9980 SU2	21 49
IF (K.EQ.2) GO TO 50 SU2	21 50
IF (RP.GT.RADIUS) GO TO 10 SU2	21 51
IF (FF) 200,10,10 SU2	21 52
IF (FF) 10,10,200 SU2	21 53
CONTINUE SU2	21 54
DO 20 K=1,2 SU2	21 55
J=K+3 SU2	21 56
N=PICK2(ZP+RP+J) SU2	21 57
IF (SPART(M,2,K).GT.RP.AND.M.NE.1)M=M-1 SU2	21 58
FF=ZP-SPART(M+1,1,K)-(SPART(M,1,K)-SPART(M+1,1,K))*(RP-SPART(M+1,2SU2	21 59
1,K))/(SPART(M,2,K)-SPART(M+1,2,K)) SU2	21 60
KICK=15 SU2	21 61
CALL DVCHK(KQ) SU2	21 62
IF (KQ.EQ.1) GO TO 9980 SU2	21 63
IF (K.EQ.2) GO TO 15 SU2	21 64
IF (RP.GT.RADIUS) GO TO 20 SU2	21 65
IF (FF.LT001) GO TO 300 SU2	21 66

.

, <del>*</del> -₁

-

214

50 10

.

5

· 1
	GD TO 20	SU21	67
15	IF (FF.GT001) GO TO 400	SU21	68
20	CONTINUE	SU21	69
	IF (IRARF.EQ.1) GO TO 100	SU21	70
	M=P[CK2(ZP,RP,3)]	SU21	71
	FF=RP-RARF2(M+1,2)-(RARF2(M,2)-RARF2(M+1,2))*(ZP-RARF2(M+1,1))/	(RASU21	72
	1RF2(M,1)-RARF2(M+1,1))	SU21	73
	KICK=20	SU21	74
	CALL DVCHK(KQ)	SU21	75
	IF (KQ.EQ.1) GO TO 9980	SU21	76
	IF (FF.LT.0.) GO TO 100	SU21	77
	M=PICK2(ZP,RP,6)	SU21	78
	FF=RP-RPART(M+1+2)-(RPART(M+2)-RPART(M+1+2))*(ZP-RPART(M+1+1))/	(RPSU21	79
	1ART(M,1)-RPART(M+1,1)	SU21	80
	KICK=100	SU21	81
	CALL DVCHK(KQ)	SU21	62
	IF (KQ.EQ.1) GO TO 9980	SU21	83
	IF (FF.LT.0.) GO TO 500	SU21	84
100	TEST=1	SU21	85
•	TEST=TEST+.2	SU21	86
	RETURN	SU21	- 87
200	TEST=2	SU21	88
	TEST=TEST+.2	SU21	89
	RETURN	SU21	90
300	TEST=3	SU21	91
	TEST=TEST+.2	SU21	92
	RETURN	SU21	93
400	TEST=4	SU21	-94
	TEST=TEST+.2	SU21	95
	RETURN	SU21	96
500	TEST=5	SU21	97
	TEST=TEST+.2	SU21	- 98
	RETURN	SU21	- 99
9980	WRITE (3,9985) KICK	SU21	100
9985	FORMAT (32HODIVIDE CHECK NEAR STATEMENT NO., 15, 14H IN SUBR. TES	ST/1SU21	101
	141)	SU21	102

.

215

	RETURN	SU21	103
	END	SU21	104
	SUBROUTINE FGOF5(Z5,R5,SS,QQ)	SU22	1
С		SU22	2
C	COMPUTES S5+Q5 FOR INTERIOR REGION	SU22	3
С	ITERATION FOR 25+R5	SU22	- 4
C		SU22	5
	COMMON CASEID(14), ITS1, ITS2, ITS3, ITS4, ITI1, ITI2, ITI3, ITI4, EPS1,	EPSSU22	6
	12, EPS3, EPS4, EPS5, EPS6, EPI1, EPI2, EPI3, EPI4, EPI5, EPI6, EPI7, VP, AR,	LENSU22	7
	1GTH,APR,BPR,BIGAPR,BIGBPR,ESTAR,ALPHA,BETA,RHOSTR,EPRS,RHOS	SU22	8
	COMMON XMESH(20,20,6),XMESH2(20,20,6),Z(20),R(20),SURF(15,8),SU	RF2SU22	9
	1(15,8),TAB(15,14,2),TAB2(15,14,2),SPART(15,2,2),RARF(15,11),RAR	F2(SU22	10
	115,4},RPART(15,2)	SU22	11
C		SU22	12
С	·	SU22	13
	COMMON Z0,R0,P0,U0,V0,L0,M0,RH00,E0,A0,UBAR0,VBAR0	SU22	14
С		SU22	15
	COMMON NP,NT,NR,NI,NDEL,ISUB	SU22	16
C		SU22	17
	COMMON ZMIN, ZMAX, RMIN, RMAX, RADIUS, GZ, GR, DELTA, H	SU22	18
	COMMON DIRCOS	SU22	19
	COMMON TIME	SU22	20
	COMMON IRARF	SU22	21
	COMMON KSTOP	SU22	22
	COMMON TPSI	SU22	23
	COMMON KKK	SU22	24
	REAL LO.MG.LENGTH.MU.KO	SU22	25
С		SU22	26
-	DIMENSION ANS(6)	SU22	27
С		SU22	28
-	CALL DBLTRP[Z5+R5+ANS]	SU22	29
	U5=ANS(2)	SU22	30
	V5=ANS(3)	SU22	31
	SS=25+20+H*V5	SU22	32
	QQ=R5~R0+H*U5	SU22	33
	RETURN	SU22	34

С С С С

С С

С

214

END	SU22	35	
SUBROUTINE ITRP	SU23	1	
COMMON CASEID(14), ITS1, ITS2, ITS3, ITS4, IT11, IT12, IT13, IT14	+, EPS1, EPSSU23	2	
12, EP\$3, EP\$4, EP\$5, EP\$6, EP11, EP12, EP13, EP14, EP15, EP16, EP17,	VP, AR, LENSU23	3	
IGTH, APR, BPR, BIGAPR, BIGBPR, ESTAR, ALPHA, BETA, RHOSTR, EPRS, RH	HOS SU23	4	
COMMON XME SH(20,20,6), XMESH2(20,20,6), Z(20), R(20), SURF(1)	5,8),SURF2SU23	5	
1(15,8),TAB(15,14,2),TAB2(15,14,2),SPART(15,2,2),RARF(15,1	L1),RARF2[SU23	6	
115,4),RPART(15,2)	SU23	7	
C	SU23	8	-
C	SU <b>23</b>	9	
COMMON ZO,RO,PO,UO,VO,LO,MO,RHOO,EO,AO,UBARO,VBARO	SU23	10	
C	SU2 3	11	
COMMON NP,NT,NR,NI,NDEL,ISUB	SU2 3	12	
C	SU23	13	
COMMON ZMIN,ZMAX,RMIN,RMAX,RADIUS,GZ,GR,DELTA,H	SU23	14	
COMMON DIRCOS	SU23	15	
COMMON TIME	SU23	16	
COMMON IRARF	SU23	17	
COMMON KSTOP	SU23	18	
COMMON TPSI	SU2 3	19	
COMMON KKK	SU23	20	
C	SU23	21	
C	SU23	22	
REAL LO,MO,LENGTH,MU,KO	SU23	23	
C	SU23	24	
C INTERPOLATION SCHEME FOR POINTS BETWEEN PARTICLE CURVES	SU23	25	
C AND DISCONTINUITIES	SU23	26	
C	SU23	27	
EPS=.0000001	SU23	28	
K0D1=0	SU23	29	
K0D2=0	SU23	30	
00 1000 J=1,20	SU23	31	
DO 1000 I=1,20	SU23	32	
M=TEST(2(I),R(J))	SU23	33	
IF (M.NE.5) GO TO 906	SU23	34	
IF (IRARF.EQ.1) GO TO 906	SU23	35	

.

•

- 217

	NR 1 = NR - 1	SU23	36
	DO 907 JJ=1+NR1	SU23	37
	IF (RARF2(JJ,1).LT.Z(I).AND.RARF2(JJ+1,1).GT.Z(1)) GD TO 908	SU23	38
907	CONTINUE	5023	39
908	CONTINUE	SU23	40
	FF=R(J)-RARF2(JJ+1,2)+(RARF2(JJ,2)-RARF2(JJ+1,2))+(2(1)-RARF2(JJ+1))	SU23	41
	1,1))/(RARF2(JJ,1)-RARF2(JJ+1,1))	SU23	42
	LF (FF.LT.0.) GO TO 1000	SU23	43
906	CONTINUE	SU23	44
	IF (M.EQ.3.AND.Z(1).LT.EPS.AND.ABS(R(J)-RADIUS).LT.EPS) GD TO 1000	SU23	45
	IF (M.LT.3) GD TO 8051	SU23	46
	WRITE (3,8050)	SU23	47
8050	FORMAT (30HOINTERPOLATION SCHEME EMPLOYED)	SU23	48
614	FORMAT (1X5HZO =+E15.8+4X5HRO =+E15.8)	SU23	49
	20=2(1)	SU23	50
	RO=R(J)	SU23	51
	WRITE (3,614) ZO,RO	SU23	52
	WRITE (3,8888) M	SU23	53
8888	FORMAT (1X4HM =,14)	SU23	54
8051	CONTINUE	SU23	55
	GO TO (1000,1000,1001,1010,1100),M	SU23	56
1001	IF (IRARF.E0.1) GO TO 1003	SU23	57
	M = P[CK2(Z(I),R(J),3)]	SU23	58
	FF=R(J)-RARF2(M+1,2)+(RARF2(M,2)-RARF2(M+1,2))*(Z(I)-RARF2(M+1,1))	SU23	59
	1/(RARF2(M+1)-RARF2(M+1+1))	SU23	60
	[F (FF.GT.0.) GO TO 1003	SU23	61
	DO 8002 K=1,6	SU23	62
	L=K+2	SU23	63
8002	XMESH2(I,J,K)=RARF(I,L)	SU23	64
	GO TO 1000	SU23	65
1003	L=[+]	SU23	66
	N=TEST(Z(L),R(J))	SU23	67
	GD TO (1004,1007,1030,1030,1050),N	SU23	68
1004	M = PICK2(Z(I), R(J), 1)	SU23	69
	DD 1006 K=1+8	SU23	70
	ANS=TAB2(M,K,1)+(TAB2(M+1,K,1)-TAB2(M,K,1))+(R(J)-TAB2(M,2,1))/(T	ASU23	71

	1B2(M+1,2,1)-TAB2(M,2,1))	SU23	72
	IF (K.NE.1) GO TO 8005	SU23	73
	ANSI=ANS	SU23	74
	GO TO 1006	SU23	75
8005	CONTINUE	SU23	76
	IF (K.EQ.2) GO TO 1006	SU23	77
	KX=K-2	SU23	78
	IF (ABS(R(J)-RADIUS).GT.EPS) GO TO 9024	SU23	79
	IF (K.GT.5.OR.K.LT.4) GO TO 9024	SU23	80
	ANS=TAB2(M+1,K,1)	SU23	81
9024	CONTINUE	SU23	82
	XMESH2(I,J,KX)=ANS+(XMESH2(L,J,KX)-ANS)*(Z(I)-ANS1)/(Z(L)-ANS1)	SU23	83
	IF (ABS(R(J)-RADIUS).GT.EPS) GO TO 1006	SU23	84
	XMESH2(1,J,1)=0.	SU23	85
	XMESH2(I+J+4)=RHOSTR	SU23	86
	XMESH2(1,J,5)=0.	SU23	87
	XMESH2(1,J,6)=SQRT(BIGAPR/RHOSTR)	SU23	88
1006	CONTINUE	SU23	89
	GO TO 1000	SU23	90
1007	MM=PICK2(Z(I),R(J),2)	SU23	91
	M=PICK2(Z(I),R(J),1)	SU23	92
	DO 1009 K=1,8	SU23	93
	ANS=TAB2(M,K,1)+(TAB2(M+1,K,1)-TAB2(M,K,1))*(R(J)-TAB2(M,2,1))/(	TASU23	94
	1B2(M+1,2,1)-TAB2(M,2,1))	SU23	95
	ANSW=TAB2(MM,K,2)+(TAB2(MM+1,K,2)-TAB2(MM,K,2))+(R(J)-TAB2(MM,2,	215023	96
	1)/(TAB2(MM+1+2+2)-TAB2(MM+2+1))	SU23	97
	IF (K.NE.1) GD TO 1008	SU23	98
	ANSI=ANS	SU2 3	<b>99</b>
	AN SZ=AN SW	SU23	100
	GO TO 1009	SU23	101
1008	CONTINUE	SU23	102
	IF (K.EQ.2) GD TO 1009	SU23	103
	KX=K-2	SU23	104
	XMESH2(I+J+KX)=ANS+(ANSW-ANS)*(Z(I)-ANS1)/(ANS2-ANS1)	SU23	105
1009	CONTINUE	SU23	106
	GD TO 1000	SU23	107

.

r a

219

<pre>M=PICK2[Z[1],R[J],3] SU23 10 FF=R(J)-RARF2(M+1,2)+(RARF2(M,2)-RARF2(M+1,2))*(Z[1)-RARF2(M+1,1)}SU23 11 1/(RARF2(M+1)-RARF2(M+1,1)) IF (FF,GT.0,) GO TO 1013 SU23 11 DO 1012 K=1,6 SU23 11 L=K+2 SU23 11 GO TO 1000 SU23 11 IF (ABS(Z[1]),LT.EPS) GO TO 1017 SU23 11 IF (ABS(Z[1]),LT.EPS) GO TO 1017 SU23 11 GO TO 1004,1017,1030,1017,1051)+N SU23 11 GO TO 1014,1017,1030,1017,1051)+N SU23 12 1014 M=PICK2(Z[1],R(J),2) SU23 12 IB2(M+1,2,2)-TAB2(M+1,K,2)-TAB2(M,K,2])*(R(J)-TAB2(M,2,2))/(TASU23 12 IB2(M+1,2,2)-TAB2(M,2,2)) SU23 12 GO TO 1016 K=1.8 SU23 12 IF (K.NE.1) GO TO 1015 SU23 12 IB2(M+1,2,2)-TAB2(M,2,2)) SU23 12 IF (K.NE.1) GO TO 1015 SU23 12 GO TO 1016 SU23 12 IF (K.NE.1) GO TO 1015 SU23 12 GO TO 1016 SU23 12 IF (K.NE.1) GO TO 1015 SU23 12 IB2(M+1,2,2)-TAB2(M,2,2)) SU23 12 IB2(M+1,2,2)-TAB2(M,2,2)) SU23 12 IB2(M+1,2,2)-TAB2(M,2,2)) SU23 12 IF (K.EQ.2) GO TO 1016 SU23 13 GO TO 1000 SU23 13 GO TO 1000 SU23 13 IO17 L=J-1 SU23 I3 GO TO 1000 SU23 13 IO17 L=J-1 SU23 I3 GO TO 1000 SU23 I3 IO17 L=J-1 SU23 I3 IB2(M+1,+,2)-TAB2(M+1,K,2)-TAB2(M,K,2))*(Z([]-TAB2(M,1,2])/(TASU23 I3 IB2(M+1,+,2)-TAB2(M+1,K,2)-TAB2(M,K,2))*(Z([]-TAB2(M,1,2])/(TASU23 I3 IB2(M+1,+,2)-TAB2(M+1,K,2)-TAB2(M,K,2))*(Z([]-TAB2(M,1,2])/(TASU23 I3 IB2(M+1,+,2)-TAB2(M,1,2)) SU23 I3 IB2(M+1,+,2)-TAB2(M,1,2) SU23 I3 IB2(M+1,+,2)-TAB2(M,1,2)</pre>	1010	IF (IRARF.EQ.1) GO TO 1013	SU23	108
<pre>FF=R(J)=RARF2(M+1,2)+(RARF2(M,2)=RARF2(M+1,2))*(Z(I)=RARF2(M+1,1))SU23 11 1/(RARF2(M,1)=RARF2(M+1,1)) IF (FF.GT.0.] GO TO 1013 00 1012 K=1.6 L=K+2 1012 XHE SH2(I,J,K)=RARF(1,L) GO TO 1000 SU23 11 1013 L=I-1 IF (ABS(Z(I))=LT_EPS) GO TO 1017 N=TEST(Z(L),R(J)) GO TO (1014,1017,1030,1017,1051)*N SU23 12 1014 M=PICK2(Z(I),R(J),2) CO 1016 K=1.6 ANS=TAB2(M,K,2)+(TAB2(M+1,K,2)=TAB2(M,K,2))*(R(J)=TAB2(M,2,2))/(TASU23 12 IF (K,NE-1) GO TO 1015 SU23 12 ANS=TAB2(M,K,2)+(TAB2(M+1,K,2)=TAB2(M,K,2))*(R(J)=TAB2(M,2,2))/(TASU23 12 CO 1016 CONTINUE IF (K,NE-1) GO TO 1015 SU23 12 ANS1=ANS GO TO 1000 SU23 12 ANS=TAB2(I,J,KX)=ANS+(XMESH2(L,J,KX)=ANS)*(Z(I)=ANS1)/(Z(L)=ANS1) SU23 13 GO TO 1000 SU23 13 GO TO 1000 SU23 13 GO TO 1000 SU23 13 GO TO 1000 SU23 13 ANS=TAB2(I,J,KX)=ANS+(XMESH2(L,J,KX)=ANS)*(Z(I)=ANS1)/(Z(L)=ANS1) SU23 13 GO TO 1000 SU23 14 H GO TO 1026 SU23 14 H GO TO 1026 SU23 14 SU23 14 S</pre>		M=PICK2(Z(1),R(J),3)	SU23	109
<pre>1/(RARF2(M,1)-RARF2(M+1,1)) IF (FF.GT.0.) GO TO 1013 USU23 11 IF (FF.GT.0.) GO TO 1013 USU23 11 L=K+2 USU23 11 IO12 XMESH2(I,J,K)=RARF(1,L) USU23 11 IO13 L=1-1 IF (ABS(7(1)).LT.EPS) GO TO 1017 VSU23 11 IF (ABS(7(1)).LT.EPS) GO TO 1017 VSU23 11 GO TO (1014,1017,1030,1017,1051).N USU23 12 IO14 M=PICK2(7(1),R(J).2) UO 1016 K=1.6 USU23 12 IB2(M+1,2,2)-TAB2(M,2,2)) IF (K.NE.1) GO TO 1015 SU23 12 IB2(M+1,2,2)-TAB2(M,2,2)) IF (K.NE.1) GO TO 1015 SU23 12 IO15 CONTINUE USU23 I2 IO15 CONTINUE SU23 I2 IO16 CONTINUE USU23 I2 IO16 CONTINUE SU23 I2 IO17 L=J-1 SU23 I2 IO16 CONTINUE SU23 I2 IO17 L=J-1 SU23 I2 IO17 L=J-1 SU23 I2 IO16 CONTINUE SU23 I2 IO17 L=J-1 SU23 I2 IO17 L=J-1 SU23 I3 IO17 L=J-1 S</pre>		FF=R(J)+RARF2(M+1,2)+(RARF2(M,2)-RARF2(M+1,2))*(Z(1)-RARF2(M+1,1)	15023	110
<pre>IF (FF.GT.0.) GO TO 1013 SU23 11 DO 1012 K=1,6 SU23 11 L=K+2 GO TO 1000 SU23 11 GO TO 1000 SU23 11 If (ABS(7(1)).LT.EPS) GO TO 1017 SU23 11 N=TEST(2(L),R(J) SO TO 1017 SU23 11 GO TO (1014,1017,1030,1017,1051),N SU23 11 GO TO (1014,1017,1030,1017,1051),N SU23 12 DO 1016 K=1,8 SU23 12 ANS=TAB2(M,K,2)+(TAB2(M+1,K,2)-TAB2(M,K,2))*(R(J)-TAB2(M,2,2))/(TASU23 12 IB2(M+1,2,2)-TAB2(M,2,2)) SU23 12 IF (K.NE.1) GO TO 1015 SU23 12 IF (K.NE.1) GO TO 1015 SU23 12 IF (K.EQ.2) GO TO 1016 SU23 12 IF (K.EQ.2) IF (XMESH2(L,J,KX)-ANS)*(Z(1)-ANS1)/(Z(L)-ANS1) SU23 13 GO TO 1000 SU23 13 IO17 L=J-1 SU23 13 N=TEST(Z(1),R(L)) SU23 13 IO17 L=J-1 SU23 13 OO 1026 K=2,8 SU23 13 IO24 M=FICK2(Z(1),R(L)) SU23 13 IB2(M+1,L)-1-TAB2(M+1,K,2)-TAB2(M,K,2))*(Z(1)-TAB2(M,1,2))/(TASU23 13 IB2(M+1,L)-1-TAB2(M+1,K,2)-TAB2(M,K,2))*(Z(1)-TAB2(M,1,2))/(TASU23 13 IB2(M+1,L)-1-TAB2(M+1,K,2)-TAB2(M,K,2))*(Z(1)-TAB2(M,1,2))/(TASU23 13 IB2(M+1,L)-1-TAB2(M+1,K,2)-TAB2(M,K,2))*(Z(1)-TAB2(M,1,2))/(TASU23 13 IB2(M+1,L)-1-TAB2(M+1,K,2)-TAB2(M,K,2))*(Z(1)-TAB2(M,1,2))/(TASU23 13 IB2(M+1,L)-1-TAB2(M,1,2)) SU23 14 ANS=TAB2(M,K,2)+(TAB2(M+1,K,2)-TAB2(M,K,2))*(Z(1)-TAB2(M,1,2))/(TASU23 14 ANS]=TABS SU23 14</pre>		1/(RARF2(M,1)-RARF2(M+1,1))	SU23	111
D0 1012 K=1,6 L=K+2 SU23 11 G0 T0 1000 SU23 11 I012 XHESH2(1,J,K)=RARF(1,L) G0 T0 1000 SU23 11 IF (ABS(7(1)).LT.EPS) G0 T0 1017 N=TEST(2(L),R(J)) G0 T0 (1014,1017,1030,1017,1051),N SU23 12 O0 1016 K=1,8 ANS=TAB2(M,K,2)+(TAB2(M+1,K,2)-TAB2(M,K,2))*(R(J)-TAB2(M,2,2))/(TASU23 12 B2(M+1,2,2)-TAB2(M,2,2)) IF (K.NE.1) G0 T0 1015 SU23 12 ANS1=ANS G0 T0 1016 SU23 12 IF (K.EQ.2) G0 T0 1016 SU23 12 IF (K.EQ.2) G0 T0 1016 SU23 12 IF (K.EQ.2) G0 T0 1016 SU23 12 SU23 12 ANS1=ANS+(XMESH2(L,J,KX)-ANS)*(Z(1)-ANS1)/(Z(L)-ANS1) SU23 12 SU23 13 G0 T0 1000 SU23 13 I016 CONTINUE SU23 13 G0 T0 1000 SU23 13 G0 T0 1000 SU23 13 I017 L=J-1 SU23 14 ANS1=ANS SU23 1		IF (FF.GT.0.) GO TO 1013	SU23	112
L=K+2 L=K+2 SU23 11 1012 XMESM2(I,J,K)=RARF(1,L) G0 T0 1000 SU23 11 1013 L=1-1 IF (ABS(2(I)).LT.EPS) G0 T0 1017 SU23 11 N=TEST(2(L),R(J)) G0 T0 (1014,1017,1030,1017,1051).N SU23 12 1014 M=PICK2(2(I),R(J),2) D0 1016 K=1,8 ANST=TAB2(M,K,2)+(TAB2(M+1,K,2)-TAB2(M,K,21)*(R(J)-TAB2(M,2,2))/(TASU23 12 IB2(M+1,2,2)-TAB2(M,2,2)) IF (K.NE.1) G0 T0 1015 SU23 12 ANS1=ANS G0 T0 1016 SU23 12 IF (K.EQ.2) G0 T0 1016 SU23 13 1017 L=J-1 SU23 13 N=TEST(Z(I),R(L)) G0 T0 1000 SU23 13 1017 L=J-1 SU23 13 N=TEST(Z(I),R(L)) G0 T0 1000,1030,1030,1051).N SU23 13 D0 1026 K=2,8 ANS=TAB2(M,1,2)+(TAB2(M+1,K,2)-TAB2(M,K,2))*(Z(I)-TAB2(M,1,2))/(TASU23 13 B2(M+1,2)-TAB2(M+1,K,2)-TAB2(M,K,2))*(Z(I)-TAB2(M,1,2))/(TASU23 13 B2(M+1,2)-TAB2(M+1,K,2)-TAB2(M,K,2))*(Z(I)-TAB2(M,1,2))/(TASU23 13 B2(M+1,2)-TAB2(M+1,K,2)-TAB2(M,K,2))*(Z(I)-TAB2(M,1,2))/(TASU23 13 B2(M+1,2)-TAB2(M,1,2)) SU23 14 ANS=TAB2(M,K,2)+(TAB2(M+1,K,2)-TAB2(M,K,2))*(Z(I)-TAB2(M,1,2))/(TASU23 14 ANS=TAB2(M,K,2)+(TAB2(M+1,K,2)-TAB2(M,K,2))*(Z(I)-TAB2(M,1,2))/(TASU23 14 ANSI=ANS G0 T0 1026 SU23 14 ANSI=ANS SU23 14		DO 1012 K=1,6	SU23	113
1012 XME SH2{[,J,K)=RARF[1,L] SU23 11 G0 T0 1000 SU23 11 IF (ABS(7(1)).LT.EPS) G0 T0 1017 SU23 11 N=TEST(2(L),R(J)) SU23 11 G0 T0 (1014,1017,1030,1017,1051),N SU23 12 1014 M=PICK2(2(I),R(J),2) SU23 12 1016 K=1,8 SU23 12 ANS=TAB2(M,K,2)+(TAB2(M+1,K,2)-TAB2(M,K,21)+(R{J}-TAB2(M,2,2))/(TASU23 12 IB2(M+1,2,2)-TAB2(M,2,2)) SU23 12 G0 T0 1016 SU23 12 G0 T0 1016 SU23 12 1015 CONTINUE SU23 12 1015 CONTINUE SU23 12 1016 CONTINUE SU23 12 1016 CONTINUE SU23 12 1016 CONTINUE SU23 12 1017 L=J-1 SU23 13 1017 L=J-1 SU23 13 1017 L=J-1 SU23 13 1024 M=PICK2(Z(1),R(L)) SU23 10 1024 M=PICK2(Z(1),R(L), SU23 10) SU23 13 1024 M=PICK2(Z(1),R(L), SU23 10) SU23 13 1025 SU23 12 IB2(M+1,2)-TAB2(M+1,2) SU23 13 IB2(M+1,2)-TAB2(M+1,2) SU23 13 IB2(M+1,2)-TAB2(M+1,2) SU23 13 IB2(M+1,2)-TAB2(M+1,2) SU23 13 IB2(M+1,2)-TAB2(M+1,2) SU23 14 ANS=TAB2(M,K,2)+(TAB2(M+1,2))		L=K+2	SU23	114
G0 T0 1000 SU23 11 1013 L=I-1 IF (ABS(Z(I)).LT.EPS) G0 T0 1017 N=TEST(Z(L),R(J) G0 T0 (1014,1017,1030,1017,1051).N SU23 12 1014 M=PICK2(Z(I),R(J),2) O0 1016 K=1.8 ANS=TAB2(M,K,2)+(TAB2(M+1,K,2)-TAB2(M,K,2))*(R(J)-TAB2(M,2,2))/(TASU23 12 IB2(M+1,2,2)-TAB2(M,2,2)) IF (K.NE.1) G0 T0 1015 ANS1=ANS G0 T0 1016 SU23 12 1015 CONTINUE G0 T0 1016 SU23 12 SU23 12 IF (K.EQ.2) G0 T0 1016 KX=K-2 SU23 12 SU23 12 SU23 12 IO15 CONTINUE G0 T0 1000 SU23 12 SU23 12 IO16 CONTINUE G0 T0 1000 SU23 13 IO17 L=J-1 N=TEST(Z(I),R(L)) G0 T0 (1024,1030,1030,1051).N SU23 13 IO24 M=PICK2(Z(I),R(J),2) SU23 13 IO26 K=2,8 ANS=TAB2(M,K,2)+(TAB2(M+1,K,2)-TAB2(M,K,2))*(Z(I)-TAB2(M,1,2))/(TASU23 13 IO26 K=2,8 ANS=TAB2(M,K,2)+(TAB2(M+1,K,2)-TAB2(M,K,2))*(Z(I)-TAB2(M,1,2))/(TASU23 13 IO27 M=PICK2(Z(I),R(J),2) SU23 13 IO26 K=2,8 ANS=TAB2(M,K,2)+(TAB2(M+1,K,2)-TAB2(M,K,2))*(Z(I)-TAB2(M,1,2))/(TASU23 13 IO23 IA ANS=TAB2(M,K,2)+(TAB2(M+1,K,2)-TAB2(M,K,2))*(Z(I)-TAB2(M,1,2))/(TASU23 13 IO23 IA ANS=TAB2(M,K,2)+(TAB2(M+1,K,2)-TAB2(M,K,2))*(Z(I)-TAB2(M,1,2))/(TASU23 13 IO23 IA ANS=TAB2(M,K,2)+(TAB2(M+1,K,2)-TAB2(M,K,2))*(Z(I)-TAB2(M,1,2))/(TASU23 13 IO23 IA ANS=TAB2(M,K,2)+(TAB2(M+1,K,2)-TAB2(M,K,2))*(Z(I)-TAB2(M,1,2))/(TASU23 13 IB2(M+1,1,2)-TAB2(M,1,2)) SU23 IA ANS=TAB2(M,K,2)+(TAB2(M+1,K,2)-TAB2(M,K,2))*(Z(I)-TAB2(M,1,2))/(TASU23 13 IB2(M+1,1,2)-TAB2(M,1,2)) SU23 IA ANS=TAB2(M,K,2)+(TAB2(M+1,K,2)-TAB2(M,K,2))*(Z(I)-TAB2(M,1,2))/(TASU23 IA ANS=TAB2(M,K,2)+(TAB2(M+1,K,2))/(TASU23 IA ANS=TAB2(M,K,2)+(TAB2(M+1,K,2)-TAB2(M,K,2))*(Z(I)-TAB2(M,1,2))/(TASU23 IA ANS=TAB2(M,K,2)+(TAB2(M+1,K,2))/(TASU23 IA ANS=TAB2(M,K,2)+(TAB2(M+1,K,2))/(TASU23 IA ANS=TAB2(M,K,2)+(TAB2(M+1,K,2))/(TASU23 IA ANS=TAB2(M,K,2)+(TAB2(M+1,K,2))/(TASU23 IA ANS=TAB2(M,K,2)+(TAB2(M+1,K,2))/(TASU23 IA ANS=TAB2(M,K,2)+(TAB2(M+1,K,2))/(TASU23 IA ANS=TAB2(M,K,2)+(TAB2(M+1,K,2))/(TASU23 IA ANS=TAB2(M,K,2)/(TASU23 IA ANS=TAB2(M,K,2)/(TASU23 IA ANS=TAB2(M,K,2)/(TASU23 IA ANS=TAB2(M,K,2)/(TASU23 IA ANS=TAB2(M,K,2)/(TASU23 IA ANS	1012	XMESH2(I+J+K)=RARF(1+L)	5023	115
1013 L=1-1 SU23 11 IF (ABS(Z(I)).LT.EPS) GO TO 1017 SU23 11 N=TEST(Z(L),R(J)) GO TO (1014,1017,1030,1017,1051).N SU23 12 1014 M=PICK2(Z(I),R(J),2) SU23 12 DO 1016 K=1.8 SU23 12 ANS=TAB2(M,K,2)+(TAB2(M+1,K,2)-TAB2(M,K,2))*(R(J)-TAB2(M,2,2))/(TASU23 12 IB2(M+1,2,2)-TAB2(M,2,2)) SU23 12 GO TO 1016 SU23 12 GO TO 1016 SU23 12 IF (K.NE.1) GO TO 1015 SU23 12 IF (K.NE.1) GO TO 1015 SU23 12 IO15 CONTINUE SU23 12 IF (K.EQ.2) GO TO 1016 SU23 12 SU23 13 1016 CONTINUE SU23 13 1017 L=J-1 SU23 13 1017 L=J-1 SU23 13 1024 M=PICK2(Z(I),R(L)) SU23 13 1024 M=PICK2(Z(I),R(L),2) SU23 13 1025 SU23 14 ANS=TAB2(M+1,2) SU23 14 ANS=TAB2(M+1,2) SU23 14 ANS=TAB2(M+1,2) SU23 14 ANSI=ANS SU23 14 ANSI=A		GO TO 1000	SU23	116
IF (ABS(Z(I)).LT.EPS) GO TO 1017 N=TEST(Z(L),R(J)) GO TO (1014,1017,1030,1017,1051).N SU23 11 GO TO (1014,1017,1030,1017,1051).N SU23 12 DO 1016 K=1.8 ANS=TAB2(M,K,2)+(TAB2(M+1,K,2)-TAB2(M,K,2))*(R(J)-TAB2(M,2,2))/(TASU23 12 IB2(M+1,2,2)-TAB2(M,2,2)) IF (K.NE.1) GO TO 1015 ANS1=ANS GO TO 1016 SU23 12 IF (K.EQ.2) GO TO 1016 KX=K-2 SU23 12 IF (K.EQ.2) GO TO 1016 SU23 12 IF (K.EQ.2) GO TO 1016 SU23 12 SU23 12 IF (K.EQ.2) GO TO 1016 SU23 12 SU23 12 IF (K.EQ.2) GO TO 1016 SU23 13 GO TO 1000 SU23 13 IO16 CONTINUE SU23 13 GO TO 1000 SU23 13 IO17 L=J-1 N=TEST(Z(I),R(L)) GO TO (1024,1030,1030,1051),N SU23 13 IO24 M=PICK2(Z(I),R(J),2) ANS=TAB2(M,K,2)+(TAB2(M+1,K,2)-TAB2(M,K,2))*(Z(I)-TAB2(M,1,21)/(TASU23 13) IO26 K=2.8 ANS=TAB2(M,K,2)+(TAB2(M+1,K,2)-TAB2(M,K,2))*(Z(I)-TAB2(M,1,21)/(TASU23 13) IB2(M+1,1,2)-TAB2(M,1,2)) SU23 14 ANS=TAB2(M,K,2) GO TO 1025 SU23 14 ANS=TAB2(M,K,2) GO TO 1025	1013	L=1-1	SU23	117
N=TEST(Z(L),R(J)) GO TO (1014,1017,1030,1017,1051),N SU23 12 1014 M=PICK2(Z(I),R(J),2) OD 1016 K=1,8 ANS=TAB2(M,K,2)+(TAB2(M+1,K,2)-TAB2(M,K,2))*(R(J)-TAB2(M,2,2))/(TASU23 12 1B2(M+1,2,2)-TAB2(M,2,2)) IF (K.NE.1) GO TO 1015 ANS1=ANS GO TO 1016 SU23 12 1015 CONTINUE IF (K.EQ.2) GO TO 1016 SU23 12 IF (K.EQ.2) GO TO 1016 SU23 12 IF (K.EQ.2) GO TO 1016 SU23 12 IF (K.EQ.2) GO TO 1016 SU23 12 ITF (K.EQ.2) GO TO 1016 SU23 13 1016 CONTINUE GO TO 1000 SU23 13 1016 CONTINUE SU23 13 1017 L=J-1 N=TEST(Z(1),R(L)) GO TO (1024,1030,1030,1051),N SU23 13 1024 M=PICK2(Z(I),R(J),2) SU23 13 ANS=TAB2(M,K,2)+(TAB2(M+1,K,2)-TAB2(M,K,2))*(Z(I)-TAB2(M,1,2))/(TASU23 13 1024 M=PICK2(Z(I),R(J),2) SU23 13 ANS=TAB2(M,K,2)+(TAB2(M+1,K,2)-TAB2(M,K,2))*(Z(I)-TAB2(M,1,2))/(TASU23 13 1024 ASI=ANS SU23 13 SU23 14 ANS=TAB2(M,K,2)+(TAB2(M+1,K,2)-TAB2(M,K,2))*(Z(I)-TAB2(M,1,2))/(TASU23 13 SU23 14 ANS=TAB2(M,K,2)+(TAB2(M+1,K,2)-TAB2(M,K,2))*(Z(I)-TAB2(M,1,2))/(TASU23 13 SU23 14 ANS=TAB2(M,K,2)+(TASU2M,1,2)) SU23 14 ANSI=ANS SU23 14 ANSI=ANS SU23 14		IF (ABS(Z(I)).LT.EPS) GO TO 1017	SU23	118
G0 T0 (1014,1017,1030,1017,1051),N SU23 12 1014 M=PICK2(Z(I),R(J),2) SU23 12 D0 1016 K=1,8 SU23 12 ANS=TAB2(M,K,2)+(TAB2(M+1,K,2)-TAB2(M,K,2))*(R(J)-TAB2(M,2,2))/(TASU23 12 1B2(M+1,2,2)-TAB2(M,2,2)) SU23 12 IF (K.NE.1) G0 T0 1015 SU23 12 G0 T0 1016 SU23 12 IF (K.NE.1) G0 T0 1015 SU23 12 1015 CONTINUE SU23 12 IF (K.EQ.2) G0 T0 1016 SU23 12 IF (K.EQ.2) G0 T0 1016 SU23 12 XMESH2(I,J,KX)=ANS+(XMESH2(L,J,KX)-ANS)*(Z(I)-ANS1)/(Z(L)-ANS1) SU23 13 1016 CONTINUE SU23 13 1017 L=J-1 SU23 13 1017 L=J-1 SU23 13 1017 L=J-1 SU23 13 1017 L=J-1 SU23 13 1024 M=PICK2(Z(I),R(L)) SU23 13 1024 M=PICK2(Z(I),R(L))+2) SU23 13 1024 M=PICK2(Z(I),R(L))+2) SU23 13 1024 M=PICK2(Z(I),R(L))+2) SU23 13 1024 M=PICK2(Z(I),R(L))+2) SU23 13 1025 M=CK2(Z(I),R(L))+2) SU23 13 1026 K=2,8 SU23 13 1026 K=2,8 SU23 14 ANS=TAB2(M,K,2)+(TAB2(M+1,K,2)-TAB2(M,K,2))*(Z(I)-TAB2(M,1,21)/(TAU23 14 IF (K.NE.2) G0 T0 1025 SU23 14 ANSI=ANS SU23 14 ANSI=ANSI SU23 14 ANSI=ANS SU23		N=TEST(Z(L),R(J))	SU23	119
1014 M=PICK2(Z(I),R(J),2) D0 1016 K=1,6 ANS=TAB2(M,K,2)+(TAB2(M+1,K,2)-TAB2(M,K,2))*(R(J)-TAB2(M,2,2))/(TASU23 12 1B2(M+1,2,2)-TAB2(M,2,2)) IF (K,NE-1) G0 T0 1015 ANS1=ANS G0 T0 1016 SU23 12 IF (K,EQ-2) G0 T0 1016 KX=K-2 SU23 12 IF (K,EQ-2) G0 T0 1016 SU23 12 SU23 12 IC CONTINUE G0 T0 1000 SU23 12 SU23 12 SU23 12 SU23 12 SU23 12 IC (I)-ANS1)/(Z(L)-ANS1) SU23 13 G0 T0 1000 SU23 13 G0 T0 1000 SU23 13 G0 T0 1024,1030,1030,1051),N SU23 13 D0 1026 K=2,8 ANS=TAB2(M,K,2)+(TAB2(M+1,K,2)-TAB2(M,K,2))*(Z(I)-TAB2(M,1,21)/(TASU23 13 SU23 14 IF (K,NE-2) G0 T0 1025 SU23 14 ANS1=ANS SU23 14 ANS1=ANS SU23 14 ANS1=ANS SU23 14 ANS1=ANS SU23 14 ANS1=ANS SU23 14 ANS1=ANS SU23 14 ANS1=ANS SU23 14 SU23 14		GO TO (1014-1017-1030-1017-1051)-N	SU23	120
D0       1016       K=1.8       SU23       12         ANS=TAB2(M,K,2)+(TAB2(M+1,K,2)-TAB2(M,K,2))*(R(J)-TAB2(M,2,2))/(TASU23       12         1B2(M+1,2,2)-TAB2(M,2,2))       SU23       12         IB2(M+1,2,2)-TAB2(M,2,2))       SU23       12         IB2(M+1,2,2)-TAB2(M,2,2))       SU23       12         IF       (K,NE.1)       GO TO       1015         ANS1=ANS       SU23       12         GO TO       1016       SU23       12         IF       (K.NE.1)       GO TO       1015       SU23       12         IF       (K.NE.1)       GO TO       1016       SU23       12         IF       (K.EQ.2)       GO TO       1016       SU23       12         IF       (K.EQ.2)       GO TO       1016       SU23       13         GO TO       1000       SU23       13       13       1016       CONTINUE       SU23       13         GO TO       1000       SU23       13       SU23       13         GO TO       1000,1030,1030,1051),N       SU23       13         IO24       M=PICK2(Z(I),R(L))       SU23       13         GO TO       1026       SU23       13	1014	M=PICK2(Z(I)+R(J)+2)	SU23	121
ANS=TAB2(M,K,2)+(TAB2(M+1,K,2)-TAB2(M,K,2))*(R(J)-TAB2(M,2,2))/(TASU23 12 1B2(M+1,2,2)-TAB2(M,2,2)) SU23 12 IF (K.NE.1) GO TO 1015 SU23 12 ANS1=ANS SU23 12 GO TO 1016 SU23 12 IF (K.EQ.2) GO TO 1016 SU23 12 IF (K.EQ.2) GO TO 1016 SU23 12 XMESH2(I,J,KX)=ANS+(XMESH2(L,J,KX)-ANS)*(Z(I)-ANS1)/(Z(L)-ANS1) SU23 13 1016 CONTINUE SU23 13 GO TO 1000 SU23 13 1017 L=J-1 SU23 13 N=TEST(Z(I),R(L)) SU23 13 1024 M=PICK2(Z(I),R(L),2) M=PICK2(Z(I),R(J),2) SU23 13 1026 K=2,8 SU23 13 ANS=TAB2(M,K,2)+(TAB2(M+1,K,2)-TAB2(M,K,2))*(Z(I)-TAB2(M,1,2))/(TASU23 13 1B2(M+1,1,2)-TAB2(M,1,2)) SU23 14 IF (K.NE.2) GO TO 1025 SU23 14 ANS1=ANS SU23 14 ANS1=ANS SU23 14 ANS1=ANS SU23 14 ANS1=ANS SU23 14		DO 1016 K=1.8	SU23	122
1B2(M+1,2,2)-TAB2(M,2,2))       SU23 12         IF (K.NE.1) GO TO 1015       SU23 12         GD TO 1016       SU23 12         IO15 CONTINUE       SU23 12         IF (K.EQ.2) GO TO 1016       SU23 12         XMESH2(I,J,KX)=ANS+(XMESH2(L,J,KX)-ANS)*(Z(I)-ANS1)/(Z(L)-ANS1)       SU23 13         SU23 13       SU23 13         GO TO 1000       SU23 13         1017 L=J-1       SU23 13         GO TO 1024,1030,1030,1030,1051),N       SU23 13         1024 M=PICK2(Z(I),R(L))       SU23 13         DO 1026 K=2,8       SU23 13         ANS=TAB2(M,K,2)+(TAB2(M+1,K,2)-TAB2(M,K,2))*(Z(I)-TAB2(M,1,2))/(TASU23 13)       SU23 14         IF (K.NE-2) GO TO 1025       SU23 14         ANSIEANS       SU23 14		ANS=TAB2(N,K,2)+(TAB2(N+1,K,2)-TAB2(M,K,2))*(R(J)-TAB2(M,2,2))/(T	ASU23	123
IF (K.NE.1) GO TO 1015 ANS1=ANS GO TO 1016 1015 CONTINUE IF (K.EQ.2) GO TO 1016 KX=K-2 XMESH2(I,J,KX)=ANS+(XMESH2(L,J,KX)-ANS)*(Z(I)-ANS1)/(Z(L)-ANS1) 1016 CONTINUE GO TO 1000 1017 L=J-1 N=TEST(Z(I),R(L)) GO TO (1024,1030,1030,1051),N 1024 M=PICK2(Z(I),R(L),Z) DO 1026 K=2,8 ANS=TAB2(M,K,2)+(TAB2(M+1,K,2)-TAB2(M,K,2))*(Z(I)-TAB2(M,1,21)/(TASU23 13)) 1025 ANS=TAB2(M,K,2)+(TAB2(M+1,K,2)-TAB2(M,K,2))*(Z(I)-TAB2(M,1,21)/(TASU23 13))) 1026 ANS1=ANS GO TO 1026 SU23 14 ANS1=ANS GO TO 1026 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23 S		182(M+1+2+2)-TA82(M+2+2))	SU23	124
ANS1=ANS GO TO 1016 SU23 12 IO15 CONTINUE IF (K.EQ.2) GO TO 1016 KX=K-2 XMESH2(I,J,KX)=ANS+(XMESH2(L,J,KX)-ANS)*(Z(I)-ANS1)/(Z(L)-ANS1)) SU23 13 SU23 13 IO16 CONTINUE GO TO 1000 SU23 13 IO17 L=J-1 N=TEST(Z(I),R(L)) GO TO (1024,1030,1030,1051),N SU23 13 GO TO (1024,1030,1030,1051),N SU23 13 IO24 M=PICK2(Z(I),R(J),2) DO 1026 K=2,8 ANS=TAB2(M,K,2)+(TAB2(M+1,K,2)-TAB2(M,K,2))*(Z(I)-TAB2(M,1,21)/(TASU23 13) IB2(M+1,1,2)-TAB2(M,1,2)) SU23 14 IF (K.NE.2) GO TO 1025 ANS1=ANS GO TO 1026 SU23 14 SU23 14		IF (K.NE.1) GO TO 1015	SU23	125
GO TO 1016 SU23 12 SU23 12 IF (K.EQ.2) GO TO 1016 KX=K-2 XMESH2(I,J,KX)=ANS+(XMESH2(L,J,KX)-ANS)*(Z(I)-ANS1)/(Z(L)-ANS1)) SU23 13 GO TO 1000 SU23 13 I017 L=J-1 N=TEST(Z(I),R(L)) GO TO (1024,1030,1030,1030,1051),N SU23 13 GO TO (1024,1030,1030,1030,1051),N SU23 13 SU23 14 ANS=TAB2(M,K,2)+(TAB2(M+1,K,2)-TAB2(M,K,2))*(Z(I)-TAB2(M,1,2))/(TASU23 13 SU23 14 IF (K.NE.2) GO TO 1025 SU23 14 ANS1=ANS GO TO 1026		ANSI=ANS	SU23	126
1015       CONTINUE       SU23       12         IF       (K.EQ.2)       GO       TO       1016       SU23       12         KX=K-2       SU23       13       SU23       13         SU2       TO       1016       SU23       13         GO       TO       1000       SU23       13         IO17       L=J-1       SU23       13         N=TEST(Z(I),R(L))       SU23       13         GO       TO       (1024,1030,1030,1030,1051),N       SU23       13         IO24       M=PICK2(Z(I),R(J),2)       SU23       13         OD       1026       K=2,8       SU23       13         IB2(M+1,1,2)-TAB2(M,K,2)-TAB2(M,K,2))*(Z(I)-TAB2(M,I,2))/(TASU23       13       182(M+1,1,2)-TAB2(M,1,2))       SU23       14         IF       (K.NE,2)       GO       TO       1025       SU23       14         ANS1=ANS       SU23       14       SU23       14         ANS1=ANS       SU23       14       SU23       14		GO TO 1016	SU23	127
IF (K.EQ.2) GO TO 1016 KX=K-2 XME SH2(I,J,KX)=ANS+(XME SH2(L,J,KX)-ANS)*(Z(I)-ANS1)/(Z(L)-ANS1) SU23 13 1016 CONTINUE GO TO 1000 1017 L=J-1 N=TEST(Z(I),R(L)) GO TO (1024,1030,1030,1051),N 1024 M=PICK2(Z(I),R(J),2) DO 1026 K=2,8 ANS=TAB2(M,K,2)+(TAB2(M+1,K,2)-TAB2(M,K,2))*(Z(I)-TAB2(M,1,21)/(TASU23 13 1B2(M+1,1,2)-TAB2(M,1,2)) IF (K.NE.2) GO TO 1025 SU23 14 ANS1=ANS GO TO 1026	1015	CONTINUE	SU23	128
KX=K-2       SU23 13         XME SH2(I, J, KX) = ANS+(XME SH2(L, J, KX) - ANS)*(Z(I) - ANS1)/(Z(L) - ANS1)       SU23 13         1016       CONTINUE       SU23 13         GO TO 1000       SU23 13         1017       L=J-1         N=TEST(Z(I),R(L))       SU23 13         GO TO (1024,1030,1030,1030,1051),N       SU23 13         1024       M=PICK2(Z(I),R(J),2)       SU23 13         0D 1026       K=2,8       SU23 13         ANS=TAB2(M,K,2)+(TAB2(M+1,K,2)-TAB2(M,K,2))*(Z(I)-TAB2(M,1,2))/(TASU23 13)       SU23 14         IF (K,NE,2)       GO TO 1025       SU23 14         ANS1=ANS       SU23 14       SU23 14         ANS1=ANS       SU23 14       SU23 14		IF (K.EQ.2) GO TO 1016	SU23	129
XME SH2(I, J, KX) = ANS+(XME SH2(L, J, KX) - ANS)*(Z(I) - ANS1)/(Z(L) - ANS1) SU23 13 1016 CONTINUE GD TO 1000 SU23 13 1017 L=J-1 SU23 13 N=TEST(Z(I),R(L)) SU23 13 GD TO (1024,1030,1030,1051),N SU23 13 1024 M=PICK2(Z(I),R(J),2) SU23 13 1025 SU23 14 1026 SU23 14 1026 SU23 14 1026 SU23 14 1026 SU23 14 1026 SU23 14 1027 SU23 14 1028 SU23 14 1028 SU23 14 1028 SU23 14 1029 SU23 14 1020 SU23 SU23 14 1020 SU23 SU23 SU23 SU23 SU23 SU23 SU23 SU23		KX=K-2	SU23	130
1016       CONTINUE       SU23       13         G0       T0       1000       SU23       13         1017       L=J-1       SU23       13         N=TEST(Z(1),R(L))       SU23       13         G0       T0       (1024,1030,1030,1030,1051),N       SU23       13         1024       M=PICK2(Z([1),R(J),2)       SU23       13         00       1026       K=2,8       SU23       13         ANS=TAB2(M,K,2)+(TAB2(M+1,K,2)-TAB2(M,K,2))*(Z([])-TAB2(M,1,2))/(TASU23       13       182(M+1,1,2)-TAB2(M,1,2))       SU23       14         IF       (K.NE.2)       G0       T0       1025       SU23       14         ANS1=ANS       SU23       14       SU23       14		XMESH2(I,J,KX)=ANS+(XMESH2(L,J,KX)-ANS)*(Z(I)-ANS1)/(Z(L)-ANS1)	SU23	131
GO TO 1000       SU23 13         1017 L=J-1       SU23 13         N=TEST(Z(1),R(L))       SU23 13         GO TO (1024,1030,1030,1030,1051),N       SU23 13         1024 M=PICK2(Z(I),R(J),2)       SU23 13         DO 1026 K=2,8       SU23 13         ANS=TAB2(M,K,2)+(TAB2(M+1,K,2)-TAB2(M,K,2))*(Z(I)-TAB2(M,1,2))/(TASU23 13)       SU23 14         1B2(M+1,1,2)-TAB2(M,1,2))       SU23 14         IF (K.NE.2) GO TO 1025       SU23 14         ANS1=ANS       SU23 14         GO TO 1026       SU23 14	1016	CONTINUE	SU23	132
1017 L=J-1 N=TEST(Z(I),R(L)) GO TO (1024,1030,1030,1030,1051),N 1024 M=PICK2(Z(I),R(J),2) DD 1026 K=2,8 ANS=TAB2(M,K,2)+(TAB2(M+1,K,2)-TAB2(M,K,2))*(Z(I)-TAB2(M,1,2))/(TASU23 13 1B2(M+1,1,2)-TAB2(M,1,2)) IF (K.NE+2) GD TO 1025 ANS1=ANS GO TO 1026		GO TO 1000	SU23	133
N=TEST(Z(1),R(L)) GO TO (1024,1030,1030,1030,1051),N 1024 M=PICK2(Z(I),R(J),2) DO 1026 K=2,8 ANS=TAB2(M,K,2)+(TAB2(M+1,K,2)-TAB2(M,K,2))*(Z(I)-TAB2(M,1,2))/(TASU23 13 1B2(M+1,1,2)-TAB2(M,1,2)) IF (K.NE-2) GO TO 1025 ANS1=ANS GO TO 1026	1017	L=J-I	SU23	134
GO TO (1024,1030,1030,1030,1051),N       SU23 13         1024 M=PICK2(Z(I),R(J),2)       SU23 13         DD 1026 K=2,8       SU23 13         ANS=TAB2(M,K,2)+(TAB2(M+1,K,2)-TAB2(M,K,2))*(Z(I)-TAB2(M,1,2))/(TASU23 13)       182(M+1,1,2)-TAB2(M,1,2))         IB2(M+1,1,2)-TAB2(M,1,2))       SU23 14         IF (K.NE-2) GO TO 1025       SU23 14         ANS1=ANS       SU23 14         GO TO 1026       SU23 14		N=TEST(Z(1),R(L))	SU23	135
1024 M=PICK2(Z(I),R(J),2) DD 1026 K=2,8 ANS=TAB2(M,K,2)+(TAB2(M+1,K,2)-TAB2(M,K,2))*(Z(I)-TAB2(M,1,2))/(TASU23 13 1B2(M+1,1,2)-TAB2(M,1,2)) IF (K.NE.2) GD TO 1025 ANS1=ANS GD TO 1026 SU23 14 SU23 14 SU		GO TO (1024,1030,1030,1030,1051),N	SU23	136
DD 1026 K=2+8 ANS=TAB2(M+K+2)+(TAB2(M+1+K+2)-TAB2(M+K+2))*(Z([)-TAB2(M+1+2))/(TASU23 13 182(M+1+1+2)-TAB2(M+1+2)) IF (K+NE+2) GD TO 1025 ANS1=ANS GD TO 1026 SU23 14 SU23 14 SU23 14 SU23 14 SU23 14 SU23 14	1024	M=PICK2(Z(1),R(J),2)	SU23	137
ANS=TAB2(M,K,2)+(TAB2(M+1,K,2)-TAB2(M,K,2))*(Z(I)-TAB2(M,1,2))/(TASU23 13 1B2(M+1,1,2)-TAB2(M,1,2)) SU23 14 IF (K.NE.2) GD TO 1025 SU23 14 ANS1=ANS SU23 14 GD TO 1026		DD 1026 K=2.8	SU23	138
182(M+1,1,2)-TAB2(M,1,2))       SU23 14         IF (K.NE.2) GD TO 1025       SU23 14         ANS1=ANS       SU23 14         GD TO 1026       SU23 14		ANS=TAB2(M,K,2)+(TAB2(M+1,K,2)-TAB2(M,K,2))*(Z(I)-TAB2(M,1,2))/(T	ASU23	139
IF (K.NE.2) GD TO 1025       SU23 14         ANS1=ANS       SU23 14         GD TO 1026       SU23 14		182(M+1,1,2)-TAB2(M,1,2))	SU23	140
ANS1=ANS SU23 14		IF (K.NE.2) GD TO 1025	SU23	141
CO TO 1026 SU23 14		ANS1=ANS	SU23	142
		GO TO 1026	SU23	143

-

.!

.

*,*•

1025	CONTINUE	SU23	144
	KX=K-2	SU23	145
	IF (ABS(Z(I)).GT.EPS) GO TO 9125	SU23	146
	IF (K+GT+5+0R+K+LT+4) GO TO 9125	SU23	147
	AN S=TAB2(M+1,K,2)	SU23	148
9125	CONTINUE	SU23	149
	<pre>XMESH2(I, J, KX) = ANS+(XMESH2(I, L, KX) - ANS)*(R(J) - ANS1)/(R(L) - ANS1)</pre>	SU23	150
	IF (ABS(Z(I)).GT.EPS) GO TO 1026	SU23	151
	XMESH2(1, J, 1)=0.	SU23	152
	XMESH2(I,J,4)=RHOSTR	SU23	153
	XMESH2(I,J,5)=0.	SU23	154
	XMESH2(I,J,6)=SQRT(BIGAPR/RHOSTR)	SU23	155
1026	CONTINUE	SU23	156
	GO TO 1000	SU23	157
1100	M=PICK2(Z(I),R(J),3)	SU23	158
	ANS1=RARF2(M+1,2)+(RARF2(M,2)-RARF2(M+1,2))*(Z(I)-RARF2(M+1,1))/(	RSU23	159
	1ARF2(N+1)-RARF2(M+1+1)	SU23	160
	L=J+1	SU23	161
	M=TEST(Z(1)+R(L))	SU23	162
	GD TD (1101+1030+1051+1030);M	SU23	163
1101	CONTINUE	SU23	164
	DD 1106 K=1,6	SU23	165
	LL=K+2	SU23	166
	XMESH2(I,J,K)=RARF(1,LL)+(XMESH2(I,L,K)+RARF(1,LL))*(R(J)-ANS1)/(	RSU23	167
	1(L)-ANS1)	SU23	168
1106	CONTINUE	SUZ3	169
	GO TO 1000	SU23	170
1050	JJ1=J	SU23	171
	[]]=1	SU23	172
	KOD1=1	SU23	173
	GO TO 1000	SU23	174
1051	JJ2=J	SU23	175
	[]2=]	SU23	176
	KOD2=1	SU23	177
1000	CONTINUE	SU23	178
	IF (KOD1.EQ.0) GO TO 2000	SU23	179

-

•

•

221

	M=PICK2(2(III),R(JJ1),1)	SU23	180
	DD 2016 K=1,8	SU23	181
	ANS=TAB2(M,K,1)+(TAB2(M+1,K,1)-TAB2(M,K,1))+(R(JJ1)-TAB2(M,2,1))/	(SU23)	182
	1TAR2(M+1,2,1)-TAB2(M,2,1))	SU23	183
	IF (K.NE.1) GD TD 2005	SU23	184
	ANS1=ANS	SU23	185
	GO TO 2016	SU23	186
2005	CONTINUE	SU23	187
	I=1[]	SU23	188
	ILL=L	SU23	189
	L=I11+1	SU23	190
	IF (K.EQ.2) GO TO 2016	SU23	191
	KX=K-2	SU23	192
	XMESH2(I,J,KX)=ANS+(XMESH2(L,J,KX)-ANS)*(Z(I)-ANS1)/(Z(L)-ANS1)	SU23	193
2016	CONTINUE	SU23	194
2000	IF (KOD2.EQ.0) GO TO 3000	SU23	195
	M=PICK2(7(112),R(JJ2),2)	SU23	196
	00 3016 K=1,8	SU2 3	197
	ANS=TAB2(M,K,2)+(TAB2(M+1,K,2)-TAB2(M,K,2))*(R(JJ2)-TAB2(M,2,2))/	(SU23	198
	1TAB2(M+1,2,2)-TAB2(M,2,2))	SU23	199
	IF (K.NE.1) GO TO 3015	SU23	200
	ANSI#ANS	SU23	201
	GO TO 3016	SU23	202
3015	CONTINUE	SU23	203
	1=112	SU23	204
	J=JJ2	SU23	205
	L=II2-1	SU23	206
	IF (K.EQ.2) GO TO 3016	SU23	207
	KX=K-2	SU23	208
	XMESH2(1, J, KX)=ANS+(XMESH2(L, J, KX)-ANS)*(Z(1)-ANS1)/(Z(L)-ANS1)	SU23	209
3016	CONTINUE	SU23	210
3000	CONTINUE	SU23	211
	CONTINUE		
	GO TO 3017	SU23	212
1030	GD TO 3017 WRITE (3,1040) 1,J	SU23 SU23	212 213
1030 1040	GO TO 3017 WRITE (3,1040) 1,J FORMAT (27HO TIME STEP TOO LARGE AT I=,I4,2HJ=,I4,///)	SU23 SU23 SU23	212 213 214

202

-

3017 C	CONTINUE	SU23 SU23 SU23	216 217 218
Ļ		5023	219
		5023	220
	CHRRAUTINE SMIT	5025	1
~	SUDKUUTINE EXIT	51124	2
L	COMMON CASETO(16), ETC1, ETC2, ETC3, ETC4, ETT1, ETT2, ETT3, ET14, EPC1, F	PS5124	3
	12 EDC3. EDC4. EDC5. EDC4. ED13. ED13. ED13. ED14. ED15. ED14. ED17. VP. AR.I	ENSU24	4
	IZYCESJYEESYYEESYYEESYYEESYYEESYYEESYYEESY	51124	5
	COMMON = VME SH(20, 20, 6) + VMESH2(20, 20, 6) + 7(20) + R(20) + SURF(15, 8) + SURF(	E25024	6
	1/15_81_TAR(15,14.2), TAR2(15,14.2), SPART(15,2.2), RARF(15,11), RARF	21 SU24	7
	115.41.90A9T(15.2)	SU24	8
r		SU24	9
r		SU24	10
C	COMMON 70-R0-P0-U0-V0-L0-M0-RH00-F0-A0-UBAR0-V8AR0	SU24	11
r		SU24	12
Ŷ	COMMON NP.NT.NR.NI.NOEL.ISUB	SU24	13
C		SU24	14
•	COMMON ZMIN,ZMAX,RMIN,RMAX,RADIUS,GZ,GR,DELTA,H	\$U24	15
	COMMON DIRCOS	SU24	16
	COMMON TIME	SU24	17
	COMMON IRARF	SU24	18
	COMMON KSTOP	SU24	19
	COMMON TPSI	SU24	20
	COMMON KKK	SU24	21
	REAL LO, MO, LENGTH, MU, KO	SU24	22
	KSTOP≖1	SU24	23
	STOP	SU24	24
	END	SU24	25
	SUBROUTINE FGOFI(ZX,RX,SS,QQ)	SU25	1
С		SU25	2
C	COMPUTES SI,QI FOR INTERIOR REGION	SU25	3
С	ITERATION FOR ZI+RI	SU25	4
C		SU25	5
	COMMON CASEID(14), ITS1, ITS2, ITS3, ITS4, ITI1, ITI2, ITI3, ITI4, EPS1,	EPSSU25	6

.

•

а С

-

	12, EPS3, EPS4, EPS5, EPS6, EP11, EP12, EP13, EP14, EP15, EP16, EP17, VP, AR, LE	NSU25	7
	1GTH, APR, BPR, BIGAPR, BIGBPR, ESTAR, ALPHA, BETA, RHOSTR, EPRS, RHDS	SU2.5	8
	COMMON XMESH(20,20,6),XMESH2(20,20,6),Z(20),R(20),SURF(15,8),SURF	25025	9
	<pre>1(15,8),TAB(15,14,2),TAB2(15,14,2),SPART(15,2,2),RARF(15,11),RARF2</pre>	15025	10
	115,4),RPART(15,2)	SU25	11
C		SU25	12
C		SU25	13
	COMMON Z0,RC,P0,U0,V0,L0,M0,RH00,E0,A0,UBAR0,V8AR0	SU25	] 4
C		SU25	15
	COMMON NP,NT,NR,NI,NDEL,ISUB	SU25	16
С		SU25	17
	COMMON ZMIN,ZMAX,RMIN,RMAX,RADIUS,GZ,GR,DELTA,H	SU25	18
	COMMON DIRCOS	SU25	19
	COMMON TIME	SU25	20
	COMMON IRARF	SU25	21
	COMMON KSTOP	SU25	22
	COMMON TPSI	SU25	23
	COMMON KKK	SU25	24
	REAL LO,MO,LENGTH,MU,KO	SU25	25
С		SU25	26
	DIMENSION ANS(6),PSI(4),SPSI(11),CPSI(11)	SU25	27
C		SU25	28
C		SU25	29
C		SU25	30
C	· ·	SU25	31
3		SU25	32
	CALL DBLTRP(ZX,RX,ANS)	SU25	33
	U1 = ANS(2)	SU25	34
	V1=ANS(3)	SU25	35
	AI=ANS(6)	SU25	36
	SS=ZX-ZO+H*(VI+AI*SIN(TPSI))	SU25	37
	QQ=RX-RO+H*(UI+AI*COS(TPSI))	SU25	38
	RETURN	SU25	39
	END	SU25	40

-

224

- III.1. "Elementary Solutions of Coupled Model Equations in the Kinetic Tehory of Gases"
  - III.2. "Tricritical Points in Multicomponent Fluid Mixtures"

. . . .

. . . . . . . . . . . . .

.

599 J-* 2 - <u>- -</u>

III.3. "Generalized Scaling Hypothesis in Multicomponent Systems. I. Classification of Critical Points by Order and Scaling at Tricritical Points"

. . . . . .

III.4. "Double-Power Scaling Functions Near Tricritical Points"

. . .

PAPERS INTENTIONALLY OMITTED

.

# AIAA Paper No. 69-355



# STRESS WAVES RESULTING FROM HYPERVELOCITY IMPACT

EITON .

by

R. MADDEN Northeastern University Boston, Massachusetts and T. S. CHANG North Carolina State University Raleigh, North Carolina

# AIAA Hypervelocity Impact Conference

CINCINNATI, OHIO/APRIL 30 - MAY 2, 1969

First publication rights reserved by American Institute of Aeronautics and Astronautics. 1290 Avenue of the Americas, New York, N. Y. 10019. Abstracts may be published without permission if credit is given to author and to AIAA. (Price: AIAA Member \$1.00. Nonmember \$1.50)

# STRESS WAVES RESULTING FROM HYPERVELOCITY IMPACT

R. Madden Assistant Professor of Mechanical Engineering Northeastern University Boston, Massachusetts

and

# T. S. Chang NSF Professor and Chairman of Mechanics Program North Carolina State University Raleigh, North Carolina

#### Abstract

Results from a numerical scheme based on the method of characteristics are presented for the axially symmetric, hypervelocity impact of similar materials. The analysis is restricted to the early stages of the impact of a right circular cylinder on a halfspace. The resulting rarefaction and shock waves produced by the impact are considered as discrete wavefronts which divide the impacted zone into regions. Numerical diffusion is then controlled by requiring that the values of the dependent variables at a given point in the impacted zone to depend on only the calculated values at earlier times at points in the same region as the point in question. The numerical results give accurate representations of the stress wave profiles (i.e., rarefaction and shock waves) which should be useful as inputs for a later stage elastoplastic analysis and/or spallation analysis. The effects of "numerical diffusion" on the calculated pressure and flow fields when the rarefaction wave is not considered as discrete is investigated and the "diffused" results are compared with the more exact analysis.

# Nomenclature

a	=	isentropic speed of sound
е	=	specific internal energy
e,	=	sublimation energy
h	=	time step
Ρ	=	pressure
r	=	radial coordinate
t	=	time
U	=	radial velocity
V	=	axial velocity
z	=	axial coordinate
η	=	p/p*
θ	=	parameter defining a bicharacteristic $(0 \le \theta \le 2\pi)$
μ	=	n - 1
ρ	=	mass density
0%	-	ambient density

 $\phi$  = function of r, z, and t

#### Introduction

Most of the existing numerical codes for hypervelocity impact calculations are based on procedures which allow some smearing of the resulting Parefaction and shock waves. The present analysis of the initial hydrodynamic phase of an axially symmetric, hypervelocity impact is based on the method of characteristics while treating the rarefaction and shock waves as discrete discontinuities. The definitiveness of the resulting flow field obtained from such an analysis should be useful as inputs to a subsequent elastoplastic analysis for studying later stage cratering effects and/ or spallation calculations which require rather accurate representations of both the peak pressure and the incident shock wave profile at reflection. The results based on a numerical code using the method of characteristics for the impact of a right circular aluminum cylinder on an aluminum halfspace are presented. The impact configuration is depicted schematically in Fig. 1.



Figure 1 Impact configuration

In order to give some insight into the mechanism of "numerical diffusion", an analysis using the method of characteristics by not considering the rarefaction as discrete is also considered. In

[†]The authors are grateful to Mr. P. Townsend of Northeastern University for his assistance in adapting the computer program to the Northeastern University Computer, the running of the programs, and the preparation of the figures. The research of one of us (T.S.C.) was partially supported by the National Aeronautics and Space Administration under Contract No. NGR 34-002-084, and the Advanced Research Projects of the Department of Defense while monitored by the Office of Naval Research under Contract No. N00014-68-A-0187.

doing so, the speed of the release wave from the free surface of the projectile and the free surface of the target is not controlled. Results from such an approximate analysis are compared with the discrete rarefaction case and the limitations of the "diffused" solution are delineated.

# Characteristic Surfaces

As described in references 4 and 5, during the initial stages of a hypervelocity impact, the material in the impacted zone may be assumed to obey the inviscid fluid dynamic equations. For axially symmetric impact, these equations may be expressed as follows:

Conservation of Mass

$$\frac{D\rho}{Dt} + \rho \left(\frac{\partial U}{\partial r} + \frac{\partial V}{\partial z} + \frac{U}{r}\right) = 0 , \qquad (1)$$

Conservation of Momentum

$$\rho \frac{DU}{Dt} + \frac{\partial P}{\partial r} = 0 , \qquad (2)$$

$$p \frac{DV}{Dt} + \frac{\partial P}{\partial z} = 0 , \qquad (3)$$

Conservation of Entropy along a Particle Path

D

$$\frac{P}{t} - a^2 \frac{D\rho}{Dt} = 0 , \qquad (4)$$

where,

$$\frac{\mathbf{D}}{\partial t} = \frac{\partial}{\partial t} + U \frac{\partial}{\partial r} + V \frac{\partial}{\partial z} , \qquad (5)$$

and P is the pressure,  $\rho$  is the density, a is the isentropic speed of sound, t is the time, and (r,z) and (U,V) are the radial and axial coordinates and velocities, respectively.

Equations (1) to (4) form a system of nonlinear, hyperbolic, partial differential equations. The corresponding characteristic equation for this system of equations is:

where  $\phi = \phi$  (r,z,t), and surfaces of  $\phi$  = constants are the characteristic surfaces.

The solutions of Eq. (6) are given by

$$\left(\frac{D\phi}{Dt}\right)^2 - a^2 \left[\left(\frac{\partial\phi}{\partial r}\right)^2 + \left(\frac{\partial\phi}{\partial z}\right)^2\right] = 0 , \qquad (7)$$

and

$$\frac{D\phi}{Dt} = 0 .$$
 (8)

The characteristic surfaces described by Eqs. (7) and (8) correspond to two distinct types of characteristic propagations. Corrèsponding to Eq. (7), the characteristic propagation is described by the differential equations of the bicharacteristics

$$\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}\mathbf{t}} = \mathbf{U} + \mathrm{acos}\theta , \qquad (9)$$

$$\frac{dz}{dt} = V + a \sin \theta , \qquad (10)$$

where,  $0 \le \theta \le 2\pi$ . These bicharacteristics **de**scribe the propagation of pressure, density, or velocity disturbances. Corresponding to Eq. (8), the characteristic propagation is described by

$$\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}\mathbf{t}} = \mathbf{U} , \qquad (11)$$

$$\frac{dz}{dt} = V , \qquad (12)$$

which are the particle path equations and describe the propagation of entropy disturbances.

The set of bicharacteristics from a point, with  $0 \le \theta \le 2\pi$ , forms the conoid of dependence for the point which is at its vertex. The interior of the conoid contains all the points whose values of U,V,P, $\rho$ , etc. may influence the corresponding values at the point at the vertex. The intersection of this conoid and a particular time plane forms the domain of dependence of the point at the vertex of the conoid and contains all the points whose values of U,V,P, $\rho$ , etc. influence the corresponding values at the point at the vertex. A schematic representation of these ideas are given in Fig. 2.





# Compatibility Conditions

It will not be difficult to demonstrate that along a bicharacteristic, U,V, and P must satisfy the following differential relation in a time interval dt:

dP + pacos0dU + pasin0dV

$$= -\rho a^{2} dt \left[ \left( \frac{\partial U}{\partial r} \right) \sin^{2} \theta - \left( \frac{\partial U}{\partial z} + \frac{\partial V}{\partial r} \right) \sin \theta \cos \theta + \left( \frac{\partial V}{\partial z} \right) \cos^{2} \theta + \frac{U}{r} \right].$$
(13)

Similarly, along the particle path, the following differential expression must be satisfied:

$$\rho^2 de = p d\rho , \qquad (14)$$

where e is the specific internal energy. Equations (13) and (14) are called the bicharacteristic and particle path compatibility conditions, respectively.

Equation (14) is essentially the first law of thermodynamics expressed along the particle path for an isentropic process. This choice of a particle path compatibility equation was made in order to introduce the internal energy variable. The P, $\rho$ , evariables are related by an equation of state of the form,

$$P = P(\rho, e)$$
 (15)

The particular form of the equation of state used in this analysis is that of Tillotson.⁶ For aluminum, it can be expressed as follows:

For 
$$\rho > \rho_*$$
, with  $e > 0$  or  $e \leq e_*$ ,

$$P = [0.5 + \frac{1.63}{1 + e/(e_s \eta^2)}]e\rho + 0.752\mu + 0.65\mu^2,$$
(16)

and for  $\rho < \rho_*$ , with  $e > e_*$ ,

$$P = 0.5ep + \left[\frac{1.63ep}{1+e/(e_sn^2)} + 0.752\mu e^{+5(1-1/n)}\right]e^{-5(1-1/n)^2}, (17)$$

where,

$$\eta = \rho / \rho_{\pm}, \mu = \eta - l,$$
 (18)

 $\rho_{\star}$  = 2.70 gm/cm³ is the ambient density for aluminum, and  $e_{\rm S}$  = 0.03 megabar cm³/gm is the sublimation energy for aluminum. In Eqs. (16) and (17), P is expressed in megabars,  $\rho$  in gm/cm³, and e in megabars cm³/gm.

#### Numerical Procedure

The differential expressions, Eqs. (9)-(14), are cast in finite difference forms accurate to the order of  $h^2$ , where h is the time step. For example, the bicharacteristic compatibility equation for a particular value of  $\theta$  is

$$P_{o} - P_{i} + \rho_{i}a_{i} \left[\cos\theta_{i}(U_{o} - U_{i}) + \sin\theta_{i}(V_{o} - V_{i})\right]$$

$$= -\rho_{i}a_{i}^{2}h \left[\left(\frac{\partial U}{\partial r}\right)_{i} \sin^{2}\theta_{i}\right]$$

$$- \left(\frac{\partial U}{\partial z} + \frac{\partial V}{\partial r}\right)_{i} \sin\theta_{i}\cos\theta_{i}$$

$$+ \left(\frac{\partial V}{\partial z}\right)_{i} \sin^{2}\theta_{i} + \frac{U_{i}}{r_{i}}\right] + O(h^{2}) , \quad (19)$$

where the subscript "o" refers to t = t and the point where the values of U,V,P,p, etc. are being calculated and the subscript "i" refers to the corresponding values at the intersection of the bicharacteristic  $\theta_i$  with an  $(t_0-h)$  - time plane at which all data has been previously calculated. In spite of the fact that the error over each time step is of order  $h^2$ , the accumulated errors reduce the aggregate solution to the order of h.

The unknowns in Eq. (19) are P, U, V, and therefore unless one (or more) of these values is specified, three bicharacteristics are required for each calculation. After P ,U ,V are determined, the values  $\rho$  and e are obtained with the aid of the particle path compatibility condition and the equation of state. This procedure is applicable at points not on the boundary of the impacted zone, (i.e., on the shocks, rarefaction, free surfaces, or axis of symmetry). At points on the boundary, auxiliary relations are available and consequently, fewer independent bicharacteristic conditions are required for each calculation. A scheme is also used to insure that finite difference relations are not written across discontinuities and "numerical diffusion" across these discontinuities is minimized. The details of the various calculational procedures are given in references 4 and 5.

# Numerical Stability

The problem of constructing a stable numerical procedure for the present analysis is resolved by following certain qualitative guidelines. The basic idea is suggested by the stability criterion of Courant, Friedrichs, and Lewy, (or the C.F.L. Condition). According to this condition, the domain of dependence of the difference equations must encompass the domain of dependence of the original hyperbolic differential equations for numerical stability. The following is a brief account of the approach used in this analysis to ascertain numerical stability.

Consider the domain of dependence of the partial differential equations in the  $(t_0-h)$  - time plane as illustrated in Fig. 3(a). If the conoid of dependence is approximated by the three bicharacteristics passing through the triangular points (1,2,3), the domain of dependence is described by the triangle of dashed lines connecting the three points. Since, for the purpose of attaining numerical convergence, the points (1,2,3) must be relatively close to the circular region which is the domain of dependence of the differential equations, instabilities cannot be avoided. To insure numerical stability, the values at points (1,2,3) are obtained by interpolation using the values at the twelve grid points (circular dots) which surround the three original points as shown in Fig. 3(b). In doing so, the domain of depend-





69-355

ence of the difference equations is increased to the convex hull of dashed lines indicated in Fig. 3(b). This convex hull should encompass the circular domain of the differential equations. Such an interpolation scheme seems to be sufficient to insure the required numerical stability for the present analysis.

# Results and Discussion

The example chosen in this paper to illustrate the results of the characteristic method is the axially symmetric impact of an infinitely long cylindrical aluminum projectile with a diameter  $d_0$  equal to 2.5 cm on an aluminum halfspace. The initial velocity  $V_0$  of the projectile is taken to be 7.6 km/sec and the halfspace is assumed to be at rest. The results of the characteristic method are compared with the results obtained from the well-known "OIL Code" of reference 1. Results from the discrete rarefaction case is then compared with those for a case where the "numerical diffusion" of the rarefaction wave is allowed.

Figure 4 shows the pressure distributions for both the "OIL" solution of reference 1 and the method of characteristics with discrete rarefaction at a time of t =  $0.74 \ \mu sec$  after impact when the rarefaction has not yet propagated near the axis of symmetry. The pressure distributions are compared by mapping the isobars for P = 1.08, 0.8, 0.5, and 0.2 megabars (MB). The results of the method of characteristics are shown as solid lines and the "OIL" distributions as dashed lines. The locations of the two shocks and the rarefaction (P = 1.08 MB) are quite clearly defined for the characteristic method. One difference immediately apparent between the two sets of results is that the isobars for the "OIL" approach begin and end on the axis of symmetry, whereas the isobars for the characteristic method begin and end on the projectile and target shocks. The difference, of course, comes from the smearing of the shock fronts in the "OIL" solution. The "OIL" approach predicts additionally two regions of pressure higher than the one-dimensional region which is bounded by the two shocks and the rarefaction. The reduction in pressure in the rarefied region compares quite favorably for both methods. Major differences among the isobars of P = 0.5 and 0.2 MB obtained from the two methods are noted in the region near the original free surface where the pressure has been controlled by the characteristic method.



Figure 4 Comparison of isobars obtained by the characteristic method (with discrete rarefaction) and the "OIL" results.  $V_0 = 7.6$  km/sec, t = 0.74 µsec, d₀ = 2.5 cm

Figure 5 shows the pressure distribution along the axis of symmetry at a time of t = 1.28 usec after impact just prior to the actual reflection of the rarefaction wave from the axis of symmetry. The dashed curve shows the correct uniform pressure distribution based on the discrete rarefaction solution. The solid line shows the pressure distribution predicted by the numerical method which allows "diffusion" across the rarefaction wave. In the latter case, the pressure along the axis is underestimated. The lowest value is approximately 60% of the actual value. This drop in pressure is due to the fact that the effective speed of the rarefaction for the "diffused" case is equal to the actual rarefaction speed plus the mesh speed (i.e., the rarefaction front travels one additional grid spacing in each time cycle). The fact that the pressures are in error by 40% could be serious if the target shock wave were to be reflected from a free surface at the back of a target with a finite thickness or if these results were to be used as inputs for an elastoplastic analysis for later stage cratering and subsequent spallation calculations.



Figure 5 Pressure distribution along the axis of symmetry.  $V_o$  = 7.6 km/sec, t = 1.28 µsec,  $d_o$  = 2.5 cm

Figure 6 shows the pressure distribution along the axis of symmetry at a later time (t =  $1.55 \ \mu$ sec) after the rarefaction has been re-



Figure 6 Pressure distribution along the axis of symmetry.  $V_0 = 7.6$  km/sec, t = 1.28 µsec,  $d_0 = 2.5$  cm

flected. Again the dashed curve is that of the discrete rarefaction solution and the solid curve is the "diffused" solution. At or near this time and for subsequent times, the results of the two solutions are very close to each other and the discrepancies among the results diminish with the increase of time.

Figure 7 maps the isobars for the entire flow field for both the discrete rarefaction solution (dashed curves) and the "diffused" solution (solid curves) at t = 1.28 µsec after impact. It is noted that in regions close to the axis of symmetry and the rarefaction, there are large discrepancies among the numerically calculated pressures using the two different methods. In addition, due to the premature decay of the projectile shock near the projectile free surface, the calculated pressures near the target shock close to the free surface using the "diffused" scheme are much higher than those for the discrete rarefaction solution. This effect also causes a slightly higher target shock velocity near the free surface. In other regions far away from the free surface and the rarefaction front, the calculated pressures from the two methods are in good agreement.





Figure 8 shows a comparison of the isobars in the impacted zone at t = 1.55 µsec after impact. At this time, the isobars are in close agreement throughout the flow field. Nevertheless, some of the effects of the "diffused" rarefaction can still be observed. For instance, there is a slightly higher pressure region predicted by the "diffused" results near the target shock close to the axis of symmetry.

Figure 9 compares the velocity vectors for the two methods of calculations at t =  $1.50 \mu$ sec after impact. For all practical purposes, the results are nearly identical. It is apparent that the effect of "numerical diffusion" is more important in the pressure calculations.



Figure 8 Pressure fields.  $V_0 = 7.6 \text{ km/sec}$ , t = 1.55 µsec,  $d_0 = 2.5 \text{ cm}$ 



Figure 9 Velocity vectors.  $V_0 = 7.6$  km/sec, t = 1.50 µsec, d₀ = 2.5 cm

## Concluding Remarks

It may be surmised from the calculated results using the method of characteristics that, if the rarefaction is not considered as a discrete discontinuity, the pressures for the initial stages of an axially symmetric hypervelocity impact may be quite different from their actual values before the rarefaction is reflected from the axis of symmetry. This is particularly true for the pressure distribution at the axis of symmetry. After the reflec-

69-355

tion of the rarefaction wave, however, the effect of numerical "diffusion" introduced by not treating the rarefaction front as a discrete discontinuity diminishes. This means that if the pressure fields and shock fronts are desired at a time after the rarefaction wave has been reflected from the axis of symmetry, an approximate procedure of the method of characteristics by not treating the rarefaction as discrete may be used. Since the computing time required for hypervelocity impact calculations using the method of characteristics with discrete rarefaction and shock fronts is very large, this procedure of allowing diffused rarefaction can be useful for relatively long impact time calculations or spallation analyses with relatively thick target plates (compared with the projectile diameter).

# References

¹Johnson, W. E., "OIL: A Continuous Two-Dimensional Eulerian Hydrodynamic Code," General Atomics Division, General Dynamics Corporation, Report No. 55-80-Revised (January 1965).

²Riney, T. D., "Theoretical Hypervelocity Impact Calculations Using the PICWICK Code," General Electric Space Sciences Laboratory Report, No. R64SD13 (February 1964).

³Bjork, R., Brooks, N. and Papette, R., "A Numerical Technique for Solution of Multidimensional Hydrodynamic Problems," Rand Corporation Report, No. R.M. 2628 P.R. (December 1963).

⁴Madden, R., "Hypervelocity Impact Analysis by the Method of Characteristics," National Aeronautics and Space Administration Technical Report, No. NASA TR-R-298 (January 1969).

⁵Madden, R. and Chang, T. S., "Axially Symmetric Hypervelocity Impact Calculations Using the Method of Characteristics," North Carolina State University, Report No. TSC-68-1 (February 1968). Also, American Physical Society Bulletin, <u>III3(5)</u>, 821 (May 1968).

⁶Tillotson, J. H., "Metallic Equations of State for Hypervelocity Impact," General Atomic Division, General Dynamics Corporation, Report No. GA-3216 (July 1962).



Int. J. Engng Sci., 1972, Vol. 10, pp. 353-367. Pergamon Press. Printed in Great Britain

N75-15329

# NONLINEAR WAVES IN A RATE-SENSITIVE, ELASTOPLASTIC MATERIAL

# E. E. BURNISTON

Department of Mathematics, North Carolina State University, Raleigh, North Carolina, U.S.A.

and

# T. S. CHANG[†]

Center for Space Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, U.S.A.

# (Communicated by A. C. ERINGEN)

Abstract-Two classes of closed form solutions of one-dimensional, nonlinear waves in a rate-sensitive, elastoplastic material are reported. One class of these solutions is self-similar and the other class consists of constant speed propagations. Applications of these solutions to unsteady motions behind propagating discontinuities are also considered.

# 1. INTRODUCTION

THE PURPOSE of this paper is to discuss two interesting classes of closed form solutions of one-dimensional, unsteady motion of a rate-sensitive, elastoplastic material. One class of these solutions is self-similar and is deduced from the invariant theorems of continuous groups of transformations. This class of unsteady motion is governed by a single, first-order, nonlinear, ordinary differential equation of the Riccati type and closed form solutions in terms of elementary functions are obtained under special circumstances. If the material in consideration possesses the additional property of instantaneous linear elasticity[1] under 'high rate' of straining, it may be demonstrated that one of these self-similar solutions can be used to describe the dispersed nonlinear wave motion behind a propagating shockfront into an initially quiescent region.

The second class of solutions is obtained by searching for one-dimensional wave motions with constant speeds of propagation. These solutions are expressible as simple quadratures and closed form expressions can be obtained for specific constitutive relations. Such solutions represent non-characteristic propagations, i.e. they are not propagations of weak discontinuities of arbitrary wave forms. It may be demonstrated, using the Poincaré–Bendixon theorem, that these solutions, in general, are not periodic. Assuming a sub-elastic, constant-speed, propagating discontinuity preceded by an elastic precurser with an unloading, relaxation zone, or a constant stress region, the nonlinear wave solution with a constant propagation speed equal to that of the discontinuity can be used to describe the 'unsteady'‡ motion behind the discontinuity.

One-dimensional rectilinear motion, in the strict sense, involves not just one spatial coordinate but also only one component of stress, strain, and particle velocity. For such a type of motion, only a one-dimensional stress-strain or constitutive relation is required. Various rate-sensitive, constitutive equations have been proposed in the

[†]Permanent address: North Carolina State University.

\$Such an 'unsteady' motion, of course, becomes essentially steady for a moving observer following the propagating discontinuity.

literature and a comprehensive review of this subject can be found in Cristescu[2]. The solutions described in this paper are obtained based on a model first proposed by Sokolovskii[3, 4]. This model cannot, in general, be used to describe the structure or generation of shock waves[5, 6]. In applying the solutions given in this paper to the unsteady motions behind propagating shock layers or relaxation zones, additional material properties may have to be assumed within these shock or relaxation regions.

# 2. MATHEMATICAL FORMULATION

One-dimensional motion may be described by a scalar deformation field,

$$\bar{x} = \bar{x}(X, \bar{t}), \tag{2.1}$$

where  $\bar{x}$  is the instantaneous position coordinate at time  $\bar{t}$  of a generic particle whose position coordinate at  $\bar{t} = 0$  was  $\bar{X}$ . The Lagrangian equation of motion and kinematic compatibility condition for rectilinear, one-dimensional motion are[†]

$$\rho \partial u / \partial \bar{t} = \partial \bar{\sigma} / \partial \bar{X}, \tag{2.2}$$

$$\partial \epsilon / \partial \bar{t} = \partial u / \partial X, \tag{2.3}$$

where  $\overline{\sigma}$  is the longitudinal stress, and

$$u = \partial \bar{x} / \partial \bar{t}, \tag{2.4}$$

$$\epsilon = \partial \bar{x} / \partial X - 1. \tag{2.5}$$

are the particle velocity and linear Lagrangian strain, respectively. The material is assumed to be initially unstressed and unstrained with a constant density  $\rho$ .

In this analysis, the material under consideration will be assumed to follow the special constitutive relation for a rate-sensitive, elastoplastic material generalized from a model suggested by Sokolovskii [3, 4],

$$\partial \epsilon / \partial \bar{t} = \partial u / \partial X = E^{-1} \partial \overline{\sigma} / \partial \bar{t} + \gamma f (\overline{\sigma} / \sigma_0 - 1) \mathbf{1}_+ (\overline{\sigma} / \sigma_0 - 1), \tag{2.6}$$

where  $f(\cdot)$  is a dimensionless  $C^1$  function with  $f(\eta) > 0$  for  $\eta > 0, 1_+(\cdot)$  is the Heaviside function, E is the modulus of elasticity which is assumed to be a constant,  $\sigma_0$  is the static yield stress, and  $\gamma$  is a material constant. Thus, the material is assumed to have an elastic range with a constant modulus. If the strain rate is held constant, Equation (2.6) may be integrated by simple quadrature[‡]. Typical stress-strain curves for  $\partial \epsilon / \partial \bar{t} =$  constant are displayed in Fig. 1. It is seen that the dynamic yield stress is rate-sensitive and there are no strain-hardening effects. Equation (2.6) includes the wellknown models suggested by Cowper and Symonds [8], and Perzyna [9], as special cases. It is a special form of a more general constitutive equation suggested by Malvern [10].

Equations (2.2) and (2.6) are the basic equations describing the functions,  $u(\bar{X}, \bar{t})$ ,  $\bar{\sigma}(\bar{X}, \bar{t})$ , [and  $\epsilon(\bar{X}, \bar{t})$ ], characterizing the one-dimensional motions to be considered in this paper. These equations may be combined into one single, second-order, nonlinear,

[†]See e.g. Courant and Friedrichs [7].

[‡]The authors are grateful to Professor A. C. Eringen for suggesting this.



Fig. 1. Typical stress-strain curves for constant strain rates. (a)  $\sqrt{\gamma/k} = 1$ , (b)  $\sqrt{\gamma/k} = 2$ , (c)  $\sqrt{\gamma/k} = 3$ , (d)  $\sqrt{\gamma/k} = 4$ ,  $k = \partial \epsilon/\partial t$ .

hyperbolic, partial differential equation of the evolution type in dimensionless form as follows:

$$\beta(\partial^2 \sigma / \partial x^2 - \partial^2 \sigma / \partial t^2) = \lceil 1_+(\sigma) df(\sigma) / d\sigma + \delta(\sigma) f(0) \rceil \partial \sigma / \partial t,$$
(2.7)

where

$$\sigma(x,t) \equiv \overline{\sigma}/\sigma_0 - 1, \tag{2.8}$$

is the dimensionless overstress,

$$x \equiv \alpha X, \tag{2.9}$$

$$t \equiv \alpha c \bar{t}, \tag{2.10}$$

$$c \equiv \sqrt{E/\rho},\tag{2.11}$$

$$\alpha \equiv \beta \gamma \sqrt{\rho E/\sigma_0},\tag{2.12}$$

 $\delta(\cdot)$  is the Dirac delta functional, and  $\beta > 0$  is a dimensionless constant included here in the definition of  $\alpha$  for convenience.

Materials described by the constitutive relation given in (2.6) probably cannot support shock layers or explain the generation of shockfronts. If a shock layer is dissipative, then generalized viscoelastic theories and constitutive relations such as those considered by Varley and Rogers[6], Coleman and Gurtin[11], Dunwoody and Dun-

# E. E. BURNISTON and T. S. CHANG

woody [12] and Pipkin [5], or further generalizations of these models, should be used to describe it. For propagation in a rod, the shock layer may be dispersive due to lateral deformation[†] instead of due to any dissipative mechanism. Such a shock transition may be described in terms of a low frequency, large rate of straining expansion of a three-dimensional deformation field similar to that considered by Parker and Varley [13]. In applying one of the self-similar motions described in this paper to a nonlinear wave motion behind a propagating shockfront, it will be assumed that the rate of straining in the shock layer is high enough to allow the material to exhibit instantaneous linear elasticity[‡][1]. Thus, across such a shock layer, it will be assumed that

$$[\overline{\sigma}] = E[\epsilon], \tag{2.13}$$

where  $[\chi]$  denotes the jump in value of  $\chi$  across the shock layer, and the value of E will be assumed to be a constant and have the same value as the modulus of the elastic range of the constitutive relation given by (2.6).

From the Lagrangian equation of motion (2.2) and the kinematic compatibility condition (2.3), two additional jump conditions relating [u], and  $[\epsilon]$ , can be deduced formally following a technique suggested by Courant and Friedrichs [7]. The results are:

$$\rho U[u] + [\overline{\sigma}] = 0, \qquad (2.14)$$

$$U[\epsilon] + [u] = 0, \qquad (2.15)$$

where U is the propagation speed of the shockfront. Equations (2.14) and (2.15) can also be deduced from physical arguments directly. The jump conditions, (2.13)-(2.15), indicate that the speed of propagation of a shock layer of a material exhibiting instantaneous elasticity is

$$|U| = \sqrt{E/\rho},\tag{2.16}$$

which is, in fact, the same as the elastic speed of propagation of small disturbances.

In applying the constant speed solutions to the 'unsteady' motion behind a propagating discontinuity which moves at a constant sub-elastic speed, it will be assumed that there is an elastic precurser and an unloading, relaxation zone, or a constant stress region, ahead of the discontinuity. The details of the unsteady motion of a relaxation zone ahead of such a discontinuity may be very complicated and will not be considered in this paper.

3. A CLASS OF SELF-SIMILAR SOLUTIONS Cowper and Symonds [8] proposed, in 1957, a power law,

$$f(\sigma) = \sigma^{\delta},\tag{3.1}$$

†The authors are indebted to Professor E. Varley for a discussion pertaining to this point.

[‡]The range of rate of straining within which materials exhibit instantaneous elasticity varies from one material to another. There is usually an upper (and lower) cutoff point in rate of straining above (and below) which a material may have to be considered viscoelastic. The authors are indebted to Professor R. S. Rivlin for pointing this out to them.



Fig. 1. Typical stress-strain curves for constant strain rates. (a)  $\sqrt{\gamma/k} = 1$ , (b)  $\sqrt{\gamma/k} = 2$ , (c)  $\sqrt{\gamma/k} = 3$ , (d)  $\sqrt{\gamma/k} = 4$ ,  $k = \partial \epsilon/\partial t$ .

hyperbolic, partial differential equation of the evolution type in dimensionless form as follows:

$$\beta(\partial^2 \sigma / \partial x^2 - \partial^2 \sigma / \partial t^2) = [1_+(\sigma) df(\sigma) / d\sigma + \delta(\sigma) f(0)] \partial \sigma / \partial t, \qquad (2.7)$$

where

$$\sigma(x,t) \equiv \overline{\sigma}/\sigma_0 - 1, \tag{2.8}$$

is the dimensionless overstress,

$$x \equiv \alpha \bar{X},\tag{2.9}$$

$$t \equiv \alpha c \bar{t}, \tag{2.10}$$

$$c \equiv \sqrt{E/\rho},\tag{2.11}$$

$$\alpha \equiv \beta \gamma \sqrt{\rho E/\sigma_0},\tag{2.12}$$

 $\delta(\cdot)$  is the Dirac delta functional, and  $\beta > 0$  is a dimensionless constant included here in the definition of  $\alpha$  for convenience.

Materials described by the constitutive relation given in (2.6) probably cannot support shock layers or explain the generation of shockfronts. If a shock layer is dissipative, then generalized viscoelastic theories and constitutive relations such as those considered by Varley and Rogers[6], Coleman and Gurtin[11], Dunwoody and Dun-

# E. E. BURNISTON and T. S. CHANG

woody [12] and Pipkin [5], or further generalizations of these models, should be used to describe it. For propagation in a rod, the shock layer may be dispersive due to lateral deformation[†] instead of due to any dissipative mechanism. Such a shock transition may be described in terms of a low frequency, large rate of straining expansion of a three-dimensional deformation field similar to that considered by Parker and Varley [13]. In applying one of the self-similar motions described in this paper to a nonlinear wave motion behind a propagating shockfront, it will be assumed that the rate of straining in the shock layer is high enough to allow the material to exhibit instantaneous linear elasticity[‡][1]. Thus, across such a shock layer, it will be assumed that

$$[\overline{\sigma}] = E[\epsilon], \tag{2.13}$$

where  $[\chi]$  denotes the jump in value of  $\chi$  across the shock layer, and the value of E will be assumed to be a constant and have the same value as the modulus of the elastic range of the constitutive relation given by (2.6).

From the Lagrangian equation of motion (2.2) and the kinematic compatibility condition (2.3), two additional jump conditions relating [u], and  $[\epsilon]$ , can be deduced formally following a technique suggested by Courant and Friedrichs [7]. The results are:

$$\rho U[u] + [\overline{\sigma}] = 0, \qquad (2.14)$$

$$U[\epsilon] + [u] = 0, \qquad (2.15)$$

where U is the propagation speed of the shockfront. Equations (2.14) and (2.15) can also be deduced from physical arguments directly. The jump conditions, (2.13)-(2.15), indicate that the speed of propagation of a shock layer of a material exhibiting instantaneous elasticity is

$$|U| = \sqrt{E/\rho},\tag{2.16}$$

which is, in fact, the same as the elastic speed of propagation of small disturbances.

In applying the constant speed solutions to the 'unsteady' motion behind a propagating discontinuity which moves at a constant sub-elastic speed, it will be assumed that there is an elastic precurser and an unloading, relaxation zone, or a constant stress region, ahead of the discontinuity. The details of the unsteady motion of a relaxation zone ahead of such a discontinuity may be very complicated and will not be considered in this paper.

# 3. A CLASS OF SELF-SIMILAR SOLUTIONS Cowper and Symonds [8] proposed, in 1957, a power law,

$$f(\sigma) = \sigma^{\delta},\tag{3.1}$$

†The authors are indebted to Professor E. Varley for a discussion pertaining to this point.

[‡]The range of rate of straining within which materials exhibit instantaneous elasticity varies from one material to another. There is usually an upper (and lower) cutoff point in rate of straining above (and below) which a material may have to be considered viscoelastic. The authors are indebted to Professor R. S. Rivlin for pointing this out to them.

where  $\delta > 0$  is a dimensionless material constant, to describe the rate-sensitivity of perfectly plastic materials. This law seems to be quite adequate in approximating the dynamic responses of certain metallic alloys[14, 15] under moderately high rates of straining. The material constants,  $\gamma$  and  $\delta$ , for such a material may be determined by explosive ring-tests as suggested by Perrone[16]. Recent investigators[17–21] have applied this model to impulsively loaded beams, rods, and plates. The class of selfsimilar solutions described in this paper is based on the constitutive relation (2.6) and the special form of  $f(\sigma)$  given by (3.1). Under these constitutive assumptions, equation (2.7) may be expressed as follows:

$$\phi(\sigma_{xx}, \sigma_{tt}, \sigma_{t}, \sigma; x, t) = 0, \qquad (3.2)$$

where

$$\phi \equiv \sigma_{xx} - \sigma_{tt} - \sigma^{\delta^{-1}} \sigma_t \mathbf{1}_+(\sigma), \qquad (3.3)$$

and subscripts denote partial differentiation. The constant  $\beta$  which appeared in the definition of  $\alpha$  in (2.12) has been replaced by the material constant  $\delta$ .

Consider a one-parameter continuous group of transformations defined by

$$(X, T, \Sigma) = (bx, b^m t, b^n \sigma), \qquad (3.4)$$

$$(\Sigma_{XX}, \Sigma_{TT}, \Sigma_T) = (b^{n-2}\sigma_{xx}, b^{n-2m}\sigma_{tt}, b^{n-m}\sigma_t), \qquad (3.5)$$

where b is the parameter, and m,n are constants. It can be shown that for the special case of m = 1,  $n = 1/(1-\delta)$ ,

$$\phi(\sigma_{xx}, \sigma_{tt}, \sigma; x, t) = b^{(1-2\delta)/(1-\delta)}\phi(\Sigma_{XX}, \Sigma_{TT}, \Sigma_{T}, \Sigma; X, T), \qquad (3.6)$$

where it is assumed that  $\delta \neq 1$ . For  $\delta = 1$ , equation (3.2) is linear and the analytical solution has been discussed in detail by Malvern[10]. Thus,  $\phi$  is a constant conformal invariant under the group defined by equations (3.4) and (3.5) with m = 1, and  $n = 1/(1-\delta)$ . According to a theorem proven by Morgan[22], the solution to equation (3.2) may be expressed in terms of a function  $F(\xi)$  of an absolute invariant  $\xi$  of the transformation group defined by

$$(X, T) = (bx, bt).$$
 (3.7)

The function  $F(\xi)$  is an absolute invariant of the transformation group defined by

$$(X, T, \Sigma) = (bx, bt, b^{1/(1-\delta)}\sigma).$$
(3.8)

It will be straightforward to verify that

$$\xi = t/x,\tag{3.9}$$

$$F(\xi) = x^{1/(\delta-1)}\sigma(x,t), \qquad (3.10)$$

are absolute invariants of the groups defined by equations (3.7) and (3.8), respectively.

Thus, there exists a class of self-similar solutions to equation (3.2) of the form

$$\sigma = x^{1/(1-\delta)} F\left(\xi\right),\tag{3.11}$$

where  $\xi$  is given by (3.9).

Substituting equation (3.11) into equation (3.2) and using equation (3.3), a nonlinear, second-order ordinary differential equation results. For  $\sigma > 0$ , this equation is expressible as follows:

$$(\xi^2 - 1)F'' - \{ [2\delta/(1 - \delta)]\xi + F^{\delta - 1} \}F' + [\delta/(1 - \delta)^2]F = 0,$$
(3.12)

where prime denotes differentiation.

For the special case of  $\delta = 2$ ,  $\xi > 0$ , equation (3.12) is immediately integrable to the following Riccati equation:

$$2(\xi^2 - 1)F' + 4\xi F - F^2 = 4K, \qquad (3.13)$$

where K is an arbitrary constant. This equation may be converted into a linear, second-order, ordinary differential equation by the following transformation:

$$(\xi^2 - 1)^r V(z) = \operatorname{Exp}\left[-\frac{1}{2}\int^{\xi} \frac{F(\xi')}{\xi'^2 - 1} d\xi'\right],$$
(3.14)

$$2z = \xi + 1. \tag{3.15}$$

The result is:

$$z(1-z)V'' + 2(1+r)(1-2z)V' - (2r-K)V = 0, (3.16)$$

where *r* satisfies the quadratic equation,

$$4r^2 + 4r + K = 0. (3.17)$$

Equation (3.16) has three regular singular points at  $z = 0, 1, \text{ and } \infty$ . The solutions to this equation are expressible in terms of hypergeometric functions. For  $\xi > 1$ , the appropriate general solution to (3.16) is, in the usual notation,

$$V(z) = Cz^{-2r-3}{}_{2}F_{1}[2r+3, 2, 4; 1/z], \qquad (3.18)$$

where C is an arbitrary constant. Thus, from equation (3.14), the corresponding expression for  $F(\xi)$  is

$$F(\xi) = 6(\xi - 1) - 4r + 2(2r + 3) \frac{(\xi - 1)_2 F_1[2r + 4, 3, 5; 2/(\xi + 1)]}{(\xi + 1)_2 F_1[2r + 3, 2, 4; 2/(\xi + 1)]}.$$
 (3.19)

The expression (3.19) for  $F(\xi)$  assumes some particularly simple forms in terms of elementary functions for special values of K. As examples, typical expressions for  $F(\xi)$  and  $\sigma(x, t)$  for two different values of K are listed below:

K = 0, (i.e. r = 0, or - 1)

$$F(\xi) = 8\{2\xi + (\xi^2 - 1) \ln \left[ (\xi - 1)/(\xi + 1) \right] + A_1(\xi^2 - 1)\}^{-1}.$$
 (3.20)

$$\sigma(x,t) = 8x \{ 2xt + (t^2 - x^2) \ln \left[ (t-x)/(t+x) \right] + A_1(t^2 - x^2) \}^{-1}.$$
 (3.21)

$$K = -3$$
, (i.e.  $r = 1/2 \text{ or } -3/2$ )

$$F(\xi) = 6(1 + A_2\xi + \xi^2)/(A_2 + 3\xi - \xi^2), \qquad (3.22)$$

$$\sigma(x,t) = 6(x^2 + A_2xt + t^2)/(A_2x^3 + 3x^2t - t^3).$$
(3.23)

In these expressions,  $A_1$  and  $A_2$  are arbitrary constants.

It is interesting to note that the solution given by (3.21) is invariant under the translation defined by (x', t') = (x + a, t + a), where a is an arbitrary constant. This property will be utilized in Section 5 to derive a closed form solution of a self-similar, unsteady, dispersed, nonlinear wave motion behind a constant 'elastic-speed' shockfront propagating into an initially quiescent region.

# 4. NONLINEAR WAVES WITH CONSTANT SPEEDS

Equation (2.7) is a nonlinear, hyperbolic differential equation of the evolution type. The characteristic speeds related to this equation are given by,

$$\mathbf{D}_{\pm}X/\mathbf{D}t = \pm c,\tag{4.1}$$

or,

$$\mathbf{D}_{\pm} x / \mathbf{D}t = \pm 1, \tag{4.2}$$

where  $D_{+}(\cdot)/D\bar{t}$  and  $D_{+}(\cdot)/D\bar{t}$  denote differentiation along the characteristics.

Due to the presence of the evolution or dissipative term,  $[1_+(\sigma)df(\sigma)/d\sigma + \delta(\sigma)f(0)]$ .  $\partial\sigma/\partial t$ , in equation (2.7), it is expected that, in the plastic range, the material can also support dissipative, dispersive waves in addition to the characteristic propagations of discontinuities given by equation (4.1) or (4.2). To demonstrate the existence of non-characteristic propagations, a class of constant speed solutions to equation (2.7) is considered in this section. This class of solutions is obtained by searching for expressions of the form:

$$\sigma(x,t) = g(s), \tag{4.3}$$

where

$$s \equiv c\bar{t} - x,\tag{4.4}$$

and  $\bar{c}$  = constant determines the speed of propagation.

Substituting equation (4.3) into equation (2.7), a nonlinear, second-order, ordinary differential equation results:

$$\beta(1 - \bar{c}^2)g'' = \bar{c}[1_+(g)f'(g) + \delta(g)f(0)]g', \qquad (4.5)$$

where primes denote differentiation. This equation can be integrated once immediately

to yield,

$$\beta(1 - \bar{c}^2)g' = \bar{c}1_+(g)f(g) + A, \tag{4.6}$$

where A is an arbitrary constant. Actually, the fact that equation (4.5) can be integrated once in closed form is not due to the special choice of the constitutive equation, (2.6), since, by assuming solutions of constant speeds of propagation, equation (2.2) can be integrated at once without making any additional assumptions. By comparing the expression (4.6) with the basic equations, (2.2) and (2.6), it is easily demonstrated that A = 0. Thus,

$$\beta(1 - \bar{c}^2)g' = \bar{c}1_+(g)f(g), \tag{4.7}$$

for constant speeds of propagation.

If g < 0, then equation (4.7) becomes

$$(1 - \bar{c}^2)g' = 0. \tag{4.8}$$

Except for the trivial case of g = constant, equation (4.8) requires that  $\bar{c} = \pm 1$ , which of course is the elastic speed of propagation. For g > 0, equation (4.7) requires that

(i) 
$$\bar{c}^2 < 1$$
, for  $(g'/\bar{c}) > 0$ , (4.9)

(ii) 
$$\bar{c}^2 > 1$$
, for  $(g'/\bar{c}) < 0$ . (4.10)

Thus, for the physically more meaningful case  $\bar{c}^2 < 1$ , the overstress may increase or decrease with *s* depending on whether  $\bar{c} > 0$  or < 0. Equations (4.9) and (4.10) also indicate that if solutions for g > 0 exist, the waves represented by these solutions are not characteristic propagations.[†]

On setting h = g', equation (4.5) for g > 0 may be written as

$$\frac{h'}{g'} = \frac{\bar{c}}{\beta(1-\bar{c}^2)} f'(g). \tag{4.11}$$

Since f(g) is a  $C^1$  function, equation (4.11) does not have any singular points. Thus, according to the Poincaré–Bendixon theorem, it may be concluded that equation (4.11), in general, does not possess periodic solutions.

For g > 0, equation (4.7) may be integrated, in general, by quadrature as follows:

$$s = \left[\beta(1-\bar{c}^2)/\bar{c}\right] \int^{g} f^{-1}(\zeta) \, \mathrm{d}\zeta + C', \qquad (4.12)$$

where C' is an arbitrary constant.

Perzyna[9] in 1963, suggested two interesting expressions for  $f(\zeta)$ . In slightly generalized forms, these expressions are given as follows:

†In fact, these waves are similar to the so-called solitary waves which are constant-speed, nonlinear propagations of special wave forms. The authors are indebted to Professor G. S. S. Ludford for pointing this out to them.

(i) 
$$f(\zeta) = \sum_{l=0}^{L} a_l \zeta^l$$
, (4.13)

(ii) 
$$f(\zeta) = b_0 + \sum_{l=1}^{L} b_l(\operatorname{Exp} \zeta^l - 1),$$
 (4.14)

where  $a_l$ ,  $b_l$  are constants. Expression (i) or equation (4.13) includes the model  $f(\zeta) = \zeta^{\delta}$  suggested by Cowper and Symonds[8] as a special case. For  $F(\zeta) = \zeta^{\delta}$ , and  $\delta \neq 1$ , equation (4.12) becomes,

$$s - s_1 = \frac{\delta(1 - \bar{c}^2)}{(1 - \delta)\bar{c}} \left( g^{1 - \delta} - g_1^{1 - \delta} \right), \tag{4.15}$$

where  $g_1 = g(s_1)$ ,  $s_1$  is a constant, and  $\beta$  has been chosen as  $\delta$ .

Another simple result is obtained for the constitutive relation (ii) or equation (4.14) with L = 1. The integrated expression is

$$s - s_1 = \frac{(1 - \bar{c}^2)}{\bar{c}} \left[ (g_1 - g) + \ln\left(\frac{e^g - 1}{e^{g_1} - 1}\right) \right], \tag{4.16}$$

where, again,  $g_1 = g(s_1)$ ,  $s_1$  is a constant, and  $\beta$  has been chosen as  $b_1$ .

It is of interest to note that for the constitutive relation (i), or equation (4.13),  $f^{-1}(\zeta)$  may be expressed in the form:

$$f^{-1}(\zeta) = \sum_{k=1}^{m} c_k (\alpha_1 \zeta + \alpha_2)^{-k} + \sum_{p=1}^{n} (d_p \zeta + e_p) (\beta_1 \zeta^2 + 2\beta_2 \zeta + \beta_3)^{-p}, \qquad (4.17)$$

where  $\alpha_1$ ,  $\alpha_2$ ,  $\beta_1$ ,  $\beta_2$ ,  $\beta_3$ ,  $c_k$ ,  $d_p$ , and  $e_p$  are real constants, with  $\beta_2^2 < \beta_1 \beta_3$ . Thus, the integral in equation (4.12) can always be evaluated in closed form in terms of elementary functions.

# 5. NONLINEAR WAVE MOTION BEHIND PROPAGATING DISCONTINUITIES

# 5.1 Self-similar solution behind a constant-speed shockfront

Consider a one-dimensional shockfront propagating at some speed U(>0) into an initially quiescent one-dimensional region ( $x \ge 0$ ). As it had been remarked earlier, if the range of the rate of straining within the shock layer renders the material to exhibit instantaneous linear elasticity, then the shockfront will propagate at a constant speed,

$$U = \sqrt{E/\rho},\tag{5.1}$$

where *E* is the instantaneous modulus of elasticity. If the value of *E* is chosen to be the same as the modulus of the elastic range of the constitutive equation, (2.6), then the shock speed has the same value as the characteristic speed  $D_+X/D\bar{t}$  given by equation (4.1). Under such an assumption, the values of *u* and  $\bar{\sigma}$  immediately behind the shock layer must satisfy the characteristic compatibility condition [10]:

$$d\overline{\sigma} - \rho c du = -E\gamma f(\overline{\sigma}/\sigma_0 - 1) \mathbf{1}_+(\overline{\sigma}/\sigma_0 - 1) d\overline{t}, \qquad (5.2)$$

where  $c = U = \sqrt{E/\rho}$ .

The values of u,  $\overline{\sigma}$ , and  $\epsilon$ , immediately behind the shock layer must also satisfy the jump conditions given by equations (2.13) to (2.15). Since u,  $\overline{\sigma} = 0$  in the quiescent region in front of the shock layer, equation (2.14) requires that,

$$\overline{\sigma} = -\rho U u = -\rho c u, \tag{5.3}$$

immediately behind the shock layer. Combining equations (5.2) and (5.3), the following differential equation results:

$$2\beta d\sigma = -f(\sigma) \mathbf{1}_{+}(\sigma) dt, \qquad (5.4)$$

where as before,  $\sigma \equiv (\overline{\sigma}/\sigma_0 - 1)$  and  $t \equiv \alpha c \overline{t}$  with  $\alpha \equiv \beta \gamma \sqrt{\rho E/\sigma_0}$ . Equation (5.4) indicates that, if  $\sigma > 0$ , then the overstress immediately behind the shockfront always attenuates with time along the shock.

Assuming that  $\sigma > 0$  behind the shockfront, equation (5.4) can be integrated by quadrature as follows:

$$t = 2\beta \int^{\sigma} f^{-1}(\zeta) \, d\zeta + C'', \tag{5.5}$$

where the integral is identical to that of equation (4.12). Thus, closed-form solutions of equation (5.5) are possible for special constitutive assumptions. For  $f(\zeta) = \zeta^{\delta}$  with  $\delta \neq 1$ , equation (5.5) becomes

$$t = [2\delta/(1-\delta)] (\sigma_1^{1-\delta} - \sigma^{1-\delta}),$$
 (5.6)

where  $\sigma_1 \equiv \sigma(0)$ , and  $\beta$  has been chosen as  $\delta$ . Therefore, the overstress immediately behind the shock attenuates monotonically with time along the shockfront from  $\sigma = \sigma_1$  at t = 0 to  $\sigma = 0$  at  $t = \infty$ .

It is interesting to note that for  $\delta = 2$ , equation (5.6) can be satisfied by one of the self-similar solutions given in Section 3:

$$8\sigma^{-1} = (x+a) \left[ 2\eta + (\eta^2 - 1) \left\{ A_1 + \ln \left[ (\eta - 1)/(\eta + 1) \right] \right\} \right], \tag{5.7}$$

where  $\eta = (t+a)/(x+a)$ , and a,  $A_1$  are constants. To satisfy the compatibility condition (5.6) for  $\delta = 2$ , the constant a in (5.7) must be chosen as follows:

$$a = 4/\sigma_1. \tag{5.8}$$

Therefore, the dimensionless overstress  $\sigma(x, t)$  behind the shockfront is given by,

$$\sigma = 8 / \left[ (t+4/\sigma_1) \left\{ 2 + (\eta - 1/\eta) \left[ A_1 + \ln\left(\frac{\eta - 1}{\eta + 1}\right) \right] \right\} \right], \tag{5.9}$$

and the stress boundary condition at x = 0 is,

$$\sigma(0,t) = 8/[2(t+4/\sigma_1) + (2t+\sigma_1 t^2/4) \{A_1 - \ln [1+8/(\sigma_1 t)]\}].$$
(5.10)

The behavior of this function for various values of  $A_1$  is shown in Fig. 2.



Fig. 2. Variation of  $\sigma/\sigma_1$  with  $\sigma_1 t/4$  at  $\bar{X} = 0$ . Self-similar solution ( $\delta = 2$ ). (a)  $A_1 = \ln 2$ , (b)  $A_1 = \ln 4$ , (c)  $A_1 = \ln 8$ .

In dimensional forms, the resulting expressions for  $\sigma(\bar{X}, \bar{t})$ ,  $u(\bar{X}, \bar{t})$ , and  $\epsilon(\bar{X}, \bar{t})$  for this case are given as follows:

$$\sigma = \overline{\sigma}/\sigma_0 - 1 = [4c\sigma_0/(E\gamma)](\bar{X} + ct_0)[2c(\bar{X} + ct_0)(\bar{t} + \bar{t}_0) - [c^2\bar{t}(\bar{t} + 2t_0) - \bar{X}(\bar{X} + 2ct_0)]\{\ln[(c\bar{t} + \bar{X} + 2ct_0)/(c\bar{t} - \bar{X})] + B\}]^{-1}, \quad (5.11)$$

$$u = -(\sigma_0/\rho) \left[ \sigma(\bar{t} + t_0) / (\bar{X} + ct_0) + c^{-1} \right], \tag{5.12}$$

$$\epsilon = (\sigma_0/\rho) \left[ \sigma(\bar{t} + t_0)^2 / (\bar{X} + ct_0)^2 + c^{-2} \right], \tag{5.13}$$

where

$$t_0 = 2\sigma_0 / (\gamma \sigma_1 E), \qquad (5.14)$$

and B is a constant. The behavior of the functions  $u(0, \bar{t})$  and  $\epsilon(0, \bar{t})$  for various values of  $A_1$  are indicated in Figs. 3 and 4. It is of interest to note that (5.13) yields a permanent strain  $\epsilon_p$  given by

$$\epsilon_p = \lim_{t \to \infty} \epsilon = (\sigma_0/E) \left[ \left( 4c\sigma_0/A_1\gamma E \right) \right) \left( \bar{X} + ct_0 \right)^{-1} + 1 \right].$$
(5.15)

Typical distributions of the permanent strain are shown in Fig. 5.

# 5.2. Constant speed solution behind an elastic precurser

Duvall [23] suggested that the one-dimensional, unsteady motion in a semi-infinite  $(x \ge 0)$ , rate-sensitive, elastoplastic region generated by a continuously applied load at its boundary (x = 0) may eventually consist of an elastic precurser propagating into an initially quiescent region, an unloading, relaxation zone, and a sub-elastic, constant-speed, nonlinear wave motion as depicted in Fig. 6. After a reasonable length of time, the elastic precurser will be far ahead of the leading wave of the constant speed region



Fig. 3. Variation of  $-[\rho cu/\sigma_0 + 1]/\sigma_1$  with  $\sigma_1 t/4$  at  $\bar{X} = 0$ . Self-similar solution ( $\delta = 2$ ). (a)  $A_1 = \ln 2$ , (b)  $A_1 = \ln 4$ , (c)  $A_1 = \ln 8$ .



Fig. 4. Variation of  $[\rho c^2 \epsilon / \sigma_0 - 1] / \sigma_1$  with  $\sigma_1 t / 4$  at  $\bar{X} = 0$ . Self-similar solution ( $\delta = 2$ ). (a)  $A_i = \ln 2$ , (b)  $A_1 = \ln 4$ , (c)  $A_1 = \ln 8$ .

and the boundary of x = 0 will be far behind it. Relative to an observer moving with the leading wave of the constant speed region, the unsteady motion behind the leading wave becomes essentially steady.

Any of the constant-speed, nonlinear wave solutions described by equation (4.12) in section 4 with  $\bar{c} < 1$  may be considered as a constant-speed portion of such an 'unsteady' motion. If the overstress on the leading wave  $s = s_1$  is  $\sigma_1 > 0$ , then the quadrature expression, (4.12), becomes,

$$s - s_1 = \left[\beta(1 - \bar{c}^2)/\bar{c}\right] \int_{\sigma_1}^{\sigma} f^{-1}(\zeta) \, \mathrm{d}\zeta, \tag{5.16}$$

where  $s \equiv \bar{c}t - x$ , and  $\bar{c} < 1$ . From equation (5.16), the stress boundary condition



Fig. 5. Typical distributions of the permanent strain. Self-similar solution ( $\delta = 2$ ). (a)  $A_1 = \ln 2$ , (b)  $A_1 = \ln 4$ , (c)  $A_1 = \ln 8$ .



Fig. 6. Schematic representation of a nonlinear wave motion behind a relaxation zone. (1) quiescent region, (2) elastic precursor, (3) relaxation zone, (4) sub-elastic, constant speed region.

required to maintain the constant-speed motion can be evaluated in a straightforward manner.

It is of interest to note that, if the initial rate of loading of the applied stress at the boundary is not too high such that the time required to raise the stress  $\bar{\sigma}$  from zero to the value of the static yield stress  $\sigma_0$  is much longer than the pertinent characteristic relaxation time of the medium, then a complete description of a possible non-linear wave motion for a continuously loading boundary may be constructed exactly. Figure 7 is a schematic representation of such a motion. It consists of four solution regions



Fig. 7. Schematic representation of a possible nonlinear wave motion due to a continuously loading boundary at  $\bar{X} = 0$ .

separated by three discontinuities described as follows:

(1) Solution regions

 $R_1$ : the undisturbed region,  $\overline{\sigma} = 0$ 

 $R_2$ : the elastic region,  $\overline{\sigma} < \sigma_0$ 

 $R_3$ : the constant stress region,  $\overline{\sigma} = \sigma_0$ 

 $R_4$ : the constant speed solution region,  $\overline{\sigma} > \sigma_0$ .

(2) Discontinuities

 $S_1$ : the leading elastic wave

 $S_2$ : the trailing elastic wave

 $S_3$ : the leading constant speed wave.

Such an unsteady motion may be generated by a monotonically increasing stress boundary condition. The manner in which the stress varies at the boundary in the elastic range can be quite arbitrary (so long as the rate of loading is small enough so that there will be no dynamic overstressing in the elastic precurser) and has been chosen as a linear function of  $\bar{t}$  in Fig. 7 for simplicity, while the rate of stressing beyond the static yield stress must follow the expression given in equation (4.12) or the differential equation, (4.7). It is clear from equation (4.7) that nontrivial solutions in  $R_4$  can be generated from a leading wave  $S_3$  on which the stress is  $\overline{\sigma} = 0$  only if f(0) > 0. The value of f(0) can be arbitrarily small. Alternatively, if f(0) = 0 for a specific constitutive relation, a solution such as the one depicted by Fig. 7 can still be generated by viewing  $S_3$  as a small discontinuity in the value of  $\overline{\sigma}$  such that the overstress jumps across this 'plastic shock' from zero to some small constant positive value  $\sigma_1 \ll 1$ . The jump in  $\sigma$ from 0 to  $\sigma_1$  at the boundary of  $\bar{X} = 0$  may be viewed as the result of a very fast rate of loading r in a small interval of time  $\Delta \bar{t}$  near  $\bar{t} = \bar{t}_0$  such that  $\lim (r\Delta \bar{t}) = \bar{\sigma}_1 = (1 + \sigma_1)\sigma_0$ and  $0 < \sigma_1 \leq 1$ . The fact that  $\overline{\sigma} = \sigma_0$  in  $R_3$  is an admissible solution can be deduced immediately from equation (2.7).

Acknowledgment-This investigation was partially supported by the Advanced Research Projects Agency of the Department of Defense and monitored by the Office of Naval Research under Contract Number N00014-68-A-0187, and partially supported by the National Aeronautics and Space Administration under Grant Number NASA-NGL34-002-084. A portion of this work was completed when one of us (T. S. C.) was visiting the Center for the Application of Mathematics, Lehigh University, and the Department of

Theoretical and Applied Mechanics, Cornell University. The authors are indebted to Professors A. C. Eringen, Y. Horie, G. S. S. Ludford, R. S. Rivlin, and E. Varley for their comments and suggestions.

#### REFERENCES

- [1] R. S. RIVLIN, Q. appl. Math. 14, 83 (1956).
- [2] N. CRISTESCU, Dynamic Plasticity. North-Holland (1967).
- [3] V. V. SOKOLOVSKII, Dokl. Akad. Nauk SSSR 60, 775 (1948).
- [4] V. V. SOKOLOVSKII, Prikl. Mat. Mekh. 12, 261 (1948).
- [5] A. C. PIPKIN, Q. appl. Math. 23, 297 (1965).
- [6] E. VARLEY and T. G. ROGERS, Proc. R. Soc. Series A 296, 498 (1967).
- [7] R. COURANT and K. O. FRIEDRICHS, Supersonic Flow and Shock Waves. Interscience (1948).
- [8] G. R. COWPER and P. S. SYMONDS, *Technical Report No.* 28, *Contract Nonr* 562 (10). Brown University (1957).
- [9] P. PERZYNA, Archwm Mech. stosow 15, 113 (1963).
- [10] L. E. MALVERN, Q. appl. Math. 8, 405 (1951).
- [11] B. D. COLEMAN and M. E. GURTIN, Proc. IUTAM Symp. Vienna 54, Springer-Verlag (1968).
- [12] J. DUNWOODY and N. DUNWOODY, Int. J. Engng Sci. 3, 417 (1965).
- [13] D. F. PARKER and E. VARLEY, Q. Jl Mech. appl. Math. 21(3), 329 (1968).
- [14] M. J. MANJOINE, J. appl. Mech. 11, 211 (1944).
- [15] E. W. PARKES, Proc. Instn civil Engrs 10, 277 (1958).
- [16] N. PERRONE, Exp. Mech. 8, 232 (1968).
- [17] S. R. BODNER and P. S. SYMONDS, Proc. 2nd Symp. nav. struct. Mech. 488, Pergamon Press (1960).
- [18] T. C. T. TING and P. S. SYMONDS, Proc. 4th U.S. natn. Congr. appl. Mech. 1153 (1962).
- [19] S. R. BODNER and P. S. SYMONDS, J. appl. Mech. 29, 719 (1962).
- [20] T. C. T. TING, Q. appl. Math. 21, 133 (1963).
- [21] N. PERRONE, J. appl. Mech. 32, 489 (1965).
- [22] A. J. A. MORGAN, Q. J. Math. 2, 250 (1952).
- [23] G. E. DUVALL, Proc. IUTAM Symp. Stress Waves in Anelastic Solids 20, Springer-Verlag (1964).

## (Received 20 July 1971)

**Résumé** – Deux classes de solutions du type fermé d'ondes non-linéaires à une dimension, dans un matériau élasto-plastique sensible àla vitesse sont présentées. Une classe de ces solutions est auto-semblable et l'autre classe consiste en des propagations à vitesse constante. Des applications de ces solutions à des mouvements instables en arrière de la propagation de discontinuités sont également considérées.

Zusammenfassung – Zwei Klassen von Lösungen geschlossener Form von eindimensionalen, nicht-linearen Wellen in einem ratenempfindlichen elestoplastischen Stoffe werden mitgeteilt. Eine Klasse dieser Lösungen ist selbst-ähnlich und die andere Klasse besteht aus konstanten Geschwindigkeitsfortpflanzungen. Anwendungen dieser Lösungen auf unstetige Bewegungen hinter sich fortpflanzenden Diskontinuitäten werden auch untersucht.

**Sommario**–Si tratta di una relazione su due classi di soluzioni di forma chiusa di onde monodimensionali e non lineari in un materiale elastoplastico e sensibile al ritmo. Una classe di queste soluzioni è autosimilare e l'altra consiste in propagazioni a velocità constante. Si prendono anche in considerazione le applicazioni di queste soluzioni ai movimenti instabili dietro le discontinuità di propagazione.

Абстракт — Установлены два класса решений замкнутого вида для одномерных нелинейных волн в эластопластическим материале чувствительном к скорости. Один класс этих решений — самоподобным, а другой состоит из распространений постоянной скорости. Рассмотрены и применения эти решений к нестационарным движениям за распространяющиесь разрывы.
# 75.04939 N75-15329

#### VOLUME 15, NUMBER 3

MARCH 197,2

## **Research** Notes

Research Notes published in this Section include important research results of a preliminary nature which are of special interest to the physics of fluids and new research contributions modifying results already published in the scientific literature. Research Notes cannot exceed five printed columns in length including space allowed for title, abstract, figures, tables, and references. The abstract should have three printed lines. Authors must shorten galley proofs of Research Notes longer than five printed columns before publication.

### Curved Characteristics Behind Blast Waves

O. LAPORTE

Department of Physics, University of Michigan, Ann Arbor, Michigan 48104

AND

T. S. CHANG*

Center for Space Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (Received 22 December 1970; final manuscript received 6 August 1971)

Exact solutions, expressed in closed form in terms of elementary functions, are presented for the three sets of curved characteristics behind a self-similar, strong blast wave.

Blast waves are produced in gaseous media due to the sudden deposition of large amounts of energy in relatively small regions. The propagation of a pointsource blast wave into an ideal gas, whose initial pressure is assumed to be negligibly low, is known to be self-similar. This property can be deduced using either dimensional arguments¹ or invariant theorems of continuous groups of transformations.² Closed form solutions describing the flow variables in the nonisentropic region behind such a blast wave in n=1, 2, 3dimensions were obtained independently by von Neumann³ and Sedov.⁴ The reflection of strong blast waves was discussed in an earlier paper⁵ by the authors.

It is known that the basic equations governing the nonisentropic flow behind a propagating blast wave admit three distinct characteristic directions given by

$$\frac{dr}{dt} = u, \qquad u \pm a, \tag{1}$$

where r is the radial distance from the point of explosion, t is the elapsed time, u is the velocity, and a is the isentropic speed of sound. The first characteristic direction coincides with the local particle velocity and the family of characteristics is, therefore, composed of particle lines. This direction corresponds to the speed of propagation of entropy disturbances. The other two characteristic directions correspond to the local speeds of propagation of pressure, density, or velocity disturbances. The purpose of this note is to report the interesting result that these three families of curved characteristics can also be represented in closed form, and remarkably, still in terms of elementary functions.

First, consider the (u) characteristics or particle lines. According to its definition and the self-similar solution of Ref. 5, it may be easily deduced that along a (u) characteristic,

$$d\mathbf{r}/dt = (2+n) U\hat{\mathbf{a}}\mathbf{y}(\hat{\mathbf{a}})/2, \qquad (2$$

where

$$U = \lceil 2K_n / (2+n) \rceil (E_0 / \rho_0)^{1/(2+n)} t^{-n/(2+n)}$$
(3)

is the shock speed,  $y(\mathfrak{A})$  is given by Eq. (5) of Ref. 5,  $\mathfrak{A} = ut/r$ ,  $E_0$  is the energy released per unit area for a planar wave, per unit length for a cylindrical wave, and the total energy released for a spherical wave,  $\rho_0$  is the initial density, and  $K_n$  is determined by the condition of conservation of total energy.

But, from the definition of the similarity parameter and the expression for the shock radius of Ref. 5, it can be shown that, in general,

$$d\mathbf{r}/dt = K_n (E_0/\rho_0)^{1/(2+n)} t^{-n/(2+n)} [2y/(2+n) + t \, dy/dt].$$
(4)

Therefore, from Eq. (5) of Ref. 5 and Eqs. (2)-(4), it is found that,

$$d \ln t = \frac{d \ln y}{da} \frac{da}{a - \lfloor 2/(2+n) \rfloor},$$
 (5)

along a particle line, where,

$$\frac{d\ln y}{da} = \frac{(\gamma-1)a^2/2 + [a-2/(2+n)][a-2/\gamma(2+n)]}{a[2/\gamma(2+n)-a][(2-n+n\gamma)a/2-1]},$$
(6)

and  $\gamma$  is the adiabatic index. Thus, Eq. (5) can be integrated in terms of elementary functions. The result is

$$\hat{t} = \alpha \hat{u} (A_2 - \hat{u})^{\beta_1} (\hat{u} - A_2 / \gamma)^{\beta_2} (\hat{u} - A_5^{-1})^{\beta_3}, \quad (7)$$

where

### THE PHYSICS OF FLUIDS

.-

where,

$$\begin{aligned} \alpha &= A_1 (A_2 - A_1^{-1})^{-\beta_1} (A_1^{-1} - A_2/\gamma)^{-\beta_2} (A_1^{-1} - A_5^{-1})^{-\beta_3}, \\ \beta_1 &= (2\gamma + n - 2) [n(\gamma - 2)]^{-1} \beta_2, \\ \beta_2 &= n\gamma (2+n) (2-\gamma) (\gamma - 1) [2(2n\gamma + 2\gamma - n + 2) \\ \times (2-n-2\gamma) + 2n\gamma (2-\gamma) (n\gamma + 4) + 2(\gamma + 1) (2+n) \\ &\times (n\gamma^2 - 2n\gamma + n + 2\gamma - 2) ]^{-1}, \\ \beta_3 &= (2+n) (n\gamma^2 - 2n\gamma + n + 2\gamma - 2) [n(2-\gamma) \\ &\times (n\gamma - n + 2) ]^{-1} \beta_2 - 1, \end{aligned}$$

 $\hat{t} = t/t_0$  is a dimensionless time normalized with respect to some convenient time scale  $t_0$ , and the A's are given by Eqs. (6) of Ref. 5.

To complete the solution for the particle lines, an expression relating  $(r, t, \hat{u})$  is obtained from Eqs. (2) and (5) of Ref. 5. In dimensionless form, this expression becomes,

$$\hat{r} = (A_1 \hat{u})^{-A_2} [A_3(\gamma \hat{u}/A_2 - 1)]^{A_8} \\ \times [A_1(1 - A_5 \hat{u})/(A_1 - A_5)]^{A_6 - A_9} \hat{t}^{2/(2+n)}, \quad (9)$$

where  $\hat{r} = r/R(t_0)$ . Equations (8) and (9) form the closed form parametric solution for the family of (u)characteristics or particle lines behind a self-similar blast wave.

For the  $(u \pm a)$  characteristics, we have

$$\begin{aligned} \frac{d_{\pm}\mathbf{r}}{dt} &= \mathbf{u}' f \pm \left[\frac{\gamma p' g}{\rho' h}\right]^{1/2} \\ &= \left[U/(\gamma+1)\right] \{2A_1 \hat{\mathbf{u}} y(\hat{\mathbf{u}}) \\ &\pm \left[2\gamma(\gamma-1) g(\hat{\mathbf{u}})/h(\hat{\mathbf{u}})\right]^{1/2} \}, \end{aligned}$$
(10)

where  $g(\hat{u})$ ,  $h(\hat{u})$ , and  $y(\hat{u})$  are given by Eqs. (4) and (5) of Ref. 5, and the shock speed U by Eq. (3). Combining with Eq. (4) and after considerable manipu-



FIG. 1. Curved characteristics behind a strong blast wave for  $n=3, \gamma=5/3.$ 

lation, it is found that

$$d \ln t = G(\hat{u}) \, d\hat{u},\tag{11}$$

$$G(\hat{a}) = (d \ln y/d\hat{a}) \{ [\hat{a} - 2/(2+n)] \\ \pm [\gamma(\gamma-1)(2-2\hat{a}-n\hat{a})/2(2\gamma\hat{a}+n\gamma\hat{a}-2)]^{1/2}\hat{a} \}^{-1}.$$
(12)

The expression  $d \ln y/d\hat{u}$  in  $G(\hat{u})$  is known and given by Eq. (6). Therefore,  $G(\mathfrak{A})$  may be reduced to an algebraic function involving square roots of second degree polynomials of  $\hat{u}$  as radicals. This means that Eq. (11) can be integrated in terms of elementary, albeit transcendental, functions. The results are

$$\ln \hat{t} = K_{\pm} + \ln |A_5 \hat{u}/(1 - A_5 \hat{u})| \pm (m/l^{1/2})$$

$$\times \sin^{-1} \{ [l/(A_5^{-1} - \hat{a}) - k]/(k^2 - l)^{1/2} \},$$
 (13) where,

$$k = A_{5}^{-1} - (\gamma + 1) [\gamma (2+n)]^{-1},$$
  

$$l = A_{5}^{-2} - 2A_{5}^{-1} (\gamma + 1) [\gamma (2+n)]^{-1} + 4 [\gamma (2+n)^{2}]^{-1},$$
  

$$m = -A_{5}^{-1} [(\gamma - 1)/2]^{1/2}.$$
(14)

Equation (13) and the parametric expression for  $(\hat{r}, \hat{t}, \hat{u})$  given by Eq. (9) form the closed form parametric solutions for the two families of  $(u \pm a)$  characteristics in the dimensionless  $\hat{r}-\hat{t}$  plane. The constant  $K_{\pm}$  in Eq. (13) must be evaluated for each characteristic from a set of known values of  $(\hat{r}, \hat{t}, \hat{u})$ .

Figure 1 displays a typical set of solution curves expressing the dimensionless time  $\hat{t}$  as functions of the dimensionless distance  $\hat{r}$  for n=3 and  $\gamma = \frac{5}{3}$ . The terminating curve A is the path of the front of the blast wave. Behind A, there are three families of characteristics: (1) The solid curves are the (u) characteristics or particle lines; (2) the dashed curves are the (u+a)characteristics; and (3) the dot-dashed curves are the (u-a) characteristics.

The authors are grateful to Mr. T. Tucker of Oak Ridge National Laboratory for computational assistance.

This research was supported in part by the Department of Defense Project Themis at Lehigh University under Contract Number DAAD05-69-C-0053 monitored by the Ballistic Research Laboratories, and by the National Aeronautics and Space Administration Grant number NASA-NGL34-002-084.

A portion of this manuscript was completed when one of us (T.S.C.) was visiting Cornell University under the auspices of the Army Research Office, Durham.

* Permanent address: North Carolina State University, Raleigh, North Carolina 27607.

¹G. I. Taylor, Report of Civil Defense Research Committee of the Ministry of Home Security, RC-210, 12 (1941); also, Proc. Roy. Soc. (London) A201, 159 (1950).
 ²O. Laporte and T. S. Chang, Ballistic Research Laboratories Technical Report, CAM-110-14 (1971).

⁸ J. von Neumann, Collected Works of von Neumann, edited by A. H. Taub (Pergamon, New York, 1963), Vol. 6, p. 219. ⁴ L. I. Sedov, Prikl. Mat. Mekh. 10, 241 (1946); also, Similarity ⁵ T. S. Chang and O. Laporte, Phys. Fluids 7, 1225 (1964).

### THE PHYSICS OF FLUIDS

### VOLUME 16, NUMBER 1

Comments on "Application of singular eigenfunction expansions to the propagation of periodic disturbances in a radiating grey gas"

T. S. Chang*

Physics Department, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

and

K. H. Kim and M. N. Özişik Departments of Engineering Mechanics and Mechanical and Aerospace Engineering, North Carolina State University,

Departments of Engineering Mechanics and Mechanica and Aerospace Engineering, North Carolina State University

Raleigh, North Carolina 27607

(Received 5 June 1972)

Recently, we have been extending our analysis¹ of sound propagation in dissociative, radiative media to include the effects of scattering. It is of interest to note that the set of pertinent integrodifferential equations can also be solved exactly using the singular eigenfunction expansion technique. For the special case of an ideal, grey, scattering gas, our resulting integral equation for the elementary solutions (in terms of the notations of Cheng and Leonard²) becomes

$$\left(1-\frac{\mu}{\mathrm{Bu}\nu}\right)\Psi_{\nu}(\mu) = \frac{1}{2}\{\left[\bar{g}(\nu;c)\right]^{-1}+c\} \int_{-1}^{1}\Psi_{\nu}(\mu') d\mu',$$
(1)

with

$$\bar{g}(\nu; c) = \frac{[(1-c)+i\beta](\nu^2-\bar{\xi}^2)}{(\nu^2+1/\gamma)(1-c)^2},$$

and

$$\bar{\xi}^2 = -\frac{(1-c)/\gamma + i\beta}{(1-c) + i\beta},$$

where c denotes the single scattering albedo which is the ratio of the scattering coefficient to the extinction coefficient.

It can be shown that Eq. (1) admits both discrete eigenvalues and a continuous spectrum. The discrete eigenvalues are determined by the dispersion relation





$$\Lambda(\nu) = 1 - \frac{1}{2} (\operatorname{Bu}\nu) \{ [\bar{g}(\nu; c)]^{-1} + c \} \int_{-1}^{1} \frac{d\mu}{\operatorname{Bu}\nu - \mu} = 0, \quad (2)$$

which for c=0 corresponds to Eq. (11) of Ref. 2. Using the argument principle we are able to show that Eq. (2) admits either two or four discrete roots in plus-minus complex pairs. In Figs. 1 and 2 we present the discrete eigenvalues of  $\nu_0$  and  $\nu_1$  for Bo (Boltzmann number) = 3.23,  $\gamma = 1.4$ , and c=0.2. We note that, similar to the results of Cheng and Leonard, there exists a frequency cutoff of the second pair of roots  $\pm \nu_1$  below a critical Bouguer number, Bu $\cong$ 0.08161.

We find that it is possible to obtain explicit expressions for the eigenroots of the transcendental equation (2). For example, to determine the explicit expressions for the four roots for c=0 with  $Bu \ge Bu_1=0.1107$ , we merely calculate  $\Lambda(z)$  and  $X(\pm z)$  at two arbitrary values of  $z=z_{1,2}$  (preferably along the imaginary axis) according to Eqs. (12) and (26) of Ref. 2. Equation (34) of Ref. 2 then provides a pair of coupled polynomial equations for  $\nu_0$  and  $\nu_1$ ,

$$(\nu_0^2 - z_i^2) (\nu_1^2 - z_i^2) = \frac{\Lambda(z_i) (\xi^2 - z_i^2) [1 + (1/i\beta)]}{X(z_i) X(-z_i)}$$
  
for  $i = 1$  and 2. (3)

Equations (3) can be solved readily to yield the desired explicit expressions for  $\pm \nu_0$  and  $\pm \nu_1$ . Results of some



FIG. 2. Second discrete root  $(\nu_1)$  of  $\Lambda(\nu) = 0$  for Bo=3.23,  $\gamma = 1.4$ , and c = 0.0, 0.2.

JANUARY 1973

TABLE	I.	Discrete	eigenvalues	for	Bu = 1/6,	Bo = 3.23,	$\gamma = 1.4$ ,
			and	c = 0	).		

1 Park	a	b	с
Rev ₀	0.07738627380	0.07738629373	0.07738
Im _{v0}	-0.9372360013	-0.9372359958	-0.9372
Rev1	4.860766870	4.860766867	4.860
Im _{µ1}	-0.7599477400	-0.7599477363	-0.7599

^a Calculated using a bisection method where the roots are determined by simultaneous sign changes of the real and imaginary parts of  $\Lambda(z)$ .

^b Calculated using the explicit expressions.

^o Values provided by P. Cheng.

sample calculations of the discrete eigenvalues based on this method have been compared with those obtained using the more conventional numerical schemes in Table I. In general, we are able to obtain an accuracy

up to eight significant figures using the explicit expressions.

The authors are indebted to Professor P. Cheng for his assistance and for providing us with the numerical values quoted in Table I.

We are grateful to Dr. E. E. Burniston and Dr. C. E. Siewert for valuable discussion and to Dr. J. T. Kriese for his help in calculating the eigenroots using the explicit scheme.

This research was supported in part by National Aeronautics and Space Administration grant NGL34-002-084 and National Science Foundation grant GU-1590.

* Permanent address: Riddick Laboratories, North Carolina State University, Raleigh, North Carolina 27607.
¹ G. K. Lea and T. S. Chang, Phys. Fluids 12, 983 (1969).
² P. Cheng and A. Leonard, Phys. Fluids 14, 906 (1971).





PERGAMON PRESS OXFORD · NEW YORK

1

Reprinted from

Int. J. Engng Sci., 1974, Vol. 12, pp. 441-470. Pergamon Press. Printed in Great Britain

N75-15329

### ELEMENTARY SOLUTIONS OF COUPLED MODEL EQUATIONS IN THE KINETIC THEORY OF GASES

### J. T. KRIESE†

Department of Nuclear Engineering, North Carolina State University, Raleigh, North Carolina 27607, U.S.A.

### T. S. CHANG‡

Physics Department, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, U.S.A.

### C. E. SIEWERT

Department of Nuclear Engineering, North Carolina State University, Raleigh, North Carolina 27607, U.S.A.

Abstract—The method of elementary solutions is employed to solve two coupled integrodifferential equations sufficient for determining temperature-density effects in a linearized BGK model in the kinetic theory of gases.

Full-range completeness and orthogonality theorems are proved for the developed normal modes and the infinite-medium Green's function is constructed as an illustration of the full-range formalism.

The appropriate homogeneous matrix Riemann problem is discussed, and half-range completeness and orthogonality theorems are proved for a certain subset of the normal modes. The required existence and uniqueness theorems relevant to the **H** matrix, basic to the half-range analysis, are proved, and an accurate and efficient computational method is discussed. The half-space temperature-slip problem is solved analytically, and a highly accurate value of the temperature-slip coefficient is reported.

### 1. INTRODUCTION

THERE EXISTS in the kinetic theory of gases a class of one-dimensional problems for which the transverse momentum and heat-transfer effects can be separated by projecting the basic kinetic equation describing the particle distribution function onto certain properly chosen directions in a Hilbert space. The resulting expression describing the heat-transfer and compressibility effects is a vector integrodifferential equation with a matrix kernel similar in form to one studied previously by Bond and Siewert[4] and Burniston and Siewert[5] in connection with the scattering of polarized light. It can be shown that such a vector integrodifferential equation admits a general solution similar to that suggested by Case[7] for scalar transport problems and applied by Cercignani[12] to kinetic equations.

We develop in this paper the elementary solutions to the vector integrodifferential equation basic to a linearized, constant collision frequency (BGK) model suggested by Bhatnagar *et al.*[3] and Welander[29]. The elementary solutions, some of which are generalized functions [14], can be shown to possess rather general full-range and half-range completeness and orthogonality properties. The expansion (or completeness) theorems are proved by reducing a system of singular integral equations to an equivalent matrix Riemann problem and subsequently making use of the theory of Mandžavidze and Hvedelidze [20] and Muskhelishvili [21] to establish the solubility of the resulting equations.

[†]Present Address: Bettis Atomic Power Laboratory, Westinghouse Electric Corporation, Pittsburgh, Pennsylvania 15122, U.S.A.

[‡]Permanent Address: Riddick Laboratories, North Carolina State University, Raleigh, North Carolina 27607, U.S.A.

As an application of our established analysis, we construct in this paper the infinitemedium Green's function useful for developing particular solutions to the basic transport equation. We also make use of the half-range expansion theorem to solve the notoriously difficult temperature slip problem considered previously [2, 19, 23, 28, 29] by approximate methods. Our solution permits an accurate computation of the 'temperature slip coefficient' which may be used to evaluate the merits of approximate techniques.

### 2. THE KINETIC MODEL AND LINEARIZATION

Basically, the BGK model is constructed by replacing the collision integral in the Boltzmann equation by a more tractable relaxation term; we therefore write

$$\left[\frac{\partial}{\partial \tau} + \mathbf{u} \cdot \nabla\right] f(\mathbf{y}, \mathbf{u}, \tau) = \nu [\hat{f}(\mathbf{y}, \mathbf{u}, \tau) - f(\mathbf{y}, \mathbf{u}, \tau)], \qquad (2.1)$$

where  $f(\mathbf{y}, \mathbf{u}, \tau)$  is the particle distribution function,  $\mathbf{y}$  is the position vector,  $\mathbf{u}$  is the particle velocity,  $\tau$  is the time, and  $\nu$  is a characteristic collision frequency. To ensure that the model conserves particles, momentum and energy, we require that

$$\int [\hat{f}(\mathbf{y},\mathbf{u},\tau) - f(\mathbf{y},\mathbf{u},\tau)] \mathbf{U} \,\mathrm{d}^3 u = \mathbf{0}, \qquad (2.2)$$

where the integration is to be taken over all velocity space and U is a five-element vector with components 1,  $u_1$ ,  $u_2$ ,  $u_3$ , and  $u^2$ , the collisional invariants. Here  $u_{\alpha}$ ,  $\alpha = 1, 2$ , and 3, and u are respectively the components and magnitude of u. The invariance requirements given by equation (2.2) can be satisfied by choosing

$$\hat{f}(\mathbf{y}, \mathbf{u}, \tau) = n(\mathbf{y}, \tau) \left[ \frac{m}{2\pi k T(\mathbf{y}, \tau)} \right]^{3/2} \exp\left[ -\frac{m |\mathbf{u} - \mathbf{q}(\mathbf{y}, \tau)|^2}{2k T(\mathbf{y}, \tau)} \right],$$
(2.3)

the local Maxwellian distribution. Here m is the particle mass and k is the Boltzmann constant. In addition

$$\begin{bmatrix} n(\mathbf{y},\tau) \\ n(\mathbf{y},\tau) \, \mathbf{q}(\mathbf{y},\tau) \\ 3n(\mathbf{y},\tau) \, kT(\mathbf{y},\tau) \end{bmatrix} = \int f(\mathbf{y},\mathbf{u},\tau) \begin{bmatrix} 1 \\ \mathbf{u} \\ m|\mathbf{u}-\mathbf{q}(\mathbf{y},\tau)|^2 \end{bmatrix} \mathrm{d}^3 u \tag{2.4}$$

defines the local number density  $n(\mathbf{y}, \tau)$ , the fluid velocity  $\mathbf{q}(\mathbf{y}, \tau)$ , and the absolute temperature  $T(\mathbf{y}, \tau)$ .

It is not difficult to demonstrate that the model given by equations (2.1), (2.3), and (2.4) admits an H theorem, such that

$$\frac{\partial}{\partial \tau} \int f(\mathbf{u}, \tau) \ln f(\mathbf{u}, \tau) \,\mathrm{d}^3 u \leq 0, \tag{2.5}$$

for spatially uniform conditions. Thus the model possesses many of the important properties of the full Boltzmann equation.

Because of equation (2.4), the model is described by a nonlinear functional equation; however, we consider circumstances for which the particle distribution function  $f(\mathbf{y}, \mathbf{u}, \tau)$  differs only slightly from an initial Maxwellian distribution  $f_0(\mathbf{u})$  characterized by a set of constant initial values of the number density  $n_0$ , fluid velocity  $\mathbf{q}_0$ , and temperature  $T_0$ . If we now write

$$f(\mathbf{y}, \mathbf{u}, \tau) = f_0(\mathbf{u}) + f_1(\mathbf{y}, \mathbf{u}, \tau), \qquad (2.6)$$

and truncate  $\hat{f}(\mathbf{y}, \mathbf{u}, \tau)$  at the linear terms in a Taylor series expansion about  $f_0$ , we find that equation (2.1) can be approximated by

$$\left[\frac{\partial}{\partial t} + (\mathbf{c} + \mathbf{v}) \cdot \nabla + 1\right] \hat{h}(\mathbf{x}, \mathbf{c}, t) = \int \hat{h}(\mathbf{x}, \mathbf{c}', t) K(\mathbf{c}' : \mathbf{c}) \mathrm{e}^{-\mathrm{c}'^2} \mathrm{d}^3 c', \qquad (2.7)$$

with

$$K(\mathbf{c}':\mathbf{c}) = \frac{1}{\pi^{3/2}} \bigg[ 1 + 2\mathbf{c} \cdot \mathbf{c}' + \frac{2}{3} \bigg( c^2 - \frac{3}{2} \bigg) \bigg( c'^2 - \frac{3}{2} \bigg) \bigg], \qquad (2.8)$$

and where

$$\mathbf{x} = \nu \left(\frac{m}{2kT_0}\right)^{1/2} \mathbf{y}, \qquad t = \nu \tau, \tag{2.9a,b}$$

$$\mathbf{c} = \left(\frac{m}{2kT_0}\right)^{1/2} (\mathbf{u} - \mathbf{q}_0), \qquad \mathbf{v} = \left(\frac{m}{2kT_0}\right)^{1/2} \mathbf{q}_0, \qquad (2.10a,b)$$

and

$$f_0(\mathbf{c})h(\mathbf{x}, \mathbf{c}, t) = f_1(\mathbf{x}, \mathbf{c}, t).$$
 (2.11)

A model equation more general than equation (2.7) may be constructed, as suggested by Gross and Jackson[13] and Sirovich[27], by expanding the kernel of a linearized Boltzmann equation in an appropriately chosen complete and orthonormal set of eigenfunctions. We shall, however, restrict our attention to the linearized model described by equation (2.7).

If we now let  $\phi_{\alpha}(\mathbf{c})$ ,  $\alpha = 1, 2, ..., 5$ , denote the elements of the vector

 $\boldsymbol{\phi}(\boldsymbol{c}) = \frac{1}{\pi^{3/4}} \begin{bmatrix} 1 \\ \sqrt{\frac{2}{3}}(c^2 - \frac{3}{2}) \\ \sqrt{2} c_2 \\ \sqrt{2} c_3 \\ \sqrt{2} c_1 \end{bmatrix}, \qquad (2.12)$ 

where  $c_1$ ,  $c_2$ ,  $c_3$ , and c are respectively the components and magnitude of **c**, then equation (2.8) can be written as

$$K(\mathbf{c}':\mathbf{c}) = \hat{\boldsymbol{\phi}}(\mathbf{c})\boldsymbol{\phi}(\mathbf{c}'). \tag{2.13}$$

Here the superscript tilde is used to denote the transpose operation. We note that the

elements of  $\phi(c)$  obey the orthonormal conditions

$$(\phi_{\alpha}, \phi_{\beta})_{a} = \delta_{\alpha,\beta}; \ \alpha, \beta = 1, 2, \dots, 5,$$

$$(2.14)$$

in a Hilbert space (a) of the functions of c defined by the inner product

$$(A_1, A_2)_a = \int A_1(\mathbf{c}) A_2(\mathbf{c}) \, \mathrm{e}^{-c^2} \, \mathrm{d}^3 c.$$
 (2.15)

The elements  $\phi_{\alpha}(\mathbf{c})$  are, of course, related to the collisional invariants which define the U vector in equation (2.2), and the orthogonality conditions stated in equation (2.14) are therefore direct consequences of the invariance requirements of equation (2.2).

### 3. THE VECTOR KINETIC EQUATION

As stated in the Introduction, we are primarily interested in steady-state gas-kinetic problems with plane symmetry. Without loss of generality, we set  $\mathbf{q}_0 = \mathbf{0}$ , and thus the steady-state version of equation (2.7) for

$$h(x_1, \mathbf{c}) \stackrel{\Delta}{=} \hat{h}(x_1, \mathbf{c}) - 2\pi^{-3/2} c_1(c_1, \hat{h})_a$$
(3.1)

becomes

$$\left[c_1\frac{\partial}{\partial x_1}+1\right]h(x_1,\mathbf{c}) = \sum_{\alpha=1}^4 \phi_\alpha(\mathbf{c})(\phi_\alpha, h)_a.$$
(3.2)

We now follow Cercignani[12] and consider the functions

$$g_{1}(c_{2}, c_{3}) = \pi^{-1/2}, \qquad g_{2}(c_{2}, c_{3}) = \pi^{-1/2}(c_{2}^{2} + c_{3}^{2} - 1),$$

$$g_{3}(c_{2}, c_{3}) = \left(\frac{\pi}{2}\right)^{-1/2} c_{2}, \quad \text{and} \quad g_{4}(c_{2}, c_{3}) = \left(\frac{\pi}{2}\right)^{-1/2} c_{3}.$$
(3.3)

It is a straightforward matter to demonstrate that the *g* functions given by equations (3.3) satisfy the orthonormal conditions

$$(g_{\alpha}, g_{\beta})_b = \delta_{\alpha,\beta}, \alpha = 1, 2, 3, \text{ and } 4,$$
 (3.4)

in a subspace (b) of the functions of  $c_2$  and  $c_3$  defined by the inner product

$$(B_1, B_2)_b = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} B_1(c_2, c_3) B_2(c_2, c_3) \mathrm{e}^{-(c_2^2 + c_3^2)} \mathrm{d}c_2 \mathrm{d}c_3.$$
(3.5)

We now span the Hilbert space (b) by the subspace (c) characterized by the  $g_{\alpha}$ 's and a subspace (d), the orthogonal complement to (c); subsequently we expand  $h(x_1, c)$  of equation (3.2) in the manner

$$h(x_1, \mathbf{c}) = \sum_{\alpha=1}^{4} \Psi_{\alpha}(x_1, c_1) g_{\alpha}(c_2, c_3) + \Psi_5(x_1, \mathbf{c}), \qquad (3.6)$$

where  $\Psi_{s}(x_{1}, \mathbf{c})$  is the component of  $h(x_{1}, \mathbf{c})$  belonging to the subspace (d). Such an

expansion yields the interesting property that the inner products  $(\Psi_{\alpha}, \phi_{\alpha})_{a}$ ,  $\alpha = 1, 2, 3$ , and 4, are simply related to the perturbations of the number density, the temperature, and the transverse components of the fluid velocity, respectively.

Substituting equation (3.6) into equation (3.2) and projecting each term onto the appropriate directions of  $g_{\alpha}$  in the Hilbert space (b), we obtain

$$\left[\mu\frac{\partial}{\partial x}+1\right]\hat{\Psi}(x,\mu) = \frac{1}{\sqrt{\pi}}\mathbf{J}(\mu)\int_{-\infty}^{\infty} \tilde{\mathbf{J}}(\mu')\hat{\Psi}(x,\mu')\,\mathrm{e}^{-\mu'^{2}}\,\mathrm{d}\mu',\qquad(3.7)$$

where  $\hat{\Psi}(x, \mu)$  is a four-element vector with components  $\Psi_{\alpha}(x, \mu), \alpha = 1, 2, ..., 4$ , and

$$\mathbf{J}(\mu) = \begin{bmatrix} \sqrt{\frac{2}{3}}(\mu^2 - \frac{1}{2}) & 1 & 0 & 0\\ \sqrt{\frac{2}{3}} & 0 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}.$$
 (3.8)

For convenience, we have changed the variables  $x_1$  and  $c_1$  to x and  $\mu$ . We note that the two functions  $\Psi_1(x, \mu)$  and  $\Psi_2(x, \mu)$ , characterizing the perturbations of the number density and temperature respectively, are described by a set of two coupled integrodifferential equations. These two equations are, of course, uncoupled from the functions  $\Psi_3(x, \mu)$  and  $\Psi_4(x, \mu)$  which describe the perturbations of the transverse momenta.

# 4. ELEMENTARY SOLUTIONS OF THE TWO-VECTOR TRANSPORT EQUATION RELEVANT TO TEMPERATURE-DENSITY EFFECTS

We are interested in the steady-state, gas-kinetic effects of temperature-density variations in plane-parallel media. According to equation (3.7), the relevant coupled equations are

$$\mu \frac{\partial}{\partial x} \Psi(x,\mu) + \Psi(x,\mu) = \frac{1}{\sqrt{\pi}} \mathbf{Q}(\mu) \int_{-\infty}^{\infty} \tilde{\mathbf{Q}}(\mu') \Psi(x,\mu') \mathrm{e}^{-\mu'^2} \mathrm{d}\mu', \qquad (4.1)$$

where  $Q(\mu)$  is the transpose of

$$\mathbf{Q}(\mu) = \begin{bmatrix} \sqrt{\frac{2}{3}}(\mu^2 - \frac{1}{2}) & 1\\ \sqrt{\frac{2}{3}} & 0 \end{bmatrix},$$
(4.2)

and  $\Psi_1(x, \mu)$  and  $\Psi_2(x, \mu)$ , which are sufficient to determine the temperature-density effects, are respectively the upper and lower entries in the two-vector  $\Psi(x, \mu)$ . We should like to note that equation (4.1) is quite similar to the equation of transfer used in a related study [4, 5] of the scattering of polarized light.

Following Case[7] who introduced the method of normal modes in regard to one-speed neutron-transport theory, we search for elementary solutions to equation (4.1) of the form

$$\Psi_{\varepsilon}(x,\mu) = \mathbf{F}(\xi,\mu) \mathrm{e}^{-x/\xi},\tag{4.3}$$

where  $\xi$  and  $\mathbf{F}(\xi, \mu)$  are the eigenvalues and eigenvectors to be determined. From equa-

tion (4.1), we obtain

$$(\xi - \mu)\mathbf{F}(\xi, \mu) = \frac{1}{\sqrt{\pi}} \xi \mathbf{Q}(\mu) \mathbf{M}(\xi)$$
(4.4)

where the normalization vector  $\mathbf{M}(\xi)$  is given by

$$\mathbf{M}(\boldsymbol{\xi}) = \int_{-\infty}^{\infty} \tilde{\mathbf{Q}}(\boldsymbol{\mu}) \mathbf{F}(\boldsymbol{\xi}, \boldsymbol{\mu}) \mathrm{e}^{-\boldsymbol{\mu}^2} \,\mathrm{d}\boldsymbol{\mu}. \tag{4.5}$$

Equation (4.4) admits both discrete eigenvalues and a continuous spectrum. We consider first the discrete spectrum:  $\xi = \eta_i$ , Im  $\eta_i \neq 0$ , and solve equation (4.4) to obtain

$$\mathbf{F}(\eta_i,\mu) = \frac{1}{\sqrt{\pi}} \frac{\eta_i}{\eta_i - \mu} \mathbf{Q}(\mu) \mathbf{M}(\eta_i), \qquad (4.6)$$

where  $\eta_i$  are the zeros (in the complex plane cut along the entire real axis) of the dispersion function

$$\Lambda(z) = \det \Lambda(z). \tag{4.7}$$

Here the dispersion matrix is

$$\Lambda(z) = \mathbf{I} + z \int_{-\infty}^{\infty} \Psi(\mu) \frac{\mathrm{d}\mu}{\mu - z},$$
(4.8)

with I denoting the unit matrix and the characteristic matrix given by

$$\Psi(\mu) = \frac{1}{\sqrt{\pi}} \tilde{\mathbf{Q}}(\mu) \mathbf{Q}(\mu) e^{-\mu^2}.$$
(4.9)

Further,  $\mathbf{M}(\eta_i)$  is a null vector of  $\Lambda(\eta_i)$  such that

$$\mathbf{\Lambda}(\boldsymbol{\eta}_i)\mathbf{M}(\boldsymbol{\eta}_i) = \mathbf{0}. \tag{4.10}$$

The argument principle [10] may be used to show that  $\Lambda(z)$  has no zeros in the finite cut plane; however, since  $\Lambda(z) \sim (a/z^4) + \ldots$ , for |z| tending to infinity, we may deduce four 'discrete' solutions to equation (4.1). In the limit  $|z| \rightarrow \infty$ , we obtain from equations (4.6) and (4.10)

$$\mathbf{F}_{1}(\boldsymbol{\mu}) = \mathbf{Q}(\boldsymbol{\mu}) \begin{bmatrix} 1\\0 \end{bmatrix} = \sqrt{\frac{2}{3}} \begin{bmatrix} \boldsymbol{\mu}^{2} - \frac{1}{2}\\1 \end{bmatrix}, \text{ and } \mathbf{F}_{2}(\boldsymbol{\mu}) = \mathbf{Q}(\boldsymbol{\mu}) \begin{bmatrix} 0\\1 \end{bmatrix} = \begin{bmatrix} 1\\0 \end{bmatrix}.$$
(4.11)

To construct the other two solutions requires a technique discussed by Case and Zweifel[8] to split the degeneracy at infinity. The resulting solutions are

$$\Psi_{3}(x,\mu) = (\mu - x)\sqrt{\frac{2}{3}} \begin{bmatrix} \mu^{2} - \frac{1}{2} \\ 1 \end{bmatrix}, \text{ and } \Psi_{4}(x,\mu) = (\mu - x) \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$
(4.12)

It should be noted that equations (4.11) are solutions to equation (4.1) and to equation (4.4) in the limit  $|\xi| \rightarrow \infty$ ; whereas, equations (4.12) are solutions only to equation (4.1).

We now consider the continuous spectrum:  $\xi = \eta$ , with  $Im \eta = 0$ , and the solutions to equation (4.4) are

$$\mathbf{F}(\eta,\mu) = \frac{1}{\sqrt{\pi}} \left[ \eta P v \left( \frac{1}{\eta - \mu} \right) + \lambda^*(\eta) \delta(\eta - \mu) \right] \mathbf{Q}(\mu) \mathbf{M}(\eta), \tag{4.13}$$

where Pv(1/x) denotes the Cauchy principal-value distribution, and  $\delta(x)$  represents the Dirac delta distribution. Pre-multiplying equation (4.13) by  $\tilde{\mathbf{Q}}(\mu) e^{-\mu^2}$  and integrating over all  $\mu$ , we find

$$[\boldsymbol{\lambda}(\boldsymbol{\eta}) - \boldsymbol{\lambda}^*(\boldsymbol{\eta})\boldsymbol{\Psi}(\boldsymbol{\eta})]\mathbf{M}(\boldsymbol{\eta}) = \mathbf{0}, \tag{4.14}$$

where

$$\boldsymbol{\lambda}(\eta) = \mathbf{I} + \eta P \int_{-\infty}^{\infty} \Psi(\mu) \frac{\mathrm{d}\mu}{\mu - \eta}; \qquad (4.15)$$

and hence from

$$\det \left[ \boldsymbol{\lambda}(\boldsymbol{\eta}) - \boldsymbol{\lambda}^*(\boldsymbol{\eta}) \boldsymbol{\Psi}(\boldsymbol{\eta}) \right] = 0, \tag{4.16}$$

we obtain a quadratic equation for the function  $\lambda^*(\eta)$ . In general there are two solutions which we label  $\lambda^*(\eta)$  and  $\lambda^*(\eta)$ , and thus we write the two-fold degenerate continuum solutions as

$$\mathbf{F}_{\alpha}(\eta,\mu) = \frac{1}{\sqrt{\pi}} \Big[ \eta P v \Big( \frac{1}{\eta-\mu} \Big) + \lambda_{\alpha}^{*}(\eta) \delta(\eta-\mu) \Big] \mathbf{Q}(\mu) \mathbf{M}_{\alpha}(\eta), \, \alpha = 1 \text{ or } 2, \, \eta \in (-\infty,\infty),$$
(4.17)

where the vectors  $\mathbf{M}_{\alpha}(\eta)$  are to be determined by the corresponding  $\lambda_{\alpha}^{*}(\eta)$ , through equation (4.14).

Having established the elementary solutions, we write our general solution to equation (4.1) as

$$\Psi(x,\mu) = \sum_{\alpha=1}^{2} A_{\alpha} \mathbf{F}_{\alpha}(\mu) + \sum_{\alpha=3}^{4} A_{\alpha} \Psi_{\alpha}(x,\mu) + \sum_{\alpha=1}^{2} \int_{-\infty}^{\infty} A_{\alpha}(\eta) \mathbf{F}_{\alpha}(\eta,\mu) e^{-x/\eta} \, \mathrm{d}\eta, \quad (4.18)$$

where the expansion coefficients  $A_{\alpha}$  and  $A_{\alpha}(\eta)$  are to be determined once the boundary conditions of a particular problem are specified. Although in general the integral terms in equation (4.18) may diverge for  $x \neq 0$ , this will not be the case when the specific problems of sections 7 and 13 are considered.

### 5. A FULL-RANGE EXPANSION THEOREM

To ensure that the normal modes developed in the previous sections are sufficiently general for full-range,  $\mu \in (-\infty, \infty)$ , boundary-value problems, we should now like to prove a basic result.

Theorem 1. The functions  $\mathbf{F}_1(\mu)$ ,  $\mathbf{F}_2(\mu)$ ,  $\mathbf{F}_3(\mu) = \Psi_3(0, \mu)$ ,  $\mathbf{F}_4(\mu) = \Psi_4(0, \mu)$ , and  $\mathbf{F}_{\alpha}(\eta, \mu)$ ,  $\alpha = 1$  and 2,  $\eta \in (-\infty, \infty)$ , form a complete basis set for the expansion of an

arbitrary two-vector  $I(\mu)$ , which is Hölder continuous on any open interval of the real axis and, for sufficiently large  $|\mu|$ , satisfies

$$|I_{\alpha}(\mu)| \exp(-|\mu|) < \infty, \alpha = 1 \text{ or } 2,$$

in the sense that

$$\mathbf{I}(\mu) = \sum_{\alpha=1}^{4} A_{\alpha} \mathbf{F}_{\alpha}(\mu) + \sum_{\alpha=1}^{2} \int_{-\infty}^{\infty} A_{\alpha}(\eta) \mathbf{F}_{\alpha}(\eta, \mu) \, \mathrm{d}\eta, \, \mu \in (-\infty, \infty).$$
(5.1)

To prove the theorem, we shall construct an analytical solution to the above coupled singular integral equations. For the sake of brevity, we write

$$\hat{\mathbf{I}}(\boldsymbol{\mu}) = \mathbf{I}(\boldsymbol{\mu}) - \sum_{\alpha=1}^{4} A_{\alpha} \mathbf{F}_{\alpha}(\boldsymbol{\mu}), \qquad (5.2)$$

introduce the  $(2 \times 2)$  matrix

$$\mathbf{G}(\boldsymbol{\eta},\boldsymbol{\mu}) = [\mathbf{F}_1(\boldsymbol{\eta},\boldsymbol{\mu}) \quad \mathbf{F}_2(\boldsymbol{\eta},\boldsymbol{\mu})], \tag{5.3}$$

let  $\mathbf{A}(\boldsymbol{\eta})$  denote a vector with elements  $A_{\alpha}(\boldsymbol{\eta})$ ,  $\alpha = 1$  and 2, and thus write equation (5.1) as

$$\hat{\mathbf{I}}(\mu) = \int_{-\infty}^{\infty} \mathbf{G}(\eta, \mu) \mathbf{A}(\eta) \, \mathrm{d}\eta, \, \mu \in (-\infty, \infty).$$
(5.4)

Pre-multiplying equation (4.13) by  $\tilde{\mathbf{Q}}(\mu) e^{-\mu^2}$  and invoking equation (4.14), we obtain

$$\tilde{\mathbf{Q}}(\mu)\mathbf{G}(\eta,\mu)\,\mathbf{e}^{-\mu^2} = \left[\eta P v \left(\frac{1}{\eta-\mu}\right) \Psi(\mu) + \delta(\eta-\mu)\boldsymbol{\lambda}(\eta)\right] \mathbf{V}(\eta),\tag{5.5}$$

where

$$\mathbf{V}(\boldsymbol{\eta}) = \begin{bmatrix} \mathbf{M}_1(\boldsymbol{\eta}) & \mathbf{M}_2(\boldsymbol{\eta}) \end{bmatrix}$$
(5.6)

is the (2×2) normalization matrix. We now pre-multiply equation (5.4) by  $\tilde{Q}(\mu) e^{-\mu^2}$ , make use of equation (5.5), and integrate the  $\delta$  term to obtain

$$\tilde{\mathbf{Q}}(\mu)\hat{\mathbf{I}}(\mu)e^{-\mu^2} = \boldsymbol{\lambda}(\mu)\mathbf{B}(\mu) + \Psi(\mu)P\int_{-\infty}^{\infty} \eta \mathbf{B}(\eta)\frac{\mathrm{d}\eta}{\eta-\mu},$$
(5.7)

where  $\mathbf{B}(\eta) = \mathbf{V}(\eta)\mathbf{A}(\eta)$ . Equation (5.7) may now be solved explicitly by using the theory of Muskhelishvili[21]. To convert equation (5.7) to a special form of a matrix Riemann problem, we introduce the sectionally holomorphic matrix

$$\mathbf{N}(z) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} \eta \mathbf{B}(\eta) \frac{\mathrm{d}\eta}{\eta - z}.$$
(5.8)

The boundary values of N(z) as z approaches the real line from above (+) and below

Equations in the kinetic theory of gases

(-) follow from the Plemelj formulae[21]:

$$\pi i [\mathbf{N}^{+}(\mu) + \mathbf{N}^{-}(\mu)] = P \int_{-\infty}^{\infty} \eta \mathbf{B}(\eta) \frac{\mathrm{d}\eta}{\eta - \mu}$$
(5.9a)

and

$$N^{+}(\mu) - N^{-}(\mu) = \mu B(\mu).$$
 (5.9b)

In a similar manner, the boundary values of the dispersion matrix follow from equation (4.8):

$$\Lambda^{+}(\mu) + \Lambda^{-}(\mu) = 2\lambda(\mu), \qquad (5.10a)$$

and

$$\Lambda^{+}(\mu) - \Lambda^{-}(\mu) = 2\pi i \mu \Psi(\mu).$$
(5.10b)

Equations (5.9) and (5.10) may now be used in equation (5.7) to yield

$$\mu \tilde{\mathbf{Q}}(\mu) \hat{\mathbf{I}}(\mu) e^{-\mu^2} = \Lambda^+(\mu) \mathbf{N}^+(\mu) - \Lambda^-(\mu) \mathbf{N}^-(\mu), \qquad (5.11)$$

which can be solved to give

$$\mathbf{N}(z) = \Lambda^{-1}(z) \frac{1}{2\pi i} \int_{-\infty}^{\infty} \mu \tilde{\mathbf{Q}}(\mu) \hat{\mathbf{I}}(\mu) e^{-\mu^2} \frac{d\mu}{\mu - z}.$$
 (5.12)

We note that for large |z|,

$$\Lambda(z) \sim -\frac{1}{z^2} \begin{bmatrix} \frac{7}{6} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} & \frac{1}{2} \end{bmatrix}, \text{ as } |z| \to \infty,$$
(5.13)

and

$$\Lambda^{-1}(z) \sim -\frac{12}{5} z^2 \begin{bmatrix} \frac{1}{2} & \frac{-1}{\sqrt{6}} \\ \frac{-1}{\sqrt{6}} & \frac{7}{6} \end{bmatrix}, \text{ as } |z| \to \infty,$$
(5.14)

and therefore if the N(z) as given by equation (5.12) is to vanish when |z| tends to infinity, as equation (5.8) prescribes, we must impose on the vector  $\hat{\mathbf{I}}(\mu)$  the four constraints

$$\int_{-\infty}^{\infty} \mu^{\alpha} \tilde{\mathbf{Q}}(\mu) \hat{\mathbf{I}}(\mu) e^{-\mu^{2}} d\mu = \mathbf{0}, \quad \alpha = 1 \text{ and } 2.$$
 (5.15)

Recalling equation (5.2) for  $\hat{I}(\mu)$ , we observe that equation (5.15) will be inherently

satisfied if we specify the expansion coefficients  $A_{\alpha}$ ,  $\alpha = 1, 2, 3$ , and 4, to be

$$\begin{bmatrix} A_{1} \\ A_{2} \\ A_{3} \\ A_{4} \end{bmatrix} = \frac{12}{5\sqrt{6\pi}} \begin{bmatrix} -\frac{3}{2}I_{12} + I_{14} + I_{22} \\ \frac{8}{\sqrt{6}}I_{12} - \sqrt{\frac{2}{3}}I_{14} - \sqrt{\frac{2}{3}}I_{22} \\ -\frac{3}{2}I_{11} + I_{13} + I_{21} \\ \frac{8}{\sqrt{6}}I_{11} - \sqrt{\frac{2}{3}}I_{13} - \sqrt{\frac{2}{3}}I_{21} \end{bmatrix},$$
 (5.16)

where

$$I_{\alpha\beta} \stackrel{\scriptscriptstyle \Delta}{=} \int_{-\infty}^{\infty} \mu^{\beta} I_{\alpha}(\mu) \mathrm{e}^{-\mu^{2}} \mathrm{d}\mu, \quad \alpha = 1 \text{ or } 2; \, \beta = 1, 2, 3 \text{ or } 4, \tag{5.17}$$

and  $I_1(\mu)$  and  $I_2(\mu)$  are respectively the upper and lower entries of  $I(\mu)$ . Theorem 1 is therefore established.

Although we could pursue equations (5.9b) and (5.12) to obtain explicit results for the continuum coefficients  $A_{\alpha}(\eta)$ ,  $\alpha = 1$  or 2, we prefer to summarize the final expressions in terms of the formalism of the full-range orthogonality relations given in the next section.

### 6. ORTHOGONALITY RELATIONS AND EXPLICIT SOLUTIONS

We should first like to state the general orthogonality relation relevant to all solutions including the special distributions,  $F(\xi, \mu)$ , of the separated equation (4.4).

Theorem 2. All eigenvectors  $\mathbf{F}(\xi, \mu)$  which are solutions of equation (4.4) are orthogonal on the full range,  $\mu \in (-\infty, \infty)$ , in the sense that

$$\int_{-\infty}^{\infty} \tilde{\mathbf{F}}(\xi',\mu) \mathbf{F}(\xi,\mu) e^{-\mu^2} \,\mu \,\mathrm{d}\mu = 0, \quad \xi' \neq \xi.$$
(6.1)

To prove the theorem, equation (4.4) is first pre-multiplied by  $\mathbf{\tilde{F}}(\xi', \mu)e^{-\mu^2}/\xi$ , the transpose of equation (4.4) with  $\xi$  changed to  $\xi'$  is post-multiplied by  $\mathbf{F}(\xi, \mu)e^{-\mu^2}/\xi'$ , and the two resulting equations are then integrated over all  $\mu$  and subtracted one from the other to yield

$$\left(\frac{1}{\xi} - \frac{1}{\xi'}\right) \int_{-\infty}^{\infty} \tilde{\mathbf{F}}(\xi', \mu) \mathbf{F}(\xi, \mu) e^{-\mu^2} \, \mu \, d\mu = 0, \tag{6.2}$$

which establishes equation (6.1). Though equation (6.2) is a general statement of full-range orthogonality, it is clear that several additional relations are required here. First of all, since  $\mathbf{F}_1(\mu)$  and  $\mathbf{F}_2(\mu)$  are both associated with  $\xi \to \infty$ , equation (6.2) does not ensure that they will be mutually orthogonal in the sense of equation (6.1). In addition, the vectors  $\mathbf{F}_3(\mu)$  and  $\mathbf{F}_4(\mu)$ , being derived from the solutions of equation (4.1), rather than equation (4.4), are not included in Theorem 2. However, it can be easily shown that  $\mathbf{F}_1(\mu)$  and  $\mathbf{F}_2(\mu)$  are mutually orthogonal, and, in fact, self-orthogonal; the same is true for  $\mathbf{F}_3(\mu)$  and  $\mathbf{F}_4(\mu)$ . In addition,  $\mathbf{F}_3(\mu)$  and  $\mathbf{F}_4(\mu)$  are orthogonal to the continuum

solutions  $F_1(\eta, \mu)$  and  $F_2(\eta, \mu)$ . We note that  $F_1(\mu)$  and  $F_2(\mu)$  are not orthogonal to  $F_3(\mu)$  and  $F_4(\mu)$ ; however, suitably defined adjoint vectors for these special cases can be developed by employing a Schmidt-type procedure.

Considering first the normalization integrals related to the solutions given by equation (4.13), we find

$$\int_{-\infty}^{\infty} \tilde{\mathbf{F}}_{\alpha}(\eta',\mu) \mathbf{F}_{\beta}(\eta,\mu) \mathrm{e}^{-\mu^{2}} \, \mu \, \mathrm{d}\mu = S(\eta) \delta(\eta-\eta') \delta_{\alpha,\beta}; \, \alpha,\beta = 1,2, \tag{6.3}$$

where

$$S(\eta) = \frac{\eta}{\sqrt{\pi}} [\pi^2 \eta^2 + \lambda^*_{\alpha}(\eta) \lambda^*_{\beta}(\eta)] \tilde{\mathbf{M}}_{\alpha}(\eta) \Psi(\eta) \mathbf{M}_{\beta}(\eta).$$
(6.4)

The Kronecker  $\delta_{\alpha,\beta}$  appearing in equation (6.3) should be noted since it ensures that the degenerate continuum solutions given by equation (4.13) are orthogonal even for  $\eta' = \eta$ . To establish equation (6.3) requires the use of the Poincaré-Bertrand formula[21] and

$$[\lambda_{\alpha}^{*}(\eta) - \lambda_{\beta}^{*}(\eta)]\tilde{\mathbf{M}}_{\alpha}(\eta)\Psi(\eta)\mathbf{M}_{\beta}(\eta) = 0, \qquad (6.5)$$

a relation which can be deduced from equation (4.14).

Though the representations of the two continuum solutions given by equation (4.13) were convenient for proving the full-range expansion theorem, we choose to make use of more explicit forms for actual applications. We note that equation (4.16) is quadratic in  $\lambda^*(\eta)$ , and thus the two solutions will in general involve radicals. To avoid the cumbersome nature of the ensuing solutions, we prefer the linear combinations

$$\boldsymbol{\Phi}_{\alpha}(\boldsymbol{\eta},\boldsymbol{\mu}) = T_{\alpha 1}(\boldsymbol{\eta})\mathbf{F}_{1}(\boldsymbol{\eta},\boldsymbol{\mu}) + T_{\alpha 2}(\boldsymbol{\eta})\mathbf{F}_{2}(\boldsymbol{\eta},\boldsymbol{\mu}), \quad \alpha = 1 \text{ and } 2, \tag{6.6}$$

which, for judicious choices of  $T_{\alpha\beta}(\eta)$ , enable us to deduce the more tractable solutions

$$\boldsymbol{\Phi}_{1}(\boldsymbol{\eta},\boldsymbol{\mu}) = \begin{bmatrix} \frac{1}{\sqrt{\pi}} \eta \left(\boldsymbol{\mu}^{2} - \frac{1}{2}\right) P v \left(\frac{1}{\boldsymbol{\eta} - \boldsymbol{\mu}}\right) e^{-\boldsymbol{\eta}^{2}} + \lambda_{1}(\boldsymbol{\eta}) \delta(\boldsymbol{\eta} - \boldsymbol{\mu}) \\ \frac{1}{\sqrt{\pi}} \eta P v \left(\frac{1}{\boldsymbol{\eta} - \boldsymbol{\mu}}\right) e^{-\boldsymbol{\eta}^{2}} + \left[\frac{1}{2} + \lambda_{0}(\boldsymbol{\eta})\right] \delta(\boldsymbol{\eta} - \boldsymbol{\mu}) \end{bmatrix}$$
(6.7a)

and

$$\boldsymbol{\Phi}_{2}(\eta,\mu) = \begin{bmatrix} \frac{1}{\sqrt{\pi}} \eta P v \left(\frac{1}{\eta-\mu}\right) e^{-\eta^{2}} + \lambda_{0}(\eta) \delta(\eta-\mu) \\ \frac{1}{2} \delta(\eta-\mu) \end{bmatrix}, \quad (6.7b)$$

where

$$\lambda_0(\eta) = 1 + \frac{1}{\sqrt{\pi}} \eta P \int_{-\infty}^{\infty} e^{-\mu^2} \frac{\mathrm{d}\mu}{\mu - \eta}, \qquad (6.8a)$$

or

452

$$\lambda_0(\eta) = 1 - 2\eta \,\mathrm{e}^{-\eta^2} \int_0^\eta \mathrm{e}^{\mu^2} \,\mathrm{d}\mu, \tag{6.8b}$$

and

$$\lambda_{1}(\eta) = \frac{1}{2} + (\eta^{2} - \frac{1}{2})\lambda_{0}(\eta).$$
(6.9)

We note that equations (6.7) are not mutually orthogonal for  $\eta' = \eta$ ; however, a Schmidt-type procedure may be used here as well. Since our final adjoint vectors follow in a manner analogous to that reported by Siewert and Zweifel[26], we shall simply summarize our conclusions below. For the case of the degenerate continuum modes, we find that the procedure discussed in reference [26] can be used to establish the required adjoint vectors. To unify our notation, we also define

$$\boldsymbol{\Phi}_{\alpha}(\boldsymbol{\mu}) \stackrel{\sim}{=} \mathbf{F}_{\alpha}(\boldsymbol{\mu}), \quad \alpha = 1, 2, 3 \text{ and } 4. \tag{6.10}$$

The orthonormal full-range adjoint set is given by:

$$\mathbf{X}_{1}(\mu) = \frac{1}{5\sqrt{\pi}} [6\boldsymbol{\Phi}_{3}(\mu) - 2\sqrt{6}\boldsymbol{\Phi}_{4}(\mu)], \qquad (6.11a)$$

$$\mathbf{X}_{2}(\mu) = \frac{1}{5\sqrt{\pi}} [-2\sqrt{6}\boldsymbol{\Phi}_{3}(\mu) + 14\boldsymbol{\Phi}_{4}(\mu)], \qquad (6.11b)$$

$$\mathbf{X}_{3}(\mu) = \frac{1}{5\sqrt{\pi}} [6\boldsymbol{\Phi}_{1}(\mu) - 2\sqrt{6}\boldsymbol{\Phi}_{2}(\mu)], \qquad (6.11c)$$

$$\mathbf{X}_{4}(\mu) = \frac{1}{5\sqrt{\pi}} [-2\sqrt{6}\boldsymbol{\Phi}_{1}(\mu) + 14\boldsymbol{\Phi}_{2}(\mu)], \qquad (6.11d)$$

$$\mathbf{X}_{1}(\eta,\mu) = \frac{1}{N(\eta)} [N_{22}(\eta) \boldsymbol{\Phi}_{1}(\eta,\mu) - N_{12}(\eta) \boldsymbol{\Phi}_{2}(\eta,\mu)], \qquad (6.11e)$$

and

$$\mathbf{X}_{2}(\eta,\mu) = \frac{1}{N(\eta)} [N_{11}(\eta) \boldsymbol{\Phi}_{2}(\eta,\mu) - N_{12}(\eta) \boldsymbol{\Phi}_{1}(\eta,\mu)], \qquad (6.11f)$$

where

$$N_{11}(\eta) = [\lambda_0(\eta) + \frac{1}{2}]^2 + \lambda_1^2(\eta) + \pi \eta^2 [(\eta^2 - \frac{1}{2})^2 + 1] e^{-2\eta^2},$$
  

$$N_{12}(\eta) = \lambda_0(\eta)\lambda_1(\eta) + \frac{1}{2}\lambda_0(\eta) + \frac{1}{4} + \pi \eta^2 (\eta^2 - \frac{1}{2}) e^{-2\eta^2},$$
  

$$N_{22}(\eta) = \lambda_0^2(\eta) + \frac{1}{4} + \pi \eta^2 e^{-2\eta^2},$$
  

$$N(\eta) = \frac{9}{2}\eta e^{-\eta^2} \Lambda^+(\eta) \Lambda^-(\eta).$$
(6.12)

and

Equations in the kinetic theory of gases

The required orthogonality relations among the full-range basis and adjoint sets are:

$$\int_{-\infty}^{\infty} \tilde{\mathbf{X}}_{\alpha}(\mu) \boldsymbol{\Phi}_{\beta}(\mu) e^{-\mu^{2}} \mu \, \mathrm{d}\mu = \delta_{\alpha,\beta}; \, \alpha,\beta = 1, 2, 3, \, \mathrm{or} \, 4, \tag{6.13a}$$

$$\int_{-\infty}^{\infty} \tilde{\mathbf{X}}_{\alpha}(\mu) \boldsymbol{\Phi}_{\beta}(\eta,\mu) e^{-\mu^{2}} \, \mu \, \mathrm{d}\mu = 0; \, \alpha = 1, 2, 3, \, \mathrm{or} \, 4, \, \beta = 1 \, \mathrm{or} \, 2, \tag{6.13b}$$

$$\int_{-\infty}^{\infty} \tilde{\mathbf{X}}_{\alpha}(\eta',\mu) \boldsymbol{\Phi}_{\beta}(\eta,\mu) e^{-\mu^{2}} \mu d\mu = \delta(\eta-\eta') \delta_{\alpha,\beta}; \, \alpha,\beta = 1 \text{ or } 2, \qquad (6.13c)$$

$$\int_{-\infty}^{\infty} \tilde{\mathbf{X}}_{\alpha}(\eta',\mu) \boldsymbol{\Phi}_{\beta}(\mu) e^{-\mu 2} \mu \, \mathrm{d}\mu = 0; \, \alpha = 1 \text{ or } 2, \, \beta = 1, 2, 3, \, \mathrm{or} \, 4.$$
(6.13d)

With the formalism thus established, we note that all expansion coefficients in equations of the form

$$\mathbf{I}(\mu) = \sum_{\alpha=1}^{4} A_{\alpha} \boldsymbol{\Phi}_{\alpha}(\mu) + \sum_{\alpha=1}^{2} \int_{-\infty}^{\infty} A_{\alpha}(\eta) \boldsymbol{\Phi}_{\alpha}(\eta, \mu) \, \mathrm{d}\eta, \, \mu \in (-\infty, \infty), \quad (6.14)$$

may be expressed immediately in terms of inner products:

$$A_{\alpha} = \int_{-\infty}^{\infty} \tilde{\mathbf{X}}_{\alpha}(\mu) \mathbf{I}(\mu) e^{-\mu^{2}} \mu \, \mathrm{d}\mu, \, \alpha = 1, 2, 3 \text{ and } 4,$$
(6.15)

and

$$A_{\alpha}(\eta) = \int_{-\infty}^{\infty} \tilde{\mathbf{X}}_{\alpha}(\eta, \mu) \mathbf{I}(\mu) \, \mathrm{e}^{-\mu^2} \, \mu \, \mathrm{d}\mu, \, \alpha = 1 \text{ and } 2.$$
 (6.16)

### 7. THE INFINITE-MEDIUM GREEN'S FUNCTION

In order to illustrate the use of the elementary solutions of equation (4.1) and the relevant orthogonality relations, we should now like to develop the infinite-medium Green's function. Here we seek a solution to

$$\mu \frac{\partial}{\partial x} \Psi(x,\mu) + \Psi(x,\mu) = \frac{1}{\sqrt{\pi}} Q(\mu) \int_{-\infty}^{\infty} \tilde{Q}(\mu') \Psi(x,\mu') e^{-\mu'^2} d\mu' + S(x_0,\mu_1,\mu_2;x,\mu),$$
(7.1)

where

$$\mathbf{S}(x_0, \,\mu_1, \,\mu_2; \, x, \,\mu) = \,\delta(x - x_0) \begin{bmatrix} \rho_1 \,\,\delta(\mu - \mu_1) \\ \rho_2 \,\,\delta(\mu - \mu_2) \end{bmatrix}. \tag{7.2}$$

Clearly, since the kinetic equation conserves particles, kinetic energy, and momentum, there will exist no bounded (at infinity) solution to equation (7.1); however, the Green's function we develop may be used in the classical manner to construct particular solutions to equation (7.1) for arbitrary inhomogeneous source terms for semi-infinite or finite media. As discussed by Case and Zweifel [8], we neglect the inhomogeneous term

in equation (7.1) and require the solution to the resulting homogeneous equation to satisfy the 'jump' boundary condition

$$\mu[\Psi(x_0, \mu_1, \mu_2; x_0^+, \mu) - \Psi(x_0, \mu_1, \mu_2; x_0^-, \mu)] = \begin{bmatrix} \rho_1 \ \delta(\mu - \mu_1) \\ \rho_2 \ \delta(\mu - \mu_2) \end{bmatrix}, \quad \mu \in (-\infty, \infty),$$
(7.3)

where the argument list has been extended to include the parameters  $x_0$ ,  $\mu_1$ , and  $\mu_2$ . We therefore write the desired solution as

$$\Psi(x_0, \mu_1, \mu_2; x, \mu) = \sum_{\alpha=1}^2 A_\alpha \Phi_\alpha(\mu) + \sum_{\alpha=1}^2 \int_0^\infty A_\alpha(\eta) \Phi_\alpha(\eta, \mu) e^{-(x-x_0)/\eta} d\eta, \quad (7.4a)$$

for  $x > x_0$ ,

and

$$\Psi(x_0, \ \mu_1, \ \mu_2; \ x, \ \mu) = -\sum_{\alpha=3}^4 A_\alpha \Psi_\alpha(x - x_0, \ \mu) - \sum_{\alpha=1}^2 \int_{-\infty}^0 A_\alpha(\eta) \varPhi_\alpha(\eta, \mu) e^{-(x - x_0)/\eta} d\eta$$
  
for  $x < x_0$ . (7.4b)

Substitution of equations (7.4) into equation (7.3) yields the full-range expansion

$$\begin{bmatrix} \rho_1 \ \delta(\mu - \mu_1) \\ \rho_2 \ \delta(\mu - \mu_2) \end{bmatrix} = \mu \left\{ \sum_{\alpha=1}^4 A_\alpha \boldsymbol{\Phi}_\alpha(\mu) + \sum_{\alpha=1}^2 \int_{-\infty}^{\infty} A_\alpha(\eta) \boldsymbol{\Phi}_\alpha(\eta, \mu) \, \mathrm{d}\eta \right\}, \, \mu \in (-\infty, \infty).$$
(7.5)

Though the left-hand side of equation (7.5) certainly is not a Hölder function, Case and Zweifel[8] have concluded that expansion theorems similar to our Theorem 1 remain valid formally even for this type of delta distribution. We therefore pre-multiply equation (7.5) by  $\tilde{\mathbf{X}}_{\alpha}(\mu) e^{-\mu^2}$ ,  $\alpha = 1, 2, 3$ , or 4 and  $\tilde{\mathbf{X}}_{\alpha}(\eta', \mu) e^{-\mu^2}$ ,  $\alpha = 1$  or 2, and integrate over all  $\mu$  to find, after invoking equation (6.13),

$$A_{\alpha} = \rho_1 X_{\alpha 1}(\mu_1) e^{-\mu_1^2} + \rho_2 X_{\alpha 2}(\mu_2) e^{-\mu_2^2}, \alpha = 1, 2, 3, \text{ and } 4,$$
(7.6a)

and

$$A_{\alpha}(\eta) = \rho_1 X_{\alpha 1}(\eta, \mu_1) e^{-\mu_1^2} + \rho_2 X_{\alpha 2}(\eta, \mu_2) e^{-\mu_2^2}, \alpha = 1 \text{ and } 2,$$
(7.6b)

where the subscripts 1 and 2 are used to denote the upper and lower elements of the X vectors. Since all expansion coefficients required in equations (7.4) are given by equations (7.6), the infinite-medium Green's function is established.

### 8. A HALF-RANGE EXPANSION THEOREM

Having developed in sections 5 and 6 the necessary completeness and orthogonality properties of our normal modes, we should now like to discuss the analysis required for the considerably more interesting problems defined by half-range,  $\mu \in (0, \infty)$ , boundary conditions. The following theorem states the very important half-range expansion properties basic to a certain subset of our derived elementary solutions.

Theorem 3. The functions  $\mathbf{F}_1(\mu)$ ,  $\mathbf{F}_2(\mu)$  and  $\mathbf{F}_{\alpha}(\eta, \mu)$ ,  $\alpha = 1$  and 2,  $\eta \in (0, \infty)$ , form a complete basis set for the expansion of an arbitrary two-vector  $\mathbf{I}(\mu)$  which is Hölder

continuous on any open interval of the positive real axis and, for sufficiently large  $|\mu|$ , satisfies

$$|\mathbf{I}_{\alpha}(\boldsymbol{\mu})| \exp(-|\boldsymbol{\mu}|) < \infty, \alpha = 1 \text{ or } 2,$$

in the sense that

$$\mathbf{I}(\mu) = \sum_{\alpha=1}^{2} A_{\alpha} \mathbf{F}_{\alpha}(\mu) + \sum_{\alpha=1}^{2} \int_{0}^{\infty} A_{\alpha}(\eta) \mathbf{F}_{\alpha}(\eta, \mu) \, \mathrm{d}\eta, \, \mu \in (0, \infty).$$
(8.1)

To prove this theorem, we premultiply equation (8.1) by  $e^{-\mu^2} \tilde{\mathbf{Q}}(\mu)$ , integrate the  $\delta$  term and use equations (4.13) and (4.14) to obtain

$$\tilde{\mathbf{Q}}(\mu)\hat{\mathbf{I}}(\mu)\,\mathrm{e}^{-\mu^{2}} = \boldsymbol{\lambda}(\mu)\mathbf{B}(\mu) + \boldsymbol{\Psi}(\mu)P\int_{0}^{\infty}\eta\,\mathbf{B}(\eta)\frac{\mathrm{d}\eta}{\eta-\mu},\,\mu\in(0,\,\infty),\tag{8.2}$$

where

$$\hat{\mathbf{I}}(\mu) = \mathbf{I}(\mu) - \sum_{\alpha=1}^{2} A_{\alpha} \mathbf{F}_{\alpha}(\mu)$$
(8.3)

and

$$\mathbf{B}(\boldsymbol{\eta}) = \mathbf{V}(\boldsymbol{\eta})\mathbf{A}(\boldsymbol{\eta}). \tag{8.4}$$

In addition,  $V(\eta)$  is given by equation (5.6) and the unknown  $A(\eta)$  has elements  $A_1(\eta)$  and  $A_2(\eta)$ . In a manner similar to that used to prove Theorem 1, we now introduce

$$\mathbf{N}(z) = \frac{1}{2\pi i} \int_0^\infty \eta \, \mathbf{B}(\eta) \frac{\mathrm{d}\eta}{\eta - z}.$$
(8.5)

The N matrix is clearly analytic in the complex plane cut along the positive real axis. Further, the Plemelj formulae[21] can be used, with equation (8.5), to show that the boundary values of N(z) satisfy

$$\pi i [\mathbf{N}^{+}(\mu) + \mathbf{N}^{-}(\mu)] = P \int_{0}^{\infty} \eta \mathbf{B}(\eta) \frac{\mathrm{d}\eta}{\eta - \mu}$$
(8.6a)

and

$$\mathbf{N}^{+}(\mu) - \mathbf{N}^{-}(\mu) = \mu \mathbf{B}(\mu).$$
(8.6b)

Equations (8.6) can now be used, along with equations (5.10), to express equation (8.2) in the form

$$\mu \,\tilde{\mathbf{Q}}(\mu) \hat{\mathbf{I}}(\mu) \,e^{-\mu^2} = \Lambda^+(\mu) \mathbf{N}^+(\mu) - \Lambda^-(\mu) \mathbf{N}^-(\mu), \, \mu \in (0, \infty).$$
(8.7)

If we now let  $\tilde{\mathbf{X}}(z)$  denote a canonical (non-singular in the finite plane) solution to the homogeneous Riemann problem defined by

$$\tilde{\mathbf{X}}^{+}(\mu) = \mathbf{G}(\mu)\tilde{\mathbf{X}}^{-}(\mu), \ \mu \in (0, \infty), \tag{8.8a}$$

where

$$\mathbf{G}(\mu) = \mathbf{\Lambda}^{+}(\mu) [\mathbf{\Lambda}^{-}(\mu)]^{-1}, \qquad (8.8b)$$

then equation (8.7) can be solved immediately to yield

$$\mathbf{N}(z) = \mathbf{X}^{-1}(z) \left[ \frac{1}{2\pi i} \int_0^\infty \Gamma(\mu) \tilde{\mathbf{Q}}(\mu) \hat{\mathbf{I}}(\mu) e^{-\mu^2} \frac{\mathrm{d}\mu}{\mu - z} + \mathbf{P}(z) \right].$$
(8.9)

Here, P(z) is a matrix of polynomials, and

$$\boldsymbol{\Gamma}(\boldsymbol{\mu}) = \boldsymbol{\mu} \mathbf{X}^{+}(\boldsymbol{\mu}) [\boldsymbol{\Lambda}^{+}(\boldsymbol{\mu})]^{-1}.$$
(8.10)

Since the **G** matrix given by equation (8.8b) is continuous for  $\mu \in [0, \infty)$ ,  $\mathbf{G}(0) = \mathbf{I}$  and  $\mathbf{G}(\mu) \rightarrow \mathbf{I}$  as  $\mu \rightarrow \infty$ , the analysis of Mandžavidze and Hvedelidze [20] can be used, after an elementary transformation of variables, to ensure the existence of a canonical solution to the Riemann problem defined by equation (8.8a). In section 9 we argue that the partial indices  $\kappa_1$  and  $\kappa_2$  associated with our canonical solution  $\mathbf{\tilde{X}}(z)$  are

$$\kappa_1 = \kappa_2 = 1, \tag{8.11}$$

and thus if we allow our canonical matrix  $\tilde{\mathbf{X}}(z)$  to be of normal form at infinity [21], we may write

$$\lim z \mathbf{X}(z) = \Delta, \tag{8.12}$$

where  $\Delta$  is nonsingular and bounded.

From the defining equation (8.5), we observe that z N(z) must be bounded as  $|z| \rightarrow \infty$ , and thus from equation (8.9) we conclude that

$$\lim_{|z|\to\infty} z \, \boldsymbol{\Delta}^{-1} \bigg[ \frac{-1}{2\pi i} \int_0^\infty \Gamma(\mu) \tilde{\mathbf{Q}}(\mu) \hat{\mathbf{I}}(\mu) \, \mathrm{e}^{-\mu^2} \, \mathrm{d}\mu + z \, \mathbf{P}(z) \bigg] < \infty; \tag{8.13}$$

we must therefore set P(z) = 0 and, in addition, require that

$$\int_0^{\infty} \boldsymbol{\Gamma}(\mu) \tilde{\boldsymbol{Q}}(\mu) \hat{\mathbf{I}}(\mu) e^{-\mu^2} d\mu = \boldsymbol{0}.$$
(8.14)

Equation (8.14) is, of course, not satisfied by all  $\hat{\mathbf{I}}(\mu)$ , but recalling equation (8.3), we conclude that choosing the discrete expansion coefficients to be solutions of

$$\int_{0}^{\infty} \Gamma(\mu) \Psi(\mu) d\mu \begin{bmatrix} A_{1} \\ A_{2} \end{bmatrix} = \frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \Gamma(\mu) \tilde{\mathbf{Q}}(\mu) \mathbf{I}(\mu) e^{-\mu^{2}} d\mu \qquad (8.15)$$

renders equation (8.1) valid for all appropriate  $I(\mu)$ . The matrix in equation (8.15) whose inverse is required to obtain  $A_1$  and  $A_2$  can be shown to be non-singular by making use of a Cauchy integral representation of X(z). The theorem is therefore proved.

Though, as for the full-range case, we could pursue this completeness proof to construct the continuum expansion coefficients  $A(\eta)$ ,  $\eta \in (0, \infty)$ , we find it more convenient to express the final results in terms of half-range orthogonality relations.

### 9. A PROOF REGARDING THE PARTIAL INDICES OF THE RIEMANN PROBLEM

The proof of the half-range expansion theorem given in section 8 is based on the proposition that the partial indices  $\kappa_1$  and  $\kappa_2$  are both non-negative. In fact, equation (8.13) is valid only if the partial indices are given by  $\kappa_1 = \kappa_2 = 1$ . In this section we develop the required proof that  $\kappa_1 = \kappa_2 = 1$ .

We consider then the homogeneous matrix Riemann problem defined by

$$\Phi^{+}(\mu) = \mathbf{G}(\mu)\Phi^{-}(\mu), \ \mu \in [0, \infty), \tag{9.1}$$

where

$$\mathbf{G}(\mu) = \Lambda^{+}(\mu) [\Lambda^{-}(\mu)]^{-1}, \ \mu \in [0, \infty).$$
(9.2)

Here we seek a matrix  $\Phi(z)$  analytic in the plane cut along the positive real axis, non-singular in the finite plane, and with boundary values  $\Phi^{\pm}(\mu)$  which satisfy equation (9.1).

Since G(0) = I and  $G(\mu) \rightarrow I$  in the limit as  $\mu \rightarrow \infty$ , we can define  $G(\mu) = I$  on the entire negative real axis and thus consider equation (9.1) for  $\mu \in (-\infty, \infty)$ . To make use of the results developed by Mandžavidze and Hvedelidze [20], valid for closed contours, we make the change of variables

$$\zeta = \frac{i-z}{i+z} \tag{9.3}$$

which maps the upper half of the z plane into the interior of the unit circle in the  $\zeta$ -plane. We note that the positive (negative) real axis maps into  $|\zeta| = 1$ ,  $Im \zeta > (<) 0$ . The existence of a solution to the Riemann problem in the  $\zeta$  plane follows from the theory of Mandžavidze and Hvedelidze[20], since the resulting G matrix is continuous on the unit circle, and  $\Phi(z)$ , the canonical solution in the z-plane, is the image of the solution in the  $\zeta$  plane postmultiplied by an appropriate matrix of rational functions.

It can be demonstrated [5] that the  $\Lambda$  matrix can be factored as

$$\Lambda(z) = \boldsymbol{\Phi}(z)\mathcal{P}(z)\tilde{\boldsymbol{\Phi}}(-z) \tag{9.4}$$

where  $\Phi(z)$  is any canonical solution (of ordered normal form at infinity) to equation (9.1) and  $\mathcal{P}(z)$  is a matrix of polynomials, which depends on the particular choice for  $\Phi(z)$ .

The fact that  $\mathbf{G}(\mu) = [\mathbf{G}(\mu)]^{-1}$ , where the bar indicates the complex conjugate, enables us to extend the results of Siewert and Burniston's [25] Theorem II to the Riemann problem defined by equation (9.1):

Theorem 4. There exists at least one canonical matrix  $\Phi_1(z)$  of ordered normal form at infinity for the Riemann problem defined by equation (9.1) such that  $\overline{\Phi_1(\overline{z})} = \Phi_1(z)$ .

Since the proof of Theorem 4 follows very closely one previously reported [25], it will not be given here.

If we use  $\Phi_1(z)$  in the factorization of  $\Lambda(z)$ , the resulting polynomial matrix  $\mathcal{P}(z)$  is such that  $\mathcal{P}(z) = \tilde{\mathcal{P}}(-z)$  and  $\mathcal{P}(z) = \overline{\mathcal{P}(\bar{z})}$ , since  $\Lambda(z) = \tilde{\Lambda}(z) = \Lambda(-z)$  and  $\Lambda(z) = \overline{\Lambda(\bar{z})}$ .

By definition [21], a canonical solution of ordered normal form at infinity is such that

$$\lim_{|z|\to\infty} \boldsymbol{\Phi}_{1}(z) \begin{bmatrix} z^{\kappa_{1}} & 0\\ 0 & z^{\kappa_{2}} \end{bmatrix} = \mathbf{K}, \text{ det } \mathbf{K} \neq 0,$$
(9.5)

where  $\kappa_1$  and  $\kappa_2 \ge \kappa_1$  are the partial indices. Furthermore the sum of  $\kappa_1$  and  $\kappa_2$  must yield the total index  $\kappa$ , which in the manner of Muskelishvili[21] can be computed directly once the **G** matrix and the appropriate contour are specified. For this problem, we find

$$\kappa_1 + \kappa_2 = \kappa = 2. \tag{9.6}$$

If we now evaluate equation (9.4), for  $\Phi(z) = \Phi_1(z)$  at z = 0, we obtain

$$\mathcal{P}(0) = \boldsymbol{\Phi}_{1}^{-1}(0) \, \boldsymbol{\Phi}_{1}^{-1}(0), \tag{9.7}$$

and since  $\Phi_1(0)$  is real (recall that  $\Phi_1(z) = \overline{\Phi_1(\overline{z})}$ ), we conclude from equation (9.7) that  $\mathcal{P}_{11}(0) \neq 0$  and  $\mathcal{P}_{22}(0) \neq 0$ . Again from equation (9.4), for  $\Phi(z) = \Phi_1(z)$ , we can write, after using equation (5.13),

$$\mathcal{P}(z) \to -\frac{1}{z^2} \begin{bmatrix} z^{\kappa_1} & 0\\ 0 & z^{\kappa_2} \end{bmatrix} \mathbf{K}^{-1} \begin{bmatrix} \frac{7}{6} & \frac{\sqrt{6}}{6}\\ \frac{\sqrt{6}}{6} & \frac{1}{2} \end{bmatrix} \tilde{\mathbf{K}}^{-1} \begin{bmatrix} (-z)^{\kappa_1} & 0\\ 0 & (-z)^{\kappa_2} \end{bmatrix}, \qquad (9.8)$$
  
as  $|z| \to \infty$ ,

from which it follows, since K is real, that

$$\kappa_1 = \kappa_2 = 1. \tag{9.9}$$

It is clear, since  $\Phi_1(z)$  is a canonical solution of ordered normal form at infinity, and since  $\kappa_1 = \kappa_2 = 1$ , that

$$\boldsymbol{\Phi}_{0}(z) \stackrel{\Delta}{=} \boldsymbol{\Phi}_{1}(z) \mathbf{K}^{-1} \sqrt{2} \begin{bmatrix} \sqrt{\frac{5}{12}} & \frac{\sqrt{6}}{6} \\ 0 & \frac{1}{2} \end{bmatrix}$$
(9.10)

is also a canonical solution of ordered normal form at infinity and is such that  $\Phi_0(z) = \overline{\Phi_0(\overline{z})}$ . In view of equations (9.8) and (9.10), we can therefore write equation (9.4) as

$$\Lambda(z) = \boldsymbol{\Phi}_0(z)\tilde{\boldsymbol{\Phi}}_0(-z), \qquad (9.11)$$

where

$$\boldsymbol{\Phi}_{0}(0)\tilde{\boldsymbol{\Phi}}_{0}(0) = \mathbf{I} \tag{9.12a}$$

and

$$\lim_{|z| \to \infty} z \boldsymbol{\Phi}_0(z) = \sqrt{2} \begin{bmatrix} \sqrt{\frac{5}{12}} & \frac{\sqrt{6}}{6} \\ 0 & \frac{1}{2} \end{bmatrix}.$$
 (9.12b)

We note that Cercignani [11] has reported a factorization in the spirit of our equation (9.11). We have been unable, however, to justify some of Cercignani's results [11; pp. 84–85] since, for example, upon 'taking' determinants of his equation (311) we find an inconsistency in the number of poles on the two sides of the equality sign. We have found that the extension of scalar results to the case of matrix Riemann problems, in general, does not follow immediately [6].

### 10. HALF-RANGE ORTHOGONALITY AND NORMALIZATION INTEGRALS

The half-range orthogonality relations developed by Kuščer, McCormick, and Summerfield[18] for the elementary solutions of the one-speed neutron-transport equation have proved to be useful for establishing concisely the solutions to a scalar singular integral equation somewhat analogous to equation (8.1). We should thus like to prove, in a manner similar to that reported by Siewert[24] for an equation of transfer basic to the scattering of polarized light, the following theorem concerning the half-range orthogonality properties of a subset of our developed normal modes.

Theorem 5. The eigenvectors  $\mathbf{F}_1(\mu)$ ,  $\mathbf{F}_2(\mu)$ ,  $\mathbf{F}_1(\eta, \mu)$ , and  $\mathbf{F}_2(\eta, \mu)$ ,  $\eta \in (0, \infty)$ , are orthogonal to the related set  $\mathbf{G}_1(\mu)$ ,  $\mathbf{G}_2(\mu)$ ,  $\mathbf{G}_1(\eta, \mu)$  and  $\mathbf{G}_2(\eta, \mu)$ ,  $\eta \in (0, \infty)$ , on the half-range,  $\mu \in (0, \infty)$ , in the sense that

$$\int_{0}^{\infty} \tilde{\mathbf{G}}(\xi',\mu) \mathbf{F}(\xi,\mu) \, \mathrm{e}^{-\mu^{2}} \, \mu \, \mathrm{d}\mu = 0, \, \xi \neq \xi'; \, \xi, \xi' = \infty \text{ or } \epsilon(0,\infty). \tag{10.1}$$

Here  $\mathbf{F}(\xi, \mu)$ ,  $\xi = \infty$  or  $\in (0, \infty)$ , denotes any of the eigenvectors  $\mathbf{F}_1(\mu)$ ,  $\mathbf{F}_2(\mu)$ , for  $\xi = \infty$ , or  $\mathbf{F}_1(\eta, \mu)$ ,  $\mathbf{F}_2(\eta, \mu)$ , for  $\eta \in (0, \infty)$ . In a similar manner,  $\mathbf{G}(\xi, \mu)$ , represents either

$$\mathbf{G}_{\alpha}(\mu) = \mathbf{Q}(\mu)\mathbf{H}(\mu)\mathbf{H}_{1}^{-1}\mathbf{Q}^{-1}(\mu)\mathbf{F}_{\alpha}(\mu), \ \alpha = 1 \text{ or } 2, \tag{10.2a}$$

or

$$\mathbf{G}_{\alpha}(\eta,\mu) = \mathbf{Q}(\mu)\mathbf{H}(\mu)\mathbf{H}^{-1}(\eta)\mathbf{Q}^{-1}(\mu)\mathbf{F}_{\alpha}(\eta,\mu), \ \eta \in (0,\infty), \ \alpha = 1 \text{ or } 2.$$
(10.2b)

In addition

$$\tilde{\mathbf{H}}_{1} = \int_{0}^{\infty} \tilde{\mathbf{H}}(\mu) \Psi(\mu) \, \mu \, \mathrm{d}\mu \tag{10.3}$$

and  $H(\mu)$  is the H matrix basic to our half-range analysis. In section 11 we prove the existence of a unique solution to the system of singular integral equations

$$\tilde{\mathbf{H}}(\mu)\boldsymbol{\lambda}(\mu) = \mathbf{I} + \mu P \int_0^\infty \tilde{\mathbf{H}}(\eta)\Psi(\eta)\frac{\mathrm{d}\eta}{\eta-\mu}, \ \mu \in (0,\infty),$$
(10.4a)

plus the constraint

$$\int_{0}^{\infty} \tilde{\mathbf{H}}(\mu) \Psi(\mu) \, \mathrm{d}\mu = \mathbf{I}, \qquad (10.4b)$$

which we take to specify  $\mathbf{H}(\mu)$ . As shall be shown,  $\mathbf{H}(\mu)$  can be expressed in terms of  $\boldsymbol{\Phi}_0(z)$ , our canonical solution, of ordered normal form at infinity, of the matrix Riemann problem defined by equation (9.1); that is

$$\mathbf{H}(\mu) = \tilde{\boldsymbol{\Phi}}_{0}^{-1}(-\mu)\tilde{\boldsymbol{\Phi}}_{0}(0), \tag{10.5}$$

which can be extended to the complex plane cut along the negative real axis to yield a factorization of  $\Lambda(z)$ :

$$\Lambda(z) = \hat{\mathbf{H}}^{-1}(z)\mathbf{H}^{-1}(-z).$$
(10.6)

To establish our Theorem 5, we first pre-multiply equation (4.4) by  $\tilde{\mathbf{G}}(\xi', \mu) e^{-\mu^2}/\xi$ , we then post-multiply the transpose of equation (4.4), having changed  $\xi$  to  $\xi'$ , by  $\tilde{\mathbf{Q}}^{-1}(\mu)\tilde{\mathbf{H}}^{-1}(\xi')\tilde{\mathbf{H}}(\mu)\tilde{\mathbf{Q}}(\mu)\mathbf{F}(\xi,\mu) \exp(-\mu^2)/\xi'$ , integrate the two resulting equations over  $\mu$  from 0 to  $\infty$  and subtract the two equations, one from the other, to obtain

$$\left(\frac{1}{\xi} - \frac{1}{\xi'}\right) \int_0^\infty \tilde{\mathbf{G}}(\xi', \mu) \mathbf{F}(\xi, \mu) \,\mathrm{e}^{-\mu^2} \,\mu \,\mathrm{d}\mu = \frac{1}{\sqrt{\pi}} [K_1(\xi', \xi) - K_2(\xi', \xi)], \,\xi \text{ and } \xi' > 0.$$
(10.7)

Here

$$K_{1}(\xi',\xi) = \tilde{\mathbf{M}}(\xi')\tilde{\mathbf{H}}^{-1}(\xi') \int_{0}^{\infty} \tilde{\mathbf{H}}(\mu)\tilde{\mathbf{Q}}(\mu)\mathbf{F}(\xi,\mu) \,\mathrm{e}^{-\mu^{2}}\,\mathrm{d}\mu$$
(10.8)

and

$$K_{2}(\xi',\xi) = \int_{0}^{\infty} \tilde{\mathbf{F}}(\xi',\mu) \tilde{\mathbf{Q}}^{-1}(\mu) \tilde{\mathbf{H}}^{-1}(\xi') \tilde{\mathbf{H}}(\mu) \tilde{\mathbf{Q}}(\mu) \mathbf{Q}(\mu) e^{-\mu^{2}} d\mu \mathbf{M}(\xi).$$
(10.9)

If now, in the manner similar to that previously reported [24], we make use of equations (4.5), (4.11), (4.13), (4.14) and (10.4) to evaluate equations (10.8) and (10.9) for all appropriate  $\xi$  and  $\xi'$ , we find

$$K_1(\xi',\,\xi) = K_2(\xi',\,\xi);\,\xi' \in (0,\,\infty),\,\xi = \infty \text{ or } \in (0,\,\infty),\tag{10.10}$$

and from equation (10.7) we obtain

$$\left(\frac{1}{\xi} - \frac{1}{\xi'}\right) \int_0^\infty \tilde{\mathbf{G}}(\xi', \mu) \mathbf{F}(\xi, \mu) \,\mathrm{e}^{-\mu^2} \,\mu \,\mathrm{d}\mu = 0; \,\xi, \xi' > 0, \tag{10.11}$$

which proves the theorem. We have only established equation (10.11) formally for  $\xi' \neq \infty$ . However, considering that case separately, we do find that  $\mathbf{G}_{\alpha}(\mu)$ ,  $\alpha = 1$  or 2, is orthogonal to  $\mathbf{F}(\xi, \mu)$  in the sense of Theorem 5. Of course, since  $\mathbf{F}_1(\mu)$  and  $\mathbf{F}_2(\mu)$  both correspond to the eigenvalue  $\xi = \infty$ , equation (10.1) does not ensure that the inner product, in the sense of Theorem 5, of  $\mathbf{G}_1(\mu)$  with  $\mathbf{F}_2(\mu)$  and  $\mathbf{G}_2(\mu)$  with  $\mathbf{F}_1(\mu)$  is zero.

However, for this special case we have carried out the algebra prescribed by equation (10.1) to show explicitly that

$$\int_0^\infty \tilde{\mathbf{G}}_\alpha(\mu) \mathbf{F}_\beta(\mu) \, \mathrm{e}^{-\mu^2} \, \mu \, \mathrm{d}\mu = 0, \, \alpha \neq \beta, \tag{10.12}$$

so that all of the half-range eigenvectors are orthogonal in the manner of Theorem 5.

Having established the required half-range orthogonality results, we should now like to consider again the normalized solutions given by equation (6.7) in order to present our half-range normalization integrals in a form analogous to that used for the full-range theory. We consider then the half-range adjoint set

$$\boldsymbol{\Theta}_{\alpha}(\boldsymbol{\mu}) = \frac{1}{\sqrt{\pi}} \mathbf{Q}(\boldsymbol{\mu}) \mathbf{H}(\boldsymbol{\mu}) \mathbf{H}_{1}^{-1} \mathbf{Q}^{-1}(\boldsymbol{\mu}) \boldsymbol{\Phi}_{\alpha}(\boldsymbol{\mu}), \, \alpha = 1 \text{ and } 2, \quad (10.13a)$$

and

$$\Theta_{\alpha}(\eta,\mu) = \mathbf{Q}(\mu)\mathbf{H}(\mu)\mathbf{H}^{-1}(\eta)\mathbf{Q}^{-1}(\mu)\mathbf{X}_{\alpha}(\eta,\mu), \ \eta \in (0,\infty), \ \alpha = 1 \text{ and } 2, \ (10.13b)$$

where the vectors  $\mathbf{X}_{\alpha}(\eta, \mu)$ ,  $\alpha = 1$  and 2, are given by equations (6.11e) and (6.11f); we can therefore summarize our results in the manner

$$\int_0^\infty \tilde{\Theta}_\alpha(\mu) \Phi_\beta(\mu) e^{-\mu^2} \mu d\mu = \delta_{\alpha,\beta}; \, \alpha,\beta = 1 \text{ or } 2, \qquad (10.14a)$$

$$\int_0^\infty \tilde{\Theta}_\alpha(\mu) \Phi_\beta(\eta,\mu) e^{-\mu^2} \mu d\mu = 0, \eta \in (0,\infty); \alpha,\beta = 1 \text{ or } 2, \qquad (10.14b)$$

$$\int_{0} \tilde{\Theta}_{\alpha}(\eta',\mu) \Phi_{\beta}(\eta,\mu) e^{-\mu^{2}} \mu d\mu = \delta_{\alpha,\beta} \delta(\eta-\eta'); \eta,\eta' \in (0,\infty), \alpha,\beta = 1 \text{ or } 2, \qquad (10.14c)$$

and

$$\int_0^\infty \tilde{\Theta}_\alpha(\eta,\mu) \Phi_\beta(\mu) e^{-\mu^2} \mu d\mu = 0; \, \eta \in (0,\infty), \, \alpha,\beta = 1 \text{ or } 2.$$
 (10.14d)

With the half-range formalism thus established, we note that the solutions for all expansion coefficients in equations of the form

$$\mathbf{I}(\mu) = \sum_{\alpha=1}^{2} A_{\alpha} \mathbf{F}_{\alpha}(\mu) + \sum_{\alpha=1}^{2} \int_{0}^{\infty} A_{\alpha}(\eta) \mathbf{F}_{\alpha}(\eta, \mu) \, \mathrm{d}\eta, \, \mu \in (0, \infty),$$
(10.15)

can be expressed concisely as

$$A_{\alpha} = \int_0^{\infty} \tilde{\Theta}_{\alpha}(\mu) \mathbf{I}(\mu) e^{-\mu^2} \mu d\mu, \quad \alpha = 1 \text{ and } 2, \quad (10.16a)$$

and

$$A_{\alpha}(\eta) = \int_{0}^{\infty} \tilde{\Theta}_{\alpha}(\eta, \mu) \mathbf{I}(\mu) e^{-\mu^{2}} \mu d\mu, \alpha = 1 \text{ and } 2.$$
 (10.16b)

We note that a set of integrals of the form

$$T(\xi',\xi) = \int_0^\infty \tilde{\Theta}(\xi',\mu) \Phi(-\xi,\mu) e^{-\mu^2} \mu \,\mathrm{d}\mu, \xi \text{ and } \xi' > 0, \qquad (10.17)$$

has been evaluated and is listed elsewhere [16].

### 11. EXISTENCE AND UNIQUENESS OF THE H MATRIX

We first wish to prove Theorem 6. The equations

$$\tilde{\mathbf{H}}(\mu)\boldsymbol{\lambda}(\mu) = \mathbf{I} + \mu P \int_0^\infty \tilde{\mathbf{H}}(\eta)\Psi(\eta) \frac{\mathrm{d}\eta}{\eta - \mu}, \, \mu \in (0, \infty),$$
(11.1a)

and

$$\int_0^\infty \tilde{\mathbf{H}}(\mu) \Psi(\mu) \, \mathrm{d}\mu = \mathbf{I}$$
(11.1b)

possess a unique solution in the class of functions continuous on every open interval of the positive real axis.

Though for the sake of brevity we do not give an explicit derivation of equations (11.1), we note that the **H** matrix specified by equations (11.1) is sufficient for establishing the half-range orthogonality theorem.

To prove Theorem VI we make use of the equivalence of the given singular-integral equations to a certain matrix version of the Riemann problem. In the manner of Muskhelishvili[21], we introduce the matrix

$$\mathbf{N}(z) = \frac{1}{2\pi i} \int_0^\infty \tilde{\mathbf{H}}(\eta) \Psi(\eta) \frac{\mathrm{d}\eta}{\eta - z}$$
(11.2)

which is analytic in the plane cut along the real axis and vanishes at least as fast as 1/z as |z| tends to infinity. The Plemelj formulae[21] can be used with equation (11.2) to yield

$$\pi i [\mathbf{N}^{+}(\mu) + \mathbf{N}^{-}(\mu)] = P \int_{0}^{\infty} \tilde{\mathbf{H}}(\eta) \Psi(\eta) \frac{\mathrm{d}\eta}{\eta - \mu}, \ \mu \in (0, \infty),$$
(11.3)

and

$$\mathbf{N}^{+}(\boldsymbol{\mu}) - \mathbf{N}^{-}(\boldsymbol{\mu}) = \mathbf{H}(\boldsymbol{\mu})\Psi(\boldsymbol{\mu}), \, \boldsymbol{\mu} \in (0, \infty).$$
(11.4)

If we make use of equations (5.10), (11.3) and (11.4) then equation (11.1a) can be cast in the equivalent form of an inhomogeneous Riemann problem:

$$\tilde{\mathbf{N}}^{+}(\mu) = \mathbf{G}(\mu)\tilde{\mathbf{N}}^{-}(\mu) + \Psi(\mu)[\Lambda^{-}(\mu)]^{-1}, \ \mu \in (0, \infty),$$
(11.5)

where

$$\mathbf{G}(\mu) = \mathbf{\Lambda}^{+}(\mu) [\mathbf{\Lambda}^{-}(\mu)]^{-1}.$$
(11.6)

The solution to equation (11.5) can be written as

$$\tilde{\mathbf{N}}(z) = \frac{1}{2\pi i} \boldsymbol{\Phi}(z) \left[ \int_0^\infty \mathbf{K}(\boldsymbol{\eta}) \frac{\mathrm{d}\boldsymbol{\eta}}{\boldsymbol{\eta} - z} + \hat{\mathbf{P}}(z) \right]$$
(11.7)

where  $\hat{\mathbf{P}}(z)$  is a matrix of polynomials,

$$\mathbf{K}(\mu) = [\boldsymbol{\Phi}^{+}(\mu)]^{-1} \Psi(\mu) [\boldsymbol{\Lambda}^{-}(\mu)]^{-1}, \qquad (11.8)$$

and  $\Phi(z)$  is any canonical solution (of ordered normal form at infinity) to the homogeneous Riemann problem defined by equation (9.1). In order that equation (11.7) have behavior as |z| approaches infinity consistent with equation (11.2), we must take  $\hat{\mathbf{P}}(z)$  to be a constant matrix.

Following closely Siewert and Burniston's [25] work on the scattering of polarized light, we can now use the constraint to specify uniquely the constant  $\hat{\mathbf{P}}(z)$  in equation (11.7). It thus follows that equation (11.7) along with equations (9.11) and (11.4) yields the result

$$\mathbf{H}(\mu) = \tilde{\boldsymbol{\Phi}}_0^{-1} (-\mu) \tilde{\boldsymbol{\Phi}}_0(0), \, \mu \in (0, \infty), \tag{11.9}$$

where  $\Phi_0(z)$  is the canonical solution (of ordered normal form at infinity) used in equation (9.11). We note from equation (11.9), since  $\Phi_0(z) = \overline{\Phi_0(\overline{z})}$ , that  $\mathbf{H}(\mu)$  is real for  $\mu \in (0, \infty)$ . Further, equation (11.9) can be used to extend the definition of  $\mathbf{H}(\mu)$  to the complex plane:

$$\mathbf{H}(z) = \tilde{\boldsymbol{\Phi}}_{0}^{-1}(-z)\tilde{\boldsymbol{\Phi}}_{0}(0), \qquad (11.10)$$

so that the  $\Lambda$  matrix can now be factored as

 $\Lambda(z) = \tilde{\mathbf{H}}^{-1}(-z)\mathbf{H}^{-1}(z).$ 

We note that equations (5.10), (9.11) and (11.10) can be used in the Cauchy integral representation

$$\boldsymbol{\Phi}_{0}(z) = \frac{1}{2\pi i} \int_{0}^{\infty} \left[ \boldsymbol{\Phi}_{0}^{+}(\mu) - \boldsymbol{\Phi}_{0}^{-}(\mu) \right] \frac{d\mu}{\mu - z}$$
(11.11)

to obtain

$$\mathbf{H}(z) = \mathbf{I} + z \mathbf{H}(z) \int_0^\infty \tilde{\mathbf{H}}(\eta) \Psi(\eta) \frac{d\eta}{\eta + z}$$
(11.12)

or

$$\mathbf{H}(\mu) = \mathbf{I} + \mu \mathbf{H}(\mu) \int_0^\infty \tilde{\mathbf{H}}(\eta) \Psi(\eta) \frac{d\eta}{\eta + \mu}, \ \mu \in [0, \infty).$$
(11.13)

Since we have established the existence of a unique solution to equations (11.1) and developed equation (11.13) specifically to be used, along with equation (11.1b), as the

basis for our procedure for computing the H matrix, it follows that we require proof of *Theorem 7. The equations* 

$$\mathbf{H}(\mu) = \mathbf{I} + \mu \mathbf{H}(\mu) \int_0^\infty \tilde{\mathbf{H}}(\eta) \Psi(\eta) \frac{\mathrm{d}\eta}{\eta + \mu}, \ \mu \in [0, \infty),$$
(11.14a)

and

$$\int_0^{\infty} \tilde{\mathbf{H}}(\mu) \Psi(\mu) \, \mathrm{d}\mu = \mathbf{I}$$
 (11.14b)

possess a unique solution in the class of functions continuous on every open interval of the positive real axis.

We have shown that equations (11.1) possess a unique solution; thus we need only show that any solution of equation (11.14a) is also a solution of equation (11.1a). We first write equation (11.14a) as

$$\mathbf{H}(\mu) \left[ \mathbf{I} - \mu \int_{0}^{\infty} \tilde{\mathbf{H}}(\eta) \Psi(\eta) \frac{d\eta}{\eta + \mu} \right] = \mathbf{I}$$
(11.15a)

or, alternatively,

$$\left[\mathbf{I} - \mu \int_{0}^{\infty} \tilde{\mathbf{H}}(\eta) \Psi(\eta) \frac{\mathrm{d}\eta}{\eta + \mu}\right] \mathbf{H}(\mu) = \mathbf{I}.$$
(11.15b)

If the transpose of equation (11.15b) is post-multiplied by

$$\mathbf{I} + \mu P \int_0^\infty \tilde{\mathbf{H}}(\eta) \Psi(\eta) \frac{\mathrm{d}\eta}{\eta - \mu}$$

then, after making use of some partial-fraction analysis and equations (4.15) and (11.15), we obtain

$$\tilde{\mathbf{H}}(\mu)\boldsymbol{\lambda}(\mu) = \mathbf{I} + \mu P \int_{0}^{\infty} \tilde{\mathbf{H}}(\eta)\Psi(\eta)\frac{\mathrm{d}\eta}{\eta-\mu}, \ \mu \in (0,\infty),$$
(11.16)

which proves Theorem 7.

### 12. AN EXPEDIENT METHOD FOR COMPUTING THE H MATRIX

It is clear from the previous sections of this paper that the H matrix is the basic quantity required in the solutions of problems defined in terms of equation (4.18) and specified by half-range,  $\mu \in (0, \infty)$ , boundary conditions. It is also apparent from the analysis of section 11 that the basic proofs regarding the existence and uniqueness of the H matrix have been established; however, to demonstrate the utility of our analysis, we must now establish a procedure by which we can compute the H matrix accurately and efficiently.

As we have discussed, the H matrix is uniquely specified by the nonlinear equation

Equations in the kinetic theory of gases

$$\mathbf{H}(\mu) = \mathbf{I} + \mu \mathbf{H}(\mu) \int_{0}^{\infty} \tilde{\mathbf{H}}(\eta) \Psi(\eta) \frac{\mathrm{d}\eta}{\eta + \mu}, \ \mu \in [0, \infty),$$
(12.1a)

and the constraint

$$\int_0^{\infty} \tilde{\mathbf{H}}(\mu) \Psi(\mu) \, \mathrm{d}\mu = \mathbf{I}.$$
 (12.1b)

Rather than seek a numerical solution to equation (12.1a) which must also satisfy equation (12.1b), we prefer [15, 22] first to write

$$\mathbf{H}(\mu) = (1+\mu)\mathbf{L}(\mu), \ \mu \in [0, \infty).$$
(12.2)

If we now substitute equation (12.2) into equation (12.1a), perform some elementary partial-fraction analysis, and make use of the constraint, equation (12.1b), then we find that  $L(\mu)$  must satisfy

$$\mathbf{L}(\mu) = \mathbf{I} + \mu \mathbf{L}(\mu) \int_0^\infty (1 - \eta^2) \tilde{\mathbf{L}}(\eta) \Psi(\eta) \frac{\mathrm{d}\eta}{\eta + \mu}, \ \mu \in [0, \infty),$$
(12.3a)

and

$$\int_{0}^{\infty} \tilde{\mathbf{L}}(\mu) \Psi(\mu) (1+\mu) \, d\mu = \mathbf{I}.$$
 (12.3b)

It follows from Theorem 7 that equations (12.3) have a unique solution. We regard equations (12.3) as the basic equations to be solved numerically because an iterative procedure based on these equations has proven to converge faster than a similar iterative solution of equations (12.1).

For calculational convenience, we now prefer to make in equations (12.3) the change of variable

$$t = \frac{\mu}{1+\mu} \tag{12.4}$$

and thus to write

$$\mathbf{L}_{*}(t) = \mathbf{I} + t \mathbf{L}_{*}(t) \int_{0}^{1} \frac{1 - 2s}{(1 - s)^{3}} \tilde{\mathbf{L}}_{*}(s) \Psi_{*}(s) \frac{\mathrm{d}s}{t(1 - s) + s(1 - t)}, t \in [0, 1),$$
(12.5)

where we have introduced the notation  $g_*(t) = g[t/(1-t)]$ . We have found that equation (12.5) can be solved quite effectively by iteration.

The computations were performed in double-precision arithmetic on an IBM 370/165 computer, and we used an improved Gaussian-quadrature [17] representation of the integration process. The iterative procedure was terminated when successive calculations of  $L_{*}(t)$  differed by no more than  $10^{-15}$ .

To substantiate confidence in our computations, several "checks" were incorporated in the calculation. As expected  $L_{*}(t)$  satisfied

$$\mathbf{I} - \int_0^1 \tilde{\mathbf{L}}_*(t) \Psi_*(t) \frac{\mathrm{d}t}{(1-t)^3} = \mathbf{0},$$
(12.6)

an identity corresponding to the constraint, equation (12.1b), to thirteen significant figures. The equation in terms of  $L_{*}(t)$  corresponding to the identity [16]

$$2\int_0^{\infty} \Psi(\mu) \,\mu^2 \mathrm{d}\mu - \int_0^{\infty} \Psi(\mu) \mathbf{H}(\mu) \,\mu \,\mathrm{d}\mu \int_0^{\infty} \tilde{\mathbf{H}}(\mu) \Psi(\mu) \,\mu \,\mathrm{d}\mu = \mathbf{0}$$
(12.7)

was also verified to thirteen significant figures.

The analytical solution[16]

$$H(z) = \det \mathbf{H}(z) = \sqrt{\frac{12}{5}} z^2 \exp\left\{-\frac{1}{\pi} \int_0^\infty \arg \Lambda^+(\mu) \frac{d\mu}{\mu + z}\right\},$$
 (12.8)

where arg  $\Lambda^+(0) = -2\pi$ , can be shown to satisfy

$$H(\mu) = 1 + \mu H(\mu) \int_0^\infty f(\eta) H(\eta) \frac{\mathrm{d}\eta}{\eta + \mu}, \ \mu \in [0, \infty),$$
(12.9)

where

$$f(\eta) = \frac{1}{3} \frac{1}{\sqrt{\pi}} e^{-\eta^2} \left[ \frac{11}{2} - \eta^2 - 8\eta \ e^{-\eta^2} \int_0^{\eta} e^{t^2} dt \right].$$
(12.10)

Rather than solve equation (12.9) and the appropriate constraint for  $H(\mu)$  we prefer to write

$$H(\mu) = (1+\mu)^2 L(\mu), \, \mu \in [0, \infty).$$
(12.11)

If we substitute equation (12.11) into equation (12.9), perform some partial-fraction analysis and make use of two identities [16] for  $H(\mu)$  then we find that (after an appropriate change of variables)  $L_{*}(t) = \det L_{*}(t)$  must satisfy

$$\frac{1}{L_*(t)} = 1 - t \int_0^1 \frac{(1 - 2s)^2}{(1 - s)^5} f_*(s) L_*(s) \frac{\mathrm{d}s}{s(1 - t) + t(1 - s)}, t \in [0, 1).$$
(12.12)

We have compared  $L_*(t)$  as computed from equation (12.5) to a direct solution of equation (12.12) and the appropriate constraint to find agreement to nine significant figures.

Finally the number of quadrature points used to represent the integration process was increased to suggest that the numerical values of the  $L_*$  matrix given in the accompanying Table (1) were insensitive to further refinements in the quadrature scheme.

### 13. AN APPLICATION OF THE THEORY: THE TEMPERATURE SLIP PROBLEM

We consider the effect of a body surface on the behavior of the particle distribution function of a rarefied gaseous medium. It is known that, in the absence of boundaries, the particle distribution function in a gas with slowly varying physical parameters obeys the Chapman–Enskog equations (and therefore the macroscopic variables obey the

### Equations in the kinetic theory of gases

t	$L_{*11}(t)$	$L_{*12}(t)$	$L_{*21}(t)$	$L_{*22}(t)$
0.0	1.0	0.0	0.0	1.0
0.05	1.05781	-0.0409718	-0.0406202	1.08988
0.10	1.08842	-0.0702992	-0.0691920	1.14897
0.15	1.10976	-0.0960791	-0.0939297	1.19824
0.20	1.12527	-0.119749	-0.116314	1.24158
0.25	1.13648	-0.141931	-0.136989	1.28073
0.30	1.14424	-0.162963	-0.156307	1.31664
0.35	1.14909	-0.183053	-0.174483	1.34992
0.40	1.15139	-0.202341	-0.191658	1.38097
0.45	1.15138	-0.220921	-0.207929	1.41009
0.50	1.14926	-0.238862	-0.223361	1.43748
0.55	1.14514	-0.256214	-0.238000	1.46333
0.60	1.13912	-0.273011	-0.251873	1.48774
0.65	1.13125	-0.298278	-0.264997	1.51082
0.70	1.12157	-0.305030	-0.277373	1.53265
0.75	1.11008	-0.320274	-0.288995	1.55328
0.80	1.09678	-0.335010	-0.299844	1.57276
0.85	1.08162	-0.349228	-0.309887	1.59111
0.90	1.06454	- 0.362913	-0.319081	1.60835
0.95	1.04545	-0.376036	-0.327361	1.62449
0.99	1.02864	-0.386105	-0.333271	1.63660

Table 1. The L- matrix

Navier–Stokes equations). Near the body surface, the behavior of the gas is described by a rarefied Knudsen layer in which the collisional effects are only of secondary importance. It is natural to ask how the outer Chapman–Enskog (or Navier–Stokes) region can be matched consistently with the inner Knudsen layer. Saying it differently, we ask what are the velocity and temperature slip boundary conditions at a body surface for the Navier–Stokes equations due to the presence of the Knudsen layer adjacent to the body surface.

To understand the asymptotic behavior of the Knudsen layer, we may stretch locally the coordinate normal to the body surface such that the gas-kinetic motion in the Knudsen layer reduces to a locally defined half-space problem and the kinetic equation takes on a one-dimensional character in the form studied in this paper.

Since the asymptotic boundary condition of the Knudsen layer is given by the Chapman–Enskog equations, the asymptotic form of the particle distribution function is nearly Maxwellian. If we also assume that the effect of the body surface is to re-emit molecules described by a suitably chosen Maxwellian distribution and that the macroscopic variables do not vary appreciably throughout the Knudsen layer, a linearization scheme for the one-dimensional kinetic equation in the sense described in sections 2 and 3 is justified. Based on the constant collision frequency BGK model, the pertinent linearized kinetic equation for the Knudsen layer is that given by equation (3.7). The velocity-slip (or Kramers problem) for this equation for a diffusely reflecting wall has been solved exactly by Cercignani[9] and an accurate velocity-slip coefficient has been calculated,[1]. Although approximate analyses of the associated temperature slip problem have been reported by a number of authors[2, 19, 23, 28, 29], an accurate calculation of the temperature-slip coefficient has not been previously reported. Since the temperature-density effects for the problem for a diffusely reflecting wall are uncoupled from the transverse momentum effects, we will show that an accurate determi-

### J. T. KRIESE et al.

nation of the temperature slip coefficient for steady gas-kinetic motion may be effected by using the method of elementary solutions and the half-range expansion theorem developed in this paper for the vector integrodifferential equation (4.1).

It is straightforward to demonstrate that the heat flux in the normal direction in the Knudsen layer is a constant and since the Chapman–Enskog solution relates the heat flux linearly to the temperature gradient, to match the Chapman–Enskog region and the Knudsen layer it is only necessary to consider an asymptotic boundary condition with a constant temperature gradient. It is interesting to note that such an asymptotic boundary condition ary condition, as far as the temperature-density effects are concerned, can be satisfied by taking the asymptotic perturbation distribution function to be

$$h_{asy}(x, \mathbf{c}) = \begin{bmatrix} 1 \\ c_2^2 + c_3^2 - 1 \end{bmatrix}^T \begin{bmatrix} \sum_{\alpha=1}^2 A_\alpha \Phi_\alpha(\mu) + \sum_{\beta=3}^4 A_\beta \Psi_\beta(x, \mu) \end{bmatrix},$$
(13.1)

where the  $\Phi'_{\alpha}$ 's and  $\Psi'_{\beta}$ 's are the discrete solutions to equation (4.1), and  $c_2$ ,  $c_3$  are the components of the dimensionless particle velocity in the transverse directions. Since the Chapman-Enskog theory requires the medium to obey the perfect gas law and the pressure in the Knudsen layer far from the wall is a specified constant, we deduce from the definitions

$$n_{asy}(x) \stackrel{\Delta}{=} \pi^{-3/2} \int h_{asy}(x, \mathbf{c}) \, \mathrm{e}^{-c^2} \, \mathrm{d}^3 c, \qquad (13.2)$$

and

$$T_{asy}(x) \stackrel{\Delta}{=} \frac{2}{3} \pi^{-3/2} \int h_{asy}(x, \mathbf{c}) (c^2 - \frac{3}{2}) e^{-c^2} d^3 c, \qquad (13.3)$$

the requirements

$$A_2 = -\sqrt{\frac{2}{3}}A_1$$
 and  $A_4 = -\sqrt{\frac{2}{3}}A_3$ . (13.4)

For an asymptotic temperature gradient of unity, it is clear that the temperature slip coefficient  $\xi$  defined by  $T_{asy}(0) = \xi(d/dx)T_{asy}(x)|_{x=0}$  will be given by  $\xi = \epsilon' l_t$ , [19], where

$$\epsilon' = \sqrt{\frac{2}{3}}A_1,\tag{13.5}$$

 $l_t = (4/5)(\mathscr{K}/nk)(m/2kT)^{1/2}$  is a mean free path, and  $\mathscr{K}$  is the thermal conductivity. For a diffusely reflecting wall, the boundary condition at x = 0 requires

$$\begin{bmatrix} B\\0 \end{bmatrix} = \sum_{\alpha=1}^{4} A_{\alpha} \Phi_{\alpha}(\mu) + \sum_{\alpha=1}^{2} \int_{0}^{\infty} A_{\alpha}(\eta) \Phi_{\alpha}(\eta, \mu) \, \mathrm{d}\eta, \, \mu \in (0, \infty).$$
(13.6)

The unknown constant B is related to the density of the gas near the wall and need not be specified for temperature-slip coefficient calculations. We make use of equation (13.4) and the specified asymptotic temperature gradient to write equation (13.6) as

$$\sqrt{\frac{3}{2}} \Phi_{3}(\mu) - \Phi_{4}(\mu) = A_{1} \Phi_{1}(\mu) + (A_{2} - B) \Phi_{2}(\mu) + \sum_{\alpha=1}^{2} \int_{0}^{\infty} A_{\alpha}(\eta) \Phi_{\alpha}(\eta, \mu) \, \mathrm{d}\eta.$$
(13.7)

Theorem 3 and equation (10.16a) enable us to solve equation (13.7) for  $A_1$ :

$$A_{1} = \int_{0}^{\infty} \tilde{\Theta}_{1}(\mu) \left[\sqrt{\frac{3}{2}} \Phi_{3}(\mu) - \Phi_{4}(\mu)\right] e^{-\mu^{2}} \mu d\mu.$$
(13.8)

It is clear from the definition of  $\Theta_1(\mu)$  that  $A_1$  may be expressed in terms of appropriate moments of the H matrix discussed in section 11. The numerical procedure used to evaluate integrals involving the H matrix was given in section 12. We find

$$\epsilon' = \frac{5}{8}\pi^{1/2} (1.17597). \tag{13.9}$$

This compares with the variational result of  $\epsilon' = \frac{5}{8}\pi^{1/2}$  (1·1621), [2, 19, 23], Wang Chang and Uhlenbeck's result of  $\epsilon' = \frac{5}{8}\pi^{1/2}$  (1·150), [28], and Welander's value of  $\epsilon' = \frac{5}{8}\pi^{1/2}$  (1·173), [29]. We believe our result to be accurate to the number of significant figures quoted.

Acknowledgement—The authors are grateful to Professor E. E. BURNISTON for many valuable discussions during the course of this investigation. This research was supported in part by NSF grants GK-11935 and GU-1590, and NASA grant NGL34–002–084, and the Triangle Universities Consortium on Air Pollution (comprising Duke University, North Carolina State University and the University of North Carolina at Chapel Hill), which is funded by the Office of Manpower Development of the U.S. Environmental Protection Agency.

### REFERENCES

- [1] S. ALBERTONI, C. CERCIGNANI and L. GOTUSSO, Phys. Fluids 6, 993 (1963).
- [2] P. BASSANINI, C. CERCIGNANI and C. D. PAGANI, Int. J. Heat Mass Transfer 10, 447 (1967).
- [3] P. L. BHATNAGAR, E. P. GROSS and M. KROOK, Phys. Rev. 94, 511 (1954).
- [4] G. R. BOND and C. E. SIEWERT, Astrophys. J. 164, 97 (1971).
- [5] E. E. BURNISTON and C. E. SIEWERT, J. Math Phys. 11, 3416 (1970).
- [6] E. E. BURNISTON, C. E. SIEWERT, P. SILVENNOINEN and P. F. ZWEIFEL, Nucl. Sci. Engng 45, 331 (1971).
- [7] K. M. CASE, Ann. Phys. 9, 1 (1960).
- [8] K. M. CASE and P. F. ZWEIFEL, Linear Transport Theory. Addison-Wesley (1967).
- [9] C. CERCIGNANI, J. Math. Analysis Applic. 10, 568 (1965).
- [10] R. V. CHURCHILL, Complex Variables and Applications McGraw-Hill (1960).
- [11] C. CERCIGNANI, Elementary solutions of linearized kinetic models and boundary value problems in the kinetic theory of gases. Brown Univ. Report (1965).
- [12] C. CERCIGNANI, Mathematical Methods in Kinetic Theory. Plenum (1969).
- [13] E. P. GROSS and E. A. JACKSON, Physics Fluids 2, 432 (1959).
- [14] I. M. GELFAND and G. E. SHILOV, Generalized Functions. Academic (1964).
- [15] J. T. KRIESE and C. E. SIEWERT, Astrophys. J. 164, 389 (1971).
- [16] J. T. KRIESE, Ph.D. Thesis, North Carolina State University (1972).
- [17] A. S. KRONROD, Nodes and Weights of Quadrature Formulas. Consultants Bureau (1965).
- [18] I. KUSCER, N. J. MCCORMICK and G. C. SUMMERFIELD, Ann. Phys. 30, 411 (1964).
- [19] S. K. LOYALKA and J. H. FERZIGER, Physics Fluids 11, 1668 (1968).
- [20] G. F. MANDZAVIDZE and B. V. HVEDELIDZE, Dokl. Akad. Nauk SSSR 123, 791 (1958).
- [21] N. I. MUSKHELISHVILI, Singular Integral Equations. Noordhoff (1953).
- [22] S. PAHOR, Nucl. Sci. Engng. 31, 110 (1968).
- [23] S. F. SHEN, Rarefied Gas Dynamics, (Edited by C. L. BAUNDIN). Academic Press (1967).
- [24] C. E. SIEWERT, J. Quant. Spectrosc. Radiat. Transfer 12, 683 (1972).
- [25] C. E. SIEWERT and E. E. BURNISTON, Astrophys. J. 174, 629 (1972).
- [26] C. E. SIEWERT and P. F. ZWEIFEL, Ann. Phys. 36, 61 (1966).
- [27] L. SIROVICH, Phys. Fluids 5, 908 (1962).
- [28] C. S. WANG CHANG and G. E. UHLENBECK, University of Michigan Engineering Research Institute Project Report M999 (1954).
- [29] P. WELANDER, Ark. Fy. 7, 507 (1954).

(Received 8 June 1972)

**Résumé**—La méthode des solutions élémentaires est employée pour résoudre deux équations integrodifférentielles couplées pour la détermination des effets du rapport température-densité, dans un modèle BGK linéarisé dans la théorie cinétique des gaz. L'état complet de tout le domaine et les théorèmes d'orthogonalité sont démontrés pour les modes normaux développés et la fonction de Green pour un milieu infini est établie comme illustration du formalisme sur tout le domaine.

Le problème de Riemen approprié à une matrice homogène est étudiée et l'état complet de tout le domaine et les théorèmes d'orthogonalité sont démontrés pour un certain sous-système des modes normaux. Les théorèmes nécessaires d'existence et d'unicité concernant la matrice H, fondamentale pour l'analyse du domaine complet, sont démontrés et une méthode de calcul précise et efficace est présentée. Le problème du glissement de température d'un demiespace est résolu analytiquement et une valeur très précise du coefficient de glissement de température est donnée.

Zusammenfassung—Das Verfahren elementarer Lösungen wird verwendet, um zwei gekuppelte Integrodifferentialgleichungen zu lösen, die genügen, um die Temperatur-Dichtewirkungen in einem linearisierten BGK-Modell in der kinetischen Theorie von Gasen zu bestimmen.

Vollbereichs-Vollständigkeits- und Orthogonalitätstheoreme werden für die entwickelten Normalformen bewiesen und Green's Funktion des unendlichen Stoffes wird als eine Illustration des Vollbereichsformalismus konstruiert.

Das entsprechende Riemann'sche Problem einer homogenen Matrix wird besprochen und Halbbereichs-Vollständigkeits- und Orthogonalitätstheoreme werden für eine bestimmte Untergruppe der Normalformen bewiesen. Die für die H-Matrix belangreichen erforderlichen Existenz- und Eindeutigkeitstheoreme, grundlegend für die Halbbereichs-Analyse, werden bewiesen, und eine genaue und wirksame Berechnungsmethode wird besprochen. Das Temperaturgleitproblem des Halbraumes wird analytisch gelöst und ein sehr genauer Wert des Temperaturgleitkoeffizienten wird berichtet.

Sommario—Il metodo delle soluzioni elementari viene usato per risolvere due equazioni integrodifferenziali accoppiate, sufficienti a determinare gli effetti della densità di temperatura in un modello BGK linearizzato nella teoria cinetica dei gas.

Vengono dimostrati i teoremi della completezza e dell'ortogonalità su tutta la gamma per i modi normali sviluppati e, per illustrare il formalismo sull'intera gamma, viene costruita la funzione di Green per un mezzo infinito.

Viene discusso il problema di Riemann per una matrice omogenea appropriata e, per un certo sottoassieme dei modi normali, vengono dimostrati i problemi di completezza e ortogonalità per la semigamma. Vengono dimostrati i necessari teoremi di esistenza e unicità relativi alla matrice H, fondamentali per l'analisi della semigamma, e viene discusso un metodo di calcolo accurato ed efficiente. Il problema temperatura/scorrimento del semispazio viene risolto analiticamente e viene dato un valore molto accurato del coefficiente temperatura/scorrimento.

Абстракт — Применен метод элементарных решений для решения двух интегро-дифференциальных уравнений достаточных для определения эффектов температуры и плотности в линеаризованной модели (BGK) в кинетической теории газов. Даны доказательства теорем об общей полноте и ортогональности для развиваемых нормальных режимов, построена функция Грина для бесконечной среды в качестве иллюстрации общего формализма. Обсуждена соответствующая римановская проблема однородной матрицы, даны доказательства теорем о половинной полноте и ортогональности для определенной подсистемы нормальных режимов. Доказаны искомые теоремы о существовании и единственности относительно матрицы *H*, лежащие в основе анализа половинной полноты, а также обсужден точный рациональный метод вычисления. Аналитически решена проблема полупространственного скольжения и температуры, сообщено высокоточное значение коэффициента скольжения и температуры.
## VOLUME 9, NUMBER 6

JUNE 1974 15329

75-04939

## Tricritical points in multicomponent fluid mixtures*

## Alex Hankey[†]

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305

## T. S. Chang[‡] and H. E. Stanley§

Department of Physics. Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (Received 2 July 1973)

In view of experimental considerations, we give a model-independent argument that the novel tricritical points in multicomponent fluid mixtures, where three phases simultaneously become critical, are points on the boundary of a *single two-dimensional surface of critical points*. This result is corroborated by the Landau model suggested by Griffiths. The relationship between these tricritical points and the complex "higher-order" critical points proposed to exist in certain magnetic systems is elucidated.

#### I. INTRODUCTION

In 1970 Griffiths¹ proposed the concept of a tricritical point as being the point of intersection of three lines of critical points in a phase diagram using intensive thermodynamic variables. He further suggested, as examples, metamagnets,² He³-He⁴ mixtures,³ and ammonium chloride.⁴ There has also been considerable speculation^{1,5} that similar points might exist and might be found in the phase diagrams of complex fluid mixtures. That such points have already been proposed and, indeed, that they had been investigated prior to 1970 has recently been pointed out by Widom and Griffiths.⁶⁻⁸ A full and very complete discussion of experimental evidence for these points has been given in Refs. 6-8, and we refer the reader to these papers for details.

A different way in which critical points more complex than tricritical points can occur has been shown to involve intersecting lines of tricritical points, and a classification of critical points has been introduced to differentiate these points from tricritical points or ordinary critical points.⁵ The question has been raised^{6,8} as to how the new points discovered in fluids are related to such a classification.

Properties of the phase diagram⁹ were the basis of the approach we suggested previously.^{5,10} In particular, we emphasized the importance of the connectivity properties of different spaces of critical points and tricritical points. Accordingly it is the connectivity of the different critical points of multicomponent fluid mixtures in the space of truly intensive or "field" variables that we emphasize here.

#### II. DEMONSTRATION THAT ALL CRITICAL POINTS FORM A SINGLE CONNECTED SURFACE

The basic idea is to consider a system where three distinct phases can be in equilibrium. These might be three liquids or two liquids and a vapor phase. On changing the thermodynamic variables (temperature, pressure, chemical potentials of different components) one pair of phases will become critical, in the presence of the third. In a binary system the point where this occurs is the end point of a line of critical points which bounds the surface of points where the two phases coexist. There are no degrees of freedom and such a point is unique in the phase diagram.⁷

In a ternary, quaternary, or more complicated system this point has one or more degrees of freedom. Thus a line of "critical end points" is possible. Such a line is the boundary of a surface of critical points where two phases are critical.

In the particular systems of interest it is possible, by varying physical conditions, to make a different pair of the three phases become critical in the presence of the third, thus producing a second line of critical end points.

Finally, by achieving exactly the correct physical conditions it is possible for all three phases to become critical simultaneously. In a ternary system such a point is unique; there are zero degrees of freedom. Here, only this and similarly simple cases are considered.

Experimentally there is the following arrangement. A tube containing a three-component mixture with a three-phase system is cooled to observe the appearance of successive phases. We

2573

will call these phases  $\alpha$ ,  $\beta$ , and  $\gamma$ , where for purposes of argument  $\rho_{\alpha} < \rho_{\beta} < \rho_{\gamma}$ . The ratio of the various components is varied until the second meniscus appears via a critical mode. This could be the lower meniscus in which case phases  $\gamma$  and  $\beta$  become critical at a lower temperature. If pressure, temperature, and one other intensive parameter are allowed to vary, a phase diagram of the type shown in Fig. 1(a) will be observed. At the point P, the phases  $\gamma$  and  $\beta$  become critical in the presence of a third phase  $\alpha$ . If pressure is increased, the lightest phase  $\alpha$  will disappear and a line of critical points between phases  $\gamma$  and  $\beta$ will develop. For increasing temperatures above P, there will be a line of critical points bounding the surface of coexistence points which separates the region of light phase  $\alpha$  from the region of the heavier phase  $\gamma\beta$ .

By varying the ratios of components appropriately, it is possible, in the physical systems of interest, to make the upper meniscus, separating phase  $\beta$  from phase  $\alpha$ , appear second on cooling. The corresponding phase diagram is shown in Fig. 1(c). Again there is a special point P' which is the end point of a line of critical points for phases  $\beta$  and  $\alpha$ , and which is also the end point of the line of points where three phases coexist. If the temperature is increased above P' then the coexistence surface separating phase  $\gamma$  from the combined phases  $\beta \alpha$  will terminate in a line of critical points.

If the transition to the phase diagram of Fig. 1(c) happens by a continuous variation from Fig. 1(a) then there must be a situation where both menisci become critical simultaneously.

The corresponding phase diagram is shown in Fig. 1(b). It may be seen that the point P of Fig. 1(a) has migrated along the coexistence surface to the point  $P_t$  on the boundary. At the point  $P_t$  all three lines of critical points, a ( $\gamma\beta$  critical), b ( $\gamma\alpha$  critical), and c ( $\beta\alpha$  critical) meet.

The purpose of constructing Figs. 1(a)-1(c) is to consider the behavior of the critical surface in the immediate neighborhood of the tricritical point  $P_t$ , and the figures should therefore be understood to represent the phase diagram close to  $P_t$  and not far away from the tricritical point. Also, since our primary interest is the connectivity of the surface of critical points, and not its specific shape, we do not have to choose the variables precisely, since the connectedness would remain unchanged even if different variables were chosen. [Similar remarks apply to Figs. 2(a) and 2(b) in what follows.]

We can now demonstrate that the lines of critical points a, b, c in Figs. 1(a)-1(c) form a single continuous surface of critical points bounded by the line of critical end points  $P-P_t-P'$ . Consider a



FIG. 1. Three-dimensional subspaces of the full four-dimensional space of field variables of a three-component system (or of five dimensions for four components). The variable t may be thought of as the temperature, the variable v as the pressure, and the third variable u as a suitable combination of chemical potentials. We use the notation of Ref. 5 to indicate lines and surfaces of critical points in the diagram. Lines of critical points are indicated  ${}^{2}R_{1}$  (order 2, dimension 1). Coexistence surfaces are indicated by  ${}^{2}X_{2}$  (two phases and dimension 2). (a) Section containing a point P where the two heavier phases  $\gamma$ ,  $\beta$  are critical in the presence of the lightest  $\alpha$ , as represented by the schematic tube showing the  $\gamma\beta$  meniscus critical and the  $\beta\alpha$  menisci are simultaneously critical in the schematic tube. (c) Section containing a point P' where the lighter phases  $\beta$ ,  $\alpha$  are critical in the presence of the heaviest  $\gamma$ , as shown in the schematic representation.

point on line *a* in Fig. 1(a); move continuously through Figs. 1(b) to 1(c). Now move along the line *a-b* to a point at the "*b*" end, and now move along continuously through Figs. 1(b) to 1(a). Still being on line *b*, we can move along the line *b-c* to the "*c*" end. Now move continuously through Figs. 1(b) to 1(c) and our assertion is demonstrated. We have not passed through the point  $P_t$ and so the lines *a*, *b*, *c* form sections of a single continuous surface of critical points bounded by lines of critical end points  $P - P_t - P'$ .

The fact that there is only a single surface of critical points is also corroborated by the model of Griffiths⁸ (see his Fig. 3). This fact is in strong contrast to the metamagnet where it is not possible to go from a point on the wing boundaries to a point on the physical critical line without passing through a tricritical point^{1,10} and the spaces of critical points are distinct and separate.

It will be plausible to conjecture that since all the critical points form a single surface, the critical-point exponents are the same at all critical points except the tricritical point itself. In contrast, for a metamagnet no reasons have been presented for why the critical-point exponents should be the same along all three of the critical lines meeting at the tricritical point. However, it has been suggested¹¹ that for most tricritical points the existence of a hidden variable linking the wing boundaries to the physical critical line (the variable called  $a_3$  by Griffiths⁸) might force the equality of exponents.

## **III. MODEL SURFACE OF CRITICAL POINTS**

The phase diagrams of Figs. 1(a)-1(c) were three dimensional and so parametrizing them with an extra field variable introduces a fourth dimension to the phase diagram. The connectivity, and other properties, of the surface of critical points formed by the critical lines a, b, c of Fig. 1, are most easily studied in a three-dimensional subspace of the full phase diagram which contains the whole critical surface. The shape of the critical surface in such a subspace may be determined as follows.

Consider the critical lines as they appear on the paper in Figs. 1(a)-1(c) and consider how these lines would form a smooth surface in three dimensions if the extra parameter were used to plot the height of the paper, with Fig. 1(c) above 1(b) above 1(a). By this combined projection and motion we generate a single connected surface of critical points with a boundary formed by the line of points  $P-P_t-P'$ .

A surface, which is topologically equivalent to the surface of critical points thus obtained, is shown in Figs. 2(a) and 2(b). Fig. 2(a) is a contour map of the surface, and the heights h of the contours are given by the hyperbolae xy = h. The boundary of the surface  $P - P_t - P'$  is represented by the parabola  $y = -cx^2$  in the lower half of Fig. 2(a). The topological equivalence of the surface of Fig. 2(a) to the surface of critical points may be seen as follows.

Consider a section of Fig. 2(a) at constant height h. If h > 0 there are two hyperbolae, one in the upper right quadrant and one which terminates on the portion of the parabola labeled P in the lower left. This is a representation of Fig. 1(a) for which there are two critical lines, one labeled (a) terminating at P and another labeled (b-c).

If h < 0 there are again two hyperbolae, one in the upper left quadrant which corresponds to the line of critical points (a, b) of Fig. 1(c), and one



FIG. 2. Section of the four-dimensional space of field variables containing the full surface of critical points. The surface is represented by a contour map of hyperbolae and is fully explained in the text. The variables x and y are suitable field variables. (a) Boundary of the surface is smooth at  $P_t$ . The lines of critical end points P, P' form a smooth line in the four-dimensional space. (b) Boundary of the surface is cusplike at  $P_t$ . The lines of critical end points P, P' form a cusp in the four-dimensional space. in the lower right quadrant of Fig. 2 which corresponds to the critical line c terminating at P in Fig. 1(c).

When h = 0 the hyperbolae degenerate into the three axes, for x < 0, y > 0, and x > 0 corresponding to the lines a, b, c of Fig. 1(b) which terminate at  $P_t$ .

Accordingly, in Fig. 2, the ends of the hyperbolae are labeled a, b, c according to the parts of the critical lines in Fig. 1 to which they correspond.

The complete topological correspondence between the sections of the surface in Fig. 2 and the critical lines of Fig. 1 is therefore clear. The points  $P, P_t, P'$  are a line forming a boundary of the surface of critical points, and the point  $P_t$ , which is the tricritical point, corresponds to a saddle point of the surface in the projective space of Fig. 2.

It may seem that a very special space has been chosen, and that the boundary has been made to go in a very special fashion—through the saddle point. However, this is merely in accordance with the following general physical requirements: (i) Only one point P occurs in each phase diagram; therefore the boundary has to pass from the lower left quadrant to the lower right quadrant without passing through the upper two quadrants; (ii) Critical lines only split or end at a point like P. Thus the point P has to pass through the origin where the section would otherwise necessarily give four lines of critical points intersecting.

This analysis of the critical points as a single surface provides another viewpoint from which to understand the fact that only two pairs of the three possible pairs of phases became critical in the presence of the third. The simplest viewpoint is that of the test tube itself. If the phases  $\alpha, \beta, \gamma$ are ordered in increasing density, then  $(\alpha, \beta)$  can be critical (same density) in the presence of  $\gamma$ , and  $(\beta\gamma)$  can be critical in the presence of  $\alpha$ , but  $(\alpha_{\gamma})$  cannot be critical and of equal density without the phase  $\beta$  having a density equal to both. Thus the possibility  $(\alpha_{\gamma})$  critical in the presence of  $\beta$ is eliminated. Widom⁷ has related this fact to the geometric asymmetry of the solid figure containing three distinct phases  $\alpha$ ,  $\beta$ ,  $\gamma$  at constant temperature less than the tricritical temperature.

In terms of the phase diagrams in spaces of truly intensive variables (Widom used densities, or extensive variables), the existence of two lines of critical end points instead of three has a very simple topological interpretation: the boundary of a single surface is locally divided into *two* separate parts by the removal of a single point. Thus the tricritical point  $P_t$  divides the boundary of the surface of critical points into two lines of critical

end points but *cannot* divide it into three different lines of critical end points.

#### **IV. SPECIAL DIRECTIONS**

It was shown by Griffiths⁸ that in his model there are four variables of scaling, each with different exponents at the special point. From a purely phenomenological point of view one can define four different directions at the special point  $P_t$  in the same spirit as Griffiths and Wheeler.⁹ From Fig. 2 it may be seen that these directions are (i) the limiting "strong" direction for the surface of critical points, (ii) the limiting "weak" direction for the surface of critical points, (iii) the tangent to the line of critical end points at the tricritical point, and (iv) the limiting second direction parametrizing the surface of critical points. These correspond to the variables called  $a_1$ ,  $a_2$ ,  $a_4$ , and  $a_3$ , respectively, by Griffiths.⁸

#### V. TRANSLATION TO COMPOSITION VARIABLES

The variables over which the experimentalist has easy control are unfortunately not the intensive field variables like the chemical potentials, but only the densities. In these variables the phase diagrams have been discussed by Widom.⁷ It has been pointed out by Griffiths⁸ that the precise composition of the tricritical point  $P_t$  probably does not coincide with the composition of the regions of coexistence of three phases at temperatures smaller than the temperature at  $P_t$ .

Such behavior has probably been observed in the system carbon-dioxide-methanol-water because when a constant volume specimen (i.e., a sealed tube) of precisely the correct composition is increased in temperature, one does not observe the simultaneous disappearance of two menisci. Instead¹² one meniscus disappears critically and simultaneously a second appears critically. This remarkable behavior does not change any of our geometric conclusions, because it can be interpreted as follows: the constant volume, constant composition path does not follow the line of points where three phases coexist in Fig. 1(b), but rather it passes from one coexistence surface ( $\gamma$ ,  $\beta$ ) to another ( $\alpha$ ,  $\beta$ ) directly through the point  $P_t$ .

#### VI. RELATIONSHIP TO OTHER COMPLEX SYSTEMS

In previous work^{5,10} we have given several examples of complex magnetic systems and we have attempted to systematically classify all the coexistence and critical points in such systems. For

points where several phases coexist without being critical this is relatively simple, since the appropriate quantities are the number of coexisting phases and the dimensionality of the space. These are related to the total number of thermodynamic intensive variables by the phase rule.⁵

For critical points, it can be argued that every phase that becomes critical after the first two implies the loss of an extra degree of freedom in addition to the one lost because of coexistence.⁷ Hence if there is a system with *n* thermodynamic variables possessing a point where *p* phases are in coexistence, of which *q* are critical (altogether rather than in two separate groups  $q_1$  and  $q_2$ , although the generalization to such cases is simple). The dimensionality of the space on which this occurs will be given by

$$d = n - (p - 1) - m, \tag{1}$$

where  $m = \max(q - 1, 0)$  since the case q = 1 is not meaningful and m = 0 if q = 0. As a special case if all p of the phases are critical we obtain d = n + 2- 2p.

While this equation holds for fluids, it is violated by the original tricritical points, for which n = p = 3, d = 0 and also by certain magnetic models¹⁰ which contain highly symmetric points where lines of tricritical points intersect, and n = p = 4 and d = 0. Before giving the equation which correctly describes both fluids and the complex magnetic systems let us contrast the two ways of classifying more complicated critical points that have been proposed.

For fluids Widom⁷ has proposed that the important quantity is the number of phases becoming critical, and that this number should be used as the order of the critical points.

For complex magnetic systems we have proposed an apparently different scheme which is based on the original proposal for tricritical points¹ where three different lines of critical points intersected. Accordingly we gave examples of systems where different lines of tricritical points intersected, and gave the points of intersection an order different from (one larger than) that of tricritical points. Because of the symmetry of the various systems we investigated, there were no lines of critical end points, i.e., points where one or more phases coexist with others that are critical. Consequently the number of variables *n* needed to obtain a point where four phases are simultaneously critical was reduced from six to four.

For tricritical points in fluids, it is possible to artificially reduce the number of variables and eliminate the lines of critical end points from the phase diagram. For example, Fig. 1(b) is an illustration of this since it is a three-dimensional section of the four-dimensional field space with all lines of critical points ending at the tricritical point. Similarly the h = 0 section of Fig. 2 produces the same result. Griffiths⁸ has shown how a similar phase diagram can be obtained by taking the section  $a_3 = 0$  of his four-dimensional phase diagram with variables  $a_1, a_2, a_3, a_4$ .

Let us now return to the case of the intersecting lines of tricritical points in the variable interaction metamagnet. It has been shown¹⁰ that the point of intersection (the point of order 4) is a point where four phases become simultaneously critical. Thus in this case the definition of order suggested by us coincides with the definition suggested by Widom.⁷ This fact may be generalized, because the only reason there should be more than one line of tricritical points is because there are more than three phases available. The different lines of tricritical points will intersect at points where more than three phases become simultaneously critical.

To obtain a version of Eq. (1) which is satisfied by all the cases considered so far, it is necessary to consider the number of variables which possess nonzero scaling power at the point under consideration. It is important to note that this number may be less than the number of significant directions picked out by the phase diagram. For example, on an ordinary line of critical points three directions are determined, but only two (the strong and weak) are associated with variables which scale. Alternatively, on the line of critical end points  $P, P_t, P'$ , all four of the directions (i)-(iv) are defined but only (i) and (ii) are associated with variables which scale (except at  $P_t$  where all four enter the scaling equation). The implications of the simple Landau model⁸ are that for fluids the number of scaling directions s = 2(q - 1). Another quantity that is important is the number of phases which are in equilibrium but which are not critical, x = p - q. In terms of the variables s and x, Eq. (1) may be rewritten  $as^{13}$ 

$$+x+d=n.$$
 (2)

S

It will be seen that this equation also holds for the old tricritical points, and the intersection of lines of tricritical points. It is satisfied by construction from (1) by all the points in generalizations of Widom's scheme for which the order is given by  $\Theta \equiv q = \frac{1}{2}s + 1$  and by all the points in our scheme⁵ for which the order is given by  $\Theta = s$ . These two possibilities express, respectively, the maximum and minimum number of scaling variables at a point where  $\Theta$  phases became critical,  $\Theta \le s \le 2(\Theta - 1)$ . For  $\Theta = 2$  there is only one possibility, s = 2; for  $\Theta = 3$  there are two cases, s = 3, 4; and for  $\Theta > 3$  there are many possibilities.

Thus we have proposed⁵ a minimal scheme for complex critical points whereas Widom and Griffiths have proposed a maximal scheme.

In conclusion it should be reiterated that while the definition of order for critical points suggested in Ref. 5 does not appear to be applicable to fluids. it is consistent with the definition in terms of the number of phases becoming critical.7

#### ACKNOWLEDGMENT

We would like to thank Professor B. Widom and Professor R. B. Griffiths for drawing our attention to the references cited in the Soviet literature in this manuscript and for stimulating conversations. Also thanks are due to R. B. G. for comments on a previous version of this paper.

- *Supported in part by the U.S. Atomic Energy Commission, the National Science Foundation, the National Aeronautics and Space Administration, the Office of Naval Research, and the Air Force Office of Scientific Research.
- Lindemann Fellow.
- [‡]Permanent address: Riddick Laboratories, North
- Carolina State University, Raleigh, N. C. 27607.
- Address to whom requests for reprints should be sent. ¹R. B. Griffiths, Phys. Rev. Lett. <u>24</u>, 715 (1970).
- ²V. A. Schmidt and S. A. Friedberg, Phys. Rev. B 1,
- 2250 (1970); F. Harbus and H. E. Stanley, Phys. Rev. Lett. 29, 58 (1972); Phys. Rev. B 8, 1141 (1973) and B 8, 1156 (1973).
- ³G. Goellner and H. Meyer, Phys. Rev. Lett. <u>26</u>, 1543 (1971).
- ⁴C. W. Garland and B. B. Weiner, Phys. Rev. B 3, 1634 (1971).
- ⁵(a) T. S. Chang, A. Hankey, and H. E. Stanley, Phys. Rev. B 8, 346 (1973); (b) A. Hankey, T. S. Chang, and

H. E. Stanley, Phys. Rev. B 8, 1178 (1973). Preliminary accounts of this work are given by A. Hankey,

- T. S. Chang, and H. E. Stanley, AIP Conf. Proc. 10, 889 (1972).
- ⁶B. Widom and R. B. Griffiths, Phys. Rev. A <u>8</u>, 2173 (1973).
- ⁷B. Widom, J. Phys. Chem. <u>77</u>, 2196 (1973).
- ⁸R. B. Griffiths, Cornell University Material Science Center Report No. 1995 (unpublished).
- ${}^{9}R.$  B. Griffiths and J. C. Wheeler, Phys. Rev. A  $\underline{2}$ , 1047 (1970).
- ¹⁰F. Harbus, A. Hankey, H. E. Stanley, and T. S. Chang, Phys. Rev. B 8, 2273 (1973).
- ¹¹R. B. Griffiths (private communication).
- ¹²G. D. Efremova and A. V. Shvarts, Russ. J. of Phys. Chem. 43, 968 (1969).
- ¹³We are much indebted to J. Nicoll for discussions leading to this equation. A more complete account will be given in a separate paper.

## PHYSICAL REVIEW B

## VOLUME 8, NUMBER 1

1 JULY 1973

75-04939 N75-15329

# Generalized Scaling Hypothesis in Multicomponent Systems. I. Classification of Critical Points by Order and Scaling at Tricritical Points^{*}

T. S. Chang,[†] Alex Hankey,[‡] and H. Eugene Stanley[§]

Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (Received 10 October 1972; revised manuscript received 29 January 1973)

The goal of this work is to provide an analysis of spaces of critical points for multicomponent systems. First, we propose the geometric concept of order O for critical points; we distinguish it from a previous definition of a "multicritical" point. Specifically, we may define the intersection of spaces of critical points of order O to be a space of critical points of order (O+1). Ordinary critical points are defined to be of order  $\mathfrak{O}=2$ , so that the tricritical points introduced by Griffiths are of order  $\mathfrak{O}=3$ . We discuss more general examples of critical spaces of order  $\mathfrak{O}=3$  which are known for a wide variety of systems; we also propose several examples of models of magnetic systems showing critical points of order O = 4-i.e., systems having intersecting lines of tricritical points. The analysis of critical and coexistence spaces also provides a new form of the Gibbs phase rule suitable for complex magnetic models. Next we define-for the critical points of order O of which examples have been given-special directions in terms of which to make a scaling hypothesis. We give the hypothesis for simple systems and then for tricritical points, and then, in a subsequent paper, part II, the special directions are used to make a scaling hypothesis at spaces of critical points of any order. Certain predictions (e.g., scaling laws and "single-power" scaling functions) follow in a simple and straightforward fashion. We consider the scaling hypothesis at a critical space of order O in terms of a group of transformations. We can define a set of invariants of the group. It is possible, for 0 > 3, to make a second scaling hypothesis for the space of order O - 1 using certain of these invariants as *independent* variables. This is advantageous because certain "double-power" scaling functions then follow directly; these predict that for 0=3, experimental data collapse from a volume onto a line. This prediction is to be contrasted with ordinary scaling functions, which predict that data collapse by only a single dimension (e.g., from a volume onto a surface or from a surface onto a line).

## I. INTRODUCTION: THE ORDER OF A CRITICAL POINT

The purpose of this work is (i) to propose the concept of the "order" of a critical point, (ii) to give examples of critical points of orders three and four, and (iii) to present a form of the scaling hypothesis for spaces of *arbitrary* order. The work is divided into two parts. In this paper (I), we focus upon concrete examples illustrating critical points and scaling at critical points of order three, while in a subsequent paper¹ (II), we consider scaling for spaces of arbitrary order. Firstly, we must develop the concept of the order of a critical point, and that is the task of this section.

The scaling hypothesis was originally formulated for the critical point of a simple magnet and a simple fluid.²⁻⁴ These systems each have two purely intensive variables [(H, T) and (P, T), respectively]. Such variables we call *fields*, adopting the terminology of Griffiths and Wheeler.⁵

A very wide variety of physical systems whose critical phenomena are under active study have more than two field variables; two common examples are antiferromagnets and binary mixtures. In such systems, one can have lines (or, in general, spaces of dimension larger than one) of critical points. Recently, special attention has come to focus on those systems for which *three* lines of critical points intersect, and the point of intersection has been called a *tricritical point* by Griffiths.⁶

The scaling hypothesis has recently been extended⁷ to treat some (but not all) aspects of this novel type of "critical point". In this work we present a comprehensive scaling treatment of general multicomponent systems. First we give a detailed treatment of tricritical points. Our approach is then generalized to more complex situations.

One example of a more complex situation is a system for which *four* lines of critical points intersect; in a natural extension of Griffiths's terminology, Nagle and Bonner⁸ have called such points tetracritical points. We show here that, in the particular case studied by those authors, *the tetracritical point is qualitatively the same as a tricritical point* in the sense that the formulation of the scaling hypothesis there is the same as at tricritical points.

Qualitatively different points ("spaces")⁹ can be achieved in systems with more than three field variables; a more general scaling hypothesis is needed and correspondingly more predictions are obtained. These are discussed in detail in Paper II.

Two simple examples of systems with more than three field variables are provided by He³-He⁴ and ammonium chloride, and both these systems

show lines of tricritical points.

Liquid He³-He⁴ mixtures have thermodynamic variables  $[P, T, \mu_4 - \mu_3, \eta]$ , where P denotes pressure, T denotes temperature,  $\mu_4$  and  $\mu_3$  are the chemical potentials of He⁴ and He³, respectively, and  $\eta$  is a variable conjugate to the superfluid density. The " $\lambda$  line" in the P-T plane becomes a two-dimensional surface of singularities with increasing mole fraction of He³. This surface terminates at a line of special points, ^{10(a)} which is in fact a line of tricritical points.

Ammonium chloride possesses an order-disorder transition for which the transition temperature increases with increasing pressure, and changes from first order to second order at a tricritical point. If one replaces some of the hydrogen by deuterium in the ammonium group,^{10(b)} then the position of the tricritical point (and the whole line of order-disorder transitions) changes. The variables are thus  $(P, T, \mu_H - \mu_D, \eta)$ , where  $\eta$  is a variable conjugate to the order parameter.

In a system of sufficient complexity, several lines of tricritical points can occur. A point of intersection of lines of tricritical points is qualitatively different from a point where lines of ordinary critical points intersect. This should be clear from the topology of the situation: At a line of tricritical points, surfaces of critical points meet, while at a point where lines of tricritical points intersect, several surfaces of critical points (bounded on each side by the tricritical lines) converge on the point.

To distinguish such points—and in general spaces of such points—we will refer to them as critical points of higher order, and we will associate a number with each order as follows. We define ordinary critical points to be of order 0 = 2; then a critical point (or space of points) of order 0+1 ( $0 \ge 2$ ) is defined to be a special point where lines (or spaces) of points of order 0 intersect. Thus a tricritical point is of order 0=3 and a point of intersection of lines of tricritical points is of order 0 = 4.

Griffiths and Wheeler⁵ reasoned that the dimensionality of a space of ordinary critical points (of order 0=2) is (n-2). In the systems we consider below the dimensionality, d, of a space of critical points of order 0 is always one less than the dimensionality of the spaces of critical points of order (0-1) which intersect at it. Therefore, we find the value of d for arbitrary 0 by induction from 0=2 to be, in these cases,

$$d=n-\mathfrak{O}, \qquad (1.1)$$

where n is the total number of field (and fieldlike)¹¹ variables available.

Critical points of complex thermodynamic systems can also be analyzed by making the scaling hypothesis from the outset. The significant quantity is then the number of relevant scaling variables. Using the renormalization group, it has been suggested¹² how more than two relevant scaling variables can occur, but the geometry of the phase diagram was not considered at all. In most of the examples known to the authors, the number of significant scaling directions is equal to the order. This may not always be true for more complex systems [e.g., fluid mixtures, for which Eq. (1, 1) may need modification, becoming  $d \le n - 0$ ].

A specific example which demonstrates the importance of distinguishing the order of a critical point from the number of critical lines meeting there is the tetracritical point. This is a point of order 0 = 3 with true field variables  $(H, H_2, T)$ , where H and  $H_2$  are direct and staggered (i.e., wavelength 2 lattice sites) magnetic fields. When a fieldlike variable R (the ratio of short- to longrange-interaction strengths) is also included, (i.e., n = 4), Eq. (1.1) indicates that the system has a line of critical points of order 0=3. This is verified in the analysis of Sec. III, where it is shown that in this model there are three surfaces of critical points of order 0 = 2, meeting at the line of points of order 0=3. The tetracritical point is simply a point on a smooth line of tricritical points; the "tetracritical point" arises because we have chosen a section of the four-dimensional  $(H, H_2, T,$ R) space that is tangent to the line of tricritical points, rather than a section which intersects it.

First we give, in Sec. II, examples of systems exhibiting spaces of critical points of order  $0 \ge 3$ , and explain a convenient notation for the phase diagrams of such systems. This leads to an equation equivalent to the Gibbs phase rule.

In Sec. III we explicitly demonstrate the importance of distinguishing between the order of a critical point and the number of lines meeting at a critical point—the former leads to an essential increase in complexity, while the latter does not. To do this, we compare several one-dimensional Ising models with long-range interactions, all of which are exactly soluble.

Special directions at spaces of order 0 are defined in Sec. IV; these are analogous to the strong and weak directions defined by Griffiths and Wheeler.⁵ A way of deriving these directions for tricritical points using the renormalization group approach has been pointed out by Riedel and Wegner.^{12(c)}

To make the formulation of a scaling hypothesis easier to follow, we give an account in Sec. V of the scaling hypothesis using generalized homogeneous functions and equations invariant under a oneparameter continuous group of transformations at points of order 2.

In Sec. VI we give a full account of the scaling

hypothesis at tricritical points and we include an account of a space of invariant variables as a very useful way to derive "double-power" scaling functions and to plot "crossover surfaces". These predictions have not yet been tested experimentally.

We present the scaling hypothesis at a critical point of arbitrary order in Paper II. The hypothesis is framed as a sequence of operations to be repeated as the hypothesis is formed successively at critical points of decreasing order. The proposed sequence is illustrated by detailed consideration of a system of Ising planes with a variable interplanar interaction.

#### II. SYSTEMS EXHIBITING CRITICAL POINTS OF ORDER HIGHER THAN TWO: NOTATION FOR SUCH POINTS

Critical points more complex than ordinary 0=2 critical points have been found in many experimental and theoretical systems. Without doubt, the systems exhibiting the richest possibilities are multicomponent fluid mixtures; however, specific examples of critical points of order three or more in these systems have yet to be found.

Systems on which experiments have been analyzed are liquid helium, ^{10(a)} ammonium chloride, ^{10(b)} metamagnets, ¹³ and anisotropic antiferromagnets.¹⁴ In addition, one-dimensional magnetic models provide a rich opportunity for theoretical and numerical investigations. Liquid helium  $^{10(a)}$  and NH₄Cl  $^{10(b)}$ provide excellent examples where there exist lines of tricritical points-as discussed in Sec. I. In metamagnets, 13 lines of tricritical points can be generated by introducing transverse fields, and also by introducing a parameter into the Hamiltonian which changes the strength of the interaction. Decreasing the latter causes the tricritical points to converge to a point on the temperature axis; this point is a critical point of order 4 and is treated in more detail below.

An anisotropic antiferromagnet, ¹⁴ which exhibits a spin-flop transition, contains a point in its phase diagram where two lines of ordinary critical points intersect a line of first-order transitions. This special point has an order of at least 3, but whether it is 3 or more has yet to be determined.

To be able to discuss phenomena in phase diagrams of any complexity easily, we introduce a notation for spaces of points where several phases coexist and for critical points of arbitrary order 0. Critical spaces are denoted by an abbreviation of the notation CRS of Griffiths and Wheeler⁵; the order of the space will be given a preceding superscript and the dimensionality a subscript, and hence a critical space of order 0 and dimensionality d is written as  ${}^{0}R_{d}$ . The relation between 0, d, and the total number n of field (or fieldlike) variables, in general, is given by Eq. (1.1), 0=n-d.

Coexistence spaces are designated by an abbre-

viation of the Griffiths-Wheeler notation CXS but now the number of coexisting phases is given by the preceding superscript; hence the general space of dimension d where p phases coexist is written as  ${}^{p}X_{d}$ . The equation analogous to Eq. (1.1) is

$$p = n - d + 1 . \tag{2.1}$$

The dimension d of the CXS may be interpreted as the number of "degrees of freedom", f, and for a chemical system n is one greater than the number of components c. Thus (2,1) is similar to the usual statement of the Gibbs phase rule,  $p \ge c - f$ +2, but it is in a form valid for all the systems considered in this work. The Gibbs phase rule contains an inequality because it refers to any phase diagram, even those in a restricted space of fields. For example, the  ${}^{2}X_{2}$  in the H-T plane of a simple nearest-neighbor antiferromagnet (with field variables H,  $H_2$ , and T) satisfies Eq. (2.1) as an equality providing all three fields are considered, but as an inequality if only T and H are considered. Consideration of other models8,15 leads us to conclude that Eq. (2, 1) is satisfied as an equality (for T > 0) if and only if a sufficient set of conjugate fields (i.e., conjugate to every possible phase of the system) has been introduced. Thus Eq. (2.1) can be used as a criterion for whether enough conjugate fields have been considered or not. It is noteworthy that Eqs. (1.1) and (2.1) depend only on topologically significant quantities like the dimension of a subspace in the phase diagram, and should therefore be understood as topological statements.

To illustrate the notation and to provide a good example of a system with a phase diagram exhibiting critical spaces of orders 2, 3, and 4, we consider the d=3 Ising model with variable interaction strength  $\Re J$  between planes of constant z:

$$\mathcal{H} = -\sum_{x,y,z} S_{x,y,z} \left[ J(S_{x+1,y,z} + S_{x,y+1,z}) + \Re J S_{x,y,z+1} + H + (-1)^{z} H_{2} \right]. \quad (2.2)$$

Here the symbol  $S_{x,y,z}$  is the value of the spin on lattice site with coordinates (x, y, z). The variable  $\Re$  allows for a variation in the strength of interaction in the z direction. The phase diagram of this model is four dimensional, with fields H,  $H_2$ , T, and the fieldlike variable  $\Re$ . For  $\Re > 0$ , we have a three-dimensional Ising model with "lattice anisotropy," which tends as  $\Re \to 0$  to the two-dimensional Ising model. The invariance of the Hamiltonian under the transformation  $S_{x,y,z} \to (-1)^z S_{x,y,z}$ ,  $\Re \to -\Re$ ,  $H \to H_2$ , and  $H_2 \to H$  relates the phase diagram for  $\Re < 0$  to that for  $\Re > 0$ .

For  $\Re < 0$ , Eq. (2.2) describes a metamagnet. The phase diagram of this system is well known and shown in Fig. 1. As  $|\Re|$  is decreased, the values of  $T_t$  and  $T_N$  decrease (unpublished results



FIG. 1. (a) Phase diagram for  $\Re = \Re_1 < 0$ , in the (H, T)plane (H'=0). The  ${}^{2}R_{1}$  terminates at a pair of tricritical points  $({}^{3}R_{0})$  shown as TCP. The  ${}^{2}X_{2}$  separating the antiferromagnetic phases  $A^{+}A^{-}$  is bounded below the tricritical temperature  $T_t$  by the lines of first-order transitions  $L_F$ , which terminate at a magnetic field value  $H_{C1}$ . (b) The same for  $\Re_2 < 0$ , where  $|\Re_2| < |\Re_1|$ . Note that  $H_{C2} < H_{C1}$ and that both  $T_t$  and  $T_N$  have decreased. See also, F. Harbus et al., Ref. 1.

of F. Harbus). This is shown in the Fig. 1(b) as compared to Fig. 1(a).

As  $|\mathcal{R}| \rightarrow 0$ , the behavior of  $T_N(\mathcal{R})$  is described by the well-known crossover exponent and symmetry between  $\Re < 0$  and  $\Re > 0$  mentioned above shows that in the plane  $H = H_2 = 0$  there is a reflection symmetry about  $\Re = 0$ .

From these considerations we obtain Fig. 2, which is a three-dimensional phase diagram in the  $H_2 = 0$  plane. For  $\Re < 0$  and constant, there is a phase diagram like Fig. 1, and for  $\Re > 0$  the ordinary crossover behavior holds.

The two tricritical points in Fig. 1 become lines of critical points of order 3,  ${}^{3}R_{1}$ , in Fig. 2. The symmetry of the Hamiltonian shows that there are two additional  ${}^{3}R_{1}$  for  $\Re > 0$  at nonzero  $H_{2}$ . The symmetry of the Hamiltonian forces these four lines (tricritical lines) to converge upon a point lying on the temperature axis-a critical point of order 4. On the temperature axis below the  ${}^{4}R_{0}$ four phases are in coexistence: it is a  ${}^{4}X_{1}$ .

The validity of Eqs. (1,1) and (2,1) may be verified and it can also be seen that in this system a  ${}^{p}X_{d+1}$  is bounded for increasing T by a  ${}^{0}R_{d}$ , where o = p. A CXS which in the full phase diagram is a  ${}^{p}X_{d+1}$  is, when considered in the zero-temperature

plane, only a  ${}^{p}X_{d}$ . In the model considered in this section, therefore, a coexistence hypersurface which in the T=0 phase diagram is a  ${}^{p}X_{d}$  evolves as the temperature increases into an  ${}^{O}R_{d}$ , with  $\mathfrak{O} = \mathfrak{p}$ . In other words, the space of critical points of order O is the upper bound (as temperature increases) of a space of points where o phases coexist.

This is a very significant point and can be understood by examples, and from the following consideration. In a phase diagram, a space where three phases coexist is necessarily a place of intersection of spaces where two phases coexist. The spaces where two phases coexist are bounded from above by spaces of critical points of order two. Therefore, the upper bound of the space where three phases coexist is either the boundary of one critical space of order 2 or the intersection of all three critical spaces of order 2. Because of the symmetry properties holding in the present model, and



FIG. 2. Phase diagram in the  $H_2 = 0$  hyperplane for Ising model with variable interplanar interaction. For R <0 the R=const sections are similar to Fig. 1. These sections are schematically shaded. As R varies continuously the  ${}^{b}X_{d}$  and  ${}^{\theta}R_{d}$  of Fig. 1 become  ${}^{b}X_{d+1}$  and  ${}^{\theta}R_{d+1}$ . Thus the  ${}^{2}X_{2}$  of Fig. 1 becomes the interior of the "mountain"; this is a  ${}^{2}X_{3}$  separating phases  $A^{+}$ ,  $A^{-}$ . The lines  $L_F$  where three phases coexist become surfaces of the mountain  $({}^{3}X_{2})$  below the line of tricritical points  ${}^{3}R_{1}$  corresponding to TCP of Fig. 1. The  ${}^{2}R_{1}$  of Fig. 1 becomes a  ${}^{2}R_{2}$ , the top of the "mountain" in Fig. 2. The T axis becomes a line of special points where all four phases  $A^+, A^-$  and the ferromagnetic  $F^+$  and  $F^-$  all coexist; it is a  ${}^{4}X_{0}$ . The  ${}^{3}R_{1}$  meet at the *T* axis at the end of this line; at a  ${}^{4}R_{0}$ . The region  $\Re > 0$  appears simpler because it corresponds to the (H=0) section of  $\Re < 0$ , and the rest of the mountain occurs at  $H_2 \neq 0$ . See also, F. Harbus et al., Ref. 1.



FIG. 3. The phase diagram at T=0 of an Ising (a) antiferromagnet and (b) ferromagnet. The phases with spins parallel are indicated by  $F^{\pm}$  and with spins antiparallel by  $A^{\pm}$ . The lines indicate where the various phases are in equilibrium.

also because it is an Ising model, the latter condition holds. An entirely analogous argument can be constructed for critical points of order 4 or more.

It is therefore possible, for Ising models, to make predictions about the relationships between  ${}^{0}R_{d}$  in the full phase diagram, by considering the relationships between the  ${}^{p}X_{d}$  in the T=0 phase diagram. We will make extensive use of this method in Sec. III.

#### III. SPACES OF TRICRITICAL POINTS IN ONE-DIMENSIONAL MODELS

There has been much work recently on one-dimensional Ising models possessing a long-range interaction.^{8,15} The effect of this interaction is to shift the critical temperature from the value T=0to a nonzero temperature, thereby enabling the critical points to obey scaling laws.

The purpose of this section is to display two

models for which critical points of order 0 = 4 occur; these are both Ising models with long-range interactions.¹⁶

Models exhibiting a critical point of order 4 also possess a line of points where four phases coexist, as explained at the end of Sec. II. Therefore, a simple method of deciding whether a particular model can possess a critical point of order 4 is to analyze the T=0 hyperplane of the phase diagram and see if points where four phases coexist continue to have four distinct phases in equilibrium as T is increased. Cases where this does and does not happen are discussed below.

Before analyzing a case where there is a longrange interaction, let us consider the T = 0 phase diagram of a one-dimensional Ising antiferromagnet with only nearest-neighbor interactions.

#### Hamiltonians

The Hamiltonian is given by

$$\Im C_{\rm SR} = -J_{\rm SR} \sum_{i=1}^{N-1} s_i s_{i+1} - H \sum_{i=1}^N s_i - H_2 \sum_{i=1}^N (-)^{i+1} s_i ,$$

where  $J_{SR}$  is the nearest-neighbor (nn) interaction strength and  $s_i = \pm 1$  are the Ising spins situated at site *i* of the chain. When  $J_{SR} > 0$  the interaction is ferromagnetic and when  $J_{SR} < 0$  the interaction is antiferromagnetic. *H* is the magnetic field and  $H_2$  is the staggered magnetic field of wavelength 2 lattice sites. The phase diagram will appear as in Fig. 3(a). Here the four phases  $F^{\pm}$ ,  $A^{\pm}$  are defined in Table I: *F* means ferromagnetic and *A* means antiferromagnetic. The T = 0 "critical point" of the

TABLE I. Definitions, energies, and equations of Figs. 3 and 5. Here  $\tilde{\mathfrak{A}} \equiv J_{\mathrm{SR}}/J_{\mathrm{LR}}$ ;  $h \equiv H/J_{\mathrm{LR}}$ ;  $h_2 \equiv H_2/J_{\mathrm{LR}}$ . Star means not shown in Fig. 5.

Configuration		on Name	Field	Energy	
t	t	$F^{*}$	Н	$E_F = -J_{\rm LR} - J_{\rm SR} - H$	
+	÷	F-			
t	ŧ	A*	$H_2$	$E_2 = +J_{\rm SR} - H_2$	
+	t	A ⁻			
Surface		Equation	Line	Equation	
$[F^+, F$	-]	H=0	$L_1$	$h_2 = 1 + 2\tilde{R}; h = 0$	
				$\tilde{\mathfrak{K}} > -\frac{1}{2}$	
[A+, A-	-]	$H_2 = 0$	$L_2$	$h_2 = 1 - 2\tilde{\mathbf{n}}; \ h = 0$	
$[F^+, A^+]^* h -$		$h - h_2 + 1 + 2\tilde{\mathfrak{R}} = 0$	$L_3$	$h = -1 - 2\tilde{R}; h_2 = 0$	
				$\tilde{\mathfrak{R}} < -\frac{1}{2}$	
[F -, A	-]* h	$h - h_2 - 1 + 2\tilde{R} = 0$	$L_4$	$h = -1 + 2\tilde{R}; h_2 = 0$	
$[F^+, A]$	-]* h	$a+h_2+1+2\tilde{R}=0$			
[F -, A	+]* h	$h + h_2 - 1 - 2\tilde{\mathfrak{R}} = 0$			



FIG. 4. (a) The extension of Fig. 3(a) into the space with T > 0 when a weak long-range interaction is included. Note that the T = 0 plane corresponds to Fig. 3(a), and that the  $[A^*, A^-]$  phase boundary only separates phases at T = 0. The other lines in Fig. 3(a) develop normally, giving coexistence surfaces  $({}^{2}X_{2})$  ending in critical lines  ${}^{2}R_{1}$ . (b) The phase diagram of the same model but without the antiferromagnetic interaction  $(J_{SR} = 0 \text{ or } J_{SR} > 0)$ . Now all lines in the T = 0 plane become coexistence surfaces  ${}^{2}X_{2}$ . The points of interaction become  ${}^{3}X_{1}$  (lines where three phases coexist) and there terminate at two  ${}^{3}R_{0}$  (tricritical points).

Ising antiferromagnet becomes a *line* of critical points for nonzero values of magnetic field. This line bifurcates at points where it is energetically more favorable¹⁷ for the system to order ferromagnetically (i.e., with all spins parallel).

Normal scaling laws do not apply to one-dimensional Ising models with short-range interactions, as these display essential singularities at the T = 0 critical point. Thus the lines in Fig. 3(a) are lines of both critical points and coexistence points. These lines do not have very much in common with either the conventional critical points  ${}^{2}R_{d}$  or the conventional coexistence surfaces  ${}^{p}X_{d}$  that divide up the field space at finite values of temperature. A suitable nomenclature for the lines of Fig. 3(a) might be "coexistence-critical surfaces" and we

will denote them by CXRS. A CXRS is necessarily confined to the T=0 plane as for Fig. 3(a). Thus we see that the nn Ising antiferromagnet contains five CXRS lines where two phases coexist and two CXRS points where three phases coexist.

Then we introduce in addition to  $\mathcal{H}_{SR}$  of Eq. (3.1), a long-range interaction, defined by the Hamiltonian

$$\mathcal{H}_{LR} = -\sum_{i=1}^{N} \sum_{r} J(r) s_{i} s_{i+r}, \qquad (3.2a)$$

where

$$J(r) = \lim_{\gamma \to 0} a\gamma e^{-\gamma |r|} , \qquad (3.2b)$$

the phases  $F^{\pm}$  are stabilized at nonzero temperature and continue to show long-range order for T > 0. The phase diagram is given in Fig. 4(a). The CXRS [on the *H* axis of Fig. 3(a)] is not stabilized at T > 0 by the long-range interaction; the two antiferromagnetic phases  $A^{\pm}$  coexisting at the CXRS at T=0, simply become a single disordered phase for T > 0.

There are two  ${}^{2}X_{2}$  separating the ordered (ferromagnetic) phase from the disordered phase at higher temperatures. These  ${}^{2}X_{2}$  end in  ${}^{2}R_{1}$  (lines of critical points).

If the dominating nearest-neighbor interactions are ferromagnetic,  $J_{\rm SR}>0$ , then the situation depicted in Figs. 3(b) and 4(b) results. The two points where three phases coexist at T=0 become the end points of two  ${}^{3}X_{1}$  lines where three phases coexist. Each  ${}^{3}X_{1}$  line terminates at a  ${}^{3}R_{0}$  (a tricritical point).

If sufficient care is taken to decide whether a space in the T=0 hyperplane is a CXRS or a CXS, then the nature of the extension of the space and its subspaces into T>0 can be easily ascertained. The rules exemplified from Figs. 3 and 4 are the following: (i) Two phases which can only be distinguished by a staggered magnetic field coexist on a CXRS. (ii) Such staggered phases give only one phase for T>0. (iii) A line where one phase which maintains order for T>0 coexists with any other phase is *always* a CXS. (iv) A point where a CXRS meets a CXS has no special properties. It is simply a point on a CXS.

Using these rules we can analyze the model of Nagle and Bonner⁸ which includes a long-range interaction, a variable short-range interaction, and the two fields of Fig. 3.¹⁸ A point where four critical lines meet, a tetracritical point, is known for this model. We will show here that this point is a critical point of order 3. Since a variant of this model, which we discuss below, shows a critical point of order 4, it is worth treating the Nagle-Bonner model in some detail first.

Figure 5 depicts the surfaces of coexistence of the four phases in the T=0 plane. Definitions and

352



FIG. 5. T=0 hyperplane for an Ising model with competing long- and short-range interactions. Here  $\tilde{\mathfrak{K}} \equiv J_{\rm SR}/J_{\rm LR}$  and  $H_2$  is a staggered magnetic field of wavelength 2 lattice sites. The lines  $L_1$ ,  $L_2$  are in the  $(H_2, \tilde{\mathfrak{K}})$ plane, and the lines  $L_3$ ,  $L_4$  are in the  $(H, \tilde{\mathfrak{K}})$  plane. The surfaces  $[A^-F^+]$ ,  $[A^+F^-]$ ,  $[F^+, A^+]$ ,  $[F^-, A^-]$  have been omitted. The surface  $[A^*, A^-]$  is a CXRS, Fig. 3(a) is an  $(H_2, H)$  plane for  $\tilde{\mathfrak{K}} < \tilde{\mathfrak{K}}_Q$ , while Fig. 3(b) is for  $\tilde{\mathfrak{K}} > \tilde{\mathfrak{K}}_Q$ .

equations are given in Table I. For clarity four surfaces are omitted; e.g., those that separate the phases  $[F^*A^*]$ ,  $[F^*A^-]$ ,  $[F^*A^-]$ , and  $[F^*A^*]$ . As may be seen there are four lines where three phases coexist and a point Q where all four phases coexist. The surface  $[A^*A^-]$  bounded by the lines  $L_3$ ,  $L_4$ , is a CXRS since for constant values of  $\tilde{\mathbb{R}}$ less than  $x_Q$ , the phase diagrams are the same as Figs. 3(a) and 4(a). Here

$$\bar{\mathbf{R}} \equiv J_{\mathrm{SR}} / J_{\mathrm{LR}} , \qquad (3.3)$$





FIG. 6. H=0 hyperplane of the model of Fig. 5. The lines  $L_1$ ,  $L_2$  extend into T>0. The lines where three phases coexist in Fig. 4(b) have become a single surface, denoted here by  ${}^{3}X_{2}$ . This terminates at a *line* of tricritical points  ${}^{3}R_{1}$ ; the  ${}^{3}R_{1}$  also bounds a surface of ordinary critical points  ${}^{2}R_{2}$ . The point t where the  ${}^{3}R_{1}$  intersects the plane  $h_2=0$  is the location of the tetracritical point (Ref. 8). The  $\tilde{R}=0$  section of this figure corresponds to the H=0 section of Fig. 4(b). Note that at t a surface  $\tilde{R}=$  const is parallel to the  ${}^{3}R_{1}$ .

where  $J_{LR}$  is the "equivalent neighbor" long-range parameter.⁸

For  $T \neq 0$ , the two  ${}^{2}X_{2}$  surfaces  $[A^{+}F^{+}]$  and  $[A^{-}F^{-}]$  of Fig. 5 end in a single surface of critical points, and the same is true for the  $[A^{-}F^{+}]$ ,  $[A^{+}F^{-}]$  surfaces; this is shown in Fig. 4(a). The point Q of Fig. 5, where four phases coexist,

FIG. 7. Ray projection of the four-dimensional space, from Q onto  $\tilde{\mathfrak{K}}=0$  showing the topology of the surfaces of critical points. The  $\tilde{\mathfrak{K}}$  axis in Figs. 5 and 6 has become a combination of  $\tilde{\mathfrak{K}}$  and h. The curved  2R_2  surfaces are the ends of those surfaces which end on  $L_3$  and  $L_4$  of Fig. 5. The  2R_1  of Figs. 4(a) and 4(b) are lines in this surface. The flat  2R_2  shown in the  $(T, H_2)$  plane is the surface  2R_2  of Fig. 6.



FIG. 8. Plot of the  ${}^{2}X_{2}$  and the four lines of critical points meeting at the tetracritical point *t*. The value of the interaction strength ratio  $\tilde{\mathfrak{R}} \equiv J_{\mathrm{SR}}/J_{\mathrm{LR}}$  is equal to its appropriate value  $\tilde{\mathfrak{R}}_{c} = 0$ .

is seen (Fig. 6) to be only a special point on a  ${}^{3}X_{2}$ and Q does not give rise to a  ${}^{4}X_{1}$  on increasing the temperature. To see this (in the full phase diagram) it is necessary to consider Figs. 4(b) and 5-7. First, in Fig. 4(b), the phase diagram of the system is shown at constant  $\tilde{\mathfrak{R}} > 0$ . The relationship of this figure to Fig. 5 can be understood by looking at the T=0 plane of Fig. 4(b). The lines where two phases coexist are lines on the appropriate surfaces of Fig. 5, and points where lines in the T=0plane of Fig. 4(b) meet are points on the lines  $L_1$ ,  $L_2$ . Therefore Fig. 4(b) shows that the lines  $L_1$ ,  $L_2$  do give rise to coexistence surfaces and are lines on  ${}^{3}X_{2}$ , as shown in Fig. 6. The line of points where three phases coexist  $({}^{3}X_{1})$  in Fig. 5 has become a surface  $({}^{3}X_{2})$  in Fig. 6, and this surface is terminated by a single line of tricritical points,  ${}^{3}R_{1}$ . Figure 6 shows that the point Q is just a point on a  ${}^{3}X_{2}$ , and does not generate a  ${}^{4}X_{1}$ .

The three surfaces of critical points generated by the lines of critical points in Figs. 4(a) and 4(b) are shown schematically in Fig. 7. It can be seen that the two  ${}^{3}R_{0}$  (tricritical points) of Fig. 4(b) form a continuous line (a  ${}^{3}R_{1}$ ) bounding three  ${}^{2}R_{2}$ (surfaces of critical points). The point *t* was called a tetracritical point by Nagle and Bonner⁸ because, for  $\tilde{\mathbb{G}} = \tilde{\mathbb{G}}_{c}$ , four lines of critical points meet there (see Fig. 8). However, Figs. 6 and 7 show that *t* is an indistinguishable point on a smooth line of tricritical points of order 3; this is corroborated by the fact⁸ that the exponents at *t* are the same as at the other tricritical points.

To produce a model where the point Q is stable at higher temperatures demands only a slight change in the structure of the interactions. We draw the linear-chain nearest-neighbor Ising antiferromagnet in the form shown in Fig. 9, with the nn antiferromagnetic interaction along the solid lines, and a long-range interaction along each of the dotted lines. The latter stabilizes each sublattice independently, enabling the system to adopt an antiferromagnetic ordering at nonzero temperature:

$$\mathcal{H}_{i} = \mathcal{H}_{SR} + \mathcal{H}_{LR}^{0} + \mathcal{H}_{LR}^{E}, \qquad (3.4a)$$

where

$$\mathcal{C}_{LR}^{0,E} = -\sum_{i} \sum_{r} J(2r) s_i s_{i+2r} .$$
(3.4b)

Here odd-numbered spins are on the top lattice of Fig. 9 and  $\mathcal{H}^0$  has all *i* odd. Even numbered spins are on the lower lattice and  $\mathcal{H}^B$  has all *i* even; J(2r) is defined by Eq. (3.2b). The point *Q* is now at the origin and stable for T > 0, and we are able to have four  3X_2 ; these are generated by the lines  $L_1$ ,  $L_2$ ,  $L_3$ ,  $L_4$  (of Fig. 5) meeting at the  4X_1 , generated by *Q*. The  3X_2  should end in a  3R_1  (as in Fig. 6) but unlike the system of Fig. 6, the  3R_1  all terminate at a  4R_0 .

This Hamiltonian has an important discrete symmetry which will necessarily be reflected by the phase diagram of the solution of the model. It is given by the operation  $s_i + (-)^i s_i$ ,  $H - H_2$ ,  $H_2 - H$ ,  $J_{SR} - J_{SR}$ . Therefore,

$$G(H, H_2, T; +J_{SR}) = G(H_2, H, T; -J_{SR}).$$

Further, the point Q in Fig. 5 (which is now stable at T > 0) is now located at the origin. There are now four  ${}^{3}R_{1}$ ; two of which lie in the  $H_{2} = 0$  hyperplane for  $\tilde{\mathbb{R}} < 0$  and these are symmetrically complemented by two more  ${}^{3}R_{1}$  in the H = 0 for  $\tilde{\mathbb{R}} > 0$ . These four  ${}^{3}R_{1}$  meet at the *T*-axis at some finite value of *T*. This point at which all four  ${}^{3}R_{1}$  meet is a  ${}^{4}R_{0}$ . The phase diagram for this model is the same as that for the Ising model with variable interplanar interaction discussed in Sec. II (Figs. 1 and 2).

For the model just discussed, we were able to make use of the extensive analysis of Nagle and Bonner in conjunction with the T=0 phase diagram, and thus we deduced the structure of the full phase diagram. The existence of the discrete symmetry and the consequent analogy with the model discussed in Sec. II makes us more confident in our conclusions.

For the next model, we use only an analysis of the T=0 phase diagram and we make the extrapola-



FIG. 9. Modified one-dimensional lattice exhibiting a critical point of order 0=4. The solid lines represent antiferromagnetic interactions and the dashed lines, long-range (ferromagnetic) interactions.

TABLE II. Definitions of spin orderings of phases and fields for an Ising model with two staggered fields.

Spin configuration				Name	Conjugate field
t +	† +	† +	† +	F * F -	Н
t	+	t	+	$A_2^+$	$H_2$
+	t	ŧ	t	$A_2^-$	
t	t	+	+	$A_4^+$	$H_4$
+	+	t	t	$A_4^-$	
t	+	t	+	$M_a^{+}$	$\frac{1}{2}\left[H_2 + H_4 \pm H\right]$
t	ŧ	+	÷	$M_a^-$	
t	t	÷	t	$M_b^*$	$\tfrac{1}{2}[-H_2+H_4\pm H]$
ŧ	t	÷	+	$M_{b}^{-}$	
t	+	t	+	$M_c^+$	$\tfrac{1}{2}\left[H_2-H_4\pm H\right]$
ŧ	ŧ	t	+	Mc	
ŧ	ŧ	t	t	$M_d^+$	$\frac{1}{2}[-H_2 - H_4 \pm H]$
ŧ	+	+	+	$M_d^-$	

tions explained at the end of Sec. II. Our knowledge of the extensive occurrence of tricritical points in certain Ising models gives us a reasonable basis from which to predict the existence of a critical point of order 4.

This second model for which an exact solution is fairly readily obtainable¹⁶ is a model with a second staggered magnetic field. It turns out that the analysis for an exact solution is simplest if the staggered field, " $H_4$ ," is of wavelength four lattice sites.¹⁹ The Hamiltonian will therefore be given by

$$\mathcal{H} = \mathcal{H}_{SR} + \mathcal{H}_{LR} - H_4 \sum_{i=1}^{N} u_i s_i , \qquad (3.5)$$

where the number  $u_i = +1$  for i = 4n + 1, 4n + 2 and

'IABLE III. Energies of various phases at T=0 for an Ising model with two staggered fields. Here the long-range energy is given by  $J_{LR}$  and the nearest neighbor by  $J_{SR}$ . Only the phase + is shown; to get the value of  $E_{X^*}$ , reverse the sign of the conjugate field.

Phase	Energy per spin		
$F^+$	$E_F = -J_{\rm LR} - J_{\rm SR} - H$		
$A_2^+$	$E_2 = + J_{\rm SR} - H_2$		
$A_4^+$	$E_4 = -H_4$		
$M_a^*$	$E_a = -\frac{1}{2}J_{LR} - \frac{1}{2}[+H_2 + H_4 + H]$		
$M_b^+$	$E_b = -\frac{1}{2} J_{LR} - \frac{1}{2} [-H_2 + H_4 + H]$		
$M_c^+$	$E_c = -\frac{1}{2} J_{LR} - \frac{1}{2} [+H_2 - H_4 + H]$		
$M_d^+$	$E_d = -\frac{1}{2} J_{LR} - \frac{1}{2} [-H_2 - H_4 + H]$		

 $u_4 = -1$  for i = 4n - 1, 4n. We define the names of the various phases in Table II and also the phase of  $H_4$  relative to  $H_2$ . We give the energies of the phases at T = 0 in Table III. The phase adopted at T = 0 is that of lowest energy, and so the problem of finding the phase diagram at T = 0 is simple. The phases coexist at points where the energies of two different phases are equal, and the most important equalities are given in Table IV(a).

An extended analysis¹⁶ shows that the significant values of  $\tilde{\mathfrak{K}}$  are -1,  $-\frac{1}{2}$ , and 0, and a sequence of phase diagrams can be drawn in the space of variables H,  $H_2$ ,  $H_4$  for values of  $\tilde{\mathfrak{K}}$  greater than, equal to, and less than these numbers. A representative

TABLE IV. (a) Equations of planes and lines in Fig. 10 for an Ising model with two staggered fields. Here we have divided all energies through by  $J_{LR}$  and defined  $h_i = H_i/J_{LR}$ ,  $\tilde{\mathfrak{A}} \equiv J_{SR}/J_{LR}$ . In Fig. 10,  $\tilde{\mathfrak{A}}$  is positive, e.g.,  $\frac{1}{2}$  or  $\infty$ . Star means that the plane was omitted from Fig. 10. Double star indicates that this is only a line: (b) Equations of lines in Fig. 10.

Phase boundary	(a) Equation	Region	
[F ⁺ , F ⁻ ]	h = 0	Section Park	
$[M_a^+, M_a^-]$	h = 0		
$[F^{+}, M_{a}^{+}]^{*}$	$h_2 + h_4 - 1 - 2\tilde{R} = h$	$h, h_2, h_4 > 0$	
$[F^{+}, M_{b}^{+}]^{*}$	$h_2 - h_4 + 1 + 2\tilde{\Re} = -h$	$h, h_4 > 0, h_2 < 0$	
$[F^+, A_4^+]$	$h_4 - 1 - \tilde{\mathfrak{R}} = h$	$h_4 > 0, h > 0$	
$[A_4^+, M_a^+]$	$h_4 - h_2 - 1 = h$	$h, h_4 > 0, h_2 > 0$	
$[A_4^+, M_b^+]$	$h_4 + h_2 - 1 = h$	$h, h_4 > 0, h_2 < 0$	
$[F^+, A_2^+]^{**}$	$h_2 - 1 - 2\tilde{R} = h$	$h, h_2 > 0; h_4 = 0$	
$[A_2^+, M_a^+]$	$h_2 - h_4 - 1 - 2\tilde{\mathfrak{R}} = h$	$h, h_2, h_4 > 0$	
Line	(b) Intersection	Equation	
$[4:F^{+}F^{-}M_{a}^{+}M_{a}^{-}]$	$[F^*, F^-][M_a^+, M_a^-]$	$h_2 + h_4 = 1 + 2\tilde{R}$	
	$[F^+, M_a^+], [F^-, M_a^-]$	h = 0	
$[3:F^{+}F^{-}A_{4}^{+}]$	$[F^+, F^-][F^+, A_4^+]$	$h_4 = 1 + \tilde{\mathfrak{R}}$	
	$[F^{-}, A_{4}^{+}]^{*}$	h = 0	
$[3:F^{+}M_{a}^{+}A_{4}^{+}]$	$[F^+, A_4^+] [A_4^+, M_a^+]$	$h_4 - h = 1 + \tilde{\mathfrak{R}}$	
	$[F^{+}, M_{a}^{+}]^{*}$	$h_2 = \tilde{\mathfrak{R}}$	
$[3: F^+M_b^+A_4^+]$	$[F^+A_4^+][A_4^+, M_b^+]$	$h_4 - h = 1 + \tilde{\mathfrak{R}}$	
	$[F^{+}, M_{b}^{+}]^{*}$	$h_2 = - \tilde{\mathfrak{R}}$	
$[4:F^+M^+_aM^+_cA^+_2]$	$[F^+, M_a^+]^*[F^+M_c^+]^*$	$h_2 - h = 1 + 2\tilde{\mathfrak{R}}$	
	$[M_a^+, A_2^+] [M_c^+, A_2^+]$	$h_4 = 0$	
$[3: M_a^+, M_a^-, A_4^+]$	$[M_a^+, M_a^-] [M_a^+, A_4^+]$	$h_4 - h_2 = 1$	
	$[M_a^-, A_4^+]^*$	h = 0	
$[3: M_a^+, M_a^-, A_2^+]$	$[M_a^+, M_a^-], [M_a^+, A_2^+]$	$h_2 - h_4 = 1 + 2  \tilde{\Re}$	
	$[M_a^+, A_2^-]$	h = 0	

diagram is shown in Fig. 10 for which the equations of the lines are given in Table IV(b). Some of the surfaces and lines of Fig. 10 are labeled and the reader can discover the labels for the rest by reference to Tables IV(a) and IV(b).

There are several important points about this model: firstly, the "mixed" phases  $M_a^{\dagger}$  are distinguished at T = 0 as  $M_a^{\dagger} \cdots M_d^{\dagger}$  but above absolute zero there are only phases  $M^{\dagger}$  and  $M^{-}$ . The phases  $M^{\pm}$  are stable for T > 0 because they contain a longrange contribution to their energy; thus all the lines and surfaces on Fig. 10 will survive at T > 0because they separate phases stabilized by the long-range interaction from phases  $(A_2^{\pm}, A_4^{\pm})$  stable only at T = 0.

There are several points where many phases coexist. In particular, at the point  $P_2$  the phases  $F^{\pm}$ ,  $M_a^{\pm}$ , and  $A_4^{\pm}$  coexist. The lines where three or more phases coexist which meet at  $P_2$  are all stable at T > 0 and so should end in tricritical points. Thus  $P_2$  will give rise to a line of points where five phases coexist; this line ends at a critical point of order 4. Other points in Fig. 10 (viz.,  $P_1$ ) are much more complex in structure and will not be discussed here. The object of introducing the model given by Eq. (3.5) was to show a critical point of order four and this, at least, we have done.

In this section we have shown that it is reasonably easy to find model systems which are soluble and which show critical points of order 4 or more. The analysis of the two models suggested was omitted for the sake of brevity, and will be given in future work.¹⁶

## IV. SPECIAL DIRECTIONS AT CRITICAL SPACES OF ORDER θ: A SET OF "CANONICAL DIRECTIONS"

In order to properly formulate the scaling hypothesis for multicomponent systems, it is important to choose the proper independent variables. It is this problem that is treated in the present section. We shall argue that the considerations that Griffiths and Wheeler⁵ applied to their discussion of second-order critical spaces  $({}^{2}R_{d})$  can be extended to spaces of higher order in a natural and straightforward fashion.

A  ${}^{2}X_{d}$  is, by definition, a hypersurface where two phases coexist; it necessarily divides the total space of *n* field variables locally into two regions and is therefore of dimension d=n-1, where *n* is the total number of truly intensive or "field" variables.⁵ A  ${}^{2}R_{d}$  (a simple second-order critical space) is the boundary of a  ${}^{2}X_{n-1}$  and is therefore of dimension d=n-2.

At a  ${}^{2}R_{n-2}$  there are n-2 directions parametrizing the critical space. The two remaining directions are of significance for the generalized scaling hypothesis. Directions not locally parallel to the  ${}^{2}X_{n-1}$  (coexistence surface) we call strong directions, and directions locally parallel to the  ${}^{2}X_{n-1}$  but not in the  ${}^{2}R_{n-2}$  we call weak directions. The strong and weak directions will be called directions of type 1 and 2, respectively; this terminology is useful in Sec. VI and in Paper II, where the appropriate generalization to critical spaces of order larger than 2 is made. Examples are given in Figs. 11 and 12.



FIG. 10. Coexistence surfaces in the T=0 phase for a system with a long-range interaction, anninteraction, magnetic field h, and staggered magnetic fields  $h_2$ ,  $h_4$  of wavelengths 2 and 4. Here the short-range interaction is also ferromagnetic. The surfaces are labeled by the phases in coexistence. The surface  $[F^*, M_d^*]$  is omitted. The lines are labeled by the three or four phases in coexistence there. At the point  $P_2$ , five phases coexist; at  $P_1$ , seven phases coexist. The phases Fand M are stable above T=0.



356

FIG. 11. (a) Phase transition for a ferromagnetic system. The coexistence surface  ${}^{2}X_{1}$  ends at a critical point  ${}^{2}R_{0}$ . The strong direction H and weak direction  $\tau$  are defined at the  ${}^{2}R_{0}$ . (b) Phase transition for a simple fluid. The coexistence surface  ${}^{2}X_{1}$  ends at a critical point  ${}^{2}R_{0}$ . The strong direction  $x_{1}$  and weak direction  $x_{2}$  are indicated; both P and T directions are strong.

Next, we introduce the concept of a direction of type 3. In the examples discussed, the critical spaces of order 3 have a dimension of d = n - 3. If one approaches a particular tricritical point along a line of critical points of order 2, then in addition to the two directions singled out by the  ${}^{2}R_{1}$  (and its associated  ${}^{2}X_{2}$ ), there is a third direction of significance for scaling. This direction, which we call a direction of type 3, is a direction tangent to the line of critical points (Figs. 12 and 14). This concept is easily generalized to n > 3 for the case mentioned above, for which the dimension d of the space of critical points of order three is indeed given by d=n-3. In this case directions of type 3 are those directions which are neither strong nor weak for a particular  ${}^{2}R_{n-2}$  bounded by the  ${}^{3}R_{n-3}$ , nor are they locally tangent to the space of critical points of



FIG. 12. Phase transition for an antiferromagnet. The coexistence surface  ${}^{2}X_{2}$  lies in the *H*, *T* plane and the line of critical points  ${}^{2}R_{1}$  bounds it. The strong direction is everywhere  $H_{st}$ , the staggered magnetic field. The weak direction may be either *H* or *T*, except at the Néel point where it can only be *T*. The independent direction  $x_{0}$  lies in the  ${}^{2}R_{1}$ . |H_{st}|^a

FIG. 13. Invariant space for an antiferromagnet. ( $x_3$  is merely a parameter.)

third order.

In the similar cases where Eq. (1.1) holds as an equality, one can generalize the above concepts to define directions of types 1, 2, ...,  $\sigma$ , and these are important in applying the scaling hypothesis to critical spaces of order  $\sigma$ . Specifically, since a critical point of order  $\sigma$  is, by definition, a particular point on a "line" of critical points of order  $\sigma - 1$ , the generalization follows by analogy with the case treated above. The directions of types 1 through  $\sigma$  are of great importance because they are used as the independent variables of the Gibbs function when the scaling hypothesis is made. Accordingly, they will be referred to in later sections as the "principal directions of scaling."

X3

Thus, to set up a coordinate system at a  ${}^{0}R_{n-0}$ (a general critical space of order 0), a set of critical spaces  ${}^{i}R_{n-j}$  of orders  $j = 2, 3, \ldots, 0$  must be selected. This set of spaces must satisfy an inclusion principle:  ${}^{0}R_{n-0} \subset {}^{i}R_{n-i} \subset {}^{j}R_{n-j}$  for j < i < 0. The directions of types 1, 2, ..., 0 are then sequentially defined. Here the inclusion symbol  $\subset$  means not only that the  ${}^{i}R_{n-i}$  is also part of a  ${}^{j}R_{n-j}$  (for i > j) but also that the  ${}^{i}R_{n-i}$  can be reached as a limiting point or boundary of the  ${}^{j}R_{n-j}$ .

The hierarchy of spaces  ${}^{j}R_{n-j}$  is not unique, and the large number of choices available presents an apparent problem because many more than O linearly independent vector directions are definable. For the 0=3 example of Fig. 14 the  ${}^{3}R_{0}$  can be approached along any of the three  ${}^{2}R_{1}$ , and each of these three "critical lines" (with its associated  ${}^{2}X_{2}$ ) defines a set of directions of types 1, 2, and 3. This apparent problem is resolved by the generalized scaling hypothesis, because the shape of each critical space of order j(j < 0) near the  ${}^{\circ}R_{d}$ is constrained by the scaling hypothesis so that all the different directions end up mutually consistent. Accordingly, we now turn our attention to the scaling hypothesis, making it firstly in Sec. V for simple systems (n=2), for n=3 systems with a  ${}^{3}R_{0}$ (tricritical point) in Sec. VI, and in Paper II for a  $^{\circ}R_{n-0}$  (a general critical space of order  $^{\circ}$ ).²⁰

#### V. INVARIANT THEOREMS OF ONE-PARAMETER CONTINUOUS GROUPS; APPLICATION TO THE SCALING HYPOTHESIS FOR CRITICAL SPACES OF ORDER 2

The scaling hypothesis for a simple system with two independent field variables can be made in



FIG. 14. Phase diagram for a metamagnet. The three  ${}^{2}X_{2}$  end in lines of critical points  ${}^{2}R_{1}$ . These lines intersect at the tricritical point  ${}^{3}R_{0}$ . At a point *P* on the line  $L_{1}$ , a triad of strong, weak, and parallel (to  $L_{1}$ ) directions is shown. This triad attains the limiting orientation  $(\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3})$  at the tricritical point  ${}^{3}R_{0}$ .

several essentially equivalent fashions. One statement is that the singular part of the Gibbs potential is asymptotically a generalized homogeneous function (GHF) of the appropriate variables.²¹ For the simple magnet, this statement takes the form that there exist two numbers  $a_H$ ,  $a_\tau$  (called "scaling powers") such that for all positive  $\lambda$ ,

$$G(\lambda^{a}H_{H}, \lambda^{a}\tau) = \lambda G(H, \tau), \qquad (5.1)$$

where *H* is the magnetic field and  $\tau \equiv T - T_c$ . Using Eq. (5.1), one can express all possible thermodynamic exponents in terms of  $(a_H, a_\tau)$ .²¹

This form of the scaling hypothesis implies that the singular part of the Gibbs potential

$$G = F(H, \tau) \tag{5.2}$$

is an invariant equation under the "scaling" transformation defined by

$$G' \equiv \lambda G$$
, (5.3a)

$$H' \equiv \lambda^{a} H; \tau' \equiv \lambda^{a} \tau, \qquad (5.3b)$$

such that  $G' = F(H', \tau')$ . The transformations defined by Eq. (5.3) form a one-parameter group²²  $S_F$  and the scaling hypothesis may be restated in the following fashion: (5.2) is an invariant equation under the group of transformations  $S_F$  of (5.3).

For a simple magnet the thermodynamic axes are parallel to the directions used in the scaling hypothesis (5.1) (the "principal axes of scaling"). In other systems, this is not always so. In Fig. 11 we contrast the phase diagrams of a simple fluid and a simple magnet, and show the orientations of the strong and weak directions  $(x_1, x_2)$  for each. For a magnet, *H* is a strong direction and  $\tau$  is the weak direction, but Fig. 11(b) shows that for a simple fluid, both *P* and *T* are strong directions and that the weak direction,  $x_2$ , is a special combination of the *P* and *T* directions.

This is usually the case for general thermodynamic systems—more than one thermodynamic axis is strong (as for the simple fluid) or more than one axis is weak (as for an antiferromagnet, see Fig. 12).

The scaling hypothesis at a  ${}^{2}R_{n-2}$  for a general system can be made by choosing the strong and weak directions as the principal axes of scaling. Then the statement is that the singular part of the Gibbs function

$$G = \mathfrak{F}(x_1, x_2; \ldots, x_n) \tag{5.4}$$

is an invariant equation under the one-parameter²³ continuous group of transformations 9:

$$G = \begin{cases} G' = \lambda G, & (5.5a) \\ x'_{i} = \lambda^{a_{i}} x_{i}, & i = 1, 2, ..., n, & [a_{i} = 0, i > 2]. \\ & (5.5b) \end{cases}$$

Equation (5.5) is defined for all positive  $\lambda$ ; the  $a_i$  are called scaling powers. This statement is equivalent to the scaling hypothesis

$$G(\lambda^{a_1}x_1, \lambda^{a_2}x_2; x_3 \cdots x_n) = \lambda G(x_1, x_2; \cdots x_n).$$
 (5.6)

For future reference, we will use a superscript s to denote the subgroup generated by the transformations of the independent variables  $x_i$  (i = 1, 2, ..., n). Thus we may generally define the full group by two equations, where the second denotes the subgroup  $S^s$ .

To illustrate the scaling hypothesis when an inactive parameter is present, we consider the example of the antiferromagnet (see Fig. 12). Here we hypothesize that the singular part of the Gibbs potential

$$G = \mathcal{F}_{A}(H_{\rm st}, x_{2}, x_{3}) \tag{5.7}$$

is an invariant equation under the one parameter continuous group of transformations  $\mathcal{G}_A$ :

$$S_{A} \begin{cases} G' = \lambda G, \\ H'_{st} = \lambda^{a_{1}} H_{st}, x'_{2} = \lambda^{a_{2}} x_{2}, x'_{3} = x_{3}, \end{cases}$$
(5.8)

where  $x_2$  is a weak direction,  $[T - T_c(H)]$  or  $[H - H_c(T)]$ , and  $x_3$  parametrizes the position of the critical point on the line of critical points. Equivalently G satisfies a GHF equation²⁴

$$G(\lambda^{a_1}H_{\rm st}, \lambda^{a_2}x_2; x_3) = \lambda G(H_{\rm st}, x_2; x_3).$$
(5.9)

Here  $H_{st}$  denotes the staggered magnetic field.

Scaling functions for ferromagnets and antiferromagnets can be obtained the usual way²¹ from Eqs. (5.1) and (5.9), respectively. For example, by setting  $\lambda \equiv 1/|H|^{1/a_H}$  in Eq. (5.1), we obtain²⁵

$$G(1, \tau / |H|^{a_{\tau}/a_{H}}) = |H|^{-1/a_{H}}G(H, \tau).$$
 (5.10)

The function  $G(H, \tau)$  can be plotted as a curve in a two-dimensional plane with coordinates specified by  $G/|H|^{1/a_H}$  and  $\tau/|H|^{a_\tau/a_H}$ . We note that both  $G/|H|^{1/a_H}$  and  $\tau/|H|^{a_\tau/a_H}$  are absolute invariants of the group  $\mathcal{G}_F$  defined by Eq. (5.3), i.e.,

$$G_{H} \equiv \frac{G'}{|H'|^{1/a_{H}}} = \frac{G}{|H|^{1/a_{H}}} , \qquad (5.11a)$$

$$\tau_{H} \equiv \frac{\tau'}{|H'|^{a_{\tau}/a_{H}}} = \frac{\tau}{|H|^{a_{\tau}/a_{H}}} , \qquad (5.11b)$$

where the second equalities in (5.11) follow from (5.3).

Similarly, by setting  $\lambda \equiv 1/|H_{st}|^{1/a_1}$ , Eq. (5.9) may be written

$$G(1, x_2 / | H_{st} |^{a_2/a_1}; x_3) = | H_{st} |^{-1/a_1} G(H_{st}, x_2; x_3),$$
(5.12)

and  $G/|H_{\rm st}|^{1/a_1}$ ,  $x_2/|H_{\rm st}|^{a_2/a_1}$ ,  $x_3$  are absolute invariants of the group  $\mathcal{G}_A$ . In addition, the last two quantities are absolute invariants of the subgroup  $\mathcal{G}_A^s$ .

To derive exponents and scaling laws for the antiferromagnet, the procedures developed in Ref. 21 can be simply applied to Eq. (5.9). At points where the critical line is not parallel to the *T* axis, it is easily shown that

$$\beta = (1 - a_1)/a_2 , \qquad (5.13a)$$

$$1/\delta = (1 - a_1)/a_1$$
, (5.13b)

$$-\gamma = (1 - 2a_1)/a_2 \quad , \tag{5.13c}$$

$$-\alpha = (1 - 2a_2)/a_2$$
, (5.13d)

where the order parameter  $M_{\rm st}$  tends to zero when the critical line is approached in a weak direction with exponent  $\dot{\beta}$ ,

$$M_{\rm st} \propto \left| T - T_c(H) \right|^{\beta}, \qquad (5.14a)$$

and with exponent  $1/\delta$  when it is approached in a strong direction

$$M_{\rm st} \propto H_{\rm st}^{1/6} \,. \tag{5.14b}$$

The staggered susceptibility  $\chi_{st} = \partial M_{st} / \partial H_{st}$  diverges with exponent  $\gamma$ ,

$$\chi_{\rm st} \propto \left| T - T_c(H) \right|^{-\gamma}, \qquad (5.14c)$$

and the specific heat at constant order parameter diverges with exponent  $\alpha$ :

$$C_{M_{\text{ef}}} \propto \left| T - T_c(H) \right|^{-\alpha} . \tag{5.14d}$$

The last two exponents  $\gamma$  and  $\alpha$  refer to weak directions of approach (in the plane  $H_{\rm st}=0$ ) to the critical line.²⁶

In the same way, exponents for the ordinary

magnetization M, and ordinary susceptibility  $\chi = \partial M / \partial H$  can be derived. It turns out on using Eq. (5.13d) that

$$M - M_c(H) \propto |T - T_c(H)|^{(1-\alpha)}$$
, (5.15a)

$$\chi \propto \left| T - T_c(H) \right|^{-\alpha}. \tag{5.15b}$$

From Eqs. (5.13a)-(5.13d) the usual scaling law equalities can be derived by eliminating the scaling powers  $a_1$  and  $a_2$ :

$$\alpha + 2\beta + \gamma = 2$$
,  $\beta(\delta - 1) = \gamma$ ,  $\beta(\delta + 1) = 2 - \alpha$ .

These results are also obtainable from two simple group invariant theorems which we shall find particularly useful in making the scaling hypothesis for critical subspaces of higher order.

Theorem 1. Consider a one-parameter continuous group of transformations:

There exist n functionally independent absolute invariants of the  $x_i$  (i = 0, 1, ..., n). This theorem is proved in Appendix A.

For our applications, we shall choose the invariants, denoted by  $y_i$  (i = 0, 1, ..., n-1), such that, for i = 0,

$$\frac{\partial y_0}{\partial x_0} \neq 0$$
, (5.17a)

and for i > 0,

$$(y_1, y_2, \dots, y_{n-1})$$
 (5.17b)

are the n-1 functionally independent absolute invariants of the subgroup  $\mathcal{G}^s$ .

For the simple ferromagnet,  $G/|H|^{1/a_H}$  is an absolute invariant under  $\mathcal{G}_F$  [see Eq. (5.3)] and  $\tau/|H|^{a_\tau/a_H}$  is the functionally independent absolute invariant of  $(H, \tau)$  under the transformation  $\mathcal{G}_F^s$ . For the antiferromagnet,  $G/|H_{\rm st}|^{1/a_1}$  is an absolute invariant under  $\mathcal{G}_A$ , and  $(x_2/|H_{\rm st}|^{a_2/a_1}, x_3)$  are the *two* functionally independent absolute invariants under  $\mathcal{G}_A^s$ .

Theorem 2. If

$$x_0 = X_0(x_1, x_2, \dots, x_n) \tag{5.18}$$

is an invariant equation under 9 defined by (5.16) (i.e., if  $X_0$  is a GHF), then it can be expressed as

$$y_0 = Y_0(y_1, y_2, \dots, y_{n-1}),$$
 (5.19)

where the  $y_i$  (i = 0, 1, ..., n-1) form a set of functionally independent absolute invariants of S given by (5.16), and satisfying (5.17).

The proof of this theorem is given in Appendix B. Equations (5.10) and (5.12) are simple applications of these theorems. The usefulness of theorems 1 and 2 will be apparent in Sec. VI.

## VI. SCALING HYPOTHESIS FOR TRICRITICAL POINTS

Before making the scaling hypothesis and examining its consequences for a critical space of arbitrary order O, we will make it for the special case of a  ${}^{3}R_{0}$  (tricritical point) for which there are three fields available (n = 3). This will clarify both notation and concepts, and make passage to the general case more painless.

As was shown in Sec. IV, it is possible at a critical point to select strong and weak directions (directions of types 1 and 2). These we call  $x_1$  and  $x_2$ as before. In a space of total dimension three, the critical subspaces terminating at a  ${}^{3}R_{0}$  are all  ${}^{2}R_{1}$ . At a point on a  ${}^{2}R_{1}$  we may select a direction tangent to the line. Thus as one approaches the  ${}^{3}R_{0}$ along a given  ${}^{2}R_{1}$ , the directions of types 1, 2, and 3 are uniquely defined (see Fig. 14).

Since three critical lines meet at a  ${}^{3}R_{0}$ , three "rival" coordinate systems exist at the point  ${}^{3}R_{0}$ . A scaling hypothesis cannot be made at the tricritical point unless a unique coordinate system can be defined, and this represents an apparent obstacle.

The solution of this problem is somewhat subtle, and the full details have been given in a previous paper.^{7(b)} The basic idea is that a scaling hypothesis at the  ${}^{3}R_{0}$  determines the general shape of a line of critical points near the  ${}^{3}R_{0}$ ; thus a scaling hypothesis made in a coordinate system defined by one line will restrict the shapes of the other two lines meeting it (at the tricritical point).

The coordinate systems defined with reference to the other two lines are consistent in the sense that we could have selected any line first to make the scaling hypothesis and we would have obtained the same final result.

To set up a coordinate system in which to make a scaling hypothesis at the  ${}^{3}R_{0}$ , we choose a point P on one of the critical lines (say  $L_{1}$ ) and we set up a triad of directions  $x_{i}(L_{1})$ . Two of these directions are of types 1 and 2, while the third is tangent to the  ${}^{2}R_{1}$ . The coordinate system at the tricritical point is now defined to be

$$\overline{x}_i \equiv \lim_{P \to {}^3R_0} x_i(P) \tag{6.1}$$

(see Fig. 14). The direction  $\bar{x}_3$  is of type 3. The bars are used in order that the present notation be consistent with that of Ref. 7(b).

We now introduce a scaling parameter  $\lambda$  ( $\lambda > 0$ ) and make the scaling hypothesis that the singular part of the Gibbs potential is a GHF, i.e.,

$$G(\lambda^{\overline{a}_1}\overline{x}_1, \lambda^{\overline{a}_2}\overline{x}_2, \lambda^{\overline{a}_3}\overline{x}_3) = \lambda G(\overline{x}_1, \overline{x}_2, \overline{x}_3), \qquad (6.2)$$

where  $(\overline{a}_1, \overline{a}_2, \overline{a}_3)$  are the "tricritical scaling powers". Equation (6.2) is equivalent to the statement that  $G = \mathfrak{F}(\overline{x}_1, \overline{x}_2, \overline{x}_3)$  is an invariant equation under the one-parameter continuous group of transformations

$$G' \equiv \lambda G, \qquad (6.3a)$$

$$g_{3} \left\{ \vec{x}_{i} = \lambda^{\bar{a}_{i}} \vec{x}_{i}, i = 1, 2, 3. \right.$$
 (6.3b)

According to theorem 1 of Sec. V, the hypothesized invariance property of (6.1) under  $S_3$  implies that there exists a basis set of functionally independent absolute invariants of  $S_3$ . We adopt a canonical form for the invariants  $y_4$  by scaling  $\bar{x}_4$  with respect to the tangent variable—here  $\bar{x}_3$ —as follows:

$$y_{0} \equiv \frac{\overline{x}_{0}}{\overline{x}_{3}^{1}/\overline{a}_{3}} , \quad y_{1} \equiv \frac{\overline{x}_{1}}{\overline{x}_{3}^{\overline{a}_{1}}/\overline{a}_{3}} , \quad y_{2} \equiv \frac{\overline{x}_{2}}{\overline{x}_{3}^{\overline{a}_{2}}/\overline{a}_{3}} , \quad (6.4)$$

with  $\overline{x}_0 \equiv G$ . Thus, theorem 2 of Sec. V states that  $G(\overline{x}_1, \overline{x}_2, \overline{x}_3)$  may be expressed as²⁷

$$y_0 = F_2(y_1, y_2).$$
 (6.5)

Since the variables  $y_1$  and  $y_2$  forms a basis set of functionally independent absolute invariants of the scaling field variables  $\overline{x}_1$ ,  $\overline{x}_2$ , and  $\overline{x}_3$  of the group of transformations  $S_3^s$ , any point  $(k_1, k_2)$  in the two-dimensional space  $(y_1, y_2)$  gives rise to an invariant curve of points in the three-dimensional space  $(\overline{x}_1, \overline{x}_2, \overline{x}_3)$ . That is, the point given by

$$y_i = k_i, \quad i = 1, 2$$
 (6.6)

corresponds to a line in the  $x_i$  space that may be conveniently parametrized by

$$(\bar{x}_1, \bar{x}_2, \bar{x}_3) = (k_1 \lambda^{\bar{a}_1}, k_2 \lambda^{\bar{a}_2}, \lambda^{\bar{a}_3}),$$
 (6.7)

where  $\lambda$  is an arbitrary parameter (see Fig. 15). In particular the lines of critical points  $L_j$  converging on the tricritical point can be expressed in the form of Eq. (6.7), since according to the scaling hypothesis (6.2) they must be invariant under the group of symmetries  $\mathcal{G}_3$  of (6.3).

Previously^{7(b)} we have derived Eq. (6.7) directly from Eq. (6.2) and demonstrated that if the scaling powers  $\overline{a}_i$  are all different, the curves parametrized by Eq. (6.7) end up parallel to the axis  $\overline{x}_i$ corresponding to the minimum  $\overline{a}_i$  (unless  $k_i = 0$ ). Although the direction of type 3 defined for one line is not necessarily parallel to the direction of type 3 defined for another line, it will at least be parallel to *some* member of the triad defined for that other line. Thus all choices of scaling directions will be mutually consistent!^{7(b),28}

Along a critical line  ${}^{2}R_{1}$ , the conventional scaling hypothesis is normally stated in terms of a GHF equation of the form

$$G(\mu^{a_1}x_1, \ \mu^{a_2}x_2; \ x_3) = \mu G(x_1, \ x_2; \ x_3), \qquad (6.8)$$

where  $x_3$  is a parameter and does not scale. Near the  ${}^{3}R_{0}$ , however, the shape of the critical line is determined by Eq. (6.7). A  ${}^{2}R_{1}$  near the  ${}^{3}R_{0}$  maps into a point  $(k_{1}, k_{2})$  in the  $y_{1} - y_{2}$  plane given by Eq. (6.6). Furthermore, the value of  $y_{0} \equiv \overline{x}_{0} / \overline{x}_{3}^{1/\overline{a}_{3}}$   $= G/\bar{x}_{3}^{1/\bar{a}_{3}}$  changes only if  $y_{1}$  and/or  $y_{2}$  changes. It is therefore more proper to make a precise scaling hypothesis about the critical line  ${}^{2}R_{1}$  near the  ${}^{3}R_{0}$ making use of the variables  $(y_{1}, y_{2})$ .

If we adopt the strong requirement that a point in one phase remains in that phase under the scale transformation  $S_3$ , the CXS surfaces become lines in the  $y_1-y_2$  plane. Hence, it is possible to choose the principal directions of scaling for the  ${}^2R_{n-2}$  as linear combinations of the variables  $y_1, y_2$ .

Because the scaled variables must be zero at the critical line we consider the variables

$$y_1 \equiv y_1 - k_1$$
, (6.9a)

$$\hat{y}_2 \equiv y_2 - k_2$$
. (6.9b)

For the line  $L_1$  of Fig. 15,  $k_1 = 0$ , the coordinate  $y_1$ , is everywhere strong and  $(y_2 + k)$  is weak. For  $L_2$  and  $L_3$ , the weak direction is parallel to the CXS mapped in the  $y_1 - y_2$  plane, and both  $\hat{y}_1$ ,  $\hat{y}_2$  are strong directions unless the wings end up parallel to one axis.

We therefore define linear combinations of the variables  $(y_i - k_i)$ , which give the weak and strong directions (they are of necessity also absolute invariants of the group  $g_3$ ):

$$\tilde{y}_{i} \equiv \sum_{j=1}^{a} \tilde{R}_{ij}(y_{j} - k_{j}), \qquad (6.10a)$$

where  $\tilde{R}_{ij}$  is a "rotation matrix". Defining

$$\tilde{y}_0 \equiv y_0 , \qquad (6.10b)$$

we hypothesize that along a  ${}^{2}R_{1}$  near the  ${}^{3}R_{0}$ ,  $\tilde{y}_{0}$  is a GHF of  $(\tilde{y}_{1}, \tilde{y}_{2})$ ,

$$\tilde{y}_{0}(\mu^{a_{1}}\tilde{y}_{1}, \mu^{a_{2}}\tilde{y}_{2}) = \mu \tilde{y}_{0}(\tilde{y}_{1}, \tilde{y}_{2}), \qquad (6.11)$$

i.e.,  $\tilde{y}_0 = \mathfrak{F}_2(\tilde{y}_1, \tilde{y}_2)$  is an invariant equation under a group  $\mathfrak{G}_2$  defined by

$$e\left(\tilde{y}_{0}^{\prime}=\mu\tilde{y}_{0}\right), \qquad (6.12a)$$

$$\tilde{y}_{i}^{\prime} = \mu^{a_{i}} \tilde{y}_{i}, \quad i = 1, 2.$$
 (6.12b)

In general, the group  $S_2$  will be different (having different  $a_i$ ) for each critical line at the tricritical point, and will only be valid within a certain region close to the critical line. The different groups  $S_2$  for the different lines  $L_i$  do not have regions of overlap and there is therefore no conflict.

We can now form absolute invariants of  $S_2$ . Scaling with respect to the weak direction we obtain

$$z_0 \equiv \frac{\tilde{y}_0}{\tilde{y}_2^{1/a_2}}, \quad z_1 \equiv \frac{\tilde{y}_1}{\tilde{y}_2^{a_1/a_2}}. \tag{6.13}$$

Theorem 2 of Sec. V states that under the hypothesis (6.11),  $\tilde{y}_0(\tilde{y}_1, \tilde{y}_2)$  may be expressed as²⁷

$$z_0 = \mathcal{F}_1(z_1) \,. \tag{6.14}$$

The simplest example of this is for the line  $L_1$  of Fig. 15. Here the variables of scaling are

$$\hat{y}_1 = \overline{x}_1 / \overline{x}_3^{\overline{a}_1/\overline{a}_3},$$
 (6.15a)

$$\hat{V}_2 = \left(\bar{x}_2 / \bar{x}_3^{a_2/a_3} + k\right), \tag{6.15b}$$

where k is defined in Fig. 15. Rotation is not necessary and  $\tilde{R}_{ij} \equiv \delta_{ij}$ . Hence on using (6.13) and (6.15), Eq. (6.14) can be written in the "doublepower law" form²⁷

$$\frac{\overline{x}_{3}^{1/\overline{a}_{3}}(\overline{x}_{2}/\overline{x}_{3}^{\frac{\overline{a}_{2}}{a}/\overline{a}_{3}}+k)^{1/a_{2}}}{=\mathfrak{F}_{1}\left[\frac{\overline{x}_{1}}{\overline{x}_{3}^{\frac{\overline{a}_{1}}{a}/\overline{a}_{3}}(\overline{x}_{2}/\overline{x}_{3}^{\frac{\overline{a}_{2}}{a}/\overline{a}_{3}}+k)^{a_{1}/a_{2}}}\right]. \quad (6.16)$$

For a simple system with n = 2, scaling functions predict data collapsing for functions of two variables from a surface onto a line. For n = 3 and functions of three variables, data collapse from a volume onto a surface. However, the double-power scaling function of Eq. (6.16) predicts that data will collapse from a volume onto a line. Clearly this happens only within the region of validity of both groups of transformations  $S_2$  and  $S_3$ .

The region of influence of  $S_2$  in the neighborhood of the tricritical point  3R_0  should also be controlled by the group  $S_3$ . This means that the region of influence of  $S_2$  should be bounded by a surface which scales toward the  3R_0 . In Fig. 15, where a line which scales is represented by a point, a surface which scales will be represented by a line. We therefore plot the surfaces bounding the region of influence of the group  $S_2$  (of transformations about a  ${}^2R_1, L_i$ ) as a line surrounding the point in the  $y_1$ - $y_2$ plane, representing the particular line  $L_i$ .

In terms of the variables  $y_1$ ,  $y_2$  such a line will be represented by the equation

$$f(y_1, y_2) = 0 \tag{6.17a}$$



FIG. 15. (a) Plot of the invariants  $(y_1, y_2)$  for the group  $\mathcal{G}_3$  of transformations about the tricritical point. The strong and weak directions for the line  $L_1$  are  $y_1$  and  $y_2$ . The circle around  $L_1$  is a possible shape for the crossover region. (b) The principal points of interest of Fig. 15(a) in the full space  $(\overline{x}_1, \overline{x}_2, \overline{x}_3)$ . The point labeled  $L_1$  has become a line and the circle surrounding it has become a cone.



FIG. 16. Figure 15(b) sliced in the  $\bar{x}_2$ ,  $\bar{x}_3$  plane. The cone has become the two lines labeled  $y_2 = C_1$ ,  $C_2$  [see Fig. 15(a)]. These are generally referred to as cross-over lines:  $(T',g') = (T - T_t, g - g_t)$ .

or

$$f(\bar{x}_1 / | \bar{x}_3 | \bar{a}_1 / \bar{a}_3, \bar{x}_2 / | \bar{x}_3 | \bar{a}_2 / \bar{a}_3) = 0.$$
 (6.17b)

The area bounded by this curve (6.17) maps into a conical volume surrounding the critical line  $L_1$ (Fig. 15). Scaling will not tell us the actual shape of the curve in the  $y_1 - y_2$  plane but it does limit the shape in the  $(\bar{x}_1, \bar{x}_2, \bar{x}_3)$  space, since all points in the  $y_1-y_2$  plane give rise to curves approaching the tricritical point along a particular direction the axis corresponding to the minimum  $\bar{a}_i$ .

In the plane  $\overline{x}_1 = 0$ , Eq. (6.16) requires²⁹ that

$$G \propto \overline{x}_{3}^{1/\overline{a}_{3}} (\overline{x}_{2} / \overline{x}_{3}^{\overline{a}_{2}/\overline{a}_{3}} + k)^{1/a_{2}}, \qquad (6.18)$$

and the conical surface of Eq. (6.17) becomes the two "crossover lines"

$$\bar{x}_2 = C_{1,2} \bar{x}_3^{\bar{a}_2/\bar{a}_3} , \qquad (6.19)$$

as shown in Fig. 16. The crossover exponent  $\varphi$ , ^{7(a)} given by

$$\varphi \equiv \overline{a}_3 / \overline{a}_2 , \qquad (6.20)$$

determines the shape of the crossover lines, and it can be determined directly from the shape of the line  $L_1({}^2R_1)$ .

The lines are called crossover lines, because the behavior of a particular function crosses over from an exponent characteristic of the  ${}^{3}R_{0}$  far away from the line, to an exponent characteristic of the  ${}^{2}R_{1}$  at points close to the  ${}^{2}R_{1}$ . It is important to realize that the group  $S_{3}$  does not cease to be valid, and the crossover does not refer to changing from one group to another. The group  $S_{3}$  is everywhere valid, and the crossover merely marks the limits of validity of  $S_{2}$ . This principle will be extended in Paper II and the groups  $S_{j}$  will control crossovers (or boundaries for the regions of validity) of

 $S_i$ , where j > i.

Finally, a few remarks should be made about the exponents and the directions of approach to the tricritical point. Equation (6.18) shows that if  $\overline{x}_2/|\overline{x}_3|^{\overline{a}_2/\overline{a}_3}$  is a constant the exponent for G is  $1/\overline{a}_3$ . For a function f with a tricritical-point (TCP) scaling power  $\overline{a}_f$ , and a critical-line scaling power  $a_f$ , the equation analogous to Eq. (6.18) predicts exponents  $\overline{a}_f/\overline{a}_3$  and  $a_f/a_2$ . For example, for the staggered susceptibility  $\chi_{st} \equiv \partial^2 G/\partial H_{st}^2$ , from (6.16),

$$\chi_{\rm st} \propto \overline{x}_{3}^{(1-2\bar{a}_{1})/\bar{a}_{3}} (\overline{x}_{2} / \overline{x}_{3}^{\bar{a}_{2}/\bar{a}_{3}} + k)^{(1-2a_{1})/a_{2}}, \qquad (6.21)$$

and  $\overline{a}_f = 1 - 2\overline{a}_1$  and  $a_f = 1 - 2a_1$  for this case. Thus for all the exponents considered below the numerators can be appropriately be replaced by  $\overline{a}_f$  or  $a_f$ .

If the  ${}^{3}R_{0}$  is approaches along a direction not asymptotically parallel to the  $\overline{x}_{3}$  axis (i.e., outside the crossover lines), G scales with a power  $1/\overline{a}_{2}$ .

If the  ${}^{2}R_{1}$  is approached along a line of constant  $\overline{x}_{3}$ , in the plane  $\overline{x}_{1} = 0$  Eq. (6.18) shows that G has an exponent  $1/a_{2}$ . This is expected, of course, since G has an exponent  $1/a_{2}$  for any point (i.e., fixed  $x_{3}$ ) on the line  ${}^{2}R_{1}$  even when the point is far away from the  ${}^{3}R_{0}$  [see Eq. (6.8)].

In Sec. V, exponents were demonstrated in terms of the scaling powers  $a_i$  [Eqs. (5.13)] and the same can be done here for the  2R_1  (exponents in terms of  $a_i$ ) and the  3R_0  (exponents in terms of the  $\overline{a}_i$ ) separately. The only new exponents, which will be derived, are exponents for the directions of approach to the  3R_0  along  $y_2$  = constant and these give exponents of the form

$$f^{\sim} |x_3|^{\bar{a}_f/\bar{a}_3}$$
. (6.22)

These can be related to exponents of approach along directions of type 2 by relations of the form

$$\overline{a}_f / \overline{a}_3 = (\overline{a}_f / \overline{a}_2) / \varphi. \tag{6.23}$$

These are new predictions of scaling specific to tricritical points [the others are analogous to Eq. (5.13)].^{7(c)}

Finally, we emphasize the importance of expressing the scaling relations in terms of invariants. For example, Eq. (6.21) may be written in the alternative "mixed-exponent form"

$$\chi_{\rm st} \propto C(\bar{x}_2 + k\bar{x}_3^{1/\varphi})^{-\gamma},$$
 (6.24)

where

Coc

$$\overline{x}_{3}^{(\gamma-\overline{\gamma})/\varphi}$$
, (6.25)

with

$$-\gamma = \frac{1-2a_1}{a_2}, \qquad -\overline{\gamma} = \frac{1-2\overline{a}_1}{\overline{a}_2}.$$
 (6.26)

Expressions (6.24) and (6.25) appear more complicated than they actually are. The exponents are actually not mixed when expressed in the invariant from as shown in Eq. (6.21).

## ACKNOWLEDGMENTS

We wish to thank F. Harbus, R. B. Griffiths, J. C. Wheeler, and E. K. Riedel for stimulating discussions.

#### **APPENDIX A: PROOF OF THEOREM 1**

Theorem 1. Consider a one-parameter continuous group of transformations

S: 
$$x'_{i} = f_{i}(\lambda | x_{0}, x_{1}, \dots, x_{n}),$$
 (A1)

where i = 0, 1, ..., n. There exist *n* functionally independent absolute invariants of the  $x_i$  (i = 0, 1, ..., n).

Proof of theorem 1. Consider a function  $F(x'_0, x'_1, \ldots, x'_n)$ . Assume the derivatives of  $f_i$  with respect to  $\lambda$  exist. We expand  $F(x'_0, x'_1, \ldots, x'_n)$  in a Maclaurin series

$$F(x'_0, x'_1, \ldots, x'_n) = f + f'(\delta \lambda) + \frac{f''}{2!} (\delta \lambda)^2 + \cdots,$$
(A2)

where

$$f = F(x_0, x_1, \dots, x_n),$$

$$f' = \left(\frac{dF}{d\lambda}\right)_{\lambda = \lambda_0} = VF(x_0, x_1, \dots, x_n),$$

$$f'' = \left(\frac{d^2F}{d\lambda^2}\right)_{\lambda = \lambda_0} = V^2F(x_0, x_1, \dots, x_n),$$
(A3)

with  $\lambda_0$  the value of  $\lambda$  corresponding to the identical transformation and

$$V \equiv \sum_{i=0}^{n} \xi_{i} \left( \frac{\partial}{\partial x_{i}} \right), \qquad (A4)$$

$$\xi_{i} \equiv \left(\frac{\partial f_{i}}{\partial \lambda}\right). \tag{A5}$$

If, therefore,  $F(x_0, x_1, \ldots, x_n)$  is an absolute invariant of the group  $\mathcal{G}$ , then

$$F(x'_0, x'_1, \ldots, x'_n) = F(x_0, x_1, \ldots, x_n).$$
 (A6)

The necessary and sufficient condition for F = const is that

$$VF = \sum_{i=0}^{n} \xi_{i} \left( \frac{\partial F}{\partial x_{i}} \right) = 0.$$
 (A7)

Thus, F is a solution of the partial differential equation (A7) and consequently,  $F(x_0, x_1, \ldots, x_n)$ = const is a solution of the system of the equivalent ordinary differential equations

$$\frac{dx_0}{\xi_0} = \frac{dx_1}{\xi_1} = \dots = \frac{dx_n}{\xi_n} .$$
 (A8)

These equations admit n independent solutions (first integrals)^{30,31} and theorem 1 is proved.

#### **APPENDIX B: PROOF OF THEOREM 2**

Theorem 2. If the equation

$$x_0 = X_0(x_1, x_2, \dots, x_n)$$
(B1)

is invariant under

then it can be expressed as

$$y_0 = Y_0(y_1, y_2, \dots, y_{n-1}),$$
 (B3)

where  $(y_0, y_1, \ldots, y_{n-1})$  form a set of functionally independent absolute invariants under S, with

 $\frac{\partial y_0}{\partial x_0} \neq 0,$ 

and  $(y_1, y_2, \ldots, y_{n-1})$ , the n-1 functionally independent absolute invariants of  $S^s$ .

By hypothesis,  $y_0$  is an absolute invariant of  $(x_0; x_1, \ldots, x_n)$  of S. Thus, (B3) implies that the invariant equation (B1) may be written

$$y_0(x_0; x_1, x_2, \dots, x_n) = Y_0(y_1, y_2, \dots, y_{n-1})$$
. (B4)

Since  $(y_1, y_2, \ldots, y_{n-1})$  form a basis set of functionally independent absolute invariants of  $(x_1, x_2, \ldots, x_n)$  of  $\mathbb{S}^s$ , (B4) is equivalent to the statement that  $x_0$  is expressible as an implicit function of  $(x_1, x_2, \ldots, x_n)$ :

$$y_0(x_0; x_1, x_2, \dots, x_n) = g(x_1, x_2, \dots, x_n),$$
 (B5)

where g is an absolute invariant of  $(x_1, x_2, \ldots, x_n)$ under  $S^s$ .

Before we launch into the proof of the theorem, we give a proof of the following lemma.³²

Lemma. A necessary and sufficient condition for  $x_0$ , implicitly defined by (B5), as a function of  $(x_1, x_2, \ldots, x_n)$ , to be the same function as  $x'_0$  of  $(x'_1, x'_2, \ldots, x'_n)$  implicitly defined by

$$y_0(x'_0, x'_1, x'_2, \dots, x'_n) = g'(x'_1, x'_2, \dots, x'_n)$$
 (B6)

is that g is an absolute invariant of  $(x_1, x_2, \ldots, x_n)$ under  $S^s$ .

*Proof of lemma*. Since  $y_0$  is an absolute invariant of  $\mathcal{G}$ , we have

$$y_0(x_0; x_1, x_2, \dots, x_n) = y_0(x_0'; x_1', x_2', \dots, x_n').$$

Since we require  $x_0(x_1, x_2, \ldots, x_n)$  to be exactly the same function as  $x'_0(x'_1, x'_2, \ldots, x'_n)$ , (B5)-(B7) require that

$$g(x_1, x_2, \ldots, x_n) = g'(x_1', x_2', \ldots, x_n')$$

 $=g(x'_1, x'_2, \ldots, x'_n).$  (B8)

This is the necessity proof.

We now demonstrate (B8) is sufficient to ensure (B5) and (B6) admit an invariant solution such that

 $x_0(x_1, x_2, \dots, x_n)$  is exactly the same function as  $x_0'(x_1', x_2', \dots, x_n')$ . Inverting (B5) and (B6), we obtain

$$x_0(x_1, x_2, \dots, x_n) = h(g; x_1, x_2, \dots, x_n),$$
  

$$x_0'(x_1', x_2', \dots, x_n') = h'(g'; x_1, x_2, \dots, x_n),$$
(B9)

in some neighborhood of the  $(x_1, x_2, \ldots, x_n)$  and  $(x'_1, x'_2, \ldots, x'_n)$  spaces, respectively. It is obvious that  $h(g; x_1, x_2, \ldots, x_n)$  is exactly the same function as  $h'(g'_1; x'_1, x'_2, \ldots, x'_n)$ . But, by hypothesis,  $g(x_1, x_2, \ldots, x_n)$  is exactly the same function as  $g'(x'_1, x'_2, \ldots, x'_n)$ . Therefore,  $x_0(x_1, x_2, \ldots, x_n)$  is exactly the same function as  $x'_0(x'_1, x'_2, \ldots, x'_n)$ .

*Proof of theorem* 2. Using the lemma and the fact that  $g(x_1, x_2, \ldots, x_n)$  in (B5) is an absolute invariant of  $(x_1, x_2, \ldots, x_n)$  under  $\mathbb{S}^s$ , we immediately verify the statement of theorem 2.

#### **APPENDIX C: PROOF OF THEOREM 3**

Theorem 3. Consider a one-parameter continuous group of transformations S:

$$S \begin{cases} x_{0}^{\prime} = \lambda x_{0}, \\ x_{i}^{\prime} = f_{i}(\lambda) x_{i}, \quad i = 1, 2, ..., n. \end{cases}$$
(C1)

If

x

$$x_0 = F(x_1, x_2, \dots, x_n)$$
 (C2)

- *Work forms a part of a Ph.D. thesis to be submitted to the Physics Department of MIT by A. Hankey. Preliminary reports of aspects of this work appear in T. S. Chang, A. Hankey, and H. E. Stanley, AIP Conf. Proc. 10, 880 (1973).
- [†]Supported by NSF Grant No. GU-1590 and NASA Grant No. NGL 34-002-084. Permanent address: Riddick Laboratories, North Carolina State University, Raleigh, N.C. 27607.
- ^tSupported by a Research Assistantship from the Laboratory for Nuclear Science, MIT Lindemann Fellow. Present address: SLAC, Stanford, Calif.

Supported by NSF, ONR. and AFOSR

- ¹A. Hankey, T. S. Chang, and H. E. Stanley, Phys. Rev. B (to
- be published), hereafter referred to as II. See also, F. Harbus, A. Hankey, H. E. Stanley, and T. S. Chang, Phys. Rev. B (to be published).
- ²(a) B. Widom, J. Chem. Phys. 43, 3892 (1965); (b) C. Domb and D. L. Hunter, Proc. Phys. Soc. Lond. 86, 1147 (1965); (c) L. P. Kadanoff, Physics (N.Y.) 2, 263 (1966); (d) R. B. Griffiths, Phys. Rev. 158, 176 (1967).
- ³E. K. Riedel and F. Wegner, Z. Phys. 225, 195 (1969).
- ⁴E. K. Riedel and F. Wegner, Phys. Rev. Lett. 24, 730 (1970).
   ⁵R. B. Griffiths and J. C. Wheeler, Phys. Rev. A 2, 1047 (1970).
- ⁶R. B. Griffiths, Phys. Rev. Lett. 24, 715 (1970).
- ⁷(a) E. K. Riedel, Phys. Rev. Lett. **28**, 675 (1972); (b) A. Hankey, H. E. Stanley, and T. S. Chang, Phys. Rev. Lett. **29**, 278 (1972). (c) See also, R. B. Griffiths, Phys. Rev. B **7**, 545.(1973).
- ⁸J. F. Nagle, Phys. Rev. A 2, 2124 (1970); J. F. Nagle and J. C. Bonner, J. Chem. Phys. 54, 729 (1971); J. C. Bonner and J. F. Nagle, J. Appl. Phys. 42, 1280 (1971).
- ⁹We will use the word "spaces" to mean subspaces of the total space of field or fieldlike variables. Fieldlike refers to variables

is an invariant equation under S, the most general form for  $f_i(\lambda)$  is  $\lambda^{a_i}$ , where  $a_i$  are constants.

Proof of theorem 3. We transform (C2) by means of (C1) for two successive values of  $\lambda = \lambda_1$ ,  $\lambda_2$ ,

$$\lambda_{1}\lambda_{2}x_{0} = F[f_{1}(\lambda_{1})f_{1}(\lambda_{2})x_{1}, f_{2}(\lambda_{1})f_{2}(\lambda_{2})x_{2}, \dots, f_{n}(\lambda_{1})f_{n}(\lambda_{2})x_{n}], \quad (C3)$$

and again for the value of  $\lambda = \lambda_1 \lambda_2$ ,

$$\lambda_1 \lambda_2 x_0 = F[f_1(\lambda_1 \lambda_2) x_1, f_2(\lambda_1 \lambda_2) x_2, \dots, f_n(\lambda_1 \lambda_2) x_n].$$
(C4)

These results are to hold for all values of  $x_i$ . Setting  $x_2 = x_3 = \cdots = x_n = 0$ , we have from (C3) and (C4)

$$F[f_1(\lambda_1)f_1(\lambda_2)x_1, 0, \dots, 0] = F[f_1(\lambda_1\lambda_2)x_1, 0, \dots, 0].$$
(C5)

Therefore,

$$f_1(\lambda_1)f_1(\lambda_2) = f_1(\lambda_1\lambda_2).$$
(C6)

The solution³³ of the functional equation for  $f_1(\lambda)$  for  $\lambda > 0$  is

$$f_1(\lambda) = \lambda^{a_1} , \tag{C7}$$

where  $a_1$  is a constant. This process may be repeated for each  $f_1(\lambda)$ , i = 1, 2, ..., n. Thus, theorem 3 is proved.

which occur as parameters in the Hamiltonian and which are not discontinuous across coexistence surfaces.

- ¹⁰(a) E. H. Graf, D. M. Lee, and J. D. Reppy, Phys. Rev. Lett. **19**, 417 (1967). These authors only treat the tricritical point at the lowest pressure. See also, G. Goellner and H. Meyer, Phys. Rev. Lett. **26**, 1543 (1971); and G. Goellner, Ph.D. thesis (Duke University, 1972) (unpublished). (b) W. B. Yelon (private communication); see also, C. W. Garland and B. B. Weiner, Phys. Rev. B **3**, 1634 (1971).
- ¹¹Parameters in a Hamiltonian which can be varied have similar properties to field variables with respect to the geometry of the surfaces. These are used in Sec. III.
- ¹²(a) F. J. Wegner, Phys. Rev. B 5, 4529 (1972); (b) Phys.
   Rev. B 6, 1891 (1972); (c) E. K. Riedel and F. J. Wegner,
   Phys. Rev. Lett. 29, 349 (1972).
- ¹³I. S. Jacobs and P. E. Lawrence, Phys. Rev. **164**, 866 (1967); V. A. Schmidt and S. A. Friedberg, Phys. Rev. B **1**, 2250 (1970); B. E. Keen, D. P. Landau, B. Schneider, and W. P. Wolf, J. Appl. Phys. **37**, 1120 (1966); W. B. Yelon and R. J. Birgeneau, Phys. Rev. B **5**, 2615 (1972); F. Harbus and H. E. Stanley, Phys. Rev. Lett. **29**, 58 (1972); Phys. Rev. B (to be published).
- ¹⁴For an elementary account of anisotropic antiferromagnets, including a brief discussion of the spin-flop transition, see, e.g., D. H. Martin, *Magnetism in Solids* (MIT Press, Cambridge, Mass., 1967), pp. 261–263. The implications of scaling here are touched on in A. Hankey, Ph.D. thesis (MIT, 1973)(unpublished).
- ¹⁵W. K. Theuman and J. S. Hoye, J. Chem. Phys. **55**, 4159 (1971); see also P. C. Hemmer and G. Stell, Phys. Rev. Lett. **24**, 1284 (1970); and G. Stell and P. C. Hemmer, J. Chem. Phys. **56**, 2474 (1972); A. Hankey, Ref. 14.
- ¹⁶A more complete account of these models will be given else-

where; a preliminary account appears in A. Hankey, T. S.

- Chang, and H. E. Stanley, AIP Conf. Proc. 10, 899 (1973). ¹⁷This point occurs when  $2mH = 2J_{SR}$ , where 2m = 1, in the remainder of this work and  $J_{SR}$  is the nearest-neighbor exchange energy [cf. Eq. (3.1)].
- ¹⁸The inclusion of a competing long-range interaction makes it possible to define a fourth variable, which is fieldlike, although it is strictly not a field. This variable is the ratio of interaction strengths in the Hamiltonians. In the figures, it is denoted by  $\bar{\mathfrak{K}} \equiv J_{SR}/J_{LR}$ . This variable is "fieldlike" because the CXS and CRS in the space including  $\bar{\mathfrak{K}}$  have the same properties as in spaces of fields.
- ¹⁹An exact analysis of an Ising model with several staggered fields requires consideration of a regularly repeating block of spins. The length of the block will be equal to the lowest common multiple of the wavelengths of the various staggered fields. If staggered fields of wavelengths 2 and 3 had been chosen, there would be six spins in a block, but with wavelengths 2 and 4, there are only four spins per block. The analysis for a block of n spins proceeds by multiplying together n transfer matrices and so  $H_2$  and  $H_4$  give the smallest number of matrices to multiply.
- ²⁰Our ideas of using the invariant theorems of continous groups of transformations for multicomponent scaling were first presented at the MIT Summer School on Critical Phenomena in 1971 (unpublished). Recently, important advances have been made by Wilson, Fisher, Wegner, Riedel and others in generating the scaling exponents using the linearized renormalization group equations. It was shown that the scaling fields may be deduced from the relevant operator densities. The number of references to work utilizing the renormalization group now exceeds 100, and the reader is urged to consult K. G. Wilson, Phys. Reports (to be published) or *Cooperative Phenomena Near Phase Transitions: A Bibliography with Selected Readings*, edited by H. E. Stanley (MIT Press, Cambridge, Mass., 1973).
- ²¹This form of the scaling hypothesis has been treated in detail by A. Hankey and H. E. Stanley [Phys. Rev. B 6, 3515 (1972)]. It is a more complete discussion of the statements of the hypothesis previously used by Riedel and Wegner (Refs. 3 and 4) and also by Kadanoff (Ref. 2c). For a complete set of references, see *Cooperative Phenomena near Phase Transitions: A Bibliography with Selected Readings*, edited by H. E. Stanley (MIT Press, Cambridge, Mass., 1973).
- ²²The elements of the group are parametrized by the single

- parameter  $\lambda$ . Thus the group is a one-parameter group. ²³A more-general linear transformation will be  $x_i = f_i(\lambda)x_i$ . Because of the associativity property of groups, it can be shown that  $f_i(\lambda) = \lambda^{ai}$  [Appendix C]. If some of the  $x_i$  do not scale and serve only as "inactive parameters" in Eq. (5.6), the corresponding scaling powers are equal to zero.
- ²⁴We could, of course, replace  $H_{st}$  by  $x_1$  in Eq. (5.9), but we emphasize that (cf. Fig. 12) the only thermodynamic field axis which is a strong direction is  $H_{st}$ . Thus while the direction  $H_{st} + \epsilon (H - H_c)$  or  $H_{st} + \epsilon (T - T_c)$  are both strong and  $\partial/\partial H_{st}$  is the same as  $\partial/\partial x_1$ ,  $\partial/\partial T$ , and  $\partial/\partial H$  are only equivalent to differentiating with respect to  $x_2$ .
- ²⁵Here we will formulate the scaling hypothesis only for the Gibbs function, because the scaling equation analogous to (5.1) for other functions can be obtained by appropriate differentiation with respect to its independent variables. Scaling functions for physically more interesting functions like M and  $\chi$  can then be obtained by the same method used here for G.
- ²⁶Equations (5.14) can all be written in terms of  $|H H_c(T)|$  except at the Néel point, where the line of critical points is parallel to the *H* axis.
- ²⁷Occasionally, it turns out to be appropriate to scale with respect to a variable which is not tangent—see, e.g., Paper II. This is also true when all the  ${}^{2}R_{1}$  do not end up parallel and the tangent variable for one line is *not* the tangent variable for another line. We emphasize that scaled equations may change their values or functional forms when the scaling variables change signs.
- ²⁸"Mutually consistent" means that if one chooses two different sets of axes for scaling, one set  $(\bar{x}_1, \bar{x}_2, \bar{x}_3)$  with reference to a line L and the second  $(\bar{x}_1', \bar{x}_2', \bar{x}_3')$  with repsect to L', then the second set is none other than a permutation of the first set.
- ²⁹Our expression differs from that given in Ref. 7 [Eq. (8)], where the constant k is not present. The constant k is needed to ensure the divergence property of  $\chi_{st}$  (and other second derivatives of G) along the critical line.
- ³⁰L. P. Eisenhart, Continuous Groups of Transformations (Princeton U. P., Princeton, N.J., 1933).
- ³¹L. S. Pontryagin, Ordinary Differential Equations (Addison-Wesley, Reading, Mass., 1962).
- 32 A. J. A. Morgan, Q. J. Math. 2, 250 (1952).
- ³³J. Aczèl, Lectures on Functional Equations and their Applications (Academic, New York, 1966).

# 75-04939 15-15329 4263

## PHYSICAL REVIEW B

## VOLUME 7, NUMBER 9

1 MAY 1973

# Double-Power Scaling Functions near Tricritical Points*

T. S. Chang,[†] Alex Hankey,[‡] and H. Eugene Stanley Physics Department, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

(Received 11 September 1972)

We introduce invariants of the scaling equation about the tricritical point. Using these invariants, a modified version of the scaling hypothesis about the three critical lines meeting at the tricritical point is presented. From it we demonstrate that the thermodynamic equation of state near a tricritical point and near a critical line may be expressed as double-power scaling functions. These imply that experimental data should collapse from a volume onto a line (i.e., by two dimensions). This behavior is in contrast to ordinary "single-power" scaling functions, which predict data collapsing from a volume onto a surface or from a surface onto a line (i.e., by one dimension).

#### I. INTRODUCTION

There have been recent experimental measurements¹ near tricritical points² (TCPs) in metamagnets, NH₄Cl, and ³He-⁴He mixtures.¹ These data have been partially interpreted recently in terms of scaling arguments in which one makes not one but two scaling hypotheses.³⁻⁵ Riedel and Wegner⁶ were perhaps the first authors to note that in regions for which two scaling hypotheses are simultaneously valid, double-power-law behavior of certain functions results. In this work we present a variation of scaling for tricritical points, utilizing generalized homogeneous functions7 (GHF's) of invariants of the scaling equation about the tricritical point. We obtain, in regions near a critical line and a tricritical point, double-power scaling functions which permit data to collapse from a volume onto a line, in contrast to the behavior of singlepower scaling functions, which permit data to collapse by only one dimension (e.g., from a surface onto a line, or a volume onto a surface).

Before we can proceed to make the scaling hypothesis for a TCP, it will be necessary to determine the relevant directions for scaling.³ The three thermodynamic fields (T, temperature;  $\eta$ , ordering field; and g, nonordering field) near a TCP are believed to constitute an affine space in which directions may be defined by parallelism only. A TCP is a point of intersection of three critical lines in this three-dimensional affine space (cf. Fig. 1). At each point P on a critical line, three different types of directions can be established. The first direction,  $x_1(P)$ , is a direction not locally parallel to the coexistence surface. The second,  $x_2(P)$ , is locally parallel to the coexistence surface but not

parallel to the critical line. These are the "strong" and "weak" directions of Griffiths and Wheeler.⁸ The third direction,  $x_3(P)$ , is locally parallel to the critical line.

As the point P moves toward the TCP, these directions attain limiting orientations. Since there are three critical lines terminating at a TCP, three "rival" sets of directions of this type exist at the TCP. It has been shown⁴ that if scaling holds at a TCP, these three sets of directions are equivalent. Thus, we choose the relevant directions for scaling at a TCP as  $\overline{x_i} \equiv \lim(P \rightarrow \text{TCP})x_i(P)$ , where P is a point on the critical line  $L_1$  (see Fig. 1).9

#### **II. SCALING HYPOTHESIS FOR TCP**

Having ascertained the relevant scaling direc tions  $\overline{x}_i$  for TCP, we now introduce a scaling parameter  $\lambda$  (> 0) and make the homogeneity hypothesis  $^{3-7}$  that the singular part of the Gibbs potential is asymptotically a GHF,

$$G(\lambda^{\overline{a}_1}\overline{x}_1, \lambda^{\overline{a}_2}\overline{x}_2, \lambda^{\overline{a}_3}\overline{x}_3) = \lambda G(\overline{x}_1, \overline{x}_2, \overline{x}_3), \qquad (1)$$

where  $\overline{a}_i$  are the scaling powers. Equation (1) is equivalent to the statement that

$$G = F_3 \left( \overline{x}_1, \ \overline{x}_2, \ \overline{x}_3 \right) \tag{2}$$

is an invariant equation under the one-parameter  $(\lambda)$  group  $(S_3)$  of transformations

$$G' = \lambda G, \quad \overline{x}'_i = \lambda^{\overline{a}_i} \overline{x}_i, \quad (i = 1, 2, 3).$$
 (3)

In other words, under the transformations, Eq. (2) becomes  $G' = F_3(\overline{x}'_1, \overline{x}'_2, \overline{x}'_3)$ .

The group  $S_3$  admits a basis set of three (i=0, i=0)1, 2) functionally independent absolute invariants,  $y_i(G', \overline{x}'_1, \overline{x}'_2, \overline{x}'_3) = y_i(G, \overline{x}_1, \overline{x}_2, \overline{x}_3)$ , such that all



FIG. 1. Schematic phase diagram showing a TCP (at  $T = T_t$ ). Shaded areas are coexistence surfaces. At a point P on  $L_1$ , a triad of directions  $x_i(P)$  are shown. This triad becomes  $\overline{x}_i$  at TCP.

other absolute invariants are expressible in terms of these. One such basis set is

$$y_0 \equiv G/\overline{x}_3^{1/\overline{a}_3}, \ y_1 \equiv \overline{x}_1/\overline{x}_3^{\overline{a}_1/\overline{a}_3}, \ y_2 \equiv \overline{x}_2/\overline{x}_3^{\overline{a}_2/\overline{a}_3}$$
 (4)

The scaling hypothesis, Eq. (1), requires Eq. (2) to be expressible in terms of the basis set as a "single-power" scaling function,

$$y_0 = F_2(y_1, y_2) , (5)$$

which states that G (and other thermodynamic functions), when appropriately scaled, are functions of the invariants  $(y_1, y_2)$  alone. This result allows data near a TCP to collapse from a *volume* onto a *surface*. We remark that, using Eq. (1), it is possible to determine all exponent relations and "single-power" scaling laws for a TCP.  $^{3-5}$ 

## III. GEOMETRY OF SURFACES AND CURVES NEAR TCP

Since the quantities  $y_1$  and  $y_2$  defined in Eqs. (4) form a basis set of functionally independent absolute invariants of  $\overline{x}_i$  under the group of transformations  $\overline{x}'_i = \lambda^{\overline{a}_i} \overline{x}_i$ , points in the invariant  $(y_1, y_2)$ plane give rise to invariant curves in the  $(\overline{x}_1, \overline{x}_2, \overline{x}_3)$  space. We have seen that the scaling hypothesis requires scaled thermodynamic functions near a TCP to depend on  $y_1$  and  $y_2$  only. This implies that each of the three critical *lines* near the TCP can be expressed as a *point*  $y_i = k_i$  in the  $(y_1, y_2)$  plane, where  $k_i$  are constants.

Usually, for systems exhibiting a TCP, one of the critical lines is a planar curve lying entirely in the (g, T) plane (e.g.,  $L_1$  of Fig. 1). Since  $\bar{x}_1 = 0$ , Eq. (4) implies that  $L_1$  is given by  $(y_1, y_2) = (0, -k)$ in the invariant plane.

Near  $L_1$ , it is expected that the symmetry property of the critical line will also influence the asymptotic form of the thermodynamic functions. The region of influence is bounded by some "crossover" curve,  $f_x(y_1, y_2) = 0$  [Fig. 2(a)], or

$$f_{x}(x_{1}/x_{3}^{\overline{a}_{1}/\overline{a}_{3}}, \overline{x}_{2}/\overline{x}_{3}^{\overline{a}_{2}/\overline{a}_{3}}) = 0, \qquad (6)$$

which is a conical surface surrounding  $L_1$  in the  $(\bar{x}_1, \bar{x}_2, \bar{x}_3)$  space [Fig. 2(b)]. Scaling cannot tell us the *actual* shape of the curve in the  $(y_1, y_2)$  plane, ¹⁰ but it does limit the shape of the conical "crossover" surface in the  $(\bar{x}_1, \bar{x}_2, \bar{x}_3)$  space, since all points in the  $(y_1, y_2)$  plane give rise to curves approaching the TCP along the  $\bar{x}_3$  axis (corresponding to the minimum  $\bar{a}_i$ ). ¹¹

#### IV. DOUBLE-POWER SCALING FUNCTIONS FOR L1

We now proceed to deduce the restriction on the asymptotic form of the thermodynamic functions near a TCP adjacent to the critical line  $L_1$ .¹² Along  $L_1$ , the conventional scaling hypothesis is



FIG. 2. (a) Invariant  $(y_1, y_2)$ plane. The strong and weak directions for  $L_1$  are  $y_1$  and  $y_2$ , and the crossover curve is shown (Ref. 8). (b) Principal points of interest of (a) in the  $(\overline{x}_1, \overline{x}_2, \overline{x}_3)$  space.

4265

normally stated in terms of a GHF equation

$$G(\mu^{a_1} x_1, \ \mu^{a_2} x_{2i}; \ x_3) = \mu G(x_1, \ x_2; \ x_3), \tag{7}$$

where  $\mu(>0)$  is an arbitrary parameter,  $a_1$  and  $a_2$  are the scaling powers for  $L_1$ , and  $x_3$  is an "inactive" variable which does not scale. Near the TCP, by Eq. (5) the value of  $y_0 \equiv G/\tilde{x}_3^{1/\tilde{a}_3}$  changes only if the values  $y_1$  and/or  $y_2$  change. It is much better therefore to make a scaling hypothesis about  $L_1$  near the TCP using  $y_1$  and  $y_2$ .¹³

Since the coexistence surface bounded by  $L_1$  maps into the vertical axis of the  $(y_1, y_2)$  plane, the direction  $y_1$  is strong and  $y_2$  is weak. Thus, we deduce that the proper scaling variables for  $L_1$  (near the TCP) are

$$\tilde{y}_1 \equiv y_1, \quad \tilde{y}_2 \equiv y_2 + k;$$
 (8)

these vanish at the line  $(y_1, y_2) = (0, -k)$ .

We now hypothesize that along  $L_1$  near the TCP,  $\tilde{y}_0 \equiv y_0$  is a GHF of  $(\tilde{y}_1, \tilde{y}_2)$ :

$$\tilde{y}_0(\mu^{a_1}\tilde{y}_1, \ \mu^{a_2}\tilde{y}_2) = \mu \tilde{y}_0(\tilde{y}_1, \ \tilde{y}_2).$$
 (9)

In other words, instead of (7) we postulate that

$$\tilde{y}_0 = F_2(\tilde{y}_1, \tilde{y}_2)$$
 (10)

is an invariant equation under the group ( $\mathcal{G}_2$ ) of

transformations  $(\tilde{y}_0' = \mu \tilde{y}_0, \tilde{y}_1' = \mu^{a_1} \tilde{y}_1, \text{ and } \tilde{y}_2' = \mu^{a_2} \tilde{y}_2)$ . By the same reasoning used for the derivation of Eq. (5), we see that (9) requires that (10) may be written in the form

$$z_0 = F_1(z_1) , (11)$$

where  $z_0 \equiv \tilde{y}_0/\tilde{y}_2^{1/a_2}$  and  $z_1 \equiv \tilde{y}_1/\tilde{y}_2^{a_1/a_2}$  form a set of functionally independent absolute invariants of  $g_2$  and therefore of the variables G,  $\bar{x}_1$ ,  $\bar{x}_2$ ,  $\bar{x}_3$  under the direct-product group  $g_2 \otimes g_3$ .

Reexpressing Eq. (11) in terms of the original variables G,  $x_1$ ,  $x_2$ , and  $x_3$  we obtain the "double-power" form¹⁴

$$\frac{G}{\overline{x}_{3}^{1/\tilde{a}_{3}}(\overline{x}_{2}/\overline{x}_{3}^{\tilde{a}_{2}/\tilde{a}_{3}}+k)^{1/a_{2}}} = F_{1}\left(\frac{\overline{x}_{1}}{\overline{x}_{3}^{\tilde{a}_{1}/\tilde{a}_{3}}(\overline{x}_{2}/\overline{x}_{3}^{\tilde{a}_{2}/\tilde{a}_{3}}+k)^{a_{1}/a_{2}}}\right)$$
(12)

Equation (12) predicts that near the TCP and  $L_1$ , data will collapse from a *volume* onto a *line*. Clearly, this happens only within the crossover cone of Eq. (6) [cf. Fig. 2(b)].

In the plane  $\overline{x}_1 = 0$  [i.e., the (g, T) plane], Eq. (12) requires¹⁵

$$G \sim \overline{x}_3^{1/\bar{a}_3} (\overline{x}_2/\overline{x}_3^{\bar{a}_2/\bar{a}_3} + k)^{1/a_2} , \qquad (13)$$

and the conical surface of Eq. (6) becomes two crossover lines (cf. Fig. 3)  $\bar{x}_2 = C_i \bar{x}_3 \bar{a}_2 / \bar{a}_3$  or  $y_2 = C_i$ , where i = 1, 2. The crossover exponent  $\varphi \equiv \bar{a}_3 / \bar{a}_2$ , which determines the shape of the crossover lines, can be obtained directly from the shape of  $L_1$ .³



FIG. 3. Figure 2(b) sliced in the  $\overline{x}_1 = 0$  plane. The crossover lines are labeled  $y_2 = C_1$ ,  $C_2$ . The projection of  $\overline{x}_2 + k \overline{x}_2^{3/2/\tilde{a}_3}$  along the *T* axis is  $T - T_c(g)$ , and  $(\hat{T}, \hat{g}) \equiv (T - T_t, g - g_t)$ .

## V. EXTENSIONS AND CONCLUDING REMARKS

The entire discussion in this paper may be extended to the scaling of any thermodynamic function *f*. For example, for the staggered susceptibility  $\chi_{st} \equiv \partial^2 G / \partial \eta^2 \propto \partial^2 G / \partial \overline{x_1^2}$  (or  $\partial^2 G / \partial x_1^2$ ) and the direct susceptibility  $\chi \equiv \partial^2 G / \partial g^2 \propto \partial^2 G / \partial \overline{x_2^2}$  (or  $\partial^2 G / \partial x_2^2$ ) of a metamagnet, the expression analogous to Eq. (13) is

$$f_i = \overline{x_3}^{(1-2\overline{a}_i)/\overline{a}_3} \left( \overline{x_2} / \overline{x_3}^{\overline{a}_2/\overline{a}_3} + k \right)^{(1-2a_i)/a_2}, \qquad (14)$$

where  $f_1 \equiv \chi_{st}$  and  $f_2 \equiv \chi$ . We note that Eq. (13) has the appropriate divergence properties at the critical line *and* at the TCP.

Finally, we make a few remarks about the exponents and directions of approach toward the TCP and  $L_1$ . Using the experimentally accessible function  $\chi_{st}$  as an example, we note that if we approach the TCP along a curve  $\overline{x_2}/\overline{x_3}^{\overline{a}_2/\overline{a}_3} = \text{const}$ , the scaling exponent is  $-\overline{\gamma}_{st}\varphi^{-1} = (1 - 2\overline{a_1})/\overline{a_3}$ . If we approach the critical line  $L_1$  along a line  $\overline{x_3} = \text{const}$ , the scaling exponent is  $-\gamma_{st} = (1 - 2a_1)/a_2$  as expected. On the other hand, if the TCP is approached along a path outside the crossover lines,  $\chi_{st}$  scales with an exponent  $-\overline{\gamma}_{st} = (1 - 2\overline{a_1})/\overline{a_2}$ . Similar remarks may be made with respect to the three-dimensional "double-power" scaling functions of Eq. (12).

Equation (14) may be cast in "mixed-exponent" forms; e.g.,  $\chi_{st} \sim C[T - T_c(g)]^{-\gamma_{st}}$ , in which  $\overline{x}_2 + k\overline{x}_3^{\overline{a}_2/\overline{a}_3}$  has been replaced by its projection along the *T* axis (Fig. 3), and  $C \sim \overline{x}_3^{(\gamma_s t - \overline{\gamma}_{st})/\varphi}$  is the asymptotic amplitude. Depending on the relative magnitudes of  $\gamma_{st}$  and  $\overline{\gamma}_{st}$ , the asymptotic amplitude may diverge, vanish, or stay constant as the TCP is approached within the crossover cone.

The ideas of this work provide the basis of a formulation of the scaling hypothesis near critical points that are more complex than tricritical points. For these points, the direct product of more than two groups of scaling transformations arises naturally. A detailed account of this extension will be

*This work forms a portion of a Ph.D. thesis submitted to the MIT Physics Dept. by A. Hankey. Work supported by National Science Foundation, National Aeronautics and Space Administration, Office of Naval Research, and Air Force Office

of Scientific Research. [†]Permanent address: Riddick Laboratories, North Carolina State University, Raleigh, N. C.

[†]Present address: SLAC, Stanford, Calif. Supported by a Lindemann Fellowship.

¹(a) D. P. Landau, B. E. Keen, B. Schneider, and W. P. Wolf, Phys. Rev. B **3**, 2310 (1971); (b) C. W. Garland and B. B. Weiner, Phys. Rev. B **3**, 1634 (1971); (c) E. H. Graf, D. M. Lee, and J. D. Reppy, Phys. Rev. Lett. **19**, 417 (1967); (d) R. J. Birgeneau (private communication). For additional references to the vast experimental literature, see *Cooperative Phenomena near Phase Transitions*, edited by H. E. Stanley (MIT Press, Cambridge, Mass., 1973).

²R. B. Griffiths, Phys. Rev. Lett. 24, 715 (1970).

³E. K. Riedel, Phys. Rev. Lett. 28, 675 (1972).

⁴A. Hankey, H. E. Stanley, and T. S. Chang, Phys. Rev. Lett. **29**, 278 (1972).

⁵R. B. Griffiths, Phys. Rev. B 7, 545 (1973).

⁶E. K. Riedel and F. Wegner, (a) Z. Phys. 225, 195 (1969); (b) Phys. Rev. Lett. 24, 730 (1970).

⁷A. Hankey and H. E. Stanley, Phys. Rev. B 6, 3515 (1972). See also H. E. Stanley, *Introduction to Phase Transitions and*  published elsewhere.

#### ACKNOWLEDGMENTS

The authors wish to thank F. Harbus, R. B. Griffiths, E. K. Riedel, and J. C. Wheeler for stimulating discussions.

Critical Phenomena (Oxford U.P., London and New York, 1971), Chap. 11. (1972). See also, H. E. Stanley, *Introduction to Phase Transitions and Critical Phenomena* (Oxford U. P., London, 1971), Chap. 11.

⁸R. B. Griffiths and J. C. Wheeler, Phys. Rev. A 2, 1047 (1970).

⁹In general, the  $\overline{x}_j$  may be nonorthogonal, but in this work we need consider only rectilinear orthogonal coordinates.

¹⁰Although the crossover curve may be of any form, it is shown for convenience as a circle in Fig. 2(a).

¹¹In this paper, we assume  $a_1 \neq a_2 \neq a_3$ . (See Ref. 4 for discussion of other cases.)

¹²The scaling ideas for  $L_{2,3}$  are similar. However, it will be necessary to rotate the invariant axis to determine the strong and weak directions.

¹³This assumption is equivalent to the scaling assertion of Ref. 6, that the extended homogeneity relation (1) must encompass the relation (7) asymptotically close to the critical line.

¹⁴Equation (12) is similar to that found in Ref. 6(b) for dynamic scaling in anisotropic magnetic systems. We emphasize that scaled equations may change their values or functional forms when the scaling variables change signs.

¹⁵Equation (13) is essentially equivalent to Eq. (8) of Ref. 3, provided the variable  $\mu_1$  is interpreted as the critical line scaling field.