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Pierre Bauer*
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ABSTRACT

Electromagnetic waves impinging upon a plasma at frequencies larger than

the plasma frequency, suffer weak scattering. The scattering arises from the

existence of electron density fluctuations. The so-called incoherent scattering

theory basically deals with fluctuations of random thermal origin; however, for

practical purposes, it must also take account of those fluctuations caused by

streaming photo-electrons. As is well known, in any scattering experiment, the

received signal corresponds to a particular spatial Fourier component of the

fluctuations, the wave vector of which is a function of the wavelength of the radio-

wave. Wavelengths short with respect to the Debye length of the medium relate

to fluctuations due to non-interacting Maxwellian electrons, while larger wave-

lengths relate to fluctuations due to collective Coulomb interactions. In the latter

case, the scattered signal exhibits a spectral distribution which is characteristic

of the main properties of the electron and ion gases and, therefore, provides a

powerful diagnosis of the state of the plasma, in our case, the ionosphere.

NAS/NRC Senior Research Associate, On leave from the Centre National d'Etudes des

Telcommunications, Department RSR (France)
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INTRODUCTION

The steps leading to the theory of electromagnetic waves incoherently

scattered by the ionosphere, or more generally by a plasma, for operating

frequencies much larger than the plasma frequency, can be tracked back to the

last century. It was not until 1958, however, when Gordon (1958) became aware

of the fact that such a scattering was within reach of modern radars, that a large

and very successful effort was conducted in order to establish a complete theory.

The first keystone might be thought to be the theory of the scattering of

light by the molecules of the atmosphere, developed by Lord Rayleigh (1871).

The next and major step is the work of Thomson (1906) who showed that a free

electron acting as a dipole is capable of scattering electromagnetic waves at all

frequencies. Therefore electromagnetic waves ought to suffer a small scattering

from a plasma in a manner similar to the scattering of light by molecules. This

last point was further emphasized by Fabry (1928) who indicated that the random

motion of the electrons should induce a doppler broadening of the back-scattered

signals. The importance of the random motion of the electrons on the scattering

has later led to calling the phenomenon "Incoherent scatter" rather than "Thomson

scatter". A large effort followed to develop the theory of random motions in

plasmas and credit should be given to cite but a few, to Landau (1946), Bohn and

Gross (1949a, 1949b), and Pines and Bohn (1952).

Interest in ionospheric research developed rapidly after pioneering experi-

ments of Appleton and Barnett (1925), Breit and Tuve (1925), and Taylor and
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Hulburt (1926) which definitely located the ionospheric layer. By 1931 Chapman

gave a theory of the ionizing effect of monochromatic radiation in an atmosphere

on a rotating earth. The available techniques however put a limit to the study

of the ionosphere to essentially the bottom side electron density profiles, leaving

out, for example, experimental studies of the energetics of the ionosphere.

The theory of scattering of electromagnetic waves by the earth environment

was also in progress. Booker and Gordon (1950) considered radio scattering

from the troposphere and Booker (1955) scattering by nonisotropic irregularities

in the aurora.

Gordon (1958) finally took the decisive step when he realized that the in-

coherent scatter from free electrons of the ionosphere would amount, provided

powerful radars be used, to a sufficiently large fraction of the sky noise, even

taking into account the fact that the doppler broadening due to the thermal motion

of the electrons was expected to be quite large. The total cross section was

computed to be of the order of .25 cm2 for a 10 antenna beamwidth and a 67 ps

pulse length with a mean electron density of 106 cm - 3 (Farley 1970). Gordon

pointed out that this experiment would provide electron density and temperature

data up to several earth radii.

The suggestion made by Gordon met very favorable circumstances. Indeed,

it coincided with the advent of the space age, that is, as far as the ionosphere is

concerned, with direct probing of the medium and consequently an increasing

interest in the understanding of the processes governing it.
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The first incoherent scatter experiment was performed the same year by

Bowles (1958) using an already existing transmitter together with an array of

dipoles. The return power appeared to be approximately of the expected order

of magnitude but the bandwidth was observed to be much narrower than predicted

by Gordon.

While several groups were in the process of developing incoherent scatter

facilities for the purpose of ionospheric studies, several authors undertook the

studies of the electron fluctuations including the effect of the ions which rapidly

appeared to be responsible for the narrow power spectrum observed by Bowles.

The case of independent electrons would appear as a limiting case, and in most

instances the small degree of organization of the medium, due in particular to

Coulomb interactions, ought to dominate the characteristics of the scattering

process. The theory of the scattering had become much more involved than

thought in the first place, in turn a much more detailed description of the medium

was to be obtained from the incoherent scatter spectrum.

The scope of this paper is to outline the different steps of the building of

the theory. The geophysical results as well as the technical description of the

existing facilities, which have been extensively reviewed by Evans (1969, 1974)

and Farley (1970b), are not covered here.

I. Thomson Scattering of an Electromagnetic Wave by a Free Electron

When a field E E ei'Ot is applied to a free electron at rest, an

oscillatory motion is imparted to such as:

3



- , iWOt

Sq Eoe I.1
V-

m
e

where w. is the angular frequency, t the time, q the charge electron, me the

electron mass and me V the time rate of change of momentum of the electron.

In turn the acceleration of the electron gives a rise to a radiation field ES .

-. -ioR/c I.2
ES = - Rx (Rx V) e 1.2

47eoc2R3

where R is the radius vector joining the position of the electron to the field

point, c the speed of light in vacuum, EO the dielectric constant of the vacuum.

Use of 1.1 yields:

2 Rx (Rx i - (io.I

ES - e .3
s 4TrE0c2m e  Ra

therefore the magnitude of the field is

q2 Eo0 ico(t-R/c) .4
E - -- e sin

4lTEc 2 m R

where 6 is the angle between E0 and R. The same treatment applies to the

ions but because of the mass difference the radiation field is negligible compared

to that of the electrons. Equation 1.4 can be written as:

re io 0 (t-R/c)

E s =- E o e sin 1.5
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where r = q 2/(4 7TEoc 2 me) is the classical electron

radius: r = 2.82 x 10-s1 5 m.
e

More generally R is a function of time, and the frequency of the scattered field

E s is doppler shifted with respect to the frequency of the incident field E i .

The mean radiated power per unit area is

P=-21 r 2 E. sin 2  1.6
2 - R o

where u0 is the magnetic permeability in vacuum. Equation 1.6 can be written

as

0e1 r'op E21 1.7
R2 2  glo

where 0 = r 2 sin2 ! is the differential cross section.
e

II. Thomson Scattering by Independent Randomly Distributed Free Electrons

The problem is now extended to a set of independent randomly distributed

free electrons.

The effect of multiple scattering can be neglected in practical cases because

of the smallness of the differential cross section. The working frequency is

supposed to be much larger than the frequency of free oscillations (plasma

frequency). It follows from the above that the transmitted wave is not signifi-

cantly altered: The Born approximation is valid. It is further assumed that

5



the electrons of interest are confined in a small region compared to a sphere

of radius R, where R is the mean distance between the field point and the scatter-

ing electrons.

The total field at the field point can be expressed as

sE s Ej II1.2

J
r e io~o t  - iq'

E. sin Ee e 11.2

where j indicates a summation over all the electrons and qj is the phase

associated with the location of each of the electrons relative to both the trans-

mitter and the receiver sites. However, because of the random nature of the

electron distribution in space, the instantaneous field at the field point is of no

interest. The average radiated power per unit area is the physically interesting

quantity.

</P> R<E E> 11.3

S6/0  2 + e e-i 11
2P)= sin EL e  eeI 4

61_ \j\i j i6



where Re designates the real part and the brackets indicate the ensemble

average. The first term in the square brackets is just Ne the number of

electrons in the volume of interest. The second term represents the mean

phase relationships of the electrons taken two by two; this term has to be zero

since the electrons are supposed to be independent.

The radiated power is therefore simply the sum of the radiated power of

each electron taken independently

KP> - P II.5

and the total differential cross section is

atot = NOee 11.6

This is the result obtained by Gordon (1958). As for the doppler broadening of

the scattered field, it simply corresponds to the velocity distribution of the

electrons. In the case of backscatter the doppler shift associated with a velocity

v is (w -wo) = -2wov/c. Therefore to a Maxwellian distribution of velocities

- m V2

f(v) ae -- e
2KTe

(where K is the Boltzmann constant and Te the electron temperature) there

corresponds a power spectrum

S(w) a e- /2KTe (C( - W0 )/2Wo) 2  .7
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The first experiment of Bowles (1958), however, showed that in general the

neglect of the term

<I e'- i e'

is not valid. This term represents the degree of organization of the medium

which arises from particle interactions.

The object of the rest of this paper is to investigate the degree of organiza-

tion brought into the medium under various circumstances. It will be shown that

in general the total differential cross section obtained for the case of independent

electrons is an upper limit.

Ill. Formulation of the Scattering Problem

It is first convenient to express the scattered field in the following way

rE = sin Eote t-ik" +i 2 "-

where k, is the wave vector of the transmitted electric field, k 2 the wave vector

of the scattered field in the direction of observation and F. the radius vector

between the j th electron and the center of the scattering volume (the incident
i t

field at the center of the scattering volume is just E 0 e ).

Defining k as k= k - leads to

re sn ei(0 t - k 111. )2
R

E = sin~E 8
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for point charges the electron distribution can be expressed as:

N(6, t)= 8(77) 111.3

the spatial fourier series of which is

N(r, t) T Ne(k, t) eik r III.4

k

such that

1 - -ik*'" I.1I.5
Nj(k, t)jv  = V e 3

where V is the scattering volume. Upon substituting Eq. 111.5 into 111.2 yields

E(t) = sin 6EoVeio t N(k, t) v  111.6

which means that the scattering only arises from electron density fluctuations

and more precisely from the k fourier component of these fluctuations. Stated

in other words the scattering only depends upon stratified fluctuations of the

density perpendicular to the k direction (Fig. 1).

Equation III.6 also shows that the scattering properties to be investigated

depend upon the observing scale 1/k: in fact it will turn out that the degree of

organization of the fluxtuations of the medium responsible for the scattering

depend upon the relative magnitudes of 1/k and X, the Debye length of the plasma

9



SKTe

No q
2

with No the electron number density. The averaged scattered power is again

given by

R, <E5 (t) E *(

III.7

C'° r' , v>, E 2R, N

Rsin2 EoV2e N(k, t)l v Ne(k, t)v

By virtue of the Wiener-Khintchine theorem the power spectrum is just the

Fourier transform of the autocorrelation function:

1,60 <,(t)Es(t+*)
e

2 Ijo

III.8

= sin2 ' E2 V2 e -io' Ne(k, t)l v N(k, t + -)l
40 o R2  <ekV

Thus the power spectrum is then given by

PS( 0 + V)= T IE(o + ()12>

III.9

= sin2 V2Eo Ne(k, w) 2

2 10
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In the following the only quantity of interest is consequently

<,IN (k, W) 1,2>

The associated total differential cross section
(W12 IH.10

uv(wo + a) = r2 sin2 f V2  Ne(k' )> 1.10

The determination of N e (k, )) 2v  , the spectrum of the random electron

density fluctuations, requires in general the solution of Maxwell equations and

of the kinetic equations for the perturbed plasma.

The various parameters which affect the spectrum are the Coulomb inter-

actions, the magnetic field, the collisions with neutrals, the electron and ion

temperatures, the drifts of the ions and of the electrons, the ion composition

and the presence of a non maxwellian tail in the electron distribution. The main

difficulty is to take account of these by using the proper kinetic equations.

For each situation a different dispersion relation for the longitudinal plasma

waves is associated with the scattering problem. The wave modes and the

different damping processes involved will be of help for the interpretation of

the shape of the spectrums.

The solution of the different sets of equations also requires a statistical

treatment because of the random nature of the initial electron distribution in

space. The analysis performed by a number of authors differs mostly in the

way the statistical treatment is carried out: Fejer (1960, 1961), Salpeter (1960),

11



Renan (1960), Hagfors (1961), considered the distribution probability of the

electrons along lines similar to the one followed Pines and Bohm (1952) while

Dougherthy and Farley (1960), (1963) Farley et al. (1961) made use of the

Nyquist theorem. The identity of the results obtained by the different methods

indicates their consistency. For the sake of mathematical simplicity the

approach making use of the Nyquist theorem is to be outlined in this paper.

It must be noted (Farley (1970)) that the use of kinetic equations can be

avoided for two classes of problems:

Firstly, if just the total scattered power is needed, use can be made, in

some cases, of the Debye-Huckel theory (Kahn 1959; Salpeter 1960; Renau 1960).

In this connection, see the preceeding section in which the total power scattered

by independent electrons was derived without any assumption about the electron

velocity distribution.

Secondly, fluid equations can be used instead of kinetic equations in the

case of collision-dominated plasmas (Tanenbaum 1968, Seasholt and Tanenbaum

1969).

In summary, the scattering problem involves one particular Fourier

component of the electron density fluctuations depending upon the relative

locations of the transmitter, the scattering volume and the field point. The

determination of the power spectrum of this Fourier component implies the

use of Maxwell's and kinetic equations in the (k, w) space. The shape of the

12



spectrum can in general be simply interpreted in terms of heavily damped

longitudinal plasma waves.

IV. The Nyquist Theorem Approach

The procedure followed by Dougherty and Farley (1960) for obtaining

< Ne (k, ) 1 is outlined in this section.

The Nyquist theorem in its most simple form states that in an isolated

resistance R at a temperature T there flows a random current I such that

<II(w)12> d = 2 KTdw IVA
7T R

The theorem can be extended to a linear system in thermodynamic equi-

librium at a temperature T whose response I(w) to a generalized force V(w) is

I (W) = Y(w) V(w) IV.2

where Y (w) is the general admittance function. In the absence of the driving

force the response of the system is such that:

<I(w)1 2> dw = G(a) KT dw IV.3
IT

where

G(w) .= Re (Y("))

and o varies between -1 and +0.

13



When applied to a plasma the theorem is often called the fluctuation-

dissipation theorem, whereby random thermal fluctuations in the electron

density can be related to a dissipation process such as Landau damping or

collisions (Farley, 1970a).

The way of applying the theorem which is relevant to this problem is to

calculate the displacement of the electrons in response to a fictitious force

applied to them only. However the motion of the electrons and of the ions are

coupled through the space-charge electric field V. Use of Maxwell's equations

allows for the determination of the generalized admittance tensor Y' in terms

of the admittance tensors of the electrons and ions Ye and Yi *

The generalized admittance, in turn, leads to the spectrum of the density

fluctuations. The determination of the admittances . and I calls for the
I e

kinetic equations of the electrons and ions. This will be the object of the next

sections for various conditions. Assuming charge neutrality and singly charged

ions the mean flow vector resulting from ? are:

N 0 Ui --

V =- q i "- IV.4
V

NeoUe IV.5
SY e (F + qE) 

IV.5
V e

14



where Ne0 is the unperturbed electron number in the volume V, and Ue and Ui

the electron and ion drift vectors. Introducing the current

-. No
J = q(Ue - Ui) IV.6

and eliminating B in the Maxwell's equations written in the (1k, c) space yields:

-E x - IV.7J=- iE +- x (k x)

or

J =  E IV.8

F is a diagonal tensor if a coordinate system is chosen in such a way that one

axis is parallel to k. Eliminating E, J and Ui between equations IV.4, IV.5,

IV.6 and IV.8 yields

Ne o U =V' F IV.9

with

,'=
Y' = Y Y e IV.10

Use of the continuity equation of the perturbed electron density ne yields

S+ div =0 IV.11
-3t

15



which can be linearized in (k, w) space:

Neo .. , IV.12
VNe (, C) v =- kU(k, w)

therefore

V2 (k, c) k2  NeOUk )12 IV.13

and by virtue of the Nyquist theorem

2 k2 T IV.14
V2 < INe(k, co)12v>= <INeoU k(k , )2 KTVe (Yk

Wo2 7T&)

finally

S(k )> k2 KT IV.15

N(, ) 72 V e kk)

V. The Case of Collisioniless Plasma in Thermal Equilibrium without

Magnetic Field

The computation of the admittances Yi and Ye for the ions and the electrons,

which enter in (IV.15), is performed using the appropriate Boltzmann equation

and a perturbation method. The electron velocity distribution can be written

as:

f (V) = fo (V) + f(V) v.1

16



where fo is a Maxwellian distribution and f is a perturbation.

fov) = no e-mv 2 /2KT V.2

where m is the mass and no the number density of the particle of interest.

The Boltzmann equation, to the first order in perturbations in (k, c) space is:

1 fo
i(o-k- V) fl + -  - 0 V.3

m V

The next step consists in evaluating no U

af
no -= fld3v F °  d3 v V.4

m "dy co-k v

noU = Y V.5

Assuming again that k is parallel to one of the coordinate axes it can easily

be shown (Dougherty and Farley 1960) that Y is diagonal. Therefore all the

tensors entering in Y' are diagonal and only the kk element of each needs to be

considered.

Before giving a final expression for Y it is interesting to recall the physical

meaning of the singularity in V.4 for c = k • v.

In terms of waves, the singularity corresponds to particles moving at the

phase velocity of the wave. Consequently they tend to see a constant accelerating

or decelerating electric field, and interact strongly with the wave. Ultimately

17



after a net gain- or loss of energy the particles oscillate in a reference frame

moving at the phase velocity. The linear approach therefore breaks down since

it predicts a steady exchange of energy between the particle and the wave. This

effect has been considered by Landau (1946) and is known as "Landau damping".

It can also be shown (see Bohn and Gross, 1949, for example) that in addition

to the solutions (wo, k) of the dispersion relation for a collisionless gas of one

type of particles, wave energy can be associated with each value of w for which

there exist particles whose velocities satisfy the relationship k " v = w.

It can also be inferred that the power spectrum of the fluctuations corres-

ponding to these waves decreases when k decreases, while the opposite is true

for the waves predicted from the dispersion relation and for which the contri-

butions of all particles add coherently.

The mathematical difficulty implied by the singularity was overcome by

Landau (1946) and the result is (Dougherty and Farley (1960):

no 2 2 e- 2 (e - 8 2 e 2dp - V.6
Ykk 

2  e

where

k 
KT]1/2

or

=  202 iW(O) V.7
mkk

18



where

W(O) = 1 - e - (2 ep 2 dp + iT 1/2) V.8

Therefore substituting Ykk (e) and Yk (i) into eq. IV.10 yields

inow [a2W() + 1] V.9
Ykk = w(ee)

k2 KT [a2(W(9i) + W(Oe)) + 11

with

a2 _ n0 2

k2 KT 0o k2X

a relates the scale of the observation, determined by the geometry of the ex-

periment and by the wavelength, to the characteristic scale of the plasma,

determined by the plasma number density and the plasma temperature. There-

fore the power spectrum of the density fluctuations is:

- n_ o fiW(O ) [a2W(6) + 1]

N( k = V [a2 (W(i) + W(6e )) + 1]

or

n0

mi/2ee la2W(ei) 2 + 2  im1/2 e 2W(2

I 2 [W( i ) + W(Bo)] + 112
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Noting that the 'eW(0) and ~mW(0) are of the order of 1 or smaller, two limiting

cases of practical interest can be considered, according to the relative magni-

tudes of the observing and plasma scales.

a) a<< 1

Equation V.11 becomes

<I )2> 7T 2 kV 2KTI e me/k 2KTv2

which is just the result of Gordon (1958): Therefore the spectrum simply

corresponds to independent free electrons. The physical interpretation of this

situation is that no collective oscillations can be sustained on a scale smaller

than the Debye length.

b) a>>1

It is first interesting to note that equating to zero the denominator of eqn. V.11

yields the dispersion relation for plasma oscillations (Landau 1946):

a 2 (W(ai) + W(e)) + 1 = 0 V.13

the solution of Eqn. V.13 gives two modes: the first is the pseudo acoustic

mode which can be viewed as sound waves of a gaz consisting of particles having

the mass of the ions and the sum of the energies of both the electrons and the

ions. The second corresponds to electrostatic waves at a frequency close to

the plasma frequency.

20



Because of the mass difference between ions and electrons the numerator

of eqn. V.II. is dominated by the second term when Oi < 1 and by the first term

when Oe > 1. The corresponding simplified expressions are termed respectively

ionic and electronic spectrum.

b.1) The ionic spectrum (Oi < 1, e << 1)

Eqn. V.II. reduces to:

1/2 -

2= no mi1  e V.14
1/2V KT ei) + V.1]1214

This shows that the spectrum corresponds to an ion velocity distribution modi-

fied by the term in the denominator. Figure 2 (after Farley 1970) is a diagram

of the normalized differential cross section for backscatter per unit volume

c (i )7i/ 2 /(no r ) where c- (0i) is defined by the relation

P(1 + ) dw - VE0 c(6i) d0 i  V.152 C 71LO

-e2
Also shown on the diagram is the normalized ion velocity distribution e .

Such a spectrum was first observed by Bowles (1958). From the width

of the spectrum be concluded that the ions are playing a major role. The influ-

ence of the denominator affects however significantly the spectrum which is

depressed in the center and enhanced on the sides because of the presence of

heavily damped pseudo acoustic waves.

21



The damping of the waves reflects the fact that the wave phase velocity

lies in a range of the ion velocity distribution such that many particles interact

with the wave and therefore cause damping.

It might be worth noticing that at the time the first incoherent scatter

measurements were made, the ions were generally considered as a uniform

charged background.

The measurements therefore provided an immediate experimental support

to new theories of plasma oscillations taking into account the discreet nature

of the ions such as the one of Kahn (1959). Incoherent scatter observations

therefore played a significant part towards the understanding of plasma

oscillations.

Recalling that the electrons are responsible for the scatter it is interesting

to give an interpretation of the reason why the observed characteristics match

closely these of the ions.

If the ions were by themselves thermal oscillations on a scale much larger

than the Debye length XD (that is a > > 1), would be highly restricted because

of the opposing effect of the space charge electric field which would arise from

those fluctuations. The conditions are however quite different because of the

presence of the electrons. The electrons which have a large mobility compared

to that of ions respond very effectively, to the space charge which tends to develop

and this has the following effects; (i) the electron fluctuations nearly match the

ion fluctuations, and therefore the spectrum of the electron fluctuations pictures

22



the ion fluctuations. (ii) the space charge electric field is considerably reduced

with respect to the one obtained from the same fluctuations in the absence of the

electrons. The residual electric field is comparable to the ambipolar (polar-

ization) electric field and leads to pseudo neutral having the mass of the ions

and the sum of the energies of the electrons and the ions. (iii) the residual

electric field, however small, is sufficient to distort significantly the spectrum

of the ion fluctuations with respect to the one obtained for non interacting ions.

b.2) The Electron Spectrum e > 1, i >> 1

Equation V.1 reduces to

SNe(W , [ 1J/2 ek02 W( ) + 12V.

2 no M e-e 1a2 W() + 112k k)12 o V.16

This is generally a small quantity except for values of 6e for which the de-

nominator is a minimum, that is for the solutions of the dispersion relation

corresponding to electrostatic waves at about the plasma frequency.

In the corresponding ranges of

0e (I Oe )

equation V.II further reduces to

1/2 -82

2(w k)no [mel e

k 1/2 V a 22 a21/2e e 2e]2

2 82
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The resonant pulsation is given by (Bohm and Gross 1949 for example):

KT2 'k2 V.18

where wp corresponds to the plasma frequency, or in normalized units:

2 a2 + 3 V.19
er 2

the corresponding spectrum consists in two very narrow lines called the plasma

lines; their width is, according to the initial assumptions, determined only by

the Landau damping:

1/2 a 4 e-a2/2
60,7TI a e V.20

2

The Landau damping being small, because of the small number of electrons

moving at the phase velocity of the waves, other processes such as collisions,

not taken into account here might play a significant role. This will be investi-

gated in other sections.

c) Figure 3 from Hagfors (1961) shows complete normalized spectra for various

values of a .

For a/v' = 300 the spectrum has a width corresponding to the ion velocity

distribution. The plasma line, missing in this diagram, would be found for

0 300; however the corresponding power would be negligible. Therefore the

spectrum is essentially an ion spectrum, for a/f2 = .1 the spectrum corresponds
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to independent free electrons. In particular the plasma line which should be

found for 8 - i/37 is completely damped because the corresponding phase

velocity is close to the thermal velocity.

Intermediate cases such as a/ v'2 = 3 exhibit, with different amplitudes,

both the electronic and ionic velocity distributions characteristics; the plasma

line is also present but contributes to a negligibly small part of the total scattered

power.

d) Total differential cross sections.

The cross section a (6i ) per unit volume can be integrated analytically or

even computed directly without considering the frequency domain (e.g. Hagfors

1961, Salpeter 1960, Kahn 1959, Renan 1960). The result for backscatter is:

1 + a2
a o- -e no V.21

1 + 2a 2

This expression gives the result obtained by Gordon (1958) for a < < 1 and

reduces to

n
oa= a- V.22

for a>> 1.

It must be noticed that the power contained in the plasma line being pro-

portional to 1/(2 a 2 ), the expression V.21 gives in fact the power contained in

the ion spectrum for a > > 1.
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e) Conclusion:

It is worth noting that, fortunately, the problem of incoherent scatter was

approached on the basis of random electron thermal fluctuations. Indeed the

current theories of collective oscillations in the plasma at that time (e.g. Pines

and Bohm 1952) would have led to the predictions of the plasma lines only and

to a correspondingly negligible small scattered power, since the ions were then

considered as a uniform background.

The next sections concern the inclusion of magnetic field, unequal ion and

electron temperatures, collisions, drifts of the electrons or ions and the effects

of photoelectrons.

VI. Case of Unequal Ion and Electron Temperatures

The problem of nonthermal equilibrium is of considerable interest for the

ionospheric plasma. Indeed cascading of energy from the photo-electrons to the

thermal electrons, to the ions and finally to the neutrals implies that generally

electrons, neutrals and ions have different temperatures. The extension of the

computations of the previous section to the case of nonthermal equilibrium

between the ions and the electrons was undertaken by Salpeter (1960, 1963),

Fejer 1961, Renau, Camnitz and Flood (1962), Rosenbluth and Rostoker (1962),

Farley (1966).

The results obtained by Renau et al. (1962) differed from those of the other

authors. The disagreement was due to an improper extension of the Nyquist
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theorem made by Renau, et al. (1962). Farley (1966) later indicated the valid

extension of the Nyquist theorem to the case of nonthermal equilibrium between

the ions and the electrons. The approach of Farley is again outlined here.

For a system in quasi equilibrium (Farley 1970), in which the electron and

ion temperatures are not equal the equivalent electrical circuit is one containing

impedances at different temperatures; the noise output is such that:

<IE (w)1 d = T Re [Z (w)] dw VI1
n

where Zn is the nth impedance, and E the open circuit voltage. The corres-

ponding expression applying to the incoherent scatter problem is (Farley 1966):

NoU(k, 2 KV Re [TiZi + TeZe] VI.2

1Zi + Ze1 2

where

Zi = [Yikk+ i0 /q 2] -1

and

Z = Y-e Yekk

As a consequence the generalized expression for the power spectrum of the

electron density fluctuations is:
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no
KNe(k, w) = k 0/2V

VI.3

0e2 -e2
m1/2 e 2 e1/2 e

e [ W (e i) + 112] + a 2W (Oe) 2

[2KTe] 1/2 [2KTi] 1/2

1 + a2N(ei) + a2W(e)12

where

a2  noq 2  1
e,x KTe, i k2

in the following a is defined as a = ae. While the electron spectrum is un-

changed, the shape of the ion spectrum undergoes large changes when Te/Ti

varies as illustrated in Figure 4 for a >> 1. For negligibly small values of

the ratio Te/Ti, the ion spectrum tends to the gaussian velocity distribution of

the ions. Indeed for the range of velocities of interest the momentum equation

for the electrons reduces to a balance between the electron pressure gradient

and the space charge electric field. The pressure becoming negligible the space

charge electric field tends to zero and the ion fluctuations are those of non-

interacting particles.

Increasing the ratio of Te/Ti has two effects: the first is to increase the

space charge electric field thus reducing the ion fluctuations, this corresponds

to the general decrease of the amplitude of the power spectrum for increasing

Te/Ti.
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The second effect is to enhance the pseudo acoustic waves, indeed the phase

velocity of the waves increases as (Te + Ti)1/ 2 and therefore less and less ions

interact strongly with the waves when Te increases, thus reducing the damping

of such waves. However further increases in the electron temperature lead to

a damping of the pseudo sound waves dominated by the electrons rather than the

ions (Farley 1966) with the net effect of increasing the total scattered power.

For moderate values of Te/Ti the total differential cross section has been

computed to be (Buneman (1962), Farley (1966):

-= no a2 a4VI

+ 2 ( + (Te/Ti) a2 + I) (1 +a2)

which for large values of a yields:

O e no
c- VI.5

1 + Te/T i

This expression would be valid if the ratio of the ion to the electron masses

was infinite.

The actual variation of c with Te / T i was computed by Moorecroft (1963).'

Figure 5 shows such a variation for 0+ and H+ , for no equal to unity and for

a > > 1. Also shown on the figure is the variation given by the approximate

expression VI.5 which is a limit for an infinite ratio of ion to electron masses.

The transition between a spectrum dominated by random ion thermal fluc-

tuations (Te /r i < < 1) to a spectrum of weakly damped pseudo sound waves

corresponds to a minimum of the total scattered power.
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The variation of the cross section with respect to 1/a for various values

of Te / T i and for n o equal to unity is given on Figure 6 (After Moorcroft, 1963).

The variation given by the approximate formula is also shown for Te/T i - cO

A monotonic increase of the cross section as a function of 1/a is observed for

Te / T = 1, corresponding to a transition from an ionic to an electronic spectrum.

A large departure from the approximate formula is observed for Te / Ti - 15

and for small values of 1/a; Indeed the approximate formula is equivalent to

neglecting the damping of the pseudo sound waves by the electrons: for large

values of Te /T i the waves are in thermal equilibrium with the electrons rather

than with the ions because the former participate most in the damping (Farley

1966).

VII. Plasma containing several kinds of ions

The case of a mixture of ions was studied by Buneman (1961) and Moorcroft

(1964). It is easily shown that W(Oi.) in eqn. VI.2 must be replaced by

P n n(6)

where P is the relative concentration of the nth ion
n

+ +
The effect of a transition from 0 to He is illustrated on Figure 7 (after

Moorcroft 1964).

30



More generally for several types of ions with multiple charges W( 8i ) must

be replaced by

S Pn W(ein)
n

where Zn is the charge number such that

P Z = 1
n

VIII. Effect of the magnetic field

The effect of a uniform magnetic field on the incoherent scatter spectrum

was studied by Laaspere (1960), Fejer (1961), Hagfors (1961), Farley, Dougherty

and Barron (1961), Salpeter (1961a), Renau et al. (1961) Farley (1966).

The calculation, once again, can be conducted through the use of the Nyquist

theorem approach (Farley et al., 1961). The problem reveals significant com-

plications because of off diagonal terms in Yi and Ye. However, it can be shown

that except for values of 0 (the angle between the magnetic field and the wave

vector k) extremely close to -/2 only the diagonal elements are important.

This is equivalent to letting c - o and is called the "'longitudinal approximation"

(Bernstein 1958, Farley et al. (1961).

Therefore equation VI.2 is still valid if W(O) is replaced by

W(0, 0, D) = 1 - iO e(-iet-D-2 sin2 k sin 2 1/2 t-1/4 t 2 cos 2 ) dt VIII.1
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where 4) is the normalized gyro frequency:

qB (m \1/2( B m 1 VIII.2
m k \2KT)

The integral is called the Gordeyev integral.

It can be shown (Farley et al. 1961) that for the ionospheric case no change

in the spectrum is to be expected from the presence of the magnetic field for

4 < 850. For 0 > 850 the dispersion relation has new roots corresponding

approximately to integral multiples of the ion or electron gyro frequencies

( . n. e 9 = noe ) and called Bernstein modes (Bernstein, 1958). They

correspond to particles which are periodically in the same phase relationship

with the plasma waves.

However due to the effect of the mass factor upon the gyrofrequency, the

ion spectrum for practical purposes (a > > 1) will only be affected by ion

gyroresonances as illustrated on Figure 8 for P = 88'. The general shape of

the spectrum is similar to the one obtained for ¢ = 00 (or no magnetic field)

with in addition a modulation at approximately the ion gyro frequency as originally

suggested by Bowles (1959). When 0 - 900 the gyroresonances peaks are more

and more pronounced and eventually the spectrum becomes a spectrum of 8

functions; however simultaneously all the power tends to be concentrated at the

central frequency.

It will be shown later that when ion collisions are included the modulation

tends to be damped.
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The total power scattered can be shown to be independent of the magnetic

field for Te = T i . The effect of the magnetic field for Te # T i can be shown

to be equivalent to a change in the ratio of the mass of the electrons to the ions.

The only quantity of interest is

S= ( sec 4.

This is due to the fact that the electrons are strongly bound to the magnetic

field. a > > 1 corresponds to wavelengths which are large both with respect to

the Debye length and to the electron Larmor radius; as a result only the field

aligned component of the electron velocity plays a part in the collective plasma

oscillations: k • V must be replaced by k* where VIll is the field

aligned electron velocity. This is equivalent to changing m 1 / 2 into m 1/ 2 sec .

(This change of mass obviously only applies to the determination of the plasma

oscillations not to the scattering of electromagnetic waves).

Figure 9 shows the variation of the normalized cross section as a function

of Te /T i for various values of y (after Farley (1966),

The interpretation given by Farley is that sound waves get into thermal

equilibrium with the particle population which contributes most to their Landau

damping. The amplitude of the wave is then proportional to Tm/(T + Ti ) in

which Tm is the temperature of the population which contributes most to the

damping. For small values of Te /T i , Tm is equal to T i and for large values

33



of T /T , T is equal to Te" This explains why for both large or small values

of Te / T i the ratio Tm/Te + Ti tends to 1. The transition corresponds to a

minimum and depends upon the ratio of the effective masses: the larger the

effective electron mass, the smaller the values of Te /Ti for which the Landau

damping of the sound waves is dominated by the electrons.

The location of the plasma line is also modified by a uniform magnetic

field (Salpeter, 1961b; Perkins and Salpeter 1965):

W2 = P+ (3KT k2 + 2 sin2 4 VIII.3

provided Q2 << 2 where Oe is the electron gyrofrequency. In normalized

units eqn. VIII.3 can be written as:

, +3 p2 s in 2  VIII.4

Salpeter (1961b) has shown that an additional root of the dispersion relation is

associated with the presence of the magnetic field (see also Perkins (1967):

[ = [me/mi + coS2 ] e2M/( + 2) VIII.5

in the ionosphere wp is generally larger than Qe so that for - w/2

Wk - [Ie
i] 1/2

which is the geometric mean gyrofrequency. An additional line therefore appears

in the incoherent scatter spectrum.
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The effect of the magnetic field has been considered in this section for the

case of practical interest for the ionosphere. However a number of other situ-

ations might be considered according to the relative amplitudes of kI1 and the

ion and electron Larmor radii. (See Farley et al. 1961) for example).

IX. Effect of bulk motions of the plasma or of one type of particles.

a. Motion of the whole plasma ve = #0

It is straightforward to show that the whole ion spectrum is not changed in

shape but is simply doppler shifted by 8 = - k v

b. relative motion of the electrons with respect to the ions.

This case has been studied by Rosenbluth and Rostoker (1962) and Lamb (1962).

The spectrum becomes asymmetrical: the peak corresponding to the pseudo

sound waves propagating in the direction of the electron drift is enhanced, while

the other peak is damped. Indeed the electrons tend to feed the pseudo sound

waves propagating in their direction and to damp the ones propagating in the

opposite direction. This effect, however, only takes place when the electron

drift (vd) is a significant fraction of the electron thermal velocity (VTe) as shown

in Figure 10 for H+ ions, Te /T i = 2, and backscatter (after Lamb 1962).

The peak grows rapidly when vd approaches vTe corresponding to the two

streams instability.

X. Effect of Collisions

The collisionless case corresponds to many situations encountered in the

ionosphere. It ceased to be valid, however, everytime a collision frequency
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becomes of the same order of magnitude as the width of some line in the spectrum:

this is the case in the E region when the ion neutral collision frequency is not

negligible as compared to the width of the ion spectrum. This is also the case

when gyroresonances tend to develop with widths of an order of magnitude close

to the ion-ion collision frequency. And also, it is the case when the Landau

damping of the plasma line becomes very small, electron-ion collisions must

then be taken into account.

The effect of collisions has been studied by Dougherty (1963), Cohen (1963),

Dougherty and Farley (1963), Taylor and Comisar (1963), Waldteufel (1963, 1965),

Tanenbaum (1968), Seasholtz and Tanenbaum (1969), Hagfors (1970), Hagfors and

Brockelman (1971).

a. Ion-neutral collisions.

The complexity of the problem is increased considerably when collisions

ar e included. Indeed the simple relaxation term generally used for the Boltzmann

equation is not convenient here since the scattering properties depend sensitively

upon the detailed kinetic behavior of the plasma (Hagfors 1970).

Efforts have been made to include phenomenologically collision terms

wrhich would conserve some of the physical invariants such as particle number

density, momentum, energy, thus following the procedure of Bhatnagar-Gross-

Krook (1954) who proposed a term preserving charged particles through collisions.

Figure 11 (after Dougherty and Farley 1963) shows the effect of collisions

or he ion spectrum using a term preserving charged particles through collisions.
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V is a normalized collision frequency:

) 1/2

For increasing ion neutral collision frequencies the ion spectrum tends to

become a Lorentz curve of width proportional to 1-1.

Hagfors (1970) has described a new approach to the problem, in which

random forces exerted by the collisions with the neutrals are included among

the forces which determine the unperturbed motion of the charged particles.

The problem is then "to determine a transition probability which describes the

diffusion of a charged particle through position velocity space" (Hagfors 1970).

Hagfors and Brockelman (1971) applied it to hard spheres elastic collisions.

The gross features are identical to the one of Figure 10, however the central

depression of the spectrum does not disappear as rapidly when ki increases.

b. Ion-Ion collisions.

In the F region of the ionosphere the frequency of ion-ion 900 collisions is

generally smaller than the Ion gyro frequency. However small angle deviations

through collisions are sufficient to affect significantly the ion trajectories over

one gyroperiod. As a consequence gyroresonances are completely destroyed

over most of the F region.

c. Electron-Ion collisions

It was mentioned earlier that Landau damping tends to bring plasma waves

in thermal equilibrium with the plasma. This holds for the plasma lines,

37



however when the Landau damping becomes small because of the small number

of electrons participating in it, damping through electron-ion collisions becomes

dominant. In these circumstances this last mechanism is responsible for bring-

ing the plasma waves in thermal equilibrium with the plasma (Perkins and

Salpeter (1965)).

The total intensity of the plasma lines is consequently unchanged but their

width is now determined by collisional damping.

Interesting situations develop when the excitation of the plasma line by

photoelectrons is taken into account. This is the subject of the next section.

XI. Plasma lines enhanced by the photoelectrons

Plasma lines enhancement by photoelectrons have been studied by Perkins

and Salpeter (1965), Perkins et al. (1965), Yngvesson and Perkins (1968).

When a tail of photoelectrons is added to the thermal electron Maxwellian

distribution, the plasma lines reach thermal equilibrium with either the thermal

plasma or the photoelectron population; in the latter case the equivalent tem-

perature is much higher and the intensity of the line is correspondingly much

higher. The particle population which determines the intensity of the wave

depends upon the relative strengths of the Landau dampings by the thermal

electrons or the photoelectrons and of the electron ion collisions damping: if

either the thermal electron Landau damping or the electron-ion collision damp-

ing dominates, the plasma line is in thermal equilibrium with the thermal plasma;
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while, if the Landau damping by photoelectrons dominates, the plasma line is in

thermal equilibrium with the photoelectron population.

Perkins and Salpeter (1965) derived the following formula for the enhance-

ment of the plasma line intensity in a plasma without magnetic field with respect

to its level when photoelectrons are absent:

fth(VO) + fp(V) + y XI.1
KT

fth(V,) - VP f(V) + X
e

where fth is the one dimensional velocity distribution of the thermal electrons

in the k direction, f, is the photoelectron velocity distribution in the same

direction, x describes the electron ion collision damping and v, is the wave

phase velocity.

S=  2 Lo ge(4nno) XI.2

The dominant term in eqn. XI.1 is the thermal electron damping for low

values of vo, the collisional damping for large values of v, and the photoelectron

damping for intermediate values of v.

Therefore the plasma line is enhanced only over a limited range of values

of v, or in other words over a limited range of resonant frequencies.

The effect of the magnetic field is to considerably increase the Landau

damping by the thermal electrons and therefore to generally decrease the range

of frequencies over which the plasma line is enhanced.
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Salpeter (1961b) has shown that the effect of the magnetic field can be taken

into account by modifying the velocity distribution of the thermal electrons in

the following way:

me eno (1) +t -1/2 sin2
th n T cos 4

XI.3

Im  (De s in 2  eC2 (k

where Im is the Bessel function of imaginary argument. When 4 varies from 00

towards 900, the frequency range dominated by thermal electron Landau damping

increases steadily. However, when 900 is approached the Landau damping by

thermal electrons becomes strongly modulated with maxima at frequencies equal

to multiples of the electron gyrofrequency. Eventually the Landau damping by

fhermal electrons disappears when ¢ reaches 900.

These features are illustrated on Figure 12 which shows the frequency

ranges of plasma line enhancements for various angles and wavelengths after

Yngvesson and Perkins (1968) and for a given f distribution. The enhancement

is expressed in terms of plasma temperatures, which implies that when fully

enhanced the line is in thermal equilibrium with the local photoelectron velocity

distribution characterized by an apparent temperature Tp . Changing the wave-

length has the effect of changing the phase velocity associated with a given

plasma frequency; as a consequence the range of frequencies over which the

plasma line is enhanced depends upon the wavelength. In turn, since for practical
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purposes the plasma frequency in the ionosphere covers a limited range the

overlap of the two frequency ranges will be more or less favorable according

to the wavelength used.

For a wavelength X of .70 m there is a good overlap and one can see the

three regions: the region dominated by thermal electron Landau damping for

low frequencies and its expansion for increasing values of €, the region where

the line is enhanced because of the predominance of the Landau damping by the

photoelectrons for intermediate values of the plasma frequency, and finally the

region dominated by electron-ion collisional damping. For X = .23 m, the

region dominated by thermal electron damping has expanded, while for X = 200 m

most of the range corresponds to collisional damping. The modulation at the

electron gyrofrequency is quite pronounced in all cases for 4 = 800.

XII. Conclusion

The simple concept of independent free electrons initiated the theory of

incoherent scatter. The problem became much more complex when it was

realized that collective interactions had to be taken into account for various

situations.

The nature of the complexity being associated with some of the essential

properties of the plasma, the elaboration of the theory became more and more

rewarding for both the theorist and the experimenter.

In particular in practically all instances, every effort made by the theorists

to include a new parameter in the theory was accompanied by an immediate
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experimental verification, the experimental work thus helping considerably the

theoretical work.

In turn the addition of new parameters was to permit the experimenters

a more and more complete diagnosis of the state of the ionosphere. The

simultaneous determination of 4 to 5 ionospheric parameters has certainly

made incoherent scatter the most powerful ground based mean for studying the

dynamics and thermodynamics of the ionosphere and the thermosphere: a

considerable contribution to these fields has already made by incoherent scatter

sounding (e.g. reviews by Evans (1969, 1964) and by Farley (1970b). Incoherent

scatter sounding using laser beams is also more and more used for laboratory

plasma diagnosis.

The future of incoherent scatter sounding of the ionosphere involves, in

addition to observations from the existing facilities, important projects in

North America and Northern Europe and even a possible implementation of an

incoherent scatter radar on board the Space Shuttle Space Laboratory. In all

instances the future of incoherent scatter for the study of the ionosphere is to

result from a joint effort of scientists from many countries.
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GEOMETRY OF INCOHERENT SCATTERING
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Figure 1. Geometry of incoherent scattering.
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Figure 2. Normalized spectrum of the ionic component for a >> 1 and T = T.
(full line). Ionvelocity distribution (dashed line). The normalized doppler
shift is defined by

12KT. 2KT.

(after Farley, 1970a).
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COMPLETE SPECTRA FOR VARIOUS VALUES OF a
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Figure 3. Normalized complete spectra for different values of a = 1/k ,D
(Te = T i ) . The normalized doppler shift is

e k T

(after Hagfors, 1961).
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IONIC COMPONENT VS. Te/Ti
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Figure 4. Normalized half spectra of the ionic component for a >> 1 and for

different values of T,/Ti. (After Fejer, 1961).
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CROSS SECTION VS. Te/Ti
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Figure 5. Variation of the ratio of the total differential cross section for C >> 1 to the total differ-

ential cross section for independent electrons as a function to Te /T i (after Moorcrost, 1963). The

dashed curve corresponds to the approximate expression VI.5 given by Buneman (1962).



CROSS SECTION VS. 1/a
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Figure 6. Variation of the ratio of the total differential cross section ca to
the total differential cross section for independent electrons as a function
of a, for H+ and for different values of T /Ti (after Moorcroft, 1963).
The dashed line corresponds to the approximate expression given by
Buneman (1962).
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SPECTRA FOR MIXTURES OF O+ AND He
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Figure 7. Half spectra of the ionic component (normalized to a value of 1 for zero doppler
shift) for Te /Ti = 1.5, a >> 1 and for different mixtures of 0+ and He+, N2/N is the relative
concentration He+. (After Moorcroft, 1964).



ION GYRO-RESONANCE LINES
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Figure 8. Normalized half spectra of the ionic component for
Te = Ti, a >> 1, 0+ ions, k - R i (the Lamor radius of the
ions), and for k either parallel to the magnetic field (€ = 00, or
no magnetic field) or nearly perpendicular to it (0 = 880). Ion-
Ion collisions have been assumed to be negligible. (After Farley
et al., 1961).
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Figure 9. Variation of the normalized total differential cross section as a
function of Te /Ti for different values of

(After Farley, 1966).
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EFFECT OF
ELECTRON DRIFT ON IONIC COMPONENT
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Figure 10. Normalized spectra of the ionic component for
T, /T. = 2.0 a = 102, H+ ions and different electron drifts
antiparallel to k. Vd/Ve is the ratio of the drift velocity to
the electron thermal velocity. (After Lamb, 1962).
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EFFECT OF COLLISIONS ON IONIC COMPONENT

0.9
Te= Ti

1/2
0.8- "in mi /-

- ik 2KTi

0.7 e= 01

(1

0 0.6 *i =3.0

b 0.4

3= 0

0 0.3
C' 0.1

0.2 .3
0.1 -3.0 1.0 -

0
0 0.4 0.8 1.2 1.6 2.0 2.4

NORMALIZED DOPPLER SHIFT 0i

Figure 11. Normalized half spectra of the ionic component for

T = T. , a >> 1 and for different normalized ion neutral collisions

frequencies

k 2KT.

(After Dougherty and Farley, 1963).

56



10 II I I 1I

8 X=0.70 m . X=0.70 m4-
/ - =00 =80 0

6,

2 I

01

10 - I I I I I I I

X=0.23 m X=0.23 m
8 - - - 800

> --- =400.a 6-

- 4- - -

0 I 'l I I1[ I ni2 -/

0

8 A x =2.00 m X=2.00 m
S=0o 4=800

6---=400

4'

O 'l'I I I
2 4 6 8 10 12 14 2 4 6 8 10 12 14

PLASMA FREQUENCY (Mhz)

Figure 12. Plasma line enhancements for various wave-lengths
and angles h between the k vector and the magnetic field as func-
tions of the plasma frequency. The photoelectron velocity dis-
tribution fp was deduced from measurements and Te was chosen
equal to 2000 K (after Yngvesson and Perkins, 1968).
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