NASA TECHNICAL MEMORANDUM

NASA TM X-3165

NASA TM X-3165

(NASA-TM-X-3165)	EFFECT OF SERVICE USAGE ON	N75-15774
TENSILE, FATIGUE,	AND FRACTURE PROPERTIES OF	
7075-T6 AND 7178-	T6 ALUMINUM ALLOYS (NASA)	
2/ p HC \$3.75	CSCL 11F	Unclas
·	<u>H1/26</u>	<u>09063</u>

EFFECT OF SERVICE USAGE ON TENSILE, FATIGUE, AND FRACTURE PROPERTIES OF 7075-T6 AND 7178-T6 ALUMINUM ALLOYS

Richard A. Everett, Jr.

Langley Directorate U.S. Army Air Mobility R&D Laboratory Hampton, Va. 23665

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • FEBRUARY 1975

1, Report No. NASA TM X-3165	3. Recipient's Catalog No.						
4. Title and Subtitle EFFECT OF SERVICE USAC	5. Report Date February 1975						
AND FRACTURE PROPERT 7178-T6 ALUMINUM ALLOY	IES OF 7075-T6 AND IS	6. Performing Organization Code					
7. Author(s) Richard A. Everett, Jr., Lar	8. Performing Organization Report No. L-9952						
U.S. Army Air Mobility R&I) Laboratory	10. Work Unit No.					
9. Performing Organization Name and Address		501-22-02-01					
NASA Langley Research Cer	nter	11. Contract or Grant No.					
Hampton, Va. 23665							
		13. Type of Report and Period Covered					
12, Sponsoring Agency Name and Address		Technical Memorandum					
National Aeronautics and Sp	ace Administration	14. Sponsoring Agency Code					
Washington, D.C. 20546							
15. Supplementary Notes							
16. Abstract							
A study has been made	to determine the effects of exten	sive service usage on some					
has a study has been made	7075-T6 and 7178-T6 aluminum	allov materials. The effects					
of sorvice usage were deter	mined by comparing material pro	nerties for new material					
(renerally obtained from the	literature) with those for materia	al cut from the center wing					
box of a C-130B transport a	implane with 6385 flight-hours of s	service The properties					
invostigated were notched a	ad unnotched fatigue strengths fat	tione-crack-growth rate. frac-					
turo touchoose and tensile i	properties For the properties in	vestigated and the parameter					
nangae considered (crack le	noth stress ratio etc.) the result	Its obtained in this study showed					
na significant difference bet	weep service and new materials	of the state of the state show on					
no significant unterence bet	ween bervice and new materials.						
1							

17. Key Words (Suggested by Author(s))		18. Distribution Statement				
Service usage		Unclassified – Unlimited				
Fatigue (materials)						
Fracture toughness		1		:		
Aluminum alloys				STAR Category 17		
19. Security Classif. (of this report)	20. Security Classif. (of this	page)	21. No. of Pages	22, Price*		
Unclassified	Unclassified		27	\$3.75		

^{*} For sale by the National Technical Information Service, Springfield, Virginia 22151

EFFECT OF SERVICE USAGE ON TENSILE, FATIGUE, AND FRACTURE PROPERTIES OF 7075-T6 AND 7178-T6 ALUMINUM ALLOYS

By Richard A. Everett, Jr. Langley Directorate, U.S. Army Air Mobility R&D Laboratory

SUMMARY

A study has been made to determine the effects of extensive service usage on some basic material properties of 7075-T6 and 7178-T6 aluminum alloy materials. The effects of service usage were determined by comparing material properties for new material (generally obtained from the literature) with those for material cut from the center wing box of a C-130B transport airplane with 6385 flight-hours of service. The properties investigated were notched and unnotched fatigue strengths, fatigue-crack-growth rate, fracture toughness, and tensile properties. For the properties investigated and the parameter ranges considered (crack length, stress ratio, etc.), the results obtained in this study showed no significant difference between service and new materials.

INTRODUCTION

After an aircraft has been in service, fatigue cracks usually develop because of repeated loads. To assess the consequence of these cracks, the damage tolerance of the structure is calculated in terms of crack-growth rates and residual strength. These calculations are based on fatigue and fracture properties obtained from new material and on the assumption that these properties do not change during the service life of the air-craft. However, no experimental investigation validating this assumption has been reported in the literature. The purpose of this investigation was to assess the validity of the assumption.

The service materials used in these tests were machined 7178-T6 extrusion and machined 7075-T6 plate which had accumulated 6385 flight-hours in the upper and lower wing surfaces, respectively, of the center wing box from a C-130B transport airplane. Cracks at eight locations on the upper wing surface and seven on the lower surface had been repaired. The properties of the service materials were compared with the properties of new materials to evaluate the effect of service usage. The material properties investigated include fatigue strength, fatigue-crack-growth rate, fracture toughness, and the static tensile properties of ultimate strength, yield strength, Young's modulus, and elongation.

SYMBOLS

The units for physical quantities used in this paper are given both in the International System of Units (SI) and in U.S. Customary Units. The measurements and calculations were made in U.S. Customary Units. Conversion factors relating the two systems are given in reference 1 and those used in the present investigation are presented in appendix A.

а	half-length of a central symmetrical crack, m (in.)
ai	half-length of crack at start of a fracture-toughness test, m (in.)
da/dN	rate of fatigue-crack growth, m/cycle (in./cycle)
Е	Young's modulus of elasticity, N/m^2 (psi)
е	elongation in 51-mm (2-in.) gage length, percent
K _{cn}	critical stress-intensity factor based on a_i , $N/m^{3/2}$ (ksi-in ^{1/2})
к _{max}	maximum stress-intensity factor, N/m $^{3/2}$ (ksi-in $^{1/2}$)
K _{min}	minimum stress-intensity factor, $N/m^{3/2}$ (ksi-in ^{1/2})
к _т	theoretical elastic stress-concentration factor
ΔK	stress-intensity-factor range, $N/m^{3/2}$ (ksi-in ^{1/2})
N	number of load cycles to failure
R	ratio of minimum stress to maximum stress
s _a	alternating gross stress, N/m 2 (ksi)
s_{f}	maximum gross stress applied to specimen during fracture-toughness test, N/m^2 (ksi)
s _m	mean gross stress, N/m^2 (ksi)

s _{max}	maximum gross stress, N/m ² (ksi)
S _{min}	minimum gross stress, N/m ² (ksi)
t .	specimen thickness, m (in.)
W	specimen width, m (in.)
α	secant correction factor for stress intensity in a finite-width panel
σ_{u}	ultimate tensile strength, N/m^2 (ksi)
$\sigma_{\mathbf{y}}$	yield strength (0.2-percent offset), N/m^2 (ksi)
	MATERIALS, SPECIMENS, TESTS, AND PROCEDURES

Materials and Specimens

The service material used for these tests was taken from a C-130B transport airplane which was manufactured in the late 1950's or early 1960's and which had accumulated 6385 flight-hours by April 1969 when the center wing box was removed. The longitudinal axis of each specimen cut from this material was parallel to the wing spanwise direction. (See fig. 1.) All service specimens were machined from the upper and lower surfaces of the center wing box. The upper surface was 7178-T6 extruded panel with a nominal surface thickness of 2.5 mm (0.10 in.) and with integral stiffeners spaced on 84-mm (3.3-in.) centers. The lower surface was made from 7075-T6 plate with a range of nominal thickness from 2.5 mm to 4.1 mm (0.10 in. to 0.16 in.).

Because only limited data were available in the literature, S-N curves had to be established for new 7178-T6 material. Although the 7178-T6 service material was extruded, the material used to establish the fatigue-life curves for the new 7178-T6 was rolled sheet. Unless otherwise stated, all new-material data from the literature were for sheet material.

The fatigue, fatigue-crack-growth, and fracture-toughness specimen configurations used in this investigation are shown in figure 2. The machining processes for the different specimen configurations are given in references 2, 3, and 4. The tensile specimens were made according to the American Society for Testing and Materials (ASTM) standard specifications. The specimens were cut from the upper surface material so that the integral stiffeners were not included in the test section of the unnotched specimens and were not near the notch in the $K_T = 4$ and the fatigue-crack-growth specimens. The

integral stiffeners were removed from the material using machining tolerances of 0.00 to 0.08 mm (0.003 in.) to prevent undercutting.

For the most part, material properties for the new material were obtained from tests on specimens of identical configuration and dimensions as those used for the service-material test. (See fig. 2.) An exception was the dimensions of the specimens used for the fatigue-crack-growth and fracture-toughness tests for the 7178-T6 alloy. (See ref. 5.)

Testing Machines and Procedures

Two types of axial-load fatigue testing machines were used: a subresonant machine with a fixed operating frequency of 30 Hz (30 cps) for fatigue-life tests, and two closed-loop servohydraulic machines operated at 2 or 5 Hz (2 or 5 cps) for a few high-load fatigue-life tests and for all the crack-growth and fracture-toughness tests. All testing machines had a load capacity of 89 kN (20 kips). The following table shows which tests were conducted in each testing machine:

	Materials used in test type -								
Type machine	Unnotched Notched		Crack growth	Fracture					
Subresonant, 30 Hz (ref. 6)	7075 7178	7075 7178							
Closed-loop servohydraulic (ref. 3)	7075 7178	7075 7178	7178						
Closed-loop servohydraulic ^a			7075	7075 7178					

^aLike the machine described in reference 5 except the load capacity was 89 kN (20 kips).

The S-N curves for the service materials and the new 7178-T6 sheet material were established from constant-amplitude fatigue tests. Each curve contained data from six or more levels of maximum net stress. Several specimens were tested at each level. All tests were at a stress ratio R of 0.02. All specimens were axially loaded. The configurations of the unnotched and the notched $(K_T = 4)$ specimens are shown in figures 2(a) and 2(b).

Fatigue-crack-growth data were obtained from constant-amplitude axial-load tests of the specimen shown in figure 2(c). The tests of 7075-T6 service material ($R \approx 0.02$) were conducted at maximum gross stresses of 138 or 207 MN/m² (20 or 30 ksi). For the

7178-T6 service material, the maximum gross stresses were between 69 and 207 MN/m^2 (10 and 30 ksi) at values of R equal to 0.02 and 0.5.

To record the crack-growth data, crack-propagation gages were bonded to the specimens with an AE-10 epoxy adhesive which was cured at 340 K (150° F) for 1 hour. The gages consisted of constantan elements spaced at 1.3-mm (0.05-in.) intervals on a polyimide backing. An automatic monitoring system recorded the number of cycles at which each succeeding constantan element of the gage failed as the fatigue crack progressed across the specimen. The crack-growth tests were terminated before the specimens failed so that the specimens could be used for fracture-toughness tests.

The fracture toughness of the service materials was determined from fracture tests of unbroken fatigue-crack-growth specimens. Monotonically increasing test loads were applied at a constant rate of about 160 kN/min (36 kips/min) until each specimen failed. The maximum load sustained by each specimen was recorded for later use in the fracture-toughness analysis.

RESULTS AND DISCUSSION

Tensile Properties

The tensile properties for the two service materials are presented in table I. Since the service-material tensile properties shown in table I are greater than the appropriate B values for both materials in MIL-HDBK-5B (ref. 7), no degradation in tensile properties due to service usage was indicated.

Fatigue Properties

The fatigue-life data for unnotched specimens of new 7178-T6 sheet material are presented in table II and plotted in figure 3. Data for unnotched specimens of new 7075-T6 sheet material were taken from reference 8. The fatigue-life data for unnotched specimens of both service materials are presented in table III. For comparison, the fatigue lives of service and new materials are plotted in figures 4(a) and 4(b) for 7075-T6 and 7178-T6, respectively. No significant differences between the fatigue lives of service and new materials were found for either 7075-T6 or 7178-T6.

The fatigue-life data for notched specimens $(K_T = 4)$ of new 7178-T6 sheet material are presented in table II and plotted in figure 5. Data for notched specimens of new 7075-T6 sheet material were taken from reference 8. The fatigue-life data for notched specimens of both service materials are presented in table III. For comparison, the fatigue lives of service and new materials are plotted in figures 6(a) and 6(b) for 7075-T6 and 7178-T6, respectively. As for the unnotched specimens, no significant difference

between the fatigue lives of service and new materials was found for the notched specimens.

Fatigue-Crack-Growth and Fracture-Toughness Properties

The fatigue-crack-growth data of new 7075-T6 and 7178-T6 sheet materials were taken from references 8 and 5, respectively. As previously stated, the data for the fatigue-crack-growth rates and the fracture-toughness values for new 7178-T6 sheet material (ref. 5) were obtained from specimens which had different dimensions from the service-material specimens. The difference in specimen thicknesses was of no consequence because the data in reference 5 showed that for the thickness range of interest, thickness had no significant effect on fatigue-crack-growth rates or fracture-toughness values for 7178-T6 sheet. The difference in specimen widths, 57 mm (2.25 in.) for the service-material specimen and 292 mm (11.5 in.) for the new-material specimen, was taken into account by comparing fatigue-crack-growth rates (ref. 9) and fracture-toughness values (ref. 10) at small values of crack aspect ratio 2a/w.

The results of the fatigue-crack-growth tests for both service materials are presented in table IV. Fatigue-crack-growth rates and stress-intensity factor ranges ΔK were calculated from the data presented in table IV. The method used for calculating ΔK is given in appendix B.

Fatigue-crack-growth rates of service and new materials are compared in figures 7(a) and 7(b) for 7075-T6 and 7178-T6, respectively. Figure 7(a) shows good agreement between service and new materials for the 7075-T6 alloy. For the 7178-T6 alloy (fig. 7(b)), the crack-growth rates for the service and new materials were about the same except at the higher ΔK values. For high ΔK values, the crack-growth rate for new material was approximately twice the rate for service material. This difference is not significant, since the results of reference 4 show that scatter of this magnitude exists for aluminum alloys at the higher ΔK values.

The fracture-toughness test results for the service material are presented in table V in terms of the critical stress-intensity factor K_{cn} . The equation used for calculating K_{cn} is

$$K_{cn} = \alpha S_f \sqrt{a_i \pi}$$

The half-crack length used in this equation a_i was the half-crack length at the end of the fatigue-crack-growth tests.

Fracture-toughness data for new 7178-T6 sheet material were taken from reference 5. Data for new 7075-T6 material were taken from reference 8, where the half-crack length at the onset of unstable crack growth was used to calculate the fracture-toughness values. To compare these results with those for service material, the fracture-toughness values in reference 8 were recalculated by using the half-crack length at the end of the fatigue-crack-growth tests. Critical stress-intensity factors for service and new materials are shown in figures 8(a) and 8(b) for 7075-T6 and 7178-T6, respectively. No significant difference between service and new materials was found for either material for the range of aspect ratios investigated.

CONCLUSIONS

A study has been made to determine the effects of extensive service usage on some basic material properties of 7075-T6 and 7178-T6 aluminum alloy materials. The effects of service usage were determined by comparing material properties for new material (generally obtained from the literature) with those for material cut from the center wing box of a C-130B transport airplane with 6385 flight-hours of service. The properties investigated were notched and unnotched fatigue strengths, fatigue-crack-growth rate, fracture toughness, and tensile properties. For the properties investigated and the parameter ranges considered (crack length, stress ratio, etc.), the results obtained in this study showed no significant difference between service and new materials.

7

Langley Research Center,

National Aeronautics and Space Administration, Hampton, Va., December 16, 1974.

APPENDIX A

CONVERSION OF U.S. CUSTOMARY UNITS TO SI UNITS

The International System of Units (SI) was adopted by the Eleventh General Conference on Weights and Measures in 1960 (ref. 1). Conversion factors required for the units used herein are given in the following table:

Physical quantity	U.S. Customary Unit	Conversion factor (a)	SI Unit (b)			
Force	lbf	4.448	newton (N)			
Frequency	cps	1.0	hertz (Hz)			
Length	in.	0.0254	meter (m)			
Stress	ksi	$6.895 imes10^6$	newtons per meter 2 (N/m 2)			
Stress intensity	ksi-in ^{1/2}	$1.0989 imes 10^6$	newtons per meter $3/2$ (N/m $3/2$)			
Temperature	°F	$\frac{^{\mathrm{O}}\mathrm{F}+459.7}{1.8}$	kelvin (K)			

^aMultiply a value given in U.S. Customary Units by the conversion factor to obtain the equivalent value in SI Units, or apply the conversion formula.

^bPrefixes to indicate multiples of SI Units are as follows:

Prefix	Multiple
nano (n)	10 ⁻⁹
milli (m)	10-3
kilo (k)	10 ³
mega (M)	10 ⁶
giga (G)	10 ⁹

APPENDIX B

CALCULATION OF STRESS-INTENSITY-FACTOR RANGE

Paris (ref. 11) showed that the rate of fatigue-crack growth was a function of the stress-intensity-factor range; that is,

$$\frac{da}{dN} = f(\Delta K) \tag{B1}$$

where

$$\Delta K = K_{\max} - K_{\min} \tag{B2}$$

For centrally cracked specimens subjected to a uniformly distributed axial load

$$K_{\max} = \alpha S_{\max} \sqrt{a\pi}$$
(B3)

and

$$K_{\min} = \alpha S_{\min} \sqrt{a\pi}$$
(B4)

where S_{max} and S_{min} are the maximum and minimum gross stresses in the cycle. The term α is a finite-width correction given by (ref. 12)

$$\alpha = \sqrt{\sec \frac{\pi a}{w}}$$
(B5)

For small crack-growth increments from a half-crack length a_1 to a_2 ,

$$\Delta K = \alpha \left(S_{\text{max}} - S_{\text{min}} \right) \sqrt{\frac{a_1 + a_2}{2} \pi}$$
(B6)

9.

REFERENCES

- 1. Anon.: Metric Practice Guide. E 380-72, Amer. Soc. Testing & Mater., June 1972.
- 2. Illg, Walter; and Imig, L. A.: Fatigue of Four Stainless Steels, Four Titanium Alloys, and Two Aluminum Alloys Before and After Exposure to Elevated Temperatures for up to 3 Years. NASA TN D-6145, 1971.
- Imig, L. A.: Effect of Initial Loads and of Moderately Elevated Temperature on the Room-Temperature Fatigue Life of Ti-8A1-1Mo-1V Titanium-Alloy Sheet. NASA TN D-4061, 1967.
- 4. Hudson, C. Michael: Effect of Stress Ratio on Fatigue-Crack-Growth in 7075-T6 and 2024-T3 Aluminum-Alloy Specimens. NASA TN D-5390, 1969.
- Hudson, C. Michael; and Newman, J. C., Jr.: Effect of Specimen Thickness on Fatigue-Crack-Growth Behavior and Fracture Toughness of 7075-T6 and 7178-T6 Aluminum Alloys. NASA TN D-7173, 1973.
- Grover, H. J.; Hyler, W. S.; Kuhn, Paul; Landers, Charles B.; and Howell, F. M.: Axial-Load Fatigue Properties of 24S-T and 75S-T Aluminum Alloy as Determined in Several Laboratories. NACA Rep. 1190, 1954.
- Anon.: Metallic Materials and Elements for Aerospace Vehicle Structures, Volume 1. MIL-HDBK-5B, U.S. Dep. Def., Sept. 1, 1971.
- 8. Hudson, C. Michael: A Study of Fatigue and Fracture in 7075-T6 Aluminum Alloy in Vacuum and Air Environments. NASA TN D-7262, 1973.
- Schijve, J.; Nederveen, A.; and Jacobs, F. A.: The Effect of the Sheet Width on the Fatigue Crack Propagation in 2024-T3 Alclad Material. Rep. NLR-TR M.2142, Natl. Lucht- en Ruimtevaartlab. (Amsterdam), Mar. 1965.
- Sullivan, Anna M.; and Freed, Charles N.: The Influence of Geometric Variables on K_c Values for Two Thin Sheet Aluminum Alloys. NRL Rep. 7270, U.S. Navy, June 1971. (Available from DDC as AD 726 684.)
- Paris, Paul C.: The Fracture Mechanics Approach to Fatigue. Fatigue An Interdisciplinary Approach, John J. Burke, Norman L. Reed, and Volker Weiss, eds., Syracuse Univ. Press, 1964, pp. 107-132.
- Brown, William F., Jr.; and Srawley, John E.: Plane Strain Crack Toughness Testing of High Strength Metallic Materials. Spec. Tech. Publ. No. 410, Amer. Soc. Testing & Mater., c.1966, pp. 77-79.

Material	σ _u		σy			e,	
	MN/m^2	ksi	MN/m^2	ksi	GN/m^2	ksi	percent
7075-T6 (Plate)	574	83.2	538	78.1	66 . 9	$9.7 imes 10^3$	11
7178-T6 (Extrusion)	657	95.3	605	87.8	69.0	$10.0 imes 10^3$	8.9

TABLE I.- TENSILE PROPERTIES OF SERVICE ALUMINUM ALLOYS

TABLE II.- RESULTS OF AXIAL-LOAD FATIGUE TESTS ON NEW

7178-T6 ALUMINUM ALLOY SHEET (R = 0.02)

Maxim net stre	um ess	Number of load cycles to failure N, kilocycles										
MN/m ²	ksi											
κ _T = 1												
552	80	4	5	6	7	8						
414	60	11	12	17	17	18						
276	40	37	66	134	173	235						
241	35	· 60	189	306	699	>10 000						
228	33	77	184	280	621	>10 000						
207	30 [.]	>10 000	>10 000	>10 000	>10 000							
<u> </u>		• <u>•</u>	•	К _Т =	4			· · · · ·				
345	50	0.3										
276	40	1	~~									
241	35	1	2	2	2	4						
207	30	4	5	5	6	6						
138	20	45	65	66	75	75	86					
103	15	56	891	1 985	2 595	4 971	7942	>10 000				
70	10	>10 000	>10 000	>10 000	>10 000	>10 000						

TABLE III. - RESULTS OF AXIAL-LOAD FATIGUE TESTS ON

SERVICE MATERIALS (R = 0.02)

Maxim net str	um ess	m ss Number of load cycles to failure N. kilocycles															
MN/m^2	ksi																
•••••	$K_{T} = 1$																
414	60		13	1	4	19	1	20		20		23		24			-
345	50		25	3	9	41		43		44	İ.	48		52			-
276	40		68	8	7	90		109	ļ	143		156	ĺ	168	492		-
241	35		91	14	ə 1	6 8		212		392	>10	000	>10	000			-
228	33		376	51	3 5	28	1 2	272	1	353	8	717	>10	000			-
214	31		927		·												-
207	30	>10	000	>10 00) >10 0	00	>10 (000	>10	000	>10	000	>10	000			-
							K _T :	= 4					•				
207	30		5		3	6		6		8		8		9			- 1
138	20		45	4	7	48		52		54		79		129			-
117	17		75	11	3 1	45	1	61		163							-
110	16		68	1 84) [-
105	15.2		144														-
103	15		200	21	3 2	42	3	300		429	2	498	2	966	3667	>10 00	0
85	12.3	>10	000					(-
83	12	10	857	>10 000) >10_0	00	>10 0	000	>10	000	>10	000	>10	000			_
70	10.2	>10	000										~				-

(a) 7075-T6 aluminum alloy plate

TABLE III.- RESULTS OF AXIAL-LOAD FATIGUE TESTS ON

SERVICE MATERIALS (R = 0.02) - Concluded

Maxim net str	um ess	Number of load cycles to failure N. kilocycles											
MN/m^2	ksi												
	$K_{T} = 1$												
552	80	5	6	7	7	8							
483	70	8	10	11	12	13	17						
414	60	14	15	16	17	18	18						
345	50	25	35	38	40	42	44						
276	40	46	47	67	87	109		}					
241	35	83	115	125	142	158	265	2 915					
228	33	180	303	859	2 747	9 601	>10 000	>10 000					
207	30	1484	1 984	>10 000	>10 000	>10 000	>10 000	>10 000					
		• • •		— К _Т =	: 4								
345	50	0.3											
276	40	1											
241	35	2	2	2	3	3							
207	30	3	3	3	3	5							
138	20	14	17	20	21	22	23	29					
117	17	26	38	40	46	-54	·						
103	15	39	53	56	100	815	2 876	>10 000					
83	12	127	3 355	4 492	5 910	6 404	>10 000						
70	10	3471	>10 000	>10 000	>10 000	>10 000	>10 000						

(b) 7178-T6 aluminum alloy extrusion

Material	t		s _m		sa		Loading frequency			Average number of cycles required to propagate a crack from a half-length of 1.8 mm (0.07 in.) to a half-length of -								
	mm	in.	$\frac{MN}{m^2}$	ksi	$\frac{MN}{m^2}$	ksi	Hz	cps	s R	3.0 mm (0,12 in.)	4,3 mm (0,17 in.)	5.6 mm (0.22 in.)	6.9 mm (0.27 in.)	8.1 mm (0.32 in.)	9.4 mm (0.37 in.)	10.7 mm (0.42 in.)	11.9 mm (0.47 in.)	13.2 mm (0.52 in.)
7075-T6 (Plate)	2.8	0.11	70.3	10.2	67.6	9.8	5	5	0.02	4 545	6 847	8 309	9 390	10 224	10 813	11 218		
			70.3	10.2	67.6	9.8	5	5	1	4 721	6 929	8 469	9 453	10 293				
ļ]		70.3	10.2	67.6	9.8	5	5		4 223	6 504	7 916	9 0 0 5	9 768	10 362			
			105.5	15.3	101.4	14.7	2	2		1 633	2 509	2 871	3 095	3 2 4 9				
	L		105.5	15.3	101.4	14.7	2	2	 	1 982	2 802	3 336	3 6 3 6	3 840				
7178-T6 (Extrusion)	2.8	0.11	35.2	5.1	33.8	4.9	5	5	0.02	20 305	32 515	38 090	41 805	44 620	46 805	48 510	49 875	
			35.2	5.1	33.8	4.9	5	5	1	23 565	39 525	49 210	55 710	60 474	63 9 8 9			
1			70.3	10.2	67.6	9.8	5	5		1 935	3 1 7 0	4 005	4 580	4 995	5 350	5 505		
1			70.3	10.2	67.6	9.8	5	5		2 640	4 113	5 1 4 3	5814					
			105.5	15.3	101.4	14.7	2	2		1 089	1 633	1 937	2 096	2 192	2 249	2 275		
			105.5	15.3	101.4	14.7	2	2		590	839							
			105.5	15.3	101.4	14.7	2	2	\mathbf{V}	751	1 129	1 328	1 477	1 571	1 610			
			103.4	15.0	34.5	5.0	5	5	.50	7 945								
			103.4	15.0	34.5	5.0	5	5	1	7 400	11 680	14 350	16 260	17 785	18 925	19 710	20 395	20 700
			103.4	15.0	34.5	5.0	5	5		5 695	9 130	11 350	12 890	14 075	14 795	15 435		
			155.1	22.5	51.7	7.5	2	2		2 281	3 414	4 195	4 715	5 033	5 201			
			155.1	22.5	51.7	7.5	2	2	\checkmark	2 4 5 6	3 675	4 277						

TABLE IV.- RESULTS OF FATIGUE-CRACK-GROWTH TESTS ON SERVICE MATERIALS

		ţ.	a	i	2a _i	$\mathbf{s_{f}}$		K _{cn}		
Material	mm	in.	mm	in.	W	MN/m^2	ksi	$MN/m^{3/2}$	$ksi-in^{1/2}$	
7075-T6	2.8	0.11	8.13	0.320	0.28	305	44.3	50,5	46.0	
(Plate)			8.2 6	.325	.29	294	42.6	49.0	44,6	
			8.59	.338	.30	285	41.3	48,6	44.2	
			9.78	.385	.34	268	38,8	49.5	45.0	
			11.05	.435	.39	247	35.8	47.6	43.3	
7178-т6	2.5	0.10	3.68	0.145	0.13	321	46.5	37.9	31.4	
(Extrusion)		ĺ	6.05	.238	.21	303	43.9	42.1	38.3	
1		}	7.49	.295	.26	243	35.2	38.2	34.8	
1]	9.14	.360	.32	221	32.1	39.2	35.7	
			11.93	.470	.42	192	27.9	40.2	36.6	
			13.34	.525	.47	170	24.7	38.3	34.9	
			19.30	.760	.68	137	19.8	43.0	39.2	

TABLE V.- RESULTS OF FRACTURE-TOUGHNESS TESTS

ON SERVICE MATERIALS

Figure 1.- Orientation of the service material specimens taken from the center wing box of a C-130B transport airplane.

(c) Crack-propagation and fracture-toughness specimen.

Figure 2.- Concluded.

Figure 3.- Results of axial-load fatigue tests on unnotched specimens of new 7178-T6 sheet material. R = 0.02.

Figure 4.- Results of axial-load fatigue tests on unnotched service and new materials.

R = 0.02.

Figure 4.- Concluded.

1

.

Figure 5.- Results of axial-load fatigue tests on notched specimens of new 7178-T6 sheet material. $K_T = 4; R = 0.02.$

Figure 6.- Results of axial-load fatigue tests on notched service and new materials. $K_T = 4$; R = 0.02.

Figure 6.- Concluded.

Figure 7.- Results of axial-load fatigue-crack-growth tests on service and new sheet materials.

Figure 7.- Concluded.

NASA-Langley, 1975 L-9952