[2d

|

)

ELECTRICAL

ﬁ]. L0680 L9789 €60 TISD ac 01 o8 d L Zh

(*atug ulnqny)})
seTouq ONISSIO0Ud SHI CGHY OSRIHDIYW HIAIMANYY

o ANV IDVdS KWOWEW ¥04 ¥0I¥I0TTY/8FTNATHOS

| ¥OvgQaTI ¥ ORIXOTAHE TIAOW NOIIVIOWIS

0GTIL-GLH §ZLNAU0D HOSSADOEAILTAN ¥ (B65QZL-¥D-VSYN)

R, = S = e L mam ot efT g W mAEND e ST TR s v o i

'ENGINEERING

ERIMENT STATION

IVERSITY

AUBURN, ALAB

N5 - o2 E0

A MULTIPROCESSOR COMPUTER SIMULATION MODEL
EMPLOYING A FEEDBACK SCHEDULER/ALLOCATOR
FOR MEMORY SPACE AND BANDWIDTH

MATCHING AND TMR PROCESSING

by
David B. Bradley and J. David Irwin

December 1974

Contract NAS8-26930
GEORGE C. MARSHALL SPACE FLIGHT CENTER
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
HUNTSVILLE, ALABAMA

[
Reproduced by .

| NATIONAL TECHNICAL

INFORMATION SERVICE PﬁﬁCESh SUBJECT TO CHARGE

i U5 Depariment of Commercs
I Springfield, VA, 22151

SUBMITTED BY:

.

J. David Irwin V™"
Associate Professor and Head
Electrical Engineering

NOTI1CE

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE_
-BEST COPY FURNISHED US BY THE SPONSORING
AGENCY ALTHOUGH IT IS RECOGNI ED THAT CER-

""__TAIN PORTIONS ARE ILLEGIBLE IT 1S BEING RE-

'LEASED IN THE INTEREST OF MAKING AVAILABLE
-AS MUCH INFORMATION AS POSSIBLE

FORWARD

This document is a technical summary of the progress made by the
Auburn University Electrical Engineering Department toward fulfillment
of contract NAS8-26930. This effort was coordinated with Dr. J. B. White,

National Aeronautics and Space Administration, Huntsville, Alabama.

ii

A MULTIPROCESSOR COMPUTER SIMULATION MODEL
EMPLOYING A FEEDBACK SCHEDULER/ALLOCATOR
FOR MEMORY SPAdﬁ AND BANDWIDTH -
MATCHING AND TMR PROCESSING

David B. Bradley and J. David Irwin
ABSTRACT

A computer simulation model for a multiprocessor computer is devel-
oped that is useful for studying the problem of matching a multiprocessor's
memory space, memory bandwidth and numbers and speeds of processors with
aggregate job set characteristics. The model assumes an input work load
of a set of recurrent jobs. A minimal amount of knowledge of individual
job requirements for bandwidth is assumed. The model includes a feed-
back scheduier/allocator ﬁhich attempts to improve system performance
through higher memory bandwidth utilization by matching individual job
requirements for space and bandwidth with space availability and esti-
mates of bandwidth availability at the times of memory allocation. This
matching factor is then fed back into the job scheduler via internal job
priority. A nonfeedback version is made available for comparison purposes
and an independent analysis is made to determine maximum improvements.

The simulation model includes provisions for specifying precedence
relations among the jobs in a job set. Provisions for specifying precedence
execution of TMR (Triple Modular Redundant and SIMPLEX (Non Redundant) jobs.

Some typical problems are studied by means of the simulator.

iii

The amount of slowdown of a multiprocessor due to memory access
conflict is determined by analytical means. A hardware processor to
memory interconnection and access conflict resolution scheme is developed
for a priority driven multiprocessor.

Documentation of the computer simulation model is included.

iy

ACKNOWLEDGEMENTS

The authors express their appreciation to the following three
.persons for their excellent programming assistance in the preparation
of this document.

Mr. Henry C. Cobb, IV

Lieutenant Marvin M. Edgeworth, Jr., USAF
Adrman Richard M. Lundy, USAF

TABLE OF CONTENTS

LIST OF FIGURES L] * . . - L] - L] L] » L] L] a L] L] [.

I.

II.

I1I.

Iv.

V.

VI,

VII,

INTRODUCTION & v v & v 4 4 s » ¢ o

A DESCRIPTION OF THE MODEL .« + &« o &+ 4« o

THE MEMORY CONFLICT PROBLEM

LOCALIZED BANDWIDTH LIMLITATION AND MISMATCH

THE PROCESSOR TO MEMORY INTERCONNECTION PROBLEM

SOME PROBLEMS FOR THE SIMULATOR

DISCUSSION AND CONCLUSION . & « o o o 4« & o

LIST OF REFERENCES , . « v & & v 4 « & o « 2 &«

APPENDICES . . . & ¢ & v 0 o v o 0 v a s s 4« o

A. Command and Data Structures, Program Descriptions

Bandwidth Adjustment
B. Program Flow Charts s e e e e

C. Program Listings . . + . « « + « « o

vi

+

-

viii

16

43

58

81

117

175

180

183

183

210

275

4-10

4-11

' LIST OF FIGURES

Multiprocessor hardware block diagram .« « « « « + + « &

Simplified block diagram of simulation model . . .

Slowdown due to memory contention without
bandwidth I1dmiting « . . « « + .

Bandwidth nonutilization + .

Slowdown due to memory contention and
bandwidth limitation . . ., v « v v ¢ v 4 4 .

Distributions of bandwidth requirement, slowdown, and
bandwidth utilization for the three processor case from
multinomial distribution, BW(I) = (I-1)A/(.5NPROS *

(NFROS-1))
Frequency-gram for bandwidth requirement for NPROS = 3,
BW(I) = (I-1)A/(.5NPROS * (NPROS-1)} . + + + « . -
Frequency-gram for bandwidth requirement for NPROS = 10,
BW(I) = (I-1)A/(.5NPROS * (NPROS-1)) . . +. v v v « « « & &
Frequency-gram for bandwidth requirement for RPROS = 16,
BW(I) =(I-1)A/(.5NPROS * (NPROS-1)). . . .

Frequency-gram for slowdown and bandwidth utilization,
NPROS = 3, A = 0.75, BW(I) = (I-1)A/(.5NPROS * (NPROS-1)).

Frequency—-gram for slowdown and bandwidth utilization,
NPROS = 3, A = 1.0, BW(I) = (I-1)A/.5NPROS #* (NPROS- l))

Frequency—-gram. fox‘slowdowh and bandwidth utilization,
NPROS = 3, A = 1.25, BW(I) = (I-1)A/(.5NPROS * (NPROS 1)).

Frequency~-grams for slowdown and bandwidth utilization

'NPROS = 10, A = 0.75, BW(I) = (I-1)A/(.5NPROS * (NFROS-1))

Frequency-grams for slowdown and bandwidth utilization
NPROS = 10, A = 1.0, BW(I) = (I-1)A/(.5NPROS * (NPROS-1)).

Frequency—grams for slowdown and bandwidth utilization
NPROS = 10, A = 1.25, BW(I) = (I-1)A/(.5NPROS * (NPROS-1))

vii

19

54

57

60

65

67

67

68

69

70

71

73

74

4-12

4-13

4-14

4-15

4-16

4-17

5-5

5-6

5-7

5-9

5-10

5~11

5-12

Frequency-grams for slowdown and bandwidth utilizationm,
NPROS = 16, A = 0.75, BW(I) = (I-1)A/(.5NPROS * (NPROS-1)).

Frequency—-grams Ior slowdown and bandwidth utilization,
NPROS = 16, A = 1.0, BW(I) = (I-1)A/(.5NPROS * (NPROS-1))

Frequency-grams for slowdown and bandwidth utilizatien,
NPROS = 16, A = 1.25, BW(I) = (I~1)A(.5NPROS * (NPROS-1))

Means and standard deviations for slowdowﬁ'and.
bandwidth utilization, A= 0.75

Means and standard deviations for slowdown and
bandwidth utilization, A =1.0 + « + « . &

Means and standard deviations for slowdown and
fOl.‘ bandWidth utilization, A = 1-25 P T T S

Logic structure of time multiplexed bus ., .
Logic structure of full crossbar, . . . + » « +

An equivalent circuit of the full crossbar. . . .

Tabulation of access right word as a function of time for

priorities of 50, 100, 200 and 25

Tabulation of access mechanism for all processor rankines

with four jobs of priorities 50, 100, 200, and 25

Frequency—gram for length before lowest priority job
obtains first access for 2 processors . . « « + +

Frequency—gram for length between lst and 2nd access by

lowest priority job, 2 pProcessSOrs « o« o « = o

Frequency-gram for length before lowest priority job
obtains first access for 3 processors

Frequency—-gram for length between lst and 2nd access
by lowest priority job, 3 processors . . .

Frequency—-gram for length before lowest priority job
obtains first access for 5 processors . . .

Frequency—-gram for length between lst and 2nd access by

lowest priority job, 5 processors . . « . - . .

Frequency-gram for length before lowest priority job

obtains first access for 10 processors . . « .+ «

viil

.

.

75

76

77

78

79

80
82
82

84

87

89

93

93

94

94

95

95

96

5-13
5214
5-15

5-16

5-20
5-21
5-22
5-23
5-24
5-25
5-26
5-27
5-28

6-1

-2

Frequency-gram for length between lst and 2nd access by lowest
Prioxity job, 10 pProcessorsS v v v v v v o v s o b8 o o s s s s

Frequency-gram for length before lowest priority job obtains
first access for 13 ProcesSsorS. « + + + v v 4 o « o 4 0 o o 0 .

Frequency-gram for length between lst and 2nd access by lowest
Priority job, 13 ProcCeSSOIrS v « v 4« & « o v o o & o & 2 4 o o »

Frequency-gram for length before lowest priority job obtains
first access for 16 Processors v « v v 4 4 4 o s 0 s 4 s s . s

Frequency-gram for length between lst and 2nd access by lowest
priority job, 16 processors . v . v v 4 v v e e e e e e e .

Summary of means and standard deviations normalized about
[@Pi/PL] for priority driven access conflict resolution scheme,
i .

Service to highest priority job relative to that of lowest
priority job under the priority criterion + .« « . . .

Block diagram of the multiprocessor system with conflict

resolution scheme included v v v v 4 v v . .
Mémory module address decoded .« 0 4 e w4 ...
Processor selecCtor. . « v v v 4 v 4 4 4 v b e e e e e e e e .
Proceséor ranking circuit ... Tt e e e e e e e e e e e e
Processor to memory gating (Read/write linmes)
Processor to memory gating (ome bit of data lines). . « + . . .
Procéssor to memory gating‘(address.lines). S e e e e e s s
Alternate processor selector circuit. . . . v & 4 & + 4 . . .

Alternate processor ranking circuit

As large as largest and exactly 1 out of N circuits
Tabulation of data concerning memory fragmentation ~ Job
space requirements from uniform distribution between 4 and

24 with mean = 2.17, varying total sSpace. . « « v o« v o o o . .

A plot of data concerned with memory fragmentation - Constant
job space requirements, varying total space

Ix

96

97

97

98

98

101

102

103

105

106

108

109

110

112

. 114

115

11e

124

125

6-4
6-5
6-6
6-7
6-8

6-9

6-10
6-11

6-12

6-13
6-14

b-15

6-16

b~17

. Tabulation of data concerning memory fragmentation for

four space requirement ranges, total memory size = 256,
40 jObS a . . . - . a . . .) . . . L] . . » e - s a s PO

A plot of data concerned with memory fragmentation - Varying
job space requirements, constant total gpace 4 . .

System configurations and job characteristics for comparisons
between feedback and nonfeedback scheduler/allocators

System resource utilization comparisomns between feedback
and nonfeedback scheduler/allocators. . « v « + 4 v & & o+ «

System response as a function of total memory size - System
configurations and job characteristics. « . « « « « v + & 4 .

System response as a function of total memory size with
matched bandwidth requirements - CPU and IOP utilizations . .

System response as a function of total memory size with
matched bandwidth requirements - Memory space and band-
width utilizationsS. « + v v « « o & o 4 5 o o = o s o s « o «

System response as a function of total memory size with
matched bandwidth requirements - Job completions. . . « . . .

System response as a function of total memory size with
matched bandwidth requirements - Late and early jobs.

System response as a function of total memory size with
matched bandwidth requirements - Available space before
and after schedules & v i v 4 e e e 4 e e e e

System response as a function of total memory size with
matched bandwidth requirements - Frequency of schedules . . .

System response as a function of total memory size with
constant bandwidth requirements - CPU and IOP utilizations. .

System response as a function of total memory size with
constant bandwidth requirements - Memory space and
bandwidth utilizations. . . « v . « « v & 4 v v v 4 44 e .

.System response as a function of total memory size with

constant bandwidth requirements - Job completions

System response as a function of total memory size with
constant bandiwdth requirements - Available space before)
and after schedules « ¢ 4 v 4 v v 4 e e e e e e e e

126

127

130

13a

137

13R

139

149

141

142

143

144

145

146

6~18

6-19

6-20

6-21

6-22

6—-23

6-24

6-25

6-26

6-27

6-28

6-29

6-30

SYstem response as a function of total memory size with
constant bandwidth requirements - Frequency of schedules . .

System response as a function of total memory size with
widely dispersed bandwidth requirements - CPU and IOP
utilizations - . s 0w - - - . . L . a » . a P L] .

System response as a function of total memory size with
widely dispersed bandwidth requirements - Memory space
and bandwidth utilizations « + « + & v + 4 o o o o . e e e

System response as a function of total memory size with -
widely dispersed bandwidth requirements - Job completions., .

System_re3ponse as a function of total memory size with
widely dispersed bandwidth requirements - Late and
early jobs . . . L . L0 0 o e e e e e e e e e e

System response as a function of total memory size with
widely dispersed bandwidth requirements — Available space
and before and after schedules . « « v « v 4 &« v 4o v o v . .

System response as a function of total memory size with
widely dispersed bandwidth requirements - Number of
steps between schedules. . « . . + . . v v 4 v 44w .. .

Relative comparisons of system response for various
system configurations and number of recurrent jobs - System
configurations and job characteristics « . « ..« o o & o . .

Relative comparisons of system response for various systen
configurations and number of recurrent jobs, large bandwidth
availability - Processor utilizations. ., v « « + + 4 o . . .

Relative comparisons of system response for various system
configurations and number of recurrent jobs, large bandwidth

availability - Memory space and bandwidth utilizat ons . . .

Relative comparisons of system response for various system

configurations and number of recurrent jobs, large bandwidth.

availability - Memory space availability « « + + o «

Relative comparisons of system respomse for various system
configurations and number of recurrent jobs, large bandwidth
availability — Job completions v 4 ¢« v & v 4 . . .

Relative comparisons of system response for various system

conflgurations and number of recurrent jobs, large bandwidth
availability — Number of steps between schedules . . . , . .

x1

147

148

149

159

151

-
wn
[x%]

153

155

156

157

158

160

6-31

6-32

6-33

6-34

6-35

6-36

. .6-37

6-38

6-39

6-40

6-41

6-42

Relative comparisons of system response for various system
configurations and number of recurrent jobs, limited
bandwidth availability - Processor utilization+ + +

Relative comparisons of system response for various systen
configurations and number of recurrent jobs, limited
bandwidth availability - Memory space and bandwidth
Ut1lizations . « 4 v 4 4 e e e e e e e e b s e e e e e

Relative comparisosn of system response for various system
configurations and number of recurrent jobs, limited
bandwidth availability ~ Memory space availability

Relative comparisons of system response for various system
configurations and number of recurrent jobs, limited
bandwidth availability - Job completions . + . . + + « « & . .
Relative comparisons of system response for various system
configurations and number of recurrent jobs, limited
bandwidth availability - Simulation steps between schedules. .

161

l62

163

164

165

The impact of TMR jobs on the memory allocation problem - Job o

characterigtics and system configurations . . + . . « + « « &

The impact of TMR jobs on the memory allocation problem -
processor utilizations . . ¢« « o ¢ v 0 4 a4 e sk ek ke x s

The impact of TMR jobs on the memory allocation problem =
Memory space and bandwidth utilizations .+ . « & + « « &+ « & &

The impact of TMR jobs on the memory allocation problem -
Number of simulation steps between schedules « «

The impact of TMR jobs on the memory allocation problem -
Number of jobs completed . . « + « & & v & v v v 4 & 4 & v v s

The impact of TMR jobs on the memory allocation problem—
Available space immediately before and after schedules

The impact of TMR jobs on the memory allocation problem -
Relative numbers of completions for TMR jobs . . . «« .

xii

168

169

170

171

172

173

B-9

B-10

B-11

MAIN PROGRAM , .
ICARD subroutine
BULK subroutine
STAT subroutine
SETUP subroutine
ENTER subroutine
RECHEK subroutine
FEC subroutine .
CEC subroutine .
HLS subroutine .
NORPRB subroutine
LLK subroutine .
PEX subroutine .
NFMAL subroutine
MAPREF subroutine

MEMRLS subroutine

MASGN subroutine .

OVFLMG subroutine

.

L3

- xiii

211
214
218
221
293
225
227
231
233
237
243
245
253
257
259
264
268

270

I. INTRODUCTION

A multiprocessor computer system is a computer system in which
two or more hardware processing units simultaneously share a common
memory. A generalized block diagram of the hardware configuration
of a multiprocessor is shown in Fig. 1-1. Traditionally the hardware
cost of the computer memory has represented the lion's share of the
total hardware cost of the system. This high cost of the memory has
influenced the architecture of the general purpose cémputer system
more than any other single factor. One exemplification of this heavy
influence is the hierafch& of memory found in most members of past
and present generations of général‘purpose computer systems.

Thg desire to make full utilization of the relatively high cost
memory of a computer system foreshado%ed the arrival of the multi-
processor system. Thus, it is not syrprising that this variant of
computerlarchitectureris almost as old as the concept of the stored
program computer itself [7], {8], [9], [10]. However, cost of the
computer system's memory was and is still not the only impetus for
studying the practical implicatio;s of such systems. The multiprocessor
system arises quite ﬁaturaily in the realm of high reliability and
high availability systems. Tﬁe multiprocessor system also provides
an ideal vehicle for outward expansion and for tailoring for specific

applications.

CcPU < 'S
#1 I
N
o
CPU E MEMORY
#o [E—® F MODULE
C #1
O
. N
. N
o E MEMORY
' ¢“«—p C
4 T " > I;OEULE
I
, C
N .
I/0 Iop —p e
#1 N]
DEVICES ' E +
T MEMORY
ARD W g > MODULE
4—» 0P €—¥» # M
AUXILIARY # 2 R -
. K
STORAGE .
¢—p 1P g—P
1
fig. 1-1 Multiprocessor Hardware Block Diagram

3

Notwithstanding this considerable motivation for the develop-
ment of multiprocessor systems, there have in reality been a large
number of discussioms in the relevant literature about various aspects
of multiprocessors but very few physical implementations, at least not
~ in view of the tremendous growth of electronic digital computer systems
during the.past twenty years. This striking 1a§k of prolification of
. ﬁultiprocessor systems may be attributed in part to the fact that
technological improvements in speed, cost, and reliability of the
basic hardware components have kept pace with the vast majority of
application requirements and it is only from a handful of potential
, apﬁiications such as space exploration, weather forecasting, airport
aircraft control and missile defense systems that requirements of
extreme reliability, availability and/or processing speed have exceeded
that obtailnable from conventional computer configurations. The inherent
modularity of -the system shown in Fig, 1-1 allows great flexibility
in expanding a given system to meet increased needs, in tailoring for
specific applications and in obtaining highly reliable systems. Another
advantageous feature of this configuration is that existing applications
software written for conventional uniprocessor computers may be run on
a machine of this configuration without alteration. No intrinsic
penalty in overall system efficiency or system reliability is incurred by
this non-alteration. Thus the huge investmént already made in high level

applications programming is not wasted when going from a conventional

uniprocessor system to a multiprocessor of the form shown in Fig. 1-1.

4

Difficulties with the Multiprocessor

The realization of the advantages offered by the multiprocessor
configuration is contingept upon overcoming, among other things,
certain operational difficulties associated with its configuration.
Very broadly, these difficulties revolve around recognition and effec-—
tive exploitation of parallelisms in all phases of the computer opera-
tion.

One group of these pfoblems ig concerned with scheduling and
allocation of the system's resources to jobs in the system's input
queve, In accompliéhing these tasks compromises must be made Between
considerations of overall system efficiency and service to individual
jobs. In this regard, the system's supervisory programs tend to become
quite complex due to the large number of contingencies that may arise.

| The interaction between the system's hardware processors arising
from their simultaneocus use of the main memory's bandwidth is also of
central importance in the multiprocessor system. In a multiprocessor
system several hardware processors are simultaneously using the common
storage area and access contention problems arise. This tends to
negate potential speed increases that the multiprocessor configuration
offers. Thus the hardware interconnection between the memory and the
processors can become a considerable problem due to the required com-
plexity of the controlling mechanism and the speed at which interconnec-
tions must be made when several processors are simultaneously using

the mémory.

The supervisory system programs and the space that -they occupy
-or hardware needed for their implementation represents overhead of the
system and tends to nullify some of the advantages promised by the
- multiprocessor configuration. Thus only the simplest of algorithms
should be contemplated for these applications. Indeed, the speed
requirements of the processor to memory intercomnection problem are
so severe that hardware iImplementation appears to be the only reason-~

able approach.

Putpose of This Paper

It is the purpese of this paper to investigate some of the
problems associated'with the multiprocessor such as job scheduling,
imemory allocation, memory access conflict under both non-bandwidth
limiting and bandwidth limiting (i.e. localized bandwidth limiting
and mismatch) and the processor to memory module interconmection
problem.- In view of the importance of the modular multiprocesser to
high feliability systems, problems concerned with use of a multipro-
cessor as a4 TMR processor will also be investigated. Some of these
problems are of a nature that analytical techniques are invalid due to
the pross simplifications required to make them manageable. These
gimplifications cause the results to be of questionable value when
applied to practical situations of much broader scope than the analyt-
ical model. Thus, for some of these problems, a computer. simulation
model is the primary instrument through which these investigations are

carried out. Actually the development of such a model consumes a

6

considerable portion of the paper. This develéﬁméﬂé‘prOVides ingipght
into specific problem areas as well as an overview of how tﬁe inter-
actions of many of the specific problems affect the complete system.
The model then becomes more than an intermediary to some specific end.
For convenience, and due to the fact that it is believed that most
potential application areas for the modular multiprocessor lie in

this direction, the model assumes that the input job stream is like
that of a real time centralized process control computer or a central-
ized gspace borne computer, i.e., the input job stream consists of a
fixzed set of recurrent jobs of either the periedic or aperiodic type.
Thus a minimal amount of knowledge concerning bandwidth requirements of

each job may'be assumed.

Other Studies Related to the Topic of this Paper

The following topics are a small sample of those that have been
and are currently being discussed in the literature. GSome of the papers
from which the topics were extracted had a considerable influence con
the direction taken in this paper. Others tend to point out alternative
approaches or place different emphasis on those areas of general agree-~
ment and thereby help to put the present work in proper perspective.

The toplcs are subdivided into the following categories: Problem

areas common to parallel processing and parallel processors, high and
low level scheduling, task graphs, criterion for parallel processing,

parallelism recognition, and dynamic memory allocation.

Problem Area Survey

Lebhman [22] has summarized a number of broad problem areas that
are common to parallel processing and parallel processors in general.
Both hardware and software problems were surveyed. The software
problems include requirements.of high level languages in the recogni-
tion, and/or provision for expression, of. the parallel structure of
computer programs at this level as well as the additional burdens
placed on the executive poftion of the system in the areas of communica-
tion and interaction between the parallel segments of the program
~ensuing from effective exploitation of the recognized or expressed
parallelisms. Hardware problems surveyed include the processor to
memory interconnection problem. The paper focuses on bringing to
light the vast potential that parallel processing systems have in
influencing the future development of the field of computing that is
a result primarily of their amenability to improvements in availability,
reliability, efficiency, expandability and performance to cost ratio.
The results of simulation in a multiprocessor environment of certain
applied mathematical problems were included. The paper has an extensive
bibliography that traces the inception and solution development of

many of the problem areas up to the point in time of the paper.

High and Low Level Scheduling

Lorin [15] has classified the scheduling function into two
major parts: High level scheduling and low levei séheduling.

Operating systems that are high level dominated have traditionally

8
been called batch mode or service oriented. Those that are predom-
inantly low level are real time, time shared, or resource oriented.

The primary function of the high level scheduler is to act as
an interface between the operating system and its operational environ-
ment. It does this by selecting from the list of jobs that have entered
the system and are candidates for activation the next job(s) to be’
paséed”tolthe active list. As each job enters the system a profile
of its major attributes such as priority, urgency, initiation time,
deadline and precedence relations are stored in a table. It is primar-
ily on the basis of these parameters that the selection is made. Other
inputs to the high level scheduler include initiation signals which
are triggered by a time clock or events such as new job arrivals, job
completions, I/0 completions, release of key resources, and system
error. The output of the high level scheduler consists of a partially
ordered list in which are reflected the demands placed on the system
in absclute and relative time by the input job stream.

The function of the low level scheduler is to dynamically allocate
time resources to jobs in the active list. The low level scheduler
insures that jobs in the active list receive service at rates consistent
with assigned external priorities and that the available resources are
used in a semi~optimum fashion. In the performance of its function the
low level scheduler has a central problem; task switching. In general
task switching occurs when the current task in control of the CPU is
unable to continue due to a need for I/0 service or service from some

other asynchronous task. Another but somewhat more subtle difficulty

with which the low level scheduler must contend is the fact that there
are incompatabilities between resource balance and external priority.
A basic concept for resource allocation is to grant high priority

to 1/0 bound jobs so that channel and peripheral device utilization

is high and assign lower priority to CPU bound jobs so that the CPU
bound jobs tend to run during the interxupted times of the I/0 bound
jobs. This concept is the thesis of multiprogramming. Even when
priority'is'used in a resource balancing scheme it is usually only
responsive to an average of the I/0 or CPU boundedness of the job and
is not respeonsive to run to run variations or to the fluctuations

oceurring during the course of a particular run.

Task Graphs

Schedules for jobs based on task or computation graphs for
execution by multiprocessors have been studied by Hu [16] and by
Ramamourthy, Chandy and Gonzalez [17], [18]. A task graph or compu-
tation graph is a partially specified directed graph whose nodes
denote some entity of processing to be done and whose arrows are used
to represent precedence relations among the entities. The processing
time and meﬁory space requiremen? for each node may alsc be shown on
the graph. Schedules based on these grapﬁs determine'the sequence
in which to process the various tasks of the graph in order to complete
the graph in the minimum amount of time as well as the minimum number
of processors required, or given that n processors are available

a schedule is determined so that the graph is executed in the minimum

'10"ff13
amount of time. Generally such schedules do‘not'allow preempting of
tasks nor do they consider memory contention problems. Muntz and
Coffman [19] consider the two processor case in which preempting
is taken into consideration. Graham [20] and Manacher [21] have
studied an aspect of schedules based on task graphs known as Richards’
anomalies which were first noticed by P. Richards in 1960. Briefly,
Richards noticed that a slight decrease in the execution time of
certain tasks within a task graph could cause considerable increases

in the overall execution time of the task graph.

Criterion for Parallel Processing

Bernstein [23] has studied a method for determining whether two
segments of a program are executable in parallel by observing during
the execution of each segment how memory locations used by each segment
are treated. In this regard four cases were identified. The four
cases are as follows:

(1) The location is only fetched during execution of segment si.

(2) The location is only stored during execution of segment si.

(3) The first operation on this location is a fetch and subsequent

operations of segment s; stores into this location.
g i

(4) The first operation involving this location is a store and
subsequent operations of si fetches this location.

The parallel processability of the various segments of the program is
determined from logical unions and intersections of the above four

classes of memory locations for each program segment s4.

11

‘Parallelism Reécognition

Reigel [27] has studied paréllelism in computiﬁg systems and
has identified six levels at which parallelisms capable of being
exploited occurs. The six levels identified Aré as follows:

(1) Between independent jobs

(2) Between gfoups of statements (tasks) within a jbb

(3) Between statements

{4) Withinlexpressions

(5) At machine language instruction interﬁretation level

(6) At machine bit level

' Parallelisms between independent jobs and between tasks within

a job are exploitable by multiprocessors having only a small number
of processing units as well as parallel processing systems having a
large number of processing units. A task graph may be used to provide
the parallel procegsing system with sufficient Information for efficient
exploitation at the task level but some preprocessing is required to
obtain the task graph. Parallelisms between statements are more readily
exploitable by array processors. An example of this level of parallel-
ism is contained in the two statements x =A+ C* D and y = B+ C * D,
Another example is each statement in the range of a DO loop. Parallel-
isms within expressions are readily exploited by pipe line processors.
For example the expression A + B + C * D would require 2 add periods
and 1 mul;iply period on a serial processor but it may be accom-

plished in the time required for one add period plus the larger of an

12
add or a multiply period 1f an adder and a multiplier are éimultar
neously available. There is the possibility of exploiting parallel-
isms at the macﬁine instruction intexpretation level on any type
processor since all the phases of instruction fetch, decoding and
execution are not strictly sequential, especially with microprogrammed
processors, Parallelism at the machine bit level is also exploitable
with any type processor and was probably the first to be utilized.
These parallelisms include widths of data paths and registers in the
machine. All these levels of parallelisms are explored in considerable

detail by Lorin {15].

Dynamic Memory Allocation

Randell and Kuehner [24] have associated four aspects of dynamic
memory allocation that, in some manner, are descriptive of the capa-
bilities and fundamentals of present hardware oriented dynamic allo-
cators with the concepts of name space, predictive information,
artificial contiguity, and uniformity of units of storage allocation.

Name space refers to a set of names thgt a4 program can use to
refer to items of information. The simplest name space consists of
the set of integers 0, 1, 2, reees I used as absolute addresses in
the main memory. The name space can also be divided into a number
of segments with each segment composed of a linear name space. There
is no implied ordering of the segment names although this may be done
in which case the segment pame space is said to be linearly segmented.

If there is no ordering among the segment names the segment name space

13

is gaid to be symbolically segmented. The siges of the various
segments need not be the same nor does the size of a particular
segment necessarily remain constant during the execution period of
some program having space in the segment. Thus the segmented name
space differs from the generalized notion of a two—dimensional'matrix,
although it is sometimes referred to as a two-dimensional name space.
The major disadvantage of the segmented name space 1s the complexity
of actually addressing the physical storage linearly. Its major
advantages are itz added utility and convenience in dynamically
allocating storage, movement of information between levels of storage,
‘protection and sharing among programs, error detection in addressing,
and in relieving the programmer of the responsibility of name assign-
ment.

Predictive information refers to methodsffor predicting the
probable use of storage over a relatively short pericd of time in the
near future. These predictions may be explicitly incorporated by the
'progfammer, discovered by a compiler, or made by observations by the
system of previous utilizations, This information may be used to
determine when to bring new blocks of storage into main memory and
which blocks already in the main memory have the lowest probability of
being referred to in the near future and thus may be replaced.

Artificial contiguity refers to the concept of mapping a contig-
uous name space Into a nmon-contiguous address space. This is accom-

plished by providing an automatic mapping mechanism between points in

14

programs at which names are referred to and the system's hardware
for accessing a corresponding absolute address. The mapping scheme
is invisible to the program that refers to the name. The most frequent
use for such schemes is to-disguise or artificially extend the apparent
size of the system's physical main memory space. S8ystems employing
this technique are often referred to as virtual storage systems., The
major disadvantages of the use of a mapping scheme for provision of
artificial contiguity are its cost and reduction of addressing speed.

A dynamic memorydallocation scheme may allocate space in fixed
size blocks (a single size or several sizes) or an attempt may be
made to make the size of allocation just equal to the size needed by
-the information. In the latter case the memory space tends to become
fragmented into many small pieces with an attendant high overhead for
linking them together or a lot of shuffling of blocks of information
s0 as to consolidate the small blocks back into larger more useful
blocks. 1If this linking or relocating of blocks of information is not
done then the net result may be that a portion of ma2in memory may be
unusable for a certain percentage of time. The extent of this unus-
ability depends, to a considerable degree, on the ratio of the average
block size to that of the total memory size. The technique of
dynamically allocating memory only in fixed size blocks 1s exemplified
by paging systems in which the program usable portion of main memory is

broken up into page frames all of the same size. Hardware then auto-

15

matically performs placement of pages as they are referenced by the
program during execution. This form of dynamic memory allocation has
been discussed by Denning [25]. Various replacement algorithms have
been studied by several people including Belady [26]. 1In such systems
Ithe actual placement of blocks is made trivial once the replacement
algorithm has decided which page to push out if this is necessary.

The actual fragmentationm of memory does not occur with paging systems,
but the effect of fragmentation (i.e. time-space product waste) does
occur since a given program may be occupying many pages in memory while
waiting on the transfer of a page following a page fault. TFragmentation

can also occur within pages since many page frames may be only partially

used.

II. A DESCRIPTION OF THE MODEL

Cursory Discussion

s

The computer program of the model generates, schedules, allocates
memory to, assigns processors to, and executes sets of jobs whose
parameters are controlled by data and commands from the input stream.
It also prints out- statistics concerning service to individual jobs
and utilization of all system resources., The execution proceeds in
a discrete manner with some assumed numbef of basic clock periods per
simulation step., This number is a variable of the system.

Two types of memory allocators are used. One is a so cafied
'optimum-fit' algorithm [11] in which memory allocations are made on the
.basis of tﬂe number of available blocks and the requirements of the
© job, The second allocator is an adaptation of the 'best-fit' algorithm
[12] but also utilizes information concerning the bandwidth of the
available blocks of memory. The goodness of fit in bandwidth and space
is fed back into the job scheduler for determination of priority with
this second method.

Under both types of memory allocators an allocation is assumed
to be in one contiguous block. Allocations for TMR jobs are made ip
~triplicate from three sets of disjoint memory modules. Although the
memory consists of M medules all of the same size and speed, it is
viewed as one contiguocus block in so far as the allocation routines are

concerned.
16

17

The system utilizes a form of community multiprogramming in
which both TMR as well as SIMPLEX jobs may be in progress simultaneously.
The ‘entire system is priority driven. A schedule in this system does
not consist of an explicit assignment of resources for predetermined
time intervals to particular jobs, but rather, consists of the more
flexible priority ordering of jobs based on terms concerned with exter-
nal priority, amount cof time spent in the job queue, nearness to some
target time, and memory preference. Interrupts for I/0 operations
are included in the model. Job execution proceeds in essentially
two phases as follows:

Phase 1--A number of memory access requests is genevrated for

each active job from a normal distributioﬁ with mean and standard

deviation determined by the speed of the processor and some

assumed average number of processor cycle periods per memory
access which is based on the particular characteristics of the

Jjob.

Phase 2--Some portion of the number of memory accesses requested

by each job is granted to each job. This portion is based on

the number available from the job's memoxy space, the priority

of the job relative to that of any other active jobs having

space in the same modules and the number of memory accesses

actually requested by the job.

A job is considered to be active at a particular simulation step if it

has been scheduled and has all the resources that it needs for processing

18

at that particular step. Scheduling is done in small batches and is
triggered by comparing short term system utilization averages with
long term utilization averages as well as considerations of instan-
taneous system and job queue status. Tﬁe input job stream is assumed
to be like that of a centralized process control computer or a central-
ized space borne computer, i.e. the jobs consist of a fixed set (fixed
for the duration of a particular run) of which some are executed on

a periodic basis while others are executed aperiodically. The system
has provisions for handling precedence relations among the jobs in the
~ input job set. An estimate of the bandwidth requirements for each job
is assumed to be available for use with the feedback scheduler/allo-
cator.,

Block Diagram Description

A simplified block diagram of the model is shown in Fig. 2-1.

" The main program accepts commands and data from the input stream. At
the start of a sequence of simulation runs it Invokes a set of routines
" labeled Job Generator which generates a set of jobs with characteristics
specified by the data from the input stream and places these jobs into

a bulk storage table. Upon command from the input stream a specified
selection of these jobs is loaded into the job status and control table,
The main program then calls the High Level Scheduler which performs

a limited amount of pre-processing on the set of jobs in the job status
and control table. The High Level Scheduler then calls either the

Future Events Chain Manager or the Current Events Chain Manager for

- 19

JOB FUTURE
JOB STATUS EVENTS
GENERATOR AND CHAIN

CCNTROL MANAGER

TABLE

HIGH CURRENT
MATN LEVEL EVENTS
PROGRAM SCHEDULER —-——a CHAIN

MANAGER

; 4
LOwW
LEVEL MEMORY PROGRAM
SCHEDULER ALLOCATOR EXECUTER

1

I

|

g INPUT COMMANDS AND DATA

OUTPUT STATISTICS

Fig. 2-1 BSimplified Block Diagram of Simulaticn Model

20 -

placement of those jobs for which a target time could be set up during
the initial pre-processing into either the Future Events Chain or the
Current Events Array depending on the nearness of this target time to
the present time. Control is then returned to the Main Program. If

the non-feedback scheduler/allocator is specified in the input data
then the Main Program calls the Current Events Chain Manager for
chaining the jobs in the Current Events Array together according to
their internal priority. Control is then returned to the Main Program
where upon the Memory Allocator is called for allocation of main memory
space to as many of the jobs in the Current Events Chain as is possible.
Control is then returned to the Main Program. If the feedback
scheduler/allocator is specified then the main program first calls the
Memory Allocator for reserving space for as many of the jobs in the
Current Events Array as possible. It then calls the Current Events Chain
Manager for chaining together all the jobs in the Current Events Array
according to their internal priority. In this manner the goodness of
fit in both space and bandwidth influences the internal priorities of
the jobs in the Current Events Array which are allocated memory.

Contrel is then returned to the Main Program. In either of the above
cases after memory has been allocated to as many of the jobs in the
Current Events Array as possible and the jobs have been chained together
according to priority the main program calls the High Level Scheduler
for an initial assignment of Processors. After this initial assignment
of processors the Program Executer is called for ome step of execution

processing for all active jobs.

21

The Program Executer performs an execution processing step by
generating a number of memory access requests for each active job
and then granting some portion of this number of requests to each of
the active jobs., After granting memory accesses the Program Executer
updates the completion counters for each of the active jobs and checks
for I/0 interrupts and processing completions. If an I/0 interrupt
point has been reached or a job has completed the Program Executer
calls the Low Level Scheduler for reassignment of processors. Before
returning to the Main Program the Program Executer updatestata arrays
containing information concerning the utilization of system resources
for the present step of execution processing and service to individual
active jobs. After returning to the Main Program following a step of
execution processing the Main Program checks to see whether a new
schedule should be initiated or whether or not the present run has
.been completed. -If neither of these events is to cccur or has happened
then "the simulation clock is advanced by one and the Future Events
Chain Manager is called to remove any jobs from the Future Events Chain
whose next event time has been reached. If a new schedule is to be
initiated then the Memory Allocator and Current Events Chain Manager
are called to perform the necesséry processing. Processing continues
in this manner with control alternating between the Main Program and
Program Executer until the run has been completed or until no active
jobs are in the Current Events Chain. In case the run is not completed

but no active jobs are in the Current Events Chain the simulation clock

22

is advanced to the time of the leading event in the Future Events Chain
" provided such an event exists.

-In case there is no such event in the Future Events Chain the
simulation run is abncrmallyrterminated and no further ruﬁé can be
initiated. 1In case a simulation run completes normally-the Qtatistics
for the run are printed and another run ﬁay then be initiated by a
command from the input stream.

Let us now consider some of the topics that were‘mentioned or

implied above in more detail.

Granularity of Simulation Time

Each step of simulation corresponds to a large number of CPU
cycle periods or alternately a smaller number of memory module cycle
periods. This allows a simulation rum to proceed in a reasonable amount
of real time. However, there are bounds on the amount of granularity
that can be tolerated if meaningful results are to be obtained.
Specifically, peak demands on memory access requests tend to become
filtered by averaging during each simulation step. Thus very little
slow down of the overall system due to memory access conflict that
would arise in a real situatiom due to two or more processors simul-
taneously executing programs from a common memory shows up in the
simulation. Also, bandwidth utilization tends to be higher with the
simulator than it would Be with a real system due to this same cause.
If I/0 interxrupts are frequent in each job or if thé average number of

simulation steps per job is small then there tends to be proportionally

23

large amounts of wasted simulation time because the step in which the
interrupt or completion occurs is on the average only half used by the
job for which the event occurs. The memory bandwidth that the inter-
rupted or completing job would have claim to can be redistributed to
any other active jobs having space in the same modules but processors
are not reassigned, at least not for further processing, until the end
of the simulation step. Thus processors assigned to interrupting of
completing jobs are actually only partially used during the step in
which the Interrupt or completion occurs.

From the above discussion we may conclude that there are necessary
constraints on the relationships between the granularity of simulation
time, mean processing speed of jobs, frequency of interrupts and average
total number of memory accesses required per job for completion. On the
one hand the number of memory module cycle periods per simulation
step should be small in order to more closely approximate a real
system but on the other hand it should be large in order to keep the
amount of real processing time within reasonable bounds. Thus the number
of basic cleck periods per simulation step is made a parameter of the

system,

The Internal Priority Equation

The scheduling and allocation of system resources to individual
jobs is priority oriented. Priority provides a convenient, compact, and
versatile vehicle for driving the system. It may be used to express

both the absolute and relative demands placed on the system by the

24

input job stream. The priority equation used by the model has the
following form:

INP = MIN(MAXPR, Wp*EXP + Wp*NDLN + W3®IWAIT + W, *MAPF)
where INP represents intermal priority, MAXPR is the maximum priority
allowed, EXP is an externally declared priority, NDLN is a measure of
nearness to some target time or deadline, IWAIT represents the amount
of time that the job has spent in the ready queue and MAPF is a
measure of how close the requirements of the job for space and band-
width match ﬁhat available from the block from which its main memory
space was obtained. The variables Wy, Wy, Wy and Wy are weighting
factors for their associated terms. The exact meanings of the terms

NDLN, IWAIT and MAPF are as follows:

lpresent time — target time[)

NDLN = MAX {0,V{ -
D &L 1 estimated minimum processing time

1 A
MAX (0, P X)) if0<Vysl

Vo % X if Vo >1 and X 351
IWAIT =
Vo * (1 + .5X) if v, > 1 and x > 1

time in read ueue
where X = * J 9 - -
vy min processing time

25

0 if IFBK = 0]
MAPF = Max over D5M * MMSPF previouslyl »
available +) selected
blocks at MMAPF * DUM if DUMg] blocks at
time of or MMAPF/DUM if DUMS1 present
schedule schedule
L if IFBK = 1 -
MMS
DSM = oo
where SM PLK SIZE

estimated available bandwidth of
space in block occupied by job
estimated mean bandwidth required by job

DUM

MMS = Main memory space required,

MMSPF = Memory space preference factor

MMAPF = Memory access preference factor

Vi, V2 and IFBK are all variables of the system

From the priority equation we may observe that the scheduler
utilizing this equation as its activating mechanism may be made to
take on many forms. For example, if Wl, Wy, and W4 are small and Wj
is large with V) > 1 the scheduler tends to operate according to the
first in first out discipline, If 0 < V, < 1 then it works like a last-
in first-out scheduler., If Wl’ W3, and WA are small but W, 1is larée

then the scheduler is similar to a deadline scheduler, etc.

I1/0 Interrupt Mechanism

The I/0 interrupt mechanism is facilitated by assigning one of
a limited number of normalized processing curves to each job at the

time of job generation. There are no specific requirements for these

26

curves but they should loosely approximately the manner in which
computer programs tend to operate in regard to the points in the
program at which the I/0 processing occurs and the duration of these
interrupts. Many computer programs initially read a number of
variables and arrays into the main memory, perform some operations on
these variables and arrays, and finally output some data. Although
no figures are available, it is believed that the initial read operations
usually involve a larger number of operations. Thus most of the
processing curves used by the model assumes on the order of two to four
times as much I/0 processing near the beginning of the curve as near
the end. The program which calculates the expected minimum processing
time for each job during the initial prepfocessing phase immediately
ﬁefore a simulation run assumes that the number of main~memory accesses
between interrupts is from a normal distribution for both CPU and IOP
processing. Therefore, closer estimates of the minimum processing time
can be expected 1f these numbers of accesses are actually from a normal
distribution.

The manner in which these curves are actually used to obtain
the I/0 interrupts is as follows: In the job status table for each
job is a completion count word and a next iﬁterrupt point word. The
contents of the next interrupt point word are updated with the number of
memory accesses required before the next interrupt-at the beginning of
program execution and immediately after each interrupt. This is done by

multiplying the total number of CPU memory accesses or IOP memory

27

accesses, as the case may be, for the job under consideratlon by the
abscissa points of the normalized processing Eurve at which interrupts
occur. The smallest such product that is greater than the old next
interrupt point is the new next interrupt point. The Program Executer
then compares the completion count with the current next interrupt point
word after each step of program execution in order to determine when the

interrupt point has been reached.

Job Switching

Multiprogramming is a technique for improving system efficiency
in which two or more jobs are concurrently executed, i.e., second job,
third job, etc., is started before the first job completes. Thus,
when a job interrupts for 1/0 processing the CPU may be reassigned to
some other job, thereby avoiding waste of CPU time. The major purpcse
of the Low Level Scheduler is to manage the system's processor time
resources. It does this by job switching in a multiprogramming
environment. In conjunction with job switching is a preempting scheme
in which jobs wanting a CPU may preempt lower priority jobs that have a
CPU. Due to the assumed nature of the bulk storage medium that the
I0P's operate with no preempting of IPOs is allowed. The option is also
available whereby jobs interrupting for 1/0 processing may voluntarily
return their CPU{s) to an available pool or retain the CPU(s) during
the I/0 processing depending on their_priority and the number of jobs
in the job queue. The allowed preempting is as follows:

1. A TMR job may preempt the lowest priority TMR job among

the three lowest priority jobs of lower priority.

/

28

2. A TMR job may preempt the three lowest priority SIMPLEX jobs
of lower priority provided no lower priority TMR job is among
the three lowest priority jobs.

‘3;- A SIMPLEX job may preempt the lowest priority SIMPLEX job
of lowerkpriority.

4. A STMPLEX job may preempt the lowest priority TMR job of lower
priority provided there is no lower priority SIMPLEX job.

Upon voluntarily giving up CPU(s) at I/0 interrupt ipitiation the

Low Level Scheduler looks for other jobs for reassignment of CPU{(s) to.

- The following‘séheme is in effect.

‘Case 1. The interrupting job is TMR.
All.three of the interrupting job's CPUs are assigned to the
highest priority TMR job among the three highest priority jobs
that want CPUs provided such a TMR job exists, otherwise as
manf of ﬁhe CPUs as possible are assigned to the highest
priority SIMPLEX jobs that want a CPU. Any remainingrunassigned

CPUs are placed in an idle state.

Case 2. The interrupting job is SIMPLEX.
1. The highest priority job that wants a CPU is SIMPLEX.
The interrupting job is assigned to the highest priority
~ job that wants a CPU.
2. The highest priority job that wants a CPU ig TMR.
The interrupting job's CPU is assigned to this TMR job

provided there are two other idle CPUs that may also be

29

assigned to this TMR job or there 1s one ‘idle CPU and at
least one simplex job of lower priority that may be
preempted of its CPU. If there is no idle CPU then two
lower priority SIMPLEX jobs that may be preempted of their
CPUs will suffice, otherwise, the interrupting job's CPU.
is assigned to the highest priority SIMPLEX job that
wants a CPU if one exists. If all the above tests fail

then the CPU is placed in an idle state.

A similar scheme is used upon completion of I1/0 processing in
which I0Ps are to be reassigned except that, as already mentioned, no

preempting of I0Ps is allowed.

Methods for Trigpering New Schedules

The frequency of and points in time at which new sﬁhedules are
initiated is of great importaﬁce in regard to system efficiency as well
as service to individual jobs. If new schedules are too frequent then
the amount of overhead attributed to schedule processing can become a
considerable portion of total system processing. Conversely, if new
schedules are too sparse or do not occur at the correct points in time
then system thruput decreases. The model attempts to detect when a new
schedule should be initiated by comparing short term running average
CPU, I0P, and memory bandwidth utilizations with long term averages
in conjunction with instantaneous conditions of job queune status and

memory space availability. In order to facilitate a better understanding

30

of this let us make a few definitions.

Definition: Processor step utilization (PSU)

poy = 1 _ S8CT wmac(i)
NPROS i) NMAR (1)

where NPROS is the total number of processors, NACT is the nuﬁber of
7 _aqtive processors, NMAG(i) is the number of memory accesses.
granted to the ith active processor and NMAR(i) is the number of
' memory accesses requested by the it} active processor.

Definition: Bandwidth Step Utilization (BWSU)

NMAG
BWSO = =X
5 NMAA

where NMAG = number of memory accesses granted
and NMAA = number of memory accesses avallable,
The short term running average utilizations are obtained as

follows:

RPUy_; * NSTEP-1 ., pgy/NSTEP

RPUY
_ NSTEP

: * NSTEP-1
RBUI RBUI_1 NSTEP.

1l

+ BWSU/NSTEP

where RPUy and RBUT are running processor and bandwidth utilizations
at step I and NSTEP is a variable of the system which essentially
adjusts the number of previous steps over which the average is taken.

This is not the same type of running average that is used in statis-

31

tical work but it serves the purpose here of smoothing step fluctu-
ations and requires storage of only the current estimate. Thus the

new schedule equation may be of .the form

NEW SCHED = TSLS * [AVMS * NJMT + (STCU + STCU - NICU)
*(STIU + STIU * NICU) -+ {SCWM +

SCWM * (WMNS + WMNS * NWMNS))] 2.2

where all the variables are Boolean variables and have the following

meanings.
1 if the time since last schedule > N
TSLS =
0 otherwise
1 if the amount of available space
AVMS = is > one-half the total memory space
0 otherwise
1 if the number of jobs waiting
memory is > 1/2 the number of scheduled jobs
NIMT =
0 otherwise
1 if ghort term CPU utilization
is <« TH1 * long term CPU utilization
STCU =
0 otherwise

1 if the number of idle CPUs is

> 1/2 the number of CPUs
NICU

"

0 otherwise

32

1 if short texm IOP utilization
is < TH1 * long term IQOP utilization

STIU. =
0 otherwise
1 if the number of idle IOPs is
_ > 1/2 the number of IOPs
NIOU = 4
0 otherwise
1 if the numher of jobs that are
scheduled and waiting memory is
SCWM = - >.0 and the amount of free space
o is > 1/4 the total space
0 otherwise
1 if the number of jobs waiting memory but
not scheduled is > 0 and at least 1/4 of
WMNS = the total memory space is available
0 otherwise —
1. if there are any jobs in the job queue
that are not waiting memory and have not
= been scheduled

 NWMNS

0 otherwise
and ¥ and TH1 are system parameters.

Memory Allocation Schemes

"Best fit' and 'first fit' memory allocation methods are described
lby anth [12]; Briefly each algorithm assumes that information con-
cerning the available blocks is maintained in a list that is linked
according to starting addresses in main memory. In the first-fit

scheme when an allocation of size X is to be made a sequential search

33

of the list is made beginning at the top of the list until the first
block of ‘size > X is found. An allocation of size X is then made from
this blocﬁ and any remaining portion of the block is left in the avail-
able list, otherwise, the list is relinked around this block. The
best fit method assumes that the entire list is searched and the
location in the list of the best fitting block of size greater than or
equal to X is retained. If such a block exists then an allocation is
made from this block. An 'Optimum Fit' strategy.is described by
Campbell [11]. This method assumes that in addition to the available
list the number N of available blocks is also maintained. Before an
allocation is made an integer F(N) is calculated where F(N) < N. The
linked list is‘then searched through the first F(N) - 1 entries and

the location of the best fitting block is retained. The search is

then continued and the first block that is a better fit than any of the
preceeding blocks is selected.

There are several measures of the effectiveness of the memory
allocation scheme. One such measure is its ability to make an alloca-
tion in omne contiguous block at any time. Under such a measure the
scheme which tends to keep most of the available space in a single
contiguous block tends to have as’good (if not better) chance for
making a large allocation at any time as any other scheme. Simulation
seems to indicate that under this measure there are only marginal

differences between the first-fit, best-fit and optimum-fit algorithms.

34

Other measures take into consideration the amount of time that
is required to implement the algorithm. The algorithms would defiw
nitely be ranked first-fit, optimum—fit and best-fit if the only con-
sideration were that of minimum time for implementation. However,
even here, whether or not this difference is significant in a practical
- sense depends on the actual average number of available blocks of
-storage. In this regard, it is noted in passing that there appears to
be some negative correlation between the ratio of average request size

te total memory size and the average number of available contiguous
‘blocks of storage.

The simulation model uses two types of memory allocation schemes.

The first method utilizes the optimum-fit algorithm in a non-feedback
scheduler/ailocator. The second method uses an adaptation of the
best-fit algorithm In a feedback scheduler/allocator. In this second
allocation method some loose optimization in bandwidth ﬁatching is
attempted by associating some estimated bandwidth requirement for the
jobs to which memory is to be allocated with an estimate of bandwidth
availability from the available blocks of memory at allocation time.
As already noted during the discussion of the internal priority equation
this goodness of fit in bandwidth as well as space also influerntes

the scheduleré via the intermal priority of each job. For this reason
this method of scheduling and memory allocation is called a feedback

scheduler/allocator.

35

Mechanics of the Optimum~-Fit Algorithm

Let N = number of available memory blocks.

Let MAVL be the list of available memory that are linked according
to starting address in main memory.

Upon memory request, calculate an integer, F(N), defined by

L 1 1 1 1

1
ORGSR 1) N 751

or for N > 9, g— < F(N)< §-+ 2 ~.%

where ¢ = 2,718,
Then search the linked 1ist, MAVL, and select the first block after the
FN) - 10 p1ock that is a better fit than any of the previous blocks.
If no better fitting block ié found after block F(N) - 1 then select
the best fitting block among the first F(N) - 1 blocks, provided one
was found in this group.

The rationale behind the optimum-fit strategy is explained %n
[11]. It should suffice here to say that the method assumes that the
block sizes are uniformly distributed along the linked list and that
there are on the average a number of choices from which an allocation
could be made. If these statistical properties do in fact hold, the
method stands a good chance of ac%ually selecting a block that is close
to the best fit as well as reducing the search time below that required
by the best fit algorithm, especially if there is a large number of
blocks in the list. It is shown in [11] that the probability of

actually choosing the best fitting block approaches 1/2.718 with

large N.

36

Mechanics of the Best Fit Algprithm with Feadback

Let MAVL be the list of available blocks linked according to
starting addresses. Let BAML be a list of jobs waiting memory.
1) Search over all blocks in MAVL and all jobs in NAML for best
combined fit in space and bandwidth, |
2} Make an allocation to the job from the block for which the
space and bandwidth available from the block most closely
épproximates that required by the job.
3)~Repeét steps 1) and 2) until either all memory space has
been assigned, all job requirements have been satisfied, or
.no more assignments are possible.
In each of the above schemes used by the model it is assumed that
a small batch of jobs are to be allocated memory at the same time. Any
unused portion of a block from which an allocation is made remains in
the list as an available block. Also, when making second and third
éilocations to.a TMR job these additional allocations must be made
from disjoint sets of memory modules. Actually no allocation is made
to a TMR job until it has been determined that three allocations can

be made from three disjoint sets of modules.

Estimation of Bandwidth of Available Space

In order for the feedback scheduler/allocator to work an estimate
of the bandwidth available from each memory module is required. This
is obtained by means of counters which count the number of accesses made

to each memory module over some period of time. In order for the simu-

37

lator to obtain the required estimates three one dimensional arrays

are required as follows:

MAS (*) ~-module space registers
IBWCTR(*)~-elapsed time countexs

NAA(*)--available access accumulators

The number of elements requiréd in each array is equal to the
number of memory modules. In a real system these arrays would be
hardware registers. The current estimate of the available bandwidth
from each module is updated by the Program Executer during each step-
of execution proceséing immediately after the total numberiof access
requests to each memory module has been determined for the processing
step. The IBWCIR array is also updated at this time. The updating
of the NAA array is as follows.

NAA(T)«NAA (I)* (1 - 1/MAXCNT) if IBWCTR(I) > MAXCNT
and NTR(I) > ICON1
NAA(I)+NAA(I) * (1 - 1/MAXCNT) + (ICON1 - NTR(I))/MAXCNT
if IBWITR(I) > MAXCNT

and NTR(I) < ICON1l

NAA(I)«NAA(I) * (IBWCTR(I)j/MAXCNT

+((MAXCNT - IBWCTR(I)) * ICONL1 * MAS(I)/(MAXCNT *
MODS1Z)

if IBWCTR(I) < MAXCNT

and KTR(I) > ICON1

38

NAA(I)<NAA(I) * (IBWCTR(I)/MAXCNT
+((MAXCNT - IBWCTR(I) * ICON1l * MAS(I))/MAXCNT * MODSIZ)
+ (ICON1 = NTR(I))/MAXCNT
if IBWCTR(I) < MAXCNT

and NTR(I) > ICON1l

where MAXCNT is a parameter of the system that effectively sets the
number of processing periods over which the bandwidth estimates are
" obtained. IBWCTR(I) contains the minimum of the number of processing

steps since an allocation or release of space from memory module I has

been made and MAXCNT, NTR(I) contains the total number of accesses
requested from module I at the processing step under consideration, and

ICON1 is the number of memory module cycle periods per simulation step.

Estimation of Job Bandwidth Requirements

Estimateé of job bandwidth requirements are based on some assumed
known mix of the types of instructions to be executed by the job as
well as the speed of the system's hardware pfocessors. Actually only
twa tybes of-instructions are assumed for these calculations. The

estimated bandwidth requirements are computed as follows:
MNAR = ICON/(ITA + IPCT * (NBCS * MIX + NPCL(1 - MIX)))

where ICON is the number of processor cycle periods per simulation step,
ITA 1s memory access time, IPCT is the processor cycle period time,

NPCS is the number of processor cycles per short instruction, NPCL is

39
the number of procesgor cycles per long instruction, and MIX is

the proportion of short instructions that the job performs.

Processing Scenario

In order to clear up any ambiguities that may have inadvertently
arisen from the discussions of the preceeding parts of this chapter
let us consider the sequence of events that take place during a
simulation run following job generation and initial preprocessing. In
this discussion assume that the non-feedbagk scheduler/allocator is
employed and only SIMPLEX jobs were generated.

(1) A schedule ig obtained whereby the jobs that are ready
for execution are ofdered according to the priority scheme.

(2) Memory is reserved for as many of the jobs that were scheduled
in step (1) as is available from the memory space.

(3) As many IOPs as is consistent with system constraints is
assigned to the jobs that are in the present schedule and
have memory reserved in the order of the schedule.

(4) The IOPs that were assigned in step (3) begin loading the jobs
to which they are assigned and continue this loading operation
until each of their respective jobs has been loaded into
memory, whereﬁpon they are reassigned to other jobs or else
placed in an idle condition until some job requires their

service.

40

Is

(5) As soon as a job becomes loaded its status is set to wait CPU.

(6) A search 1s then made for a CPU for assignment to this job.

(7)

The first 1dle CPU is assigned provided one is found, other-
wise a gearch is made to see if a job of lower priority has
a CPU. 1If the latter condition exists then .the lowest
priority job having a CPU is preempted and its CPU is
reassigned to the higher priority job.

The job obtaining the CPU then begins program execution and

' continues until it either completes execution, reaches an I/0

interrupt point or is preempted by a higher priority job. 1In
case of reaching an I/0 interrupt point in its program the
CPU may either be retained by the job if its priority is
sufficiently high and no other jobs are currently waiting

for a CPU or a search may be made for some other job needing
the service of a CPU. 1f in the latter case no job is found
waiting for a CPU then the CPU may be placed in an idle
condition and remain so until some job has a need for its
service. Having in some manner disposed of the CPU that was
assigned to the job under consideration, a search-is then
ﬁade for an idle IOP for assignment torthis job. 1In case such
an IOP is found it is assigned to and remains the exclusive

property of this job until this job's current I/O processing

assignment is completed, thereafter a search is made for

some other job that is waiting for an I0P. If the new job

41

that is waiting for an IOP is not in ?E&?ﬁd cpndi;i;#?g}m
if the system constraint concerning the n;;£;£'6£”IOPs that
may be assigned to load operations at any given time is not
presently reached then the IOP is assigned to this new job,
otherwise the search is continued either until a suitable
new job is found or no further candidates remain. If the
latter condition is the case then the IOP is set to an idle
state.

(8) If the new job under consideration already has aVCPU'then
processing continues; otﬁerwise continuation for this job 1s
made in step (6). -

(9) The job processing described in steps (1) through (8) contin-
ues until a new schedule is triggered by system resource
utilization and system status and job queue status monitors.
The entire process beginning with step (1)} is repeated with
inelusion of any jobs that were not completed during

processing of the previous schedule.

Efficiency Considerations

In order for the efficiency of a multiprocessor system as hypoth-
esized so far in this paper to approach the efficiency that is obtainable
from a uniprocessor, i.,e., a special case of the multiprocessor
having only one CPU, certain relationships must exist between the
distribution of memory space and bandwidth requirements of the input
job set and that available from the memory as well as speeds of the CPUs

and IOPs relative to that of the memory.

42

From the above scenario it appears that if no jobs are perma-

nently resident in the main memory then the IOPs that are assigned to

load operations should be able to load jobs as fast as the CPUs
and IOPs that are assigned to processing operations can complete
jobs, otherwise the CPUs and a portion of the main memory stand

a higher chance of being idle while waiting for jobs to be loaded
.into the memory. On the other hand, if thése I0Ps can load jobs

faster than the CPUs and IOPs that are assigned to processing

operations can complete jobs then these IOPs and that portion of main
memory into which they may have just completed loading will be idle
until some jobs are completed and their memory space is relinquished,
thereby allowing more jobs to be loaded. Furthermore, the IOPs that

are assigned to processing operations should be able to perform the

I1/0 processing for the jobs that'are initiated as fast as the CPUs

can perform the CPU processing on this same set of jobs, otherwise a
portion of the total space bandwidth product of the memory and either
CPU or IOP time is wasted while one is waiting on the other. Thus

it seems reasonable that to approach maximum utilization, after a

steady state condition has been reached, approximately onme-half the
mémory should be utilized for loading in new jobs and that the other
half should be utilized for processing of those jobs that have completed
loading. Furthermore, half of that half of memory space in which jobs
are being processed should on the average be utilized for CPU processing
wifh the other half of that half being utilized for i/O processing.

In this manner utilization of memory, CPUs and IOPs should approach

the maximum value that is obtainable with a particular set of jobs.

III. THE MEMORY CONFLICT PROBLEM

_ Memory conflict arises in the multiprocessor system when two
or more processors attempt to obtain an access from the same memory
module simultaneously. Obviously if all the processors involved in a
conflict desired to read from the same location or write the same
information into the same location then there would be no logical reason
why they could not, however, the expected frequencies of these occur-
rencies are so small that they do not warrant the cost involved in
detection and provision of special hardware for implementation. Thus,
we may assume that all ﬁut one of the processors involved in a memory
access conflict will be delayed by one memory module cycle period for
each such conflict in obtaining the accesses that they desire. If it
is assumed that no look-ahead or look-behind is used in obtaining
mMemory accesses_theu all but one of the programs whose processors are
involved in a particular memory access conflict will be delayed by
a memory module cycle period. In this regard let us define slowdown
of a particular job and slowdown‘of the system. In order to do this
we need to assume a period of time over which the amount of slowdown
is to be measured. It is most convenient to measure time by counting
the number of memoryrmodule cycle periodé éontained in the interwval
of time that it is desired to measure. Then the amount of slowdown

for a particular job over some interval of time containing T memory

43

44
module cycle periods is the ratio of the number of memory module cycle
pefiods at which the job made a memory access request but did not obtain
one to the total number of memory module cycle periods at which the
job made an access request during the interval T. Similarly the slow
‘down of the system over this interval T is the ratio of the sum over
all memory module cycle perlods in the interval T of the sum of the
toéal number of access requests made at each perlod but not granted to
the sum over all memory module cycle periods in the interval T of

~the sum of the total number of accesses requested.

These definitions may be made clearer through the following

equations that are useful for calculating the amount of slowdown.

1 if job j requests a memory access
from module k at time i,

1
-~

Let r(i,j,k) =
0 otherwise

1 if r(i,j,k)=1 and module k does not
grant an access to job j at time 1.

o

Let rng(i,j,k) =

0 . otherwise
-

Let NMOD be the number of memory modules in the system. Then slowdown

for job j (SLDN(j)) over the interval [a,b] is given by

b NMOD
2_ 2 mmali,j,k)
SLDN(§)= —= kr% NMOD
MAX |1, E r(i,j,k))
i=a k=1

45
Let NJOB(i} .be the number of jobs in the system at time i. Then

slowdown of the system over the intexval [a,b] is given by

b NMOD NJOB(i) . |
> rng(i,j,k)

_ _d#a k=T 31
SLDNTOTAL = b NMOD NJOB(i)
MAX (l, 222 r(i’j’k))
i=a k=1 j=1

It would be useful to obtain a feeling of how severe this‘problem

really is under certain conditions.

Let us assume that the sum of the average access rates to a
particular memory module of all processors executing jobs having space
in this module to be less than or equal to the bandwidth of the module.

First let us consider the simplest case in which two Processors
are simultanequsly executing programs from the same memory module and
the mean access rate of each processor to the module is one-half the
bandwidth of the module and uniformly distributed in time. Then at
a given module access time t the probability of a conflict is 1/4
provided no conflict occurred during the previous access period t-1,
and 1/2 provided a conflict occurred at time t-1. This is true since
.it may be assumed that if a protessor does not obtain the access that
it wants at time T then it will keep txying to obtain this same access

at time T + 1 with probability 1. On the other hand, if it obtains an

46

access at time T then 1its probability of attempting to obtain an access

at time T + 1 is 1/2. Thus we have the relations

Pe = 1/4(1 =Py 1) +1/2 By = 1/4 + 1/4 B,

Actually there are only a finite number of these relations that
we need to consider in order to find the probability of conflict at
time t. However, it is easier to sclve for the case of an infinite
number of these relations. In the infinite case

Mo _1/4 1
P-2 (1) T3
i=1

Thus, in this simple case we see that if each processor has equal
probability of obtaining an access in case of conflict then each
program is expected to proceed at 5/6 = ,833 of mormal speed. This may
be justified on the basis of the assumption that the number of accesses
over a given time interval is from a normal distribution for each job.
The gombined distribution is then also a normal distribution with
4 mean equal to the sum of the means of the individual distributions and
variance equal to the sum of the individual variances. Thus the
combined standard deviation is less than or equal to the sum of the
individual standard deviations.

Under the constraint that the sum of the mean bandwidth require~

ments of the programs being executed from a memory module does not

exceed the module bandwidth then the case where each program has equal

47

bandwidth requirements is the worse case fof conflict. This may be
intuitively verified in the simple case'of two processors simultaneocusly
executing programs from the same memory module. Consider the case

where the mean bandwidth requirements are 3/4 and 1/4 that of the
memory module and'uniformiy distributéd iﬁ time. Also assume that the
probability of each processor obtaining the access in case of conflict
is 1/2. Then the probability of conflict at time t is 1/4 * 3/4 if no
conflict occurred at time t-1. It is 1 * 1/4 if conflict occurred at
time t-1 and the processor with bandwidth requirement of 3/4 did not

receive an access at time t-1., It is 1 * 3/4 if conflict occurred at

time t-1 and the processor with bandwidth requirement of 1/4 did

not receive an access at time t-1., Thus

Py = 3/16 (L - Py 1) + 1/4 » Peq * 1/2 4 3/4 Py * 1/2
= 3/16 + 5/16 - Py
so Py = 3/16 + 15/256 + 75/4092 +

Thﬁs we have énother geometric sequence with initial‘value 3/16 and
common ratic of 5/16. 1In the infinite case the probabi;ity of conflict
is P = 3/11. The genéral result is easily proven by elementary methods
of calculus.

In thé general case let xBy be the mean bandwidth reqﬁirement of
the first jéb aﬁd let y * By be the mean Eandwidtﬁ requirement of the
second job and assume that the access rate for each job is uniformly
distributed in time. Furthermore let ¢ = x + y < 1 where ¢ is a

constant. Then

438 _

X oy (L-Peg) ¥% - Pey p 1/2+ ¥R, 0 1/2

Pt

Xy - xyPp.q + 1/2 (x + y)Pt_:l

it

Xy +1/2 (x+y —2xy)Pt._1
Peog =xy + 1/2 (x + y -2xy) P

S0

xy + 1/2 (x +y 2xy)(xy + 1/2 (x + y -2xy))P

J
(2]
Il

t-2

i

xy +1/2 (= +y -2xy) Gy)+ (/2 sy -2 R

Finally

Py = xye [1/2 (x +y 23]
i=o .

= Xy
1—%‘—(x+y-2xy)

x{c - x)

1 - %—(c -2x(c - x))

Differentiating with respect to x and setting result to 0 we obtain

dP, {c -2x) (1 -% (¢ -2x(c - x)) - (xc - xz) (c -2x)l
= = 0.
dx (1 -% (c 2x(c - x)))z

Thus

(c—2x)(1—%c+ cxX - xz)— (xc-xz)(c—2x)=0

X = —l-c.
2

49

Now consider 3 processors executing programs from a single
memory module. Assume also that the access rate for each program is
uniformly distributed over its processing period and that all processors
have equal probability'of.obtaining an‘éécess in case of conflict. We
must now worry not only with the probability‘of conflict but also with
the degree of conflict. Let us denote thesé degrées at time t by
Pl,t and PZ,t where Pl,t is the probability‘of.conflict involving 2
processors and P2,t islthe probability of cénflict at time t involving
3 processors.

The probability of conflict of degree 1 at time t is the proba-
bility that exactly two processdrs contend for an access at time t.

. 2f1 1 (3
Thus the probability of contention of degree 1 at time t is 3‘(3" 3 '(2))

provided no contention cccurred at time t-1.. The probability of

2 1 2
contention of degreel at time t is 1 * §-3 * (1) provided contention
LY

of degree 1 occurred at time t-1. 1t is equal to 2/3 provided conten-

tion of degree 2 occurred at time t-1., Thus

- 4 2
(l P1,e-1 P2,t—1) T FLelt 3P e
+

Wb W

\0|M

1t1+iP2t1

Similarly the probability of conflict of degree 2 is

p, . = (LY. (1 - » - P + (1%, e . +lp
2,t ~ |3 1,t-1 2,t-1}. 3 *1,e-1 E) 2,t-1

50
Thus by backing up step by stepriﬁ”fhe time arnd solving for By ¢
. , N
recursively we find that o

Rz i o0 -_l
e S S () e

i=1

LN (Y 2 s ey,
Pot =27 27 27 27 1,e-1

In order to make the problem tractable let us assume that the
probabilities of conflict of each degree are all stationary time series

t13), [14]. Thus

P =P f i = 2, . ..
-t T Fye FTAT L2

Then we may obtain

Therefore
42
P ===
Lt 125 336
and
P, , =209 _ - qss

2,t 3375

51
The slowdown due to memory conflict- is-

1. 336 +2%x .088 = .112 + .059 = .171

3 3
Under the assumption of equal chance for obtaining an access in
‘case of conflict each program is expected to proceed at .829 of normal
speed.
For the four processor case under the assumptions as above the
pertinent equatiohs are:

27 45 27
=2l 4+ _22p -l P
1,t 101 101 2,t 101 3,t

346 + 43 p

2,6t T3 T g3 T,e Y53 Pae

a
[

and
1 3 15

P3,t = 793 + 193 P1,t + 193 F2,¢
' The solution to this set of simultaneous equationé is:

P, = -326, Pp ¢ = .137 and Py o = 0209

Thus the slowdown is
3

4
= (0157 + .0685 + .0815 = .166

1 1
P3,t -+ EK PZ,t + IX Pl,t
so each program pfoceeds at .834 normal speed.

Thus we note at this point that the slowdown due to memory
contention is not very sensitive to the number of processors executing

programs from a single module so long as the sum of the means of the

52
bandwidth requirements are kept less than or equal to that of the
memory module. |
Now let us consider the general case of N processors executing
N programs from a single memory module in which each pfdcessor has a
mean access rate equal to 1/N of the bandwidth of the memory module,

Also assume the following:

(1) The access rate for each program to the memory module is
uniformly distributed over its processing interval.

(2) All processors have equal chance for obtaining the access in
case of an access conflict.

(3) The probabilities of conflict of each degree form stationary
time series.

(4) All contending processors not gaining an access when conflict
occurs continue to contend for an access at subsequent access

periods until they obtain an access.

Under these conditions the general formula for the probability of

conflict of degree k at time t is given by

MIN(N-1, k+1))
P _ N-i N-1 N-k-1 1 K+l-i p
k,t k+l-1i N N i, t=-1 (3.1)
=0
for k=1, 2, . . . N-1
N-1

and Po,t—l =1 - ?;; Pj,t~l

53

This formula leads to a set of N-l1 simultaneous linear equations
in N-1 unknowns when developed in the ﬁanner as showm for 2,3 and 4
processors.

The amount of slowdown due to nemo¥ry contention under the
assumptions of the preceeding discussion is plotted for 2 through 16
processors in Fig. 3-1. Also plotted are three other curves repre-
senting mean bandwidth requirements of 'Z%."E% » and Z%— t;mes
the memory module bandwidth for each processor, From this figure it
shouid be observed that the amount of slowdown due to memory contention
peaks at approximately 17% for the three processors case and decreases
slowly to approximately 11% for 16 processors when the mean bandwidth
requirement per processor 1is equal to 1/N . By where By denotes the
memory module bandwidth. Thus we may conclude, aside from the physical
problem of contention resolution, that while the amount of slowdown
due to memory contention {i.e., processors getting in one another's
way) is not insignificant it is not intolerable. In this context
it should be pointed out that a distinction has been made between slow
down due to conflict when sufficient memory module bandwidth is
available to meet the mean demands of all the jobs being simultaneously
executed from that module and slowdown duelto contention when insuf-
ficient bandwidth is available to meet the mean demands. In the first
case the slowdown may be attributed completely to the relationships

between the time of occurrence of the individual job demands and the

manner in which the actual execution of each program proceeds (i.e., on

.20 4=
Mear bundwidth Requirement = 1/WN¥bn
.15 1
.10 4 Mean Bandwidth Requirement = %I-*Bm
H)
w
=
o
5
A 05 4
= [Mean Bandwidth Requirement = L gy
o N
4
0
Mean Bandwidth Requirement = %ﬁ*BM .
0 g i ; + } —r + + + t —t

2 3 h 5 & 7 8 g9 10 11 212 13 14 15 16
No. OF PROCESSORS

Fig. 3-1. BSlowdown due to memory contention without bandwidth limiting

55

a fixed sequence of instruction executions in which no remaining
instruction can proceed until its immediate predecessor has been
executed). Attempts to lessen the effects of slowdown due to conten-
tion in this first case include the use of look-ahead and look-
behind techniques. Look-ahead attempts to capitalize on the basically
sequential nature of computer programs by reading the contents of the
next n consecutive instruction locationsrfrom the main memory (usually
an interleaved memory) at each memory access period into a dedicated
local storage area for the processor obtaining the access at each
period. This technique is described in considerable detail by Burnett
[1] and by Burnett and Coffman [2]. The look-ahead technique is also
embodied to a certain extent in high speed buffer storage memory
systems as described by Conti [3] [4] and by Liptay [5] [6]. Look-
‘behind attempts to exploit short lemgth baékward branches in computer
ﬁrograms such as short DO loops by retaining the preceeding n instruc-
tions in a local dedicated storage area for the processor.

Slowdown due to localized bandwidth limitation can occur with
a uniprocessor as well as with a multiprocessor but the probability of
occurrence is much greater with the multiprocessor. This progability
is high when several processors'aré simultaneocusly active and when
module size is much greater than mean job space size or when job space
requirements ére dispersed over a large range and several high band-
width jobs are simultaneously executed from a single memory module.

The complement problem to localized bandwidth limitation is inefficient

56

bandwidth utilization caused either by jobs with large space to band-
width ratio requirements or by the use of scheduling and memory
allocation routines that do not take bandwidth requirements into
consideration.

The effects of these second causes of slowdown and bandwidth
nonutilization will be explored in the next section.

The amount of nonutilization of memory bandwidth can also be
easily obtained by means of the preceeding analysis through the

following equation:

N
_ [HN-A
Pau ™ (N) * Po,t-l

where
P,,, = Probability of nonutilization,
N = number of processors accessing the common memory module,
%—= mean bandwidth requirement of each job,
and
Pooe1 ™ probability of no conflict at time t£-1.
o,t-

Fig. 3-2 shows a plot of P,, for four values of A equal to .25, .50,

.75, and 1.0.

‘Bandwidth Nonutilization

1.0 4

Bandwidth requirements = —;—5- * ‘Bm

. . _ .50
Bandwidth requirements = W * By,
e
; . _ I3
Bandwidth requirements = =T * By
Bandwidth requirements = Lo,
q N By
m

———————

— + + T

2 3 & 5 6 - 7 8 g 10 11 12 13 14 15
Number of Processors (N)
Fig. 3-2. Bandwidth Nonutilization.

16

4

IV. LOCALIZED BANDWIDTH LIMITATION AND MISMATCH

In equation 3.1 we may replace 1/N by z where z represents a
time average probability that a job will require an access from its
memory sSpace at any given access period without regard to remembrance

of previous response to access requests. Doing this we obtain

MIN(N-1,k+1)

and P, . 4 =1~ Pie-1 -
Thus, z is an average probabilistic measure of the bandwidth require-
ment from some memory module of a particular job having space in that
module. Now as the bandwidth requirement of the job increases beyond
the bandwidth available from the memory module the probability of
'requesting an access ét aﬁy given accéss period approaches 1 without
regard to any recall that the job is assumed to have about a prior
access that may have not yet been granted. Thus when the combined
mean bandwidch requiremenfs of two or more jobs that are being simul-
taﬁéousiy executed from a common memory module is increased beyond the
Baﬁdwidth'available from the common memory module the effects of memory

access conflict due to the processors merely occasionally getting into
58

59

each other's way is quickly swamped by the effects of bandwidth
limitation. The essence of the above statement is contained in

Fig. 4-1 in which the slowdown obtained from solutions to the simul-
taneous linear equations ensuing from equatjon 4-1 have been plotted
for 3 through 16 processors with values of z ranging from .25/N * By
through 3/N - B, and for two processors from .25/N B, through

2/N * Bp all with steps of .25/N * B,. Now consider the following

tabulation obtained with the aid of the six processor case of Fig. 4-1.

Slowdown
Bandwidth Due Te Total Slowdown
Requirement Bandwidth Slowdown Due To Access

+ By ‘ Limitation From Curves Contention
1.00 .0000 150 .150
1.25 .2000 245 045
1.50 . 3333 . 350 L0167
1.75 L4285 430 .0015
2.00 .500 .500 . 0000
2.25 .5555 . 5555 .0000

This brief analysis indicates that the contribution of access
conflict to slowdown becomes insigﬁificant when compared to that of
bandwidth limitation for combined mean bandwidth requirements above
1.25 times the bandwidth available from the memory module.

It is apparent that if the bandwidth demands made to all the

memory modules of the multiprocessor system is very much greater than

i.0

8
.6
b

jof

8

o

5

pr -
0

P Y

Banawidth demands
per processor
+ Bm/N

3.0

2.75

2.50

2.25

2.0

1.75 o

1.50

1.25

1.0
____ﬁ____*_________—h__~‘—“__-_-__

1 T T T ——

.50 , :

35 ‘;4: i, = — - == ¥ = ——
2 3 T 8 g 10 11 12 13 14 15 16

Fig, L-1.

Number of Processors

Blowdown due to memory contention and bandwidth limitation.

09

61

that available from the modules then very little can be done through
memory allocation techniques to alleviate the problem. On the other
hand if the problem is one of distribution wherein the overall band-
width demands are unevenly distributed among the memory modules then
scheduling and allocation techniques which take into account bandwidth
considerations may be effective in relieving the problem. First let
us try to get a feeling for how severe the problem actually is.

Suppose that as input to the multiprocessor system we have an
unlimited supply of incoming jobs (in our case a small set of recurring
jobs) of twe mean bandwidth requirements and one space requirement.
The two mean bandwidth requirements are b; and by where by + by = By
and by >> bp. The one space requirement is S; which is equal to one-
half the space of a memory module (S,). Furthermore let us assume that
each type of job requires approximately the same amount of processing
time and there are enough processors so that all jobs having memory
space may be in progress simultaneously. Now depending upon how the
jobs occur in time and how the job scheduler and memory allocator act
in scheduling the jobs and placing them into the memory there may or may
not be localized bandwidth limitation or mismatch. In this regard let
us assume that there are enough of either type of job in the job queue
at any schedule time to fill the available memory. Thus, a memory
module may hold one of the three combinations byby, byjby, or bobp.

For the combination byby the jobs are slowed to approximately one-half

of their normal speed due to insufficient bandwidth. However, the

62

bandwidth utilization is expected to be close to 1. In the second
case (byjbs) the jobs are expected to proceed at approximately normal
speed except for memory access conflict. The bandwidth utilization
in this case is expected to be close to 1. In the case with byby
the jobs are expected to proceed at normal speed except for memory
access conflict but the bandwidth utilization is expected to be closer
to 0 than to 1. As a specific example let by = .98, and b, = -1B.
Then with the combination bjb; the slowdown due to insufficient band—
width is expected to be .44. For the combination bjby no slowdown due
to bandwidth limitation occurs and bandwidth utilization is close to 1.
The bpb; combination should not be slowed down due to bandwidth limita-
tion but bandwidth utilization is expected to be only .2. With a
random placement the probabilities of the combinations bjb;, bpbj,
b,b, are 1/4, 1/2, and 1/4 respectively. Thus slowdown of the overall
system due to lecalized bandwidth limitation under this random place-
. ment is expected to be 1/4 x .44 + 1/2 x 0 = .11 and expected bandwidth
utilization is 1/4 x 1 + 1/2 x 1 + 1/4 x .2 = .25 + .50 + .05 = .8,

The above introductory example suggests a method for investigating
the amount of slowdown and nonutilization due to localized bandwidth
limitation andrmismatqh under a random placement scheme, To aid in

this investigation let us assume the following:

(1) The input job stream consists of an infinite supply of jobs

of one space requirement 8y = S, /n and n bandwidth require-

N

ments.

63

(2) Jobs with each bandwidth requirement occur with equal
frequency.

(3) The scheduler and memory allocator shows no bias in regard‘
to bandwidth requirements,

(4) Processing time is the same for all jobs resardless of band-
width requirement.

(5) The sum of the bandwidth requirements is A B and the actual

requirement array BW is BW = (0, 1/n W, 2/n - W, . . .

n—-1 , _ 2A
= W), where W E?E:I)

Under (1), (2), (4) and (5) there is at least one job scheduling
and allocation scheme in which (3) holds and no slowdown due to bandwidth
limitation or non-utilization of bandwidth due to mismatch results.

This scheme is of course the one in Which one job of each bandwidth
requirement is loaded into each memory module. A random placement

scheme would result in total bandwidth requirements that are in accor-
dance with the multinomial distribution. For example, for the three
processor case there are three different patterns of bandwidth selections.
These three patterns are (x)(y}(z), (x)(v,y), and (x,x,x). The x's,

y's and z's represent a particular bandwidth requirement. Clearly,

in so far as the total bandwidth requirement is concerned permutatioms

of the groups in a pattern or permutations of the elements in a group of
a pattern or elements among groups of the same size in a member of a

‘pattern makes no difference. For A = 1, the first pattern has the

64

single member (0)(1L/3)(2/3). It occurs with frequency

31/ x 1! x 11) = 6 when all its permutations are totaled. For

the second pattern-the members are (0)(1/3, 1/3), (0)}(2/3, 2/3),
(1/3)(0,0), (1/3)(2/3, 2/3), (2/3)(0,0), and (2/3)(1/3, 1/3). Each
of these members ocecurs with frequency 3I/(1! x 2!). = 3. Finally, the
third pattern haslmembers (0, 0, 0), (1/3, 1/3, 1/3) and (2/3, 2/3,
"2/3); Each of_these members occurs with frequency 3!/3! = 1.

| The distribution of total bandwidth requirement, slowdown due
to bandwidth limitétion and bandwidth utilization obtained by means
of the above multinomial technique is shown in Fig. 4-2 for the three
Processor case.

Unfortunately, the analysis by means of the multinomial
technique is impractical for more than about eight or nine processors
due to the very large number of terms that must be examined with more
than this number of processors. For example, the number of terms for
the three processor case is 10, for four processors it is 35 and for
five processors it 1s 123! Thus in the low range of the numbers of
processors the number of terms to be examined appears to be growing at
the rate of approximately (3.5)i. If this rate of growth is comstant
tﬁe 16 processor case will require examination of 10 x (3.5)13 =
1.183 x 108 terms. When all the time for other numbers of Processors
up to 16 are added to this and runs are made for several different
values of A the amount of computer time could be several hundred hours.
Therefore, a different technique is requ&red for the solution of the

- problem. Let us use a random number trials procedure in which at each

Freguency

Freguency

Frequency

10

T T T T T T v L L J

0 .1 .2 .3 .k .5 B LT 8 .9 1.0

A. Bandwidth Requirement
Normalization Factor = NPROS * BW(NPROS)

b
-

0 L1 2.3 b .5 6 .F .8 .9 1.0

B. Slowdown

T T t T T T ¥ T T T

0 .1 .2 .3 .k .5 6 07T .8 .9 1.0
C. Bandwidth Utilization

Fig. 42 Distributions of bandwidth requirement, slowdown
and bandwidth utilization for the three processor
case from multinomial distribution
BW(I)} = (I-1)a/(.SNPRECS*(NPROS-1)) , A=1.0.

66

trial n indices are generated which represents the indexes of the band-
width requirements array BW. Graphs may then be plotted for the fre-
queﬁéies ﬁf each total banﬁwidth requirement range, bandwidth utilization
range, and slowdown range. The results of this procedure.for 3, 10,

and 16 processors with values of A equal to 0.75, l.D, and 1.25 are

shown in Fig. 4-3 through Fig. 4-14. The means and standard deviations
for slowdown and bandwidth utilization with A equal to 0.75, 1.0, and
1.25 are plotted for 3 through 16 processors in Fig. 4-15 through

Fig. 4~17. When interpreting these curves it should be kept in mind

that the distributi;ns may be highly unsymmetrical about their mean

values as is evident from Fig. 4-6 through 4-14.

67

5000 samples

-
1500 4
Mean = 4977
Std. Dev. = .206
— u
1000 L
500 1
0 [] 1 i } | W T
0 il .2 .3 Wb .9 .6 T B .9 1.0
Bandwidth reguirement/(NPROS*BW(NPROS))
Fig. 4-3 Frequency-Gram for bandwidth requirement for NPROS = 3,
Fi(1) = (I-1)A/(.SNPROS*(NPROS-1)).
oo 5000 samples
1 Mean = . 490k
600 Std. Dev. =_1093
500 1
Loo T
300 ¢
200 1
0
100
0 + 1 ¢ 3 i -4 - 1 . . }

™ T =1

o 1 .2 .3 .4 .5 6 .7 8 .9 rL0
Bandwidih requirement/(NPROS*¥BW{NPROS)}

Fig. W-4 Frequency-Gram for bandwidth requirement for NPROS = 10,
BW(I) = (T-1)A/(.SNPROS¥(KPROS-1)).

Freguency

800

600

Log

200

68

5000 samples

Mean = .4996
8td, Dev. = .07298

v l T Ll
0 1.2 .3 . s 6 .7 8 .9 1.0
Bandwidth Requirement/(NPROS)*BW(NPROS))

Fig. 4-5 Frequency-Gram for Bandwidth Requirement for NPROS = 16,
BW(X) = (I-1)A/(.SNPROS*(NPROS-1)).

Frequency

Frequency

69

4500 _
-
5000 samples
Mean = ,02L423
Std. Dev. = .070k3
3000
1500
D H |r'l T T L
1 2 3 A 5 é T .0
A, Slowdown
1800 4
5000 samples
Mean = .71495
Std. Dev. = .26083
1200 .
600
O D 1] T T T L
0 1 2 .3 .4 5 g .0
B, Bandwidth utilization

Fig. 4-6 Freguency Grams for slowdown end bandwidth utilization
NPROS = 3, A = 0.75 BW{I)=(I-1)A/(.5NPROS*(HPROS-1)].

Frequency

Frequency

70

3300 B
5000 samples
mean = ,10268
std. dev. = ,15008
2200 7
1100 7 [
0 H n_

0 .1 2.3 ! .5 N T .8 .9

A. Slowdown

3300 A
5000 samples
mean = .B8L037
std., dev. = .2L556
2200 4
1100 A
0 ju | l_]

B. Bandwidth Utilization

Fig., 4&=T. Frequency-grams for slowdown and bandwidth
- Utilization, NPROS + 3, A = 1.0, BW(I) =
(I-1)A/(.SNPROS*(NPROS -~ 1)).

n

2100 T
5000 samples
mean = .8880kL
B std. dev. = 20846
oy
% 1500 T (]
o>
[13)
5
= _
750 7]
0
T T T r! 1]] L 3
0 1 2 .3 Y 5 6 7 .8 9 1.0
A. SBlowdown
—
3000 7
5000 samples
mean = 21217 .
o, std. dev. = .18751
=
it
= -
= 2000
o
I
2
1000 7
0 ml [l_
T T 1) L] L) T T
0 1 2 .3 L 5 .6 7T .8 9 1.0
R, Bandwidth Utilizaticn
Fig. 4-8. Frequency-grams for slowdown and bandwidth

Utilizaticn, NPROS = 3, A =
(T-1)A/{.5NPROS*#{NPROS-1)).

1.25, BW(I) =

72

4800 4 B
5000 samples
mean = ,00168
5, 3200 — std. dev. = .01167
a
(3]
!
{
N
=
1600 o
0 L‘:r'

o .1 .2 .3 .h .5 .6 .7 .8 .9 1.0

A. Slowdown

480 § . =Ne
5000 samples
mean = ,TLT32
std. dev. = 13476
b '
o
g 320 4
=
o
Q
5
29
| | L
160 4

-

o .1 .2 .3 4 5 6 .7 .8 .9 1.0
B. BRandwidth Utilization
Fig. 4-9. Frequency-grams for slowdown and bandwidth

Utilization, NPROS=10, A = 0.75, BW(I) =
(I-1)A/(.5 NPROS#(NPROS ~ 1)).

73

3000 4
-
5000 samples
mean = 06196
std. dev. = ,08U455
20001
5,
[@]
o
0
3
o
O
£
4
10001
. lJ—Lfrilj:Fh“*— o
0 .1 2 3 h .5 6 T
A, Slowdown
3000
5000 samples
o mean = .92389
= | std. dev. = .11083
3 2000
o
48]
8
=
1000 1
0]
0o .1 .2 .3 .k .5 6
B, Bandwidth Utilization
Fig. 4-1C. Frequency-grams for slowdown and bandwidth

Utilization, NPROS=10, A = 1.0, BW(I) =

(I-1)a/{.SNPROS*{NPROS-1)}.

74

900 -+
q 5000 samples
mean = ,18969
std. dev. = .12595
B 600
[}
5
3
o
@
[
o
3001
0}
T T T L] T ¥ T T T
0 1 2 3 L .5 .6 7 8 9 1.0
A. Slowdown
k5004
5000 samples W
mean = .928330
std. dev. =',05585
>
13 .
5 30007
=
o
]
£
[N
15007
T T T T T 11 T T B T
0 1 2 .3 L 5 .6 7 8 .9 1.0
B. Bandwidth Utilization
Fig. 4=11. Frequency-grams for slowdown and bandwidth

-Utilization, NFROS=10, A = 1.25, BW(I) =
{(1-1)A/(.5NPROS*(NPROS - 1)).

Frequency

¥

Frequenc

15

6000 T
B 5000 samples
mean = 00042
std. dev. = .00LS3
L4000 T '
2000 7
O " —_ R + . ¢ + 4
o .1 .2 N T T .6 0.8 90 1.0
A, Slowdown
600 F
5000 samples
mean = .7910
std. dev. = .10835
LOO T
2007
o
0 .1 .2 3
B. Bandwidth Utilization
Fig., 4-12. TFrequency-grams for slowdown and bandwidth

Utilization, NPROS=1&, A = 0.75, BW(I) =
(1-1)A/{.5NPROS*{¥PROS-1)).

76

3000 +
=
5000 samples
mean = ,048T8
std. dev. = . 06853
E’EOOO T ' |
3]
=
o
Q
[
=
1000 T
X d-l-'_‘-\.\i _
. i . . : y I- 4% lr . =_

o .1 .2 .3 . .5 .6 .7 .8 .9 1.

A. Slowdown

3000 T
S000 samples ']
mean = ,93855
std. dev. = .0888k
20000 1
=
U
fus
jeal
(]
1]
B
1000 -

B. Bandwidth Utilization

Figﬁ h-13. “Freqﬁency—grams for slowdown end bandwidth
©°" Utilization, NPROS = 16, A = 1.0, BW(I) =
{I-1)A/{.5NPROS*{NPROS~1)).

77

600
5000 samples
mean = .18936
std. dev, = ,1080
© Loo
jd
18]
&
D)
=
e
200 T
0
T ™ T ¥ 1
6 OT ! 8 9 l-o
A,
6000
5000 samples
5 mean = .99335 1
5 std. dev. = ,03119
o 4000
i}
2]
=
2000 -
0 - —
T T T = G ¥ | A
2 3 i 5 .6 T 8 .9 1.0

Bandwidth Utilization

Fig. 4-1L. Frequency-grams for slowdown and bendwidth

Utilization, NPROS = 16, A = 1.25, BW(I) =
{I-1)A/{,5NPROS*{NPROS-1)).

L.0 .1
.9
S | Bandwidth utilization meen
T) /""-’—_
N
.5]
=
|)
-3
5 Bandwidth utilization 5td. Dev.
1 —
] Slowdown mean
B = Slow down Std. Dev.
0 ' : t ey et - - .-
3 L 5 6 T 8 9 10 11 12 13 1h 15 16

Number of Processors

Fig. 4-15. Means and Standard Deviations For Slowdown and Bandwidth Utilization, A = 0.75.

1.0
Bandwidth utilization mean
7] // 7
.64
T
N
5
)
.34
.2
Slowdewn Std. Dev.
Bandwidth utilizetion Std. Dev.
cl_- b\'\.-_“-&_—_
0 Slowdown Mean

" 3 + + "
-+ + ¥ - B + + T + ¥ +

3 Y 5 6 7 8 g 10 11 12 13 1k 15 16

Number of Processors

Fig. 4-16. Means and Standard Deviations for Slowdown and Bandwidth Utilization, A = 1.0.

6L

1.0

f////,,_r'*”"'ﬁ_ﬂﬂ_——-_— Bandwidth utilization mean
-
Slowdown mean
]l
Slowdown Std. Dev.
4 Bandwidth utilization 5td. Dev.
+ 4 4 + — + 4 t + —- —— -+ 4 '

3 4 5 6 T 8 9 10 11 12

Number of Processors

Fig. U-17 Means and standard deviations for slow down and bandwidth utilization, A=1.25

08

V. THE PROCESSOR TO MEMORY INTERCONNECT PROBLEM

In Fig. 1-1 we have implied thaf each process&r may gain access
to any memory module through the interconnection network. A major
requirement of this network is that it not cause aﬂy slowdown in the
operation of the system; i.e., it should allow tranafer of data in a
random access fashion te or from the memory as fast as the maximum
speed of the memory. Furthermore, access to each memory module should
be made on a memory module cycle basis so as to avoid potential waste
of memory bandwidth that is inhérent in schemes which make a processor
to module connection with minimum Interconnection time extending over
severél module cycle periods.

.The two hardware arrangements which appear to be able to meet
these requirements, at least from a theoretical standpoint, are the
multiplexed bus and the full crossbar as depicted respectively in
Fig. 5-1 and 5-2. The multiplexing of the multiplexed bus could
conceivably be done through some frequency diversity or angle modulation
schéme, howevér, these techniques are not.compatible ﬁith the present
state of main memory logic elements nor is the transmission medium
ﬁoisy enough or signalling power so severely limited as to warrant the
" additional complications imposed by such schemes.

Thus, we are left with time multiplexing. The time multiplexed

bus requires less hardware to implement than the full crossbar, but

81

82

PROCEBSOR

PROCEBECR
N

MEMORY

MODULE
#1

e

MEMORY
MODULE

l

1

l

-

Fig. 5+1 Logic structure of time multiplexed bus

MEMORY MEMORY MEMORY
MODULE MODULE coe MODULE
1 # 2 # M

PROCESSOR

#1 ﬂ* ¢ —0

PROCESSOR

§ 2 - B +

.
PROCESSOR
#u 4 F P
Fig. 5-2 Logic structure of full crossbar

B3

more stringent speed requirements are implied hy the time multiplexed
bus since only one processor can be connected to one of the memory
N

modules at a time. Therefore, in making the intercomnnections, it is
sequential by module or by processor depending upon the end of the
bus from which the arrangement is viewed. The full crossbar requires
‘more hardware to implement than the time-multiplexed bus but its speed
requirements are much less severe when several processors and mMeEMOTy
modules must be interconnected. Moreover, the additional hardware is
repetitive with a regular structure. This regularity in logic networks
is amenable to large scale integration techniques. Hence the cost of
the full crossbar does not necessarily increase directly with the
number of processors and memory modules which must be interconnected.
For these reasons the full crossbar scheme is considered to be the best
candidate for the multiprocessor system even though it may not be quite
as flexible as a bus system in regards to ease of expansionm.

The crossbar interconnection arrangement is equivalent to a set
of switches ﬁith one switch per memory module as shown in Fig. 5-3.
This version will be used in developing an interconnection scheme for a
priority driven multiprocessor. ;

In a priority driven systém each job that is executed by the
system obtains use of thersystem's facilities on a demand basis according -
to its priority relative to that of any other jobs being simultaneously
executed by the system. Thus in the context of use of the memory

bandwidth each job that is being processed by the multiprocessor system

MEMORY
MODULE
#1

84

MEMORY
MODULE
2

PROCESSOR
1

MEMORY
MODULE
M

PROCESS0R
2

PROCESSOR
N

Fig. 5-3 An equivalent circuit of the full crossbar.

85

should be able to obtain accesses from ;he memory modules in which it
has space approkimately in accordance with its relative priority and
as it go demands in time. From an overéll efficiency étandpoint the
determination as to which processor has the right of access to a given
memory‘module at 3 given time should be made on a module cycle basis
since if some processors do not demand an access at a certain module
cycle time due to the variability of the program that they are executing
then they need not be considered in the resolution of possible access
conflict.. Coﬁsequently lower priority jobs stand a better chance of
obtainiﬁg accesses during slack periods of memory access activity by
the higher priority jobs. This means, however, that the determination
of which proéessor is to obtain the next access from each memory
module must be made in less than a memory module cycle period. Thus
only simple schemes implemented in hardware appear to‘be feasible. The
scheme must also ensure that the lower priority jobs should not be
locked out from accessing memory modules iﬁ which they ﬁave space for
periods longer than their relative priority dictates. Thus, our
scheme for determining the right of access to each memory module should
be responsive not only to the relative priorities of all contenders for
each access but also to some simple function of the amount of time that
each job has been in contention for an access but has not yet obtained
it.

In view of the above discussion consider the access right function

of priority and time inrcontention given by

86

ACRj (Pj’ tC‘.) = tch

where t, is the number of module access periods that job 3} has been in
contention for an access but has not yet received it, and Pj is the
priority of job j. This simple function seems to possess most of the
characteristics that we réquire. It may be obtained simply by adding
the priority of the job to the present value of the function at each
access peried at which job j does not obtain the access that it is
contending for. Otherwise, the value of the function is set back to
the priority of job j if job j receives the access that it is contending
for; thereby, in either case, readying for the next access period. The
contention resolution process then consists of selecting from among all
JObS that are contending for an access from a particular memory module
the job pessessing the largest access-right word. In case of a tie
some mechanism is needed to determine a winner. Let us temporarily
assume that the processors are ranked according to their numbering
with lowest number representing highest ranking.

Now let us see how this scheme will work through a short example.
Suppose processors 1 through 4 are executing jobs A, B, €, and D with
priorities 50, 100, 200, and 25 respectively from a single memory
module. Furthermore, let us assume that each processor is in contention
for every module access, regardless of whgther or not it received the
preceeding access. This represents an extreme case of bandwidth
limiting but it is entirely possible in a multiprocessor. Underlines

indicate the job obtaining the access in the tabulation shown in Fig., 5-4.

RANK PRIORITY TIME

Ty T2 T3 Ty T5 Tg T; Tg Tg Typ T11 Ty2 Ti3 T1g Tys Tie T17 Tig

50 100 150 200 50 100 150 200 50 100 150 200 250 300 350 400 50 100 150

100 200 100 200 300 400 100 200 300 400 100 200 300 400 100 200 300 400 100
200 200 400 200 400 200 400 200 400 200 400 200 400 200 400 200 400 200 400
25 50 75 100 125 150 175 200 225 250 275 300 25 50 75 100 125 150 175

Period of length 12

Fig. 5-4. Tabulation of Access Right Word as a Function of Time for
Priorities of 50, 100, 200, and 25.

JA:S

38

From this tabulation it should be observed that the sequence of accesses
granted becomes periodic after time Tq and has period of length 12.
During this period jobs A, B, C, and D received accesses in the

ratios of 1/12, 1/6, 1/2 and 1/12 respectively. Their priorities
relative to their total priority are 2/15, 4/15, 8/15 and 1/15
respectively. The next natural question is concerned with whether or
not the actual ratios of accesses granted can be made to more closely
approach the priority ratiocs by some permutation of the ranking of the
processors. There is a total of 4! = 24 different rankings of the

four processors. The results for all 24 rankings are shown in Fig. 5-5.
From this figure we may observe that the exact priority ratios in
accesses granted may be obtained by ranking the processors according to
the priorities of the jobs that they are executing.

Unfortunately, the exact priority ratios in accesses granted can
seldom be obtained by ranking the processors according to the priorities
of the jobs that they are executing. However, this technique does
appear to result in a more equitable distribution of accesses when some
of the priorities are multiples of some of the others. It has no
effect when no priority is.a multiple of any of the others. Thus its
adaptation does no harm in the latﬁer case. Therefore, from this point
on, let us assume that the processors are first ranked according to the
priorities of the jobs that they are executing and secondarily accord-
ing to their numbering. In this manner we preclude the possibility

of a tie,

PRIORITY

50
100
200

25

Length Before
Becoming Periocdic

Periodic Length

Fig. 5-5. Tabulation of Access Mechanism for
of Priorities 50, 100, 200, and 25.

3

8

8

12 12 12 12 12 12

9

9

14 14 14 14

ACCESS FRACTION

4 4 2
11 3
2 3 1
3 2 4
9 9 8
14 14

Periodic
Length
Priority Fraction 8 12 14 15
50 2/15 (1/812/12 | 2/14 [2/15
100 4/15 |2/83/12 [4/14 | 4/15
200 8/15 |4/8|6/12 | 7/14 | 8/15
25 1/15 11/8l1/12 [1/14 11/15

8

8

8

8

8

1515 15 15 15 15

223344
342423
434232

111111

3898938

888888

All Processor Ranking with Four Jobs

68

90

In the preceeding example all the priorities were multiples or
divisors of each othexr. However, we would like to know what happens
when the prio&ities.ére not.multiples,.or divisors of each other. 1In
thislregard let us'observe the following facts about this scheme for

the resolution of access conflicts.

(1) ﬁnéer the assumption that N processors simultaneously begin
conténding for an access at time 1 with their access right words all
equal to the priority of the jobs that they are executing, and that
all contend for every access, the length (i.e., no. of memory module
cycle periods) before the lowest priority job obtains its first access,

designated by LBLP; satisfies the relation

Py (N-1)P,
MAX(N, | —| + 1) < LBLP <|—mnn 2|+ 1

where Py is the largest priority, P 1s the smaliest priority,
and [x] indicates the smallest integer > x.
This is easily verified since the lowest priority job camnot obtain
an access before any of the higher priority jobs nor before its access
right word is greater than the highest priority. Thus the left-hand
portion of the relation must hold.‘ Concerning the right-hand portioen
of the relation, it is observed that, considering the N-1 highest
priority jobs alone, the largest value that any of thelr access right

words may reach before the lowest priority job obtains its first access

is (N-1)Py. Thus the largest value that the lowest priority job's

91
access right word must exceed before obtaining its first access is
(N-1)Py.
' .(2) It is .difficult to make improvements on the bounds in (1)
without recourse to the exact ratios of all the priorities involved.
An analytical formulation in terms of these priority ratios and
number of éontending Processors ﬁppears to be a formidable problem in
"itself and would actually add very little to the task at hand. The
4iesults of a statistical analysis would be more useful in gaining an
’ .overview;of the manner in which the access granting mechanism is
expected to work.
(3) The proposed scheme performs poorest when two processors
are continuously contending and Py = 2P -1. In this case. the two jobs
obtain alternate accesses even though their ratio of priorities is much
closer té 2 tol than to 1 to 1. However, this is not as bad as it
may at first apbear since in a real situation neither of the processors
would be expected to be contending at every access period. From the
discussion of Chapter III concerning two contending processors and
memory module bandwidth equal to the sum of the mean bandwidth require-
ments of the two jobs being executed by the two processors and each of
equal bandwidth requirements the probability of contention at time
t+i, provided contention occurred at t, t+l, . . . t+i-1, is of the
form (1/2)1. " Thus, the probability of continuous contention of length 1

1s twice that of length Z, four times that of length 3, etc.

92

On the other hand the problem in the special case of two
processors could be alleviated somewhat by adding only a fraction of
the priority to the access right word of the processor not obtaining
the access when the priorities are of certain ratios. However, this
répresents'further:complication to the overall mechanism with attendant
potential for slowdown of the system. Therefore it will not be
consideréd any further in this paper.

The results of a statistical analysis of the length before the
lowest priority job obtains its first access and the length between
the first and second access is shown in Fig. 5-6 through Fig. 5-17
for 2, 3, 5, 10, 13 and 16 processors with priorities ranging from
1 through 255. The frequency-grams of these figures were plotted for
1000 samples each from a uniformly distributed random variable. The
values were normalized about the integer ratio of the sum of the
priorities to the lowest priority. From these frequency-grams it may
be observed that the expected mean length before the lowest priority
job obtains its first access is related to the mumber of contending
processors as well as the normalizing factor NF = [EEI&/P%]. The
length between the first and second access by the loiest priority job
is also related to the number of contending processors and tﬁe normal-
izing factor, but the frequency grams indicate that this length is
slightly less than that before the first access by the lowest priority
job. These two parameters give an indication of the type of service

that may be expected by a random selection of jobs being simultaneously

93

Mean = 0.0
1000 + -
Std, Dev. = 0.0
Normalization Factor =
- . [%Pi/PL]
500 4
1000 samples
0 —HH—s
-.1 0 1

Fig. 5-6 Frequency-Gram for length before lowest'friority Jjob
obtains first access for 2 processors.

1000 4 : Mean = 0.0
Std. Dev. = 0.0

Normalization Factor =
[Epi/PL]
500

1000 samples

l L
] !
-.1 0 d

‘Fig. 5-T7 Frequency-Gram for length between lst and Znd access by
lowest priority Job, 2 processors.

94

450 __ -
Mean = -.05160
Std. Dev. = 14976
300 1 Normalization Factor =
[?Pi/PL]
i
1000 samples
150 |
0 i ; | l L o hn J[] 1 l
T T 1 I 1 i 1 T T =1 T

-.5 =k -3 -2 -1 0 .1 .2 .3 .k .5

Fig. 5-8 Frequency-Gram for length before lowest priority Jjob
obtains first access for 3 processors

1#50T
Mean = -.08287
Std. Dev. = ,13123
300 |
Normalization Factor =
[;Pi/PL]
i
150 | 1000 samples
0 p—tpd e oy n O
I P R S R AL
-5 =4 -3 -2 -1 0 .1 .2 + 3 D .5

Fig. 5-9 TFrequency-Gram for length between 1st and 2nd access by
lowest priority Job, 3 processors.

95

225J
n
Mean = -.08038
Std. Dev. = .13137
150} ‘ '
Normalization Factor =
(2P, /PL]
i
1000 samples
TST
o L g '! 1 1 1 i 1 | |

1 T T T T

Z5-4 -3 -2 -1 0 .1 .2 .3 & .5

Fig. 5-10 Frequency-Gram for length before lowest priority Jjob
obtains first access for 5 processors

2254
-
Mean = -.11193
1504 S3td. Dev. = .12010
Normalization Factor =
(zZP; /PL,]
i
51 1000 samples
ol N SN W B ' Wkt P SO R
1 p— 1 T 1 T T | i

-1 -2 -3 -.b-5 0 .1 .2 .3 b .5

Fig. 5-11 Frequency-Gram for length between 1st and 2nd access
by lowest priority Jjob, 5 processors.

96

150 T'
Mean = -~.1048L
100 L
‘Std. Dev. = .09540
Normalization Factor =
(zp; /P,]
i
S0 1
1000 samples
0 = % -1 = %’ 4_ } T } + t

-5 =4 -3 -2 -1 0 .2 .3 h .5

¥ig. 5-12 Frequency -Cram for length before lowest priority job
obtaing first access for 10 processors

i50
Mean = -.12068
100 L Std. Dev., = 09153
Normalization Factor =
[£P; /Py)
i
50 1 1000 samples
0 {

} =t
-.5 =.4 -3 -2 -1 0 L1 .2 .3 Ll .5

Fig. 5-13 Frequency-Gram for length between lst and 2nd access by
lowest priority Jjob, 10 prccessors.

97

130
Mean = -,11161
Std. Dev. = .083h8
' Normalization Factor =
100 [zP;/Pp,]
i
1000 samples
50
0 L 1 1 1 1] [I
T 1 T] T T T T T T T
-.5 =4 ~.3-.2 -1 0 .1 .2 .3 .4 .5

Fig. 5-14 Frequency-Gram for length before lowest priority Job
obtains first access for 13 processors

Mean = -.11891
Std. Dev. = .0T703
Normalization Facter =

iP. /P
[P, /B]

1000 samples

| L . L]
—1 T T 1 T

-5 =k -3 -2 -

O -
-l
N
»
[N
g
(el

Fig. 5«15 Frequency-Gram for length between 1st and 2nd access
by lowest priority job, 13 processors.

150

98

+
Mean =-,10T746
i Std. Dev. = .07585.
100
Normalization Factor =
[7B;/P)
i
50 1000 samples
0 i +— ! L 1 . L l l
T T T T T 13 T T o
-5 -4 -3 -2 -1 0 .1 .2 .3 .h s
Fig. 5-16 Frequency-Gram for length before lowest priority job
obtains first access for 16 processors.
150
Mean =-,11718
Std. Dev. = ,06979
100 |
Normalization Factor =
[IP;/PL]
l .
1000 samples
50 1
0 —l +—t—
-5 =h -3 -2 -1 00 .1 .2 .3 i .5
Fig. 5-1T7 Frequency-Gram for length between lst and 2nd access by

lowest priority job, 16 processcrs.

99

executed from a single memory module. The lower priority jobs will
tend to obtain accesses at higher rates than their relative priority
dictates while the higher priority jobs will tend to receive accesses
at rates that are slightly less than their relative priority indicates
that they should. This is the expected outcome over the ensemble of
priorities and number of contending processors but particular cases

may be contrary to this average trend as is indicated by the sequence

80 80 | 160 80 160 80 160

53 . 106 53 106 159 212 53 . ..
53 106 159 212 53 106 159 .

‘———— periodic length ———4

. Nevertheless, the graphs indicate that the mean length before first
‘access-by the lowest priority job ranges from approximately -.052NF
with standard deviation of .150NF for three processors to approximately
© =.107 NF with standard deviation of .076 NF for sixteen processors. The
mean and standard deviation for the length between the first and second
access by the lowest priority job ranges from approximately -.083 NF
and .131 NF for three processors to approximately -.117 NF and .070 NF
for sixteen processors. The priorities were always assumed to range
from 1 through 255. The two processor case is singular with mean equal
"to WF and standard deviation of 0.0 since the normalizing factor NF
was taken to be the integer part ofE:Pi/PL- The curves appear to

i

approach a normal distribution as the number of processors increase.

100

The results for the means and standard deviations are summarized im
Fig. 5-18 and Fig. 5-18A.

A block diagram of the multiprocessor system'with the proposed
scheme for memory access conflict resolution included is shown in
Fig. 5-19. 1In the context of conflict resolution no explicit
distinction has been made between CPU's and IOP's. However, it may
.. be desirable to give the IOP's higher ranking than the CPU's as well
“as weighting the priority words associated with jobs in the I/0
processing state higher than that of jobs in the CPU processing state
due to the critical nature of the timing required of input/output
transfers. Also, in this context, it appears that each I0P will require
a small dedicated buffer storage since the scheme does not guarantee
right of memory access to any particular processor at a particular
time. However, these requirements are not considered in this paper.
As shown in Fig. 5-19 associated with each processor is a memory module
address decoder which accepts as input an access request line labeled
4 -and the memory module address lines. If the nuwmber of memory modules
is a power of 2 and the log),M least significant digits of the address
word 1s taken as the module address then interleaved memory results,
but this is not considered to be the case at this point. Thus, we
assume that the [logy(M)] high order bits of each address word is the
module addregs. From each of the N memory module address decoders is a
line to each of the M processor selectors. Therefore, each of the M

processor selectors has as input one line from each of the N address

101

15]
standard deviation
.10
.05]
* Length before first access by lowest priority
0) Jjob.
X Length between first and second access by lowest use
priority Jjob.
-.0%
mean
-.10 |
-.15

T * T

3 iy 5 & 7 8 9 10 11 12 13 14 15 16

Number of Processors

Fig. 5-18 Summary of Means and Standard Deviations normalized about
(¢ P;/Py] for Priority Driven Access Conflict Resolution Scheme.
i .

102

1.0 .
7 mean
—d Y _4_.-——'—""_'—“—-—4-——__.
.B_J/
.6 |
4 |
.2
i standard deviation
—n/’-—“._—‘-\,_.\ —
J
0
T T =T T T T T T T T T T T
3 4 5 G 7 8 9 10 11 12 13 14 15 16

Number of Processors

Fig. 5~18BA Service to highest priority job relative to that
of the lowest priority job under the priority
criterion.

MEMORY MODULE

PROCESSOR ADDRESS PROCESSCR =
#1 DECODERS SELECTORS 2
M (== Pt —n | 1 o 4DDRES§| . wamMORY
Al HE #1 e PRIORITY o MODULE
[WORD # 1 B DATA
M #1
D ; SO
R) S
PROCESSCR 0
__[PRICRITY
iz I WORD # N .
T = S | ADDRESS weMORY
gt X # 2 = | .
= INRE) 5 MODULE
M[' lL{) »| PROCESSOR DATA, | # 2
D L il : Y| SELECTOR P —
” '. A7 L E :
. . M ’
PROCESSOR M . o .
N ;il . R
Mt_ =D # W ~ ‘J| Y [APDRERS \mmoRy
M M —. SELECTOR o DATA Y
D E # M A D
g T
I
N
u i
Fig. 5-19. Block Diagram of the Multiprocessor System with Conflict

Resolution Scheme Included.

€01

104

decoders as well as p lines from each of the N priority words. There
is one processor selector associated with each of the memory modules
which selects at most one of the processors to be given an access

at each memory module cycle period. The output of the M processor
selectors contrpl ;hg gating hetween pfocessors and memory modules.
Fig. 5-20 showéﬂa memory module address decoder. Fig. 5-21 shows

the combinatorial portion of a processor selector. The access word
registers are capable of either adding the priority word at their
inputs to their present contents or loading the priority word at

their inputs at the times controlled by the memory module sequence
timing and interconnect controller. The N inputs from the memory
module address decoders control the gating of the contenté of the
access right words into the maximum word detector and only those lines
corresponding to processors wanting an access from the memory

module associated with the processor selector under consideration

will be true. The maximum word detector compares the most significant
bit of all contending access words with the maximum size for this bit
position. If a particular word's most significant bit is not as large
as the largest then the output of the coincidence gate associated with
this word and bit position will be zero. Consequently, any words not
meeting the largeness test in their most significant bit position will
not be considered at the lower bit positions since the output of the
coincidence gates are also used as inputs to the input AND gates at

the next lower bit position. The same test is then applied to the

105

X1 A 3
X5 —(Gy
- .
Xp —d

00
T
N

3
n

Logy, M|

access request line

o
n

Fig. 5-20. Memory Module Address Decoder.

FROM MEMORY
MODULE
ADDRESS
DECODERS
Yy v

FRCOM

e _ PRIORITY ___~
. WORD

1
ACCESS
WORD # 1 LOAD

T T
= AD

FROM
PRIORITY

-~

WORD #2 o
ACCESS N
WORD_#2 : LOAD

I S P I
— |

FROM .

PRICRITY,
- WORD AN

90T

ACCESS

LOAD
ke

FROM PROCESS0R

TO PROéESSOR RANKING : ‘] 3 ADD
RANKING CIRCUIT CIRCUIT 3 : 5

MEMORY MODULE SEQUENCE TIMING AND

INTERCONNECT CONTROLLER

TO PROCESSCR TC MEMORY GATING

Fig. 5-21, Processor Selector,

107

next most significant bit position of each contender that has passed
the largeness test at its preceeding-more significant bit position.

Thus, the outputs from the AND gates going to the processor ranking

circuit will be true only for those words that were as large as

the largest and were contending.

The processor ranking circuit shown in Fig. 5-22 is used to
determine a winner in case of a tie from the processor selector. Its
inputs consiét of the oufput of the processor selector for gating
through the priority word associated with those access words fhat
are as large as the largest. The processor ranking ecircuit works in
‘a manner idenfical to that of the max word selecto? except the outputs
are ordered_acéording to processor number l.e. in case two or more
contending processor's priority words are equal then the one with
lowest number obtains the access provided its associated access right
word was equal to the largest accessrright word, The o#tputs of the
processér_ranking circuit is used as inputs to the memory module
seduence timing and interconnect controller. The sequence timing

.and interconnect controller provides timing signals that coordinate
the selection of the processeor to obtain the next accéss and timing of
the various events associated with the operation of the memory module.

Fig. 5-23 ghows the gating of the read/write line from each
processor to-each memory module. The inputs to these circuits consist
of one line from each of the M module sequence.timing‘and interconnect

controllers. Fig. 5-24 shows the logic gating for one bit of the data

PRIORITY

FROM ACCESS
GATE OQUTPUTS

WORD # 1

ey
J,'._...'.—_—

11
I}

HEE
LT]

PRIORITY
WORD # 2

1]

LI -
—]

PRIORITY
WORD # N

LS

l[h 2 l/

TO MEMORY MODULE SEQUENCE TIMING AND INTERCONNECT CONTROLLER

Fig. 5-22. Processor Ranking Circuit.

80T

R

1. o : . D: Ry»q -
. AT - | ._1 1 .
+ S .
#1 . -‘ "
—2:{3 : L e By
CFROM ALL | s
PROCESSOR 1 »
SELECTORS _
_ R
. _ M2
R2 ’ >
P e Bl
4o ; Byso
FROM ALL - .
PROCESSORM—L‘-D .
SELECTORS . .
¢ a . .
*ow [So——PRien
ﬁ -
1.} 3 .l
P L]
wo | 2] . -
‘ Ry u
FROM ALL .
PROCESSOR
SELECTORS ‘

Fig. 5-23., Processor to Memory Gating (Read/Write Lines).

60T

_ - By,

— Ry .
1 —
P +] MM
#1 L _Et: #1
—__ B2
) 5
—+ L HL M,1
. R FROM R
FROM ALL {_2f [. . .15 [PROCESSOR M»1
PROCESSOR { ; R —)SELECTOR #1
SELECTORS : of I . By o
+.
o Crh tE]j
P MM
4o *%1+ F IH' #2
R 1 r—— J, I:J 1, Byp
— 1] * — 2 -
Bo —:D — Ry,2,
. . H2 [FrRoM
FROM ALL —EE‘] i PROCESSOR *
. PROCESSOR . i SELECTOR #2 |,
SELECTORS ' , LBz
. M,M
P MM l
i + t #M
e L
§N ’ — \RM M
2 [rrqM Ry o
»
Ry PRACESSOR
* FROM ALL - ; |SEECTOR #M
PROCESSOR: : .
sELECTCRS | M

Fig. 5-24. Processor to Memory Gating (One Bit of Data Lines).

01T

111

lines between the processors and memory moduies. _In'places where the
outputs of gates are connected together it is assumed that if one of
the gates tends to cause the output to'be true and the other tends to
cause it to be false then the result is false. Fig. 5-25 shows the
gating of the address words from the prdcessors-to the memory modules.
The inputs ;orfhese circuits consist of one line from each of the

M sequence timing aud control circuits. At most one of the M can be

true at a given access period.

"Time Required to Resolve Access Conflict

Let us assume -the following:
(1) At most 16 processors will be contending for accesses from
a single memory module.

(2) The largest priority word is 255.
From (1) and (2) the number of bits required for an access right word
is [logy(16x255)] = 12. 1If it.is'assumed that the coincidence gates
of Fig. 5-21 are realized with three levels of gating then the ripple
time for the max word detector (cOmbinatidnal logié portion of the
processor selector} A is 5 x 12 + 1 = 61 gate delays. Similarly the
ribpleltime through the processor ranking circuit is 5 x 8 + 2 x 7 = 54
gate delays. Thus a total of 115 gate delays is required for resolution
Aof conflict. If we assume a gate delay of 5ns then the total time for
access conflict resolution 13_575.ns. This amount'of time is probably
too large for most high speed memory modules. The problem here is that

these circuits operate on a sequential bit by bit manner in selecting

112

T 0
SEoADaE
SR EO M-

3 =
= ocooDAa=

vl - o s

AMDOORKMWMNWLOoOM

LMoL OoOM

Processor to Memory Gating (Address Lines).

+ + e e + + 3 . + + . l_l
T - |

w

o~

[

o)

= '

= - '] » L] L L3 L [] »] -

e ojdpgaiolo

A
m m . . . s | .
M@ . w_ Lm_ »H w_w_ »_.:
o Q . i R 1]
Ea Alafeea

9 =y Rl

AEOD@HBnWLOM

Fig. 5-25,

113
the largest word. If the number of bits in the access right and
priority words were smaller then these circuits might be satisfactory.
Nevertheless, let us consider an alternate arrangement that makes the
selections in an essentially parallel manner. The number of gate
delays for the circuits shown in Fig. 5-26 and Fig. 5-27 is independent
of the number of bits in the access right or priority words. .The
exactly 1 out of N and as large as largest f:ircuits are shown in
‘fig. 5-28, TUnder the assumﬁtion that the coincidence gates are
realized with three gate levels then the total number of gate delays
for the circuits of Fig. 5-26 and Fig. 5-27 is at most 17. If it is
assumed that the amount of time delay per gate is 5ns then these

circuits are capable of access conflict resclution in 85 ns.

FROM MSBE OF FEOM 2nd FROM MSB OF FROM LEB OF

ACCESS RIGHT WORDS ACCESS RIGHT WORDS ACCESS RIGHT WORDS
FROM Y Y ... 1 Y Y Y e ¥ 3 L
MODULE — — -
DECODERS *
] L] L] [a rep) [] [] - x [
1 1 :
a8 e] LR | 'y e R] pas
EXACTLY 1 AS LARGE EXACTLY fS LARGE , EXACTLY 1 AS LARGE
OUT OF N AS LARGEST 1 OUT OF I | hS LARGEST ** louTr OF N AS LARGEST
1 e 8 = - e r———'- . & »
- . L) - . - L] 2 2 @ - [I I) » L] o‘ P »
l. . ! = T O
t 7] — PROCESSOR
i - RANKING
FROM . CIRCUIT
PROCESSOR ——[] + + « | =T F

RANKING + + . . . +
CIRCUIT I——T——l |—I——l L_T—:I

MEMORY MODULE SEQUENCE TIMING AND
INTERCONNECT CONTROLLER

MAX WORD DETECTOR

Fig. 5-26 Alternate Processor Selector Circuit

CHBTT

From MSB of From 2nd From MSB From LSB of
Priority Words . of Priority Words Priority Words
From '\,— \ V il ‘F 3) . o 4 Y ‘r - . »
Max .
Word :Q T] —I'
Detector " A
L4 * |loan} @ L] [se u| @ '] - e,]
i |
|]
o]] [.- 11 |...
Exactly As Large Exactl¥ As Large Exactl As Large
1 out of N |As Largest 1 out of V| [As Larpest 1 out of N | |As Largest
i |
v |

To Max Word Detector
Output or Gates

Fig. 5-27. Alternate Processor Ranking Circuit.

STT

As Large As Larpest

Fig, 5-28. As Large As Largest and Exactly 1 Out of N Circuits.

x| Xy

. =

+

Exactly
1 out of N

911

i

VI. SOME PROBLEMS FOR THE SIMULATOR

Intrbductorx_Rémérks
ATﬂe'trﬁé v#lﬁe of a simulation model such ‘as is described in this
paper is not the ability to provide spéﬁific:answers to specific ques-
tions but rather more often it is more useful in helping to formulate
fhe ofiginal qdestioné in such a mannéf that meaniﬁgful answers may be
ﬂaiécoﬁered. In bther words, thé simulatibn'modei helps to create an
awareness 6f thé problems‘and‘then provide the questioner;with enough
ﬁnderétanding of Ehese problems such théﬁ answers to his questidns about
the problems conﬁeys usefui information to him.
The model has a léfge nﬁmber of parameters, both explicit and im-
“éliéit.l Quite ofteﬁ, changing éue of'éhese parametefs in a‘éertain direc—
Lign does iﬂfiueﬁéerthe.system in the difeétién that.it inthitively
appears that it should, but frequently the magnitude of the result is

negiigible in itself or of litfle conSeqﬁence‘in light of a host of other
mitigating faétors. Tﬁus the model provides a means for discovering
which ﬁarameters afe'mdre significant undef gsome set of assumed condi-
éiéns; For theéé.reaéons during'the invesﬁigatidns which will be con-
dﬁcfed.ih this.section of the paper, ﬁost of these pafaﬁeters will be
set to values for which past experience inﬂwquiﬁg Qith the simulation

' m&del as it evolved indicates that they'shbuld be set in order to either
higﬂlighé the effecfs of changes in other pérémetérs or to remo%e the

effects of parameters which have little real bearing on the particular

117

118

problem to be studied, but when taken along with a number of other para-
meters, that may be similarly classified in regards to the problem at
hand, tends to dilute the effects of the ones that are being studied.
This ie also necessary in view of the large number of combinations of
values of parameters for which simulation rums would have to be made in
order to ascertain the true nature of a particular parameter of interest
under the diluted conditions.

Tt should be apparent that the simulation model is not designed
with the idea of obtaining precise results but nevertheless it is felt
that useful information can be obtained about a multiprocessor computer
of the form assumed in this paper through its use at a cost in time and
material that is far lower tham through other means.

Since we will be concerned to a considerable extent in determining
system resource utilizations in this section let us define memory space,
memory bandwidth and processor utilizations in terms of the simulation
mode.

Memory Space Utilization - A block of memory space will be consid-

ered to be utilized 100% at a simulation step if it is assigned to

an active job either in a load condition or processing condition
during this step. Its utilization is considered to be zero at all
simulation steps at which it is not assigned to an active job. The
overall space utilization at a simulation step is then the ratio

of the amount of space assigned to active jobé to the total amount

of memory space. The mean spaée utilization over a number of simu-
lation steps in an interval T is then the arithmetic mean of step

utilizations in T.

119
Memory Bandwidth Utilization - Memory bamdwidth utilization at a
simulation step.is simply the ratio of the number of accesses
granted during this step to the total number available from the
entire memory. The mean utilization of memory-bandwidth over an
interval T is the arithmetic mean of the.sfep utilizations during
this interval.
Processor Utilization - A processor will be considered to be
utilized 100% at a simulation step if it 1is not in an idle state
and it is granted as many memory accesses as it requests from the
memory. Thus processor utilization is actually the ratio of the
number of accesses granted to thé number of accesses requested for
an active processor. Idle processors are considered to have a
utilization factor of zero. The overall utiliéatiﬁn of processors
of a given type at a simulation step is then thé&ratio of the sum
of the utilization factors for all the prqcéssors of this type to
the total number of processors of this tybe in the system. The
mean utilization of processors of a particular typé over an inter-—
val T is then the arithmetic mean of the step utiiizations in this
interval.

—'”Althbugh'tﬁe model handlés jobs on an indiyidual basis and %rints
out statistics concerning sérvice to each individual job these individual
statistics will not be presented in the problems to be considered due to
the bulk of matériél that would be required. Thus we will concentrate
on the overall responses to and characteristics of the total job set.

In thé simulaﬁions ﬁhiéﬁ wére pérformed in this section no prece-

dence ré;ations were specified among tﬁe jobs in the input job sets,

120

each simulation run was made for 1300 steps, all jobs had an external

priority of one and the following system parameters were left set as

indicated:

ICECSZ(CESZ) = 40
ICON(CON) = 4000

CINL(N1) = 20

lator.

IFECSZ(FECZ) = 40
IPCT(PCT) = 100 (scaled internally to 1.0)

IP1(P1) = 27
IP2(P2) = 85
1QL(Ql) = 15
1Q2(Q2) = 8

1Q3(Q3) = 3

IR(R) = 800

IS(S) = O

ITA(TA) = 300 (scaled internally to 3.0)
MINBLK{MNBK) = 1024

MMST = 64

NI = 15
MMSPF(MSPF) = 16
MMAPF(MAPF) = 32
RPO1 = 0.85

RPO2 = 0.30

RPO3 = 1.0

RPO4 = 10.0

RPO5 = 50.0

RPO6 = 3.0

RPO7 = 1.0

RPO8 = 1.0

RPQ9 = 0.33333
RP11 = 0.0

Problems to be Studied

In this section five problems will be studied by means of the simu-
These problems include the following:
(1) Memory fragmentation

(2) System resource utilization comparisons between the feedback
and nonfeedback scheduler/allocators.

(3) Apgregate system response to the input job set and frequency
of schedules as a function of total memory size.

(4) Relative comparisons of system response for various system
configurations and numbers of recurrent jobs.

121
(5) The impact of TMR jobs on the memory allocation problem.

Memory Fragmentation

In the absence of some automatic hardware mapping scheme (and an
elaborate memory protection device assoclated therewith) for mapping a
logically contiguous name space into a noncontiguous absolute address
space it is highly desirable to make memory allocations to each job from
a single addressably comntiguous block of storage locations. Memory frag-
mentation is a condition whereby the available memory space becomes
separated into many small noncontiguous blocks.' Thus memory fragmenta-
tion can, to a certian extent, thwart the ability to make allocatioms
from single addressably contiguous blocks, especially large allocations.

The simulation model coalesces blocks of storage as they are re-
leased with any addressably adjacent available blocks. Scheduling is
then done in small batches and as much of the available memory space as
possible is allocated to jobs in the schedule that require memory. This
method of oneratioﬁ has the advantage of choice for optimization over a
scheme that reallocates the memory space as soon as it becomes available
or as soon as there is a demand for it. 1If this latter option of immedi-
ate reallocation were adhered to then the system would try to become a
first-in first-served device. While first-in first-served devices are
esthetically appealing for queues involving people, they do not lend
themselves to optimization in the utilization of resources nor do they
necessarily ensure fastest service to individual jobs in a computer en—
viroment and can be atrocious in their appetite for system overhead.

For exaﬁple; under a first-in first-served policy (policy but not in

122

fact realizable) the jobs in the system queue that are waiting for memory
space would tend to be from the population requiring the larger amounts
of space. Concomitantly the jobs releasing space would tend to be from
the population requiring the smaller amounts of space. Thus, quite often,
following release of space the system would search through the entire
iist of jobs that were waiting for memory without finding one that
would fit into the released space. Therefore all three of the evils
mentioned above are realized.

1t has been suggested [28] that the memory fragmentation problem
is tolerable under .conditions similar to those described here for the
simulation model, however, no quantative figures are available. There-
fgré fhé éi£ulator will be used to ascertain the amount of memory frag-
mentétion. Since in this regard we are more interested in the average
utilization of memory space when there is great demand for it let us ad-
just the input demands on the system's memory space such that it remains
high at all times and observe the total amount of available storage space
immediately before and after each new schedule. This may be done for
several different average request sizes and dispersions relatiYe to that
of the total memory space, Actually a number of cases were observed con-
cerming the fragmentation problem but the following two cases are typi-
cal.

Case 1

Total number of recurrent jobs in the system = 40

Each job's memory space size from a uniform random distribution
between 4 and 32

' Actual average request size = 21.7

123
The data shown in Fig. 6-1 was then obtained from five simulation runs
with total space of 128, 192, 256, 320, and 384. A plot of this data is
shown in Fig. 6-2.
Case 2

* Total number of recurrent jobs in the system = 40.

* Total memory size fixed at 256

* Job space size varying from job to job
The data shown in Fig. 6-3 was then obtained from four simulation runs
with job space size varying in the ranges of 12~24, 8-32, 4-64 and
1-128. A plot of this data is shown in Fig. 6-4.

The data of Fig, 6-1 and the curve of Fig 6-2 indicates thét the
portion of total space available immediately after schedules was almost
constant and less than .05 for all five of the total memory sizes.

From the data of Fig. 6-3 and the curve of Fig. 6-4 this same parameter
varied in the range from approximately .04 to .12. The larger portion
of total space available in the second case may be only partially
attributed to the relative demand for space. This demand is roughly
measured by the product of the average space requireme;t per job and

the average number of jobs waiting memory before each schedule. However,
the system's ability to make maximum utilization of the total memory
space is also controlled by the relationships between the space require-
ments of the jobs and the sizes of the available blocks of space as well
as whether or not the system is biased in favor of the smaller size jobs.
From the data of Fig. 6-3 it appears that the system was biased in favor
of the smaller size jobs, especially in the case of the largest require-

ments range.

124

Total memory space

128 192 256 320 382
No. of schedules 30 19 16 13 10
Av., no. of available 2.83 3.58 4.56 4,92 5.60
blocks before schedule
Av, total available 52.77 [101.10 | 139.12 |180.54 |224.2
space before schedule
Av. ne, of jobs waiting 32.40 | 31.53 4 30.75 | 28,77 | 28.80
memory before schedule
Av. no. of available 2.55 2.94 3.38 3.70 4.10
blocks after schedule
Av. total space after 5.22 6.68 7.3L | 13.15 | 13.30
schedule
Av. no. of jobs 29.73 | 26.21 | 23.94 } 20.38 | 18.4
waiting memory
after schedule

Fig. 6-1 Tabulation of data concerning memory fragmentation--
Job space requirements from uniform distribution between
4 and 24 with mean = 21.7, varying total space.

125

A Portion of total jobs waiting memory
before schedule i

B Portion of total jobs waiting memory
after schedule

C Portion of total space available
before schedule

D Portion of total space available
after schedule

0 2 4 6 8 10 12 14 16 18
Total Space/Average Job Space
Fig. 6-2 A plot of data concerned with memory

fragmentation — Constant job space
requirements, varying total space.

126

MEMORY SPACE REQUIREMENTS RANGE

12-24 8-32 4-54 1-128
No. of schedules 69 74 64 23
Av. space requirement 19.33 22.15 38.75 80.38
Av, No. of available 4.0 3.57 2.83 1.79
blocks before schedule
Av. total available 115.80 | 100.74 95.17 116.43
space before schedule
Av. No. of jobs waiting 5.84 8.53 21.44 31.57
nemory before schedule
Av. No. of available 3.55 3.23 2.47 1.46
blocks after schedule
Av. total space after schedule 26.60 30.25 24.60 9.68
Av, No. of jobs
waiting memory after 1.87 5.30 19.44 29.50

schedule

Fig. 6-3 Tabulation of data concerning memory fragmentation for

four space requirement ranges, total memory size

40 jobs

= 256,

127

A - Portion of jobs waiting memory
before each new schedule.

B - Portion of jobs waiting memory
after each new schedule.

C - Portion of total space available
before new schedule.

D ~ Portion ot total space available
after new schedule.

Total Space/Average Job Space

Fig. 6-4 A plot of data concerned with memory .
fragmentation - Varying job space
requirements, constant total space.

128

System Resource Utilization Comparisong Between the Feedback and Non~
feedback Scheduler/Allocators

As mentioned before in sections I and II the system may be con-
figured such that memory allocation and internal priorities of each job
are influenced by goodness of fit in both space and bandwidth between
requirements of jobs and an estimate of what is available from the main
memory at the time of memory allocation. In making these comparisons a
number of simplifications were made but the most notable ones were that
the numbers of input/output operations for each job were adjusted such
that these operations had a small influence on the overall system and
that the memory space for each job was entirely within a single memory
module. Four simulation runs each of 1300 simulation steps were then
made with the system configurations and job characteristics listed in
Fig. 6-5, The results of these runs are shown in Fig. 6-6. These results
warrant some discussion. First of all, it should be pointed out that the
nonfeedback configuratioﬁ tends to be biased against jobs with large
bandwidth requirements since if priorities of a large bandwidth job and
a small bandwidth job are equal and assuming large overall bandwidth
demands then the program executer will tend to grant memory accesses to
the low bandwidth job in accordance with the number that it requests.
Conversely, it will tend to grant memory accesses to the high bandwidth

job in accordance with the priority of the high bandwidth job relative teo

that of other active jobs having space in the same memory module. Thus

129

Run Number

1 2 3 4
Number of CPUs 10 10 9 8
CPU Speed 1 1 i 1
Number of IOPs 12 12 12 ~ 12
I0OP Speed 5 5 5 5
Number of Memory 10 5 3 2
Modules
Memory Module 16 16 16 8
Speed
Total Number of 40 40 40 40
recurrent jobs
Number of job sets 1 2 3 4
Job bandwidth Bm «1xB,.9%By | .1xB_,.3xB_, .lem,B/ZOme,
requirements 6xB . 3xB ;,9/20xB
Job space Sm |1/2xS 1/38 1/4x58
requirements

All speeds are in numbers of basic clock periods per cycle
time of device,

Fig. 6-5 System configurations and job characteristics for comparisons
between feedback and nonfeedback scheduler/allocators.

130

. Feedback Scheduler/Allocator
+ Nonfeedback Scheduler/Allocator

1.0{
1 ‘ Space
4 W
. 8+
Bandwidth
.6
4
§ CPU
d
-
1 OP
2
1 . «
1
O T 1 1]
1 2 3 4

No. of Jobs per Memory Module

Fig. 6-6 System resource utilization comparisons
between feedback and nonfeedback
scheduler/allocators.

131

with a fixed direct relationship between bandwidth requirements and total
number of accesses for job completion the low bandwidth jobs will tend
to run in a shorter length of time than the high bandwidth jJobs. With
approximately equal populations of high and low bandwidth jobs the mnet
result is that the low bandwidth jobs are run with higher frequency than
the high bandwidth jobs, especially with large total demand on the sys=-
tem, If a CPU is not idle during some period of time T and is granted
éll the memory accesses that it requests during this interval T then we
must assume that its utilization is 100% during this interval. This
explains the higher utilization of CPUs during all four runs for the
nenfeedback configuration. The memory bandwidth utilization was higher
for the feedback configuration in all runs except run #1. In run #1
there was no real choice for bandwidth matching since all the jiobs had
the same space and bandwidth requirements. The number of executions for
each job was not the same for the feedback and nornfeedback configurations
and since the jobs did not have the same processing shape curves a small
difference in bandwidth utilization can be expected during this run.

Memory bandwidth utilization is a rough measure of the total pro-
cessing done by the system if relative service to individual jobs can
be ignored and it is assumed that each program executed by the system
has been optimized for the particular system configuration. Alternately,
inefficiencies inherent in particular programs need not be considered
in relative comparisons between the feedback and nonfeedback versioﬁs
of the scheduler/allocator since these could theoretically be removed
in either case. Under these assumptions the feedback configuration appears

to have performed mere work than the nonfeedback wversiomn.

132

Agpregate System Response to the Imput Job Set and Frequency of Schedule
as a Function of Total Memory Size

The total space in the main memory appears to have a considerable
influence on the response of the system to individual jobs as well as the
amount of overhead required to keep the system utilization at reasonably
high levels. The frequency at which new schedules must be initiated in
order to attempt to maintain séme level of resource utilization is a
fairly good relative indicator of overhead associated with scheduling
jobs and allocating memory space. For the present problem three groups
of four sets of four simulation runs were made corresponding to a total
space that was roughly‘.l, +2, .4 and .8 times that required by all the
recurrent jobs in the system. The system's total memory bandwidth was
held constant at approximately .52 times the amount that would be de-
manded if all jobs were executed at their desired repetition rates. 1In
this manner the total demands on the system were maintained at a high
level throughout each run. In each set of runs four runs were made cor-
responding to 2, 4, 8, and 16 memory modules. Total memory speed and
épace was held constant in each of the four runs of a set by adjustment
of module size and speed. This resulted in module speed being'directly
related to size. This is of course'contrary to what one would expect in
regard to maximum capability from real memory modules all of the same
technology but of different sizes. However, we may consider the largest
and fastest memory modules to be the highest quality and consequently
the highest cost. Then by substituting larger numbers of smaller and

slower modules we may observe the changes in the system's performance.

133

If at each simulation step each job's memory accéss requests are
distributed over its total memory space in a linear manner then in those
instances in which the mean job size is larger than the space of a memory
module the results are not valid, This is true because real computer
programs are far from random in regard to the sequence in which accesses
are made to locations of their memory space. In fact, the success of
virtual memory systems is predicated on the 'locality of reference' [25]
phenomenon of real computer programs. Thus if the contingencies men-
tioned aboée actually held then the speed at which a processor could
obtain accesses from a single memory module would be an upper bound on
the speed of execution of a particular program. This problem could be
overcome somewhat by interleaving the memory to a depth such that the
space spanned by each interleaved set of modules is greater than the
mean job space requirement. In the present problem for those cases in
which the mean job size is actually larger than module size runs will be
made for both random and sequential distributions of access requests so
that comparisons may be made.

For the first group of four sets of four runs each, the bandwidth
requirements were matched to the amount of bandwidth availablie from the
memory space occupied by the average size job. By holding total avail-
able memory bandwidth fixed and increasing total memory space, the amount
of bandwidth that is available to a job of a fixed size tends to decrease
directly with total memory size. Thus by adjusting the bandwidth require-
ments of each job inversely in relation to total memory size the amount
of bandwidth that is available to a job of the mean size should remain

fairly well matched over gll total memory sizes. In this mannexr we may

134

remove the effects of bandwidth avallability to individual jobs on CPU
utilization. Thus CPU utilization becomes an adjusted indicator of sys-
tem thruput and we are able to observe the effects of space alone on
this indicator. With more space more jobs may be in the wmemory at the
same time and CPU utilization should increase as space increases to some
polnt at which the number of jobs in the memory is somewhat larger than
the number of CPUs. With a total memory size of sixty-four and a mean
job size of sixteen the system may on the average have four jobs either
being loaded or in execution. At a total memory size Qf 512 this average
number is increased to thirty-~two. However with the number of -CPUs fixed
at eight and the number of IOP's-at sixteen we should expect to see (CPU
utilizat@onito range from something less than one-half to close to unity
depending upon how high the system tries to maintain CPU utilization
through rescheduling.

For this problem we will assume that the total IOP load is light
at all times. The result of all this is that the factor determining
sytem thruput, as reflected in CPU utilization, should pass from a low
value at the smaller memory size in which the CPUs cam be utilized only
lightly due to an insufficient number of jobs in the memory to an asymp-
totic high value in which more jobs- are in the memory than the fixed
number of CPUs can adequately service. The system configurations and job
characteristics for thé present problem are shown in Fig. 6-7. The
results for the first group of runs in which job bandwidth requirements
were matched to that available from the space occupied by the mean size

job is shown in Fig. 6-8 through Fig. 6-13.

135

For the second group of runs the bandwidth requirements were held
fixed at the value that was used for the smallest memory size in the
first group of runs. The results for this group of runs are shown in
Fig. 6-14 through Fig. 6-18. In the third group of runs the bandwidth
requirements were allowed to vary from job to job over the range from
.06 times the memory's total bandwidth to .25 times the memory's total
bandwidth. The results for this group of runs is shown in Fig. 6-19
through Fig. 6-24. In Fig. 6~8 the CPU utilization curve has the ex-—
pected shape. It indicates that a total memory size in the range of
256 is adequate for the assumed number of CPUs and mean job sizes., Com—
parisons Eetween Fig. 6-9 and Fig. 6-15 show that the lowering of band-
width requirements directly with total memory size had a considerable
iﬁflueﬁce oit the steepness of the slope of the bandwidth utilization
curves of Fig. 6-% but had little effect on the space utilization curves.
The downward slope of CPU, memory bandwidth and job completions'between
memory sizes of 256 and 512 in Fig. 6-14, Fig. 6-15, and Fig. 6-16 was
caused by localized bandwidth limiting due to packing of a disporticnate
number of jobs into one end of the memory. The effects of this phenome-
non are greater for larger numbers of smaller memory modules as is indi-
cated by these curves. The relatively large amount of space avajlable
immediately after schedules in Fig. 6-17 for the largest total memory
size is due to the smallness of space demand relative to the amount that
is available and is not a true indicator of the fragmentation problem.
Sequential distribution of access requests, as indicated by the dashed

lines, resulted in general in lower utilization of system resources.

136
{(Number of Modules, Module Speed)

Total Memory

Size (2,8) (4,16) (8,32) | (16,64)
512 A 1/16 1/8 1/4 1/2
MIX .568 .568 .568 .568

256 A 1/8 1/4 1/2 1
MIX . 785 . 785 . 785 .785

128 A 1/4 1/2 1 2
MIX 915 .915 L 915 .915

64 A 1/2 1 2 4
MIX 980 .980 . 980 . 980

Module speed is in basic clock periods per module cycle period.

4 is the bandwidth requirement of each job expressed in units of the
bandwidth of a memory module, Bp.

MIX is- the fraction of short instructions for each job. In these rums
a short instruction requires eight CPU cycle periods and a long instruc-
tion requires 256 CPU cycle periods.

Number of CPUs = 8, Number of I0Ps = 16
Number of recurrent jobs = 40
Job space range = 4=24, Mean = 16.3

Desired mean job interarrival period = 275
Mean number of memory accesses CPU = 7500
per execution: IOP = 2750.
Mean job bandwidth requirement:
‘ ' Total
Group #1 - (Mean space requirement) X Memory
Total space bandwidth
(see above listing)
Group #2 - .25 x total memdry bandwidth
Group #3 - varying over range .06 to .25 times

total memory bandwidth

Fig. 6~7 System response as a function of total memory size =
System configurations and job characteristics.

Utilization

lIO

137

AaE 2 memory modules
BaoF 4 memory modules
CaG 8 memory modules
Da H 16 memory modules

j 4 // Dashed lines indicate sequential
/ / distribution of access requests
/ /
7 /
; /
/

‘o G

I F 10P N,
i , i L
] ;;géééggééEéggfi::;*—— “ 7

/ E
| D .

T T T]

64 128] 256 512

Total memory size

Fig. 6-8 System response as a function of total
memory size with matched bandwidth
requirements — CPU and IOP utilizationms.

138

A Ao E- 2 modules
1 BaF - 4 modules
-0 Ca G- B modules
. D o H -~ 16 modules
.8_]
6
a]
A b
P]
® .
-~
4
Lol -
=
' 2 -
: Dashed lines indicate sequential distribution
of access requests. ‘
~4
0 T T T I
64 128 256 512

Total memory size

Fig. 6-9 System response as a function of total memory
size with matched bandwidth requirements -
Memory space and bandwidth utilizations.

116

Job completions as a fraction of demand

A 2 modules
B 4 modules
C 8 modules
D 16 modules
1.0 4
. Dashed lines indicate sequential
| distribution of access requests.
-8 -

T T T ‘ — T

64 128 256 512
Total memory size

Fig. 6~-10 System response as a function of total memory
size with matched bandwidth requirements - Job
completions.

Ratio of number of Early or Late Jobs te No. Completing

140

Ao E 2 mods
BaF 4 mods
CaG 8 mods
D a H 16 mods
1.0
.8
J
6]
A Dashed lines indicate sequential
‘ distribution of access requests.
P2
1
0

64 128 " 256 512
Total memory size

Fig. 6-11 System response as a function of total MeMOTY
size with matched bandwidth requirements -
Late and early jobs.

Portion of total memory space available

141

1.0 Aa6E 2 modules
) BaF 4 modules
CacgcG 8 modules
] DaH 16 modules
.8 _
. Mean before schedules
B
b
2 } Mean after schedules
: E
F
N /// q //F
A
0]] T T
64 128 256 512

Total Memory size

Fig. 6~12 System response as a function of total
memery size with matched bandwidth requirements -
Available space before and after schedules.

Ratio of number of simulation steps between gchedules to memory size

1.0

142

A Dashed lines indicate sequential
\ distribution of access requests.
\ ‘

A A - 2 modules

B - 4 modules

C - 8 modules

D - 16 modules
7 T T |
64 128 256 512

Total memory size

Fig. 6~13 System response as a function of total memory
size with matched bandwidth requirements -
Frequency of schedules.

Utilization

1.0

o

£~

143

modules
modules
modules
modules

OUaw»

g RRe

Q@
11

o o B

Dashed lines indicate sequential
distribution of access requests.

G -
— -
-
-
-

0

T J T 1

64 128 ' 256 - ~ 512
Total Memory size

Fig. 6-14 System response as a function of total memory
size with constant bandwidth requirements -
CPU and IOP utilizations.

Utilization

l'O

144

Dashed lines indicate sequential

distribution of access requests,
7 Bandwidth
.1
.
— AaE - 2 modules
1 BaoaF - 4 modules

CaoaG- 8 wmondules
T DaoH- 16 modules
—'
]
i | I 1

0 64 128 256 512

Total memory size

Fig. 6-15 System response as a function of total memory
size with constant bandwidth requirements -
Memory space and bandwidth utilizations.

116

Job completions as a fraction of demand

145

1.0
E|
. 8 -
4
.
4 _
. / -7 A 2 modules
i / - - B 4 modules
/- /,/ C 8 modules
4 P D 6 modules
I
T /
o rd
- ’
W2 Dashed lines indicate sequential
A distribution of access requests
0 64 128 256 512

Total memory size

Fig. 6-16 System response as a function of total memory

size with constant bandwidth requirements -

Job completions.

Portion of total memory space available

1.0

146

] AaE ~ 2 modules

] BoF - 4 modules

CaG - 8 modules

] DaH - 16 modules

1

] Mean before schedules

1

j Mean after schedules

t 1 1 —

0 64 128 256 - 512

Total memory size

Fig. 6-17 System response as a function of total memory
size with constant bandwidth requirements -
Available space before and after schedules.

Ratio of number of simulation steps between

schedules to total memory size

1.0

k.

L

147

\ A - 2 modules
\ B - 4 modules
\\ C - 8 modules

D - 16 modules

i Dashed lines indicate sequential
\ distribution of access requests

I H I !

64 128 256 512
Total memory size

Fig. 6-18 Syétem response as a function of total memory
size with constant bandwidth requirements -
Frequency of schedules.

Mean Utilization

1.0

148

Ao E 2 modules
B aF 4 modules
CaG 8 modules
D a H 16 modules

_-..1
] A
. 8
.6
T 'y /’ Dashed lines indicate sequential
1 y distribution of access requests
.A"""
4
L2
° ! I T T
¢ 64 128 256 512

Total memory size

Fig, 6~19 System response as a function of total memory
size with widely dispersed bandwidth requirements-
CPU and I0OP utilizatioms.

Utilization

149

AaoaE - 2 modules
BaF - 4 modules
1.0 _| CaG - 8 modules
DaH - 16 modules
_1
]
.8
N
.1
L4
|
.2 . i .
Dashed lines indicate sequential distribution
7 of access requests.
i
0 | T T !
0 64 128 ' 256 512

Total memory size

Fig. 6-20 System response as a function of total memory
gize with widely dispersed bandwidth requirements
memory space and bandwidth utilizations.

Jobs completed as a portion of demand = 116

1.0

150

2 modules
4 modules
- B modules
6 modules

oW
1

Dashed lines indicate sequential
distribution of access requests.

L T v ¥

b4 128 T 256 512
Total memory size

Fig. 6-21 System response as a function of total memory
size with widely dispersed bandwidth requirements-—
Job completions.

151

' Dashed lines indicate sequential distribution

a0 l-0_] of access requests
5
: Late
'-a' -
. E) p
0 JE—
U —
% .8—
= .
o 1
fu) 4
w -
S 6
o g
5 1 AaE - 2 modules
= J Ba F - 4 modules
M j CaG -~ 8 modules
© J Do H - 16 modules
N
o4
©
@ -
Nt
o -
- 4
)
g J
= '2-.-
&]
o
o i
<
“ -
4]
x b
0
| 1 T T
0 64 128 ' 256 512

Total memory size

Fig. 6—-22 System response as a function of total memory
‘ size with widely dispersed bandwidth
requirements - Late and early jobs.

Portion of total memory space available

1.0

152

Ao E - 2 modules
BaoF - 4 modules
Ca6G - 8 modules
DaH - 16 modules

Mean-before schedules

Mean after schedules

64

128 - 256 512

Total memory size

Fig. 6-23

System response as a function of total memory
size with widely dispersed bandwidth
requirements - Available space before and
after schedules :

Ratio of number of simulation steps between schedules to memory size

1.0

153

= B -~ g

o BN

modules
modules
modules
modules

.8]
.6 |
N/
7 Dashed lines indicate sequential
- distribution of access requests.
4
V2
-1
0
I i i T
0 64 128 256 512

Total memory size

Fig. 6-24

System response as a function of total memory
size with widely dispersed bandwidth
requirements — Number of steps between

schedules.,

154

Relative Cogparisoné of System Besponse for Various System Configurations
and Numbers of Recurrent Jobs

In this problem two sets of runs were made. In the first set of
runs the memory's bandwidth was adjusted to be approximately five and
one-half times that required by the job set based on the numbers of
jobs, desired interarrival times and total memory accesses. In the
second set of runs the memory's total bandwidch was adjusted to be
-approximately seventy percent of desired total demand., Both sets of
runs were made with both feedback and nonfeedbzack scheduler/allocators
for the system configurations shown in Fig. 6-25. The results for these
sets of rums are shown in Fig. 6-26 through Fig. 6~35. From these figures
it is apparent that the feedback configuration tends to select the jobs
requiring larger amounts of space and bandwidth if relatively larger
amounts are available and jobs of smaller space and bandwidth ¥equire—
ments if relatively smaller amounts are available, i.e., it works approxi-
mately as it should. However, it tends to deviate considerﬁbly from the
dictates of external priority even under light demands. A certain amount
of this tendency is to be expected since maximizing resource utilization
is somewhat incompatible with response to individual job demands. Never-
theless the feedback configuration appears to have performed better than

the nonfeedback configuration in the limited bandwidth availability case.

155

Total memory size

32 64 128 192 256

Number of CPUs 1 2 4 6 g
Number of IOPs 2 4 8 12 16
Number of Memory Modules 2 4 8 12 16
Number of recurrent 5 10 20 30 40
jobs
Job completion demands 116 108 7l 35 21
Mean total access demands 176,41 | 358,71 706.41 11102,24 1432.17
per step
Bandwidth large 1000 2000 4000 6600 8000
Availability
per step limited 125 250 500 750 1000
Job space reduirements 4000 4000 4000 4000 4000
Range to to to to to

24000 | 24000 | 24000 24000 24000
Actual mean space 15.6 20.3 18.3 17.0 16.8

Requirement per job

Fig. 6-25 Relative comparisons of system response for various
system configurations and number of recurrent jobs -

System configurations and job characteristies.

Utilization

156

CPU Utilization

1.0] " .
_ "‘\‘—-—‘_’____,.—-—"‘r—___—__—__ o .
- , FBK
-8
] 4 NFBK
6
-4
b
2
| 10P Utilization
— ® N
ad - -
0
T L ! T T
0 32 64 © 128 192 256

Total memory size

Fig. 6-26 Relative comparisons of system response for

various system configurations and number of
recurrent jobs, large bandwidth availability -
Processor utilizations.

157

1.0 . Feedback
4 ¥ Nonfeedback
1
.8_]
Memory space utilization
6| .
4]
- J
Q -
ot
=
- .
N2]
= Memory bandwidth utilization
5
0 ~
| T L] 1
0 32 64 ’ 128 192 256

Total memory space

Fig. 6-27 Relative comparisons of system response for various
- system confipurations and number of recurrent jobs,
large bandwidth availability - Memory space and
bandwidth utilizations.

Mean portion of total space available

1.0

158

FBK
+ NFBK

Immediately before schedules

L4

Immediately after schedules

Al

| | 1 i

32 64 128 192 256
Total memory size

Fig. 6-28 Relative comparisons of system response for
various system configurations and number of
recurrent jobs, large bandwidth availability -
Memory space availability.

Ratio of number of job completions to completion demands

1.0

15%

« Feedback
£ Nonfeedback

T T T
32 64 ’ 128 192 256
Total memory size

Fig. 6-29 Relative comparisons of system respomnse for
various system configurations and number of
recurrent jobs, large bandwidth availability -
Job completions.

Ratio of number of simulation steps between schedules

to total memory size + 10

1.0

160

., FBEK
A NFBK
. e
T 1 t t —t
32 64 - 128 192 256
Total memory size
Fig. 6-30 Relative comparisons of system respdnse for

various system configurations and number of
recurrent jobs, large bandwidth availability -
Number of steps between schedules.

Utilization

161

CPU Utiljzation

i

6 , FBK
) + NFBK
-
Ny I0P Utilization
W2
e
i T T " — -l
0
| | T f |
0 32 64 128 192 256
Total memory size
Fig. 6-31 Relative compariscons of system response for various

system configurations and number of recurrent jobs,
limited bandwidth availability - Processor utiliza-
tion.

1.0

.6

. b
=]
o
i
o
s
~
-
4
o
o

=2

0

162

» FBK

4+ NFBK

Memory space utilization
Memory bandwidth utilization
‘ I | T T
32 64 " 128 192 256
Total memory size '

Fig. 6-32 Relative comparisons of system response for

various system configurations and number of
recurrent jobs, limited bandwidth availability -
Memory space and bandwidth utilization.

Mean portion of total space available

1.0

163

+ FBK
K NFBK

Immediately before schedules

Immediately after schedules

I T T T I

32 64 ' 128 192 256
Total memory size

Fig. 6~33 Relative comparisons of system response for
‘ various system configurations and number of
recurrent jobs, limited bandwidth availability -
Memory space availability.

Ratio of number of job completions to completion demands

(=
(=]

164

Fig.

s+ FEBK

X NFBK
| T L} 1 1
32 64 - 128 192 256

Total memory size

6-34

Relative comparisons of system response for
various system configurations and number of
recurrent jobs, limited bandwidth availability -
Job completions.

Ratio of number of simulation steps between schedules

to total memory size + 10

165

1.0 4 o
. FBK
1 NFBK
.8 _
)
6
1
A
A
A
o
.2
0 - T I T I T
0 32 64 128 192 256

Total memory size

Fig. 6-35 Relative comparisons of system response for
various system configurations and number of
recurrent jobs, limited bandwidth avallability -

~Simulat’ons steps between schedules.

166

The Impact of TMR Jobs on the Memory Allocation Problem

One method for improvement of reliability is through triple modular
redundancy. [29], [30] The model does not assume that there is a fixed
configuration of the memory into three or more parallel segments into
which the three componenﬁs of a TMR job are placed and executed in a
lock-step fashion. The model assumes a much more general situation in
that both TMR and SIMFLEX jobs may be in progress in tﬂe system simul-
taneously and that allocations of memory to TMR jobs can be made in
triplicate from any available memory blocks so long as the three corre-
sponding allocations to a job is made from three disjoint sets of memory
modules. This creates a number of problems im the allocation of memory
and assignment of processors to the TMR jobs. With factors of external
priority equal for both SIMPLEX and TMR jobs the TMR jobs are at a very
distinct disadvantage in being able to obtainr all the resources that
they need, especially with a léxge overall demand and a limited amount
of resources.

For this problem three sets of runs were made., In the first set
all the jobs were TMR. In the second set approximately one-half of the
jobs were TMR and in the third set one-third of the jobs were TMR. The
total number of recurrent jobs was fixed at forty for all three sets of
runs. In each set of runs teotal memory size and bandwidth were fixed
but the numbers and speeds of memory modules were varied. In order to
keep space demands nearly constant the mean space requirement of jobs

was adjusted so that the run with the largest fraction of SIMPLEX jobs

167
had the largest mean job requirement for space. For all three sets of
runs the number of memory 'accesses required for job completion was adjust-
ed fér a small value and bandwidth requirements were adjusted for a high
value in order to comﬁlete a larger number of jobs so that a large number
of allocations would be made. ' |
The system configurations and job characteristics are listed in

Fig. 6;36. The results are shown in Fig. 6-37 through Fig. 6-42. These
.figurés indigaﬁe that the mémory fragmentation proﬁlem tends to be

greater with larger percentages of TMR jobs. However, Fig. 6-42 indicates
éhét service to TMR 5obs relative to that of SIMPLEX jobs tends_to be
poorer for relatively sﬁaller percentages of the numbers of TMR ﬁobs in

the system,.

168

ALL TMR l TMR 1/3 TMR

Job space requirement 4-24 - 6-36 8-43
range '
Mean job space 16.8 25.1 29.8
requirement

Actual number of TMR 40 22 14
jobs

Total space 2016 . 2108 2026
requi rement

(Numbers of Modules, (3,6) (6,12), (9,18), (12,24), (15,30)
speeds of Modules)

Total memory size 360
Number of CPUs 10
Number of I0Ps 15

Fig. 6~-36 The impact of TMR jobs on the memory allocation
problem —- Job characteristics and systen
configurations.

Utilization

1.0

o

169

Ao D all TMR jobs
B a E - one-half TMR jobs
CaF one-third TMR jobs

A - CPU D - IQP

e »E - I0P - B - CPU

0

... {(Number of Modules, Module Speed), Module speed is in basic

~ P ———
__——"""_:7 -
— \ F - 10P .
C -~ CPU
1 | | 1 . i) T
{(3,6) (6,12) (9,18) (12,24) {15,30)

clock periods per module cycle period.

Fig. 6-37 The impact of TMR jobs on the memory allocation

problem - Processor utilization.

Utilization

170

A - MBW

F - space /E ~ apace
pd 4

s —

- C - MBW D - space
4
AaD - all TMR

N Batf - one-half TMR

B CaF - one-third TMR

4

A

T : T = T T
(3,6) (6,12) (9,18) (12,24) (15, 30)

(Number of Modules, Module speed), Module speed is in basic
clock periods per module cycle period.

Fig. 6-38 The impace of TMR jobs on the memory allocation
problem — Memory space and bandwidth utilizations.

Humber of simulation steps between schedules

171

1.0 _|
-
4
.8 A - all TMR
i B ~ one-half TMR
] C - one-third TMR
6]
:
b
. /A _______________..-—-—‘
4 / ’
1 ,
] . B L —
20| { . ,
1 C
0
| I i 1) T
(3,6) . (6,12) (9,18) (12,24) (15, 30)

(Number of Modules, Module Speed), Module speed is in basic
clock periods per module eycle period.

Fig. 6-39 The impact of TMR jobs on the memory allocation
problem - Number of simulation steps between
schedules.

Number of completed jobs + 200

1.0

172

4 one-third TMR
.-——.'-—“.-‘*

1 T one-half TMR

) all TMR

] l T T T I
(3,6) (6,12) " (9,18) (12,24) (15, 30)

(Number of Modules, Module Speed), Module speed is in basic
clock periods per module cycle period.

Fig. 6-40 The impact of TMR jobs on the memory allocation
problem — Number of jobs completed.

=
o

[

o

Ratio of amount of available space to total memory size

173

AaD- All TMR
B o E - one-half TMR
C ¢ F - one-third TMR

A, B, ¢ Before schedules

D
—
(3,6) (6,12) (9,18) (12,24) (15,30)

‘(Number_of Modules, Module speed), Module speed is in
basic clock periods per module cycle period.

Fig. 6-41 The impact of TMR jobs on the memory allocation
; problem ~ Available space immediately before
and after schedules.

Number of TMR job completions
(Total number of completions) x (Fraction of TMR jobs)

174

4 1/2 TMR

e 13 TR

——

[. T T T ‘!
(3,6) (6,12) ~° (9,18) (12,24 {15,30)

(Number of Modules, Module Speed), Module speed is in
basic clock pericds per module cycle period.

Fig. 6-42 The impact of TMR jobs on the memory allocation
problem - Relative numbers of completions for
TMR jobs.

VII. DISCUSSION AND CONCLUSIONS

A simulation model for a multiprocessor computer has been developed
in order to study a few of the myriad of interacting problems that are
associated with such systems. Of necessity, the model is a highly sim-
plified embodiment of one view of what are the important constituents
of éuéh a system in regards to the types of problems to be investigated.
These problems were maiﬁly concerned with the effects of the aggregate
characteristics of input job sets to the system on the output of the
system as well as the effects of interactions of hardware processors in
simultaneously using a common memory having limited space and bandwidth.

Although the model performs many of the system executive functions
of a reai multiprocessor, the impact of executive or monitor type pro-
cessing does not show‘up explicitely in the simulation results since
this processing is done essentially between simulation steps. Instead,
the main thrust of this paper was directed at a stratum of problems lying
at least one level below some nebulous but ever present executive system.
Nevertheiess, the problems actually investigated form a large part of the
basic enviroment within which an éxecutive processing system must operate.

The basic underlying assumptioné for the simulation model were pre-
sented in Chapter II and some typical problems suitable fér investigation
by means of ﬁhe ﬁodel were presented in Chapter VI. Due to the granular

-mannef, in reference to time, in which the model simulates the execution

of programs the effects of access conflict, which occur when two or more

175

176.

processors attempt to simultaneously use a common memory module, do not
show up in the simulation results. Thus in Chapter IIT this problem was
studied by analytical means. This analysis employed a modified binomial
approach in which the sequential instruction by instruction execution of
computer programs, reflecting remembrance by processors of the last
memory access request not yet granted, and mean bandwidth requirements
were taken into account, The results of this analysis showed that when
the sum of the mean bandwidth requirements of all jobs being simulta-—
neously executed from a common memory module is equal to the bandwidth
of the module, access conflict can cause an overall slow down ranging
from approximately seventeen percent with three processors to a slowly
decreasing value of approximately eleven percent for sixteeﬁ pProcessors.

A multiprocessor is quite often viewed as a large and powerful com-
puting system in which several processors simultaneously share a common
memory. Thus this common memory and the interactions between hardware
processors in simultaneous use of the memory is of central importance in
such a system. Increases in efficiency of use of the memory of only a
small fraction can represent é large amount of computing power. The
model attempts to increase the use of the memory's bandwidth by matching
individual job regquirements for space and bandwidth with that available
from the memory at the time of allocation. Therefore in Chapter IV this
problem was studied in order to determiﬁe expected maximum gains that a
simple bandwidth matching shceme of the form assumed by the model could
obtain. This analysis indicated that the best that can be obtained over
a random placement scheme ranges from approximately twenty percent for

two jobs being simultaneously executed from a common memory module to

177
approximately six percent when twelve to sixteen jobs are simultaneously
executed from a common memory module under the assumptions that were
listed for space and bandwidth requirements in that section.

In Chapter V a processor to memory interconnection and conflict
resolution scheme was developed. Though not a perfect realization of
the stated objectives for such a scheme, the one developed in that sec-
tion is beljieved to be wviable in a real priority driven multiprocessor.
It is also believed that this scheme may easily be modularized for reli-
abllity enhancement purposes or expension of an existing system.

In Chapter VI the simulations indicate that the memory fragmenta-
tion problem is not as. severe as might at first be expected. Thus in a
real system relocation of programs so as to collect the small unusable
blocks into larger blocks of storage may not be necessary if the small
overhead associated with the fragmentation that was observed concerning
this problem is tolerable.

The simulations indicate that the feedback scheduler/allocator
scheme can increase memory bandwidth utilization by as much as ten to
fifteen percent over a nonfeedback scheme under conditions for which
real choices actually exist for bandwidth matching. Thus the values
determined In Chapter IV appear to be supported by the ;imulation re-—
sults. The increased bandwidth utilization is quite often accompanied
by a distortion in relative service to individual job demands from that
specified by external priority., In situations in which no real choices
actually exist for bandwidth matching there appears to be no substantial

differences between the feedback and nonfeedback scheduler/allocators.

178

Memory interleaving would obviate the need for the feedback method
of ﬁandwidth matching but interleaving of memory tends to destroy reli-
ability potential. Therefore interleaving was not considered in this
paper. 1t should be pointed out that the method of bandwidth matching
described in the model only assumed knowledge of an instruction mix para-
meter associated with each job. In this regard it should be contrasted

‘with other methods for bandwidth matching that have recently been de-
scribed by Covo [31] and by Kruzberg [32].

The simulations point out quite clearly that, aside from differ-
ences in cost and reliability, bigger and faster is better in regard to
memory modules. This is due to the fact that an individual job's peak
demands for bandwidth have a better chance for being fulfilled under
conditions of packing of jobs into one end of the memory. This packing
is desirable under gemevralized conditions in which job space require-
ments are widely dispersed and it is thereby essential to keep as much
of the total available space as possible in one contiguous block so
that the demands for large contiguous blocks of space have a high chance
for being met.

The memory fragmentation problem is worse for all TMR or a mixture
of TMR and SIMPLEX jobs than for the all SIMPLEX case but it does not
appear that it is three times as bad as for the all SIMPLEX case. Like-
wise, service to the TMR jobs in a mixed enviroment is considerably less
than to SIMPLEX jobs but the difference is not as great as the difference
between resource requirements. For example, in the simulaﬁion cagse in-

volving approxiﬁately equal numbers of TMR and SIMPLEX jobs the SIMPLEX

179

jobs received approximately 1.2/.8 = 1.5 times the service that the TMR
jobs obtained.

There seems to be few universal truths associated with a multipro-
cessor system but one observation that may come close to being one is
that a key facfor in determining a successful multiprocessorrsystem is
to provide a large emough memory so that enough jobs may be loaded into
the mémbrf,at one time such that system resources may be utilized at high
levels for relatively long periods of time between executive processing.
This obsérvation is supported by the relationships between frequency of
schedules and total memory size in the simulations that were performed

in this paper.

LIST OF REFERENCES

(1] G. J. Burnett, 'Performance Analysis of Interleaved Memory Systems,'
Ph. D. Dissertation, Princeton University, 127 pp., University
Microfilms, High Wycomb, England, 1969.

[2] G. J. Burnett and E. G. Coffman, 'A Study of Interleaved Memory
Systems,' AFIPS, Spring Joint Computer Conference, 1970, pp. 467-
474,

[3] C. J. Conti, 'Concepts for Buffer Storage,' Computer Group News,
March, 1969, pp. 9-13,

(4] C. J. Conti, D. H. Gibson, and S. H., Pitkowsky, 'Structural Aspects
of the System 360 Model 85," IBM Systems Journal, Vol. 7, ¥No. 1,
1968.

[5]'J. §. Liptay, 'Structural Aspects of the System 360 Model 85, II
The Cache,' IBM Systems Journal, Vol. 7, Ne. 1, pp. 15-21, 1968,

[6] J. S. Liptay, 'The Model 85 Buffer Storage,' IBM Systems Journal,
Vol. 7, No. 1, 19638,

[7]1 R. K. Richards, Electronic Digital Systems, John Wiley & Soms,
New York, 1966,

[8] A. L. Leiner, A. W. Notz, J. L. Smith, and A. Weinberger, 'Pilot,
A New Multiple Computer System,' Journal of the ACM, Vol. 6, No. 3,
pp. 313-335, 1959.

{9] H. S. Bright, 'A Philco Multiprocessing System,' AFIPS Proc. SJCC,
Vol. 26, pp. 97~141, 1964,

[10] A. J. Critchlow, 'Generalized Multiprocessing adn Multiprogramming
Systems, ' AFIPS Proc. FJCC 1963, pp. 107-126.

[11] J. A. Campbell, ‘A Note on an Optimal-Fit Method for Dynamic
Allocation of Storage,' The Computer Journal, Vol. 14, No. 1,
pPp. 7-9.

[12] D. E. Knuth, The Art of Computér Programming Volume 2 / Semi-
numerical Algorithms, Addison-Wesley Publishing Company, Reading,
Massachusetts, 1969.

180

e

[13}

[14]
[15]
[16]

[17]

[18]

[19]

(20]

[21]

[22]

181

N. Wiener, Extrapolation, Interpolation, and Smoothing of

‘Stationary Time Series, M. I. T. Press, Cambridge, Massachusetts,

1949,

W. Feller, An Introduction to Probability Theory and Its Appli-
cations, Vol. II, John Wiley & Sons, New York, 1971.

H. Lorin, Parallelism in Hdardware and Software: Real arnd Appdrent
Concurréncy, Prentice-Hall Inc., Englewood, New Jersey, 1972.

T. C. Hu, 'Parallel Sequencing and Assembly Line Problems,' Opera-
tions Research, Vol. 9, November, 1961, pp. 841~848.

c. V. kamamoorthy, K. M. Chandy and M. J. Gonzales, Jr., 'Optimal
Scheduling Strategies in a Multiprocessor System,' 1EEE Transactions

on Computers, Vol., CZ1, No, 2, February, 1972, pp. 137-146.

C. V. Ramamoorthy and M. J. Gonzales, Jr., 'A Survey of Techniques
for Recognizing Parallel Processable Streams in Computer Programs,’
AFIPS Conference Proceedings FICC, 1969, pp. 1-15.

R. R. Muntz and E. G. Coffman, Jr., 'Optimal Preemptive Scheduling
on Two-Processor Systems,' IEEE Transactions on Computers, Vol. €18,
No. 11, November, 1969, pp. 1014-1020.

R. L. Graham, 'Bounds for Certain Multiprocessor Anomalies,' The
Bell System Technical Journal, November, 1966, pp. 1563-1581,

G. K. Manacher, 'Production and Stabilization of Real-time Task

‘Schedules,' Journal of the Association for Computing Machinery,

Vol. 14, No. 3, July, 1967, pp. 439-465.

M. Lehman, 'A Survey of Problems and Preliminary Results Concerning

© Parallel Processing and Parallel Processors,' Proceedings of the

[23]

[24]

(25]

[26]

IEEE, Vol. 54, No. 12, December, 1966, pp. 1889-190i1.

A. J. Bernstein, 'Analysis of Programs for Parallel Processing,'
IEFE Transactions on Electronic Computers, Vol. EC-15, No. 5,
October, 1966, pp. 757-763.-

B. Randall and C. J. Kuehner, 'Dynamic Storage Allocation Systems,'
Communications of the ACM, Vol. 11, No. 5, May, 1966, pp. 297-305.

P. J. Denning, 'Resource Allocation in Multiprocess Computer
Systems,' Rept. MAC-TR-50, May, 1968, U. S. Gov't R & D Reports,
Vol. 68.

L. A. Belady, 'A Study of Replacement Algorithms for a Virtual
Storage Computer,' IBM System Journal, Vol. 5, No. 2, 1966,
pp. 78-101,

[27]

[28]

[29]

[30]

[31]

[32]

182

E. W. Reigel, 'A Study of Parallelism in Computing Systems,'
Ph.D. Dissertation, University of Pennsylvania, 1969.

B. Wald, 'Utilization of a Multiprocessor in Command and Control,
Proceedings of the IEEE, Vol. 54, No. 12, December, 1966.

R. E. Lyons and W. Vanderkulk, 'The Use of Triple-Modular
Redundancy to Improve Computer Reliability,' IBM Journal, Vol. 6,
No. 2, pp. 200-209, 1962.

F. P. Mathur and A. Avizienis, 'Reliability Analysis and Archi-
tecture of a Hybrid-Redundant Digital System: Generalized Triple
Modular Redundancy with Self-Repair,' AFIPS Spring Joint Computer
Conference Proceedings, pp. 375-383, 1970.

A. A, Covo, "Analysis of Multiprocessor Control Organization
with Partial Program Memory Replication,' IEEE Tramsactions on
Computers, Vol. C-23, No. 2, February, 1974, pp. 113-120.

J. M. Kruzberg, 'On the Memory Conflict Problem im Multiprocessor
Systems,' IEEE Tramsactions oun Computers, Vol. C-23, No. 3,
March, 1974, pp. 286~-293.

APPENDIX A

Command and Data Structures, Propgram
Descriptions and Bandwidth Adjustment

Command and Data Format

$PINITBSYS
causes SETUP routine to be called. System parameters are entered
immediately after this card as follows:

X1l = vl

XXX2 = y2

XN = yN
Where XXXN 15 a 1 to 4 letter mnemonic symbol for the parameter
and yN is the wvalue to be assigned to the parameter.

*END
signals the end of parameter initialization.

$PENTR¥DIST
causes STAT routine to be called; data must be entered immediately
after this card as follows:

NAME = XXX ‘

where X¥X¥ is some 1 to 4 letter mnemonic to be assigned to the
first distribution curve.

DATA = Dl, Dz, « s w8 g Dt*lo
up to 41 data points may be entered. Data points must be separated
by either a blank or a comma and may be real or integer.

The above name and data pairs may be repeated for as many as a
total of 25 distributions.

SPEXITHDIST
signals the end of distribution curve entry processing.

$PENTRYBST

causes ‘BULK routine to be called. Data must be entered immediately
behind this card as follows:

183

184

NAME = #*XXX1, XXX2, . . . , XXX7
The asterisk denotes a periodic program, XXXN is a 1 to 4 letter
memonilc
N = 1 indicates joh mname
N = 2 indicates processing shape curve name
N = 3 through 7 indicates predecessors.
All entries must be separated by commas.

$PENDYBLOC
signals the end of common statistics job block.

SEED = N
seed value for a random number sequence.

FCTN = XXX1, XXX2, . . . , XXX9
Distribution curve names to be used iIn penerating the job
characteristics data.

FMAX = X1, X2, . . . , X9
Real or integer values which designate the maximum allowable
values for each parameter.

FMIN = X1, X2, . . . , X9
Real or integer values which designate the minimum allowable
values for each parameter.

This card may be followed by more cards of the type between the
NAME card following the $ ENTR BST card and FMIN for a different
set of job characteristics.

$PEXITYBST
signals the end of bulk storage table processing.

$PERASEMIDT

causes the arrays JOVF, JM2, MNAME and FLAG to be set to zero by
the CLEAR routine.

$PPRNTD=YMIDT

causes a print out of time aﬁd the information in the J-TABLE by
PRNT.

$PENTREMIDT
causes the ENTR routine to be called. Names of jobs must be
entered immediately after this card as follows:

NAME = X0{1, X¢x2, . . . , XX3N
where XXXM is the job name of each job to be entered into the
J-TABLE.

185

*END \
signals the end ¢of job entry processing.

$BXEQBSIMNBLAN,
where 1 < N < 4, causes execution of simulation run. N is the
number of time options which the user wishes to specify. These
options are as follows:

STIM = Simulation start time. Default value = 0.0

FTIM = Simulation finish time. Default value = 10.0

DELT = Simulation time increment. Default value = 0,01

PDEL = Simulation print time increment. Default value = 0.5

If no values are to be specified then the L*N is omitted and the
default values will be used. The optimal values are entered as
follows:

PDEL=A
DELT=B
STIM=C
FTIM=D

The order of entry does not matter but there must be the same
number of options specified as the value of N.

S¥STOP
This signals the end of the simulationm.
Any data card whose first two punched characters are 'C*' is
~ considered to be a comments card and is not processed by the
simulator. These cards may be placed anywhere in the data deck

before the S$YPSTOP card.

Data cards may be continued by placing an asterisk in card
colunm 80,

If other runs are to be made with some of the jobs already
generated then before the $§ STOP card place the following
command and data cards:

$PINITHSYS

'New Parameter Values

$PERASBMIDT

SEENTRPMIDT

186

jobs to be entered .

*END

SHXEQYSTMNPL*N

time parameters

spsTOP

Common Blocks

BLK1

BLK2

ELEMENTS:

ITASK, IDSH, LIND(33), LINA(33), IBLK, IDLR, IEQL, IDIST, INAME,
IDATA, MJDT, IBST, IEXIT, IFLD

HOW USED:
Used in conjunction with inputting and outputting of error
messages or for control purposes. These elements do not enter
into any calculations.

WHERE USED:
Initialized in BLOCK DATA subroutine and used during job genera-
tion and by the group of programs referred to as the job

generator. These include MAIN, SETUP, RECHEK, ICARD, BULK,
STAT, PRNT, CLEAR, and ENTR.

ELEMENTS:
IWRD (100}, FLD(50)

HOW USED:

Used to imput all data to MAIN and any other routines that call
ICARD. IWRD holds alphabetical data and FLD holds numerical
data.

WHERE USED:

Initialized by ICARD and used by MAIN, SETUP, ICARD, BULK, STAT,
AND ENTR,

187

BLK3
ELEMENTS:
IDIST(25), F(25,41), NDIST
HOW USED: :
IDIST holds names of distributions whose data is contalned in
F. F holds the data for the distribution curves. NDIST is the
number of distributions in F and may not exceed 25.
WHERE USED:
Used by any routine needing access to any of the distributions.
These include the following:
MAIN, BULK, PRNT, RECHEK, SHAFE, HLS, NORPRB, and PEX.
BLK4

ELEMENTS: -
(NAME(75,8), DATA(75,9),NJOB)
NAME array 1s sometimes referred to as the bulk storage table.
It holds the following information about attributes of each
job
NAME (* ,1)--periodic/aperiodic
NAME (* ,2)——job name
NAME (*,3)--processing curve name
NAME (% ,4-8)—-predecessors

DATA array holds basic numerical descriptive data for each job in
the following order:

EP—-external priority

TMR/SIMPLEX-~type job

CR--~main memory space requirement

I-O--number of main memory accesses for 1/0 processing
NI--number of main memory accesses for CPU processing
MIX--propertion of short instructions

RR—;repetition period{(periodic jobs)

IAT--mean inter-arrival period{aperiodic jobs)
DVT--not used

NJOB contains the number of jobs in NAME array.

BLKS

BLK6

BLK7

188

HOW USED:
Method of uge is explained under each entry above

WHERE USED:
used by the following programs in the Job generator group:
MAIN, BULK, RECHEK, CLEAR ENTER

ELEMENT :
SET

HOW USED:
used to signal condition return codes from subroutine calls
in the job generator group.

WHERE USED:
MAIN, SETUP, BULK, STAT, PRNT, RECHEK, CLEAR ENTR

ELEMENT:
MNAME (8,64)

HOW USED:
used to hold names of jobs that are in the J-Table (J(27,64)
in BLK7)

WHERE USED:
PRNT, RECHEK, CLEAR, and ENTR

ELEMENT:
J(27,64) Aliases JM2(27,64), JM(27,64)

HOW USED:
Holds the description and current status of all jobs that are
to enter into the current run. The elements of this array are
used as follows:

J(A,N) 1-7 Job name (index in MNAME)
8~15 Index of 18% memory block in MALC for this job.

J(2,N) 1St Predecessor
J(3,N) 2nd Predecessor

J{4,N) 3rd Predecessor

3(5,N)
3(6,)
17,5

J(8,N)
J(9,N)

J(10,N)

J(11,N)-

J(12,%)

J(13,N)

J(14,N)

J(15,8)

. J(16,N)

J(17,N)

J(18,N)

4th

1-7

8-14

17

8-14

189

" Predecessor

ISt SuUCCessor

2nd gyecessor

3rd gyccessor

4th guccessor

Time of last execution

Number of memory accesses required in CPU mode.

1-7

8-15

1-10

11-15

1-10

11-15

1-10

11-15

Instruction mix
Internal priority

Mean number of memory access requests per simu-
lation step while in CPU mode.

Processing shape curve

Standard deviation for the number of access
requests at each simulation step while in the
CPU mode .

External priority

Mean number of memory access requests per simu-
lation step while in I/0 mode.

not used

Repetition pericd if periodicy mean interarrival time
if aperiodic

Number of memory accesses for I/0 operatiomns not
including program loading.

Number of active simulation steps

1-11

12-15

main memory space

most significant four bits of 3¥9 memory block
index in MAIC.

;

completion count

J(19,N}

J(20,N)}

J(21,N)

J(22,N)

1(23,N)
1(24,N)
J(25,N)

J(26,N)

1-8

9-12

190

Index of 27¢ memory block in MALC

Least significant four bits of index of 3¥d
tiemory block in MALC

Estimated minimum processing time excluding load time

1-10

11-15

Field

Bit

Bit

Bit

Bit

Bit

Bit

Bit

Bit

Bit

Bit

Bit

1

2

9

Standard deviation for number of memory access
requests while in the I1/0 mode

not used

overflow indicators

Predece;sors

BUCCEeSSOors

time of last execution completion
number of memory accesses in CPU mode
Repetition period

memory modules

nain memory space

memory block index

completion count

10 target time

11 next I/0 interrupt

Bitg 12-15 not used

memory preference factor

address of first overflow block in overflow area

target time

next I/0 interrupt point

191
J27,0) Job Status
Bic 1 readj_r—
Bit 2 initiated
Eit 3 waiting CPU
Bit 4 walting IdP
Bit 5 wailting storage space
Bit 6 Holding CPU
Bit 7 Preempted of CPU
Bit 8 mode, 0=CPU, 1=I0P
Bit 9 periodic/aperiodic
Bit 10 resident in main memory
Bit 11 TMR/SIMPLEX, 1=TMR
Bit 12 waiting I/0 completion
Bit 13 In Future Events Chain
Bit 14 In Load State
BLK8

ELEMENT :
ICLK alias TIME

HOW USED:
Holds the current simulation step number

WHERE USED: .
MAIN, RECHEK, FEC, CEC, HLS, LLS, PEX, NFMAL, MAPREF, and MASGN.

BLK9

ELEMENT:
- JOVF(32,32) Alias JOVFL(32,32)

BLK10

RLK11

BLK12

192

HOW USED:
Holds overflow from fields of the J-TABLE entries

WHERE USED:
CLEAR, and OVFLMG

ELEMENT:
FLAG{64)

" HOW USED: :
Used by RECHEK to determine whether or not a job entry in the
J-TABLE has been previously processed by ENTR Command

WHERE USED:
RECHEK and CLEAR

ELEMENT:
RTIME

HOW USED;
A time variable used during print out of the J-TABLE.

WHERE USED:
MAIN, and PRINT

ELEMENT :
PARM(35) (in MAIN, SETUP, and RECHEK) in other routines the
elements of PARM are referred to by the following names:
LCECSZ, ICON, IN1, IFECSZ, IPCT, IP1, IP2, IQl, IQ2, 1Q3, IR,
1S, ITA, MINBLK, MMCT, MMST, MIOTAL, NI, NIOS, NMODS, NPCL, NPCS,
NCPUS, IFEDBK, IRN1, IRN2, IRN3, IRN4, IRN5, IRN6, IRN7, IRNS,
IRN9, MMAPF, MMSPF.

HOW USED;:

The integer parameters of the system are contained in this block,
thus they may be initialized from the input stream at the
beginning of a set of runs. Any parameter changes for succeed-
ing runs must be made from the input stream prior to that rumn.
The parameter maintains the value of its last specification.

The individual elements are used in the following manner,

193

ICECSZ--notifies all routines of the current size of the
current events array. Must be less than or equal to the
size specified (N) in a dimension statement for ICEC (*,N).

ICON--specifies the number of basic clock periods per simula-
tion step,

INl--a constant used by LLS in comparison with number of I/0
accesses to he done at I/0 interrupt to help determine
whether job can retain CPU.

IFECSZ——notifies all routines of the current size of the
future events array. Must be less than or equal to the size
specified (N) in a dimension statement for IFEC(N,¥*),.

IPCT--no. of basic clock perieds per CPU cycle period.

IP1--a constant used by CEC in comparison with external
priority of a newly arrived job to determine whether or
not a new schedule should be called for.

IP2--a constant used by LLS in comparison with job internal
priority at I/0 interrupt points to help determine whether
or not job should retain its CPU(s).

IQl--a constant used by CEC in comparison with number of
scheduled entries in the current events chain to determine
whether or not to call for a new schedule.

IQ2--a constant used by HLS and LLS in comparison with the
number of IQFs already assigned to locad operatioms to
determine whether or not more jobs in the load state may
be started.

IQ3——a constant used by LLS in comparison with the number of
scheduled jobs in the current events chain to determine
whether or mot a job may retain its CPU upon I/0 interrupt
initiation.

IR——a constant used by CEC in comparison with the mean band-
width requirement of a completing job to determine whether
a new schedule should be called for.

I5--a command for writing out various arrays for debugging
purposes, _
BIT#1=1 causes the non zero entries of the allocated and
available lists (MALC and MAVL) of main memory storage
blocks to be written out upon departing from the memory
allocation routines MAPREE or NFMAL. '

194

BIT#2=1 causes PEX to write out the array NAA which
contains the current estimate of the available bandwidth
from each memory module and MAS which contailns the amount
of available space in each memory module at each simulation
step.

BIT#3=1 causes MAIN to print the information contained in
the J-TABLE following completion of each run.

Other bits are presently unused.
ITA--holds memory access time x 100 in basic clock periods.

MINBLK--holds the smallest memory increment that may be
allocated to a job. Also used by CEC and HLS to determine
amount of time required to load a job.

MMCT--the number of basic clock periods required for one
memory module cycle,

MMST--a constant used by HLS in comparison with the amount of
space occupied by a nonresident job at completion time to
help determine whether or not a new schedule should be
called for.

MTOTAL-~-total memory size.

NI--a constant used by LLS to control the maximum number of
jobs that may be initiated.

NIOS--the number of IOPs in the system, must be less than or
equal to the maximum number specified (N) in a dimension
statement for the IOP status array IPROS(N).

NMOD-~the number of memoxy modules in the system.

NPCL--the number of CPU cycle periods required for execution
of a long instructien.

NPCS~~the number of CPU cycle periods required for execution
of a short instruction.

NCPUS~--the number of CPUs in the system, must be less than or
equal to the maximum number specified (N) in a dimension
statement for the CPU status array ICPU(N).

IFEDBK--indicates which memory allocator is to be used For
current run. IFEDBK=l indicates MAPREF is to be used.
IFEDBK=0 indicates NFMAL is to be used.

195

IRN1--used by PEX as a seed for calculating a random number
sequence for determining the number of memory accesses to
request for each active job at each simulation step.

IRN2--used by HLS as a seed for calculating a random number
sequence to determine the mean of the number of memory
accesses to be made for each job during its processing
period.

IRN3--uged by HLS in calculation of target times for aperiodic
jobs during the initial preprocessing phase and following
job completion.

IRN4—— not used

IRN5--used by PEX as the number of simulation periods over
which the available bandwidth of each memory module is
estimated,

IR¥6-——used by HLS in determining average memory access rate
while in I/0 mode and in determining minimum processing
time. '

IRN7--represents speed of I0P's relative to that of CPUs.

IRN8--used by HLS to determine residency of jobs. Represents
cost of memory relative to cost of processor time.

IRN9~-used by RECHEK in generating some of the characteristies
of each job in the J-TABLE.

MMAPF--used by MAPREF in calculating memory. preference factor
based on space considerations.

MMSPF--used by MAPREF in calculating memory preference factor
based on space considerations.

WHERE USED:
MAIN, SETUP, RECHEK, CRCPU, CKIOS, FEC, CEC, HLS, LLS, PEX,
NFMAL, MAPREF, MASGN, and MEMRLS,

BLK13

ELEMENTS ¢
RPAR(11) {in MAIN, and SETUP) in other routines the elements of
RPAR are referred to by the following names:
RPO1l, RPO2, RP0O3, RPO4, RP0QS5, RP0O6, RPO7, RPO8, RPO9, RP1O,
and RP11.

HOW USED:
The real parameters of the system are contained in this block
so they like the integer parameters may be initialized from

196

the input stream at the beginning of a set of runs. Any
parameter changes for succeeding runs must be made from the
input stream prior to that run. The parameter maintains the
value of 1ts least specification. The individual elements
are used in the following manner:

RPOl--used by MAIN in testing level of short term utilizations
for .triggering new schedules.

RPQZ--used by MAPREF to help prevent memory space lockout.

RP03=—used by CEC as a weighting factor for external priority
in the internal priority equation. :

RPO4--used by CEC as a weighting factor om ameunt of time to
target time in internal priority equation.

RP05--used by CEC as a weighting factor on time in queue in
calculation of internal priority equation,

RPO6--used by HLS to determine the number of minimum processing
periods before target time that each should be transferred
from the Future Events Chain to the Current Events Array,
Also used by CEC in calculating internal priority.

RPO7~-used by HLS in determining residency for each job.

RPO8~~used by CEC and by HLS to determine what proportion of
each job's memory space is initialized at load time.

RP0%--used by HLS to determine the deviation in memory access
requests while in CPU mode.

RP10--Access request distribution, 1.0 = random, 2.0 = sequential

RP1]l--not used.

WHERE USED;
MAIN, SETUP, CEC, HLS, LLS, PEX, and MAPREF.

BLK14

ELEMENTS:
IFLAG(47), ITAG(46)

HOW USED:
LFLAG is used in determining whether or not the system parameters
have all been initialized. ITAG is used during pre-execution
printout to determine whether or not the variables were

197

injtialized immediately before execution of a run or remain
at a previously defined value.

WHERE USED:

MAIN and SETUP
BLK15

ELEMENT :
KNAME (46)

HOW USED: .
Used in initializing the system parameters. Each element is a
1 to 4 letter mnemonic for each variable in BLK12 and BLK13.
The order in which the mmemonics are listed in BLK15 should
correspond to the order in which the full mmemonics are listed
in BLK12 and BLK13.

WHERE USED:
MATN and SETUP.

BLK16

ELEMENTS :
IBWCTR(24), ICEC(5,40), ICECS, ICPU(10), TPASS(20), IFECS,
IFEC(40,4), IPROS(16), ISAVE(3,3), IVALOV(10), MALC(265,5),
MALCS, MAS(24), MAVL(128,5), MAVLS, MODNM(24), MTP1(24),
NA(24), NAA(24), NAB, NAG, NAML(40), NBLK(128), NFB(3), NJWM,
NSCHED, NREQ(40,24), NTP(24), NTR(24), NUCA(24).

HOW USED:

IBWCTR--counters for the number of simulation steps since an
allocation or release of memory from each memory module.

ICEC——the current events array. Serves as the job queue for
the system. The information in each of the five entries of
each position of the ICEC array is as follows:

ICEC(1,N) = Internal priority of job occupying position N.

ICEC(2,N) = J-Table index of job occupying position N.

ICEC(3,N) = time of entry into the array.

ICEC(4,N) = An indicator of whether the job occupying position
N is currently active.

ICEC(5,N) =

A pointer to the next entry of the Current Events
Chain, :

198

ICECS—-a pointer to the first entry of the Current Events
Chain. :

ICPU~-the status table for the system's CPUs.

IPASS-~an array which holds the current status of the system.
IPASS (1) -~the number of.en£rlés in the ICEC array.
IPASS(Z)—;the number of entries in the Current Events Chain,
IPASS(3) ~~the number active jobs in the system.

TPASS (4)~~the nuﬁber of I0Ps that have been initiated.

IPASS(5)--the number of IOPs that are assigned to jobs in
the Load state.

IPASS(6)}-—the time at which the last schedule occurred.
- IPASS(7)~~the number of idle CPUs.

IPASS(8)--used by MAIN and FEC to pass the time of the next
event in the Future Events Chain to MAIN,

IPASS(9)~-the number of free I0OPs.
IPASS(10)-~the amount of main memory space currently free.

IPASS(11)--the number of jobs scheduled and waiting for
storage space.

IPASS(12-20)——not used.

IFEC5--a pointer to the first entry of the Future Events Chain,
-1 indicates an empty chain.

IFEC-~the Future Events array. The information contained in
each of the four positions of an entry of this array are as
follows:

IFEC{1,N) = Event time

IFEC(2,N) = type event

IFEC{3,N) = operand of event

IFEC(4,N) = pointer to next entry of chain.

IPROS—-the current status table for the IOPs of the system,

199

ISAVE--used by MAPREF and NFMAL to hold information used in
making allocations of storage to TMR jobs.

IVALOV-~used in passing information to and from the overflow
area for the J~-TABLE.

MALC-~the array used for the allocated storage list. The
information contained in each of the five entries of each
- position of this array are as follows:

- MALC(N,1) = pointer to next entry in the chain
MALC(N,2) = pointer to preceeding entry in the chain
MALC(N,3) = starting address for block described by this
position.
MALC(N,4) = pointer to next entry in the available list.
MALC(N,5) = length of block described by this position.

MALCS~--pointer to first entry of the allocated chain.

MAS--holds the amount of available storage space in each memory
module,

MAVL—-the array used for the available storage list.
The information contained in each of the five entriles of each
position of this array are as follows:

MAVL(N,1l) = pointer to next entry in the chain.

MAVL(N,2) = pointer to preceeding entry in the chain.

It

MAVL(N,3) starting address for block described by this

position,

MAVL(N,4) = pointer to mext entry in the allocated list.

MAVL(N,5) = length of block described by this position.

MAVLS—-pointer to the first entry of the available chain.

MODNM~-holds information concerning medules In which blocks of
storage are contained.

MTPl--holds total priority of all active jobs having storage
space in each of the memory modules that request more memory
accesses than their relative priority dictates that they may
obtain.

200
NA--holds the number of jobs having space In each memory module.

NAA—~holds the current estimate of the available bandwidth of
the available space in each memory module.

NAB--the number of allocated blocks of storage.

NAG--uged by PEX in granting accesses to memory to each active
job.

NAML—-used by MAPREF for holding the list of jobs that are
waiting for memory. Also used by CEC in reordering the
Current Events Chain.

NBLK--used by MAPREF for holding the list of available blocks
of memory.

NFB--the number of free blocks of storage. Used by NFMAL.
NJWM-~the number of jobs that are waiting for storage space.
NSCHED-~used for calling for a new schedule.

NREQ~~holds the number of memory access requests from each
active job to each memory module at each step of execution
processing by PEX.

NTP--used by PEX to hold the total priority of all the active
jobs having space in each memory module.

NTR-~used by PEX to hold the total number of memory access
request to each memory module at each step of axecution
processing.

NUCA--used by PEX to hold the sum of the differences in the
number of memory access dictated by relative priorities and
the number actually requested. Thus, the number of unclaimed
accesses.

WHERE USED:
MAIN, SETUP, CKCPU, CKIOS, LAST3, FEC CEC, HLS, LLS, PEX, NFMAL,
MAPREF, MASGN, and MEMRLS

BLK17

ELEMENTS : _
ISTCNT, ISTAT(6,400), IUTL(6,200)

201

HOW USED:
ISTCNT holds the count of the number of entries made in the
ISTAT array during each run.

ISTAT holds the statistics for each completed job. Its entries
have the following meaning:

ISTAT(1,N) = Job's index in J-TABLE
ISTAT(2,N) = time of entry into the Current Events Array
ISTAT(3,N) = time completed
ISTAT{(4,N) = estimated minimum processing time
" 'ISTAT(5,N) = target time
ISTAT(6,N) = actual number of active simulation steps for the

job.

IUTL holds the statistics for utilization of the system's
resources at selected step intervals. The entries hold the
following information:

TUTL (1,N)--time

IUTL(2,N)--CPU utilization
IUTL{3,N)~~JOP utilization

IUTL (4 ,N) -—memory bandwidth utilization
IUTL(5,N)-~memory space utilization

IUTL(6,N)--mean job queue size.

WHERE USED:
MAIN, SETUP and PEX

BLK18

ELEMENTS:
RUTL(15) in setup, other routines refer to the individual
elements of this array by the following names:
AN, CUU, PUU, BWU, SPU, BCUU, BPUU, BBWU, BSPU, ACUU, APUU,
ABWU, ASPU, BQSIZ, AQSIZ

202

HOW USED:
AN is a time countex
CUU holds the CPU utilization for the past step
PUU holds the IOP utilization for the past step
BWU holds the memory bandwidth utilization for the past step
SPU holds the memory space utilization for the past step
BCUU holds the short term CPU utilization
BPUU holds the short term memory bandwidth utilization
BSPU holds the short term memory space utilization
ACUU holds the long term CPU utilization
APUU holds the long term IOP utilization
ABWU holds the long term memory bandwidth utilization
ASPU holds the long term memory space utllization
BQSIZ holds the short term average job queue size
AQSIZ holds the long term average job queue gize

WHERE USED:
MAIN, SETUP, and PEX.

A Brief Description of Each Routine

MAIN

This program interprets the commands and data arriving from the
input stream and in general directs the generation of the set of jobs
that the system is to execute during a set of simulation rums. It
also determines when to initiate new schedules during the course of
a simuiation run, advances the simulation clock and prints out statis-~

tics concerning utilization of system resources and service to individ—

ual jobs.

SETUP

The routine SETUP initiates the system parameters in common
blocks, BLK12 and BLK13 as well as certain variables in common block

BLK16.

203
LCARD

The ICARD routine reads command and data cards one at a time
and checks for syntax exrors on these cards. It has provislons for
handling continuation cards. It places each character that it reads
into the arrays IWRD and FLD.

BULK

This routine causes the job names and predecessors to be placed
in the NAME array. It then generates characteristics for the jobs in
the NAME array using random distributions residing in the F array and
the limit variables specified on the FMAX and FMIN cards for this set
of jobs.

"STAT

The STAT routine causes information concerning pfobability
distributions and ﬁrocessing shape curves to be read into the F
array.

ENTR

The ENTR routine causes a specified selection of job names to
be entered into the MNAME array provided these job descriptions are in
the NAME array.

PRNT

The PRNT routine prints out the information from the J-TAELE
at selected intervals of time or upon command from some other routine.
CLEAR

The CLEAR routine sets all entries in the J-TABLE and overflow

area to zero upon command from the input stream.

204

RECHEK

The RECHEK routine transfers the data residing in the DATA and
NAME afrays that is associated.with élements of the MNAME array into
the J-TABLE upon commands from the input stream.
UNMIX

The UNMIX routine separates any selection of consecutive bits
from a word. It is used in unpacking data.
PACK

The PACK routine is used to pack data into a single word.
RANDN

The RANDN routine is used to generate normally distributed random
number Séquences;
RANDU.

The RANDU routine is used to generate uniformly distributed
random number sequences.
SHAPE

The SHAPE routine is used to update the next interrupt point of
for each job by using the processing shape curves.
CKCFPY

The CKCPU routine is used to’update the status of CPUs and to

search the CPU status table for idle CPUs.
CKIOS

The CKIOS routine is used to update the status of IOP and to

search the IOP status table for idle IOPs.

LAST3

LAST3 finds the lowest priority jobs with CPU(s) for preempting.

205

BITWRT

BITWRT is used by the PRINT routine fox printing job status
words out in binary form. |
FEC

‘The FEC routine manages the Future Events Chain. It moves events
into or out of this chain upon command from MAIN and HLS.
CEC

The CEC routine manages the Current Events Chain. It places
entries into this chain, removes entries from the chain and orders the
entries of the chain according to priority. It alsc calculates the
priorities of the entries in the chain and sets the load status bits
in the JfTable for new jobs entering the current events array that
are not presently loaded into the memory.
HLS

The HLS routine has three major functions as follows:

(1) HLS performs preprocessing on the set of jobs of a simulation
run at the beginning of the run. During this preprocessing it
determines the minimum processing time for each job, deter-
mines which jobs should be resident in the main memory based
on load times, mean interarrival times and relative costs of
_IOP time and memory space. It also calculates an initial
target time for all jobs with no immediate predecessors.

(2) Following a new schedule HLS makes an initial assignment of

processors to each active job.

206

(3) Following joh completion the HLS routine calculates a new
target timé. and détermines whether the job goes into the
Current Events array, Future Events Chain or neither
depending on value of ﬁext target time, minimum processing
time and precedence relations. It also checks all imme-
diate successor jobs to see if all their other predeceséors
have been run recently enough that their output data is
still valid,
LLS
The LLS routine switches jobs under the following three condi-
,tions; -
(1) At I/0 interrupt initiation
(2) At I/0 interrupt completion
{3) At job completion
This routine will preempt jobs of lower priority of their CPUs and
reassign these CPUs to higher priority jobs. A comsiderable portion
of this routine is concerned with problems associated with the simul~
taneous execution of TMR and SIMPLEX jobs.
PEX
The PEX routine performs execution processing, keeps up with
the amount of processing done on each job, calls LLS at I/0 interrupt
points, estimates the available bandwidth in.each memory module and

tallies system utilization and processor time to individual jobs.

207

NORFPRB

-This routine calculates the probability that a sample from a
normal -distribution with mean ﬁl and standard deviation o will exceed
a sample from a normal distribution with mean uj and standard devia-
tion gp.
NENAL

This routine 1s the nonfeedback memory allocateor. It makes
allocations to jobs without knowledge of bandwidth requirements. It
uses the optimum-fit algorithm. Allocations to TMR jobs arelmade from
three disjoint sets of memory modules, | |
MAPREF

| VThis routine.is the feedback memory allocator. It uses an

adaptation of the‘best fit algorithm. Memoiy assipgnments are made on
the basis of best fit in space and bandwidth, however a pertion of
other priority factors sucﬁ as time in queue may enter into the
selection. in order to aveid memory lockout. This routine is influenced
to a considerable extent by the requirements for allocations to TMR
jobs.
MASGN

This routine is called by MAPREF and NFMAL for updating the lists
of available and allocated storage at each memory allocation. It also
helps to tally fhe amount of available space and bandwidth in each

memory module.

208

MEMRLS

This routine is called by HLS for updating the lists of available
and allocated storage each time it ié desired to release a block of
storage.
OVFLMG

This routine manages the overflow afea from the J-TABLE. It will

place, retrieve, or remove information from this area.

Adjusting the Mean Bandwidth Requirements

The model provides for adjustment of the mean bandwidth require-
ments from any number of subsets of jobs in the set of a run by means
of the mix parameter. Specifically the mean number of access requests

per simulation step for CPU processing is given by

MNARC = ICON/(ITA + IPCT * FMIX)
where FMIX = NPCS * INM + NPCL * (1 — INM)

ICON is the number of basic clock periods per simulation
step. ITA is the number of basic clock periods for memory
access, IPCT is the number of CPU cycle periods per basic
clock period, NPCS = number of CPU cycle periods per short
instruction, INM is the proportion of short imstructions and
NPCL is the number of CPU cycles per long instruction.

Similarly the number of accesses available from each memory module per
simulation step is ICON/MMCT. Thus let A represent the ratio of mean
bandwidth requirement per job to that of the bandwidth available from a

memory module. We then have

209
MNARC = A * ICON/MMCT
ICON/(ITA + IPCT * FMIX) = A * ICON/MMCT

Rearranging we obtain

_ MMCT/A = ITA - IPCT * NPCL

INM IPCT * (NPCS — NPCL)

where 0 < TNM < 1

For a given set of values for ITA, IPCT, NPCS, NPCL and MMCT (chosen
for the particular run) there are bounds on the value of A, Specif-
ically as INM ranges from 0 to 1 A ranges from MMCT/(ITA + IPCT * NPCL)

to MMCT/ (ITA + IPCT * NPCS).

APPENDIX B

Program Flow Charts

- NOTE: In these charts the symbol.

< D

has been used as the decision element
in place of the usual symbol

to reduce the amount of paper required.

210

211

(MAIN START)

'3

SET THE IFLAG ARRAY.

SET DEFAULT TIME PARAMETERS; PREDEFINE
' TIME AND RTIME,

CALL ICARD TO GET AN INSTRUCTION FROM
THE INPUT STREAM AND PLACE IN IWRD.

Y

SET THE TRANSFER FLAG 'SET' TO 3.

< IS THE INSTRUCTION A COMMAND NQ
{5 SYMBOL IN IWRD (1))7?

< IWRD (2) = IENTR? 1o

CALL STAT, BULK, OR ENTR IF IWRD(3)EQUALS .|

IDST, IBST, OR MJDT RESPECTIVELY, |
=2

WHAT IS THE VALUE OF SET? P

=2
=N =5 Je

WRITE AN ERROR MESSAGE 'IMPROPERLY FORMATTED)
UNDEFINED OR MISSING COMMAND OR DATA CARD'

h *
@ [srop]
£<DOES COMMAND CALL FOR ERASING J-TABLE? D
NO
e car cieaz .
v
;Q)OES COMMAND CALL FOR PRINTING J-TABLED
' NO
— cawL prwT |
YES ¥
IS COMMAND FOR EXECUTION OF SIMULATIOND>
| 2 YES
<__1S coMMAND A STOP COMMAND? o—

Fig. B-1 MAIN PROGRAM (sheet 1 of 3)

212

E%if ARE ALL SYSTEM PARAMETERS PROPERLY DEFINED? >——

PRINT AN ERROR
MESSAGE

1

0

\ 2
ARE ANY TIME OPTIONS NO
SPECIFIED FOR THIS RUN?

VALID?

ARE ALL THE TIME OPTIONS ::>

PRINT AN ERROR

i,-

MESSAGE

FIND THE INDEX OF THE GAUSSIAN
DISTRIBUTION AND PLACE IN IDXGAU

v

CALL HLS FOR THE INITIAL
J-TABLE SCAN.

o
YES

BEING USED?

I5 THE MEMORY BANDWIDTH
FEEDBACK SCHEDULER/ALLOCATOR

CALL MAPREF FOR MEMORY
PREF, FACTOR CALC.
AND MEMORY ASGNMT.

v

CALL CEC FOR A NEW
SCHEDULE UNDER NFEK.

v

| ULE UNDER FEEDBACK.

1

CALL CEC FOR A NEW SCHED- .

v

o

CALL NFMAL FOR ALCTN. OF

| L MEMORY TO SCHEDULED JOBS.

CALL HLS FOR INITIAL
PROCESSOR ASGNMT.

l

CALL HLS F
PROCESSO

OR INITIAL
R ASGHNMT.

(%

Fig. B-1 MAIN PROGRAM (sheet 2 of 3)

213

r’@ i 2 @

ARE THERE ANY ACTIVE JOBS IN THE >

CURRENT EVENTS CHAIN

[no
B van > 07 >
] D—
NCNT = 0 ARE THERE ANY JOBS
T IN THE ICEC CHAIN?
>yt N |

CALL FEC TO FIND OUT IF THERE ARE ANY JOBS
IN THE FUTURE EVENTS CHAIN AND IF S0 FIND
OUT WHAT THE EARLIEST EVENT TIME IS?

v
< 18 IFEC EMPTY?
LNO

ADVANCE THE SIMULATION CLOCK TIME TO THE
EVENT TIME OF THE LEADING EVENT IN THE IFEC

v
CALL FEC TO REMOVE ALL ENTRIES WHOSE EVENT
.TIME IS < THE PRESENT TIME.

[
¥

[CALL PEX FOR ONE STEP OF JOB EXECUTION. |

v

[ADVANCE THE SIMULATION CLOCK BY ONE. B
v

YES S THE SIMULATION CLOCK TIME GREATER THAN NO
E FINISH TIME FOR THIS RUN?

K L
WRITE THE PROCESSING - CALL FEC FOR REMOVAL
STATISTICS FOR THIS RUN OF LEADING ENTRIES.

v

DETERMINE WHETHER OR NOT A NEW SCHEDULE
SHOULD BY INITIATED ON THE BASIS QF SYSTEM
STATUS AND PREVIOUS RESOURCE UTILIZATION.

. Y
@'—< IS A NEW SCHEDULE CALLED FOR? >

NO

Fig. B-1 MAIN PROGRAM (sheet 3 of 3)

214

(ICARD START)
o B
IWRD(*) = 0, FLD(*) = 0.0

R

SET THE WORD COUNTER (IW) TG 0.

SET THE FIELD CQUNTER SI\IFL O 1.

SET THE CARD COLUMN COUNTER (IC} TO O.

¥

READ A CARD FROM THE INPUT STREAM UNDER AB0
FORMAT INTO X. NOTE: UNDER A FORMAT CHARACTERS
ARE LEFT JUSTIFLED.

X PRINT THE CARD JUST READ. /
T+ L@

L—(WAS THE CARD JUST READ A COMMENT CARD? >

w 10

E
(IS THE CARD COLUMN COUNTER (IC) > 807 >_—lY y

NO RETURH

< DID CARD COLUMN IC CONTATIN A BLANK CHARACTER?)_

NO
< DID coLuMN IC C[}NTAIN+A ALPHABETICAL CHARACTER?
. %, NO
1-(DID COLUMN IC CONTAIN A NUMERICAL CHARACTER? >
' v N0
DID COLUMN IC CONTAIN EITHER +, -, or .? >

¥ N0

@ IS IC = 807 >
v YES
IS T

4F PRESENT CARD CONTINUED?)LES__

Fig. B-2 TICARD subroutine {sheet 1 of 4)

215

e

SIGNIFICANT BYTE OF IWRD{IW). PLACE BLANK

° PLACE THE CHARACTER IN K{IC) INTO THE MOST
CHARACTERS IN THE OTHER BYTES OF IWRD(IW).

q IT = 8. |
< 18 IC > 802)Y—Li

l RETURN.
{

K(IC)/256) ® popuw(h_T1),

| mo(w) = 1wRD(TW) +

« YES

h J
< ISI+C=80?- D

—>y YES
< DOES IL = L7
- _VES
4 DOES IT = 5% e
Ic=1IC+ 1 , IL=1IL+1.

FILL ANY REMAINING (4-TL) LESS SIGNIFICANT BYTES OF

IWRD(IW} WITH BLANK CHARACTERS.

v

MAKT, A CORRECTION (-256##(4_TI1))} TC THE CONTENTS OF
IWRD(IW) DUE TO THE FACT THAT THE FIRST ALPHABETICAL
CHARACTER PLACED IN THE MCST SIGNIFICANT BYTE OF

IWRD(IW) CAUSED OVERFLOW INTQ THE SIGN RIT
IW = IW + 1 : ——'@

Fig., B-2 ICARD subroutine (sheet 2 of 4)

216

v

MAKE A CORRECTION (-1) T¢ THE CONTENTS OF IWRD{IW)
DUE TQO THE FACT THAT THE FIRST ALPHABETICAL
CHARACTER PLACED INTC THE MOST SIGNIFICANT BYTE
OF IWRD(IW) CAUSED OVERFLOW INTO THE SIGN BIT.

‘5’ YES

3

IWRD(IW) = IFLD, IW W+1l, NDGT = 0, IDEC = 0,

SIGN = 1,0, FCTR

=1
1.0.
v

NO
r—< I8 THE CHARACTER IN K(IC) A MINUS SIGN? >

¥ YES

SIGN = =-1.

¥ *
—< IS THE CHARACTER IN K(I) A PLUS SIGN? >

YES &

IC =1IC+ 1. ‘I:’

*y 15
’_’® < TS 1C > 807
N0 &
L{IS THE CHARACTER IN K(IC) A NUMERIAL? >
h

FLD{NF} = FLD{(NF)¥10.0 + FLOAT(kK{IC) + L032)/256).

v
[1c=1Cc+ 1}—‘ < 18 1¢ > 807 DNO wper=npoTel.
!

—

Fig. B-2 ICARD subroutine (sheet 3. of 4)

217

O O

< IS THE CHARACTER IN K(IC) A PERIOD? ‘j>>'J
¢ » ¥ _NO
ES -
185 IS NDGT = 07 >
! NU : .
< IS THE CHARACTER IN K(IC) A BLANK OR COMMA? _
‘ 30

HAS THE END OF THE PRESENT CARD BEEN REACHED
WITH A CONTINUATION SYMBOL IN THE LAST COLUMN?

k‘ NO

PLACE AN ERROR INDICATOR ¥*ERR INTO

IWRD(IW). |
Tk-n<<; IS THE CONTINUATION SYMBOL (*) IN K(80)7 >
' _w YES
READ THE NEXT CARD IN A80 _
FORMAT.
v T
RETURN

¥
L ves I8 IDEC > 07 ‘ :)
, 4

I¢ = IC + 1, IDEC = IC.

u 3
@a&% s 1o > e >
YES +¢
< IS IDEC > 0% 444>>—351——-
v

[__ FCTR = 10.0 *¥* FLOAT(IC-IDEC) _J

Ll

FLD(NF) = SIGN* FLD(NF)/FCTR.
IWRD(IW) = IWRD{IW) + 1.

v

NF = NF + 1 . IW = IW + 1.

Fig. B-2 ICARD subroutine (sheet 4 of 4)

218

C BULK SEART)

NJOB =0 , IJOB =1 , NAME (*,*) = Q.

ko

NJOB = NJOB + 1 |

v

CALL ICARD TO READ A CARD FROM THE IRPUT
STREAM AND PLACE IN IWRD AND FLD.

WAS THE CARD JUST READ A COMMAND CARD
(SPECIAL CHARACTER IN IWRD(1))?

Z& NO

WAS THE CARD JUST READ A PROPER NAME CARD NO
(IWRD(1) = 'NAME', IWRD{2) = '=")?
+ YES
NO
4 IS NJOB > 759 >

PRINT AN APPROPRIATE
WARNING MESSAGE.

WERE ALL THE JOB NAMES ON THE LAST CARD
PROPER NAMES (START WITH ALPHABETICAL
CHARACTER AND < L CHARACTERS LONG)?

+ YES

/ WERE MORE THAN 5 PREDECESSORS LISTED FOR >

N THE JOB NAMES ON THE LAST CARD?

¥ O
ENTER THE NAMES FROM THE LAST CARD INTO
NAMES (NJOB, 3) THRU NAME (NJOB, B).

v

YE
< WAS THERE A SYNTAX ERROR ON THE LAST CARD? >—Sh

v
@..(WAS THE LAST CARD A '$ END BLK' CARD? D
L 20

NO
&_< WAS THE LAST CARD A '$ EXIT DIST' CARD? > —
[730B = NJ0B-1 9\ PRINT NAME ARRAY /M{sEr.z 2 MM mprupn |

Fig. B-3 BULK subroutine (sheet 1 of 3)

219

CALL ICARD TO READ THE NEXT CARD AND PLACE
IN IWRD AND FLD.

NJOB = NJOB - 1

_ v

O™ WAS THE LAST CARD A 'SEED' =' CARD? >
¥ YES
< WAS THERE A SYNTAX ERROR ON THE LAST CARD? S
Y 10
[1sp = IFIX(FLD(1).
CALL ICARD i
B |
& AS THE LAST CARD A 'FCIN' CARD? >y
w__vEs
< __WAS THERE A SYNTAX ERB*OR OF THE LAST CARD? >
1o
' +—< WERE NINE DISTRIBUTIONS LISTED ON THE LAST CARD? >
_ v _NO ' -
(TFSS THAN NINE LISTER QR LAST CARD? >_H
¥ RO
\ PRINT AN APPROPRIATE WARNING MESSAGE. /

r__ . PLACE THE FIRST NINE ENTRIES FROM LAST CARD INTO IAPQ

[CALL ICARD
. __NO
< WAS THE LAST CARD AN 'FMAX' CARD? >
¥y YES
Q WAS THERE A SYNTAX ERROR ON THE LAST CARD? >
r—<___ YERE NINE VALUES LISTED ON THE LAST CARD? >
fall YES
{__ypmE < uTNE VALUES LISTED ON_THE LAST CARD? S>—»
NO NO
< ARE THE FIRST NINE VALUES LEGAL VALUES? >
¥ 7S
PLACE THE FIRST NINE VALUES FROM THE LAST
CARD INTO FMAX. B

Fig. B-3 BULK subroutine (sheet 2 of 3)

220

v
e CALL ICARD.

<

WERE THE FIRST NINE VALUES ON THE LAST CARD
LEGAL VALUESY

< WAS THE LAST CARD AN 'FMIK' CARD? >
_ ¥ 7ES

< WAS ‘THERE A SYNTAX ERROR ON THE LAST CARD? 3_;
w10

—_ WERE NINE VALUES LISTED ON THE LAST CARD? >

w MO

< WERE < NINE VALUES LISTED ON THE LAST CARD? >»
W 10

\ PRINT AN APPROPRIATE WARING MESSAGE. /

g 75
PLACE *TiE FIRST NINE VALUES INTO FMIN.
[I=0] %
— \ERINT AN APPROPRIATE /
RROR MESSAGE..

| 1=1+1 | v

T [SET= &]
— I8 I » 97 > v

¥ NO RETURN
<Is IAPX(31) TN IDISTY

¥ _YES

DETERMINE THE SCALE FACTOR FROM FMAX(I) AND
FMIK(L) FOR USK WITH DISTRIBUTION I.
v

GENERATE THE DATA FOR ALL JOBS IN THE NAME ARRAY WITH
INCEXES BETWEEN IJOB AND NJOB USING DISTRIBUTION T AND THE
|| SBCALE FACTOR JUST CALCULATED AND PLACE IW THE POSITICH OF
TH& DATA ARRAY FROM IJOB TQ NJOB.

v

‘\\ PRINT THE STATISTICS FOR THE LAST JOB BLOCK //7

v
IJOB = NJOB + 1

Fig. B-3 BULK subroutine (sheet 3 of 3)

221

(STAT START)
.

SET ALL ENTRIES OF THE DISTRIBUTION NAME ARRAY (IDIST)
AND VALUE TABLE (F) TO O AND 0.0 RESPECTIVELY.

| v
(:) [(FDIST = 1.]
S TS UDIST > 35 7 >
@ — ¢ 3 v . ;
\ " PRINT A WARNING MESSAGE. / a

?7

CALL ICARD TO READ A CARD FROM THE INPUT STREAM AND
PLACE IN IWRD AND/OR FLD.

!

WAS THE CARD JUST READ A COMMAND CARD ' >
" (SPECIAL CHARACTER IN IWRD{1)) ?
_ KO
WAS THE CARD A PROPER NAME CARD (IWRD(1) _
= 'NAME' AND IWRD(2) = '=') ? :

¥ 1o

\ WRITE AN APPROPRIATE ERROR MESSAGE. /

| SET = 4. e RETURN.]

;< I5 IWRD (3) < 0 AND IW‘R'D(h) =07 D
¢ YES :

JWML__J

CALL ICARD TO READ THE NEXT CARD FROM THE INPUT
STREAM AND PLACE IN fWRD AND FLD,

X

< IS IWRD(1) = 'NAME' AND IWRD(2) = '=' ¢ S
e YES .
<15 IWRD(3) = 'SFLD' AND TWRD(}) # '¥ERR' ? >
YES

Fig.B~4 STAT subroutine (sheet 1 of 2)

K

I

IWRD (4} .

v

K : 41 7 s

PRINT AN APPROPRIATE PRINT AN APPROPRIATE
WARNING MESSAGE WARNING MESSAGE

K = 41

PLACE THE ENTRIES OF FLD(I), I = 1 THROUGH K INTO
CORRESPONDING POSITIONS OF F(WDIST, I).

NDIST = NDIST + 1 —"®

v

< WAS IT THE '§ EXIT IDST' CARD?
v YES

NDIST = NDIST - 1,

v

CHRECK THE IDIST ARRAY FOR MULTIPLE ENTRIES OF THE SAME NAME,
IF A NAME IS ENTERED MORE THAN ONCE THEN PRINT A WARNING MES-
SAGE, REMOVE ALL BUT THE FIRST ENTRY BY THAT NAME FROM THE
IDIST AND CORRESPONDING F ARRAYS AND RESTACK THE IDIST AND F
ARRAYS. DECREMENT NDIST BY THE NO. OF DUPLICATES REMOVED,

—
B SET = 2.]
v

RETURN.

Fig. B-4 STAT Subroutine (Sheet 2 .oF 2).

223

(___serup start) B

CALL ICARD TO READ‘A CARD FROM THE INPUT STREAM
AND PLACE IN IWRD AND FLD.

{MAS THE CARD READ BY ICARD AN END OF DATA CARD?

. o

<<WAS THE CARD A COMMAND CARD ($ IN IWRD(1))?

9 MO

SEARCH THE LIST OF SYSTEM PARAMETER NAMES (KNAME)
FOR A MATCH WITH IWRD(1).

= ‘ WAS A MATCH FOUND?
2 ¢ >
I YES '

WAS THERE A SYNTAX ERROR ON THE CARDrJUST :>>——__’
"_READ BY ICARD?
| NO o

SET THE IFLAG AND ITAG ELEMENTS CORRESPONDING TO
THE SYSTEM PARAMETER DEFINED ON THE CARD JUST

READ TO 1.
.

SET THE SYSTEM PARAMETER NAMED ON THE CARD JUST
READ BY ICARD TO THE VALUE SPECIFIED ON THE CARD.

LI

|

h
WRITE AN APPROPRIATE ERROR MESSAGE AND SET
'SET' TO 4.

RETURN

Fig. B-5 BSETUP subroutine (sheet 1 of 2)

224

MAKE THE FOLLOWING INITIALIZATIONS TO THE ELEMENTS

OF COMMON BLKL6: MAS(*) = PARM(17)/PARM(20),

NAA(*) = PARM(2)/PARM(15), IPASS(7) = PARM(23),
TIPASS(9) = PARM(19), IPASS(10) = PARM(17), ICECS = -1,
IFECS = -1, MAVLS = -1, MALCS = -1, MAVL(1, 1) = -1,
MAVL(1, 2) = -1, MAVL(1, 3) = 0, MAVL(1l, 4) = -1,
MAVL(1, 5) = PARM(17), NFB(1) = 1. SET ALL OTHER
ELEMENTS OF COMMON BLK16 TO O.

v

SET ALL ELEMENTS OF COMMON BLK13 TO 0.0.

.

IS THIS THE FIRST TIME THAT THE SYSTEM
PARAMETERS HAVE BEEN SPECIFIED FOR THE
PRESENT SEQUENCE OF SIMULATION RUNS
(LAST ELEMENT OF IFLAG = -1)?

YES I

< HAVE ALL SYSTEM PARAMETERS BEEN SPECIFIED? ;:>

YES 3*
SET Ez

SET THE LAST ELEMENT OF IFLAG TO 1.

RETURN

Fig. B-5 SETUP subroutine (sheet 2 of 2)

225

(ENTER START) @

$

CALL ICARD TO READ A CARD FROM THE INPUT STREAM
AND PLACE IN IWRD.

_ < WAS THE CARD READ BY ICARD AN INSTRUCTION CARD (SPECIAL

CHARACTER IN IWRD(1))?

l YES

<

WAS THE INSTRUCTION "*END'? Aj)

l YES
SET = 2,

¢

CALL RECHEK TO CHECK PRECEDENCE RULES AND ENTRY
OF JOBS INTO THE J~-TABLE FROM MNAME.

RE;hRN. l:r;will’

"

\PRINT AN APPROPRIATE ERROR MESSAGE. ' /
. I

v

SET = 4, % RETURN.

v

ID THE CARD HAVE VALID NAME CARD SYNTAX ('NAME'

D
<::IN IWRD(1) AND '="' IN IWRD(2))?

o

|] VS

ic!

€

S THE NAME IN. IWRD{N) ACCORDING TO THE SYNTAX
OR NAMES (BEGINS WITH ALPHABETICAL CHARACTER)?

Y

o VES

RO

{1

S THE NAME IN IWRD{N) IN THE BST {(NAME)?

[

YES

Fig. B-6 ENTER subroutine (sheet 1 of 2)

< IS THE NAME IN IWRD(N) ALREADY IN MNAME?

.

IS THERE SPACE AVAITLABLE IN MNAME FOR THE NAME

:i IN IWRD(N)?
* l YES

ENTER THE NAME IN IWRD(N) INTQ MNAME.

f NJOBER = NJOBER

l
i‘
T

<<:ﬁAS THE END OF NAMES BEEN REACHED FOR THE
PRESENT CARD (IWRD(N) = 0)7

v O

<: IS THERE A COMMA IN IWRD(N)?

{YES

v

“\PRINT AN APPROPRIATE WARNING MESSAGE

\?TY?“

Fig. B-6 ENTER subroutine (sheet 2 of 2)

227

C RECHEZ START D,

LIST(*) = 0, N =0, NT =0, NDPL = O.

ARE ANY QF THE JOBS IN MNAME LISTED AS THEIR OWN
PREDECESSORS?

*YES

\\L, PRINT A WARNING MESSAQE. 41//

SET THIS PREDECESSOR ENTEY FOR THE JOB IN QUESTION
TO 0.

IS EACE PREDECESSOR LISTED FOR EACH JOB IN MNAME
ALSO LISTED IN MNAME?
0

IS THE PREDECESSOR IN QUESTION ENTERED IN THE >—u
NAME ARRAY? .

PIES

< IS THERE ROOM IN MVAME FOR THIS PREDECESSOR? >—
BYES .

L ENTER_THE PREDECESSOR INTQ MNAME.

INCREMENT N (THE COUNTER FOR NO. OF JOBS ENTERED
INTO MNAME).
v

PLACE THE NAME OF THE PREDECESSORS THAT WERE ENTERED
INTO MNAME INTO THE LIST ARRAY.

*

<__ARE THERE ANY PREDECESSOR LOOPS OF LENGTH 2 7 >—

PLACE THE MEMBERS OF EACH PREDECESSOR LOOP OF LENGTH
2 WITHOUT REPETITION INTO IDPL{NDPL,1l) AND
IDPL(NDPL,2) WHERE NDPL TS A COUNTER ON THE NO. OF
SUCH LOOPS.

HAVE ALL PREDECESSORS BEEN ENTERED INTO M AME YES
(Is N = NT) ? /
)
{ NT = N

L

Fig.B~7 RECHEK subroutine (sheet 1 of &)

228

MIAME ? (N > 0)
¢YES

‘\ PRINT THE NON-ZERC ENTRIES OF THE LIST ARRAY ///

:

WERE ANY PRECEDENCE LJQOPS OF LENGTH 2 FOUND ? :>

*

\ PRINT A WARNING MESSAGE LISTING THE MEMBERS OF]

<::;ﬁ?RE ANY MORE PREDECESSORS ENTERED INTO

EACH PRECEDENCE LOOP OF LENGTH 2,

LI:’;.1£“@

I
L RETURN i

IS I > 6b 7 D>
0

<__IS THERE A NAME ENTERED IN MNAME(2,I) ? >_’
G

4
+
=

HAS 1) =
NO

] IFLAG(I) = 1.

P

FIND THIS JOB'S ENTRY IN THE NAME ARRAY AND PLACE
IT5 NAME ARRAY INDEX INTO J.

v

< IS THIS JOB PERTODIC ('*' N MYAMF(1,7)) ? >

.

SET BIT 8 OF J-TABLE ENTRY I's WORD 27 TO 1.
(JME(QT,I)B = 1,)

< IS THE JOR A TMR JOB (DATA(J,2) > 0) ¢

SET BIT 11 OF J-TABLE ENTRY I's WORD
27 T0 I (IM2(27,T)}17 = 1)

Fig.B-7 RECHEK subroutine (sheet 2 of 4)

229

PLACE THE MNAME ARRAY INDEX (1} OF THE PRESENT
JOB INTO THE J-TABLE
(gM2(1,I)7_ 3 = I).

IS & PROCESSING SHAPE CURVE LISTED FOR THE
PRESENT JOB? ,
_} YES '

SEARCH THE IDIST ARRAY FOR THE PROCESSING SHAPE
CURVE NAME CONTAINED IN MNAME (3,I) AND PLACE
ITS IDIST INDEX INTO IDX.

v

< WAS THE NAME FOUND IN IDTST?

¢ YES

JM2(11,I)y5-11 = IDX. "
»

SETUF THE PREDECESSOR ENTRIES FOR THE PRESENT
JOB IN THE J-TABLE.

JM2(8,1I) = TIME

_»

PLACE THE NO. OF CPU MEMORY ACCESSES REQUIRED
FOR THE PRESENT JOB INTO THE J-TABLE
(JM2(9,I) = DATA(J,5)).

PLACE THE INSTRUCTION MIX FOR THE PRESENT JOB
INTO THE J-TABLE. (JM2(10,I)-7_; = DATA(J,6)*100).

PLACE THE EXTERNAL PRIORITY FOR THE PRESENT JOB
INTO THE J-TABLE. (JM2(12,1)15_ 17 = DATA(J,1))

PLACE THE PRESENT JOB'S MATN MEMORY
SPACE REQUIREMENT INTO THE J-~TABLE. _____,<:::)
(gM2(17,1);,_; = DATA(J,3))

Fig. B-7 RECHEK subroutine (sheet 3 of 4)

230

PLACE THE MEAN INTERARRIVAL-TIME.FOR THE
PRESENT JOB INTO THE J-TABLE.
(JM2(14,1) = DATA(J,7) IF JOB IS PERIODIC OR

= DATA(J,.8) IF JOB IS APRRIQDTC)

- v
———< s v s 12 >

* K0 _
k{ IS DATA(J,4) < F{IDX,1)*DATA(J,5) % _>
¢ NO
JM2(15,I) = F(IDX,1)*DATA(J,5).
L

i

IMz(15,1) = DATA(J,Y4)

y

GENFRATE THE SUCCESSOR RELATIONS FOR THE PRESENT JOB
FROM THE PREDECESSOR RELATIONS CONTAINED IN MNAME AND
PLACE IN THE J-TABLE,

© ¢

‘_ PRINT AN APPROPRIATE ERROR MESESAGE //’

SET = 4
1

RETURN

Fig. -7 RECHEK subroutine (sheet 4 of L)

231

e (FEC(KEY, ITIME, IOPRN, TOPND) START) @
: *

WHAT IS THE VALUE OF KEY ?

IS THE TFEC CHAIN IMPTY? >
YES ¥
RETURN |

v

— NO
<: IS IT TIME TQ REMOVE THE LEADING ENTRY? ;

SET THE START OF IFEC CHAIN PQINTER (IFECS)
TO NEXT ENTRY POINTER FOR PRESENT ENTRY.

.

< _WHAT KIND OF EVENT IS THE PRESENT ENTRY?
J CALL KEW SCHEDULE

SET NSCHED.
ENTER JOB INTO ICEC

F*@ THE JOB IN THE PRESENT ENTRY ALREADY IN IC}@

@O

DOES THE JOB IN THE PRESENT ENTRY HAVE
ANY PREDECESSORS? -
@ YES

VE ALL PREDECESSORS OF JOB IN PRESENT NO
ENTRY BEEN RUN WITHIN TWICE THEIR NORMAL
PETITION PERIODS OF THE PRESENT TIME?

— ’IYES

CALL CEC FOR INSERTION OF JOB IN PRESENT
ENTRY INTO THE CURRENT EVENTS ARRAY.

!

RESET THE INFEC STATUS BIT INDICATOR TO 0O
FOR THE JOB IN THE PRESENT ENTRY.

>y

SET ALL ELEMENT OF THE PRESENT ENTRY TO 0.

Fig. B~8 FEC subroutine (sheet 1 of 2)

232

»

e < IS THE TFEC CHAIN EMPTY? | >j
I |

START AT THE HEAD OF THE IFEC CHAIN AND SEARCH
FOR THE FIRST ENTRY THAT HAS EVENT TIME GREATER
THAN THAT OF THE NEW ENTRY TO BE LINKED INTO

THE IFEC CHAIN.

SEARCH FOR AN EMPTY POSITION IN THE IFEC ARRAY

KO !
~—< WAS AN EMPTY POSITION FOUND? 3
!

PLACE THE NEW ENTRY INTO THE EMPTY JUST FOUND AND
MERGE THE NEW ENTRY INTC THE IFEC CHAIN
ACCORDING TO EARLIEST EVENT TIME.

v

IS THE NEW ENTRY A JOB? 4:>

. N0 -
[T

SET THE INIFEC INDICATOR STATUS BIT IN THE J-TABLE

FOR THE NEW ENTRY
RETURN "I:’

v NO
< IS THE IFEC CHAIN EMPTY? >—

s

PLACE-] INTO IPASS(8).

.

PLACE THE EVENT TIME OF THE ENTRY AT THE HEAD OF
THE IFEC CHAIN INTO IPASS(8)

A!i
[__ RETURN

Fig. B-8 FEC subroutine {sheet 2 of 2)

233

(f CEC{KNOW, X) START ‘)
NEW _l JOB
SCHEDULE COMPLETION

WHAT 15 TO BE DONE?

’ INSERT NEW |

RECALCULATE PRIORITIESyy ENTRY : @

' |1 = FIND AN EMPTY (I) IN THE
ICEC ARRAY.

b

ICEC(

2 JCLK, ICEC(1,I) = O,
ICEC(k

c.

,I) = X, ICEC(3,I}
I) =0)

, ICEC{5,I
o -
""<:;4 IS JOB K RESIDENT IN MEMORY? :)
JLYES
: NO
<i;_ IS JOB K'S LAST RUN TIME = 0 :>>-————ﬂ

s

GET JOE K'S MAIN MEMORY SPACE REQUIREMENT AND PLACE
IN MMS.

SET JOB K'S NEXT INTERRUPT POINT TO MMS*MINBLE.

.

SET JOB K'S STATUS BITS AS FOLLOWS: LOAD = 1,
MODE = 1, WAIT MEMORY = 1, WAIT IOP = 1, READY = 1

~ K
__[ENCREMENT THE NO. OF JOBS WAITING MEMORY {N'JwM) BY 1.4J

»

CALL SHAPE TO UPDATE JOB K'S NEXT INTERRUPT POINT J

-

SET JOB K'S STATUS BIT AS FOLLOWS: WAIT CPU = 1,

READY = 1
IPASS(1) = IPASS(1) + 1

.

DETERMINE WHETHER OR NOT A CALL FOR A NEW SCHEDULE
SHOULD EBE MADE. IF S0 SET NSCHED.

K"

RETURN

Fig. B-9 CEC subroutine (sheet 1 of 4)

234

START AT TEE BEGINNING OF THE ICEC ARRAY.

<:HAS THE END OF THE ICEC ARRAY BEEN REACHED?Y

~ES,
§ 10 oo
]

<<— IS THE PRESENT ENTRY EMPTY?

YES

\M{ GO TO THE NEXT ENTRY OF THE ICEC ARRAY.

v

CALCULATE THE INTERNAL PRIORITY OF THE PRESENT ENTRY
USIKG FACTORS OF CLOSENESS TO NEXT TARGET TIME,
AMOUNT CF TIME ALREADY SPENT IN THE ICEC ARRAY,
IXTERNAL PRIORITY AND MEMORY PREFERENCE TACTOR.

IS THE INTERNAL PRIORITY JUST CALCULATED
GREATER THAN THE MAXIMUM ALLOWABLE
INTERNAL PRTIORITY?

l YES

SET THE PRESENT ENTRY'S INTERNAL PRICRITY TO
THE MAXTMUM ALIOWABLE PRIORITY.

IPASS(2) = IPASS(2) + 1.

.

MERGE THE PRESENT ENTRY INTC THE ICEC CHAIN
ACCORDING TO ITS INTERNAL PRIORITY.

‘

RETURN

Fig. B-9 CEC subroutine sheet (2 of 4)

235

-

SEARCH THE ICEC CHAIN FOR JOB K

}
<<; WAS THE SEARCH SUCCESSFUL? ﬂ:>£ﬁl"~*~

.

l RELINK THE CHAIN ARQUND JOB K'S ENTRY I

v

[RESET JOB K'S READY BIT TO O IN J-TARLE I

(®

| ZERO JOB K'S ENTRY IN THE ICEC ARRAY]
IPASS(1) = IPASS(1) - 1
IPASS(2) = TPASS(2) -1

DETERMINE WHETHER OR NOT A NEW SCHEDULE
SHOULD BE CALLED FOR DEPENDING ON THE
AMOUNT OF SPACE AND BANDWIDTH GIVEN UP
IN MAIN MEMORY BY JOB K. IF A NEW
SCHEDULE IS CALLED FOR SET NSCHED

v

RETURN

_

SEARCH THE ICEC ARRAY FOR JOB K.

. MO
< _ WAS THE SEARCH SUCCESSFUL? >
R

SET JOB K'S ENTRY IN THE ICEC ARRAY TQ O.

[TPass(1) = Tpass(1) - 1 |

| ®ETURN B

Fig. B-9 CEC subroutine (sheet 3 of 4)

236

LOAD THE ICEC INDEXES OF ALL SCHEDULED JGBS INTQ
CONSECUTIVE LOCATIONS OF NAML.

.

CALCULATE THE PRIORITES OF ALL THE SCHEDULED

JOBS.
v

REORDER THE NAMI, LIST ACCORDING TO NON-INCREASING
PRIORITY OF JOBS ASSOCTATED WITH ICEC INDEXES IN

NAML..
!

RELINK THE ICEC CHAIN ACCORDING TO THE ORDERING OF

TEE ICEC INDEX®ES IN NAML.

RETURN.

Fig. B-9 CEC subroutine (sheet 4 of 4)

FROCESSOR ASSIGNMENT

237

(_HLS(KEY,J508) START)

WHAT IS TO BE DONE?

JL;NITIAL J-TABLE SCAN

)

IND THE INDEX OF THE REVERSE ERROR FUNCTION
ABLE FROM IDIST AND PLACE IN IDXERN.

v

o FIND THE INDEX OF THE STANDARD DEVIATIONS OF

THE PROCESSING CURVES AND PLACE IN IDXSTD.

'l

SCAN J-TABLE FOR JOB ENTRIES NOT YET

PROCESSED. |
! YES

0
E%:f J-TABLE ENTRIES ALL PROCESSED?

I=INDEX OF PRESENT ENTRY.[RETURN

[

S

CALCULATE THE MEAN NO. OF MEMORY ACCESS
REQUESTS AND STD. DEV. FOR JOB I FOR BOTH
CPU AND IOP PROCESSING.

v

CALCULATE THE MINIMUM EXPECTED PROCESSING
TIME FOR JOB I AND PLACE IN J(2D,I).

v

|WAIT TOP STATUS BITS TO 1.

—

SET JOB 1'S LOAD, MODE, WAIT MEMORY, AND

v

DETERMINE WHETHER OR NOT JOB I SHOULD BE
RESIDENT IN MAIN MEMORY AND SET JOB I'S
RESIDENCY STATUS BIT IF JOB I IS RESIDENT.

Fig. B~10 HLS subroutine (sheet 1 of 6)

JOB COMPLETION

—< DOES JOB I HAVE ANY PREDECESSORS? >

@ £y

CALCULATE JOB 1'S NEXT TARGET TIME.

]

NO
<:; MUST JOB I BE LOADED BEFORE PROCESSING CAN PROCEED;:>_*_‘
]

* YES +

I IDTIM = 0.

CALCULATE JOB I'S MINIMUM
LOAD TIME AND PLACE IN LDTIM.

—

IS NEXT TARGET TIME FOR JOB I < 3% (MIN. PROCESSING \NO
TIME + LDTIM) + PRESENT TIME?

{ YES

CALL CEC FOR INSERTION OF JOB I INTO THE ICEC
CHAIN.

[
(]

CALL FEC FOR INSERTION OF JOB I INTO THE FUTURE
EVENTS CHAIN WITH EVENT TIME EQUAL TO NEXT
TARGET TIME -3*(MIN. PROCESSING TIME +

LDTIM) + PRESENT TIME.

-
L &

IS NOWRUN = 07 >
- |No

L J
NOWRUN = 0.

o ©

Fig. B~10 HLS subroutine (sheet 2 of 6)

$239

v

PLACE THE'&D; OF FREE CPUS INTO NFCPU.

.

PLACE THE ND. OF FREE IOPS INTO NFIOP.

Y

START AT THE HEAD OF THE ICEC

CHAIN

<

HAS THE END OF THE ICEC CHAIN

BEEN REACHED?

&

g

OF PRESENT ENTRY IN ICEC.

JINDX = INDEX IN J-TABLE

v

- < Is JINDX'S STATUS WORD LOAD BIT SET?

w YES

IS THE NO. GF IOPS ALREADY ASSIGNED

TO LOAD OPERATIONS > 1IQ2?

v

NolfFA

"ARE JINDX'S STATUS WORD BITS
TMR/SIMPLEX=0, READY=1, WAIT
_WAIT MEMORY=0, WAIT IOP=0.

AS FOLLOWS? YES
CPU=1,

J’NO

ARE JINDX'S STATUS WORD BITS
TMR/SIMPLEX=0, READY=1, WAIT
WAIT MEMORY=0, WAIT CPU=0.

AS FOLLOWS? YES
I0P=1,

% O

ARE JINDX'S STATUS WORD BITS
TMR/SIMPLEX=1, READY=1, WAIT
WAIT MEMORY=0, WAIT IQP=0,

AS FOLLOWS? YES
CPU=1, :

¢ NO

0

A A

ARE JINDX'S STATUS WDRD BITS
TMR/SIMPLEX=1, READY=1, WAIT
WAIT MEMORY=0, WAIT CPU=0,

AS FOLLOWS? YES
I0p=1,

Fig. B-10 HLS subroutine {(sheet 3 of 6)

240

‘ NO ,
wrcey > 07 ->2
YES

O

Y%FIOP > 07 >: : C

::YES

NFCPU > 0%
NO

<NFIOP >L 07 >£

\YES

[

iTG

.

Q\m oP

> 37
E

YES

ASSIGN

L

JNAM AS REQUIRED

IOP(S) TO

.

VPDATE

NFIOP

v

UPDATE

BITS FOR JINDX

STATUS

>—pre————yrcpy > 32
YES}'-—’JK‘

ASSIGN CPU(S) TO
JNAM AS REQUIRED

>

i

:

UPDATE NFCPU3

v

UPDATE STATUS

BITS FQ%,JINDX

o

GY—ES<NFCPU > 0

>

: ‘NO

YES
% *: NFIOP > O

“_NO

>

v
GO TO NEXT ENTRY

Fig, B-10 HLS subroutine

ICEC_CHAIN

5?1

RETURN

(sheet 4 of &)

241

.

CALL CEC FOR REMOVAL OF COMPLETED JOB FROM @

THE CURRENT EVENTS CHAIN,

v YES
< IS JOB'SPREEMPT. BIT SET? >
| DECREMENT NO. ACTIVE JOBS BY 1.
| 10
DECREMENT NO. INITIATED JOBS BY 1. \
SET JOB'S LAST RUN TIME TO PRESENT TIME

)

< DOES 'JOB HAVE ANY PREDECESSORS? >"©
' ¥O

YES & ‘ NO

_.< IS JOB PERIODIC >~—

PERIOD TO NEXT USE LNIFORM RANDOM DISTRI-
RUN TIME (NPRD) = BUTION TO DETERMINE PERIOD
REPETITION PERIOD TO NEXT RUN TIME (NERD)
] 1 -
NO 1S JOB'S LAST RUN TIME < JOB'S PREVIOUS >(Ls_
TARGET TIME?
'JOB'S_ NEXT TARGET TIME = JOB'S NEXT TARGET TIME =
JOB'S LAST RUN TIME + | JOB'S PRESENT TARGET TIME
NPRD + NPRD

I S i
IS ICLK+2*(JOB'S MIN. PROCESSING TIME) GREATER
THAN JOB'S NEXT TARGET TIME?
' - lYES : '

JOB'S NEXT TARGET = PRESENT TIME +
2%(JoB'S MIN. PROCESSING TIME)

v

Fig. B-10 HLS subroutine (sheet 5 of 6)

WILL JOB REQUIRE LOADI%G TNTO MAIN MEMORY YES
BEFORE ITS NEXT PROCESSING RUN CAN PROCEED?
NO s

CALCULATE JOB'S MINIMUM

Lﬁ

LDTIM = 0

|LOAD TIME AND PLACE IN
LDTIM.

ir

NEXT EVENT TIME = NEXT TARGET TIME
- 3*(MIN. PROCESSING TIME + LDTIM)

CALCULATED I

CALL FEC FOR INSERTION OF JOB INTO THE
FUTURE EVENTS CHAIN WITH EVENT TIME AS

——< IS JOB RESIDENT IN MAIN MEMORY ?

JFO

MEMORY SPACE.

CALL MEMRLS TO RELEASE ALL OF JOB'S MAIN

P

DOES JOB HAVE ANY SUCCESSORS THAT HAVE NOT NO
BEEN EXAMINED FOR POSSIBLE PROCESSING.

4

IDXSUC = INDEX IN J-TABLE OF NEXT SUCCESSOR
OF JOB THAT HAS NOT YET BEEN PROCESSED.

CHAIN?

.YES<I§1DXSUC ALREADY IN C

URRENT OR FUTURE EVENT§i>

NO

THE PRESENT TIME?

NO_~"HAVE ALL OF IDXSUC'S PREDECESSORS BEEN RUN
WITHIN TWICE THEIR MEAN INTERARRIVAL TIME OF

I = IDXSUC

L

(..___J

RETURN

]

NOWRUN;F 1

Fig. B-10 HLS subroutine (sheet 6 of 6)

243

(NORPRB(PM, STDP, RM, STDR, IDXERN, PROB) STAR@)

!

PROB = Q.0

v

IS PROCESSING INTERVAL MEAN MINUS THREE
8TD. DEV. <« THREE STD. DEV. BELOW THE
REQUEST MEAN?

NO
YES -~ 15 REQUEST MEAN MINUS THREE STD. DEV.
> PROCESSING MEAN PLUS THREE STD. DEV.? _

!

IS PROCESSING INTERVAL MEAN MINUS THREE STD.
DEV. > THREE STD. DEV. ABOVE REQUEST MEAN?

)

PROB = PROBABILITY THAT A SAMPLE FROM
PROCESSING DISTRIBUTION IS < THREE
STD. DEV. BELOW REQUEST MEAN.

N
PR ‘

PROB = 1.0 . © PROB = 0.0
RETURN ' ' RETURN

CALCULATE UPPER AND LOWER BOUNDS OF INTEGRATION.

v

CALCULATE STARTING TABLE INDEXES FOR EACH DISTRIBUTION),

v

CALCULATE INTERVAIL INCREMENTS FOR EACH DISTRIBUTION.

Fig. B-11 NORPRB subroutine (sheet 1 of 2)

244

GET X1 = PROBABILITY THAT PROCESSING INTERVAL
IS5 BETWEEN PROCESSING INDEX AND PROCESSING

INDEX + INCREMENT.

‘GET X2 = PROBABILITY THAT REQUEBST SIZE IS
GREATER THAN PROCESSING INDEX.

:

PROB = PROB + X1 * X2.

.

INCREMENT INDEXES.

.

—‘< ARE INDEXES > UPPER BOUND OF INTEGRATION? >

l Yes

RETURN

Fig. B-11 NORPRB subroutine (sheet 2 of 2)

245

nrERRvPT LLS(ECEY,J%?) SMRT) oo

COMPLETION

N _WHAT IS TO BE DONE?

—<_COMPLETION
7

S INTERRUPT INITATION

CALL SHAPE TO UPDATE JOB'S
NEXT INTERRUPT POINT.

i

SET JOB'S MODE TO 1/0.

—® @~

<___I8 JOB'S PREEMPT BIT SETO-;

[RESET JoB'S PREEMPT BIT 0 0.

"

L

—»

1S JOB TMR*

JOB'S INTO PRIORITY > IP2?
YES

JOB(NJOB) AMONG THE THRER
HIGHEST PRIQRITY JOBS THAT
|WANT CPUS AND ARE QUALIFIED
TO ACCEPT THEM.

{BEARCH ICEC CHAIN FOR A NEW TMR

NO. OF SCHEDULED >
JOBS < IQ3?
YES

NO. OF 1/0 ACCES?%E>
. <IN17

YES

UPDATE NJOB'S STATUS IN THE
J-TABLE AND ICEC CHAIN.

—

v

~<WERE ANY SIMPLEX JOBS FOUND? >

»

NO

[SET JOB’S CPUS To IDLE
| -

v

2

IO THESE SIMPLEX JOBS AS

ASSIGN AS MANY OF JOB'S CPUS

POSSIBLE. SET ANY REMATINING .

CPUS TO IDILE,

¥ ~. | SBT J0B's HOLD BIT T0 1.
~<WAS SUCH A TMR JOB FOUND? > —
YES 5
AR) FOR JOB.
(ASSIGN JOB'S CPUS TO NJOB. | [EE o TOoR Iopi) o8 10
— %

<ENOUGH IOPS FOUND FOR JOB? -
¥ N0

[SET JOB'S WAIT IOP STATUS
BIT T0 1. SET JOB'S ACTIVITY
BIT TO 0.
RETURN
.

ASSIGN IOPS TO JOB.

-

SET JOB'S WAIT I/0 CMPLTN.

%

RETURN

Fig. B-12 LLS subroutine {sheet 1 of 8)

246

' v

SEARCH THE CURRENT EVENTS CHAIN FOR A NEW
JOB (NJOB) THAT IS WAITING FOR A CPU AND
IS5 QUALIFIED TO ACCEPT ONE.

YES

NO

__<('WAS SEARCH SUCCESSFUL?

—

<

IS NJOB TMR

!

kPDATE NFREE WITH NO.
0

F IDLE CPUS

I

< NFREE > 27

>
=1QNO

2 — NFREE I

I NEED =

ET JOB'S CPU TO IDL

L““““_‘“T‘

CALL LAST3 TO SEARCH FOR..
SIMPLEX JOBS OF LOWER PRIORITY
THAN NJOB FOR PREEMPTING

e

ASSIGN JOB'S CPU
TO NJOB
v

UPDATE NJOB'S
STATUS IN J-TABLE
AND ICEC CHAIN

K 2

L
DID LAST3 FIKD NEED OR .
MORE JOBS TO PREEMPT?

L NO

ASSIGN FIRST TWO
IDLE CPUS TO NJOB

e

>

ASSIGN THE IDLE
CPUS TO NJOB

CONTINUE SEARCHING ICEC CHAIN
FOR SIMPLEX ONLY JOBS THAT
ARE WAITING FOR A CPU

AND ARE QUALIFIED TO

ACCEPT ONE,

]

v

PREEMPT THE NEED
LOWEST PRIORITY

JOBS THAT LAST3 —
FOUND AND REASSIGN

THEIR CPUS TO
NJOB.

Fig. B-12 LLS subroutine (sheet 2 of 8)

~

247

.

CALL SHAPE TO UPDATE JOB'S NEXT INTERRUPT POINT @

v

SET JOB'S IOP'S TO IDLE

'

UPDATE NFREE WITH NO. OF IDLE IOPS

) v
—————< IS NFREE <:3£)

SEARCH THE ICEC CHAIN FOR THE HIGHEST PRIORITY TMR
JOB THAT 1S WAITING FOR IOPS AMONG THE THREE HIGHEST
PRIORITY JOBS THAT ARE WAITING FOR I0P{S). 1IF NO TMR
JOB IS FOUND RETAIN THE INDEXES OF THOSE JOBS

FOUND IN IHOLD(1) THRU IHOLD(3). RETAIN THE NO.
FOUND IN IHOLD(5). IF A TMR JOB IS FOUND PLACE

ITS INDEX IN IHOLD(1), SET THOLD{(5) = 1 §STOP SEARCH.

[

K 2

SEARCH THE ICEC CHAIN FOR THE NFREE HIGHEST .
PRIORITY SIMPLEX JOBS THAT ARE WAITING FOR AN
I0P. RETAIN THE INDEXES OF THOSE JOBS FOUND
IN IHOLD(1) AND THOLD(2). - RETAIN THE NO. FOUND

IN IHOLD(5)

ASSIGN IOPS TO THE JOB(S) FOUND IN THE ABOVE]
SEARCH AND UPDATE THEIR STATUS WORDS IN THE

J-TABLE AND ICEC CHAIN

Fig. B~12 LLS subroutine (sheet 3 of 8)

248

RESET JOB'S MODE TO CPU.
COMPLETION TO NOT WAITING.

RESET JOB'S WAIT I/0

Y

<

IS JOB'S HOLD BIT SET TO 17

No

RESET JOB'S HOLD BIT

UPDATE NFCPU WITH THE NO.
OF IDLE CPUS.

YES

v

I8 JOB TMR?

P!

IS HFCPU = 0%

e

YES i

CALL LAST 3 TO SEARCH FOR
A NEW SIMPLEX JOB OF
LOWER PRIORITY THAN JOB
THAT HAS A CPU.

.

DID LAST 3 FIND A
LOWER PRIORITY JOB
WITH A CPU?

O

N
e

ASSIGN ONE OF THE IDLE
CPUS TO JOB.

P!

SET JOB'S ACTIVE BIT IN
THE ICEC CHAIN TO 1.

|

SET JOB'S WAIT CPYJ BIT TO 1
SEY JOB'S ACTIVITY BIT TO ©

A B

PREEMPT THE LOWEST
PRIORITY JOB THAT LABST 3
FOURD AND REASSIGN ITS

CPU TO JOB.
v

SET JOB'S ACTIVE BIT IN
ICEC CHAIN TO 1.

-

RETURN

Fig. B-12 LLS subroutine (sheet 4 of 8)

NO

YES

IS NFCPU > 37

NEED = 3 - NFCPU.

+

' ASSIGN THREE OF THE
IDLE CPUS TO JOR

CALL LAST3 TO SEARCH
FOR SIMPLEX JOBS OF
LOWER PRIORITY THAN
JOB WITH CPUS.

v |

- DID LAST3 FIND
NEED CPUS?

PREEMPT THE NEED

| LOWEST PRIORTIY JOBS THAT

LAST3 FOUND AND ASSIGN

THEIR CPUS TO JOB. IF
NEED WAS LESS THAN

‘| THREE- ASSIGN THE 3-NEED
IDLE CPUS TO JOB.

v

CALL LAST3 TO SEARCH FOR
A NEW TMR JOE OF LOWER
PRIORITY THAN JOB WITH
CPUS FOR PREEMPTING.

‘

NO ‘
"<<:FAS SEARCH SUCCESSFULi:>>

. PREEMPT THE LOWER.
PRIORITY TMR JOB AND
ASSIGN ITS CPUS TO

|SET JOB'S ACTIVITY BIT TO 1/

SET JOB'S WAIT CPU BIT TO Q.

JOB.
*

R

SET JOB'S ACTIVITY BIT TO O
SET JOB'S WAIT CPU BIT TO j

L

«— |

. 4

RETURN

Fig. B-12 LLS subroutine (sheet 5 of 8)‘

250

@ < 1S5 JOB TMR? =@
& YES

N
15 JoB's #ODE cPU D

NO

SEARCH THE ICEC CHATN FOR A WEW TMR JOB (NJOB)
|AMONG THE THREE HIGHEST PRIORITY JOBS THAT ARE WAITING

FOR CPUS.
v NO
<WAS THE SEARCH SUCCESSFUL? >——
REASSIGN JOB'S CPUS TO NJOB.
]
L]
<{ERE ANY SIMPLEX JOBS WITH THE OTHER PROPERTTES FOUNDJ
w YES
REASSIGN AS MANY OF JOB'S CPUS TO THE NEW SIMPLEX
JOBS AS POSSIBLE. SET ANY REMATNING CPUS TO IDLE.

| %

IpPDATE NJOB'S STATUS.] [SET JOB'S CPUS TO TDLE,].
il
IiUPDATE JOB'S STATUS IN THE J-TABLE. ;F"_-'".{ RETURN]
L 3

SEARCH THE ICEC CHAIN FOR A NEW TMR JOB (NJOB} AMONG THE
THREE HIGHEST PRIORITY JOBS THAT ARE WAITING FOR IOP(S).

IF THE NO. OF JOBS ALREADY ASSIGNED TO LOAD OPERATIONS IS
> IQ2 THEN IGNORE JOB'S WHOSE LOAD BITS ARE SET TO 1.

&. YES

<<:WAS SEARCH SUCCESSFUL? REASSIGN JOB'S IOPS
NO T _NJOB.

NO
'——*<?ERE ANY SIMPLEX JOBS WITH THE OTHER PROPERTIES FOUND? >
i 2

REABEIGN AS MANY OF JOB'S IOPS TO THE NEW SIMPLEY JOBS AS
POSSIBLE. SET ANY REMAINING IQPS TO IDLE.

.

[SET JOB'S TOPS TO IDLE. 4J UEDATE NJOB'S STATUS,
: NO

38 JOB'S HOLD BIT SET T0O 17 >

Fig. B-12 LLS subroutine (sheet 6 of 8)

251

I
| , Q , 1s JOB'S&EO;)ESCPU? -

SEARCH THE ICEC CHAIN FOR A NEW JOB (NJOB) THAT 1S WAITING

FOR CPU(S).

YES — NO
I—Q WAS THE SEARCH SUCCESSFUL?

—< 1S NJOB TMR? D SET JOB'S CPU TO IDLE

= _

REASSIGN JOB'S CPU TO NJOB.

v

UPDATE NE WITH THE NO. OF IDLE CPUS

.

{ 1smE>2

.

ASSIGN TWO OF THE IDLE CPUS TO NJOB.

\\ NO
>

CALL LAST3 TOSEARCE FOR SIMPLEX JOBS OF LOWER PRIORITY
THAN NJOB WITH CPUS. |
i ~ NO

{D1D LAST3.FIND AT LEAST 3-NE CPUS? >—

!

PREEMPT THE 3-NE LOWEST PRIORITY JOBS OF THE JOBS THAT

LAST3 FOUND WITH CPUS.AND REASSIGN .THEIR CPUS TO NJOB..

v

CONTINUE SEARCHING THE ICEC CHAIN FOR A NEW SIMPLEX JOB

(NJOB) THAT IS WAITING FOR A CPU.

v

IF NECESSARY UPDATE THE NEW JOB'S STATUS IN THE ICEC CHAIN
AND IN THE J-TABLE. UPDATE JOB'S STATUS IN THE J-TABLE.

.

RETURN

Fig. B-12 LLS subroutine (sheet 7 of 8)

252

v

SEARCH THE ICEC CHAIK FOR A NEW JOB (NJOB) THAT IS
WAITING FOR AN IOP. IF THE NO. OF IOPS ALREADY ASSIGNED
TO LOAD QPERATIONS IS » IQ2 THEN IGHORE JOBS WHOSE LOAD

BIT IS SET TOC 1.

I_(WAS THE SEARCH SUCCESSFUL? >
YES

SET JOB'S IOP 70 IDLE
—_

~ NO
<: IS NJOB TMR? _/

UPDATE NE WITH THE NO. OF IDLE IQPS

, v
——~——-—¥E—S—< I Niz 21)

CONTINUE. SEARCHING FOR THE ICEC CHATN FOR A SIMPLEX JOB
THAT I5 WAITING FOR AN ICP. IF THE NO. OF IOPS ALREADY
ASSIGNED TO LOAD OPERATIONS IS > 142 THEN IGNORE JOBS

WHOSE LOAD BIT IS SET TO 1.

v

ASBIGN TWO OF THE IDLE IOPS TO NJOB.

&

REASSIGN JOB'S IOP TO NJOB.

v

UPDATE HJOB'S STATUS IN THE ICEC CHAIN AND J-TABLE.

< 1S JOB'S HOLD BIT SET TO 17

‘NO

UPDATE JOB'S STATUS IN THE J-TARLE.

v

RETURN

Fig. B~12 1LLS subroutine (sheet 8 of 8)

253

(' PEX(IDXGAU) START . D,

v

START AT THE HEAD OF THE CURRENT EVENT CHAIN

'F—"<:kAT THE END QF THE CURRENT EVENTS CHAIN? :>>
: < L NO —
[T . GO TO THE NEXT ENTRY IN THE
CURRENT EVENTS CHAIN
\ 2 NO
<:;7 IS THE PRESENT JOB ACTIVE? :

v
ARE MEMORY ACCESSES TO BE DISTRIBUTED RANDOMLY
OVER EACH JQB'S MEMORY SPACE OR SEQUENTIALLY
"ACCORDING TO PRESENT POINT IN EACH PROGRAM?

\‘RANDOMLY

FIND THE AMOUNT OF MAIN MEMORY SPACE THAT THE PRESENT
JOB HAS IN EACH MEMORY MODULE AND PLACE IN MSPACE
(MODULE INDEX)

PLACE THE TOTAL AMOUNT OF MEMORY SPACE THAT THE
PRESENT JOB HAS INTO JMSTOT

OBTAIN THE TOTAL NUMBER OF MEMORY ACCESS REQUESTS
(TACCS) TO BE MADE BY THE PRESENT JOB DURING THIS
SIMULATION STEP FROM A NORMAL DISTRIBUTION WITH
MEAN AND STD. DEV. OBTAINED FROM PRESENT JOB'S
J-TABLE ENTRY,

<RANDOM OR SEQUENTIAL DISTRIBUTION? >—'®

¥ RANDON
IS PRESENT JOB TMR L

[
1. TACCS = 3% IACCS

Fig. B~13 PEX subroutine (sheet 1 of 4)

254

S _§

DISTRIBUTE THE PRESENT JOB'S MEMORY ACCESS REQUESTS OVER
ALL MEMORY MODULES IN A LINEAR MANNER ACCORDING TO THE
AMOUNT OF SPACE OCCUPTED BY THE PRESENT JOB IN EACH
MEMORY MODULE AND PLACE IN NREQ(ICEC INDEX, MODULE
INDEX) .

L

v

DISTRIBUTE THE PRESENT JOB'S MEMORY ACCESS REQUESTS TO
THE MEMORY MODULES IN WHICH THE PRESENT JOB HAS SPACE
ACCORDING TO THE COMPLETION POINT OF THE PRESENT JOB,

5

SUM THE TOTAL NUMBER OF ACCESS REQUESTS MADE TOQ EACH
MEMORY MODULE AND PLACE IN NTR (MODULE INDEX). SUM THE
TOTAL PRIORITIES OF ALL JOBS MAKING ACCESS REQUESTS TO
EACH MEMORY MODULE AND PLACE IN NTP (MODULE INDEX).

Fig.B-13 PEX subroutine {(sheet 2 of 4)

255

UPDATE‘TﬁE{CURRENT ESTIMATE OF THE AVAILABLE BANDWIDTH
OF THE FREE SPACE IN EACH MEMORY MODULE AND PLACE
THE CURRENT ESTIMATE IN NAA(MODULE INDEX).

;x;_

DISTRIBUTE THE AVAILABLE MFMORY ACCESSES FROM EACH
MEMORY MODULE TO EACH ACTIVE JOB RESIDING IN FACH
MODULE ACCORDING TO EACH JOB'S PRIORITY RELATIVE
TO THAT OF ALL OTHER ACTIVE JOBS RESIDING IN EACH
MODULE AND ACCORDING TO THE NO. OF REQUESTS MADE
BY EACH ACTIVE JOB TO EACH MODULE.

*

IF THE TOTAL NO. OF ACCESS REQUESTS TO A MODULE IS
LESS THAN OR EQUAL TO THE NO. OF ACCESSES AVAILABLE
FROM THAT MODULE THEN GRANT EACH JOB AS MANY
ACCESSES AS IT REQUESTS FROM THAT MODULE.

!

IF THE TOTAL NO. OF -ACCESS REQUESTS TO A MODULE
EXCEEDS THE NGO. AVATILABLE THEN FOR THOSE JOBS
REQUESTING LES3 THAN OR EQUAL TO WHAT THEIR
RELATIVE PRICRITY DICTATES GRANT THE NO. REQUESTED
AND SUM THE DIFFERENCE BETWEEN WHAT THEIR
PRIORITY DICTATES AND THEIR ACTUAL REQUEST NO. AND
PLACE IN NUCA (MODULE INDEX)

.

FOR THOSE JOBS REQUESTING MORE THAN THEIR RELATIVE
PRIORITY DICTATES GRANT ACCESSES ACCORDING TO RELATIVE
PRICRITY PLUS A SHARE OF NUCA (MODULE INDEX)

ACCORDING TO RELATIVE PRIORITY OF ALL JOBS IN

EACH MODULE REQUESTING MORE THAN THEIR

RELATIVE PRIORITY DICTATES.

Fig. B-13 PEX subroutine (sheet 3 of 4)

256

UPDATE THE COMPLETION COUNTERS FOR ALL ACTIVE JOBS.

.

IF AN ACTIVE JOB'S LOAD STAIUSTBIT.IS'NOT SET THEN .
CHECK THAT ACTIVE JOB FOR COMPLETION.

*

IF A JOB HAS COMPLETED THEN UPDATE ISTAT WITH THE RUN
STATISTICS OF THE COMPLETED JOB. CALL HLS FOR
PROCESSING THE COMPLETED JOB, CHECK THE COMPLETED
JOB'S PREEMPT STATUS BIT. IF THE COMPLETED

JOB'S PREEMPT BIT IS NOT SET TO i THEN CALL LLS

FOR REASSIGNMENT OF THE COMPLETED JOB'S

PROCESSOR(S).

FOR THOSE ACTIVE JOBS THAT DID NOT COMPLETE AT
THIS SIMULATION STEP CHECK FOR I/0 INTERRUPT:
IF A JOB'S COMPLETION COUNT HAS EXCEEDED IT'S
CURRENT NEXT INTERRUPT POINT THEN CALL LLS
FOR EITHER 1/0 INTERRUPT INITIATION OR 1/0
INTERRUPT COMPLETION AS THE CASE MAY BE.

.

UPDATE THE SHORT TERM AND LONG TERM CUMULATIVE
SYSTEM RESOURCE UTILIZATIONS.

.

RETURN

Fig. B-13 PEX subroutine (sheet 4 of 4)

257

(' wMAL(KEY, JOB, NSPACE) START)

¥

NO
(18 NFB(1) > 0% }

ES
< IS KEY > 07 >

SEARCH THE ICEC CHAIN FOR A JOB (JOB) THAT IS WAITING
FOR MEMORY

) ¥ YO
| WAS THE SEARCH SUCCESSFUL? :>——-———jb
' v

I=1, L{*¥)=0, ITKOF(*,%)}=0, MMS=AMOUNT OF SPACE RQD.

CALCULATE KNOQ FROM NG. OF FREE MFMORY BLOCKS (NFB{1)).
L

SCAN THE MAVL LIST PLACING BEST FITTING BLOCK FOUND
UP THRU BLOCK KNO INTO IBST1 PROVIDED IT HAS NOT
ALRFEADY BEEN SELECTED AND DOES NOT VIOLATE THE
OVERLAPPING MODULE RULE.

SELECT THE FIRST BLOCK APTER KNO THAT IS A BETTER
FIT THAN ANY BLOCK FOUND SO FAR PROVIDED IT

HAS NOT ALREADY BEEN SELECTED AND DOES NOT
VIOLATE THE OVERLAPPING MODULE RULE. IF SUCH

A BLOCK AFTER KNG IS NOT FOUND THEN

SELECT THE BLOCK .IN IBST1 PROVEDED TEERE 1S

ONE IN IBST1. ' '

(:::> < WAS A BLOCK SELECTED? ::>__;(:::)
B _]NO
N0

!£—4<1 1S KEY = 07 :>>f;¥’

-——<:;718 NFB(1) > 0? Ai:>"' IF REQUIRED WRITE OUT THE

NO {MAVL AND MALC CHAINS.

Y

RETURN

Fig. B~14 NFMAL subroutine (sheet 1 of 2)

58

PLACE THE INDEX OF THE SELECTED BLOCK INTO L(I}.

- YES
i IS JOB TMR? >‘——T—
I=1+1
YES __»

IS I > 37)1

CREATE ANY REQUIRED NEW BLOCKS FROM THE INFORMATION
IN ITKOF AND THEN MAKE AN ALLOCATION FROM THE
|END OF THE BLOCK WHOSE INDEX IS IN L TO JOB.
MERGE THE NEW BLOCKS INTO THE MAVL AND
MALC CHAINS.
v

.E | UppATE WFB(1) |

CAN ANOTHER ALLOCATION BE MADE FROM PRESENT
LOCK PROVIDED APPROPRIATE ADJUSTMENT OF ITKOF IS
E TQO AVOID VIQLATING OVERLAPPING MODULE RULHE?
YES

PLACE INDEX OF PRESENT
BLOCK INTO L(I)

1

UPDATE NFB(I)

Fig. B-14 UNFMAL subroutine (sheet 2 of 2)

259

(MAPREF START

-

LOAD THE INDEXES FROM ICEC OF ALL JOBS THAT ARE WAITING
FOR MEMORY INTOQ CONSECUTIVE LOCATIONS OF NAML.

[UPDATE NJWM WITH THE NO. OF JOB3 WAITING MEMORY.

v

CONSECUTIVE LOCATIONS OF NBLK,

LOAD ALL AVATLABLE MEMORY BLOCK INDEXES INTO

v

UPDATE NEPF WITH THE NO. OF FREE MEMORY BIOQCKS.

ZERO ISAVE, ITKOF AND KPTMR.

!

| START AT THE EEAD OF THE NAML LIST.

J

5

,<:7 HAS 'THE END OF THE NAML LIST BEEN REACHED?

YES

v

GET THE NEXT JOB FROM THE NAML LIST.

{ CET THE MEMORY SPACE REQUIREMENT (MMS) FOR JOB. |

'] 1 =*h
&) =

]1 @

[I=1+1
—%

BEEN EXHAUSTED FOR PRESENT JOB ON THIS PASS?

<<:;HAS THE LIST OF AVAILABLE BLOCK INDEXES IN NBLK YES

v

v _

GET . THE NEXT BLOCK FROM NBLK. I I » 1%

WILL THE PRESENT JOB FIT INTO THE
PRESENT BLOCK?

YES

Fig. B-15 MAPREF subroutine (sheet 1 of 5)

260

' v
< WHAT IS THE VALUE OF I?
& EE

CAN THE PRESBENT BLOCK BE USED WITHOUT VIQLATING
THE OVERLAPPING MODULE RULE WITH PREVIOUS
SELECTIONS FOR THE PRESENT TMR JOB BY APPROPRIATE
ADJUSTMENT QF ITKQF?

YES %

CALCULATE THE PREFERENCE FACTOR FOR THE PRESENT JCB
AND PRESENT BLOCCK.

15 THE PREFERENCE FACTOR JUST CALCULATED
GREATER THAN THAT FCR ANY PREVIOUS JOB AND

[}

BLOCK WITH FRESENT VALUE O¥ I7%

v YES

UPDATE ISAVE (I,*%) WITH PRESENT JOB'S INDEX FROM THE
J-TABLE, PRESENT BLOCK'S INDEX FROM MABL, AND

W‘_ PREFERENCE FACTQR. UPDATE KPTMR (I,*) WITH JOB'S INDEX
IN NAML AND BLOCK'S INDEX IN NBLK.

<::‘WAS ANY BLOLK ASSOCIATED WITH ANY JOB ON THE LAST

PASS WITH THE PRESENT VALUE OF I?
¢ YES

IS THE PRESNET JOB TMR? > @
¥ 10
50”18 ALL OF BLOCK WHOSE MAVL INDEX IS IN TSAVE (I,2)
TO BE ALLOCATED? .

v
REMOVE THIS BLOCK FROM NBLK AND MOVE THE BLOCK AT THE

END OF NBLK TC THE VACATED SLOT IF NECESSARY?

'

NBFF = NBFF - 1

Fig. B-15 NAPREF subroutine (sheet 2 of 5)

261

MOVE THE JOB WHOSE J-TABLE INDEX IS IN ISAVE {(1,1) FROM
NAML AND FILL THE RESULTING VACANCY WITH THE ENTRY AT
THE END OF THE NAML LIST IF NECESSARY.

.

NJWM = NJWM - 1.

!

CALL MASGN FOR MAKING AN ALLOCATION OF MEMORY
TO THE JOB IN ISAVE {1,1) FROM THE BLOCK IN ISAVE (1,2).

!

UPDATE JOB'S PREFERENCE FACTOR IN J-TABLE WITH ISAVE(1,3)|

J; KO

<‘ IS I*-—- 17 >

REMOVE THE PRESENT JOB FROM THE NAML LIST AND MOVE THE
ENTRY AT THE END OF THE NAML LIST TO THE VACANCY SLOT

IF NECESSARY.

REPLACE ANY BLOCKS THAT MAY HAVE BEEN TEMPORARILY
REMOVED FROM NBLK WHOSE INDEXES ARE IN KpTMR(*, 2).

*

IF REQUIRED WRITE OUT THE MAVL AND MALC CHAINS.

v

RETURN

Fig. B-15 MAPREF subroutine (sheet 3 of 5)

262

' _,
@ < WHAT I8 THE VALUE OF It > -

<3

CAN A SECOND ALLOCATION BE MADE FROM THE PRESENT
BLOCK WITHOUT VIOLATING THE OVERLAPPING MODULE
RULE BY A SUITABLE ADJUSTMENT OF ITKOF?

YES
I=1+1 |

& =3
< WHAT IS THE VALUE OF I? >——

<3

CAN A THIRD ALLOCATION BE MADE FROM THE
PRESENT BLOCK WITHOUT VIOLATING THE OVERLAPPING
MODULE RULE BY A SUITABLE AJUSTMENT OF

ITKOF?

NO

TEMPORARILY REMOVE ANY PREVIOQUSLY SELECTED BLOCKS
FOB THE PRESENT JOB FROM NBLK?

v

REPLACE ANY BLOCKS WHOSE INDEXES ARE IN KPTIMR THAT
MAY HAVE BEEN REMOVED FRCM NBLK.

320 g[

[I=1I+1]

C 151}3 >NO—0@

REMOVE JOB FROM NAML AND FILL VACANCY WITH THE
ENTRY AT THE END OF THE NAML LIST IF NECESSARY

"
NJWM = NJWM - 1

Fig. B-15 MAPREF subroutine (sheet 4 of 5)

263

(::E:) <:;TKOF(I 1) 1?2 7

FIRD AN EMPTY IN MAVL

CREATE A NEW AVAILALLE BLOCK FROM TA1L OF

MAVL{ISAVE(I,2)) AND INFORMATION IN ITKOF(I #
PLACE NEW BLOCK INDEX IN NBEPF AT END OF LIST,

).

+

| mBPF = NBPF + 1]

IS ALL OF BLOCK IN MAVL(ISAVE(I,2)} TO BE

ALLOCATED TO PRESENT JORB?

N

l, YES

REMOVE BLOCK WHOSE NBLK INDEX IS IN KPMVR

BLOCK AT END QOF NBLK LIST IF NECESSARY

(1,2) FROM NBLK LIST AWD FILL VACANCY WITH

NBFF = NBPF - 1

%

NO_/ -
{ 1I1=12 j>

L YES

WITH ISAVE(1l, 3)

UPDATE MEMORY PREFERENCE OF JOB IN J-TABLE

CALL MASGN TO ALLOCATE MEMORY FROM BLOCK

IN MAVL{ISAVE(I, 2)) TO JOB IN ISAVE(I , 1),

Fig. B-15 MAPREF subroutine (sheet 5 of 5)

264

MEMRLS (JOB, JBLK) START)

C

UPDATE NA, MAS AND IBWCTR ENTRIES CORRESPONDING
TO THOSE MEMORY MODULES WHICH ARE SPANNED BY JBLX.

v

Ml =

0, M = MAVLS,

NO

IS M > 07

D

Y

<

IS MAVL(M, 3) > MALC(JBLK, 3)?

H0_

S

IS MAVLS > 07
~ | YES

4 1S MALC(JBLK,3) + MALC(JBLK,5) = MAVL (M, 3)7 >

&YES

_
| zease=o |[_zease -1 L mi-n
I T
| NENT = M 1 ™ = mavL(v,1)
'i L
E< IS M > 07 >Y£i
— IS ML > 07 > YEI—S:< IS MAVL(,2) > 07)
YES |

v

4< IS MAVL(M1,3) + MAVL(M1,5)

= MALC(JBLK,3)?

D

‘ YES

= M1 |

{ ICASE = ICASE + 2, NENT
: NO
;_< I§ ICASE = 3?)1
MAVL(M1,1) = MAVL(M,1) IS ICASE = 27
MAVL (M1,4) = MALC(JBLK,1)
MAVL (M1,5) = MAVL(M1,5)
+ MALC(JBLK,5) + MAVL({M,5)

)

Fig. B-16 MEMRLS subroutine {sheet 1 of 4}

265

¢

-&< MAVL(M,1) > O 7 >

MAVL{MAVL(M,1),2) = ML.

F‘Ll

MAVL(M,*) = 0.
NFB(1) = NFB(1) - 1.

175

v
MAVL(M1,4) = MALC(JBLK,1).
MAVL(M1,5) = MAVL(ML,5) + MALC(JBLK,5).
._Yes ‘1

Is MALC{JBLK,2) > 0% >

61\10

| MALCS = MALC(JBLK,1).
[

K)

MALC{MALC(JBIK,2),1) = MALC(JBLK,1).

&

< Is MALC(JELK,1) > 07 .

iYes

MALC(MALC(JBLK,1),2) = MALC(JBLK,2).

-

—

L
N
< Is ICASE = 1 ? ° @
_ v :

MAVL(M,3) = MALC(JBIX,3).
MAVL(M,5) = MAVL{M,5) + MALC(JBLK,5)

-

No v
_ < Is MAVL{M,2) > 07 >
- _ i Yes
R Is MAVL(MAVL(M,2),}4) = JBIK ? >
v

MAVL{MAVL(M,2) ,4) = MALC(JBLK,1).
}

Fig. B-16 MEMRLS Subroutine (sheet 2 of L)

266

-
FIND AN E_MPTY‘(IO) IN MAVL,

NENT = 1Q

v
I8 MALCWBIK, 1) > 07 D-ie—m
iy

 MALC(MALC{JBLK, 1), 2) = MALC(JBLK, 2)

———< ISMALC(JBLK, 2) >0 >
$
[MALCS = MALC(JBIK, 1)]
T

L

MALC(MALC (JBLK, 2), 1) = MALC(JBLK, 1)

4

NO ' YES
‘I——<<:A_ IS M1 > 0 t>*”i1'

MAVL(IQ, 2) = -1. MAVL(M1, 1) = IQ.
MAVLS = IQ "' MAVL(IQ, 2) = M1.
NO
——< IS M > 07 >
k&
[' MAVL(M, 2) = IQ
- MAVL(IQ, 1) = M, MAVL(IQ, 3) = MALC(JBLK, 3),

]

MAVL(IQ, 4) = MALC(JBLK, 1), MAVL(IQ, 5) = MALC(JBLK,5]

K = MALC (JBLK, 2).

¢ 1S K > 07 =
< «
= 2
IS MALC(X, &) M7 NO

MALC(K, 4) = 10, K = MALC(X, 2).

Fig, B-16 MFMRLS subroutine (sheet 3 of 4)

267

MAVL(1,1)

= -1, MAVL(1,2) = -1 .
MAVL(1,3) = MALC(JBLK,3), MAVL{1,4) = MALC(JBLK,1),
MAVL(1,5) = MALC(JBLK,5), MAVLS = 1,

NENT = 1, I2 = MALC(JBLK,2).

%

' NO
<<1 15 I2 > 07 4;:>>“'*‘-“-"“*"
.

MALC(I2,k) = 1, I2 = MALC(I2,2).
1

v

I2 = MALC(JBLK,2).

v

YES NO
i"~<: IS I2 > 0% ;>>*—l

lMALC(IE,l) = MALC{JBLK,1). | |[MALCS = MALC(JBLK, 1).
I2 = MALC(JBLK,1).

<:: s Iz > 0%
;i_YES

MALC{TI2,2) = MALC{JBIK,2).

ﬁs/ } by

[' NFB(1) = NFB(1) + 1.

!

NAB = NAB - 1, MALC(JBLK, *)

v
l RETURN.

Fig. B-16 MEMRLS subroutine (sheet 4 of 4)

L
e}

268

(MASGN(XEY, INDXJ, INDXB, ISPACE) START

)

K]

JOB =

INDEX IN J~TABLE FOR WHICH MEMORY IS TO BE ASSIGNED.

IBLKN = INDEX OF AVAILABLE BLOCK IN MAVL FROM WHICH
ASSIGNMENT IS TO BE MADE.

MMS = AMOUNT OF SPACE TO BE ASSIGNED.

-

FIND AN EMPTY (KEMPT} IN MALC.

v

[KOCC1 = 0, KOGC = MALCS. B
;f
IS KOCC > 07 >
¢ YES -
D

A

IS MALC(ROCC, 3) > MAVL(IBLKN, 3)?

g MO

KOCC = MALC(Kocc, 1), KoOCCl =

KOCC.

v

I5 Koccl > 07

-

»

> < s koccl > 02
, YES

YES
MALC(KOCCL, 1) = KEMPT. MALC (KEMPT, 2) = -1.
MALC(KEMPT, 2) = KOCCI. MALCS = KEMPT.
¥ &
MALCS = KEMPT MALC (REMPT, 2) = KOCCL,
MALC(KEMPT, 2) = -1 MALC(KOCCL, 1) = KEMPT
1.
¥
[maccerer, 1) = -1 | MALC(KEMPT, 1) = KOCC
N . l MALG(KOCC, 2) .= KEMPT
YES

IS ALL OF BLOCK

IBLKN TO BE ALLOCATED?

>

v

()

MALC (KEMPT, 3)
MAVL (IBLKN, 5)
MALC (KEMPT, &)
MALC (KEMPT, 5)
NAB = NAB + 1.

[/

n

MAVL (IBLKN, 3)+MAVL (IBLKN, 5)-MMS.

MAVL (IBLKN, 5)-MMS.
MAVL (IBLKN, 1).
MMS, MAVL(IBLKN, 4) = KEMPT

Fig. B-17 MASGN subroutine (sheet 1 of 2)

269

— ! | | e
< 1S MAVL(IBLKN,2) > 07 >_
o *NO .

MAVLS = MAVL(IBLKN,1).
]

v

MAVL (MAVL(IBLKN,?2),1) = MAVL(IBLKN,1). J

- NO 4‘
—-—‘—‘< 1S MAVL(IBLKN,I)‘> 07 >
' YES

MAVL (MAVL (IBLKN,1),2) = MAVL(IBLEN,2).

%

MALC(KEMPT,3) = MAVL(IBLKN,3),
MALC(KEMPT,4) = MAVL(IBLKN,1),
MALC(KEMPT,5) = MAVL(IBLKN,5), KO = KOCCL.

" ‘
o d IS X0 > 07 >N—O——

< IS MALC(KO,4) = IBLKN?)——’
' v
MALC(KO,4) + MAVL(IBLKN,1), KO = MALC(KO,2).
]

&.
'NFB(1) = NFB(1) - 1

MAVL(IBLKN,*) = 0

B

' UPDATE THE ARRAY ENTRIES OF NA, MAS, AND IBWCTR
WHOSE CORRESPONDING INDEXES WERE SPANNED BY
THE BLOCK JUST ASSTGNED.

.

PLACE THE INDEX KEMPT IN THE FIRST EMPTY MEMORY °
~ BLOCK ENTRY OF JOB IN THE J-TABLE OR OVERFLOW AREA.

E

RETTRN

Fig. B-17 MASGN subroutine (sheet 2 of 2)

270

C OVFLMG(KEY ,JOB, IFL.D,IVAL,NNT} START .)

PLACE REMOVE
WHAT IS TO BE DONE?

;BETRIEVE
@ _ | nskzp = IiVAL(l). 1 @

[1van(1)=o0, k=0, JADD= J(2h,J0B).]
< Is JADD > 0 7 >0
¥ YES
! NPNTB = 0, IPNT = 1.
[IFHD = JOYFL(JADD,IPNT).]
.
LFLD = IFHD 15-11.
-
< IS LFLD = IFLD? ~NIES
N0 e
NPNTB = IPNT, IPNT = IFHD 10-6.
9
.~ IS IPNT > 0 7 >
)
— JADD = JOVFL{JADD, 32). j

1.]

-

NENTRY = IFHD 5-1, I=0.
I+
K

e
¢ IS I > NENTRY 7 ki
NO —» YES
IS NSKIP < 0 7
| NSKIP = NSKIP-1. 1l K = K+1 N

NO
< IS K > WNT? >

;L— YES

IVAL{K) = JOVFL{JADD,IPNT + I).

S

RETURH

Fig. B~18 OvFLMG subroutine (sheet 1 of 5)

271

LASTB = 0,

JADD = J(24,J0B).

J

!

< IS _JADD > 07

00

$YES
[1pyT = 1.
= J0
LFLD = IFHDyc_y7, NPNTF = IFHD) (.6, NENTRY = IFHDs_
YES v
< IS LFLD = IFLD ? >
NO K1 YE
\ I—Qs NPNTF > 0 7 }—%
| wewTr = 32 | |wewre = 1PNT, I1PNT = NPNTH.
YES 1
< IS IPNT + NENTRY < 25 ?)_—l
Py 10
[LASTB=JADD, TADD=JOVFL(JADD,32)) | mPNTB = IpmT l
| o *
| IPNT = IPNT+NENTEY+3, JOVFL(JADD,NPNTB),q ¢ = IPNT. |
» [JOVFLUTATD, [PNT) = IFLOY51Z.]
’—< IS NPNTF > 0 ? >
| ; (=0 |
“<IS IPNT+NENTRY+1 < KPNTF :
A, J v _ '
IS IPNT + NENTRY < 31 ¢ [1=I+1. |
[NENTF = 32 |
YES .
K= (IS TIPNT + T > NPNTF ¢ P
IS NPNTF = 32 7 > v
; | JOVFL(JADD,IPNT+I) = IVAL{X). |
YES .
[JUVFL(JADD,IPNT) = JOVFL(JADD,IPNT)+1, K = K+1. _;]
YES v
RETURN le——=< 15 K > NNT ?

Fig. B-18 OVFLMG subroutine {sheet 2 of 5)

272

@ [Jamp =’o:—]

JADD = JADD + 1 |

YES »
IS TADD > 32 . WRITE MESSAGE 'NO MORE
w NO ROOM IN OVERFLOW AREA'
IS JOVFL(JADD,1) = O> .
§ YES -
L musms=07 > _w
YES JOVFL{LASTB, 32) = JADD.
I . m—
J(24,J0B) = JADD, J(22,J0B)yprp = IFLD RETURN
IPNT = 1, NPNTF = 32.
| LASTB = 0]
»
JADD = J(24,J0B) , K =1, ISKIP = IVAL{1l).
YES L A
. IS JADD > QO 72
NO
[PNTB = 0, IPNT = 1.] WRITE MESSAGE 'CAN'T /
ﬂl FIND'.
IFHD = JOVFL(JADD,IPNT). | BETURN. |
-
LFLD = IFHD15.11 @ @
IS LFLD = IFLD 2 TES

NO_ W

KFNTB = IPNT, IFNT = IFHDjg-6

W 7 > :N:O

LASTB = JADD, JADD = JOVFL(JADD,32).
[

Fig. B-18 QVFLMG subroutine (sheet 3 of 5)

273

v

NENTRY = IFHD5-_]

' v
—< IS ISKIP < 0 ? >
- 5 10 ()"

._< IS SKIP > NENTRY ? J\.

FERLE .
ISKIP = ISKIP - NENTRY
K

0, L=1.) | 1=nmwtRY - 1s¢1P |

IBKIP = Q.

1,'1 I
[wnl
1l
X
-
e

T+ |
L)

lﬁ’(zs T > NENTRY ? >‘£ib:——

JOVFL(JADD,IFNT + I) = O. { 1s1L=17¢ >

i

\) : ¥ 7ES
[K=K+ 1] ITEMP = IPNT.
JOVFL(JADD,IPNT) = JOVFL({JADD,IPNT) - 1.

v

NO/ -
< IS K » NNT ¢ >

NO

»
< 18 T < NENTRY N

s

%

I=I+1

IS T > NENTRY *?

]

JOVFL(JADD,IPNT + I).

JOVFL(JADD,IPNT + L)}

i

JOVFL(JADD,IPNT + T)

]
O
-
|

]
=

+
o]

Fig. B-18 OVFLMG subroutine (sheet 4 of 5)

274

- v

NPNTF = IFHD 10__,6

EB

IS NPNTF > Q7

s NPN'TB > 07 > [IDIFF = NPNTF - IPNT. |
2

.
JOVFL(JADD,NPNTB)5_; = O.| | | IFHD = JOVFL(JADD,NPNTF).
ITEMP = JADD. | | NENTRY = IFHDc_.
NO v YES L
< IS LASTB > 07 }‘;
JOVFL(LASTB,32) = JOVFL(JADD,32). K _> NNT?
|
» - vEs RETURN
< 1S JOVFL(JADD,32) »02 > 1
h 4
| J(24,308) = 0. [3(24,308) = JOVFL(JADD,32). |
' -
[J(22,J08) = 9-* | ["JADD = JOVFL(JADD, 32) |
| JovrL(gamp,1eNT) = 0. | [JovrL(zTEMP,32) = 0. |
L 7 ‘
| RETURN] | JovrL(iTEMP, TPNT) = 0. —
L v
| JOVFL(JADD,IPNT) = JOVFL(JADD,NPNTF). |

v
L _1-=o0. i f -1+, |

No—< 18 1 > NENTRY HE
PNTF +
¥
Ni{ IS NPNTF > 07 >_L NPNTF = IFHDig.g

= ?

1ony = rme | [S > JOVFL (JADD, TPNT) =
YES JOVFL (JADD, IPNT)

L RreTURN] ~IDIFF*32

IPNT = NPNTF-IDIFF

Fig.B~-18 OVFLMG subroutine (sheet 5 of 5)

APPENDIX C

PRIOGRAM LISTINGS

Tk WARNING #%xx%

IM THE FOLLOWING PROGRAM LISTINGS THE NORMAL FORTRAN
SEVENTY-TW(SPACE LINE HAS BEEN REPLACEDL BY A SIXTY SPACE
LINE WHICH [S SUITABLE ¥0OrR AN EIGHT AND ONt-HALF INCH
WIDE PAGE WITH A ONE AND ONE—#HALF INCH LEFT HAND MARGIN
AND A ONE- INCH RTSGHT HAND MARGINS. VHEREFQORE IN THESE
LISTIMGS THE FIRST CARD GF A FORTRAN STATEMENT BEGINS 1IN
CALUMN SIXTEEN, PROCEEDS THRTDUGH COLUMN SEVENTY-FIVE AND
CCONTINFS UN COLUMN TWENTY-TWO OF THE FOLLOWING LINE AND
FNDS o COULUMN THIRTY-THREE OF THE FOUOLLUWING LINE PROVIDED
THE QRIGINAL CARD HAD ANY NINBLANK CHARACTERS [N COLUMNS
CSIXTY-0ONE THROUGH SEVENTY-Tw3I OR THE FOLLOWING CARD wWAS A
CONTINVJATION NF THIS STATEMENT. UTHERWISE 1T ENDS [N THE
FIRST LIME NF THE STATEMENT IN THIS LISTINGs THE SECUND
AND SJUARSEQUENT CAFDS 0OF A STATEMENT BEGINS IN THE FIRST
COLUMY AFTER THE END GF THE PRECEEDING CARD IN THESE
LISTINGS. THE CONTINUATIUN SYMBOLS OF THE ORIGINAL CARD
STATEMENTS HBAVE BEEN PEMOVEY ANO SUITABLE CONTINUATIUN
SYMAROLS HAVE BEEN PLACED AS APPROPRIATE IN COLUMN TWENTY-
ANE OF THESE LISTINGS

275

276

BLOCK DATA
CCMMON/BLK1/TASK.IDSH,LIND(33),LINA{33)},1IBLK,IDLR,IEQL
CoILST

CCMMON/BLKL1/INAME, IDATA,MJUDT,IBST+IEXIT,IFLD
CCVMON/BLK LS /KNAME (46)

CCMMON/BLK18/RUTLILS)

CATA RUTL/15%C.0/

CATA ITASK,IDSH,LIND,LINA/*#RR%Y jVmeuat 33k cu~at 33500
Rkt f

OATA IBLK,IOLR,IEQL,1DST/? a8 Yel= YL 0ISTYY
CATA INAME,[DATA MJDT IBST/'NAME", *DATA®, *MJIDT*,*BST ?
c/s

GATA IEXIT,IFLO/PEXITY,"%FLD"/

DATA KNAME/'CESZ*y*CON *»"N1 *,'FECZ','PCT *,'P1 =,
¢ TP2 ','Ql ',%02 Y403 Y,R 4,'S v,
COTA ¥y MNBKS, TMMCT® o SMMST®, *MTTLY INE ', *'N
CICS?, "NMOD®, *NPCL®y *NPCS', *NCPU'y "IFBK',*IRNL®, ' IRN
C2' o "IRNZ', *IRNG ', P [RNS* , *IRNG " s *IRNT*, *IRNEY, 'IRNG!
Co'MSPFT, IMAPF? . 'RPILY, TRPO2Y, 'RPO3 T, "RPO4" , 'RPO5 ', 'RPO
C6%y "RPIT',*RPJBY, 'RPIGY 4 'RPLO' 4 1RP1L"/

r . .

END

CCMMON/BLKL/TASK,IDSHsLIND(33),LINA(33)},IBLK,IDLR,IEGL
Co10ST

CCMMON/BLK1/ INAME, IDATA,MJDT,I1BST, IEXIT,IFLD

COCMMON/BLK2/IWRD(1ISD) ,FLD(5D)

CCMMON /BLK3/ [DIST(25),F(25,41),NDIST

CCMMON/BLK4/NAME(7548) yDATA(T75,9),NJOBsNJOBER

CIMENSION NEXC(64)

INTEGER®2 NEXC,.NJOB,NJOBER

CGMMON/BLKS/ ScT

CC¥MON/BLKT/ JMi2T4064)

INTEGER%2 JM

COvMON/BLKE/ TIME

COMMON/BLKLLI/Z RTYIME

CUMMUN/BLK1Z2/PARM{35)

CCMMON/BLKLI3/RPAR({LL]

COMMUN/BLKL14/IFLAGI4T) ITAGI46)

COMMON/BLKL1S/KNAME{ 46)

COMMON/BLKL6/IBWCTR(24) ,ICEC(5,63) s [CECS, ICPUILS), IPAS
CS120), IFECS, IFEC(40,4), IPROS(16}, ISAVE(3,3), VAL
CUVILL) yMALC(256,45), MALCS ¢ MAS(24),MAVL(128,5),MAVL
LS MODNMI 243 yMTPL(24) 4NA(24) , NAAL24) yNAByNAG 4 NA
CMLL4T) o NBLK(128)4NFBL2) ,NJWM,NSCHED, NREG (4
Cled@) qWNTPL24) NTR(Z24),NUCA{Z4)

24

~3

277

C

INTEGER*2 IBWCTRyICEC,ICECSyICPUIPASS,1FECS, IFEC, IPRO
CSy ISAVE, IVALOV,MALCsMALCSyMAS, MAVL , MAVLS ,MOD
CNMsMTPLoNA,NAA,NAB, NAGyNAML 4 NBLKyNFBs NJWM NSCHED,
CNREQsNTPyNTR,NUCA

COVMMON/BLKLT/ ISTCNT,ISTAT(6,409),1UTL(6,290)

INTEGER*2 ISTAT,IUTL

COMMON/BLK18/ AN,CUU,PUU,BWU,SPU3BCUU,BPUU,BBWU,BSPU,A
CCUu,APUU, ABWUsASPU,BQSIZ,AQSIZ

C

CIMENSION 1OPT(4)

INTEGER*2 SET,TIME,HFIX,IFLAG,ITAG

INTEGER PARM,GAUS/'GAUS?/

CIMENSION NSST(7,100)

INTEGER%2 NSST

DIVENSION SMEAN(T)

CATA TENTR,IDLET,ISTOP,IXEQ/'ENTR® 4 'DLET*,*STOPY, ¥XEQ
cY/

DATA ISIMN,IERAS,IPRT/*SIMNY,?ERAS®,*PRNT?/

CATA TOPT/*STIM',*FTIM! ,"DELT® ,9PDEL "/ 4LETL/'L Y/ 1S
CTR/'% '/ ' '

CATA TERRy INIT,ISYS/"%ERR®,*INIT*,95YS ¢/

INTEGER NCONT/Q/

CC 24 I=1,46

[FLAG(I)=0

[FLAG(4T)=~1

STRYIM=0.0

FINTIM=10Q.0

DELTA=0.31

PRTCEL=0.5

TIME=HFI[X({STRTIM)

RTIME=STRTIM

NSSTC=9

CALL ICARD

SET=3

IF{IWRD(1).NELIDLKY GO TO 3

[FIIWRD{2).EQ.IENTR} GC TO 4
[FCCIWRDI2)CEQ.INIT) . ANDW(IWRDI3).EQ.ISYS)) CALL SETUP
IF{SET.EQ.4) GO TQ 100C

TFCETWRD(2) . EQ. TERAS) JAND. (IWRD(3) EQ.MJDT)) CALL CLEA
LR :

IF(SET.EQ.4) GO TQ 100
IFLCINRO(2)EQWIXEQ)JAND(IWRD(3).EQ.ISIMN)) GO TO S
IF{(IWRDI2)cEQ.IPRT) JANE. (IWRD(3).EQ.MJDT)) CALL PRNT
TF({SET.EQ.4) GO TO 100

IF({WRD(2).EQ.ISTGP) GO TO 99

273

P D =t

11

278

GO TO (1s2+39100),5ET

WRITE{6,201) I1ASK,1ASK,IDSH

ECRMAT(/774" "4A4, "ERROR'yA4, *IMPROPERLY FORMATED ,UNDEF
CINEDsOR MISSING COMMANC OR DATA CARD?Y A4, 'SIMULATION T
CERMINATED®)

GC 70 10¢

IF{IWRD(3}.EQ.IDST) CALL STAT

IF(IWRD(3),L,EQ.IBSY) CALL BULK

IF(IWRD{3}.CQ.MIDTY CALL ENTER

GC TO (192934120 ,SET

1IFLIFLAGIAT) NE.1) GO TC 98

IF{IWRDI4)Y . EQ.D) GO TO 21

IFC{IWRO{4)Y NELLETL).ORLIIWRDI(S5).NELISTR)LORLEIWRDI(G).
CNELIFLD)Y) GO TD 24
C

IF{IWRD{TY NE.L1Y GO 7O 29

IF{FLD(1).LT.1.0) GO TC 20

IF{FLD{1).LE.4.0) GO TO &

FLCT1)=4.0

WRITE(H,2053) TASK,TASK,IDSH

FORMAT(//+* "+A4L, "WARNING® A4, ONLY 4 LOCAL OPTIDAS A
CVAILABLE AT EXECUTION®,A4,'LOCAL OPTICN SPEC. ASSUMEL
CYC BE L#*47%)

NGPT=IFEIXI{FLDI1)}

CC 19 I=1,NOPT

CaLrL ICARD

CC 7 J=1,4

IF{IWRD(L1)ER.IGPT{J)) GO TA 9

IF{IWRDI1}.EQ.ICLR) GG TO 97

CCNTINUE

WRITE(64204) TASK,IASK,.IDSH

FORMATI(//s% Y384, "WARNING® A4, INVALID OPTION CARC',A
Cay "PASSED?Y)

GG 70 19

IF{I(IWRDI2) A NELTEQL) WORL{IWRDI3).NELIFLD)LORL(IWRG(4).
LnEL.10) GO TO 8
i

GO TO(YID1241541704+d

IFIFLDI(1).GE.CW.o) GO TC 11

WRITE(E,205) TASKyIASK,IOPT{J),IDSH

FORMAT(//4Y ' AG,*WARNINGY A4+ TLLEGAL VALUE SPECIFIE
CD FOR Y,2A4, '"DEFAULT CPTION USEDH)
|9

GC TG 19

STRTIM=FLDI(1)

SC TC 19

12

13
14

2Q6

16

17

19

2G
207

212

25
213

26
214

279

IF{(FLD(1).GT.C.0) GO TO 13

WRITE(64205) [ASK,IASK,IGPT(J),IDSH

GC TO 14

FINTIM=FLDI(L1)

[FI(STRTIMLLT.FINTIM) GO TO 19

WRITE(6,206) IASKsIASK,IDSH

FORMAT(//4" *4A4y "WARNING' A4y * STIM HAS BEEN SPECIFIE
CO TO BE GREATER THAN FTIMY,A4,°FTIM SET TO 2*STIM*)

C

FINTIM=zZ2 ,C%STRTIM

G0 ¥0 19

IF(FLUI1).GE.D.CDL) G0 TO 16

WRITE(6,205) JTASKsIASK.IOPT(J)sIDSH

50 TO 19

CELTA=FLO(1)

G0 TO 19

[FIFLDI(1}.GE.2.0) GO TO 18

WRETE(64205) IASKyIASK,IOPT(J}4IDSH

GO TO 19

PRTDEL=FLDI(])

CCNTINUE

GC TO 21

WRITE(64207) TASK,IASK,IDSH

FORMAT(/74" YoAdy *WARNING ' yA4,* INVALID LOCAL DOPTICN S
CPFEC.*yA4,"ALL DEFAULT VALUES IN EFFECT')
C

WRITE(64208) LIND.LIND

FORMAT(* ',33A4)

WRITE(64+4209) TASKyTASKyTASKyIASK,STRTIM,FINTIM,DELTA,P

LRTOEL

FORMAT(//+" "9 A4,' BEGIKNING EXECUTIEN Y4A44/ /4" 'oA4,
L' VALUES OF LOCAL OPTICNS *,A44//4y10Xs*'STIM =t,FB8,3+/,
CLOXe"FTIM =", FB.3,/ 410Xy "DELYT ="', FB8.3,/+19X,*PDEL =Y,
CFB.3,/7)

WRITE(6,212) TASK.IASK

FCRMAT(//4+' "9A4,* VALUES DOF SYSTEM PARAMETERS *,A4)

BC 25 I=1.+35

IF(ITAG(I) .EQ.D) WRITE(S64213) KNAME(L)PARMII}+ISTR

IF(ITAG(IT) .NE.DJ} WRITE{(6,213) KNAMEI(T),PARM(I1)

FCRMAT{10X A4, =7,[104+A4)

OC 26 1=36446

IF(ITAGIT) EQaT) WRITE{O62214)KNAME{T)RPARLI~35),]STR

IF(ITAG(T) JNELOIWRITE(SE,214) KNAME(I)} ,RPAR{I=-35)

FCRMAT(13X Ad4"' =',Fla.4,A4%4)

WRITEL6,208) LINDSLIND

PRTITIM=STRTIM+PRTDEL

i

i
1

1.

1243

Li2
ic

29

280

RTIME=STRTIM

OC 320 KKK=1:25

IF(IOISTI(KKKI.EQ.GAUS) GO TO 301

CONTINUE

ICXGAU=KKK

CALL UNMIX{3+2,PARM(12},IWRT3)

WRITE(6,1100)

FCRMAT(® MAIN WILL NOW CALL HLS FOR INITIAL J-TABLE SC

CAN®)

CALL HLS{1.0)
IF(RTIMELLT.PRTTIM) GO TO 23
CALL PRNT
PRTTIM=PRTTIM+PRTDEL
IPASS(6)=TIME

NSSTC=NSSTC+1
NSSTELNSSTL)=TIME
NSSTL24NSSTYC) =NJIWM
NSST{3,NSSTCI=NFB(1)
NEST(44NSSTCI=IPASS{1Z)
IF{PARM{Z24))} 1015,1205,1010
WRITE{Es111c) TIME

FORMAT{® TIME = ",15,' MAIN TO CEC FOR NEW SCHEDsNFBK?

L)

CALL CEC{24)

NSCHED=0

WRITE(6,1160) TIME

FORMAT(®Y TIME = '4I5,% MAIN TO NFMAL'}

CALL NFMALI(Ll,G,0)

KRITE(H127<) TIME

FCRMAT{® TIME = *,I5:% MAIN TO HLS FOCR PROCESSOR ASN.,

CNFRK?)

CALL HLS(2,3)

5C TO 1029

WRITE(6,1113) TIME

FCRMAT{® TIME = 7,15,' ¥AIN TO MAPREF')

CALL MAPREF

WRITE(6,1120) TIME

FORMAT(® TIME =',15,' MAIN TO CEC FOR NEW SCHEDULE,FBK

Lt

CaLL CEC{2,J)

NSCHEE=Q

WRITE{6,1212) TIME ‘
FURMAT(® TIME = *,[5,* MAIN TO HLS FOR PROCESSOR ASN,,

CFEKY}

LCAaLL HLS{(242)
NSSTU5NSSTL)=NJWM

1030

1Al

l4Lu

lu3d2

1753
1712
1228

C

281

NSST{64NSSTC)=NFB{1)
NSSTUTyNSSTCI=IPASS{10)
IF{IPASS(3).GT.C} GO TC 1033
IFINCNT.GT.O) GO TO 1031
NCNT=NCNT+]1 .
LF(IPASS(1).GT.9) GO TO 1903
GC 10 1932

NCNT=(

WRITE(6+41420)

FCRMAT{' *$x&ERROR*%*#% SCHEDULER HUNG UP, NO ACTIVE JC
CcBS BUTY/ ' JOBS IN ICEC ARE NOT BEING SCHEDULED')
c

CALL FEC(3,0,0,0)
iF(IPASS(81.EQ4=1) GO TO 99
LLOW=(TIME+19)/2C :
LHIGH=IPASS(8)
RTIME=FLOAT(LHIGH)

AN=RTIME

LHIGH=LHIGH/20
[FILLOW.GT,.LHIGH) GO TC 1719
CC 1705 KKK=LLOWsLHIGH
TUTL(L1 KKK) =KKK%29

LG 1705 KK=2,406

TUTL KK KKK+ 1u0)={
[UTL(KK,KKK) =0
WRITE(6,1220) TIME,IPASS(8)

FORMAT(* MAIN WILL NGW ADVANCE CLOCK FROM®*,164* TO', 16

)
TINE=IPASS{B)

CALL FEC(2,3,0,0)

60 TC 1903

FORMAT{/,* MAIN WILL NOW CALL PEX, TIME=',18)
CALL PEX(IDXGAU}

FORMAT{LO{2Xs14))

FCRMAT(16(2Xs04))

FORMAT(® IPASS(1=4),TINE?,5(2X,151)

TIME =TIME+HFIX(DELTA}

RTI¥E=RTIME+DELTA

IF(TIME.GE.Q) GO TO 50

CaLL RESET

IF{RTIMELLE.FINTIM} GO TO 1040

IFUIWRT3,EQ.1) CALL PRNT

WRITE(6,1520)

FGRMAT(1)

WRITE(6,1525)

FORMATL7X, *J0B* 43X, *IN ICEC® 35X "CMPLT*,2X,'MIN PRDS®,

282

1Xs *TARG TIME'+2X,°ACT PRDS*,/)

[l ot

153 FOMAT(6(4X,1€))
LANUK=0
LASUM=]
LASQR=0
LAMAX=D
[RNUM=0
IRSUM=D
IRSGR=0
IR¥AX=0"
LC 375 KK=1,6%
175 NEXC{KK) =0
CC &30 KK=1,ISTCNT
WRITE(6,1530) [ISTATIIX KK)IX=1,6)
NEXCOISTATIL KK)}=NEXCIISTAT(1,KK))+l
ICIFF=ISTAT(3,KK)=-TISTAT(5,KK}
{FIICEFF) 370,400,389
28 LANUM=LANUM+]
LASUM=LASUM+IDIFF
LASQR=LASQR+[DIFF*IDIFF
IF(TUGIFF.GT,LAMAX) LAMAX=IDIFF
GC TQ 499
39: IOIFF=-IDIFF
TANUM=TRNUM+1
IRSUM=TRSUM+IDIFF
IRSQR=IRSQR+IDIFF*IDIFF
IF{IDIFF.GT.IRMAX) IRMAX=IDIFF
470 CONTINUE
IF(LANUM.EQ.C) GG TO 435
MNLA=LASUM/LANUM
LAVAR=(LASQR=-Z*MNLAXLASUM} /LANUM+MNLA*MNL A
WRITE(6,1560) LANUM,LAMAX,MNLA,LAVAR
1567, FCrMAT(* NO. LATE JOBS,MAX LATE,.MEAN LATE,AND VAR. ARE
CPya(3X,16))
4.5 IF{IRNUM.EQ.DO) GO TO 410
MNIR=TRSUM/IRNUM
IRVAR=(IRSQR~2*MN]IR*JRSUM) /IRNUM+MNIR*MNIR
WRITE{6,1570) IRNUM, JRMAX,MNIR, IRVAR
1572 FORMAT(/.' NOLEARLY JOBSsMAX EARLY MEANEVAR.ARE',4(3X,
cléeh)
4514 ITIME=TIME
ARAVLM=FLOAT(ITIME} /FLCATLISTCNT)
WRITE(6451582) [STONT,ARRVLM
158 FORMAT(/9' TLNG.JOBS RUNEMNLJINTOMPL.TIME ARE®*,3X4s1643X
CoyF10L2) ‘

ORIGp,
Al
OF Poop Qf}igf :r?

1585

159¢

411
412
4121
413

414

1595
415

283

IJ",
WRITC(6,1585)
FORMAT(//+" RUN FREQUENCY FOR EACH J08'"}
WRITE(6,1590)
FORMAT(/43X, *JOB LOC.* 43X, *NO. RUNS?® ,6X, *LCACCS! 46X,
INPACCS* +y6 X4 "NTACCS' 49X+ 'DMD?)

TOMD=C.0

LDAT=C

NPAT=(

NTAT=0

CO 415 KKK=]1,NJOBER
LDACLS=C

' NPACLS=0

INC=JM{1TyKKK)
CALL UNMIX{11le3dyIND,MMS)
ING=JM(27 4 KKK)

" CALL UNMIX{11+1C+INDyITMR)

CALL UNMIX(12,9,IND, IRES)

CALL UNMIX(2414IND,INT)

CALL UNMIX{1&4s13,IND,LOAD)

CALL UNMIXI5,24INDsIND53)

IF(LOAD.EQ.1) LDACCS=LTACCS+JIM(1B8yKKK}
IF{IRES.EQ.D) GO TO 411

IF(NEXC(KKK)) 412,412,4121
LCACCS=LDACCS+IFIX(RPAR(B)*(MMS#PARM{14) #NEXCIKKK)))
IF(INT.NEL L AND.IND53,NE.1) GO TO 413
LDACCS=LOACCS+IFIX(RPAR(B)#(MMSEPARM(14) 1))
JPACCS=JMIT KKK) +JIMI 15 ,KKK)

- NPACCS=JPACCS*NEXC (KKK}

IFCINTLEQ.L) NPACCS=NPACCS+IM({18,KKK)

IF{ITMRLEQLO) GC TQ 414

LUACCS=3%LDACCS
NPACCS=3%NPACCS
NTACCS=LDACCS+NPACLCS
LCAT=LDAT+LDACCS
NPAT=NPATHNPACCS
NTAT=NTAT+NTACCS
MIT=JM(144KKK)
REUN=RTIME/MIT -
DLOS=1*IRES+ (1~ IRE%)ﬁRRUN
LML’(RPAR(8I*DLLS*PARM[14)*NPS+RRUN*JPACCSl*(1+2*ITNR)

.
E

TOMD=TDMD+0OMBD .

WRITE{6+41595) KKK NEXCIKKK) (LDACCS NPACCSyNTACCS,DMD
FORMAT(AX 14 4BX s 14,6Xe18,4X,1844X,18,4X,F8.0)
CCNTINUE

WRITE{6415G6) LLCATNPAT NTAT,TOMD

1596
16020

16C5

416
161u

4161
4163

417
4171
41175

159215

154

1542

i944
428

1182

WO e
IR A
LA
[

[

284

FORMATIGX "TOTALS y TX43(1XsI11}e2XeF10.0)

WRITE(6+1630)

FORMAT(//+1CXs *NEW SCHEDULE STATISTICS')

WRITE(6,1675)

FORMAT(/ oOX o "TONS 44X s "NJWMS® o TX s *NFBS? 14X ¢ "MSPACESY,
C 66Xy *NJWME®* 37Xy "NFBE® 44X, "MSPACEE®)

CC 4l6 IX=1,.7

SMEAN(IX)=G.0

FORMAT(T(1X,19))

CO 417 KKK=1,NSSTC

[FIKKK.EQ.1) GC TO 4161

SMEAN(L)=SMEANLU L) +NSST{LKKK)=NSST(1+KKK~-1]}

CD 4163 KKX=2,7

SMEAN{KKX) =SMEAMN(KKXI+NSSTIKKX,KKK)

WRITE{E31610) (NSSTUIX,KKK)IX=1,7) .

CUNTINUE

LC 4171 KKX=1,7

SMEANTKKX)=SMEANIKKX) /NSSTC

WRITZI6,4175) SMEAN

FCLMATIT{1X+F944))

WRITE{6,41535)

FOLMAT(/Z 410X, "CUMULATIVE UTILIZATICNS AT 20 STEP INTER
CvaLS T, /)

WRITE(6,1540)

FGGMAT(E:K"'TIME'pl?ﬁX,'CPU' ,l?x.'lOP'.lTX,'MBH' [
C - LEXy *MSPACE®, 11Xy "IN QUEUE®)
L

WRETE(E,1542)

FORMATLLEX s *LONG! s 5X 3 *SHORTY 46 Xy YLONG® 45X, *SHORT Y,

. 5X9 "LONG* 35Xy "SHORT ' y6 X "LONG* 45X, P SHORT *,
COXy"LENG?Y, 5X 4 "SHORT*)
C

INUX=TIME/Z 2D

LC 420 KK=]141INDX

WRITEZ(621544) TUTLIL«KK) o ({IUTL{IX K KK) yIUTL{IXKK+13G)
ClelX=246)

FOFMAT{11(4X,[86))

CCATINUE

GC T4 1

FORMAT{ " MAIN NOW CALLS FEC FOR RMVL OF LEAD ENTRIES,1
Cl4.%)

CALL FECI2+04+C43)

[FCIPASS(6)+10-TIME) 501,1039,1030

TF(2%IPASS{IQY.GELPARMULT)Y JAND2ENJIWM,GELIPASS(2)Y) GC
ora 22

ORIGINATL, PAGE IS
OF POCR QUALITY

5G2
5U5

537

51:

98

218

37
214

99
252
) U

939

285

IF(BCUU~-RPAR(]L) 2ACUU) 505,502,502
IF{2%IPASS(T}=PARM(23)) 1030,1030,505
IF{BPUU-RPAR(L}*APUU} 510,507,5C7
IF(2¢IPASS(9)=PARMI19)) 1330,41030,510
IF(IPASS(11).6T.0.AND4SIPASS{10).GE.PARMILT)} GO YO 2
Ce

IFINJWM=TPASS{11).GT.G.AND.4%]PASS{10)}.GE.PARMILT}) GO
L TC 22

IFCIPASS(1)-IPASS(2)~NJWM+IPASS(11).GT.0) GO TO 22

GC TC 193¢

WRITE(6+212) IASK,IASK,IDSH,IDSH

"FCRMAT(//+* 9,44, *ERRORY,A4,* ATTEMPY TO EXECUTE SIMUL
LATION BEFORE INITIALIZING SYS. PARAMETERS',A4,'EXECUTI
LCN SUPPRESSED* A4, *SIMULATION TERMINATED®)
L=

GC 1C 120

WRITE(64211) IASK,IASK,IDSH,IDSH .
FORMAT{//4+" '"yA4,"ERRORyA4,* CCMMAND CARD ENCOUNTERED
L'y A4, '"PROBABLE CAUSE IS MISSING LOCAL OPTIGCN CARDS',A4
Co'SIMULATION TERMINATED')

50 TG 102

WRITE(H,232) TASK,IASK ,

FORMATI(//+* Y4A4,"END CF SIMULATION'+A4)
WRETE(6£,999) .

FORMAT{*1")

STOP

ENw

231

286

SUBRCUTINE SETUP

COMMON/BLKY/ TASKeIDSH,LIND(33),LINA(33),I8LKsIDLR,IEQ
CL,IDST

CCMMON/BLK1/ INAME,IDATAWMJIDTIBSTLIEXIT,IFLD
COMMUN/BLK2/ IWRD(10Q),FLDI5D)

CCMMON/BLKS/ SET

CCVMUN/BLK12/PARM{35)

COMMON/BLK13/RPAR(1L)

COMMON/BLKLI4/IFLAG{4T),ITAGL46)

CCH¥MON/BLKLS/KNAME(46}
CCMMON/BLKLG6/IBWCTR(24) yICECI5440) 2 ICECS,ICPULLD),y IPAS
CS{22), IFECS,IFEC(40,4),IPROS(16},ISAVE(3,3),IVAL
COVI10Y s MALLC(256,45), MALCS +MAS(24),MAVL(128,45),MAVL

~CSs¥ODNM{24) 4MTPL(24)sNAL(24), NAA(24) +NABy,NAGNA

CML{40)+ NBLKIL128 Y NFBI(3) NIJWMNSCHED, . NREQI(4
COs24) 4 NTP{24)4,NTR{24) ,NUCA{24)
C

INTEGER PARM

INTEGER*2 IBWCTR+ICEC,ICECSsICPU,IPASS,IFECS,IFEC,IPRCG
CSy ISAVE,IVALCV MALC ,MALCS yMAS ,MAVL 4 MAVLS,,M0D
CNMeMTPL+NA,NAA, NAB, NAGyNAML ¢ NBLKyNFB ¢ NJWUM,NSCHED,
CNRIQ,NTPLNTR,NUCA :

INTEGER%*2 HFIX,IFLAG:I,JsITAG,SET

COMMON/BLKLT/Z TSTONT . ISTATI6+400),IUTL(64220)

INTEGER%Z ISTAT,[UTL

CATA ISTRyIEND,; IERR/ "% tLVEND *t, Y¥ERR*/

CCMMON/BLKLB/RUTL(15)

WRITE(E,201) LINDLLIND

FOIMAT(Y ",3344)

WRITE{(E,202) IASK IASK,TASK,TASK

FCRMAT{//+"' "4A4," BEGINNING SYSTEM INITIALIZATICN *4A
Chaol//le® "oA%4: " INPUT PARAMETERS '4A%)
C

CL 1 [=1le46

ITAG(I} =0

CALL [CARD .

IFI{IWRDII)EQ.ISTR) JANDLUIWRD(2).EQ.IEND))Y GO TO 12

IFIIWRDI1).EQ.IDLR) GO TO 16

LG 11 I=1446

TFITWRD(L1Y NELKNAME(IY) GD TO 11

IFU{IWRD(2) JNELIEQL) «CRL(UIWRDI3) JNELLFLD)LORLIIWRDI4).
LivE-l)) GO TO 17
L

IFLAG(I)

ITAG(T)=

=1
1l

287

IF(I.LT.36) PARM(I)=FLC{1)
IF{I.GE.36) RPAR(I-35)=FLDI(1)

il

ixd

3a2

S 314

CONTINUE
GC TO 172
DC 2 I=l,24
[BWCTRITY=0

MASITI)=PARM{1T)/PARM{2C)

MOCNM(I¥=0
MTPL{1}1=D
NA(]I)=0
NAALTL)
NTPIT)
NTYRII)
NUcatl
Lo 2 4
NRZQ{Jy
¢oC 3 I=1
[PASS(T1)=0
IPASS{T+10} =0
ICPUCLY=Y
IVALOVIL) =D
CCNTINUE

CO 375 [=1,3
CC 320 J=1,3
ISAVE(TL yJ) =0
£C 31C I=1l,16
1PRNDS(I)=0

Mo~ 4t " H

p
c
v
1
I

LY]

:
-

0
'
)
*

4
1

L0 4 I=1+42

CC 5 J=1.5
ICEC(Jy 1) =0

BO 6 J=1l+4
IFZCIT,J)=2
NAML(I}=0)

CC 8 I=14+128
NBLK{I}=D

BC 8 J=1,45
MAVLC Ly d =2
MALCLI o J)=
MALCU(14128)¢J1)=D
CC 9 I=143
NFBLT)=C

CONTINUE

CO 9% I=1,.15
KRUTLIDY =), D
IPASS(T)=PARM(23)
IPASS{I)=PARM{19)

ARM{2) /PARM(15)

238

IPASS(13)=PARMI17)

ISTCNT=0
1CECS=~1
1F-CS=-1
MALCS=-1
MAVLS=1

MAVL(l;1)=-1
MAYL(1,2)=-1
MAVL(1,3)1=0
MAVLILy4)==1
MAVLIL,5)=PARM{1T]
NFia{l)=1
AR=C
NAG=G
WOLN=L
NJWwM=(
NSCHED=D
[F{IFLAGLAT) JNE=1) GC TO 14
J=
CC 13 I=1y46
i3 IF(IFLAGII) LEQ.D)Y J=1
IFIJL.EQ.Y) GO TC 18
14 SET=2
IFLAG(4T7)=1
RETURN
16 WRITE(64203) TASKeIASK,IDSH
2i:3 FURMAT(/ /3" "4A4,9CRRORV,A4," CCOMMAND CARD ENCOUNTERED
C CURING SYSTEM INITIALIZATION® ;A4,*SIMULATION TERMINAT
CEL?)
SET=4
RETURN
17 WRITE(6+204) TASK;TASK,IDSH
204 FCRMAT(//? "3A4,"ERROR" A4, INVALID SYSTEM SPEC. CAR
{C R ILLEGAL SPEC,., VALUE' A4, 'SIMULATION TERMINATELT)
€
SET=4
RETURN
18 WRITE(6,205) TASK,TASK
2205 FURMAT(//+% Yy A4 ,'ERRCR' A4t THE FOLLOWING PARAMETERS
C ARE UNDEFINED')

C
CO 19 I=1+46
19 IFCIFLAGIINLEQ.L) WRITE(6,2026) IDSH,KNAME(T),IDSH
26 FURAMAT{ /4% ¢ ,3A4)
SET=4

RETURN

289

290

SURRUOUTINE ICARD

CCFMMCN/BLKZ2/IWRD{1201),FLD(50)

INTEGER®2 K(BGU)pISPIEN/ P4 Tt 0 80 1 0k1 0 1/ MAXA/?
CLP/ o MINN/IDY /G MAXN/Y GO/ MINS/Y P/ I, IW,NF, 1L, IT4K1,NOG
CT,ISETY

DATA TFLDsIERR,ICMTL, ICMT2/"%FLD?, YXERRY,(Te¥* '
c/

170

READ(5,231) K

FCAMAT{B0ALl)

WRITE(6,202) K

FORMATL® '",8B0A1}

IC=1IC+]

IFTCIWRDIL)EQ.ICMTY) .AND.(IWRO{2) .EQ.ICMTZ2))Y GO TC 1
IF(IC.GT.80) RETURN

IFIR{IC)Y.EQ.ISP(4)) GC TO 5
IFIK(IC).LE,MAXA) GD TO 8
IF(IK(ICIGE-MIKNN) JANDIK(ICY.LE.MAXN)]) GO TO 13
cc 7 1=1v3

IF{R(IC)LEQLISP(I)) G TQ 13

CONTINUE
TF{(IC.EQeBI)ANDIKIICY.EQLISP(SY)}) GO TO &
IWADITIWI=K{ICI*{256%%2)4]5P(4)

[W=IW+1

G0 Y0 5

IL=1

iT=8

IF(EC.GT.83) RETURN
TWADUIWI=TWRD (T W+ (K{IC)/256)%(256%%(4=TL))
IF{IC.EQ.80) GO TO 192 .

IFIKCIC+1L).GELMINS) IT=5

IFIIL.EQe4) GO T0 12

TELIT.EQ.S) GO TQ 1D

IC=IC+! -

IL=IL+1

GG T0 9

IF{(4-1L).EQ.C) GO TO 12

Kil=a~-|L

CC 11 I=1.K1

i1

12

13

14

15

)

17

id

291

IWRDIIW)I=IWRDUIWI+{ISP(4)/256)V%({256%%{4~11L~1))
IWRCUIW)=IWRD(IW)=(256%%(4=]L)}

IW=1H+l

GC TO 5 :

IWRD{IW)=IWRD(IW)}~1

Iw=IwW+l

IF{IT.EQ.5) GO TO 5

[C=IC+1

G0 TD 8 _

IF{IW.LT.3) GO 7O L&

IF{IWRD{IW=2}.EQ,IFLD) IW=Iw-2

IWROD{IW)=IFLD

IW=Iw+l

NCGY=C

ICEC=y

SIGN=1.D

FCTR=1.0

IFIK{ICI.EQ.ISP(2}) SIGN==-1,0

TFOIK{IC) L EQuISPILI) a0RLUKIIC)LEQ.ISPL2))) IC=IC+1
IFIIC.GT.82) GO -TO 19 '
IFUIKIIC)cGE<MINN) o ANDL{KIIC}.LE.MAXN)) GO TO 16
[F{K{IC).EQ.ISP(3)) GC TO 17

IFINCGTLEQ.D) GO TO 19 _
IFLUKOIC) W EQuISPI4)) 40RLUKIIC).EQ.ISP(&)Y) GO TO 18
IFUIK{ICI.EQ.ISP(S)) JANDL(IC.EQ.80)) GO TO 4
C Y0 19 _
FLD(NF)=FLDlNF)#10.0+FLOATtiK(IC)+4032l12561
IC=1C+1

IF(1C.GT.80) GO TGO 17

NCGT=NDGT+1

50 Y0 15

IFIIDEC.GT.O0)Y GO TO 19

[C=1C+1

ICEC=1C

IF{IC.GT.82}) GO TO 18

GC TO 15 .

IFLIDEC.GT.0) FCTR=1C.O4FLOAT(IC~IDEC)
FLDINF)}=SIGNSFLDINF)/FCTR

NF=NF+1

TWRD(IWI=1WRO(IW)+1

[w=fw+l

GC YO 5

IWRDIIW)=TERR

IF{K(BI)NZLISP{S)) RETURN

READ(5,42C1) K

CC TC 2¢C

A

293

SUBROUTINE BULK

COMMON/BLKL/TASK,IDSH,LIND{(33),LINA(33),IBLK, IDLR,IEQL

CeICST
COMMON/BLKL/INAME,, IDATASMIDT L IBSTLIEXITLIFLD
COMMON/BLK2/IWRD(100)+FLD(50)

COMMON/BLK3/ IDIST(25),F(25,41),NDIST
CCGMMON/BLKA4/NAME(TS5,8Y,DATA(TS5,9) ,NJOB
COMMON/BLKS/ISET

CIMENSION TAPX(9)sFMAX(S)FMIN(T)

INTEGER®2 NDIST NJOB,ISET,1J0B,1sJsNsM

REAL NA/'Y NA v/

DATA ISTR,ICMA,IEND,IBLC/t® Yy 'y "'ENC *,'8BLOCY/
DATA IFX IFN2ISEED+IFCN/YFMAXY s "FMIN® 4 *SEEDY e '"FCTINY/
CATA IERR/"%ERRV/ :

ISC=1

NJOB=(

1JOB=]

LC 1 I=1,75

cec 2 J=118

NAME(T 4 J)=2

CONTINUE

-CONTINUE
WRITE(5,231) LINA
FORMAT(' ',33A44)

WRITE(64202) TASK,IASK

FCIMAT(/y" "941XyA4,* JOB GENERATOR INPUT PARAMETERS
Ceh4)

NJOB=NJOB+]

CALL 1CARD

IFIIWRDIL1).GTL0) GO TO 11

IFCIIWROCL) NELJINAME} LCR.{IWRD{2)} . NELIEQLY) GO TO 9

IFINJOB.GT.75) GO TO 1¢ ‘

=2

V=1

IF{IWRD{N) NELISTR) GO TO 6

NAVE(NJOByM) =IWRD(N}

N=N+1

M=+l

IFUIWRDINI.GE.T}L GO TO 8

IF(M.T.8)-GO TO 37

NAME(NJOBMI=IWRDI(N)

=+l

IF{IWRDINYLEG.D) GO TO 7

IF{IWRD{N).NE.ICMA} GO TO 8

LC TC 5

294

16
205

11

134

256

21

12

3

14

294

IF({IWRD(1).EQO.ISTR}.AND.IN.EQ.4)) GO TO 9

IFINLEQ.3) GO TC 9

GC TQ 4

WRITE(6,203) IASK,IASK,IDSH

FORMAT(/7+" 'Y4A4, ERROR®,A4,*' IMPRCPER NAME.MISSING CO
CMMA,OR INVALID DATA ENTRY' A4, *STMULATION TERMINATED®)
C

ISET=4

RETURN

WRITE(64204) TASK,IASK,IDSH

FORMAT(/7+" *yA4,'ERRORY, A4, PARAMETER DEFINITION CAR
CO IS INVALIDsMISSING+OR OUT OF DRDER®,A4,*SIMULATICN T
CERMINATED')

ISET=4

RETURN

WRITE(64205) IASK,IASK,IDSH

FORMAT(//7+% %A%, "WARNINGY A4, * ATTEMPT TO GENERATE MQ
CRE THAN 75 JOBS*,A4a, 'EXCESS ENTRIES IGNORED')
¢

G0 TG 4

IF(IWRD(1).NE.IDLR) GO TO 100
IF{{IWRDI2)EQ.IEXIT).AND. LIWRD13),EQ.IBST}) GO TO 34
IFLIIWRDI(2).EQ.IEND} .AND.{IWRD(3).EQ.IBLC}) GO TC 1¢
WRITE(64206) TASK,TASK,I0SH

FORMATI/ /4" '4A4s"ERRCORY,A4," INVALID EXIT, INVALIC EN
(0 BLOC, OR ATTEMPT TO EXECUTE NEW COMMAND BEFORE EXIT
CFRUM BST ROUTINE?Y,A4)

WRITE(&,207) 1DSH

FORMAT(Y *4A4,*SIMULATION TERMINATED")

[5:T=4

RETURN

CALL ICARD

NJOB=nJ0B-1
IF((IWRD(1)«NELISEED)CRL(IWRD({2)JNELIEQLY)Y GO TO 13
IF{(IWRD{3) NELIFLD) «OR.{IWRD(4).EQ.IERR)} GC TO &
[F{IWRD(4).GT.1) WRITE(6,208} TASK,IASK,IDSH
FORMAT(//,*t 'y A4y "WARNING®yA4,* MORE THAN 1 VALUE HAS
CBSEN SPECIFIED FOR SEED VARIABLE®,A4,'EXCESS ENTRIES 1
COGNCGRLDY) ‘

ISC=IFIX{(FLD(L)}

CaLL ICARD

IFI(IWRD(1).NELIFCN) o OR.IIWRD(2)NE.IEQL)) GO TO 9

N=3 :

M=1

IF{®.GT.9) GO TOQ 1%

IF(IWRDIN).GE.O) GO TO 8

[\%]
—
Lor}

17

18

19

24

21
211

22
212

295

TAPX{M)=TIWRDIN) * ;
N=N+1

IFIIWRDIN).EQ.0) GO TO 16

IFCIWRDIN}YNE.ICMA)- GO TD 8

N=N+1

Mz=p$]

GC TC 14

- WRITE(6,+209) IASK,IASK,IDSH

FORMAT(//4s* '4A4,"WARNING® yA4," MORE TMAN 9 DIST. APPR
COXIMATION CURVES SPECIFIEDY,A4,'EXCESS ENTRIES IGNORED
c1)

IF{M.LT.9) GO TD 21

CALL ICARD

IFI{TWRD{1)«NE.IFX) . OR.{IWRD{2}.NE.IEQL)) GO TO 9

IF{{IWRD{3) . NE.IFLD) ,OR.{IWRD(4).EQ.IERR})) GO TO 8

[F{IWRD(4).LT,9) GD YO 22

IF(IWRD(4).EQ.9) GD TO 17

WRITE(6,217) TASK,IASK,IDSH :

FORMAT(/ /4" Y, A4, VWMARNING' A4, ® MDRE THAN 9 MAX. DR W]

- CNs PARAMETER VALUES SPECIFIED® A4, *EXCESS ENTRIES 1GNO

LREDY)

LC 18 I=1,9

[F{FLD(I)«LT.O) GO TO 9

FMAX(I)=FLO(I)

CCNTINUE

CALL 1CARD

[F{OIWRD(1) W NELIFN) JOR.(IWRD{2).NELIEQL)) GO TO 9

IFLCIWRD(3).NELIFLD) . OR.LIWRD(4).EQ.IERR)) GO TO 8

IF(IWRD(4).LT.9) GO TO 22

IF(1WRD(4) .EQ.9) GO TQ 19

WRITE(64217) TASK,IASK,I0SH

CC 20 1=1,9

IF(FLD(I).LT.Q) GO TO 9

FMINCI)=FLD(T)

CONTINUE

6C TO 23)

WRITE164211) [ASK,IASK,IDSH

FORMAT{//y* '4A4,'ERROR',A4," FEWER THAN 9 DIST. APPRO
CXIMATIONS SPECIFIED®,A4,*UNABLE TO GENERATE JOB PARAME
CTERSY) ! i

ISET=4

RETURN o

WRITE(65212) IASKyIASK,IDSH |

FORMAT(/,* *,A4,"ERROR' A4, FEWER THAN 9 MAX, OR MIN,
C PARAMETER VALUES SPECIFIED',A4,'UNABLE TO GENERATE J
LJ0B PARAMETERSY)

23

25

213

26

27

28

31

29
24
214
215

216
217

296

[SET=4

RETURN

CO 24 I=1,9

DC 25 J=14NDIST

IF(ICIST(J).EQ.IAPX(I)) GO YO 26

CCNTINUE

WRITE(64213) IASKeIASKsIAPX(I),IDSH

FORMAT(/ /"' ", A4, "ERRORYyA4," UNABLE TO LOCATE *,A4,°
CCN STAT. DISTRIBUTION TABLE',A4,*UNABLE TO GENERATE JO
{B PARAMETERS'})

ISET=4

RETURN

SMALL=F{J,2)

BIG=SMALL

CC 2T K=3,21

IFIF{JsK) LT SSMALL) SMALL=F{J,K)

IFIF{JsK)GTLBIG) BIG=F(JyK)

CONTINUE

SCALE=FMAX(I)

IFIBIGLNESSMALL)Y SCALE=(FMAX(I}-FMIN(I))/(BIG-SMALL)
U0 29 K=1JCB,NJCB

I¥y=15D%65539

IFtlY.GT.0) GO TC 28

I¥Y=I¥+214T7483647+1

YFL=FLOAT(IY)}*.4656613E~9

[se=1y

INDX=IFIX{19.599%YFL)+2

DATA(Ky IY=FMIN{ I} +SCALE*(F{J, INDX)~SMALL)}
IF{{Ie0CEel) e ANDL{I.LEL5)} OATA(K,I)=FLOAT(IFIX{DATA(K,
ciym

IFC{NAME(K g1) o NELTISTR}Y.ANDL{ILEQeT)) DATA(K,I)=NA

IF(INAMEIK 3 1) o EQ.ISTR) LAND{ILEQ.B)Y) DATA(K,I)=NA
CONTINUE

CCNTINUE

FORMAT(/ /4" Y,A44," CCMMON STATISTICS JOB B8LOCK *,A4)
FORMATU/,% 7,064,308 *42R4 43X, YEP="4FT.0y 13X, *TMR=*,F7
Cot ol e20X yVCR=Y 4 FTuls 10X, tT1=02" yF7.04/420X,"NI=*,F7

T CeleOXg'I=0 DIST='42X A4/ 319X, "MIX="43XyF4.2,11X,"RR=?

CoFTalyZelOXytTAT=Y,3XA4,10X,'DVT=,F7,1)
C

FORMAT{?' PREDECESSORS?,5(2%X,A4))

FORMAT(/4" *,86,'J0B *320443X e "EP=1,FT,0,10K, " TMR=*,F7
Cot o/ 920X s "CR=V ,FT.ColUXy*1=0=' yFT, 09/ 920X, '"NI="',F7
Cev 09Xy 1=0 DIST=132XsA4s/ s 19Xy " MIX=? 43X, F4.2911Xy*RR="?
Cp3’(,&4y/qux"[AT=.1F70111Q:‘1'DVT='9F701’

C

218

219

34
999

22,

35

37
222

297

WREITE{64218) 1DSH,IAPX
FORMAT(/4* DISTRIBUTICN APPROXIMATIONS USED®,A4,42X,'EP
L= "3A459Xy TTMRawt A4, /439Xy 'CR=~ "JAG 99X y*][=-0~= ',A4

Co/Ze39Xs "NI== "3 A4,9X,*MIX=~ Y4 A4,/,39X,s'RR—= ¥ ,A4,9X,"

CIAT—-.‘;A#-/,BBX.'DVT—- 'y A4)

WRITE{64219) [0OSH,105H o

FORMAT(/ 4% *,A4,YEND OF JOB BLOCK',A4,/)

WRITE(&201) LIND '

FJOB=NJOB+]

GO TC 4

WRITE(6,999)

FORMAY(['1"Y)

NJOB=NJOB-1

WRITE(6H,201) LINALLINA

WRITE(6,222) TASK,TASK

FORMAT(//,4B8XsA%y " CCMPLETE BULK STORAGE TABLE VY,A4,//
L)

WRITE(6,2311 LIND

CO 36 I=1,NJOB '

TFINAMELT L) .NELISTR) GC TO 25

WRITE(6,215) IDSHNAME(I +2) 2+ IDSH(DATAL{TI+J):J=1,5) NAM
CElL 31+ {DATA{TI s J)ed=649)

WRITE(6,216) INAME(T ,d)4J=4,8)

GC TG 36 '

ARITE(O69217) IDSH NAME(I 42} 4IDSHe{CATALIyJ),d=1,5),NAM
CE(T43) o (CATA(I 1) J=6,9)
C

WRITE(6,216) (NAME(T 4J),J=4,8)

CONTINUE

WRITS({64,221) I[DSH+IOSH

FORMATI(/ /5" "yA4y"END OF BST',A4,//)

WRITE{6,201) LIND,LINA,LINA

ISET=2 |

WRITE(6,+959)

RETURN)

WRITE(6+222) TASKyTASK,NAME{NJOB,2),1DSH

FORMATU//9* *yALy 'WARNING'yA%4,* ATTEMPT TO ENTER MCRE
CTHAN 5 PREDECESSORS IN PRED. FIELD OF JOB *42A4,'EXCES
LS ENTRIES IGNORED') -

GC TC 4

ENE

298

SURRAOUTINE STAT
COMMON/BLK1/IASK,IDSH,LIND{33),LINA{33),IBLK, IDLR, IECQL
C,1DST
COMMON/BLEL/ INAME L TDATAMIDT,IBST,IEXIT,IFLD
COMMON/BLK 2/ IWRD{10D) ,FLD{50)}
COMMON/BLK3/ IDIST(2S),F(25,41) +NDIST
COMMON/BLKS/ISET
INTEGER#*2 NDIST [4JsKyISETHL !
DATA IERR/VY¥ERR'/
GO 1 I=1,25
IDIST{I)=0
Ca 1 J=1l,.41
F(l,J)=0.0
CONTINUE
NDIST=1
IF{MDIST.GTL25) GO TO 12

" CALL JCARD
IFCIWRDIL)LGT,.D) GO TO 19
IF{(IWRD{LI NELJINAME) JOR. (IWRD(2)}.NEL.LEGL)) GD TO 8
IFIIWRDI4Y NE.DO) GO TOD 8
IFUIWRD(3).GT.Q) GO TO 9
IDISTINDIST)=IWRD(3)
CALL [ICARD
FF({IWRDIL1).NELIDATAY.ORL(IWRD{2}.NELTEQL}) GO TQ 8
IF{{IWRDI3)JNELIFLD) sOR.{UIWRD(4).EQ.IERR)} GO TO 9
K=1WRLC(4)
IF{K~41) 3,:5.7
WRITE(64201) IASK.JASK,IDISTINDIST),IDSH
FORMATUZZ+Y "oA4,"WARNING?Y A4, " FEWER THAN 41 DATA POI

CNTS HAVE BEZEN SPECIFIED FOR ',2A4,*'DEFAULT VALUE=G.D')
C

CO 6 I=1,K

FINDIST,I=FLDI(I)

LCNTINUE

NOIST=NDIST+1

6 TO 2 _

WRITE(69272) TASK,IASK,IDISTINDIST)+IOSH

FORMATE//,t Y4AL, YWARNING® sA4,* MORE THAN &1 DATA POIN
LTS HAVE BEEN SPECIFIED FOR ',2A44,'EXCESS PCINTS IGNORE
(VL

K=4]

GO TQ 5

WRITE(6,233) JTASK,[ASK,IDSH

ECRMAT(/ /2" "3A4,'ERRORY, A4, IMPROPERLY FCRMATED QR M
CISSING NAME DR DATA DEFINITION CARD',A4,'SIMULATION TE

URlGy
AL
o Poop ermfrg

9
204

1

2

12
206

299

CRMINATED?)

[SET=4

RETURN

WRITE{6+4204) IASK,IASK,IDSH

FORMAT(//3* "4A4,"ERROR",A%+" [MPROPER DISTRIBUTION NA
CME OR ERROR [N DATA FIELDY,A%4,'STMULATION TERMINATED')
C * ' :

ISET=4

RETURN

IF{IWRDI1).NE.IDLR) GO TO 11

IFCUIWRDI2) JNELITEXIT).ORL{IWRD(3).NELIDST)) GO TO 11
NDLIST=NDIST~1

CO 152 I=1,NDIST

DO 162 J=1,NDIST

IFI{IDISTII).NE.IDIST(J)}.0R, (I EQ.J)) GO TO 12
WRITE(64277) TASKsIASK,IDIST(J},105H

FOCRMAT(//4+" %3 A4, "WARNING* yA4y* DIST. NAMED ¢ ,A4,% HAS
C BEEN ASSIGNED MORE THAN ONE SET OF DATA PGINTS"AG.'F
CIRST SET USED*) '

K=J+1

DC 131 L=K,NOIST

ICISTEL=-1)=1IDIST{L)

LG 171 M=1,41

FOIL=1)syM)=F(LyM)

CCNTINUE

NCIST=NDIST-1

CONTINUE

ISET=¢

RETURN

WRITE(642:5) TASK,IASK,IDSH

FORMAT(//4+% '4A4y"ERROR',A4," INVALID EXIT OR ATTEMPT

-CT0 EXECUTE NEW COMMAND BEFDORE EXIT FROM DIST ROQUTINE®,

CA4, "STMULATION TERMINATED?')
C

15cT=4

RETURN :

WRITE(6,206) TASK,IASK,IDSH

FORMATU/ /4% Y4 A4, "WARNING" y24,"Y ATTEMPT TQ ENTER MQORE
CTEAN 25 OISTRIBUTIONS CN STAT. TABLE',A4,'EXCESS ENTRI
CES IGNORED?')

G0 T 13 '

tND

9%9

216
271

2732

300

SUBROUTINE PRNT

COMMON/BLK1/Z FASK, IDSHoLIND(33),LINA(33),IBLK,IDLR,TEQ
CLyIOST .
COMMON/BLKL/ INAME,IDATAMJIDT,IBST,IEXIT,IFLD
CCMMON/BLK3/ TDIST(25),F{25:41)4NDIST
COMMON/BLKS/ SET

COMMON/BLKS/ MNAME(B,64)

COMMON/BLKT/ JUM2(27,64)

COMMON/BLKLL1/ RTIME

INTEGER*2 SETJMZ24MIXyIPsI0SHyEPyMREQsNDISTKY[ISUMyI
CrdeKyl M ’

DIMENSION NBITS(4),IVALOVI1O) ¢KY(14)

INTEGER*2 [VALQV

CATA 15TR/t% v/

WRITE(6,999)

FORMAT(*1%)

WRITE(6,201) LINA
"WRITE(6,216) TASK,RTIME,TASK

FORMATI(/4! '9A4p' TIME $.QF8-3|A4’/)
WRITE(6,231) LINA,LINA

FORMAT(Y *,33A4)

WRITE(6,222) JASK,IASK

FORMATI/y4BXy04,® MAIN JOB DESCRIPTICN TABLE ',A4)
CO 1 I=1+64%

IF(MNAME(2,1).NE.C) GO TO 2

CCHNTINUE

WRITE(64+203) IDSH,IDSH

FORMAT{ /4% *,A4%,* NO JOBS ON MJDT',A4,/)

GC TO 15

WRITEL641230)

FORMAT{ /413X "STATUS WORD BITS RIGHT TO LEFT'/,

C LoX,e? 1 READY',11Xs* 2 INITIATED',7Xs* 3
L WAITING CPU'/, 1CX,Y 4 WAITING IOP'5X,* 5

CWAIT MEMORY',5X.' 6 IN HOLD'/. 13Xes' 7 PREEMPTED
Ca,71Xe' 8 MODE,CPU/IOP*,4X,* 9 PERIGDICY/ 1ICxy'1

C. RESIDENT*',8X,%11 SIMPLEX/TMR*,5X,']12 WAIT 1/0 CCM
CPo'/y 10X,113 IN IFEC'"+9Xs'14 LOAD',12%X, 15 NOT USE
LLr/y 12X, *16 NOT USEDRY)
<

CO 14 I=1,064

IFIMNAME(2,1}.EQ.0) GO TO 14

WRITE(&,204) TUSH,MNAME(2,1)s1DSH,!

FCRMAT(/4 ' ", A4," JOB Y42A4,3X,'LOCATION = ¥,]12)

[SUM=3

00 4 J=1,4

41,
415

276

- 301

IF(IM2(J#¥L,1)) 4,4,4CC

ISUM=ISUM+]

KY(ISUM)=uM2{J¢lel)

- CONTINUE
- N=1

J2220M2(2241)

NL=N~1

CALL UNMIX(NyNL,+J22,IND)
IFCIND) 432,430,410

CC 415 J4=1,10
AIVALOV(J)=0

CALL OVFLMG(1s1,N,IVALOV,10)

EQ 425 J=1,10

IF{LVALOVI))

1SUM=1SUM+1

4259425,420

KYUISUM)=TIVALOV(J)

CONTINUE

GO TO (5+8)4N -

IF{ISUMLERQD)

L WRITE(6,4205)

6C TO 6

FDRMAT!I.Z)K.'PREDECESSOR/LDCATIDN')

WRITE(64212) LAMNAME[2,KY(J)) s KY(J))J=1,4ISUM)

FORMATI2OX y4(A4,/ ,12,2X))

GC TO 601

c WRITE(6.213)

IDSH, IDSH

FORMAT(20X, A#p'NO PREDECESSORS'.A#)

[SuUM=(
EC 7 J=1,2

N=dM2{d+5, 1)

CALL UNMIEX(T4D4NyINDL)
CALL UNMIX(l&4sToNsIND2)
IFLINCL) 70197014720

ISUM=TSUM+1

CKY(ISUM)=IND1

IFUIND2) T4+7+702

ISUM=]ISUM+]

KY{ISuM)=IND2
- CCNTINUE

N=2
GC TO 405

CIFUISUM.EQ.D

WRITE(642061)

)

G0 1O 1¢

FORMAT(/422Xy *SUCCESSORS/LOCATION?)

WRITE(65212)
G0 10 11
WRITE(64214)

{IMNAME(24KY(J))sKY(J}) 4 d=1,15UM)

IDSH, IDSH

214
11

21cC

13
215

211

14
15

302

FORMAT({20X,A4, "' NO SUCCESSORS',A4)

N=JM2(2T,1)

CALL BITWRTIN,4,NBITS)

WRITE(6,208) NBITS

FORMAT(/410Xs "CURRENT STATUS WORD = ',4(1XyA4})

IP=JdM2(10,11/128

MIX=JM2{10,1}~1P*128

ICS5H=dM2(11+1)/1024

EP=JM2(12,11/13224

MREQ=JUM2(171)-{UM2{17,1)/2048)%2048

MNARC=JM2(11,1)-10M2(11,1)/1024)%1024

[STOVC=JM2{12,1)-{JIM2(12,1)71024)%1024

MNARI=JM2{13,.{)-{JdM2(13,11/1024)%1024

[STDVI= JMZ(ZI'I)*lJMZ(Zl:I)/lQZ#)*lOZ#

MBLK1=dM2(1,1)/128

MBLK2=JMZ2{ 19,1 })~(JUM2(19,+11}/256)%256

MBLK3=(JM2{17,1})/2048)%16
C +{UM2019, 11-(JIM2(1S,1)/4096)%40G6)/256
C

WRITE(5¢209) EPyMREQeJIM2(1541) ¢ JJM2(F4 1) eMIXedM2(L421)y
CIM2U8y Ty IMZ(25,1)3 dM2U2041)9dM2(2641)91IPsJM2118,41)4MN
CARC,ISTDVC, MNARI 4 1STDV] 4MBLKL +MBLKZ2,MBLK3
CadM2i22,1) :

FCAMAT(/ 922X 'EP =24 16, 10X,y *MMS =0,156,5Xs*VSF(I-0) ="',
CIEL1CK s "NMA =0, 164/ 19X,"MIX =2, 16,TX,*RR/IAT =',16,1
CCXe"TLE =", T16411%s"TT =%,164/7/+ 09X "MPT =%,]16,5X,"'NIP{(
cl=-01% =';I6|11X|'IP ="I6'10X.'CCD ='116!/Q17x"MNﬁRC =

C'!Ibv?X,'ISTDVC =.916,BX9'MNARI =',16.7X, “ISTCV
Cl =',16/17TX+s"MBLK] =",16,8%X,"MBLKZ2 =",16,8X,

C TMBLEKS =*,16,9X'IFOV =",;16}

C

IF{IDSH.EQ.D) GC YO 13

WRITE(6,212) IDIST(IOSH),10SH

FCRMAT(/ 224X+ [~0 DIST/LOCATION" ¢5XyA%47/%412)
WRITE(6+271) LIND

CC TO 14

WRITE(64215) 1DSH, IDSH

FORMAT{/424XsA4,"NO I-C SHAPE INDICATED FOR THIS J4iB*,
Caa)

IF{JIM2{ 24, 1) NE.G) WRITE{6,211) [DSH,IDSH

FORMAT(Y *,A4,'THIS JUB CONTAINS OVERFLOW FIELDS'4A4,/
c)

WRITE(6+201) LINDyLIND

CONTINUE

WRITE(6,201) LINA,LINA

SET=2

RETURN
END™

303

201

—

22l

304

SUBRDOUTINE CLEAR

COMMON/BLKL/ TASK,IDSHsLIND(33),LINA{33),]IBLK,IDLR,IEQ
CLLIDST ‘
COCMMON/BLK L/ INAME,IDATA,MIDT,.IBST,LIEXIY,IFLD
COMMDN/BLK4/NAMEITS5,8),0ATA(75,9),NJOB,NJOBER
COMMON/BLKS/ SET

CCMMON/BLKSE! MNAME(B.64)

COMMON/BLK T/ JUM2(2T74464)

COMMON/BLKS/ JOVFI1D24)

COVYMON/BLKL1O/ FLAG(64)

INTEGER®2 SET,JM2,J0VF,.14+J,FLAG,NJOB,NJOBER
WRITE(6,201) LIND

FORMAT(® ",33A4)

P01 I=1l,64

FLAGIT)=0

L0 2 J=1.8

MNAME(J, 1) =0

DG 3 J=1,217

JM2{L,1)=0

CCNTINUE

EC 4 I=1,1224

JCOVF{I =9

NJCBER=D

WRITE(&4202) TASK,IASK

FCRIMATL{//+" YyA4,Y MJIDT HAS BEEN ERASED ',A4,//)
WRITE(S5,201) LIND

SET=2

RETURN

END

[a¥]

305

SUBROLTINE ENTER
COMMON/BLK1/ TASK,IDSH; LIND(331.LINA(331,IBLK IDLR,I1EQ
CL,IDST

CCMMON/BLKL/ INAME,ICATA,MJDT,18ST,IEXIT,1FLD
'CCMMON/BLK2/ IWRD{10D),FLD(50)

- COMMON/BLK&4/NAMEL(TS, 8)-DATA(75) ,NJOB, NJOBER
COMMON/BLKS/ SET

CCMMON/BLKS&/ MNAME(B, 64}

INTEGER®2 NJUNByNJOBERL,SET, T 2JeK, N

DATA ICMALISTR,IEND/*, - *, % y TEND v/
WRITE(642C1) LIND

FORMATI(Y ',3324)

ARITE(6,252) [DSH,IDSH , '

FCRMAT(//," ,A4,'BEGINRING JOB ENTRY PRBCESSING',A#I
© CALL ICARD

- IF(EWRD(1).6T.Q) GO TO 19

IF{(IWRD(L) NE.INAME}, GR.(IHRD(Z!.NE IEQL)Y) GO 70 11
N=3

[F{IWRD(N).GT.(Q) GO TO 12

IF(IWRDIN)LEQ.Q) GO TO 11

DO 3 I=1,NJOB

IFENAME(L y2)eEQ.IWRDIN)) GO TO 4

CONTINUE

WRITE(65203) TASK,IASK,IWRDI(N),I1DSH _

FORMAT(//+" '3A4,"ERROR',A4,* UNABLE TO LOCATE ',A4,?
CCN BSTt,A4,"SIMULATICN TERMINATEDY) :
c - B '

SET=4

RETURN

OC 5 J=1:64

IFIMNAME(2,J)EGQ.IWRD(NDY) GO TO 13-

CCMNTINUE ‘ -

~CC & Jd=1,64 :

IF{MNAME(2, J).EC.0) GC TQ 7

CCNTINUE

WRITE(6,274) [ASK,TASK,IDSH,IWRDIN)

FORMATI/ /9% "yAb,'WARNING® yA4,% MIDT IS FULL',A%,'UNAB
CLE TC ENTER ',A4)

¢

60 TO 9

OC 8 K=1,8

MNAME(KyJ) =NAME (T ,K)

NJOBER=NJOBER+1

WRITE(64205) 1DSHIWRDIN),IDSH

FCRMAT(Y "4,2A4," ENTERED',A%)

iJ

| %]
LN
o

11
2c1

13
206

14
£12

306

N=N+1

IFCIWRDIN)LEQ.2) GO TO 1

IF(IWRDIN} .NELICMA) GO TO 12

. N:'\[-}l

GC TC 2

IF((IWRD(L)NELISTR).OR.UIWRD(2).NELIEND)}) GO TO 14
SET=2

CAattL RECHEK

WRITE(64206) IDSH,IDSH

FCRMATI(//+" Y4A6,°J08 ENTRY PROCESSING CCMPLETE?,A4,//
C)

WRITE(64+201) LIND

RETURN

WRITE(649227) TASKsIASKsIDSH

FORMAT{//+"' '"94A4,"ERRORY A4, " NAME CARD (NAME=) IS INV
CALID UR MISSING"'",A4, '"SIMULATION TERMINATED")

L

S5eT=4

RETURN

WRITE(6,208) TASK,IASK,IDSH

FCRMAT(//+" "4A4,'ERRIURY,A4,* INVALID JOB NAME OR MISS
CING CCMMA BETWEEN NAME ENTRIESY,A4,'SIMULATION TERMINA
CTECY)

SET=4

RETURN

WRITE{6+2C9) TASKyIASK,IWRD{N),IDSH

FORMATU(//74" *,04,"WARNING® A4, JOB *,A4,' HAS ALREALCY
C BEEN ENTERED ON MJDT',A4,*J0OB ENTRY IGNCRED')
C

GC TO 9

wRITE(6,210) TASK,1AS5K,IDS5H

FCRMAT(//y* *4+A4,"ERROR'yA4,* END OF JOB ENTRIES CARC
CU¥ENDY 15 MISSING OR INVALID' yA4,*SIMULATICON TERMINATE
ce)

SET=4

RETURN

END

307

SUBRDUTINE RECHEK
COMMON/BLKY/ TASK,IDSH,LIND(33),LINA{33),IBLK,IDLRSIEQ
CLLIDST ‘
COMMCN/BLKL/ INAME,IDATAyMJIDT,IBSTLIEXIT,IFLD
CCMMON/BLKSG/ NAME{75,8),DATA(75,9),NJOB
COMMCN/BLKS/ SET ‘
COMMON/BLK S/ MNAME(B,64)
COMMON/BLK3/ IDISTI25)4F(25541)4NDIST
CCMMON/BLKT/ JM2(2T4.64) S
COMMON/BLKB/ TIME
CCMMAON/BLKL10O/ FLAG(64)
COMMON/BLKL1Z2/PARM{35)
INTEGER PARM
CIMENSION LISTI(63),10PL(32,2)
INTEGER#%2 HFIXsSET s J M2l o NeNT 3 JeKeLeMsNDPL4NJOBeNDIST,
CTIME,FLAG
CATA ISTR.INCNE/'* T INONEY/
ISL=PARM(33)
LC 1 I=1463
LIST{I)=3
N= ..
NT=0
NCPL=C
2 EC 13 I=1,64
EC 13 J=4,8
IF{MNAME{D,1).EQ.C) GO TO 13
CIF(MNAME(J, T} NE.MNAME(2,1}) GC TO 3
WRITE(6:201) TASK«IASK MNAME(J,1) 4 [DSH,IDSH
21 FORMAT(// ¢+ * A4 "WARNINGY A4, J0OB *,A4,' HAS BEEN LI
LSTED AS ITS COWN PREDECESSORYA4,FIXUP MADE®, A4, "MJDT
CLGAC CHECK CONTINUING')
MNAME(J, 1) =0

o

3 LC 4 K=l,64
[FIMNAME{J 1) +EQuMNAME{2,K)) GO TO 10
4 CONTENUE

CC 5 K=1,NJOB .
IFINAME (K32} EQ MNAME(J,1)) GC TO &
5 CONTINUE
WRITL{6+222) IASK IASK,MNAME(J,1) MNAME(2,1),1DSH
2.8 FORMATO//7+" "2A4,ERRORY yA4, ' JOB *"4A4,' LISTED AS PRE
CCECESSOR TO 'yA4,' CANNOT BE LUCATED ON BST',A4, *SIMUL
CATION TERMINATELY) :
SET=4
RETURN
& 7 L=1364%

203

3]

1.

i1

12
13

308

[FIMNAME(2,4,L).EQ.C) GO TO B

CCNTIEINUE

WRITE(6,203) IASK,IASK,MNAME(J,1),MNAME(2,1),IDSH

FORMAT(//+"' "4A4y"ERROR" A4, * MIDT IS FULL. *,A4,"' LIS
CTED AS PREDECESSOR TO *,A4,' CANNOT BE ENTERED®,A4,'SI
CMULATION TERMINATED')

SET=4

RETURN

GO 9 M=1,8

MNAME (M, L) =NAME{K,M}

N=N+1

LISTIN)=MNAME{J,I)

GC 10 13

CC 11 M=1,32 :

IFO(MNAME(2,1).EQ.IDPL(My1)) sAND. (MNAME(2,K}.EQ.IDPL (M
Ce2))) GO TO 13

¢

IF(IMNAMEL 2, 1) EQ.IDPL(M,2)) AND. {MNAME(2,K]}.EQ.IDPLIM
Cs1))) GO TO 13 '
C

CONTINUE

CC 12 M=4,8

IF{MNAME (M, ,K) MNE.MNAME(2,T)) GO TO 12

NCPL=NDPL+1

ICPLINDPL,y 1)}=MNAME(2,K)

ICPLINDPL, 2)=MNAME(2,1}

CONTINUE

CONTINUE

IFINLEQLNT) GO TO 14

NT=N

GC T4 2

IFIN.EQ.C) GO TC 17

WRITE(64204) TASK,IASK

FCRMAT(//,* ",A4s" NON-PRESENT JOBS REFERRENCED *,A4)
0C 15 I=14N

WRITEZ(654209) IDSHSLISTAI)IDSH

FCRMAT(//," '":3A4)

WRITE(H6,2:06) [TASKsIASK

FCRMATU/ /4" '"L,A4,*' ALL NON-PRESENT REFERRENCED JOBS EN
CTERED Y.A4)

I[F {NDPLL.EQ.C) GO TO 17

WRITE(6,207) TASK,TASK,IDSH

FORMAT(/ /4% %, AG, "WARNING"yA4,' THE FOLLOWING PAIRS OF
C JOBS FORM DIRECT PREDECESSOR LOOPS',A4,*POSSIBLE FREE
(L& CCNDITION MAY EXIST')

LC 16 1=1,NDPL

309

16 WRITE(64208) IDSH,IDPL{I,1),1DPL(T42},1DSH
208 FORMAT(//4' %,2M4,2X,244)
17 OC 29 I=1,64
IF{{MNAME(241) .EQ.D).0R.(FLAGII).EQ.1}) GD TO 29
FLAG(I)=1
DO 18 J=1,NJOB
1F INAME(J,2) .EQ.MNAME(2,1)) GO TO 19
18 CONTINUE
19 IF(MNAME(1,1).EQ. ISTR) JM2(27,1)=0M2(27,1)4256
IFIDATAGJ2).GT.0) JM2(27,10=0M2(27,1)+1024
JM2(1,1)=1
1F(MNAME(3,1),EQ. INONE) GO TO 21
CC 20 IDX=1,NDIST
IFCIDISTIIDX) LEQ.MNAME(3,1)) GO TO 36
2¢ CONTINUE ,
21 WRITE(64209) [ASKsIASK,MNAME(3,1),MNAME(2,1},IDSH
269 FCRMAT(//4% "yA4,'ERROR',A4,* DISTRIBUTICN NAMED *,A4,
C*' LISTED FOR JOB *,A4,% CANNOT BE LOCATED ON DIST. TAB
CLE'+A4ySIMULATION TERMINATED?)

C
SET=4
RETURN
e IMZ2(1L.,1)=[DX%1C24
ED K=1

" CC 24 L=4,.8
[FIMNAME(L+I}.EQ.Q) GO TO 24
CU 23 M=1,64
IF{MNAMEIL,[).NE.MNAME{(2,M})} GO TO 23
K=K+l
IF(K.GT.5) GO TO 22
JMZ2(KeI =M
GG TO 23
22 CALL OVFLMGIZ2sI41yM41)
23 CCNTINUE
2% CONTINUE
- JM218,41)=TINE
JMZ19, I)-HFIX(D&TA(J15)1
JHZ2UL T I)=HFIX(1lJIoD%DATALI,6)+40,1)
JMZUL2y I)=JM2{12,)+ (HFIX{DATA(J13))%1C24
JMZ2 LT, I)=HFIX({DATA(J,3)/71009.0)140.699)
IFIMNAMELL,T)LEQ.ISTR)Y JM2{L14,1)=HFIX(DATA{J,T})
IFIMNAME (1ol 1uNELISTRY JM2{14,1)=HFIX(DATA{J,8)}
IFIF(UIOXel)eGELleY .GC TC 25
IFIDATYA(Js4) JLELFIIDX,1)%DATALJ,5)) GO TO 25
JMZULS, I)=HFIX(FLIDX,1}*DATA(J+5))
GC TC 29

25
29

31

33

34

35

26
27
32

310

JMZLL5: T)=HFIX(DATALJ»4))
COMTINUE

N=.

R=5.5

DO 32 I=1+64
IF(MNAME(2,1Y.EQ.Q) GO TO 32
g0 27 L=1,64
IF(MNAME(2,L).EQ.D) GC TQ 27
00 26 M=4,8
1F{MNAME (M, L) NE.MNAME(2,1)) GO YO 26
CC 31 J=6,7
Kl=JM2{J,1)/128
IFIK1.EQ.L) GO TG 27
Kl=JM2(Je[)={K1%128)
[F(KL.EQ.L) GO TO 27
CCHNTINUE

J=b

Kl=JM2{J,1)/128
IFIK1.NELO) GO TO 34

JMa{ I, 1)=JM2(J, 1) +(L%128)
S50 TQ 27
K1=JM2(J,1)-{K1*128)
IF(KL.NELD) GO TO 35
ISR ERL FANPFRS X IE

GC TD 27

J=J+]

IFtJ.LE.T) GO TGO 33

CALL OVFLMG({241424L,51)

GG TQ 27

CONTINUE

CCHTINUE

CCNTINUE

RETURN

cthNL

BITHWRT
i

Lbab
GO

START
EQU
8C

o

IiC
STM
BALR
USING
L

L

L

L

L

LR
S5LL

L

LA
LA

ARbL

SRL
uey
or
o1
4CT

T

HLK
TN

311

i BITHWRT(KWORDLENGTHsNBITS)

1D KWORD CONTAINS INFO. TO BE WRITT
15412(15) ENe LENGTH IS NO. OF
Xepe CHARACTERS TO BE WRITTEN
CLT'BITWRT ¢ CIVIDED BY 4{4 CHARACTE
2v17+28113) RS PER HALF~WORD, H CHAR
Byl : ACTERS FOR FULL WORD)

LY - MBITS IS AN ARRAY THAT HOLOS
Geflyel) THE OUTPU WORD{4 FULL WORDS
29d(0e9) ARE RECUIRED IF KWORD
Gy=XYFAELFIFCE IS A HALF~-WORD,
9eafiy1) 8 FULL WORDS IF KWORD
HeCL .9) [S A FULL-WORD

7¢5 ‘

Te8

FGp8leyl)

e

Geta

cel

3,7

646G

304

Te8

39030747

Sy L0AD

2917 ,281(13)
12(13) 4 X FF
15414

UNMIX

312

] UNMIX{INDXU, INDXL, IN, I0UT)

o] INDXU IS UPPER BIT POSITION OF
15,1G0(15) STRING TO BE RECOVERED FROM
Xege INPUT WORD IN

CLSYUNMI X INDXL 1S LOWER BIT POSITICN
£+8,281(13) MINUS 1 OF STRING TQ BE

By2 RECUVERED FROM INPUT WORD IN.

*,0 IN IS THE INPUT WORD FROM WHICH
245,001 INFORMATION IS TO BE OBTAINECL
byir(Dy4) IOUT WILL CCNTAIN THE
Gbyeiallie2) RECOVERED STRING IN PQOSITICNS
Gel2la) OME THRU INHDXU-INDXL

49000 3) ALL PARAMETERS ARE FULL wORD
2432

214

Ty 02)

TiDliy5)

2rE,28(13)

12(13)yX*FF?
15514

DALE

STAmT
Efl)
.

AW
i

- 5T

ALt
UsIin

ST

Ve

SLuk
T
(v
TR
N

313

. PACK(NSHIFT THRDy SWRDy MASK)

i YSHIFT INCICATES NOL. QF BIT
L3,15015) PAOSITICHNS TO RIGHT THAT TURL
X5 IS TN 82 SHIFTED REFIRE “EW
CLS'PACK! INFORMATICN IS FHTERTU FROM
Pel sy 2B117) SWR3,

Gt TWRD TS THE TARGET WORD 1470
¥y b WHICH THE TNFNRMATION FROM

SePl 1) SWRD IS FO BE PACKED.

TR Gl ADF(1S THE SGQURCE wWORD
Pt i) FEOM WHICH INFORMGTION 1S
iy L y2) ORTATNED,

2920 41 MASK TS & NMASK VARD. The
By L 22) CIT POSITICNS OF SWRD

byt CORRESPEMLING TO BITS OF MASLK
2y4 (4 1) THAT 1% 1 wlLl RE TRMNSFERED
Ry (.4 2) 1570 CRRRESPCNDING SHIFTED
Pa=FY2oa7433c67 CPOSITICRS OF TWRD.

€47 H1T POSTIICMS CF THE SHIFTED TWRU
Ey.l3) COHRRESPLNDING TO PRSTTIONS [W WHICH
Sk COMASE HAS 'S WILL BE UNCHANSGED
Dyt ALL PAREMFTERS ARS FULL WORD.

Gy (%)

Fy [92)

cal p28027%)

L2012)y XVFF

15414

ORIGIN
OF poppr, PAGE Is

QUALITY

314

SURROUTINE RANDUCIX,TY,YFL)
I¥=1X%65539

IF(IY) 54646
IY=1Y+2147483647+]

YFL=1Y

YFL=YFL*.4656613E-9

RETURN

ENT

5C

315

SUBROUTINE RANDN{(IX,;SsAM,V)
A=0.0 - s

DC 50 I=1,12

CALL RANDULIX,1Y,Y}

[x=1Y

AzAsY

V=(A‘6.°,*S+A‘M

RETURN

END

| ol *H

12

SHAPE FINDS NEXT 1/0 INTtRRUPT POINT EITHER AT /70

I[NNI

[

L
L

316

SUGROUTINE SHAPE(JOB,MODE,NMATNI)
CCMMON/BLK3/ IDIST{25),F(25,41),NDIST
COMMON/BLKT/ J(27,64)

INTEGER*Z J

TIATION OR AT 1/0 COMPLETION

J1'=J{11,J08)

CALL UNMIX{1541C+J11+ISHPNO)

1=2

IFLJ018,408)) 4,5,15

J{18,408)=7

50 TO Ll

1FI{MODE) 12410412

JU0,JOBY=IFIX(F{ISHPNG,1)%J{9,J08))

ANMATNTI=DL26,J08)

Lo TQ 55

JU26,JOBY=TFIX(F{ISHPNC,I422}%J(15,J08))

NVMATHI=d(26,308)

3C TO 5%

IFIMODE) 27y4l 23

IT-MP=1FIX{F{ISHPNO, I+1)%J1(9,J0FR}}
+IFIXCF{ISHPNO,T4+22)1%4(15,408)1}

[F{J{26¢JUBI=-1ITEMP) 25,430,309

NMATHI=TITEMP=J(26,J0B)

JU264JO0BY=ITEMP

GC TO 55

I1=1+1

IFLI-20) 23924435

JUZ6,J0B)=0(9,JGB)I+J(15,J08)

GC T 55

1TeMP=IFIXIFLISHPND, 1) %J{9,J0B)}
+IFIX(FLISHPNO,I+22)%5(15,408))

[FULJ(26,JORI=TTEMP]) 55445445
I=1+1

[Fi1=27) 4D2,47,35
MNMATNT =] TEMP-3(26, J0R)
JE26,JOB)=1TEMP

RETURN

ENL

5
5U

317

SUBROUTINE CKCPU(JOBO,JCBN)

CDMMUN/BLKIZIICECSZ ICCN.INloIFECSZ'IPCT IPLsIP2,1Q1,1
CQ2+10Q3, “IRe ISy ITAJMINBLKyMMCT MMST 3 MTOTAL NI #NIOS,
CNMDDS,NPCLqNPCS'- NCPUS, IFEDBK s IRNL1, IRN2yIRN3, IR
CNa IRNS , IRNGy IRNT, IRNB, IRNG, MMAPF , MMSPF
C

COMMON/BLKLS/IBWCTR(24),ICECI5,40) »ICECS,ICPUCLO), IPAS
CS{201) IFECSyIFEC{4J,4),IPROS(16),ISAVE(3,3),1VAL
COV(10),MALCI25645), MALCSyMAS(24),MAVL(12845)yMAVL
LS5y MODNM{24) 4 MTPLL24) 4 NAL[24) - NAA{24)+NAB,NAG,NA
CML{4D) ¢NBLK{128) 4NFB{3)+NIWMyNSCHED, NREQ(4
Coe24)sNTP(24) ,NTR(24),NUCA(24) :

C .
INTEGER*2 IBWCTRS4ICEC,ICECS)ICPU,IPASS4IFECS,IFEC,y1PRO

T - - ISAVE, IVALOVyMALC,MALCSyMAS4MAVL s MAVLS,MOD
. CNMyMTPL 4NA,NAA,NAB, NAGsNAML ¢ NBLK ¢ NFBy NIWMy NSCHEC,
CUNREQYNTPNTRyNUCA

INTEGER#%2 J,JOVFL

0O 12 1I=1,NCPUS . -

IF(ICPUL(I)~- JUBOilu.zo,lo

CONTINUE _

WRITE(6,12)J080,J 08N .
FORMAT (' CKCPU CAN NOT FIND JDBD— y145% TO REPLACE BY
CJCBN=*,14) L
RETURN

ICPULT) =JOBN

IPASS(T)=0

L0 SO [=1,HCPUS

IF(ICPUCT)}) 50,435,597
[PASS(TI=IPASS(TI+1

CONTINUE

RETURN

£ND

1l

(%1 Ve
Y

318

SUBRCUTINE CKIOS(J0BO0,JCBNY

COMMON/BLKLZ/ICECSZ ICCN, INL,IFECSZIPCT4IP1,41P2,1C1,I
CG2.103 IRy ISy ITA MINBLKyMMCT ,MMST,MTYOTAL,NI,NIOS,
CANMODS o NPCL W NPCS, NCPUS» IFEDBK,IRNL, IRN2,y IRN3, IR
LNGy IRNS, IRNG o IRNT » IRNE8 IRNG, MMAPF, MMSPF
L

COMYMON/BLKL6/IBWCTR(26),ICECI5,+40)»ICECS,ICPU(LO), IPAS
CS5020) IFECS, IFEC(404%),IPROS(16),ISAVE(3,3),IVAL
COVIL1T)yMALC (256451}, MALCS,MAS(24),MAVL{128,5},MAVL
CSyMODNM{24,MTPL1124) ,NAL24)}, NAA(24) 4NAByNAG,NA

CCMUELA2 Y NBLK(128)y NFB13) sNIWMyNSCHED, NREQ (4

TG

CUo2h) oNTP(24) W NTRE24) ,NUCAT2%)
L

INTCGER®2 IBWCTR,ICEC,ICRCS,ICPU, IPASS,IFECS,IFEC, IPRO
5, ISAVE, IVALCVyMALCyMALCSyMASMAVL y MAVLS ,MOD
LNV MTPLaNASNAA,NAB, NAGyNAML ,NBLK,NFB,NJWM,NSCHEC,
CNREQeNTP o NTReNUCA

INTEGER#%2 J,JOVFL
FINIC A JOB IN JPROS, REPLACE IT WITH NEW JOB{JOBN)

BU 1o I=1,N10S

IFCIPROSEIN~-JOBOILGy20,10

CONTINUE

RLTURN

IPROS(T)=JOBN

Irass(9)=C

B0 5% I=14NICS

IFCIPROSIT)ISU, 35,50

IPASS(3)=1PASS(9)+]

CONTINUE O
RETUKN CRICINAY
AT -0 pgagd@% AGE I8

C

- ‘ﬁﬁﬁﬁf‘r

(%2 I

~

319

SUBROUTINE LAST3({JOB,KEYTMR,NOY,NO2,NO3,J0BPT,IXCLD)
COMMON/BLKT/J12T7464)
CUMMDN/BLK16/15NCTR¢zai,ICEC{S.aol.lcecs ICPUL1D),IPAS
CS(201, IFECS, [FEC(4044),IPROS(L16),ISAVE(3,3), VAL
COVALZ)+ MALCL256,5), MALCS ¢MASt24) ,MAVL(128,5),MAVL
CSeMODNM{24),MTP1124) 4NA(24), NAA(24) 4NAB,NAG,NA
CML{4G) 4 NBLK{L128) 4NFBI3} 4NIWMyNSCHED,. o NREQ(4
-Cu,Z#l.NTP(24l NTR(241,NUCA{24) . ‘
C
INTEGER*2 I[BWCTR,yICEC,ICECSsICPU,IPASS,IFECS, IFEC, IPRD
€S, ISAVE . IVALOV MALC ;MALC S MAS MAVL,, MAVLS . MOD
CNMaMTPL +NAyNAA, NAB, NnG.NAﬂL.NBLK,NFB.anm.NSCHED.
CNREQ.NTPysNTR,NUCA : '
INTEGER®2 J,JOVFL
NDL1#NC2,ND3=LAST 3 IN CHAIN-NOl IS ON Borrnn o) RETURNED IF
NONE FOUND :
JOBPT=INOEX OF JOB (PASSED BACK)
KEYTMR=TMR OR SIMPLEX a
JOB IS THE JOB WE ARE CHECKING BELOW
LODK IN ICEC, FIND LAST 3 TG BOUNCE IN CPUS OR LAST IF TMR
NC1=2 : ‘
NG2=0
NO3= 2
IPNT=ICECS
NEXT=ICEC(2,IPNT)
IF(HNEXT-J0B) 24502
IPNT=ICEC(5,IPNT)
TFCIPNT+L) 1,3,1
WRITE(6,+4) JOB
FORMAT(3T7H ERROR-~DID NOT FIND JOB #####*v#¢*NO..IB)
RETURN
JOBPT=IPNT
IF(KEYTMR) 747,141
HERE FOR SIMPLEX CPU
I1PNT=ICEC(5, IPNT)
IFCIPNT+1) 8,99,8
JNAM:ICECIZ;IPNT)
IFIJNAMLEQ.JXCLD) GO TC 7
J2T=J{27,JNAM])
CALL UNMIX(3,2,427,IND3)
[FUING3)7,9,7
CALL UNMIX(8,7,427,INDR)
IFUINDBYT,10,7
CALL UNMIX{11,1(,J27,IND11)
IFTINDLYL)LL11,7

320

11 CALL UNMIX(2¢1¢J27,INDE2)
IFUIND2YT,7412 '
C CHECK rOR. HOLD

12 - CALL UNMIX{6,5,J2T4INCE)
IF{IND6)13413,7
13 NO3=NO2
KC2=NO1
NOL=IPNT
Gc 10 7
33 ROTURN
C JCu IS TMR

1:1 IPT=ICEC(S,1PNT)
IFUIPNT+1) 1G2,99,102

172 JNAM=1CEC(2, IPNT)
IF(JNAM.ED.JXCLD) GO TC 101
J27=J(27,JNAM]

C CHEUK FOR TMR
CALL UNMIX(1lsl.,d27,INDCEL)
IFUINDLILI)1IU1+1C14103

1.3 CALL UNMIX(3,1,427,1IN032)
IF(IND32-1)101,104,171

C JnaM [S INITIATED, IS NOT WAITING

1.4 CALL UNMIX{8,7,J27,1ND8)
[IFIINDEBYLOL.1036,4101
1.5 CAaLL UNMIX{6+54J27,INCE)
[FIINDOIL A LTZEs1 2L
JN A NOT=]1PNT
GG T3 171
£END

CPy

YOO

13

15
2

321

SUBROUTINE FEC(KEY,ITIME,I10PRN,I0PND)

IF I0PRN=0 THEN OPND IS TO BE MERGED INTO JCEC
AFTER ICLK IS GREATER THAN OR EQUAL TO ITIME
IF ICPRN=1 THEN A NEW SCHEDULE IS TO BE INITIATED

TO

COMMON/BLKT/J(27464)

COMMON/BLKE/ ICLK
COMMON/BLK12/ICECSZ o ICCNeINL,IFECSZ4IPCYIPL,IP2,1Q1+]
caz2,1Q3, IRy IS»ITAYMINBLK NNCT MMST MTOTAL NI 4NIOS,
CNMOOS.NPCL#NPCS, NCPUS, IFEDBK, IRNI, IRN2, IRN3, IR
CN& oy IRN5 4 TRNOy IRNT» IRNB, [RND MMAPF , MMSPF
C .
COMMON/BLKL3/ RANAI .

CCMMON/BLKS/ JOVFL{1C24)
COMMON/BLKL6/IBWCTR(241 yICEC{5,40),ICECSICPU(L10),1IPAS
CsS{22), IFECSyIFEC(4N,+4),IPRAS(16),ISAVE(3,3), VAL
COVALLD) s MALC (256,450, MALCS,MAS(24) ¢MAVLI12895)¢yMAVL
CSyMODNMI24),MTPL(24) yNAL2G), NAA{24) s NAB, NAG 4 NA
CMLIGD)) NBLKI12B) yNFBL3) sNIWMyNSCHED, NREQ(4
2o 24} NTP{24) 4 NTR(24),NUCA(24) o
C

INTEGER*2 [BWCTR,ICEC,ICECS,ICPU,IPASSIFECSyIFEC, IPRO
CSy [SAVE, IVALOVyMALC MALCSyMAS, MAVL , MAVLS 4MOD
CAMyMTP1,NA,NAA, NAB, NAG+NAML JNBLK 4 NFB s NJWMyNSCHEE,
CNREQyNTPyNTR,NUCA

INTEGER*2 J,JOVFL,ICLK

GC T3 (10,23044%0) 4KEY

HERL FOR INSERTION OF 'a NEW ENTRY

ITrMP=~1

I=IFECS

IF{IFECS) 13,13,15

-

GC T4 59

IF(ITIME-TFEC(I 1)) 25,20,29)
[Yemp=]

I=IFECII %)

[FEI) 25425,15

K=C

K=K+l

1FIK-IFECSZ) 45,45,35
WRITE(6,40) IDPRN'[DPND,ITIME
FCRMAT[2DH NO RCOM IN IFEC FOR, 18+ 2HONy 18, 2HAT, 112)
GC TO TO

IFUIFEC(K,4)) 30,50C,3(
IFEC(K,1}=1TIME
IFECIK,2)=TAOPRN

54
55

bl
7.

200

235
212
215

22,
I

235
24

26 .
27
275

0

322

IFECIKs3)=10PND

IFECIKs4)=1]

TFLIUPND) 544354,52

J2T=J{2T4.1CPND)

CALL PACKI1Z24J2741,1)

JUZTIOPND)Y=J2T

IF(ITEMPY 55,55,6C

IFECS=K

GO TO 72

IFECLITEMP 4) =K

RETURN

HERES FOR REMOVAL OF LLADING ENTRY OR ENTRIES
[=TFECS

IF¢IY 210,210,205 :
IF{IFEC(Y, 1 -ICLK) 215,215,219

RETURN

IFECS=TFEC (I 44}

IFIIFEC{I+2)-1) 225,220,225

WRITELE ACDY [COLK

FORMATL Y FEC-TIMZ =*,]5,% SETS NSCHED!')
NSCHED=1

GO T 285

IFOIFEC(I42})) 28542304285
JORP=IFEC(I,3)

JET=J127,4J08P)

CALL UNMIX{Ll,0CaJ2T,IND)

IF{IND) 235,235,28(

[F{J12,J0BP)) 2453,2T7C424D

Ol 245 KX=2,5

IF(J{KX s JOBP).EQ.D}Y GO TO 279
IPREC=J(KX,J0BP)
IF(ICLK=J{8,IPRENI-2%j(14,IPRED)) 245,245,280
COMTINUE

J22=4122,J0BP}

CALL UNMIX{1ls7,Jd22+1ND)

IFCIND)Y 272,270,250

DO 25%5% KX=1,1.

IVALOV{KX) =0

CALL OVFLMGID,J08P,1,1vaLOv,1)

CO 263 KX=1,1¢

TF{IVALOVIKX)Y.EQ.C) GO TO 272
IPRFU=IVALOVIKX)

TF(ICLK=-J(8, IPRED}=2%J(14,IPRED}) 265,260,280
CONT I NUE

WHITE(H,275) ICLK,JQBP

FOIMAT(Y FEC TO CEC-TINME =%,15,% JOB = ',15)

323

CALL CEC{1l.,408BP)
28¢ J27=J1217,J0BP)
CALL PACK{IN,J274+0,4096)
Jiz21,408P)=327
285 IFEC({I,1)=0
. IFEC(I,2)=2
[FEC(1430=0
TIFEC i Ie4)=0
: G0 YO 299
€ TO HERE FOR FINDING EXIT TIME OF LEADING ENTRY
43¢ . I=1FECS
[F(1) 405,405,410
405 0 IPASS(8)=-1
: . RETURN
41C ‘,IPAS;(B)'IFEC(I'li
. RETURN :
END

324

SUBRUUTINE CECUKNOW,K)

COMMON/BLKT/AJ(27,64}

coMMON/BLKA/ TCLK
CCVMON/BLKL2/ICECSZ o ICCN INLo IFECSZIPCT»IPLoIP2,1IQL4I
Lh2+103, IRy IS, TTAYMINBLK yMMCT o MMST yMTOTAL ¢NIJNICS,
UNMODSNPCL ¢ NPCS NCPUS,TFEDBKy IRNL, IRN2, IRN3, IR
LGy IRNSy IRNG Y IRNT, [RNBy IRND, MMAPE ¢ MMSPF

L
COMMON/BLKI3/RP UL RPIZ2ZyRP L3y RPL4,RPOS,RPOGLRPITHRPLB,4R
LL35, RPL:4RPL1

-
e

CCrMON/BLK16/IBWCTRI24),ICEC1S5+40),ICECS,ICPULLID),IPAS
L5020), IFECS,IFEC(42,4),[PROSI16),15AVEL3,43),IVAL
CUOVILII) o MALC(25645), MALCS ,MAS124) o MAVLIUL128,5) MAVL
LSeMODNM(24) MTPLI24) 4+ NA(24) NAA(Z24) NAB+NAG,NA
CMLUGT) NBLKIL128) yNFB (3 NIJWM,NSCHED, NREQ(4
CTlrza) dNTP{24) 4y NTRIZ24A) S NUCAL24)

L

INTEGER%*2 IBWCTRZ,ICEC,ICECSyICPU,IPASS,IFRECSsIFEC, IPRO
LSy [SAVES IVALCV,MALL) MALCS+MAS,MAVL y MAVLS ,M0OD
CAMZMTPL NAyNAALNAB, NAGsNAML yNBLK ,NFB NJWMyNSCHEL,
CHREQSNTPZNTR,NUCA

INTEGER®2 Jy JOVFL, ICLK

GO TO (12413C,120U453.0) +KNOW

C TO HERZ FOR PLACING A NEW ENTRY INTO ICEC ARRAY

1.
12
15

2.
22

3.

37

1=1
LFOICECI2,00) 15,37,15

I=1+1

IF(T-1CECSZ) 12412420
WRITE(6422)

EGRMAT(LTH SUB CEC ALL FULL)
RE TURN
[CECUZaT)
ICLC(3,1)
1C:C(1y1)
1C Clbyf) = ,
1C.CU5,0)=2 C@'@@O
JZ1=3127,K) S % o
CALL UNMIX(17,9,4274IND) Ay,
IF(IND.EQ") 6O TO 32

IF(J1E,K))32032,33

ILT=d(17+K)

CALL UNMIX{L11,74J1T7+MMS)

JU264K) =IF X (MMSEMINBLK*RP 18)

Ab¥W=8345

K
ICLK

iotouou

325

NJWM=NJWM+]
GO TO 34 . -
325) FURMAT(' CEC HAS PLACED JOB'4l4,* INTO ICEC POSITICN®,
cle)) T o :
3505 FORMAT(® CEC NOW CALLS SHAPE FOR J0B',14)
33 CALL SHAPE (KsCyNMATNI)
NEW=5
34 . NSET=NEW
CALL PACK{D4yJ2T)NEW,NSET)
J(2T,K) =427
IPASS{1)=IPASS(1)+1
_ KK=IPASS(1)-IPASS{2)
35 IF{IPASSI2)-1Q1) 47,40,50
4 IFUIPASS{21.G5.103) GO TO 42
IFCIPASS(2}.GEL5) GO TO 44
IF(IPASS(2).GEL3) GO TG 46
IFIKK) 50,50,70

42 TFIKK=5) 535,79,70
44 IF(KK=3) 50,72,70
46 CIFIKK=2) 53,7.,70
57 J12=J(12,K)

- CALL UNMIX{l4,1GyJd12,1INDLY

IFUINCL-IPL) 55,70.,7C

55 INC=J(25K)}=ICLK

‘ KTEMPl=J13,K)

KTEMPZ=ICON/MMCT
U=4 G%FLOAT(KTEMPL)/FLCAT(KTEMP2)
[FOIND-IFIX(D)} 7~,7u.75

T NSCHED=1

.15 RETURN

C TO HERE FOR A NEW SCHEDULE
1.0 NSET=D3
I[=1
[CLCS=-1
[PASS(2)=0
IPASS{1L)=
NCNT=G
103 NPL=ICECS
1eb IFCICEC(2s1)) 150411C,150
L1 [=[+1
' IF(I-ICECSZ) 175,135,122
120 WRITE(6,4125) NCNT .
125 FCRMAT{* AT THIS NEW SCHEDULE CALL TO CEC 1CEC HAD®,
L T4¢1Xy *ENTRIES?)
.
[PASS{L1)=NCNT

326

IPASS(2)=NCNT
[FINCNTLEQ.O) GO TO 140
LU 135 KKK=1,1CECS?Z
IF{ICEC(2,KKK)JNELD) WRITE(6H,130) KKK (TCECIKY sKKK) o KY
L=1,5)
130 FORMATIO6(IX,1T))
135 CONTIHUE

. 14. RETURN

15. JNAM=ICEC(241)
NCNT=NCNT+IL
Crmm=- INTERNAL PRIORITY CALCULATICN
Léo J2T=d{2T+ INAM)
J1Z2=J1124INAM)
CALL UNMIXU1S,1C,J12,NEXP)
INP=TFIXINEXPXRPS3)
IPRT=3(22yJNAM)
J25=J125,yJNAM)
[FCJ25~ICLK) 165,165,174
L5 NULNZIFIX{RPT4%{RPIE~-IFLOAT{ICLK~J25)}/FLOATIIPRT)))
L T 172
e NELN=IFIX(RPIo*%{RP{6=(FLOAT{J25~TICLKI/FLOAT{IPRT)})])
17< 1F{NOLNLLTLCO) NDLN=D
Lis INP=INP+NDLN
IT. MP=ICEC(3,1)
TEMP=FLOAT(ICLK-ITEMP)/(FLOAT(IPRT}*RPN6)
[WAIT=1./(RPOB*(1.+TEMP)}
[FOIWAIT) 178,185+185
1749 TwalT=4
S5C TC 185
18 [FITEMP.GT.1a) GO TO 182
IWATT=IFIXITEMPHRPOY)
6N TC 185
16z FWAIT=TFIX(RPISE{1.+,5%TEMP])
1A% INO=INP+IWAIT
TFCLF-DBKY 19591954192,

L9, 97320023, INAM) YRIGINAL
CALL UNMIX(T7434J23,MPRF) OF pogp s AGE g
[NP=INP+MPRF QUALy

1% TRCINP.GTL255) INP=255 !
J1 =J01 . yJNAM)
CALL PACK{T,J13,I8P,2585)
JULyJNAM)Y =1
IC=C{l,1)=INP
IFINSETLEQ.1) 5C 7O 5.3,
[2a55(2)=1PASS(2)+1

327

CALL UNMIX{5,4,427,IND)
IF{IND.EQ.1) IPASS(11)=IPASS(11})+]
C NOW LINK JNAM INTO CHAIN ACCORDING TO INTERNAL PRiORITY
20 NTEMP =3
‘ IF{ICECS) 210,210;4220
2Ly ICECS=1
- ICEC(541)=~1
' G0 TO 450
224 IFUICEC(L,1)~ ICEC{I,NPL)) 2304239,260
23u NTEMP=NPL
NPL=ICEC(54NPL)
IFINPL) 243,240,222
24L ICEC(5yNTEMP) =]
[CEC(SeI)=-
GC TO 4CO _
260 {FINTEMP) 275,265,275
265 [CECS=1
- ICEC(S,I}=NPL
. 00 TO 40D
275 ICECISyNTEMP) =1
ICEC(S,11=NPL
A I=1+1 ;
IFLI-1CECSZ}Y 103,103,120
C TO HERZ FOR JOB COMPLETION
10%s IFQICECS) 990,990,1705
39y, WRITE(G, 9951
995 FOAMATI Y ¢, taxsRfRROR®%%% CEC WAS CALLED FDR REMNOVAL 0
LF A J0B FROM ICEC AND ICEC IS EMPTY')
v _ ‘ .
RETURN
1229 JX=ICECS ' ,
Lol IFLICEC(24dX)=K) L32242% :,102""
1oetl NTEMP=JX
JX=TCEC{5+JdX)
IF(JIX) 1235,1532,1510G
173 WRITE(6,1C31}) K,K]
143l FORMAT(C #%x%ERROR#*%#%% CEC WAS CALLED FOR COMPLETIGN O
CF JOB*y T4/ ' BUT JDB',164,* WAS NOT FOUND IN ICEC CHAIL

CNeCEC WILL t/ " CHECK TO SEE IF THE Jng 1S |
CN TCZC BUT UNCHAINED')
I=1

1C4c TFUICECI241I)-K) 1C6041C50,41669
125, €O 1355 NR=1,5
1.55% ICECINRSI)=0
IPASS(L)=1PASS(1)~1
RETURN

I
(1]

LRV LN o8
tow
-
o

o]
wd
ot
')

BN e

328

[=1+1

IF(I-ICECSI) 1J4C104%,1070
RETURN

IF{JX~-ICECS) £723+2710,2022
[CECS=1ICEC({(5,JX)

GC TG 2032
ICECIB,NTEMPI=ILEC(5,JX)

LO 2343 NR=1,5

[CCCINRyJX)Y=0

J2T=M{27+K)

CALL PACKU 1,J27+%,1)
JI2T,K)=027
IPASS(LY=TPASS(1]=-1
IPAs5{2)Y=1PASS(2)-1
J11=J{11,K)

CALL UNMIX(19s2+d11,INCL}
IF(INGL=IR)Y 2.5:42780,2787
Jef=J{27:K)

CALL UNMIR{LIT 94027 INLLD
TFLINDYL)Y 27770,22673,2707.0
J17=J(17,K)

CALL UNMIX{11,7,J17,INCLY
IFCTNDLI=MMSTY 2271,208,208)
KK=IPASS(L1)}-IPASS(2)
IF(IPASS(2)=I01) 227142071 ,9999
[FLIPASSE2).GELL10) 6C TO 2072
IFLIPASSL2Y GELS) RO TC 2474
IF{IPASS(2).6E.3) GO TC 2276
IF{KK) 99499,9939,2,8.
[IEF(KK=5) 3G99,2080,2083
IF{XKK=3) 9999,2 .47 ,238¢
[F{KK=2) 9999,2 87,2387
NSCHeE=1

RETURN

T MHERE FOR RECALCULATICON OF PRIDRITIES
NS TT=1

TFIICECS LR " DR ICECS.GT.ICECSZ) GO Ti) 5490
KK =

I=1CECS
IFLT.LE.D) GO TO 3727
KK=KKt]
NAVLIKK) =T
1=1030(%,1) o
GO IO 5410 A G4
Lo D Lp
LC «T=KK e AGE .
KK =" "o 90, Ll

5{ 390

5050

BAEY
5MTC

5067
5497

329

KK=KK+]

IF{KK.GT.LCNT) GO YO 5{50

E=NAMLIKK)

JNAM=TCEC{2,1)

GG TO 167 :

DO 5060 I=14,LCNT

CC 5260 KK=],LCNT

lF(lCEC(IoNAML(I)l-GE lCEC(I'N&ML(KK!l) GD TO 5060
[TEMP=NAML(T) -

NAMLET J=NAML(KK)

- NAML{KK)}=1TEMP

CCNTINUE

ICECS=NAML(1)

{=l

I=l+} :
IF(I.EQ.LCNT) GO TO SuBp
IC“C(S:NAML[I))*NAMLII*I}
GO TOQ SG70

JCEC!5:NAML[I!)'—1
- NSET=0

RETURN
END

330

SURICUTINE HLS(KEY,JCB)

CIVMENSION [SUCCVI1Z)

INTEGER#*2 1SUCCV

INTEGER RVEF/'RVEF'Y/,STLCV/'STOVY/

COMMIIN/BLK3/ IDIST(25) ¢F{25,41) 4NDIST

COMMAR/BLKT/ 2T ,64)

CCMMON/BLKR/Z ICLK

COMMON/BLKL2/ICECSZsTCCN INL2IFECSZIPCTIPL,IP2,1G1,1
CU2,103, IR, ISy ITA,MINBLRK ¢MMCT 3 MMST,MTOTAL,NI,NIOS,
UNMOBLS W NPCL G NPCS, NCPUS, IFEDBK, IRN1, IRN2, IRN3, R
CNG o TRN5, IRNG, TRN7 . IRNS, IRND, MMAPF , MMSPF
C

CCMMON/BLK13/RPI1,RPO2,RPO3,RPO4RPOS,RPN6,RPLOT,RPLE,R
LPI9, RP1Z,RP11]

COMMON/BLKLI6/IBWCTR(24) ,ICEC(5,40) ,ICECS,ICPU(17),1PAS
CS{25) IFECS,IFECI4),4) IPROS{16) 3 ISAVEL3,3), [VAL
LCVILT) g MALC (256,51}, MALCS yMAS(24) ¢MAVL (128.5),MAVL
CseMOUNMIZA) yMTPL(26) 4NAL24), NAA(24) yNARSNAGSNA
CMLE4) o NBLK(123),MNFB(3),NJWM,NSCHEC, NKEQ (4
Counlh) yHTP (24}, NTR(24) NUCAL24)

INTEGER®2 [BWCTR, ICEC, ICECS»ICPU, IPASS, IFZCS, [FEC, IPRO
LSy 1SAVE, IVALCY yMALC 4 MALCS, MAS y MAVL s MAVLS, MDD
UNM o MTPL o NASNEA » NAB NAGsNAML yNBLK s NFB, NJWM,NSCHET,
CNREQaNTP G NTRyHUCA

INTSGER®2 J, JOVFL, 1CLK

NCPRUN=D

5C TU (12,558,1208) 4KEY

HERE FOR INITIAL J-TAHLE SCAN

i=:

CC 250 NXX=1,25 1

LECIRISTINXX)JEGLRVEF) GO TO 251 U, v

e

CONTINUE ‘ _ u@'ggag'-
ICAZRV=NXX C QU

LT 252 NXX=1,25 , T
IF(IDISTINXX)JEQ.STOV) GO TQ 253

CONTINUS

Li XSTO=NXX

L=1+1

LTF(I=~64) 27420y 13.

J1=3(1,1)

CALL UNMIXUT7459J1s IND)

IFLTNG) 32.15,30

JX=d(10, 1)

331

CALL UNMIX{T4CoIXeINM]
MIX=NPCSSINM+NPCL*(1CO~INM)
FMIX=FLOAT(MIX)®%,01

MNARC= [FIX(FLU&T(ICUN)/((FLDAT[[TA’*FLDA"IPCT"FHI!]‘
C.01))

JX=J{1li, 1)

CALL PACKID,JJXsMNARC,1C23)

JUlly D) =X

JX=J{12,1) '

IND=IFIX(MNARC*RP(9)

CALL PACK{Q4+JX,1IND41023)

Jl12,10=JX

JX=d(13,1)

MNAR] = fCONfIF[X(FLUAT'ITA+[RN6*IRN7*]PCT'* 01}
CALL RANDUUIRNZ,IXXRAN)

IRNZ=TXX

MNARI=IFIX{FLOAT({MNARI)*(.5+RAN))

CALL PACK{DsJXysMNARI,1C23)

JU13,101=JX

IX=3(21,1)

IND=MNARI/3

CAaLL PACK{QOsJX+IND,1023)

Ji21,11=JX

Jit=Jd(1l1,1)

CALL UNMIX(l4,10yJ11,ISHPND)

KYEMPLI=J(9,])

NSHPTS=IFIX{F{ISHPND,21})

ISTOC=iFIX (MNARC®RP)9)

[STDI=MNARI/?

RM=FLOAT(MNARC)

STOR=FLOAT{ISTDC)
PM=(FLOAT{KTEMPLI}/(F{ISHPNO,21)+1.)
CKTEMP=J(15,41)
STOP=F(IDXSTD,ISHPNO+1)=FLOAT(KTEMPL]

CALL NORPRB(PMySTOP,RM,STOR,IDXERN,PROBC)
[PRT= [FIX((PROBC*(1.-PRUEC,*[FLDAT(IF[X(PM/RH"+ RRER
CNSHPTS+1))

HM=FLOAT(MNARI)

STCR=FLOAT(ISTLI)
PN=(FLOATI(KTEMP))/FLTSHPNOs21)
STOP=F{IDXSTDISHPNO+21)%FLOAT(KTENP)

CALL NORPRB(PMySTOP+RM,STDR,IDXERN+PROBIL)
[PRT= IPRT+IFIX(‘PRUB[*(lo*PRUBI)*(FLOAT‘[FIX(PMIR”"*-
Lb‘l* . INSHPTS))
L 4
J{2Q,1)=]PRY

332

IF(J(Las) JLEL2%IPRT) Jllé,e1)=2%1PRT
J2T=J(27,1)
CALL PACKI{14J27¢8344,8344)
' J12T41)=027
w1 Jx=J4{17, 1"
CALL UNMIX(LlLl,1,dXsMMS)
LCTIVM=IFIX(RPUBR(MINBLKAMMSHMMCT)) /ICON
IF(J(L14,1)~1FIX(RPOTI®{LOTIM®J(20,1}1) 375,375,305
JFIMMS-MTOTAL/4C) 327,310,310
J12=J112,1)
CALL UNMIXI(15,1C,J12,INC)
IFTIND-30) 310,375,375
31. nSUC=C
 KX=5
315 KX=HKX+]
[F{KX=T) 32)432¢434C
320 JX=J(KX: 1)
CALL UNMIX(T,C 4%y IND)
TFLINLY 3377.237.325
3.5 NEUC=RSUCHL
30 CALL UNMIX{14,7,JX,IND)
[F{I40) 315,315,335
3i5 NSUC=NSUC+1]
<C TG 315
14, JX=J(22,11}
CALL UNMIX(2,1,JX,IND)
TFCINGY 377,377,345
LX) hC 347 KX=1,410
3e7 VAL IV(IKX) =C
CALL OVFLMG(1l,1,2,IVALCV,:10Q)
LG 362 KX=1,19
TFITVALOVIKX)) 355,436,355
R NSUC=NSUC+]1

Wl

W W
-~ L0

A ey CUNMTINUE
2 [FINSUC-NITS=NCPUS) 371,372,372
i7: KToMD1=ASUC Co.

S0 T 373

37, KT-M21=NINS+NCPUS
375 KTIMP2=0{14,1)
KT M2 2=MMS
JX=J{2T,1) -
CALL UNMIX{L1,12,J%X4INE)
TFEINDRLZGQ.Y) KTEM23I=3%KTEMPA
IFOLFLOATEIRNB)Y /10)% {FLOATIKTEMPI}/FLOAT(MTOTALY)
- . ~(FLOAT(LDTIMIFFLOAT(KTEMPLY) /FLOATIKTL™P?2
)y 3T5,387 43870

333

375 JX=J12T,1)
CALL PACK‘U[JX!5121512)

J{2T7,1Y=JX
- 3BC MX=1
3s MX=MX+1
. IF(MX=5) 40,40,70
40 IPRED=JIMX,I1) -

IF({IPRED) 35,35,45
45 IF{J(8,IPRED).EQ.0} GC TO 15
_ IF{ICLK=~J(8yIPRED)=2%J (14, IPRED)) 35,15,15
¢ J22=J(22.1) ‘
CALL UNMIX(1,04J22,IND)
- IFCIND) 75,100,75
75 CC 77 MX=1,10

I & {VaLOV(MX) =0

CALL OVFLMG({lsI,1,IVALCV,1])
MRITE(6,13R80)1
138C FORMAT{Y HLS CALLED QVFLMG YO CHECK FOR PREDS QOF JOB?Y,

ClB,¥v757)
. KX=0
B0 - KX=KX+1
S TF(KX=19) 85,85,120
85 IF(IVALOVIKX)) 9GC,192498

a1 [PRED=IVALOVIKX)
S LFE(J(8,IPRED).EQ.O)} GC TO 15
[F(ICLK-J(B8,IPRED)~2%J(144IPRED)) BO,15,15
1°. J2T=J(274 1)
: CALL UNMIX(94B, 32T IND)
_ IF{IND) 105,110,105
135 HOPRD=J(14,1)
: GC TO 115 ‘
Py’ ISTC=J(14,1)/3
‘ TEMOLl=FLOAT(ISTD)
CKTEMDP2=3(14,41)
TEMPZ=FLOATI{KTEMP2)
CALL RANDN(IRNI,TEMPLl,TEMP2,RANI}
NPRD=TABS{IFIX{RAN))
[FIFLCATINPRD) sGT.TEMP2+3 . 2TEMPL) NPRD=NPRC/2
115 J{25,1)=J(8,1)+NPRD
TF{ICLK#2% (20, 1) aGT. 302511} 25,1)=1CLK+2%J{20,1)
CCALL UNMIX{10,9,427,IND)
IF(IND.EQ.D) GO TO 116
IFIJIB,1).EQ.D) GO TO 116
LCTIM=(
. GC TOo 117
11& J17=J(17,1)

334

CALL UNMIX(1lls0,J17,MM5)
LOTIM=IFIX{(RPIBA(MINBLK*MMSHMMCT)} /ICON

117 INC=IFIX{RPOG%(J(2C,1)+LOTIM))
IF{J025, 1) -TCLK-IND) 120,120,125

12\ CONTINUE

1300 FORMAT(' HLS WILL NOW CALL CEC FOR INSERTICN OF 408°',1

Y ' INTO ICEC, NOWRUN=',12,* 120°')
L

CALL CEC(1,1)

GC TC 128

125 NTT=J(25,1)-INE
WRITE(6+1320) [+NOWRUNGNTT
1320 FORMAT(' HLS WILL NOW CALL FEC FOR INSERTICN OF JOB',I
Cal ' INTO IFEC, NOWRUN=',T12,' NTT=¢,[56,! 125
vl
CALL FECUU4NTT,C,1}
124 [FINOWRUN) 15,415,129
L 129 NOWRUN=N
G0 TO 1160
T RETUAN
C Tu +ERE FOR INITIAL ASSIGNMENT OF PROCESSORS AFTER NEW SCH
CEpUL e
57 [=ICECS
1IF11Y 523,528,525
WRITE{6,523)
FOAMAT(Y CURRENT EVENTS CHAIN EMPTY ON INITIAL CALL TO
C FLS 50G*)
RETURN
Ly NFCPU=D
L0 530 K=1,NCPUS
53¢ IF(ICPULK) . EQD) NFCPU=NFCPU+L
545 NELOP=2
LC 55C K=1,NIOS
5% IF(IPROSIKILEQ.D) NFIOP=NFIQP+1
“hY JINGX=1CEC(2,1)
J2T=J(2T+JINDX))
CALL UNMIX(14,13,J27,LCAD)
TF(LOAD) 575,575,57"
S IF{IPASS{S1-1Q2) 575,5754659
575 INE =L
CALL PACKI({3,IND,J27,1C53)
(F{IND.EQ.S) GO TO 64C
I[FIIND.EQ.9) GO TO 645
IFCINDLERL1029) GO TG 599
IF{INDLEQ..IQ33) GO TG 629
30 TJ 650

[SRR |
)™~
et 172

594
595

6CC

ELS

6173
620
" 625

635

635
644

645
&5u
- E53
.654
655

67¢
675

647

C

335

IFINFCPU-3) 650,595,595

CALL CKCPU{OQ,JINDX)
NFCPU=NFCPU-1

CALL CKCPU(O,JINDX)
NFCPU=NFCPU=~1

CALL CKCPU{Q,JINDX)
NFCPU=NFCPU-1

CALL PACK(0,J27,24134)
JU2T,JINDX)=027
INCC=ICEC(%,1)=-{ICEC(4,])/2)%2

IFCINDCJEQWLO) ICECI4,1)=ICEC(&H,I)+1

IPASS(3)=IPASS{3)+1

IFILOAD.EQ.O) IPASS{4)}=IPASS(4)+]

IFINFCPU) 650,610,650

LFINFIOP) 650,655,650

[FI{NFIOP-3) 650,625,625

CALL CKIOS(GsJINDX)

NFIOP=NFIQP-1

CALL CKIOS(0,JINDX)

NFIOP=NFIQP-1 ,
IFILOAD.ED.1) IPASS(5)=IPASS(S)+2
CALL CKIOSI0,JINDX)

NFIOP=NFIGP-1

MASK=2186

TF{LOAD.EQ.1) MASK=2184

CALL PACK(JsJ27+2178,MASK)
JUETyJINDX)=J27

IF(LOAD.EQ.1) IPASS(5}=IPASS{5)+1
GC TC 605

[F{IND=2) 6404665,647
IF(NFCPU.GT.C) GO TO 60C
TIFINFIOP) 655,655,650
[FINFIOP.GT.0) GO TO 630
IF{NFCPU) 655,655,650

I=ICEC(5,1)

IF(1} 655,655,565

FCRMAT(* HLS HAS ASSIGNED CPU NO,®
FCRMAT(® HLS HAS ASSIGNED ICP NO.*
LG 670 IX=1,NCPUS

»13,% TO J0B*,13)
+13," TO JOB',13)

TFCICPULIX)LNELC) WRITE(64653) IX, ICPUCTX)

CONTINUE
. EC 680 IX=1,4NI1QS

IF{IPROSTIX).NE.D) WRITE(64654) X, IPROS(IX)

CCNTINUE
RETURN
70 HERE FOR J0B CCMPLETICN

122
1344

1.17
136,

BN

)

336

CONTINUE

FCRMAT(* HLS WILL NOW CALL CEC FOR REMOVAL OF JOB*,14/
C * FROM ICEC FOLLOWING JOB CCMPLETICN, 13€0
c*)

CALL CEC(3,40B)

Jer=Jd127,408)

CALL UNMIX(T+64J27,IND)
LECINDLEQ.D) [PASS{3)}=IPASS{3)~1
1PASS{a1=1PASS(4])~+]
J(d+JOBI=ICLK

..”18!-]0513"1

J‘261J051=Q .

Ji=J{19,J08) :

CALL PACK{2,J1043,32€43)
Ji17,J0BY=J12

IF(J(2,J0B)) 1C195,1C%%,1019

CALL UNMIX{9,484J27,IND)

IFCIND) 1917,1005,1213
16v0=0014,4083/73
TEMPL=FLOAT{ISTD}
KT:=MP2=0(14,JC8)
[-wp2=FLOATIKTEMPZ)

CALL RANON(IRNI,TEMPLl,TEMPZ,RAN)
NPRO=TABS{IFIX(RAN))

S5C Ta 1211

NPAD=J(1l4,+40B)
[F(J(B8,J0R)=-J(25,J08}) 1912,1C13,1C13
J(25,J0B)=J(25,J0B) +NPRD

SC T 17015
J125,0081=3(8,JCB)+NPRC

¢

TF{ICLK42%002°,J08)+0T4J(25,J0B)) J(25,J081=1CLK+2%4(2

CuedNd)
CALL UNMIX(LC 9,427, 1INL)
IFLINDLEQ.) GD TO 1216
[FLJL8,1).EQ.0) GO TO 1716
LCTIM=D
GO 15 1417
JIT=0(17,408)
CALL UNMEX(L1L1y2,J1T7,MM5)
LETIM=IFIX{RPOB®(MINBLKEMMSEMMCT)) /ICON
NTT=Ji25,:JOB)=TFIXIRPIE¥{J(20,JOR)+LDTIM))

FOIMAT(Y HLS WILL NOw CALL FEC FOR INSERTICN OF J0B'.I

Calt "¢ {NTO IFEC AFTER J(B COMPLETICN,
et 12150)

CALL FECCUL NTTy 2, J0R)

JzT=402T74408)

NTT=%,16

337

CALL UNMIX{1Cs9,J27,INC} . _
IF(IND) 1080,1020,1080 ' ~
1920 Jl=J(1,J0B) '
CALL PACK(0,J2T,16,16)
JU27,J081)=427
CALL UNMIX(15,7TsJ1lyIND}
IFCIND) 102541030,1025
1025 CONTINUE
1126 FORMAT(* HLS WILL NOW CALL MEMRLS TO RELEASE BLUCK'1I4
: Co/ ' FROM JOB',14)

CarLt MEMRLS{JOB,IND)
CALL PACK(T4+J1,+04+255)
‘ J{1,J0B1=J1
1230 J19=Jti9,J08)
CALL UNMIX(8,0,J19,IND)
[F{INCY 1035,1C40,1035
1335 CONTINUE
CALL. MEMRLS(JOB,IND)
CALL PACKID,J1940,255)
J{19,J08)=J19
1240 JE7=J(17,408)
CALL UNMIX(15,11,J174INCU}
CALL UNMIX(12+8,419+INCL]}
INC=2
CALL PACK({JsIND,INDL,15)}
CALL PACK(4,:INDyINDU,+15)
IF(IND) 1245,1050,1045
1045 CCNTINUE
: CALL MEMRLS(JOB,IND)
CALL PACKIB8,3,J19+04+15)
J{19,J08)=J19
CALL PACK(lleJd17,0,15)
JULTLJd08B)=417
1650 J22=J(22,408)
CALL UNMIX(8,74d22,1IND)
IF(INC) 1055,138341055
1255 CO0 1257 KX=1,10
1557 IVALOVIKX) =0
o CALL OVFLMG(1,J08,8,[VALOV, 10}
KX=7
1067 KX=KX+1
IF{KX-19) 1365,1265,138J
1369 TF{IVALOVIKX)) 1{72,1C82,1070
15Ty INC=TVALOV{KX]}
' "WRITE(6,1026) IND,JOB

338

CALL MEMRLS(JOB,IND)
[VALOVIY)=KX=1
CALL OVFLMG(3,J08,8,1VALOVsL)
6G TC 1962
1.57 CONTINUE
C wILL NOw UPDATE PREDECESSCR FIELDS OF SUCCESSORS GOF JO8
1,90 JJx=5 .
S JIRETRN=1
[FLAG=1
1253 IFLAG=-TFLAG
IF(IFLAG) 1£9541105,1135
L.95 JJX=JJX+1
IF{JIX=7) 1102,1137,1175
11252 JwRL=J(JJX, 408}
CALL UNMIX(T7,lyJWRDsIDXSUC}
GC TR 1127

1i.5 CALL UNMIX{14,7,JWRD,ICXSUC)
11C7 IF(IGXSUCY 111€,1(93,1110
111s NJ27=4127,1DXSUCH

CALL UNMIX(13,12,NJ27,IND)
IF(INDLEQLL)Y GO TO 1160
CALL UNMIX{1+34NJ2TyINC])
IF{INC.E2G.1) GO TO 116G
KX=1
11i3 Kx=KX+l
[F¢{KX=5) 111541115,1133
1115 TF(J(KX, IDXSUC)) 1113,1113,112¢C
112, TF(J{KX, IDXSUCY=-J0BY 1125,1113,1125
115 IPREC=J KX, IDXSUC)
IF(J{R, IPRED)LEQ.Y) GC TO 1160
[F{ICLK-Jl 8, IPRED)-2%J{14,IPRED)) 1113,1165,116
11247 J2i=4(22,1CXSUCYH
Catl UNMIX{1l,2,022,ISPILL)
IF{ISPILLY 1136,1170,1138
1135 CH 1137 LX=1,17
1127 [VALOV(LX} =T A
CALL OVFLMGIL,IDXSUC,1,IVALOV,1D)
KX=C(
ila KX=KX+1
[F(KX~-10) 1l45,1145,117%
11lab IF(IVALOVIKX)) 114741170,1147
1147 IFCIVALOVIXKXY=JCRY 1150,114N,1159
1ia. [PREC=IVALOV{KX)
IF(JIB, IPREDYLEQ.OY GC TO 1167
[F{ICLK=JU8R, IPRFDI-2%J(14,IPRED)) 1142,116(41167
e IFCJIX-T) 1093,1393,1165

b

339

1165 IF(IRETRN) 1205,1205,1190
1176 1=10XSUC :
NCWRUN=1 '
C WILL WNOW BRANCH TO 100 FOR CALCULATION OF TARGET TIME
¢ FOR JOB IDXSUC AND INSERTION INTO ICEC OR IFEC
- 6C TC 109
L1175 J422=4(22,408)
‘ CALL UNMIX(2,14J224IRETRN)}
TF{IRETRN} 12205,1205,1180
118G DC 1181 MX=1,10
1181 ISuCOviMX)=0 & ‘
1185 CALL OVFLMG(1,J0B,2,15LCAV,10)
L MX=G
1i60 WX=MX+]
TF{MX~10) 1195,1195,12(C5
1195 IFCLISUCOVIMX)) 1203,119€,12Q0
120¢ [EXSUC=ISUCavVIMX)
of TC 1119
1245 RETYRN
cND

12
L3

i3

340

SUBRDUTINE NORPRB{PM,STOP,RM,STDR, IDXERN,PR(GB)

COMMON/BLK3/ IDIST(25),F{25,41)4NDIST
PRCB=S,4

TFIPM=3 MSTDP-RM+3 . 5STOR) 5,15412
[F(PMe3 «STDP~RM+3 . #STCR) 6,6,47CC
PRCB=1.0

Rt TURN

[F{RM=-3,%STDR=PM) 712,710,720
[=1FIX(19.%((RM~3.%STOR-PM) /STNP)=.5)

GC YO 7
[=(FIX{1Ce%({RM=3,%5TDR~-PM}/STDP)+,5)
IFLI) B,9,10

PROB=F{ IDXERN,~1)

50 TG 15

PR(13=,5

GO TO 15

PRC3=1.~-F{IOXERN, I

GLC TQ 15
[F{PM=3 _ XSTOP~-B M= #STOR)
PROR=T .3

R TURN

BLE=AMAXL{RM=3 %STDR, PM=3 ,%5TDP)
BU=AMINL(RM&3,8STDR, PM+3,%5TOP)

HLRM=[BL=RM) /STER

pPURM= (BU=R4) /STDR

BLOM= (BL-PM}/STDP

HBUPM=(U3U=-PM} /STECP

LXP=15.%BLPM

LXR=] . *xBLRM

[FISTCR=-STDP) 23,23,25

cHvp=l.

L:R=STOP/STDR

[FILXP) 231,231,232

CXP=FLOAT{IFIX{CXP-.5))

50 T 3z

NXC=FLOAT(IFIX{LXP+.5))

[~ h] 13
l.}“ L.ig L3

XIS : ' ORIGINAL PAGE IS
Coiel. OF POOR QUALITY

LiP=STOR/STOP

LEGOXR) 25142514252
CXI=FLOAT{IFIX(OXk=~.5))
uC TG 37
LXR=FLOAT{[FIX(LXR+.5))
TAor?2L=1FrIX{DXP)
LALXPU=TRIXIDXP+00P)

341

IF{INDXPULGT.40) GO TO 165
INDXRL=IFIX(DXR)
INDXRU=IFIX(DXR4CNR)
< ITFLINDXRUGT43) GO TO 165

IF(STOR=~STDP) 35,35+40

3% GIFL=ABS{DXR=TNOXRL)
UIFU=ABS{DXR+CNR-INDXRU)}
GO TO 45

47 DIFL=ABS(DXP=~INDXPL]
OIFU=ABS(DXP+CNP-INDXPU)

45 IFCLINDXPLY 55,446,175
- C INDXPL 1S Oy INDXPU 1S POSITIVE OR O
46 IFCINDXPU) 47,47,48
47 X1=(. .0
" IF(DIFU.GE..l) X1l= x1+DIFU*I.5 Fl:DXERN.l)J
GO TO 50
48 X1=.5~F{ IDXERN, INDXPU)

IF{CNP.EQ.1.) GC TO 95 ‘
IF(DIFV.GEL. L) X1= K1+DIFU*(F{IDXERNoINDXPUl F{IDXERN,I

CNCXPU+1Y)

5 IFIDIFL-.1) 95,511,451
51 [F(DXP=TNDXPL) 52,52,53
52 X1=X14DIFL*{ ,5=-F{IDXERN,1)}
g GC TO 95
513 X1=X1-DIFL*(5-F(IDXERNy1})
GC TO 95
55 IFLINDXPU) 6046570
C INUXPL AND INDXPU ARE BOTH NEGATIVE

6. X1=F(IDXERN,~INDXPU)-~F(IDXERN,=INOXPL)
: [IFICNP.EQ. 1.} GO TO 95 ‘ _
IF(DIFU.GE.. 1) X1=X1~OIFUX{F(IOXERN,~INOXPUI-F({IDXERN,
C~INDXPU+1)) }
IF{DIFL.GEwsl) X1=X1+OIFL*{F(IDXERN,=INDXPL)=F{IDXERN,
C-INDXPL+1) } : : C

GO TO 9%
C INUXPL IS NEGATIVE, INDXPU IS O
65 A1 .S=F(IDXERN =~ INDXPL)

IF{CNP.ED.1.) GO TO 95
IF(DIFU-.1) 69,466,666

té IFTOXP+CNP~INDXPU) 6T467+68 .
67 X1=X1-DIFU*({.5-FLINDXERN,L1) }
GC TH 69
&F X1=X 1 +DIFU*{,5-F{IDXERN,1))
69 [FIDIFL.GFaal} Xl= X1+DIFL*(FIIDXERN,-IVDXPL) ~F{IDXERN,

C=-INDXPL+1))
G0 TO 95

c

D00
(%11

-~ ™

Dy e

St
i
L7 3

Wi

342

INCXPL 1S NEGATIVE, INDXPU IS PDSITIVE

X1=1e=F{IDXERN,=INDXPL)=FLIDXERN, INDXPU)

IF(CNP.EQsLls) GO TO 95

[FIDIFLoGE..1) X1=X14DIFL*(F{IDXERNy~INDXPL)=~F(IDXERN,
C=1M0XPL+1)) ‘

[E(OIFULGEV. 1} XL=X14DIFU(F{IDOXERN, INDXPU}=F (IDXERN,I
CNOXPU+1))

LC TO 85

BOTH INODXPL AND INDXPU ARE POSITIVE

A1=F{IDXERN, INDXPLY-FL{IDXERN, INDXPU}

IF(CNP.EQLLl.Y GO TO S5

[F{DIFLeGEwal) X1=2X1~DIFLX(F(IDXERN, INDXPL)~FIIDXERN,I
CNCXPL+1))

IF{DIFU.GE+s 1} X1=X1+DIFUR(F(IOXERN, INDXPU)~F (IDXERN,I
CNOXPU+LY}

IFCINCXRL)Y 1054964115

PNexeL 1S Y, INDXPU IS POSITIVE QR D

TF{INDXRU) 3T,97,98

K2=.5

IF(DIFVLGE.o1) X2=X2-(DIFU*{ . S=~F(IDXERNy1}})*.5

30 T 170

K2={ .5+F(IDXERN,INDXRU))*.5

IF{CNR.EQ.1e) GO TO 145

IFICIFUGE,al) X2=XZ2={(DIFU*{F(IDXERN, INDXRU)=-F(IDXERN,
CINCXRU+HL 1Y) %5
C

[FL4DTFL=.1) 145,1.1,101

FF(OXR-INDXRLY 132,132,103

X2=X2+{DIFL*{ . S-F{TDXERN,1})}%.5

30 7O 145

Xe=X2=-(UDIFL=l.5-F{TDXERN,1)))*.5

GU T 145 ‘

IF(CINDXRUY 112,1264112

[ioXK2L IS NEGATIVE, INDXRU [S Q

X2=(1a5~F (IUXERN,~-INMXRL))%,

[F(CMRLENL 1) GC TO 145

IF(DIFLLGEeel) X2=X24+(CIFL®{F{ IOXERN,~INOXRL)=F(IDXERN
Ta=INOXRL+L))})IELS

TFIOXR+CNR-INGXRUY 127,107,178
AZ=X24(DIFUR(.5-FIIDXERN,1)))*,5

l‘!l‘ Ti'| 145

(2=X2=(CIFUR(.5~F(IDXERN,1L)II*.5

70 145

CaTE O INRXRYOANMD O INCXARL ARE NEGATIVE

(2=l ~(F(IOXERNy = IMDXRLI+F (IDXZRN,—INDXRU)) *. 5

343

IF(CNR.EQ.1.) GO TO 145
[F(DIFL.GE.a1l) X2=X24{DIFL*(F(IDXERN,=INDXRL)= F(IDXERN
Co~INDXRL+Y)))%,5
r ‘
" IF{DIFU.GE..1) X2= X2+ (DIFU* (F{IDXERN, ~INDXRU)~F (IDXERN
Cy-INDXRU*L “)))#,5
C _ T
GO TO 145
C INGXRL IS NEGATIVE,INDXRU IS POSITIVE
112 X2=2(1.-F(IDXERNy~INDXRL)+F{IDXERN, INDXRU}} 2,5
[F{CNR.EQ.1.) GO TO 145
IFIDIFL.GEs.1) X2=X2+(CIFL*(F(TOXERN,-INDXRL)-F{IOXERN
c.-xNDxRL+1 1))1%,5

¢
- IF{DIFULGE. 1) X2=X2=(CIFU*(F{IDXERN, INDXRU}~ FIIDXERNr
- CINDXRU+1 Y1) *.5

C

GO TO 145

C BOTH INDXRL AND INDXRU ARE POSITIVE

115 X2=(F(IDXERN, INDXRL)}+F (IDXERN, INDXRU)) &,5
LFICNRLEQsLls) GO TO 145
[FIDIFL.GEeal}) X2=X2- (DIFL*(F(IDXERNvINDXRL} ~F{IDXERN,

ClNDKRL+1 YY)k, 5
L
IF(DIFUGE«al) X2=X2~{DIFU%(F({IDXERN, INDXRU)-F[IOXERN,
CINDXRU+] J1)#%.5
C

145 X=X1%xX2
[FIX.GT.30C00J1) PROB=PROB#+X
CXP=DXP+CNP
UXR=DXR+CNR
[F{CNR=CNP) 160,150,15

15 [F(DXR~10,%BURM) 30,3C0,155
155 RETURN
16 IF(OXP-10.%B8UPM) 30,323,165

165 RETURN
END

Jomst

M

344

SUBROUTINE LLSUKZY,JOB)

COYMONIBLKT/J(2T,64)

COMMON/BLKS/ ICLK _
COMON/BLKLZZ/ICECSZ y [CCNGWINL+IFECSZHIPCTIPL,IP2,1G11
CG2e 103, IRyISsITAGMINEBLK MMCT 4 ¥MST,MTOTAL, NI 4NIOS
INFULS yNPCL o NPCS, NCPUS, IFEDBKy IRNL, IRN2, IRN3, IR
Ciay TRNS; TRNG, IRNT, IRNS, [RNG, MMAPF , MMSPF

COMMUNZBLKL3/RPILRPTIZ2,RPYIILRPIG,RPIUS,RPNGRP 2T, RPCE 4R
e It RP1Z4RP11
b

CLYM /ALK I6/IBWCTR{24), ICEC{S5+4d),ICECS,ICPULLD),IPAS
L2020y IFECS,IFEC{aT:4) s IPROS{16)ISAVE(3,33,1VAL
CLYLLT) e MALCEZ25H,45), MALCSyMASI2&4) ,MAVL(128,5)yMAVL
‘J.F"TENM(Z‘H ’MTD].(J") rNA(Z‘f] v NAALZ2G) lNABpNAG]NA
SV LAY g NBLKILZ2B) o NFRI3) 4 NIAMZNSCHED, NREQ (4
e) s NTPUZ4 Y NTROZ24)y NuCA(24)

7O soR%d 18wl TR 080, 1CeCs,iCPUIPASS IFELS, IFEC, IPRD
N I5AVE s IVALCV o MALC , MALCS » MAS, MAVL , MAVLS MDD
M ATPL N NAA,NAY, NAG e NAML y NBLK ¢ NFBy NJWMyNSCHED

LR s TP e HTR 9 NUCA

I\T:’-{.‘R“"Z J'JrJVFL'ICLK
LIFEASTuy THOLT (M)
ITuTeGer*2 IHJILD
KLY = [/0) GTERRUPT INITIATION

1/0 INTERRULPT COMPLETION
JOR COMPLETION

FOSMATEY 14 LLSJ0A=0, 14,9 KEY=?,13,7IPASSIL1-4),IPX0SE
JICP ARE®)

FUtiaitalTx, 170)

FOUMATILIOL 2Ry 13))

FL2v AT 202X, 120

GEOTH {lel T, 200) eKEY

ALl SHAPT {J5B, JyMNY¥ATNI)

NENER TN R]

SALL PLCKT "gd2T74029,128)

Jle iy dw)=227

CALL UNMIX{T7,643275INLT)

PFUINLTLS0.3) 6L TO 9 S?SINAL PAGE s
JIo=dtrvune COR QuALITY
CALL UNMIX(ISsT9d1™, INP) '
[ELINP=1P2) 273,72, 4,2

TECTOASS =103)3,257,2.0

JITEalaTed00)

1
2
3

§ Ho

345

IF{NMATNI-IN1) 16,200,230
9 CALL PACK{0,J27+0,06%)
J{27.,J08)=427
GO TO 12
1v CALL PACK(D,J27,32,32)
J(274JOB)I=J27
12 J21=3127,J08)
- CALL UNMIX(1l1,10,327,IND11)
: [IFCINDLL)Y 20,22,30
2 [F{IPASS(9)}) T3:70:55

3¢ IFLIPASS(9)=3) T0,50,50
&L CALL CKIOS(G,J08B)

CALL CKIOS{3,408)
55 CALL CKIOS(9,J08)
61 CALL PACK(0,J27¢2048,2360)
J127,308)=J27
673 CONTINUE
61 FORMAT(' EXIT LLS AFT I/0 INTLINIT.,JOB=*,14,"' IPROSEI
CCPU ARE")
RETURN
73 CALL PACK({2,J27+8,8)
J127,J0B)=J27
NP=ICECS.
T2 IFCICECI24NP)I=JOB) 74480474
74 NP=ICEC(5,NP)
60 TO 72
RO LACT=ICEC(4,NP)
CALL PACK(2,IACT,0,3)
ICEC(&,NPY=TACT
[PASS(3)=IPASS{3)~1
GC TO 609
204 J21=3(27,J08B)
C PRIORITY OF JOB,P4NUO. JOBS AWALITING CPUIQ.NO. [/0 CPSIN
CALL UNMIX(11,10,J27,1IND11)
CIFCINDLL) 205,205,500
2<% INCEX=ICECS
21% IF{INDEX) 215,215,220 °
215 CALL CKCPU{J0B,0)
v 60 TO 12
220 NJOB=ICEC(2, INDEX)
NJ27=J(2T,NJOB)
CALL UNMIX({S5,4sNJ2T7+INGS)
[FUINDS) 230,23C,225%
22% INGEX=ICEC(5,INDEX)
GC TO 210
23, CALL UNMIX(3,2,NJ27,IND3}

235

1%

LY
gl

-

416y

346

{F(IND3) 225,225,235

CALL UNMIX(2,1,NJ27,INC2)
IFTINDZ) 240,240,245
IFLIPASS{4)-NI} 245,225.+225
CALL UNMIX(11,12,NJ27,IND1L)
IFTINDLIL) 250,250,+300

CALL CKCPUCJOB,NJUOB)
IFUIND2.EQLJU) 1PASSI4)=IPASS({4)+]
[Pa5S5(3)=IPASS(3)+]

CALL PACKITU T4NJ27,24254)
JUZT,NJOBI=NJ2T
[ACT=ICEC(4,INDEX)

ICEC {4, INDEX)Y=1ACT

0 TD 12

ANFREZ=C

B 3.1 KKK=14NCPUS
IFULICPULKKK)Y JEQL.) NFREE=NFREE+]
[F{NFREE=2) 310,325,3.5

LiLL CKCPULGNJDB)

CALL CKUPU(L o, NJOB)

S0 TG 257

CALL LAST3(NJOB Ty NILSNI2,N33,J0BPT,408)
IFINFREE) 350,350,320
[H{N21) 2254225,325

CALL CKRCPU{TL,NJOB)

LGCOYO 360

IF{472) 225,225,355
JOCB=ICEC2,NJ2)

CALL CKCPULJDBA,,NJ0OB)
JLTR=J127,40BB)

CALL PACK(CZ,:J2703,58468)
JUZT,308R) =027
TACT=ICEC(44NL2)

CaLL PACK{):[ACT’G!3]
[CEC(4,N02)=1ACT
i?355(3)=[PASS(3)-1

e he OPIGIN
JURA=ICEC{2,ND1) Al, PA
Labl CXCPUGJORA,NJNB) OF Poog QUE 8
J71A=3127,J084) B

LALL PACK{ ", J27A,68,68)
31" Tsu0BAY=J2TA

IA T=ICRC{4sNT1)

Wikt PACKT 3+ TACT, 74 3)
FozClaeNYi=TACT

FASS LA =TI RPASS L) -1

347

oC TO 250

C 488 IS A TMR J(0B, 3 CPUS RELEASED

C 50D INDEX=ICECS .

L 00 505 KKK=1l,56

U5 IHRGLD (KKK} =0

513 IFLINDEX) 555,555,515

515 NJOB=ICEC(2,INDEX)
NJ2T=J127.NJOB)
CALL UNMIX(S5,4,NJ27,INCS)
IFCINDSY 520,520,550

B2V CALL UNMIX(3,2,NJ27,IND3)
IFLIND3F 55045504525

525 CALL UNMIX(2,1,NJ027,IND2}
IF{IND2) 530+530,4535

530 IF{IPASS{4)+THOLD(G)=-NT} 532,550,550

532 IHOLD{&4)=THOLD{4)+1

535 CaLL UNMIX{1l1,103NJ27,IND11)
IFUINDLL) 540,540,545

54 [HCGLO{SY=1HOLD(5}+1
IHCLDIIBOLD(S)) =INDEX
IF(IHOLD(5)-3) 555,565,565

545 CALL CKCPL({JODB,NJOB)
CALL CKCPU{JOB,NJOB)
IHOLD{S) =1
THOLG(1}=INDEX
GO TO 5965

552 INDEX=ICEC (5, INDEX)
GC TQ 510 .

555 IF(IHOLD(5)-1) 556,558,560

556 CALL CKCPUILJUB,D)

558 CALL CKCPU(JOB,3}

561 CAaLL CKCPULJIOB, Q)

569 IHOLD(&) =THOLD(6Y+]
IF{IHOLD(6)-THOLD(S)) 57T04570,12

5T INDEX=THOLD{ IHOLD(&)}
NJOB=ICEC({ 2, INDEX)
NJZ2T=J(2T,NJOB)
CALL CKCPUI(JOB.NJOB)
CALL UNMIX(241LeNJ27,IND2)
IF{INDZ2.EQ.D) TPASS(4)=IPASS(4)+]
[PASS13)1=IPASS(3)+]
CALL PACK{D,NJ2723,:255)
JI2T,NJOB)=NJ2T
[ACT=ICEC({4, INDEX)
CALL PACK(Z2,TACT+243)
ICEC{4,INDEXY=1ACT

348

GO TG 56%
C I/7 INTLRRUPT COMPLETION-COMING FROM PROGRAM EXECUTOR
1200 J27=J(27,J08))
1153 FORIMAT(® LLS WILL NOW CALL SHAPE TO UPDATE NIP FCR JCB
CPald, T 1209%)
L
CALL SHAPE{JOB,l,NMATNI)
O 13795 KKX=1l.,6
12.5 IHKCLDI{KKK) =2
CALL CKIOS(JOB,S)
CALL UNMIX{14,13,J27,L0AD)
IF{LOADEQ.Ll) TPASS(5}=IPASS(5)~1
CALL UNMIX{11,12,J27,INDLL)
IFLINDLLY 1210101041215
1.1. NFREE=D
CL 1012 KKK=1,NINDS
112 IF{IPROSIKKK).EQ.2) NFREE=NFREE+]
TF{NFREE=-2) 1023,125d102%
115 CALL CKINS(JOB.C)
CALL CRINSEJIOB,O)
IF(LNADEGC.1) IPASS(S)=[IPASS({B)-2
NFREE=3
1Ce. INCEX=ICECS
1. 22 ITFCINDEX)Y 1.6L,1369,1330
1 4 NJOB=ICEC(2,INDEX)
NJZ2T=d(2THJ08B}
CALL UNMIX{S434N3279INC54)
[F{INES4~-1) 1035,1037,1035
1 %45 INGEX=ICECIS5,INDEXK)
ol TO 1225
1737 CALL UNMIX[144+13:nJ27,L0AD)
IFILOADY 12402,1 42,1038
1722 IF(IPASSISI=1G2) 1240,:104M,1035

fgreos T
1 4° CALL UNMIX{11,12,NJ27,INDI1) A NAL PAGE g
IFOINGLIL) 1uS0, 1057413545 ~£ POOR Quarsy

1.5 [F(NFREELLT.3} GO TN 1135
CALL CRINS(LeNJOB))
CALL CKIDS{D,NJIOR)
IF(LOADFG.1) TPASSE{5)=IPASS{S)+2
[HULN(5)=1
[V LLET1)=INDEX
S0 TG 1760
I oo, IR LU(S)Y=THOLD (S +1
T LDOTHOLD(5)) =INDEX
[FOIADLDIB)=3) 1556, 156091360
1.3 IF{NFREE=1) 176.,1:67,1.235

349

1060 JTHOLD(6)}=THOLD(&61+1
IF{ITHOLD(&)~THOLDIS}) 1065,4106541230

1265 INDEX=IHOLD{IHOLDI(&))
NJCB=ICEC(2,4 INDEX)
NJZ2T=J(2T,NJOB)
CaLL CKIOStQ.NJOB)
IPASSI3)=IPASS(3)+]
CALL UNMIX{l4s13:4NJ27,L0AD)
IFILOAD.EQ.1) IPASS(5)=IPASS(5)+]
CALL PACK(DO,NJ2T7,2048,2056)
JUZT¢yNIJDB)Y=NIZ2T
IACT=I1CEC (4, INDEX)
CaLlL PACKID,IACT,2,3)
ICEC(4, INDEX)=IACT
GO0 70O 1060

C RESET JAB'S STATUS, RESET IPROS IF NECESSARY

£ LOUK FOR CPUILS) FOR J40B, GET DOUTY

L2vlr J2T=4(27,J08)
CALL PACK(O4J2T+042178)
JU2T7,J0B)=027
CALL UNMIX{6+:5,J2T7yIND6G)
IF{INDE) 1210,1210,1205

12.4%. CALL PACKI(2,J27.0:32)
JI2T430B)=427
GO TG 16J¢

121, NFEREE=]
U0 1212 KKK=1,NCPUS

1212 IF(ICPUIKKK) +EQ.0) NFREE=NFREE+]
CALL UNMIX(11,1G,J27,INDLL)
IF{INDLL) 1285,1285,1215

1215 [FINFREE~3) 1223,1295,1295

1220 WNFED=3-NFREE
CALL LAST3I(JOB)y CeNDL NJZ2yND3,JPNT,JOB)
IF{NCED~2) 1260,125541225

1225 [FING3) 126541265,123¢C

1230 NJUB=ICEC(2,NJ3)
CAalt CKCPUINJQOB,J408)
NJ2T=J(27T.NJOB)
Call PACK(LU,NJ2T,684+68)
J{2TNJDBY=NJZ2T
{ACT=ICEC(4,NO3)
CALL PACK(S,1A0T,2,3)
ICECT4yNDI}=1ACT
[PASSI3)}=IPASS{3)~]

1239 NJUB=ICEC(24.NC2)
CALL CKCPU(NJOB+JOB)

-

L2al
1245

LT3

. -
L

1 €35
VALY

350

NJ2T=J(27,NJOB)

CALL PACKIDWNJIZT,68,68})

JU2T.NJOBI=NJZ2T

LACT=ICEC(4NL2}

CALL PACK(D4IACT42,3)

ICEC{44N32)=TACT

IPasSsSI3)¥=IPASS{3)~]

NJOB=ICEC(24¢NOL)

LALL CKCPUINJOB,J0OB)

NJZ2T=J12T,NJOB)

CALL PACK({Z¢NJ2T7,68,68)

JI2TsNJOB) =NJ27

[ACT=ICEC(44,N21)

CALL PACKIL 14IACTy2,y3)

ICECL4, N1 =1ACT

IPASS(3)=1PASS{3)-1 ORIGINA
Lall UNMIX124.14427,1ND2)
IF{INDZ2.EQ.1} GO TO 1251
TPASS(4)1=IPASSt4)+]

CALL PACK(: 4J2742,8198)
J{Z2T,J0B)=427

o1 TO 1le0T

TFUINCZY 126541265,4,1257
CALL CKCPU(G,JOB)

LU TG 1235

IF{NIL)Y 12/A5,1265,1287
CALL LASTA{JOB Ly NOLyNGZeNI3,JPNT,L,JI0B)
IFLN" 1) 1275,1275,1274
NIB=ICEC2,N21)

CALL CKCPU{NJOB,40B)

LALL CRCPUINJOB.JOR)

B0 TD 1245

J{2T+JOBY=J2T

[1ACT=ICEC([4,4JPNT)

CALL PACKE D TACT 24 3)

ICCC 4, IPNTI=TACT

[FASS{3)=1IPASS(3)-1

W0 TG 1620

ALl CKEPUITC,JOR)

CALL €KCPUlwyJOBY}

v TS 1245

[F{MFREE) 129,129,130

Catl LAST3(JO8,CeNOLyNS2,NQ3,JPNT,JOB)
[FI(MT1) 1275,1275,124.

CaLl CKCPU(D,JOB)

351

CALL CKCPU{0,J408)
1355 CALL CKCPU(0,J0B)
GO TO 125"
16CO CONTINUE
1655 FORMAT(® EXIT LLS AFT IN0 CMPLT,JOB=',14,"
CARE®) ‘ .
RETURN
C JOB COMPLETION
20CT J27=J127,J08)
CALL UNMIX(1l1410,J27,INDL1)
IF(INC11)2002,2C02,4C30
C TH:Z JOB IS SIMPLEX
2072 ' CALL UNMIX(8,7,327,INDB)
IF(INDB)2D0S,2005,3000
C JOB IS CPU MQOODE
2235 NJP=ICECS
GG TC 2010
2768 NJP=ICEC(S,NJP)
2012 IFINJP) 2850,2850,2012
2312 NJOB=ICEC(2+NJP)
. NJ2T=J(27,N308B)
CALL UNMIX{5444NJ2T7,INDS}
‘ IF(INDS) 2908,2013,2C008
2013 CALL UNMIX(3,2,NJ27,INCY)
[F(IND3}2208,20C8,201¢4
C NJUB IS AWAITING CPU
2714 CALL UNMIX{11419,NJ27,IND11)
| IF(INDL1) 29216,2016,2100
C NJUB IS SIMPLEX _
2316 CALL CKCPU(JOB,NJOB)

GO TO 2875
C N40B WAS TMR
212 NE=C

CO 2lua T=1,NCPUS
IFLICPUIE)I2104,2172,2124
21,2 NE=ME+]
21C4 CONTINUE
[F{NE-2)2230+210642106
C TWwO CPUS ARE EMPTY(R MORF)
2176 CALL CKCPUlQ.NJIOB)
21(8 CALL CKCPU(O,NJOB)
GO TO 2016
C LESS THAN 2 CPUS ARE EMPTY
22.< CALL LAST3{(NJOB»IsNOLlyN:2,ND3,J0BPT,.JOB)
IFINE)222%,2220,42210
€ ©ONz CPU IS EMPTY

IPROSEICPU

352

2215 [FINTL)2008,2C2842212
C Nl IS BUUNCABLE-CAN FIT JOB IN
L NOW FIND NAMES OF N91
2212 JDBI=[CFC(2-N01)
o CALL CKCPUIJOBL.NJOB)
C NOW UPDATE JOB1~-SET 3 AND 7
J2T=d{27,J0B1)
CALL UNMIX(3,2,J27IND3}
CALL PACK{D,42T7+68,68)
J12T,J0B1)Y =427
IACT=ICEC(4,NGC1)
CALL PACK{ 24 TACT,,0.+3)
ICECi4,NNL)=ACT
IPASS{3)=]1PASS{3)~-1
IFINE) 22164271642198
C w0 CPUS ARE EMPTY
£ IF{N:2)2208,2.08,2222
Tl JC3S ARE BUOUNCABLE
z: JCB2=[CECIZ,N32)
CALL CKCPULJORZ2,NJOB)
Je7=J127,40B2)
CaLL PACKI(3y J27,.68,68)
JleT,30B2)=J27
TACT=ICEC a,NU2)
CALL PACKI(/-, IACT,2,3)
[CeC{a,N12)=TACT
[PASS(3)=1PASS(3)-1
LC Ty 2212
¢ uUPLATE ICPU WITH ZERO-MOTHING TO REPLACE JGB IN CPUS
2.us CALL CKCPULJOB,C)
L TO 9969
L UPLAT - NJOB
TeefS 0 LALL UNMIX(Z214NJZ2T,IND2)
ITF{IND2.EQL2) TPASS{4)Y=[PASS{4)+1)
CALL PACK{ Ty NJZ2T42+T731)
JU2TNJOBY=NJ27
TACT=ICECtL4,NJP)
CatL PACKI 24 TACT2+43)
[CEC{a,NJP)} =TACT
IPASSI3)=12AS5(31+1
i TL 3999
o HOTE AL 170, JOB WAS STMPLEX
I NJP=ICECS
G0 TL 3294
200 NJIP=ICEC{SNIP)
34 IF{JPY 3076332642025

Z
C
2

N

353

C COULD NOT FIND JOB TO TAKE PROCESSOR
3066 CALL CKIOS(JOB.0)
3247 CALL UNMIX(6+5,J2T72INDS)
' IF{INDS) 5699,9999,2005
C 15 NOT END OF CHAIN=NJP POINTS TD NJOB
3020 NJOB=ICEC(2,NJP)
NJ2T=d(27,NJOB Y
CALL UNMIX(513!NJ27¢INDS#’
ITF(INDS4~1) 3502,3022,3002
3022 CALL UNMIX(14,13,NJ27,L040D)
IFILOADR)Y 3026,3024,32323
3023 IF(IPASS(5)-102) 3024,3002,3002
C NJOB [S WAITING I0P AND NOT WAITING MEMORY
3.24 CALL UNMIX(l1,104NJ27,INDL1}
IF{INDIL)AD2643G26,31050
C NJOY IS SIMPLEX AND NEEDS 1/0 PROCESSOR
2726 CALL CKIOS (JOB,MNJOB)
CaLlL PACK(D4NJI2T7+2048,2056)
JI2T,NJOBY=NJ27
TACT=ICEC(4,NJP)
CALL PACK{O,IACT,2,3)
ICECH{4,NIP)=TALT
[PASS{3)=IPASS{3)+]
IF{LOADLEQ.1) [PASS(5I=IPASS(5’+1
GO TO 3007 ' '
C NJUB IS TMR JOB-CHECK FOR EMPTY 1/0 PRDCESSURS
3120 NEMTY=0
LC 3104 I=1.NIOS
IF[IPRUS(I}13194'3102v3104
3102 NEMTY=NEMTY+1
3104 CONTINUE
IF(NEMTY-2)3006,3110,3110
C WE HAVE 2 {0OR MORE-MORE IS BAD) EMPTY [/0 PROCESSGRS
3115 CALL CKIDS{OsNJOB)
CALL CKIOS{(G,NJO8)
IF(LOADLEQ.1Y TPASSUS)I=IPASS{5)+2
GO YO 3026 ’
C JOu IS TMR Jos8
4000 CALL UNMIX{B+ToJd2721NDB)
IFTINDBIGTN2,400244500 ,
C 408 IS CPU MODE-SEARCH FOR 3 HIGHEST PRIDRITY JOBS
C WHICH WANT CPUS-IF ONE IS TMR, GIVE IT TO HIM OTHERWISE
€ GIVE TO 3 SIMPLEX~INITIATION [RRELEVANT
4002 NJP=ICECS
DC 4203 KKK=1,6
4203 IHCLOIKKK) =0

354

NRUY=D
sC T4 4306
Go,0t NJP=TCECI5,MIP)
4. & FFINJP) 43702,4300,4307
07 NJOB=ICEC(Z2,NJP)
NJ2T=J12TNJOB)
CALL UNMIXI[5,4,NJ27,INLS}
[FIINCS) a4G(8,4708,4004
408 CALL UNMIX(3+2¢NJ27+INC3)
TFCIND3) 47046,4,4004,4012
C WwE nOW HAVE AN ACCEPTABLE JOB~-IT WANTS A CPU
4.12 CALL UNMIX{l11l.s17,NJ27.INDL1)
' [F{INDL1)4114,4014,4415C8
L NJtis IS SIMPLEX
4C1la NRLY=NRDY+1
ITHCLD (NRDY) =NJP
FFINRDY~3)14504,4016,4716
C WE HAVE FOUND 3 SIMPLEX JUBS WANTING A CPU-FIND NAMES
C UPLATE., PUT IN CPY
4146 00 42370 I=1,NRDY
NJOH=ICECIl 2, THCLD{I))
NJ2T=J127,.NJOB)
CALL UNMIX(Z2+1eNJ27IND2)
IFIUINCZ2.EQeut TPASS(4)=IPASSI4)+]
CALL PACK(T KRJ2T124254)
JUZTeNIOBY=NJ2T
CALL CKCPUIJNE,MNJOR)
IPASSTI3)=]PASS{3)+1
[ALT=ICEC (4, IHOLD({I))
CALL PACKIZ,TACT,243)
4.3 ICEC{4, THOLDC(L)) =TACT
GC T 9999
C FOUNDG ACCEPTABLE TMR JOB-NAME NJOB, INDEX NJP CN ICEC
4L CALL CKCPU(JQwb.NJOB)
CatlL CKCPU{JINB,NJNB)
CALlL CRCPULJUOR,NJIDB)
TACT=ICEC(4,NJP)
CALL PACK(Z,TACT,2,3)
ICZC L4 NJPI=TALT
LALL UNMIX{Z2,14NJ27,INC2)
IFCIND2) 4105,4105,4110
4145 IPASS{4)=1PASS4)+]
411. IPASS(3)=1PASS{3}+1
CALL PACKI(YwNJ2T7424254)
J{2TeNJOBY=MI2T
2L TC 9999

355

C FOUND END OF CHAIN BEFQRE TMR OR 3 J0BS .
4300 IFINRDY-1)4302,4306,43C8
C NO J0BS FOUND
&332 CALL QKLPUIJDBsQ[
CALL CKCPU(JDB,40)
CALL CKCPU(JDB,0)
GO YO 9999
C ONEt J0OB FOUND
4306 CALL CKCPULJOB,0)
C FOUND 2 SIMPLEX JOBS WAITING CPU |
438 CALL CKCPU(JOB.C)
G0 TO 4016
C 408 IS5 TMR AND RELEASING 3 1/0 PROCESSORS
4523 NJP=ICECS :
DO 4501 KKK=1,6
45,1 THCLO{KKK]} =0
NRDY=(
G TQ 4512 .
4545 NJIP=ICEC{SNJP)
4510 IFINJP) 4600,4600,4515
4515 NJOB=ICEC{2Z2,NJP)
NJ2T=J12T7,NJOB)
CALL UNMIX(5,3,NJ27,INDS4)
TFCINDS4-1) 4505,4517,4505
4517 CALL UNMIX(14,13,NJ27,LCAD)
IF{LOAD) 452D,4520,4518 .
4518 [FUIPASSIS)-102) 4520,4505,4505
C NJUB IS WAITING I0P AND NCT WAITING MEMDRY
4527 CALL UNMIX(11l,1C.NJ27,1ND11)
IF(INDLL}A525,4550,4525
€ NJOB WAS TMR
452% CALL CKIOS (J0B,NJOB)
CALL CKIOS (JOR,NJOB)
CALL CKIOS {JOB«NJOB)
[ACT=1CEC(4,NJP)
CALL PACK(D,[ACT,2,3)
ICEC(4yNJPI=TACT
IPASS(3)=IPASS{3)+1
NJZ2T=J(27, NJOB)
IF{LCAD.EQ.1} TPASS{S)=IPASS{5)+1
CALL PACK{OQWNJ2T+2048,2056)
JU2T.NJODB)} =NJ27
537 CALL UNMIX(6+5,J27+IND6}
IFCINDS)LS3S,4535,4052
4535 GO TO 9999
C NJLUB WAS STMPLEX

356

455 NRDY=NRDY+1
THOLD(NRDY) =NJP
IF{NRDY~3)4505,4560+4560
C HAVE FOUND 3 SIMPLEX JOBS WANTING 1/0 PROCESSORS
4567 00 4590 1=1,NRDY
NJOB=ICEC{2,IHOLD(I))
NJ2T=J12T7,NJOB)
CalLl PACK(ID,NJ2T7,2048,2058)
J{2T+NJOB)=NJ2T
[ACT=ICEC (4, IHOLDI(I})
CALL PACK(Q;IACT'213'
ICCCL4, THOLOD(I)) =TACT
IPASS(3)=1PASS(2)+]
CALL UNMIXil4,13,NJ27,L0AD) :
IF{LDAD.EQLL) IPASSIS)=]PASS(S)+]
4593 CALL CKIOS(JOB,NJOB)
GC TO 45390
¢ CAadE QUY QF CHAIN BEFDRE FINDING 3 SIMPLEX JOBS
4ECD TFINRDY=1146058.64615,.4628
C NOUO JABS FIUND
46,5 CALL CKIODS{JOB,W)
CALL CKIOS(JOB,L)
CALL CKIOS{40B+0O)
GC TO 4530
C 1 JQB FOUND
4615 CALL CxKIQst{Jos.d)
4675 CALL CKIOS(J0B.0)
GC TO 4560
9999 J2¥=4{27,J40B)
CALL PACK{ s J27,0,23532)
J127,J08)=427
FCAMAT(Y EXIT LLS AFT CMPLT QOF JOB',14,'IPROSAGICPU ARE
ey
RETURN
ENL

.ol
~
[
1

aEaNeNaNaNnNe e

- 357

SUBROUTINE PFX{IDXGAU)} -
PEX EXECUTES PROGRAMS BY GENERATING A RANDOM NUMBER
OF #5MORY ACCESS REQUESTS FDR EACH ACTIVE JOB. IT THEN
GRANTS A NUFBER OF ACCESSES FROM EACH MEMORY MODULE
TG 401 ACTIVE JOB ON THE BASIS OF THE NUMBFR
RELUESTECYy JOB PRIOCRITY AND NUMBFR (OF AVAILABLE FROM
EACH MOQULS, IT ALSO KEEPS UP WITH THE EXECUTION
POINT OF CACH PRUGRAM aNU A PREDICTION OF THE

NUv8EP OF AVAILABLE ACCESSES FROM EACH MEMORY MODULE

CCMMON/BLK3/ IDISTU25) 4F (25441) ,50156T

COMMINZBLKT/J(27,64)

COMMON/BLKRZ 1CLK

covm ON/BLK‘EIICFCSZ.ICONlel IFECSZ IPCT,IPl,IP2:41C1,t
(L2113, 2 IS ITAMINBLK yMMCT yMMST,MTOTAL yNI ,NIOS,
Luwoms.NPCL,NPcs. . NCPUS,IFEDBK,IRNL, JRN2,IRN3, IR
TNy TAMS y [RNG s [RNT 3 IRNA, IRNG, T MMAPF MMSPF

CUMMAN/BLK13/RPT1,R0 12,RPH3,RP 14, 8P 55,RPD6,RPIT,RPOS,R
LR, RP1s 4RP11

COMMIN/LLKIS/TEWCTRIZ2G),ICEC(5,47) 3y ICECS,ICPUILN),IPAS
CSU27)y TIFECS,TFECTAG,4),IPROSLLIE}ZISAVE(3,3),1IVAL
CUOVIL 1eMALC(256,5) MALCS»MAS(24) yMAVLLI28,5),MAVL
Vi MODANM (20) ¢ MTPLI24) ,NA(24), ' NAA(24) yNAB,NAG, NA
CVMLLaT) o NBLKILZB8) o NFBI3) oNJWY,NSCHFD, o NRED (4
L)y WNTP(24 NTR{Z24) ,NUCA(24}

L.

[eTESER*S IBWETRYyICEC, [CECSyICPUYIPASS,,TFECSyIFEC, IPRO
25 ISAVEZIVALOVMALC ,MALCS yMAS MAVL g MAVLS ,MOD
LMy MTPL L NA L TIAA, NAR, NAGsNAML p NEBLK e NFByNJWMNSCHED,
LRIy NT?, TR ,,0UC A

COVMON/BLRLIT/ [STONT W ISTAT(6,4701,IUTL(E,2730)

IMTESER%E? ISTAT,IUTL

COMEDN/BLKLIBS ANSCUU.PUU,BWUsSPUSRCLU,BPUULBBLU,BSPU,A
Ul APUU, AGWU,ASPU,L,BQLSTZ ARSI 2
1.

IMTIGIR%EZ JyJOVFL, TCLK

JIMENSION MSPACE(Z4)

ENT=GeR*2 [CONTyMOLSTZ MSPACE, UMSTOT,14CCS, INP,HFI X

NOTPSTZ=MTOTAL/NMIDS

TCNL=TCON/MICT

CALL WUMMIL(2,14]5,IWRTRB)

THLI=1CLK=TPASSL6)

[Na=lanl-(INULAE_ b %2 .

LFUT D .20a T ANULTNDYI.NF L) CALL CECL4,7)

AGE}YD
OYJGYNM’ QuALITY

oF ¥

I~

Tt

358

Lol =1CLKR={TCLK/ LM%Y

TF(TaaNF. .} 30 TO 4

i 1T (€918) TCLKefIPASSIKKK) gKKK=1,17)
FloerAT(0 10 PEX-TIME,IPASS(1~171 ARE'411(1Xs14))

128580)=

Tal =

=]CL:

FU1) 545,7
rqIT:(('fl.‘)
Bt ETLY LGS0 LAY OMPTY UPCN IATERING PEX')

T (Iv)y=

PR AN

oL 1/7=1,1022812
R M FAEA B EN

w0 TL o
TR O I SO e
[Ja=lnill4ael)

(AR REENLENE I 3 S s figay L)
TE{T.1m =101 & 4054473
R D IS A

ooor

CN PSP A EIS U B IR Y. ORIG
Joao=1e 0T

R RS TIPS EN TP OF Poor g,
NI R EDAPIN R A

tbl D W eee) LD T 0L

RSN & -5 TR I

Lt T LSy Teday LK)

rogt=,

Irf . L¥) & p & "_i’:',

SRR SRR VR GOV SR I AU IRTENS A

Y SRR S A RN o (1Y R R FALN PR A
LI I PO I R y =0 y ‘:_', "’)E,
I

A AN N BN R
SRR X)= ANRAC T (VK)+ ST
‘t“ﬁh:(”U“?V)=NﬂﬁﬁﬂflmvIEF}+P&LC(VFL&,3)+MﬂLC(M“lKy:)

ol R AN L R SRS 4
ML K, AN L (LY 5

L M} Lo
v B T R L R I

551
292

T

“5
36

8

ile

lla

359

MSPACE(MODSTI=MSPACE (MDUST)+MAL C{MBLK,5)
GU ¥Q 592 ‘
MSPACEIMDDST)I=MSPACCS{MODSTY+KTEMP2-MALC(MBLK,3)
GO T (62, TIe 839921 KONT

J19a=J1194JMNAM)

KCNT=2

CALL UNMIX(8y24J19MBLK)

IFIMBLK.NRLG)Y GO TO S5

JIT=Jd(L Ty JNAM)

KC4T=3 '

CaLl UNMIX(L15,11yJ17+MBLKU)

CALL UNMMIX(12,84J179,¥BLKL)
MERLK=MBLKU®1A+MBLKL

IF(MBLENFE..) GO TO S5

Jel=I {22+ INAMY

KCuT=4 - o CNg
CALL UHMIX(E,7,J22,MSPIL) Poop, PAGE@
[FOUSPTL=1) 15,485,115 U,

LG L 1X=1,10

[vaLnviixi=g

CALL OVFLMG{Y, INAM, 8, TVALOV,,1T)

[x=1 .

MELEK=LIVALOV(IX)

TR{MALK G E, -} GC TD 535

T=14+}

IF¢IL=1") 91497 ,97

WEITZA, Y) JNAY - .
FLAATI36H MORE THAN L1 BLOCKS ASSIONED TC JOB,1T7)
JMATOr=5 .
G i Iv=1,%1MNDS
JMSTOAT=IMSTOTHMSPACELLY)

CruTT IHE

MTAL=%TALEJIMSTOT

CALL PANDULIRIY ,TYRAN)

{asi=1Y

IF(2au=45) Ll4,112,112
PiosA=TFEX{d0e "% {RAN=-5))41

VALUS =R (TDXGAU, TNREX)

or Y0 115

IMEEX=TRIX(8 Ykl JE-RAN)) +1

YAl s == (I DXGAU,, THND=X)

JET=J{P Ty dNAaM)

CALL WIMIX{HTyd27,4008)

[T {237,102 5413

J1l=d0]1,.0NaM)

Cabl, USHIXLs "y 9 Jdil, THOMY

J12=J(124JNAM}

CALL UNMIX{12,7,41241NCS)
STO=FLUATIINDS) ' ‘
AV=FLOAT [INDM)
IACCS=1ABSLIFIX(VALUERSTD+AM) }
eTU S

J2T=J12T . JNANM)

CaLl UMMIX(l4,13,J2T4LCAD)
IF(LTAL) 132,132,121

J1T=J (17, JNAM)

CALL UNMIXLYLY,09J17,.MMS)
FACCOS=(TCONL=MMSY/MODSTE

CO T 140

J12=J113,JNAN)

CAaLl UNMIX(LT "y Jd13,TNUM)
Jel=d(21yJdmaM)

CALL UMMIX{L " ¢29d21, INLS)
STL=FLUATLINDSY

M AE LT LT NDMY
EACCE=1ARSLIFIX(VALUE®STD+AMY)
ICTFE=JE286,004M)Y -3 (18, 40MAM)
IF{TACCS-INIFF) 142,144,143
IF{IDIFF=-TACES-INTGS) 142,143,144
IACCH=ID1FF

J1 =Jt1 JhAal)

CAaLl UNMIX(15,7,Jd17,I%0L)
Ine=100

[F{ WnEL2.7) 60 TG 7.0
JoT7=Jd0.7,JAM)

CALL UNMIX(1l,1.4227,1IR0110)
PFET I_L1) 145,150 145

P2 CC»=3%F 300,

Je=l

LE{BSEACTLIA)) 157,157,160
REVECANE I B B & B

LT T

[FUI8STOTL Uy) TN 162

T, XY = s Al (JXYHTACCS+IMSTOT=-1/UMSTOT
T ve3

b 1T ez 9) ICLRAT LTCECIKKR I) 2KKK=1,5)
v aTir PoX, TIME 20 [T, YRR TRRAREREY (L[2X,[6))
ST LI SNT (XY + 3700 4 4X)

PT I Y= T2 4D

J¥=04+1

TFLS o= 4dMANS) 155, 15544 8
JoT=00 2Ty JRAM)

ORIGINAL PAGE IS
OF POOR QUALITY]

?1-‘3
[

?u-') -)
T3,
fn

To

fe.

T f

Tf

361

CALL UNMIXI[14,13,427,L0040)
IFLLaM 71:),71-’:‘:?7'5
ITOTA=J(26,INAM)

SOOTE 715

TTTA=0(), JNAMY*+J (1S s JNAMY
JLT=d017y JNAM)

CALl UNAIX{LY, 0ediTeMM5)
ISTRT={IMSxJ IR, JNAMY)/ITOTA
CALL UMMIX{11,1,J427,1INO)
CTAL=NTAL+#MMS+2 [IN%RMMY
FEtTen) 727 ,7524725

Nopet)=n

ST T3

SENNNTES

f\'«"u“: =

AMORENA SR+

[F L BRAT JNMRRU) 60 TO &0

L i Ths

1»=-29=

P 0,57 00 TO =2 -

fe zP=lK=mP+]

G0 T (745,79 2155, 764),IKFED
JisH e ddan)

CAlL USmIX{I5,Tyd1ly IHLUAR)

oo T TT

JiorJdUl 3y dnaty)

CALL UNATAlse 9dldy T lxd)
LeoTR 77

J1750(1 3, 0VAM)
JoT=3017,JAM)

CSOLL U TRl S 1y 1Tl 4ABY)
CALL UM LRI, 3,009,080 4a)
Prs=T eyl e+ . nnL

PR L A

JI =002 00 40

Call il Xlestade?2yLiRe)

Ir (il el ia) 370 T 778
[enin=

Vi T4 6B

[irni P =1%<1 041

CRvasL WLy =ISKIP
Cill TWFLAGLLy dMAM, Ry TVAL(Y, 1)
[exe=TvaLav(l

LRl -e) G0 TO 770
FI
IFfT X 6T, GO T 748

ORIGINAL PAGE 1S
OF POOR QUALITY

-+

362

LT {774

PR R

FLUEMATIN srded T RRR kEkX MEMOY RLOCK INPIX ERKO? DEL,
17.%1

A4S o 2al) B T T

LA TN L S D [I
LY e enriin) GO TO 765

VRS BV e B LT i s

TREREN
SR S

PULL T AL T UXR 5)W GLL [STET) G0 TG 73
LTHELE THEY AL T X, S

1y Ay, T L) 68 Ta b4
1§{[<_:H-hl TaleT6h,y 1AS
1

q;y.nHGLL{[HJXn,£l+ISTRT—L?MGTH
‘ ‘¥ﬁP-'/,ﬂPSlZ+1
(Iv iy =105
LA I; Y=hIR (I oXy+TALCCS
T ’—fi [V =T F DX Y4 T 0
i’ HE {,’3
T AV AU SR I
1 4T k) T "1?[.‘ ‘v-’f'-:"
[
JE=Ja 4+
T {ge="0m) L Gyl 28
rELT T) =TT) 2
PN I I B VRO R O I O I
L T SR S N T B ORISR B S~ R T B
Cat Ty E Al AL =t TR U/ TR E
- 1
(I B 0 DA A g BN P I
Al An g IAR TRV TS LX) =2)/ TRAS
{0l B I LT R A e [CONTRMASCUY L) /A (IR wp

122,179
VHIRNS/2)/TRID

L ST S SV S B L TG T T A

. ! Ry ZI
IO, Ty =t 0 U,y D) /2V%2) 257,255,227
J _,.:_."r“,c(‘)'])

‘EF(A':'.'{I’J:(], 'L}t-) 72;—;.!1-:2.‘5
Er 0 0o (9n) =100 2 05 405 22

NEEE & Y |J\at
AV IR S L 1 O o) O_R
GINAL oy
1 J:Ye! 8]
¥

;bil
e
"rl

363

1 \ll“l- I!"“!]

| S R V(I,Jx)-(IMP*I(PN‘)/MTP!JXF) 24 .9247,235
MTRL(IX)=MTPICIX)+INP

BT 280 .

AHCALIX I ENUCAL XY+ LINPEICONL) /NTP{UX)~NREQ (T4 IX)
1=1CECL5E,1)

50 TG 215

IFLIWNRTE,.SQ.0) GO TO 263

WS ITS (6. 7))

FooartaT{t NAA AND MAS FCLLCW')

WAl TEL6,975) (NAA(IX),14=1,MNMNCS)

e DT (6+905) (MASTIX),IX=1,NMOCS)

EDeAT{ 240 Xy T4}
J T."k.;=
TS 0=

LW VT

:)L‘U: ‘.
F=10=05
[E(T)Y 5554455,27"%
FEOICEC Ay 1= LICRC (4,1)/20%2)V457 450,271
Jat=aL=0(7, 1)
. I:

J.o -J(l'mJNAMl
cr LL U elIX(154 7401 Yy i80)

1ar=T N
=
RIS

[G =t 51 ZR54EHD 2.
IF(: el JXY) 275,275,290
LU =M ENTAMEEO0T , JY)
IF(‘TR(JX1-ICDWE) 2174210, 238
PR A0l g dX 3= TRl (CRII/NTPEdX)) 315,31 0,30
1A = (TN TCONLY/NTRPLIXY# L TMPENLLAL XY) /TP {JX)
TR aa=yrTnly X)) 215,305,317
v = 0T dX)
cIE LG AG
-f T LThH
G TH 3+ JArJI
uT“,u SNTREC+ME 20

3TT=04T, I)

PALL U IXELL,1 027 1IN0
LPLL LMK 7y d2 Ty OLEY
L7 TSR gl 28 NGV) = J L1/, JhAt) ORIGy

[FCL T 1adnel) [OTFF=3%1ULFF CW‘POQQEQEQGEIS
VAL

ir GV T 5o IRTRF="10 2 aui=10IF!

364

AUL=", 2
TE(URENTLGTw) AUU=SFLOATIMNAGII/ZFLOAT(NREQI)
[FLOUFY 245,345,33%8
435 IFLINULLY 3334285, 340
LEAE ALL=PUIRS, AU
36 TN 373
245 [ECTS0LILY 36,365,350
15, cLU=CUtI+3, oEAUY
3C Td 37}
3545 ALU=rLU+ ALY
56 TQ 265
Yo CLU=Clu+aUY
3nb JULR,IAM) =118, JNAM) +NAGT
i T 3rs

37 Lo INAY =018y JIAM I+ (NAGT+2) /3
315 U TIWUE
56 FOTMATOY COWPLETION CCUNTOOWN FOR JOB*, 13,1t =1,16)

JE ity A =J (16, dNAM)+]

LACT=I0LIC(4,1)

Jof=d02T7,Jd0NAK)

SAZL UNMIN{14417%,427,0L0240)

[FELI2)E0.L) GO T 380

FECHOLR AU aM =0T INAMA)~J(155, INAM)) 387 440% 470

o [FOJOL3 3 INAMY=-J126,3dKAM)) 457,335,385
ir9 IFIMDLEY 395,397,295
.2? C“\LL pf\{.&(|IA'\:T1"!1£¢‘

{7 Clay)=IACT

LT 450

1735 LAEL PACKTD 5 TACT,5,8)
It Ctas L)=1LCT
[FiLJAanaQe .} 30 TN 45
JU L dNaMY =
JEVE Ay =1
STy A =027

d T 4an
“ vatl, VAGKE G IACT,16416)
[- (4, 1)=1ACT :
i, l=.0 L%, 1)
L Ti__. 2()"3
- HES ENR o
ToAeT
e - I '\"r:‘!’
a0 ir (1) ‘rv"vq(;‘"‘*()
wt FORR I WO off FAN i
SEUL U TN e 2 IACT INDY QRIGIVAY, PAGHE b

R A R OF POOR QUL

L65

2T,

L7
“TL

et

421

Hia

365

J2T=J2T7,ICEC{2,1)

JYAM=ICEC(24 1)

<CﬁLL PACKL +yd2T43412)

JOZ Ty INAM) =027

CALL PACK("2wTACT,1431) N

CICECU4, 1)=T1ACT

LF{INE=2) AT10,4T75,485
CONMTT WU
FOYMAT(Y PEX MOW CALLS LL3 FOR 170 INTAPT, INIT. FOR J

L, 14

CALL LLS(L JHAMY)

ol TU 4v6

COANT T U :
Fa2vat(y PRg AdNW CALLS LLS FOR [/0 CunTL, FOR JOB'+14)
CALL LLSU7Z2,0MAM) ' '

S0 TO &a%

PSTONT=I3TENT+1

ISTATHY , ISTLNT)=JNAM

LSTATIZ,ISTCNTY=TCZCL3, 1)

PSTATE ISTCNTYI=]CLK

J3I=3027yJd{AN)

Call UnmMIXOL 334427, 100}

[TATH0 T Ge) T Ta 491

IF{gla,JNAYY 20,) S0 TD 481
LSTATLa, I5TCNT) =d(2 7y JNAMY

MTY 402

J17=dlL T dNAV)

S AL UNEIX (LT dyJ1lT M)

Jili=JL 3, JNAN)
TALL UNMIX(Ly S ed L2, MNART)
PSTATEA, ISTCHTI =027 JNAM) + (L 7 24%MFS) /MNAR]
TSTaT(a LaTCMT) =00 25, JhaM)
LLTAT A, TSTENT) 2J(16,J0aM) _
FUAVATL/ Y COMPLEITION OF JOBY, 14, ICEC =uTRY TIMEY/
Y PRESENT TIME,ESTIYATED “IN PERTUDS,TARSE

ST Tiw, Awy ACTUALY/ % FRNCESSING RERINCS FOLLOW'/,
t Ll AeIn)) : :

JULEy 3 0A) =,

JU 5421 =

t=12-C15,1)

AL mLu {3, JdNAM)
JAT24lrTydvar) A
SALL I XU T 6y d 2Ty PRE)
PF [P) 400 48T ,644 .
AL AT KL T 12T 423 3
JE T, iav) =027

366
T 457
485 CONTT UF
wrh FoaMaT(y PEX wILL 0% CALL LLS FOR COMPLETIOUN CF JGB!,
Sis)

CALL LES{A.d00)
60 T s
L5 bl UU/FLCATILCRUS)
YLLEPLU/PLOATENIDS)
LwUEFLOAT{MTAG Y AFLUATINMODSHICCHY)
CTOU=FLOAT(rTALY/FLDAT(TOTALY
AR R FoAr ATy CUUPUULBWUSPU AR Y, 414X, FT.3))
BOU=(G EpCUuU+CLUY LY,
“'L,U*(‘?I = OUU4AP LU YT
TER G AT ST TN L A T
tqu:t“.*%ﬂPU+SfU}fl;-
11 »P=IPASSEL)
AT T =9, w1741 TP) A,
VAN XA i"lo
SOLUs{AMEACUURCL LY B
LR (AR OULIHP LU /BN
Woall= (A EARWLCwl) f g
AL U= (L R aNPULSDU /BN
SCNT szl A A Tadp Y /o0
CoE
e FooooaTer Oy AV, UTLS A-E'+4{3%,F8,4))
IonX=I0LLs? .
LELTOLR T) HGR, 538,508
TS Tl I8 ¥isloln
[GTLO o, Dl ey = YETXLLL 7 W ®ECUWY
[Ty TR Y=t E I 00 7 %apuyy)
Tl ta,y L y=TFIx (] . LAWY

PLTLOZ, [0 I=1RL 0L o JxASPY)

[T (O Ty =R iDL W %aCsTZ)
TUTLET, BNe +L d=iFIx (" 7. xRCLIUY
Tt (- |IJ‘~+1 Ty=IELXCL L G ERPUL
LLTL Gy 171 F=LPEX(OLT . «#RBWUD
LE i (., TR+ y=lFLY (D, L %BSPY)
I I T B N A Y NS 3 TN

L 4E TOTHE A

b

ORICINAL PAGE I8
OF POOR QUALITYH

367

SUBROUTINE NFMAL{KEY ,JOB:NSPACE)
C NFMAL IS THE NON FEEDBACK MEMORY ALLOCATOR
C J0B IS THE NAME OF THE JOB FOR WHICH SPACE IS TO BE ALLOC
CATED
NSPACE IS THE AMOUNT OF SPACE TO BE ALLOCATED
If NSPACE.NE.O THEN NSPACE IS THE AMOQUNT TO B8E ALLOCATECD
IF NSPACE.EQ.2 THE AMOUNT IS CONTAINED IN THE J TABLE
IF KEY=) THEN ALLOCATE MEMORY TO JOB ‘
IF KEY =} THEN ALLDCATE MEMORY TO ALL JOBS IN
ICZC THAT ARE WAITING FOR MEMORY
COMMON/BLKT/JI12T4+64)
CCMMON/BLKA/ ICLK
INTEGER%2 JCLK
COMMON/BLK12/ICECSZyICCNyINL W IFECSZVyIPCTLIPL,IP2,1G11L
LQR2+1Q03, IRy ISH»ITA,MINBLK MMCT ,MMST,MTOTAL NI ,NIOS,
CNMOIOS«NPCL NPCS, NCPUS, IFEDBKIRNY, IRN2,IRN3, IR
(N4, [RNSsIRNG6,IRNT, IRNB, IRNY, MMAPF , MMSPF
C
COMMON/BLKL3/ RANAI
COMMON/BLKIGO/IBWCTR(24 !} ICEC(5442),ICECS,ICPU{(1D),PAS
CS(2010, [FECS,IFEC{40+4),IPROSIL16),ISAVE(3,3),1VAL
COVLULT I MALCU256,45), MALCS,MAS{24),MAVL(128,5),MAVL
CHyMIDNM{24) ,MTRLI(24) ,NALZG)Y, NAA(Z4) ,NAB,NAG, NA
CMLI4D)yNBLK{LZB)¢NFBI3) yNIWM NSCHED, NREQ{4
Lo124) W NTPU243 NTR{24) ¢ NUCAL(24
L
INTEGER*2 IBWCTR,ICEC,ICECS,yICPU,IPASS,IFECS,IFEC, IPRD
LSy [SAVE, IVALOV,MALC s MALC S, MAS , MAVL ,MAVLS , MDD
CNM MTPL s NA NAAGNAB NAGyNAML NBLK 3y NFBy NJWM,NSCHED,
CNREQW NTPyNTRyNUCA
INTEGER%Z2 J,JOGVFL
CIMENSION TTKOF{3434NTKOF(3,3),L(3)
INTEGER%2 ITKOFNTKOF,L
CALL UNMIX[1siisIS4IWRTA)
WRITELG»1520) ICLK NJWMNFB{L),IPASS(1G)
154 FOKMAT(Y IN NFMAL-TIME NJWM,NFB,EAMT. FREE AREY ,4{1X, 1
Lald) :
MOLSIZ=MYOTAL/NMODS
IF(KEY) 1310,105641010
131, KX=ICECS
112 TF(KX) 460,460,1315
1215 JOB=ICEC{2,4KX)
J2T=J(2T7,408)
CALL UNMIX(5,4,J27,1ND)
1.2. TEOINGY 1252,1025,1057%

OO0 0

368

1025 KX=ICEC(5,KX)}
1,27 FO=MAT{" NFMAL NOW SCANS ICEC FOR NEXT JOB WAITING MEM
CORY)
GC T4 1012
1355 K1=9
: JJJ=MAVLS
CO 1 NC=1,3
LINC) =D
EC L MC=1,3
[TKAF(NC,MC) =0

1 CONTINUE

I[=1

IF{NSPACE) 2+4,2
2 MMS=NSPACE

GO 70 12
4 J22=d122,J408)

CALL UNMIX(746,422,INDT)
IF(INDT) 848,46

6 CALL OVFLMG{D,J0B,T,IVALOV{L1},1)
MM =TVALGVILL)
G 1o 13
R HS1r=d417,J08)
CALL UNMIX(1llse24JLlT.MMS)
e IFINFRBOL))} 15415437
15 [FIIWRTALEQ.D) GO TQO 21
WRITE(&,2C) JOB,I
2. FOSMAT(Y NEMAL CANNOT FILL MEMORY REQUESY FOR JOB', 14,
C ' CN PASS NO'S T L)
r .
21 IFINFBIL))Y 46d,460,22
i IFIKEY) 4654660,1025
3 LC 31 NC=1,3
G0 31 MC=1,3
P NTRKUFINC ¢ ML) =0
IFINFBIT)=-9}) 40,35,35
35 KTzMPLl=NFBI(I) i
KNO=IFIXIFLOATI(KTEMPY)/2.7T183+.,99939)
GC TO 83
L LF{NFBII)~8}) 53445445
45 KND=4
GO TO 84
5. [FINFB(I)=5) 67455455
55 KNO=3
GC T3 82
O [F(NFBIT)=-3) 77,65465

65 Khil=2

369

GO0 TO 80
T4 KNO=1
BG K=1
81 FORMAT(* NFMAL WEILL NOW TRY TQO FIND A BLOCK FOR JOBY',I
C3" I=%,13)
I1BST1=0
IBST2=0
85 [IF{MAVL(JIS,S)=MMS) 12C,2000,2000
32 IFCIBSTY) 1U0,95,129
95 IBST1=MAVL{JJJI,5)
IBST2=0J44

CO 96 NC=1:+3
DO 96 MC=1,3
96 [TKOF(NC,MC)I=NTKDF {NC+MC)
1 IFLIBSTLI-MAVL{JJJ,5)) 117+117,105
195 CO 147 NC=1,3
DO 127 MC=1,43
17 [TKOF (NC,MC)=NTKOF (NC 4MC}
[F{K=-KND) 115,115,110
113 L{l)=JJJ
G0 T8 155
115 IBST1=MAVL(JJJ,45)
: IBST2=0JJ
117 CC 118 NC=1,3
CC 118 MC=1,3
lis NTKOF(NC ML) =0
1éu JJd=MAVLI{JJdJd, 1}
[IF(JJJY 1254125,121
121 IF(T=-2) 124,123,122
122 IF(JJJ.EQ.L{2)) GO TO 129
143 IF(JJJLEQ.L{L1Y)Y GO TC 120
124 K=K+1
GO TO RS
125 IF{I3STL) 130,415,132
13¢ L{I}=1BS5TZ
JJJ=]B5T?2
G0 TO 155
2507 CUONTINUE
2Jduvl FORMATL{Y NFMAL» 2000 STARTHLENGTHJORI"441{3X,16))
écatd IF(I-2) 95430651 ,22975 ‘
2545 LFIMAVLAJII A -MAVLIL(1)+3)) 231C+2020,2723
2ILy TRIMAVLIL{L)»3)-MAVLIL(2)},3)) 2037,2015,29158
215 TFIMAVLIJII s 3)-MAVLIL(2)43)1253542340,2040
2ués TEAMAVLLJJIJ3I-MAVLIL(2),3)) 20045,2025:2025
2025 IFIMAVLI(LILl)3)-MAVLILIZ2)y3)} 2050,2055,2155
23l IRZ=L(2)

370

IR¥T=2
IMX=L{1)
IMLT=1
GG TC 2037
2:.35 IR*=L{L)
1R4T=1
IMX=L(2)
IMXT=2
237 ILA=JJJd
L4T=3
GC TO 27267
EERE Y IRX=L{1)
IR/T=1
ILX=L{2)
Itx¥=2
GC TU 2047
2245 1RL=L(2)
IRXT=2
FLx=L(1)
. IL4T=1
2T IvML=03U
[(T=3
ol TO 2667
2250 ILx=L(l)
[LxT=1
IMy=L{2)
IMXT=2
nC 1O 2357
2055 ILX=L(2)
[LxT=2
I¥L{=L(1}
IMXT=1
2- 57 IR¥X=J4J
iRXT=13
ol TO 2363
RO § [IFIMAVLIDII3Y=MAVLIL (1) 53003005,301D,3013)
7.5 IRX=L(1)
ikaAT=1
IMX=JddJ
I¥XT=2
nC TR 2560
31 IRX=49J
[xXT=2
IiMx=L(1)
[PXT=1
2.6 IRREF=MAVLIIRX,3)+MAVL{IRX,5)

i

2965 IMREF=MAVL({IMX,3)+MAVLIIMX,+5)
IF(IMREF/MODSIZ~(IRREF-¥MS)/MODSIZ) 2075,2CT70,2070
207y IMREF=((IRREF-MMS)/MODSIZ)=MODSIZ .
2015 IF(MAVL(IMX:3]“IHREF+MMS) 20774207 7,117
2077 IFUIMX-IRX) 2080,2087,2080
208¢ IF([MREF“[HAVL‘IMX:3)+MAVL(IMX:5)1) 2285,2090,2090
2385 NTKOF(IMXT,1)=1
NTKOF{IMXT,2)=IMREF
NTRKOF{IMXT43)=MAVL{IMX 3} +MAVL(IMX,5)=IMREF
GC TO 2095
2087 IFUIMREF=-IRREF+MMS) 2088,2090,209)
2088 NTKOF(IMXT,1)=1
NTKOF{IMXT,2)=IMREF
NYKOF(IMXTy3)=]IRREF~MMS~IMREF
2090 IF(I-2) 2140,+214G,2095
2095 ITLREF=MAVL(ILX¢3)+#MAVLIILX,5)
IF{ILREF/MODSIZ-{IMREF-MMS)/MNDSTZ) 2105,2100,2100
2137 L ILREF={{IMREF-MMS}/MDDGSIZ»MO0ST2
2105 ITF(MAVLUILXy3)~ILREF+MMS) 211C,2117,117
2liv IFUILX~IMX) 2115,2125¢2115
2115 IF{ILREF-{MAVLIILX 3)¢MAVL{ILX,5))) 2120,2140,2140
cl20 NTKOF(ILXT.3)=MAVLUILX,3)+MAVL(ILXy5)-ILREF
CC TO 2135
2125 IF(ILREF=-IMREF+MMS) 2130,2140,2147
2130 NTKUOF({ILXT¢3)=IMREF-MMS~ILREF
2135 NTKUOF(ILXT,l)=1
NTKOF({ILXT,+2)=ILREF
2i42 GO TG 93
1455 J2T=J(27.408)
CALL UNMIX(11,12+J27,1IND)
IF(IND) 2254+229,169
164 IFLI-3) 162,208,298
162 NUUNH(I)=(MAVL[L[[1v3)+MAVL‘L(I’v5)-MMS‘ITKOF(I|3"/HG
CDsiz)
IF(MODNMIT)) 192,192,164
164 [F{MODNM{T I *MODSTZ-MMS~MAVLIL(I)+3)) 192,168,168
168 IF(I-1) 169,16%,1681
16481 TF{MAVLIL(T) 3)-MAVLIL{I-1),3)) 1694+1682,1682
lobe IF((NAVL(L[I‘I)'3,+HMS)/MUDSIZ‘(MODNH(I)*MDDS[(—MHS)/H

caositzy 1683,192,192
L
1683 TFUIMAVLIL(I=1)¢3)+MAVLIL{TI~1)45))/MODSTZ=MODNM(T)~(MM
CS/MODSIZ +1)) 169,169,1684
C

1664 [TKOF{1l-1,1)=1
[TKOF(I=142)=(¥ODNM{T)=(MMS/MODSIZ+]1))*MODSIZ

372

[ITKOF({I=1y3)=MAVLIL(I=1)s3)+#MAVLILLI~-1},5)-1ITKOF(I-1,2
c)
169 L{T+1)=L(1)
TFIMAVLCLCT) o3 +MAVLIL(LY,5)-MMS~TTKOF{143)=MODNM{T) %M
Cobsia) 172,172.17C
C
175 [TKOFLI+1,1)=1
ITKOF(I+1,2)=MODNM{(I}*M0ODSIZ
ITKOF{T+1e3)=MAVL(L(T) y3)+MAVL(L{T)s5)-MMS=ITKOF(I,+3)
¢ ~MOQONM (T }%=MODSEIZ
C .
172 i=1+]
IF(I-3) 178,208,208
iy MOONMIET)= (MODNM(I-1)*MODSIZ-MMS)/MO0SIZ
[FIMODNM({TI)) 192,192,189
13, IF(MOONM L Y EMO0STZ-MMS=-MAVLI(L(I}43)) 192,182,182
162 L{l+#1)=L(1)
IFIMCONM{]~1)*MCDSIZ-MMS-MODNM(])*MODSIZ) 208,208,190
193 ITEOF(T+1,13=1
[TROF{T+1, 21 =MODNMIT)*MODSTZ
ITKOF(I+1,3)=MI0ONM{I=-1)%MODSIZ-MMS-MODNM({T)*MODSIZ
wO TC 298
19¢ I=1+1
NF(T)=NFBELY)=-LI-1)
135 JJJ=MAVLS
A0 TO 197
124 JJI=MAVLUJLd, 1)
137 [F{JJJLELTY GO T 15
FF{1-2Y 198,199,198
198 IF{JJI.EQaLIZ2)) GO TO 196
1949 IFtJJJ.EQ.L(1)) GU TU 196

S0OTH 10
208 I=1

Kk £=7;
S TFCITKOF{T 1YY 21242254212

212 KKX=KKX+1l _
[F(KKX=128) 214,214,213

213 wWRITE(6,151¢)

151 FORMAT(® NO MORE &MPTIES IN MAVL'}
GC TU 460

216 IF(MAVL(KKX,51) 212,216,212

2ib IFIMAVLILITIY,1)+1) 218,219,218

218 MAVLIMAVL(L(I},1),2)=KKX

19 MAVL{KKX,l)=MAVLIL(I),1)
MAVLILET) 3 1) =KKX
MVAVLLIKKXy2)=0L(1)

150
440
4465
45¢

455

460
1554

465
466
467
470
475
480
485
49

495

373

MAVL (KKX,3)=ITKOF(1,2)

MAVL(KKX 4} =MAVL(L(!),4)

MAVLIKKX,5)=1TKOF{1,3}

MAVLIL{T) »S)=MAVLIL (1) S)-T1TKOF([,2)

NFB{1)=NFB{1l)+1

IF{I.NEL1) GO YO 221

NIWM=NJWM=1

[PASS(11l)=IPASS(11)~-1

INDXB=L(I])

INOXB=L(I) '
WRITE(64153G) JOByMMS, INDXByMAVLIINDXBs3) s MAVLIINDXB,5

Clel
"FORMAT(' NFMAL TO MASGN',6(3X,15))

CALL MASGN{1,J0OB,INDXBsMMS)

IF(LE3)) 450,455,450

I=1+1

[F{I=-3) 210,212,455
J2T1=J(27440B)

CALL PACK(3,J27+0416)
Ji27,40B)=J27

TF{KEY) 1025,46%4,1025

C WRITE(69155C) ICLK NJWMNFB{L1),IPASS({LY))

FORMAT(' OUT NFMAL~TIME,NJWMyNFB &AMT., FREE ARE",4{1X,

Ci4))

IFUIWRTALEQ.QL GO TO 455

WRITE{64+465)

FORMAT(' MAVL FOLLOWS?',/)
FORMAT(6(3X,15))

FORMAT(' MALC FOLLOWS',/)

KKK=MAVLS

[F(KKK) 485,480,475

WRITE(6+666) KKKy (MAVLIKKK4JX)3JX=1,5)
KKK=MAVL{KKK,1)

GO 7O 470

WRITE(OH4467)

KKK=MALCS

IF(KKK) 495,495,490

WRITE(6+466) KKKy (MALCIKKK,JX) 3dX=1,5)
KKK=MALC{KKK,])

S5C TG 485

RETURN

END

374

SURBROUTINE MAPREF

COMMON/BLKT/J4(27:64)

COVMON/BLKSB/ ICLK

INTEGER%Z2 [ICLK
COVMON/BLKLZ2/TCECSZ yICONs INL+IFECSZHIPCT,IPL,IP241Q1,41
LU2,103, IRy IS, ITA MINBLK MMCT,,MMST MTOTAL yNI NIDS,
CNMEDS oNPCL«NPCS, NCPUS, IFEDBK, [RN1yIRNZ2, IRN3, IR
CN4, [RNS L IRNG,IRNT, IRNEB» IRNG, MMAPF, MMSPF
C
COVMMON/BLKLI3/RPIL:RPO24RPIILRPO4,RPOSRPISLRPOT,RPCESR
CPoGy RPLIRP11L
L
COVMMON/BLKL16/IBWCTR{24)yICEC({S+40) ¢ ICFCS,ICPULLN),IPAS
CSC:0) s IFECS, IFEC{40+4)},IPROSTLS)+ISAVE(3,3),IVAL
COVIL1)y MALC{Z256,5) MALCS,MAS{24) ,MAVL(128,5)},MAVL
CSeyMODNMI24)MTPL(24) ,NALZ24), NAA(Z24)Y ,NABsNAG,NA
CMLIGT Yy NBLKILZ2BYyNFB(3) yNIWNM,NSCHED, NREQ (4
Cored) yNTP(24)NTRIZ4) yNUCA(24)
C .
INTEGER%*2 IBWCTR,.ICEC,ICECS,ICPU,IPASS,IFECS,IFEC, IPRO
CS, ISAVE, IVALOV MALCy MALCS s MAS,MAVL, MAVLS MOD
CNM . MTPL ,NA,NAA,NAB, NAG o NAML yNBLK¢NFBy NJWMyNSCHED,
CNR~-QyNTPsNTR,NUCA

INTEGER®2)y JOVFL

CIMENSION L(3})

C TO SET UP ISAVE LISYT OF JCBS IN ORDER QOF PREFERENCE
C JOBS T BE ORCERED PASSED IN ARRAY NAML({K)
C PRIGRAM FINDS JOBS TO ALLOCATE

1540

CIMENSION TTKOF(3,3)¢NTKOF{3,3),KPTMR(3,2)
INTEGER*Z2 MODSIZyIRREF s IMREF, [ILREFy IRXy IRXTyIMXy IMXT,I
CLX,ILXT, ITKOFyNTKUF ¢KPTMR ,MODST MODED, L

r
N

CALL UNMIXILl,s3,IS5S,IWRTA}

WRITE(641582) TCLKsNJWM NFB(1)IPASS(1D)
FOFPMAT(Y TN MAPREF=TIME yNIWM NFB,EAMTL.FREE ARE'Y,4{1Xs1
L4a))

MOLSTZ=MTOTAL/NMODS

Ix=_

OC 1) KX=1,ICECSZ

NAML (KX)=0

JNAM=TCEC(24KX)

IF{JNAMY 3,10,3

J2T=d127+JNAM)

CALL UNMIX{5,4,J027,1I8D)

IFLING)Y S41Ce5

35

Q7

375

IX=1XK+1
NAMLLIX)=JNAM
CONTINUE
NJwM=1X

NJPW=1X

{FINJPW) 12412415

WRITE(6413)

FORMAT(* NO JOBS WAITING MEMORY AT THIS CALL YO MAPREF
£ ‘
RETURN
CO 20 KX=1,128
NBLK(KX) =D
CONTINUE
KX=MAVLS :

IF(KX) 25425435
WRITE(6y30)
FORMAT(* NO AVAILABLE BLOCKS IN MAVL?)
RETURN

I'X=(Q

IX=1X+1
NBLK{TIX)=KX
KX=MAVL(KXs1)
IFIKX) 604+60,40
NFBI1)=1X
NBPF=1X

UC 7= KX=1,3

0T 68 [X=142

ISAVELKX+ IX)=0
ITKOF(KX,1X)=3
KPTMRIKXyIX)=2

CONTINUE
ISAVEIKX,3)=0
ITKOF({KXy3}=0
CONTINUE

K=C

K=K+l)
IF{K-NJPW) 85,85,180
IF{NAMLIK)) 80480,90
I=0

I=]+1
J17=J{17T,NAML{K]))
CALL UNMIXULYlsD4J17MM5)
¥=0 ‘

GO 97 KX=1,3

L0 97 IX=1,3
NTKOF (R X, IX}=D

376

98 M=b+1
IF(M=NBPF) 125,125,10C
173 IFCI-1) 80,802,180
1.5 IFINBLK(MY) 98,98,119
T SET IF JOB WILL FIT INTO PRESENT BLOCK IN NBLK{M)
114 KToMPLI=MAVL(NBLK{M),5)
[F{KTEMPl.LE.C) GD 7O 98
" USM=FLOAT(MMS)/FLOAT(KTEMPL)
IFIDSM=1.) 2C30,2027,98
PII0 JJJIENBLKIM)
L{1)=[SAVE{(1.,2)
Liz)=ISAVE(2:+2)
LI3)=ISAVE(3,2)
2wl FORMAT({ Y MAPREF 23011,5(4X,141})
2002z IFLI=-2) 115,3001,42C05
2005 TFRIMAVLIJII3)=-MAVLIL(L)»3)) 2D10,292342020
20 s TFOMAVLILLY) #3)-MAVLILI2),3)) 2030,2015,2215
2.1% IF{MAVLIJJJ3)-MAVLIL(2)43)02335,2040,204)
2iev TFIMAVL{JJU3)-MAVLIL(2),3)) 2045+42025,2025
2.25 TFI{MAVLIL{L1)»3)-MAVLILI2},3)) 2050,2055,27355
2033 IRA=L(2}
[RYT=2
IMx= (1)
IvyT=1
GO TO 2837
fRx=L(1)
IRAT=1
IM¥=L(2)
[MXt=2
2:. 31 ILx=JdJJ
ILxT=3
GO TO 2069
2 oG IRK=L(1)
[FrxT=1
ILxX=0L12)
ILxT=2
GC T4 2347
Z2.45 [Rr=L{2)
[RAT=2
ILX=L(1)
ILXT=1
2ial I¥x=J44
[MXT=3
GO T 23640
2.5 ILa=L{l}
ILxT=1

L]
Lai
(]

2057

3oui
30L5

26y

2.65

Ul s
2::75
avE N}
2284
2,85

287
2788

2090
2u95

2180 -

21.5
211
2115
2124

2125

377

IMX=L(2)
IMXT=2

60 YO 2057
iLx=L{2)
ILXT=2
iMX=L(1)

IMXT=1

IRX=JJ4J

fRXT=3

GO TO 2063
IFIMAVL(JJJ»3)=MAVLIL(L1)}+3))}3005,3010,3019
IRX=L(1)

- IRXT=1

IMX=JJJ
IMXT=2
GO TQ 2060
IRX=}.JJ
IRXT=2

CIMxX=L{1)

IMXT=1

GL TO 226G

IRREF= MAVL(IRKp3)+MAVL(IRX 5)

IMREF=MAVL [IMX3)+#MAVL{IMX,:5)
IFIIMREF/MODSIZ~-(IRREF=-MMS)}/MODSIZ) 2DT5428T0,207C
[MREF=({(IRREF-MMS) /MODSIZ)*MODSIZ
IFIMAVLIIMX 3)—-IMREF+NMMS) 20377,2077,95

IF(IMX=TIRX) 2.8042787,2280
IFIIMREF=IMAVLUIMX 3)+MAVLIIMX,5))} 2085,2090,2090
NTKOF{IMXT,1)=1 ' :
NTKOF{IMXT 4 2)=21IMREF
NTKOF(IMXTy3)“MAVL(IMX,3I+M&VL(IMK,SI*!MREF

GC TC 2090

[F{IMREF=IRREF+MMS) 2788,2(9G,2091

NTKOF({IMXF,1}=1

NTKOF(IMXT,2)=IMREF

NTKOF(IMXT,3)}=]JRREF-MMS~-]IMREF

IF(1-2) 214G42140,2095
ILREF=MAVL(TLXy3V+MAVL{ILX,5)
IF{ILREF/MODSTZ-({IMREF-MMS)}/MODSIZ) 21054210042120
ILRFF=({IMREF-MMS) /MODSIZ)*MODSIZ :
IF{MAVLIILX,3)-ILREF+MMS) 2115,21130,95

IF{ILX-IMX) 2115,2125,2115
IF(ILREF~-(MAVLIILX,,3)+MAVLIILX5))) 2120+2140,2140
NTEKOFC(LULXT o3)=MAVLIILX,3)+MAVLIILX+5)-ILREF

50 19 2135

IF{ILREF-TMREF+MMS) 2133c214C 2143

213,
2135

2140

C

115

134

131

14

145
Lo,

l6e

165

168

Judb

378

NYKOF{ILXT¢3}=1MREF-MMS-ILREF
NTKIOF(TLXT,1)=1
NTKOF(ILXTy2)=1LREF
CONTINUE
56 TO 115
wiLtL FIT INTO MEMORY BLOCK
MOLST=IMAVLINBLK(M) » 3)+MAVLINBLK(M},5)~MMS~ NTKDF(I ain

C/MODSIZ+]

MOLDED={MAVL{NBLKIM) y3)+MAVL {NBLK (M) ,5)-NTKOF{I,3)}-1)/M

Culnsil+l

—
.

JLi=Jl(1l1+NAML(K))}

CALL UNMIX({LCsyCyJ11l,yMNAR)

FUL =S

IF (MODED-MODST-1) 130,125,120

ISIr=MObS5T+1

[E=MO0ED-1

CO 122 LX=IST,IED

MLO=MUD+NAA(LX)

ILYS=MAVL (NBLK({M},3)+MAVLINBLK{M),5)-(MODED-1)*M0ODSIZ

MUC=MUD+ (NAA(MODEDI®ILMS)Y/MASIMODED)

[F (MAVE {HBLK(M) 4 3} #MAVL INBLKIM) 45} -MODST*MODSIZ)
131,131,132

[FS=MAVLINBLK(M),5)
GC TO 133
IFAS=MODSTHAMODSIZ-MAVLINBLKIM) ,3)
MUL=MUD+{NAA(MULCST)I®IFMSY/MASIMODRST)
TEMP=FLOAT(MMSPF)%HSM
DUM=FLOATIMUD) /FLOAT (MNAR}
IF(DUM=14) 142,147,145
TEMP2=FLOAT(MMAPF)=DUM
0 T} 1532

TEMP2=FLOAT({MMAPF) /DUM
IT-MP=[FIX{TEMP+TEMPZ+.5])
[FIISAVE(L 1)) 165,165,162
J1 =JU13sNAML(K)) .
CALL UNMIX(L1S,7,J12,KTEMPL}

17=J01G ISAVELT 1))
CALL UNMIX({15yT4J10,KTEMPZ)
IF(ITEMP+IF1X((KTEMPI-KTEMPZ)*RPOZ}*{SAVE(1.3!l 95495,

Clés

KPTMR(TI41)=K
ISAVFLL 9 1) =NAMLIIK)
KPTMR{I2)=M
TSAVE (T 42)=NBLK (M)
ITSwWell3)=ITEMP

175

172

180
185

379

DO 172 KX=1,3

[TKOF (KX, 11=NTKOF(KX,1)
[TKOF (KX 21 =NTKOFIKX,2)
ITKOF{KXs3)=NTKOF(KX,3)
CONTINUE

GO 1O 95

IF{1SAVE(I.2)) 185,210,185
J1T=J(1T, ISAVE(Ll,1))

. CALL UNMIX(11,09J174MMS}

J27=J(27,1SAVE(1,1)}

CALL UNMIX{11,41C4J274IND)
[FOIND) 243,190,240
IF{MAVL{ISAVE(I421+5)~MMS) 195,195,200
IF(KPTMR(1,2)=NBPF) 196,197,197
NBLK(KPTMR(1,21)=NBLK(NBPF)
NBLKI{NBPF}=J

NBPF=NBPF-1

IF(KPTMR(I,1)=NJPW) 201,222,202
NAML{KPTMR(I,1))=NAML{NJPW)
NAFL{NJPW) =D

NJIPW=NJPW-1

JINOX=ISAVE{Ll,1)

MINDX=ISAVE{(1l,2}

[F{IWRTALEQ.D) GO TO 227

WRITE(64225) JINDX,MMS,MINODXs MAVLIMINDXs3) sMAVL{MINDX,

C3} -
_FORMAT(* MAPREF 205 CALLS MASGN',5(4X,14))

CALL MASGN(LlyJINDX,MINDX,MMS)

JU23,JINDX)=1SAVEL(Ll,3)}

NJWM=NJWM=1

GC TO 65

FORMAT(Y TIME=',[6,' MAPREF FINDS NO 8LK FOR JNB',14,°

€ PASS=%,13)

21‘.‘1
211
elé
215
216
L7

218
2

248

IFLISAVELL,L)) 43644004211
IF(I=~1) 400,405,212
WRITE(6,150u) TCLK,NAML(KI),I
[FIKPTMR (I 41 }=-NJPW} 216,217,217
NAMLIKPTMR(L141)I=NAML(NJPW]
NAML(NIPW) =C

NJPW=NJPW-1

GO 222 KX=143
IF{KPTMRIKX,2)0218,220,218
NBLKIKPTMRIKX,2)}=]ISAVE(KX,2)
CONTINUE

GO TO 65

LII)=ISAVE(I2)

242
245
25

251
2h¢

253

254

25¢
258

26,
ZES

2175

265

29

380

MOCNMUT)I=(MAVLIL(I) »3)+MAVLILIT) 45)~MMS=ITKOF (1,3})/M0
CoSIzZ

[F(I-2) 267,242,3C)

LIL)=ISAVE({]1,2)

IFAMAVLILE2) 93 1-MAVLIL(1)43))26%,425G,250

FECUMAVLEL (1), 3)4MMS) /MODST 2- [MODNM{ 1) XMODSIZ-MMS) /MOD
Cs517) 251+4256,255
C

IFOMAVL (L (T) 43} ~MODNM{T)%MODSIZ+MMS) 252,252,255

LFCIMAVLILLL) 4 3)4MAVLI{L (L) 45))/MODSTIZ-(MODNM(I)&MDCSIZ
L=M¥S)/MOD SI12) 269,253,253

L

[FIMAVE CLEL) #3)+MAVLILLLY45) —((MODNM(I}EMODSTZ-MMS) /M
COLSIZ) *MODS1L) 265,265,254
C

ITKIF(l,1) =1
ITROF(L42)=({MOUNM{ 1) %MODST Z=MNS) /MODSIZ) =MODSIZ
ITKOF(L1431=MAVLILIL) 43)#MAVLIL(L)45)=ITKOF(1,2)
5C TOQ 265
L0 258 KX=1,3
IF{TISAVELIKXs2)) 2564258,256
NBLK{KPTMR(KX,2})=0
CONTINUE
K=KDTMR (1,1}
5C 10 75
IFUMAVLILIT) 43)-MOONM{I) %MODSTZ+MMS) 265,265,255
LECYODNME D) ®MODSTZ=MAVLIL(T) 43)=MAVLIL{I},5)+MMS+1 TKOF
L{I43)) 2664272,27% '
L
ITKIF(I+1,1)=1
FTROFUI 414 2)=MOCNM(]) #M0DST 2
TTRUF(T+Ly 3)=FAVLIL (1) s3)+MAVL (LT) ,5)-MMS~ITKOF(1,3)-
LMOLAM(L) % MODRST £
1.
ISAMELL#141)=1SAVE(41
ISAYE(I+142)=1SAVE(],2)
ISAVEIT+2,3)=1SAVE(]l,3)
KPTMRI(T4+1,1)=KPTM([,1}
KPTAR{I+1,2)=KPTMR(],42)
I=1+1
IF(I-3) 275,323,317
MOLXMAT) = {MDDNM(T-1) *MONST Z-MMS) /MODST Z
TECAAVL CLSAVE(T,2)43)-MODNM(T)%#MADSTZ+MMS) 285,285,255
LEEUODNMET)MO0DSTZ-MOONML T~ 11 RMOCSTZ4MMS) 290,295,295
ITRIOF(T+1,1)=1
[TK P CI+1,2)=MOUNM(T Y MODSTZ

295

305

310

3a2¢
322
323
324
325
A3y

332
333

134
335

34
345

35¢

355

36y
e
175
376

381

ITKOF{1+1,3)=MODNM{I~-1)%MODSIZ-MMS~MODNM{])*M0ODSIZ
ISAVE(I+1,1)=ISAVE(]I.,1l)
ISAVE{I+1,2)=]ISAVE(],2)
ISAVELI+]1,3)=ISAVE(],3)
KPTMR{I+1,1)=KPTMRI(]I ;1)

KPTMRITI+1,2)=KPTMRI(]I,2)

LO 31GC KX=1,.3

FFIKPTMRIKX,2)}) 305,310,305
NBLK(KPTMR{KX, 2})=TISAVE{KX,2)
CONTINUE

I[=g

I=1+1

IF(I=3) 32543254322
IFIKPTMRIL+1)1-NJPWI 32343244324
NAMLIKPTMR({L,1))=NAMLINJIPW)
NAML{NJPW) =0

NIJPW=NJPW=L

a0 TO 65

KKX=o

[FCITKOF(I,1)) 33G,373,330
KKX=KKX+1

[F(XKX-128) 334,334,332
WRITE(G6,3312)

FORMAT(* NO MORE EMPTIES EN MAVL')
RETURN

lF(MAVL(KKX,S)) 330,335,33)
MAVL(KKX 1)=MAVL{ISAVELL42) 1)
IFIMAVLIKKX, 1)) 345,345,340
MAVL(MAVL(KKX 1) ,2)=KKX

MAVL (ISAVE(T 420 el)=KKX

MAVL (KKXy2)=1SAVE(L,+2)
MAVL(KKXy3)=ITKOF(]1,2)
MAVLIKKX 34)=MAVL(ISAVE(I,2),%)
MAVLIKKXsS)=ITKCGF{1,3)
MAVL(ISAVE(1,2)5)=MAVL{ISAVEI(I +2),5)=-1TKOF{(I,3)
NFB{1)=NFB{1l)+1

[X=NBPF+]

IF{IX-12B) 360,360,355
WRITE(6,4357)

FORMAT(* NO MORE EMPTIES IN NBLK')
KETURN

NBLK(IX)=KKX

NBPF=NBPF+1
IFIMAVL{ISAVE(I92)45)-MMS5) 375,375,380
IFIKPTMR{I,2)~NBPF) 376,378,378
NBLEK{KPTMR(I,21)=NBLKINBPF]

Ty
EN A

38¢
iBs

1%y

395
397

4ub

G432

382

OC 377 KKK=[,3

IF({NHPF EQ.KPTMR{KKK 2)} KPTMRIKKK,,2}=KPTMR({1,2)
NHELIK{NBPF)=

NEPF=NBPF~-]

[F(I-1) 397,385,390
JU23,1SaVE({L,Ll))=1SAVE(Ll,3)

NJWM=NJWM=1

JINDX=TSAVE(TL.,1)

MINDX=ISAVEL{L,2]

IFIIWRTALEQ.O) GO TO 387

WRITE(E,395) JINNDX e MMS MINDX s MAVLIMINUXy3) ¢y MAVLIMINDX,
CS1el

FIORMAT{* MAPREF 395 CALLS MASGN',6(3X,14))
Catt MASGN(Lly JINDXsMINDXsMMS)

GO T 322

WEITE(6:405) TCLK NJWMyNFB{1),IPASS(1C
FURMAT(Y QUT MAPREF~TIME,NJWM,NFB E&LAMT, FREE ARE',4(1X
LrI4))

IF{IWRTA.EQ.2) GO TO 432

WRITE(6.+41)

FORMAT(" MAVL FOLLOWS*//)
FURMATI6(3X,I5))

KEK=MAVLS

[F{KKK) 422,422442%0

WeITE(B+415) KKK, IMAVLIKKK s JX),JdX=1,5)
KKK=MAVL(KKK,1)

Lo TO 418

WRITE(6,425)

FORMAT({Y MALC FOLLOWSY»//)

KKK=MALCS

IF{KKK) 432,432,430

WilTelbs415) KKK, (MALCIKKK JX)¢dX=1,5)
KKK=MALC{KKK,1)

GroT0 427

Rt TURN

Eiv

C

383

SUBROUTINE MASGN(KEY,INDXJeINDXB,ISPACE}

MASGN ASSIGNS MEMORY TO JOBS AFTER MEMORY PREFERENCE FACT

CORS HAVE
C BEEN CALCULATED

C IF KEY=1 THEN ASSIGN THE AMOUNT ISPACE TO JOB INDXJ FROM
CBLOCK
C INCXB
C IF KEY =% THEN ASSIGN ALL JOBS IN ISAVE MEMORY FROM ASSOC
CIATED
€ BLOCKS
COMMON/BLKT/J(2T7464)
COMMON/BLKB/ ICLK
INTEGER%2 ICLK
CGMMDN/BLKIZI[CECSZ.ICUN'INI,IFECSZ.IPCT.IPl.IPZ;IQl'I
€CQ2,1Q3, "TRs IS ITASMINBLK,MMCT sMMST,MTOTAL NI «NIOS,
CNMODS«NPCLNPCS, NCPUS , TFEDBK, IRN1, IRN2, IRNI, IR
CNGy IRNS IRNGE ¢ IRNT» IRNB, IRNG MMAPF, MMSPF
C
COMMON/BLK13/ RANAI
CCMMON/BLKLIG6/IBWCTR{24) ,ICEC{S5+40)ICECS,ICPUILY)} IPAS
CSHL2080), IFECS,IFEC{40,4) s IPROS(16),15AVE(3,3), VAL
CCVL1D) ¢y MALC(256,45) MALCSyMASI(24),MAVLI{128,5) yMAVL
CSyMODNM(24)Y,MTPL{24) JNALZ24]) NAA(24) ,NAB,NAG,NA
CMLUGI) pNBLKIL128) ¢NFB{3) 4 NJWMNSCHED, - NREQ{ 4
CGe24) fNTP(24) 4yNTRI124) 4NUCAT24)
LY
INTEGER%2 IBWCTR4ICEC,ICECS,+ICPU,IPASSHIFELS,IFEC,IPRD
CSy [ISAVE, IVALCV MALCyMALCS,MASMAVL s MAVLS MOD
CNMysMTPL¢NA;NAA,NAB, NAGsNAML ;NBLK yNFBy NJWMy NSCHED »
CNREQWNTP 4 NTRyNUCA l
INTEGER*2 J,JOVFL
CALL UNMIX(1,04+1IS5,IWRTA)
MOCSTZ=MTOTAL/NMODGS
‘ IF{KEY=1) 542:5
2 JOB=1INDXJ
[BLEKN=INDXS
¥eS=ISPACE
KEMPT=1
GO TO 40
) I=1
KEMPT=]
1. IF{ISAVELI 1)) 25,15,25
15 _NRITEIvaD)
2% FORMAT{31H ALL ASSIGNMENTS HAVE BEEN MADE)

GG TO 300

384

25 JOB=1SAVE{I, 1)
IBLKN=ISAVE(1,2)
322=0(22,J0B)

CALL UNMIX{7:64J22,INDT7)
- IFCIND?) 30,35,39

30 TVALOVI1)=2
CALL OVFLMG(1,JC8,7,IVALOV,1)
MMS=IVALOVIL)

GO TO 40
35 J17=3017,J08)
CALL UNMIX(X1l,0,J174MNS)
40 [F(kEMPT=-255) 55,55,45
45 WRITEL(6,5()
52 FORMATL29H NO MORE EMPTY BLOCKS IN MALC)
6GCQ 7O 300
55 IF{MALCH{KEMPT;5)) 60,65,60
6. KEMPT=KEMPT+]
GC 10O 492
&5 KOCCLl=0n
KOCL=MALCS
7. IF{¥OCC)Y 75,775,133
C TO HERF IF NEW BLOCK GOES AT END OF MALC CHAIN
75 [F(OCCL}Y 85,85,40
C TO HERT IF MALC CHAIN WAS NOT EMPTY
= MALCIKOCCL,y1)=KEMPTY
MALCIKEMPT,,2)=K0OC(C1
GO T} 95
C TD HERL IF MALC CHAIN WAS EMPTY
55 MALCS=KEMPT
MALC(KEMPT ,2)==]
3: MALCIKEMPT41)=-1
G0 T2 138
17 [F(ALC(KOCC+3)-MAVL{IBLKN,3}) 105,105,110
175 KCCCL1l=K0CC
KOCL=MALC{KOCC, 1}
SC Ty T
Y1l IFKACCIY 12C,115,12%

C ALLOCATEL BLOCK WITH INDEX KOCC IS PRESENTLY AT HEAQ CF M
CALC CHAL
115 MALCIKEMPT,2}=-1

MALCS=KEMPT

HC TC 125
¢ NEZ4 BPLICK GOES BETWEEN BLCCKS WITH INDEXES KO3CC1 AND KDCC
12. MALC(KEMPT,2)=KCCC1

r'VALL(KDCCI]) =KEMPT
i2b MALCIKEMPT,1)=KOCC

385

MALCIKOLC,: 2)=KEMPT
135 IF(MAVL(IBLKN,5)~MMS) 140,140,219
C TO HERE IF ALL OF BLOCK WITH INDEX IBLKN IS TO BE ALLOCAT
CELU
14C IF(MAVL{IBLKN,2)) 145,145,153
145 MAVLS=MAVL [IBLKN, 1)
GG TO 156%
153 MAVLIMAVL(IBLEN,2) 1)=MAVL{IBLKN,1}
155 IF{MAVL{IBLKN,1Y+1}) 160,165,160
16C MAVLIMAVL(IBLKN, 1)} 42)=MAVLIIBLKN,2)
165 MALC{XEMPT 3)=MAVL(IBLKN,3)
MALC{KEMPT 44)=MAVE{IBLKN,1)
MALCIKEMPT S =MAVLIIBLKN,5)
IPASSULION=1PASSLLG)I-MAVLIIBLKN,5)
KO=K0CC1
170 IFIKO) 200:+200,175
175 TFIMALC{KO4)-TIBLKN) 226,180,290
184 MALC{KD,4)=MAVL{IBLKN,1)
KD=MALC(KO,2)
GO TU 170
20g NFB({1)=NFB(1)-1
00 255 IX=i,5
MAVLIIBLKN,IX)=0
275 CONTINUE
GO YO 310
217 MALC{KEMPT ;3)=MAVL{TBLKN,:3}+MAVLIIBLKN,5}~MMS
MAVLEIBLKNyS1=MAVL{IBLKN,5)-MMS
MALC(KEMPT 4)=MAVLI(IBLKN,1)
MALC(KEMPT,5)=MMS
MAVLIIBLKN,4)=KEMPT
NAB=NAB+}
IPASSI1D2)=TPASS(1O)~-MMS
Go 10 2190
215 IVALOV(1)=KEMPT
J1=J{1,J408)
CALL UNMEIX(LIS5,74+J1,18K)
IF{IBK) 225,220,225
225 CALL PACKI(T,J1l,KEMPT,255)
Ji1l.Jd0B}=J1l :
GG TO 275
225 J19=4{19,J08)
' CALL UNMIX(8,304yJ19,1BK]
IF{IRK]) 235,230,235
23 CALL PACKIO¢J13+KEMPT,255}
JU19,J08Y=119
50 TO 2710

386

J17=0{17,408)
CALL UNMIX(15:11,J17,1BKU)
CALL UNMIX{12,:,8+419,1BKL)
IBK=1BKL
CALL PACK({%4,IBK.:IBKU;15)
IFTIBK) 245,249,245
CALL PACK{T7,J17,KEMPT,240)
J(17,308)=417
CALL PACK({B,J19,KEMPT,15)
Jii4,4081=J19
LC TO 279
J2i=J122+,J0B)
CALL UNMIX(8;7,J22:1ND8)
IFLINDB) 2860+.257,260
CALL PACKI{D,J22.,128,128)
J(22.J0B=422
CALL OVFLMGI2.40B,8.IVALOV,1)
J27=J(27,408B)
CALL PACK(2:J27.2;16)
JU27:J08)Y=J27
IF{IWRTA.EQ.D} GO TO 280
WRITE1641570) TCLEKJOBKEMPT yMALCIKEMPTY 3} 4MALC(KEMPT,
L)
FORMATLY MASGN TIME,JOB,MALCBLK s SToLGe*s5(2X415))
IFLKEY) 285,285,307
I=1+1
GG TG 12
RETURN
MOCST=(MALC(KEMPT,3)+MALCIKEMPT5)-MMS}/MDODS1Z+1
MODED=f{MALCIKEMPT 4 3)+MALC(KEMPT,5)-1)/M0DSIZ+1
JLI=21{11,408)
CALL UNMIX(L0:0:J11:MNAR)
IF{MODED-MODST-1) 330,325,315
IST=MODST+1
[EL=MCDED-1
KKX=1ST
L 325 KKX=1STL1ED
NALKKX)=NATKKX}+1
MASIKKX)I=MAS (KKX}-MOO0STZ
ITHRWCTR{KKX)=1
CONT INUE
MEDAMT=MALC(KEMPT ;3) +MALCIKEMPT 5)~ {MUDED~-1}%MODSIZ
NA(MOCEDY=NA({MOCED)I+]
MALTIMODED) =MAS(MODUED) -¥Z0AMT
AAA(MDDED Y =MAX DS o NAA(MODED) - { MEDAMT %MNAR) /MMS}
IAWCTRIMOLEDY=1

33y
335

340
345

387

[FIMALCUKEMPT 3) +MALC{KEMPT o5)-MODST#MODSEZ) 340,335,3

€35 ,
MSTAMT=MODSTeMODSIZ-MALC(KEMPT,3}
GO TO 345

MSTAMT=MALC(KEMPT,5)

NA(MODST)=NA{MODST)+1
MAS(MODST}=MAS(MODST)}~MSTANT
NAA{MODST)=MAXO (O, NAA{MODST)~(MSTAMT=MNAR) /MMS)
IBWCTR{MODST)=1

GO TO 215

. 'END

388

SUBROUTINE MEMRLS5{J0B, JBLK) _

C MEMRLS RELEASES THE BLOCK NO 'JBLK® FROM J0B *JOB*.
COMMON/BLKT7/J(27:64}
COMMON/BULKL2/ICECSZZICCNsINYL o IFECSZyIPCT, IPl,1P2,1Q1yI

CQR2+103 IRy ISsITASMINBLK s MMCT 4 MMST ,MTOTAL+NI4NIOS,
CNMUODSyNPCLoNPCS, NCPUS,IFEDBK+IRN1y IRN2, IRN3,4IR
CNY o IRNS, IRN6, IRNT, IRNEB, IRND, MMAPF , MMSPF

C ‘

COMMON/BLK13/ RANAT
COMMON/BLK16/IBWCTR{ 24} ,ICEC(5,40),ICECS,ICPU(LD),IPAS

Cst2l), IFECSyTFEC{4044),IPROSILO},ISAVE(343),1VAL
COVI123)+MALC(256451, MALCS,MAS(24)MAVL{128,5),MAVL
CSsMOONM{241,MTPL(241} ,NA(24), NAA(24) s NAB+NAGyNA
CML(4D)yNBLK(128)4NFB(3) +NIWMyNSCHED, NREQ(4
LIy 24) 4NTP{24) ¢ NTR(24) ,NUCA(24)
C

INTEGER®2 [BWCTR,ICEC,ICECS,ICPU,IPASS,IFECS,IFEC,IPRO
CSe ISAVE, IVALOV,MALC yMALC S, MAS,MAVL , MAVLS ,MOD
CNMMTPY NA,NAA NAB, NAGsNAML JNBLKyNFBy NJWMyNSCHED,
CNREQyNTPyNTRyNUCA

INTEGER#*2 JsJOVFL

CALL UNMIX(1+0,IS,1IWRTA)

MODSTZ=MTOTAL/NMDDS

MODST=MALC (JUBLK,3})/MODS1Z+1 :

MODED=(MALC(JBLK,3)+MALC(JBLK,5)=-1)/MODS1IZ+]
J1l1=J1(11,J08])

CALL UNMIX{10,2,J114MNAR)

MMS=MALC(JBLK,5)

IF(MOCED-MODST~1) 644,2

2 IST=MCODST+1

IER=MODED-1

DO 3 KKX=IST,IED

NACKKX)=NA(KKX)-1

MAS{KKX)=MJUSIZ

NAA(KKX)=TCON/MMCT

IBWCTREKKX) =1

CAONTINUE

4 NA(HODED) sNA{MODED) -1
MEUAMT=MALC(JBLK,3)+MALCUUBLK,5)~(MODED-1)%M0O0SIZ
MAS(MODED) =MAS({MODED I +MEDAMT
NAAIMODED) =MINO(ICON/MMCT ,NAA{MODED)+ { MNARXMEDAMT) /MMS

C)
{8WCTR(MODED) =}

6 KTEMP=MALC{JBLK,5)

MSTAMT=MINIG{KTEMP ,MOCSTHMODSIZ-MALC(JBLK,3))

s

389

MAS(MODST)=MAS{MODST)}+MSTAMT
NA{MODST)=NA{MODST)+1
NAA(MODST)I=MINO(ICON/MMCT,NAA(MODST)+(MNAR®MSTAMT) /MMS

Cl
IBWCTR{MODST)=1
Mi=0
M=MAVLS
13 IF{M) 15015'70
15 TF{MAVLS) 20.+20,90
20 MAVL(lsl)==-1

MAVL{1,2)=-]
MAVL(Ll,3)=MALC{JBLK,3]}
MAVL{1+4)=MALC(JBLK,1)}
MAVL(1,5)=MALCLJBLK,5)
MAVLS5=1
NENT=1
[2=MALC(JBLK,2)

23 IF{I2} 27427425

25 MALC(I244)=1
12=MALC112,2)

G0 TG 23
21 [2=MALC{JHBLK,2)
ELE IF(12) 32,32,+33
32 MALCS=MALC(JBLK,1)

GO TO 35
33 MALCILIZ2,1}=MALCTJBLK,1)}
15 [2=MALC(JBLK,1)

O IFL12) 44444440

47 MALC{T12,2)=MALC{JBLK,2)
44 NFBUL1)=NFB(1)+1
45 NAB=NAB~-1

IPASS{10)=IPASS(1D)+MALC(JBLK,S)
IF{IWRTALEQ.L)Y GO TO 48
WRITE(6+47) JOBJBLKyMALC(JBLK3) ,MALCUJIBLK,5)4NENT,MA
CVLINENT»3) s MAVL{NENT,5)
B ,
47 FORMAT(* MEMRLS=—=UNB¢ALCBLK,ySTRT LG+ sAVLBLK,STRT,LG. Y,
CTtiXs14))
48 CO 53 1=1,5
: MALC(JBLK,)=
1% CCNTINUE

: GC YO0 543
7. IFIMAVL(M,3)~-MALC(JBLK,3)) 75,75,8"
75 Ml=M

M=MAVL (M, 1}
SC 019

390

80 IFQMALCCJBLK,3)+MALC!JBLK,5)-MAVL(McSI390 85,90
85 ICASE=]1

NENT=M

GO TO 95

0 FCASE=(
35 IF{M.LE.QO} GO TO 100 .
[F(MaVL(M,2)) 220,220,100
1CG IF{M1.LE.J) GO TO 110
TF(MAVL{M]1,3)+MAVLIML,5)-MALC(JBLK+3)) 110,105,110
1G5 ICASE=ICASE+2
NENT=M1
110 IF{ICASE=3) 170,115,170
115 MAVL (M1, 1)=MAVL(M,1)
MAVL (MLy5)=MAVL(ML,5)+MALC(JBLK,5}+MAVL{M,5])
MAVL(ML,4)=MALC(JBLK,1)
IF(MAVL(M+1)4GTeD) MAVLIMAVLIM,1),2)=M1
GO 129 JX=1,5
123 MAVL M, X)) =0
135 NFB{1l)=NFB(1})-1
GO 7O 1751
i7¢ IFLICASE-2)220,1754220
175 MAVL (M1 ,4)=MALC{JBLK,1)
MAVL(ML,5)=MAVL(M],5)+MALC(JIBLK,5)
1751 IF(MALCUJBLK2)) 17641764177
176 MALCS=MALC(JBLKs1)
GC TU 178
177 MALCI{MALC(JBLK2),1)=MALC(JBLK,1)
178 IFiMALC(JBLKfl).GT O} MALC(MALC(JBLKy1),2)=MALCLJBLK,2
ci
GC TO 45
22¢ IF{ICASE) 290,290,225
225 MAVL (My3)=MALC(JBLK,3)
MAVL (My5)=MAVL(M,5)+MALCIJBLK,5)
TF{MAVL(M,2)) 232,232,227
227 [F{MAVLIMAVL(M,2) 14)~JBLK) 232,230,232
230 MAVL(NAVL[M:?lo4?—MALC(JBLKu1)
232 O TO 1751
290 1Q=1
295 [FIMAVLTIIQ,5))3C0,320,300
33c [Q=1Q+1
[F{IG-128) 295,295,305
3¢5 WRITE(6,310)JBLK,J08
310 FORMAT(47H MEMRLS FOUND NO EMPTIES IN MAVL WHEN RELEAS
CING ,I7, 4HFROM, I7)
C
60 TQ 509

32¢

325

339
335

362

364

365 -

38C
385
393

391

NENT=10

IFIMALC(JBLK Y1) «GTeQ) MALCIMALC{JBLK,1)
C)
IF{MALC{JBLK2)) 325,325,330

MALCS=MALC(JBLK,1)
GG TO 335

MALC(MALC(JBLK+2)41)1=MALC({JBLK,1)

[FIMY) 364,364,362

- MAVL{M1,11=10Q

MAVLUIGQ,2) =M1

"GO YO 365

MAVL{1Qs2)=-1
MAVLS=1Q

IF(M.GT.0) MAVLIM,2)=1Q
MAVL(IQ,1)=M
MAVL(IQ,3)=MALC{JBLK,3)
MAVL(IQ,4)=MALC(JBLK,1)
MAVL (1Q,5)=MALC (JBLK,5)
K=MALC(JBLK,2)}

IFIK) 44,44,385
IFIMALC{K,4)=M) 44,39C,44
MALC (K, 41=1Q
K=MALC(K,2)

GC TG 380

RETURN

END

2 2)=MALCIJUBLK,2

hil

OOCOCGOOOOOOC0O0OC0

)

ra AL
[L]

L

392

SURIOUTINE OVFLMGIKEY,JOBoIFLDy IVALNNT)
OVFLMG HANDLES OVERFLOW FRCM VARIQOUS FIELDS OF THE J-TABL

KEY = . INDICATES <ETRIEVE., THE FIRST IVAL{1} VALUES
FUOY J:B9S FIELU [FLD ARE SKIPPEC AND RETRIEVAL BEGINS
AFTER THIS AND CONTINUES FOR THE NEXT NNT VALUES OR UNTIL
TH: VALUES UNDER IfLD ARE EXAUSTED WHICHEVER COMES FIRST
KEY = ? INDICATES PLACE. THE FIRST NNT VALUES IN
fvabL (! THRU NNT) ASE PLACED IN JOB'S OVERFLOW AREA
UNER TFLD. '
KEY = 3 INDICATES SFMDVE, THE FIRST [VAL{1) VALUES
UNDER JOB'S IFLD FIELD ARE SKIPPEL AMND REMOVAL
AEGIN. AFTER THIS AND CONTINUES FOR THE NEXT NNT
VALUFS OR UNTIL THr VALUES UNDER IFLD ARE EXAUSTED
WHICH VIR COMES FIRST.

COMMONSBLKT/J(2T464)

CO=~0nN/BLKAZJOVELI22,432)

GIEINSION IVALILY)

INTIGER¥2 JyHFI X, JOVFL

SO TO (17920005) 4KEY
TO HESXZ FOR RETRIEVAL OF NNT VALUES

NS IP=IVAL(L)

IvaLliy=_

K=

JALD=J1 24, J98)

TFIJADT) Ty 70,20

NPT E

P iT=1

{FHD=JOVFLIJADD, [PNT)

Catl UNMIX{15.1 7 IFHDO,LFLD)

FFILFLG-TFLD) 3 447 4%

P Tl PNT

CALL UNMIXULO9SyIFHDIPNT)

[FUI2T) 35,35,25

JALDSJOVFLIJADRD, 520

501D L5

CALL UNMIXT5,5, IFHD NENTRY)

[:

[=[+1

[FET=MENTPY) 57,5043,

TF{ISKIPE 61460455

ORI YSKIP=1 ‘

T A5

[N

[F(K="IT) E£5,6%,7:

ORIGINAL PAGE IS
OF POOR QUALITY

393

&5 IVAL(K) =JOVFLUJADD y IPNT+T)
IFIKGE.NNTY GO TG 75
S0TS 45

?'. RETURI
C TU R*3F FGR PLACING THE vALUZS FRCH IvaL(l THRU oNT
. K=l , '

LAS-T;L))=‘”

‘ JALN=d{24,J0UB)

Y IF(JAGD) 29Vy297+2120

21 [PuT=]

sle O IFHT=JUVFLOJACD 2 IPNT)
CALL UMMIXI15,120,IFHC,LFLDY
CALL UNMIX(L7,5IFHDWNPNTF)
CALL UMMEIX (5,7 s IFHD Gy NENTRY)
TVILFLU=TIFLD)Y 215435.,215

215 IFINONTRE) 225,2254227

‘e abyTi=IenT
COIBNTENeTF
ST 212
S P GTF=42
. frEToNT+MENTRY#E=-31) 235,232,237
JE. LALTH=JACD

GAUI=JOVFLIJALD,32)
. oI 2.8
Mo AP T =] PNT

T T [PNTHNINTRY+Z

PFULL=JNVELIJADT » NPNTY)
CALL PACKSy TFULL, TPAT, 319
JEVFLUJAL PHTE)=TFULL
va JUYFLIJAUD IPRTY=IFLO*Y 24
(R [=
S I=1+1
O JFLITRTHI-IPNTR) 26542504255
fes [FENOrTE=32) 2204230422
A ot IAdU, IPIT+ L= IVAL(K)
SIFLEJADE ¢y IPNTI=J0VFL{JALDG, IPMT) +]
poEndl _]
‘ RN =NTY D212 en e A0
e Jai=

MR Jio =i+l
IR0 =321 3L3,31 4,30

T LS ITI(A, 2 5) ReNWT,IFLUyJOB

T FreeAT(Y OVELTS RAN CUT OF ROCM WHIa TRYTIMR TN pLACEY,
<y *OYALUR ANOetyld,t FID™ A TUTAL N0, 14,* VA
ol N CA P A PoINTO FIFLEY, T4, FAY JOB' 14
) :

URIGINA)
OF po L PAgr 19

OR QUALITY,

394

RE TN :
Al TEAJOVFLLZADD, 1)) 295,215,295
3.5 TFLLASTR) 320,327,317
217 JOVFLILASTHR 321 =JA00

G 71 325
3z JUT -, JOB)Y=JADD

JFULL=J(22,J0B)

COLL PACK(Y2 IFULL.IFLD,IFLO)

Ji{o 7y JOoB=IFULL
3z [P "=1

NPITE=3¢

50 2 24

FouwD 0 FIELD WITH waMe IFLD

. IFC . 2NTF)Y 360,336,255
53 IFC{TINTHNENTRY+ 1-NDPNTF) 245,222,227
6. TF{IPNTHUETRY =21} 23.4+365,365
€z WP =3y

0 T 245
36, TFULL=Jd122,J08)

CALL PACKR{ T, IFULL,IFLL,IFLD}

JU7Jdar)=1FULL

C
3
3
3
2

ST T
ST mfe. FORK REMOVAL OF THE FIRST ANT ENTRIES AFTER IVAL{L
)
S Las ¥

ISk F2=TvaLil)
5 05 IECIA) Allyhl 452N
51 KKzA=]
VRIS (5,015 KK eNAdTp1FLD,JO0
5135 ECO AT WFLMG CAW FIND QMUY Ty L4yt OF THE' L4,/
v voyALUES FR0OM FIFLDY 14, OF JOBY,14)
GooT a5
S WF S Ta=
I 7=
585 PP =00V FLOJARG, 1PHT)
el UMIXU1ISe1 9 IFHUPLFLL)
TFILFLI=TFLG)Y) S22 047,52
o2 WOATA=TPNT
Coct LAIMIX(L.0,
PP EI2AT)Y 575,45
555 LASTH=3ADT
JAT T=daVELLJADE 3 2)

- o
I A

r
'
[-
T

Dy
-
‘_.

[HHD, IPNT) ORIGINAL pAGE L
) 525 OF POOR qUALITY

545

585
59,

At
oL
el

615

395

CALL UNMIX{5,3y IFHDNENTRY}

CIFLISKIPY 564,560,545

IF{ISKIP-NENTRY) 55545524550
ISKIP=1SKIP~-NENTRY

GC TO 530

[=NENTRY=1SKIP

L=1+1 :

TSKIP=0

GG TO 565

I=

L=i

[=i+]

[FOI~NLNTRY) 5804585570

IF(L=~1} 53745754532

ITEMP=IPNT

HC T3 6.3

JOVFL(JADC, IPNT+1) =3 _
JUVFL{JADD, IPNT }=JOVFL{JADD, IPNT) =1
K=K+1

IFIK-NMT) 565,565,585

IFLI-NENTRY} 59045754570

I=i+!

TF(I-NENTRY} 595,595,655
JOVFLIJADD IPHT4+L)=JUVFLEJACD, IPNT+T)
JOVFL{JADD , IPNT+I) ="

L=L+1

GC TO 592

CALL UNMIX{13,54IFHDLNPNTF)
[FINPNTE) £€506,653,6705

HERT TO RESTACK REMAJINCER CF BLOCK
ICTFF=NPNTF-IPNT
FFHL=JNVFL{JADD gy NPNTF)

CALL UNMIXU54Cy IFHD s NENTRY)
JOVFL{JADD, IPNT) =dNVFL(JADD S NPNTF)
JOVELEIADD G NPHTF) =

I=.

I=1+1 '
PFCI-NENTRY) 625,622,625
JOVFLUJAOD,, IPNT+ L) =JOVFL{JADD 4 NPNTF+1)

CJOYFLUJADD yNPNTF41) =1

o
g
]

GO T 6ib

CALL UHMIXGLC 54 1FHDZMPNTF)

TFINPATF)Y £35,4635,63 '

JUVFLIJADD IPNT I =JDRVELIJADD,IPNTY<IDIFF%32
[PNT=NPNTF~TDIFF

SO IO 81

396

6135 IPNT=ITAMP
IF(K~NNT) 539,522,695
&5% IF(IPNTD) 660,6EL0,655
655 IFULL=JOVFLUJADL s NPNTB)
CALL PACKISsIFULL, Dy 31)
JOVFLEJADD yNPNTL)Y =1 FULL
IF{K-NNT) 535,535,695
€ TH: P»ISENT BLOCK IS DESTROYED
b IT24P=JADD
IF(LASTR) 6T70467),5665
C KELINK AMJUND PRESENT DESTROYED BLOCK
665 JOVFL{LASTS,32)=JOVFL(JADD,32)
50 TO 682
67T IF(JOVFLIJADD,32)) 685,685,675
C RELHLT JOB'S FIRST BLOCK POINTSR 1IN J-TABLE
675 JUZ8, 0B =JOVELIJADD,32)
GF, JALH=JINVFLIIADD,32)
JOVFL{TTENP,32)="
JOVFLEITEMP, 1PNT)
IF{X="14T) 55,5 5,695
C J0='S YERFLOW AREY IS DESTROYED
655 Jl s, j0B)=:
JUoo¢J0BY=T
SN ELIIADD,, IPNT Y=
£4E RETURN

o

-

ORIINAL PAGE &

o BRCR GUALITY

-~

397

PRCGEAN FOR SOLVIMNG ACCESS CONFLICT EQUATICN

CIMENSION R(15)4P115),4(225)

A

COUBLE PRECISION RyAyPPIVIT,TCP,BETyXeY9Z,22,CMR

VOUBLE PRECISION PZIRC,PNU
REAN(S45) NSTEP
FOCRMATIIS)

ICNT=:

ICNT=ICNT+L
[FCTCNT-NSTER) 20420415
eT0 I K5 N

SEAD(S,5) N

WRITC 625 N

FOUMAT(Y THE NEXT SOLUTION [S FCOR'4I3,* CONTENDING PRO

Cost)
Mazig=1
(=", 0l
Y=, 25070 /N
1=1+Y

[F{NeE0.2,AND.2.5T41a/N) GO TC 1T

IF(2.0T3.1/N) GU TO 135
27=1.70o-2

K=

K=F.+}

IFIK.GECNY G0 TO 150
LUP=YINT(H=1,K+1)

J=-1

[={+1

IF(l.uTLUR) 30 TD 170
x=t..DC

TRETG=MAX {A=K—1,K+1=1)+1
[LIL=MI N (N~K=1yKé1~1])
AR EDED L

BOT=1.20%
IFIIBIG.ST..N=-1) 6D TO 5°
[F(TOP.GEL1.M12) B0 TO 5°
T 2T P=IRTG

[310=1R10+1

ST & .
IFCILTLLLEL2) GC T 55
IFL=DTe53F01.2712) 50 T 55
sCT=20THILTL

[LTL=1LTL=-1

TN BT

398

55 K=x%{TQP/B0T)
TOP=1.0D3
3GT=1.200
IF{IBIGLLELN=-T) GO TO 4C
IF{ILTL.GEL.2) GO TO 56
GO TO 7D
X=(XEZIxR(N-K=-1)) 2Z%e(K+l~-1)
IF(I:..;Te"} GD Tf‘&‘”*
PIVIT=X
DU T6 Jd=l.M
76 PluJ)==X_

2C T0 37
&8’ P{I}=P{I1+X

-0 T 27T

1oy LM =PIK)
1=
[=1+1
IF{T.CToN=1) GO TS 114
pliy=p(Il)/7{1.) =CMR)
2C TQ 1°5 .
11 A(r)==PIVIT/ L. 0 N9=C¥R)

Pl)==1,uD"

l:
113 I=71+.
IFIT.5T.4~1) GC R 30
a0+ I-1x(N-101=0{1])
ST LLG

~
oo

—
.
W

[y
r
[

ERLE, TS
SALL STLVER{ R A3 1, ERS,1ER)
e LT LGy 16) NfZ,IFR
164 FCr2aTE/Y RETUPN FROM™ SOLVER N,Z,[ER AREY, 2X413,2%X FE,.
LR&.KQIE)
Wt P Te{Rhe T) N7
17 Fro wAT(/ZY THRE SNOLUTIGI ARRAY FOR N =9,13,' AND £ = '.F
hely? IS5/ .
Ak [TA(E41T5) (H{T)Yy I=14M)

RAT{4(2%,D14.3))

175 BU
50 =

w018, T=1l.H
it SU=SDAFLUATEINZFLOAT L) HR(T)
G =l e=ST
we [T _ {64185 Ny?q%ffSPEiU
155 FLooaTi/Y FOR M = V4I13,% ANO 7 = %,F5.,2,' SLOY DCWN CU
TR I tOTC OCOMTENTION IS *,FT7.5,%. FACH PRCCES
LSE e 1S EXPECTEN 4/, * TQ PROCIED AT 1, F7.5,% WORM

ORIGINAL PAGE IS
OF POOR QUALITY

137

399

Cal SPEED.'//)
PIAGE L IDG
vl 137 I=1,M
P2I0=PZRO+R(1)
PLRU=1.D7-PZRO
PMU=[Z2% %N} %PZIR(O
WRITZ16,195) PNU ‘ .
FO2MAT{Y EXPECTED BAMDWICTH NONUTILIZATION .=
S0 1D 26 .
S5TuLP
Nt

*+yD14.8)

400

SURROUTINE SOLVER(R;AsMyN,EPS4IER)

DIMENSION A(L1)},R{1)

COUBLE PRECISION RyA,PIV,TB,TOL,PIVI

LF(M) 23,23,1
c SEARCH FOR GREATEST ELEMENT IN MATRIX A
1 IER=D

Plv=L.000

T MM=MEM

NM=N%*M

00 3 L=1.MM

TB=DABS(A(L}))

[F{(TB~-PIV) 3,3,2

2 PIv=TB
I=L
i CUNTINUE

TOL=cPS=PIYVY :
C A(I) IS PIVOT ELEMENT, PIV CONTAINS ABS VALUE OF A(L).
C START ELIMINATION LOQP
LS7=1
CO 17 K=1.M
TEST ON SINGULARITY
IFIPIV)Y 23,2344
IFUIER) T+5+7
IF{PIV=-TOL) 64647
[¥R=K-1
PIvI=1.200/4(01)
JE(I=1)/M
I[={=-J%M~K
J=Jd+41-K
C [+K [S ROW INDEX, J*K COLUMN-[NDEX OF PIVOT ELEMENT
C PIVOT ROW REDUCTICN AND ROW INTERCHANGE TN RIGHT HANC SI
CLE R

[

-

LC B L=KyNM,M
LL=iL+]
TB=PIVI*R{LL)
R{LLI=RIL}
R{L)=TB
IS ELIMINATICN TERMINATEC
[F(K~M) 9,18,18
COLUNMN INTERCHANGE IN MATRIX A
LEND=LST+M-K
IF{J) 12412413
1 [1=J%M
CO 11 L=LST,LEND
Te=a¢L)

O mx

LM

401

LL=L+I1
A{L)=A{LL)
11 A(LL)=TB
C RUW INTERCHANGE AND PIVOT ROW REDUCT[QN IN HlTRlX A
12 00 13 L=LST, HM'
Li=L+1
TB=PIVI®=A{LL)
AlLLL)Y=ALL)
13 A{L)=TB .
C SAVE COLUMN INTERCHANGE INFORMATION
ACLST)=d
C ELEMENT REDUCTION AND NEXT PIVOT SEARCH
PIV=0.000
LST=LST+1
J=0
LO 16 TI={S8T,LEND
PIVI==A(]11)
IST={1I+M
J=J+1
co 15 L=IST1MM’M
LL=L-J
AlL)= A‘L)+pIVI*A‘LL]
TBE=DABS(A{L))
IF{TB-PIV) 15.,15,14
14 PIv=T8
I=L
15 CONTINUE
' DO 16 L=K,ANMyM
LL=L+J
16 RILLY=R{LL)Y+PIVI*R{L)
17 LST=LST+M
€ - END UOF ELIMINATICN LODP
C. BACK SUBSTITUTICN AND BACK INTERCHANGE
18 IFIM=-1) 23,22,19
19 15T=MM+M
LS5T=M+]
GO 21 T=2+M
[1=L5T7T-1
IST=IST-LST
L=I5T-M
L=A{L)+.,5D3
CO 21 J=11,NM,M
TB=R{J}
LL=J
BO 20 K=ISTyMMM
LL=LL+]

2¢

21
22

23

T8=TB-A{K)*R{LL)
K=J+L .
RU{J)=RIK)
R{K)=TB
RETURN

ERROR RETURN
IER=~1
RETURN
ENU

402

175

35

3T

5.

403

PRIGRAM FOAR DETERMINING SLOW CCWN AND
CANOWIDTH LTILIZATION UNDER LOCALIZED
BANDWIOTH LIMITATION AND MISMATCH

DIVENSION ISLOWC4T Y, TUTLLA4D) ,BW{16),,IBWRI4D]
READ{5y16) NRUNS,NSEED o
FoaaMATL2(2%,1130)

WrITZ(6s17) NRUNS,NSEED
IX=MSEED

="

NR=MR+]

[FUIRLGTLMRUNSY GO TO 329
A0S, 27 NPROSWNSAMPy W
NPED=NPROS-1
FUSMATIZU2YX s I1Y) e TXHF543)
Ball)="u
TOTAL={FLOAT{HPROSI %, 5) #FLOAT(NPRD)
L=

I=1+1

IF{l.GTL1PR0USY G T2 35

Bl I =0 lI-1)2u)/T0TAL

S0 T 3.

LA A=

MBS =T

G SANT e

LsTO=, "

55T="u%

~STh=",2

Lr 37 T=1460

feLd{l)=,

Pl I)="

ILTeE ()=

5=

wS=l54]

(s LR GNSANPY 60 T2 70

oA s e A NS AMP
ShoANESY A {/NSAND

M AN SEMEAMINSAMP

ST =SaR TIUSTR/NSAMP -UMEA % 2)
STTOSSNRTSSTL/NSAMP - SMEAN YR)
LETrasUR TLURSTU/NSAMP =SS A k%2)

WATT Tl e 65) NPRANS G MSAMP U, LUMEAN USTO,, SMEAN,S5LTD
FUANMAT (/o % HPRCSpNSALP p W UNEAM,USTL , SMEAN, SSTE aREY, /.

ZU2X,11) 45102X,F7.5))

ORIGINAL PAGE IS
OF POOR QUALITY

404

L
WRIT:{6,46) RMEAN,RSTOD
46 FCRIMAT{Y RMEAN AND RSTC ARE'»2(2X,F8.5))
WRITE(6,52) ISLCOW
5. FORMAT(/Z.25{1K[5))

WEIT=(&,5¢) [UTL
WRITE(6,57) EBWR

G0 T1 15
T3 =,

Salk=1,.
75 [=1+1

IF{TLGT.NPROS) GO TO 1¢3
CALL RANBULIX,IY,RAN)
IX=1Y
INCOX=TFIXARAN%NIRD+.5)+]
BuwR=3WR+RAWIINLEY)

G T TS

1. IFT2WR.GTL1) GO TY 1158
3WU=3WR
sLii=l."
G0 v i2n

Y1 E‘.I‘ﬂli-:lor

St = {BuWR~-14) /B4R

120 INLCS=TRTY (SLONE3D,. +,5)+]
[NL'\'U:[FIX(BWU*?)o*‘.a,“’l
Pric ¥ 3=l FIX(BWRR 13,/ {NPRASHAW(NPRNS) I+ .51+1
ISLEHWITINOXSI=TSL W INDXS)+
FUTLOINGXUI=TUTLITNOXU)+]
IR [VEOXBY=TRAR{INDXB)+
Uk, SN=HHANSER WU
STt TO+ WU
SMANELUMEANSSLON
S3T = ST SLDN®ER2
A L ANERYEEANSBWR
PRT =a S TO+RWR AR
Sl T 4
ST

N

]

405

SULROUTI NS RANDULTX,IY4.YFL)
1Y=1X*4L5539

IFLIY) 5,646
IV=[Y+2147483647+]

YEL=1Y

YFL=YFL*,.4656613E-9

RETURN

TN

406

PRE LZRAM FOR DETEAMINING SERVICE FOR PRIOQRITY
LYYy COMNFLICT RESOCLUTION SCHEME

DTy H4STON IPLLe),TACRLI(16) yNAEPLL6)
DIV MSTON DIFF(4) DIFP (4T) CIFBL4)
INT GZk CIFFLGCIF™,QIFG
SEAT[5, 1) NPUNZL,ISTFD

Te o FGuATIZ2X,110))
=

IFE 2.6TMN2UMSY GC TC 2.0

REAT (S, NPROS,ISTEPRS

W 1T2(642) NSTENS NPRCS,,ISEED

Froom ATUAZy Y ThE NIXT v, 15,0 STEPS IS FOR v,]3,' PRCLCES
Cabiemhy VTERED = 1,117
L

W [TE(t g2l

Filem ATEY LAFL t1=2 RATID OF TP TU PL TP{1l THRU NPEC
LS -

im0 g1
La .5 ledl

LIFF

™)
o

Nt N It

—
1
S w o

GLAiGINAL PAGE 18
OF POOR QUALITY,

NS= 1S4
[H{ S LT NSTERSY 05 T LG
it T=144PRIS
CuLt KAWCULLSTE o [XpRAN)
I?-:lex
()=
" “(l)-!FIX(*LJ'*i*}+i
' Lo s =i, WPROS

4 J=1,PR.%

n

407

CTFCIP{I YW 0ELIPLIN) GT TO 4
[TZMR=1P{I)
IPLIY=I00J)
[{J)=1Tz=MP

4 CCHTINUE
0 4% [=1,NPRDS
43 TACRELI)=1RPLT)
IFLas=.
dd="
L I516G=1
Ji=43+1
J=
59 NENRE B

FF(JGToNpRaS) S0 T 6.
IFCIACRIGJ) WLELTACRL(IBIG) Y GT TO 55

IRl%=
WOTN 55
! tac 21 (I3[G =
Az (I L) =NAEPLIBIN)+1
Lo 65 T=l,NPRUS
: TAC D) =TACRI(I)+IP(])
LELIRTOWWE L NPRDS) 60 T0 57
IF({F!aC £.1) GG TO 67
LB = ORIGINAL PAGE IS
Lo OF POOR QUALITY]
uﬁ T, 50
T [Sum=
LG 121, APRAS
[15U 215U+ 12 (1)

[130M=] SUM/IP({NPRDS)
, waT;(e.&:) LBLPyJJy TRSUN,{IP(I)s1=1,NPR0S)
k. CHAT(L901Xy051)
%hTH°FL]AT{“AFPIII“IHKKPQUQ))lkt‘ﬂT!IP(l)“WAcD(JP&?%I
,)
Fe{fen2) (NAEP(I),1=21,HPR0S)
e po»mur(' . ACCES JY FROCY,IL1IX,15))
yRIT (04e83) BRATE
FOamaAT('+, 113X FT o)
SYTANSEM A4 BRATE
BATO=L TDE3RATZ ¥4
FFabLOATILOLP~IPSUM) /FLCATIIRSUMI+ LS
CEEAbeFER%2
by Tay=FHSANSFF
INGTX=TFIX{FFRG, . +.65%57)
TFLT M XefTe T ANDINDEXLTaG Y)Y G0 T 85

:.']-j

L1 LT
g

408

ITw-iF=TKMNGF+1
GO 10 @0
I CINDEXY=DIFFIINDEX) +1
FRF=FLOAT(JI=-IXS MI/FLOATIIRSUM)+.5
AD = DeFF%x%2
Py AN=PMEAN+FF
MeTX=IFIX{FF®4 L, o4 .59559)
LF(IANDEXaGTC ATDINDEXLLELA4™)Y S0 TO 95
IR.LI=TRNGP+]
SCr 1
TP LIHDEY Y =UTF2THNDEXY+]
171 " X=TFTX(BRAT %727 . "4 ,593499)
TFCT U EXeS3T. . sd 0o INDIXLELA4T) GO TO 105
I? B=T3NGH+]
SCTT s
JIr s INMEZX Yy =0 IR { INPEX)+
FTA R A
WPTTo(FAy156) T2 GF+DIFF
FO-aT (/42001 %03))
HAlT AR 1IED) FRnnP,DIRe
A ITlARy15) TR0, DRy
FMoAN=FTAS/NGT D5
PAANERNEATH AT -0 S
A s aEIMTANANLT PSS
FOT =SS0 AT (AR S TER = F T ANESD)
LT =S LATLA ST PSP TANERD)
AT ERTRETN/ STHD Qe En (k)
W+ ET- sy LET) P NS, FY-aM, FSTND

CELG ATUAY Uty The Y 2USy FYEAY W A, T, SUMIPLLI))/PLL)
Tan POFSTL AR, 2(2X,FB.5))

WHLTE(S L7) NP DS, Dve ay, P3TD

FYOUaTEr F R, 17,0 2405, DMEAN W R.T. SUMIPLI)}/PUL) A
Carr, UL Th A, 2{2X%,F8.3))

Vol TSy LT3 9P OIS AMI A, 35T
FelovAT(Y FORE, T -0 PREISY TAN ANDG STANDARY LEVIATICON D
s TRAVECE TOHIGHIST PRIVCRITYY,/, v J08 TELATIVE TC LOWE

COT TR TTY JOB ety L 2%, F800]))

