
N A S A C O N T R A C T O R

R E P O R T

CO
ON
^*
CN

i
OS.

N A S A C R - 2 4 9 3

INPUT DESIGN FOR IDENTIFICATION OF

AIRCRAFT STABILITY AND CONTROL DERIVATIVES

Narendra K. Gupta and W. Earl Hall, Jr.

Prepared by

SYSTEMS CONTROL, INC.

Palo Alto, Calif. 94304

for Flight Research Center * '

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • FEBRUARY 1975



1. Report No.
NASA CR-2493

2. Government Accession No.

4. Title and Subtitle

INPUT DESIGN FOR IDENTIFICATION OF AIRCRAFT STABILITY
AND CONTROL DERIVATIVES

7. Author(s)

Narendra K. Gupta and W. Earl Hall, Jr.

9. Performing Organization Name and Address

Systems Control , Inc .
1801 Page Mill Road
Palo Alto, Calif. 94304

12. Sponsoring Agency Name and .Address

National Aeronautics and Space Administration
Washington, D. C. 20546

3. Recipient's Catalog No.

5. Report Date
February 1975

6. Performing Organization Code

8. Performing Organization Report

H-864

No.

10. Work Unit No.

11. Contract or Grant No.

NAS 4-2068

13. Type of Report and Period Covered

Contractor Report - Final

14. Sponsoring Agency Code

15. Supplementary Notes

Project Manager, Herman A. Rediess, Vehicle Dynamics and Control Division,
NASA Flight Research Center, Edwards, Calif.

16. Abstract

An approach for designing inputs to identify stability and control derivatives from
flight test data is presented. This approach is based on finding inputs which provide
the maximum possible accuracy of derivative estimates. Two techniques of input
specification are implemented for this objective — a time domain technique and a fre-
quency domain technique. The time domain technique gives the control input time
history and can be used for any allowable duration of test maneuver, including those
where data lengths can only be of short duration. The frequency domain technique
specifies the input frequency spectrum, and is best applied for tests where extended
data lengths, much longer than the time constants of the modes of interest, are possible.

These techniques are used to design inputs to identify parameters in longitudinal
and lateral linear models of conventional aircraft. The constraints of aircraft response
limits, such as on structural loads, are realized indirectly through a total energy
constraint on the input. Tests with simulated data and theoretical predictions show that
the new approaches give input signals which can provide more accurate parameter
estimates than can conventional inputs of the same total energy. Results obtained indi-
cate that the approach has been brought to the point where it should be used on flight
tests for further evaluation.

17. Key Words (Suggested by Author(s))

Input design
Stability and control testing
Parameter identification
Flight test planning

19. Security Classif. (of this reportl

Unclassified

18. Distribution Statement

Unclassified - Unlimited

CAT. 32

20. Security Classif. (of this page) 21. No. of Pages 22. Price"

Unclassified 140 $5-75

*For sale by the National Technical Information Service
Springfield, Virginia 22151



TABLE OF CONTENTS

PAGE

I. INTRODUCTION 1

II. REVIEW OF INPUT DESIGN TECHNOLOGY 7

2 .1 Conventional Inputs in Aircraft Applications 7

2.2 Optimal Input Design Methods 7

2 .2 .1 Inputs for Regression Systems 8

2.2.2 Inputs for Dynamic Systems 9

HI. METHOD OF TIME AND FREQUENCY INPUT DESIGN FOR DYNAMIC
SYSTEMS 11

3.1 Introduction 11

3.2 Problem Statement 11

3 .3 Criteria of Optimality 12

3.4 Time Domain Input Design Technique for Dynamic Systems . . 15

3.4.1 Weighted Trace of the Information Matrix 15

3.4.2 Determinant or Weighted Trace of the Dispersion
Matrix 17

3.4.3 Sensitivity Functions Reduction 21

3.4.4 Solution to the Two Point Boundary Value Problem . . 23

3.5 Frequency Domain Input Design 27

3.6 Other Considerations in the Design of Optimal Inputs , . - , . . 31

3.6.1 Primary and Secondary Parameters 31

3.6.2 Technique for Evaluating Parameter Identifying Inputs 32

IV. TIME DOMAIN SYNTHESIS OF OPTIMAL INPUTS 35

4.1 Introduction 35

4.2 Inputs for Longitudinal System 35

4.2.1 Primary/Secondary Considerations . 39

4.2.2 Comparison to Inputs Based on Maximizing the Trace
of the Information Matrix 43

4.3 Inputs for the Lateral System 43

4.3.1 Rudder and Aileron Inputs When All Parameters Are
Equally Important 46

4.3 .2 Primary/Secondary Derivatives 49

4.4 Conclusions 54

111



TABLE OF CONTENTS (Continued)

PAGE

V . FREQUENCY DOMAIN SYNTHESIS OF OPTIMAL INPUTS 57

5.1 Introduction . . 57

5.2 Frequency Domain Optimal Inputs 57

5.2.1 Longitudinal System 57

5.2.2 Effect of Short Data Length on Performance of Fre-
quency Domain Inputs 65

5.2.3 Comparison With Conventional and Optimal Time
Domain Inputs 65

5 .2 .4 Frequency Domain Lateral Inputs 68

5.3 Conclusions 68

VI. EVALUATION OF TIME AND FREQUENCY DOMAIN OPTIMAL INPUTS . 73

6.1 Basis of Evaluation 73

6.2 Longitudinal System 73

6.2.1 Approximation to Optimal Input 73

6.2 .2 Off-Design Parameter Values .-. 75

6.2.3 Fourth Order Model . 77

6.3 Lateral Modes 81

6.4 Conclusions 83

VII. SUMMARY AND CONCLUSIONS 87

APPENDIX A INPUT DESIGN IN TIME DOMAIN 93

APPENDIX B INPUT DESIGN IN FREQUENCY DOMAIN 103

APPENDIX C COMPUTATION OF TIME DOMAIN INPUTS USING EIGENVALUE-
EIGENVECTOR DECOMPOSITION HI

APPENDIX D PRACTICAL TECHNIQUES FOR SENSITIVITY FUNCTIONS
REDUCTION IN LINEAR TIME-INVARIANT SYSTEMS . . . . 119

REFERENCES 129

IV



LIST OF FIGURES

FIGURE
NO. PAGE

1.1 Use of Optimal Inputs for Flight Test Design 4

3.1 Flowchart for Input Design for Dynamic Systems 19

3.2 Sensitivity Function Reduction 22

3.3 Solution of Two Point Boundary Value Problem Using Eigen-
value-Eigenvector Decomposition 25

3.4 Input Design in Steady State 29

4.1 Conventional Doublet Input 38

4.2 Input at the End of Each Iteration 38

4.3a Comparison of Pitch Rates for Doublet and Optimal Control
(Simulation) 40

4. 3b Comparison of Angle-of-Attack Variation for Doublet and
Optimal Input (Simulation) 40

4.3c Comparison of Vertical Acceleration with Doublet and Optimal
Input (Simulation) 41

4.3d Comparison of Pitch Acceleration for Doublet and Optimal
Input (Simulation) 41

4.4 Optimal Elevator Deflection (C Only Primary Derivative) 42
mq

4.5 Longitudinal Inputs for Different Durations of Flight Test to
Maximize Tr(M) 45

4.6 Optimal Rudder Input to Identify Five Parameters in the
Lateral Motion of an Aircraft .47

4.7 Conventional Rudder Input 47

4.8a Sideslip Angle for the Optimal Input (Simulation) 50

4.8b Lateral Acceleration for Doublet and Optimal Input (Simulation) 50

4.8c Roll Rate for the Optimal Rudder Input (Simulation) 51

4.8d Yaw Rate for the Optimal Rudder Input (Simulation) 51

4.9 Simultaneous Rudder and Aileron Inputs to Identify Five
Lateral Parameters 52

4.10 Optimal Input Considering C , C , C as Primary Para-n,-) n no
P r 6r

meters 53

5.1 Steps in the Computation of Optimal Input (min |D|) to Identify
Parameters in the Short Period Mode of a C-8 Aircraft . . . . 59

5.2 Simplified Input Spectrum to Minimize |D| 61



LIST OF FIGURES (Continued)

FIGURE
NO. PAGE

5.3 Elevator Deflection Time History Based on Spectrum of Fig-
ure 5.2 (min. |D|) 61

5 .4 Basic and Simplified Elevator Input Spectrum to Minimize
Tr(D) 62

5.5 Elevator Deflection Sequence to Minimize Tr(D) . . . . . . . 64

5.6 Pitch Rate Time Histories for Time Domain and Frequency
Domain Optimal Inputs (Simulation) 69

5.7 Angle-of-Attack Time Histories for Time Domain and Frequency
Domain Optimal Inputs (Simulation) • • 69

6.1 Optimal and Approximated Elevator Inputs 74

6 .2a Comparison of Pitch Rates for Optimal and Approximated
Inputs (Simulation) 7&

6. 2b Angle-of-Attack for Optimal and Approximated Inputs
(Simulation) 75

6 . 3a Pitch Rate Variation for Systems Under Design and Off-Design
Conditions (Approximated Input) Based on Simulation . . . . 79

6.3b Angle-of-Attack Variation for Systems Under Design and Off-
Design Conditions (Approximated Input) Based on Simulation ?9

6 .4 Comparison of State Excursions Predicted by Two State and
Four State Models (Approximated Input) Based on Simulation 80

6.5 Optimal and Approximated Rudder Input to Identify Five
Lateral Parameters 82

VI



LIST OF TABLES

TABLE
NO . PAGE

4 . 1 Standard Deviations of Parameter Estimates for Inputs at the
End of Each Iteration ..... ............... 39

4.2 Comparison of Standard Deviations on Parameter Estimates With
All Parameters Equally Important and With C Primary ... 43

mq
4.3 Comparison of Tr(D) and Tr(M) Criteria .......... 44

4.4 Parameter Estimate Standard Deviations for Different Lateral
Inputs .......................... 48

4 . 5 Comparison of Standard Deviations on Parameter Estimates for
Inputs (All Parameters Equally Important and C , C , and

n6
Primary) ................ . .r . . . . 55

5 . 1 Errors in Parameter Estimates Using |D| as the Optimality
Criterion ......................... 60

5.2 Errors in Parameter Estimates Using Tr(D) as the Optimality
Criterion ......................... 63

5.3 RMS State Deviations for Frequency Domain Inputs ...... 64

5 .4 Ratio of Parameter Estimates Standard Deviation for Short
Experiments to Steady State Experiments .......... 66

5 .5 Comparison of Time Domain and Frequency Domain Approach
(Tr(D) Criterion) ..................... 67

5 . 6 Comparison of Frequency Domain and Time Domain Optimal
Lateral Inputs ....................... 70

6.1 Comparison of Optimal and Approximated Inputs ....... 75

6.2 Approximated Input Under Design and Off-Design Conditions . 78

6 . 3 Comparison of Standard Deviations on Parameter Estimates
Predicted by Two State and Four State Models ........ 81

6.4 Comparison of Optimal and Approximated Rudder Inputs ... 83

6 .5 Comparison of Lateral Rudder Inputs Under Design and Off-
Design Conditions ..................... 84

Vll



I. INTRODUCTION

An increasingly important measure of the usefulness of aircraft flight test

data is its ability to estimate stability and control derivatives. Improvements

in the algorithms to accomplish this parameter identification task have advanced

to the point where the choice of control inputs may be a limiting factor in the

attainable accuracy of these estimated stability and control derivatives . An input

design requirement, therefore, has arisen because of the need to improve the

efficiency of flight testing by obtaining more accurate estimates from response data

in less time.

The importance of choosing appropriate control inputs and exciting specific

aircraft modes for extracting stability and control derivatives from aircraft flight

testing has long been recognized. As early as 1951, Milliken summarized the

studies conducted in defining good input signals in this statement: "It would appear

that an optimal input in a given case is that which best excites the frequency of

interest, and, hence, its (the input signal) harmonic content should be examined

before the test to ensure that it is suitable" . Good inputs could resolve parameter

identifiability problems and improve confidences on estimates of stability and control

derivatives obtained from the resulting flight test data. In other words, with spe-

cially chosen inputs, the same accuracy on parameter estimates can be obtained in

much shorter flight test time than with conventional inputs . Shorter flight tests can

lead to a saving in time required for stability and control testing and the computation

requirements for extraction of aerodynamic derivatives. In addition, these inputs

can be chosen specifically to satisfy the ultimate flight test objective such as control

systems design, simulator parameter specifications, response prediction, aero-

dynamic model validation, or handling qualities evaluation.

There are many factors that must be considered when choosing inputs for

flight tests. These include:

(a) Pilot Acceptability. If the flight test is to be carried out with a pilot

onboard the aircraft, it is necessary that the control inputs be accept-

able to the pilot. The inputs should not maneuver the aircraft into a

flight region from which a pilot cannot recover. In addition, the inputs



should be reproducible by the pilot.

(b) Instrumentation. The inputs must consider specific instruments avail-

able, and their dynamic range and accuracy. The primary impact of

the instruments on input design is on the signal/noise ratios which the

response must have for sufficiently accurate data.

(c) Parameter Identification Technique. Many parameter extraction

methods require a certain class of inputs (e.g., sinusoidal inputs for

transfer function identification, random inputs for correlation tech-

niques) . More advanced techniques of parameter identification tend

not to rely on such specific classes of inputs, but do require inputs

which maximize some function of the sensitivity of the output responses

to parameters .

(d) Modeling Assumptions . The inputs that are designed must also consid-

er the model that is assumed. For example, inputs chosen for a linear

mode should not cause such large aircraft motions that the assumption

of constant stability and control derivatives is invalid.

(e) Aircraft Structural Constraints. The aircraft maneuvers produced by

the inputs should not cause the structural loads to increase beyond the

design stresses of various aircraft components .

(f) Objective of Parameter Identification. This is one of the most important

and least understood of input design requirements . It is now known'

that there may be a significant difference in inputs which allow more

accurate estimates of parameters for control system design as opposed

to those inputs required for estimates of handling quality coefficients.

Unfortunately, there are not extensive systematic techniques for relat-

ing the input design to the identification objective .

(g) Output Sensitivity. Measured aircraft response resulting from these

inputs should be most sensitive to the parameters of interest and less

sensitive to other, possibly unknown, parameters of interest.



Figure 1.1 illustrates the use of specially designed inputs for flight test de-

sign. This procedure is based on specification of overall aircraft characteristics,

instrumentation, .and parameter identification objectives . The use of an algorithm

to design the input may preclude consideration of other possible constraints (due to

computational complexity) so some iteration to meet other constraints not considered

may be desirable. Once flight tests are completed, and parameter extraction per-

formed, the identification results may be used to design other inputs to further

improve accuracy or as a priori estimates to be used in identifying other parameters

not originally considered.

The present work is an extension of a previous study '" in which a basic

approach to input design was formulated based on optimization of a function of the

sensitivity of the aircraft response to the aerodynamic derivations (e.g . , the infor-

mation matrix, M) . Though this initial effort did establish the feasibility of the

approach, its application to flight test requirements was difficult. To facilitate this

application, the present effort was initiated.

The basic objective was to extend the formulation of input.design procedure

to make it more useful for flight test application and to meet the requirements listed

above. This task was to be achieved by extension of the original time domain

method and also by development of a frequency domain technique. In the course of

the work, it was realized that the original approach could be reformulated by opti-

mizing a function of the inverse of the information matrix (i.e., the dispersion

matrix, D) for a significant expansion of capability for the resulting inputs to meet

flight test requirements . Implementation of this reformulation in both the time and

frequency domain demonstrated both the computational feasibility and the desired

improvement. Subsequent computation revealed that the time domain method is

more applicable to most flight test objectives and that the frequency domain approach

was more useful for test conditions where a steady state condition would be estab-

lished.

The capabilities afforded by use of these two techniques includes the follow-

ing:
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(a) Choice of Criteria In Choosing Inputs: Given that the constraints

listed above are satisfied, there is still flexibility in selecting certain

input objectives . Specifically, it may be necessary that some para-

meters must be very accurately identified, while others may not be so.*

Such an objective is best met by using a weighted trace of the informa-

tion or dispersion matrix. Alternately, the eventual use of the estimates

may not be clearly known, but it is desired to maximize the overall

identifiability of the responses for whatever purpose (e.g., handling

quality evaluation, control system design, etc.) . Such an objective

may be achieved by using the determinant of the information or disper-

sion matrix. The two techniques of this work allow use of any of these

options (e.g., Tr M, Tr D, |MJ , |D| ) . It will be shown that choosing

inputs based on the trace of the dispersion matrix option should give

the most accurate estimates, in general.

(b) Ability To Be Able To Identify a Large Number of Parameters: Pre-

viously, input design techniques for linear systems were limited by

computational requirements to low order aircraft models involving only

a few parameters. The techniques developed for this work design

inputs for a significantly larger number of parameters to be identified.

This capability allows compression of flight test time to acquire the

data to estimate the most derivatives .

These capabilities have been evaluated on simulated aircraft data of the

Buffalo C-8 longitudinal response and the Lockheed Jet Star lateral response . The

methods of evaluation are:

(1) Comparison of the two input design approaches between each other

and also against pulse and doublet-type inputs.

*
Alternately, some derivatives, such as C , may be well known from previous

wind tunnel or flight tests, and others, such as Cp , may not be confidently estab-
P

lished. Inputs could then be designed only for the latter group. This situation is
not emphasized in this work.



(2) Comparison of the input designs against such factors as ease of imple-

mentation and levels of aircraft response.

The method of comparison is based on the standard deviations of the estimates from

one input versus that of another. These criterion values are obtained as the square

roots of the diagonal of the dispersion matrix corresponding to the input under

evaluation.

The organization of this report is as follows. Chapter II presents a review of

the developments of input design for parameter extraction. Chapter III, together

with Appendices A, B, C, and D, discuss in detail the theoretical background of the

time domain and the frequency domain methods . Chapter IV presents numerical

results on optimal flight control inputs obtained using the time domain technique.

Similar results, for longitudinal motions of a C-8 aircraft and lateral motions of a

Jet Star, are given in Chapter V . Chapter VI evaluates the inputs under off-design

conditions and by approximating the inputs by a series of steps . The results and

conclusions are summarized in Chapter VII.



H. REVIEW OF INPUT DESIGN TECHNOLOGY

2.1 CONVENTIONAL INPUTS IN AIRCRAFT APPLICATIONS

Since the first efforts of applying parameter extraction technology to aircraft

flight test data, many different control inputs have been used. ' Many flight

tests are presently aimed at determining natural frequency, damping ratio, etc.,
[5]of a specific mode and steady state gains. Most of the inputs are selected on the

needs of simple parameter extraction procedures . One commonly used input is the

frequency sweep. In this approach, the aircraft is excited by sinusoidal inputs

over a range of frequencies, usually around the natural frequency of the mode,

until a steady state is reached at each frequency. The parameters of a suitable lin-

ear model are selected to obtain the best fit to the variation with input frequency

of the output/input amplitude ratio and phase difference. These inputs work

satisfactorily but require much flight test time. With the development of more
F78l

sophisticated parameter extraction methods, other inputs have been tried. '

Pulse inputs are used sometimes, and the frequency response is obtained by

taking the Fourier transform of the output and the input at discrete points.

These inputs are limited to simple low order linear systems.

Doublets, steps, and finite duration pulse inputs are generally used to identi-

fy aircraft parameters in both linear and nonlinear flight regimes. However, the

estimates of certain parameters may be quite poor and, in some cases, a set of para-

meters may not be identifiable at all. A possible result is that excessive flight test

time may be required to get good estimates of all the parameters. Optimal inputs

consider the identifiability of each stability and control derivative directly. They

can be tuned to obtain better identifiability of the overall parameter set or tuned to

identifying only particular parameters of primary interest.

2.2 OPTIMAL INPUT DESIGN METHODS

The use of analytical techniques in input design may be considered to have
[9]

been initiated by Fisher who gave a quantitative meaning to the knowledge

about a certain set of parameters through definition of the information matrix, M.
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Later, Cramer and Rao showed that the inverse of the information matrix, referre

to as the dispersion matrix, is a bound on parameter error covariances, i.e.,

cov {(9 - 6) (9 -9)T} ^M'1 AD (2.1)

A

where 9 is the actual value of a parameter and 9 is the estimate. This is called

the Cramer-Rao lower bound. The dispersion matrix is extremely useful because

it relates to physically meaningful quantities (parameter estimation errors) and

gives a method of comparing differ.ent experiments. Most of the analytical methods

in input design use a function of information or dispersion matrix as the extremiz-

ing criterion. It is assumed that an efficient parameter identification algorithm,

which can extract all available information about the parameters from data, is

used and the Cramer-Rao lower bound is met with equality. This is important

since this makes it possible to design inputs independent of the parameter

extraction procedure.

2.2.1 Inputs for Regression Systems

Statistical and optimization concepts for selection of inputs were first used

for regression experiments (e.g. , static systems) . Suppose it is possible to take

noisy measurement of linear combinations of a set of unknown parameters, 9, i.e. ,

y = F ( u ) 9 + n (2.2)

where y is the observations and n is random noise. 'The set of possible linear

combinations is defined by the control u. The maximum number of observations

is N. The input design problem consists of finding a set of u's and the number

of observations at each u to get the "best" estimate of parameters, 9, under the

above constraints. Some of the earliest work in this field was done by Kiefer and

Wolfowitz, where they proved the equivalence of two extremum problems .

They showed that optimizing a certain criterion in parameter space (e .g. , sum of

covariance of parameter estimates) is equivalent to optimizing a certain other

criterion in sample or output space. This is an important conclusion and resulted

in a number of significant contributions, e.g. , Kiefer, and Karlin and Studden.

An excellent summary of these methods is given in Fedorov.



b; • 2 .2 .2 Inputs for Dynamic Systems

Earliest work in the field of input design for dynamic systems was done by

Levin and Litman and Huggins. These authors designed inputs for un-

known parameters in system impulse response based on least square estimation.

In addition, Litman and Hueeins considered an infinite observation time.
.[17]Levadi was able to put the problem in a more general framework. In his

approach, the observation time is finite and there are constraints on total input

energy. By using a variational procedure, the trace of the error covariance

matrix is minimized leading to a nonlinear Fredholm equation.

[18]Aoki and Staley designed inputs for single-input, single-output systems

based on maximizing the trace of the information matrix. They considered discrete

time representation of a dynamic system and showed that the energy bounded

optimal input is the eigenvector of a certain matrix corresponding to its maximum
[ 19]eigenvalue . Nahi and Walk's have also considered this problem but did not

come up with a general algorithm. Mehra proposed an algorithm which maxi-

mizes the trace of the information matrix for multi-input, multi-output systems.

Several methods for solving the resulting two point boundary value problem were

also given. One method required solving a Riccati equation and was tried with

partial success. The designed input's, using this method, are unsuitable because,

in general, maximizing the trace of the information matrix does not ensure that

the covariances on parameter estimates are small. In extreme circumstances, it

may give a singular information matrix, which gives infinite covariance in certain

directions in the parameter space. Reid and Goodwin et al. design

inputs based on the trace of the dispersion matrix (sum of parameter error covari-

ances). They use direct gradient procedures, which require excessive computa-

tion time even for simple systems. The method, they propose, is unusable for

multi-input, multi-output systems and for systems with more than a few unknown

parameters .

Mehra , in a novel approach, uses the steady state assumption to convert

a linear constant coefficient system into its frequency domain representation. He

demonstrates the procedure for determining optimal input spectra to minimize the



determinant, trace or any of a variety of functions of the dispersion matrix.

Viort also considers a similar problem.

Until now, inputs have been computed for only a few simple practical sys-

tems . There have been two major barriers limiting the determination of optimal

inputs . Most techniques, developed to date, can handle only the trace of the

information matrix as the optimizing criterion and in many cases these inputs pro-

duce either marginal or no improvement in parameter estimation accuracy.

Secondly, the computation time required is so large for high order systems (e.g.,

more than three states) with many unknown parameters (e.g, ten) that it makes

the actual determination of inputs infeasible. This is because largely brute force
[2 20 21]methods have been used in the past. ' ' In aircraft applications, Stepner

[31and Mehra computed inputs which maximize the trace of the information matrix

for identifying five parameters in the longitudinal short period mode using the two

state approximation. The computed input gave better estimates of three parameters

but poorer estimates of two parameters as compared to a conventional doublet
[24]

input. Swanson and Bellville have used some of these techniques to design

inputs to identify parameters in certain biological systems .

In summary, previous input design techniques for dynamic systems have

demonstrated the potential of improving the capability to identify aerodynamic

derivatives from flight data. These techniques have, however, been limited in the

flexibility they allow to meet important flight test requirements such as obtaining

high accuracy for specific derivatives. In addition, such previous approaches

have not demonstrated the capability to provide inputs for estimation of a large

number of derivatives within reasonable computation limits. In the following

chapter, an input design method is discussed which is directed toward alleviating

these problems .

10



HI. METHOD OF TIME AND FREQUENCY INPUT DESIGN

FOR DYNAMIC SYSTEMS

3.1 INTRODUCTION

This chapter describes a method consisting of two different techniques for

design of input signals which provide estimates of unknown parameters in linear

time-invariant systems . The first technique uses the time domain representation

of system dynamics and develops methods to compute the time history of control

input sequence for any duration of the experiment. In the second technique, the

system is assumed to be in oscillatory steady state and a frequency domain repre-

sentation is utilized. This gives the optimal control input spectrum. The corres-

ponding time history is "optimal" only for long experiments. The time domain

approach is computationally much more complicated than the frequency domain

approach. The two approaches are, therefore, complementary. The frequency

domain approach is suitable for long experiments and the time domain approach

should be used for short and medium experiments.

A computation algorithm based on eigenvalue-eigenvector decomposition is

developed to solve the time domain problem. A new sensitivity functions reduction

method affords considerable savings in computation time by decreasing the order

of the problem. These two algorithms have made implementation of the time domain

algorithm more feasible for practical systems because they allow design of inputs

for much higher order systems than previously reported.

3.2 PROBLEM STATEMENT

Consider a linear, time-invariant, dynamic system following the differential

equation:

•x = Fx + Gu

(3.1)

x(0) = 0 0 < t < _ T

where

11



x is an nxl state vector,

u is a qxl input vector, and

F and G are appropriate matrices which depend on m unknown

parameters 9.

Let there be continuous noisy measurements of p linear combinations of state

variables.

y = H x + v (3.2)

where

y is a pxl measurement vector,

v is a pxl white noise vector with zero mean and power spectral

density R, and

H is a pxn matrix which is a function of parameters 6.

The problem is to choose u from a class of inputs to obtain "best" estimates of

the unknown parameters. A total energy constraint is imposed on the input to

limit state and control input excursions. This method of state deviation constraint

is indirect. The more desirable and direct method of including quadratic penalty

on state in the cost function is a difficult analytical and computational extension

to the present approach of limiting total input energy alone,

uTudt = E . (3.3)

3.3 CRITERIA OF OPTIMALITY

It is usually not possible to find an input which gives better estimates of all

parameters in a given system than any other input. The optimal input is deter-

mined by giving suitable importance to different parameters. Let M be the infor-

12



mation matrix for parameters 6 resulting from an input u. Then the dispersion

matrix is defined as

D A M ' 1 (3.4)

and the Cramer-Rao lower bound (Equation (2.1)) gives

cov (6) >D (3.5)

.A

where 6 is the estimated value of 0. In general, it is necessary to make a trade-

off among the accuracies on estimates of unknown parameters in the system .

Based on Equation (3.5) , several optimality criteria have been proposed and

used. Some of these criteria are not altogether appropriate in that they do not

ensure small estimation errors , but have been used because it is easier to compute

the corresponding "optimal" input. There are three classes of criteria which

have received special attention in the past.

(a) Linear functional of the information matrix.

(3.6)
u

(b) The determinant of the dispersion matrix.

= min |D| (3.7)
u

(c) Linear functional of the dispersion matrix.

J3 = min ^"(M) (3.8)
u

<£ is such that for two positive semi-definite matrices A and B and a constant c

13



(a) 5?(A) > 0

(b) 5?(A + B) = ^(A) + ^(B) (3.9)

(c) ^(cA) = c^(A)

Examples of linear operator <£ are the trace and the weighted trace.

J-. maximizes the total or partial sum of information of all the parameters

or of a linear transformation of parameters . If the linear operator is the trace,

the total information of all parameters is maximized. This may, however, lead to

an almost singular information matrix with large terms on the diagonal. Then the

dispersion matrix, which is a lower bound on parameter error covariances, has

large diagonal terms. Therefore, this optimality criterion is not very suitable.

It is used mainly because of its simplicity.

The dispersion matrix which is positive-definite, in the light of the Cramer-

Rao lower bound, can be looked upon as a hyper ellipsoid of uncertainty in the

parameter space. J_ works with the determinant of the dispersion matrix and

minimizes the volume of the uncertainty ellipsoid.

J, minimizes a weighted sum of covariances of parameter estimates (or some

linear combinations of parameters) . The weighting matrix serves two purposes .

Since the covariances of different parameters have different units, it converts each

term in the sum to the same units. Secondly, the weighting matrix offers a tremen-

dous flexibility because it is possible to assign varying importance to parameters,

through weights on their nondimensional covariance. This is considered to be

one of the most suitable performance criteria since it works with parameter esti-

mate covariances directly.

In the next sections, we indicate how these different criteria can be handled

in the time domain approach and the frequency domain approach.

14



3.4 TIME DOMAIN INPUT DESIGN TECHNIQUE FOR DYNAMIC SYSTEMS

In the past it has been possible to work only with a linear function of the

information matrix, in particular, the trace. Under the present effort, methods

have been developed which make it possible to optimize the determinant or weighted

trace of the dispersion matrix. The details of the theory behind these methods is

given in Appendix A. Here, we describe the algorithms and then indicate numeri-

cal procedures which are used to solve the resulting equations.

3.4.1 Weighted Trace of the Information Matrix

It is shown in Appendix A that maximizing the trace of the information leads

to an eigenvalue problem of a positive self adjoint function. It is possible to re-

formulate it as a two-point boundary value problem.

d
dt

xe
=

Fe

RTR-1

xQ(0) = 0

uopt

He

X(T) = 0

e

xe

A.

.*
xe

A.

(3.10)

(3.11)

The smallest value of constant \i for a nontrivial solution to the two-point boundary

value problem gives the optimal control input. The matrices XQ, F~, G~, H~ and

Re are
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X0 =

H0 =

R0 =

F0 =

X

9x
901

9x
Sv'/TT902

9x
90m_

|S H 0 . . . . 0
OW,

§F2 ° H . . . . o

9H 0 H90
m

R O . . . . 0

O

O . . . . R

F O O G

9F 0 9G
90, F ° 9-0",1 l

• G0= :
9F n . p 9G
90 ° F L50~m J *• m J

(3.12)

(3.13)

(3.14)

(3.15)

16



This two point boundary value problem is solved as described in Section

3.4.3 and in Appendix C.

A weighted trace of the information matrix is maximized by defining a new

set of m parameters cp related to 9 as

9 = C c p (3.16)

The information matrices for cp and 6 are related to each other as

M(p = CTMeC (3.17)

Therefore,

Tr(M ) =Tr(CTMeC)

= Tr(CCTMe)

(3.18)

Thus, maximizing the trace of Mcp is equivalent to maximizing a weighted trace

of the information matrix for parameters 9. The sensitivities of the state vector to

parameters cp and 9 are related by the following transformation:

9x\ _ /ax\ cT (3 19)

It is clear that the parameter transformation of Equation (3.16) enables us to maximize

a weighted trace of the information matrix, when the weighting matrix is symmetric

and positive semi-definite. The symmetry is not a restriction and positive semi-

definiteness is required in the light of condition (a), Equation (3.9).

3.4.2 Determinant or Weighted Trace of the Dispersion Matrix

The idea behind minimizing the determinant or weighted trace of the disper-

sion matrix is presented in Appendix A, Sections A. 4 and A. 5. We present here

the algorithm used in the computation of optimal input. It is an iterative pro-
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cedure with convergence to a stationary point.

Algorithm (see flowchart in Figure 3.1):

(1) Choose any input u(t) with energy E which gives a nonsingular in-

formation matriXjM .

(2) Find an input u (t) with energy E to maximize cp(u), such that

f uT(t) u (t) dt > 0o m —

where,

9 = Tr(M M) to minimize |D| (3.20)
o

= Tr(WMQ M M ) to minimize Tr(WD) (3.21)

Both these criteria can be recast as maximizing a weighted trace of

the information matrix. The matrix C of Equations (3.16) to (3.19) is

C = M~1/2 to minimize |D| (3.22)

= W1/2M~1 to minimize Tr(WD) (3.23)

(3) The information matrix for input ecu (t) + PU (t) is

M, = a2M + B2M + 2ct6M (3.24)1 o r m r om

where M is the information matrix for input u (t) and M is a
m ^ m om

"cross information matrix" for inputs u (t) and u (t) and is defined
o m

in Appendix A . The energy constraint on the input requires

18
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Determine the Information
Matrix, M±

Find C

1 /?
C •? Mj ' to max |M|

C - W1/2M~1/2 to mln Tr

Define New Parameters

* = cf-"-e

Find u (t) to max Tr(M,)
m <|>

• Sensitivity Functions Reduction

• Solution of Two Point Boundary

i Computation of Inputs

Find a,B such that

T
a2 + B + 2aB f u'(t)u (t) dt

I * m
o

and CJUl(t) + Bum(t) A u±+1(t)

Optimizes the Criterion Funct'ion

for Parameters 6

Update Design

u (t) is the new input

Figure 3.1 Flowchart for Input Design for Dynamic Systems
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a2 + p2 + 2ap I u^(t) um(t) dt = 1 (3.25)

Use Equations (3.24) and (3.25) to find a P between 0 and 1 which

optimizes the criterion function for M., . It is shown in Appendix A that

if the input u (t) is not optimal, it is always possible to bring about an

improvement in the performance index for this choice of P .

(4) Check to see if the termination criterion is met. One of the following

can be used .

(a) The information matrix does not change substantially from one

step to the next, or if the optimizing function is not improving

significantly.

(b) The value of P which optimizes the value of the desired func-

tion is approaching zero. In other words, very little power is

being placed at newly chosen frequencies .

(c) The maximum value of the function O is not much higher than

the maximum value for the optimum design (i.e. , m to minimize

|D| and Tr(VJD ) to minimize Tr(WD)) . If the termination

criterion is not met, repeat from step (2) .

(5) Check if the design is globally optimum.

It is clear that, in this technique it is necessary to maximize a

weighted trace of the information matrix in each iteration.

Unless otherwise mentioned, in all computations reported in Chapter IV,

trace or weighted trace of the dispersion matrix is used as the optimality

criterion . This has proved to be a more useful criterion in general than the trace

or weighted trace of the information matrix.
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3.4.3 Sensitivity Functions Reduction

The two point boundary value problem requires a solution of n(m+l) sensi-

tivity equations and n(m+l) adjoint equations. It is shown in Appendix D that the

state sensitivities to system parameters are not independent of each other, in

general. The number of sensitivity equations can, therefore, be reduced by a

proper linear mapping and propagating only the independent equations. The

maximum number of equations to obtain all sensitivity functions is n(q+l) . In

many practical cases, it is smaller.

The theory of how the sensitivity functions reductions can be carried out

is given by Gupta and in Appendix D . It is necessary to work only with the

controllable part of (F^, GQ) to obtain all sensitivities (F- and G~ are defined in

(3.15)) . The uncontrollable subspace of (Ffi, Gfl) is dropped. Also, the states

unobservable through (Ffl, Hfi) do not affect the performance index (i.e., the

trace of the information matrix) . For example, when all parameters are in G,

the system states, x, are unobservable through H~ and can be discarded. This

happens rarely and is not incorporated in the algorithm.

The implemented algorithm is given here and the flowchart is illustrated in

Figure 3.2.

1. The linearly dependent columns in G are merged. Then the structur-

ally uncontrollable states in (F, G) are dropped.

2 . Matrices FQ and GQ are formed, k, ,k,, . . . ,k of Equation (D. 22) are\y o i ^ q
determined and are used to chbose (q+l)n appropriate columns from

the controllability matrix of (F^Gg) .

3. The dimension kl of state space controllable from each input u. alone

is determined. If for any i

2k.1 < n + k.i i
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xe(t) - Qi xc(t)

Figure 3.2 Sensitivity Function Reduction
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only the first 2k! columns involving G. in the controllability matrix

are considered.

4. The remaining columns are checked for linear independence. The

Gram-Schmidt procedure is used to drop columns, which are linearly

dependent on other columns . The set of remaining columns is Q, .

5. Any pseudo-inverse of Q, is determined. Equation (D . 7) is used to

compute F and G .r c c

6. Equation (D.6) is solved for x (t) and Equation (D.8) is used to find

Xg(t) at the desired points .

3.4.4 Solution to the Two Point Boundary Value Problem^ ^

Several solution techniques have been suggested to solve the two point

boundary value problem of Equation (3.10) . The Riccati equation method suggest-

ed by Mehra has been tried with limited success . In this method, a u is chosen

and a certain Riccati equation solved to determine the experiment duration where

the elements of the Riccati matrix become large (theoretically infinite) . The para-

meter p. corresponding to the desired experiment time is determined iteratively .

The problem with this method is that it is difficult to determine numerically the

time at which the elements become large. Also, it usually does not give good in-

sight into the nature of optimal inputs.

A new method, which uses the symplectic properties of the Hamiltonian

matrix 3£ of the two point boundary value problem, has been developed and is

described in Appendix C. The eigenvalues of the Hamiltonian occur in pairs

SP^ and -SP. Let the corresponding eigenvector matrix be

X

(3.26)

A
+
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with normalization

A ^ X + - X ^ A + = I (3.27)

Then the two point boundary value problem has a nontrivial solution if

U = A+
X A_ e" t^+TX_1X+e ^ (3.28)

has at least one eigenvalue equal to one.

A computer program has been written to solve Equation (3.10) using eigen-

vector decomposition. It consists of the following steps:

(1) A reasonable p. is chosen. It can be shown that

— = - ~ ~- (3 29)
3E \i U<^ ;

And since [i does not depend upon energy E in u,

Tr(M) = E/n / (3.30)

So (J. can be selected from a knowledge of the energy and the expect-

ed value of Tr(M) . Alternatively, one could find the value of the

performance index for a reasonable input which satisfies the energy

constraint and then apply a suitable correction factor to |l determined

using Equation (3.29). Choosing a good initial [i i's important in

obtaining quick convergence.

(2) Eigenvalues and eigenvectors of the Hamiltonian are determined and

A A_ and X_ X+ are computed. Starting from T = 0,eigenvalues of

U are determined for increasing T in steps of AT until a point T

is reached where one eigenvalue of U is "close" to 1.
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Find T where one

eigenvalue of D(T) la

"close" to 1

Figure 3.3 Solution of Two Point Boundary Value Problem Using
Eigenvalue-Eigenvector Decomposition
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(3) \i is updated for small changes, AT, until the desired T is reached.

Thereafter, a correction in \i is applied to bring the eigenvalue

very close to one .

(4) yR , the right eigenvector of U corresponding to the eigenvalue

close to one, and X(0) are determined. The states xfi(t) and input

u(t) are obtained from the expressions

Remarks

x0(t) = - X J . e - y + X e ' + x M O ) (3.31)
U T i\. — +

u(t) = n { G A e ~ ^ ( T ~ t ) y 1 ) - GA_ e '^xxCO)} (3.32)

(5) The input energy and information matrix are computed. Since the

system is linear, the states, inputs, and information matrix can be

scaled for desired energy in control inputs .

1. In most cases which have been tried, only a few eigenvalues of the

Hamiltonian are oscillatory or have low damping. Other eigenvalues

can usually be discarded since they give additional eigenvalues of

U close to zero. This reduces the size of U . If all but one eigen-

value of $£ are highly damped, it is usually possible to compute T

for a \i through knowledge of SP and S, by hand calculation.

2. X(0) can also be computed using the following expression:

UO) = e~^+T X:T y1R (3.33)

It is easier to use this expression since the matrices on the right hand

side are available in the program.

3. Equation (3.32) can be simplified to give analytic expressions for

optimal inputs .
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3.5 FREQUENCY DOMAIN INPUT DESIGN

If the duration of the experiment is much longer than the system character-

istic time, it is possible to design inputs based on a variety of criteria quickly by

making the assumption of steady state. In an ingenious approach, Mehra

converts a linear time-invariant system into its frequency domain representation .

This eliminates the dynamics of the system. The parameter estimation problem

becomes a regression problem in which input frequencies and the power in each

frequency are the control parameters . These parameters , which define the input

design, are chosen by an iterative procedure.

Consider the state space representation of a discrete-time linear system

x(k + 1) = cpx(k) + Gu(k) k=l,2,3, . . . ,N (3.34)

and the noisy measurements

y(k) = Hx(k) + v(k) (3.35)

(p, G, and H are appropriate matrices and contain m unknown parameters 6.

Fourier transform (3.34) and (3.35) to get

_ _
y(n) = H(e N - cp) G u(n) + v(n)

(3.36)

A T ( n , 9) u(n) + v(n)

As the number of sample points increases, the information matrix per sample

approaches

(3.37)
• VW VV W U.LA

-7C
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where F is the spectral distribution function of u and S is the spectral
uu vv r

density of v and superscript '*' denotes the conjugate transpose of a matrix.

Based on Appendix B, the following algorithm can be shown to converge to

the optimum input. See Figure 3.4 for flowchart.

(1) Choose a nondegenerate input f (to) (i.e., consisting of more than

•=— frequencies, with a finite power in each frequency) .
^P

(2) Compute the function v|/(cc, f ) and find the value of co where it is

maximum. Call it CO , where
o

\|/(oo,f ) = Re Tr S A (co) VQ °(f ) AQ (3.38)
O I W OtJ O OU

to minimize |D|

and

£ D(f ) "\?"' S " (co) ̂ ^- D(f ) (3.39)
I o o W v v o W "I

to minimize a linear function SS of D .

(3) Evaluate the normalized information matrix at CO . Call it M(co )

(4) Update the design

f, = (1 - a ) f + a f(co ) 0<a <1 (3.40)
1 o o o o o •

a is chosen to minimize |D(f)| or [^?(D(f))] where

M(f, ) = (1 - a ) M(f ) +a M(co ), 0< a <1 (3.41)1 o o o o o

It can be shown that such an a exists.o

(5) Repeat steps (2) - (4) until the desired accuracy is obtained.
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Remarks

1. If k is the number of frequencies in the optimal design, then

: m(m
2

+1) (3.42)

where o~ is the smallest integer higher than =— .

2. The function \|/ has many local maxima. It is computationally time

consuming to find CO where v|/(co, f) is maximum. In the computer

implementation of the algorithm, we consider finite but large N and

search through all values of v|/(n) to find the maximum. Most stable

systems of interest are low pass filters . Thus, in most cases, it is

possible to find a subset of [-7T, Ti], where the search need be carried

out.

3. The termination criteria are the same as in Section 3.3.2 for the time

domain case.

[27]Practical Considerations in the Computation of Optimal Input

The above algorithm will produce an optimal input design with a sufficient

number of iterations. However, at each iteration, the procedure adds one point

to the spectrum of the input. There are many inputs with unit power leading to

the same information matrix. From a practical point of view, it is desirable to

have as few frequencies in the optimal input as possible. The fewer the frequen-

cies , the easier it is for the aircraft pilot or input generating system to reproduce

the desired input. During the computation, a few steps can be taken to reduce the

number of points in the spectrum. Suppose the normalized input at any stage has

k frequencies co. with power a. (i = 1,2, ... ,k) .

(1) All frequencies which are "close" to each other can be lumped into

one frequency. We consider two frequencies close to each other if
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#
they are less than AGO apart. Suppose q frequencies CO. are within

1 *
a band Aco wide. Then they can be replaced by one frequency co

*
with power a where

* *
a = E a. (3.43)

and

* i 3 * *
co = -=% I a. co. (3.44)

a i=l l *

(2) From this new normalized input, all frequencies co! with power less

than a threshold a1 are chosen. These frequencies are not within

Aco of any other frequency in the normalized input. They are

dropped. The remaining frequencies do not form a normalized de.-

sign, so the design is renormalized.

Steps (1) and (2) are carried out ensuring that the design does not become

degenerate. This "practicalization" requires judgment of Aco and a.

3.6 OTHER CONSIDERATIONS IN THE DESIGN OF OPTIMAL INPUTS

The stability and control derivatives determined from aircraft parameter

identification are used for several purposes, for example, handling qualities

specification, control system design, and simulator aerodynamic coefficient values .

The ultimate objective of parameter identification enters into the considerations

for the choice of optimal inputs to identify unknown system parameters .

3.6.1 Primary and Secondary Parameters

In many situations of practical interest, it is desirable to obtain accurate

estimates of only a subset of all unknown parameters . Let the first k parameters

be of primary interest and the remaining m-k parameters be of secondary

interest. There is no direct incentive to obtain good estimates of the last m-k

parameters. Inputs which give outputs sensitive to primary parameters should
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be used. The secondary parameters are estimated only to the extent that they help

reduce uncertainty in primary parameters resulting from errors in secondary

parameters.

This consideration is simple to handle when the opnmality criterion is a

weighted trace of the dispersion matrix. The weighting matrix should be chosen

as

(3.45)

m-k

In the determinant criterion by selecting the function cp,

cp = T r ( W M )^

W =

Dkk

D,

D,

, k + fi = m

(3.46)

(3.47)

the |D, , | is minimized. In other words, the input is such that it minimizes the

area of the cross section of uncertainty ellipsoid mode by a k dimensional hyper-

plane in the space of primary parameters .

3 .6 .2 Technique for Evaluating Parameter Identifying Inputs

Various techniques can be used to determine how effective an input is in

identifying system parameters. The accuracy with which the parameters can be

estimated depends not only on the inputs but also on the data reduction technique

used.

The most definitive way of determining the usefulness of an input is to use

it with the system for which it is designed, and then to compare the resulting

parameter estimates with the ones obtained using other inputs . If this is not
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possible, simulation data must be used. There are two more basic methods to

evaluate the simulation data:

(1) Monte Carlo Simulation. This method consists of generating typical

measurement time histories using simulations of system equations .

The parameters are determined from each of these time histories by

a minimum variance estimator. The mean and variance of the esti-

mated parameters can be determined.

X

(2) Information Matrix Method. It is known that the diagonal terms on

the inverse of the information matrix are the covariance of the para-

meter estimates if an efficient estimator is used. Information matrix

can predict the parameter estimation errors without actually generat-

ing a number of time histories .

Monte Carlo simulation is usually expensive because the parameters must

be estimated for each simulation using a minimum variance estimator (this is

necessary so that the effects of the data reduction method do not mask the identi-

fiability of a certain input) . The information matrix method can accomplish the

same task much more quickly. Any difference in the covariance of parameter

estimates predicted by the two methods is only due to the inefficiency of the data

reduction method used in the Monte Carlo simulation.
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IV. TIME DOMAIN SYNTHESIS OF OPTIMAL INPUTS

4.1 INTRODUCTION

The time domain computer program determines the optimal inputs' time

history for a specified length of flight test. In general, the optimal input depends

on planned flight test duration, available instruments and their accuracies, the

best a priori estimates of unknown parameter values, and many other factors.

The techniques, developed in Chapter III, can be used to design the optimal input

based on a variety of criteria.

The elevator deflection sequence, which gives good estimates of parameters
[3]in the short period mode of a C-8 aircraft, is computed under a variety of cir-

cumstances . These inputs are evaluated against conventional inputs and against

each other, with simulated data. The accelerations and velocities are determined

over a simulated flight test to ensure that the inputs are safe and implementable.

Rudder inputs are designed to identify five parameters in the lateral dynam-

del of a Jet Star aircraft. Combined rudd<

determined and compared with rudder inputs alone.

ics model of a Jet Star aircraft. Combined rudder and aileron inputs are also

The weighted trace of the dispersion matrix is considered as one of the best

criteria and is used throughout this chapter. Its comparison with other criteria

for practical examples is given.

4.2 INPUTS FOR LONGITUDINAL SYSTEM

The longitudinal perturbation motions of a Buffalo C-8 aircraft about a

steady trim condition obey the following differential equations (units: meters,

deg, sec).
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d
dt

u

e

q
_ct _

"-.02 -.171 .001 .179"

0 0 1 0

.0984 0 -1.588 -.562

.-.131 0 1 -.737

u

e

q
a

+

0.0

0.0

-1.66

.005_

where

u is forward speed,

9 is pitch angle,

q is pitch rate,

a is angle-of-attack, and

8 is stabilator deflection.

The poles of this system are at

(4.1)

CO = -1.16 + .621 short period modesp • — r

to , = -.0153 + .088j phugoid modepn —

The first pair of complex roots corresponds to the fast, highly damped, short

period mode and the second to the slow, weakly damped, phugoid mode.

It is assumed that there are five unknown parameters, all in the short period

mode (underlined) . It is well known that the two state (pitch rate and angle-of-

attack) model of an aircraft is a good representation of the short period motion.

This approximation is used to find the elevator deflection time history. The

equations of motion become

-1.588 -.562"

-.737

q

a
+

"-1.66

.005
(4.2)
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with poles at

co = -1.16 + .621sp - J

These are noisy measurements of q and a

a

(4.3)

The measurement noise is assumed white. The root mean square errors in the

measurements of q and a are .70 deg sec and 1.0 deg, respectively, and the

sampling rate is 25 per second.

A doublet input, shown in Figure 4.1, is used conventionally to identify

these five parameters . Starting from this doublet, the input design program is

used to determine the optimal input for a 6 sec long experiment with 100 deg sec

total input energy. The performance index is the trace of the dispersion matrix.

The input at the end of each iteration step is shown in Figure 4.2. Fairly good con-

vergence is obtained in three steps. Table 4.1 shows the standard deviation in
*

parameter estimates for each of these inputs. Also shown is the value of P which

determines the component of new input added to the old input (see Chapter III) .

P was taken to be one if the decrease in Tr(D) was more than 50%. It is clear from

Table 4.1 that the optimal input should give much better parameter estimates

(e.g. , smaller standard deviations) than the conventional doublet input.

The standard deviation format of Table 4.1 is used throughout this report. These
quantities are the square roots of the diagonal elements of the Cramer-Rao lower
bound (Equation (2.1), p. 8) , and represent the lowest possible value of the
parameter estimate standard deviations which can be attained using an unbiased
and efficient parameter identification procedure . As explained in Section 3.7,
these lowest bounds rather than parameter estimates based on individual runs are
a meaningful comparison of different inputs , a better input giving a smaller lower
bound. The nominal parameter values are given for reference, in terms of
dimensional coefficients, C. (j = m , mfi , etc.), to simplify the notation.
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Figure 4.2 Input at the End of Each Iteration

38



Table 4.1. Standard Deviations of Parameter Estimates for Inputs at
the End of Each Iteration

Length of Simulated Flight Test = 6 sec

Total Input Energy = 100 deg sec

Iteration 0
(Doublet)

Iteration 1

Iteration 2

Iteration 3

Parameter Value

Standard Deviations

Cm
q

.219

.294

.113

.113

-1.588

C
ma

.362

.0703

.0729

.0676

-.562

\

.326

.0529

.0595

.0561

-.737

C
m&

s

.0978

.193

.0620

.0672

-1.66

CZZ8

.0957

.0452

.0421

.0400

0.0

Tr(D)

.304

.134

.0272

.0264

P

1.0

.61

.43

[All in units of deg, sec]

Figure 4.3 shows pitch rate, angle-of-attack, pitch acceleration,and verti-

cal acceleration time histories for the optimal input and compares them to the

corresponding time histories resulting from a doublet input. Peak values of accel-

erations are higher for the doublet input. However, high accelerations last for a

longer time when the optimal input is used. Also, the excursions in angle-of-

attack are much higher for the optimal input.

4.2.1 Primary/Secondary Considerations

An input is designed considering C as the primary parameter of interest.
mq

The variance on the estimate of C is weighted 100 times more heavily than the
mq

variance on Cm , GZ , Cm and GZ . The starting input is the optimal input
a a S 8

s s
when all parameters are equally important. The input obtained after one iteration
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Figure 4.3a Comparison of Pitch Rates for Doublet and Optimal
Control (Simulation)
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Figure 4.3b Comparison of Angle-of-Attack Variation for Doublet
and Optimal Input (Simulation)
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is shown in Figure 4 .4 . It lobks similar to the input when all parameters are

weighted equally. The standard deviations of parameter estimates for these two

inputs are compared in Table 4 .2 . The standard deviations of C and C de-r r m m~
* 6s

crease by about 3% while those on other parameters increase. This shows that to

get a good estimate of C it is necessary to have a good estimate of C also.
m

Also, C is an important parameter in the system. Even when all the parameters
m

are to be identified, almost the best possible estimate of C is obtained. Them
A

considerations of primary and secondary parameters may be more useful when the

two sets of parameters affect different modes .

Using the new time domain method, the entire idea of primary/secondary

derivatives could be recast in a more general framework where parameters are

assigned different levels of importance through weights on their covariance.

Cfl

-10o _,

Buffalo C-8 Aircraft
Altitude = Sea Level
Velocity = 41.2 meters/sec
Input Energy = 100 (deg) (sec)

Time (sec)

Figure 4.4 Optimal Elevator Deflection (C Only Primary Derivative)
mq
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Table 4.2 Comparison of Standard Deviations on Parameter Estimates With
All Parameters Equally Important vs. C Primarym

Length of Simulated Flight Test = 6 sec

Total Input Energy = 100 deg sec

Parameters
Equally
Important

C Primarym 'q
Parameter
Value

Standard Deviations

Cmq

.113

.110

-1.588

C
m<x

.0676

.0747

-.562

\

.0561

.0615

-.737

C
rn0os

.0672

.0651

-1.66

CZZ8
s

.0400

.0415

0 .0

Tr(D)

.0264

.0275

[All in units of deg , sec ]

4 .2 .2 Comparison to Inputs Based on Maximizing the Trace of the Information

Matrix

Before the computer program was written to minimize the trace of the dis-

persion matrix, many inputs were designed using the trace of the information

matrix as the optimality criterion. Three such inputs 4, 6, and 12 sec long,

each with total input energy of 100 deg sec, are shown in Figure 4.5. Table 4.3

compares these three inputs with each other and with the 6 sec. long time domain

input obtained based on the Tr(D) criterion. It is apparent that the trace of the

dispersion matrix is a much superior criterion.

4.3 INPUTS FOR THE LATERAL SYSTEM

The equations of motion for lateral motions of one version of a Jet Star flying

at 573.7 meters/sec, at 6,096 meters are *• (all in units of deg, s e c )
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Buffalo C-8 Aircraft
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Velocity = 41.2 meters/sec
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Figure 4.5 Longitudinal Inputs for Different Durations of Flight
Test to Maximize Tr(M)

d
dt

<P

P
=

"-.119 .0565

0 0

-4.43 0

2.99 o

0 .0289"

0 0

2.88 1.40

_ 0 . 0 -1.55 .

-

8a

8
r

0 -1

1 0

.935 .124

.119 -.178

<P

P

. r_

(4.4)

where P is sideslip angle, cp is roll angle, and p and r are roll and yaw rates,

respectively. Aileron and rudder are two control inputs. These are noisy

measurements of the four states
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<P

p
r
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\

Tip
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(4.5)

The noise in measurements is white and Gaussian with root-mean-square values .

«p

Ideg

.5deg

.71 deg sec

.71 deg sec

-1

-1

(4.6)

and the sampling rate is 25 per second. The poles of this system are at

-.0511 + 1.78j

-1.12

-.00667

Dutch-roll

Roll

Spiral

(4.7)

The inputs are designed to identify the parameters which predominantly affect

the Dutch-roll mode (underlined) .

4.3.1 Rudder and Aileron Inputs When All Parameters Are Equally Important

The optimal rudder input to minimize the sum of dispersions of these five

parameters is determined and is shown in Figure 4.6. The duration of the simu-

lated test is 8 sec. and the input energy is 100 deg sec. Figure 4.7 shows a

conventional doublet input with equal energy . The comparison of standard devia-

tion on parameters resulting from these inputs is given in Table 4.4. The optimal

input results in better parameter estimates than the doublet, based on comparing

the standard deviations .
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The state and lateral acceleration simulated time histories are compared in

Figure 4.8. The optimal input results in large excursions in states and accelera-

tions . This is because the Dutch-roll mode has low damping and optimal input

continuously excites the responses.

New simultaneous rudder and aileron inputs are designed to identify these

parameters . The inputs with combined energy of 100 deg sec are shown in

Figure 4.9. The aileron input amplitude is very small. The estimates resulting

from this simultaneous input are presented in Table 4 .4 . There is a very small

improvement over the single rudder input case, as would be expected since the

rudder input is much more effective in estimating these five parameters than the

aileron input. Larger aileron deflections can be obtained by placing separate

energy constraints on the aileron and the rudder.

There are eight linearly independent columns in the controllability matrix

of (Ffi, G f i) . Therefore, eight linear differential equations must be solved to

obtain all sensitivity functions (see Section 3.3.3 and Appendix D). However, the

last column is almost linearly dependent on the remaining seven. The optimal input

is designed through propagating just seven equations . The standard deviations of

parameters resulting from this input are given in Table 4 .4 . There is an insig-

nificant difference in this input and the input based on using all eight sensitivity

equations. This approximation brings about considerable saving in computation

time. It could prove extremely useful in computation of optimal inputs for practical

high order systems.

4 .3 .2 Primary/Secondary Derivatives

A rudder deflection sequence is determined to primarily identify C ,
"P

C and C and consider C and Cn as unknown secondary coefficients . Asn
s
 VP *pr r r

in the previous case, this is accomplished by weighting the error covariance on

primary parameters 100 times as on secondary parameters . The input is shown in

Figure 4.10 (one iteration starting from the optimal input of Figure 4.7) . The inputs

considering all parameters primary and considering only C , C , and C
n ri o ^-c
r P 8r
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Five Lateral Parameters
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primary are quite similar. The parameter error covariances are compared in

Table 4.5. There is only a moderate improvement in the accuracy of the primary

parameters.

4.4 CONCLUSIONS

Inputs are designed for both longitudinal and lateral systems based on a

variety of criterion functions . For these inputs , the following conclusions are

reached:

1. Inputs based on the trace of the dispersion matrix criterion give

lower derivative estimate error standard deviations than those based

on the trace of the information matrix criterion.

2 . Low order approximations to system representations can usually be

made in the computation of the optimal input (two state representation

of short period mode gives almost as low estimate error variances as

the more complete, four state longitudinal model).

3. For weakly damped systems, it may be necessary to place direct state

constraints to avoid excessive state excursions. It is noted, however,

that weakly damped modes causing large aircraft motions are accept-

able as long as the pilot can tolerate and control them.

4. The inputs designed to identify primary parameters alone did not show

much improvement in the estimation accuracy of these parameters

over the inputs designed to identify all parameters. A more careful

separation of primary and secondary parameters may be required in

the design of optimal input to gain maximum benefits from these

considerations. In the procedure used here, it is assumed that there

is no knowledge about the secondary parameters before the flight

test. Further work is required to include cases in which partial in-

formation about the secondary parameters can be obtained from an

independent source.
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V. FREQUENCY DOMAIN SYNTHESIS OF OPTIMAL INPUTS

5.1 INTRODUCTION

The frequency domain inputs are designed on the assumption of steady state

and are "optimal" only when the flight test duration is long as compared to the

time constants of modes of interest. In aircraft applications, this may not be true.

Nevertheless, frequency domain methods play an important role in the design of

optimal inputs even for "short" experiments. The input spectrum, which specifies

steady state optimal input, can be computed quickly. Subsequently, the time trace

obtained by adding different frequency components with a random phase relation-

ship is usually a good first pass at the optimal input time history for short experi-

ments . It can be used as such if the flight test is not too short and is an excellent

starting input for the time domain program.

A detailed study is made of the effect of short data length on the optimality

of frequency domain inputs. Input sequences based on different experiment dura-

tions are generated from the spectrum and evaluated on the system, which starts

from zero initial condition and does not reach steady state.

[271
5.2 FREQUENCY DOMAIN OPTIMAL INPUTS l J

Under the present effort, a computer program is written to design optimal

inputs in frequency domain for single input systems . It is used to find optimal

elevator and rudder input spectra to estimate parameters in longitudinal and

lateral modes, respectively.

5.2.1 Longitudinal System

As a first example, an optimum elevator deflection spectrum is derived to

identify parameters in the longitudinal short period mode of a C-8 aircraft. The

state and measurement equations are given in Section 4 .2 . Two criteria of opti-

mality are tried. They are: (a) min |D|, and (b) min Tr(D) . To use the computer
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program, the discretization step is chosen as .02 sec and the number of points is

4000. Since there are five parameters and two outputs, J^- is two. Thus, thedp
minimum number of frequencies for a nondegenerate design is two and the maximum

number of frequencies required in an optimal design is —=— , i .e., fifteen

(Equation (3.42)).

To minimize the determinant of the dispersion matrix, the initial input is

selected to have two frequencies at 0 cps and at .125 cps with equal power. Fig-

ure 5.1 shows the spectrum of the elevator deflection input after each iteration.

Notice that during some iteration steps, the program puts more power at already

chosen frequencies . After eight iterations, the change in the determinant of the

dispersion matrix is less than . 1% from the previous step. There is a total of

seven frequencies in the final input spectrum.

This input has interesting characteristics . The spectrum is divided into

two parts: A low frequency input to identify gains and a high frequency input

to identify natural frequency and damping, etc. The higher frequency input

occurs around the natural frequency, which is reasonable. Table 5.1 shows the

standard deviations (lower bound) on parameter estimates for an average 12 sec

long experiment when the system is in steady state and the total energy in u dur-

ing this time is 200 deg sec. Also shown are the trace and determinant of the

information matrix and the trace of the dispersion matrix. Next, the frequencies

close to each other are lumped and ones with too little power are dropped to get

the spectrum of Figure 5.2. The standard deviations on parameter estimates for

this simplified design in steady state for the same experiment duration and input

energy are also shown in Table 5.1. There has been an improvement in the deter-

minant of M and trace of D, showing the value of the simplification.

The frequency domain inputs are designed with the assumption of steady

state. If the flight testing time is short, the aircraft does not reach a steady

state. To find the true information matrix for a 12 sec long test starting from

zero initial conditions, a time domain input based on the frequency spectrum and

same average power is generated and is shown in Figure 5.3. This time domain

input is not unique since the initial phase relationship between the sinusoidal
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Figure 5 .2 Simplified Input Spectrum to Minimize |D|
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waves is arbitrary. Table 5.1 gives the parameter standard deviations and trace

and determinant of information and dispersion matrices when initial phases are

chosen at random. The parameter standard deviations deteriorate by 5% to 15%.

A better result could be obtained by optimizing the initial phases .

The basic and simplified elevator deflection spectra for the Tr(D) criterion

are shown in Figure 5.4. The frequencies in this input are in the same range as

in the input for the |D| criterion. Table 5.2 shows standard deviations in para-

meter estimates for an average 12 sec period in the steady state when the total

input energy is 200 deg sec. The simplified design is a little poorer than the

basic design. Some parameters have a higher standard deviation than in the |D|

case, while others have lower standard deviations. Again, a 12 sec long time

domain input (shown in Figure 5.5) is generated and the standard deviations for

this input with the system starting from zero initial condition are given in Table

5.2. There is only a moderate deterioration from steady state value.

Basic

Simplified

.14

.07

.11 .12

-.07
.03

T

,.08

.63

.42

.13
.08

i i
i i
i i

.1 .2

cps

Figure 5.4 Basic and Simplified Elevator Input Spectra to
Minimize Tr(D)
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15 Buffalo C-8 Aircraft
Altitude = Sea Level
Velocity = 41.2 meters/sec
Input Energy = 100 (deg) (sec)

-15 I

Figure 5.5 Elevator Deflection Sequence to Minimize Tr(D)

The root-mean-square (RMS) state deviations are computed for the frequency
2

domain inputs . For an average input power of 16.67 deg , the RMS states for the

inputs of Figures 5.2 and 5.4 are shown in Table 5.3. The values look reason-

able.

Table 5 .3 RMS State Deviations for Frequency Domain Inputs
(Simulation)

Criterion

|D|

Tr(D')

Pitch Rate

3. 19 deg sec

3.05 deg sec

Angle-of-Attack

2.95 deg

2.52 deg
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5.2 .2 Effect of Short Data Length on Performance of Frequency Domain Inputs

If the system starts from zero initial conditions, the performance of an input

of finite length is poorer than predicted on the assumption of steady state. To

determine the duration of the experiment when this approximation becomes serious,

time traces of elevator deflection 4 to 12 sec long are obtained based on the simpli-

fied spectrum of the Tr(D) criterion (Figure 5.4) . Each of these inputs is used

with the state and measurement equations and the resulting information and disper-

sion matrices are determined. Table 5.4 gives the ratio of standard deviations on

parameter estimates for these finite inputs (with the system starting from zero

initial conditions) to the standard deviations in steady state (for the same average

input power and experiment duration) . Trace and determinant of the information

and dispersion matrices are also compared using simulated data. The asymptotic

value of these ratios for long experiments is one. For experiments shorter than

8 sec, the deterioration is serious. The inputs are good for experiments longer

than 10 sec. This corresponds to about two cycles of the natural short period

mode.

5.2 .3 Comparison With Conventional and Optimal Time Domain Inputs

The inputs, which minimize the sum of variances of five parameters in the

short period mode of a C-8 aircraft for a 6 sec long experiment are given in

Chapter IV. There, the conventional doublet input is also given.

Table 5 .5 shows a comparison of standard deviations on parameter esti-

mates for the frequency domain input, the optimal time domain input, and the

doublet. The steady state frequency domain value is a lower limit on Tr(D) for

an input with 100 deg sec input energy in a 6 sec long flight test. The time

domain input is optimized for a 6 sec long experiment and gives a much better

result than the time trace from the frequency domain input. Nevertheless, the

input resulting from the frequency domain approach is superior to a doublet. As

mentioned before, this would be an excellent first pass at the optimal input and

is useful for starting the time domain program.
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Ĝ

1
0)h
fa
S
0
£
cuu
rt
JH
H

• § •
•iH

H

•Nt

NO

(M
O

O
O

•*O

rg
r-
NO

o

i— i
NO

in
o

NO

r-
NO

o

CO
i— i
i— i

/-N
ON!

•*

0)
JH
3
00
. _J

m
e
 D

o
m

a
in

 (
F
:

*|H

EH
,_j

^3
a•£
OH
0

^J<
O
CO

CN-

m
ON
O

OO
C--
ON
O

NO
ON]
CO

ONI
NO

CO

ON
r-H
ONj

s~\
t— 1

•5f

S
3
00

•iH

fa
\~S
. .

0)
C— (

43
3-
o
p

in
o
o

NO

NO

i— i
i

C--
co
CN-

1

r\i
NO

in

i

oo
oo
m

r-H

S
1—4
n)
>
h
CU+->
CU
S
m
13

&4

67



n8

Figures 5.6 and 5.7 show the simulated pitch rate and angle-of-attack

variation during the 6 sec long experiment for both inputs. The peak values are

comparable.

5 .2 .4 Frequency Domain Lateral Inputs

The lateral system of Section 4.3 with unknown C . Cn . C , C and
yp Kp V nr

is used as the example to determine the optimal rudder input spectrum to mini-

r
mize the trace of the dispersion matrix. The optimum input spectrum has two

frequencies: at 0 cps with 12% of total input power and at .285 cps with 88% of

input power. The second frequency is very close to the natural frequency of the

Dutch-roll mode. Since the Dutch-roll mode for this aircraft has low damping, this

input would produce large state excursions in steady state. This occurs because

there are no constraints on the state variables .

Table 5.6 shows a comparison of standard deviations for this frequency

domain input and the time domain input designed in Chapter IV for an 8 sec long

simulated flight test. Because of low damping, the system is far from steady state

for the duration of the experiment. Standard deviations on parameter estimates

predicted on the assumption of steady state are too optimistic.

5.3 CONCLUSIONS

Though the frequency domain inputs are optimal only if the flight test is

long, they are useful even for short experiments where steady state conditions

cannot be reached. These inputs could be used as they are for flight tests which

are longer than two cycle times of the mode of interest. Since frequency domain

inputs can be obtained in a much shorter computation time, this technique may

have advantages in real-time and on-line applications. These inputs are excellent

for starting other more complicated algorithms, for example, the time domain

input design.
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A small input energy near the natural frequency of a lightly damped mode

can cause large state excursions . Since the input design places a constraint on

the input energy, there would be a concentration of power near the natural fre-

quency, because this would increase the signal-to-noise ratio. If this is undesir-

able , it can be avoided by putting state constraints or limiting the allowable fre-

quencies in the input spectrum.

71



Page Intentionally Left Blank



VI. EVALUATION OF TIME AND FREQUENCY DOMAIN OPTIMAL INPUTS

6.1 BASIS OF EVALUATION

The optimal inputs of Chapter III are evaluated for performance sensitivity

when design conditions are not satisfied. There are two possible sources of error.

The control surface deflection may be different from the optimum because of the

pilot's inability to follow the input exactly. Secondly, the input design may be

based on incorrect parameter values (based on incorrect a priori estimates) or

overly simplified models .

The optimal inputs are approximated by a series of four steps . A simulation

of these step inputs is used on the system to evaluate parameter error covariances

resulting from the measurements . This evaluates the degradation in performance

of optimal inputs from errors in implementation.

Next, it is assumed that the parameters of the system are 50% off from the

design values. The optimal inputs based on design conditions are used under

off-design conditions . A comparison of these inputs with conventional inputs

determines the loss in input efficiency resulting from inaccurate knowledge of

parameters.

In Chapter IV, the optimal elevator inputs were computed based on the two

state approximation of the short period mode in the longitudinal motions. Those

inputs are used in this chapter on the full four state model to study the effects of

model approximation on performance of the input resulting from it.

6.2 LONGITUDINAL SYSTEM

6.2.1 Approximation to Optimal Input

Figure 6.1 shows the optimal input of Chapter IV to identify five short

period parameters of a C-8 Buffalo aircraft. This input is approximated by a
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sequence of four steps with the same total energy. The approximated input is shown

by the broken line in Figure 6.1. This input is used on the two state, short period

approximation of the longitudinal equations of motion (Equation (4.2)) . Table 6.1

compares parameter dispersions resulting from the optimal and the approximated

(suboptimal) inputs. Some parameters have better estimates while others have

poorer estimates.

Table 6.1 Comparison of Optimal and Approximated Inputs

Duration of Simulated Flight Test = 6 sec.
2

Total Input Energy = 100 deg sec

Optimal Input
(Solid line ,
Figure 6 . 1)

Approximated Input
(Broken line,
Figure 6 . 1)

Parameter Value

Standard Deviations

C
mq

.113

.126

-1.588

C
ma

.0676

.0590

-.562

\

.0561

.0497

-.737

C
Die.

Os

.0672

.0807

-1.66

cz
s

.0400

.0381

0.0

Tr(D)

.0264

.0299

[All in units of deg, sec.]

The pitch rate and angle-of-attack for the optimal and the approximated

input are compared in Figure 6.2. The maximum values are about the same in the

two cases.

6 .2 .2 Off-Design Parameter Values

All five parameters in the short period model are increased by 50% of their

initial values . This results in a system with a natural frequency of 1.86 rad/sec and

a damping ratio of .94. It is more difficult to identify parameters of this system with
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the same input energy because of increased damping. Table 6.2 shows standard

deviations of parameter estimates when the approximated input is used on this

system with off-design parameter values . There is a sharp increase in estimation

errors from design conditions, partly because of the higher damping ratio. Table 6.2

also shows parameter error covariances with a doublet input. Next, the para-

meters of the system are halved, reducing the natural frequency to . 76 rad/sec

and the damping ratio to .77. The parameters in this system are easier to identify.

The performances of the approximated input (broken line of Figure 6.1) and the

doublet are given in Table 6 . 2 . For the approximated input, the parameter error

covariances are smaller than under design conditions. In both cases, the approxi-

mated input compares favorably with the conventional doublet input. Figure 6.3

compares the simulated pitch rate and angle-of-attack for the approximated input

under design and off-design conditions (all parameters halved) .

6 .2 .3 Fourth Order Model

The approximation to optimal inputs, obtained using the two state approxi-

mation, is simulated on the four state longitudinal equations of motion (Equation

(4.1)). Again, there are measurements of only q and a. The measurement

error and the sampling rate are the same as before. Table 6.3 is a comparison

of the standard deviations on estimates of C , C , C , C~ , and C,, on the
m

q
 ma m8 Za Z6M s s

assumption that the remaining parameters in the system are known. The estimates

predicted by the four state model are better than the estimates predicted by the

two state model. This is because there is an additional excitation of the short

period mode from variations in forward speed.

Simulated time histories of the deviations in forward speed, pitch rate, and

angle-of-attack are shown in Figure 6 .4 . They are compared to the output of the

two state model. There is an insignificant difference, except in forward speed

which is assumed to remain constant in the two state short period approximation

of the longitudinal equations of motion.
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Table 6.3 Comparison of Standard Deviations on Parameter Estimates
Predicted by Two State and Four State Models

Length of Simulation = 6 sec

Total Input Energy = 100 deg sec

Model

Four State
[Equation (4.1)]

Two State
[Equation (4.2)]

Parameter Value

Standard Deviations

Cmq

.115

.113

-1.588

C
ma

.0560

.0676

-.562

\

.0499

.0561

-.737

Cm0os

.0752

.0672

-1.66

%s

.0378

.0400

0.0

Tr(D)

.0260

.0264

[All in units of deg, sec ]

6.3 LATERAL MODES

of C

The lateral system equations and the optimal input to obtain good estimates

are presented in Section 4.2. As for the lateralC , and C
nr

system, this input is approximated by a series of four steps and is shown in the,

broken line in Figure 6.5. Table 6.4 compares the parameter error dispersions

for the optimal and the approximated inputs . There is less than a 20% increase in

the trace of the dispersion matrix (this corresponds to an average increase of 10%

in standard deviation on parameter estimates) .

The parameters are next increased by 50%. This increases the damping

and natural frequency of the Dutch-roll mode significantly. Table 6.5 compares

the standard deviations on estimates with optimal input and doublet under off-

design conditions. Though the standard deviation on parameter estimates rises

considerably, the optimal input is still much better than a doublet. It is important

to note that a part of the degradation in estimation accuracy is due to increased
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Table 6 .4 Comparison of Optimal and Approximated Rudder Inputs

Duration of Simulated Flight Test = 8 sec

Total Input Energy = 100 deg sec

Input

Optimal

Approximated

Parameter
Value

Standard Deviations

C
YP

.00880

.00933

-.119

Cfi
P

.0204

.0221

-4.43

C
"P

.00277

.00310

2.99

Cnr

.00880

.00977

-.178

C
n8r

.00860

.00908

1.55

Tr(D)

.000648

.000764

[All in units of deg , sec ]

damping ratio under off-design conditions which make parameters less identifiable

from a given input energy .

6.4 CONCLUSIONS

Large errors in the implementation of optimal inputs result in small deter-

ioration in parameter estimation accuracy. In particular, it is possible to approxi-

mate the optimal inputs by a series of steps at a small cost in increased standard

deviations on parameter estimates. This is true both of a system with low damping

and of a system with high damping in the mode of interest.

Changes in parameter values from design conditions investigated here

changed the damping and natural frequency of the mode of interest considerably.

For the same input energy, the parameter of the resulting system can be estimated

with either higher or lower accuracy, depending mainly on the increase or de-

crease in damping and to some extent on changes in natural frequency. The opti-

mal input is sensitive to off-design parameters; however, with a 50% change in all
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îcu

-4-1

CU

13
CX,

oo
^*
NO

O
o
o

0

oo
o
o

o
oo
oo
o
o

f-
f-
oo
o
0

ô
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parameters from their design values, the optimal inputs are at least as good as

conventional doublet inputs . The deterioration in performance of the optimal

input is more severe when the damping is low with a priori estimates of parameter

values but is higher for true parameter values.
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VII. SUMMARY AND CONCLUSIONS

A method for designing inputs for linear time-invariant systems is developed

for application to the identification of aircraft stability and control coefficients.

The method consists of two complementary techniques:

1. The time domain technique can be used for any linear dynamic

system under various conditions and all durations of flight test time.

It is general, but computationally complicated.

2. The frequency domain technique gives an input spectrum, the time

traces of which are good inputs for parameter identification for flight

tests which have long allowable data lengths compared to the time

constants of the mode of interest. This method could also be used

to determine a set of specific frequencies where the flight test may

be carried out, obviating the need for lengthy in-flight frequency

sweeps.

Both of these techniques can be used for input designs -when test constraints

allow for relatively long time aircraft response to such inputs . The time domain

method gives the best results and should be used whenever possible in spite of

its computational complexity, because computer time is usually a less important

constraint than flight test time. The frequency domain method has application in

obtaining fairly good inputs quickly for long experiments, and in finding starting

inputs for the time domain program.

As the limitation on allowable aircraft response time becomes stricter, the

time domain method is the desirable approach . For example, a test at an extreme

flight condition (e.g. , high angle-of-attack, sonic transition, etc.) may preclude

extensive times for response data acquisition. At such points, the time domain

capabilities are best used to generate shorter inputs which supply maximum

parameter estimate accuracy. It is also noted that considerations of cost and/or

fuel restrictions may be achieved by using efficient inputs requiring less data

acquisition time.
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The improved applicability of these optimal input design techniques to flight

test is achieved because of the resolution of several computational problems

which have previously hindered such application. The solution to these problems

has been attained by the following accomplishments:

(a) Design of inputs based on a wider class of optimizing criteria

which address more directly the requirements for which the para-

meters are identified. The criteria are based on the variances of

parameter estimates and include determinant and trace of the disper-

sion matrix. Other criteria may also be used (cf. , Appendix A

and Section 3.4.2) .

(b) Increase in the number of parameters to be identified by design

of inputs for a larger number of parameters than previously computa-

tionally feasible. This benefit is obtained by implementation of two

new algorithms . These are:

(i) Sensitivity Function Reduction: The technique of sensitivity

function reduction lowers the order of the computational.prob-

lem which must be solved in the time domain input design

method. For example, in a system with 4 states, 2 inputs,

4 measurements, and 15 unknown parameters, the number of

differential equations is reduced from 64 to a maximum of 12.

Since the computation time varies as the cube of the order of

the problem, this sensitivity reduction method would reduce

computation time by a factor of more than 100 (Appendix D

and Section 3.4.3) . By using sensitivity functions reduction,

it has become numerically feasible to compute inputs for

high order systems with many unknown parameters.

(ii) Eigenvalue-Eigenvector Decomposition Method to Solve the

Two Point Boundary Value Problem: Properties of the transi-

tion matrix occurring in the time domain method are used to

develop an eigenvalue-eigenvector decomposition solution
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technique. This has been found to be quite efficient and gen-

eral (Appendix C and Section 3.4.4) .

(c) Frequency domain input design specification is desired specifically

for tests where sinusoidal input generators are available. By making

the steady state assumption, the input design procedure can be

simplified considerably. In this method, the frequency domain repre-

sentation of a system is used to determine the optimal input spectrum.

This technique is useful for designing long inputs (Appendix B and

Section 3.5) and obtaining first estimates of inputs for short experi-

ments .

(d) Specially designed inputs for primary/secondary derivative con-

sideration allow flexibility in tailoring inputs to identify specific

important parameters. Alternate formulations where a varying amount

of confidence in "known" parameters exists can be easily incorpor-

ated into the methods (cf., Section 3.6.1).

The evaluation and verification of these benefits have been performed by

the design of optimal longitudinal and lateral inputs and subsequent testing on

simulated data. These evaluations have led to the following conclusions:

(a) Inputs based on the dispersion matrix criteria Tr(D) and |D| give

lower parameter error covariances than inputs based on the informa-

tion matrix criterion Tr(M) (Section 4 .2 .4) . For example, a longi-

tudinal input based on Tr(D) gave C and C estimate errorr m m~q oM . s
deviations which were approximately one-third of that for the input

given by the Tr(M) criterion (cf., Table 4.3). This conclusion is

significant because it confirms the advantages which were anticipated

by reformulating the problem to be more applicable to flight test

requirements . This reformulation involved using the dispersion

matrix directly, a previously intractable computational procedure

for a large number of parameters .
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(b) Optimal inputs give lower parameter error covariances than con-

ventional control doublets (for the same input energy). The doublet

was chosen as the representative input because of its wide use as a

basic flight test maneuver. In all cases, the optimal input gave

derivative estimate accuracies almost 50% or better than the doublet

(c.f. , Table 4.1 for longitudinal and Table 6.5 for lateral examples) .

The greatest improvement in accuracy through optimal inputs is

obtained in derivatives affecting highly damped modes, and this is

one singular benefit of such optimal inputs (cf., Section 4.2 and

4.3). Even under off-design conditions, where the assumed deriva-

tives for calculating the optimal input were as much as 50% off from

the "true" values, the doublet gave higher error covariances (cf.,

Sections 6.2 and 6.3).

(c) Optimal inputs may often be approximated by a series of steps

without significant increase in derivative estimation errors (Sections

6.2 and 6.3). For example, the increase in the sum of parameter

error covariances was less than 15% when the optimal input was

approximated by a series of four steps for both longitudinal and

lateral simulated responses .

Several useful guidelines have been established for use of the time and

frequency domain input design techniques. Such guidelines are useful for reduc-

ing the computation time required for designing optimal inputs . These include:

(a) Based on the computed results, it is suggested that frequency domain

inputs be designed when the experiment duration is longer than

two cycle times of the mode of interest (Section 5 .2 .2) .

(b) There are several practical approximations possible in the computa-

tion of optimal inputs. These simplifications reduce design time with

only a slight loss in accuracy.
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(i) Inputs can be designed based on simplified models. A two

state representation of the short period mode is adequate in the

design of inputs to identify the five parameters which affect

this mode (Section 6 .2 .3) .

(ii) Sensitivity equations can, sometimes, be reduced below the

minimum number required to obtain the exact value of all sensi-

tivity functions. This approximation was made for the lateral

system in Section 4.3 and compared to the exact case in

Table 4.6.

(c) Direct state constraints in the design may be desired, particularly

in weakly damped modes to avoid excessive aircraft responses

(Section 4.3) . As long as the pilot can control the aircraft, however,

such motions will not limit the use of the inputs studied in this report.

These results are preliminary, but do indicate that the approaches developed

are suitable for flight test applications.
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APPENDIX A

INPUT DESIGN IN TIME DOMAIN

A.I PROBLEM STATEMENT

Consider a continuous time varying system

•

x = F(t, 9)x + G(t , 9)u
(A.I)

x(0) =0 0 <_ t <_ T

where

x is a n x 1 state vector

u is a q x 1 control vector, and

F(t, 6) and G(t , 9) are n x n and n x q matrices, which depend on m

unknown parameter 9.

There are noisy measurements of some linear combinations of state

y = H(t, 9)x +v A^ z + v (A.2)

y is a p x 1 output vector and v is p x 1 white noise vector with zero mean and

known covariance R(t).

The problem is to choose u from a class of second order processes inde-

pendent of v to obtain good estimates of parameters from the measurements of

u and y. The class of inputs is such that

uT(t) u(t) = 1 (A. 3)
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A . 2 INFORMATION MATRIX

The information matrix for parameters 9 is

- / (It If " (A.4)

(A. 1) can be solved for state vector x,

r1
x(t) = / < f > ( t , T) G(T, 9) U(T) dr (A>5)

o

where <p(t , T) is the transition matrix and follows the differential equation

> T) = F(t, 9) c|,(t, T)

(A. 6)

<|>(T, T) = I

Vector z can be written as

= / H(t,z(t) = / H(t, 9) <j)( t , T) G(T, 9) u(x)dT

o

q r= E / H(t,(
1=1 J

,9) <|>(t , T) G±(T, 9) u±(T)dT (A

1=± -'o

Therefore,

/

t

•gz (H(t, 9) < ( ) ( t f T) G (T, 9)} u (T)dTd o 1 1
O
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1 ffcA E / A. ( t , T) u . ( r )dT ' (A.8)
~ 1=1 J 1

Using (A.7) in (A.4),

/ q / T _1
M = / E / A.( t , T) u.(T)dT R -L(t)

Jo i=l Jo x 1

q CE / A (t, s) u.(s)ds dt
j=l 7 J J

o

/"T /"T q q fT / T _i I
= / / E E / ^i^* T) R ^^ A-^ ' s dtju (T)U.(S) dT ds

O O

SUp(T, S)

where sup(t, s) is the higher of T and s. This can be written as

/

T r T
/ q

/ E M^CT. s> u±(T)u.(s)dT ds (A.9)
o o

where

M± ,(T, s) = 1/2 { A ( t , T) R C t ) A . ( t , s)
J J

SUp(T, S)

+ A ( t , T) R C t ) A i(t, s)}dt (A. 10)

It is clear that

M±:.(T, s) = M (T, s) = MT.(s, T) (A. 11)
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The next sections show how one can work with the three criteria of optimal-

ity outlined in Chapter in .

A . 3 MAXIMIZATION OF A LINEAR FUNCTION OF THE INFORMATION MATRIX

From (A. 9), a linear functional <£ (see Section 3.3 for definition of ,2?) of

the information matrix is

r r -. A^(M) = / / E
1 J J i,j=l

(T, s)) U,(T) u.(s) dr ds
x j

•T /r
T,I f '• J u (T) P(T, s) u(s) dT ds (A.12)

J J
i _ 0 0where

P± j(T, s) =^(Mi_.(Tj s)) (A. 13)

P(t, s) is a symmetric positive definite matrix. To maximize a linear function of

the information matrix for the given class of inputs, it is necessary to maximize

(A. 12) under the constraint (A. 3) . It is straightforward to show that this is

achieved by solving the following eigenvalue problem:

P(T, s) u(s) ds = XU(T)

(A. 14)
0 < T < T

The maximum eigenvalue X is the maximum value of the trace of the information

matrix and the corresponding eigenvector is the desired optimal input. Mehra

shows this eigenvalue problem can be recast into a linear two-point boundary

value problem. The solution technique to this problem is given in Chapter III.
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A . 4 DETERMINANT OF THE DISPERSION MATRIX

In this and the next sections, we prove some important theorems. These

lead to a computation algorithm presented in Section 3.4.3.

*̂  ;ta
Theorem A . 1: A necessary condition that an input u (t) minimizes |D^ is that

* *
(i) u is an eigenvector of P with eigenvalue m.

k *(ii) Any other eigenvalue, X, with eigenvector u , of P follows the

inequality

£ m + 2 TrUM*"1 M*k) } (A. 15)

where

P*..(T, s) = TrCM*'1 Mij(T, s)) (A. 16)

/

T /-T

/ ? M (T. s) u*(T) uk(s) d T d s (A'17)

n J i.J-1 ^ x 3o o

and

/•T

P*(T, s) u^s) ds = X, I^T) (A. 18)

Proof: (a) From (A. 11)

M* = / / Z M . . ( T , s) ufCi) u*(s) di ds
J J i,j=l 1J 1 3

o o >J
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/

T /• T
/ q *-1
/ Z Tr(M M (T, s)) U*(T) u*(s) dx ds

o Jo 1?J=1 1J J

/"T r *Tm = / / u (T) F^T, s) uvs) dT ds (A.19)

• o o

Therefore, X >m (A. 20)max —

* *
Equality holds if u (t) is an eigenvector of P corresponding to

its maximum eigenvalue m.

(b) Consider an input u (t) which minimizes |D| . Since logarithm is a

monotonic function, u (t) must also minimize log |D| . Let A- be
* kan eigenvalue of P and u (t) the corresponding eigenvector.

Consider an input u,

u(t) = a u*(t) + B uk(t) (A.21)

The energy constraint (A. 3) requires

a2 + B2 + 2aBY = 1 (A. 22)

where

T T
Y = f u* (t)uk(t)dt (A'23)

o

giving

8B ~ ~ (a

The information matrix for input u(t) is

C A
^
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2 * 2k *k
M = oM + 3 MK + 2agM (A.25)

where

T /-T

•/Mk

, t_, Mi^T' s> U£(T) u*(s) dT ds (A.26)
o "o

3. log ID I
fi n = -Tr{M* -"-(-2YM* + 2M*k) }p=0

. - Z Y ( m - A k ) (A

*Since u minimizes |D| and y can be positive or negative, for all
*

eigenvalues of P

Ak = m or Y = 0 (A. 28)

If Y ̂  0 for one particular eigenvector of P (except possibly u ) ,
*

it cannot be zero for any other eigenvector of P , since the eigen-

vectors of a positive self adjoint kernel are orthogonal. Then all
*

eigenvalues of P must equal m. In the light of Equation (A. 19),
* *

this implies that u is also an eigenvector of P with eigenvalue

m. Then y = 0 for all other eigenvectors .

*If y = 0, then u is an eigenvector and the corresponding eigen-
* *

value is m. Thus, we show that u is an eigenvector of P with

eigenvalue m.

%
Since u minimizes |D|
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3 log ID I
,2

36' 3=0
= -Tr{-M* 1(M*kM*~1M*k + 2M* - 2Mk)

_ ,
=4Tr{(M ^ ) } + 2m - 2X,

> 0 (A. 29)

or

A < m + 2 Tr{ (M* 1M*k) }K. (A. 30)

Theorem A .2: A sufficient condition that an input u (t) is a stationary point for
i i * *|D| is that u be an eigenvector of P with eigenvalue m.

m,Proof: Assume u is an eigenvector of P . Consider any input u (t) satisfying

the energy constraint and define

u(t) = au*(t) + 3um(t) (A.31)

Since the eigenvectors of P form a complete set and are orthogonal,

mu ( t ) = Z
1=1

(A. 32)

Z a. = 1
1=1 1 (A. 33)

Using (A.27),

9 log |D|
96

, *_i * * *,•
= -Tr{M x(-2a M + Z a±M x)

* *
= 2a m - 2a m = 0 (A. 34)
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* * m *
where a is the component of u in u . Since u is a stationary point of

log |D| and logarithm is a monotonic function, it must be a stationary

point for |D| .

A . 5 LINEAR FUNCTIONAL OF THE DISPERSION MATRIX

*
Theorem A. 3: A necessary condition that an input u (t) minimizes ^(D) is that

* * *
(i) u (t) is an eigenvector of Q with eigenvalue <2?(D ).

*
(ii) Any other eigenvalue A, of Q follows the inequality

l *-l *k 2 , (A '35>

Q.*(T, s) - t f O ! - ! ! , s))

and

. T , s - , s (A.36)

Proof: It is similar to proof of Theorem A.I .

*
Theorem A. 4: A sufficient condition that an input u (t) is a stationary point for

* * *
<S?(D) is that u be an eigenvector of Q with eigenvalue «2?(D ) .

Proof: Again the proof follows along the same lines as in Theorem A. 2.

A . 6 EXTENSIONS

We state one more theorem without proof.

*
Theorem A .5: A necessary and sufficient condition than an input u (t) is a

g * *
stationary point for ,2?(D ) is that u (t) be an eigenvector of Qp with

*$.
eigenvalue ^(D ) , where
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<T. 8))

This is an important theorem because by choosing the linear operator as

trace and a high value of 2, the maximum eigenvalue of D can be minimized.

In other words, the maximum error in any direction in parameter space is

minimum.
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APPENDIX B

INPUT DESIGN IN FREQUENCY DOMAIN

B . 1 PROBLEM STATEMENT

Consider the state space representation of a discrete time system

x(k+l) = $x(k) + Gu(k) k = l , 2 , = . , N (B.I)

and the noisy measurements

y(k) = Hx(k) + v(k) ( B '2>

where

x(-) is n x 1 state vector

u(*) is q x 1 control vector

y(O and v(-) are p x 1 measurement and noise vectors, respectively.

cp, G, and H are matrices of appropriate dimensions and contain m unknown para-

meters 6. It is assumed that:

(a) The system is stable and 6 identifiable.

(b) v is a second order process with known covariance.

Mehra developed a technique for determining the spectrum of input u which

minimizes the trace or determinant of the dispersion matrix of parameter esti-

mates . A summary is presented here .
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B . 2 FREQUENCY DOMAIN APPROACH

The approach consists of transforming the frequency domain representation

of the system into a regression problem. The results of Kiefer and Wolfowitz *• ^
[14]

and Fedorov, in the theory of optimal experiments, are subsequently applied

to develop schemes for designing optimal inputs.

Fourier transform (1) and (2) to get:

and

y(n) = Hx(n) + v(n) (B'4)

where

n = _ N _ N + 1 1 -1

0) = 2TT/N

and ~ over a variable denotes its finite Fourier transform.

From (B.3) and (B.4)

y(n) = H(e~jWon - 40'1 GS(n) + v(n)

- T(n,0) u(nV-t- v(n) (B . 5)

I .. ^m *> )
- T(n,0 ) + ~- (0-0 ) + 0(A9Z) u(n) + v(n)

( O ' do O I

where 6 is the a priori estimate of 6 and u is a scalar. Thus,
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Ay(n) - y(n) - T(n,6o) 5(n)

,T (B-6)
= u(n) |i (9- 6 ) + v(n)

O v O

From (B.6) we can estimate A0 using generalized least-squares

N/2-1 *

-1

K6 Z, -=-r- S (nJ -r-r S (nJ — Re L •*-=• L
W

N/2-1 *
•i Re Z -.«• S ^(n) u*(n) Ay(n)(B.7)
N -N/2 d

' * -1and cov(A6) = M where M is the information matrix given by

N/2-1 *
S T* ^T' 3T*

M = Re Z VQ S (n) -r^- S (n) (B 8)
-N/2 ^^ uu ^°-°^

S (n) and S (n) are the spectra of u and v and * denotes transpose and com-

plex conjugate. " '

The average information matrix per sample is

N/2-1 * ^
1 ' C i T 1 1 /^T1

T> V "L e~"J-/',,'\ 2-=- <Z (n} CR Q^>— Re L TTT^ b (.n) r\a 3...An/ ^o.1?^
N

As the number of sample points increases, the information matrix approaches

infinity. However, the average information matrix per sample reaches a constant

value .

We now take limits of equation (B .9) as N -»• °°. It is straightforward to

show that Lt M -*• M , where
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where F is the spectral distribution function of u. In the input design procedure

the total power in u will be constrained and, without loss of generality, we may

fix it at unity. Such an input will be called normalized input and the correspond-

ing information matrix is the normalized information matrix. We will only con-

sider normalized inputs in the following development.

The normalized information matrix has many important properties. Some

of them are given in Theorem 1 (see [2] for proof) .

Theorem 1:

(a) M is a symmetric positive semi-definite matrix.

(b) If the spectrum of u contains fewer than -~— frequencies, the matrix
£p

M is singular and not all parameters can be identified.

(c) For any normalized input with mixed spectrum f,(co) , it is always

possible to find another normalized input foC10) which has the same

information matrix and has discrete spectrum with no more than
m—- + 1 frequencies. In addition, if f(co) is an optimizing nor-

malized input, the number of frequencies cannot exceed = .

This theorem has important implications . Thus, the optimal input is a sum

of a finite number of sinusoidal waves . If k is the number of independent fre-

quencies in the optimal design,

^ 1 k — ~2— (B.ll)

There are two other theorems which are important for input design.
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Theorem 2: The following are equivalent:

(a) The normalized design f* maximizes the determinant of the information

matrix (or minimizes the determinant of the dispersion matrix) .

(b) The normalized design f* minimizes

max ij;(a),f)

(c) max iKu.f*) = m (B.13)

where „,<„,, f ) = Re Tr (S^(«o) f M'1 ff (B - 14)

Theorem 3: The following are equivalent:

(a) The normalized design f minimizes «5?(D(f*)

(b) The normalized design f* minimizes

max *Ko),f)
wef-TT.ir]

max . (B

- D(f)]where *(U ff) - D ( f ) S ( U ) - D( f ) (B - 16)

and SS is a linear operator (see Equation (3.9) for definition of

All input spectra satisfying (a)-(c) of theorem 2 and their linear combin-

ations give the same information matrix. The same holds of Theorem 3.

The above theorems are very important because they convert complex non-

linear problems into simpler ones. Instead of minimizing |D| or ^(D), it is only

necessary to minimize the max \|;(to,f) . This leads to a very powerful
cos [-7t.il]

computation technique given in Section 3.5.
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Example 1: Consider a second order system in which we wish to estimate
the frequency 0

0 1'

-6 -1
X +

(B. 17)

y = x + v

Discrete time equivalent to this system is (for small A)

u(k)

" i " A"

_-A6 -A.

x(k) +

'0'

_ A _

z(k) = x ( k ) + v(k)

vv
We assume that v(k) is white with known power spectral density S .

'°~

A0 e~
Jlu+Aj A

re-^-1 0 -1

T(w,8) = [1 0]

(B. 18)

(B.19)

(B.20)

V3T
89 eja)-l+A) -f A2Q}:

(B.21)

(B.22)

w

-l)(ejW-l+A)+A2e}2{(
(B.23)
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In this case, the maximum number of frequencies is one and can be determined

by maximizing M(co) for coe[-Tt,Tt] . It can be shown that for small A, M is

maximized at

.e >

0 f i e if (B.24)

6 is not smaller than jfrom the assumption of a stable system. For high damping,

it is best to use a constant input. With low damping, an oscillatory input at the

damped natural frequency is the best.
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APPENDIX C

COMPUTATION OF TIME DOMAIN INPUTS USING

EIGENVALUE-EIGENVECTOR DECOMPOSITION

In the time domain input design problem, a weighted trace of information

matrix has to be maximized in each iteration, whichever criteria of Section 3.3

we may be using. This leads to a two point boundary value problem of the type

(see Equation (3 .10)) :

ed
dt

V

_ A
—

Fe

T -1
_HeRe He

A

xQ(0) = 0 X(T) = 0 (C.I)

The smallest value of \i to give a nontrivial solution to the above equation is to
[28]

be determined. It has been shown by Bryson and Hall that the Hamiltonian

matrix <3$fis symplectic. Therefore, the eigenvalues of 3£ occur in pairs +X, and

-A.. Let SP, and ~SP, be the positive and negative sets of eigenvalues of 3£. Then

the corresponding eigenvector matrix can be written in the partitioned form as

S =
X, X
T -

A+ A-
(C.2)

The eigenvectors are normalized such that

(C.3)
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It can be shown that (see Bryson arid Hall)

(C.4)

Premultiply both sides of Equation (C.I) by S-1

(C.5)

or

_d_
dt

T
A x a— u

T

T1

Tx+x

T T
A xfl - X1*

— a —

T
X+A

(C.6)

Using the boundary conditions and simplifying,

- - J T . Te + A

-4 T T

A(0)'

xQ(T)

= 0 (C.7)

For a nohtrivial solution,

-s.T.Te . + A

is singular

is singular

i.e. ,

(C.8)
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has at least one eigenvalue equal to one.

Suppose for a certain \i and T , U has eigenvalues X close to one. Let
° ° ( 1 ) C Dthe corresponding normalized left and right eigenvectors of U be yy and Yp •

Then

. "riV" 4" (C.9)

Differentiating with respect to T,

M _(1) , TT 9yR = 9X(1) (1)
9T yR 3T 9T yR

Premultiply by y J and simph'fy to get

3T \L 3T R

Similarly ,

3A(1) (1) 3U (D
yL

1= X

o T -1 -«? T -1 -s T + -1 -s TS+ x- x
+

e + - A
+

 A-e S+T ^ • x_ V S
+T

_
+ — dy T

Since ff>+ are the first half eigenvalues of <#?,
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T \ 8H

A

/.T T \
= (A-i --i

r°

0 / \A.

T T

-i GeGeA
+i

or
T T

(C.13)

It can also be shown that

where

X V
, A

A+ A-
=

X
+

 X-
(G.14)

± = " -j GeGe
< j < n9, 1 < i < n9

ne> GeGe A
+i - V n9 < Jl 2n9'

_ (. _ n Q ) / (A. - A.) < j < n6, n9 < i < 2n6

x. QN GQGQ A ,. 0 N/(X. - X.)(j - n8) 9 9 -(x - n6) j i'

n9 < j _< 2n9, n9 < i <_ 2n6

(C.15)

114



_
Equation (C , 14) can be used to compute - ^ - and — ̂  - .

To find the change in [i for a small change AT in T, we use the relation

Ay = 0 (C

If the desired eigenvalue is close to one, but not exactly equal to one, the approximate

change in (j. required to bring this eigenvalue closer to one is given by

For a. given \i, there may be several values of T for which the matrix U

has at least one eigenvalue equal to unity. We are interested in the smallest T

for which this is true. If we start with a correct \i ,T pair, this iteration tech-

nique will always give the correct H,T pair for small changes, AT. Thus, if the

desired T is "far" from T , u is updated in steps, each step involving a small
° (1)change in T . In each step (C. 17) is used to bring X closer to one. Once the

optimum [i is found, ^,(0) can be determined. Then the state and control time

histories and information matrix are evaluated.

This technique gives an excellent insight into the structure of the optimal

inputs. By studying the eigenvalues and eigenvectors, we can determine if

they consist of basically damped or undamped oscillatory functions of rising and

falling exponentials . The time constants of these oscillatory functions and

exponentials can usually be correlated with model time constants . This approach

is excellent for obtaining good approximations to optimal inputs and building

input generators . Instead of specifying the input as a function of time, it is

possible to give its functional representation. The sensitivity of the nature of

optimal inputs to the length of the experiment can also be studied.

Example

Consider the following first order system with an unknown parameter 9,

with a priori value one.
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X = -X + 0U x(0) = 0 (C. 18)

There is a continuous measurement of the scalar state x:

y = x + v (C. 19)

Let

E(v(t)) =0, E(v(t)v(T)) = 6(t - T)

-i o

o -i

Ge

Hfi = [0 1]

(C.20)

The controllability matrix of (Fo, GO) is

-i

The system is uncontrollable. The controllable part can be represented by
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F0= [-1]

.G0 = [1]

He = [1]

The Hamilton! an is

(C.21)

-y

.ye = (C.22)

with eigenvalues + ^ \i - 1 j and the corresponding normalized eigenvector

matrix

S =

-1 +/y - 1 j --5 +-=
'y - i

v - i
.(C.23)

/y - 1 (C.24)

(2

- i
(C.25)

tan-1

One eigenvalue of U is one if

.(C.26)
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or tan \ju - T T _ i —L V P - 1

(C.27)

example, if T = 2, M 2.30.
H - 1 T
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APPENDIX D

PRACTICAL TECHNIQUES FOR SENSITIVITY FUNCTIONS

REDUCTION IN LINEAR TIME-INVARIANT SYSTEMS

D . 1 INTRODU CTION

The problem of computing state sensitivities using reduced order models

has become very important in parameter estimation involving high order models

and many unknown parameters . These techniques allow a considerable saving

in computation time which makes the determination of optimal inputs feasible for
[29-31]practical systems. Most efforts to date have concentrated on finding

bounds on the order of the model which can generate state sensitivities for all

system parameters. Very little attention has been given to the formulation of

practical techniques leading to these lowest order models . Formulations by

Wilkie and Perkins, '• Denery, ̂ 30"' and Neuman and Sood'" ^ lead to fairly

complicated transformations and are not capable of exploiting the characteristics

of the system in most cases .

A practical method for obtaining lowest order models for sensitivity func-

tions computations is developed. The technique makes full use of special system

characteristics and has general application to high order systems with a large

number of unknown parameters .

D . 2 PROBLEM STATEMENT

Consider a system

•

x = Fx + Gu x(0) = x (D.I)o

where x is a nxl state vector, u is a qxl control vector. F and G are matrices

of appropriate dimensions and are functions of m parameters 6.
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A heretofore uncited property of systems , which depends on the para-

meters 6, is important in sensitivity computation.

Definition 1 - Structural Controllability: A system is said to be structurally

controllable if it is controllable for almost all values of parameters. The

system may be uncontrollable if certain relations hold among the para-

meters .

Definition 2 - Structural Linear Dependence: A set of vectors has structural

linear dependence if a linear combination of these vectors is zero for

almost all values of parameters. The particular linear combination may

depend on the values of the parameters.

Example 1: Consider the system

x = x + hi (D.2)

The controllability matrix is

'l '8 + 9,

The system is controllable unless 6, + 0_ = 6, + 9.. Thus, if 9, = &. = -1 and

0_ = 0_ = -5, the system is uncontrollable in the classical sense but structurally
L* J

controllable.

Initially, the following simplifications can be made:

a. The system is made structurally controllable by dropping uncon-

trollable states. Since the initial condition is zero, the system

never moves into the uncontrollable subspace. This reduces the
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b .

order of the system . Note that the states which are uncontrollable

only for the given values of the parameters but which are structurally

controllable should not be dropped.

All structurally linearly dependent columns of G matrix are lumped

with other columns. This reduces the number of effective controls.

The state sensitivities for all parameters 0 can be written as

xe = Fexe + Geu

xQ(0) = 0

[29]

(D.3)

FQ, Gp,and x~ are denned in Chapter III. If (Ffl, G~) is uncontrollable, the

corresponding controllability matrix is of rank less than (m+l)n, say r. Let

Q, be the set of r independent columns in the controllability matrix. If Q?

is such that Q, and (X form a set of n(m+l) linearly independent vectors, then

' • v"1

follows the differential equation

\

(D.4)

• t
x

V 22/

(D.5)

Since the initial condition in (D.5) is zero, the last (m+l)n~r uncontrollable

states rei

equation

states remain zero throughout. The remaining r states, x , follow the differential
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Xc = Fc xc + G
C

U

x (0) = 0
c

where

' t
F A F =0

c ~~ 11 1

(D.6)

(D.7)

Also,

since other states in xL are zero. Note that (X is a pseudo-inverse of Q,

depending on Q0 . The transformation from F^.G^ to F ,G and from x to& b . b c c c
XQ does not involve Q~ explicitly . Therefore , Ol can be chosen to be any

pseudo-inverse of Q, , for example,

CD '9)

It is assumed here that the inputs are linearly independent. If this is not

so, the number of inputs can be reduced until they are linearly independent.

This will usually result in a reduction in the controllable subspace of (FQ,GQ)

as shown in Section D .4. Under the assumption of linear independence of inputs,

it is necessary and sufficient to solve a system of r linear equations (D.6) to

determine the state and its sensitivities at all times. The next sections investi-

gate the nature and dimension of the controllable subspace of (Ff i,Gf t) and

explore efficient methods for finding Q, .

122



D . 3 SINGLE INPUT SYSTEMS

In single input systems, Ffi is a (m+ln x (m+l)n matrix and Gfl is a

(m+l)n vector . The following theorem holds .

Theorem D . 1: For a single input system, the rank of the controllability matrix

of (FQ,GQ) is less than 2n.
o w

Proof: The controllability matrix of (Ff l,Gf l) is

r " v r ' j?(m +Ge: Foc0: • • F
e

It is easy to show that

FPG

FeGe =

-
30,

m

If

AD(F P G) A G + D

(D.10)

(D.ll)

o 1
a
n-1 (D.12)

the (n+k)th column of CQ is

^G) - V {D*,
i=0

a (D.13)
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The second term is a linear combination of n preceding columns of C f l. Thus,

n-1 . n~1 i •
rank Ce= rank{D(G) ; ; D(F G) • E D*(a I)F G!

1=0

. } CD.14)
1=0 1=0 1

The (2n+k)th column of the right hand side matrix is

n— 1 I'n i n— 1 n— 1
Z D ^ D F G - Z D*(a I) Z
=0 1 1=0 j=0

_ ci. L D*(a. i)tf >J "' G (D. 15)
j«0 J i=0 i

which i& a linear combination of n previous columns for k > 0. Therefore,

railk C = rank^F^: F62n~lG6] - 2n CD . 16)

Thus, the order of the system required to compute all state sensitivities

for a single input system cannot exceed 2n. In many practical cases, it is smaller

as shown in Example 1.

Corollary 1: If the structurally controllable subspace of (F,G) is of the order

p, the maximal order of the controllable subspace of CFrj.Gg) is 2p.

Since F^G is a linear combination of G, FG, . . . , F^ G, the corollary follows

immediately.
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Example 2: Consider the following system

\0 -]
u x(0) (D. 17)

The state vector and its sensitivities for 6, and 8_ form a set of six differential

equations . Since the number of states is two and the number of controls is one,

only the first four columns can be independent in the controllability matrix of

(F~,G f l) . These columns are

f /0\ /62\ f8l62
rank(CQ) - rank[D(J). D^J), D( l [

" 6 " 0 8

(D.18)

rank

p
0

1

0

0

0

0

62

-1

0

0

1

0

-

0,0o ~ 9o12 2

1

92

0

•l-1

0

2
Q Q O O ,| ft
0192 " 9162 + 62

-1

29192 - 92

0
91-91 + 1

0

(D.19)'

The first three columns are independent for 6 - ^ 0 . If 0., is zero, only the first

two columns are independent and the required model is of the second order.

D . 4 MULTI-INPUT SYSTEMS

We state and prove the following theorem.

Theorem D .2: The rank of the controllability matrix of (FQ,GQ) cannot exceed

(q+l)n for a q inputs system.
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In multi-input systems, G» is a matrix with q columns. The controllability

matrix of (F~ , GQ ) has (m+l)nq columns which can be written thus:

...:D(Gq,FGq,...,Fn(m+1)-1Gq)] (D.20)

where G. is the ith column of G. By using Theorem 1, it is easily seen that the

last (m-l)n columns involving any of vectors G.'s are linearly dependent on the

first 2n columns for that vector. From (D.14) and (D . 15)

rank(C0) - p = ran

(D.21)

, F G .....F > .

where all summations are from 0 to n-1. Let the structurally independent columns

in the controllability matrix of (F,G) be

This set of linearly independent vectors in the controllability matrix spans the

complete n-dimensional space . So any vector can be represented as a linear

combination of these vectors . In particular,

- R f -4- 4- R 17̂ 1 V ft i7lS,~J-r —
- 31G1 + + ^ 1 Gi'""Vq Gq 1 5 k £ q (D.24)
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Therefore,

n-1 n-1 . n-1
E D*(a.I)F1+:i 1G. = B E D*(a.I)F1G. + 67 E D*(a.I)F1+1G,

1=0 x -1 i=0 1 * 2 1=0 1

. . . . , + B E DM. ,_ ...
n i=Q z q (D.25)

This is a linear combination of n vectors in the right hand side matrix of (D.24)

for all j and k (the values of p. depend on j and k) . Thus,

p = ranktDCG, ,FG. ,. . . .F11'̂ ) :D(G_,FG 0 , . . . .F^G.) I . . . . ID(G ,FG , . . . ,Fn~1G )
J _ ' _ L J - « ^ £ Z « » C J C J t j

(D.26)

1 (q+Dn

Thus , the procedure for finding independent columns of Cg consists of

finding structurally independent columns of the controllability matrix of (F,G)

choosing (q+l)n appropriate columns from CQ and checking to see if there is any

further linear dependence.

Another simplification is possible in large order systems in which each

input controls only a small number of states . If k! is the dimension of the con-

trollable subspace of the ith input, no more than 2k.' columns involving G. can

be linearly independent in the right hand side matrix of (D.26) as shown in

Corollary 1 to Theorem 1.

Corollary 2: If for any single input u. the system is completely controllable,

P = rank[D(G1> . . . , F ~ G ; L ) ,D(G2 , . . . , F ~ G 2 ) .... ,D(G , . . . . F " ) ,

.... ,ZD*(a I)F1G , . . . ,ZD*(aI)Fn+1"1G ] (D .27)
J J
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The proof is obvious since G., . . . ,F G. form a set of n linearly inde-

pendent columns.

D. 5 CONCLUSIONS

A systematic method for finding the controllable subspace of the augmented

system, in which the state vector is the system state and its sensitivities, is

presented. It is necessary to start with no more than (q+l)n columns of the

controllability matrix of the augmented system. These columns can be selected

quickly by inspection of the controllability matrix of the initial system. If r

is the dimension of the controllable subspace of the augmented system, it is

necessary to solve r linear equations to evaluate the state vector and its sensitivities

This method of sensitivity functions reduction fully exploits the character-

istics of the system and the cases in which the sensitivity to all parameters in

the system is not required. In other words, it leads to the minimal order model

under the circumstances.
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