
NASA TECHNICAL NOTE NASA TN D-7864 

A N  EXPERIMENTAL SIMULATION STUDY 
OF FOUR CROSSWIND LANDING-GEAR CONCEPTS 

Yundy M .  Stubbs, Thomas A. Byrdsong, 
and Robert K. Sleeper 

Langley Research Center 
Hamptolt, Vu. 23665 

N A T I O N A L  AERONAUTICS A N D  SPACE A D M I N I S T R A T I O N  WASHINGTON,  D. C. MARCH 1975 



CROSSWIND LANDING-GEAR CONCEPTS 

NASA Langley Research Center 

Hampton, Va. 23665 

National Aeronautics and Space Admi~listration 

An experinlental investigation was  conducted in  o rde r  to evaluate several  crosswind 

landing-gear concepts which have a potential application to tricycle-gear-configured, shor t  

take-off and landing (STOL) a i rcraf t  lariding a t  c rab  o r  heading angles up to 30°. In th is  
investigation, the landing gea r s  were  installed on a dynamic model which had a scaled Illass 

distribution and gear  spacing but no aerody~lamic silllilarities when compared with a typical 

STOL ai rcraf t .  The lllodel was  operated a s  a f r e e  body with radio-control steering and was  

launched onto a runway sloped laterally in  o rde r  to provide a simulated crosswind s ide  force.  
During the landing rollout, the gear  fo rces  and the model trajectory were  measured and the 

various concepts were  colnpared with each other. Within the t e s t  limitations, the landing- 

gear  system, in which the gea r s  were  alined by the pilot and locked in  the direction of motion 

p r io r  to touchdown, gave the sn~oo thes t  runout behavior with the vehicle maintaining i t s  c r a b  

angle throughout the landing runout. 

Aircraft  landing Unclassified - Unlimited 

Crosswind landing gear 

Experimental model 

For sale bv the  National Technical Information Service, Springfield, Virginia 22151 



AN EXPERIMENTAL SIMULATION STUDY OF FOUR 

CROSWIND LmDING-GEAR CONCEPTS 

Sandy M. Stubbs, Thomas A. Byrdsong, 

and Robert K. Sleeper 

Langley Research Center 

SUMMARY 

An experimental investigation was conducted in order  to evaluate several  crosswind 

landing-gear concepts which have a potential application to tricycle-gear-configured, 

shor t  take-off and landing (STOL) aircraf t  landing a t  crab o r  heading angles up to 30°. 

In this investigation, the landing gears  were installed on a dynamic model which had a 
scaled mass  distribution and gear spacing but no aerodynamic similarit ies when compared 

with a typical STOL aircraft. The model was operated a s  a f ree  body with radio-control 

s teer ing and was launched onto a runway sloped laterally in  order  to provide a simulated 

crosswind side force. During the landing rollout, the gear forces  and the model trajec- 

tory were  measured and the various concepts were compared with each other. Within the 

t e s t  limitations, the landing-gear system, in  which the gears  were alined by the pilot and 

locked in the direction of motion pr ior  to touchdown, gave the snloothest runout behavior 

with the vehicle maintaining its crab  angle throughout the landing runout. 

INTRODUCTION 

Airports constructed for  short take-off and landing (STOL) aircraf t  will provide 

fewer choices for  runway headings than conventional airports do, and thus will have the 

potential of exposing tne aircraf t  to crosswinds which could impede landing and, possibly, 
take-off operations. In addition, STOL aircraf t  have typically low landing and take-off 

speeds which further contribute to their vulnerability to crosswinds. It is conceivable 

that under sonie conditions the velocity of the crosswind could be a s  high a s  50 percent of 

the touchdown speed of such aircraft .  There  a r e  several  techniques employed by pilots 

to land an airplane equipped with conventional gear under the influence of a crosswind. 

The  most preferred technique is to crab, o r  head the airplane into the wind during the 

approach, and to perform a transition maneuver (decrabbing o r  slipping the aircraft)  

immediately pr ior  to touchdown. This transition maneuver and the subsequent rollout 

could pose problems to STOL aircraf t  where c rab  angles up to 30' a r e  encountered, 

These problems include: excessive gear loading and passenger discomfort associated 



with an imperfect decrab maneuver; an increased worlrload required of the pilot in regu- 

lating the powered lift, monitoring airspeed, decrabbing the airplane, and so forth; and 

controlling the a i rc raf t  once on the ground to keep itwithin the confines of the runway. 

Some of these problems were  emphasized in a recent simulator study conducted on a 

STOL transport; they a r e  discussed in reference 1. In that study, the pilots concluded 

that during landing, a continuous wings-level crabbed touchdown and crabbed rollout was 

preferred to conventional techniques. However, to provide an  airplane with a crabbed 
touchdown and rollout capability would necessitate an unconventional o r  crosswind landing- 

gear system. 

Several landing-gear concepts, proposed in the late 1940's and ear ly 19501s, would 

permit an aircraf t  touchdown in a crabbed attitude. These concepts, described in refer-  
ences 2 to 6, were originally developed fo r  tail-wheel a ircraf t  and some flight experience 

was obtained with various concepts on several  aircraft .  One of the concepts is currently 

employed on the B-52 and C-5A aircraf t ,  but with a 20' crab-angle limitation. Compara- 

tive tes t s  to establish whether this concept is the best approach fo r  tricycle-geared STOL 

aircraf t ,  operating at c rab  angles up to 30°, have not been conducted. 

The purpose of this paper is to present the resul ts  of an experimental investigation 

conducted in order  to evaluate various crosswind landing-gear concepts which have appli- 

cation to tricycle-gear-configured STOL aircraf t  landing a t  crab angles up to  30'. In 
this investigation, four different crosswind gear  concepts utilizing a free-body, radio- 

controlled, dynamic model on a runway sloped laterally to simulate a crosswind side 

force were tested. Different steering techniques were used for the gear  concepts. The 
model t rack and heading of the four concepts were compared with one another to show 

the behavioral characteristic of each gear  concept during the landing runout. The basis 
for  the evaluation of the various gear concepts was minimum vehicle la teral  excursions 
and pilot effort. 

APPARATUS AND PROCEDURE 

The crosswind landing study was conducted in an enclosed facility using a simple 

radio-controlled dynamic model having a tricycle landing-gear arrangement. A side wind 

was simulated by using a laterally sloping runway; otherwise, no attempt was  made to 

simulate aircraf t  aerodynamic effects on the model. 

The study was conducted in two phases. The f i r s t  phase employed a noninstrumented 

vehicle to obtain qualitative data for  the various crosswind landing-gear concepts; prelim- 

inary resul ts  from that phase were discussed in reference 7. Fo r  the second phase, the 

vehicle was instrumented to obtain rneasuieemerrts of gear forces ,  gear  steering angle, and 

wheel speed. 



Description of Model 

The model used in the investigation Was patterlied a f t e r  a L . S T O E - ~ ~ ~ ~  aircraft, ~h~ 
nlodel was not scaled aerodynamic all^; however, m a s s  proper ties and gear spacing were 

simulated. 

Basic vehicle.- A sketch of the  model with the p e r t i n e n t  dinlensions is given in fig-. 

ure 1 and photographs of both the noninstrumented and i n s t r u m e n t e d  versions are  pre- 

sented in figure 2. Longitudinal and la tera l  aluminum a n g l e s  were attached to a solid- 
model body i n  order to provide a means  f o r  mounting the ballast weights f o r  obtaining the 

desired inertia properties. The pertinent mass  ~ a r a l n e t e r s  of the instrumented model 

a r e  presented in table I. The t r icycle  landing-gear a r r a n g e m e n t  used on the llnodel was 

composed of three identical gears. Detailed photographs of the landing-gear components 

a r e  shown in figures 3 to 8 (and fu r the r  discussion of the d e s i g n  is given in the appendix). 

Each gear was capable of being s t ee red  by radio-control led Servomechanisms, locked in 

any position, o r  f r e e  swiveling within the limits provided by mechanical stops. In addition, 

each gear possessed a simple d r a g  brake which could b e  energized by a radio-control link. 
s izes of landing-gear forks w e r e  used to  provide v a r i o u s  amounts of t rai l  o r  caster  

(offset distance of the t i re  behind the swivel axis). B e n c h  t e s t s  were made to determine 

the best t ra i l  location f o r  each landing-gear concept. Pneumat ic ,  model airplme-type 
tires, 11.4 cm (4.5 in.) in diameter, were used on each gear. 

Crosswind gear concepts.- Four crosswind landing- gear concepts were examined in 

this study. Figure 9 presents a schematic il lustration of each concept together wi& a 
brief explanation of its operating technique both prior  to and subsequent to touchdown. 

Concept A utilizes free-swiveling gears  prior to touchdown in order to achieve an 

alinement with the direction of the motion on contact. After  alinement, the gears a r e  

either locked o r  steered. The steering Can be accomplished by using only the nose gear, 

both the nose and the main gea r s  together, o r  the nose and the main gears independently, 
A t rai l  is needed on this configuration in order  to a id  i n  the rapid alinement of the gear 

when the t i re  contacts the runway. 

In concept all gears  a r e  f r e e  to swivel pr ior  t o  touchdown, but mechanical stops, 

se t  on the main gear, prevent outward swiveling. T h e  purpose of the stops is to facilitate 
the steering by developing side forces on the upwind main-gear wheel without actively 

having to lock the main gear at touchdown a s  f o r  concept A. For Concept B, the downwind 
wheel alines with the direction of motion but the upwind wheel is held against the stop until 

the vehicle decrabs to 0°, Should the vehicle decrab beyond 0°, a downwind side force is 

develop&. a s  the downwind wheel is then held against its stop. The steering is accorn- 

piished only through the nose gear. 

concept l2 alego allows dl gears to swivel f ree ly  prior to totzchdown, but differs from 
concepts A and B in t h a h  armsbaa= li&age c o n ~ e ~ t s  Elie forks on the nlain gear so they 



will act together, The geometry of the crossbar  is such that a vehicle crab attitude 

induces a main wheel toe-out which varies  proportionally wit11 the crab angle, For  this 

concept, toe-out i s  defined a s  occurring when the front of the main-gear t i r e s  a r e  far ther  

apart  than the r e a r  of the t ires.  It  is theorized in concept C that the more heavily loaded 

dowr~wind wheel will aline itself with the direction of motion and the more lightly loaded 

upwind wheel will toe-out, and thereby produce a small upwind side force  to facilitate the 

steering. For the tests  reported in this paper, the crossbar  linkage was se t  to provide a 
3O toe-out at  a c r ab  angle of 30°. Mechanical stops were added to this concept to res t r ic t  

the main-gear swivel angle to -+30°. 

In concept D the pilot, pr ior  to touchdown, prese ts  a l l  gears  in the direction of 
motion, Since the gears  require no self-alining mechanism a t  touchdown, no trail is 
needed f o r  this concept. As with concept A, directional control during rollout can be 

accomplished by steering the nose gear only o r  by steering al l  gears. 

Steering mechanism.- The model was s teered remotely using radio-control equip- 

ment. Each gear  was equipped with a single servon~otor  to engage a clutch which con- 
verted the landing gear f rom a free-swiveling to a steerable mode. Dual servomecha- 

nisms were  used on each in order  to provide the necessary steering torque. Each gear 

was s teered by a separate transmitter-control stick and a mechanical linkage was inserted 

between the sticks when it was desirable to s teer  all gears  together o r  to s teer  the nose 

and main gears  independently. (Steering the nose gear only o r  steering all gears  in the 

same direction concurrently required only one hand; steering independently required two 

hands, one for  the nose gear and one for  the main gears.) The radio-control system was 

proportional; that is,  the servomechanisms displaced proportionally to the control-stick 

displacement. 

Runway and Launch Apparatus 

The runway and launch apparatus a r e  shown in figure 10. The runway, 61 m (200 ft) 
long and 4.1 m (13.6 ft) wide, was covered with plywood in an attempt to achieve a smooth 

surf ace. The runway was inclined laterally 4.5O to simulate a crosswind side force  on the 

model (see the following sketch) estimated to be equivalent to that which would occur in  a 

90° crosswind of one-half of the aircraft-landing velocity: 

15.6 N (3.51 lbf) 
Side force 

I i ' Horizontal 

199 N (44-76 lbf) 698 N (44.62 lbf) 
Weight Normal force 



The launch apparatus a s  shown in figure 10 consisted of a model-supporting carr iage 

nzounted on a m o n o r ~ l ,  A cont inuo~~s  electrically powered, winch-driven cable was 

attached to the carr iage and was used to accelerate the model and carr iage to the desired 

horizontal velocity. Near the end of the monorail, the drive cable was separated f rom the 

car r iage  and the carr iage was arrested, allowing the model to slip f r e e  and continue down 

the runway. 

Instrumentation and Measured Parameters  

Parameters  measured during the course of each test  consisted of the vehicle track 

and heading, both acquired f rom motion-picture coverage, and the touchdown velocity a s  

determined f r o m  the speed of the launch carr iage immediately pr ior  to model release. 

The instrumented model was equipped to measure the t ime histories of the forces,  the 

s teer ing torque, the steering angle, and the wheel angular velocity of each gear, together 

with the vehicle normal acceleration. 

Normal, longitudinal and la teral  forces,  and steering torque were measured on each 

landing gear using a six-component force balance specially developed for  this model. The 
balance rotated with the gear assembly and thus the measured forces  a r e  oriented with the 

gear. To permit  the resolution of the gear forces  along the vehicle body axis, the s teer -  
ing angle of each gear with respect to the body was measured using a variable potentiom- 

e t e r  geared to the shaft a s  shown in figure 4. A continuous wheel angular-velocity sig- 
nal was derived from the frequency of pulses generated by an optical device which sensed 

each twelfth of a wheel revolution. (See fig. 8.) The normal acceleration of the vehicle 
was  measured at the vehicle center of gravity by a piezoresistive, strain-gage accelerom- 

eter.  Signals f rom these data-acquisition devices were multiplexed onboard the model 
and transmitted through four small  coaxial cables to two frequency-modulated tape record- 

e rs .  All the taped data except the wheel angular velocity were fi l tered in order  to atten- 

uate frequencies above 100 Hz. The wheel angular-velocity signal was attenuated above 

1000 Hz and, in the data processing, all  data were attenuated above 110 Hz and digitized at 

a sample rate  of 500 samples/sec. 

The force and torque loading applied to the balance and defined a s  positive a r e  shown 

in  figure 11. A positive steering angle is also shown. ' The data were corrected fo r  

balance interactions but not corrected fo r  gear orientation. For  instance, if the model is 
not level, normal force affects the longitudinal and lateral forces.  The sign convention for  

the la teral  and longitudinal model position and the heading angle a r e  shown in figure 12 and 

an upward acceleration was considered positive. 

Motion- picture coverage was obtained f rom six overhead cameras  positioned along 

the runway in order  to determine the vehicle runout trajectory and the model-to-runway 

heading angle. Two additional movie cameras  recorded the entire runout and a video 



recorder  was used to provide an immediate review of the test  conditions and landing 

behavior, A time-code signal was recorded on the instrumentation tapes and along the 
edge of the rnovie fi lm in order  to facilitate data reduction f rom the tapes and to provide 

synchronization of the tape and the fi lm data. 

The model was positioned on the carr iage close to the runway in order  to minimize 

the vertical velocity at touchdown, The landing speed was determined electronically f rom 

the speed of the launch carr iage during a coast phase which existed immediately pr ior  to 

release of the model f rom the carriage. 

Testing Technique 

The testing technique involved launching the model as a f r ee  body in a crabbed atti- 
tude onto a laterally sloping runway. The behavior of the model to various steering inputs 
a s  it f reely rolled to a stop was evaluated. 

Before each run, the t i re  pressure,  the t ra i l  position, and the initial model heading 

o r  c r ab  angle were se t  and the gears  were visually alined with the runway. After launch, 
the model became a f r e e  body s teered to a complete stop through radio control by the 

operator a t  a position adjacent to the launch point. The brakes on the model were applied 

by the operator for  only high-speed runs. 

A number of runs  were  conducted using each of the landing-gear concepts with vari-  

ations made in the initial c rab  angle, the landing speed, the initial gear alinement, the t i re  

inflation pressure,  and the steering technique. Most of the runs were made with the 

model preset  on the carr iage at a c rab  angle of 30°, which simulated an aircraf t  landing 

in  a 90° crosswind equal to one-half of the landing speed. Similarly, most runs  were  

initiated with model landing speeds of approximately 6.1 m/s (20 ft/s). These landing 
speeds simulated a full-scale velocity of 19 m/s (63 ft/s), and seemed to provide the most 

authentic simulation of the last two-thirds of a landing runout since aerodynamics would 

be l e s s  effective in this period. The lower speed also permitted better control and, hence, 

better differentiation between the various concepts that otherwise might not be controllable 

fo r  this simulation a t  higher speeds. Another advantage of the lower speed was that brak.- 
ing, which could contribute complicating effects into the steering behavior, was not 

required. However, a few landings were made a t  model landing speeds of 11.4 m/s 
(37.4 ft/s) and brakes were applied. 

RESULTS AND DISCUSSION 

Limitations to Simulation 

Early in  the investigation several problems emerged that were inherent in relating 

the model resul ts  to those of a full-scale aircraft. One of the most apparent was related 



to the need for  abnormally quick pilot response, For  example, dimensional ec~uivalence 

requires  that the pilot's response fo r  a l / l0-scale  model be over three t imes that of a 

pilot of a full-scale aircraft. The response time lags of the radio-control system also 

aggravated this condition. These problems were compounded by the fact that the pilot was 

not in  the vehicle where he could sense motion cues but, instead, was positioned near the 

touchdown point of the model where his  visual cues diminished with model runout. 

Another limitation in  the simulation is that there was no thrust and aerodynamic 

control on the model to keep the horizontal forces  in  balance a t  touchdown and until s teer -  

ing of the landing gears  could begin. Fo r  a STOL aircraf t  touching down in a crabbed 

attitude with a crosswind landing gear, it is assumed that the horizontal forces  will be in  

equilibrium. The model, however, touching down on a laterally sloping runway, has  an 

unbalance in  forces  that immediately starts a downwind drift which continues until the 

s teer ing of the landing gears  can be initiated. Because of the pilot response and the lags 

i n  the model radio-control mechanisms, when steering is finally attempted, the momentum 

of a downwind-drift velocity and any yaw angular velocity that has  been initiated must be 

overcome. In order  to minimize initial drift and yaw changes of the f r e e  swiveling con- 

cepts  (concepts A, B, and C), some tests  were made with the gears  alined with the direc- 

tion of motion and the steering engaged prior  to touchdown, and thus the free-swiveling 

feature at  touchdown was eliminated. 

An additional limitation of the simulation was that the side force developed by the 

laterally sloping runway acts  at the vehicle center of gravity instead of at the aerodynamic 

center  of pressure.  Therefore, there is no weathervaning moment such as might occur 

on an actual aircraft .  This  runway slope was maintained constant over the entire length 
of the runway and thus produced a constant side force perpendicular to the runway center 

line. In an actual aircraft  landing, however, the side force, resulting from aerodynamics, 

var ies  during rollout because of changes in the windspeed and changes in  the aircraf t  

ground speed and heading with respect to the resultant a i r s t ream direction. 

Although these problems with model testing place limitations on the direct  applica- 

tion of the model tes t  resul ts  to full-scale aircraft, these shortcomings apply to all four 

concepts investigated and a comparison of the relative mer i t s  of the various configurations 

appears  to be justifiable. 

Tes t  Criterion 

The basic criterion used in comparing the various landing-gear configurations was 

that the vehicle experience a minimum lateral displacement during rollout on the runway. 

Another requirement was that the vehicle have a minimum, o r  a t  least  a slow yaw attitude 
change during runout; that i s ,  a vehicle touching down a t  a 30' crab angle would run out 

at a 30" crab angle o r  would decrab slowly. 



Noninstrumented Model Tes t s  

Results in this section, obtained from over 60 runs, a r e  qualitative in nature, They 
a r e  presented in t e r m s  of the experience with the various gear concepts. 

Concept A.- In the initial t es t s  with concept A, the landing gears  were f r e e  to swivel 

and, upon ground contact, to aline themselves with the direction of motion. In order  to 
obtain alinement, some amount of t ra i l  was needed but it was found that there was  a range 

of t ra i l  values that produced shimmy problems at a given tire-inflation pressure.  After 

several tests,  a t rai l  of 1.3 t imes the t i re  radius and a tire-inflation pressure  of 60 kPa  

(9 psi) were selected in order  to eliminate the shimmy and to provide an adequate aline- 

ment capability. On the lighter loaded nose gear, a t ra i l  equal to one t i re  radius and an 

inflation pressure  of 55 kPa  (8 psi) were found to minimize the shimmy. In both cases,  
lower inflation pressures  with o r  without shorter trail resulted in a moderate to a severe 

shimmy. Unfortunately, the need f o r  long t rai l  to reduce the shimmy imposed severe 

demands upon the available steering torque. Initial t es t s  with concept 4 and other con- 

cepts that were f r ee  to swivel pr ior  to landing, gave poor landing behavior. When landings 
were made with all  the gears  prealined with the direction of motion and the steering clutch 

engaged prior  to touchdown, very good crabbed runouts were  obtained by utilizing only the 

nose-gear steering. When the steering is engaged prior  to touchdown, concept A is simi- 

l a r  to concept D except for  the trail and the flexibility of the steering mechanism. The 
engagement of the steering clutch eliminates the free-swiveling feature a t  touchdown. 

Figure 13(a) shows sequence photographs of a typical run using concept A and only nose- 

gear steering. The runout was good, the vehicle maintaining a track very near the runway 
center line. 

Figure 13(b) is a sequence of photographs showing a landing with s teer ing control 

attempted by both nose and main gears  turning equally and simultaneously, using one- 

steering input (one-hand control). When such steering was  attempted, the resu l t s  were 
not satisfactory because of either a slight preset  nlisalinement of the gears  with respect  

to each other, o r  a misalinement of the gears  caused by uneven loading. The slight mis- 

alinement produced a slow continuing yaw change in the vehicle and, although the vehicle 

could be displaced laterally on the runway with steering, it would continue yawing until its 
gears  hit mechanical stops, whereupon the vehicle diverged from the runway. 

Steering the nose and main gears  independently with two controls was also unsatis- 

factory even though some good runs were obtained. Figure 13(c) shows sequence photo- 

graphs utilizing this independent steering. When differential inputs were made, such a s  

steering nose gear windward and main gear leeward, the yawing motions were  very rapid 

and confusing to the pilot, with an occasional loss  of control a s  illustrated in  the photo- 

graphs, No attempt was made to s teer  the nose and main gears  in opposite directions with 
a single steering input by the pilot, With reduced sensitivity and ad&tioraal refinements, 



steering the nose and main gears  independently might prove feasible; however, it was 
2. 2011. corlsidered an unnecessary eomplic 'c* 

Concept Be- The main-landing gear of concept B was f r ee  to swivel only inward to 
aline with the direction of motion on ground contact. To  facilitate the gear alinement, 

trail again was used - the same amount of t ra i l  a s  fo r  concept A. When the vehicle 

landed crabbed o r  yawed into the wind, the nose gear and downwind main gear alined with 

the direction of motion. However, the upwind main gear was forced against a stop which 

kept it alined with the longitudinal axis of the model and produced a side force aft of the 

center of gravity into the wind. Only nosewheel steering was used with concept B, and 

f o r  the test  shown by the sequence photographs in  figure 14(a) it was actuated after touch- 

down. Fo r  the sequence shown, a large windward side force was developed by the upwind 

t i r e  alined at a 30° yaw angle with respect to the direction of motion. The large side 

force  acting behind the vehicle center of gravity produced a large decrabbing o r  counter- 
clockwise torque and a violent decrabbing motion. The angular nlomentum generated by 

the rapid decrabbing rendered the model uncontrollable. It was felt that the violent 

decrabbing motion caused by the upwind wheel could be reduced, but not altogether elim- 
inated, on an actual a i rcraf t  by directional stability and rudder control. 

Additional runs were made with concept B, wherein the nose gear and downwind 

main gear were  prealined with the direction of motion and the nose steering clutch was  

engaged prior to touchdown. Photographic resul ts  of this tes t  a r e  presented in  fig- 

u re  14(b). The model decrabbed rapidly a s  shown between the f i r s t  and second photo- 

graphs and full  right-steering input (300) was needed throughout the remaining runout in  

order  to maintain control. This  type of steering imput was marginal and was considered 

to be unsatisfactory. 

Concept C.- As with concepts A and B, the landing gear of concept C was f r e e  to 

swivel pr ior  to contact and, like that of concept B, only nosewheel steering was available. 

The t ra i l  used to achieve alinement was the same a s  that for  concepts A and B. Since 

both main gears  were tied together by a crossbar  linkage, it would be expected that the 

downwind gear, which was more heavily loaded, would aline itself with the direction of 

motion. The more lightly loaded upwind gear would toe-out (3O for 30° c rab  angles) and 

produce a small  force in  the windward direction to facilitate steering. 

No satisfactory runs were made when the steering clutch was engaged after contact. 

When the gear was alined with the direction of motion and the steering clutch engaged 
pr ior  to contact, good runs were obtained a t  a 30° c rab  angle. (See fig. 15(a).) However, 

i t  was necessary in those tests  to se t  mechanical stops on the main gear at 30°; otherwise, 

during runout the tail would continue to swing downwind. To support these findings 

several landings were made at 0" yaw (fig. 15(b)), An undesirable yaw motion was 

observed for all landings until the maill gear hit tile 3O0 stops, as is shown to occur during 



the run in f r a m e  4 and again in f rame 12 of figure 15(b). Throughout this crabbing maneu- 

ver, i t  was found that the nose gear must be steered or the model would be uncontrollable, 

The toe-out of this concept did not produce enough side force to facilitate steering and 

there was no directional control unless the main gear was against a mechanical stop. 

Concept D.- For  a landing using concept D, it is assumed that a mechanism would 

be provided to permit  the pilot to aline al l  three landing gears  with the direction of motion 

and to lock them in position prior to touchdown. Since the self-alining feature was not 

needed, no trail was used fo r  this concept. With no trail on the landing gears,  there was 

no shimmy problem, the torques required to s teer  the model were considerably reduced, 

and the steering was quite responsive. Thus, in effect, concept D is essentially the same 
a s  concept A when the gear of A is alined and locked in the direction of motion; however, 

concept D lacks the shimmy tendency and the severe steering-torque demands that occur 

for  the long trail required fo r  concept A. Good runs were obtained immediately by using 

concept D with nose-gear steering. Figure 16 shows a typical run where the model 

touched down in a 300 crab  and a straight, uneventful runout followed. 

An interesting observation with this concept was that, even though the model was 

crabbed 30° and the gear lined up with the direction of motion, the model weathervaned o r  
crabbed even fa r ther  because of the uneven loading of the main gears. With no steering 
inputs, the vehicle on touchdown moved leeward slightly, then weathervaned, and s tar ted a 
slow windward drift. Small leeward steering inputs a r e  needed for  control, and control i s  

relatively easy. Several runs were made with a 5O preset  e r r o r  in the gear alinement 

with the direction of motion in order  to simulate pilot e r ror .  The vehicle was controll- 

able but not without some initial weaving down the runway. When lo0 e r r o r s  i n  alinement 
were tried, the vehicle was sti l l  controllable but initial lateral motions tended to be exces- 

sive and some t i re  squeal was noted. With aerodynamic controls, however, i t  was fe l t  

that landings with even larger  alinement e r r o r s  could be satisfactorily made. 

As was observed with concept A, steering al l  gears  of concept D together was unsat- 

isfactory because a slow ground loop resulted. Steering both nose gear and main gears  

independently was t r ied and a satisfactory run was obtained. However, independent s teer-  
ing increased the sensitivity of an already adequately sensitive steering system and added 

an unnecessary complication. 

Instrumented Model Tests  

Eight representative cases  were chosen f r o m  over 70 instrumented t e s t s  for  quan- 

titative discussion. The cases  a r e  summarized in table 11 and detailed time histories of 

these cases  have been included in figures 17 to 24, 4 1  tests  were made with the initial 



c rab  angle prese t  to 300, the gears  alined with the runway, and the steering clutch engaged 
(not f r e e  swiveling) prior to touchdown, For  all but the last case of table PI, the lower 

landing speed, which simulated the last  two-thirds of a landing rollout, was used and no 
braking was applied. These cases  include effects due to two t i re  pressures  and two steer-  
ing techniques. For  gear concepts A, B, and C, the wheels were positioned in their forks 

to  have 0.052 m (2.04 in.) t ra i l  on the nose gear acd 0.071 m (2.79 in.) t ra i l  on the main 

gears;  smaller  forks without t ra i l  were used in concept D. To aid in interpreting the 

resu l t s  f rom the instrumented tests,  the following paragraphs discuss in detail (1) a typi- 

ca l  t ime history and (2) the maximum value model data for the cases  presented. 

Time histories.- The time histories derived f rom case 1 and presented in  figure 17 

have been arbi t rar i ly  selected fo r  discussion. These histories describe the rollout 

character is t ics  of concept A utilizing only nose-gear steering. Force data a r e  presented 

i n  figure 17(a) and acceleration, steering angle (gear position), wheel angular velocity, 
vehicle displacements, and heading data a r e  presented in figure 17(b). The run s tar t ing 

t ime for  the time-history data was determined by the first indication of force on one of the 

three  landing gears.  Dashed-line fairings of the maximum-force data (fig. 17(a)) a r e  an 

attempt to eliminate structural oscillations caused by model and gear elasticity. The 

maximum values obtained f rom such fairings a r e  presented in table 11. Because the 

s teer ing inputs a r e  small  in  this run, the longitudinal and lateral forces  during the run- 

out were  relatively constant. 

The normal acceleration shown in figure 17(b) has oscillations a t  approximately the 

same  frequency a s  the normal-force t races  of the main gears  shown in figure 17(a). The 

oscillations in  the steering angle at the s t a r t  indicate a brief shimmy of the nose gear 

before the steering becomes steady. The right and left main-gear steering angles 

remained constant throughout the run because they were  locked. Except for  initial t rans-  

ients  in the wheel angular-velocity traces,  a smooth velocity decay is shown for  each 

wheel. The good controllability of this run is reflected in the smoothness of the lateral 

displacement and the heading-angles traces.  The greatest  la teral  displacement f rom the 
runway center line was approximately 0.5 m (20 in.) and heading angle changes were small  

and gradual indicating a smooth runout. 

Maximum value data.- A summary of the maximum values obtained f rom the eight 
time-history records  (figs. 17 to 24) is given in tabular form in table E[. Figure 25 is a 
ba r  chart  of runout distance and excursions in the vehicle la teral  displacement and the 

heading angle f o r  the four concepts. Windward la teral  and yawing excursions were  con- 

sidered to be positive. In general, concepts A and D have smoother runouts than do con- 
cepts B and C. In the trajectory of concept B the vehicle decrabbed to 0°, which required 

the steering=control stick to be held hard over against a stop ir? order  to maintain control, 



CONCLUDING REMARW 

An experimental investigation was conducted to evaluate various crosswind landing- 
gear concepts which have potential application to tricycle-gear-configured, short  take-off 

and landing (STOL) aircraf t  landing a t  c r ab  angles up to 30°, Four crosswind gear con- 

cepts were tested by utilizing a free-body, radio-controlled model having a scaled mass  

distribution and gear spacing but no aerodynamic similarities. The model was landed on 

a runway sloped laterally to simulate a crosswind side force, 

Relative comparisons of the concepts were made but certain limitations were found 

that were  inherent in relating the model resul ts  to those of a full-scale aircraft .  The 

more significant of these were the lack of motion cues to the pilot, the requirement that 

the pilot respond three times a s  fast  a s  is necessary for  the full-scale aircraft ,  and the 

lack of aerodynamic control at touchdown. 

Of the concepts examined, concept D, which required the pilot to aline all three gears  

in the direction of motion pr ior  to touchdown and to s teer  with the nose gear about the pre- 

s e t  landing-gear position, gave the best performance. Satisfactory runs were  consistently 

made with this system even when the gears  were misalined up to 10' a t  touchdown. 

Langley Research Center, 

National Aeronautics and Space Administration, 

Hampton, Va., January 20, 1975. 



CROSSWIND LMDTNG-GEAR DESIGN 

Each of the three landing gears  of the short take-off and landing crosswind model 

was  identical in design and construction, A photograph of a gear is presented in figure 3 
where the principal subassemblies a r e  identified. The upper section constitutes the 

steering-control system, the middle section defines that portion of the gear which is 
attached to the body of the model, and the lower section comprises the force balance and 

the t i re ,  wheel, and brake assembly. A closeup photograph of the upper and midsections 

with callouts of the visible components is presented in  figure 4 and all  component par t s  

fo r  these sections a r e  pictured in  figures 5 and 6. The lower section is shown in figure 7, 

and i t s  components in figure 8. The three sections a r e  connected by a steering shaft, 

shown in figure 6, which t ransmits  any applied steering torque to the t ire.  To convert the 

gear  f rom a f r e e  swiveling to a steerable mode, the steering-actuator servomechanism 

identified in figure 4 was used to engage a spring-loaded clutch. Also shown in figure 4 
is the gear  position potentiometer for  landing-gear yaw-position measurements. F o r  those 

runs  using the restrained mode for  the main gear,  a mechanical-stop plate and pin (fig. 4) 

were used to fix the gear. 

The force balance (figs. 7 and 8) was a lightweight, six-component balance but, 

because of the other instrumentation limitations, only four components were recorded. 

The wheel fork (fig. 8) was fabricated to provide three possible t ra i l  positions and a sim- 

ple spring-loaded friction brake was used to provide a fixed brake force for  the high- 

speed runs. The angular velocity pickup, also shown in figure 8, was mounted on the 

wheel fork in order  to monitor wheel angular velocity. 
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TABLE I.- MASS PARAMETERS OF INSTRUMENTED 

CROSSWIND MODEL 

Complete vehicle (nominal) 
SI / U.S. Customary 

Units Units 

Mass . . . . . . . . . . . . . . . . . . . . 
Roll mass  moment of inertia . . . . . . 
Pitch mass  moment of inertia . . . . . . 
Yaw mass  moment of iner t ia  . . . . . . 

Components: 

Gear mass ,  long fork . . . . . . . . . . 
Gear mass ,  short  fork . . . . . . . . . . 
Ti re  mass  . . . . . . . . . . . . . . . . 

1.39 slugs 

1.39 slug-ft2 

1.51 slug-ft2 

2.64 slug-ft2 

0.04961 slug 

0.04488 slug 

0.01513 slug 



TABLE 11. - SUMMARY OF TEST CONDITIONS AND RESULTS 

Case 

C Nose gear  

Crosswind 
gear  

concept 

Nose gear  

Nose gear  

Nose gear  

Nose gear  
(37.4) 1 (10) 

Steering both nose and main g e a r s  independently. 

technique 

Aircraft/runway 
heading angle 

Touchdown 
velocity, 

m / s  
(ft/s) 

- 

Landing-gear t r a i l  

Nose, 
m 

(in.) 

0.052 
(2.04) 

0.052 

(2.04) 

0.052 
(2.04) 

0.052 
(2.04) 

0 

(0) 

0 

(0) 

0 

(0) 

0 

(0) 

Initial 
c rab  

angle, 
deg 

Right main, 
m 

(in.) 

0.071 

(2.79) 

0.071 

(2.79) 

0.071 

(2.79) 

0.071 
(2.79) 

0 

(0) 

0 

(0) 

0 

(0) 

0 

(0) 

T i re  p ressure  

Left main, 
m 

(in.) 

0.071 

(2.79) 

'0.071 

(2.79) 

0.071 
(2.79) 

0.071 

(2.79) 

0 

(0) 

0 

(0) 

0 

(0) 

0 

(0) 

Nose, 

(1&%2) 

Right main, 
kPa  

(lbf/in2) 

Left main, 
kPa 

(lbf/in2) 



TABLE II.- SUMMARY O F  TEST CONDITIONS AND RESULTS - Continued 

Crosswind 
gear 

concept 

Maximum nose gear forces 

( -  14) (2.8) (-7.4) 

Maximum right main gear forces 

Normal, Longitudinal, Lateral, S$,"gT;',": 
N N N 

(lbf) (lbf) (Ibf) (in/lbf) 
N -m 

1 

Normal, 
N 

(lbf) 

aximum left main gear forces 



TABLE 11.- SUMMARY OF TEST CONDITIONS AND mSULTS - Concluded 

Large la teral  displacements and heading 

changes. 

Case 

1 

Steering both nose and main gear  

independently. 

Crosswind 
gear  

concept 

A 

Crossbar  linkage between main gears .  

I ~ I  I Abrupt motions a t  touchdown, runout barely 

controllable. 

1 5 /  D / Good runout. 1 All gears  alined with direction of motion. / 

Remarks 

Good runout. 

Main gea r s  swivel limited by stops. 

1 6 1 D ( Abrupt motions at touchdown, but controllable. / All gears  misalined leeward lo0. ! 

Notes 

Simulated a free-swiveling gear  pr ior  to 
touchdown. 

1 8 1 D 1 Model pilot response inadequate for  initial I High velocity run with brakes. i 
1 7 1 D 

I Abrupt motions a t  touchdown, but controllable. 

speed, but runout was satisfactory. 

All gears  misalined windward lo0. 



Figure 1. - Crosswind model configuration. Dimensions a r e  

given in meters  and parenthetically in inches. 



L- 72-4848.1 
(a) Noninstrumented model. 

L-73-5475.1 
(b) Instrumented nlodel. 

Figure 2. - Crosswind landing-gear test  models. 



-111-face 
(s imulated)  

Figure 3,- Model landing gear assembly. 



L-74-290.1 
Figure 4.- Upper and midsections of landing-gear assembly. 



Figure 5.- Components of upper section of landing-gear assembly. 





ism 

Figure 7.- Lower section of landing-gear assembly. 
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Figure 11.- Positive direction of gear forces.  



Figure 12.- Crab- and heading-angle definitions. 



13 
L-75-129 

(a) Nose-gear steering only. 

Figure 13.- Sequence photographs of landing runout for  model with concept A. 
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L-75-130 
(b) Steering all gears  together. 

Figure 13. - Continued. 
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(c) Independ 

14 15 
L-75-131 

.ent steering of nose and main gears.  

Figure 13. - Concluded. 
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L-75-132 

(a) Steering actuated after touchdown. 

Figure 14.- Sequence photographs of landing runout for model with concept B. 
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(b) St€ :ering actuated pr ior  to 

15 

L-75-133 

touchdown. 

Figure 14. - Conclude 
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L-75-134 

(a) Model landed at 30' crab. 

Figure 15.- Sequence photographs of the landing runout for  model with concept C. 



(b) Model landed a t  0' c r a b  

Figure  15.  - Concluded. 
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Figure 16.- Sequence photographs of typical landing rul nout for model with concept D. 
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Figure 18.- Time histories of case 2 (concept A). 
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Figure 19.- Time histories of case 3 (concept B). 
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Figure 19.- Concluded. 
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Figure 20.- Time histories of case 4 (concept C). 
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Figure 20.- Concluded. 
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Figure 21.- Concluded. 
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Figure 22,- Time histories of case 6 (concept D). 
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(b) Gear steering angles, wheel speeds, and vehicle-trajectory parameters.  

Figure 22.- Concluded. 
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(a) Gear forces. 

Figure 23.- Time histories of case 7 (concept D). 
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Figure 24.- Time histories of case 8 (concept D). 
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