TASK AND PROCEDURES

Task and Diaplays

The taak was to fly from puint A to point B, as in Fig. 1. following the 360° $315^{\circ}, 135^{\circ}, 180^{\circ}, 225^{\circ}, 045^{\circ}$ and 360° legs in that sequence while maintaining constant altitude. The aircrift dynamics were a simplified vention of the $\mathrm{DC} \cdot \mathrm{B}$. Tirottle setting remalned constant with a nominal airspeed or 160 knots . All fight information was displayed on a 17 in . CRT monitor. The display was generated by an Evans a Sutherland LDS- 2 graphics display computer using an SEL 840 an the main computer. Aircraft dynamics and scoring procedures were also generated by the SEL 840 . Appro priate force-feel characteristice werc provided by a hydraulic control loader syblem Figure 2 is a photograph of the simulator interiof.

Both the Vertical Situation Display (VSD) and the Horizontal Situation Display (HSD) were contained within 5 in . nquaren. Figure 3 is a photograph of the VSD with labols describing the display elements. The number at the top left corner of the display thowe airapeed in knota. The center number is aircraft hending in degrees. The top right number is altitude in feet, and the number just below altitude is the vertical speed raadout in feet per minute. The aircraft aymbol remained fixed in the center of the display with pitch and roll indicated by movement of the horizon, ground plane lines and piich lines. The altitude error bar moved acrose the scope in the vertical direction only. A zero altitude error was indicated when the error bar was centered ond of center squase of the aircraf symbol. Motion from the center position to the end of the bar in cither direction indicated a 100 ff . error. The aircratt was 100 ft . the aircraft ay ing aircran symbol, and 100 ft . too low when the bottom end of the bar was louchindicated zero turn rate and of the turn rate indicator moved horizontally. Center position indicated zero turn rate and a $3^{\circ} / \mathrm{sec}$. turn was indicated with the rectangle centered over
the right or left bar.

Figure 4 is a photograph of the HSD with tabels describing the display elements. The primary display elements were the reference ground trajectory and the aircraft symbol. The aircraft symbol gave both heading and podition information. The aircraft position was the junction point of the wings and body. The other symbols were prosent to provide a louch of realism and to provide backeround display motion which was considered particularly important for the two conditions where the aircrars remained in ths center of the diaplay during the night. For thene two conditions the map tranalated and additional aymbols, not ahown here. would come into view at dif. ferent poinis along the fight. The map scale is $1.6 \mathrm{n} . \mathrm{mi} . / \mathrm{in}$.

One additional feature was shown on both the VSD and HSD to aid in timing the start of the turns. Approximately 5 seconds before the transition point from a
straight line section of the reference ground trajectory in a cirsular section, the center
square of the VSD aircraft symbol and the aircraft symbol on the HSD both began to flash at a 2 Hz rate. Referring to Fig. 1 it can be seen that there are 2 turns of 180° and 4 turns of 45°. For the 45° turns the flashing began 5 . point of a circle with the same radius as the 180° turns. This is illustrated on Fig. at the 045° to 360° heading transition.

The VSD was always in the same scope location for either the overunder or the sicle-by-side condition. The VSD center-line was centered directly in front of the pilot. The map (HSD) was positioned either to the right of the VSD or below it.

Experimental Variables

Relative display location Iwo levels, VSD and HSD located either overunder $\left(D_{2}\right)$ or side-by-side (D_{1}).

Map ortentation: Three levels were used.

1. North up, fixed map (0,). With this condition all cigmarts were fixed. the only moving symbol being the arcraft which moved .rourd the ccurse to indicate prosent position and heading.
2. Aircraft heading up $\left(\mathrm{O}_{3}\right)$. The aircraft symbol always remained fixed in th: center of the display, heading up. The entire map would translate and rotate to keep proper relative position with the aircraft.
3. North up, moving map $\left(\mathrm{O}_{3}\right)$. The center of the aircraft remainod centered in the display and rotated about this center to indicate aircraft heading. The map alvays remained north-up (no rotation) and translated vertically and horizontally to maintain relative position with the aircraft. This conflguration was chosen because it is a mux of inside-out and ouiside-in displays. The "north-up, fixed map" display is a pure outside-in display and the aircraft heading up display is a pure insido-out display. In this (3rd) display the aircraft position is inside-out, while the aircraft heading is outside-in.

Figures 5, 6 and 7 are photographs showing a combination of the display locations and map orientations.

Winds Two levels; wind present $\left(W_{j}\right)$ and wind absent $\left(W_{0}\right)$. When prosent the wind velocity was always 32 knots. Wind direction was randomly selected from four chusices, blowing from either $068^{\circ}, 143^{\circ}, 223^{\circ}$ or 338°.
pilot groups. Two groups selected on the basis of a preexperiment questionnaire. Th: groug of 3 pilots preferring the side-byside placement of the display was dedig. Th: group of 3 pilots preferring the side-byside placement of the display was dedig-
nated Group A, and 3 pilots preferring the overunder placement was called Group B.

Plots: Six airtine pilots ware chosen from a group of 19 pilots on the basis of their reasponses to a Display Location Preference questionnaire. Figure 8 is a reproduction of the paired-comparicon part of the questionnaire. This page was precoded by explanatory material concernins CRT, VSD and map dipplays along with uluatrations The questionnaire aleo included a S point rating acale decigned to determine the arcngth of sented four aidines Ape
 39, awarage total filght time was 9.000 hrs., and all had milltasy expertence with an average total of $3,000 \mathrm{hrs}$.

Procesture

Instructions: The purpose of the experiment, the details of the diaplays, the air craft dynamics and the experimental conditions were all explained the first day. The stated task was, "stay as close to the reference ground trajectory as pomible at all timee while atill maintaining altitude." They were instructed to set up approximateiy the same tum rate for the 45° tums as for the $1^{\circ n \mathrm{n}}$ rurns, using the blinking of the aircraft symbols to ald in timing the beginning of tne turns. They were infurmed of all the conditions before each run, including wind direction. They were inseructed that "once we atart a run for data, I want you to complete that run unless something unplanned happena, e.g., something obvioudy wrong with the simulation.. They had separate printed chart on
cions for handy reforence

At the end of each Iight the pllot was shown the ground track of his entire fligit path relative to the reference ground trajectory as in Fig. 9. Also shown were the average mean square orrurs for both horizontal and vertical track (diefter in upper loft).

Performance moasure: Average mean square errors (AMSE) for the total run wert computed on-line for both horizontal and vertical errors.

Theining and expertment dasign: The comblnation of two diaplay locations, three map orientations and two wind conditions made a total of twetve experimental con dittons par plot. Each priot naw oniy one display orlentation per day. With wix parti all posible sequence comblnations were used as shown in Table 1. These were also divided to that the throe difforent orientations were present within preference groups for each day. Tweive reconded nights were made each day making three replication per map orientation for each of the two diaplay locations (2) by wind conditions (2). These four conditions were randomized in blocks of four runs.

The first day was covoted entirely to training. Before collecting data on each of the following days two runs were made for warmup - one with and one without wind. The pllots ware given the opthon of more warmup, but generally felt one run would have boen mumicient. Each plot averaged one or two semions per woek. Each run lasted approximately $6-1 / 2$ minuter with about three minutes between ruma. It was left to the individual pilot to take a lonper break whenever he wished. The averaed broak lasted about 20 minutes and was taken about halfway through the data runs.

RESULTS AND DISCUSSION

This section is divided into two major parts. The first part presents the results of the pilo: pertormance data. including a subsection dealing with an unexpected phenom enort that has been termed "fascination." The second part presents the results of the Post Experiment Questionnaire.

Performance Data

The maynitudes of the performance scores for each experimental variable ale show! in Figs. 11-14. The overall mean for each choice of a variable is designated by the diamond symbol. For Figs. 11-13, the range of individual pilot mean scores are aiso shown. Figure 11 shows that lateral performatice was slightly better with map orienences were not statustrally signuficant (See Tables III and IV for a ${ }^{2}$. Tatistical summery of restits) Figure 12 shows very little performance difference between the ivo dispity pration hoices, with an whe lateral error suighly lese than 100 meters and RMS

Th: mean performance on wind conditions is shown in Fig. 13. These difference between wind conditions art statistically significant. The scores for each pilot an: thown 11 Fig. 14. The differences shown aming pilots are also statistically significan: added. and those at the botism are for runs without winds.

It is slear that there was a difference in emphasis between the lateral and vertical task among pilots. Pilnt Y, for example (Fig. 14) was consistently lower than the others for the lateral task, and pilot U was consistently lower for the vertical task. To form a singie score for pilot performance it was noted that for all pillols the overal RMS lateral error was roughly 12 tumes the overall RMS vertical error. A resultant vector score was then found for each pilot as $\sqrt{(\text { Lateral }-o r e)^{2}+112}$ Vertical siore $)^{2}$. The results of these calculations are shown in Fig. IS. It can be seen that pilot Y had the lowest overall score with the smallest amount of difference between the wind and nowind conditions. Pilot U had the second to the lowest overall mean score but the difference between his wind and no-wind scores was the largest of the group. This comparison points out the difference in technique between these two pilots. Pilot \mathbf{Y} approached the problem as one task, while pilot U gave primary uttention to altitude. An analysss of variance of these scures showed the same results as summarized in Tables III and IV and it is not included

The differences in performarce among the pilots as they feli into the preference groups were quite small and were not statistically significant. These performance data are not shown

No particular signoficance can be attached to the map orientation plour uiteraction shown in Talles III and IV Figure 16 shows that although the largest block of learning for this task was made during the practice day, there was still a steady indication of learning throughout the experiment. So with the balanced experimental sequence used (Table I) it would be expected that how well a pilot performed with a given orit tation relative to sine other two oricntations would be related to where that orientatic. arpeared in the sequence.

The presence of the uignificant wind-pilot interaction can be seen in Figs. 14 and 15. It is clear that there was 4 wide range in the ability to cope with the presence of wind in the task.

An expected interaction between orientation and wind was not shown by the data. The pilot comments did not indicate any particular advantage with any display orientation in correcting for wind. One pilot did indicate that it was alightly easier to keep track of the wind disection on O_{1} and O_{3}, and two pilots indicated a wind vector on all mape would be helpful

The significant differences in performance between the pilots and their difference: in ability to handle the wind conditions it not aurprising. Differences in ability are accepted as a fact in any population. What was slightly surpriaing was the small valu some of the errors which indicates the potential accurscy of such diaplays. (O) equipment does not include potential operational errors due io srond and ainore for all conditions without wind of 39 meters (128 fi), This is even more impreseive when this is tranelated to the actual error ditance on the face of the display. With the 1.6 n mi/ in . gcale that was used, this was a calculated $.033 \mathrm{~cm} .(.013 \mathrm{in}$) ecror on . 6 n . mi./in. scale hat was used, thin was a calculated .033 cm . (.013 im.$)$ error on points out that very small differenc between the required ground track and the paralel element of the aircraft symbol can be detected. (Pilot Y made two runs where RMS errors were only about half his average value.)

Fascination: One of the pilots (Y) demonatrated utypical behavior on two dif cerant runs with the fixed, northup map. Such events could not be planned in an exporiment, but having occurred they provide valuable insight into this pilot'i approach to his task and also illustrate the potential for blunder with a north-up map diaplay Figure 10 is a drawing showing the ground track for the two runs relative to the reference track. Track A was the fifth run of the day (not counting practice) and was lown with the over-under display location. Track B was the eighth run of the day and usod a side-by-side location. Both tracks wire flown with the "no-wind" condition Track B was the next "nowind" run after track A. This pilot normally flew gro:ind racks with a small error under the "nowind" conditions. He was, in fact, the mos proficient tracker of the six pillota. (The data from these two runs were not included in the overall performance data analysis.)

On track A the turn to go from the $135^{\circ} \mathrm{leg}$ to the $180^{\circ} \mathrm{leg}$ was initiated at the proper time in the wrong direction. Then there was a pause in action for a whort time while the aiscraft maintained a heading of about 100°. About 8 seconds after the initiation of the turm in the wrong direction he called on the intercom and aaked if the run could be aborted. He was reminded of the instructions to complete all flighte except in the case of equipment malfunction. Following the run he had swo comments. First, the task was getting too easy and he wat "fine controlling" at the expense of "thinking." Socondly, it was easy to "recover" with this presentation, i.e., easy to see Where he had to go to get back on the track, once off the track. After complering track B thore was no further commeat other ihan a dewstad acknow edgamant that he had done it again. Though it is seidom ciear cut as in these
rascina $n "$ as defined by Clark and Graybiel.(4) "In these situations (involving fascination) the pilot had his atter.tion st iently on one item that he did not attend to other items of importance during the ili; ht." Pilot Y was, in fact, always intent on "beltering his sores."

Post Experiment ' Estionnaire

At the end of their iast day each plot was a ked a set of questions concerning the experimer:. The pmeidure took the form of a 'tructured interview.

They were first asked to rank order the six conditions in order of preference There was some pritest to this with comments that there "really wasn't that much difference" between some of the conditions. Table II is a tabulation of the rankings. The number one indizates a first choice, two a second choice, etc. As a coarne means
of comparing subgroups these numbers were treated as being "equal interval" and simply added together. A higher total indicates a lower average preference.

The first thing to note in Table 11 is the wide variety of opinion. No column shows more than two eslections of the same ranking. In fact, within the first, fourth and fifth columns these are an equal number of first and last place rankings. It can be seen by looking at the piot preference group subtotals for the over-under and side by-side placement
Looking at the mup orientation rsuits, the heading up orientation $\left(\mathrm{O}_{2}\right)$ seems to hold very slight overail edgo in preference.

There were specific reasons behind these differences of opinion n as can be geen by therr responses when asked to list a major pro and con for eacil display. Appendix E summarizes these responses from all pilots conceming the three different map orientations. !t can be seen that there are valid strengths and weaknemes to be considered for each one. The comrnents of one of the pilots who had experienced mild vertigo with the bising up orteniation $\left(\mathrm{O}_{2}\right.$) are especially interesting. He normally preferred over-under placement witn 0_{2} because there was "less distraction" from the motion. over-under placement witn 0_{2} because there was "ess distraction from the motion.
The effect was strong enouah that this pilot ranked 0_{2} with over-under placiment aa his first choice, and \mathbf{O}_{2} with side-bysite placement as his last chuice.

The over-under/side-by side preference can be most easily summarized as a differ ence of opinion regarding whether it is easier to scan sideways or vertically. Four of the six pilots, two in each preference group, answered that it was easier to scan sideways" and expressed a slight preference for the side-by-side position. The other wo pilots mauntained that vertical scan was easier. One of the pilots that preferred the side-by-side posticn and was in the original over-under preference group, expreseed mald surprise in finding he actually preferred the side-by-side condition for flying.

Five questons were interided to elicit comments about the display content and method of its presentation. The most general comment was that they liked both displays (VSD and map) better after using them for awhule than they thought they would at the beginnung of the experiment. The display element mont commented upon
wis the altitude error bar. Three pllots said to deiete it and another said to chasece it some way or delete it. Two commented that it amply was nol needed (i.e., suffikient information was available from the altimeter and vertical apeed indicator (VSI) and added clutter, whlle two commented that they wanted the information but this presentation was "somehow confusing." The following is a liating of the other r ure pertinent comments.
"A wind vector arrow on map would help." (2)
"On map show heeding for next leg."
"VSI should be other than digital." (2)
"For over-under dinplays put digital readouts at the bottom of the VSD."
"Would prefer an unalog heading."
"Make (+) and (-) signs larger in front of VSI."
"The lew cluttered you keep the map diaplay, the quicker you will be able to pick up the aircraft."

They gencrally agreed to the "realiam" of the diaplay and were of the opinion that their preferancea ard comments would be the same in a night wituation. They all Pelt that they were doing a "reaconably good job" by the eecond day but were still improving some at the end of the experiment.

Five of them answered ti:ct they would find a CRT map dieplay to be useful in their present sircsaft. The "no" answer was for current ATC procedures, but changed their present aircsuft. The "no" answer was for current ATC procedures. but changed to "yes" for more crowdod elirspaca. They would find it most useful for terminal area use such as fixed tranditions, holding pattems, el. They fett it

CONCLUDING REMARKS

The reaults of a study deaigned to invastigate the effects of two HSD/miap panel locationa, relative to the VSD, and of three map orientations have been presented Both pilot performance recults and Por Expermental Questionnaire remults have been discusiod. Beoed on these resulta the following conclusions and recommendations are indicated.

Considering both the performance data and the remults of a Post Experimenta Quentionsaire if is concluded that either of the VSD-map display locations used in this oxperiment would be zatisfactory an inutrument pasci fociation. either choice migh meet some resistance at firat but the adaptation time to either would be short.

The general performance data indicate that there is nothing to chooze from among the three map display orientations. There wers no significant differencea in per formance among the ortentstione and there was no indication that any one of the three gave either an advantage or diadvantage in keeping track of the wind directions.

The pilot comments throughout the experiment and the answers to the Poat Experiment Questionnalse indicate. however. that there are further considerations to be made In the choce of a map orientation. Each orientation has at least one definite advan(Table II) Further research is needed to determine the relative impontance of these advantages and disadvantages. s.octically, the use of these map display orientations needs to be eveluated in other phases of night, such as enroute and transition from enroute to terminal areas. This cualuation should be done in the worklond context of a more complete musion simulation than was used for this experiment. The followin comments and recommendations concerning map orientation are based strictly on the comments of this rexperment.

The fixed no theup onentation with a moving aircraft $(0$,$) provided the pilots$ with a stable map which they generally liked. However, there seemed to be more of a With a stable map which they generally liked. However, there seemed to be more of
need to plan ahead Alto, there was les. feeling of direct identification with the airneed to plan ahead Alto, there was les. feeling of direct identification with the air-
craft symbol than was the cast with 0_{2}. The data show that good performance on this type of task is possible, but the possible outcome of a lapse of attention has been shown by the performance previously described in Fig. in. This orientation is probably outer loop as opposed to inner ioop control.

The rotating map with fixed center aircraft $\left(0_{2}\right)$ would at first appear to have the best combmation of advantages There is always left-right control compatibility, the aircaft is readily located at the cinter of the display and there is always an equal amount of terran shown around the aircraft. These features are balanced against an unexpected objection to the motion of the display background. Three pilots mentioned leidency to vertigo, one adapted fairly quickly to where it did not bother him, while the other two continued to be disturbed by it. The confict seems to stem from the presentation ill the single fruntal plane of two moving fields representing two different planes Rotation of large areas in the frontal plane is usually associated with aircrafi roll and part of the confict may be due to a lack of adaptation to this new mode of presentation. This onentation may be the one best suited to be used as an instrument tor direct gurdance of the arrcraft. More study and experience is needed to determue the importance of the potential vertigo problem.

The third onentation. north-up with moving map and rotating aircraft $\left(\mathrm{O}_{3}\right)$, was oniginally included in the experiment as sort of a "worst case". with a combination of "inside-sut" and "outs de-11"" elements as already explained. In actual use, however, with the map scaling of 1.6 n . mi./in., the background moved so slowly that it was ratings ior this orientation (Tabte II) generally fell between thoee for 0_{1} and 0_{3} and reemed this ore cerion cencd. therefore, to be a compromise choice. This orientation is recommended prould have he added advantage that the aircraft would never fly off the edge of the toplay. there we map frame chanes with the aircraft jumping to new isplay. 1e.

Generally, th: plots wese quite receptive to the idea of using such displays. Those wit' oome prior seservation seemed to have changer their opinion by the end of the fructice day. The consensus was that any one of these map displays would be of help for planming purpeses, particulatiy in terminal areas.

These conclusons and recommendations are for the display elements as they were uxed in this experiment. Addition of other information elements such as flight dire-0 tors. predictors, etc, could ugnificantly alter these conclusions.

APPENDIX A

DISPLAY LOCATION PREFERENCE QUESTIONNAIRE

While planning this experinent it was recognized that pilot attitudes regarding relative diaplay placement, i.e., over-under vs. side-by-side, could conceivably be a factor in their performance with the two display placementa. It was decided to control for this difference, if it did exint, by selecting two proups of pilots on the basis of their respongs to a questionnaire mailed to their E...ne. It was anticipated that the larger percentage of the pilots would prefer the overunder arrangement. 0 in in order to increase the chances of filling the side-by-tide preference group the quentionnaire wa mone All pilots manded sistcin of them with nietet of the pills conacted by phone. All pilots responded, sixtcen of them with complete questionnaires. Preference Fig 8 whe posmbic for 18 pwots. Based on the identirying letter labeis shown in Flg. 8, hin rollown preference orders were ootained. Ten plots ordered the choices from BCA and one from ACB were chosen for Preference Group A, ie the side by-side proferewio froup ACB whree pilots from CBA cere choen for Pererence Group B, the overunder preference group. Sirength of preference and availability both entered into the final choice of pilots.

APPENDI: B

PILOT COMMENTS ABOUT MAP ORIENTATIONS - SUMMARY

Nosth up with moving aurcrait symbol (0,)
Pro. Stable map - (3)*
Easier to figure wind corrections (1) No :esponse (2)
Con Had to think some about left-right turns (4)
Left him detached from aircraft (I)
Hard to locate aircraft quickly on ewan (1)
Lircrart: heading up $\left(\mathrm{O}_{\mathbf{2}}\right)$
Pro- Instant orientation regarding direction to turn (3)
Easer to identify with aircraft position (2)
Always know where aircraft located, i.e., at center (1) Better tum rate information (1)

Con: Didn't like the motion and rotation - tendency to vertigo (3) Aurcratt heading not obvious (1)
No response (2)
North up with noving map (0_{3})
Pro: Easy to locate aircraft, ie., always at center (2)
Stable peture (2)
Stable priture (2)
Liked to see ground move (1)
Easier to figure out wind corrections (1)
Con. Did not like map to move - lose parts (3)
Had to think some about leftright turns (2) Neutral (1)

REFERENCES

1. Norman S. Selaby and Michael C. Fiecher, "A simulator atudy of a pictorial navigation display in inatrument dopartures of the euperionic transport." NASA TN D-4029, July 1967.
2. S. N. Roncoe, "The navigation director: An area navigation system." Hughes Aircraft Company TM-898, June 1968.
3. James R. Gannett, "Flight management concept II." 1970 Human Factory Seciety Annual Meeting. San Franciace, California, October 13-16, 1970

- Brant Clark and Ashton Graybiel, "Vertigo as a caure of pilot error in jet aircraft:" The Journal of Aviation Medicine, Volume 28, pp. 469-478, October 1957
table II - post experiment pilots ratings* for display combinations
table 1 - experimental sequence summary

Preference Group	Pilot	Training Day	Experiment		
			Day 1	Day 2	Day 3
A	s	0,	O_{2}	$0{ }_{3}$	0
(Side-by-side)	T	O_{2}	$0{ }_{3}$	0,	O_{2}
	U	03	0,	O_{2}	03
B	\mathbf{x}	0,	0 ,	O_{2}	01
(Over-under)	Y	0_{2}	0,	03	n_{2}
	2	0,	O_{2}	0,	03

Preference Group	Pliot	Over-Under Placement			Side-by-Side Placement		
		0	$\mathrm{O}_{2}{ }^{\text {co }}$	03	0,	O_{2}	0,
A Side-hy-dide	S	4	2	6	3	1	s
	T	1	5	3	2	6	4
	U	6	2	4	5	1	3
Sub Total		11	9	13	10	8	12
Group Total		33			30		
B Overunder	x	5	1	2	4	6	3
	Y	5	!	3	6	2	4
	z	4	6	5	1	3	2
Sub Totai		14	8	10	11	11	9
Group Total		32			31		
Conditions Total		25	17	23	21	19	21

- Most preferred was 1 and least preferred was 6.
- Map orientations
$0_{1}=$ Northup with moving aircraft symbol
$\mathrm{O}_{2}=$ Alrcraft heading up
$\mathrm{O}_{3}=$ North-up with moving map
table ill - analysis of variance - lateral scores

	Ss ${ }^{1}$	$\mathrm{dF}^{\mathbf{2}}$	Ms ${ }^{3}$	F
Map Orientation (0)	4,610	2	2,305	<1
Display Location (D)	37	1	37	<1
Wind (W)	270.512	1	270,512	47.72**
Plots (P)	64,687	5	12.937	14.39**
Groups ${ }^{\text {c }}$	54	1	54	<1
OXD	214	2	107	<1
Oxw	2.392	2	1.196	1.60
Dxw	33	1	33	<1
OxP	23.523	15	2.352	2.62**
D \times P	2.838	5	568	<1
$\mathbf{W} \times \mathrm{P}$	28,341	5	5,668	6.3000
O×D×W	599	2	299	<1
$0 \times D \times P$	7.788	10	779	$<$!
OxW× ${ }^{\text {P }}$	7,475	10	747	<1
DxW \times P	4,573	5	914	1.02
OXDXWXP	9,370	10	937	1.04

[^0]TABLE IV - ANALYSIS OF VARIANCE - VERTICAL SCORES

	S81	dF.	MS ${ }^{3}$	F
Map Orientation (0)	97.6	2	48.8	1.25
Display Location (D)	4.2	1	4.2	1.99
Wind (W)	504.2	1	504.2	22.35**
Pilots (P)	1,113.1	5	222.6	55.59**
Groups ${ }^{\text {t }}$	80.7	1	80.7	<1
OXD	4.1	2	2.0	1.33
$0 \times W$. 9	2	. 4	<1
D X W	1.2	1	1.2	<1
OXP	390.2	10	39.0	9.74**
D×P	10.4	5	2.1	<1
$W \times P$	112.8	5	22.6	5.63**
O \times D $\times 1$	16.0	2	8.0	1.36
O $\times 1 \times P$	15.3	10	1.5	<1
O $\times W \times$ P	17.9	10	1.8	<1
D \times W \times P	45.6	s	9.1	$2.28{ }^{*}$
O \times D W W P	58.5	10	5.9	1.46

wure 1 Reterence ground thacitort

suryao yood dO
di ajvd TVNISIdO

Figure 0 Over-under displass aterall heading up Hanslatine and whatim man

NAME \qquad DATE \qquad
DISPLAY LOCAIION PREFERENCE
Ealow wre three pairs st relative display locetion or orientatim; For anch pair choow wh display Srink to the focation of the pilor's center line of sight!

Frefer A
Frefer 8 .-
No Preference

Prefer A
Preter C
No Preferenco

\qquad

Freierence -

A

MAP
Prefur C
Frafar 8
No Preference.

Figure 10. Two atypical runs - pilot Y .

$-24-$

COMBINED RMS LATERAL AND VERTICAL

RMS HORI:ONTAL ERROR, m

[^0]: $t=$ Separate test
 $i=$ Sum of squares
 $2=$ Degrees of Freedom
 3 = mean square
 ** $=$ Significant at . 01 level

