simplified sigual analysis technique por obtainime optimal estimates op system dymanics
R. F. Mhitbeck

Calspen Corporation
abstract
 mathenatical mothods of wiener-Hopf (i.e., the : teady state Kalman estibatorg) approach require (or assume) an analyticsl :xpression for the deterainant of the spectral matrix. These assumpions, in eurn, pro-ordain the final form of the Wiener estimatos and honce the approech tends to lose the "Pree-Minimi zetion methodology which makes it ateractive. Cloarly, what is nooded it an algart the which operates on the finite length input and output signisis in a manner which The procedure sot forth in ehis pepor furnishos such an algorithm for the special caso whore n finizo-longth realizations, for each of the n input signals are avallable.

1. Introduction

The Mioner-Hopf mothod leads to the formailization of a spoctrel metrix which aust be factored into the product of two matrices, one of which is enalyzic in the right half of the complex frequency plana; the other analyitic in the $1 e f t$ half plank. Unfortunately, all methods for eccomplishing this fectorization, at one particular stop or another, reguire (or assume) an analytical oxpression for
the doterainant of tho spectral matrix. This assumption, in turn, preordana the final form of the wiener estimstes.

For oxample, if it is assuned that the doterninant of the spectral metrix is a rational polynomial in s, then the estimators are forced to be rationsi polynomials in s also. Cloarly wht is noeded is a computational
algorithe which operstes on the finito-longth inpur and output gignals and furnishes optimal ustimates kithout prejudicing the results through the use of possibly unwarranted sssurptions. The procedure set sorth in this papur furnishes such an slgorithm for the spocial case where the unknown system has inputs and n finite length realizations for oech of the n input signals are
2. Theory

In the interssts of brovity, the results will be devoloped for the case whore the unknown system has the two-input and one-output conflguration show in Figure 1. After this, the extension to the case of n inputs and

This mork mas supported by Calspan Corporstion as an intermal research project

 No. 86-218.
N75 19152

910uni 1. Th Iniout caed

Ia Equation (1),

$$
\begin{equation*}
\phi_{x y}=\lim _{T \rightarrow \infty} \frac{1}{e r} \varepsilon\left\{x\left(x, x^{x}(s)\right\}\right. \text {, eve. } \tag{2}
\end{equation*}
$$

where, for extaple

$$
\begin{equation*}
x_{0}=\int_{-7}^{1} y(d) e^{-s x} \tag{3}
\end{equation*}
$$

pempr spectict.

The colution to thls equasion, given that of of in

$$
\begin{align*}
& N-F=G \\
& N=\theta^{-1}\left[\theta^{-1}\right] \tag{4}
\end{align*}
$$

-320-

Corrying out the inner muleiplication gives

The detalls of solving this equation analyeleally are discussed, for exemple,
in Roforence 1 and 2 .
For the case where only afinite mumber of fl med imgeh gocords are available, the vericus pemar spectre in equation (1) are replaced by their estimates. Por example, the estimete of our, sell it fir is

$$
\begin{equation*}
\hat{\phi}_{2 r}=\frac{1}{27 n} \sum_{i=1}^{\hat{M}} x_{i(s)} r_{i(s)} \tag{5}
\end{equation*}
$$

Equation Sppose now that only two realizaztons of aech signal are avaliable Equation (1) becomes, uaing $\overline{\bar{x}}$ to denote ψ_{p}-s), ote.:

Oocsuse wo have chosen to work directiy in the frequency domin with the eranaform of the various signals, tho factoritation of the two input sate becomas erivilal when only two roalizstions of ehe inpues aro avalisbia. Fifactor Equation (6) 18

Compure the Inverses of the θ and θ. given In Equation (7) and substitute into Equation (4)

Thus one need only work with the transforas of the signals when only ewo realizat ions are available. Note that no assumptions were necassary - the Wiener. Hopf theory guarantees that the H's computed according to Eq
are the best gean square fits possible under the stazed conditions.

The extention to the n input case is now obviouz but will require r double subscript notation (refer zo tigure 2)

FIGURE 2. dOUBLR SUBSCRIPT. ، INPUTS

The factorization is now $\rho_{0} \theta$ whers

$$
\theta=\left[\begin{array}{cccc}
x_{11} & \frac{x_{\Delta 1}}{\sqrt{2 \pi T}} & \cdots & \frac{x_{n 1}}{\sqrt{2 \pi T}} \\
\cdots & \\
\frac{x_{1}}{2 \pi T} & \cdots & & \frac{x_{n z}}{\sqrt{2 \pi r}} \\
\vdots & & & \\
\frac{x_{2 \pi}}{\sqrt{2 \pi r}} & \cdots & & \frac{x_{n \pi}}{\sqrt{2 \pi T}}
\end{array}\right]
$$

3. Exporimental Rasules

To develop some fool for the resules given in Equacion (9), the simple axperiment shown in figure 3 was sez up al a digital simiation.

FIGURE 3. block diagran of digital simmlation
 ehan computed ubing Equasion (9). The resulas are shown in Figure a for ehree
 when m_{2} dominates. Somowhere in berween, poorer astimetes of both $1 / \mathrm{s}$ and $/ \mathrm{s}$., are obeained.

The experiment also provided an opportunity to check out the affect of operating on the date with throe difforent time windows. These are denuted sindew square window (M), the triangular data window (Δ) und the eriangular
 time window has on the varimbijiey of she estimates
4. Conclusion

Glven an n input syatoen and n expeilimental records for each input, it has been shown that the opelmum Mlener filter is asiliy computed using only the axperimental data. That is, no ussumpeions concorning the anelytical structure of ehe spoctral matrix are necessary
-322-

ficure 4. estimation of H_{1}, H_{2} WITH K_{1} / K_{2} as A PARNMETER

Roforencos

1. Andorson, B. D., An Alpobraic Solurion to the Spactral factorization $\frac{\text { Problem, }}{\text { Alegut } 1967}$
2. Whitbeck, R, F., Knight, J. R.. A seudy of Pilot Modaling in mulelConeroller Tasks, Cornell Aeronauticel laboratory, Roport 1R-3037.J-l
