- =~ - - - (1]
defining operator control of say dynamic system which can be
tepresented a8 & limsar time-invarisnt stochestic system. In fast,

A LINEAR STOCHASTIC MODEL OF THE HUMAN OPRRATOR the theory can be readily sxtended to linsar tims-varying scochastic
systens, Reference 1. Purthermore, the sathematical opsrater
John C. Durrett descriding the pilot can also represent a nonhumsn operator such ee
Alr Force Flight Dynamice Ladoratory a nonkey, a fixed ovder observer (ala Lusmberger, Refersnce 2), or a
Wright-Patterson AVB, Ohio fixed order cempensator, Referesnce 3.
ABSTRACT I1. VBHICLE DYNAMICB

1t 4s assumed that the vahicle to be centroliled by the pilet cwm
be repressnted a8 a linear tims invariant stochastic syscem se follcws:

Bk = ¥x ¢ Gu + Mn Q1)

A linear stochastic model of the humen operator is developed
and spplied to the problem of piloted control of an aircrafc. The
pilot and aircraft are modeled as linesr time=invariant systems
containing both pr and noise. The loop closure by
the pilot is determined by formulating the problem as an optimal
stochastic control problem. The solution to the optimal control
problem yields not only the pilot's optimal control output which he
use. to control the vehicla, but also the optimal combimation of his
cbservations of the vehicle states upom which the pilot bases his
control. In addition, a hod is p d so that, uveing experi-
wencal pilot vehicle data, the cos¢ functional which is mininized in
the optimal contzol problem will be nunerically squsl to ths Pilot
Rating (PR) that the pilot would assuciate with the given vehicle and

task.

where x is an nxl column vector of the system states, u is & mxl

column vector of the controls, and n is an Lx1 column vector of white
noise iaputs with autogovarienas B {n(t)n(7)) e x » &(t~z). 1In this
fors, equativn (1) can sasily represent sn asraraft flying in turbulence
(Bee Referunces 4, S, 6, and 7 for s derivatien of these equations).

The pilot is assumed to “"cbesrve” or "feel” soms incomplete linear
comdination ot the systen states whirh have been contaminated by an
observation noise, u. The pilot's obs ‘vatiom, ¥, is written a8

y=Cx+yp (2)

To simpiify the squation format of this analysis, we ascume that the
observation nodse, u, is filtered white noise., 1f it is desired co
retain the white nolse charaateristics, the filcer bandwidth can be
cade much greatsr than that of the controlled systen of equation (1).
Then, using the techaiques described in Reference 7, the controlled

1. INTRODUCTION

The purpose of this paper is to show how the techniques of
modern control theory can be applied to the problem of defining the
«losed loop dynamics of a pilot controlling an airczafe in flight.

systen would be
The pilot and vehicle are modeled as linear tims iavariant ) v |
systems containing both process and measurem™'t noise. The loop ..,.g .& - '...o 2| + g s I..|.9. a 3
closure by the pilot is determined by formulating the problen as an ' ] ' [ [ H n
optimal stochastic control problem. The ’olunea to the optimal
control problem yields mot only the pilot's optimal contrel output ressed
which he uses to conttol the vehicle, but also the optimal combination vhere the cbeervation is now exp b
of observationa of the vehicle states upon which the pilot bases his
yefei1) [:]

GIATIL JON ANVId d9Vd DNIGEOHAEd

control. In addition, a method is presented in this paper eo that,

using experimental pilot vehicle data, the cost functional vhich is ¥
minioized in the optimal control problem will be numsrically equal to

the Pilot Rating (FR) that the pilot wouid associate with the given The macrices Py and M, are used to define the bandwidth aud inteneity

vehicle task.
of the obssrvation noise.
Because of the use of the state space notation of modern control

theory, the impact of this paper is much broader than the £ield of
pilot vehicle control; what is presented is the methodology ‘-
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The fi.4l step in the simplification 3s %o redafine the matrices
in Bquations . and (4) by

o [ e
g e

Then we can write the following set of equations for the vehicle under
conte.lt

(%)

Bk o ix+0u+itn ()

[4))
whers ths cbservation noise 18 now included in the eysten squations.

This system represented by Equaticns (6) and (7) 4o assumed to be
controlled by the pilot.

y=Cx

111, PILOT DYNAMICS

The pilot dynamice are rep d in st variable notation
and are based on the pilot model devsloped in Reference 7. The pilot
model i

B dp o Tp % 4 Gy up + My ®

vhere xp is an rxl columa vector of the pilot's states, up is & gzl

coluta vector of the imput controls to tha pilot model, sud np is 8

txl column vector of white noise inpute with autcaovarisnce
B {np(ednp(e)} = ¢ ¢ 8(t=t). The matriz ¥ is used to scale the

intensity of the pilot’s motor noiss.

Several differences can de noted betwessn this pilot model and
that of Reference 7. The control {auput to the pilot model, up, 4¢
sxpressed in & wore genersl forz rather than in the pure chsetvation
vector form of Reference 7. This is to allew o be sxpressed as
an cptimal comntzol input to the pilet model; ¢! will becoms
evident later in the paper. The other differsnge is that the time rate
of change of the obeervation vector is no longer included. The
rationale for the exclusion of thie tern {s based on the classical tule
of thunh, Refervence 8, that the pilot will sesk to drive the closed
loop dynamics to a k/s forw, vhese s is the conventional Laplsae
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variable, Thus. T+ 9702 wfl] @i, £37a7: <« Ye2d {shich clessically
"aauses™ & ) uniess he 1e GENSTOLLANG & OYStew .-in8 ETNRALAS STT 6T
least second order or greatsr. Thus, the § carm spparently geasral2d
by the lead is reslly another state of the eystem which .an readily be
inoluded 4o the cbeervation: vectos, y, of Bquation (7).

IV, PILOT VBNICLE DVNAMICE

The qombined pilot vehdale dynamice are essily expressed usisy
Rquations (6), (?), snd (8). The combined systen is

b K- - B BN -

The obeservation vestor for this eystem i3

g]- it¥)

To sdmplify the writing of the dombined pilot vehicle dynamdes,
m ‘::‘mh new pilet vebicle state veator, 3, sad astrices are
to

R o
e e B

Wich cheos definitions, Bqustions (9) sad (10) become
Helseqpen
1°%

(10)

(12)
(6%
lq:lum (12) snd (13) represent the open loop pilot vehisis
These squations can alec be written as
trg+wrh
i

(s)
(1%)
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where

pet L peele, wegly (16)

2
The metrix E will have an inverse whenever 1. ¢ I_ 1
Reference S. N *3 = ae’

The structure of the control vector, y, which will deternins the
closed laop dynamics, will dbe a function of the pilot vehicle control
cask.

V. OPTIMAL PILOT VEHICLE CONTROL

The control vector, y, that is selected by the pilot will be &
function of the pilot vehicle control rask. The work of Kleinmsn
(Reference 9), Anderson (Reference 10), Dillow (Reference l1l), and
Paskin (Reference 12) have indiceted that the satisfaction of the
control task cen be thought of as the selection of an optimal
control, y*, which minimizes a particular cost functional, J; that
cost functional baing determined by cthe cuntrol task et hand. The
optimal control, y*, cthat is sslected by the pilot can be seen fron
Equation (11) to be a combination of the optimal controls u® and up*.
Recall from Equation (9) that u is the control that "operates” the
vehicle and is the coatrol that "drives” the pilot. The pilot,
therefors, is selecting both his optimal input, u,®, and his optimal
output, u®, as he attempts to achieve his pilot vehicle comntrol task.

Two potantially viable forme for the cost functionsl will be
given in chis section of the paper. The validation of these
functionals will be left to experiments. Thuse forus ars directly
meeivazed by the independent works of Kleinman and Paskin (References
9 and 12) who obtained experimsntal verification of this gensral
approach t~ the selaction of cost functionals.

It (7, W

The Iirst coat function {s written sssuming thet the pilot
mininizes some function of the pilot vehicle system obsarvation
vector, y, and the pilot vehicls control vector, y. Thus, J s
written as

o
Je z{ (v’ ay o) + "0 (v.)]} an
‘ > -

vhere E {-} 1s the expectation operatnr, Reference 13.
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The control task for the cost function Equation (17) fs®
given che pilot vshicle syetem from Bquations (14) snd (15),

teprrBue iy

v 0% (19)

18)

Pind the optimal control, y*, vhers y* 1s restricted to bm s
linear combination of the pilot vehicle system cbeervations

“. - Bz

such that the cost functiunsl, J, of Bquation (17) is minimized.
Thus, for J = £ (y, y), the optimal control will be, from Equation (20)

(20)

|
o= |U* » (B Bol |7, (21
= [ - gy >
Equation (21) can be expsnded to give
ut o Hy ¢ Ilp X
(22)
upt = Ky 4 ¥p %
Bquation (22) can be interpreted in the following msnner. Through

the control up® the pilot sets up s linesr comdination of his chserve-
tions, Ky, and sdjusce his own dynamice by fseding back vome linear
combination of his own states, Ep %p, to aid in the optimization of J.
In addition to this, he controls the vehicle through the comtrol vector
uf with a linesr combination of his obssrvatious, Hy, and his states
Hp xp. In other words, Bquation (22) ssys that the pilot will adjust
his input and output simultanecusly to obtain optimal comtrol over the
vehicle. This is shown in Piguze 1.

The solution for the matrix H of Bquezion (20) is not trivisl,

Hov;:.r. oethods to achieve thie solution are available in References
1 sand 14,

Jef(y, v 0

A slightly different spproach is necessary when the cost
functicnal includes the control rate (Klsinosa's cost functiomal,
Refersnce 9, includes control rste). Kleinmen hes shown that the
introduction of control rate in the cost functional for s multiple
inpuc-singles ocutput pilot control tesk will effectively iantroduce s
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fivet-order lag in the pilot dynsmice. From a dii/ferent viewpoint,
1t might be argued that the pilot's workload msy be a function of
his control rate as well as his control output. J 4s vwritten as

s K . '
=g { (1 ay © + ' ©e © + ' ©u (:)]} (23
te

To make this cost functional compatible with optimal stochastic
control theory, we include the controls, u, &8 states ia the system
and define a new state vector, z, and & new control vector, v, such

that
ze P“’..] XN (24)

Then, the pilot vehicle equations, (14) and (135), become

-EB-Be- B
8-

Ee All + 31\’ + ng {27)

¥, ® C2 (28)

vhete 2 and v are from Bquation (24) end

SO R O -

In this case, the cost functionsl of Equation (23) would
beacome

in ' '
Je B{ [71«)04;11 (¢) + v (£)Qyv (e)] (309
[
vhere
13,0
. n
% F 'q'z] )
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Now, we can stats the optimal comtrol problem. Given the state
dynamics of Equations (27) and (28), fiad the optimal control, v,
which 1s restricted to be a linmear combination of the observations,
Yy

vk = H) ] (32)

such that the cost functional of Bquatiom (30) ie minimized. Once
sgain, the solution for H} can be fou:d using References 1 and 14.

To show the resulting closed loop dynamics, it 1s necessary to
expand the optisal control, Equation (32). Using Bquation (24) we have
for the optimal conatrol

e gne gty eB)

Susstituting into Bquation (25), the optimal closed loop pilot
vehicle contro} dynsuics bescome

BB

I8

By going back and using the equations which define the matrices
in Equation (34), it can be shown that

‘:3. T
eed
[ ]
'nm' n)'
0y .
um‘uu
w ha'

% ! o o' o s em! o n

I R O | R -

S e iy T T w T S i (33
ol he T 1T "

Bquation (35) describes the optimal cloeed loop dynamice of the
pilot vehicle system for J = £y, ¥ ¢). The naxt sectica will discuss

the problem of obtaining the quadratic weights for the codt functionals
from experimental data.
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V1. QUADRATIC WEIGHTS FOR PILOT RATING

This esction will address the pradlem of dets
of the quadratic weighting matrices from cpormnm‘:z:‘::::}‘z“
additional goal is to ehuw how these veighting matrices may be sized
8o that the numerical value of the cost functional will he equivalent
to some preassigned scale of measursment such as Pilot Rating. We
begian with the general cost functional

1im
Je z{ (%' (o)Qx(c) + u'(c)lu(t)l}
[

lis . im
B { (=" (£)Qx(t)] + [u'(c)lu(;)]}
toe

tom

lim . iim
B (x (c)Qx(:)]} +B { [u'(:)lu(t)l}
t-t‘ g-

in . lim
trace Q (8{1 {x (c)x(r.)]}) + trace R{z{ [u'(c)u(c)‘l})
oo (3

. oo (36)

or

J = ¢tz (QX) + tr (RU) {37)

whare X and U arze the steady state covariancs matrices for the states

snd the coantrols, respectively. We
weighting matrices y mow restrict Q and R to be diagonal

Y4, (0 i, ©
Q- ‘. , Re .
o © e (38)

Then the trace operstor ian Rquation (37) wil Lagonal
elepents of the covsriance matrices to :tvo 1 plck off the ¢

Je
‘zl (ag %44 + ’zi {ry v3p) (39
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where xji and uyy are the diagonal slements of the covariance matrices

X and U, respectively. Now bacause X and U are covarisnce matrices,
1t 18 well known, Refarence &, that the steady rate root mean square
(rme) values of the system states ¥y, and controle Uy, can be expressed

% = (g9 1/2
(40)

Ty = g2

Thus, the perturmance function can be expressed in terms of the
weighting coefficients and the steady state rme values of the utates
and controls.

g 2 ? 2
J= Y (q F) + 21 (ry 959 (41)
j-

i=1

Since the rms values of the staces and controls can bs measured
from experimental data with a pilot in the loop, ws now address the
problem of choosing the weighting coefficlents.

An example will now be given to show how the weighting coefficients
can be selected to predict pilot ratings.

In the development of the “Paper Pilot" approach to predicting
pllot acceptance of aircraft handling qualities, Anderson and
Dillow (References 10 and 11) have shown that the pilot will adjust
his gains and model parameters to ninimize a cost functional which,
for most cases, is numerically equal to Pilot Rating. The "Paper
Pilot" rating functional consisted of a weighted linear combination of
the root mean squared (rme) values of the vehicle states and the pilot
“lead” terms. The pilot rating functional proposed in this paper is a
weighted linear combination of the squary of the rms values of the
vehicle states, the pilot's states, and e controls. The selection of
the use of the squares of the rme values 15 computationally more
attractive since values are merely the diagonal element of the
covariance matrix solutions to the closed loop, steady etate optimal
pilot vehicle system. The selection of the rms squared values,
however, 16 further motiwated by the work of Schmotzer, Reference 15,
where the handling qualities for P=3C and P-80 aircrafc are showa to
be in direct proportion to the rms squared values of the aircraft
states wvhen the sircraft are being randoaly disturbed by aerodynamic
turbulence.
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Assune that t sxperimants sre conducted and for each experiment
dats are collected on steady state rms valuss for the states and '
controle, and the associated Pilot Rating (PR) is recorded. We would
then have for the t experimsnts, using PR for J ian equation (41),

m 2 T, 2
(VI ‘21 9y ®q) ¢ ,2 ®y B3

2
RRATE

8
- 2
PRy =a+ 121 9 Ry ¢ (42)
n L]
- 2 2
By o+ L wFy ¢ "Z.l TS (e
vhere o is 2 constant bias tern. The equation in (42 also
expressed in matrix form by factoring .‘tfn wudauu: c:o:::ciaaub:uch

that
—°1
[ 2 2 2 2 2 9
P 1Y ¥, 2...% v e 2..uw ||}
W o U R Tl T eq 9
. 2 o 2 2 - 2 2 .
PR 1% % 2..% T U
2 Yoy %2 %y N Y2 ®l].
. ® . . . . €43)
» 1] 1] '
v . rl
. . . . . 'z
2 2 2 2 2 .
” 1 e X T g ¢...a |},
AL B e T M T S| |
o
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or

[PR] = P q (44)
where [PR] is a txl column vector of the Pilot Ratings, q 1s & txl
column vector of the weighting coefficients, and P is readily identified
from Equation (43). It can be shown that the best fit with respect to
"least squares” or "minimum norm,"” Reference 16, is

g = BT (pm) (45)

wvhere g" is the generalized or pseudo inverse of P.

Now, it should be evident from Equation (43) that is is not
necessary to weigh or measure every state of control. The form of the
cost functionals associated with Pilot Ratings and the nonzero
weighting coefficients will be a function of the particular control
task. Thus, 1f the coefficients of che weighting matrices are choeer
using Equation (45), the solution of the optimal pilot vehicle cuntrol
problem, as posed in this paper, should produce not only the predicted
closed loop performance but an assoclated Pilot Rating of the vehicle
dynamics as well.

VI1I. CLOSING COMMENTS

In this final section of the paper, 1 will meantion somes of the
present shortcomings of this optimal pilot vehicle control theory and
thea document some of my thoughts on where we could go from here.
Obviously, one primary deficiency is that the theory has not been
directl, validated by experiment. The formulation of the theory is,
however, based on an integration of ideas from all of the listed
refercaces and should work.

The reader may have noticed by now that no guidelines have been
given to determine the size or order of the pilot model; this is a
present shortcoming. My guess is that the order of the pilot model
will be a funzticn of the desirability to obtain an open loop pilot
vehicle system which is completely controllable and completely
observable (See Reference 16 for a mathematical system definition of
these terms). Rynaski and Chen, Reference 17, have suggested that
the pil>t wodel be considered as a compensator and that the order of
the pilot model be determined just as Brasch and Pearson, Reference 3,
deteruine the order of a compensator necessary to achieve syestem
stahility or pole assignment. Perhaps, the most direct way of
deternining the pilot model ordar is to use the classical pilot
vehicle approach; pick a low order model from those given in
Refcrence 7, try it, and see if it works. Part of the motivation
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beiind the development of a new approach to Pilot Vehicle Control
was the need to have a pilot model whose structure was simple

that the individual paremeters of the model could be identified
through expariments. This is thc primary difficulty of the approach
of Kleinman and Paskin where, because of the modeling of the pilot

as a Kalman filter, the dynamic order of the model is necessarily the
same @ize as the order of the plant or vehicle under control. In
these cases, the validation of the mode) can practicslly be done only
on an input-output basis and mot through parameter identif: atiomn
techniques.

Another handicsp at t'i.# time is that a consistent method doss
not exist for detersining :'.¢ pilot's motor end observation noise;
call the whole thiny remnant i{f you like. However, Kieinman and
Paskin, References 9% and 12, have made some progress in this area.

Scaling the cost functional to be numerically equal to the
Pilot Rating muet be approached with caution. Ideally, one should
be able to eelect a set of cost functional weighting maicices which
will be valid over a given class of vehicles for a particular type of
contrcl task. As an example, the weighting matrices should be
iavariant for cargo aircraft in a landing approach task. The future
of optimal pilot vehicle control looks very promising. One immediate
application of the theory is in the direct assessment of aircraft
handling qualities. With this optimal pilot model it wi.l be posaible
to evaluate an aircraft over preplanned "etability and control®
trajectories. The trajectories can be constructed as either fixed
point or time varying linearized segments of actual nonlinesr
maneuvers.

The use of the state space formulation in the development of
this optimal pilot vehicle control theory enables the rapid coupling
of this theory with the design of sutomatic control systems utilizing
optimal control theory. A successful design effort of this tyse using
wore classical control techuniques bas been sccomplished by Hollis,
Reference 18.

One final comment is included for the engineer concerned with
basic control system design. The matrix equations of Equation (8)
which describe the pilot dynamice will also mathemsticslly describe a
fixed order dynamic compensstor network or an observer systed in the
sense Luenberger, Roference 2. Thus, the optimal comtrol developed for
the pilot dynemics will also be directly spplicable to the design of
compeusators or observers.
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