#N75-19691

Contract NAS 8-28518

Report No. ER 966-25

LONG LIFE VALVE DESIGN CONCEPTS

FINAL REPORT

March 10, 1975

Prepared for:

National Aeronautics and Space Administration George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama 35812

Fairchild Industries, Stratos Division 1800 Rosecrans Avenue Manhattan Beach, California 90266

PRICES SUBJECT TO CHANGE

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE
US Department of Commerce
Springifield, VA. 22151

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE BEST COPY FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.

Contract NAS 8-28518

Report No. ER 966-25

LONG LIFE VALVE DESIGN CONCEPTS FINAL REPORT

March 10, 1975

Prepared for:

National Aeronautics and Space Administration George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama 35812

J. R. Jones A. H. Hall, Jr.

Fairchild Industries, Stratos Division 1800 Rosecrans Avenue Manhattan Beach, California 90266

Approved by:

M. Baniadam

Project Manager

FOREWORD

This report was prepared by Fairchild Industries, Stratos Division, under NAS 8-28518, Long Life Valve Design Concepts for the George C. Marshall Space Flight Center of the National Aeronautics and Space Administration.

The Principal Investigator during the Phase I was Mr. David T. Feldman, and during the subsequent phases was Mr. John R. Jones; the Contract Administrator was Mr. John Q. Adams; the Project Manager was Mr. M. (Ben) Baniadam; and the Cognizant NASA Engineer was Mr. Kenneth G. Anthony. This final report was prepared by Mr. Archer H. Hall, Jr.

Other personnel who made significant contributions include Messrs. Roger E. Demaree, William M. Hull. Richard G. Thomas, and Iwao Tokuda.

ABSTRACT

The long life valve design concepts study program included valve concept evaluation; final candidate selection; design, manufacture and demonstration testing of a pneumatically actuated 10-inch hybrid poppet butterfly shutoff valve; and conclusions and recommendations regarding those valve characteristics and features which would serve to guide in the formulation of future valve procurements. The pertinent design goals were temperature range of plus 200° to minus 423°F, valve inlet pressure 35 psia, actuation pressure 750 psia, main seal leakage 3 x 10⁻⁵ SCCS at 35 psia valve inlet pressure, and a storage and operating life of 10 years. The valve was designed to be compatible with RP-1, Propane, LH2, LO2, He, and N2.

Table of Contents

Section	Title	Page
	FOREWORD	iii
	ABSTRACT	iv
1	INTRODUCTION	1
2	PHASE I DESIGN CONCEPT INVESTIGATION	2
2.1	REQUIREMENTS AND DESIGN GOALS	2
2.2	LITERATURE SEARCH	2
2.3	INDUSTRY SUPPLIERS	5
2.4	DESIGN CONCEPT CANDIDATES	6
2.4.1	Potential Candidate List	6
2.4.2	Candidate Selection	6 .
2.4.3	Analysis and Tradeoff Study	10
2.4.3.1	Emphasis Coefficient	10
2.4.3.2	Rating Coefficient	36
2.4.4	Final Candidate Design Concepts (Based on Schematic Representation)	36
2.5	FINAL CANDIDATES	45
2.6	FINAL DESIGN CONCEPT SELECTION	46
3	PHASE II FINAL DESIGN	47
3.1	FINAL REQUIREMENTS AND DESIGN GOALS	47
3.2	VALVE DESIGN CONCEPT	47
3.3	HARDWARE STUDIES AND SELECTION	50
3.3.1	Main Seal Selection	50
3.3.1.1	Main Seal Concepts	50
3.3.1.1	1.1 TRW Concepts	50
3.3.1.1	Rocketdyne Concept	50
3.3.1.1	1.3 McDonnell Douglas Concept	50
3.3.1.2	Seal Selection	50
3.3.2	Actuation Mechanism Selection	53
3, 3, 2, 1	Mechanism Requirements	53

Table of Contents (continued)

Section	Title	Pag
3.3.2.2	Design No. 1 (Gear Rack Cam)	53
3.3.2.3	Design No. 2 (Lever Driven, Cam Positioned)	53
3.3.2.4	Actuation System Characteristics	55
3.3.2.5	Overall Design Requirements	55
3.3.2.6	Four-Bar Linkages	55
3.3.2.7	Design No. 3 (Lever Driven, Lever Positioned)	55
3.3.2.8	Design No. 4 (Lever Driven, Lever Positioned)	57
3.4	FINAL DESIGN SELECTION	66
3.5	DETAIL DESIGN	67
3.5.1	Configuration	67
3.5.2	Material Selection	67
3.5.3	Dynamic Simulation	73
3.5.3.1	System Math Model	73
3.5.3.1.	1 Poppet-Actuator Equivalent Mass	73
3.5.3.1.	2 Poppet Force	76
3.5.3.1.	3 System Equations	76
3.5.3.2	Computer Program Listing	79
3.5.3.3	Computer Program Printout	79
4	PHASE III MANUFACTURE AND TEST	85
4.1	MANUFACTURE	85
4.2	DEMONSTRATION TESTS	85
5	PHASE IV RECOMMENDATIONS AND CONCLUSIONS	88
APPENDIX	Σ .	
Α	Rating Sheets (29 Sheets)	A-1
B	Adjusted Rating Sheets Based on Layout Representation (4 sheets)	B-1
C	Dynamic Simulation P/N 966000 Calculations of Equivalent Mass and Poppet Forces (5 pages)	C-1
D	Demonstration Test Report, ER 966-24, Long Life Valve Design Concepts (153 pages)	D-1

List of Figures

Figure No.	Title	Page
2-1	Ball Valve - Simultaneous Retraction of Seal and Rotation of Ball	12
2-2	Ball Valve - Dual Seat, Sequenced Retraction	12
2-3	Visor Valve - Simultaneous Retraction of Seal and Rotation of Visor	13
2-4	Visor Valve - Retractable Sequenced Seal	14
2-5	Plug Valve - Retractable Sequenced Seal	15
2-6	Hybrid Butterfly Valve - Simultaneous Seal Retraction	15
2-7	Butterfly Valve - Poppet Hybrid, Sequenced Motion and then Rotation	16
2-8	Butterfly Valve - Poppet Hybrid Sequenced Poppet Motion and then Rotation	16
2-9	Dual Flapper Valve, Single Actuator	17
2-10	Dual Flapper Valve, Dual Actuator	17
2-11	Swing Gate Valve	18
2-12	Motor Driven Poppet Valve	18
2-13	Plug Valve - Poppet Hybrid	19
2-14	Coaxial Poppet Valve (or Controller)	20
2-15	Radial Loaded Seal Poppet Valve (or Controller)	21
2-16	Motor Driven Poppet Valve (or Controller)	22
2-17	Solenoid Actuated Bellows Sealed Poppet Valve (or Controller)	22
2-18	Bimetallic Operated Poppet Valve (or Controller)	23
2-19	Valve (or Controller), Motor-Valve, Direct Driven	23
2-20	Actuator, Motor-Valve Driven Thru Linkage	24
2-21	Actuator, Single Acting Piston, Solenoid Operated	24
2-22	Actuator, Solenoid-Bellows, Linkage Driven Poppet	25
2-23	Actuator, Solenoid -Bellows, Linkage - Rack Driven	25
2-24	Actuator, Redundant System, Motor or Torque Motor	26

List of Figures (continued)

Figure No.	Title	Page
2-25	Actuator, Redundant Solenoid - Motor Bellows Linkage Driven	27
2-26	Actuator, Double Acting, Double Solenoid Direct Driven	27
2-27	Actuator, Double Acting Bellows, Solenoid Operated	28
2-28	Actuator, Double Acting Bellows, Solenoid Operated	28
2-29	Diffusion Controller	29
2-30	Piezoelectric Spring	29
2-31	Piezoelectric Disks	30
2-32	Hermetic Sealed Motor Transmitter	30
2-33	Bimetallic Torque Tube	31
2-34	Hermetic Sealed Actuator	31
2-35	Parameter Weight Assigned for Forced Decision Optima- zation of Valve Concepts (Emphasis Coefficient	
	Determination)	37
2-36	Hybrid-Butterfly Poppet Valve	39
2-37	Sequenced Visor Valve	40
2-38	Sequenced Ball Valve	41
2-39	Sequenced Visor Valve	42
2-40	Actuator - Double Acting	43
2-41	Actuator - Double Acting, Detent Held	44
3-1	Schematic Diagram, Hybrid Poppet Butterfly	49
3-2	TRW Seal Concept (Tapered)	51
3-3	TRW Seal Concept (Square)	51
3-4	Rocketdyne Seal Concept	52
3-5	McDonnell Douglas Seal Concept	52
3-6	Design No. 2 - Hybrid Butterfly	54
3-7	Operating Torque Requirements - Design No. 2	54
3-8	Actuator Variables - Design No. 2	56
3-9	Design No. 3 - Hybrid Butterfly	58
3-10	Detail Design No. 3	59

List of Figures (continued)

Figure No.	Title	Page
3-11	Torque Characteristics - Design No. 3	62
3-12	Preliminary Design No. 4 - Hybrid Butterfly	63
3-13	Final Design No. 4 - Hybrid Butterfly	64
3-14	Torque Characteristics - Design No. 4	65
3-15	Assembly Drawing 966001, 10-Inch Shutoff Valve	68
3-16	Detail of Valve Main Seal	69
3-17	Inner Bellows Assembly, PN 966056	70
3-18	Outer Bellows Assembly, PN 966057	71
3-19	Schematic Diagram, Actuator and Poppet	74
3-20	Equivalent Mass as a Function of Actuator Stroke	75
3-21	Poppet Forces as a Function of Actuator Stroke	77
3-22	Closing Transients	83
3-23	Opening Transients	. 84
4-1	10-Inch Long Life Shutoff Valve, PN 966000	86

List of Tables

Table No	Title	Page
2-1	Preliminary Requirements and Design Goals for Shutoff Valve	3
2-2	Primary Bibliography	4
2-3	Valve Concepts	7
2-4	Actuator Concepts	7
2-5	Controller Concepts	8
2-6	Unique and Novel Actuator (or Transmitter) Concepts	8
2-7	Seal Concepts	9
2-8	Design Concept Candidates	11
2-9	Typical Large Valve Adjusted Ratings	32
2-10	Large Valve Concept Ratings, Adjusted Rating - Second Iteration	33
2-11	Small Valve Concept Ratings	34
2-12	Controller Concept Ratings	34
2-13	Large Valve Actuator Ratings	35
2-14	Large Valve Concept Ratings, Adjusted Rating - Second Iteration	35
2-15	Parameter Weight Assigned for Forced Decision Optimization of Controller Concepts	38
2-16	Candidate Design Concepts (Based on Schematic Representation)	38
2-17	Candidate Design Concepts (Based on Layout Representation)	46
3-1	Requirements and Design Goals, 10-Inch (25.4 CM) Shutoff Valve	48
3~2	Design Concept Functional Characteristics Comparison .	66
3-3	Material Summary, 10-Inch Long Life Valve	72
3-4	Listing of Simulation Computer Program	80
3-5	Typical Print-Out Simulation Computer Program	82
4-1	Valve Components Manufactured Outside Fairchild	87

SECTION 1 INTRODUCTION

The purpose of this study was to develop criteria for the design of cryogenic long life shutoff valves.

This program consisted of the following phases:

- I Design Concept Investigation
- II Detail Design.
- III Manufacture and Test.
- IV Final Report Including Recommendations and Conclusions.

During Phase I, a method of "forced decision configuration optimization" was developed and was utilized to rate the design concept candidates. The final selected configuration was a pneumatically actuated hybrid poppet butterfly valve.

Phase II covered the detail design and analysis of the 10-inch hybrid poppet butterfly valve.

Phase III consisted of the manufacture and the demonstration testing of the 10-inch valve. The tests consisted of the following:

Examination of Product

Initial Testing

Low Temperature Life Cycling

High Temperature Life Cycling

Vibration

Flow Capacity

Nondestructive Burst

Final Disassembly and Inspection (Wear Analysis)

Phase IV consisted of formulating the recommendations and conclusions, and preparation of this final report.

SECTION 2

PHASE I DESIGN CONCEPT INVESTIGATION

The objective of Phase I was the identification and evaluation of various valve, actuator, controller, and seal concepts, considered feasible for incorporating into long life cryogenic shutoff valves. At the end of this phase, the most promising concept for a 10-inch valve was selected along with an alternate valve. The selection was accomplished through definition of requirements, literature search, analytical techniques, and Fairchild Stratos' own experience record and that of other suppliers.

2.1 REQUIREMENTS AND DESIGN GOALS

The preliminary requirements and design goals for the design concept investigation phase of the program are presented in Table 2-1. These requirements were later revised as described in paragraph 3.1

2.2 LITERATURE SEARCH

A literature search was conducted, including an updated search of recent valve patents.

The key words for the literature search are listed below:

Valve, Shutoff, Cryogenic

Leakage

Endurance

Seals

Bearings

Bellows

Actuators

Materials

Processes

Contamination

Maintainability

Reliability

A primary Bibliography is presented in Table 2-2.

Preliminary Requirements and Design Goals for Shutoff Valve

SIZE (cm)

0.64 to 50.8

(inches)

1/4 to 20

MEDIA

RP-1, Propane, LH₂, LO₂, He, N_2

TEMPERATURE RANGE $^{\mathrm{O}}\mathrm{F}$

+200° to -423°

OK

366.49 to 20.38

PRESSURE

OPERATIONAL

PSIA

10⁻⁸ ----100

NEWTONS absolute

 $6.895 \times 10^{-5} \longrightarrow 6.895 \times 10^{5}$

PROOF

PSIA

200

 $\frac{\text{NEWTONS}}{2}$ absolute

 1.379×10^6

meter

BURST

PSIA

400 min.

 $\frac{\text{NEWTONS}}{2}$ absolute

 $_{
m neter}^2$

 2.758×10^6 min.

LEAKAGE

 1×10^{-7} SCCS He

CYCLE LIFE

10,000 ∽ @ Low Temperature

10,000 ∽ @ High Temperature

STORAGE & OPERATIONAL

LIFE

10 Years

VIBRATION

Per Scope of Work listed under Phase III

PRESSURE DROP, WEIGHT

ENVELOPE

RESPONSE

Minimum consistent with other requirements

Primary Bibliography

- 1. Fairchild Stratos Experience Record
- 2. Advanced Valve Technology NASA SP-5019, 1967
- 3. Advanced Spacecraft Valve Technology, TRW Final Report 12411-6011-R000, July 1970
- 4. Advanced Spacecraft Valve Technology Compilation Volume 1, Mechanical Controls TRW Report No. 12411-6012-R000, July 1970
- 5. Liquid Rocket Valve Assemblies, NASA Lewis, April 1972, NASA SP-8XXX, Review Copy
- 6. Liquid Rocket Valve Components, NASA Lewis, February 1972, NASA SP-8XXX, Review Copy
- 7. Long-Life, Space-Maintainable Nuclear Stage Regulators and Shut Off Valves Aerojet Nuclear Systems RN-A-71007, March 1972
- 8. Aerospace Fluid Component Designers Handbook Volume 1 and Volume 2
- 9. Industry (other suppliers)
- 10. U.S. Government Patents
- 11. Quarterly Progress Reports Space Shuttle Auxiliary Propellant Valves Marquardt NAS 3-14349
- 12. Quarterly Progress Reports Space Shuttle Auxiliary Propulsion (APS) Valves Rocketdyne NAS 3-14350
- 13. Seal Material and Design Development Program TRW NAS 9-12500; Monthly Progress Reports

2.3 INDUSTRY SUPPLIERS

Industry suppliers were contacted by letter in regard to applicable hardware which would meet the requirements and design goals of the study program. Available information such as sketches, test data, test reports, and cutaways in any or all of the following areas were requested.

- a. Concepts for actuation: motor driven pneumatic and electromechanical
- b. Concepts for sealing
- c. Static seals
- d. Dynamic seals
- e. Maintainability
- f. Reliability

Out of 67 suppliers contacted, there were 6 helpful replies, 30 negative replies, and 31 no replies.

Fairchild would like to acknowledge the following suppliers for their helpful contributions:

- Aeroquip Corporation
 Marman Division
 Los Angeles, California
- Belfab Corporation Northridge, California
- Cryolab Division
 San Luis Obispo, California
- Lafnir Bearing
 Newington, Connecticut
- Royal Industries
 Santa Ana, California
- TRW
 One Space Park
 Redondo Beach, California

2.4 DESIGN CONCEPT CANDIDATES

2.4.1 <u>Potential Candidate List</u>

Utilizing the results of the literature search, supplier contact, and suggestions of Fairchild Industries personnel, a list of design concepts was compiled. These potential candidates were grouped as follows:

Valve Concepts

Actuator Concepts

Controller Concepts

Unique and Novel Actuator Concepts

Seal Concepts

In addition, the valve concepts were categorized by type as follows:

Visor Valves

Ball Valves

Flapper Valves

Butterfly Valves

Plug Valves

Poppet Valves

Swing Valves

Rotary Valves

The design concepts are listed by groups in Tables 2-3 through 2-7.

2.4.2 Candidate Selection

An analysis and tradeoff study was conducted to rate the concepts as to desirability and to reduce their number. The selection was based on a schematic representation of the concepts. The selected candidates were grouped as follows:

Large Valves

Small Valves or Controllers for Large Valves

Actuator Candidates

Unique and Interesting Devices

Valve Concepts

Visor Valve - Simultaneous Retraction of Seal and Rotation of Visor

Visor Valve - Retractable Sequenced Seal

Ball Valve - Simultaneous Retraction of Seal and Rotation of Ball

Ball Valve - Retractable Dual Seat, Sequence Controlled, Single Actuator

Dual Flapper - Single Actuator

Dual Flapper - Dual Actuator

Butterfly - Simultaneous Retraction of Seal and Rotation of Blade

Butterfly - Poppet Hybrid, Sequenced Can Motion and then Rotation

Butterfly - Poppet Hybrid, Sequenced Poppet Motion and then Rotation

Plug Valve - Retractable Sequenced Seal

Plug Valve - Retractable Sequenced Primary Seal; Secondary Seal

Coaxial Poppet

Poppet - Motor Driven thru Ball Screw

Poppet - Motor Driven thru Planitary Gear

Poppet - Radial Loaded Seal

Plug - Poppet Hybrid

Swing Gate

Rotary - 90° ON-OFF, Seals Pressure Balanced

Poppet - Hermetic Sealed Actuator

Table 2-4

Actuator Concepts

Motor-valve Direct Drive

Motor-valve Driven thru Linkage

Single Acting Piston, Solenoid Operated

Solenoid-bellows Linkage Drive Poppet

Solenoid-bellows Linkage-rack Driven

Double Acting Piston Torque Motor Actuated

Redundant Solenoid Motor Bellows Linkage Driven

Double Acting, Double Solenoid, Direct Drive

Single Acting Bellows - Solenoid Operated

Double Acting - Double Solenoid Direct Drive Detent Held

Controller Concepts

Hermetic Sealed Motion Transmitter

Solenoid Actuated Bellows Sealed Poppet

Bimetallic Operated Poppet

Diffusion Controller

Bimetallic Torque Tube

Bimetallic Poppet

Expansion Bellows

Redundant Differential Expansion Poppet Controller

Piezoelectric Disks

Piezoelectric Spring

Diaphragm Controller

Electro-pyrotechnic Cartridge

Table 2-6

Unique and Novel Actuator (or Transmitter) Concepts

Hermetic Sealed Actuator

Hermetic Sealed Motion Transmitter

Differential Expansion Actuated Valve

Fluid Expansion Actuated Valve

Snap Action Differential Expansion Actuated Valve

State Change Actuator for Single Cycle Operation

Diffusion Valve Concept for Use with a Microthruster

Piezoelectric Actuator

Electrodynamic Actuator (Magnetic)

Dual Two-Way Thermally Actuated Microvalve

Three-Way Snap Action Thermally Actuated Valve

Piezoelectrical Three-Way Valve

Mechanical Linkages Used to Convert Actuator Motion from Linear to Rotary

Seal Concepts

Flat Faced Poppet - Contamination Resistant

Pressurized Seal

Retainer Sealing Aids

Installed Position of M-1 Sleeve-Type Valve Lip Seal

Invar Spacer

Seal Loading Diameter Relationship

Belleville-Spring Loaded Seal Retainer

LMDE Ball Valve Seal Configuration

Bellows-Type Seal Retainer

Lip Seals - Molded Packings

Wiper Configurations

Butterfly Valves Sealing Techniques

Cone Labyrinth Valve

Elastic-Plastic Poppet and Seat

Boxed in Pressurized Ring Cryo-Seal and Double-Area Seat for Plastic Seals

Main Poppet Seal

Bi-Directional Seal

Laminating Technique for Fabricating Composite at Cryogenic Temperatures

Seat Geometry - Conical-on-Conical

Seat Geometry - Flat-on-Flat

Seat Geometry - Spherical-on-Conical

Seat Geometry - Flexible Disk/Hard Seat Valve

Sphere Seating on Sharp Corner of Soft Seat

Flat Poppet Seating on Beveled, Soft Seat

Teflon Seal - Invar Expander Ring/Aluminum Compressor Ring

Self-Aligning Flat Disk Poppet

Ball-Section Poppet with Rod End Retainer

Valve Seat with Expanding and Scrubbing Action

For this study, the valve concepts were divided into large valves one inch and greater, and small valves 1/4 to one inch in diameter. Seal concepts were not further analyzed during this phase due to a lack of suitable information on which to rate the seal configurations. Seals were analyzed during the design phase presented in Section 3.

The candidates are listed in Table 2-8 and are presented schematically in Figures 2-1 through 2-34. The analysis and tradeoff study is described in paragraph 2.4.3.

2.4.3 Analysis and Tradeoff Study

A method of "forced decision configuration optimization" was developed and utilized to reduce in number and to rate the previously compiled candidate list of valve, actuator and controller concepts. The results of this tradeoff study are presented in paragraph 2.4.2. The optimization technique consisted of determining the emphasis coefficient as described in paragraph 2.4.3.1 and the rating coefficient as described in paragraph 2.4.3.2. These two coefficients were multiplied together to obtain an adjusted rating. These adjusted ratings for all the parameters were totaled. Table 2-9 presents a typical total adjusted rating of a valve.

The total adjusted ratings of the valve, controller, and actuator concepts are presented in Tables 2-10 through 2-13. Table 2-10 presents the first iteration of the valve adjusted ratings. A second iteration is presented in Table 2-14. In the case of the actuators, similar types were grouped, and some concepts eliminated by inspection. Actuator ratings are presented in Table 2-13.

2.4.3.1 Emphasis Coefficient

The emphasis coefficient is the preferential weighting of each parameter with respect to a given parameter. Based on the requirements and design goals, the following valve parameters were determined to be significant:

Natural Vibration Resistance (Structural)
Contamination Resistance
Cycle Life
Leakage
Storage Life
Pressure Drop
In-Line Maintenance
Cost
Replacement Maintenance
Response Time
Actuator Adaptability
Weight
Availability of Design Information
Envelope

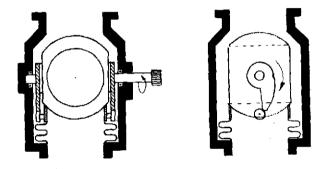
Design Concept Candidates

LARGE VALVES

Figure No.

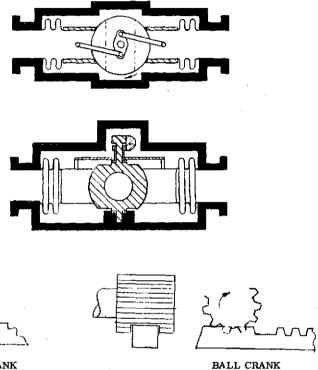
- 2-1 Ball Valve
- 2-2 Ball-Dual Seal-Sequenced Retraction
- 2-3 Visor Valve
- 2-4 Visor Valve
- 2-5 Ball or Plug Valve Retractable Sequenced Seal
- 2-6 Hybrid Butterfly
- 2-7 Butterfly Poppet Hybrid
- 2-8 Butterfly Poppet Hybrid
- 2-9 Dual Flapper
- 2-10 Dual Flapper
- 2-11 Swing Gate
- 2-12 Motor Driven Poppet

SMALL VALVE OR CONTROLLERS FOR LARGE VALVES


- 2-13 Plug Poppet Hybrid
- 2-14 Coaxial Poppet
- 2-15 Radial Loaded Seal Poppet
- 2-16 Motor Driven Poppet
- 2-17 Solenoid Actuator Bellows Sealed Poppet
- 2-18 Bimetallic Operated Poppet
- 2-19 Motor-Valve, Direct Driven

ACTUATOR CANDIDATES

- 2-20 Motor-Valve, Driven Thru Linkage
- 2-21 Single Acting Piston, Solenoid Operated
- 2-22 Solenoid-Bellows, Linkage Driven Poppet
- 2-23 Solenoid-Bellows, Linkage Rack Driven
- 2-24 Redundant System Motor or Torque Motor Actuated
- 2-25 Redundant Solenoid Motor Bellow Linkage Driven
- 2-26 Double Acting, Double Solenoid, Direct Driven
- 2-27 Double Acting Bellows, Solenoid Operated
- 2-28 Double Acting, Double Solenoid, Direct Drive, Detent Held


UNIQUE AND INTERESTING DEVICES

- 2-29 Diffusion Controller
- 2-30 Piezoelectric Spring
- 2-31 Piezoelectric Disks
- 2-32 Hermetic Sealed Motion Transmitter
- 2-33 Bimetallic Torque Tube
- 2-34 Hermetic Sealed Actuator

ACTUATOR ROTATES BALL AND THRU AN ENCLOSED CAM LIFTS BELLOWS SEAL SIMULTANEOUSLY.

Figure 2-1. Ball Valve - Simultaneous Retraction of Seal and Rotation of Ball

BELLOWS CRANK HOW IT WORKS

TEETH OF SPLINED ACTUATOR ENGAGE YOKE WHICH TRANSLATES BELLOWS SEAL; BALL IS RESTRAINED BY FLAT ON ACTUATOR ROD. AFTER YOKE TRANSLATES BELLOWS SEAL; BALL IS ROTATED TO OPEN POSITION, TO CLOSE-SEQUENCE IS REVERSED.

Figure 2-2. Ball Valve - Dual Seat, Sequenced Retraction

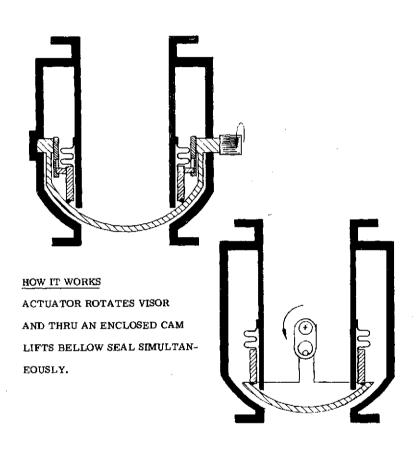
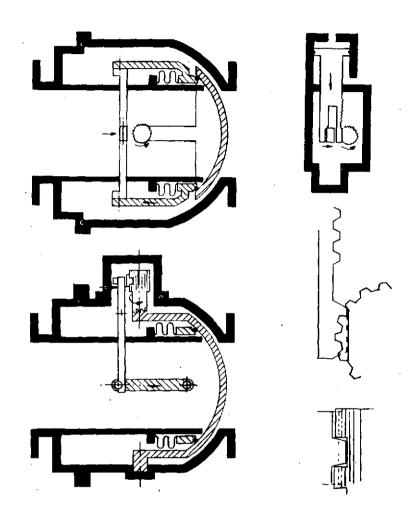
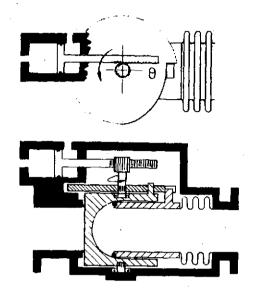




Figure 2-3. Visor Valve - Simultaneous
Retraction of Seal and Rotation
of Visor

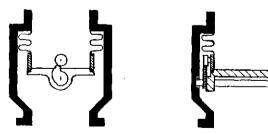

TRANSLATION OF ACTUATOR INITIALLY LIFTS THE BELLOWS SEAL BY A CAM AND LEVER WHILE PREVENTING ROTATION OF VISOR. FURTHER TRANSLATION OF ACTUATOR CAUSES VISOR TO ROTATE.

Figure 2-4. Visor Valve - Retractable Sequenced Seal

ACTUATOR ROTATES CAM WHICH CAUSES PRIMARY SEAL TO RETRACT; FURTHER CAM MOTION PICKS UP PIN IN SLOT WHICH CAUSES CYLINDER TO ROTATE TO OPEN POSITION. TO CLOSE, SEQUENCE IS REVERSED.

Figure 2-5. Plug Valve - Retractable Sequenced Seal

HOW IT WORKS

ACTUATOR ROTATES BLADE AND SIMULTANEOUSLY THRU A CAM LIFTS THE BELLOWS SEAL.

Figure 2-6. Hybrid Butterfly Valve - Simultaneous Seal Retraction

ACTION AGAINST

BLADE.

ROTATION OF ACTU-

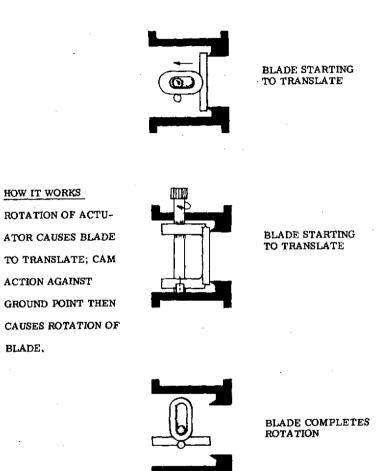
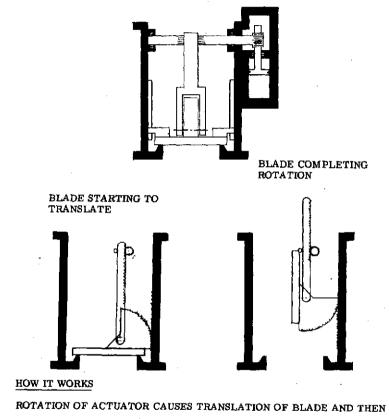
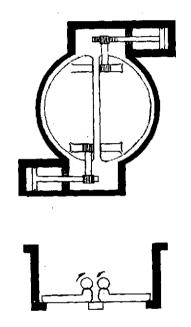




Figure 2-7. Butterfly Valve - Poppet Hybrid, Sequenced Motion and then Rotation

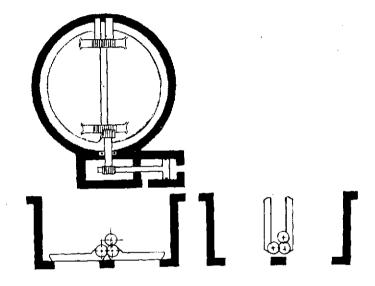
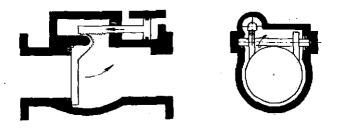

IN SEQUENCE ROTATION AND TRANSLATION OF BLADE.

Figure 2-8. Butterfly Valve - Poppet Hybrid Sequenced Poppet Motion and then Rotation

EACH ACTUATOR OPENS AND CLOSES ONE FLAPPER.


Figure 2-9. Dual Flapper Valve, Single Actuator

HOW IT WORKS

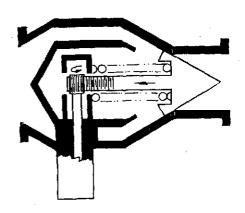

ACTUATOR DRIVES ONE FLAPPER WHICH IN TURN DRIVES SECOND FLAPPER.

Figure 2-10. Dual Flapper Valve, Dual Actuator

TRANSLATION OF ACTUATOR CAUSES GATE TO ROTATE; PISTON ACTUATED; RACK AND PINION DRIVE.

Figure 2-11. Swing Gate Valve

HOW IT WORKS

ACTUATOR MAY BE REMOVED WITHOUT AFFECTING VALVE; VALVE-MOTOR DRIVEN PLANETARY GEAR TRANSMISSION; RACK AND PINION LINEAR DRIVE; SPRING LOADED OVERRIDE; NORMALLY CLOSED.

Figure 2-12. Poppet Valve - Motor Driven Thru Planetary Gear

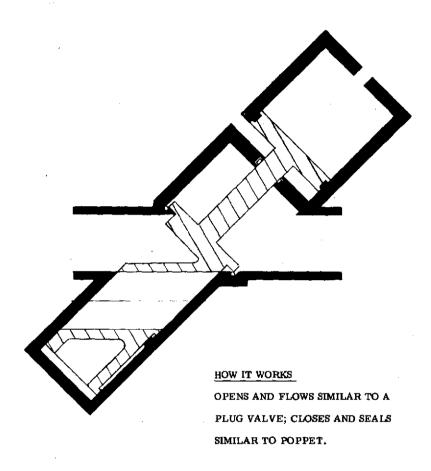


Figure 2-13. Plug Valve - Poppet Hybrid

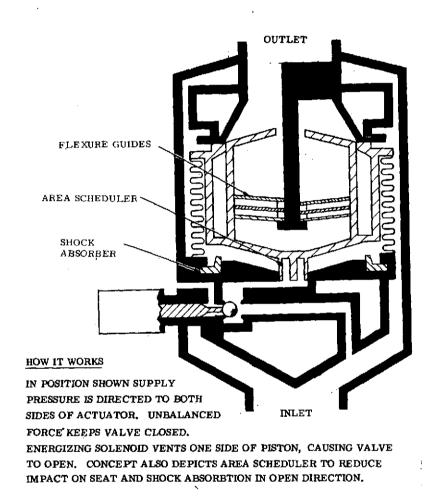
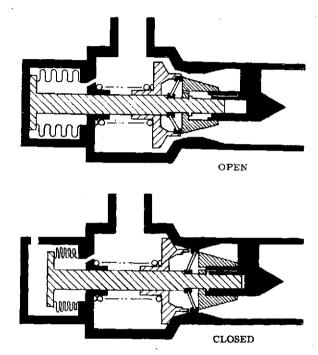
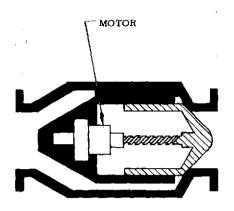




Figure 2-14. Coaxial Poppet Valve (or Controller)

VALVE CLOSES AND STOPS AGAINST PRIMARY STOP AND SEAL; CONTIN-UED ACTUATOR MOTION CAUSES EXPANSIVE FORCE AGAINST SECON-DARY SEAL WHICH HAS BEEN IN A PROTECTIVE DOWNSTREAM POSITION.

Figure 2-15. Radial Loaded Seal Poppet Valve (or Controller)

BRUSHLESS MOTOR; EXTERNAL SOLID STATE COMMUTATOR SWITCHING; LEAD ANGLE TO BALL SCREW IS LESS THAN 12° TO PREVENT POPPET FROM BACK DRIVING DUE TO HIGH SEALING FORCE.

Figure 2-16. Poppet Valve - Motor Driven thru Ball Screw (or Controller)

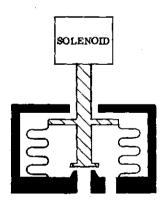
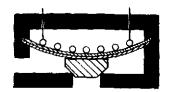
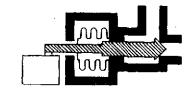




Figure 2-17. Solenoid Actuated Bellows Sealed Poppet Valve (or Controller)

SNAP ACTION DIFFERENTIAL EXPANSION ACTUATED CONTROLLER.

Figure 2-18. Bimetallic Operated Poppet Valve (or Controller)

MOTOR

Figure 2-19. Valve (or Controller), Motor-Valve, Direct Driven

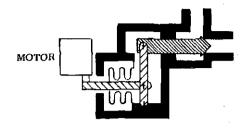
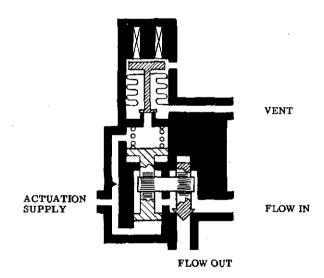



Figure 2-20. Actuator, Motor-Valve Driven Thru Linkage

WITH SOLENOID CLOSED SUPPLY PRESSURE ACTS ON BOTH SIDES OF PISTON. UNBALANCED AREAS CAUSE PISTON TO MOVE VALVE TO CLOSED POSITION. WHEN SOLENOID OPENS, PRESSURE DRAINS FROM ONE SIDE OF PISTON, CAUSING VALVE TO OPEN.

Figure 2-21. Actuator, Single Acting Piston, Solenoid Operated

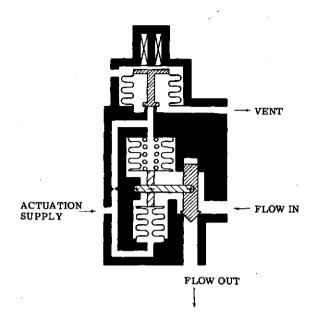



Figure 2-22. Actuator, Solenoid-Bellows, Linkage Driven Poppet

Figure 2-23. Actuator, Solenoid-Bellows, Linkage - Rack Driven

TORQUE MOTOR CLOSES PORT A OR B; WITH B PORT CLOSED, 'A' SIDE OF PISTON VENTS - VALVE CLOSES; WITH A PORT CLOSED, B SIDE OF PISTON VENTS - VALVE OPENS. EITHER TORQUE MOTOR OR MOTOR MAY ACTUATE VALVE

Figure 2-24. Actuator, Redundant System,
Motor or Torque Motor Actuated

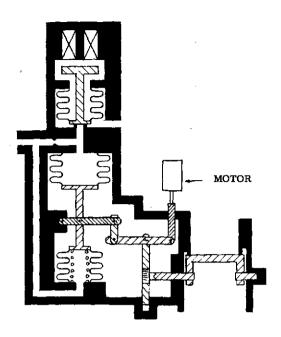


Figure 2-25. Actuator, Redundant Solenoid-Motor Bellows Linkage Driven

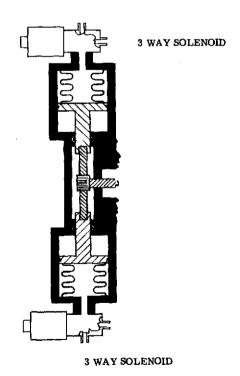


Figure 2-26. Actuator, Double Acting,
Double Solenoid Direct Driven

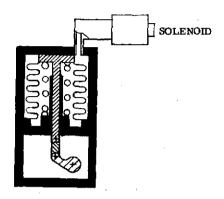


Figure 2-27. Actuator, Double Acting Bellows, Solenoid Operated

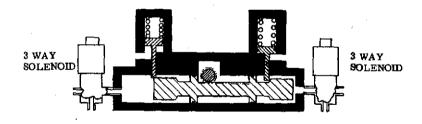
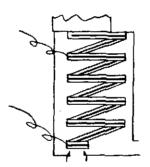
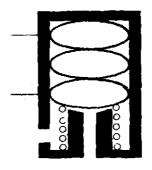


Figure 2-28. Actuator, Double Acting,
Double Solenoid, Direct Drive,
Detent Held


PALLADIUM-SILVER ALLOY TUBING DIFFUSION ELEMENT

HOW IT WORKS

TUBES ARE SEALED WITH HYDROGEN GAS; HEATING OF TUBES DIFFUSES GAS THRU PALLADIUM-SILVER TUBING,


FIGURE 2-29. DIFFUSION CONTROLLER

HOW IT WORKS

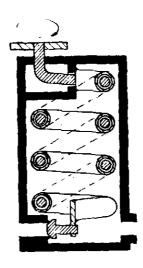
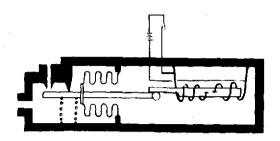

ELECTRIC FIELD CAUSES DEFLECTION OF PIEZOELECTRIC SPRING OPENING AND CLOSING OF SEAT.

FIGURE 2-30. PIEZOELECTRIC SPRING

ELECTRIC FIELD CAUSES DEFLECTION OF PIEZOELECTRIC DISKS.


FIGURE 2-31. PIEZOELECTRIC DISKS

HOW IT WORKS

THE END OF THE TUBULAR MEMBER WHICH EXTENDS INTO THE ENCLOSURE IS HERMETICALLY SEALED, WHILE THE OUTER SURFACE OF THE TUBULAR MEMBER IS HERMETICALLY SEALED TO THE WALL OF THE ENCLOSURE. WHERE IT PENETRATES THE WALL. TORQUE APPLIED TO THE INNER MEMBER FROM AN EXTERNAL LOCATION IS TRANSMITTED TO THE OUTER MEMBER WHICH IS THE HERMETIC SEALED CHAMBER.

FIGURE 2-32. HERMETIC SEALED MOTOR TRANSMITTER

HEATING OF BIMETALLIC TORQUE TUBE CAUSES ROTATION WHICH IN TURN CAUSES PIVOTING OF POPPET SEAL,

Figure 2-33. Bimetallic Torque Tube

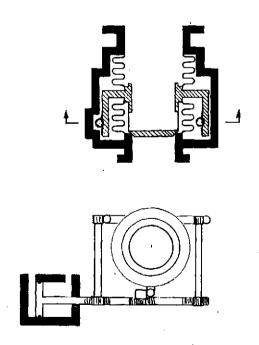


Figure 2-34. Hermetic Sealed Actuator

Table 2-9 Typical Large Valve Adjusted Ratings

		·		· · · ·	<u>_</u>	<u> </u>		·	
4- VERY GOOD 3- GOOD	SIMULT	VISOR VA TANEOUS R AL AND ROT	ETRACTION	SEAL !	A VISOR VA RETRACTION ROTATED	ALVE N AND THEN	FIG 2-1 BALL VALVE SIMULTANEOUS RETRACTION AND ROTATION OF BALL		
2- FAIR 1- POOR	RATIN6	EMPHASIS COEFFICIENT		RATING	COEFFICIENT	ADJUSTED RATING	RATING	EMPHASIS COEPFICIENT	ADJUSTED RATING
PRESSURE DROP	4	.0879	.3516	4	.0879	.3516	4	.6879	.3516
response time	2	.0549	.1098	1	.0549	,0549	2	.0549	.1098
WEIGHT	4	,0220,	.0880	2	.0220	-0440	3	.0220	.0660
CYCLE LIFE	2	.12.09	.2418	4	1209	.4836	2	.1220	.2418
LEAKAGE	2	.1209	. 2418	4	1209	.4836	2	.1220	.2418
ENVELOPE	·	o ,			0			0	i. :
REPLACE MENT MAIN TENANCE	3	.0549	.1647	3	.0549	.1647	3	.0549	.1647
IN LINE MAIN TENANCE	3	.0659	.1977	2	,0659	.13/8	- 3	.6659	.1977
COST	3	.0659	.1977	2	.0659	.1318	3.	.0659	.1977
STORAGE LIFE	4	,0989	. 3966	4	P8P6,	, 3966	4	.0989	.3966
ACTUATOR ADAPTABILITY	4	.6275	. 1000	2	.০෭७इ	.0550	4	.0275	.1000
VIBRATION RESISTANCE	3	.1374	.4022	2	.1374	.2748	3	,1374	.4122
CONTAMINATION RESISTANCE	3	.1264	.3792	3	.1264	.3792	2	. 1264	.2528
AVAILARILITY OF DESIGN INFO	3	.0165	. 0495	1	.0165	.0165	3	. کااه	.0495
		TOTAL	2.9206		TOTAL	2.9681		TOTAL	2.7822

Table 2-10

Large Valve Concept Ratings

Adjusted Rating by Groups - First Iteration

	· · · · · · · · · · · · · · · · · · ·	
Figure		Rating
2-3	Visor	2.9206
2-4	Visor	2.9681
2-1	Ball	2.7822
2-2	Ball	2.8197
2-6	Butterfly	2.4790
2-7	Butterfly	3.1824
2-8	Butterfly	2.8692
2-14	Poppet	3.1703
2-16	Poppet	2.6878
2-12	Poppet	2.9717
2-15	Poppet	2.9505
2-9	Dual Flapper	3.0943
2-10	Dual Flapper	2.8790
(1)	Rotary	3.1155
2-5	Plug Valve	2.8241
(2)	Plug Valve	2.9836
2-34	Hermetic Seal Actuator	3.3407
2-11	Swing	3.0714

^{(1) 90°} on-off, seals pressure balanced (small valves only)

⁽²⁾ Retractable sequenced primary seal, secondary seal

<u>Table 2-11</u> Small Valve Concept Ratings

Figure		Rating
2-13	Plug, Poppet Hybrid	3.6562
2-33	Bimetallic Poppet	3.5733
(1)	Rotary	3.2467
2-19	Poppet Direct Motor Driven	3. 2334
2-34	Hermetic Sealed Poppet	3.1724

^{(1) 90°} on-off, seals pressure balanced.

<u>Table 2-12</u> <u>Controller Concept Ratings</u>

Figure		Rating
2-29	Paladium Silver Alloy Tube	4.8204
2-17	Hermetic Sealed Bellows	4.7881
2-32	Hermetic Sealed Tubular	4.5703
2-18	Snap Action Differential Expansion	4.3009
2-31	Piezoelectric Disks	3.9869
_	Heat Sensitive Thermal	3.3331

<u>Table 2-13</u> Large Valve Actuator Ratings

Figure		Rating
2-27	Single Acting, Bellows Solenoid Operated	3.6151
2-28	Double Acting, Double Solenoid Direct Drive Detent Held	3.3333
2~26	Double Acting Double Solenoid, Direct Drive	3.1729
2-24	Hydraulic Redundant Motor-Torque Motor	2.3973
2-24	Pneumatic Redundant Motor-Torque Motor	2.3846
2-21	Piston Rack Pinion	2.1091

<u>Table 2-14</u>

<u>Large Valve Concept Ratings</u>

Adjusted Rating - Second Iteration

Figure		Rating
2-4	Visor	3.2858
2-5	Plug	3,2803
2-7	Butterfly	3.2802
2-2	Ball.	3.2144
2-14	Poppet	3.1923
2-19	Hermetic Poppet	2.8965
2-9	Dual Flapper	2.5329

For the controllers and actuators, the parameters were the same, except that "pressure drop" was eliminated as a consideration. As a result, the emphasis coefficients for the controllers and actuators were different from the valve emphasis coefficients.

The parameter weight assignment and resultant emphasis coefficient for the valves are shown in Figure 2-35. The parameters were weighted, accordingly, to the prescribed order of importance, by methodically comparing each parameter with each of the others. Only two parameters were compared at a time. In each comparison, the preferred parameter was assigned a numerical value of 1, the less preferred by comparison received a zero.

In a few cases where the two compared parameters were about equal, each was given a numerical value of 1/2.

The ratio of the positive responses to the total number of comparisons yields a weighting factor referred to as an emphasis coefficient of the parameter.

The emphasis coefficients for the actuators and controllers are presented in Table 2-15.

2.4.3.2 Rating Coefficient

The rating coefficient is the preferential weighting of each concept with respect to a given parameter. The coefficient was based on previous experience and preliminary calculations. The large valve configuration ratings range from 4, awarded to the best, to 1, awarded to the least suited to the particular parameter. See Table 2-9 for typical ratings for a large valve. The range of the ratings was 4 to 1, 5 to 1, and 6 to 1 for large valve actuators, small valves and controllers-transmitters, respectively.

2.4.4 Final Candidate Design Concepts (Based on Schematic Representation)

The design concepts based on schematic representation were reduced to four large valves, four small valves, and four actuator candidates. The concepts are listed in the order of their rating in Table 2-16.

		:					les an es es es es es co cord	71 86 83 84 8E 80 by no 80 00los 00		TOTAL POSITIVE RESPONSES	EMPHASIS COEFFICIENT
PARAMETER	1 2 3 4 5 6 7 8 9 10	11 12 13 14 1516 17 18 19 20	21 22 23 24 25 26 27 28 29 30	31 32 33 34 35 36 37 38 39 40	11424344454647484950	D1 52 53 54 55 56 57 56 58 60	9197 03 04 02 00 01 00 02 10	71 72 73 74 75 76 77 78 79 80 81 82	83 84 85 86 87 88 88 90 91	M	M/91
PRESSURE DROP	1100111101	0 0 1								8	0.0879
RESPONSE TIME	0	1001001	01001		·.				}	5	0.0549
WEIGHT	0	0	00100	0 0 0 0 1						2	0.0220
CYCLE LIFE	1	1	1	1/2 1 1 1	1 1 1 0 1/2 1:			. [.		11	0.1209
LEAKAGE	1 .	. 1	1	1/2	1111	1 1 0 1/2 1				11	0.1209
ENVELOPE	0 -	0	0	0		00000				0	0
REPLACEMENT MAINTENANCE	o	1	1	0	0	1	0001001			5	0.0549
IN LINE MAINTENANCE	0	1	1	0	. 0	1	1	001001]	6	0,0659
COST	•	•	o	1	0 0	1	1	1 0100		6	0.0659
STORAGE LIFE	1		1	1	0	0 1	1	1 1	0 0 1	9	0.0989
ACTUATOR ADAPTABILITY	0		C C	1	0	0 1	0	0 0 0	0 0 1/2	2.5	0.0275
NATURAL VIBRATION RESISTANCE (STRUCTURAL)		1	1	1	1	1	1	1 1	1 1/2 1	12.5	0.1374
CONTAMINATION RESISTANCE		1	1	1	1/2	1/2	1 1	1 1	1 1/2 1	11.5	0.1264
AVAILABILITY OF DESIGN INFORMATION		0	0	0	G	O	1 0	0 0	0 1/2 00	1.5	0.0165
CHORMATON				. :					TOTAL	91	1,000

Figure 2-35.

Parameter Weight Assigned for Forced Decision Optimization of Valve Concepts (Emphasis Coefficient Determination)

Table 2-15

Parameter Weight Assigned for Forced Decision Optimization of Controller Concepts

Parameters *	Total Positive Responses	Emphasis Coefficient
Response Time	5	0.0641
Weight	2	0.0256
Cycle Life	10	0.1282
Leakage	10	0.1282
Envelope	0	0
Replacement Maintenance	5	0.0641
In-Line Maintenance	6	0.0769
Simplicity/Cost	6	0.0769
Storage Life	8	0.1026
Actuator Adaptability	2.5	0.0321
Vibration	11.5	0.1474
Contamination Resistance	10.5	0.1346
Availability of Design Information	1.5	0.0192
	78	

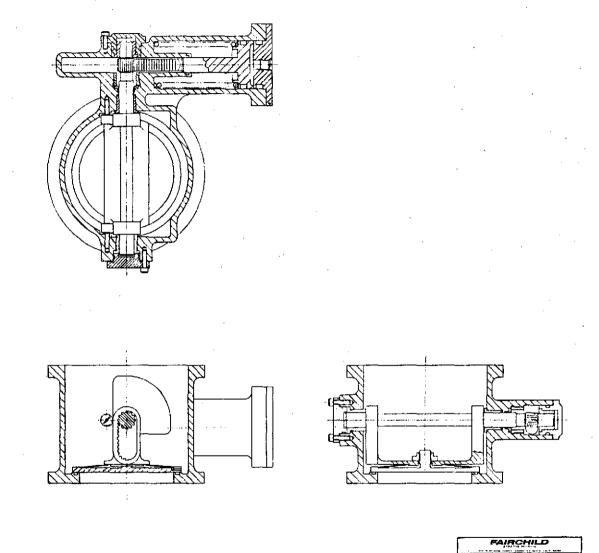
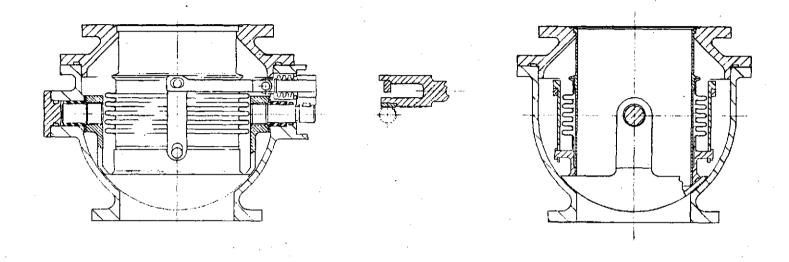

^{*} Parameters are the same as for valves except pressure drop has been eliminated.

Table 2-16

Candidate Design Concepts
(Based on Schematic Representation)


Figure	Large Valves	Figure	Small Valves	Figure	Actuators
2-4	Visor Plug	2-13	Plug Poppet Hybrid	2-27	Double Acting Bellows-Solenoid
2-7	Butterfly	2-18	Bimetallic Poppet	2-28	Double Acting Double Solenoid
2-2	Ball	2-19	Poppet Direct Motor Driven		Direct Drive Detent Held
		2-17	Hermetic Sealed Bellows	2-26	Double Acting Double Solenoid Direct Drive
				2-24	Hydraulic or Pneumatic Redundant Motor- Torque Motor

OPENING & TRANSLATING

HYBRID - BUTTERFLY POPPET VALVE

Figure 2-36. Hybrid - Butterfly Poppet Valve

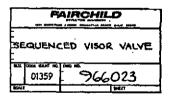


Figure 2-37. Sequenced Visor Valve

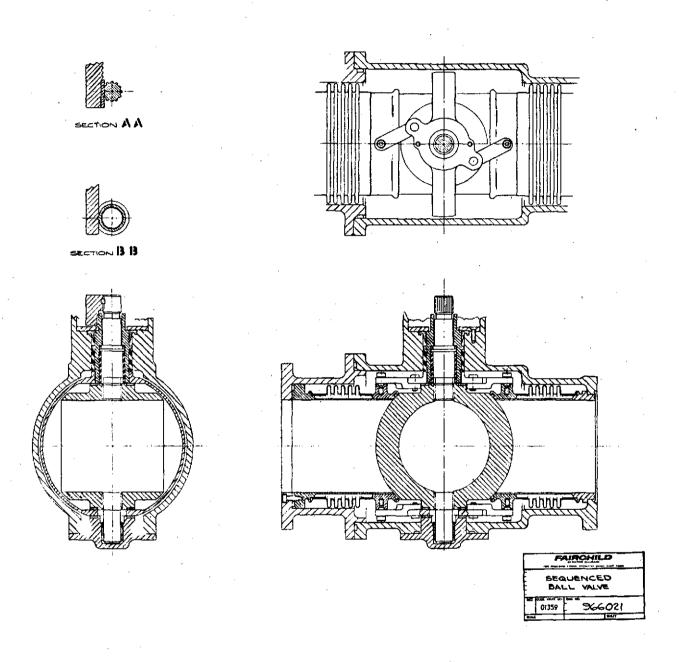
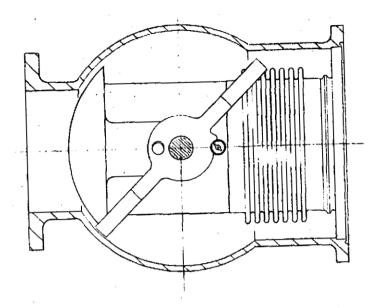
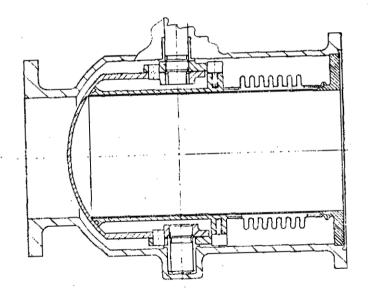
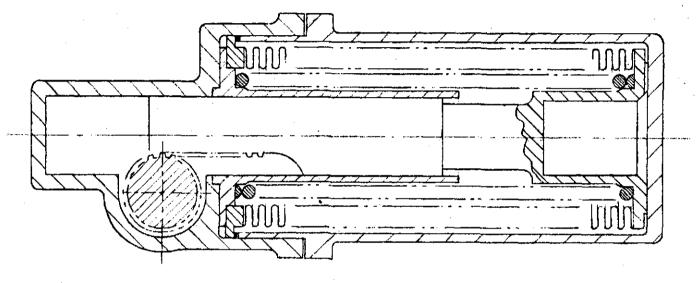




Figure 2-38. Sequenced Ball Valve



FAIRCHILD					
SE	EQUEN	CED YISOR VALVE			
eats	01359	966022			
SCA.		1 304.7			

Figure 2-39. Sequenced Visor Valve

ORIGINAL PAGE IS OF POOR QUALITY

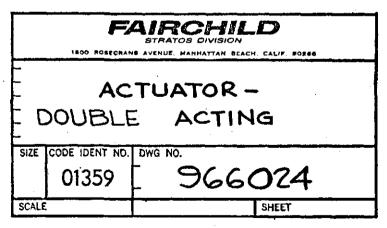


Figure 2-40. Actuator - Double Acting

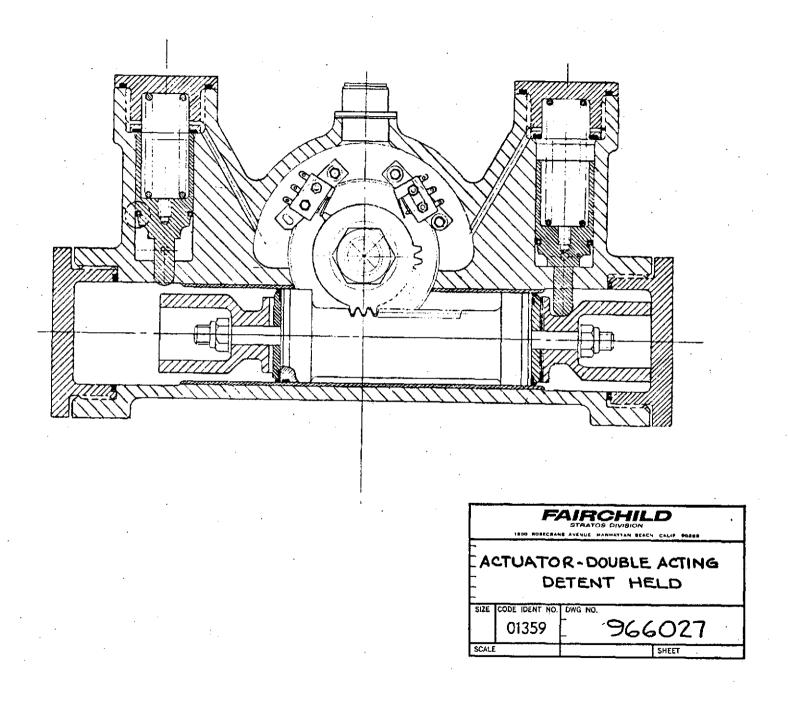


Figure 2-41. Actuator - Double Acting, Detent Held

2.5 FINAL CANDIDATES

The final candidate design concepts based on layout representation are presented in Table 2-17. These large valves and large valve actuator concepts are listed in the order of adjusted ratings. The layouts were drawn for each of the concepts and then evaluated using the technique of forced decision optimization. The ratings are indicated in the Table. The basis for the layouts were the concepts based on the schematic representations previously listed in Table 2-16. The layout drawings are shown in Figures 2-36 through 2-41.

2.6 FINAL DESIGN CONCEPT SELECTION

Final valve and actuator design concepts were selected utilizing the results of the rated candidate design concepts based on layout representation and the results of the breadboard evaluation. The hybrid poppet-butterfly, PN 966020, was selected as the primary candidate for a valve design, and sequenced visor valve, PN 966023, was selected as an alternate in the event of serious design obstacles. A double acting actuator similar to PN 966025 was selected for final design. Bellows piston actuation was preferred.

Table 2-17

Candidate Design Concepts
(Based on Layout Representation)

Figure	Large Valves	Rating	Figure	Large Actuators	Rating
2-36	966020, Hybrid Butterfly Poppet	3.6045	2-40	966024, Double Acting Bellows-Solenoid Operated	3.9996
2-37	966023, Visor- Lever Sequenced	3.0221	· . :	Redundant, Single	3.6151
2-38	966021, Ball-Dual Seal Sequenced	2.7913		Acting Bellows Solenoid Operated	.*
	bear bequenced		2-41	966027, Double Acting	2.9935
2-39	966022, Visor-Cam Sequenced	3.0770		Direct Drive Detent Held	
		·	· · · · · · · · · · · · · · · · · · ·	Redundant Motor-Bellows	2.4870

SECTION 3

PHASE II FINAL DESIGN

3.1 FINAL REQUIREMENTS AND DESIGN GOALS

The final requirements and design goals for the 10-inch shutoff valve were updated based on the best available information for possible mission use. These requirements and goals are listed in Table 3-1. The updated parameters were operational pressure, proof pressure, burst pressure, and leakage. The design factors of safety for the valve and actuator, the design flow mach number for the valve, and the closing time for the valve were established. These are as follows:

a.	Proof Factor	1.50
b.	Ultimate Factor	2.50
c.	Design Valve Flow Rate, Mach	0.5
d.	Closing Time, Milliseconds	500

3.2 VALVE DESIGN CONCEPT

The design features of the hybrid poppet butterfly concept, shown schematically in Figure 3-1, are as follows:

- a. No actuation shaft leakage when the valve is closed. The actuation linkage, which causes the rotary actuation of the butterfly poppet, is located downstream of the valve enclosure.
- b. Butterfly poppet out of the flow stream. The butterfly poppet is lifted off its seat by rollers on the edge of the butterfly, which are guided by slots in the housing. Continued rotary motion of the actuator linkage causes the butterfly to pivot along the axis of the cam rollers.
- c. Seal-to-seat misalignment forgiveness is obtained without necessity of a bellows. The lever from the rotary actuator is connected at the butterfly to a uniball, which will allow a \pm 1° of freedom along any axis (except for full rotation in the pivoted direction). This freedom allows for 0.175 inch of forgiveness at the 10-inch diameter.
- d. Seal seat loading is handled by a seal limit stop, actuator, and pressure load. No thermal or Belleville spring loads at the seal are required.

Table 3-1

Requirements and Design Goals 10-In. (25.4 CM) Shutoff Valve

Media

RP-1, Propane, LH₂, LO₂, He, N₂

Temperature

-423° to +200°F 20.38° to 366.49°K

Ambient Pressure

 10^{-8} to 14.7 psia 6.895 x 10^{-5} to 1.013 x 10^{5} N abs

Valve Pressure

Operating

35 psia (+3.5, -0) 24.13 x 10⁴ $\frac{N}{m^2}$ abs (+2.41 x 10⁴, -0)

Proof

52.5 psia (+5.25, -0) 36.2 x $10^4 \frac{N}{m^2}$ abs (+3.62 x 10^4 , -0)

Burst

87.5 psia (+8.75, -0)
60.3 x
$$10^4 \frac{N}{m^2}$$
 abs (+6.03 x 10^4 , -0)

Actuator Pressure (He or N2)

Operating

$$750 \pm 50 \text{ psia}$$

5.17 $\pm 3.45 \times 10^6 \frac{\text{N}}{\text{m}^2}$ abs

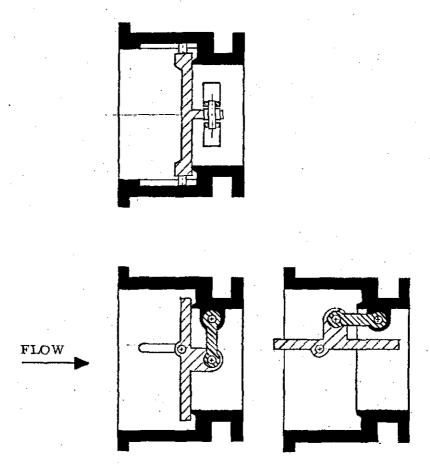
Proof

$$1125 \pm 75 \text{ psia} \\ 7.75 \pm 5.17 \times 10^6 \frac{\text{N}}{\text{m}^2} \text{ abs}$$

Burst

$$1875 \pm 125 \text{ psia}$$

 $12.92 \pm 8.62 \times 10^6 \frac{\text{N}}{\text{m}^2}$ abs


Valve Pressure Drop

2 psi (1.379 x
$$10^4 \frac{N}{m^2}$$
) maximum with

43 lb/sec (25.8 kg/sec) air or N_2 at room ambient temperature and pressure, and 35 psia (24.13 x $10^4 \frac{N}{m^2}$) at valve inlet.

Valve Leakage Goal

$$3 \times 10^{-5}$$
 SCCS at 35 psia (24.13 x $10^4 \frac{N}{m^2}$ abs)

BUTTERFLY LIFTS OFF SEAT AXIALLY BECAUSE OF COMBINED ROTARY MOTION FROM ACTUATING LINK AND LINEAR MOTION FROM ROLLERS IN CAM SLOT. CONTINUED ROTARY MOTION CAUSES BUTTERFLY TO PIVOT ALONG AXIS OF CAM ROLLERS.

Figure 3-1. Schematic Diagram, Hybrid Poppet Butterfly

3.3 HARDWARE STUDIES AND SELECTION

3.3.1 Main Seal Selection

3.3.1.1 Main Seal Concepts

Several main seal concepts were sketched and evaluated. The four configurations, which are discussed below, are identified as the TRW, Rocket-dyne and McDonnell Douglas concepts.

3.3.1.1.1 TRW Concepts

The two TRW main seal concepts that use TRW material AF-E-124D are shown in Figures 3-2 and 3-3. This material is reported to behave like an elastomer at room temperature and like improved teflon at cryogenic temperatures. The stress required for sealing at cryogenic temperatures is reported to be less than that required with Teflon. This material was developed by TRW under NASA Contract NAS 9-11866.

The configuration shown in Figure 3-2 features a flat mating plate with a relatively large circumferential area relative to the seal. The needed stress is developed across the seal lip. The configuration shown in Figure 3-3 features a sealing plate with a 0.016 to 0.02 lip which mates with a relatively large flat seal.

3.3.1.1.2 Rocketdyne Concept

The Rocketdyne trapped seal configuration, which was developed under NASA Contract NAS 3-14350, is shown in Figure 3-4. In this main seal configuration the Teflon seal is continually trapped by two annular rings which minimizes the tendency of the Teflon to cold flow.

3.3.1.1.3 McDonnell Douglas Concept

The McDonnell Douglas seal concept, which was developed under NASA Contract NAS 3-14375, uses Teflon S coated A-286 CRES material. The configuration is shown in Figure 3-5.

3.3.1.2 Seal Selection

The seal configuration depicted in Figure 3-2 was selected to be used in the 10-inch long life valve. The material selected was Plaskon CTFE 2400 manufactured by Allied Chemical. This material had been used successfully in applications at Fairchild Stratos for liquid hydrogen valve applications.

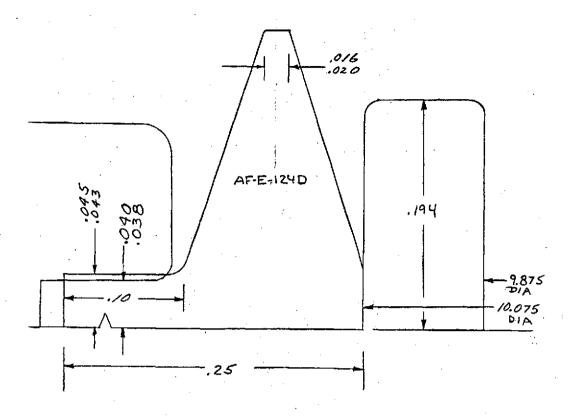


Figure 3-2. TRW Seal Concept (Tapered)

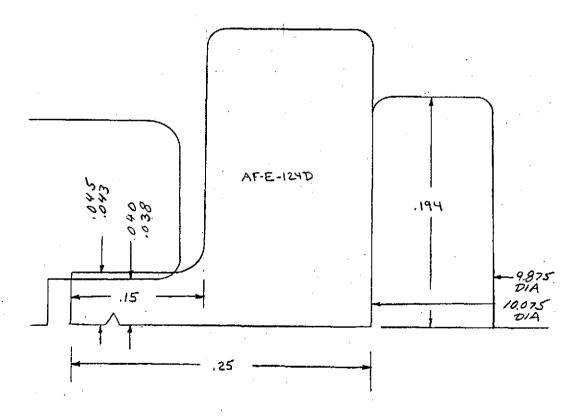


Figure 3-3. TRW Seal Concept (Square)

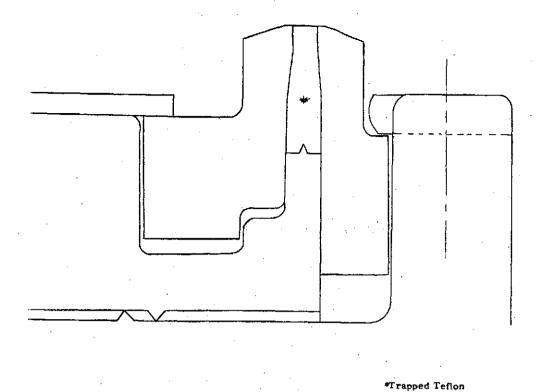


Figure 3-4. Rocketdyne Seal Concept

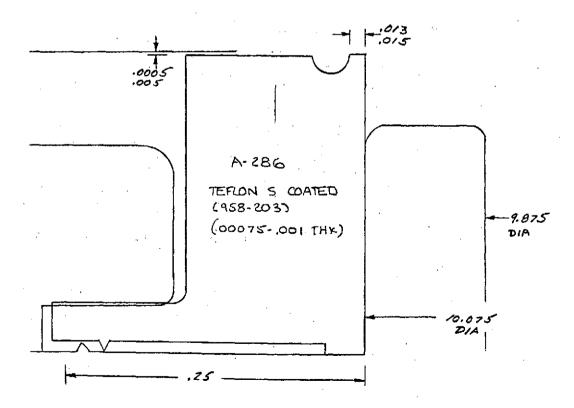


Figure 3-5. McDonnell Douglas Seal Concept

3.3.2 Actuation Mechanism Selection

3.3.2.1 Mechanism Requirements

The poppet actuation mechanisms were studied, and the following requirements were determined to be desirable:

- a. Valve pressure drop to be used to assist in sealing. This requires that the initial disk motion be against the flow.
- b. The disk lift at the point of rotation through the plane of the seat to be minimized (1) by locating the rotation points upstream of the valve, and (2) by translating the disk in the direction of increasing lateral clearance after the initial normal lift off the seat.
- c. Maintain a consistent closing torque level to permit the control of the closing transient with the pneumatic actuator.
- d. Maintain constant torque in order to simplify the actuator design.

3.3.2.2 Design No. 1 (Gear Rack Cam)

The hybrid butterfly utilizing the gear rack cam mechanism, identified here as Design No. 1, was studied. The study was concerned with the feasibility of the gear rack cam concept, especially in relation to accumulated tolerances, method of guidance and support, and affect of load unbalance.

Analysis indicated that the execution of a cam gear mechanism would be difficult to implement because of the precision manufacture required for the wide temperature limits. Design No. 1 was abandoned. Three other designs (Design No. 2, 3 and 4) were considered.

3.3.2.3 Design No. 2 (Lever Driven, Cam Positioned)

Design No. 2, shown schematically in Figure 3-6, is a lever-driven, campositioned valve. This configuration features an initial axial motion of the valve disk to eliminate seal scuffing, followed by a combined rotation and translation to provide the final low drag axial orientation of the disk.

The actuator torque requirements were calculated as a function of disk angle using aerodynamic load and center of pressure locations on the disk. The torque requirements plotted in Figure 3-7 show that the driving torque changes sign prior to the completion of the stroke. This causes the disk to be self-driven to the fully open position. This characteristic is undesirable for use with a pneumatic actuator which does not permit snubbing to the degree

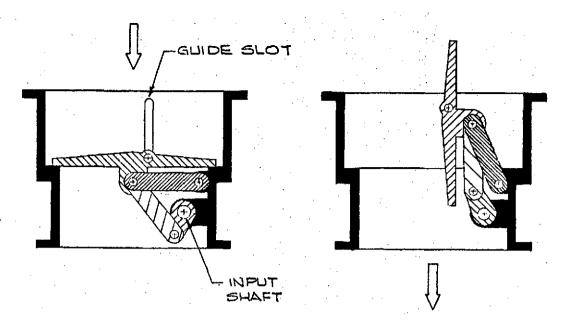


Figure 3-6. Design No. 2-Hybrid Butterfly

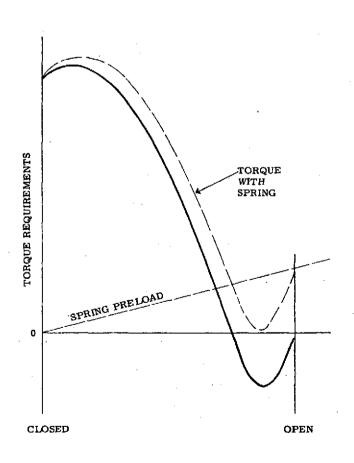


Figure 3-7. Operating Torque Requirements-Design No. 2

permitted by the hydraulic counterpart. The negative torque could be counteracted by the addition of an actuator spring, but the overall torque pattern would be undesirable for pneumatic operation with the large unbalanced disk force.

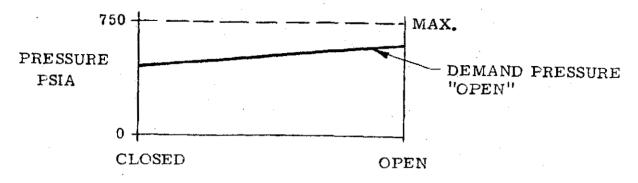
3.3.2.4 Actuation System Characteristics

Actuation systems may be designed with increasing or decreasing actuator demand pressure with the opening stroke. A system with an increasing demand pressure with opening stroke has the capability of controlling the rate of closure in a flow situation by the use of an orifice in the actuator inlet. See Figure 3-8. This scheme does not fully utilize the work capability of the bellows and therefore involves an actuator penalty.

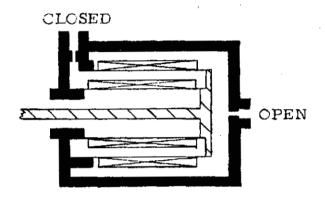
A system with a decreasing demand pressure with stroke calls for a recompression of the pneumatic pressure to balance the force demand. This can be accomplished by minimizing the head clearance volume and using an orifice, as long as the actuation pressure at the point of closure is sufficiently high.

3.3.2.5 Overall Design Requirements

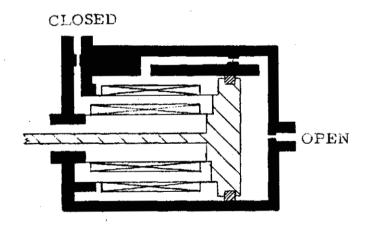
The overall design requirements were reviewed and the following was concluded:


- a. The poppet should be supported in the central area of the disk to permit a uniform outer disk thickness. This requirement minimizes distortion of the sealing surface during temperature transients and permits uniform load distribution to the seal.
- b. The demand pneumatic actuation pressure must be sufficiently high at the open position to permit snubbing of the closing transient.
- c. The disk support and guidance members should be on the same side of the disk to reduce the effects of differential expansion.

3.3.2.6 Four-Bar Linkages


A study of four-bar linkages indicated that insufficient blade motion resulted when the overall design requirements listed in paragraph 3.3.2.5 were imposed. After defining the lowest disk trajectory for clearance, the Design No. 3 was selected.

3.3.2.7 Design No. 3 (Lever Driven, Lever Positioned)


Design No. 3 is a lever driven, lever positioned valve with the fulcrum of the disk support lever located outside the flow stream for minimum pressure drop.

(A) Desirable Demand Characteristic

(B) Orifice Controlled Actuator

(C) Piston Head Controlled Actuator

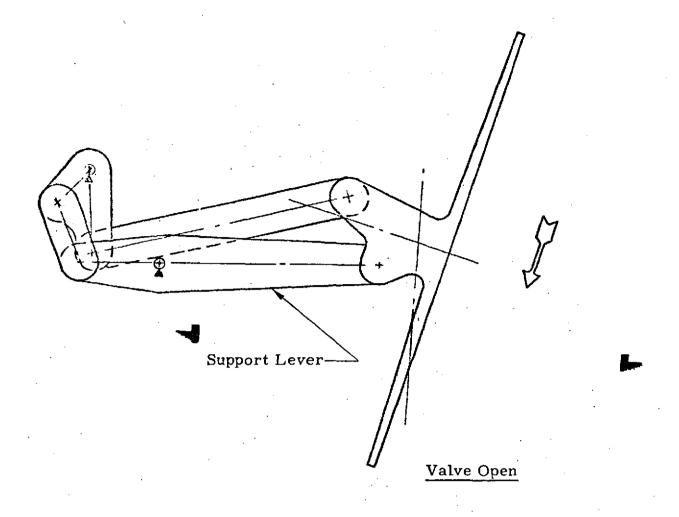
Figure 3-8. Actuator Variables - Design No. 2

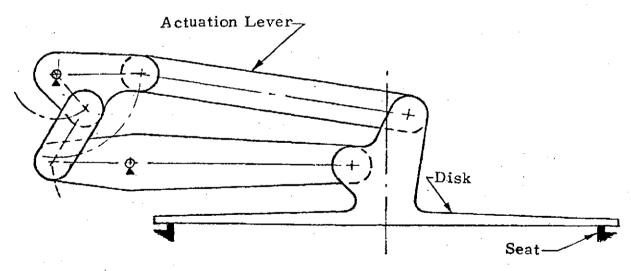
The valve mechanism is shown in schematic form and preliminary layout form in Figures 3-9 and 3-10, respectively. The lever mounted on the actuator shaft is link connected to the support lever and to the valve disk.

This lever system results in a favorable pressure drop configuration in the open position at the expense of higher bearing loads in the mechanism. A disk load at the valve cracking point of 2830 pounds results in a beam link load of 9000 pounds and a fulcrum load of 12,200 pounds for the compact arrangement shown in Figures 3-9 and 3-10. The bearing loads can be reduced by increasing the driving arm dimensions with an envelope and weight penalty.

The design of the pivot joints is based on the permissible loading of the sleeve bearings rather than the structural strength of the members. The overall sizing dictates the use of the polyimide compound SP-21 rather than the low friction compound SP-211, having the lower bearing allowables.

The design opening torque characteristics are shown in Figure 3-11. The valve demand torque is well matched to the available actuator linkage torque as seen in the Figure. Although the demand torque drops with the actuator shaft angle, a final demand pressure of 300 psi is indicated.


The upstream location of the shaft seal is a disadvantage for a long life low leakage requirement.


3.3.2.8 Design No. 4 (Lever Driven and Lever Positioned)

Design No. 4 is a lever driven, lever positioned valve with the actuation mechanism located downstream of the valve disk. The lever attachment points are in the central area of the disk. A support spanning the valve body provides the pivot points for the actuation shaft and the upper support lever. Preliminary and final designs are shown in Figures 3-12 and 3-13, respectively. The preliminary mechanism illustrated in Figure 3-12 provides the initial motion normal to the seat by the parallel arrangement of the linkage. The short support lever permits a rigid lateral positioning of the open disk.

The final design shown in Figure 3-13 eliminates the ironing of the linkage during actuation, permitting a symmetrical arrangement of the linkage. The valve disk is supported by both driving links which further reduces the bearing loads. The selected linkage maintains valve disk-seat parallelism for an initial lift of 0.70 inch and gives a valve seat clearance in excess of 0.50 inch at the point of entry of the disk through the plane of the seat.

The torque characteristic for the final design is shown in Figure 3-14. The initial rise in the torque is a desirable feature but the drop-off is undesirable. The torque drop-off in the last 10° of motion is corrected by spring action to the level shown. The resulting curve is easily matched by the actuator and is satisfactory for the closing dynamic requirement.

Valve Closed

Figure 3-9. Design No. 3 - Hybrid Butterfly

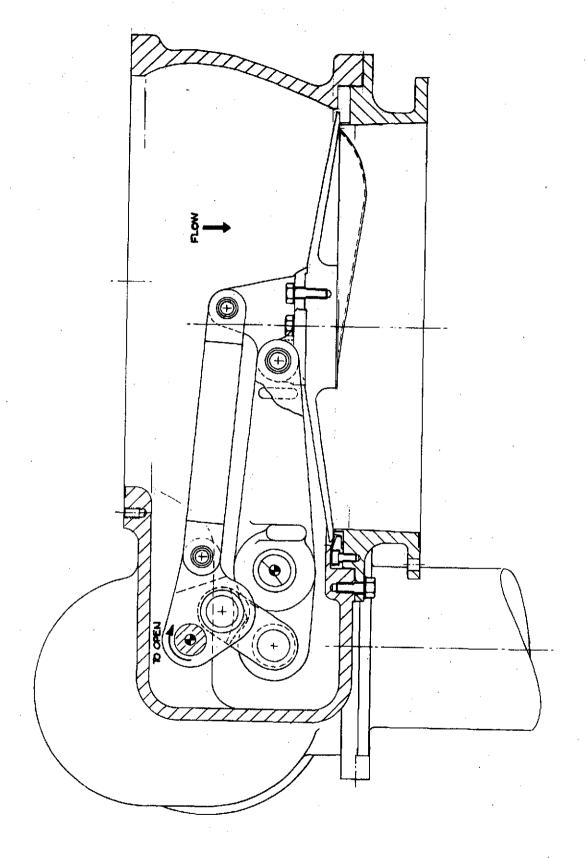


Figure 3-10. Detail Design No. 3

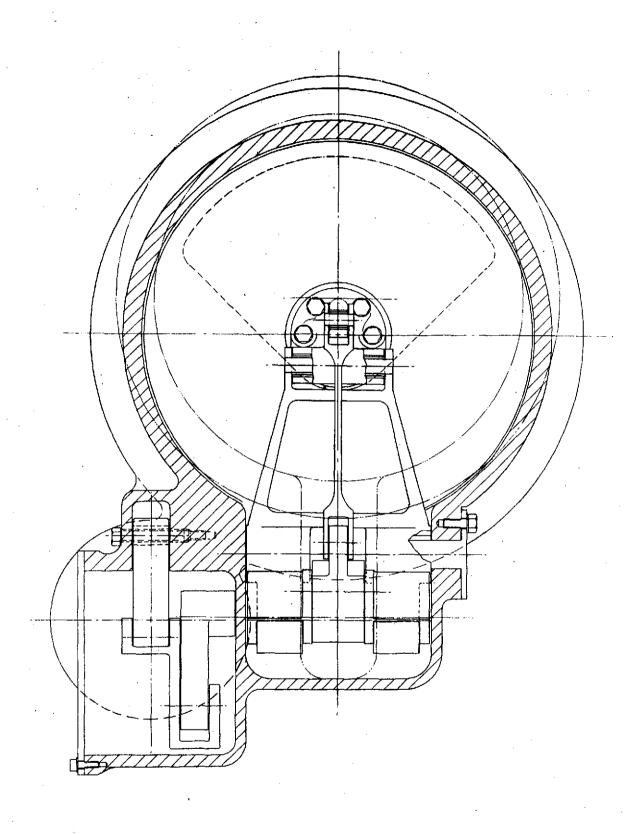


Figure 3-10. Detail Design No. 3 (continued)

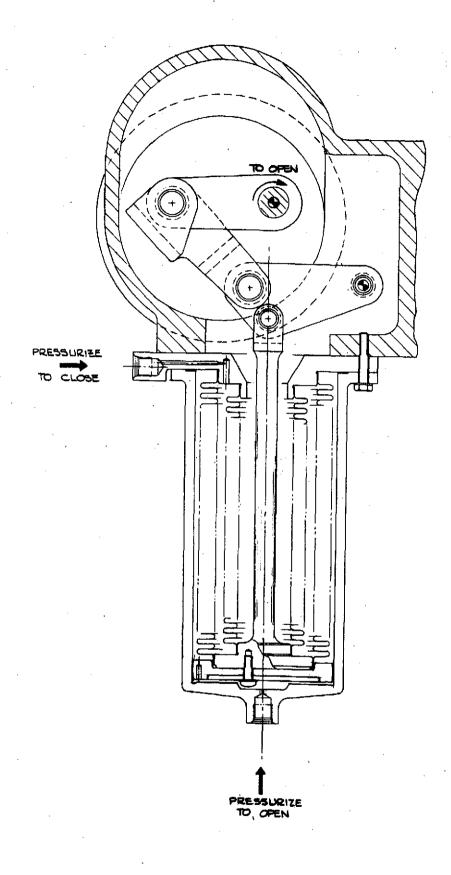
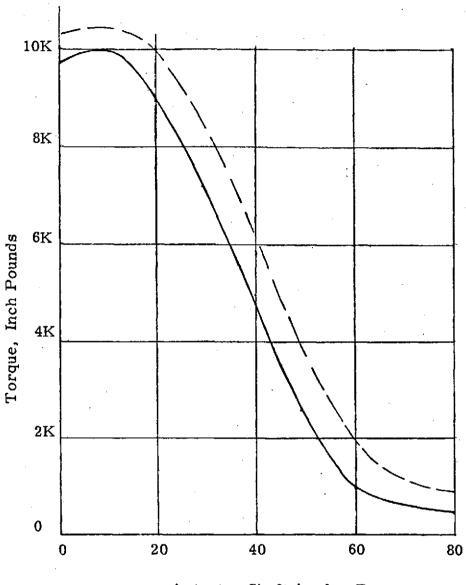



Figure 3-10. Detail Design No. 3 (concluded)

Actuator Shaft Angle, Deg.

---- Valve Demand Torque ----- Actuator Torque @ 750 psig

Figure 3-11. Torque Characteristics - Design No. 3

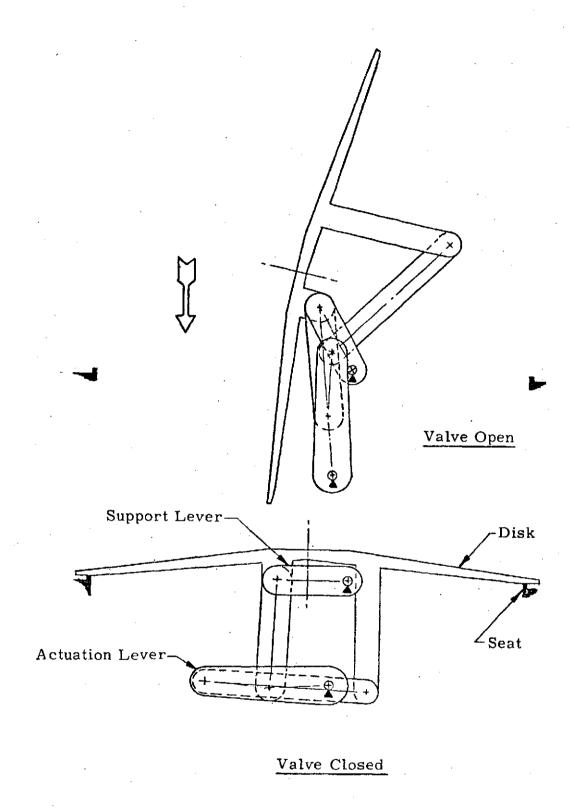


Figure 3-12. Preliminary Design No. 4 - Hybrid Butterfly

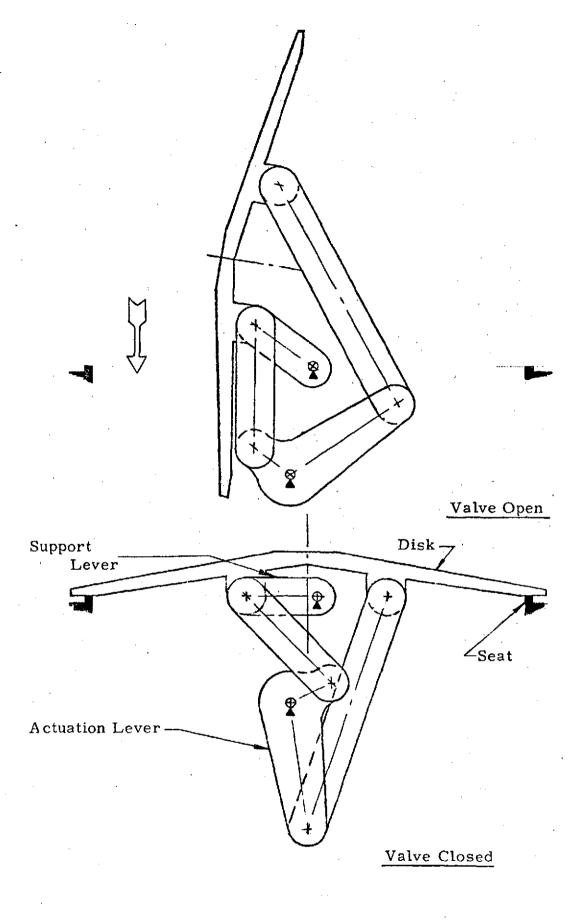


Figure 3-13. Final Design No. 4 - Hybrid Butterfly

Figure 3-14. Torque Characteristic - Design No. 4

This design provides the desired downstream location of the shaft seal. However, the pressure drop will be increased from that in Design No. 3 because of the additional members in the flow stream.

3.4 FINAL DESIGN SELECTION

The final design was selected based on the functional characteristics of the three design candidates (Designs No. 2, No. 3 and No. 4). The three designs are compared in Table 3-2. Design No. 4 was selected on the basis of minimum system leakage, rapid response capability, and extended life capability.

Table 3-2

Design Concept

Functional Characteristics

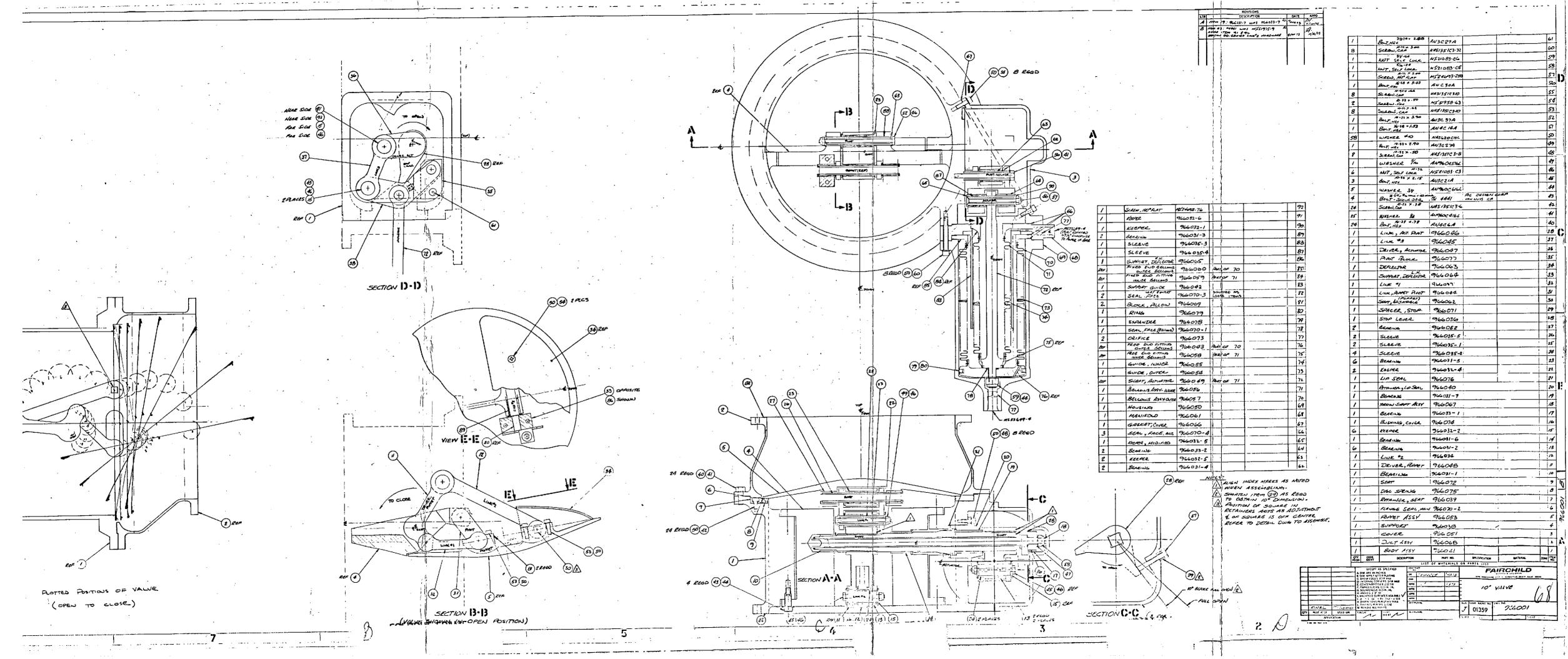
Comparison

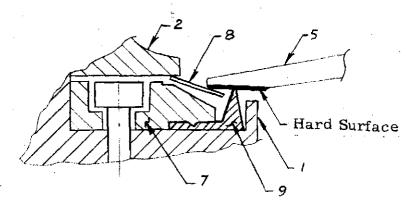
	De	esign Concept	
	No. 2	No. 3	No. 4
Characteristics	Lever Driven Cam Positioned	Lever Driven Lever Positioned	Lever Driven Lever Positioned
Uniform Blade Rigidity	No	Yes	Yes
Maintains Positive Closing Torque	No	Yes	
Actuation Requirement	High	Medium	Low
Valve Pressure Drop	Medium	Low	Medium
Actuator Shaft Downstream	Yes	No	Yes
Rigid Support	No	Yes	Yes
Low Actuation Friction	Yes	No	Yes
Low Mechanical Weight	Yes	No	Yes

3.5 DETAIL DESIGN

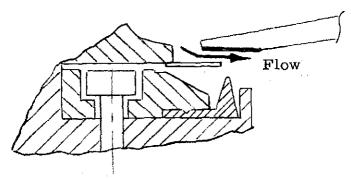
3.5.1 Configuration

The final shutoff valve configuration is shown in Figure 3-15, Assembly Drawing 966001. A common factor of all sequentially operated valves is the increase in actuator stroke requirements where the initial poppet translation occurs with the full poppet pneumatic loading. The actuation motion of the poppet linkage illustrated in Figure 3-15 limits the translation to that required for poppet-seat clearance in the open position. The actuation linkage employed in this design was selected to provide a relatively constant design actuation force with stroke and therefore minimize the bellows displacement.


The main seal configuration is similar to that shown in Figure 3-2 and was fabricated from CTFE plastic. A redundant metallic seal member was incorporated in the design to reduce the valve discharge rate at the main seal engagement to a leakage level which would reduce the seal surface wear by erosion. A detail of the seal arrangement and a description of the sealing sequence are presented in Figure 3-16. The hard surface identified on the poppet is a 0.003 to 0.005-inch thickness of flame plated Tribaloy No. 120. This DuPont blend of 80 percent Tribaloy 100 plus 20 percent nickel was chosen for its maximum mechanical wear resistance. Tribaloy 100 is 55 percent Colbalt, 35 percent Molybdenum, and 10 percent Silicon. The final finish, after grinding, was specified to be 1 to 2 RMS.


The valve actuator was a bellows type as shown in Figure 3-15. This configuration featured an inner bellows assembly, PN 966056, and an outer bellows assembly, PN 966057, which are shown in Figures 3-17 and 3-18 respectively. Complete bellows design requirements are presented in these figures. The actuator was designed with a maximum stroke of 2.12 inches.

3.5.2 Material Selection


A general breakdown of the metallic and the non-metallic materials used in the construction of the final shutoff valve is presented in Table 3-3. Aluminum was selected for the poppet and all linkage members as appropriate for design loading as well as low inertia. Alloy 6061-T6 was selected for the primary valve components because of the desirable fracture toughness of the alloy at cryogenic temperatures as well as adequate physical properties at plus 200°F.

DuPont polyimide bearings were selected on the basis of low wear rate and tolerance to impact loading. The bearings were sized on the basis of 5000 psi bearing stress using the SP211 compound.

Closed Position

Partially Open Position

LEGEND

Item		
Number *	Part Number	Nomenclature
1	966041	Body Assembly
2	966068	Duct Assembly
5	966053	Poppet Assembly
7	966039	Seat (Seal) Retainer
8 .	966075	Disk Spring
9	966072	Seat (Seal)

^{*} Item numbers are those found on Drawing 966001

SEALING SEQUENCE_

The disk spring (Item 8) is retained by the duct (Item 2) and the seal retainer (Item 7). In closing, contact is first made between the disk spring and the outer poppet (Item 5) periphery; then contact is made between the seal (Item 9) and the poppet (Item 5).

Figure 3-16. Detail of Valve Main Seal

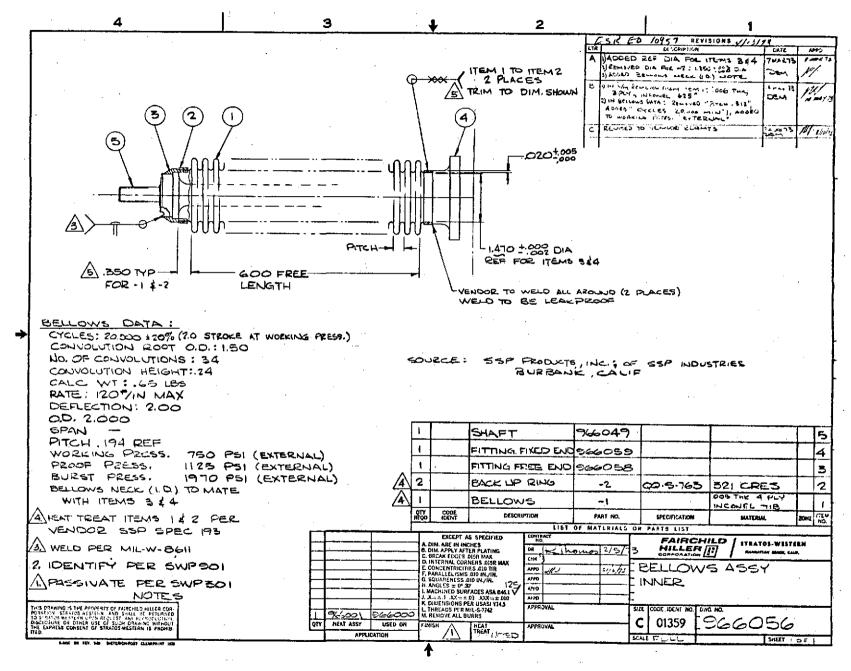


Figure 3-17 Inner Bellows Assembly PN 966056

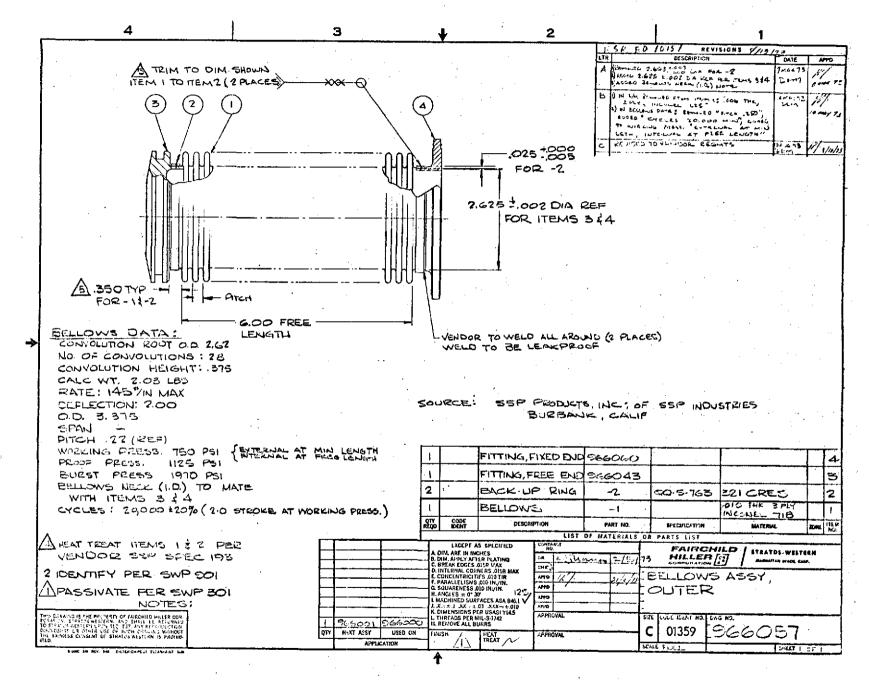


Figure 3-18 Outer Bellows Assembly PN 966057

Table 3-3

Material Summary 10-Inch Long Life Valve

MATERIAL	SPECIFICATION	APPLICATION
6061-T6 Alum Alloy	QQ-A-200/8 QQ-A-250/11	Body assembly, lip seal retainer, flange, cover support, actuator housing, butterfly poppet assembly, valve duct flanges, actuation linkage
5052-0 Alum Alloy	WW-T-700 or QQ-A-250/8	Valve duct
Inconel 718	-	Inner and outer bellows
A286 Cres	AMS 5736	Torsion shaft assembly
300 Series Cres	QQ-S-763 and QQ-S-766	Disk spring, bearing keepers, bushing cover, stop lever and spacer, adjustment shaft, manifold, bellows fittings and backup ring, orifices, expander and support guide
TFE Teflon	AMS 3651	Main flange seal, actuator face seal, cover gasket, face seal, inner and outer bellows guide
Plaskon CTFE	2400 ASTM D1430 Grade 4	Valve Seat
SP-211 Polyimide	· _	Bearings

3.5.3 Dynamic Simulation

A dynamic simulation program was written for the digital computer to solve the valve opening and closing transients and to optimize the actuator orifices. Originally, a series of actuator development tests in which the recorded pressure and stroke data would be used for orifice optimization were planned, but the dynamic simulation approach showed both cost and schedule advantage.

The correct sizing of the three actuator orifices, actuation orifices, piston orifices and deactuation orifices was necessary to provide control of the poppet at the point of closure. This problem was accentuated by the rapid closure specification and the positive flow feedback forces applied during the closure.

3.5.3.1 System Math Model

A system math model was determined for the hybrid butterfly valve configuration. The valve features the poppet opening against an applied pressure differential and closing with the assistance of fluid forces. The three actuator orifices must be selected to prevent excessive poppet-seat impact while meeting a closing time design objective of 0.5 seconds. A schematic diagram of the butterfly-poppet and the actuator is shown in Figure 3-19. System parameters are also identified on the diagram.

To simplify the program complexity, the valve inertia, the poppet forces, the spring preload, and the friction forces were referred to the actuator linear positions. Further, to minimize the cost of the digital programming, the simplest linear integration method will be used with a sufficiently small time increment (0.0005 second as an initial value to maintain accuracy).

3.5.3.1.1 Poppet-Actuator Equivalent Mass

A non-linear equivalent mass was calculated to evaluate the actuator acceleration with force unbalance. Valve actuation results in a non-linear poppet rotation and translation with respect to actuator position. A graph of the equivalent mass as a function of actuator stroke is presented in Figure 3-20. The method of calculation is presented in Appendix C.

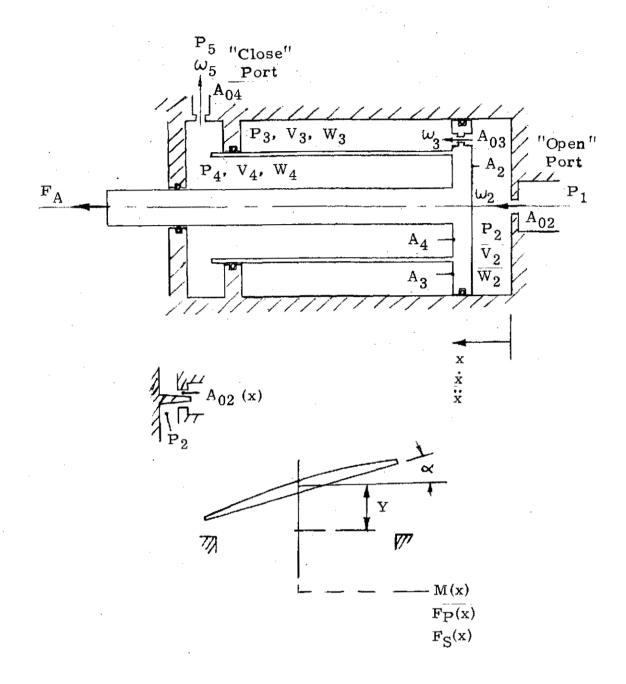


Figure 3-19. Schematic Diagram, Actuator and Poppet

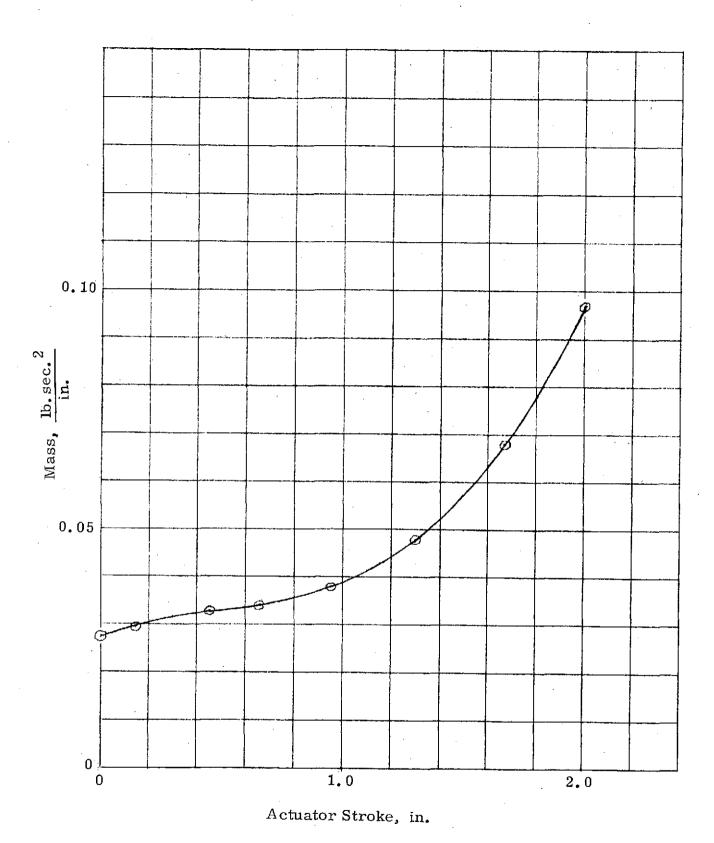


Figure 3-20. Equivalent Mass as a Function of Actuator Stroke

3.5.3.1.2 Poppet Force

The non-linear poppet force as a function of actuator stroke was calculated. The force included a fluid force (air-load), a bellows force, and a torsional spring force. Figure 3-21 presents a graph of the combined force as well as the individual components.

3.5.3.1.3 System Equations

The system equations, including the initial conditions, were written and are presented below in the computing sequence. See Figure 3-19 for parameter identification.

$$t = t + \Delta t$$

$$P_1 \ge P_2$$

$$P_1 < P_2$$

$$R_2 = \frac{P_2}{P_1}$$

$$R_2 = \frac{P_1}{P_2}$$

 $\phi = f(R_2)$ Interpolation of ϕ Table

$$\omega_2 = \frac{C_2 \text{ Ao}_2 P_1 \emptyset}{\sqrt{T}}$$

$$\omega_2 = \frac{-C_2 \text{ Ao}_2 P_2 \varphi}{\sqrt{T}}$$

Repeat for ω_3 and ω_4

$$W_2 = W_2 + (\omega_2 - \omega_3) \Delta t$$

$$W_3 = W_3 + \omega_3 \Delta t$$

$$W_{\Delta} = W_{\Delta} + \omega_{\Delta} \Delta t$$

$$V_2 = V_2 o + A_2 (X + \mathring{X} \Delta t)$$

$$V_3 = V_3 \circ - A_3 (X + \dot{X} \Delta t)$$

$$V_4 = V_4 \circ - A_4 (X + \dot{X} \Delta t)$$

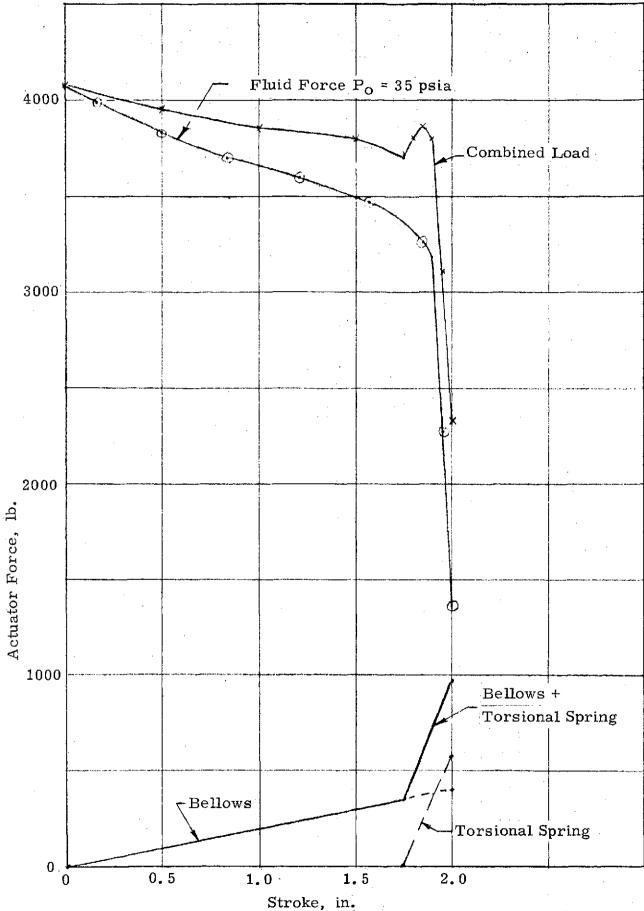


Figure 3-21. Poppet Forces as a Function of Actuator Stroke

$$P_2 = \frac{8 RT W_2}{V_2}$$

$$P_3 = \frac{\text{FRT } W_3}{V_3}$$

$$\mathbf{P_4} = \frac{\sigma \, \mathbf{RT} \, \mathbf{W_4}}{\mathbf{V_4}}$$

$$F_A = A_2 P_2 - A_3 P_3 - A_4 P_4$$

$$\ddot{X} = \frac{F_A - F_p - f + F_s}{M}$$

Fp = f(x) Table (See Figure 3-21)

$$f = K Fp$$

$$F_s = O \qquad X \ge O$$

= Subroutine when X < O

= Subroutine when X ≥ X max.

M = f(x) Table (See Figure 3-20)

$$\dot{X} = \dot{X} + \dot{X} \Delta t$$

$$X = X + \overset{\bullet}{X} \Delta t + \frac{\overset{\bullet}{X} \Delta t^2}{2}$$

INITIAL CONDITIONS

VALVE CLOSED

$$P_5 = P_4 = 765 \text{ psia}$$

$$P_1 = P_2 = P_3 = 15 \text{ psia}$$

$$V_2 = 1.000 \text{ In.}^3$$

$$A_1 = 9.787 \text{ In.}^2$$

$$V_3 = 21.53 \text{ In.}^3$$

$$A_2 = 2.718 \text{ In.}^2$$

$$\dot{X} = 0$$

$$V_4 = 28.82 \text{ In.}^3$$

$$A_3 = 4.831 \text{ In.}^2$$

$$\ddot{X} = 0$$

$$\chi = 1.40$$

 $R = 639.6 \text{ In}/^{\circ}\text{F}$

 $T = 530^{\circ}R$

 $% RT = 0.4746 \times 10^{6} \text{ In.}$

Flow - Discharge Coef. C = 0.8 All Orifices

Ø per Chart or Graph or

$$\omega = \frac{0.530 \text{ CA Pu}}{\sqrt{\text{T}}} \qquad \sqrt{\frac{4}{3}} \left[1 - \left(\frac{P_D}{Pu} \right)^2 \right] \quad \text{Lb/Sec.}$$

3.5.3.2 Computer Program Listing

A listing of the dynamic simulation computer program is presented in Table 3-4.

3.5.3.3 Computer Program Printout

A typical computer printout is presented in Table 3-5 for valve closure at full system pressure. All of the force and inertia terms are related to the actuator position X. XDOT and ACCX are the actuator velocity and acceleration, and P₂, P₃ and P₄ are the actuator pressures at the piston, outer bellows, and inner bellows respectively. AO₂, AO₃ and AO₄ are the actuator orifice, piston orifice and deactuation orifice areas respectively. Actuator stroke and pressures are plotted as a function of time for the opening and closing transients in Figures 3-22 and 3-23 respectively. Computations for different orifice sizes and for reduced valve flow rates are presented. The computations show that the actuator was able to close within the desired 0.50 second interval without excessive closing velocities.

The computer program was also capable of evaluating the effects of system and actuation pressure variations.

Listing of Simulation Computer Program

```
THIS PROGRAM CALCULATES THE POSITION OF THE ACTUATOR AS A
             FUNCTION OF TIME IN THE OPENING AND CLOSING OF THE VALVE
10100
10200
             IT ALSO CALCULATES THE ACCELERATION AND VELOCITY OF
                                    PROGRAMED BY JUDINES & CLAUBICH
1030C
             THE VALVE ACTUATOR
1040
                  MOL, M, NOITER, KS1, KS2
          REAL:
       WO (AD,P,T1,Q) = 0.425*AO* P/SQRT(T1) * SQRT(1.33 *
1041
       (1 - 0** 2.0))
10426
1050 P1=15.0:P5=765.0:P1NFW=765.0:P5NEW=15.0
       MOL =28.97; T1 =530.0; V20 =1.0; V30 =21.53; V40 = 28.82
1060
1070
          DTIME = 0.0002; A2 = 9.787; A3 = 2.718; A4 = 4.831; A02 = 0.0078
          A03 = .0020 : A04 = .0078 : X = 0.000 : X DOT =
1080
                                                      0.000:
          FF0 = 4060.:FF1 = 3950.:FF2 = 3830.:FF3 = 3720.:FF4 = 3660.
1090
          FF5 = 3580.:FF6 = 3500%:FF7 = 3430%:FF8 = 3350%:FF9 = 3270.
1100
1110
          FF10 = 3150.: FF11 = 2270.: FF12 = 1360.
          KS1 = 3300000. :KS2 = 100000.
1120
          BSR = 200. :TSR = 2280. :XTS = 1.75 :CTR = 0. :CTR1 = 0.
1130
           PRFAEQ = 50.0 : NOITER = 3000.0
 1140
          P2 = P1
1210
1220
          P3 = P1
          P4 = P5
1230
1240
       10 P1 = P1NEW
1250
          CMOL = MOL / 28.97
1260 - 11 PS = P5 NEW
      V2=V20+A2*X
1263
1264
       V3=V30-A3*X
1265
       V4=V40-A4*X
          DOON = DTIME
1270
          W2 = .0015625*V2*(P2/T1)*OMOL
1280
          W3 = .0015625 * V3 * (P3 / T1) * CMOL
1290
          W4 = .0015625 * V4 * (P4 / T1) * CMOL
1300
          TIME = 0
1301
1305
      13
         DTIME=DCON
         IF(P1.GE.P2) WD2=WD(AD2,P1,T1,P2/P1)
1310
          ·IF(P2.GŤ.P1)
                          WD2 = - WD(A02,P2,T1,P1/P2)
1320
                          WD3 = WD(A03,P2,T1,P3/P2)
          IF(P2.GE.P3)
1330
                          WD3 = -WD(A03.P3.T1.P2/P3)
          IF(P3.GT.P2)
1340
          IF (P4.GE.P5)
                          WD4 = - WD(AD4.P4.T1.P5/P4)
1350
          IF(P5.GT.P4)
                          WD4 = WD(A04.P5.T1.P4/P5)
1360
       14 W2 = W2 + (WD2 - WD3) * DTIME
1370
          W3 = W3 + WD3 * DTIME
1380.
          W4 = W4 + WD4 * DTIME
1390
1410
      16
          V2 = V20 + A2 * X
          V3 = V30 - A3 \times X
1420
          V4 = V40 - A4 \times X
1430
          IF(V2 .LE. 0.0) V2 = .001
1431
          IF(V3 .LE. 0.0) V3 = .001
1432
1433
          IF(V4 .LE". 0.0) V4 = .001
       17 P2 = 640 * W2 * T1 / V2
P3 = 640 * W3 * T1 / V3
1440
1450.
          P4 = 640. * W4 * T1 / V4
1460
          IF(P2 .LE . 0.0) P2 = .01
1461
          IF(P3 .LE. 0.0) P3 = .01.
1462
          IF(P4 .LE. 0.0) P4 = .01
1463
                                                  ORIGINAL PAGE IS
```

OF POOR QUALITY

Table 3-4 (continued)

```
1464 F=A2*P2-A3*P3-A4*P4
                  TIME=TIME+DTIME
1465
1470
                       FFAN=SIGN(0.1*F,XDDT)
1480
              19 IF(X LE. .2) M = .02756 + .0127 * X
1500
                    IF(X .LE. .4.AND.X .GT. .2) M = .0301 + .0105 * (X - 1F(X .LE. .6.AND.X .GT. .4) <math>M = .0322 + .0075 * (X - 1F(X .LE. .6.AND.X .GT. .4) M = .0322 + .0075 * (X - 1F(X .LE. .6.AND.X .GT. .4) M = .0322 + .0075 * (X - 1F(X .LE. .6.AND.X .GT. .4) M = .0322 + .0075 * (X - 1F(X .LE. .6.AND.X .GT. .4) M = .0322 + .0075 * (X - 1F(X .LE. .4) M = .0322 + .0075 * (X - 1F(X .LE. .4) M = .0322 + .0075 * (X - 1F(X .LE. .4) M = .0322 + .0075 * (X - 1F(X .LE. .4) M = .0322 + .0075 * (X - 1F(X .LE. .4) M = .0322 + .0075 * (X - 1F(X .LE. .4) M = .0322 + .0075 * (X - 1F(X .LE. .4) M = .0322 + .0075 * (X - 1F(X .LE. .4) M = .0322 + .0075 * (X - 1F(X .LE. .4) M = .0322 + .0075 * (X - 1F(X .LE. .4) M = .0322 + .0075 * (X - 1F(X .LE. .4) M = .0322 + .0075 * (X - 1F(X .LE. .4) M = .0322 + .0075 * (X - 1F(X .LE. .4) M = .0322 + .0075 * (X - 1F(X .LE. .4) M = .0322 + .0075 * (X - 1F(X .LE. .4) M = .0075 * (X - 1F(X .LE. .4) M = .0075 * (X - 1F(X .LE. .4) M = .0075 * (X - 1F(X .LE. .4) M = .0075 * (X - 1F(X .LE. .4) M = .0075 * (X - 1F(X .LE. .4) M = .0075 * (X - 1F(X .LE. .4) M = .0075 * (X - 1F(X .LE. .4) M = .0075 * (X - 1F(X .LE. .4) M = .0075 * (X - 1F(X .LE. .4) M = .0075 * (X - 1F(X .LE. .4) M = .0075 * (X - 1F(X .LE. .4) M = .0075 * (X - 1F(X .LE. .4) M = .0075 * (X - 1F(X .LE. .4) M = .0075 * (X - 1F(X .LE. .4) M = .0075 * (X - 1F(X .LE. .4) M = .0075 * (X - 1F(X .LE. .4) M = .0075 * (X - 1F(X .LE. .4) M = .0075 * (X - 1F(X .LE. .4) M = .0075 * (X - 1F(X .LE. .4) M = .0075 * (X - 1F(X .LE. .4) M = .0075 * (X - 1F(X .LE. .4) M = .0075 * (X - 1F(X .LE. .4) M = .0075 * (X - 1F(X .LE. .4) M = .0075 * (X - 1F(X .LE. .4) M = .0075 * (X - 1F(X .LE. .4) M = .0075 * (X - 1F(X .LE. .4) M = .0075 * (X - 1F(X .LE. .4) M = .0075 * (X - 1F(X .LE. .4) M = .0075 * (X - 1F(X .LE. .4) M = .0075 * (X - 1F(X .LE. .4) M = .0075 * (X - 1F(X .LE. .4) M = .0075 * (X - 1F(X .LE. .4) M = .0075 * (X - 1F(X .LE. .4) M = .0075 * (X - 1F(X .LE. .4) M = .0075 * (X - 1F(X .LE. .4) M = .0075 * (X - 1F(X .LE. .4) M = .0075 * (X - 1F(X .LE. .4) M = .0075 * (X - 1
1510
1520
                               LE. 8.AND \times GT. .6) M = .0337 + .0095 * (X -
                                                                                                                                    .6)
1530
                     IF(X
                     IF (X .LE. 1. AND .X .GT . .8) M = .0356 + .0165 * (X - .8)
1540
                     IF(X .LE. 1.2.AND.X .GT. 1.0) M = .0389 + .0260 * (X - 1.0)
1550
                     IF(X .LE. 1.4.AND.X .GT. 1.2) M = .0441 + .0395 * (X - 1.2)
IF(X .LE. 1.6.AND.X .GT. 1.4) M = .0520 + .0540 * (X - 1.4)
1560
1570
                     IF(X .LE. 1.8.AND.X .GT. 1.6) M = .0628 + .0799 * (X - 1.6).
IF(X .GT. 1.8) M = .0788 + .09 * (X - 1.8)
1580
1590
               20 TF(X .LE. .25) FF=FF0-4.0*(FF0-FF1)*X
 1600
                               LE. .50 AND.X .GT. .25) FE=FF1-4.*(FF1-FF2)*(X-.25)
1610
                     IF(X
                               .LE. .75 AND X .GT. .50) FF=FF2-4.*(FF2-FF3)*(X-.50)
 1620
                     IF(X LE. 1.0 AND X .GT. .75) FF=FF3-4 * (FF3-FF4)*(X-.75)
 1630
                               LE: 1.25 AND.X GT. 1.) FF=FF4-4 * (FF4-FF5)* (X-1.0)
                      TF(X
 1640
                     IF (X .LF. 1.50 AND.X .GT. 1.25) FF=FF5-4.*(FF5-FF6)*(X-1.25)
 1650
                     IF(X "LE" 1.65"AND.X .GT. 1.5) FF=FF6-20./3.*(FF6-FF7)*(X-1.5)
 1660
                      IF(X "LE. 1.75"AND.X .GT. 1.65) FF=FF7-10.*(FF7-FF8)*(X-1.75)
 1670
                     IF(X LE. 1.85 AND.X .GT. 1.75) FF=FF8-10.*(FF8-FF9)*(X-1.85) IF(X .LE. 1.90 AND.X .GT. 1.85) FF=FF9-20.*(FF9-FF10)*(X-1.9)
 1680
 1690
                       IF(X TLE: 1.95.AND.X TGT. 1.9) FF=FF10-20,*(FF10-FF11)*(X-1.95
  1700
   1710G
                      IF(X %LE. 2..AND X .GT. 1.95) FF=FF11-20.*(FF11-FF12)*(X-2.0)
 1720
               21 IF (X.LT.0.0) F5=KS1*X
 1800
                      TF(X.GT.2.0) FS=KS2*(X-2.0)
 1810
                      IF(X.GE.0.0.AND.X.LE.2.0) FS=0.0
 1811
               22 FB = 858 * X
 1900
               23 FST = TSR * (X - XTS)
 1910
                      IF (X.LE.XIS)
                                                       FST = 0
 1920
              24 ACCX = (F - FFAN - FF - FB - FST - FS) / M
 2000
              X = X + X DOT *DT IMF + 0 .5 *ACCX *DT IME ** 2 .0
 2005
                      XDOT = XDOT + ACCX * DITME
 2010
                          IF(X.LE.O.O.AND.XDOT.LE.O.O) XDOT=0. ORIGINAL PAGE IS
IF(X.GE.2.O.AND.XDOT.GE.O.O) XDOT=0. OR POOR QUALITY
                IF (X.LE'.0'.0.AND.XDOT'.LE'.0'.0) X=0.
 2021
                  IF(X.GE.2.0.AND.XDDT.GE.0.) X=2.
 2022
 2030
 2040
                30 CTA = CTA + 1.0
 2100
                      CTR1 = CTR1 + 1.0
2110
                      TE (CTR) SEQ. 150) PRINT 97
 2120
                      IF(CTR1 '.EQ'. 100) PRINT 98
 2130
                       IF (OTB LEQ. PREREG) CTR = 010
  2140.
                      IF (CTB .EQ. 1.0) PRINT 99, TIME, X, XDOT, ACCX, P2, P3, P4, WD2, WD3, WD4
 2150.
                         IF(CTR1 .GT. NOITER) STOP
    2160
                       IF(NOITER LIGTA, 1.) GOTO 13
 2170
                97 FORMAT (1H-/100,28X, "DYNAMIC SIMULATION"/1H,17X, "VALVE
  2640
                         "P/N 966000 ACTUATION TRANSIENTS")
  26506
                                                                                                                           P2"
                                                                                   XDDT
                       FORMAT (1HO, 1X,"TIME
                                                                                                     ACCX
                                                                    X
  2660
                                                                                             W 04")
                                                 P4 WD2
                                                                         W D.3
                           P3
  26708
              99 EORMAT (1H,F6%4,1X,F6%4,1X,F7%1,1X,F8%0,3(1X,F6%2),3
  2680
                     (1X .F6 .3 ))
  2681G
  9990 STOP: END
```

Table 3-5 Typical Print-Out Simulation Computer Program

ACTS 14:18PDT 08/24/73 AO2 = $0.0056 \text{ IN}.^2$

 $AO3 = 0.0031 \text{ IN.}^2$

 $AO4 = 0.0065 \text{ IN.}^2$

DYNAMIC SIMULATION VALVE P/N 966000 ACTUATION TRANSIENTS

```
. MD3
  TIME.
                  XDOT
                           ACCX
                                      P2
                                              P3
                                                     P4
                                                             WD2
                                                                             €D.A
                           16090 • 764 • 70 765 • 00
                                                   15.37 -0.091
 0.0002 2.0000
                                                                  0.
                    0 •
                                                                           0.106
                                                   34-11 -0-090 -0-009
                           14022 - 750 - 85 763 - 67
 0.0102 2.0000
                    0.
                                                                          0.106
                           12071 - 738 - 01 761 - 38
 0.0202 2.0000
                    0.
                                                   52.82 -0.088 -0.012
                                                                          0.106
 0.0302 2.0000
                    0.
                           10197 • 725 • 85 758 • 54
                                                   71.50 -0.087 -0.015
 0.0402 2.0000
                          8385. 714.23 755.29
                                                   90-14 -0-085 -0-016
                    0 •
                           6626 703 09 751 73 108 73 -0 084 -0 018
 0.0502 2.0000
                    0.
                                                                          0-105
                    0•,
                           4915. 692.36 747.91 127.25 -0.083 -0.019 3246. 682.01 743.88 145.69 -0.081 -0.020
 0.0602 2.0000
                                                                          0.104
 0.0702 2.0000
                    0.
                                                                          0.104
                            1618 672-01 739-66 164-05 -0-080 -0-020
 0.0802 2.0000
                    0 •
                                                                          0.103
 0.0908 2.0000
                              26. 662.31 735.29 182.30 -0.079 -0.021
                    0.
                                                                          0.103
                            5564. 652.92 730.78 200.45 -0.078 -0.022
 0.1002 2.0000
                   0.
 0.1102 1.9999
                           -3072 • 643 • 82 726 • 15 218 • 47 -0 • 077 -0 • 022
                   .-0.3
 0-1202 1-9981
                   -0.4
                           1671 - 635 - 43 721 - 24 236 - 27 - 0 - 076 - 0 - 023
 0.1302 1.9906
                   -2.4
                           -1012 - 628 - 88 715 - 62 253 - 56 - 0 - 0 75 - 0 - 023
                                                                          0.100
 0.1402 1.7683
                  -43-6
                            2332 689 78 686 92 257 31 -0 082 -0 003
                                                                          0.100
 0.1502 1.6377
                            9254. 724.50 675.02 265.19 -0.086
                   1 • 4
                                                                  0.017
                                                                          0.029
                           -6731 - 704-03 678-14 281-31 -0-084
 0.1602 1.6388
                   -1.2
                                                                   0.013
                                                                          0.098
 0.1702 1.6323
                             523 • 688 • 05 679 • 43 296 • 78 - 0 • 082
                   -1 - 4
                                                                  0.007
                                                                          0.098
 0:1802 1:5933
                   -9.2
                           -1029 - 685 - 46 676 - 49 309 - 35 - 0 - 082
                                                                  0.007
                                                                          0.097
 0-1902 1-5050
                   -3-9
                           1315- 703-15 669-34 318-84 -0-084
                                                                  0-014
                                                                          0.096
 0.2002 1.4744
                   -7.6
                           -1415 695 32 668 76 331 71 -0 083
                                                                  0-012
                                                                          0.095
 0.2102 1.3868
                   -3.8
                           1538 • 713 • 39 • 662 • 66 339 • 90 • 0 • 085
                                                                  0.017
                                                                          0.095
 0.2202 1.3532
                   -9.1
                           -1451 - 705 - 48 662 - 45 351 - 87 - 0 - 084
                                                                  0.016
                                                                          0.094
 0.2302 1.2743
                   -1.2
                           1065. 720.49 657.91 359.87 -0.036
                                                                  0.019
                                                                          0.093
 0.2402 1.2225
                            -107. 720.47 656.44 369.87 -0.086
                  -11-6
                                                                  0.019
 0.2502 1.1679
                            -662. 722.97 654.84 379.06 -0.086
                   -3.8
                                                                  0.020
                                                                          0.092
 0.2602 1.0973
                   -5.8
                           1225. 734.16 651.94 386.81 -0.087
                                                                  0.022
                                                                          0.091
                  -8.7
                            ~678. 731.83 651.37 396.04 ~0.087
0.2702 1.0490
                                                                  0.022
 0.2802 0.9928
                   -3.5
                           -1037. 734.93 650.15 404.24 -0.088
                                                                  0.023
                   -3.3
 0.2902 0.9240
                           1355+ 746+48 647+94 411+19 -0+089
                                                                  0.024
                                                                          0.089
0.3002 0.8662
                   -8 - 4
                           1354. 750.07 646.94 418.85 -0.089
                                                                  0.025
                                                                          0.089
                           -1081 • 746 • 05 646 • 94 427 • 01 -0 • 089 -2590 • 745 • 00 646 • 65 434 • 55 -0 • 089
0.3102 0.3153
                   -9.7
                                                                   0.024
                                                                          0.088
                   -6.2
0.3202 0.7668
                                                                   0.024
                                                                          0.087
0.3302 0.7070
                           -1983 - 751 - 11 645 - 71 441 - 14 - 0 - 090
                   -2 - 1
                                                                  0.025
                                                                          0.087
.0.3402 0.6413
                   -3.7
                            284. 762.45 644.47 447.10 -0.091
                                                                  0.027
                                                                          0.086
0.3502 0.5824
                   -3 - 6
                             802. 768.30 643.89 453.37 -0.092
                                                                  0.028
                                                                          0.035
                   -3.3
                           1046. 773.24 643.52 459.51 -0.092
0.3602 0.5246
                                                                  0.028
                                                                          0.085
                   *2·5
                            726. 776.55 643.38 465.57 -0.093
0.3702 0.4685
                                                                  0.029
                                                                          0.084
0.3802 0.4149
                   -2 - 1
                            -981. 775.85 643.55 471.66 +0.093
                                                                  0.029
                                                                          0.083
0.3902 0.3620
                   -5.8
                           -3788 - 772 - 02 643 - 90 477 - 67 - 0 - 092
                                                                  0.028
                                                                          0.033
                              57. 787.30 643.42 482.54 -0.094
                   -7.0
0.4002 0.2983
                                                                  0.030
                                                                          0.032
                   -4.1
                           .1107. 794.32 643.49 487.71 -0.095
0.4102 0.2410
                                                                  0.031
                                                                          0.082
0.4202 0.1872
                   -7.9
                          -1626. 790.64 643.99 493.10 -0.024
                                                                  0.030
                                                                          0.031
0.4302 0.1324
                   -2.3
                          -2393 792 47 644 36 495 08 -0 095
                          -1846. 797.78 644.70 502.83 -0.095
0.4402 0.0751
                   -4.9
                                                                  0.031
                   -9.6
0.4502 0.0184
                          -2186. 800.70 645.14 507.51 -0.095 0.031
                                                                          0.079
                         -93622 601.74 646.36 515.05 -0.072 -0.015
0.4602 0.
                   0 •
                                                                          0.078
0.4702 0.
                   0.
                        -137110. 469.14 642.59 524.20 -0.056 -0.029
                                                                          0.077
0.4802 0.
                        -162982 400-18 637-68 533-21 -0-048 -0-033
                    ٥.
                                                                          0.076
```

ORIGINAL PAGE IS OF POOR QUALITY

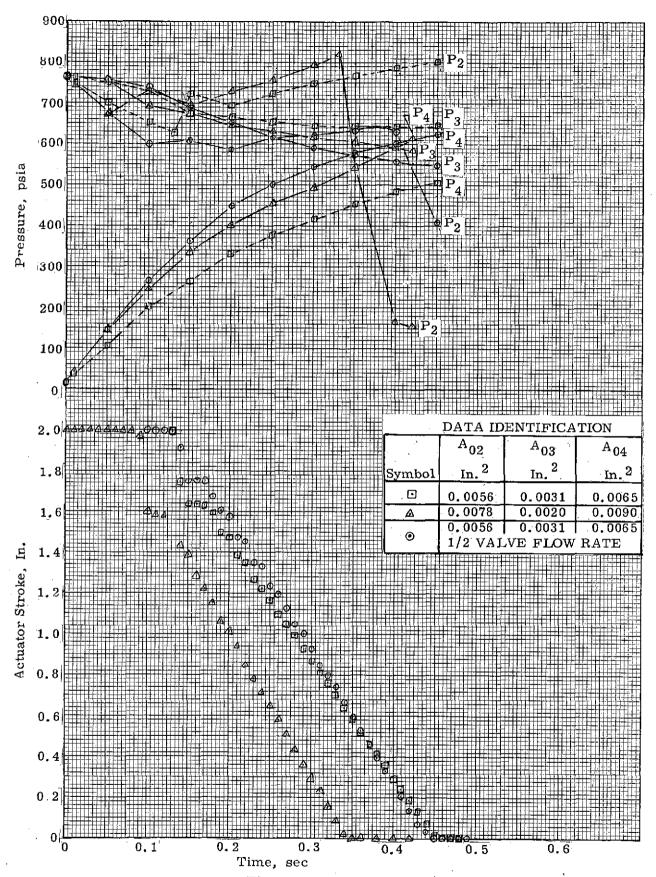
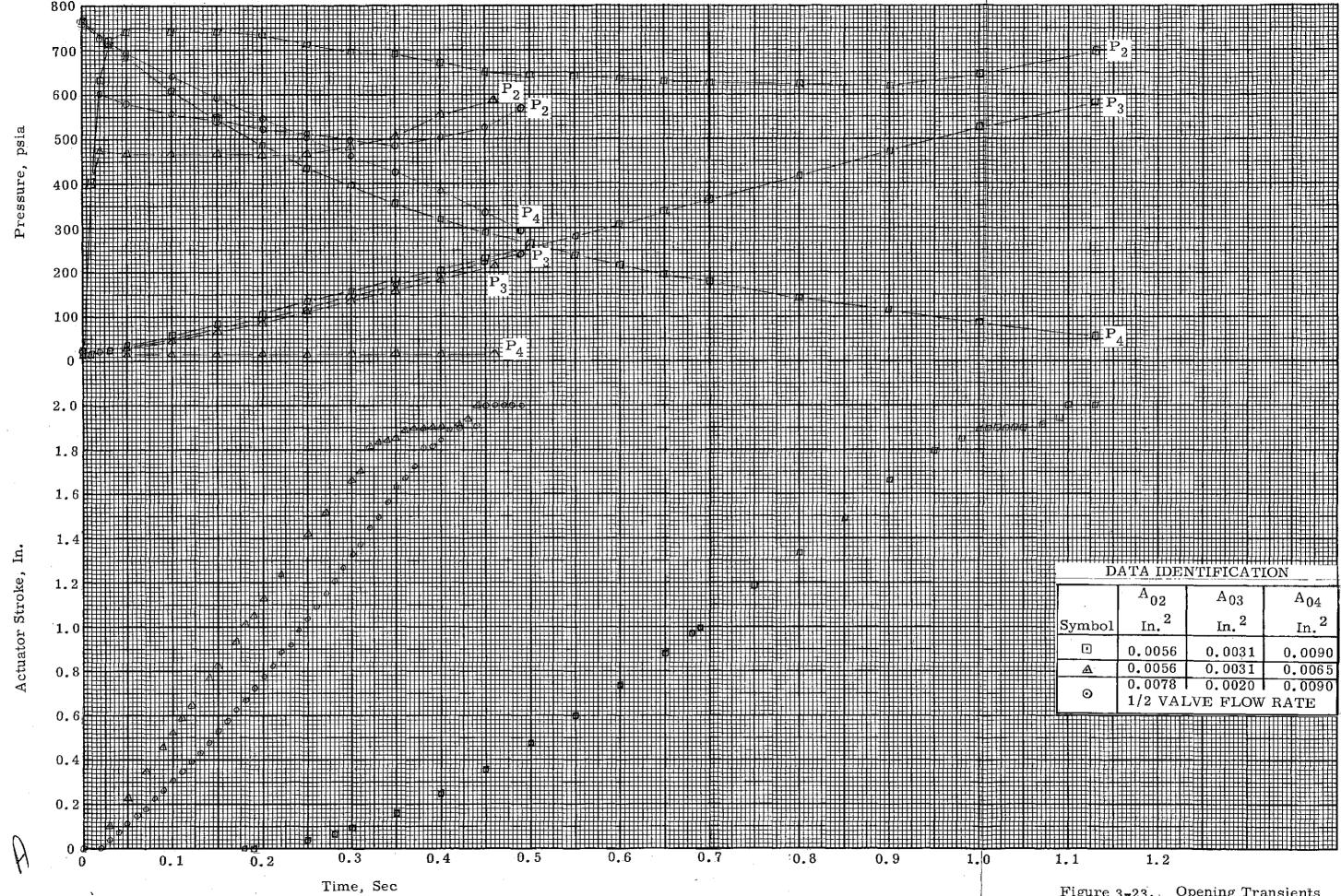



Figure 3-22. Closing Transients

SECTION 4

PHASE III MANUFACTURE AND TEST

4.1 MANUFACTURE

The 10-inch long life shutoff valve, PN 966000, was manufactured in accordance with Assembly Drawing 966001. A photograph of the unit is shown in Figure 4-1.

Hardware was manufactured by Fairchild Stratos and by numerous outside vendors. Assembly of the unit was accomplished at Fairchild. The valve components, which were manufactured by outside vendors, are listed in Table 4-1. The original bellows vendor defaulted, and a second vendor was chosen. Two sets of bellows were received and tested during the demonstration testing. The bellows proved to be unsatisfactory, and the bellows type actuator assembly was replaced with a piston type actuator assembly during the early part of the demonstration testing. See Demonstration Test Report ER-966-24, which is included as Appendix D of this report, for additional information on the bellows failure and for a detail description of the piston type actuator assembly.

The sealing surface of the poppet assembly, PN 966053 (see Figure 3-16), was sent to DuPont to be plasma sprayed with Tribaloy No. 120. Following the application of the hard coating, the surface was ground to the finished dimensions. However, the surface finish of the part, as received by Fairchild Stratos, was "out-of-spec." Subsequent lapping brought the surface finish within the 1 to 2 RMS specified on the drawing.

4.2 DEMONSTRATION TESTS

Demonstration tests were conducted on the long life valve test specimen as reported in Fairchild Stratos test report number ER 966-24, which is included in Appendix D herein. Included in the test report are sections covering the test summary, the test specimen description, the rework and change summary, the test setups and procedures, and the distortion of the testing.

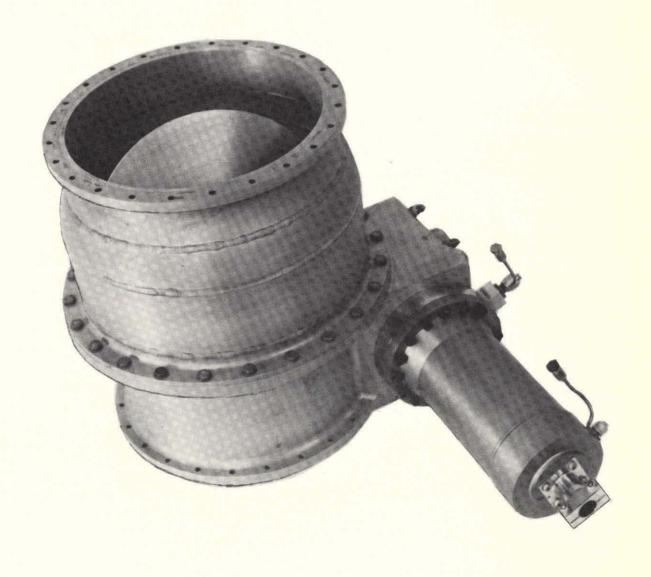


Figure 4-1. 10-Inch Long Life Shutoff Valve, P/N 966000

Table 4-1

<u>Valve Components</u> <u>Manufactured Outside Fairchild</u>

Part Number	Description
966031-1 thru -7	Bearing
966033-1 thru -2	Bearing
966035-1 thru -5	Sleeve
966039	Seat Retainer
966041	Body Assembly
966052	Bearing
966056	Bellows Assembly, Inner
966057	Bellows Assembly, Outer
966063	Deflector
966068	Duct Assembly
966072	Seat (Seal)
966079	Ring

SECTION 5

CONCLUSIONS AND RECOMMENDATIONS

As evidenced by the configuration studies carried out in Phase I, the selection of the optimum configuration is in large part influenced by the preferential weighing factors applicable to the characteristic parameters for a specific valve application. The design selection of the 10-inch valve placed preferential weighing on minimum internal leakage for a 20,000 cycle life while meeting the opening and closing time requirements.

The study also indicated the necessity to use valve configurations which eliminate or minimize scrubbing action on the seal during engagement and further pointed to seal concepts which eliminated significant flow during final closure to prevent seal erosion or damage by high velocity contaminants. The lever positioned poppet design accomplished these objectives by providing poppet translation at the point of seal engagement with a flat seat design. In addition, the disk spring element provided a means of deflecting the fluid stream away from the critical seal surface or closure and provided for substantial flow reduction at seal-poppet engagement.

Although some of the performance objectives were not attained within the constraints of this contract, the investigation pointed to the following conclusions and recommendations:

- a. Bellows: Bellows problems occurred during the demonstration test program. The long life (20,000 cycles) requirement was incompatible with the high pressure, long stroke and available envelope requirements. A failure analysis of the primary actuator bellows (outer) provided a review of the design constraints imposed by the long cyclic life objective. Imposition of the bellows stability criteria and the allowable cyclic stress level indicated a permissible bellows stroke in the order of 1.0 inch as compared to the 1.6-inch stroke employed in the test configuration. This would result in a bellows area and actuation force increase by this stroke ratio as well as modification of the actuation linkage attachment and bearing size.
- b. Poppet Hard Coating: The Tribaloy Blend 120 hard coating on the poppet sealing surface proved to be very wear resistant. There was no evidence of separation of the coating from the aluminum alloy base metal as a result of the temperature extremes of minus 200° to plus 200°F. The stainless steel disk spring showed no signs of galling as a result of contact with the hard surface. The coating, not being as fine-grained as might be desired, was slightly porous in nature. This porosity contributed to the main seal leakage during the demonstration testing. The Tribaloy coating of the test hardware was thicker than specified. A thinner coating would have produced a finer grain structure and would have helped to eliminate the porous condition.

- c. Polyimide Bearings: The polyimide SP 211 bearings used in the valve actuation linkage proved to stand up well under the 20,000 test cycles, and the SP 211 material is recommended for similar applications.
- d. Piston Dynamic Seals: The piston dynamic seals were made of both plain TFE and filled TFE (15 percent glass, 5 percent Moly Disulphide). During the demonstration test program it was found that particles from the plain TFE seal were deposited on the cylinder wall and were then transferred to the filled seal. These flakes of contamination interfered with the proper sealing action of the filled dynamic seals. The dynamic seals of the filled material are recommended for their longer wear capabilities.
- e. Shaft Seal: The shaft seal relied on interference fit and differential pressure loading to provide proper sealing action. During the demonstration testing, this lip seal provided variable sealing capabilities for both the room temperature and low temperature cycling and the room temperature and high temperature cycling. A spring loaded design is recommended for a low leakage and long life application.

APPENDIX A

Rating Sheets (29 Sheets)

Large Valves - 1st Iteration
Large Valves - 2nd Iteration
Small Valves
Large Valve Actuators
Controllers
Transmitters

4- VERY GOOD 3-GOOD	SIMU	VISOR UA LTANEDUS JAL 8 RUTA Z	RETRACTION	SEAL	FIG 2-4 VISOR VALUE FIG 2-1 BALL VALUE SEAL RETRACTED & THEN SIMULTAINEOUS RETRACT VALUE KNOWN OF BALL							
2-FAIR 1-POOR	rating	EMPHASIS COEFFICIENT	ADJUSTED RATTING	i constant	EMPHASIS COEFFICIENT	RATING	RATING	EMPHASIS COEFFICIENT	ADJUSTED RATING	- 1		
PRESSURE DROP	4	.୦୪.୨୩	.3516	4	0879	3516	4	_0879.	3516			
RESPONSE TIME	2	.0549	1098		0549	.0549	2	.0549	8601.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
WEIGHT	4	.0220	.0880	2	0220	.0440	3	.0220	.0660	-		
SYCLE LIFE	2	1209	.2418	4	.12091	,4836	2	. 12051	.24/8	1		
LEAKAGE	2	.1209	.2418	4	.1205	.4836	2	1,1200	.24 18	La Carrier S		
ENUELOPE		6						0				
REPLACEMENT MAINTENANCE	3	0549	.1647	3	.0549	.1647	3	D549	.1647	OF FO		
DN LINE MAINTENANCE	3	.0659	.19 7 7	2	0/259	13 1 8	3	0629	.1977			
SPATUCITY	3	0659	11977	2	0659	13.18	3	.0659	.1972	A Para S		
STURAGE LIFE	4.	.6989	.3966	4	.0389I	3966	4	.6989	.39 66			
ACTUATUR ADAPTABILITY	4	0275	.1000	2	0275	0320	4	0225	.1000			
MATURAL VIBRATION- RESISTANCE	3	.1374	4022	2	1574	.2748	3	1374	4122	2		
CONTAMINATION	3	,1264	_3792	3	1264	3792	2	., 1264	.2528			
AVAILARILITY OF DESIGN INFO	3	.೧۱65	0495	1	ದಿ 65	0165	. 3	.0105	.0495			
		TOTAL	2,9206		TOTAL	2.9681		TOTAL	2.7822	8 1 4		

4- VERY GOOD	F16 2	2-Z BALL	(ED AND						· · · · · · · · · · · · · · · · · · ·	
3- GOOD	BALL	AL RETRACTED AND LL ROTATED IN								
2- FAIR		EMPHASIS	ADJUSTED	osims (EMPHASIS	ADJUSTED	RATING	EMPHASIS	ADJUSTED	
1- POOR	RATING	CAEPFICIENT	RATING	RATING	COEFFICIENT	RATING		COEFFICIENT	PATING	
PRESSURE DROP	4	.0879	.3516		0879			.0879		
RESPONSE TIME	1	.0549	,0549		0549			.0549		
WEIGHT	1	0220	.0220		0220			.0220		-
CYCLE LIFE	. 4	1209	.4836		.1209			.1209		
LEAKAGE	4	.1209	,4F 36		.12.09			.1209		
ENUELOPE		٥								
REPLACEMENT										
MAINTENANCE	3	.0549	1647		.0549			0549		
DI LINE	2	.0659	.1318		,02 <u>-</u> 59			10659		
MAINTENANCE COST								0659		ORIGINAL OF POOR
SHEELCHS	2	0659	13/8		೦೧೯೪					NAI OR
STURAGE LIFE	4	.6989	.39 66		.0982			_ ১৭৪৭		QUALI
ACTUATUR ADAPTABILITY	2	0275	0500		0275			02.75		ALLITA ST. R.D.
NAPRATIONE		1374	.2748		1574			12.79		Z S
the second of th										
CONTAMINATION	2	,1204	.2528		1264			11264		
AUAILAZILITY OF		.0165	.0165		.0165			.0165		92
DESIGN INFO	1	1	-							
	177	TOTAL	2.8197	1177	TOTAL			TOTAL		1

1ST ITERATION 4- VERY GOOD 3-GOOD; 2-FANYL	SIMUL	TANEOUS B PATION OF	ETRACTION			FLY Es a then	FIG 2-8-BUTTERFLY ELADE TRANSLATES & ROTATES				
1 POOP	rating	EMPHASIS CAEPFICLENT	ADJUSTED RATING		EMPHASIS COEFFICIENT	ADJUSTED RATING	RATING	EMPHASIS COEFFICIENT	PATING:		
ressure drop	3	.0879	2637	3	.0879_	.2637	3	.0871	.2637		
response time	.3	.0549	.1647		.0549	.1098	2	.0549	1098		
UEIGHT	З	5220	.0660	4	azzo	.0880	2	.0220	.0440		
YCLE LIFE	. 2	1209	-2418	4 .	.1209	48 36	4	1209	4436		
EAKAGE	2	.1209	2418	1.4	37.09	.48 36	4	17.09	,4836		
ENUELOPE		Δ						D			
EPLACEMENT	3	.0549	.1647	3	.ÖSYA	.1647	3	.0549	.1647		
N LINE MAINTENANCE COST	2	.0659	./3/8	3	0.59	1977	2	10659	.1318		
STOTP CICHTS	2	0659	1318	3	.೦७\$೪	.1977	ے	.0629	./3/8		
STORAGE LIFE	4	6989 .	.3956	4	,09.EPI	.39.56	4	.1989	.3956		
ADAPTABILITY	4	0275	./000	4	0275	./100	5	.0275	.//60		
MARIO HONZE	2	.1374	.2748	3	1274	.4122	2	1274	.2748		
CONTAMINATION RESISTANCE	2.	.1204	.2528	2	11264	2528	2	1264	.2528	Ju .	
AVAILARILITY OF	3	.0145	.0495	2	.0165	.0230	.· 2	.0165	.0230		

4 IST ITERATION 4 - VERLY GOOD 3 - GOOD 2 - FAIR	F162-1	4 CUAXIAL F	OPVET	FIG 2-1	6 MOTOR	Daven	FIG 2-12- MOTOR DRIVEN				
1- poon	rating	CASPFICIENT	RATING WITTAN	RATING	EMPHASIS COEFFICIENT	ADJUSTED RATING	RATING	EMPHASIS COEFFICIENT	ENTING:	-	
PRESSURE DROP	2	୍ଟ୍ରେମ୍ବ	1758	2	0879	1758	2	_a879	1758		
RESPONSE TIME	.4	0549	,2196	3	0549	.1647	3	.0549	1638	1	
WEIGHT	2	0220	.044 8	1	0220	1220	3	. 622/2	.060	-	
CYCLE LIFE	.4	1209	.4836		.12.09	.1209	4	.1209	J4P36		
LEAKAGE	- 4	.12-09	.4836	7	.12.09	.4836	Y	17502	148 36	-	
ENUELOPE					Φ			0			
REPLACEMENT	- 4	OS49	.2/96	4	.0549	2196	4	.0549	.2/96	1 .	
IN LINE MAINTENANCE	2	.D6 5 9	.13/8		2659	, 06 son	3	0659	.1972		
SAPATEICHTS	2	0659	.1318	2	D6\$9	.1318	3	,0659	1922		
STURAGE LIFE	4	6989	.3956	3	.09891	2977	4	,5989	.3956	- - -	
ACTUATOR ADAPTABILITY	7	0275	.0274		_0275	.or 7 5	3	0275	.0825		
MANNAL VIBRATION RESSERVE	3	1374	14/22	4	1274	.5496	2	12.74	.2748	1.	
CONTAMINATION RESISTANCE	3	.1264	3792	3	1264	3792	3	.1264	3792	177	
AVAILABILITY OF DESIGN INFO	4	.0165	0660	3	.016.5	0495	. 3	,0165	0495	211.	
		TATAL	3.1703		TOTAL	2.6878		TOTAL	2.97/7	**	

ORIGINAL PAGE IS OF POOR QUALITY

4- VEVLY GOOD	F16 2	1-15- RADIA SEAL	POPPET					
2-600D 2-FAIR							, Jacob B	
1.9600	rating	EMPHASIS CAEFFICIENT	RATING	EMPHASIS COEFFICIENT	ADJUSTED RATING	KATING	EMPHASIS COEFFICIENT	ADJUSTED WATTING
PRESSURE DROP	2	୦୫7୩	.1758	 0879			/.0879	
response time	4	.0549	.2196	9549			0549	
WEIGHT	3	0220	.0660	orio			.0220	
CYCLE LIFE	4	11209	.4836	.1209			. 1209	
LEAKAGE		.1209	,1209	.1209			.1209/	
ENUELOPE		٥		0/			Ø	
REPLACEMENT MAINTENANCE	4	.0549	,2196	 .9549			.0549	
IN LINE MAINTENANCE	2	.0659	.1318	. 29عد			0629	
SFUTTIELTE	2	.0659	.1318	 ୦७५୩			.0659	
STURAGE LIFE	4	.6989	.3956	.୦୩୫୩			.6989	
ACTUATOR ADAPTABILITY	2	.0275	.0550	0275			6275	
VARIATION VIERATION RESISTANCE	3	.1374	.4122	 1014			1374	
CONTAMINATION RESISTANCE	4	,1264	.5056	.1264		, , , , , , , , , , , , , , , , , , ,	1264	
AVAILABILITY OF DESIGN INFO	ے	.0165	-0330	.0165			.0165	

4-VERY GOOD 3-GOOD	, ,	-9 DUAL F		$A \rightarrow A$	10 DUAL F L ACTUA		ROTARX			
1- POOR.	rating	EIMPHASIS COEFFICIENT	DETECULAR SMITAR	RATING	EMPHASIS COEFFICIENT	ADJUSTED RATING	RATING	EMPHASIS COEFFICIENT	EXTING	
PRESSURE DROP	.3	.0879	- 26 3.7	3	.08.79	,2637	2	0879	1758	
RESPONSE TIME	3	.0549	.1647	3	.0549	. 1647	2	,0549	1098	i
WEIGHT	3.	,0220	.0660	2	.0220	.0448	3	0220	.0660	
CYCLE LIFE	.3	.12.091	.36 27	3	.1209	3627	2	1209	.2418	4-
LEAKAGE	3	.1209	.36 27	3	1209	.36 27	3	.1200	.3627	
ENUELOPE		O			0			Δ .		
REPLACEMENT MAINTENANCE	4	10549	,2196	4	,0549	12196	7	,0549	2/96	
DN LINE MAINTENANCE	3	.0659	. 1977	3	.0629	1977	2	,6659	. 1318	
SCORTICITY	4	.06.59	. 2636	3	.663A	.1977	3	.0659	,1977	***
STORAGE LIFE	4	.0989	.3956	4	OBBA	3956	4	,0989	.3956	OF OR
ACTUATUR ADAPTABILITY	4	.027.5	./000	4.	D275	1100	4	0275	.1100	IGINAL POOR
NATURAL	3	1374	.4122	2	1374	2748	4	.1374	.5496	24
CONTAMINATION										AGE IS UALITY
RESISTANCE AVAILABILITY OF DESIGN INFO	2 2	.0165	.2528	2	.0165	.2528	3	.0165	. 5056	9
		TOTAL	3.0943		TOTAL	2.8790		TOTAL	3.1155	0

7 IST ITERATION W-VERY GOOD 3-6000 2- FAIR		PLUG LACTARLE DUENCED		RETRU	-5 PLUG ACTABLE PLUS SECON	SENCENCE				: .
1 Poor	RATING	EMPHASIS CREFFICIENT	ADJUSTED EMITAS	RATING	EMPHASIS COEFFICIENT	rating	RATING	ENDHASIS COEFFICIENT	ADJUSTED BATTAS	
PRESSURE DROP	4	027 _. 9	3516	4	PCBO	.35/6		. บราก		
RESPONSE TIME	2	.0549	.1098		0549	.0549		.0.549		
WEIGHT	2	.0220	.0440	1	.0220	.0220		220		\$
CYCLE LIFE	.3	11.209	.3627	4	1209	.4836	1	.1209		
LEAKAGE	2	.1209.	.2418	3	1209:	3627		.1204		Application of the state of the
ENUELOPE	1	0			O			9		
REPLACEMENT	Y	,D\$49	.2/96	4	.0549	,2196		.0549		The second secon
IN LINE MAINTENANCE	3	.0659	.1977	2	.06201	.1318		.0.≥≤9		- QQ 02
SHAPLICITY	2	.0629	.1318		.0659	0659		.0/25/		ORIGINAL OF POOR
STORAGE LIFE	4	.0989	.3756	4	.ce89	37.56		299		AL P
ACTUATUR ADAPTABILITY	3	.0275	10825	3.	0275	0825		.02.75		QUALITY
WARET DA NEE	2	.1374	2748	2	1374	. 2278		. 1374		
CONTAMINATION	3	.1264	.3792	7	,1264	.5054		.1264		9
AVAILARILITY OF	2	.0165	.0330	2	0165	.0339		.0165		1
		TOTAL	2.8241		TOTAL	2.9836		TOTAL		

IST ITERATION 4-UERY GOOD 3-GOOD 2-FAIR		-19 HEVLMET PLATED P	-	F/G	2-11 SWIN	16 				
1. POOR	rating	EMPHASIS CAEPFICIENT	RATING	RATING	EMPHASIS COEFFICIENT	RATING.	RATING	EMPHASIS COEFFICIENT	ADJUSTED SATTING	
PRESSURE DROP	2	.0879	.1758	4	0879	, 3516		. এ৪ 7%	3	
RESPONSE TIME	4	.0549	.2196	3	.0549	.1647		.0.549		.:
WEIGHT	3.	.0220	.0660	2	.0220	,0440	1	.0220		
CYCLE LIFE	4	11 209	4836	3	,1209	.3627		.1205		-
LEAKAGE	4	.1209	. 48 36	3	.1209_	.3627		1209	· · · · · · · · · · · · · · · · · · ·	
ENUELOPE					D					
REPLACEMENT MAINTENANCE	4	,D549	. 2196	4	. <i>O</i> \$ 4 9	.2196		.0549		
IN LINE MAINTENANCE		.0629	.0659	3_	.06 2¢1	.1977		/.Db\$9		5
SIPPLICITY	3	.0629	.1977	2	. 10659	.1318		. ೧७५५		-
STORAGE LIFE	4	.c989.	.39 56	4	.CA891	.39.56	***************************************	.0989		
ACTUATUR ADAPTABILITY	2	.027.5	0550	4	0275	11.00		.02/15		
NATURAL NEED TO SHARE	4	1374	.5496	3	1374	4122		1374		
CONTAMINATION RESISTANCE	3	1264	.3792	2	,1264	. 2528		.1264		
AVAILARILITY OF DESIGN ENFO	3	.0165	.0495	4	.0165	.0660		.0165		20
		TOTAL	3.3407		TOTAL	3.0714		TOTAL		

4-UERY GOOD 3-600D 2- FAIR	SEAL	4 VISOR L VETKACTE VALUE R	D AND	FIG 2 RETRA	ERATION -2 BALL CTED AND ED IN SE	SEAL D'BALL	FIG 2-7 BUTTERFLY BLADE TRANSLATES & THEN ROTATES				
1. 700 n	rating	emphasis Caefficient	RATING WATTAS	RATING	emphasis Coefficient	ADJUSTED RATING	RATING	EMPHACIS COEFFICIENT	SALLES SALLES		
RESSURE DROP	4	:: <u>0</u> 879 :	.3516	4	o879	. 3516	3	PC80:	. 2637		
RESPONSE TIME	.2	.0549	.1098		.0549	.0549	3	0.54%	.1647		
WEIGHT	1	.0220	,0220	1.	.0220	.0220	4	.0220	.0880		
CYCLE LIFE	, 4	11209	.4836	-4-	1209	,4936	4	.1209	.4836		
LEAKAGE	3	.12091	.3627	4	.1209	, 4836	-3-	.,!209	.3627	1	
ENUELOPE	• • •	0			0			اما			
REPLACEMENT MAINTENANCE	4 _	م. ۵5 <i>4</i> 9	.2/96	4	.0549	.2/96	4	.0549.	.2196		
DI LINE MAINTENANCE	3	,0659	1977	Ъ	06 261	1977	3 -	.Dla≥3	.1977		
STAPLICITY		.0659	,0659		.0659	.0659		.0659	. 2636	웃	
STORAGE LIFE	4	.0929	3956	4	rsro.	.3556	4	.0989	,3956	ORIGINAL OF POOR	
ACTUATOR ADAPTABILITY	4	.0205	1100	4	0275	,1100	4	.0275	.1100	T PA	
NATIONAL VIRETIANCE	3	1374	4122	2	. 1374	2748	3 _	.1374	.4122	QUALITY	
CONTAMINATION RESISTANCE	4	11264	15056	4	1264	5056	-2	.1264	.2528		
AVAILARILITY OF DESIGN INFO	1	.0165	.0495	3.	0162	0495	4	.0165	.0660	99	

4-VERY GOOD	F16 2	-14 POPPE			DUAL FLA		F/6 2-	5 PLUG	
3-6000 2- FAIR			- I	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -					
1- POOR	rating	EMPHASIS COEFFICIENT	ADJUSTED SATTAN		EMPHASIS COEFFICIENT	ADJUSTED RATING	RATING	EMPHASIS CLEFFICIENT	ADJUSTED RATING
PRESSURE DROP	- 2	.0879	-1758	- 2	.0879	1758		.0879	.35/6
RESPONSE TIME	4.	.0549	-2196	3	۰.۵549	.1647		,0549	.0549
WEIGHT	2	15220	0440	3	.0220	.0660		.0220	. 0220
CYCLE LIFE	,Н	,1209	. 4836	3	.1709	.3627	4	.1209	.4436
LEAKAGE	2	.1209	.2418		. 1209	1209	4	,1209	. 4836
ENUELOPE	Market State of State	D			٥				
REPLACEMENT MAINTENANCE	4	.0549	.2196	4	0549	.2196	4	.0549	. 2/96
IN LINE MAINTENANCE	S	.06 59	.13/8	4	.D6 29	. 2636	4	D629	.2636
SHAPEICHTY	2	.0639	. 1318	7	.0659	.0659		.0657	-0659
STORAGE LIFE	4	.0989	,3956	4	0989	.3956	4	୍ଦ୍ର ଓଡ଼ିଆ	. 3956
ACTUATOR ADAPTARILITY		.0275	.0275	4	0275	-1100	4	.0275	.1100
NATURAL VIRENTANCE	4	1374	-5496	3	1374	.4/22	2	.1374	.2748
CONTAMINATION	4	.1264	-5056		.1264	.1264	4	.1764	.5056
AVAILARILITY OF DESIGN INFO	4	.0165	.0660	3	.0165	.0495	3	.0165	.0495
		TOTAL	3.1923		TOTAL	2.5329	S I I I I I I I I I I I I I I I I I I I	TOTAL	3.2803

4-VERY 600D 3-600D 2-FAV2		-19 HEILING AL ACTUR	ゴル	ECOND	ITERA	NON			
I+ POOR	RATING	EMPHASIS CLEFFICIENT	ADJUSTED RATING	l managements to	EMPHASIS COEFFICIENT	ADJUSTED RATING	RATING	EMPHASIS COEFFICIENT	ADJUSTED RATING
PRESSURE DROP	2	.0879	1758		-0879			.0879	
response time	. 4.	.0549	,2196		.0549			.0549	
WEIGHT	2	0220	.0440		.0220			0220	
CYCLE LIFE	.4	,12.09	. 48.36		.1209			1209	
LEAKAGE	3	.1209	.36 27		.1209				
ENVELOPE		0			O				
REPLACEMENT: MAINTENANCE	4	.0549	2196		.0549			.0549	
IN LINE MAINTENANCE	2	.06 59	.1318		.PZ &Q.			۹۲۵۵	
SIFFICETOS	3	.0659	:1977		-0659			.0%\$ ³ .	
STORAGE LIFE	4	,0989	3956		0989			. 0489	
ACTUATUR ADAPTABILITY	3	.0275	.0825		0275			.0275	
NATURAL	2	1374	.2748		ار، 374			.1374	
CONTAMINATION	2	11244	.2528		1264			.1264	
AVAILABILITY OF	4	.0165	.0660		,016Z			0165	1

SMALL VALUES 5-SUPERIOR 4-EXCECLENT		NOTA N			9 POPPET D. TOR DR			33 BIMET POPPET	ALLIC	
3-VENLY GOOD 2-FAIR 1-POOR	rating	EMPHASIS CAEFFICIENT	ADJUSTED RATING	RATING	EMPHRSIS COEFFICIENT	ADJUSTED RATING.	RATING	EMPHASIS COEFFICIENT	ADJUSTED PATTING:	
PRESSOME DROP		10879	.0829	3	.0879	.2637	3	.0829	.2637	
RESPONSE TIME	3	0549	1647	3	.0549	CY21.	2	10549	1188	
WEIGHT	2	.0220	.044	2_	.0220	044	5	.0220	.110	
SYCLE LIFE	.2	.1209	.24/8	3	1209	_3627	5	1209	.6045	\$
LEAKAGE	5	./209	.6045	3	.1209	393/	3 -	.1202	3932	2 2
ENUELOPE		0			1.0			0		·j
REPLACEMENT MAINTENANCE	5	.0549	2745	3	0549	,2745	3	.0545	1647	
DI LINE MAINTENANCE	7	.0659	0639	3	.0659	.1972		.0659	,0659	
SIMPLICITY/COST	2	0657	1301	3	.0659	.1977	3=	.0619	13295	OF
STORAGE LIFE.	3	.0989	.2967	4	.0989	3956	5	0989	.4945	ORIGINAL OF POOR
ADAPTABILITY	5	0225	,1375	5	.0225	.1325		0275	,02>5	L PAGE IS QUALITY
VIBRATION	4	.1374	.5496	3	1375	9/22		1374	-6870	AI
CONTAMINATION RESISTANCE	5	1265	.6325	3	.1265	3795	3	, 1285	, 3795	16
AVAILARILITY OF DESIGN INFO	3	0165	049-5	3	.0165	.0495	2		0330	83

CMALL DALUES 4-VERY GOOD 3-GOOD 1-POOR PRESTORE DROP 3 RESPONSE TIME WEIGHT SYCLE LIFE ALLEAKAGE ENVELOPE REPLACEMENT MAINTENANCE IN LINE MAINTENANCE SIMPLICITY/COST 3	.0879 .2637 .0549 .2226 .0220 .086	FIG 2-13 PLUG -PO HYBRID RATING COEFFICIENT 5 .0879 5 .0579 3 .0220	ADJUSTED	RATING EMPHASI COEFFICIE	1 (!	
PRESTORE DROP 3 RESPONSE TIME 4 WEIGHT 4 CYCLE LIFE 3 LEAKAGE 3 ENUELOPE REPLACEMENT 2 MAINTENANCE IN LINE MAINTENANCE 2	CAEFFICIENT PRATING .0879 .2637 .0549 .2226 .0220 .086 .1209 .3627	RATING COEFFICIENT 5.0879 5.0589 3.0220	2867			
RESPONSE TIME & WEIGHT & SYCLE LIFE3 LEAKAGE3 ENUELOPE REPLACEMENT & MAINTENANCE IN LINE MAINTENANCE	.0549 .2226 .0220 .086 .1209 .3627	3 .0220	2867			
CYCLE LIFE 3 LEAKAGE 3 ENVELOPE REPLACEMENT 7 MAINTENANCE IN LINE MAINTENANCE 2	1209 3627					
LEAKAGE 3 ENVELOPE REPLACEMENT 9 MAINTENANCE IN LINE MAINTENANCE 2			I T 1 1 1			(
REPLACEMENT 9 MAINTENANCE IN LINE MAINTENANCE 2	0 3627	5 1209	.6048			•
MAINTENANCE 2	.0549 .2196	5 0549	2745			
SIMPLICITY COST 3	.0659 .1361	10059	0629			1
STORAGE LIFE 4	.0989 .3956	4 -0613	3956			
ADAPTABILITY 3	0275 0875	.30275	0825			manager of the second of the s
CONTAMINATION RESISTANCE 3	.1378 .41 <u>1</u> 2 .1265 .3795	3 1265	37.93			
AVAILARILITY OF 3		3.10160	3.6562	70741		<u>~</u> <u>M</u>

LARGE VALUE ACTUATORS 4 SUPERIOR	DOUB	2-26 DOUBLE RECT DE16	DID	BEL	SINGLE LOW SOL		FIG 2-28-DOUBLE ACTING; DOUBLE MOLENOID DIRECT PRIVE DETENT HELD					
3 6xcELLENT 2 60000	ZATING	ÉMPHASIS CAEFFICIENT	ADJUSTED SMITHS:		emphasis Coefficient	ACLUSTED RATING	RATTING	EMPHASIS COEFFICIENT	RATING:			
RESPONSE TIME	2-	,064)	.128:2	2	,0641	1282	8	0641	1923	1		
WEIGHT		.0256	.0256	<u>Z</u>	,0256	0512	3	0256	.0768			
LEAKAGE : L	2 4	.1282	256Y 5128	3	1282	.3846	3	1282	5128 3846			
ENVELOPE		9										
REPLACEMENT	4	,0697	2564	4	.0641	2.69	¥	.0641	.2164			
IN LINE MAINTENANCE	3	.0.769	2367 . 1 \$38	3	0769	2307	4	.0769	.3076	ORIGINA OF POO		
STORAGE LIFE.	2	.1026	4104	4	1026	3676 4104 7	3	.1026	3078	R P		
VALVE	Ч	.032/	.1284	4.	032/	1254	4	.032/	1284	AGE IS		
CONTRACTION	4	.7474	5896	4	.,474	58816	7	.1474	5896			
RESISTANCE	3	./346	4038 6768	4	1346	5384	2	1346	2692	401		
DESIGN INFO		-0192	3.1729			3.6151		10101	3.3330			

	ORIC TO
ROOM	PINAI
ZUQ	Γ.
ALITY	PAGE !
7	ទ

ACTUATORS		PISTON I	PACK	RED	HYDRAULIC ON TARONS	7012	REDA	A PNEUMI NDANT M	10TOL		
a suntinion				MOTO	n D-TORG	OE	MOT	0 12	PAGUE		
3	enting	emphasis Caeppicient	ADJUSTED EATTAG		EMPHASIS COEFFICIENT	ACLUSTED RATING L		COEFFCIENT EN PHASIS	}		
Company and		المستوات والمستاد والمستاد والمستاد	4								
ESPONSE TIME		,0641	0641	4	,0641.	.2564		1004	.064/	-	
EIGHT III	23	0256	0220	4	1.0216	Y5010		9116	. 0250		
YOU'S LIFE !!	2	,1282	.2564	4	1257	,5128	4	1,1255	,5128		
eakage 1	1	.1282	,2564		12/32	11282	3	-77.92	3846		-
WELDPE											, per
TPLACE MENT MAINTENANCE	4	.0681	.2.464	y	1.0697	, 256 y	4	.064/	. 2564		
LINE MAINTENANCE	2	.0769	.1538	4	2/269	3674	4	.0769	,3074		
1900 11 10 ST	2	.0769	1538	7	14765	.0769		10262	16749		
ORAGE LIFE.	3	.1026	. 2078	3	1-1076	. 2078	3.	. 1026	3078		OF I
ALVE ADAPTABILITY	4	.032/	11234	4.		.1284	И	.034/	:1284		OF POOR Q
ERATION	1	,1474	2948		1.47	1404	1	1.222	FCAR	-	QUALITY
DINTRIMINATION :		. 1346	. 1346		1/346	. 1346		1,23 26	, 1346		⊬ ₹ 8
VAILARILITY OF	H	.0192	,6768	2	-0196	.0384	12	.0/32	. 0387	0	· .
CENIGN INFO	<u> </u>		2.1091		<u>ساورین پرسرایی د</u>	2.3973			2.3846		٠.

CONTROLLERS 6-EXCELLENT 5-UERY 600D 4-GOOD 3-FALM		31 PIEZOEL ISKS	ECTRIC	1	9 PALADIUM S PALOY TÜE		i e e e e e e e	SAT JENS SCHAL CO		
2- POOTL 1- VERT POOR	rating	EMPHASIS CLEFFICIENT	ADJUSTED RATING	RATINS	EMPHASIS COEFFICIENT	ADJUSTED RATING	RATING	EMPHASIS COEFFICIENT	ADJULIED PATTING	
RESPONSE TIME WEIGHT CYCLE LIFE LEAKAGE ENVELOPE	5 . 4	,0641 ,0256 ,1282 ,1282	.1822 .1280 .7692	3	, 02 S6 . 1282 . 1282	.1282 .0768 .7697 .7691	2 5	.0641 .0256 .1282	.0641 .05/2 .6410 .5128	
REPLACE MENT		.0 ه ۲۱	.064/	6	.0671	.3846		.0641	.6641	
IN LINE MAINTENANCE	1	.0769	,6769	6	0769	.4614		0769	,0769	
SIMPLICITY/COST STORAGE LIFE	6	.0769	.6156	6	10269	.6156	3	.0769 .1026	.1307	
ACTUATUR ADAPTABILITY	14	0321	.1284	0	· .03Z\	.1926	3	.572	-0963	
VIBRATION	6	.1474	.8844	3	1,1454	- 4422	_5	.1474	.7376	
CONTAMINATION	3	1346	. 4.038	6	.1346	.8076	2	.1340	.2692	10
AVAILABILITY OF DESIGN INFO	3	.0192 TOTAL	3.9869	1	TOTAL	4.8204	4.	.0197 TOTAL	3.3331	6

TRANSMITTERES	ſ	32 HERMETI DIR OLF (V.) Co		PEGE	THERMETIC SWE MATERIA VINOLLE		FIG 2-18			
	rating	EMPHASIS CLEFFICIENT	ADJUSTED RATING	RATING	EMPHASIS COEFFICIENT	ADJUSTED RATING	RATING	EMPHASIS COEFFICIENT	ADJULTED RATTING	
RESPONSE TIME WEIGHT CYCLE LIFE LEAKAGE ENUELOPE REPLACEMENT MAINTENANCE IN LINE MAINTENANCE SIMPLICITY STORAGE LIFE ACTUATOR ADAPTABILITY VIBRATION CONTAMINATION RESISTANCE	5 3 5 5	.0641 .0256 .1282 .1282 .0769 .0769 .0321	.3205 .0768 .6410 .6410 .3843 .3056 .4056	5 5 6 6 6 3	.0641	3205 .1024 .6410 .6410 .3255 .3845 .46156 .46156 .4636	3 5 W 5 W 5 W 5 W 6 W 6 W 6 W 6 W 6 W 6 W	.0641 .0256 .1282 .1282 .1282 .0769 .0769 .0769	.1923 .1280 .6410 .5128 .0769 .3845 .1605 .8844	ORIGINAL PAGE IS OF POOR QUALITY
AVAILABILITY OF DESIGN INFO	++	TOTAL	4.5703	6	.0192 TOTAL	1152	4	TOTAL	4.3009	

APPENDIX B

Adjusted Rating Sheets
Based On
Layout Representation
(4 Sheets)

Large Valves
Large Actuators

LARGE VALUE	9660	20 HYBRA	D		21 DUNC		9660	22-0150		
A SUPERIOR	BUT	ERFLY PO.	UPE+	FEDU	ENCED	5A-44	1287	erz JEP	シェインミン	1
3 EXCELLENT		EMPHASIS I	ADJUSTED		EMPHASIS	ADJUSTED	RATING	EMPHASIS	ADJUSTED	
Z 600A 1 7001	RATING	CASFFICIENT	RATING	RATING	COEFFICIENT	,		COEFFCIENT	PATTING:	<u> </u>
PRESSURE DROP	3	,0879	2637	4	0879	.35/6	4	.0879	13516	
response time.	4	10549	2196	2-	0549	.1598	. 3	0549	1,1647	
WEIGHT	4	.0220	.0880		0220	10220	3	0220	.0660	
CYCLE LIFE !	4	. 12 09	4836	2	1209	2418	3	1209	.3627.	
LEAKAGE	4	1209	4856	13	1209	3627	3	1209	3627	
ENUELOPE		0								
REPLACEMENT MAINTENANCE	7	.0549	296.	4	0549	2196	4	0542	2196	
IN LINE MAINTENANCE	4	0659	مادعات	3	06.09	1977	3	0659	1920	
SIMPLICITY/COST	4	.0659	2656	2	10619	11218	3	0615	11977	
STORAGE LIFE.	4	.0989_	3956	1	0989	3956		0989	3956	
VILLE ACTUATOR					0201			1 2 2 1	200	
NAWIAL	4	.0275	1100	2.	02/1	0550	2	0275	0520	
VIERATION RESISTANCE	2	1374	2230	2	1374	7750		-1374	1250	
CONTAMINATION	4	1264	5056	3	:1264	3790	2	1264	3792	
AVAILARILITY OF DESIGN INFO		0165	.0330	3	0165	ZPNa	3.	.0165	0493-	9
			3.6045	<u> </u>	- mont	1-2-7-13		TOTAL	3.67.70	

LARGE VALUE PROPOSAL DRIES 4 SUPERIOR	966023 VISOX						
3 EXCELLENT Z GOOD 1 POOL	RATING CASPFICIENT	ADJUSTED RATING_	RATING	EMPHASIS COEFFICIENT	ADJUSTED RATING	RATING EMPHASIS COEFFCIENT	ADJULIED T
PRESSURE DROP	4 ,0879	. 35/6 109B		0379		0879	
WEIGHT	3 .1209	3627		1209		1209	
LEAKAGE	3 1/209	.3625		1209		7209	
REPLACEMENT MAINTENANCE	4 ,05 49	296		0549		0.549	
IN LINE MAINTENANCE SHOPPICHY/COST	3 0659	1977		10659		0659	
STORAGE LIFE.	4 .0989	.3936		0989		0989	
NATURAL VIBRATION		0550		0275		0273	
RESISTANCE RESISTANCE	3 1264	3797)		1374		/374	
AVAILARILITY OF DESIGN INFO	$\frac{9}{1}$	3-022-1		TOTAL		70TA)	

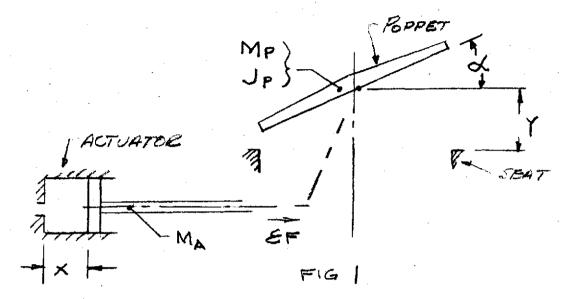
						_					
LARGE ACTUATORS		14 SINGLE	[i i	7. MODELE	•		REDOND	ANT PASSON		
LAMOUT VILLE	RELLOWS - SOLENOID OFERATED			DINECT HELD	it reiver	DETENT	[TECCOURT				
4 SOPERIOR				ne(i)		DETZULDA	<u> </u>	BATTING EMPHASIS ADJUSTED			
2 6000	RATING	EMPHASIS COEFFICIENT	ADJUSTED RATING	RATING	EMPHASIS COEFFICIENT	<u> </u>	RATIN	COEFFICIENT	} }		
! Poor_		COEFFICIENT	KAIIIIG								
								•			
RESPONSE TIME	4	.0641	.2564	3	.0641	,1923	2	.0641	1282		
WEIGHT	4	.0256	,1024	3	.0256	.0768	1	.0256	.0256		
CYCLE LIFE	4	.1282	.5128	.3	.1282	.3846	2	.1287	.2564		
LEAKAGE	4	.1282	,5128	3	.1282	.3846	3	.1282	3846		
ENVELOPE		0			0			0			
REPLACE MENT					:						
MAINTENANCE	4	.0641	,2564	4	.0641	.2564	3	.0641	.1923		
IN LINE											
MAIN TENANCE	4	.0769	3076	3	.6769	.1923	4	.0769	3076		
COST	4	.0769	.3076	3	.0769	1923	1	.0769	.0769		
STORAGE LIFE	4	.1026	4104	4	.1026	.4104	3	.1026	.3078		
VALVE											
ADAPTABILITY	4	10321	1284	4	,0321	,1284	2	10321	.0645		
VIERATION						20110		เนาน	111011		
RESISTANCE	4	.1474	.5896	2	1474	,2948	/	,1474	1474		
CONTAMINATION	4	.1346	.5384	3	.1346	,4038	4	.1346	5384		
RESISTANCE		מוייכוו	יוטלי.		11210	סכטוד,	ļį Įį	,,_,			
AVAILABILITY OF	4	.0192	्०७७८	4	10192.	0768	3	.0192	.0576		
DESIGN INFO	<u> </u>	TOTAL	3,9996		TOTAL	2,9935	-	TOTAL	2.4870		
•			י עווויי כן			1 11/	1	***	1 60 1 U 1 V 1		

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL P OF POOR QI		REDONI LE ACTING NOID OPEI	BELLOWS							
PAGE IS	RATING	EMPHASIS COEFFICIENT		RATTING	EMPHASIS COEFFICIENT	ADJUSTED RATING	RATIN	EMPHASIS COEFFICIENT	l f	
RESPONSE TIME	4	.0641	. 2564		.0641	er jako ya Ar		.0641		,
WEIGHT	2	.0256	.0512		.0256			.6256		•
CYCLE LIFE	4	.1282	.5128		.1282			.1282		
LEAKAGE	4	.1282	.5128		.1282			.1282		
ENVELOPE		D			0			0		•
REPLACE MENT MAINTENANCE	4.	.0641	, 2564		.6641	A Ward Comment of the		.0641		
IN LINE MAIN TENANCE	4	,0769	,3076		.6769			.0769		
COST	2_	.0769	.1538		697م			.0769		
STOKAGE LIFE	4	.1026	.4104		ط٥٥١.			.1026		
VALUE A DAPTA BILITY	3	12801	,0963		,0321			1580		
YIBRATION RESISTANCE	3	.\474	.4422		.1474			.1474		
CONTAMINATION RESISTANCE	4	.1346	, 5384		.1346			.1346		
AVAILARILITY OF DESIGN INFO	4	0192	.0768		,0192		* *.	.0192	R	.
		TOTAL	3.6151		TATAL			TOTAL		

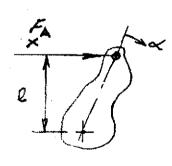
APPENDIX C

Dynamic Simulation P/N 966000


Calculations of Equivalent Mass and Poppet Forces (5 Pages)

FAIRCHILD

DATE	7/16/73
DVIE	_ <u></u>


TITLE DYNAMIC SMUCATION P/N 966000

REPORT NO.

VALVE ACTUATION RESULTS IN A NON-LINEAR ROTATION AND TRANSLATION WITH RESPECT TO ACTUATOR POSITION SHOWN IN FIGURE 1. AN EQUIVOLENT NON-LINEAR MASS WILL BE COMPUTED TO EVALUATE ACTUATUR ACCELERATION WITH FORCE UNBALANCE.

ROTATION)

TE TORQUE (IN#)

L= (IN)

J=(#INSECZ) L = POSITION (RAD) FA = (#)

T= Fl = Jx $dx \cdot dx$

Fl = J x

 $\dot{X} = \frac{Fe^2}{J} = \frac{F}{J} \left(\frac{dx}{dx}\right)^2$

[] FAIRCHILD

,	1.1
23.4.TE	7/16/13
DATE	

PREPARED BY MI

TITLE

REPORT NO.....

TRANSLATION

$$F_{A,X}$$

$$M_{P}$$

$$M = (\# 56c^{2})$$

$$X = (N)$$

$$F_p = Mp \ddot{\gamma} = Mp \left(\frac{d\gamma}{dx}\right) \ddot{x}$$
 $F_A dx = F_p d\gamma$
 $F_A dy = Mp \left(\frac{d\gamma}{dx}\right) \ddot{x}$

$$F_A \frac{dx}{dy} = M_P \left(\frac{dy}{dx}\right) \ddot{x}$$

$$x = \frac{F_A}{M_P \left(\frac{dx}{dx}\right)^2}$$

ORIGINAL PAGE IS OF POOR QUALITY

EQUIVOLENT MASS ME = MA + MA (dx) + J(dx)

MA = 2.5# = 6.47 × 10-3 #SEC?

Mp = 3.87 # = 10.03 × 10-3 # SECZ

 $J = \frac{3.00 + (2.1 \text{ in})^2 = 3.427 \text{ n} 10^{-2} + \text{in sec}^2}{386 \text{ in/sec}^2}$

×	$\left(\frac{d}{dx}\right)$	(ax)	M/dy 2	J (dx) =	MA	Me #sec
1.30 1.66 2.00	1.45 1.50 1.60 1.56 1.40 1.09 0.48 0.05	0 0 RAD 0 0 2°/1N .035 17°/1N .297 33°/1N .576 53°/1N .925 75°/1N .309 93°/1N .623	21.09×103 22.57×103 25.68×103 24.41×103 19.66×103 11.92×103 2.31×103 .03×103	0.04×10 ³ 3.02×10 ³ 11.37×10 ³ 29.38×10 ³ 58:72×10 ³		2.756×10 ² 2.904×10 ⁻² 3.219×10 ⁻² 3.750×10 ⁻² 4.751×10 ⁻² 6.750×10 ⁻² 9-677×10 ⁻²

FAIRCHILD

DATE	7/17/	73

PREPARED BY JRJ

TILE DYNAMIC SIMULATION HN 966000

PAGE NO 1/6 REPORT NO.

STOP SIMULATION

THESE RELATIONSHIPS INCLUDE THE RESPECTIVE SPRING EATES AND RECOIL FACTORS.

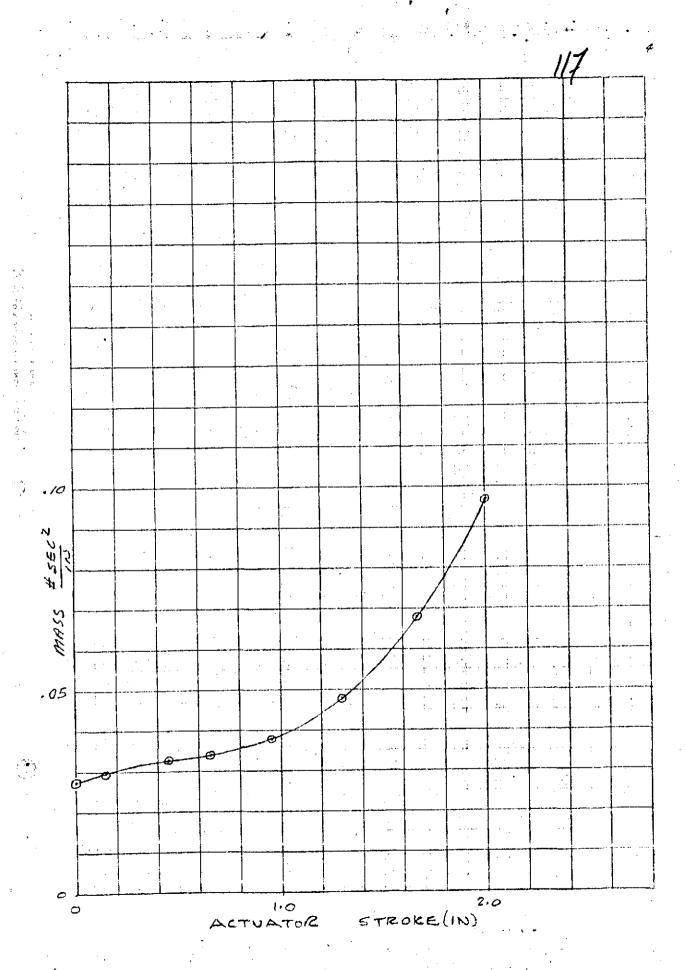
FOR FIRST COMPUTATION USE THE FOLLOWING

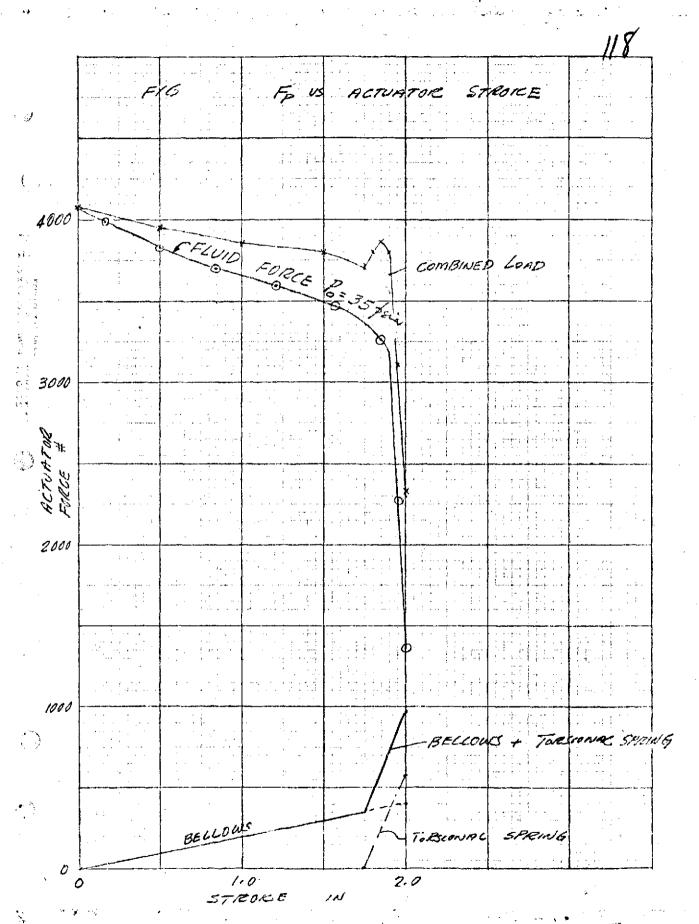
Ks, = 3.3 × 106 #/IN

Ks2 = 105 #/IN

KV1 = 0.40

KV2 = 0.60


FRICTION


ASSOME f= ± OIL FA

POSITIVE WHEN X >0 NEGATIVE WHEN X LO

POPPET FORCE

FORCE INCLUDES A TOOSIONAL SPRING PLUS POPPET AIR LOADS THIS WILL BE SUPPLIED AS A CHAPH OF FP VS X.

APPENDIX D

Demonstration Test Report ER 966-24

Long Life Valve Design Concepts (153 Pages)

DEMONSTRATION TEST REPORT

ER 966-24

LONG LIFE VALVE DESIGN CONCEPTS

CONTRACT NAS 8-28518

NASA CONTROL NO. PR-M-28518

Approved by:

Approved by:

Approved by:

J.R. Fones, Principal Investigator

Approved by:

Approved by:

M. Baniadam, Project Manager

20 December 1974

121

FOREWORD

This report was prepared by Fairchild Industries, Stratos Division, under NAS 8-28518, Long Life Valve Design Concepts for the George C. Marshall Space Flight Center of the National Aeronautics and Space Administration.

Principal Investigator is Jack Jones, (213) 675-9111, Ext. 253; Contract Administrator is John Adams, Ext. 271; Project Manager is M. (Ben) Baniadam, Ext. 255; and Cognizant NASA Engineer is Ken Anthony, (205) 453-5701. This test report was prepared by Archer Hall, Ext. 378.

124

ABSTRACT

This report documents the results of testing a long life cryogenic shutoff valve. These demonstration tests were part of the Phase III of a long life valve design concepts study. For these tests the pneumatically actuated 10-inch hybrid poppet butterfly valve was subjected to approximately 1000 room temperature cycles, 9000 cryogenic (-200°F) cycles, and 10,000 high temperature (+200°F) cycles; sinusoidal and random vibration testing; flow capacity testing; non-destructive burst testing; and post test wear analysis. During the cycling tests the valve inlet pressure was 35 psig, and the actuation pressure was 750 psig. At the beginning of the valve cycling at 696 total valve cycles, the actuator configuration was changed from a bellows type to a piston type because of excessive leakage.

123

Table of Contents

Se	ction	Title	Page
		FOREWORD	ii
		ABSTRACT	iii
1		INTRODUCTION	1
2		SUMMARY	2
3		TEST SPECIMEN	7
	3.1	TEST SPECIMEN DESCRIPTION	7
	3.2	BELLOWS REPLACEMENT AFTER INITIAL TESTING .	7
	3.3	HARDWARE CHANGES DURING DEMONSTRATION TESTING	7
	3.3.1	Change to Piston Type Actuator Assembly	7
	3.3.2	Description of Piston Type Actuator Assembly	11
	3.3.3	Seal Replacement and Stop Addition After 770 Cycles	11
	3.3.4	Additional Piston Venting After 939 Cycles	11
	3.3.5	Seal Replacement and Filler Addition After 2478 Cycles.	15
	3.3.6	Link Redesign After 6126 Cycles	15
	3.3.7	Main Seal Refinished After 6911 Cycles	15
	3.3.8	Actuator Seal Replacement After 6941 Cycles	15
	3.3.9	Shaft Seal Replacement After 10,025 Cycles	17
	3.3.10	Orifice Resizing After 10,089 Cycles	17
	3.3.11	Actuator Seals Replaced After 16,580 Cycles	17
-	3.3.12	Mounting Flange Rework During Lateral No. 1 Axis Vibration Test	17
	3.3.13	Potentiometer Removal During Longitudinal No. 1 Axis Vibration Test	18
4		TEST SETUPS, PROCEDURES AND RESULTS	20
	4.1	EXAMINATION OF PRODUCT	20
	4.2	INITIAL TESTING	20
	4.3	LOW TEMPERATURE LIFE CYCLE TEST	25

Table of Contents (continued)

<u>Se</u>	ction	Title	Page
	4.3.1	Leakage and Response Testing	25
	4.3.1.1	Leakage Tests	25
	4.3.1.2	Response Time Test	. 39
	4.3.2	Component Leakage Evaluation	39
	4.3.3	Cycling with Bellows Type Actuator Assembly	39
	4.3.4	Cycling with Piston Type Actuator Assembly	44
	4.4	HIGH TEMPERATURE LIFE CYCLE TEST	46
	4.4.1	Leakage and Response Testing	46
	4.4.1.1	Leakage Test	46
	4.4.1.2	Response Time Test	54
	4.4.2	Component Leakage Evaluation	54
	4.4.3	High Temperature Cycling	57
	4.5	VIBRATION TEST	58
	4.5.1	Resonances	58
	4.5.2	Monitored Leakage Data	58
•	4.5.3	Leakage Test Prior to Vibration	58
	4.5.4	Vibration in Lateral No. 1 Axis	64
	4.5.5	Vibration in Longitudinal No. 1 Axis	64
	4.5.6	Vibration in Longitudinal No. 2 Axis	64
	4.5.7	Leakage and Response After Vibration Testing	68
	4.6	FLOW CAPACITY TEST	69
	4.7	NON DESTRUCTIVE BURST TEST	74
1	4.8	FINAL DISASSEMBLY AND INSPECTION	76
5		DISCUSSION	86
	5.1	CONFIGURATION CHANGE	86
	5.2	COMPONENT REPLACEMENT AND REWORK	86
	5.3	LEAKAGE	87
	5.4	RESPONSE TIME	87
i			

List of Appendices

Appendix No.	Title	Page
A.	Drawing 966001, Rev. B	A-1
В .	Stainless Steel Products, Bellows Failure Report, Report No. 2646	B-2
С	AETL, Vibration Test Report, Report No. 5330-1203	C-3
	List of Figures	
Figure No.	Title	Page
3-1	Test Specimen, 10-Inch Long Life Valve	9
3-2	Valve Poppet and Actuation Linkage Positions	10
3-3	Cross Sectional View, Piston Actuator Assembly 966096	12
3-4	Cross Sectional View, Rework Piston Actuator Assembly 966096	14
3- 5	Failed Link, P/N 96046, During Low Temperature Life Test	16
3-6	Damaged Stroke Indicator Removed from Test Specimen During Sinusoidal Sweep in Longitudinal No. 1 Axis	19
4-1	Valve Leakage During Initial Testing, Bellows Type Actuator Assembly	24
4-2	Schematic Diagram, Low Temperature Life Cycle Test Setup	26
4-3	Test Setup, Low Temperature Life Cycle (Chamber Cover Removed), Test Specimen at Cryogenic Temperature	27
4-4	Test Setup, Low Temperature Life Cycle (Chamber Cover Removed), Test Specimen at Room Temperature	28

List of Figures (continued)

Figure No.	Title	Page
4-5	Test Setup Low Temperature Life Cycle Test, Operator's Station	29
4-6	Main Seal Leakage, Life Cycle Test	37
4-7	Shaft Seal Leakage, Life Cycle Test	38
4-8	Typical Room Temperature Response Time Transients, Low Temperature Life Cycle Test	40
4-9	Typical Cryogenic Temperature Response Time Transients, Low Temperature Life Cycle Test	41
4-10	Schematic Diagram Bellows Type Actuator and Valve Assembly	42
4-11	Schematic Diagram Piston Type Actuator Assembly	43
4-12	Schematic Diagram, High Temperature Life Cycle Test Setup	47
4-13	Test Setup, High Temperature Life Cycle (Cover Plate Removed)	48
4-14	Test Setup, High Temperature Life Cycle	49
4-15	Typical Room Temperature Response Time Transients, High Temperature Life Cycle Test	55
4-16	Typical High Temperature Response Time Transients, High Temperature Life Cycle Test	56
4-17	Schematic Diagram Vibration Test Setup and Vibration Axis Identification	61
4-18	Mounting Failure During Random Vibration in Lateral No. 1 Axis	65
4-19	Test Setup, Vibration in Longitudinal No. 1 Axis	66
4-20	Modified Test Setup, Vibration in Longitudinal No. 2 Axis	67
4-21	Schematic Diagram, Flow Capacity Test Setup	70
4-22	Test Setup, Flow Capacity Test View of Test Specimen and Test Instrumentation	71
4-23	Test Setup, Flow Capacity Test View of Diffuser Section	72

127

List of Figures (continued)

	Dist of Figures (communica)	•
Figure No.	Title	Page
4-24	Test Setup, Nondestructive Burst Test	75
4-25	Piston Assembly Contamination, Final Disassembly and Inspection	77
4-26	Small Piston Seal, Surface Condition and Contamination, Final Disassembly and Inspection	78
4-27	Rod End Piston Seal, Surface Condition and Contamination, Final Disassembly and Inspection	79
4-28	Piston Head End Seal, Surface Condition and Contamination, Final Disassembly and Inspection	80
4-29	Enlarged View of Piston End Seal, Surface Condition and Contamination, Final Disassembly and Inspection	81
4-30	Sleeve Assembly 966085, Surface Condition and Contamination, Final Disassembly and Inspection	82
4-31	Sleeve Assembly 966085, Outer Sleeve Surface Condition, Final Disassembly and Inspection	83
4-32	Poppet Main Sealing Surface Condition, Final Disassembly and Inspection	84
4-33	Main Seal Particle Contamination, Final Disassembly and Inspection	85
		<i>y</i>
	List of Tables	
Table No.	Title	Page
3-1	Component Cycle Life and Rework Summary	8
3-2	New and Reworked Components and Assemblies for Test Specimen with Piston Type Actuator Assembly.	13
4-1	Component Wear Data	21
4-2	Component Leakage, SCCM, Low Temperature Life Cycle Test, Room Temperature	26

128

List of Tables (continued)

Table No.	Title	Page
4-3	Component Leakage, SCCM, Low Temperature Life Cycle Test, Room Temperature	32
4-4	Response Time, Sec, Low Temperature Life Cycle Test, Room Temperature	34
4-5	Response Time, Sec, Low Temperature Life Cycle Test, Cryogenic Temperature	35
4-6	Component Leakage, SCCM, High Temperature Life Cycle Test	50
4-7.	Response Time, Sec, High Temperature Life Cycle Test	52
4-8	Resonant Frequency Summary, Vibration Test	59
4-9	Component Leakage, SCCM, Vibration Test	62
4-10	Flow Capacity Test Data	73

129

SECTION 1 INTRODUCTION

This report documents the results of the Phase III demonstration tests of the Long Life Valve Design Concept Study. These tests were conducted under Contract NAS 8-28518 for the George C. Marshall Space Flight Center of the National Aeronautics and Space Administration. The purpose of these tests was to demonstrate that the 10-inch pneumatically actuated hybrid poppet butterfly valve designed and manufactured during Phase II and Phase III, respectively, would meet the requirements and design goals established during the study program. These requirements and goals were as follows:

Media

RP-1 Propane, LH2, LO2, He, N2

Temperature Range

-423° to +200°F

Ambient Pressure (Internal)

Operating Proof

35 psia (+3.5, -0) 70 psia (+7, -0)

Burst

140 psia (+14, -0)

Actuator Pressure (He or N2)

Operating

 750 ± 50 psia

Proof Burst $1500 \pm 100 \text{ psia}$ $3000 \pm 200 \text{ psia}$

Valve Pressure Drop

2 psi maximum with 43 lb/sec

air or N₂ at room ambient temperature and pressure and 35 psia

at valve inlet.

Valve Leakage Goal

 3×10^{-5} sccs at 100 psia internal

valve pressure.

A summary of the testing is presented in Section 2 herein. The test specimen change and rework history are presented in Section 3. The test procedures and results are presented in Section 4. The discussion and conclusions are presented in Section 5. Included as Appendices A, B and C are the valve assembly drawing 966001, the bellows failure analysis, and the AETL vibration test report.

130

SECTION 2 TEST SUMMARY

The long life valve demonstration tests and inspections were conducted at the Fairchild Stratos Division, Manhattan Beach, California, during the period from 10-23-73 to 7-16-74 except for the vibration tests which were conducted at the Approved Engineering Test Laboratories, Los Angeles, California.

Test Summary Sheets 1 through 4 present the test program in its entirety. Each sheet presents in chronological order the test, test specimen configuration, date, test conditions, location of test results, test specimen rework and remarks briefly describing anomalies, rework and results.

					:: -	
Item	Test	Test Specimen Configuration	Date	Test Conditions	Test Results and Rework: Tables, Figures & Appendices	Remarks
1	Examination of Product	Actuator with Bellows	10-23-73	Prior to assembly, diameters and surface finishes of all bearings and associated shafts, dynamic seals and mating surfaces were measured and recorded. Details were inspected for workmanship, general quality and cleanliness. Test specimen was weighed.	Paragraph 4.1 Table 4-1	Weight: 54 pounds
2	Initial Testing	Actuator with Bellows	10-25-73	Valve and actuator internal leakages were measured with inlet pressure increments of 5 psi with nitrogen, and actuator pressure increments of 100 psi.	Paragraph 4.2 Figure 4-1 Paragraph 3.2	Poppet seal engaged at inlet pressures above 20 psig.
3	Low Temperature Life Cycle Cycling continued until 15 RT cycles 681 Cryogenic cycles 696 total valve cycles	with Bellows tinued until 15 to 12-12-73 to 12-20-73 live cycles with 35 psig valve inlet pressure and 750 psig actuation pressure, 3 sec open and 7 sec closed Leakages and response tests at cryogenic and room temperatures conducted before, during an after cycling.	actuation pressure, 3 sec open and 7 sec closed. Leakages and response tests at cryogenic and room temperatures conducted before, during and after cycling. Leakage Tests:	Paragraph 4.3 Tables 4-2 & 4-5 Figures 4-2 thru 4-11 Paragraph 3.3.1 Table 3-2 Figure 3-3	Valve would not cycle due to excessive leakage thru actuator open port, actuator close port and solenoid vent ports. Configuration change to piston type actuator assembly.	
	Cycling continued until 48 RT cycles 722 cryogenic cycles 770 total valve cycles	Actuator with Piston	3-7-74 to 3-11-74	With 750 psig actuator pressure, "cover" and "close" port leakage measured with valve open and inlet pressure, varied from 0 to 35 psig. With 750 psig actuator pressure "cover" and "outlet" port leakage measured with valve closed and inlet pressure varied from 0 to 35 psig. With 750 psig "close" port pressure and 35 psig valve inlet pressure measured "cover" and "outlet" port leakage after "close" port pressure reduced to zero. Response Tests: With 750 psig actuator pressure and 35 psig valve inlet pressure measured open-to-close and close-to-open response time.	Paragraph 3.3.3 Figure 3-4	Excessive cover port leakage; upper piston seal replaced and Kel-F stop disk added to piston; 10 micron filters added at actuator ports.
	Cycling continued until 167 RT cycles 772 cryogenic cycles 939 total valve cycles	Actuator with Piston	3-14-74 to 3-15-74		Paragraph 3.3.4	Occasional high actuator leakage indicating erratic actuator seal performance. Reworked actuator assembly to provide additional vent holes in bearing and annular vent path to piston.
	Cycling continued until 223 RT cycles 2255 cryogenic cycles 2478 total valve cycles	with	3-19-74 to 3-28-74		Paragraph 3.3.5 Figure 3-5	Excessive valve and actuator leakage. Valve seal and two actuator piston seals replaced. Filler incorporated into actuator sleeve. Valve would not fully open or close.
	Cycling continued until 331 RT cycles 5895 cryogenic cycles 6226 total valve cycles	with	4-2-74 to 4-8-74		Paragraph 3.3.6	Valve would not fully open or close. Actuation link failed. Installed new redesigned actuation link.
	Cycling continued until 1016 RT cycles 5895 cryogenic cycles 6911 total valve cycles	with	4-17-74 to 4-18-74	<u></u>	Paragraph 3.3.7	Excessive main seal leakage. Main seal refinished.

FAIRCHILD STRATOS DIVISION

TEST SUMMARY LONG LIFE VALVE DEMONSTRATION TESTS

Test Cycling continued until 1 RT cycles 5897 cryogenic cycles 6941 total valve cycles	with Piston 1082 Actuator	Date 4-22-74 to 4-23-74	Test Conditions	Test Results and Rework: Tables, Figures & Appendices	Remarks Excessive piston leakage. Piston seals
ont.) RT cycles 5897 cryogenic cycles	with Piston 1082 Actuator	to			
	• • • • • • • • • • • • • • • • • • •	1			replaced.
Cycling continued until 1 RT cycles 8943 cryogenic cycles 10,025 total valve cycles	with Piston	4-25-74 to 4-29-74		·	Low temperature life cycle test concluded.
4 High Temperature Life Cycling continued until 0 High temp cycles 10,039 total cycles (14 room temp cycles)	Cycle Actuator with Piston	5-8-74	10,004 cycles at 200°F. with 35 psig valve inlet pressure and 750 psig actuation pressure, 3 sec open and 7 sec closed. Leakage and response tests at 200°F. and room temperature conducted before, during and after cycling.	Paragraph 4.4 Tables 4-6 & 4-7 Figures 4-12 thru 4-16 Paragraph 3.3.9	Excessive cover port leakage. Shaft seal replaced.
Cycling continued until a high temp cycles 10,089 total valve cycle	with	5-10-74	Leakage Tests: With 750 psig actuator pressure "cover" and "close" port leakage measured with valve open for inlet pressure of 0 and 35 psig.	Paragraph 3.3.10	Actuator close time too long. "Open" and "close" port orifices reduced to shorten close time.
Cycling continued until 6 high temp cycles 16,580 total valve cycle	with	5-10-74 to 5-16-74	With valve open and zero psig actuator pressure "cover", "close" and "open" port leakage measured with 15 psig and 35 psig inlet pressure.	Paragraph 3.3.11	Excessive "cover" port leakage. Two large seals and one small piston seal replaced.
Cycling concluded at 10, high temp cycles 20,043 total valve cycle	with	5-20-74 to 5-22-74	With 750 psig actuator pressure "cover" and "open" port leakage measured with valve closed and inlet pressure zero psig and 35 psig. With 750 psig actuator pressure "cover" and "outlet" leakage measured with valve closed and 15 psig and 35 psig inlet pressure. Response Tests: With 750 psig actuator pressure and 35 psig valve inlet pressure measured open-to-close and close-to-open response.		High temperature Life Cycle Test concluded.

TEST SUMMARY ONG LIFE VALVE DEMONSTRATION TESTS

				LONG LIFE VALVE DEMONSTRATION TESTS		SHEET 3	
Item [°]	Test	Test Specimen Configuration	Date	Test Conditions	Test Results and Rework: Tables, Figures & Appendices	Remarks	
5	Vibration Test Lateral No. 1 Axis Sinusoidal Sweep Closed Valve	Actuator w/Piston	5-28-74 to 6-5-74	"Cover" port and "outlet" port leakage measured before, during and after vibration run; 750 psig actuator pressure, zero psig and 35 psig inlet pressure.	Paragraph 4.5 Table 4-8 thru 4-10 Figure 4-17 to 4-20 Appendix B	Successful run. Resonant points: 95G at 77 Hz, 100 + G at 1800 Hz, 240G at 1400 Hz, 100 + G at 25 Hz, 57G at 390 Hz.	
	Sinusoidal Sweep Open Valve	Actuator with Piston		Sinusoidal sweep from 5 to 2000 Hz at one octave per minute at the following intensities: Frequency, Hz 5 to 20 0.4 in. da 20 to 90 8.5g peak		Successful run. Resonant points: 100+G at 1450 Hz, 100+ at 1700 Hz, 200G at 1500 Hz, 89G at 210 Hz, 85G at 285 Hz, 78G at 520 Hz, 73G at 1110 Hz and 62G at 275 Hz.	
·	Random Vibration Closed Valve	Actuator with Piston		90 to 131 0.02 in. da 131 to 2000 18.2g peak Random vibration over 20 to 2000 Hz for 5	Paragraph 3.3.12	Run stopped after 2 minutes. Mounting bolts sheared and loosened. Mounting flange reworked.	
	Sinusoidal Sweep Open Valve (Retest)	Actuator with Piston		minutes at the following intensities: Frequency, Hz 20 to 100 Intensity 9 db/Oct rise		Successful run, resonant points: 57G at 1580 Hz, 90G at 1830 Hz, 80G at 1140 Hz, 55G at 950 Hz and 54G at 750 Hz.	
	Random Vibration Closed Valve (Retest)	Actuator w/Piston		100 to 400 400 to 630	100 to 400 1.0g ² /Hz 400 to 630 12 db/Oct rolloff		Successful run.
	Longitudinal No. 1 Axis Sinusoidal Sweep Closed Valve	Actuator with Piston		630 to 2000 0.15g ² /Hz Overall Acceleration: 25.0 grams	,	Sweep stopped at 130 Hz; fixture lifting off slip plate. Test setup revised. Two-inch thick plate added.	
	Sinusoidal Sweep Closed Valve (Retest)	Actuator w/Piston				Successful run. Resonant Points: 65G at 180 Hz, 50G at 240 Hz and 59G at 1250 Hz.	
	Sinusoidal Sweep Open Valve	Actuator with Piston			Paragraph 3.3.13	Sweep stopped at 350 Hz, excessive leakage through indicator rod hole. Indicator had vibrated loose and blew out. Plug installed.	
	Sinusoidal Sweep Open Valve (Retest)	Actuator with Piston					Successful run. Resonant Points: 63G at 215 Hz, 53G at 1420 Hz, 53G at 233 Hz, 100 + G at 134, 41, 33, 29, 23 and 18 Hz, 90G at 1800 Hz, 80G at 1450 Hz and 75G at 1300 Hz.
	Random Vibration Close Valve	Actuator with Piston				Successful run	

				TEST SUMMARY LONG LIFE VALVE DEMONSTRATION TESTS				,	Citaba .	134
Item	Test	Test Specimen Configuration	Date	Test Conditions	Test Results and Rework: Tables, Figures & Appendices	3		Remarl	SHEET 4	t
5 cont.)	Longitudinal No. 2 Axis Sinusoidal Sweep Closed Valve	Actuator with Piston				at 750 56G a	ssful run.) Hz, 67G t 920 Hz, Hz, 75G a	at 410 Hz, 100+G at	, 70G at 1 350 Hz,	1002 Hz, 95G at
	Sinusoidal Sweep Open Valve	Actuator with Piston				1050 490 H	essful run. Hz, 100+ (Iz, 92G at at 240 Hz, 2 Hz.	G at 1300, 340 Hz, 9	1100, 73 6G at 32	30 and O Hz,
	Random Vibration Closed Valve	Actuator w/Piston				Succe	essful run.			
6	Flow Capacity	Actuator with Piston	6-12-74	With 750 psig to close actuator port and ullage pressurized to 35 psig, the close port was vented and the open port pressurized to 750 psig. Inlet, outlet and nozzle pressures were	Paragraph 4.9 Table 4-11 Figures 4-21, 4-22 and 4-23	Total Inlet Press PSIG	Flow SCFM Air	Press. Drop PSIG	Outlet Mach No.	Resistance Coefficient K
				recorded during blow down. Flow and valve ΔP were computed at 10 valve inlet pressures.		31.37 30.04 28.38 26.74 26.06 24.85 24.23 23.23 22.58 22.42	24,040 23,500 22,384 21,000 20,510 19,580 18,984 17,980 17,512 17,312	15.5 14.1 13.0 12.2 11.2 10.1 9.2 8.0 7.6 7.2	0.460 0.460 0.445 0.423 0.435 0.425 0.428 0.400 0.405 0.400	4.65 4.31 4.45 4.77 4.24 4.12 3.72 3.79 3.58 3.46
7	Nondestructive Burst 750 psig to close port	Actuator w/Piston	6-28-74	750 psig to close port, then 87.5 psig slowly applied to valve inlet and held for 5 minutes.	Paragraph 4.9 Figure 4-24		gn of disto	ortion.		
	750 psig to open port	Actuator w/Piston		750 psig to open port, then 87.5 psig slowly applied to valve inlet and held for 5 minutes.		No si	gn of disto	ortion.		
	1875 psig to open port	Actuator w/Piston		With water compressed into actuator ports, 1875 psig to open port and held for 5 mins.		No si	gn of disto	ortion.		
	1875 psig to close port	Actuator w/Piston		With water compressed into actuator ports, 1875 psig to close port and held for 5 mins.		No si	ign of disto	ortion.		
8	Final Disassembly and Inspection	Actuator with Piston	6-28-74 to 7-16-74	Disassembly of valve and actuator assemblies and inspection for signs of distortion or excessive wear. Re-measure component dimensions and finishes recorded during Examination of Product (Item 1).	Paragraph 4.10 Table 4-1 Figures 4-25 thru 4-33		nal wear a ht: 53 pou		ination.	

ER 966-24 135

SECTION 3

TEST SPECIMEN

This section presents a description of the test specimen and follows the changes and rework of the unit throughout the test program. A summary of the component cycle life and rework is presented in Table 3-1.

3.1 TEST SPECIMEN DESCRIPTION

The test specimen at the start of the test program was a 10-inch hybrid poppet butterfly valve, P/N 99600, conforming to Assembly Drawing 996001, Revision B. Valve actuation was provided by a bellows type pneumatic actuator. Drawing 996001 is included in Appendix A of this report. A photograph of the test specimen is presented in Figure 3-1. The valve poppet and actuation linkage are shown in Figure 3-2. This reference illustrates the initial poppet translation which eliminates the seal scrubbing and the final rotation which reduces the pressure drop.

3.2 BELLOWS REPLACEMENT AFTER INITIAL TESTING

Bellows leakage occurred during the initial testing prior to the demonstration test. The test specimen was disassembled and the outer bellows, P/N 966057-1, was removed and checked for leakage. No leakage across the bellows was found; however, after being pressurized and submerged in alcohol, bubbles were seen at the end fitting indicating a leak in one or two of the plys. The test specimen was reassembled with a spare bellows and sent to the laboratory for the start of demonstration testing.

3.3 HARDWARE CHANGES DURING DEMONSTRATION TESTING

3.3.1 Change to Piston Type Actuator Assembly

After 696 combined room temperature and cryogenic cycles, the leakage of the outer actuator bellows, P/N 966057-1, was excessive. The bellows was sent to the vendor for failure analysis. The failure analysis indicated that the present unit was incorrectly designed to meet the 20,000 cycle objective. A newly designed bellows would require new actuator components as well as the revision of the actuator link and support. The decision was made to use a piston type actuator. A further discussion is presented in Section 5 of this report. A copy of the failure analysis report is included in Appendix B herein.

Table 3-1. Component Cycle Life and Rework Summary

		Accumulated Cycles				
Components	Part Number	Room Temp	Cryo Temp	High Temp	Total	
Main Seal	966072					
Original Seal		223	2255	0	2,478	
Replacement Seal		793	3640	0	4,433	
Refinished Seal	•	80	3048	10,004	13,132	
Total (Refinished		2=3				
Replacement Seal)		873	6688	10,004	17,565	
Shaft Seal	966076					
Original	•	1096	8943	0	10,039	
Replacement		0	0	10,004	10,004	
Actuator Piston Seals				1		
Original - Upper	AR10105-234 A/H	33	41	. 0	74	
- Lower	AR10105-234 P/H	208	1575	0	1,783	
- Small	AR10105-222 P/Q	208	1575	0	1,783	
1st Replacement - Upper	AR10105-234 A/H	996	5175	0 .	6, 171	
- Lower	AR10105-234 P/H	821	3641	0	4,462	
- Small	AR10105-222 P/Q	821	364 1	0	4,462	
2nd Replacement - Upper	AR10105-234 A/H	52	3046	6,541	9,639	
- Lower	AR10105-234 P/H	52	3046	6,541	9,639	
- Small	AR10105-222 P/Q	52	3046	6,541	9,639	
3rd Replacement - Upper	AR10105-234 A/H	0	0	3,463	3,463	
- Lower	AR10105-234 P/H		0	3,463	3,463	
- Small	AR10105-222 A/Q	0	0	3,463	3,463	
Link, Act. Pivot	966046					
Original		231	5895	0	6,126	
Replacement		770	3048	10,004	13,917	
Kel-F Stop (Added)		1048	8221	10,004	19,273	
Filler (Added)	_	873	6687	10,004	17,564	
Piston Venting				-		
(Additional)	-	929	8171	10,004	1 9, 104	

137

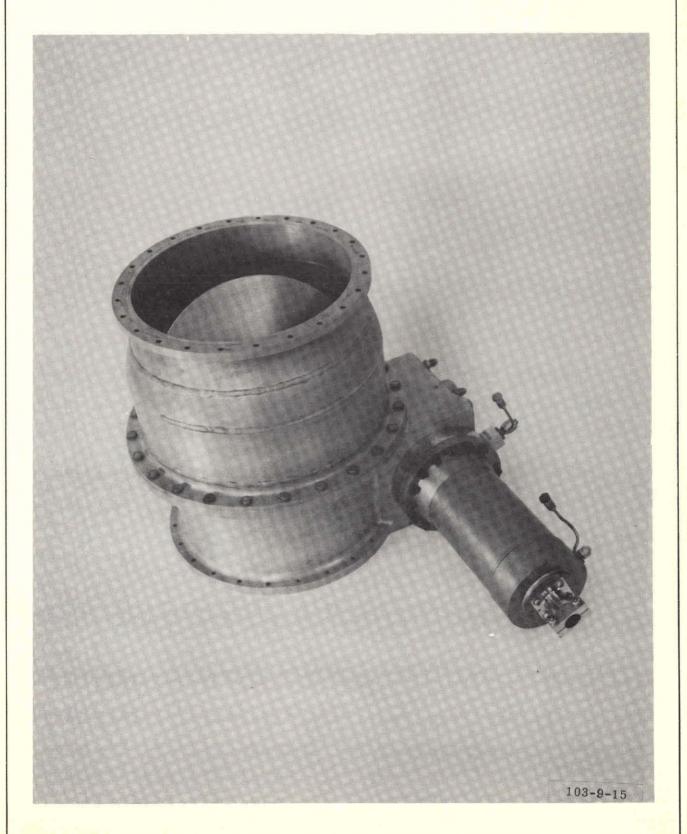
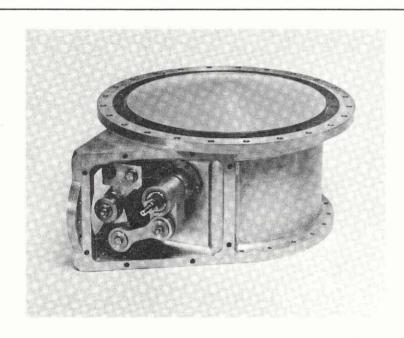
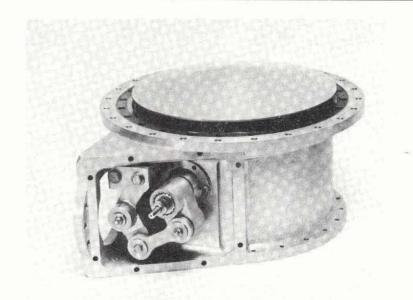
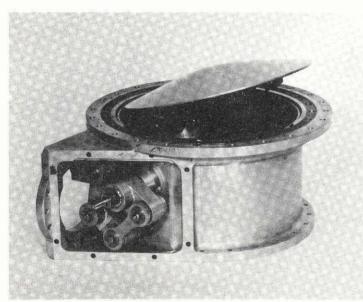





Figure 3-1. Test Specimen, 10-Inch Long Life Valve

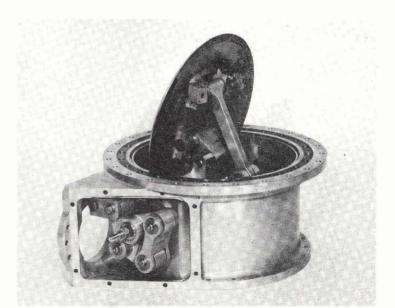


Figure 3-2. Valve Poppet and Actuator Linkage Positions

139

3.3.2 Description of Piston Type Actuator Assembly

A cross sectional view of the new piston type actuator assembly, P/N 966096, is shown in Figure 3-3. The various components are identified in the view. A material summary is presented in Table 3-2 which includes the part number, nomenclature, material and specification.

3.3.3 Seal Replacement and Stop Addition After 770 Cycles

The actuator was disassembled after 770 combined room temperature and cryogenic valve cycles during the low temperature life cycle test. The test specimen had exhibited excessive actuator leakage under cryogenic conditions. Inspection of the actuator revealed heavy deposits of contamination around the piston seals, Omniseal P/N AR10105-234. The contamination prevented the normally uniform contact between the cylinder and the seal. The contamination originated from the test system regenerator packing and would be eliminated by installing a 10-micron filter at each of the actuator ports. The upper actuator seal, Omniseal P/N AR10105-234, was replaced.

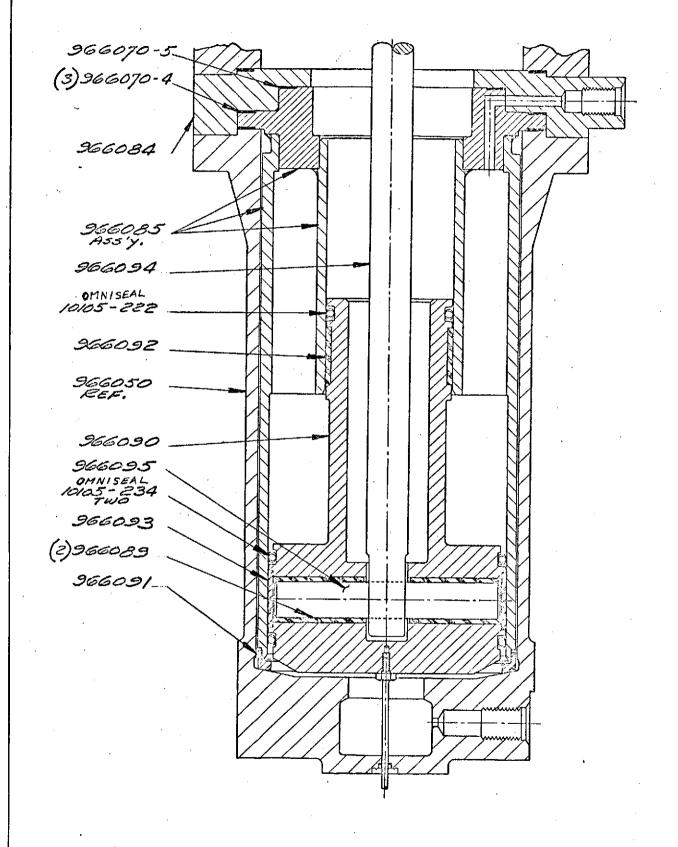
Inspection of the actuation linkage showed a heavy contact marking on both the actuator pivot link, P/N 966046, and the driver link, P/N 966047. These links provided the "open" actuator stop for the valve. To remedy this situation a Kel-F stop disk was added to the piston. The "open" stop was now on the actuator sleeve assembly, P/N 966085. The stop disk installation is shown in Figure 3-4.

3.3.4 Additional Piston Venting After 939 Cycles

The actuator was disassembled after 939 combined cycles. Occasionally high actuator leakage was indicative of erratic seal performance. The actuator piston assembly was designed with vent ports in the piston bearing, P/N 966093, to vent the large diameter piston seals, Omniseal P/N AR10105-234, to the actuator linkage cavity. This provided a means for measuring seal leakage. If sufficient seal leakage existed the small clearances between the bearing and the sleeve prevented adequate venting, resulting in pressure buildup downstream of the active seal. This in turn would reduce the pressure energization of the seal.

Additional vent holes were provided in the bearing, P/N 966093, and an annular vent path was added to the piston, P/N 966090. Subsequent tests demonstrated that these modifications eliminated the erratic seal operation.

ER 966-24 /4



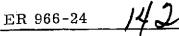

Figure 3-3. Cross Sectional View Piston Actuator Assembly 966096

Table 3-2.	New and Reworked Components and Assemblies for Test Specimen
	with Piston Type Actuator Assembly

Part Number	Nomenclature	Material	Specification
966084	Manifold (Rework 996061)	304L CRES	QQ-S-763
966086	Mount - Sleeve	321 CRES	QQ-S-763
966087	Sleeve - Outer	321 CRES	AMS 5645
966088	Sleeve - Inner	321 CRES	AMS 5645
966070-4	Seal - Face	TFE Teflon	AMS 3651
966070-5	Seal - Face	TFE Teflon	AMS 3651
966085	Sleeve Assembly	••• •	-
966089	Braking	SP211 Polyimide	-
966090	Piston	6061-T6 Al Aly	QQ-A-22518
966091	Snubber	TFE Teflon	AMS 3651
966092	Guide, Inner	SP211 Polyimide	-
966093	Guide, Outer	SP211 Polyimide	-
966094	Rod	A-286 CRES	AMS 5736
966095	Shaft	A-286 CRES	_
966096	Assembly - Actuator	_	-
AR10105-222 P/Q	Omniseal	Spring: 304 CRES	AMS 5528
	·	Cover: 80% Virgin TFE	
		15% Glass	-
		5% M ol y Disul p hide	-
AR10105-234 A/H	Omniseal	Spring: 17-7PH CRES	AMS 5528
		Cover: TFE (Molded)	ASTM D1457 Type IV
AR10105-234 P/Q	Omniseal	Spring: 17-7PH CRES	AMS 5528
		Cover: 80% Virgin TFE	_
		15% Glass	
		5% Moly Disulphide	

STRATOS DIVISION 1800 ROSECRANS AVENUE MANHATTAN BEACH, CALIF., 90266

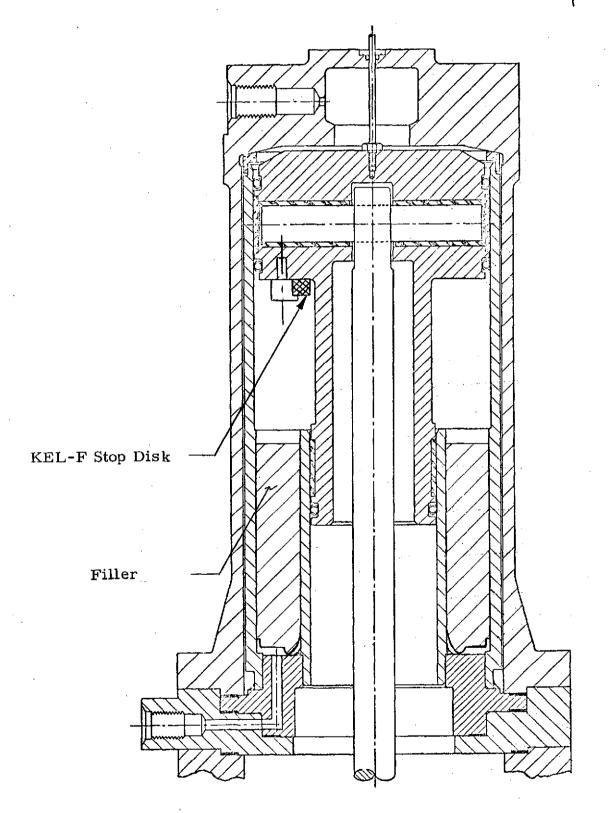


Figure 3-4. Cross Sectional View of Rework Piston Actuator Assembly 966096

3.3.5 Seal Replacement and Filler Addition After 2478 Cycles

Excessive valve and actuator leakage occurred after 2478 combined cycles. Inspection of the main seal seat, P/N 966072, showed that two areas of the sealing surface had broken away. A third area probably representative of the failure mechanism showed a curving crack across the sealing surface which, if it continued, would result in the spall-out of a small section of the seal.

To prevent this from occuring again a cylindrical filler was incorporated in the actuator sleeve assembly, P/N 966085, to minimize the "close" cylinder clearance volume. This permitted better control of the closing transient and reduced the poppet-seat impact. The filler is shown in Figure 3-4.

Testing was resumed after replacement of the valve seal seat, P/N 966072, and two actuator piston seals, Omniseal P/N AR10105-222 and AR10105-234.

3.3.6 Link Redesign After 6126 Cycles

The actuation link, P/N 96046, failed after a total of 6126 combined cycles. Inspection of the link revealed the break to be a typical fatigue frature at the most highly stressed area of the link. This area had received damage during earlier cycling due to the "open" stop action prior to installation of the Kel-F stop disk mentioned earlier. A photograph of the fractured link is presented in Figure 3-5.

The link was redesigned with increased sections in the critical area. The test specimen was reassembled and the cycling was continued.

3.3.7 Main Seal Refinished After 6911 Cycles

The test specimen was removed from the test setup for main seal inspection after 6911 combined cycles. The new main seal, P/N 966072, did not meet the low leakage levels of the original seal installation. Since the seal leakage was not reduced by increased cycling, the valve was removed for inspection. A bruised area of the seal face, approximately 0.002 deep and 0.040 long was identified. The cause of the damage was unknown. The main seal, P/N 966072 was refinished by removing 0.003 from the surface and was reassembled with the test specimen.

3.3.8 Actuator Seal Replacement After 6941 Cycles

The three actuator seals were replaced after 6941 combined room temperature and cryogenic valve cycles during the low temperature life cycle test.

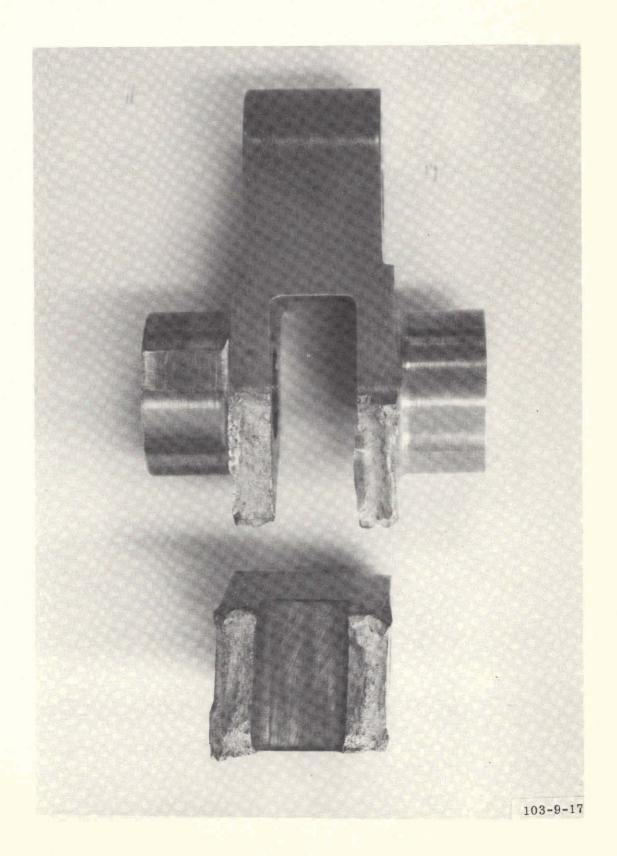


Figure 3-5. Failed Link, P/N 96046 During Low Temperature Life Test

145

3.3.9 Shaft Seal Replacement After 10,025 Cycles

During the high temperature life cycle test, after 10,025 total valve cycles, excessive cover port leakage was measured. This was attributed to a leaking shaft seal. The lip seal, P/N 966076, was replaced.

3.3.10 Orifice Resizing After 10,089 Cycles

After 10,089 total cycles the orifices, P/N 966073, in the "open" and "close" actuator ports were modified. The inside diameters of the "open" port and "close" port orifices were changed to 0.062 inch and 0.070 inch respectively. The modification was necessary to reduce the valve closing time.

3.3.11 Actuator Seals Replaced After 16, 580 Cycles

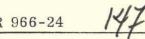
After 16,580 total cycles the cover port leakage was excessive. The actuator was disassembled, and the two large diameter piston seals, P/N 10105-234 and the small diameter piston seal, P/N 10105-222 were replaced. The test specimen was then subjected to further high temperature cycling.

3.3.12 Mounting Flange Reworked During Lateral No. 1 Axis Vibration Test

During the random vibration in the Lateral No. 1 Axis, four mounting screws were sheared and nine additional screws were loosened. There was no damage to the valve or the actuator components.

An investigation showed that the locking capabilities of a number of the locking inserts as measured by the running torque with new screws had deteriorated. This may be due to the many times the screws had been removed and reinstalled during previous testing. The worn inserts were replaced, and all of the mounting screws were replaced.

The vibration levels at the end of the actuator were inspected. These output levels were found to be excessive. This was particularly due to the crosstalk caused by the unbalance in the valve and fixture about the axis of the shaker. A support clamp added between the actuator and the fixture reduced the actuator response to 60 "g" peak.



146

3.3.13 Potentiometer Removal During Longitudinal No. 1 Axis Vibration Test

During the sinusoidal vibration sweep in the Longitudinal No. 1 Axis with the valve in the open position, the stroke indicator rod from the potentiometer vibrated loose (unscrewed) and blew out. The potentiometer holding flange was removed. The transducer was damaged, and the indicator rod was bent. A plug was made to fit the rod hole in the actuator, and the plug was installed in place of the rod. The plug was held in place by the flange which held the potentiometer. The damaged stroke indicator is shown photographically in Figure 3-6.

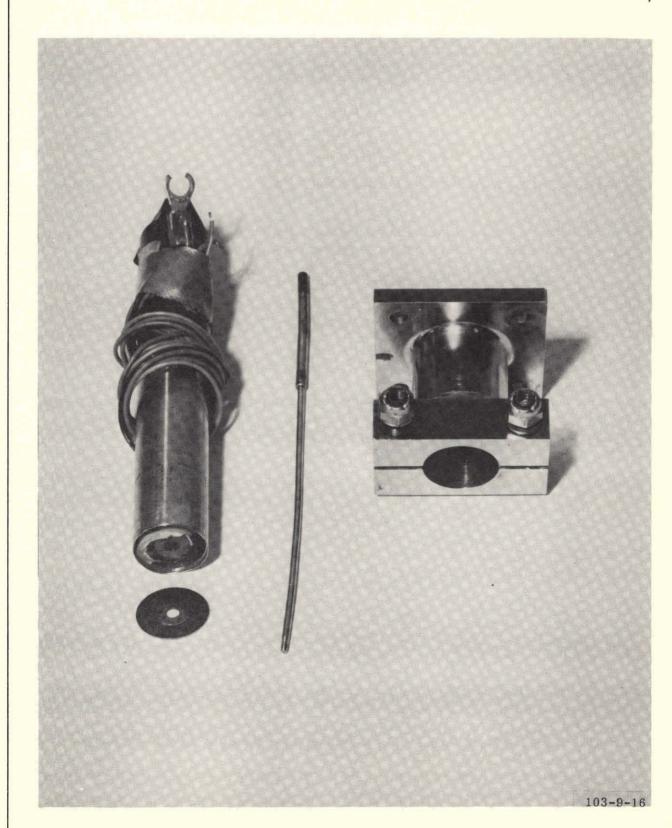


Figure 3-6. Damaged Stroke Indicator Removed from Test Specimen During Sinusoidal Sweep in Longitudinal No. 1 Axis

148

SECTION 4

TEST SETUPS, PROCEDURES AND RESULTS

4.1 EXAMINATION OF PRODUCT

Prior to the assembly of the test specimen all detail parts were inspected for workmanship, general quality, and cleanliness. The diameters and surfaces of all bearings and associated shafts, dynamic seals and mating surfaces were measured and recorded. All details were found to be satisfactory for their intended use. The results of these measurements, and those taken during final teardown, are presented in Table 4-1. The weight of the test specimen was 54.0 pounds.

4.2 INITIAL TESTING

The initial testing of the test specimen prior to demonstration testing included the measurement of valve and actuator internal leakage. The valve leakage was measured with the inlet pressure varied from zero to 35 psig in 5 psig increments, and the actuation pressure varied from zero to 750 psig in 100 psig increments. The pressurizing fluid was gaseous nitrogen. The results are shown in Figure 4-1. The pre-seal leakage was equivalent to an orifice of 0.0007 square inches. Poppet differential pressure above 20 psi was sufficient to engage the poppet seal. The leakage at this point appeared as a fixed orifice of 10^{-6} square inches. Application of the "close" actuation pressure had insignificant affect on the leakage rate.

The main seal was checked to determine if the leakage was caused by a local seal defect. The valve was inverted and partially filled with alcohol. Leakage was observed around the periphery of the poppet which indicated a surface finish or surface porosity phenomena and not a localized defect.

During the actuation cycling, there was prolonged leakage from the "close" actuator port. This was an indication of bellows leakage. Testing was stopped, and the test specimen was disassembled and inspected. See Section 5 for a further discussion.

ŧ	o	B
NHATTAN	STRA	Ş
BEACH,	ROSECRANS A	Q
CALIF.,	A W SI	111
90266	> < E Z C E	Ö

Part Number	Component Nomenclature	Dimension Measured	Measure Examination of Product	ed Valve Disassembly and Inspection	Wear (Dimensional Change)
966034	Link No. 2	Bushing No. 1	. 5043 . 5078	.5050 .5060 to .5080	+0.0007 -0.0018 to +0.0002
		Bushing No. 2 Bushing No. 3	.5058	. 5058 . 5062 . 7503	0.0000 0.0000
		Bubining 110.	_	. 7502	_
966035-1	Sleeve Bearing	Outside Diameter	. 5002	. 5002	0.0000
966035-2	Sleeve Bearing	Outside Diameter	.7498 .7497	.7495 .7498	-0.0003 +0.0001
966035-3	Sleeve Bearing	Outside Diameter	.5001 .5002	-	
966035-4	Sleeve Bearing	Outside Diameter	.5003 .5002	.5000 .5001	-0.0003 -0.0001
966035-5	Sleeve Bearing	Outside Diameter	.4993	.4993	0.0000
966037	Link No. 1	Inside Diameter	.509 ± .001	.5010 .5030	- ·
966040	Lip Seal Retainer	Bushing I.D.	1.1134	1.1090 1.1087	-0.0044
		Shaft	-	1,1055 1,1058	
966044	Poppet Link Pivot	Bushing No. 1	. 5047 . 5050	.5050 .5053	+0.0003 +0.0003

Table 4-1. Component Wear Data

Wear

(Dimensional

Change)

0.0000

0.0000

0.0000

0.0000

+0.0003

+0.0001

+0.0017

+0.0011

+0.0011

+0.0009

+0.0005

+0.0008

-0.0020

+0.0001

+0.0010

+0.0004

+0.0010

0.0000

ΕR

966 - 24

AGE
NO.
2.2

Drive Actuator 966047

Component

Nomenclature

Poppet Link Pivot

Link Actuator Pivot

(Cont)

Link No. 3

Part Number

966044

966045

966046

(Cont)

.7550 Bushing No. 1 .7547 +0.0003+0.0004 .7551 .7555 .7557 0.0000 Bushing No. 2 .7557 .7562 .7580-.7575 +0.0018-+0.0013

Measured Valve

Examination

of

Product

. 5047

.5056

.5057

. 5045

.5056

.5043

.5046

.5046

.5051

.5055

.5095

.5052

.5082

.7549

.7558

.7546

.7558

Disassembly

and

Inspection

. 5047

.5056

.5060

.5057

.5046

.5056

.5000

.7520

.7532 .5060

.5057

.5057. 5060

.5060

. 5062 .5060

.5062 .7550

.7568

.7550

.7568

Table 4-1. Component Wear Data (Continued)

Dimension

Measured

Bushing No. 2

Bushing No. 3

Bushing No. 4

Bushing I.D.

Bushing No. 1

Bushing No. 2

Bushing No. 3

Bushing No. 4

Bushing No. 5

Bushing No. 6

Shaft

E-117

	Table 4-	1. Component Wear	Data (Continued	1)	
Part Number	Component Nomenclature	Dimension Measured	Examination of	ed Valve Disassembly and	Wear (Dimensional
966048	Drive Poppet	Bushing No. 1	Product . 5043	Inspection . 5043	0.0000
		Bushing No. 2	.5056 .5045 .5050	.5056 .5050 .5058	0.0000 +0.0005 +0.0008
	·	Bushing No. 3	.7556 .7558	.7556 .7559	0.0000 +0.0001
		Bushing No. 4	.7551 .7554	.7551	0.0000 +0.0002
966062	Adjustable Poppet Shaft	Outside Diameter	.4998	.4997	-0.0001
966076	Lip Seal	Inside Diameter	1.240	. 1245	+0.0005
966067	Torsion Shaft	750 ^{+.000} ₀₀₁ OD	.7485 .7481	.7480 .7479	-0.0005 -0.0002
		1.0460 ^{+.000} ₀₀₁ OD	1.0439	1.0439	12
		1.156 ± .010 OD	1.1536	1.1535 1.1537	-0.0001 +0.0002
		1.250 ^{+.000} ₀₀₁ OD	1.2478 1.2480	1.2478 1.2480	+0.0001 +0.0001
		.210 ± .005 OD 1.108 ^{+.008} OD 001	.210 1.1055 1.1058 16	1.1055 1.1058	0.0000 0.0000 8/
966001	Valve Assembly	Weight	-	53 lb 11 oz	

E-117

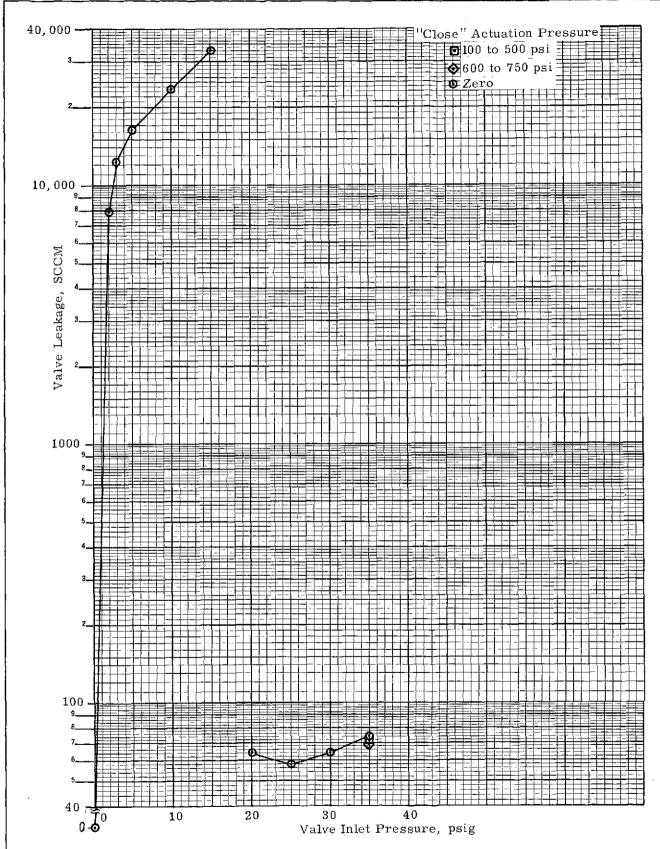


Figure 4-1. Valve Leakage During Initial Testing Bellows Type Actuator Assembly

153

4.3 LOW TEMPERATURE LIFE CYCLE TEST

The low temperature life cycle test consisted of 10,025 valve cycles at room and cryogenic (approximately -200°F) temperatures. The test setup for the low temperature life cycling including the leakage and response testing is shown schematically in Figure 4-2 and photographically in Figures 4-3, 4-4, and 4-5. The test specimen was changed from a bellows type actuator to a piston type actuator after 696 valve cycles.

4.3.1 Leakage and Response Testing

Before, during and after the life cycling the test specimen was subjected to leakage and response tests at room temperature, minus 200°F, and minus 300°F to check the performance of the unit and individual components. The component leakages (main seal, shaft seal, "open" actuator port, and "closed" actuator port) are presented in Table 4-2 and Table 4-3. The main seal and shaft seal leakages are presented graphically in Figures 4-6 and 4-7, respectively. Also included on these graphs are the main seal and shaft seal leakages for the high temperature tests which are described in paragraph 4.4. The response times are presented in Tables 4-4 and 4-5. The component leakages were determined from the data recorded during the leakage and response testing. The component leakages are identified by date, cycle history and temperature. In general the room temperature leakage and response tests were conducted at the start of each day's testing and the cryogenic leakage and response tests were conducted at the end of the day's testing. The response tests were conducted at more frequent intervals as is indicated by the cycle history. The methods of determining the component leakages from the test data are discussed in paragraph 4.3.2. The procedures used for conducting the leakage and response tests are discussed in paragraphs 4.3.1.1 and 4.3.1.2, respectively.

4.3.1.1 Leakage Tests

The leakage tests were conducted with the test specimen installed in the low temperature life cycle test setup shown in Figures 4-2 through 4-5. Gaseous nitrogen was used to pressurize the actuator and the poppet valve inlet. The leakage test procedures for the test specimen with the bellows type actuator were modified for the majority of testing for the test specimen with the piston type actuator assembly.

The procedure for testing the test specimen with the piston type actuator assembly is as follows:

a. The "open" actuator port was pressurized to 750 psig with zero psig applied to the valve inlet. The cover port and the "closed" actuator leakages were measured. The inlet pressure was increased to 35 psig and the cover and "close" port leakages were measured.

* 10μ filters added after 770 accumulated valve cycles.

Figure 4-2. Schematic Diagram, Low Temperature Life Cycle Test Setup

STRATOS DIVISION 1800 ROSECRANS AVENUE MANHATTAN BEACH, CALIF., 90266

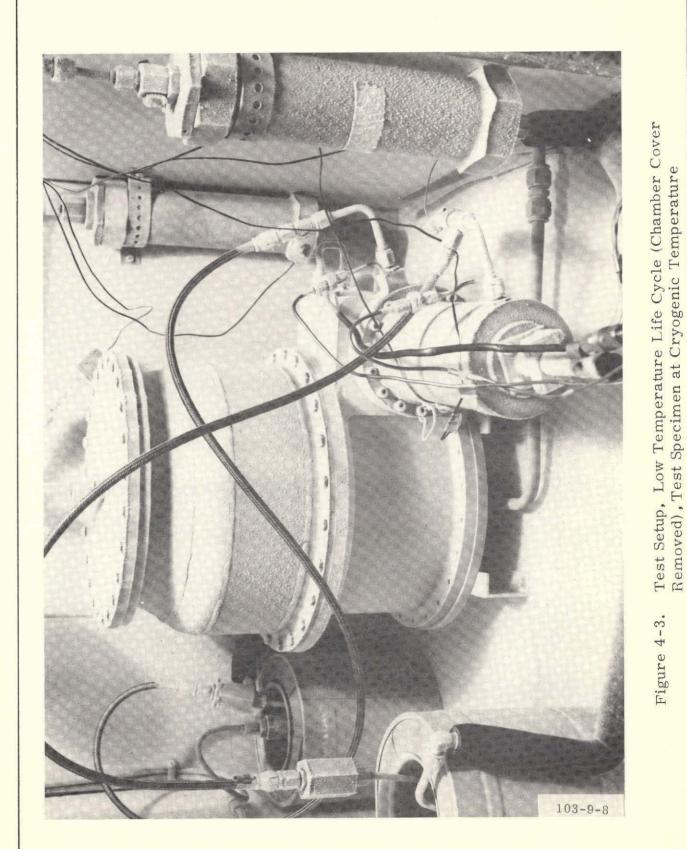


Figure 4-3.

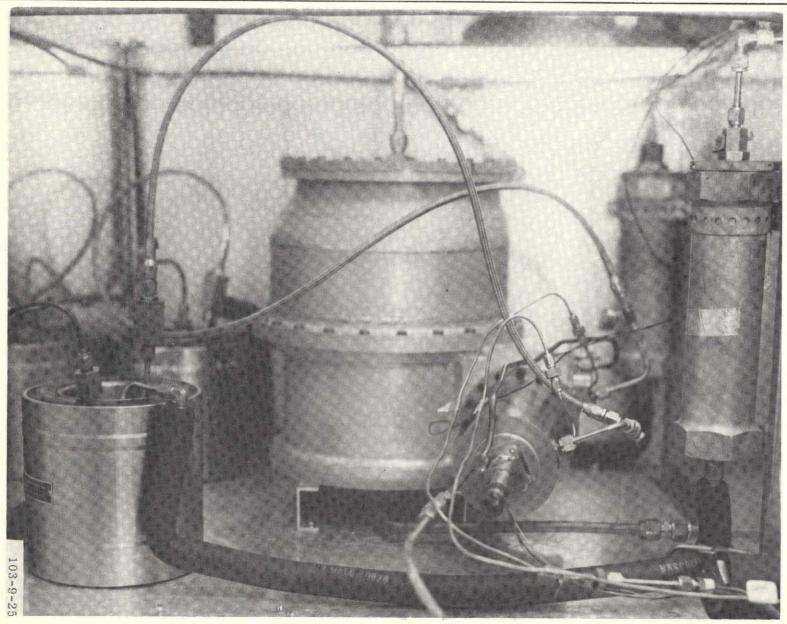
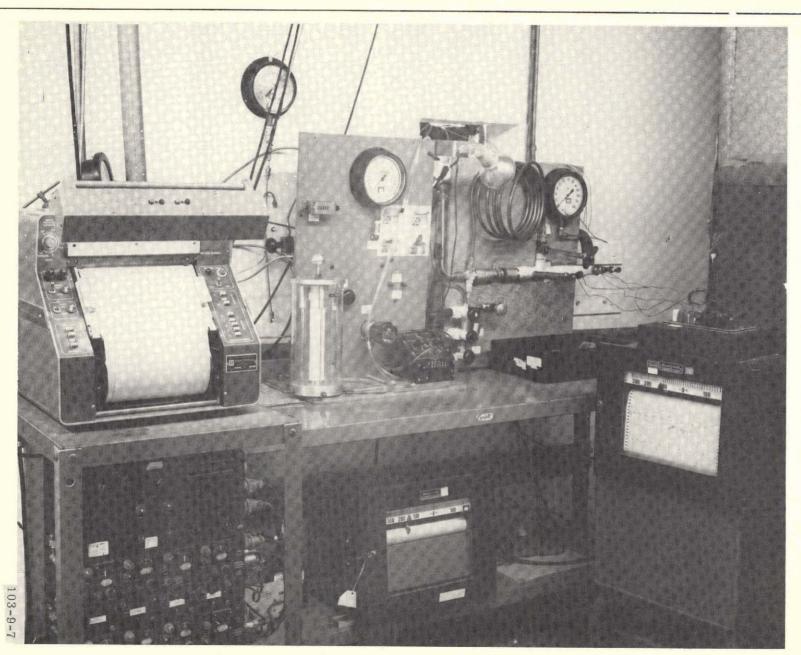



Figure 4-4. Test Setup, Low Temperature Life Cycle (Chamber Cover Removed), Test Specimen at Room Temperature

E-117

Test Setup, Low Temperature Life Cycle Test, Operator's Station Figure 4-5.

Table 4-2 Component Leakage, SCCM Low Temperature Life Cycle Test Room Temperature

								_		
		Total	Total	Total			`			
, i	Temp. of	RT	-200°F.	Valve	Main	Shaft	Open	Close		
Date :	Test, ^O F.	Cycles	Cycles	Cycles	Seal	Seal	Act.	Act.		
<u></u>				-	<u> </u>					
12-13-73	RT	8	0	8	50	_	_ :	_		
12-13-73	RT	9	0	9	-	ø (2)	146	~		
12-17-73	RT	10	0	10	37.4	-	-	-		
12-19-73	RT	11	96	107	29	-	_ '	~		
12-20-73	RT	15	501	516	22.4	-	_	-		
CONFIGU	RATION CH	ANGE:	PISTON T	YPE ACT	UATOR	ASSEM	ĮBLY '	•		
3-7-74	RT	19	6 81	700	12.4	-	0	0		
3-7-74	RT	33	681	714	46	-	0	0		
3-11-74	RT	48	722	770	64	27	0	0		
REWORK	PISTON S	EAL REI	LACED A	AND KEL	F STO	1	ADDED			
3-14-74	RT	52	722	774	56	0.2	3.6	0		
3-14-74	RT	57	722	799	138	24	0	0		
3-14-74	RT	107	722	829	130	32	9.6	4		
3-15-74	RT	167	722	889	139	32	32	5		
REWORK	: ADDITION	AL VEN	T HOLES	IN BEAR	ING AN	D ANNU	JLAR V	ENT		
	PATH			,						
3-19-74	RT	167	722	889	135	33	5.8	2.6		
3-20-74	RT	167	722	889	130	-	4.2	3.2		
3-20-74	RT	192	722	889	131	45	5.8	4.2		
3-21-74	RT	195	759	954	173	0	0	0		
3-22 - 74	RT	195	1224	1419	265	0	0	3.2		
REPAIR 7	FEST SETU	1	•	ATOR AN	la	ER POR	T LEAF	KAGE		
3-25 -7 4	RT	195	1626	1821	265	3.8	0	5.8		
3-27-74	RT	195	2000	2195	340	8	7	7		
3-28-74	RT	223	2255	2478	270	0	47	8		
REWORK				TUATOR	ı i	1				
4-2-74	RT	223	2255	2478	15.6	1	20	.10		
4-2-74	RT	231	2255	2486	14	20	12	1.1		
4-3-74	RT	231	2630	2861	23	0	21	1		
4-4-74	RT	231	3334	3565	21	0	5	10.2		
4-8-74	RT	231	4805	4836	42	4490	19	650		
REWORK	4	t					1			
4-17-74	RT	231	5895	6126	32	8764	10	55		
4-17-74	RT	281	5895	6176	1394	295	195	12.6(1)		
4-18-74	RT	506	5895	6401	1230	312	98	24		
4-18-74	RT	966	5895	6861	1394	3105	175	21		
) Main Seal 1					1				
(2)	\emptyset = approx	ımately z	ero				<u>L</u>			
	E-117 8/7L									

159

Table 4-2 (continued) Component Leakage, SCCM Low Temperature Life Cycle Test Room Temperature

Date	Temp. of Test, F.	Total RT Cycles	Total -200 ⁰ F. Cycles	Total Valve Cycles	Main Seal	Shaft Seal	Open Act.	Close Act.
4-18-74 REWORK	RT : MAIN SEA	1016	5895 VISHED	6911	1312	5494	1640	15
4-22-74	RT	1016	5895	6911	30	5577	163	7
4-22-74	RT	1042	5895	6939	39	-	820	5.2
4-23-74	RT	1044	5897	6941	36	740	190	14
REWORK	THREE P	ISTON SI	EALS REF	LACED		;		
4-25-74	RT	1044	5897	6941	30	-	820	0
4-25-74	RT	1078	5897	6975	30	0	1066	0
4-26-74	RT	1078	6567	7745	39	0	11	0
4-27-74	RT	1078	8437	9515	34	6972	1722	5.4
4-29-74	RT	1082	8943	10,025	32	12,054	. 0	0

160

Table 4-3

Component Leakage, SCCM Low Temperature Life Cycle Test Cryogenic Temperature

	<u> </u>		 	,				
Date	Temp. of Test, ^O F.	Total RT Cycles	Total -200°F. Cycles	Total Valve Cycles	Main Seal	Shaft Seal	Open Act.	Close Act.
12-13-73	-300	9	0	9	90	-	-	37
12-17-73	-200	10	1	11	158	-	ø	-
12-17-73	-200	10	96	106	ø ⁽⁵⁾	88	Ø	70
12-19-73	-200	11	490	501	Ø	-	13	_
12-20-73	-200	15	681	696	60 ⁽¹⁾	-	63	_
REWORK	. NEW PIST	ON TYP	E ACTUA	TOR ASS				
3-8-74	-200	33	685	718	295	5	160	340
3-8-74	-300	~	-	_	6888(2)	0	0	126
3-8-74	-200]	-	-	} -	9840	_
3-8-74	-200	-	_	-	-	-	6888	160
3-8-74	-200	33	722	755	2.7	_	14,104	3608
3-8-74	-270	44	722	766	-	_	12,464	-
REWORK	PISTON S	EAL REP	LACED A	ND KEL	-F STO	P DISE	K ADDEI)
3-15-74	-200	167	772	889	-	4	340	340
REWORK	ADDITION	AL VEN	T HOLES	IN BEAF	ING &	ANNUI	LAR VEN	T PAT
3-20-74	-200	192	726	918	820	20	475	24,600 [©]
3-20-74	-200	192	747	939	1066	0	0	0
3-20-74	-200	192	759	951	1066	0	0	0
3-20-74	-300	192	759	951	13,122	-	2640	0
3-21-74	-200	195	759	954	1066	0	0	0 (4
3-21-74	-200	195	859	1054	1066	0	0	0
3-21-74	-200	195	1011	1206	1312	0	0	0
3-21-74	-200	195	1224	1419	1230	0	0	.0
REPAIR	rest setuf	OPEN",	I'' ACTUA	TOR AND	Ö COVE	R POR	T LEAK	AGE
3-22-74	-200	195	1224	1419	1476	45	245	490
3-22-74	-200	195	1278	1473	1066	0	3936	574
3-22-74	-200	195	1432	1627	1230	0	3116	1066
3-22-74	-200	195	1626	1821	1230	0	3444	1230
	<u> </u>	<u> </u>	<u></u>	<u></u>	<u></u>	<u> </u>	<u> </u>	<u> </u>

NOTES:

- (1) Effective actuator close pressure < 100 psi
- (2) High reading attributed to boil-off of LN2 residual
- (3) Erratic
- (4) Test Setup leakage
- (5) ∅ = approximately zero

161

Table 4-3 (continued)

Component Leakage, SCCM Low Temperature Life Cycle Test Cryogenic Temperature

		Total	Total	Total				
	Temp. of	RT	-200°F.	l I	Main	Shaft	Open	Close
Date	Test, ^O F.	Cycles	Cycles	Cycles	Seal	Seal	Act.	Act.
3-25-74	-200	195	1628	1826	1230	210	440	800
3-25-74	-200	195	1728	1926	4838	0	3444	495
3-25-74	-200	195	1890	2085	1230	60	930	440
3-26-74	-200	195	1893	2088	1066	246	410	1230
3-26-74	-200	195	2000	2195	1066	0	2624	1230
3-27-74	-200	223	2000	2223	1230	410	820	1772
3-27-74	-200	223	2181	2407	130	0	13,120	1968
3-27-74	-200	223	2255	2478	820	-	7626	1804
REWORK	VALVE SE	EAL AND	TWO AC	TUATOR	PISTO	N SEAL	S REPI	ACED
4-2-74	-200	231	2255	2486	135	545	440	1066
4-2-74	-200	231	2630	2861	175	Ø	6068	1066
4-3-74	-200	231	3334	3565	230	Ø.	1558	2870
4-4-74	-200	231	3488	3719	1066	ø	2788	1886
4-4-74	-200	231	3488	3719	290	Ø	1738	2460
4-5-74	-200	231	3999	4230	290	Ø	160	720
4-5-74	-200	231	4210	4441	200	ļ <u>-</u>	146	1886
4-5-74	-200	231	4805	4836	245	Ø	1230	8200
4-8-74	-200	231	4805	4838	490	Ø	160	4100
REWORK	ACTUATO	R LINK E	REDESIGI	NED		·		
REWORK	: MAIN SEA	L REFIN	ISHED					
4-23-74	-200	1042	5895	6939	290	542	770	5412
4-23-74	-200	1042	5897	6939	_	_	33,620	27,552
REWORK	THREE P	STON SE	ALS REP	LACED			}	
4-25-74	-200	1078	5897	6975	235	492	82	574
4-25-74	-200	1078	6567	7545	180	-	5740	200
4-26-74	-200	1078	7200	8278	188	20	595	158
4-26-74	-200	1078	7724	8802	290	45	345	150
4-26-74	-200	1078	7867	8945	220	0	290	127
4-27-74	-200	1078	8441	9519	550	65	85	1066
4-27-74	-200	1078	8943	10,021	390	0	3526	240
	1	1					,	,
	<u> </u>	1	<u> </u>	<u> </u>	Щ		<u> </u>	<u></u> :

Table 4-4

Response Time, Sec. Low Temperature Life Cycle Test Room Temperature

	Temp. of	Accumulated C		ycles	Open to	Close to	
Date	Test, ^O F.	RT	-200°F.	Total	Close	Open	
12-12-73	RT	7	0	7	1.2	1.8	
12-12-73	RT	7	0	7	1.6	2.05	
12-20-73	RT	15	501	516	1.1	1.1	
REWORK:	CONFIGURAT	ION CHAI	NGE TO PI	STON TY	PE ACTUA	TOR	
3-7-74	RT	19	681	700	1.7	1.5	
3-7-74	RT	33	681	714	1.7	1.5	
3-11-74	RT	48	722	770	1.8	1.1	
REWORK:	1 PISTON SEA	AL REPLA	CED AND	KEL-F S	TOP DISK	ADDED	
3-14-74	RT	48	722	770	$1.7^{(1)}$	1.1(1)	
3-14-74	RT	52	722	774	-	1.5	
REWORK:	ADDED VENT	HOLES I	N BEARING	G AND AN	NULAR V	ENT PATH	
3-19-74	RT	167	722	889	1.65	1.1	
3-19-74	RT	167	722	889	1.5	1.3	
3-21-74	RT	195	759	954	0.7(2)	0.4(2)	
3-22-74	RT	195	1224	1419	0.8	0.7	
3-26-74	RT	195	2000	2195	-	0.4	
3-27-74	RT	195	2000	2195	0.7	0.5	
3-28-74	RT	223	2255	2478	0.7	0.5	
REWORK:	VALVE SEAL	AND TWO	O ACTUAT	OR PISTO	ON SEALS	REPLACED	
4-2-74	RT	231	2255	2486	0.8	0.4	
4-2-74	RT .	231	2305	2536	0.7	0.2	
4-3-74	RT	231	2630	2861	0.8	0.2	
4-4-74	RT	231	3334	3565	0.7	0.6	
4-8-74	RT	231	4805	4836	0.7	0.5	
REWORK:	ACTUATOR LINK REDESIGN						
4-17-74	RT	231	5895	6126	0.8 (1)	1.2 (1)	
4-17-74	RT	235	5895	6131	0.7	0.2	
4-17-74	RT	281	5895	6176	0.8	0.2	
REWORK:	MAIN SEAL R	REFINISHE	ED				
4-22-74	RT	1042	5895	6939	0.7	0.2	
REWORK:	3 PISTON SEA	'1	i e			}	
4-25-74	RT	1044	5897	6941	0.7	0.5	
4-25-74	RT	1078	5897	6975	0.6	0.2	
4-26-74	RT	1078	6567	7545	0.7	0.6	
4-27-74	RT	1078	8437	9515	0.7	0.6	
4-29-74	RT	1082	8943	10,025	0.7	0.2	
443 0 1	/ 	H 			, 		

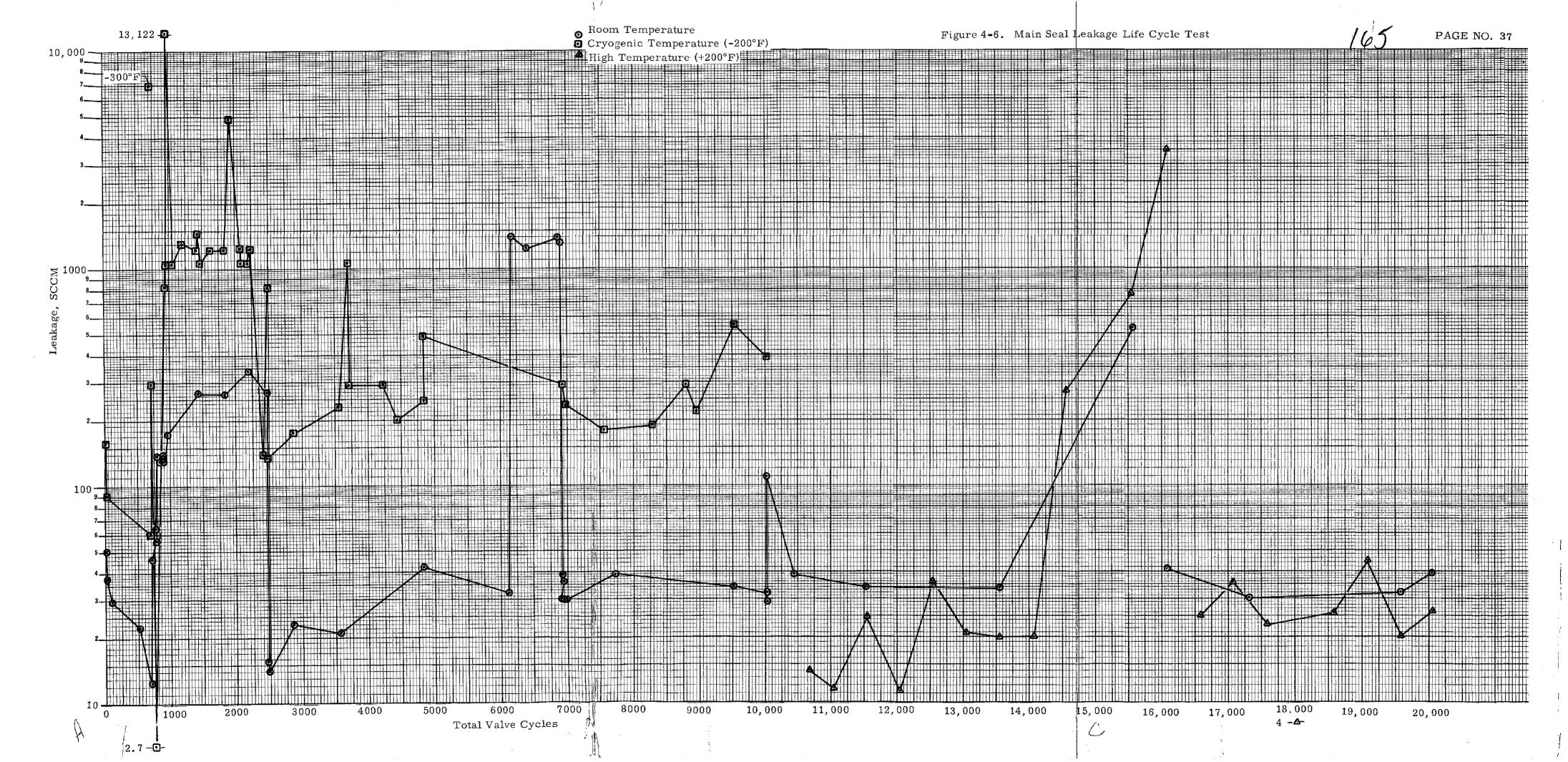
(1) 0 psig at inlet.(2) New method of measuring response time.

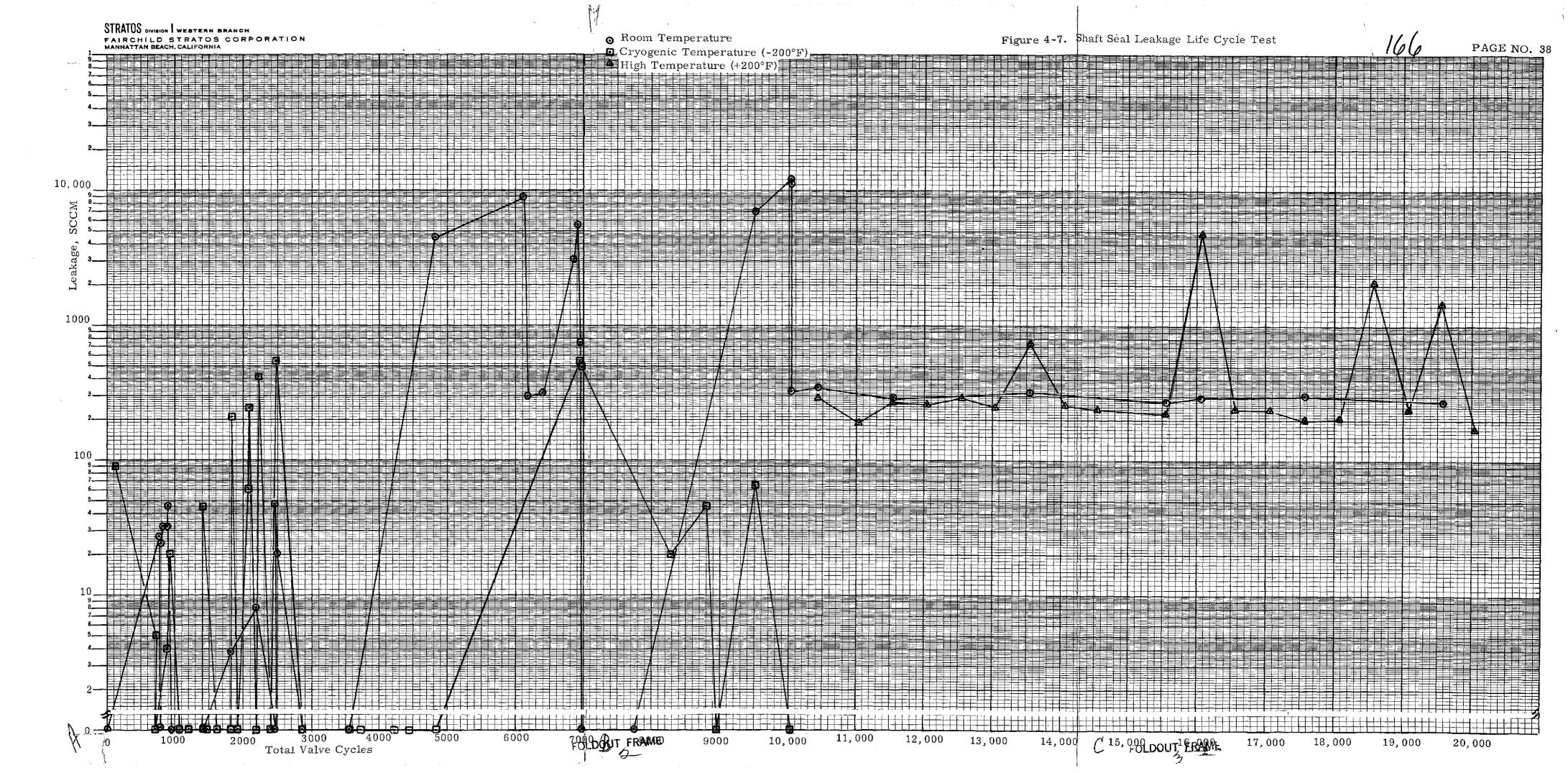
Table 4-5

Response Time, Sec. Low Temperature Life Cycle Test Cryogenic Temperature

Date				· ·			<u> </u>
12-17-73						Open to	Close to
12-17-73	Date	Test, OF.	RT	-200°F.	Total	Close	Open
12-17-73		,			-		
12-17-73		1		_		1	ì
12-17-73		<u>, </u>	10	l			
12-17-73	12-17-73	-200	10	40	50	3.4	3.9
12-19-73	12-17-73	-200	10	60	70	3.3	4.5
12-20-73	12-17-73	-200	10	80	90	3.0	6.1
REWORK: CONFIGURATION CHANGE TO PISTON TYPE ACTUATOR 3-8-74	12-19-73	-200	11	490	501	4.0	1.2
3-8-74	12-20-73	-200	15	515	530	2.9	6.5
REWORK: 1 PISTON SEAL REPLACED AND KEL-F STOP DISK ADDED REWORK: ADDED VENT HOLES IN BEARING AND ANNULAR VENT PATH 3-20-74	REWORK:	CONFIGURAT	ION CHAI	NGE TO PI	STON TYP	E ACTUA	TOR
REWORK: ADDED VENT HOLES IN BEARING AND ANNULAR VENT PATH 3-20-74	3-8-74	-200	33	685	718	9.1	_
3-20-74	REWORK:	I PISTON SEA	L REPLA	CED AND	KEL-F ST	OP DISK A	DDED
3-20-74	REWORK:	ADDED VENT	HOLES I	N BEARING	AND AND		
3-21-74	3-20-74	-200	192	747	939	1.5(2)	0.2 (2)
3-21-74	3-20-74	-200	192	759	951		0.2
3-21-74	3-21-74	-200	195	759	954	1.4	0.8
3-21-74	3-21-74	-200	195	759	954	1.3	0.2
3-21-74 -200 195 1220 1415 1.4 0.2 3-21-74 -200 195 1220 1415 1.4 2.2 3-22-74 -200 195 1278 1473 1.6 1.1 , 3-22-74 -200 195 1432 1627 2.6 3.7 3-27-74 -200 223 2000 2223 1.4 0.2 3-27-74 -200 223 2005 2228 1.3 0.2 3-27-74 -200 223 2087 2310 1.5 0.1 3-27-74 -200 223 2181 2407 1.6 0.25 3-27-74 -200 223 2255 2478 1.6 0.25 3-27-74 -200 223 2255 2478 1.6 0.25 3-27-74 -200 223 2255 2478 1.6 0.25 3-27-74 -200 231 2255 2586 2.2 (i) 1.0 (i) 4-2-74 -200 231 2605 <	3-21-74	-200	195	759	954	1.6	0.2
3-21-74	3-21-74	-200	195	859	1054	1.6	2.9
3-22-74 -200 195 1278 1473 1.6 1.1 4 3-22-74 -200 195 1432 1627 2.6 3.7 3-22-74 -200 195 1432 1627 2.6 0.3 3-27-74 -200 223 2000 2223 1.4 0.2 3-27-74 -200 223 2087 2310 1.5 0.1 3-27-74 -200 223 2181 2407 1.6 0.25 3-27-74 -200 223 2255 2478 1.6 0.25 3-27-74 -200 223 2255 2478 1.6 0.25 3-27-74 -200 231 2255 2478 1.6 0.25 3-27-74 -200 231 2255 2586 2.2 (1) 1.0 (1) 4-2-74 -200 231 2605 2836 1.6 0.25 4-2-74 -200 231 2634 2865 1.6(1) 1.4 (1) 4-3-74 -200 231 3348	3-21-74	-200	195	1220	1415	1.4	0.2
3-22-74	3-21-74	-200	195	1220	1415	1.4	2.2
3-22-74 -200 195 1432 1627 2.6 0.3 3-27-74 -200 223 2000 2223 1.4 0.2 3-27-74 -200 223 2005 2228 1.3 0.2 3-27-74 -200 223 2087 2310 1.5 0.1 3-27-74 -200 223 2181 2407 1.6 0.25 3-27-74 -200 223 2255 2478 1.6 0.25 3-27-74 -200 223 2255 2478 1.6 0.25 3-27-74 -200 231 2255 2586 2.2 (1) 1.0 (1) 4-2-74 -200 231 2605 2836 1.6 0.25 4-2-74 -200 231 2630 2831 1.4 0.2 4-3-74 -200 231 3634 2865 1.6 (1) 1.4 (1) 4-3-74 -200 231 3334 3565 1.5 0.2 4-4-74 -200 231 3488 3719	3-22-74	-200	195	1278	1473	1.6	1.1
3-27-74 -200 223 2000 2223 1.4 0.2 3-27-74 -200 223 2005 2228 1.3 0.2 3-27-74 -200 223 2087 2310 1.5 0.1 3-27-74 -200 223 2181 2407 1.6 0.25 3-27-74 -200 223 2255 2478 1.6 0.2 REWORK: VALVE SEAL AND TWO ACTUATOR PISTON SEALS REPLACED 4-2-74 -200 231 2255 2586 2.2 (1) 1.0 (1) 4-2-74 -200 231 2605 2836 1.6 0.25 4-2-74 -200 231 2630 2831 1.4 0.2 4-3-74 -200 231 3634 2865 1.6 (1) 1.4 (1) 4-3-74 -200 231 3334 3565 1.5 0.2 4-4-74 -200 231 3488 3719 1.7 0.3	3-22-74	-200	195	1432	1627	2.6	
3-27-74 -200 223 2005 2228 1.3 0.2 3-27-74 -200 223 2087 2310 1.5 0.1 3-27-74 -200 223 2181 2407 1.6 0.25 3-27-74 -200 223 2255 2478 1.6 0.2 REWORK: VALVE SEAL AND TWO ACTUATOR PISTON SEALS REPLACED 4-2-74 -200 231 2255 2586 2.2 (1) 1.0 (1) 4-2-74 -200 231 2605 2836 1.6 0.25 4-2-74 -200 231 2630 2831 1.4 0.2 4-3-74 -200 231 3010 3241 1.3 0.2 4-3-74 -200 231 3334 3565 1.5 0.2 4-4-74 -200 231 3488 3719 1.7 0.3 (continued)	3-22-74	-200	195	1432	1627	2.6	0.3
3-27-74 -200 223 2005 2228 1.3 0.2 3-27-74 -200 223 2087 2310 1.5 0.1 3-27-74 -200 223 2181 2407 1.6 0.25 3-27-74 -200 223 2255 2478 1.6 0.2 REWORK: VALVE SEAL AND TWO ACTUATOR PISTON SEALS REPLACED 4-2-74 -200 231 2255 2586 2.2 (1) 1.0 (1) 4-2-74 -200 231 2605 2836 1.6 0.25 4-2-74 -200 231 2630 2831 1.4 0.2 4-3-74 -200 231 3010 3241 1.3 0.2 4-3-74 -200 231 3334 3565 1.5 0.2 4-4-74 -200 231 3488 3719 1.7 0.3 (continued)	3-27-74	-200	223	2000	2223	1.4	0.2
3-27-74 -200 223 2087 2310 1.5 0.1 3-27-74 -200 223 2181 2407 1.6 0.25 3-27-74 -200 223 2255 2478 1.6 0.2 REWORK: VALVE SEAL AND TWO ACTUATOR PISTON SEALS REPLACED 4-2-74 -200 231 2255 2586 2.2 (1) 1.0 (1) 4-2-74 -200 231 2605 2836 1.6 0.25 4-2-74 -200 231 2630 2831 1.4 0.2 4-3-74 -200 231 2634 2865 1.6(1) 1.4 (1) 4-3-74 -200 231 3010 3241 1.3 0.2 4-3-74 -200 231 3488 3719 1.7 0.3 4-4-74 -200 231 3488 3719 1.7 0.3 (continued)	3-27-74	-200	223	2005	2228	1.3	
3-27-74 -200 223 2181 2407 1.6 0.25 3-27-74 -200 223 2255 2478 1.6 0.2 REWORK: VALVE SEAL AND TWO ACTUATOR PISTON SEALS REPLACED 4-2-74 -200 231 2255 2586 2.2 (1) 1.0 (1) 4-2-74 -200 231 2605 2836 1.6 0.25 4-2-74 -200 231 2630 2831 1.4 0.2 4-3-74 -200 231 2634 2865 1.6(1) 1.4 (1) 4-3-74 -200 231 3010 3241 1.3 0.2 4-3-74 -200 231 3334 3565 1.5 0.2 4-4-74 -200 231 3488 3719 1.7 0.3	3-27-74	-200	223	2087	2310	į.	
3-27-74 -200 223 2255 2478 1.6 0.2 REWORK: VALVE SEAL AND TWO ACTUATOR PISTON SEALS REPLACED 4-2-74 -200 231 2255 2586 2.2 (1) 1.0 (1) 4-2-74 -200 231 2605 2836 1.6 0.25 4-2-74 -200 231 2630 2831 1.4 0.2 4-3-74 -200 231 2634 2865 1.6(1) 1.4 (1) 4-3-74 -200 231 3010 3241 1.3 0.2 4-3-74 -200 231 3334 3565 1.5 0.2 4-4-74 -200 231 3488 3719 1.7 0.3 (continued) (continued)		1		2181	2407		
REWORK: VALVE SEAL AND TWO ACTUATOR PISTON SEALS REPLACED 4-2-74		ř		1	i i	1	
4-2-74 -200 231 2255 2586 2.2 (1) 1.0 (1) 4-2-74 -200 231 2605 2836 1.6 0.25 4-2-74 -200 231 2630 2831 1.4 0.2 4-3-74 -200 231 2634 2865 1.6(1) 1.4 (1) 4-3-74 -200 231 3010 3241 1.3 0.2 4-3-74 -200 231 3334 3565 1.5 0.2 4-4-74 -200 231 3488 3719 1.7 0.3 (continued) (continued)		•	•	DACTUATO	,		•
4-2-74 -200 231 2605 2836 1.6 0.25 4-2-74 -200 231 2630 2831 1.4 0.2 4-3-74 -200 231 2634 2865 1.6(1) 1.4(1) 4-3-74 -200 231 3010 3241 1.3 0.2 4-3-74 -200 231 3334 3565 1.5 0.2 4-4-74 -200 231 3488 3719 1.7 0.3 4-4-74 -200 231 3488 3719 1.7 0.3							
4-2-74 -200 231 2630 2831 1.4 0.2 4-3-74 -200 231 2634 2865 1.6(1) 1.4 (1) 4-3-74 -200 231 3010 3241 1.3 0.2 4-3-74 -200 231 3334 3565 1.5 0.2 4-4-74 -200 231 3488 3719 1.7 0.3 4-4-74 -200 231 3488 3719 1.7 0.3	4-2-74		231	2605	2836	1	
4-3-74 -200 231 2634 2865 1.6(1) 1.4 (1) 4-3-74 -200 231 3010 3241 1.3 0.2 4-3-74 -200 231 3334 3565 1.5 0.2 4-4-74 -200 231 3488 3719 1.7 0.3 4-4-74 -200 231 3488 3719 1.7 0.3		~200	231	2630	2831	1.4	0, 2
4-3-74 -200 231 3010 3241 1.3 0.2 4-3-74 -200 231 3334 3565 1.5 0.2 4-4-74 -200 231 3488 3719 1.7 0.2 4-4-74 -200 231 3488 3719 1.7 0.3 (continued)					í ,		
4-3-74 -200 231 3334 3565 1.5 0.2 4-4-74 -200 231 3488 3719 1.7 0.2 4-4-74 -200 231 3488 3719 1.7 0.3 (continued)		3	5		l I	Į	
4-4-74 -200 231 3488 3719 1.7 0.2 4-4-74 -200 231 3488 3719 1.7 0.3 (continued)					ł I		1
4-4-74 -200 231 3488 3719 1.7 0.3 (continued)		1		t	1 1	i .	ł
(continued)				i	l I		· ·
<u></u>	1.				0.10	•••	0.0
<u></u>					ĺ	Ϊ	1
E-117 8/						[(cor	$\frac{\text{ntinued}}{\dots}$
							E-117 8/7

164


Table 4-5 (continued)


Response Time, Sec. Los Temperature Life Cycle Test Cryogenic Temperature

					, _ , _ , _ , _ , _ , _ , _ , _ , _ , _	_
·	Temp. of	Accumulated Cy		ycles	Open to	Close to
Date	Test, ^O F.	RT	~200°F.	Total	Close	Open
4-4-74	-200	231	3757	3988	1.5	0.2
4-5-74	-200	231	4585	4816	1.6	0.3
4-5-74	-200	231	4605	4836	1.6	0.2
4-8-74	-200	231	4605	4836	1.3	0.3
REWORK	ACTUATOR I	INK RED	ESIGN	. }		
REWORK:	MAIN SEAL R	EFINISH	ED	İ		
REWORK:	3 PISTON SEA	ALS REPI	LACED			
4-25-74	-200	1078	5897	7025	1.1	0.2
4-26-74	-200	1078	6567	7545	1.3	0.2
4-26-74	-200	1078	7197	8485	1.4	0.2
4-26-74	-200	1078	7724	8802	1.8	0.3
4-26-74	-200	1078	7867	8945	1.5	0.4
4-26-74	-200	1078	8057	9135	1.7	0.2
4-26-74	-200	1078	8413	9491	1.6	0.2
4-27-74	-200	1078	8441	9519	1.3	0.3
4-27-74	-200	1078	8467	9545	1.3	0.3
4-27-74	-200	1078	8943	10,021	1.7	0.4
						}
		}]	1	
	N					1
		L	<u> </u>	<u>'i</u>	<u> </u>	ŀ

^{(1) 0} psig at inlet.

⁽²⁾ New method of measuring response time.

ER 966-24 /67

- b. The "close" actuator port was pressurized to 750 psig with zero psig applied to the valve inlet. The cover port and outlet port leakages were measured. The inlet pressure was increased to 35 psig, and the cover and outlet port leakages were measured.
- c. With the "close" port and inlet pressurized as described above, the "close" port pressure was released to zero psig. The cover port and outlet port leakages were measured.

4.3.1.2 Response Time Test

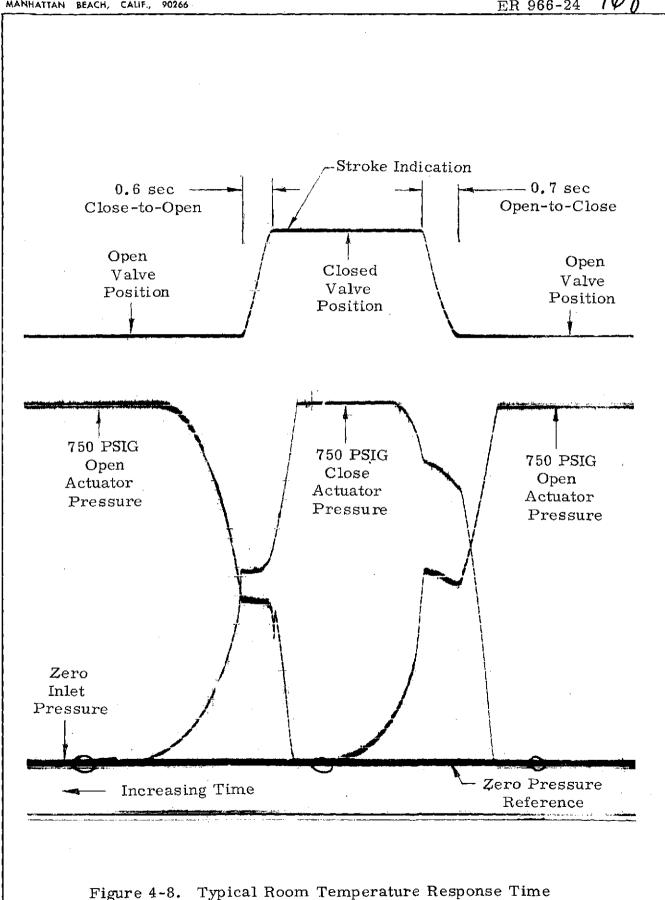
The response time tests were conducted with the test specimen installed in the low temperature life cycle test setup. Gaseous nitrogen was used to pressurize the actuator and valve inlet. The tests were conducted as described below.

The "close" actuator port was pressurized to 750 psig and the valve inlet was pressurized to 35 psig. Simultaneously, the "close" port was vented, and the "open" port was pressurized to 750 psig. The actuation pressure, valve position, inlet and outlet valve pressures were recorded on an oscillograph. Typical close-to-open and open-to-close response time transients are shown in Figures 4-8 and 4-9, respectively, at room and cryogenic temperatures.

4.3.2 Component Leakage Evaluation

The component leakages were evaluated from the leakage test data recorded during the low temperature life cycle. The data for the bellows type actuator assembly and the piston type were evaluated in the manner described below. Schematic diagrams of the valve with the bellows type actuator assembly and of the valve with the piston type actuator assembly are shown in Figures 4-10 and 4-11 respectively. The "open ","close", cover, and outlet ports, as well as the valve inlet, are identified. The main seal and shaft seal are also identified.

The "open" actuator leakage is equal to the "close" actuator port leakage plus the cover port leakage with the conditions of 750 psig at the "open" port and 35 psig at the valve inlet.

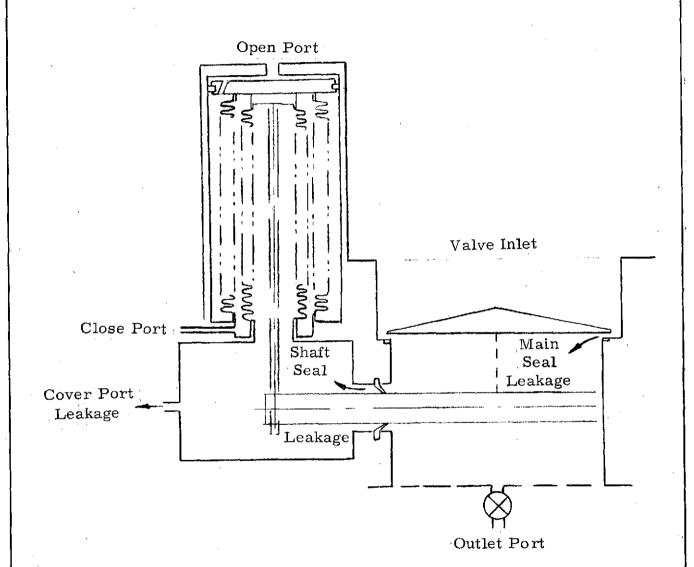

The "close" actuator leakage is equal to the "cover" port leakage with the conditions of 750 psig at the "open" port and 35 psig at the valve inlet.

The main seal leakage is equal to the outlet port leakage with the conditions of 750 psig at the "close" port and 35 psig at the valve inlet.

4.3.3 Cycling with Bellows Type Actuator Assembly

The test specimen with the bellows type actuator assembly was installed in the test setup shown in Figures 4-2 through 4-5. A schematic diagram of the test

ER 966-24 168



Transients, Low Temperature Life Cycle Test

STRATOS DIVISION 1800 ROSECRANS AVENUE MANHATTAN BEACH, CALIF., 90266 ER 966-24 169 0.2 sec 1.7 sec Close-to-Open Open-to-Close Stroke Indication Close Close Valve Valve Position Position Open 750 PSIG -Open Valve Close Actuator Position Actuator Pressure Pressure Close 750 PSIG Actuator Open Pressure Actuator Pressure 35 PSIG Valve Inlet Pressure Zero Pressure Increasing Time Reference Typical Cryogenic Temperature Response Time Figure 4-9. Transients, Low Temperature Life Cycle Test

ORIGINAL PAGE IS OF POOR QUALITY

Figure 4-10. Schematic Diagram Bellows Type Actuator and Valve Assembly

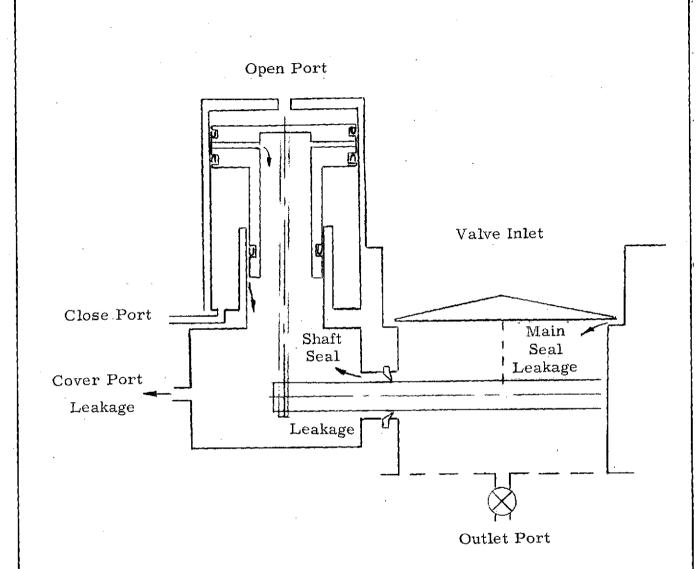


Figure 4-11. Schematic Diagram, Piston Type Actuator Assembly

172

setup is presented in Figure 4-2. Views of the setup, with the cover removed, are presented in Figures 4-3 and 4-4. A photograph of the operator's station is presented in Figure 4-5.

The test specimen and the test fluids were at approximately minus 200°F. In each cycle, the valve inlet was pressurized to 35 psig with nitrogen in the "closed" position. The actuation pressure was 750 psig nitrogen. The cycling schedule was open for 3 seconds and closed for 7 seconds.

After 10 room temperature cycles and 96 cryogenic cycles, the cycling was stopped to correct a malfunctioning stroke indicator. The indicator was disassembled. The stem was found to be unscrewed. This condition was corrected, and the cycling was continued.

After an accumulation of 15 room temperature and 681 cryogenic cycles (696 total cycles), the valve ceased to cycle due to excessive leakage through the "open" and "close" actuator ports and the solenoid vent port. The outer bellows was the cause of the leakage and a decision was made to change the test specimen configuration from a bellows type actuator assembly to a piston type actuator assembly. See paragraph 3.3.1 for further discussion of the configuration change.

4.3.4 Cycling With Piston Type Actuator Assembly

The redesigned test specimen was re-installed in the test setup, and cycling was continued. After an accumulated 48 RT and 772 cryogenic valve cycles, there was excessive cover port leakage and cycling was stopped. The unit was disassembled and inspected. See paragraph 3.3.3 for the results of the disassembly and inspection and a description of the test specimen rework.

Following the rework of the test specimen (Kel-F disk added and two outer piston seals replaced) and the rework of the test setup (addition of 10 micron filters at the actuator ports) cycling was continued. After an accumulated 167 RT cycles and 772 cryogenic valve cycles, the test was stopped due to occasionally high actuator leakage, indicating erratic actuator seal performance. The actuator was disassembled and inspected. The results of the disassembly and inspection and the rework are presented in paragraph 3.3.4.

After a total of 195 RT cycles and 1419 cryogenic cycles, there was test system leakage. The heat generator for the "open" actuator port was leaking around the O-ring groove and the Tygon tube to the cover port was split and leaking. The generator was repaired, and a copper line was installed between the cover port to outside the chamber. A Tygon tube ran from the copper tube to the leakmeter. These test setup leakages accounted for the zero actuator port leakages. (See Table 4-3, Total Accumulated Cycles: 939 through 1419).

143

After a total of 223 RT cycles and 2255 cryogenic cycles, the test was stopped due to excessive valve and actuator leakage. The test specimen was disassembled and inspected. The results of the inspection and the rework of the unit are presented in paragraph 3.3.5.

Following the rework of the test specimen, cycling was continued. After 331 RT cycles and 5895 cryogenic valve cycles, the valve would not fully open or close. Testing was stopped, and the unit was sent for disassembly and inspection. The results of the inspection and a description of the rework are presented in paragraph 3.3.6.

Cycling was continued following the rework of the test specimen. After 1016 RT and 5897 cryogenic cycles, there was excessive main seal leakage, and the cycling was stopped. The unit was sent for inspection. The results of the inspection and the results of the rework are presented in paragraph 3.2.6.

Following the refinishing of the main seal, cycling was continued. Excessive "open" and "close" actuator leakages caused the cycling to be stopped after 1044 room temperature cycles and 5897 cryogenic cycles. The unit was sent for rework. The results of the inspection are presented in paragraph 3.2.7.

Following the replacement of the three piston seals, cycling was continued until the low temperature life cycle test was concluded at 1082 RT cycles and 8943 cryogenic cycles, for a total of 10,025 combined valve cycles.

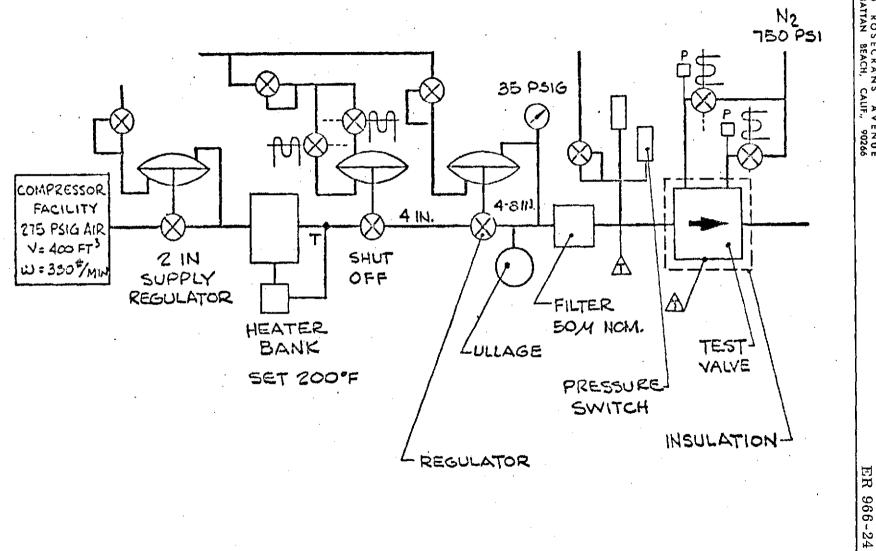
ER 966-24 /7

4,4 HIGH TEMPERATURE LIFE CYCLE TEST

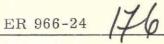
The high temperature life cycle test consisted of 10,004 valve cycles at 200°F. The test setup for the high temperature life cycling, including the leakage and response testing, is shown schematically in Figure 4-12 and photographically in Figures 4-13 and 4-14.

4.4.1 Leakage and Response Testing

Before, during and after the life cycling, the test specimen was subjected to room temperature and 200°F. leakage and response tests to check performance of the unit. The procedures used for conducting these tests are described in paragraphs 4.4.1.1 and 4.4.1.2.


Component leakages are presented in Table 4-6. The main seal and shaft seal leakages are presented graphically in Figures 4-6 and 4-7 respectively. The response times are presented in Table 4-7. The component leakages were determined from the data recorded during the leakage and response testing. The component leakage and the test results are identified by date, cycle history and temperature.

In general, room temperature tests were conducted at the start of each day's testing. During the day's cycling, the response tests were conducted at intervals indicated by Table 4-6. At the end of each day's cycling, the tests were conducted at the high temperature (200°F.). The method of determining the component leakage is discussed in paragraph 4.4.2.


4.4.1.1 Leakage Tests

The leakage tests were conducted with the test specimen installed in the high temperature life cycle test setup shown in Figures 4-12, 4-13 and 4-14. Gaseous nitrogen was used to pressurize the actuator. Air was used to pressurize the poppet valve inlet. The tests were conducted as follows:

- a. The "open" actuator port was pressurized to 750 psig with zero psig applied to the valve inlet. The cover port and the "close" actuator port leakages were measured. The inlet pressure was increased to 35 psig, and the cover and "close" port leakages were measured.
- b. With the valve in the open position, the actuator pressure was vented to zero. The valve inlet was pressurized to 15 psig, and the "cover" port, the "close" actuator port, and the "open" actuator port leakages were measured. The valve inlet pressure was then increased to 35 psig, and the leakages were measured.

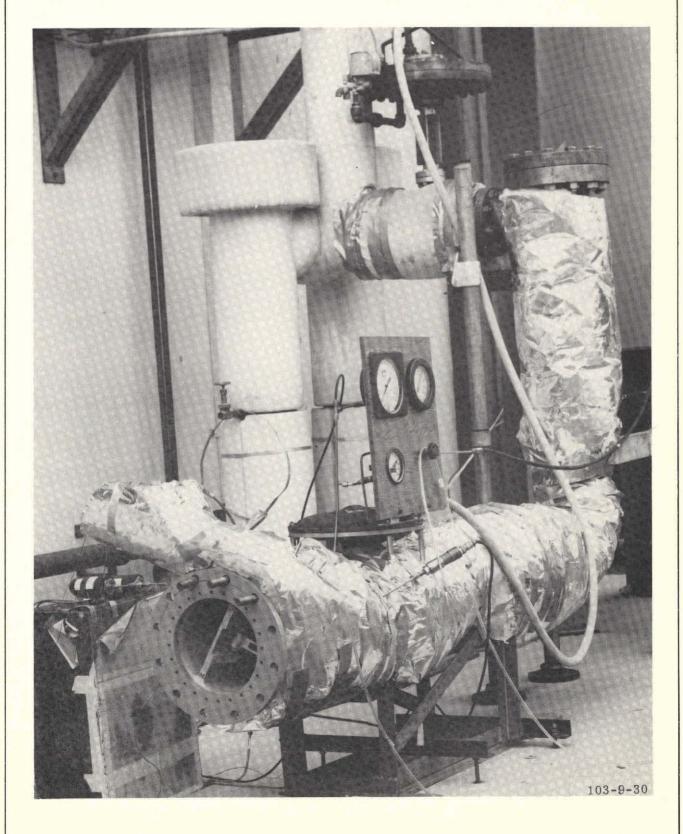


Figure 4-13. Test Setup, High Temperature Life Cycle (Cover Plate Removed)

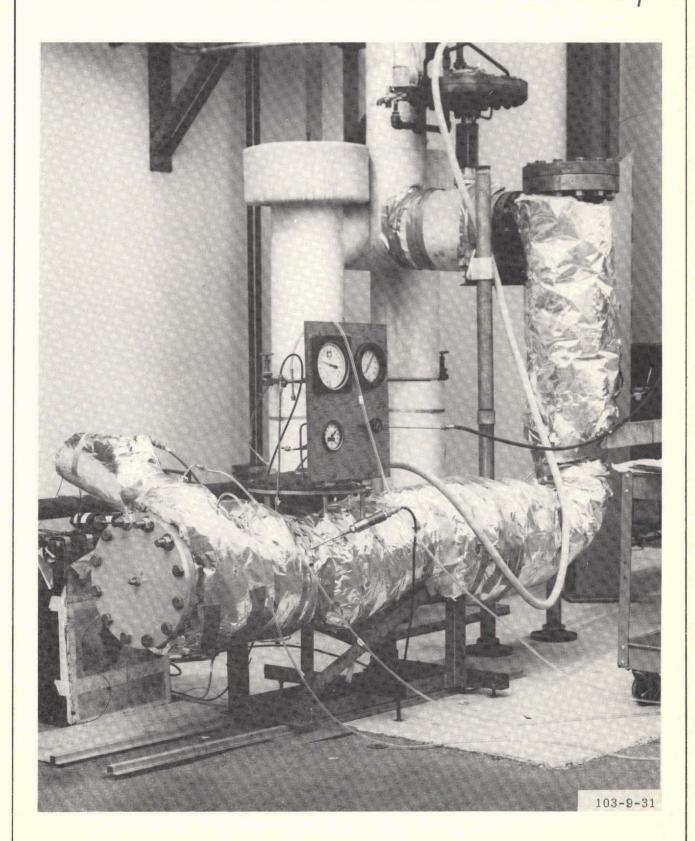


Figure 4-14. Test Setup, High Temperature Life Cycle

Table 4-6
Component Leakage, SCCM
High Temperature Life Cycle Test

						r	
Date	Temp. of Test, ^o F.	Accum. 200 ⁰ F.	Cycles Total	Main Seal	Shaft Seal	Open Act.	Close Act.
,			10 00				
5-8-74	RT	0	10,025	29	11,152	0	0
REWORK:	SHAFT SEA		. [1]				_
5-10-74	RT	0	10,039	110	325	30	0
5-13-74	RT	400	10,439	39	345	22	0
5-13-74	RT	1503	11,542	34	285	125	8
5-15-74	RT	3518	13,557	33.6 ⁽¹⁾	325	2223	1722(2)/
•				j]		!	1640
5-16-74	RT	5533	15,572	529	270	1828	4838
REWORK:	THREE PIST	ON SEAL	S REPLAC	CED			
5-20-74	RT	6038	16,077	41	290	0	0
5-21-74	RT	7547	17,586	30.6	300	120	8.4
5-21-74	RT	9548	19,587	34(1)	275	700	3116 ⁽²⁾ /
•				}			1804
5-22-74	RT (3)	10,004	20,043	39	-		1968
	RT	AFT	. VIB	140	740	345	1722
F 40 F4	900	400	10.400			0.7	
5-10-74	200	400	10,439	14	290	37.2	0
5-13-74	200	1008	11,047	11.6	190	21	10.4
5-14-74	200	1503	11,542	24.8	270	65	10.2
5-14-74	200	2003	12,042	11.2	260	240	16
5-14-74	200	2510	12,549	36.2	290	790	225
5-15-74	200	3010	13,049	21	250	1230	875
5-15-74	200	3513	13,552	20	745	1974	1476
5-15-74	200	4020	14,059	20	260	2223	1066
5-15-74	200	4523	14,562	269	240	2644	2952
5-16-74	200	5533	15,572	762	225	3355	6396
5-16-74	200	5716	16,077	3471	4843	3939	12,795
		1		<u> </u>			
	<u> </u>			<u> </u>	<u> </u>		<u> </u>

NOTES

- (1) Calculated using close actuator leakage at 35 psig valve inlet.
- (2) Questionable irratic data; second no. at 35 psig valve inlet.
- (3) Before vibration.

179

Table 4-6 (continued)

Component Leakage, SCCM High Temperature Life Cycle Test

<u> </u>							
Date	Temp. of Test, ^O F.	Accum. 200 ⁰ F.	Cycles Total	Main Seal	Shaft Seal	Open Act.	Close Act.
REWORK	_						
5-20-74	200	6541	16,580	25	240	85] 0
5-20-74	200	7044	17,083	35.8	240	187	0
5-21-74	200	7547	17,586	22.8	200	395	22
5-21-74	200	8047	18,086	4	205	975	450
5-21-74	200	8547	18,586	26	2132	2214	1476
5-21-74	200	9047	19,086	45	240	2624	390
5-21-74	200	9548	19,587	20 ⁽¹⁾	1476	2870	2706 ⁽²⁾ / 2624
5-22-74	200	10,004	20,043	26 ⁽¹⁾	170	2460	1968 ⁽²⁾ / 1886

NOTES

- (1) Calculated using close actuator leakage at 35 psig valve inlet.
- (2) Questionable irratic data; second no. at 35 psig valve inlet.
- (3) Before vibration.

Table 4-7
Response Time, Sec
High Temperature Life Cycle Test

g								
	Temp. of	C^{τ}	nulated voles	Open to	Close to			
Date	Test, ^O F.	200°F.	Total	Close	Open.			
5~8-74	RT	0	10,034	0.5	0.5			
5-10-74	RT	0	10,037	0.5	0.5			
5-10-74	RT	0	10,039	0.5	0.5			
5-13-74	RT	400	10,439	0.65	0.2			
5-13-74	RT	404	10,443	0.6	0.2			
5-13-74	RT	408	10,447	0.6	0.2			
5-15-74	RT	3516	13,555	0.6	0.2			
5-15-74	RT	3517	13,556	0.7	0.2			
5-15-74	RT	3518	13,557	0.7	0.2			
VALVE RE	1							
6-7-74	RT	10,004	20,043	0.85	0.25			
			after vib.	·'	·			
5-10-74	200	0	10,039	0.7	0.2			
5-10-74	200	200	10,239	0.7	0.2			
5-10-74	200	400	10,439	0.7	0.2			
5-13-74	200	570	10,609	0.7	0.2			
5-13-74	200	730	10,769	0.7	0.2			
5-13-74	200	1008	11,047	0.6	0.2			
5-13-74	200	1169	11,208	0.7	0.2			
5-13-74	200	1353	11,392	0.6	0.2			
5-13-74	200	1503	11,542	0.7	0.2			
5-13-74	200	1669	11,708	0.7	0.2			
5-13-74	200	1815	11,854	0.7	0.2			
5-14-74	200	2003	12,042	0.7	0.2			
5-14-74	200	2194	12,233	0.6	0.2			
5-14-74	200	2352	12,391	0.7	0.2			
5-14-74	200	2510	12,549	0.7	0.2			
5-14-74	200	2678	12,717	0.7	0.2			
5-14-74	200	2844	12,883	0.7	0.2			
5-15-74	200	3010	13,049	0.7	0.2			
5-15-74	200	3178	13,217	0.7	0.2			
5-15-74	200	3342	13,381	0.7	0.2			
5-15-74	200	3513	13,552	0.7	0.2			
5-15-74	200	3698	13,737	0.7	0.2			
5-15-74	200	3848	13,887	0.7	0.2			
5-15-74	200	4020	14,059	0.7	0.2			
{								
·								
					F-112 8/7			

18/

Table 4-7 (continued)

Response Time, Sec High Temperature Life Cycle Test

				Т	r
		Accum	ulated	Open	Close
	Temp. of	_ Су	cles	to	to
Date	Test, ^o F.	200°F.	Total	Close	Open
5-15-74	200	4188	14,227	0.6	0.2
5-15-74	200	4348	14,387	0.7	0.2
5-15-74	200	4523	14,562	0.7	0.2
5-15-74	200	4693	14,732	0.7	0.2
5-15-74	200	4853	14,892	0.7	0.2
5-15-74	200	5028	15,067	0.7	0.2
5-16-74	200	5206	15,245	0.7	0.2
5-16-74	200	5361	15,400	0.7	0.2
5-16-74	200	5533	15,572	0.7	0.15
5-16-74	200	5716	15,755	0.7	0.2
5-16-74	200	5868	15,907	0.6	0.2
5-16-74	200	6038	16,077	0.6	0.2
VALVE RE	WORK		•	ĺ	
5-20-74	200	6204	16,243	0.7	0.2
5-20-74	200	6384	16,413	0.6	0.2
5-20-74	200	6541	16,580	0.6	0.2
5-20-74	200	6710	16,749	0.65	0.2
5-20-74	200	6876 [,]	16,915	0.6	0.2
5-20-74	200	7044	17,083	0.6	0.2
5-21-74	200	7202	17,241	0.65	0.2
5-21-74	200	7372	17,411	0.65	0.2
5-21-74	200	7547	17,586	0.7	0.2
5-21-74	200	7710	17,749	0.7	0.2
5-21-74	200	7879	17,918	0.65	0.2
5-21-74	200	8047	18,086	0.65	0.25
5-21-74	200	8213	18,252	0.7	0, 2
5-21-74	200	8382	18,421	0.65	0.2
5-21-74	200	8547	18,586	0.7	0.2
5-21-74	200	8712	18,751	0.65	0.2
5-21-74	200	8882	18,921	0.65	0. 2
5-21-74	200	9047	19,086	0.65	0.2
5-21-74	200	9212	19,251	0.65	0.2
5-21-74	200	9379	19,418	0.7	0.2
5-21-74	200	9548	19,587	0.65	0.2
			20,000		
L		1			

182

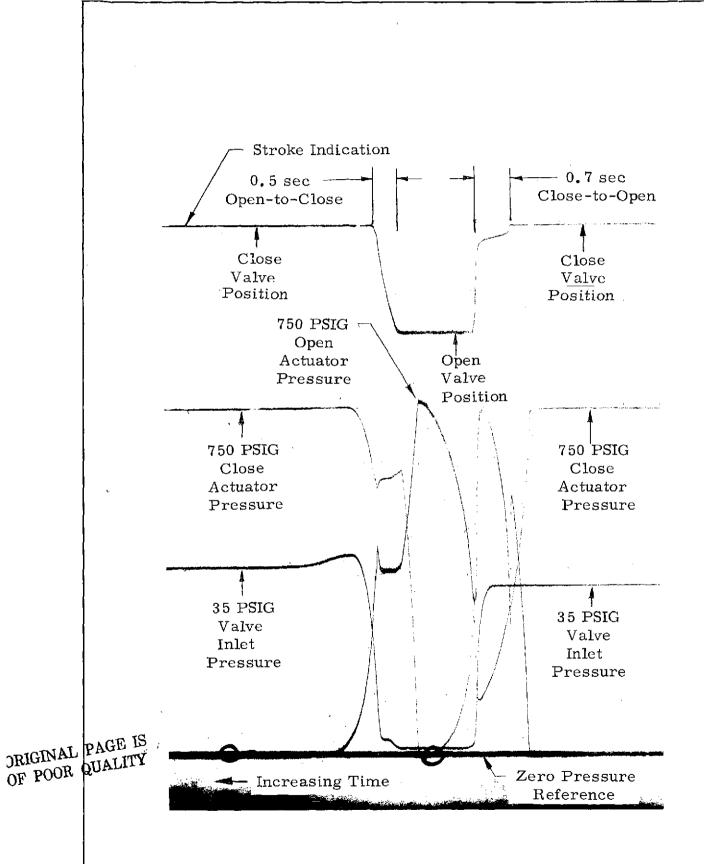
- c. The "close" actuator port was pressurized to 750 psig with zero psig applied to the valve inlet. The cover port and outlet port leakages were measured. The inlet pressure was increased to 35 psig, and the cover and open port leakages were measured.
- d. The "close" actuator port was pressurized to 750 psig with 15 psig applied to the valve inlet. The cover port and outlet port leakages were measured. The inlet pressure was increased to 35 psig and the cover port and outlet port leakages were measured.

4.4.1.2 Response Time Test

The response time tests were conducted with the test specimen installed in the high temperature life cycle test setup. Gaseous nitrogen was used to pressurize the actuator, and air was used to pressurize the valve inlet. The tests were conducted as described below.

The "close" actuator port was pressurized to 750 psig, and the valve inlet was pressurized to 35 psig. Simultaneously, the "close" port was vented, and the "open" port was pressurized to 750 psig. The actuation pressure, valve position, inlet and outlet valve pressures were recorded on an oscillograph. Typical close-to-open and open-to-close response time transients, at room and high temperatures, are shown in Figures 4-15 and 4-16, respectively.

4.4.2 Component Leakage Evaluation


The component leakages were evaluated from the leakage test data recorded during the high temperature life cycle test. A schematic diagram of the piston type actuator assembly and the valve is shown in Figure 4-11. The valve inlet and the various ports are identified as well as the main seal and shaft seal.

The "open" actuator leakage is equal to the cover port leakage plus the "close" port leakage with conditions of 750 psig at the "open" actuator port and zero psig at the valve inlet.

The "close" actuator leakage is equal to the cover port leakage plus the "open" port leakage with the conditions of 750 psig at the "close" actuator port and 35 psig at the valve inlet.

The shaft seal leakage is equal to the cover port leakage plus the "close" port leakage with the valve in open position, zero psig at the open actuator port, and 35 psig at the valve inlet.

The main seal leakage is equal to outlet port leakage plus the cover port leakage with conditions of 750 psig at the "close" actuator port and 35 psig at the valve inlet minus the "close" port leakage.

Typical Room Temperature Response Time Figure 4-15. Transients, High Temperature Life Cycle Test

STRATOS DIVISION 1800 ROSECRANS AVENUE MANHATTAN BEACH, CALIF., 90266 ER 966-24 -0.6 sec- 0.2 sec Open-to-Close Close-to-Open Close Close Stroke Indication Valve Valve Position Position Open Valve Position 750 PSIG 750 PSIG Close Close 750 PSIG Actuator Actuator Open Pressure Pressure Actuator Pressure 35 PSIG 35 PSIG Valve Valve Inlet Inlet Pressure Pressure Zero Pressure Increasing Time Reference Typical High Temperature Response Time Figure 4-16. Transients, High Temperature Life Cycle Test

4.4.3 <u>High Temperature Cycling</u>

The test specimen was installed in the high temperature test setup shown in Figures 4-12, 4-13 and 4-14. With the supply and outlet regulators adjusted for optimal cycling performance and the heater controller adjusted for 200° F gas at the valve, the test specimen was cycled open for 3 seconds and closed for 7 seconds. In each cycle the valve inlet was pressurized with nitrogen at 35 psig in the closed position. The actuation pressure was 750 psig nitrogen.

After 10,039 accumulated cycles, the test was stopped due to excessive cover port leakage. The disassembly, inspection, and rework of the unit are described in paragraph 3.2.7.

The test specimen with the new shaft seal was reinstalled in the test setup, and cycling was continued. After an accumulated 10,089 total valve cycles, the cycling was stopped. The open port and close port orifices were sent for rework. See paragraph 3.2.8 for rework details.

Cycling was continued with the reworked orifices installed until 16,580 cycles were complete, at which time the cycling was stopped. The unit was sent for rework. See paragraph 3.2.9 for details of rework.

Cycling was continued after the rework until a total of 20,043 accumulated valve cycles were completed. Then the test was concluded.

186

4.5 VIBRATION TEST

The vibration test was conducted at the Approved Engineering Test Laboratories (AETL), Los Angeles, California. The test procedures used and the test results obtained during the vibration testing are presented in AETL Report No. 5330-1203 dated 8 July 1974, entitled "Vibration Test Report on Ten-Inch Long Life Valve, Part Number 966000, Serial Number 0001." A copy of this report is included as Appendix C of this report. Supplementary test description and test data are presented in the following paragraphs.

The vibration testing consisted of sinusoidal sweeps with the poppet valve in the open and the closed positions and random vibration with the poppet valve in the closed position along each of the three major valve axes, namely the valve axis, the actuator axis, and normal to the actuator axis.

4.5.1 Resonances

Resonant frequencies and intensities were evaluated from the x-y plots recorded during the sinusoidal sweeps. The x-y plots are presented in the AETL test report included in Appendix C herein. Resonant frequencies and intensities for the vibration sweeps are presented in Table 4-8. The data is identified by sweep, valve position, and output accelerometer location.

4.5.2 Monitored Leakage Data

Leakage was monitored before, during, and after each vibration run. Cover port and outlet port leakages were monitored with zero and 35 psig nitrogen gas applied to the valve inlet with the poppet valve in the closed position. Cover port leakage was monitored with zero and 35 psig applied to the valve inlet with the valve in the open position. The actuation pressure was 750 psig nitrogen gas. A schematic of the leakage test setup is presented in Figure 4-17. The component leakages (main seal, shaft seal, "open" actuator port, and "closed" actuator port) are presented in Table 4-9. These leakages were determined from the measured leakage test data presented in Table 4-13.

4.5.3 Leakage Test Prior to Vibration

A leakage test was conducted prior to the start of vibration testing. The test was conducted with the test specimen installed in the Lateral No. 1 axis. The setup is shown in Figure 4-17. Cover port leakage was measured with the valve in the closed position and with zero and 35 psig applied to the valve inlet. Outlet port and cover port leakages were measured with the valve in the closed position and with 15 and 35 psig nitrogen gas applied to the valve inlet. The actuation pressure was 750 psig nitrogen. The component leakages, which are presented in Table 4-9, were determined from the measured test data.

187

Table 4-8 Resonant Frequency Summary Vibration Test

	Ι							
	RESONANT FREQUENCY AND AMPLITUDE							
	OUTPUT ACCELEROMETER LOCATIONS *							
	No	. 2	No	. 3	No.	4	No. 5	
					(in direc			_
Axis of Vibration and	Bon		Во	du	vibration actuator		Actua En	
Valve Position	Pop _l Hz	G's	Hz	uy G's	Hz	G's	Hz	G's
V 41.0 1 0 0 10 10 10 10 10 10 10 10 10 10 10								
Lateral No. 1	770	95	1800	100+	1400	240	250	100+
	1150	43	1320	44	1050	45	390	57
Closed	1780	20	1160	40	237 287	32 31	570 1500	46 46
					620	26	1300	40
Lateral No. 1	1500	40	1450	100+	1500	200	275	62
Lateral No. 1	1380	33	1700	100+	210	89	400	45
Open	1800	27	1100	50	285	85	590	32
	180	28	220	32	520	78	1800	24
	230	28	515	29	1100	73	1460	25
Lateral No. 1	Loose	Cable	1580	57	1830	90	950	55
Closed		, ,	310	4.8	1140	80	750	54
(Retest)			1008	38	780	45	305	41
(1100000)			930	34	340	37	480	31
	<u> </u>		1	<u> </u>	265	36	1650	28
Longitudinal No. 1	180	26	180	65	179	38	1250	59
Closed			240	50	940	33	1800	46
(Retest)]	940	40			175 220	41 34
	<u> </u>				<u> </u>		 	
Longitudinal No. 1	215	63	233	53	134	100+	1450	80
Open	1420	53	1470 960	39 32	41	100+ 100+	1300 1680	75 51
(Retest)	1820 34	44 25	960	34	33 29	100+ 100+	220	51 45
	J4	""			23	100+	220	10
					18	100+		
		}			14.5	90		
					1800	40		
		(960	39		
	<u> </u>	<u> </u>		<u> </u>	215	33	L	L

^{*} Control Accelerometer (No. 1) located on fixture in the direction of vibration.

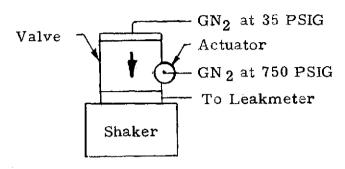
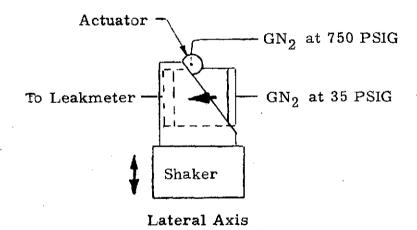

186

Table 4-8 (continued) Resonant Frequency Summary Vibration Test


VIDIATION 100V									
		RESONANT FREQUENCY AND AMPLITUDE							
	OUTPUT ACCELEROMETER LOCATIONS *								
	No	. 2	N	o. 3		. 4 ction of	No	. 5	
Axis of Vibration and	Pop	ppet Body		dv	vibration on actuator cover)		Actuator End		
Valve Position	Hz	G's	Hz	G's	Hz	G's	Hz	G's	
Longitudinal No. 2 Closed	750 410 1002	100+ 67 70	920 1400 1000	56 46 43	650 900 320	44 37 36	1350 730 470	100+ 95 75	
	340	39	400 215 122	31 28 29	205 1600	35 28	920 224 118	68 56 54	
Longitudinal No. 2 Open	128 1880 455 930	34 32 30 26	1050 900 1550 420 220 120	70 38 37 26 26 26 25	880 1080 1640 680 335	46 45 38 43 36	1300 1100 730 490 340 320 240 165 122	100+ 100+ 100+ 100+ 92 96 97 66 75	

^{*} Control Accelerometer (No. 1) located on fixture in the direction of vibration.

ER 966-24 /89

Longitudinal Axis

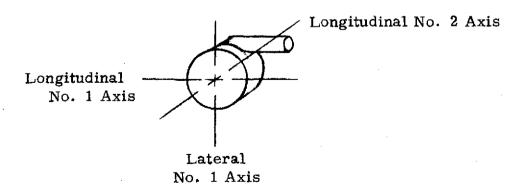


Figure 4-17. Schematic Diagram, Vibration Test Setup and Axis Identification

190

Table 4-9 Component Leakage, SCCM Vibration Test

					
Description		Main Seal	Shaft Seal	Open Actuator	Close Actuator
Leakage Test Prior to Vibration Tests		39			1968
Lateral No. 1 Axis Sinusoidal Sweep Closed Valve	Before During After	56 - 34			1886 - 1640
Lateral No. 1 Axis Sinusoidal Sweep Open Valve	Before During After		230 - -	260 - -	
Lateral No. 1 Axis (1) Random Vibration Closed Valve	Before During After	39 39 100			2050/1640 1840 1476
Lateral No. 1 Axis Sinusoidal Sweep Closed Valve (Retest)	Before During After	10 38 38			1501/1722 1558 1558
Lateral No. 1 Axis Random Vibration Closed Valve	Before During After	38 49 38			1312 1394 1476
Longitudinal No. 1 Axis Sinusoidal Sweep (2) Closed Valve	Before During After	39 39 -			1968/1886 1886 -
Longitudinal No. 1 Axis Sinusoidal Sweep Closed Valve (Retest)	Before During After	39 39 9.2			1968/1804 1640 1394
Longitudinal No. 1 Axis Sinusoidal Sweep (3) Open Valve	Before During After		235 - -	5 - -	

NOTES:

- (1) Mounting bolts sheared
- (2) Fixture lifting off slip plate; test stopped at 430 Hz
- (3) Lost stroke indicator rod; test stopped at 350 Hz; plug installed

STRATOS DIVISION 1800 ROSECRANS AVENUE MANHATTAN BEACH, CALIF., 90266

ER 966-24

Table 4-9 (continued) Component Leakage, SCCM Vibration Test

<u> </u>					
Description		Main Seal	Shaft Seal	Open Actuator	Close Actuator
Longitudinal No. 1 Axis Sinusoidal Sweep Open Valve (Retest)	Before During After	X	115 - -	155 - -	
Longitudinal No. 1 Axis Random Vibration Closed Valve	Before During After	41 51/75 41			1640/1640 1394 1391
Longitudinal No. 2 Axis Sinusoidal Sweep Closed Valve	Before During After	39.2 30 49			1886/1722 1476 1476
Longitudínal No. 2 Axis Sinusoidal Sweep Open Valve	Before During After		400 - -	240	
Longitudinal No. 2 Axis Random Vibration Closed Valve	Before During After	41 56 36			1804/1640 1394 1394

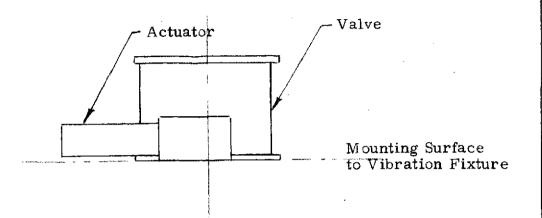
4.5.4 Vibration in Lateral No. 1 Axis

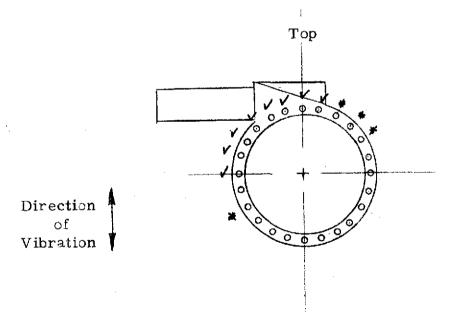
Following the leakage test, the test specimen successfully completed the sinusoidal vibration sweeps in the Lateral No. 1 axis with the valve poppet in the open and closed positions. After two minutes of the required five minutes of random vibration, the run was stopped due to sheared and loosened mounting screws. The location of damaged and loosened screws is shown in Figure 4-18. A description of the required rework is presented in paragraph 3.2.10.

Following the rework of the test specimen at Fairchild, the unit was returned to AETL and successfully re-subjected to sinusoidal and random vibration with the valve poppet in the closed position. During the sinusoidal sweep, the cable to the No. 2 accelerometer was loose. This was corrected for the random vibration run.

4.5.5 Vibration in Longitudinal No. 1 Axis

With the test specimen installed in the Longitudinal No. 1 axis test setup shown in Figure 4-19, the unit was subjected to a sinusoidal vibration sweep. The run was discontinued at 130 Hz due to the fixture lifting off the slip plate of the vibration machine. The problem was attributed to the high center of gravity of the test specimen. The test setup was reworked by installing the present test fixture on a four foot square by two inch thick slide plate. This had the effect of lowering the center of gravity of the test unit and fixture. There was no apparent damage to the test specimen.


The sinusoidal sweep with the valve in the closed position was successfully completed. The sweep with the valve in the open position was discontinued at 350 Hz due to excessive leakage through the stroke indicator rod hole in the actuator housing. During the run, the indicator rod from the potentrometer had vibrated loose (unscrewed) and blew out. The damaged components were reworked at Fairchild. See paragraph 3.2.11 for a description of the rework.


Following the rework, the unit successfully completed the sinusoidal sweep with the valve in the open position and the random vibration with the valve in the closed position.

4.5.6 Vibration in Longitudinal No. 2 Axis

The test specimen was installed in the longitudinal No. 2 axis, shown in Figure 4-20, and successfully completed the sinusoidal sweep with the valve poppet in the open and in the closed positions, and the random vibration with the valve in the closed position.

* - Broken Screws (4 pieces)

✓ - Loose Screws (9 pieces)

24 Total Screws

Figure 4-18. Mounting Failure During Random Vibration in Lateral No. 1 Axis

6-24 194

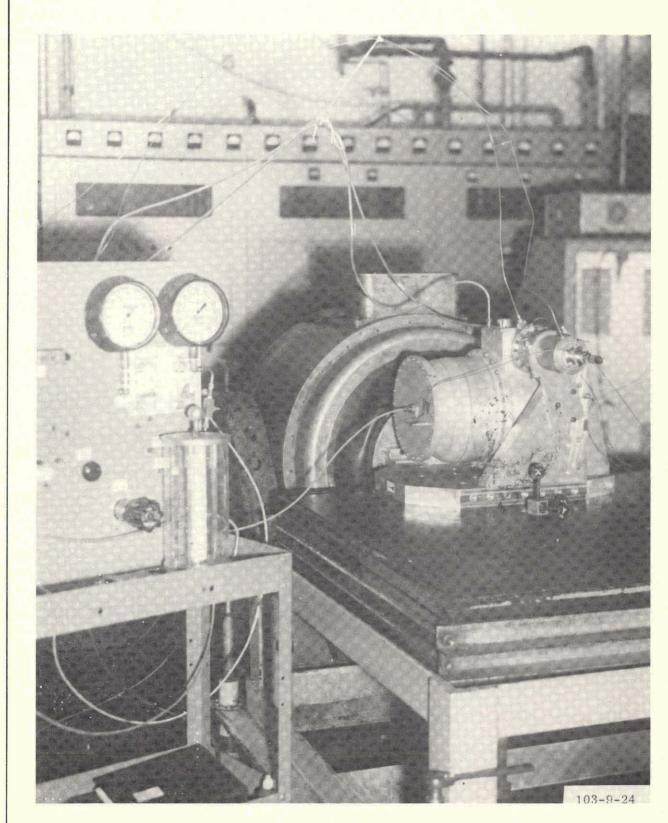


Figure 4-19. Test Setup, Vibration in Longitudinal No. 1 Axis

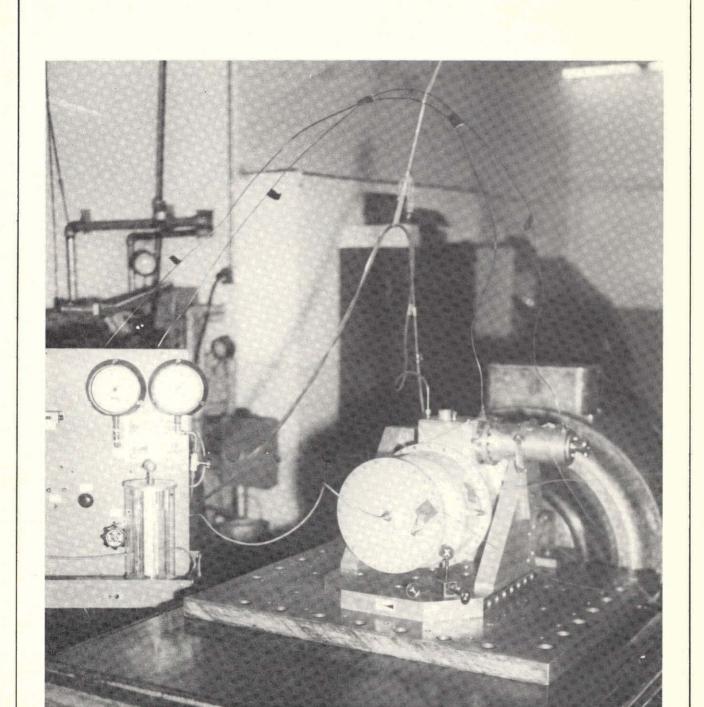


Figure 4-20. Modified Test Setup, Vibration in Longitudinal No. 2 Axis

103-9-23

4.5.7 Leakage and Response After Vibration Testing

Following the vibration testing, the test specimen was subjected to the leakage and response tests described in paragraphs 4.4.2.1 and 4.4.2.2. Component leakages are presented in Table 4-6. The time responses are presented in Table 4-7.

4.6 FLOW CAPACITY TEST

The test specimen was installed in the flow capacity test setup shown in Figures 4-21, 4-22 and 4-23. With 750 psig nitrogen applied to the "close" actuator port, the ullage was pressurized to 35 psig with the supply compressors. Simultaneously, the "close" port was vented, and the "open" port was pressurized with 750 psig nitrogen. The inlet, outlet and nozzle pressures were recorded during the blowdown. Flow and valve pressure drop at ten valve inlet pressures are presented in Table 4-10, as well as valve outlet Mach Number. The maximum valve discharge Mach Number was established by the flow orifice area in relation to the flow area of the 10-inch discharge pipe.

The pressure drop conditions are normalized by the use of the pressure drop coefficient K where

$$K = \frac{\Delta P}{\rho V^2 / 2 g_c}$$

Where: ΔP = Pressure drop across valve

ρ = Outlet fluid density V = Outlet fluid velocity g_c = Gravitational constant

This data is also presented in Table 4-10.

E-117

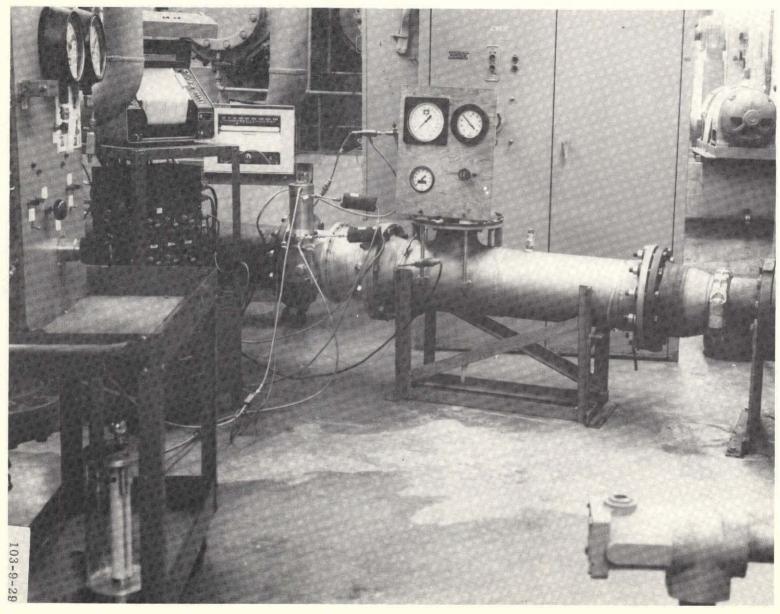


Figure 4-22. Test Setup, Flow Capacity Test, View of Test Specimen and Test Instrumentation

E-117

8/71

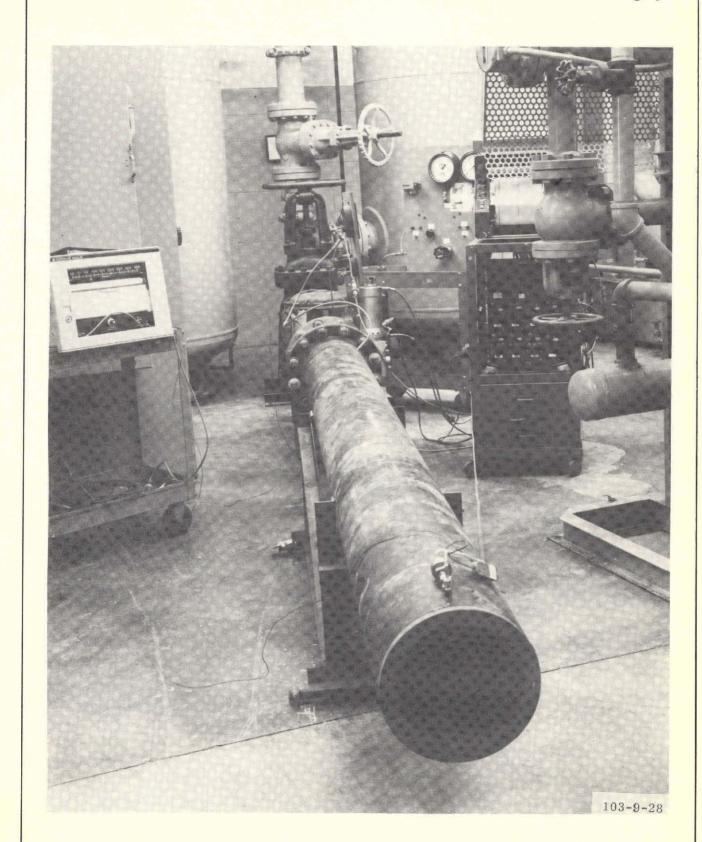


Figure 4-23. Test Setup, Flow Capacity Test View of Diffuser Section

Table 4-10 Flow Capacity Test Data

	Total Inlet	Flow	Pressure		Resistance
Item	Pressure	SCFM	\mathtt{Drop}	Outlet	Coefficient
No.	PSIG	Air	PSIG	Mach No.	K
1	31.37	24,040	15.5	0.460	4.65
2	30.04	23,500	14.1	0.460	4.31
3	28.38	22,384	13.0	0.445	4.45
4	26.74	21,000	12.2	0.423	4.77
5	26.06	20,510	11.2	0.435	4.24
6	24.85	19,580	10.1	0.425	4.12
7	24.23	18,984	9.2	0.428	3.72
8	23.23	17,980	8.0	0.400	3.79
9	22.58	17,512	7.6	0.405	3.58
10	22.42	17,312	7.2	0.400	3.46
1			<u> </u>	<u> </u>	l

4.7 NONDESTRUCTIVE BURST TEST

The test specimen was successfully subjected to the following nondestructive burst test. The test specimen, with the leakage flange plates installed on both ends, was placed in the proof chamber. Figure 4-24 presents a view of the unit in the test setup.

The "close" actuator port was pressurized to 750 psig with nitrogen gas. The valve inlet was slowly pressurized to 87.5 psig with nitrogen and held at this pressure for 5 minutes. The pressures were relieved, and the test specimen was visually examined for permanent distortion. None was visible.

The "open" actuator port was pressurized to 750 psig. The valve inlet was slowly pressurized to 87.5 psig and held for 5 minutes. The pressures were relieved, and the test specimen was visually examined for permanent distortion. None was visible.

The "close" actuator port was pressurized to 1875 psig with water and held for 5 minutes. The pressure was relieved, and the test specimen was visually examined for permanent distortion. None was found.

The "open" actuator port was pressurized to 1875 psig with water and held for 5 minutes. The pressure was relieved, and the test specimen was visually examined for permanent distortion. None was found.

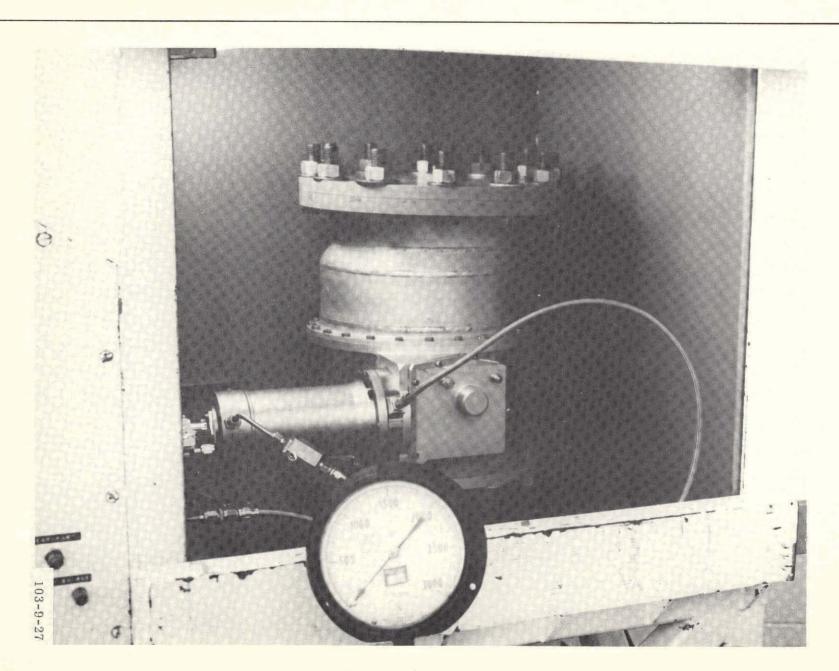


Figure 4-24. Test Setup, Nondestructive Burst Test

E-117

8/71

4.8 FINAL DISASSEMBLY AND INSPECTION

The test specimen was disassembled and inspected for signs of distortion and excessive wear. The component dimensions and finishes that were recorded in Paragraph 4.1 were remeasured. The results, along with the change in dimensions due to wear, are presented in Table 4-1. Photographs of components to show their condition after the completion of the test program are presented in Figures 4-25 through 4-33.

Figure 4-25 presents a view of the piston assembly with an all-over view of the surfaces and contamination.

Figure 4-26 shows a view of the small piston seal surface and contamination.

Figure 4-27 shows a view of the rod end large diameter piston seal surface and contamination.

Figures 4-28 and 4-29 present views of the large diameter Omniseal at the head end of the piston. The surface condition and contamination are clearly shown.

The surface condition and contamination of the Sleeve Assembly, 966085, are shown in Figures 4-30 and 4-31.

Figure 4-32 presents a view of the poppet main sealing surface condition.

Particle contamination of the main seal is shown in Figure 4-33.



Figure 4-25. Piston Assembly Contamination Final Disassembly and Inspection

ER 966-24 206

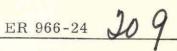


Figure 4-26. Small Piston Seal Surface Condition and Contamination Final Disassembly and Inspection

ER 966-24 207



Figure 4-27. Rod End Piston Seal Surface Condition and Contamination Final Disassembly and Inspection


ER 966-24

208

Figure 4-28. Piston Head End Seal Surface Condition and Contamination Final Disassembly and Inspection

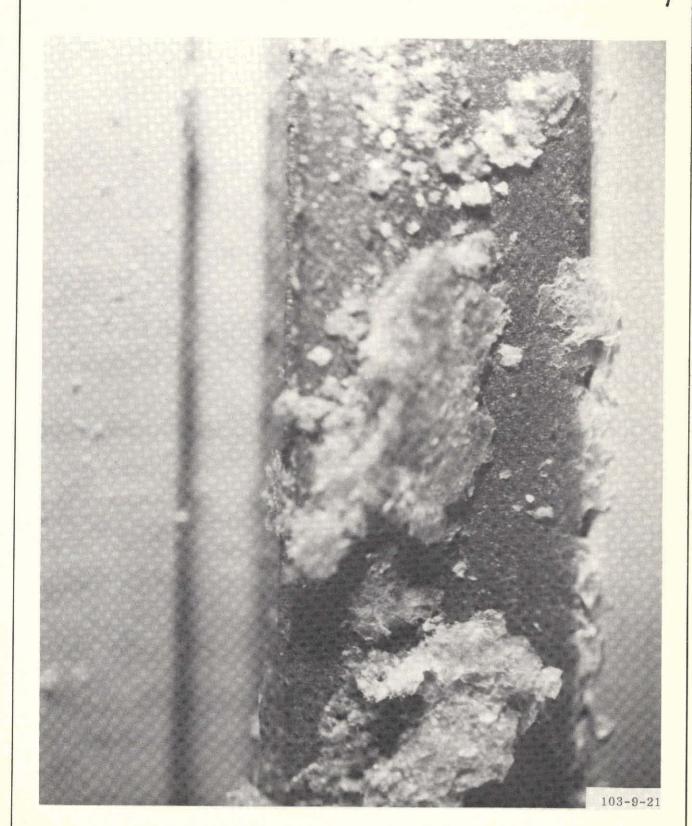
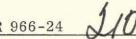
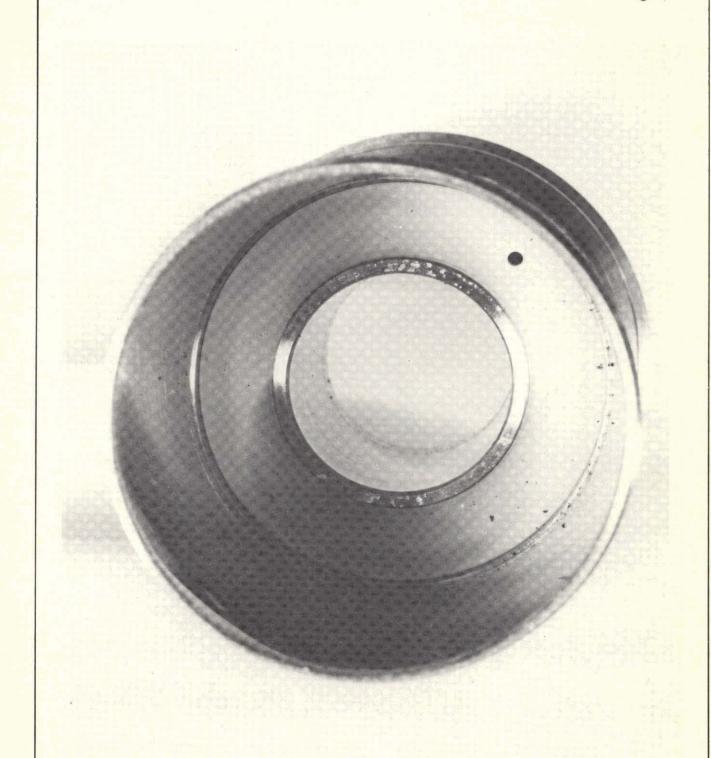




Figure 4-29. Enlarged View of Piston Head End Seal Surface Condition and Contamination. Final Disassembly and Inspection

ER 966-24

103-9-10

Figure 4-30. Sleeve Assembly 966085 Surface Condition and Contamination Final Disassembly and Inspection

ER 966-24 2//

Figure 4-31. Sleeve Assembly 966085 Outer Sleeve Surface Condition Final Disassembly and Inspection

ER 966-24 1/2

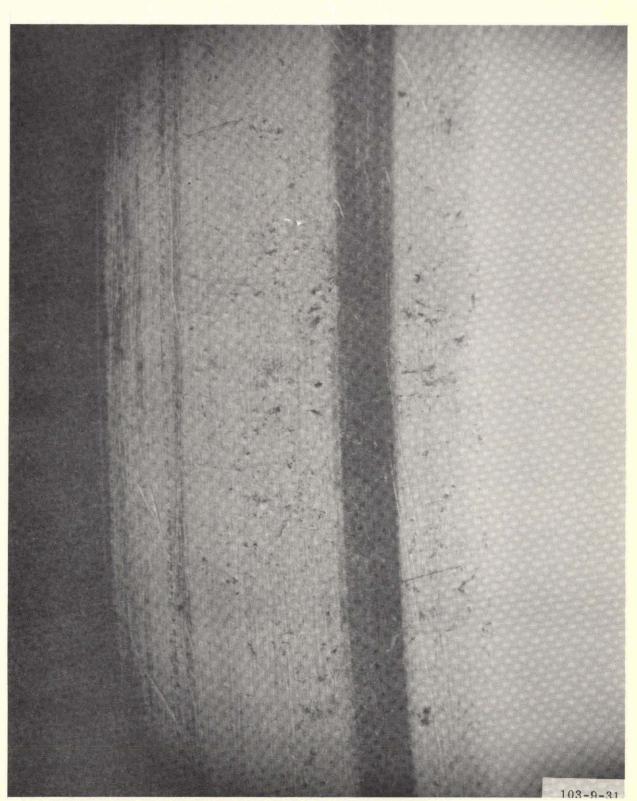


Figure 4-32. Poppet Main Sealing Surface Condition Final Disassembly and Inspection

STRATOS DIVISION 1800 ROSECRANS AVENUE MANHATTAN BEACH, CALIF., 90266

ER 966-24

Figure 4-33. Main Seal Particle Contamination Final Disassembly and Inspection

ER 966-24 2/4

SECTION 5 DISCUSSION

5.1 CONFIGURATION CHANGE

The actuator configuration was changed from a bellows type to a piston type after 696 cycles of low temperature life cycling. Bellows leakage had occurred during the low temperature cycling. The failure analysis of the outer bellows assembly, PN 966057, indicated that the unit was incorrectly designed to meet the 20,000 cycle objective. The unit, as originally designed, was subjected to a 2-inch compression cycle from the neutral position with 750 psig external pressure and then extended back to the neutral position with 750 psig internal pressure. A review of the bellows design revealed that the motion stress of the bellows alone was commensurate with the 20,000 cycle design goal, but when this motion stress was combined with the pressure stress due to the 750 psig pressure, the cycle life indicated was less than 600 cycles.

An attempt was made to redesign the bellows for the pressure stress, as well as the motion stress within the original specified envelope. The original design was as good as could be attained. Increasing the number of convolutions to reduce the motion stress also makes the squirm (lateral misalignment and deformation) problem of internal pressurization more severe.

A practical solution would be to reduce the bellows stroke to the order of one inch, with a proportional increase of the bellows effective area to equalize the pressure and motion stresses. This charge would require new actuator components as well as revision of the actuator link and link support for the higher loading.

Because the program objective was to develop long life valve concepts, the decision was made to minimize further delays by changing the actuator to a piston type configuration.

5. 2 COMPONENT REPLACEMENT AND REWORK

The main seal, PN 966072, was replaced once and refinished once during the demonstration testing. The original seal had accumulated a total of 2479 cycles, and the replacement seal had accumulated 4462 cycles prior to being refinished. By the end of testing, the replacement seal which had been refinished had accumulated 13,102 cycles for a total of 17,564 cycles.

ER 966-24 2/5

The shaft seal, PN 966076, was replaced once during the testing. The original seal had accumulated 10,039 cycles. The replacement seal had accumulated 10,004 cycles.

The actuator piston link, PN 996046, failed during the demonstration testing. The original link had accumulated 6226 cycles, and the redesigned link had completed a total of 13,803 cycles. The redesign of the link consisted of increasing the cross section at the high stress areas. During a piston seal replacement at 770 total valve cycles, heavy impact markings had been noticed on the actuator linkage. At this time a separate "open" stop was added to the piston cylinder to alleviate this problem.

The low cycle life of the original seals is attributed to test system contamination which was corrected by installation of 10 micron filters in the test system.

5.3 LEAKAGE

Representative main seal leakages for the life cycling are listed:

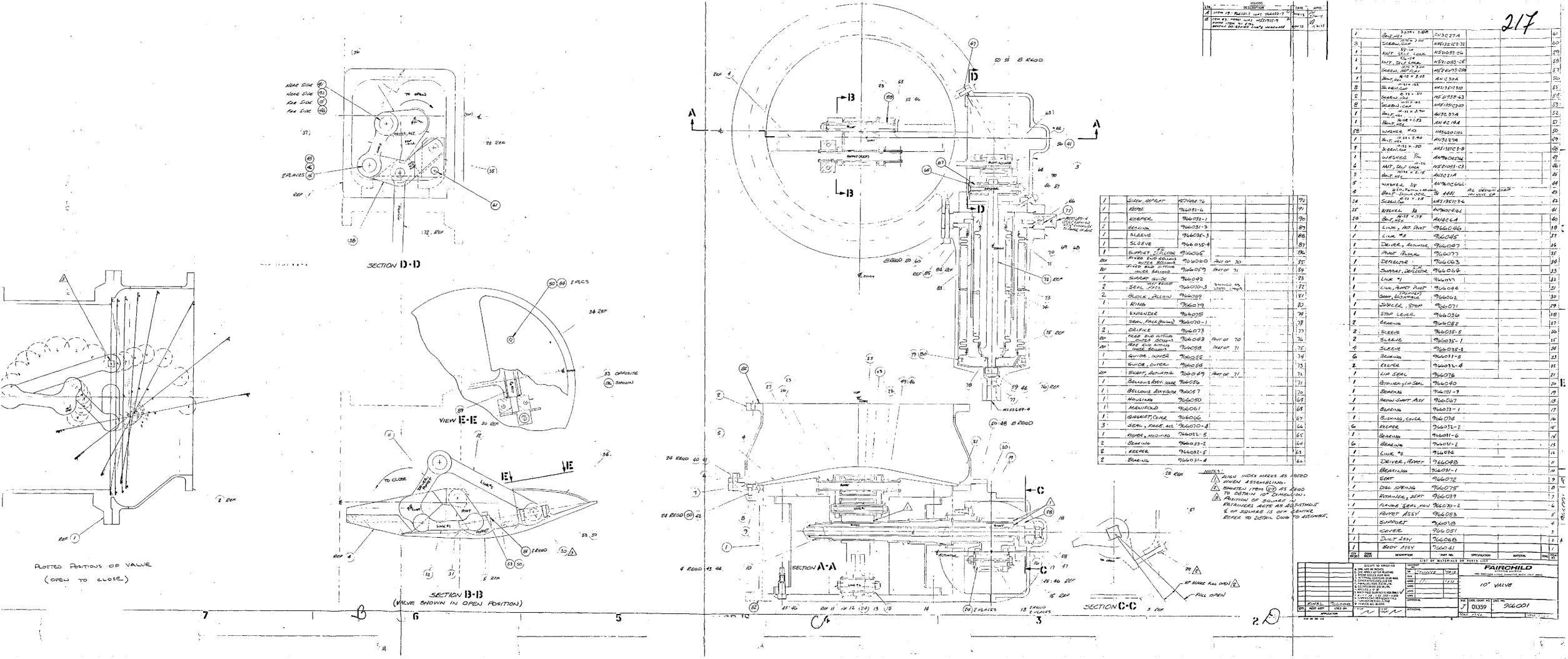
	Cryo Temp	High Temp
	Cycling	Cycling
Cycles	(SCCM)	(SCCM)
Room Temperature	33	28
Extreme Temperature	249	270

The above leakage values are what could be expected at room temperature and at -200° F and $+200^{\circ}$ F. Differential expansion at the temperature extremes appears to be the problem.

5.4 RESPONSE TIME

Response times were measured during the low temperature and the high temperature life cycling. Typical values are listed below:

Test Condition	Open-to-Close(Sec)	Close-to-Open (Sec)
Room Temp. (during cryo testing)	0.8	0.4
$-200^{\circ}{ m F}$.	1.3	0.2
+200°F.	0.7	0.2
Room Temp. (during high temp. testing)	0.7	0.2


STRATOS DIVISION 1800 ROSECRANS AVENUE MANHATTAN BEACH, CALIF., 90266

ER 966-24

216

APPENDIX A

Drawing 966001, Rev. B (1 Sheet)

ER 966-24

APPENDIX B Stainless Steel Products Bellows Failure Report Report No. 2646

(2 pages)

STAINLESS STEEL PRODUCTS, Burbank, CA.

219

Date of Report 1/25/74	Report No. 2648
SSP Part No. 2207636-101 Serial No	Part Name Bellows Assy. Duter
Customer Part No. 966057	Ref: Failure Report No
HISTORY: The bellows assembly was install @ 696 cycles; per Fairchild Stratos AVO dat consists of bellows motion from neutral to 700 psig external pressure to 700 psig interequirement is for 20,000 cycles.	2" compression to neutral with
INVESTIGATION AND ANALYSIS:	,
See attached sheets	
CONCLUSIONS AND RECOMMENDATIONS:	
It is concluded that the bellows design was ment and a bellows will not function for the pressure within the envelope specified.	s not adequate for the total require he required cycles of motion and
SIGNATURES: Name of Analyst Approval	Date 1/25/74-
Customer Fairchild - Stratos	
Address	· · · · · · · · · · · · · · · · · · ·

220

INVESTIGATION AND ANALYSIS:

The bellows assembly was visually examined upon receipt of part at SSP Products. This examination revealed a large crack in the outer ply at the crest of one convolution and cracks in the inner ply at the crest of all convolutions. In addition, a crack was found in the outer ply of one convolution at the root.

The end fittings were removed from the bellows and the bellows sectioned and mounted for examination.

The material thickness of each ply was measured at the root, peak and sidewall using a microscope. The thicknesses measured were as follows:

In	ner Pl	у	MI	ddle P	ly		Outer	Ply
Root	Side	Crest	Root	Side	Crest	Root	Side	Crest
.010	.010	.009	.010	.010	.009	.010	.010	.009
.010	.010	.009	.010	.010	,009	.010	.010	.009

This indicates approximately 10% thinning at the crest of the convolution which is normal for the height of convolution forming on this bellows.

The hardness of the material was measured using a microhardness testing machine. The following readings were obtained:

Crest	<u>Si de</u>	Root
580 Knoop	440-457 Knoop	645 Knoop
53 Rc	42-43 Rc	56 Rc

The sidewall reading is normal for Inconel 718 heat treated material. The higher readings at the crest and root are an indication of strain hardening resulting from the high stresses during bellows cycling.

The mounted section was polished and etched to observe the material grain structure. The structure appears normal with a grain size of approximately #6.

In addition the forming radii at the crest and root of the convolutions were observed to be normal.

No problems were observed with respect to material forming or processing.

The bellows design was reviewed with respect to performance requirements and the resulting induced stresses. This review indicates that stresses due to the 2" compression cycle alone were comensurate with the 20,000 cycle requirement. However, when the stress due to pressure cycling is combined with the motion stress the cycle life indicated is less than 600 cycles. The design apparently did not consider the pressure cycling.

An attempt has been made to design a bellows for the pressure cycling as well as the motion within the envelope specified. The original design was as good as could be attained.

STRATOS DIVISION
1800 ROSECRANS AVENUE
MANHATTAN BEACH, CALIF., 90266

ER 966-24

APPENDIX C

AETL VIBRATION TEST REPORT Report No. 5330-1203 (60 pages)

€ port No. 5330-1203

P. 0. No. 8-23028

Date: 8 July 1974

57 Page Report

Test Report No. 5330-1203

Vibration Test Report

on

Ten-Inch Long Life Valve

Part Number 966000 Serial Number 0001

TESTED FOR:

FAIRCHILD/STRATOS DIVISION 1800 Rosecrans Avenue Manhattan Beach, California 90266

TESTED BY:

APPROVED ENGINEERING TEST LABS 5320 W. 104th Street Los Angeles, California 90045

OFFICIAL SEAL

KARL G. SCHMIDT

NOTARY PUBLIC CALIFORNIA

LOS ANGELES COUNTY

My Commission Expires Sept. 22, 1977

STATE OF CALIFORNIA
COUNTY OF LOS ANGELES
DEANE HELLER, Project Manager

deposes and says: That the information contained in this report is the result of complete and carefully conducted tasts and is to the best of his knowledge true and correct in all respects.

SUBSCRUBED and swrin to below mathis 8 day of July 19 74

Notary Public in and for the County of Los Angeles, State of California.

FOR OUR MUTUAL PROTECTION, THE USE OF THIS REPORT, COMPLETE OR IN PART, FOR ADVERTISING OR PUBLICITY MUST RECEIVE OUR WRITTEN APPROVAL THIS REPORT DOES NOT IMPLY GENERAL APPROVAL BUT APPLIES ONLY TO THE INVESTIGATION REPORTED.

leport No. 5330-1203

Date: 8 July 1974

223

SIGNATURES

Written By: Hold MANAGER, Karl G. Schmidt	Date:	7-8-74
Approved By: PROJECT MANAGER, Deane Heller	Date:	7/8/24
Approved By: QUALTTY CONTROL MANAGER, Robert Roma	Date:	7/8/74

ORIGINAL PAGE IS
OF POOR QUALITY

Report No. 5330-1203

Date: 8 July 1974

224

TABLE OF CONTENTS

		Page No.
Signature Page		i .
Table of Contents		ii
1.0 PURPOSE		1
2.0 REFERENCES	,	1
3.0 SUMMARY		1
4.0 TEST CONDIT	TIONS AND TEST EQUIPMENT	1 .
4.1 Test Condition	tions	1
4.2 Test Equipm	nent	2
5.0 TEST PROCEI	DURES AND TEST RESULTS	7
5.1 Vibration	Test	7
Notice of Deviation Nu	umber 1	10
Appendix 1 - X-Y Plots	s	. 11
Appendix 2 - PSD Plots	S	47

Report No. 5330-1203

Date: 8 July 1974

225

1.0 PURPOSE

The purpose of this report is to present the test procedures used and the test results obtained during the performance of a test program. The test program was conducted to determine conformance of a Ten-Inch Long Life Valve, Part Number 966000, Serial Number 0001, to the Vibration Test requirements specified in Reference 2.1 in accordance with Reference 2.2.

- 2.0 REFERENCES
- 2.1 Fairchild/Stratos Division Document Number ER 966-15
- 2.2 Fairchild/Stratos Division Purchase Order Number 8-23028
- 3.0 SUMMARY
- One Ten-Inch Long Life Valve, Part Number 966000, Serial Number 0001, has been subjected to the Vibration Testing described in this report. During the Vibration Test, as noted in Notice of Deviation Number 1, following two minutes of random vibration testing in the Lateral Number 1 Axis (normal to the actuator), the mounting bolts sheared. Testing was discontinued and the specimen was returned to the customer. Following return to AETL, the sinusoidal run in the "closed position" was repeated and the full five-minute random was run.
- 3.2 All results are presented for evaluation.
- 4.0 TEST CONDITIONS AND TEST EQUIPMENT
- 4.1 <u>Test Conditions</u>

Unless otherwise specified in this report all tests were performed at room ambient conditions consisting of a temperature of $70\pm20\,^{\circ}\text{F}$, a relative humidity of less than 95 percent and a barometric pressure of 29.92 ±2.0 inches of mercury absolute.

Date: 8 July 1974

226

4.2 Test Equipment

AETL Number Instrument Manufacturer Model Number Serial Number Calibration Period Range and Accuracy D41L
Accelerometer
Endevco Corp.
2213M5
FB05
Three months (Cal. Due 8-29-74)
0 to 10,000 g; ±3.0%

AETL Number Instrument Manufacturer Model Number Serial Number Calibration Period Range and Accuracy D43L
Logarithmic Voltmeter/Converter
Hewlett Packard
4562A
1211A01301
Six months (Cal. Due 7-26-74)
0.5 to 5 KHz, 0 to 80 db; ±1.0 db

AETL Number Instrument Manufacturer Model Number Serial Number Calibration Period Range and Accuracy D84L Vibration Exciter M. B. Electronics C150 100 N/A 15,000 force pounds

AETL Number Instrument Manufacturer Model Number Serial Number Calibration Period Range and Accuracy D113L X-Y Recorder Moseley 2D-2A 284 Prior to use 0 to 50 volts; ±2.0%

Date: 8 July 1974

227

4.2 <u>Test Equipment (Cont.)</u>

AETL Number Instrument Manufacturer Model Number Serial Number Calibration Period Range and Accuracy

D151L Amplifier Ling PP75/90 None N/A 10 to 10 KHz; ±1.0 db

AETL Number Instrument Manufacturer Model Number Serial Number Calibration Period Range and Accuracy D162L Charge Amplifier M. B. Electronics N400 None Prior to use

AETL Number Instrument Manufacturer Model Number Serial Number Calibration Period Range and Accuracy D163L Charge Amplifier M. B. Electronics N400 None Prior to use

AETL Number Instrument Manufacturer Model Number Serial Number Calibration Period Range and Accuracy

D164L Charge Amplifier M. B. Electronics N400 None Prior to use

Date: 8 July 1974

228

4.2 Test Equipment (Cont.)

AETL Number
Instrument
Manufacturer
Model Number
Serial Number
Calibration Period
Range and Accuracy

D165L Charge Amplifier M. B. Electronics N400 None Prior to use

AETL Number Instrument Manufacturer Model Number Serial Number Calibration Period Range and Accuracy D166L Charge Amplifier M. B. Electronics N400 None Prior to use

AETL Number Instrument Manufacturer Model Number Serial Number Calibration Period Range and Accuracy D167L
Ensemble Averager
Spectral Dynamics
SD302
51
One year (Cal. Due 3-5-75)
512° of freedom; ±1.0% average gain

AETL Number Instrument Manufacturer Model Number Serial Number Calibration Period Range and Accuracy

D168L
Real Time Analyzer
Spectral Dynamics
SD301A
64
One year (Cal. Due 3-5-75)
10 to 20 KHz, 0.03 to 60 Hz bandwidth;
±1.0 db

Date: 8 July 1974

229

4.2 <u>Test Equipment (Cont.)</u>

AETL Number
Instrument
Manufacturer
Model Number
Serial Number
Calibration Period
Range and Accuracy

D169L Sweep Oscillator Servo Spectral Dynamics SD114 92 One year (Cal. Due 1-21-75) 5 to 5 KHz, 1 to 1,000 g; ±2.0%

AETL Number
Instrument
Manufacturer
Model Number
Serial Number
Calibration Period
Range and Accuracy

D170L Automatic Level Programmer Spectral Dynamics SD117 27 Prior to use 5 to 5 KHz, 1 to 1,000 g

AETL Number Instrument Manufacturer Model Number Serial Number Calibration Period Range and Accuracy D217L
Accelerometer
Bruel & Kjaer
4335
354646
Three months (Cal. Due 8-29-74)
5 to 10 KHz; ±2.0%

AETL Number Instrument Manufacturer Model Number Serial Number Calibration Period Range and Accuracy D219L
Accelerometer
Bruel & Kjaer
4335
354625
Three months (Cal. Due 8-29-74)
5 to 10 KHz; ±2.0%

aport No. 5330-1203

Date: 8 July 1974

230

4.2 <u>Test Equipment (Cont.)</u>

AETL Number
Instrument
Manufacturer
Model Number
Serial Number
Calibration Period
Range and Accuracy

D220L
Accelerometer
Bruel & Kjaer
4335
354628
Three months (Cal. Due 8-29-74)
5 to 10 KHz; ±2.0%

AETL Number Instrument Manufacturer Model Number Serial Number Calibration Period Range and Accuracy D240L
Accelerometer
M. B. Electronics
303
162951
Three months (Cal. Due 8-29-74)
5 to 10 KHz; ±2.0%

AETL Number
Instrument
Manufacturer
Model Number
Serial Number
Calibration Period
Range and Accuracy

D246L Control Console M. B. Electronics T388 210 Daily 10 to 6 KHz, ±1.0 db

AETL Number Instrument Manufacturer Model Number Serial Number Calibration Period Range and Accuracy

E895V
Tape Recorder
Ampex
FR1100/ES100
114M
Prior to use
DC to 20 KHz; ±1.0%

AETL Number Instrument Manufacturer Model Number Serial Number Calibration Period Range and Accuracy El212S
True RMS Voltmeter
Ballantine Labs
320U/21
40006
Six months (Cal. Due 11-17-74)
100 μvolts to 320 vrms; ±3.0%

Report No. 5330-1203

Date: 8 July 1974

23/

- 5.0 TEST PROCEDURES AND TEST RESULTS
- 5.1 Vibration Test

Date Started:
Date Completed:

28 May 1974 5 June 1974

5.1.1 The specimen was installed in a test fixture and was mounted on the vibration exciter in the Lateral Number I (normal to actuator) axis. A pressure of 750 psig was applied to the close port. The specimen was subjected to sinusoidal sweep over the frequency range of 5 to 2000 Hz at a sweep rate of one octave per minute at the following intensities:

Frequency (Hz)	Intensity		
5 - 20 20 - 90 90 - 131 131 - 2000	0.4 inch da 8.5 g peak 0.02 inch da		
131 - ZUUU	18.0 g peak		

- 5.1.2 The specimen was then subjected to one sinusoidal sweep at the frequencies and intensities noted in Paragraph 5.1.1 with 750 psig applied to the open port.
- 5.1.3 With 750 psig applied to the close port and with the specimen in the Lateral Number 1 axis, the specimen was subjected to random vibration over the frequency range of 20 to 2000 Hz at the following intensities:

Frequency (Hz)	Intensity
20 - 100 100 - 400	9 db/octave rise 1.0 g ² /Hz
400 - 630	12 db/octave rolloff
630 - 2000	0.15 g ² /Hz
Overall Acceleration:	25.0 grms

- 5.1.4 As noted in Notice of Deviation Number 1, following two minutes of random vibration, the mounting bolts sheared. The specimen was returned to the customer.
- 5.1.5 Following return to AETL, the specimen was mounted on the vibration exciter in the Lateral Number 1 axis and was subjected to the testing described in Paragraph 5.1.1 with 750 psig pressure applied to the close port.

Report No. 5330-1203

Date: 8 July 1974

- 5.1.6 The specimen was then subjected to five minutes of random vibration in the Lateral Number 1 axis at the frequencies and intensities noted in Paragraph 5.1.3.
- The specimen was then mounted on the vibration exciter in the longitudinal axis and with a pressure of 750 psig applied to the close port was subjected to sinusoidal sweep as noted in Paragraph 5.1.1. The sweep was discontinued at 130 Hz due to the fixture lifting off the slip plate. At a later date, testing in the longitudinal axis was repeated with 750 psig applied to the close port. A sinusoidal sweep from 5 to 2000 Hz at the intensities noted in Paragraph 5.1.1 was performed.
- The specimen, mounted on the vibration exciter in the longitudinal axis and with 750 psig applied to the open port, was subjected to sinusoidal sweep at the frequencies and intensities noted in Paragraph 5.1.1. Testing was stopped at 350 Hz per customer request. At a later date, testing was repeated in the longitudinal axis with 750 psig applied to the open port over the frequency range of 5 to 2000 Hz at the intensities noted in Paragraph 5.1.1.
- 5.1.9 The specimen, mounted on the vibration exciter in the Longitudinal Number 1 axis, was then subjected to five minutes of random vibration at the frequencies and intensities noted in Paragraph 5.1.3 with 750 psig applied to the close port.
- 5.1.10 The specimen was then mounted on the vibration exciter in the Longitudinal Number 2 axis and with a pressure of 750 psig applied to the close port, the specimen was subjected to sinusoidal vibration over the frequency range of 5 to 2000 Hz at a sweep rate of one octave per minute at the intensities noted in Paragraph 5.1.1.
- The specimen, mounted on the vibration exciter in the Longitudinal Number 2 axis, and with 750 psig applied to the open port, was then subjected to sinusoidal sweep over the frequency range of 5 to 2000 Hz at a sweep rate of one octave per minute at the intensities noted in Paragraph 5.1.1.
- 5.1.12 The specimen, mounted on the vibration exciter in the Longitudinal Number 2 axis, and with 750 psig applied

Report No. 5330-1203

Date: 8 July 1974

5.1.12 Continued:

to the close port, was subjected to five minutes of random vibration over the frequency range of 20 to 2000 Hz at the intensities noted in Paragraph 5.1.3.

During all sinusoidal and random vibration testing specified above, accelerometers were located as noted below. The outputs of the control and response accelerometers were recorded and X-Y plots were prepared. For random vibration testing, PSD plots were prepared. The locations are as follows:

Accelerometer Number	Location
1	Direction of Vibration on Fixture
2	Crosstalk on Poppet
3	Crosstalk on Body
4	Direction on Vibration
5	Actuator Case Actuator End

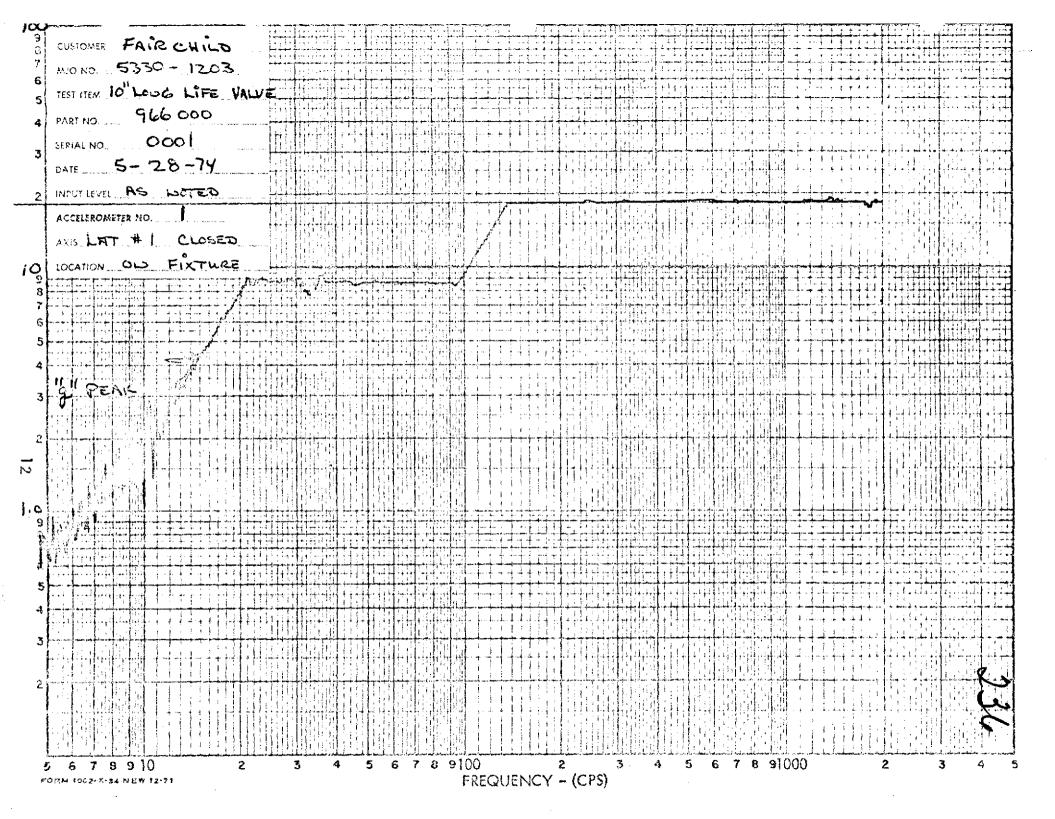
5.1.4 The sinusoidal vibration X-Y plots are presented in Appendix 1. The PSD plots are presented in Appendix 2. Visual examination at the completion of testing revealed no adverse effects.

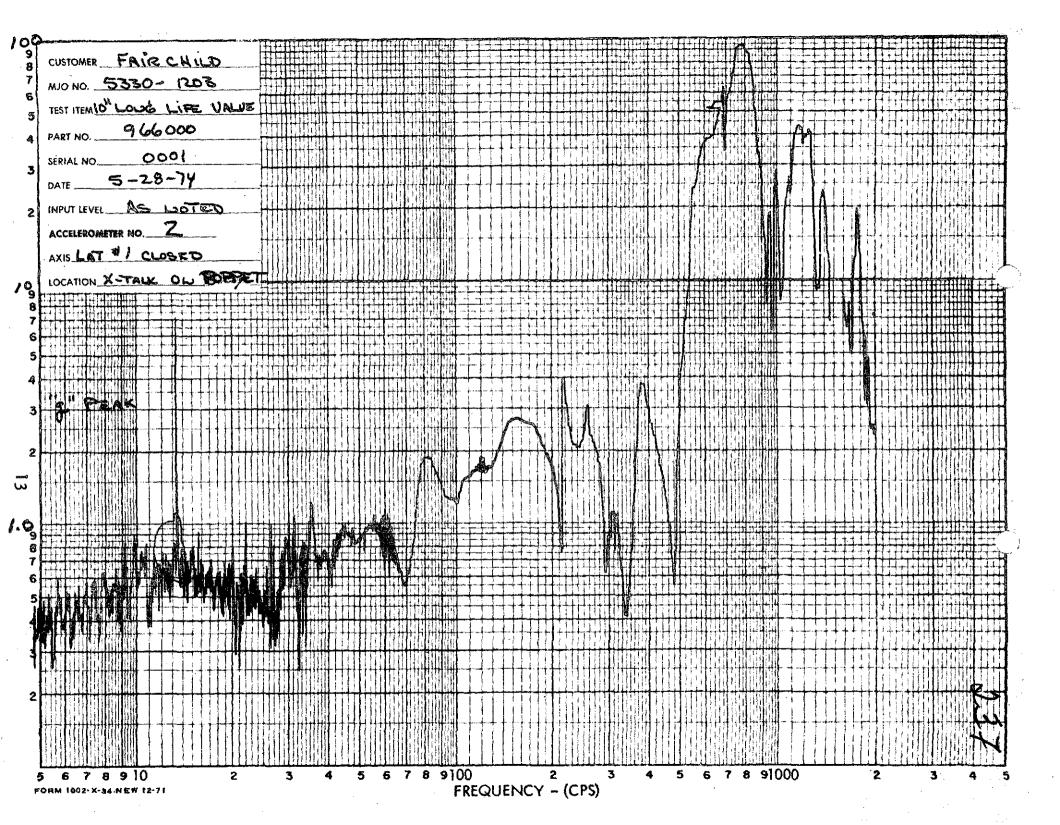
AETL

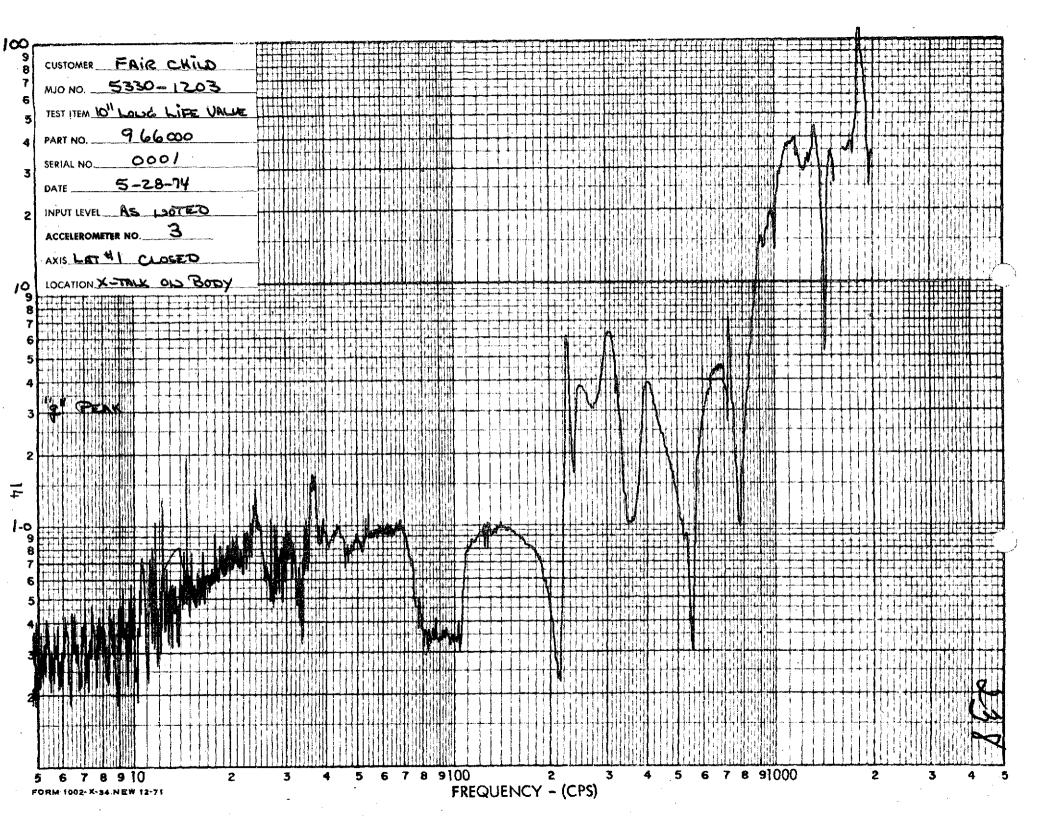
NOTICE OF DEVIATION

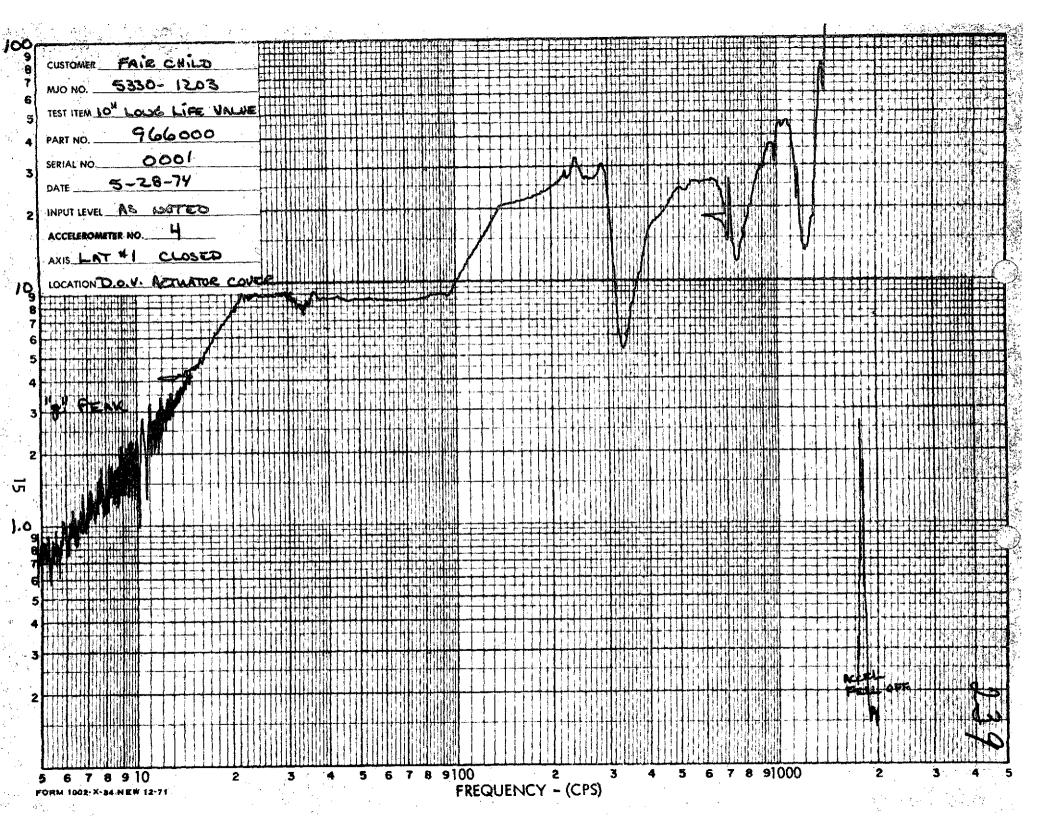
APPROVED ENGINEERING TEST LABORATORIES	DATE:
LOS ANGELES DIVISION / 5920 WEST 104TH STREET / LOS ANGELES DIVISION / 9551 CANOGA AVENUE / CHATSWOR FAUGUS DIVISION / 20744 SOLEDAD CANYON ROAD / SAU CALIFORNIA TEST LABS DIV. / 619 E. WASHINGTON BLVD. / LO	TH, CALIFORNIA 91311 / (213) 341-0830 J34
CUSTOMER: FAIR CHILD / STRATOS	MJO NO.: 5330- 1203
PART NO.: 966000	N.O.D. NO.:
SERIAL NO.:	P.O. NO.: 8-23028
TEST PROCEDURE: ER 966-15 .	PARAGRAPH: 4.5.2
REQUIREMENT: NO DAMAGE SHAL	L RESULT
,	
DEVIATION: RETER TWO (2) MINING LATERAL #1 AXIS (NORMAL TO BOLTS SHEARED.	
DISPOSITION: TESTING DISCONTINU	ED - SPECIMEN RETURNED
	IN "CLUSKO" POSITION REPENTED
AND RUD FULL 5 MID RANDOM	· Rui
	APPROVAL(Customer Representative)
CUSTOMER NOTIFICATION:	
Made to: FAIRCHICO REP.	How: VERBAL
Date & Time: 5-28-74 @ 1605 Nes	By: m. L. Mustures
DCAS Notified:	Deane Heller
YES NO DATE	A.E.J.L. Dept. Supervisor

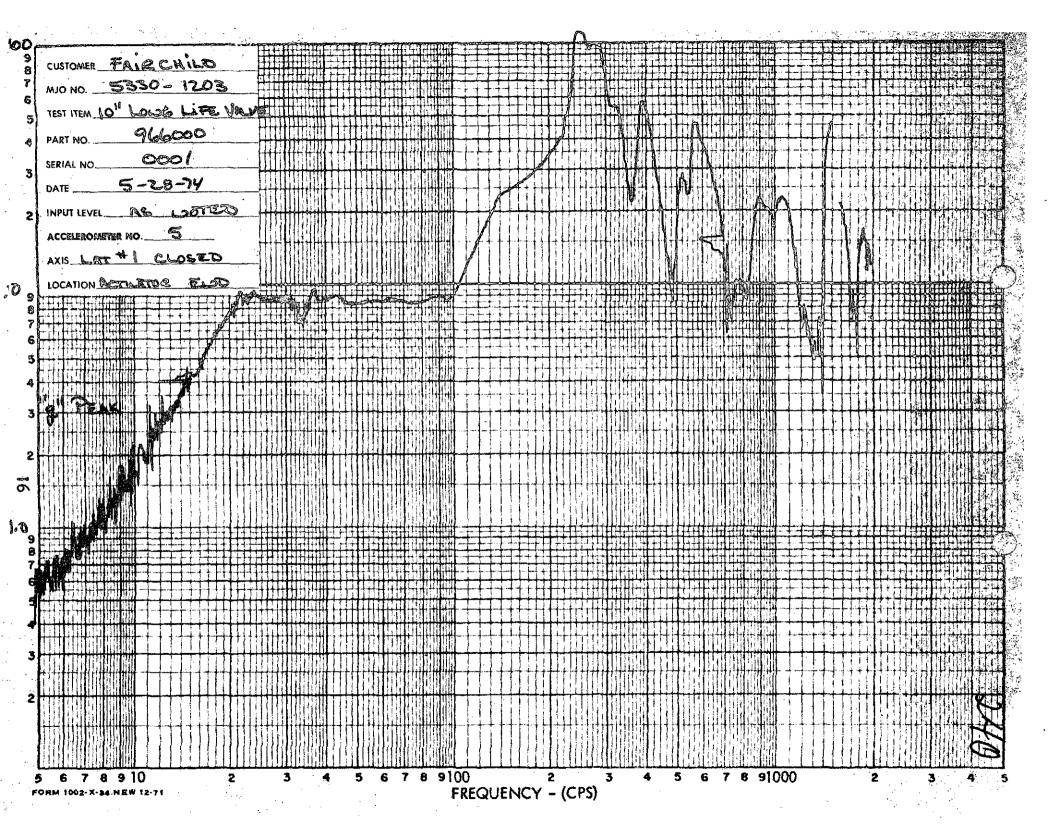
10

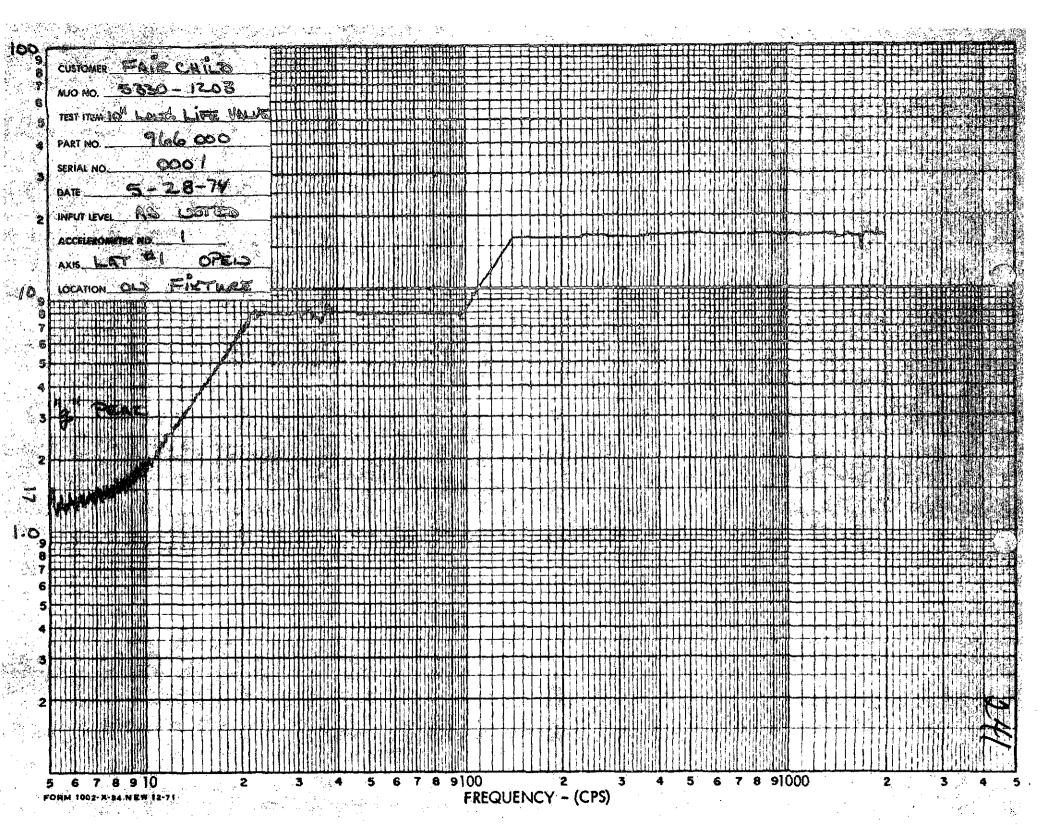


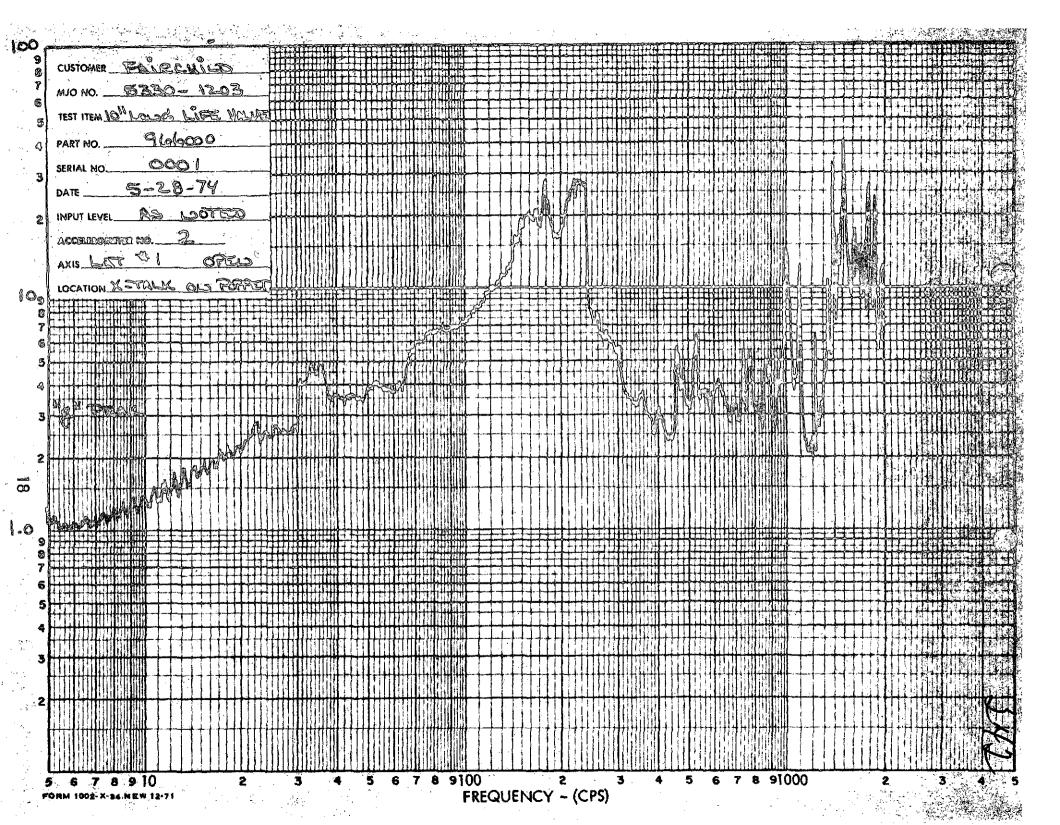

Report No. 5330-1203

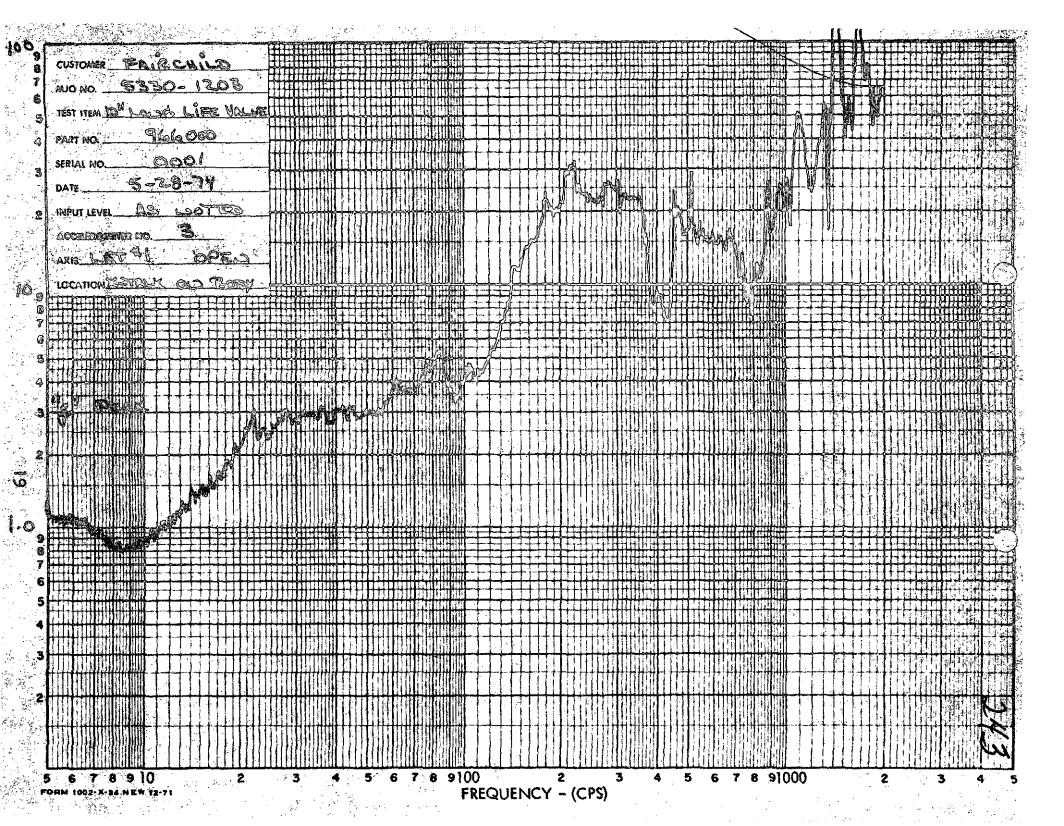

Date: 8 July 1974

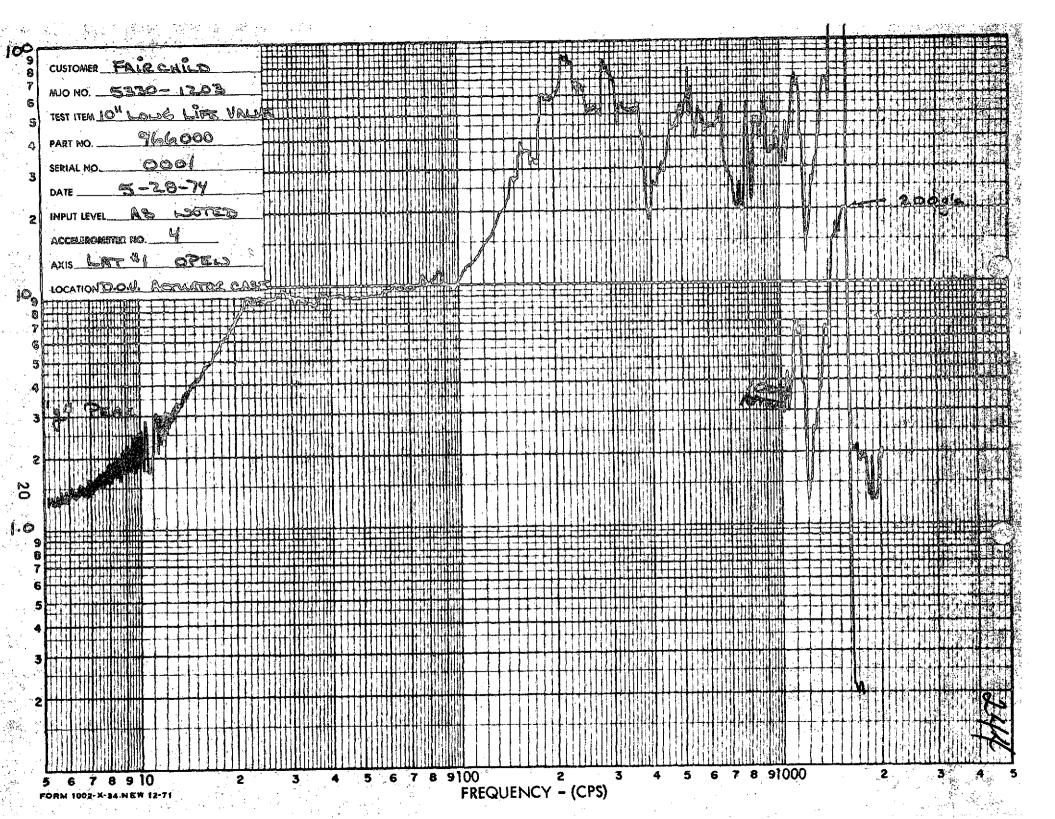

235

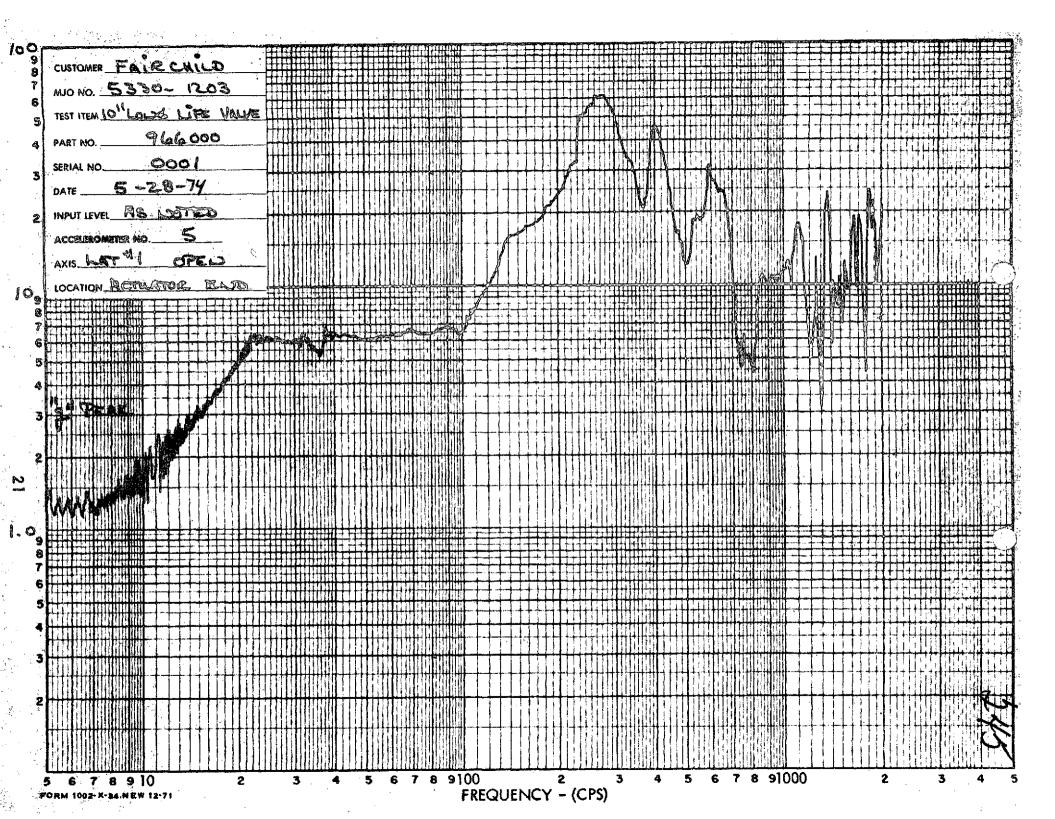

APPENDIX I
X-Y Plots

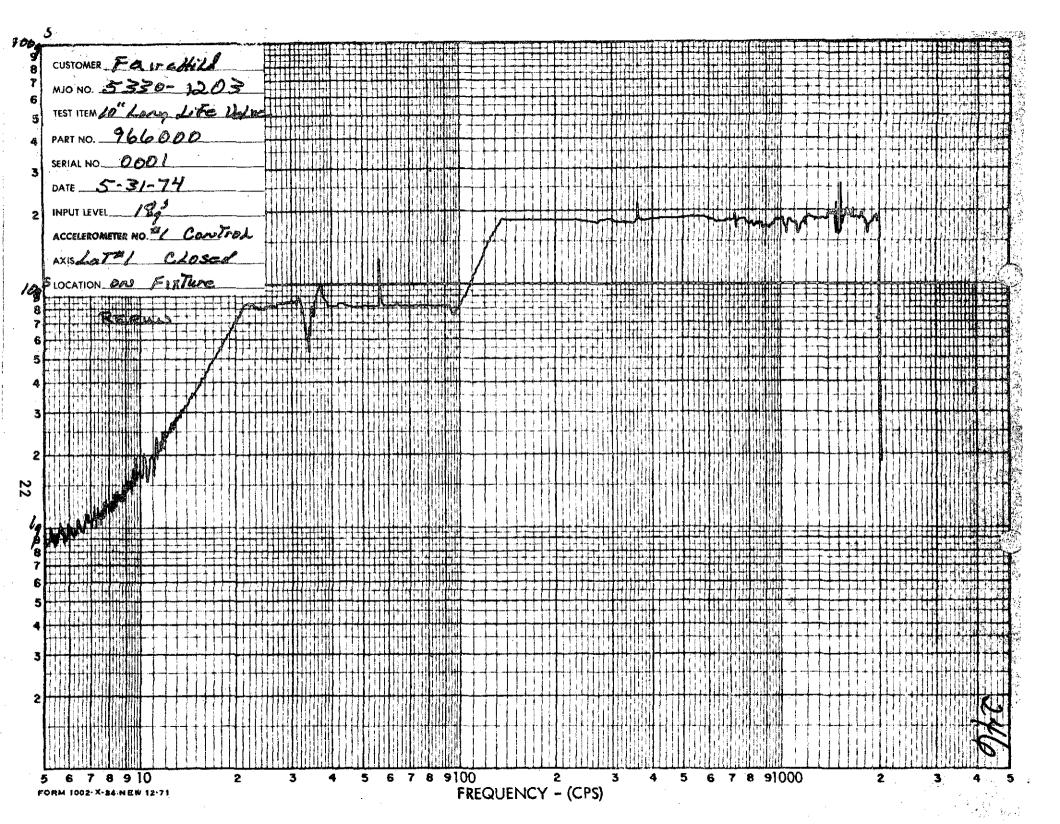


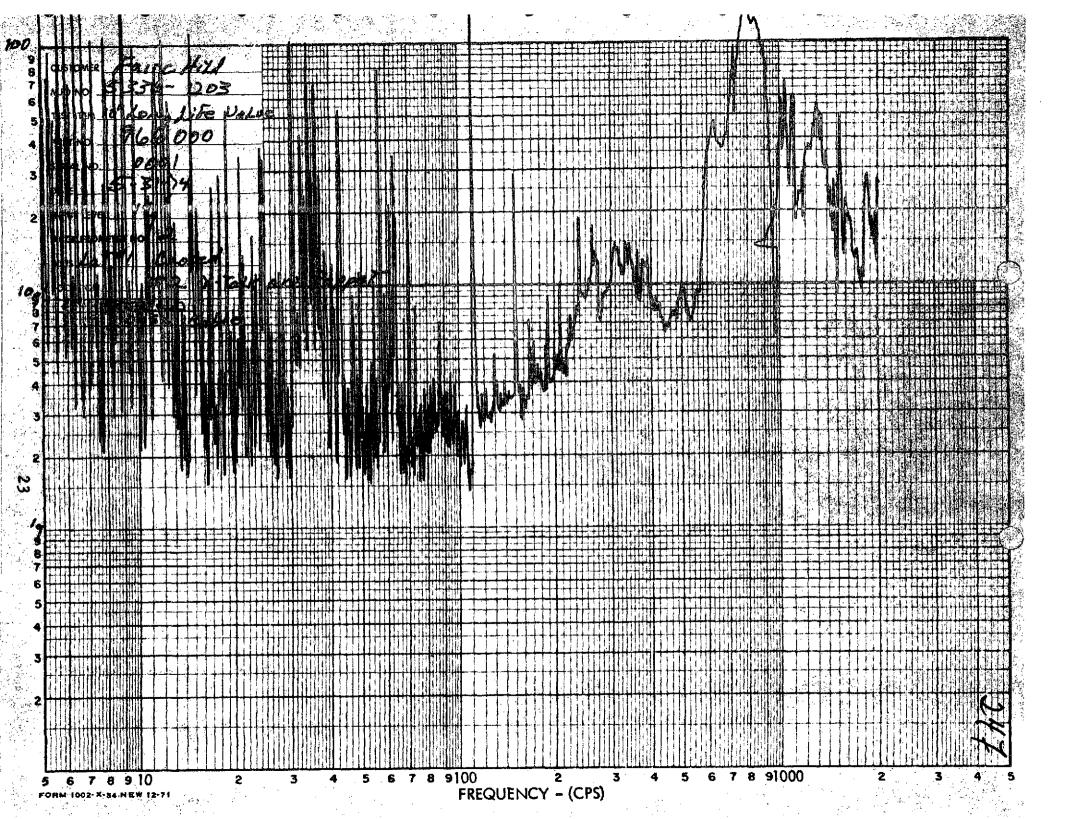


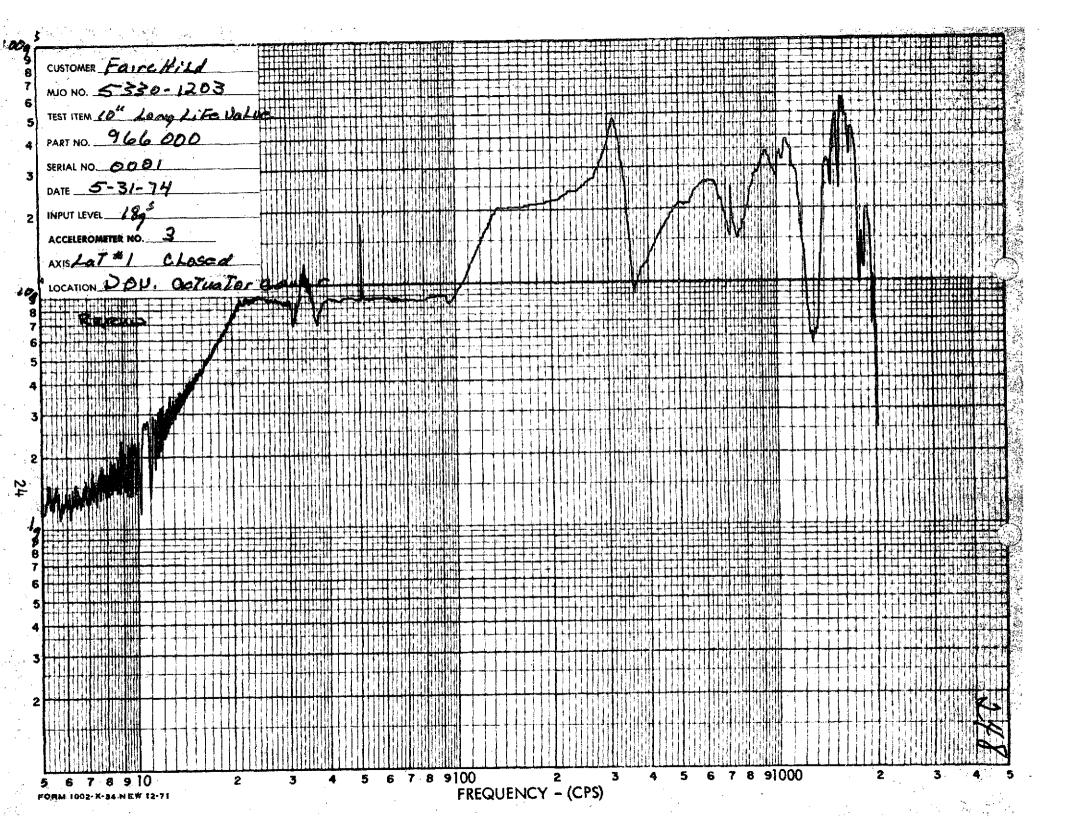


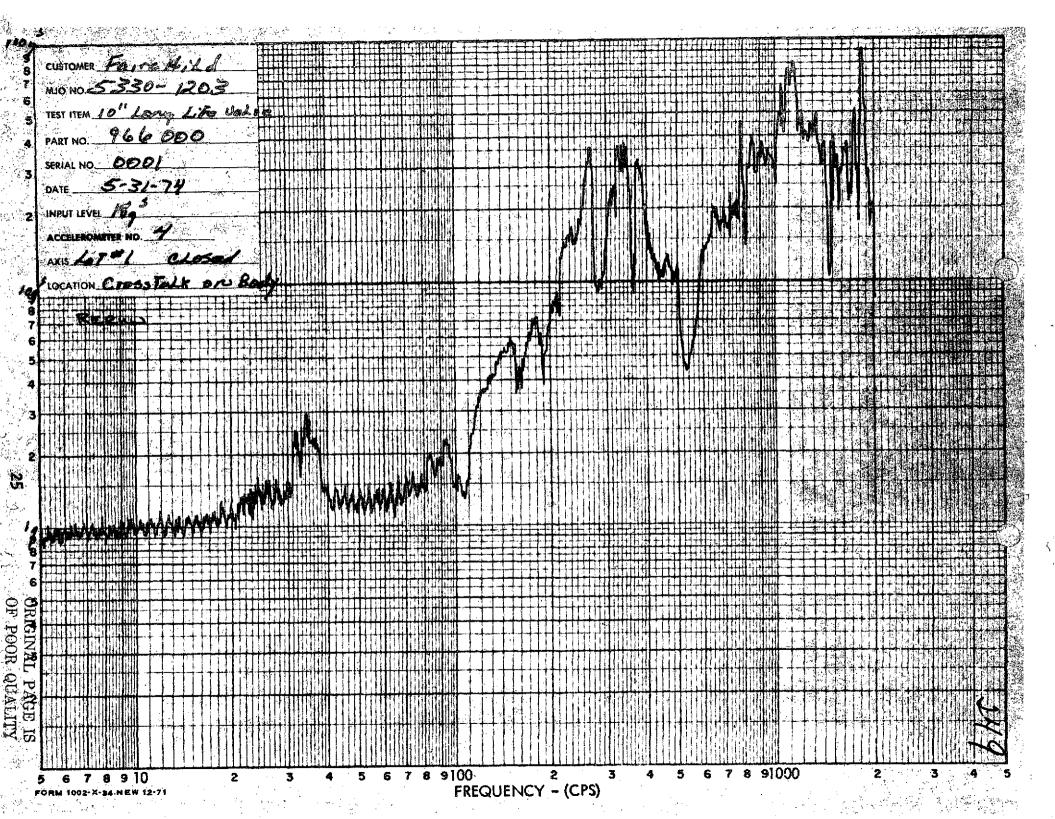


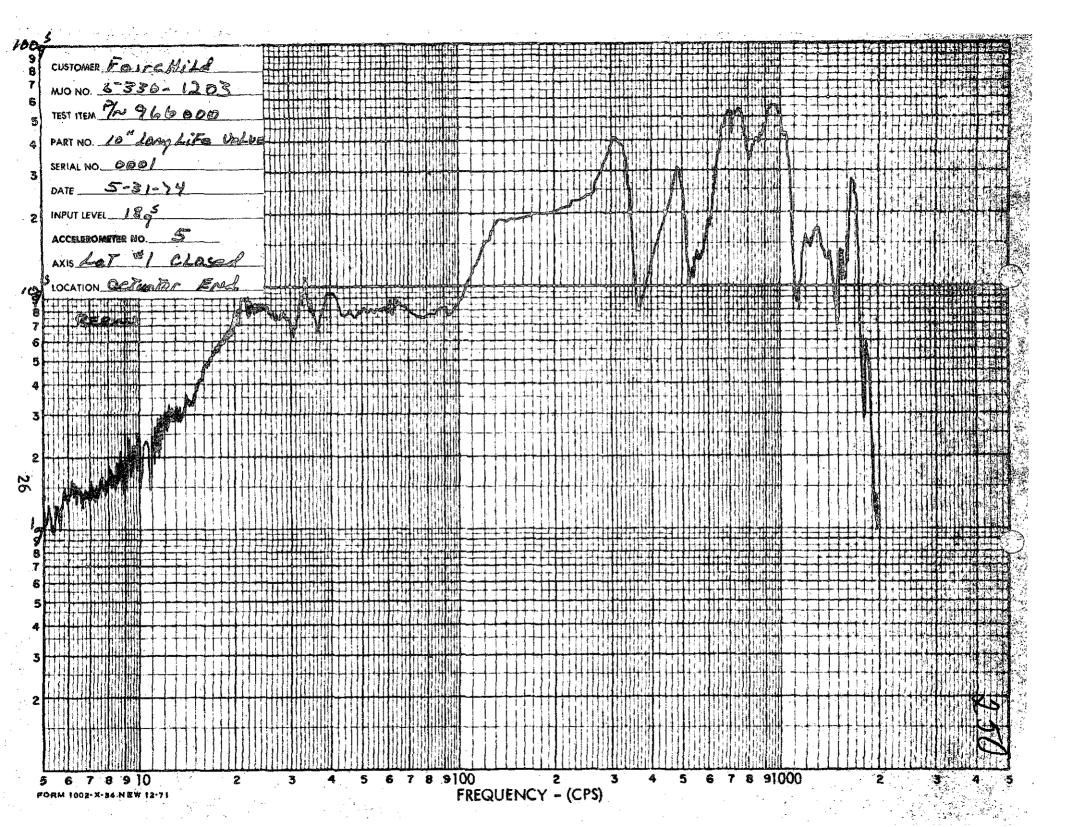


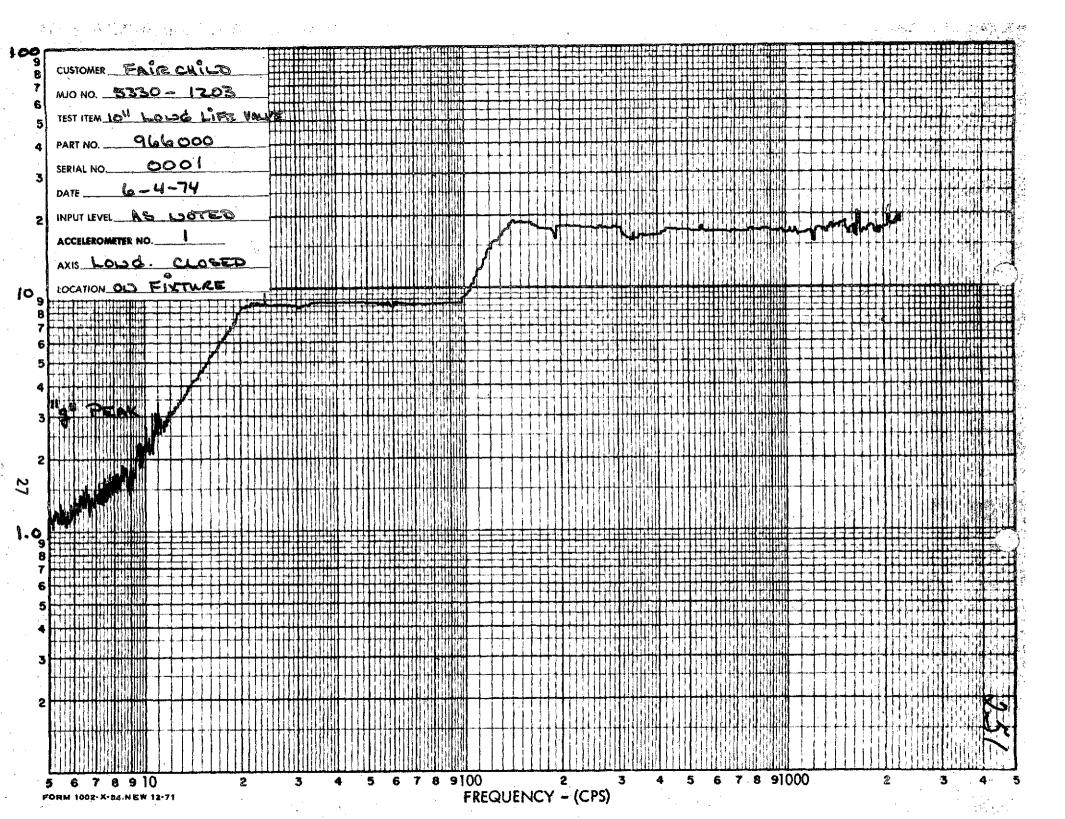


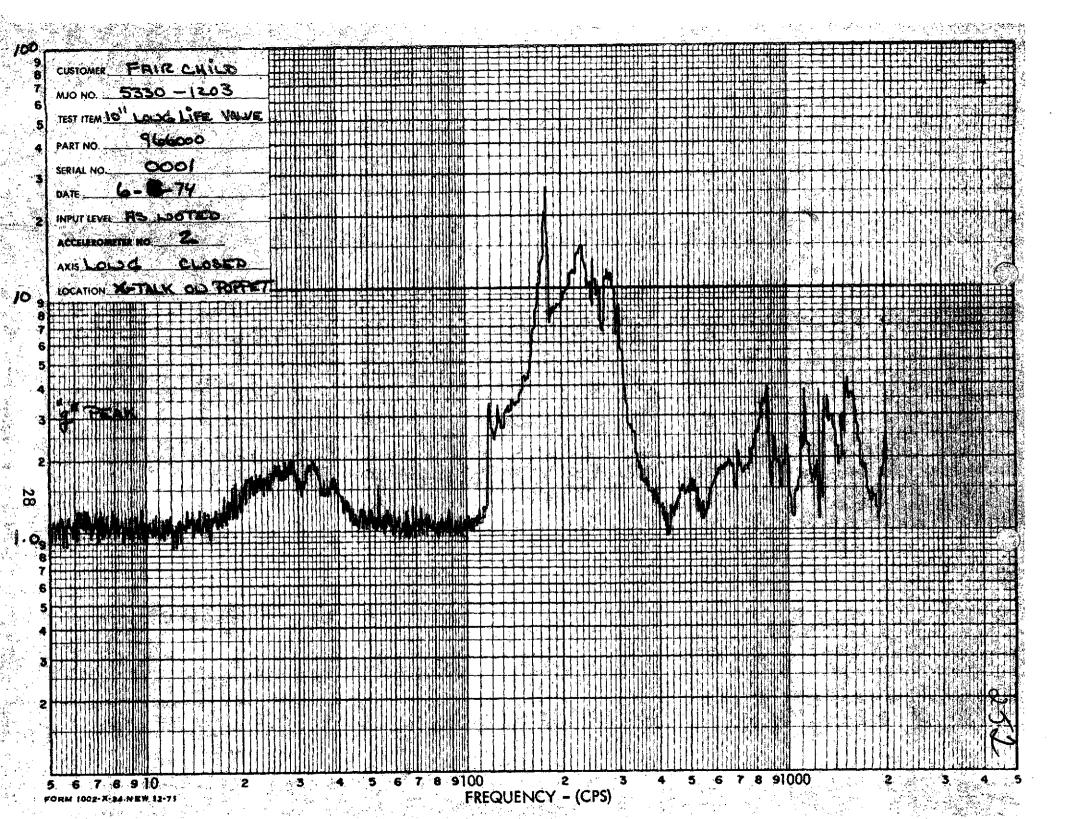


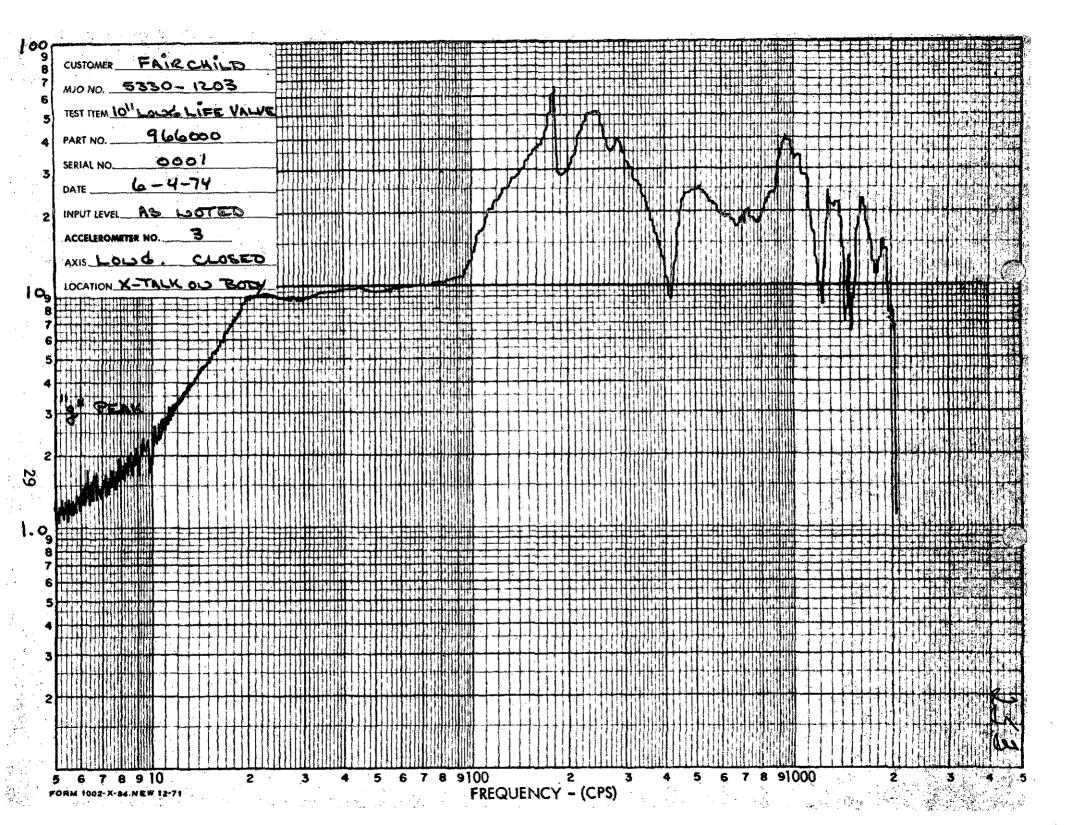


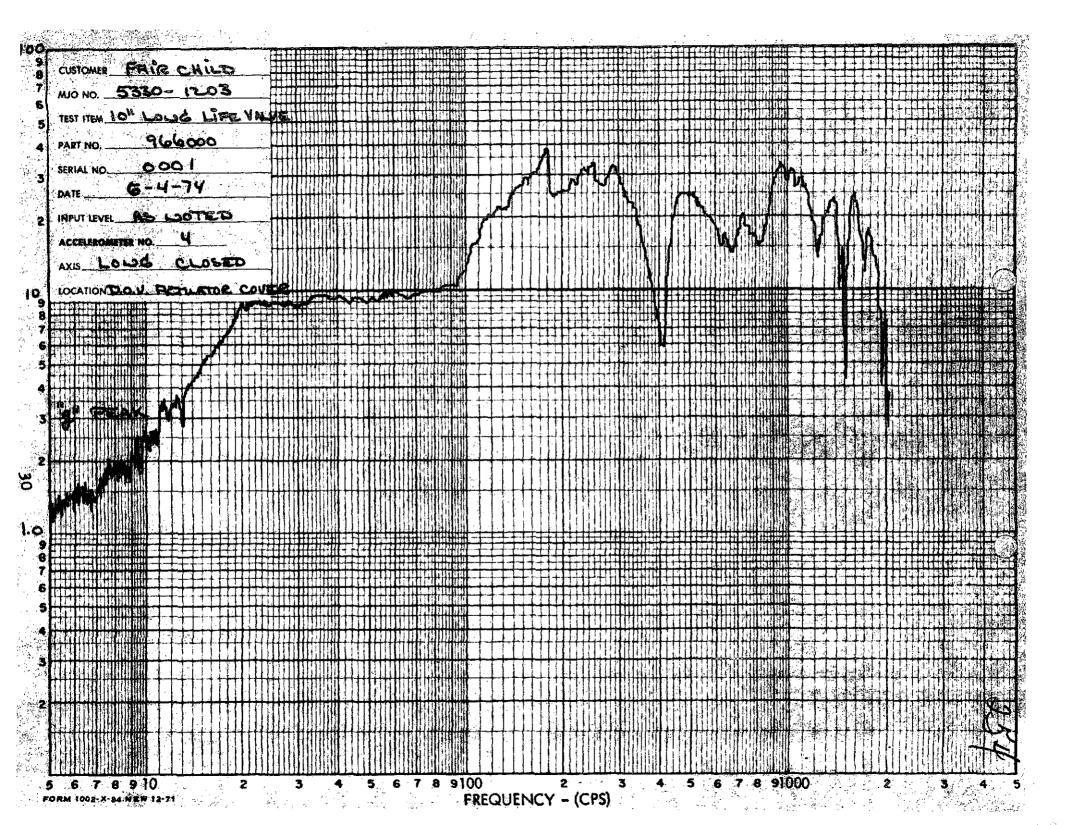


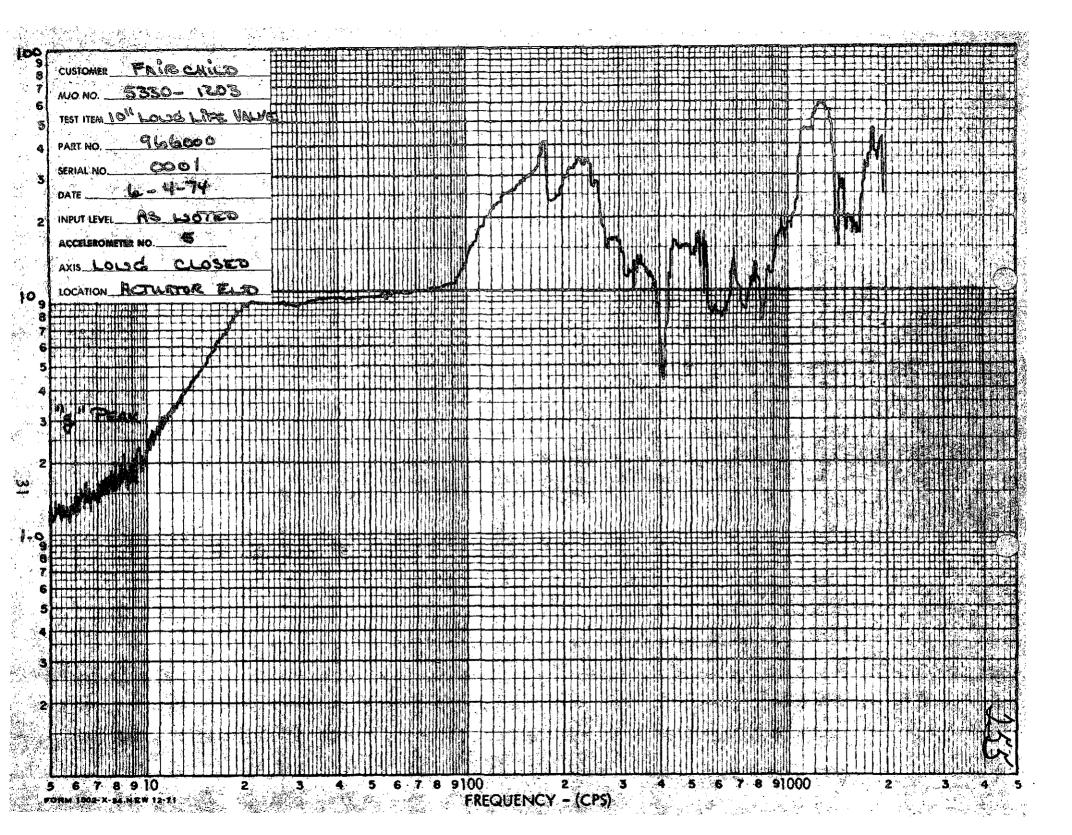


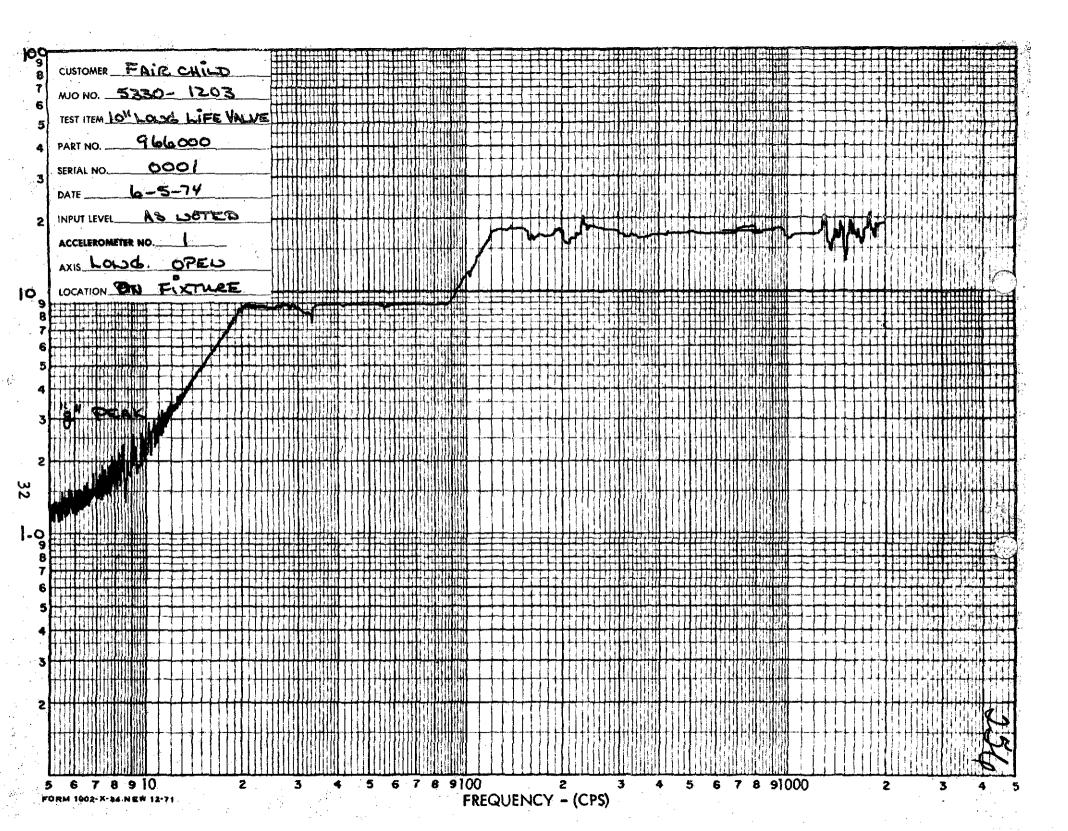


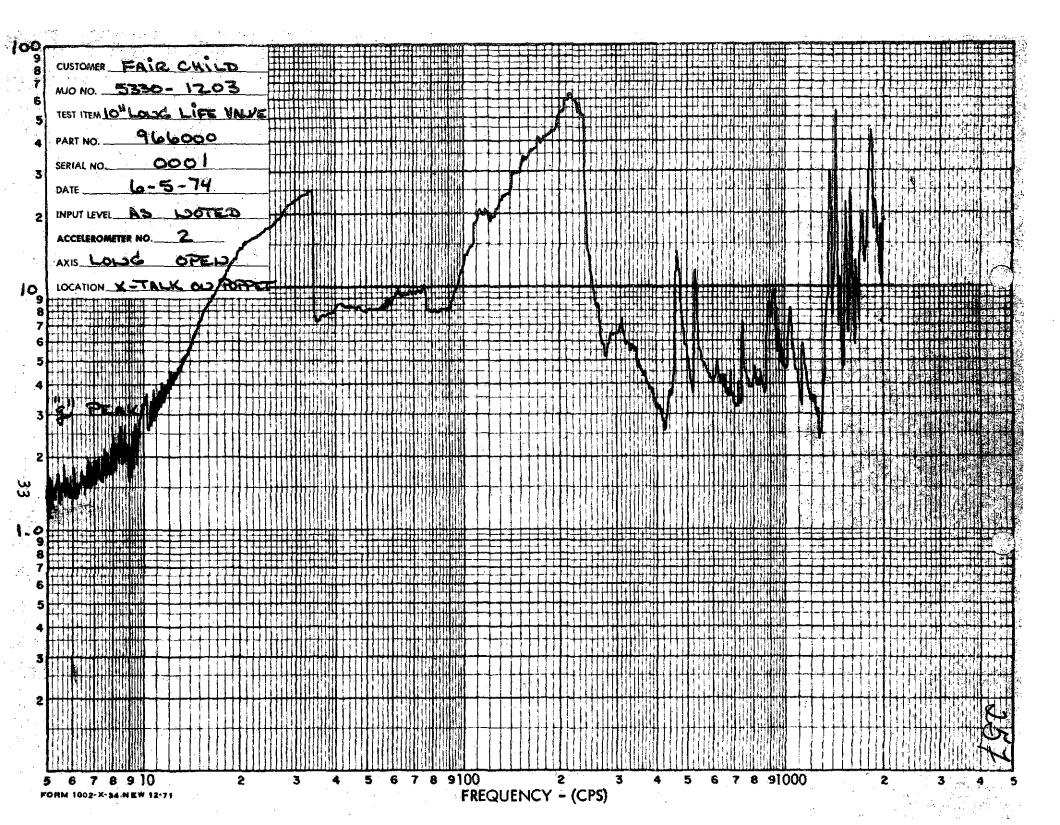


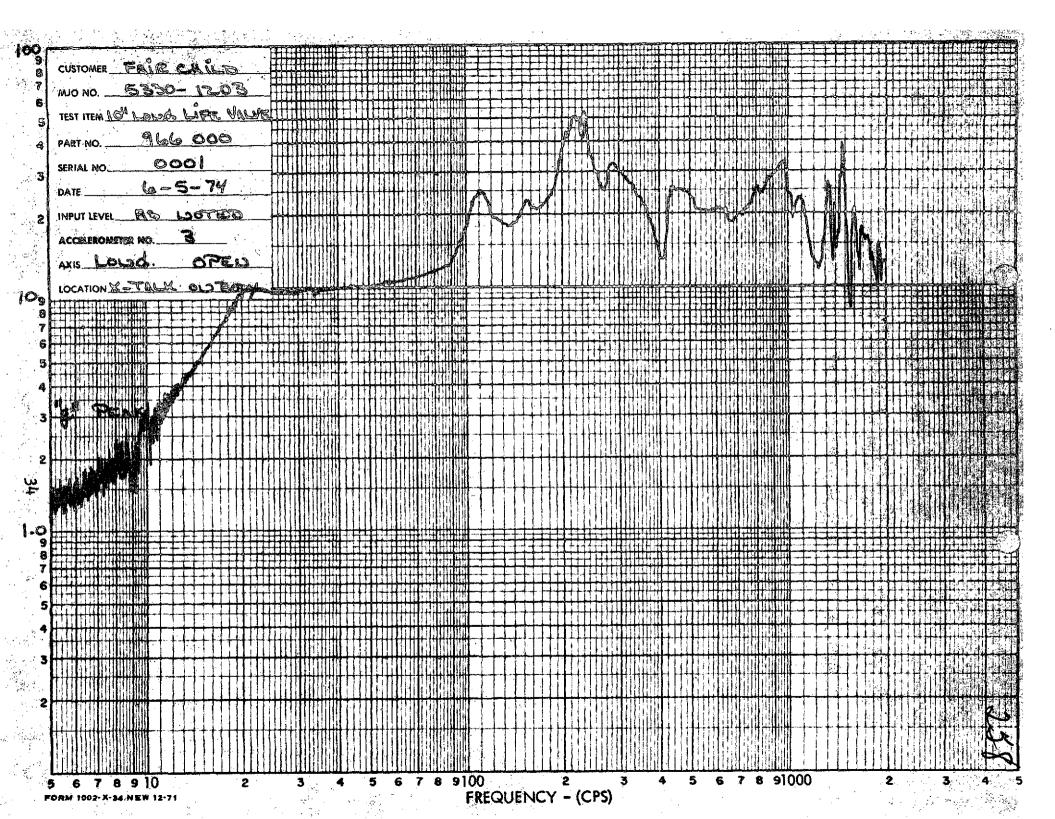


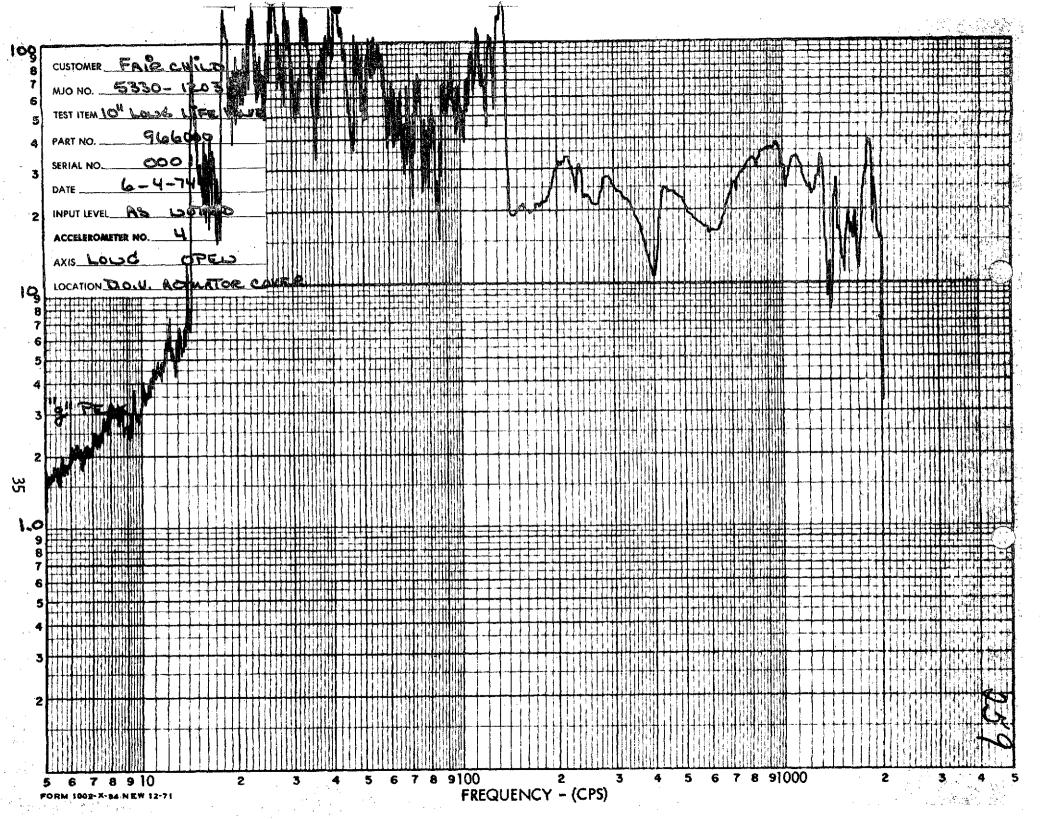


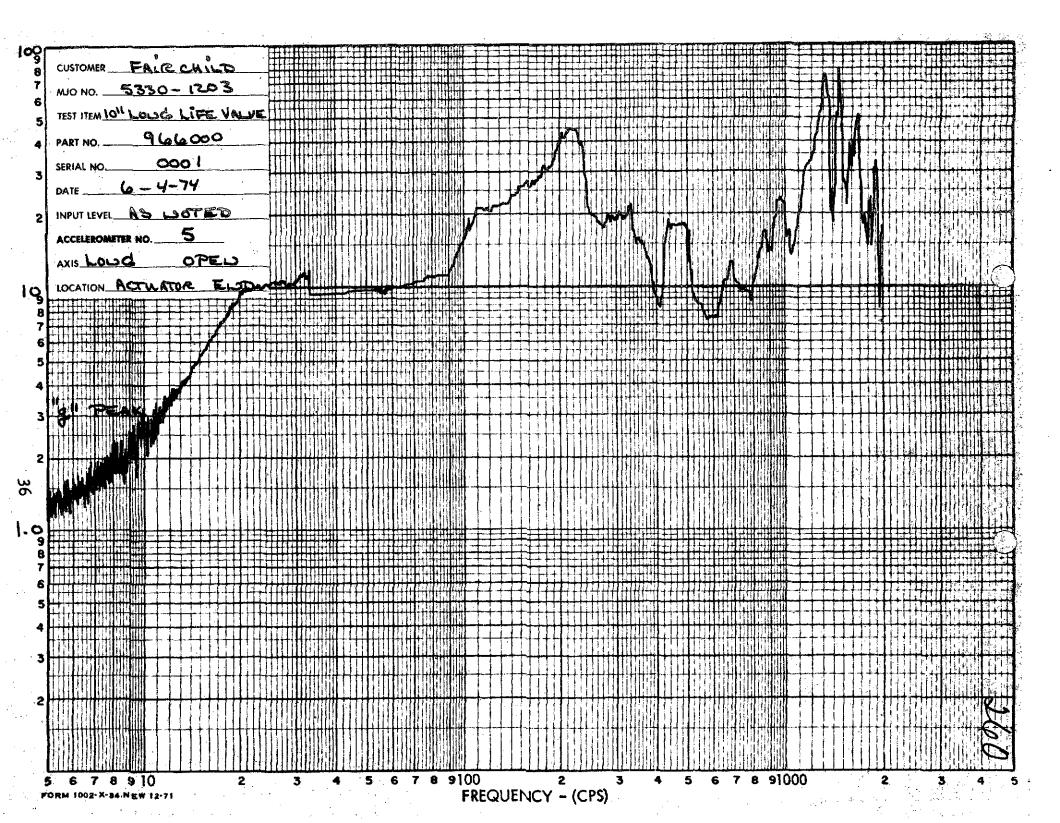


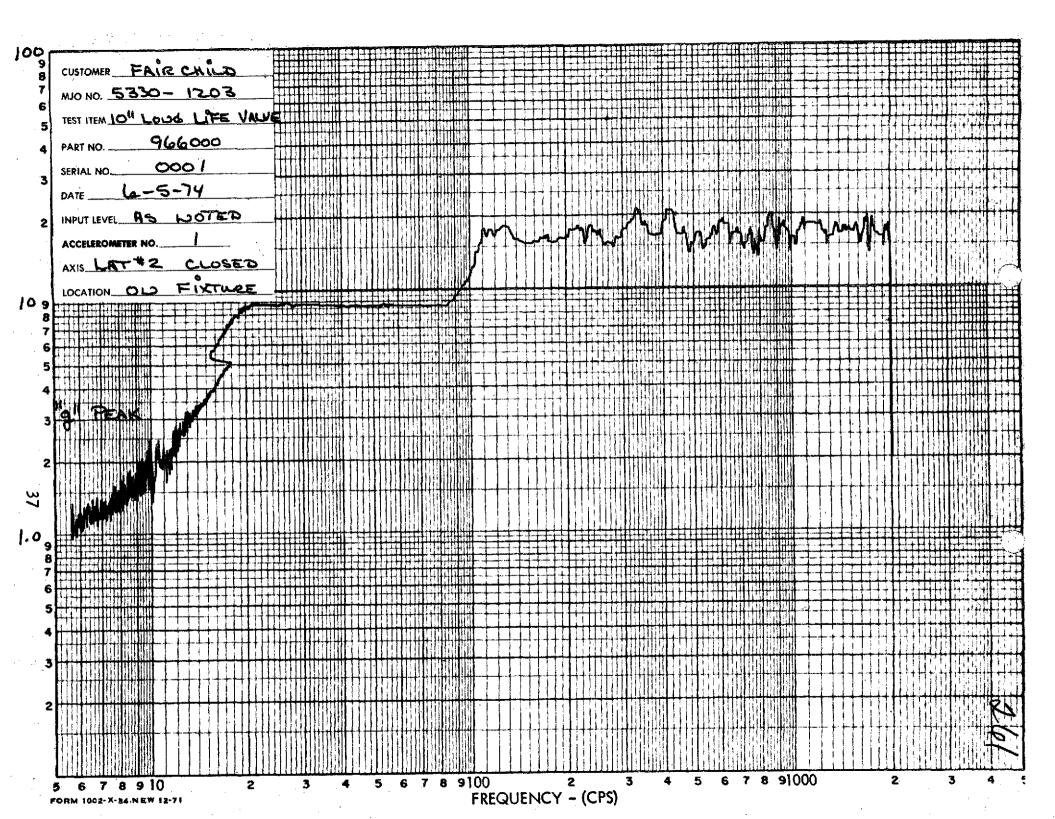


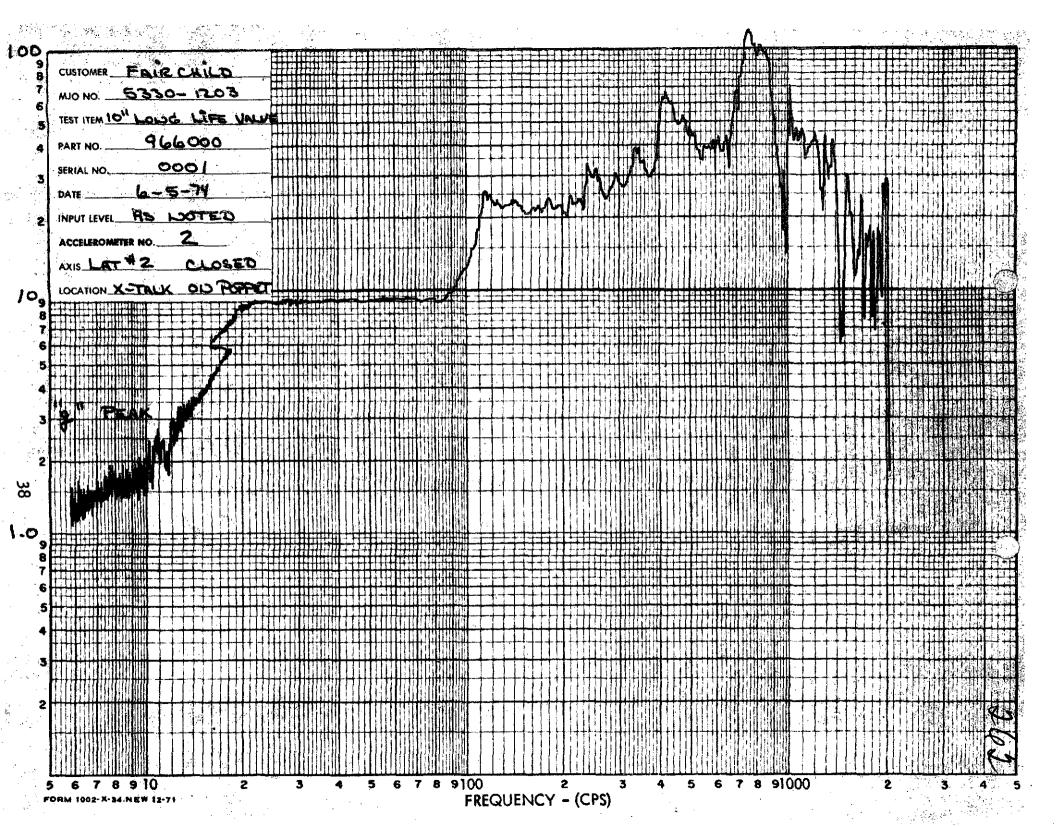


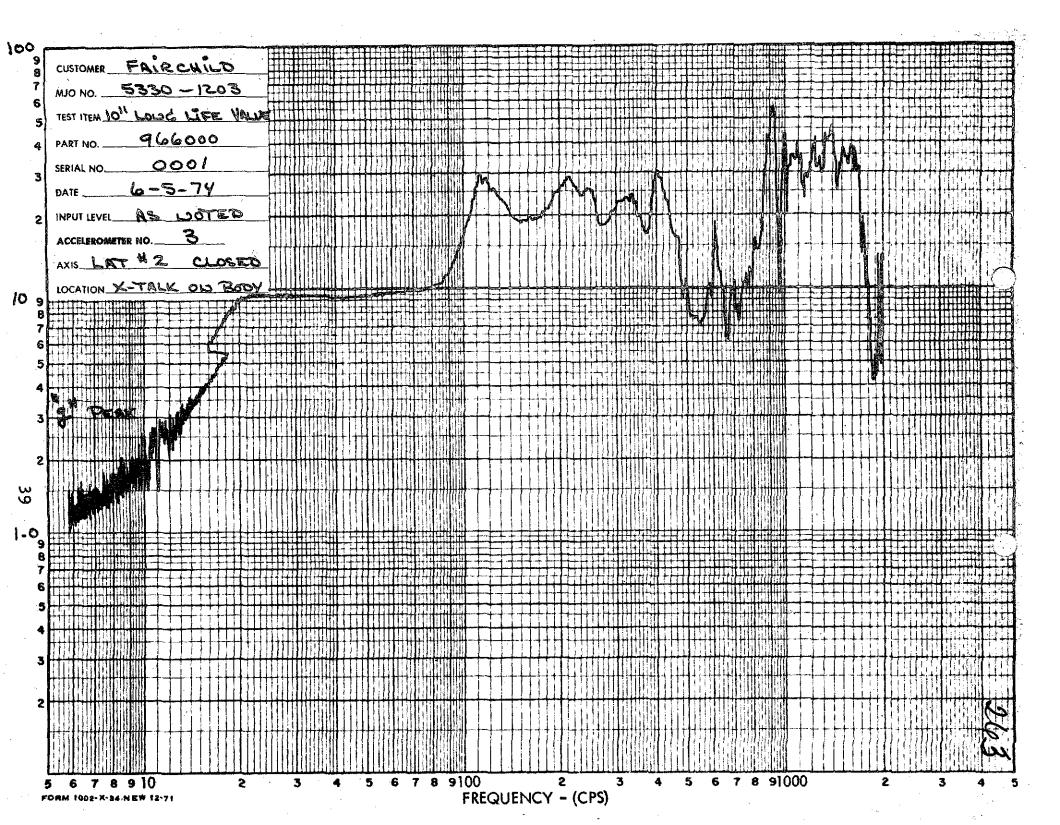


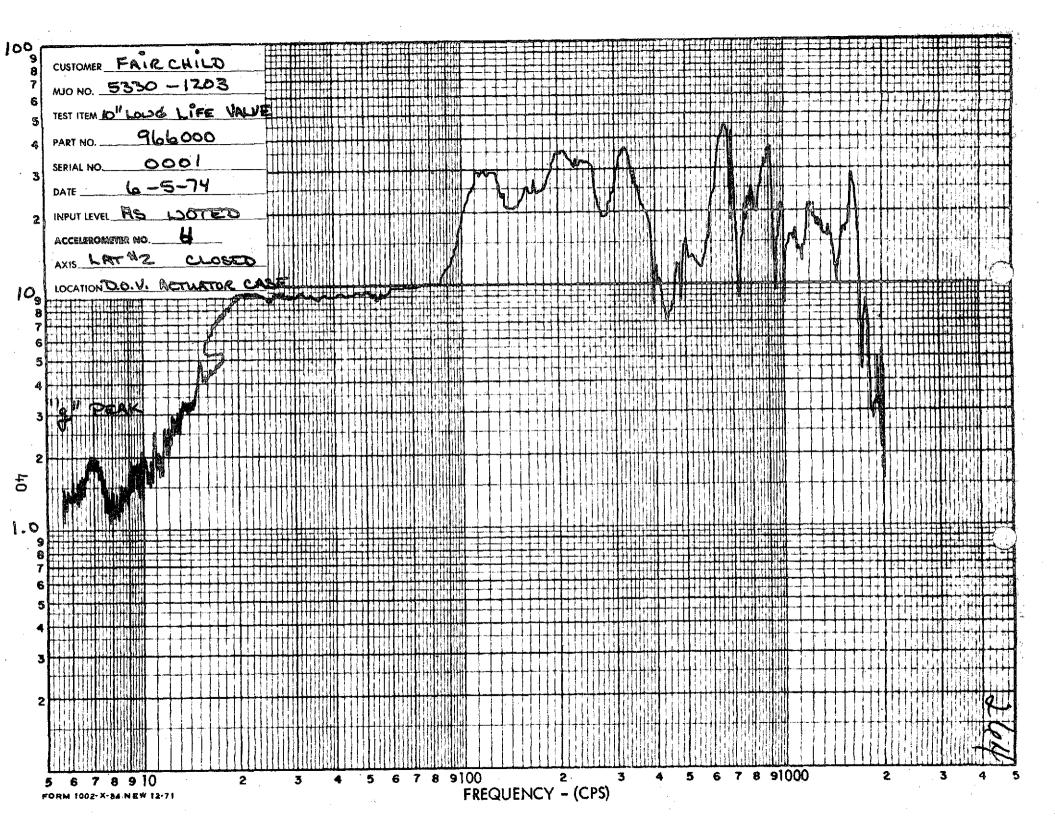


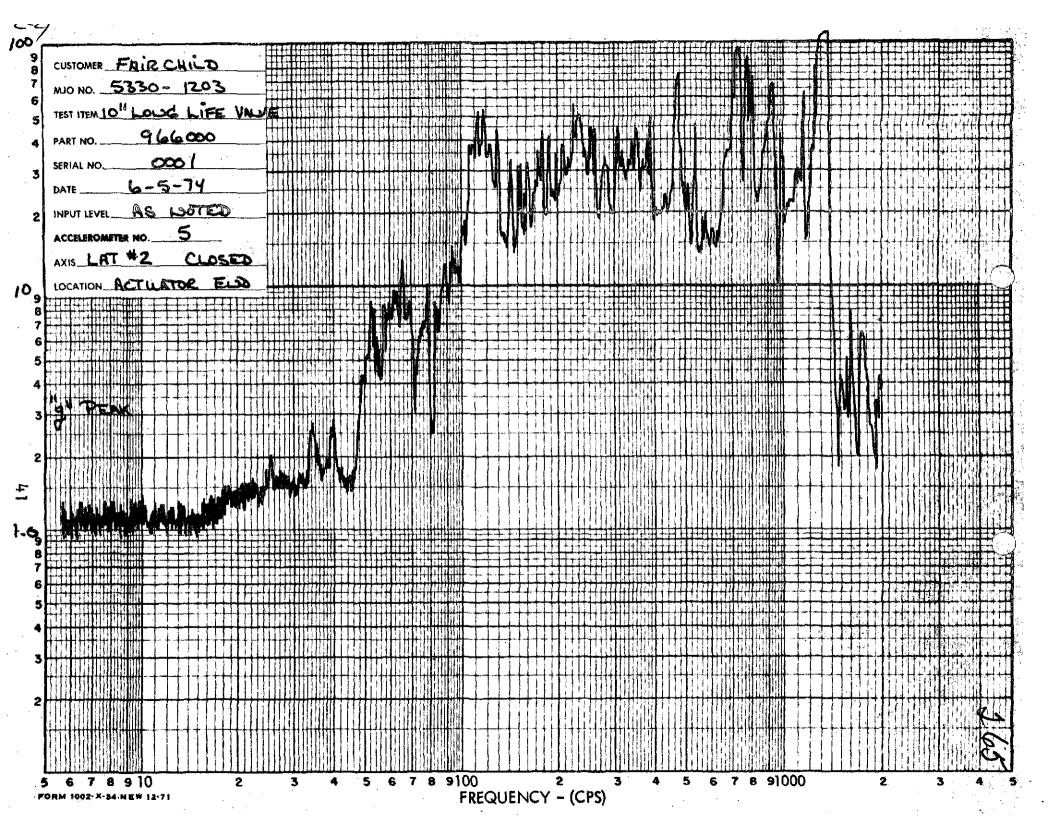


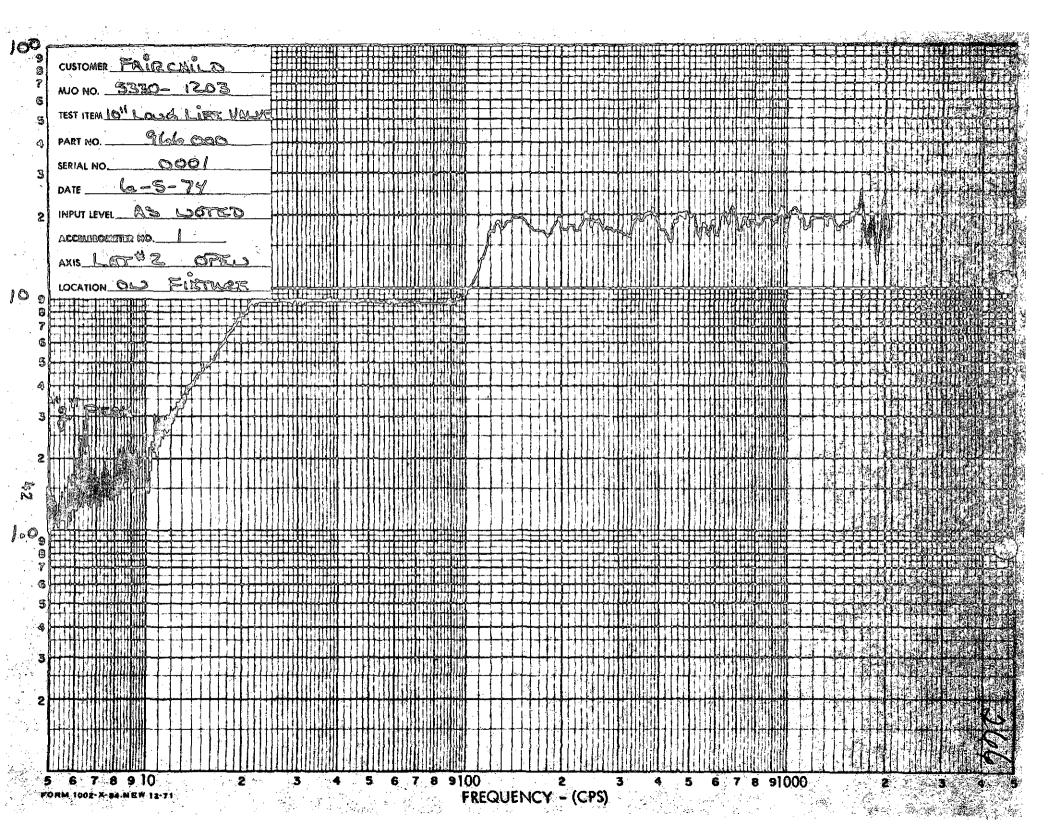


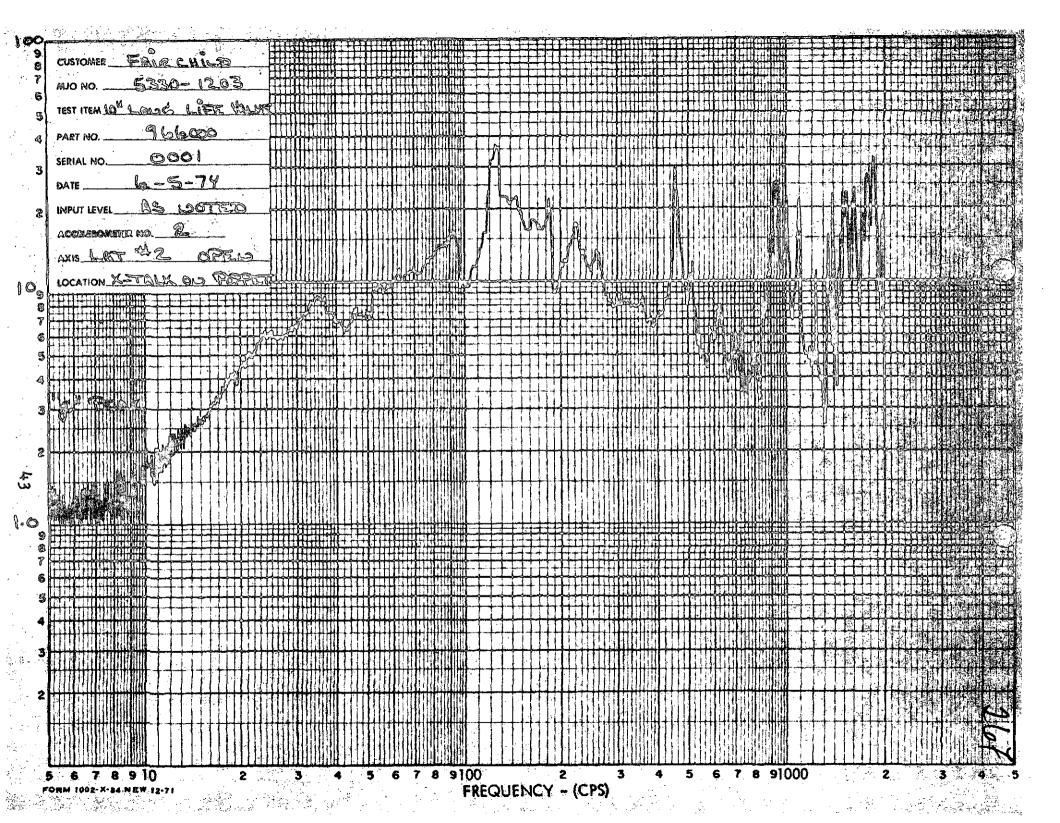


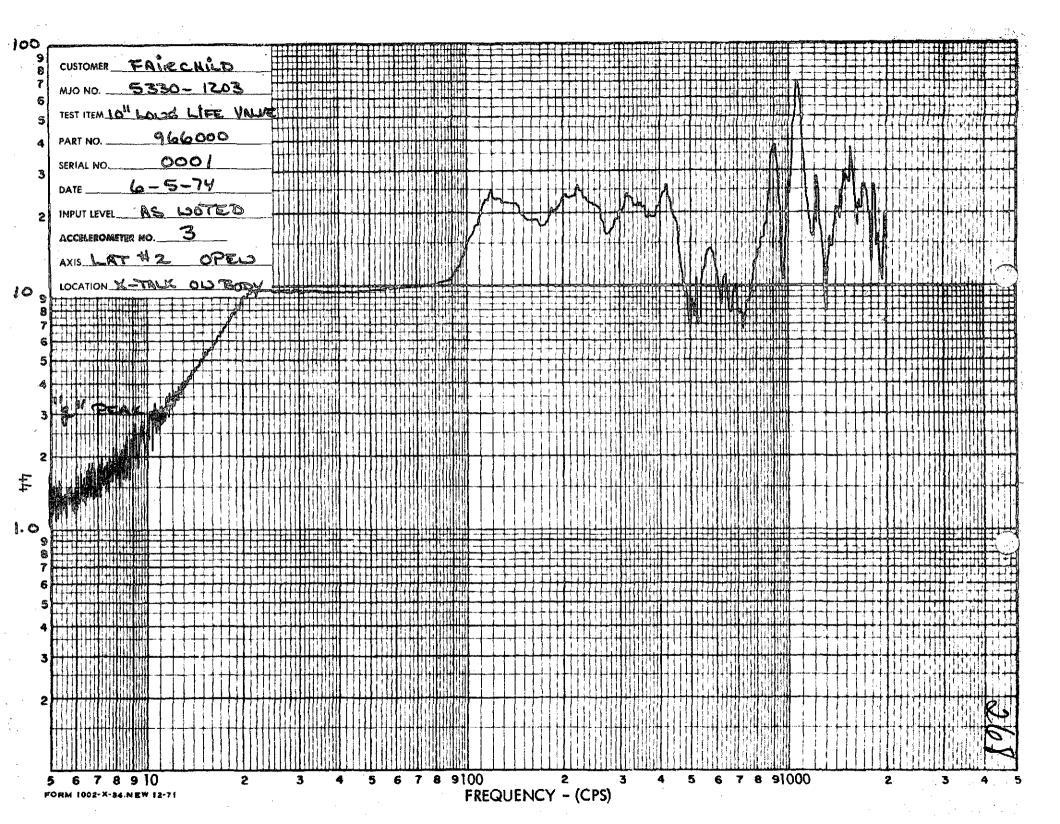


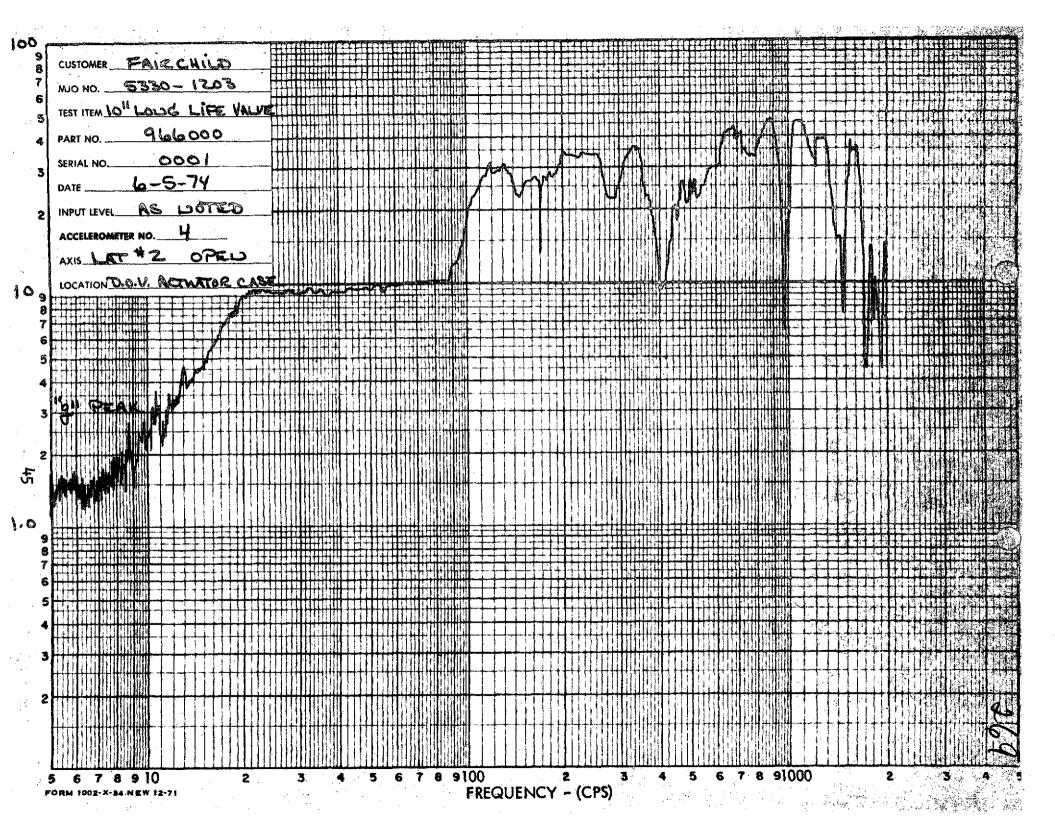


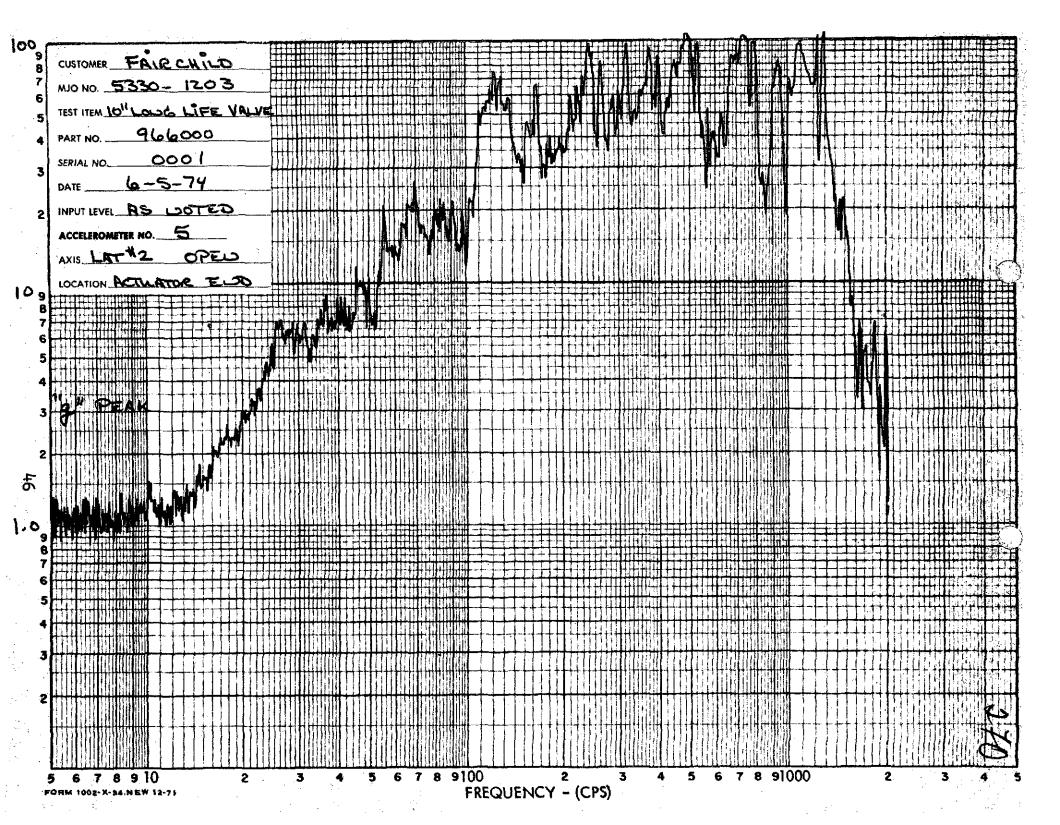


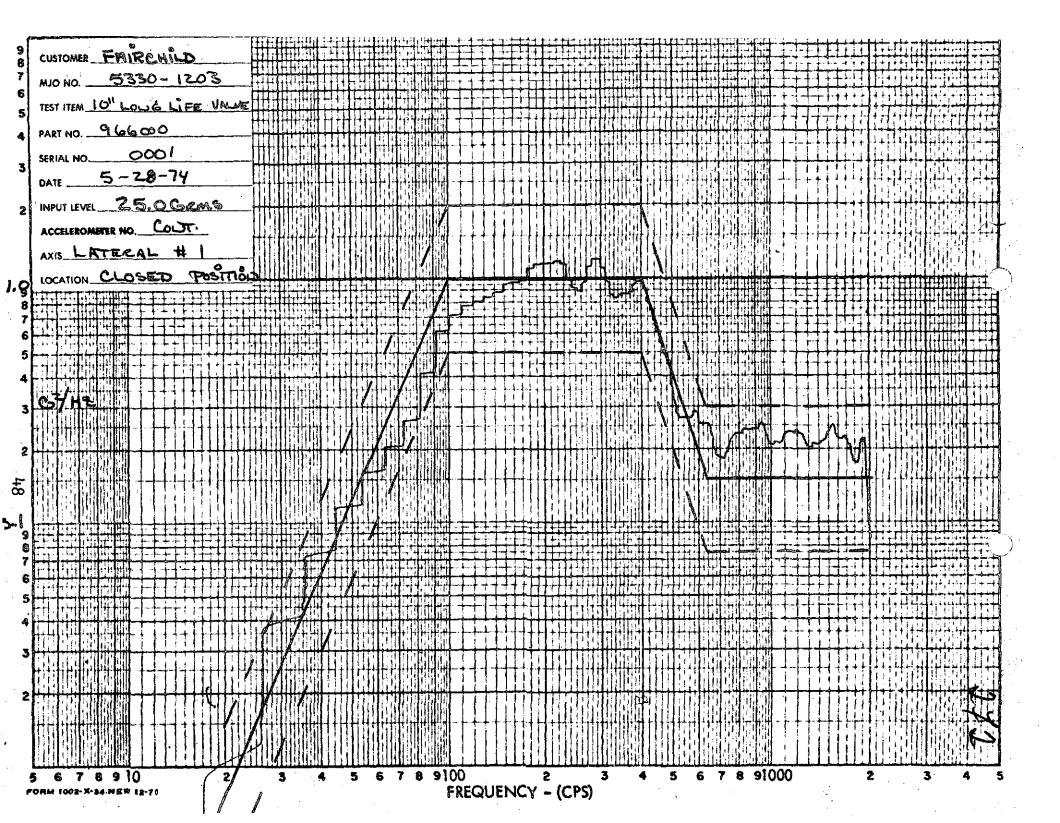


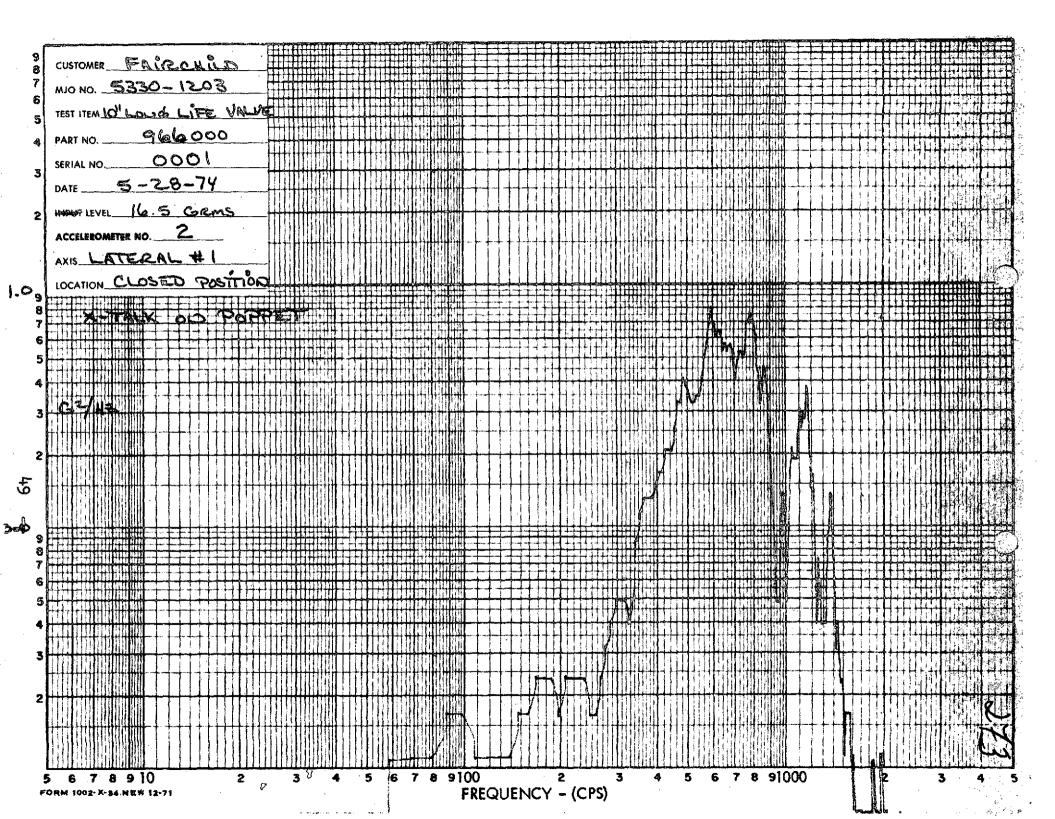


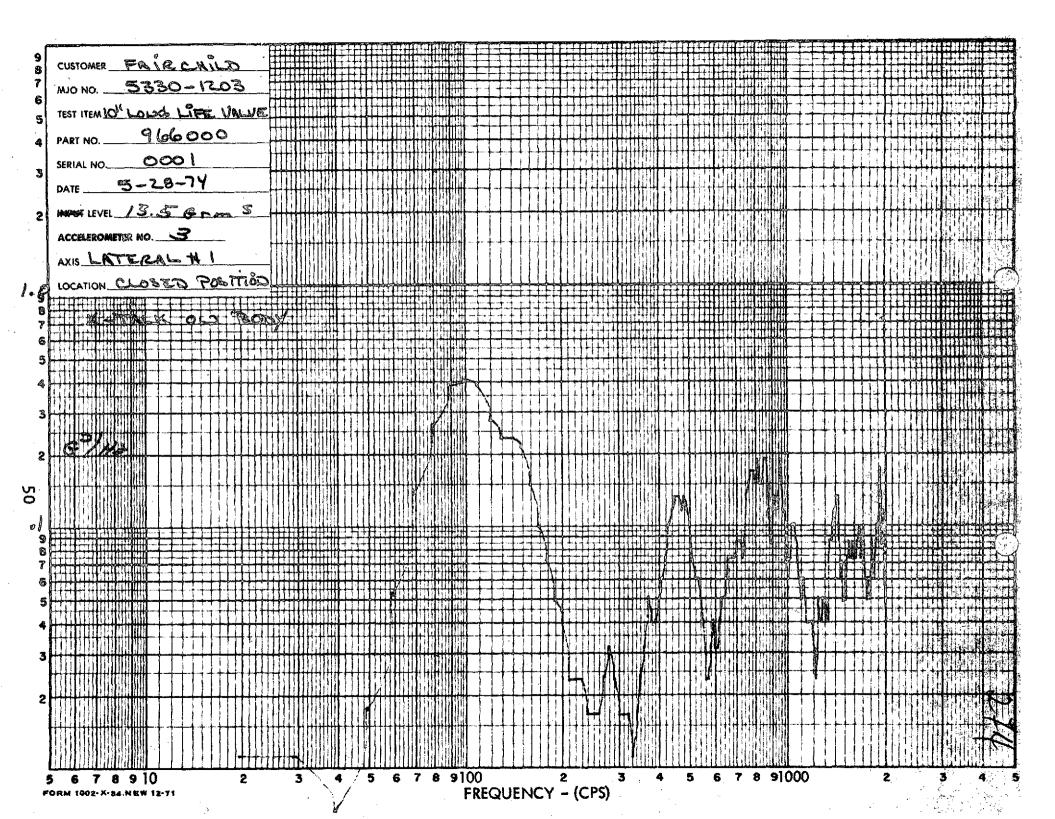


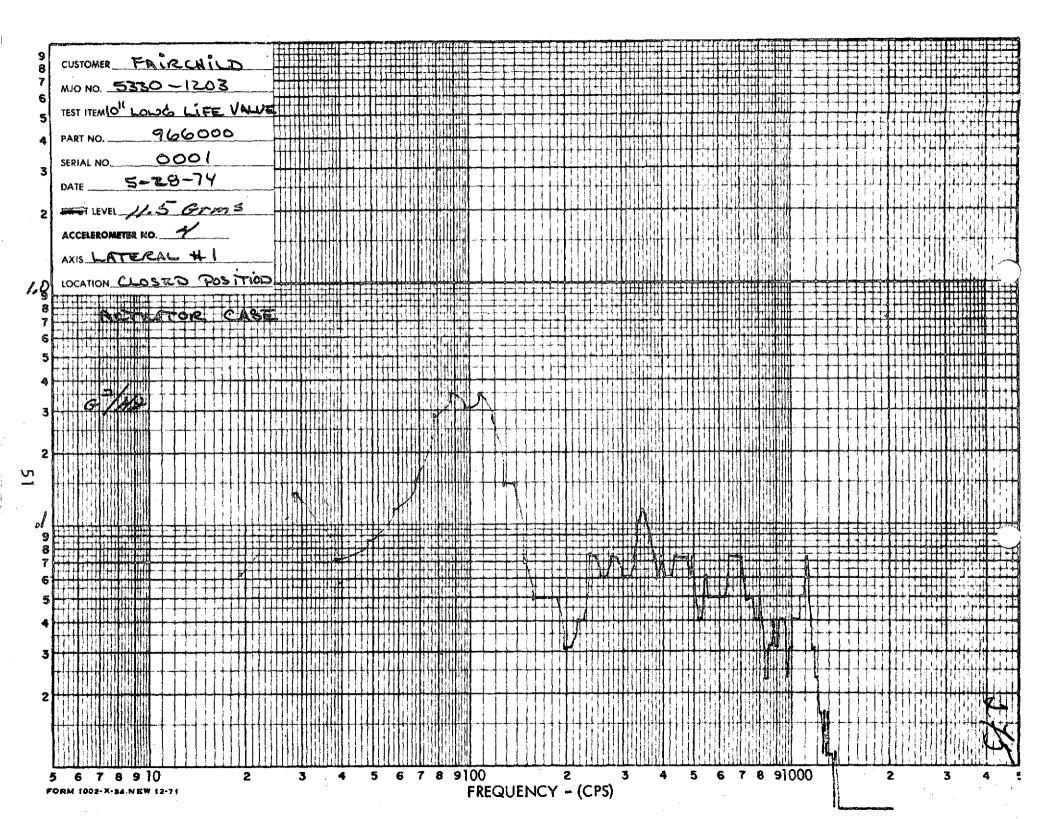


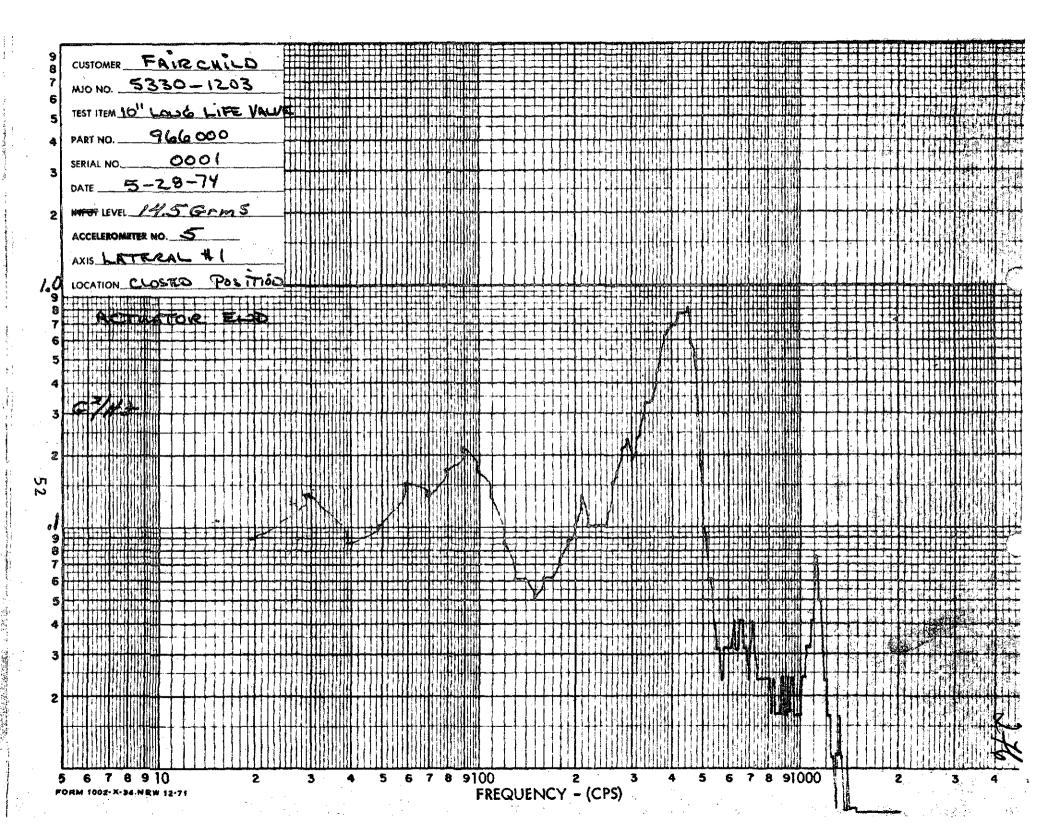





Report No. 5330-1203


Date: 8 July 1974


17/


APPENDIX 2 PSD Plots

