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ABSTRACT

THE MANUAL CONTROL OF VEHICLES UNDERGOING SLOW
TRANSITIONS IN DYNAMIC CHARACTERISTICS

by

Thomas E. Moriarty

The objective of this research is to study the manual control

of a vehicle with slowly time-varying dynamics. Implicit in this

objective are the development of analytic techniques and computer

implementation necessary for the study of time-varying systems.

Previous analyses of the behavior of human operators when con-

trolling vehicles or plants have generally dealt with time-invariant

plants or plants which undergo an abrupt change in dynamic character-

istics. For manual control of time-invariant plants stationary

statistics can be assumed, so that a frequency-domain representa-

tion of the human operator can be computed in the form of a describ-

ing function plus a remnant term. Probabilistic mode-switching

models of the human operator have been generated for the case of

plants undergoing abrupt changes. This research deals with the human

operator as he controls atime-varying plant in which the changes are

neither abrupt nor so slow that the time variations are unimportant.

An experiment in which human pilots controlled the longitudi-

nal mode of a simulated time-varying aircraft is described. The ve-

hicle changed from a pure double integrator to a damped second order



system, either instantaneously or smoothly over time intervals of 30,

75, or 120 seconds. The regulator task consisted of trying to null the

error term resulting from injected random disturbances with band-

widths of 0. 8, 1. 4, and 2. 0 radians per second. Each of the twelve

experimental conditions was replicated ten times.

Ensemble averages across the ten replicates were taken at 0. 1

second intervals to compute the time-varying signal variances and auto-

covariance functions. Further smoothing was obtainedby time averaging

the resulting variances and autocovariances over respective intervals of

1.5 and 1. 1 seconds, based on the assumption of quasi-stationarity over

such short intervals. A new means of estimating the bandwidth of a

quasi-stationary signal is developed, based on the positions of relative

minima observed in the signal' s autocovariance function. This estimate,

called the bandwidth parameter, is the cutoff frequency of a rectangular

low-pass spectrum whose autocorrelation exhibits a first relative mini-

mum at the same distance from the origin as the autocovariance of the

unknown spectrum. A power parameter, which estimates the average

power in a quasi-stationary signal based upon the variance of the signal,

is also developed. The variability of these estimates is analyzed for

the discrete data resulting from the experiment.

A Pilot-Vehicle-Regulator system whose input is the disturbance

and whose output is the resulting error is defined. It is found that the

time-varying power parameter for the error signal is independent of

the speed of vehicle variation for the three finite variation speeds;



and that it is only a function of the input bandwidth and the vehicle' s

configuration at any point during the changes. The bandwidth parameter

is shown to be, to a first approximation, only a function of the vehicle' s

configuration, independent of transition speed and input cutoff frequency.

For the tasks encompassed by this experiment, it is shown that

the pilot' s performance in the time-varying task is essentially equiva-

lent to his performance in stationary tasks which correspond to various

points in the transition. A rudimentary model for the Pilot-Vehicle-

Regulator is presented along with a comparison of these experimental

results with D. T. McRuer' s Crossover Model for the compensatory

tracking task.
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1. INTRODUCTION

Background

In recent years there has been an increasing interest in analy-

zing the behavior of human operators as controllers. In particular,

vehicle control has been important, since by designing the vehicle in

light of man' s capabilities, a better man-machine system can result.

Frequency domain specifications of human pilot dynamics for station-

ary tasks were first presented in the late 1950' s (10). Refinement

of the describing functions plus a remnant term to account for non-

linearities and non-stationary terms were developed in the 1964-1966

time period (11). Further refinement of these techniques followed in

subsequent years, but this approach is still directed toward a descrip-

tion of the pilot' s behavior as he.controls a time invariant vehicle.

Most physical vehicles, however, do change with time, at

least to some extent. For example, the dynamic characteristics of a

motorcycle change significantly as it slows down and enters a curve.

An aircraft has different handling qualities when it changes altitude,

and certainly in the event of a hardware failure, any vehicle may ex-

hibit either abrupt or slow or perhaps both types of variations in its

dynamic characteristics. Within the set of all possible types of vehicle

changes that can occur with time, there are certain subsets that can be

identified. Certainly one class of changes is that of variations whose

effects are so minor that they are not noticed, and thus need little

attention. On the other hand, one can consider those changes which



are so great that they produce an impossible task for the human con-

troller. Between these two extremes, there exist a great many possi-

ble vehicle changes during which the human operator can and must

control. Another dimension that needs to be considered concerns the

speed with which these changes take place. At one end of the spectrum

are the abrupt or instantaneous changes; and this has been an area of

research since the mid-1960' s. Young et al (19) studied the effects of

abrupt gain changes and polarity reversals within the controlled ele-

ment. Elkind and Miller (6) extended the research and included con-

trolled elements whose dynamics changed abruptly between a pure gain,

a single integration and a double integration. Common to these and

similar efforts to describe the effects of abrupt changes are the asser-

tions of multiple modes of control such as detection, identification,

modification and optimization; and probabilistic models to account for

the controller' s actions. The interested reader can obtain further

information about these effects from the excellent summary by Young

(20). These effects have only dealt, however, with abrupt changes

and are not readily extendable to smooth changes. At the other end

of the spectrum lie those changes which may be of large magnitude

but which occur so slowly as to allow good prediction of performance

on a point-by-point basis. An example of this would be the dynamic

changes that occur in an aircraft as it flies straight and level, and

burns off fuel. This sort of change can be analyzed by existing meth-

odology for time-invariant systems.



The midrange of vehicle time-variations is certainly vast and

yet, prior to 1969 as is pointed out by Young (20), little effort had been

expended to describe the action of the human in controlling a moder-

ately time-varying plant, i.e., one in which the changes are neither

abrupt, nor so slow that the variation .is unimportant.

In 1972, Ince and Williges (9) studied the ability of a pilot to

detect slow changes in system dynamics. The experimenters studied

system dynamics that changed from a pure rate control to a pure accel-

eration control with the variations occurring in 11, 16, and 33 seconds.

They also analyzed a pure rate control system with a time varying gain

which changed at rates of 3, 6 and 9 percent of the initial level per

second. This effort showed that the times necessary to detect changes

in both control dynamics and control sensititrity were functions of the

rates of those changes. In the cases where the system dynamics

changed from a pure rate control to a pure acceleration control, the

authors also stated that tracking error increased as the speed of the

variations increased.

One reason for the relatively small amount of research into

slowly time-varying man-vehicle systems is that the more traditional

frequency domain techniques are not in general applicable when the

system is time varying. Even assumptions of stationarity within a

region must be carefully tested since if time averaging is used in the

analysis, any time variations present will be smoothed over by the

analysis. On the other hand, certain methods of time domain analysis,
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while valid in application, yield results that are not easily generalized

to wider applications. Research efforts in this area such as that of

Baron et al (1) are, in general, applications of optimal control theory

using recursive filtering. They require careful choice of cost function

and weighting matrices in order to get convergence to the solution for

a given problem. A change in the structure of the problem, even though

slight, generally requires a complete new solution using digital com-

puter algorithms.

Goal

The goal of this research effort is to study the manual control

of a vehicle which slowly varies with time. Implicit in this goal are

the development of both analytic techniques and computer implementa-

tion that are needed to study time-varying systems.

Research Description and Scope

A time-varying vehicle was simulated on the Applied Dynamics

64-PB hybrid computer. The simulation initially represented a large

orbital vehicle. The dynamics then slowly changed until they repre-

sented those of a large jet transport aircraft. Trained human pilots

were used as subjects for an experiment in which the speeds of vari-

ation and the input disturbances were varied.

The task chosen for the pilot was one of regulation, i. e., that of

maintaining a constant angle of attack in the presence of disturbances.

This task can be related easily to the more usual compensatory
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tracking task, and it results in a simplified analysis problem that has

wide practical application.

Ensemble averaging methods were utilized for analysis in

order to generate statistical descriptors for the recorded data. This

approach does not require or assume the signals to be stationary.

Organization

The contents of this thesis are divided as follows: The defini-

tions and fundamental concepts associated with the analysis of time-

varying systems are discussed in Chapter 2. Chapters 3 and 4 present

a description of the experiment and the experimental procedure, re-

spectively. Chapter 3 also summarizes a preliminary experiment that

was performed. The form of the experimental data, along with the

numerical methods to be used in data analysis, are given in Chapter 5.,

In Chapter 6, the development and validation of time-varying system

descriptors are given, and Chapter 7 contains the results of the data

analysis using those descriptors. Chapter 8 contains-the conclusions

and recommendations for further study. Four Appendices are included

which present details of the simulation, procedure, subject data and

some of the intermediate results of the data analysis.



2. BASIC CONCEPTS

In order to present a firm foundation for the reader, this

chapter will present fundamental definitions and concepts that are

important to this thesis. Also presented are some of the statistical

considerations which dictate the particular methodology utilized.

Stationarity

A signal or system whose first and second order statistics are

independent of the absolute value of observation time is defined to be

wide-sense stationary; during the remainder of this thesis, the use

of the term "stationary" will mean stationary in the wide-sense as

opposed to the strict-sense which requires the statistics of all orders

to be time independent. A non-stationary system can be statistically

described but its statistics will depend upon the point in time of

description, At some other time point, its characteristics would be

different,

The terms "time-varying" and "time-invariant" are equivalent

to "non-stationary" and "stationary" respectively.

Quai- Stationarity

A quasi-stationary signal or system is one for which the

describing statistics do not vary appreciably during some short period

of time, and thus a slowly time-varying system could be described as

a quasi-stationary system. The motivation for utilizing the concept

of quasi-stationarity comes from the theory of the Fourier Transform.

6
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The spectral representation of a signal is only defined when that

signal is stationary. However, a quasi-stationary signal can be thought

of as being equivalent, during any short period of time, to some sta-

tionary signal, and the latter stationary signal does, in fact, have a

well defined spectral representation.

Ouasi-stationarity then provides a link between a slowly time-

varying signal and a series of different spectral representations. In

the remainder of this work, this series of spectral representations

will be called the pseudo-spectral representation of the quasi-station-

ary signal, and the pseudo-spectra are in general time-varying

quantitie s.

Subject Stationarity

A third kind of stationarity is important whenever lengthy

experiments are performed with human subjects. This subject sta-

tionarity is his day-to-day or his session-to-session consistency.

Care must be taken when planning an experiment to minimize the

influence of possible fatigue or other factors which can change a

subject's characteristics when data are being collected on different days,

or even at different times during one day.

Ensemble Averaging

Statistical measurement of a stationary random process in

terms of such quantities as mean, standard deviation or autocorrela-

tion, is usually accomplished by means of time averaging over a long

observation of the process. When the process is non-stationary, time



averaging would mask or confound any time variations present and thus

a different way of generating the desired statistics must be utilized.

By repeatedly observing and recording a non-stationary process,

one can record a set or ensemble of replicates for that process such

that each replicate is an exact duplicate (in the statistical sense) of

every other replicate in the ensemble. With this ensemble available

it is possible to generate time-varying statistics in the following man-

ner: Suppose it is desired to generate the mean value of the non-

stationary random process at 10 seconds after the process has begun.

This quantity can be calculated by adding the values of each replicate

at the 10 second point and then by dividing by the number of replicates.

The method of generating process statistics by means of

averaging across replicates within an ensemble is called Ensemble

Averaging and the mathematical forms for the various statistics used

in this thesis are presented in Chapter 5. When using ensemble aver-

aging, it is a priori assumed that the ensemble does represent only

one condition in the experiment. Careful attention must be paid to the

possibility of subject non-stationarity between replicates, since this

would invalidate the above assumption and result in an inhomogeneous

sample of the condition.

Statistical Variability

It should be obvious that the variability associated with ensemble

averages becomes smaller as the number of replicates gets larger.

Unfortunately, the variability is inversely proportional to the square

root of the number of replicates, thus requiring a very large number



of replicates in order to get narrow regions of high confidence for

ensemble average statistics. Often, as is the case in this study,

there are too many different factors to be considered in an experiment

to allow the experimenter to generate a very large number of replicates

for each condition.

It is possible to utilize the concepts of stationarity and quasi-

stationarity in conjunction with ensemble averaging in order to decrease

the statistical variation. This is accomplished by taking ensemble-

averaged statistics and time averaging them within regions of station-

arity or quasi-stationarity. The effect of this process is to increase

the effective number of replicates, the amount of increase depending

upon the correlation between the values being averaged. A possible

disadvantage of this technique, or at least phenomenon to be aware of,

is that any time variations which do occur within the region of

assumed stationarity or quasi-stationarity will by washed out or

masked by this technique.



3. EXPERIMENT DESCRIPTION

This chapter presents the design and justification of an exper-

iment to study the effects of a slowly varying plant on operator per-

formance. It also includes a summary of a preliminary experiment.

Expe rimental Task

The task chosen in order to study the effects of a slowly varying

plant upon operator performance was, in concept, that of piloting a

large vehicle which is initially in orbit outside the earth's atmosphere

and then enters the atmosphere on some nominal trajectory. A simpli-

fied version of this task, which was suitable for simulation was the

longitudinal control of a linearized vehicle, represented by the trans-

fer function in Figure 3.1, where p varies linearly from 0. 0 to 1. 0

during the experiment.

INPUT 0.0i78 S + 1.154 + 0.25 OUTPUT

S + 0.805 S + 1.35

Figure 3.1 Time-Varying Vehicle Transfer Function

It can be noted that with 4 = 0. 0, the vehicle is a pure inertia with

acceleration control, and that as 4 approaches 1. 0, the vehicle resem-

bles the short period approximation for attack angle in a large trans-

port aircraft. Figure 3.2 shows the Bode magnitude plot for the

10
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Signal Definitions
a: vehicle angle-of-attack
a. : desired angle-of-attack

1
E: error
n: input disturbance n
x : control stick deflection DISTURBANCE

p

PILOT+
DISPLAY AND PLANT

CONTROLLER

Figure 3.3 Simulation Block Diagram
0
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vehicle. Thus the task can be considered to be that of controlling a

vehicle' s angle of attack during reentry.

Figure 3. 3 presents the block diagram for the simulation as

mechanized for the experiment. The input signal ai(t) was held at zero

to make the task that of regulation; i. e. , that of holding the vehicle

angle of attack to zero in the face of disturbances. While the addition

of the disturbance to the vehicle output does not correspond to the true

physical situation, it does provide good correspondence between the

compensatory tracking task and this experiment. There is some linear

transfer operator which could act upon the noise in such a way that its

output could then be added to the vehicle' s output to give a linear ap-

proximation of the physical situation; however, this would then corre-

spond to a time varying input when the system is compared to the

compensatory tracking task. Two main factors influenced this particu-

lar choice of experiment. To see them most easily, it is convenient to

consider the closed loop regulator task as a single system with the

disturbance as the input and the vehicle' s deviation from the reference

condition as the output, as shown in Figure 3. 4.

SPI LO-V EHCLE- E
REGULATOR

Figure 3.4 Pilot -Vehicle- Regulator

With the formulation of the Pilot-Vehicle-Regulator, it is

possible to address directly the question: "what is the capability of
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the combined pilot vehicle system to reject disturbing inputs? "

Another reason for using this combination is that the resulting con-

figuration is simple, it is mathematically tractable, and it is struc -

turally amenable to the methods of system identification. As Root

(16) points out, when trying to identify the characteristics of the pilot

within the closed loop, the experimenter is constrained by the fact that

he cannot choose the input signals to the pilot, i. e. , E (t). In using the

combined Pilot-Vehicle- Regulator representation, the experimenter

knows exactly the input to the system. This approach also makes

maximum use of the fact that the pilot will, within certain limits,

adjust his characteristics to complement those of the vehicle. Thus,

this single input, single output system will exhibit a change in output

characteristics only when the pilot cannot or does not change his

characteristics to account for a change in the vehicle or the input.

Equipment and Facilities

A 22-bit Pseudo-Random Binary Noise generator with a variable

register length, which could produce a zero-mean, approximately-

Gaussian, band-limited white noise with bandwidth up to 7. 2 radians

per second was used. A pulse generator was used to signal the digital

computer to sample and record the data channels. It was designed to

be unusually stable as indicated in Appendix A. This appendix also
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contains further explanations of the functions and specifications of

these devices.

A small room in The University of Michigan Simulation Center

was set up for conducting the experiment. The windows were shielded

and doors blocked to isolate the experiment from peripheral disturb-

ances. Two trunklines from the 64-PB Hybrid Computer were perma-

nently wired into the experiment room to provide connections for the

display and control units.

One trunkline from the 64-PB Hybrid Computer was wired to

provide permanent connections to the CDC 160-A Digital Computer

and the A-D Conversion Unit.

A control unit for the 160-A Digital Computer was fabricated

and installed in the control panel of the AD 64-PB Hybrid Computer.

This unit allowed the experimenter to control the 160-A from the 64- PB

console, thus enabling on-line digital conversion of the data during

the experiment, and the storage of this data directly on magnetic tape

at the same time. The actual data conversion technique is discussed

in Appendix A.

Simulation Philosophy

The simulation equipment consists of the 64-PB Hybrid Com-

puter, a display unit, a control stick, and a noise generator. The

hybrid computer was used to represent the time varying vehicle dy-

namics as well as to generate the analog filters for the noise, and the

switching and signal processing for the display signals.
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The simulation was designed to provide a very closely con-

trolled experiment. When the experimenter started the trial, the

hybrid computer then performed all subsequent sequencing to begin

taking data, to provide the start of the time variation, and finally to

stop the trial and stop taking data. In effect, then, the entire trial was

run by the hybrid computer, once the experimenter initiated it. This

provided maximum repeatability .of the trial.

The display unit was a CRT x-y plotter and the display signals

were generated within the hybrid computer. The 6 1/2" by 8 1/2" face

was as shown below, with a short, non-moving reference line (2 1/8" in

length) and a long moving line, generally corresponding to the artificial

horizon in an aircraft cockpit.

Figure 3.5 Display Unit Face

In order to work with data signal magnitudes that were reason-

able, the angle-of-attack, error and noise signals were converted

from recorded voltages to their magnitudes in units of millimeters
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(mm) deflection on the display face. The reference value for scaling

purposes was a full deflection of ± 240 in attack angle which was equiva-

lent to ± 82. 55 mm full screen deflection on the display.

The control stick was mounted on an arm rest of a chair, and

the stick was connected to a potentiometer to provide a voltage propor-

tional to stick deflection in degrees. The recorded stick deflection

signals were converted back to degrees deflection for computation

purposes during the data analysis.

Between the control stick and the display, there was a sensi-

tivity coefficient which varied as the vehicle varied. When the vehicle

was a pure inertia, a constant stick deflection produced an acceleration

Figure 3. 6 Experiment Room
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and the sensitivity was 1. 56 [mm/sec 2] /o def. After the transition was

completed, the steady-state sensitivity related a constant stick deflec-

tion to a constant display deflection and the coefficient was 6. 5mm/odef.

The arrangement of control stick, chair and display within the

experiment room is shown in Figure 3. 6.

A more detailed specification of the components of the simula-

tion and the physical dimensions of the various devices are presented

in Appendix A.

Preliminary Experiment

A preliminary experiment was conducted to study the feasibility

of the entire simulation and procedure, and is fully documented in

Supplement I of Reference 8. The preliminary experiment was

performed at the Simulation Center with essentially the same equip-

ment discussed in this documentation. The first portion consisted of

recording the data from twenty-one replicates of one condition, that of

input disturbance filter bandwidth (w f) = 1. 0 radians per second, and

a vehicle transition from a.pure inertia to a damped second order

system in 200 seconds. The subject for this experiment was a trained

pilot but he was not naive with respect to the purpose of the experiment.

The results of the first phase indicated that the subject was

encountering the control limits during the trials, so the second phase

was a set of trials with various values of control gain or sensitivity.

The gain value used in the main experiment is about 25%c over the mini-

mum level such that the subject did not encounter the controller limits.
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A third phase of the preliminary experiment was that of

determining the sources and magnitudes of the inaccuracies present

in the data conversion and recording process. The preliminary

experiment was also used to verify that the magnitude of the noise

injected didn't have a significant effect upon pilot characteristics pro-

viding it was not so large as to cause limiting nor so small as to

not be discernable. Between these limits, the pilot compensated

for magnitude changes by relatively linear magnitude changes in his

own output.

Finally, the preliminary experiment served to test the

experimental procedure which is described in the next chapter.

Conversion Noise. -Inaccuracies in the recorded data came

from three sources: (1) actual voltage errors within the analog unit,

(2) roundoff errors resulting from the fact that the least significant

conversion bit corresponded to 0.05 volts, (3) errors in the conversion

process over and above the roundoff. The first two sources were an

order of magnitude smaller than the last, and thus, for this experiment,

all inaccuracies in the recorded data were lumped under the classific-

ation of conversion noise.

An analysis of the conversion noise, as documented in Refer-

ence (8 ), yielded the following results: The mean of the conversion

noise was always less than 0. 04 volts in magnitude and the standard

deviation was always less than or equal to 0.4 volts. Spectral analysis

indicated that the noise was essentially low-frequency band-limited
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white noise with a cutoff frequency at about 0. 7 rad/sec. The maxi-

mum voltage levels for the 64-PB hybrid computer were ± 100 volts,

full scale. The simulation was scaled so that the expected maximum

values of the various data signals would be at 75% of the full scale

voltages. If that had been the case, the standard deviations of the data

signals would have been about 53 volts. The ratio of signal standard

deviation to noise standard deviation in that situation would have been

132. 5 and the signal to noise power ratio would have been 17556

(44. 2 db). To provide another reference point, consider the case

where a signal' s standard deviation was on the order of 10 volts,

which was representative of the lowest observed data value. Then the

standard deviation ratio was 25. 0 and the signal to noise power ratio

was 625 (27.95 db). Based on these figures, it was decided to neglect

the effects of conversion noise upon the data. It should be noted at this

point that the value of cr = 0. 4 volts for conversion noise is quite high

compared with the present state of the art in analog to digital signal

conversion. More modern converters exhibit considerably higher

accuracy.

Ensemble Size

The question of the number of replicates for the main experi-

ment was answered by taking the preliminary experimental data (twenty-

one replicates) and reducing the number of replicates utilized for the

data calculations. It was found that when the number of replicates fell

below nine, the smoothness of the autocovariance functions deteriorated
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markedly. For this reason and to insure accuracy in the calculation of

mean and standard deviation, a sample size of ten replicates was cho-

sen.



4. EXPERIMENTAL PROCEDURE

This chapter presents the experimental conditions and the pro-

cedures for performing the experiment.

Conditions

The parameter 4 is a coefficient in the vehicle's dynamic equa-

tions (see Figure 3. 1), and thus time variations of 4 determined the

manner in which the vehicle characteristics varied with time. As was

stated in Chapter 3, 4 varied linearly with time and the speed of vari-

ation assumed one of four values, corresponding to a total variation

occurring in 0, 30, 75 or 120 seconds. The input noise filter cutoff

frequency (wf) took on values of 0. 8, 1. 4 and 2. 0 radians per second

with the mean standard deviation held constant at 6. 25 mm deflection

on the display. Thus, each of the two subjects experienced twelve

experimental conditions, with 10 replicates of each condition, as

shown in Table 4. 1.

Input Length of Time Variation
Noise
Frequency 0 sec 30 sec 75 sec 120 sec

(Of =2.0
(rad/sec) F20TO F20T30 F20T75 F20T120

S= 1.4
(rad/sec) F4TO F4T30 F4T75 F4T120

F8TO F8T30 F8T75 F8T120
(rad/sec)

Table 4. 1 Experimental Conditions

22
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Table 4. 1 also serves to introduce the shorthand representations for

the twelve conditions. For example: Condition F14TO is the condition

where the input noise filter cutoff frequency is 1.4 radians per second

and time variation occurs instantaneously (0 seconds). Similarly,

condition F8T120 indicates that the input noise filter frequency is 0.8

radians per second and the time variation takes 120 seconds.

In order to provide a measure of the effect of choosing ten

replicates for ensemble averaging, the condition F14T75 with Subject

B was also studied with forty replicates. An additional set of experi-

ments was performed with p fixed at 0. 0, 0. 05, 0. 15, 0.4, 0.7 and 1. 0.

This was to allow comparison of the time-varying pilot performance

with performance on a time-invariant vehicle with similar character-

istics.

Subject Briefing

Each of the two subjects was briefed informally but extensively

before beginning the experiment. The only restriction employed

was that of not telling the subject that his actual control character-

istics would be under analysis. The subject was told that the vehicle

would vary with time and the endpoint conditions were explained. Since

the subjects had had little experience with piloting a vehicle without

damping or spring forces, special attention was given to the dynamic

characteristics of the initial configuration. Other than explicitly

explaining what would be done with the collected data, all questions

were answered as well as possible. The subject was allowed to "fly"
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the two endpoint conditions for 10-15 minutes, with and without exter-

nal disturbances, as part of his initial briefing. Appendix C contains

pertinent subject data.

Procedure

The experiment was conducted in the following manner. Each

subject experienced one session on seven different days and each ses-

sion consisted of taking ten replicates of two different conditions. The

seven sessions were required in order to duplicate the first session

with the last session. This was done in order to eliminate the learning

effects which were present in the first few trials of the first session. It

was felt that the inclusion of these trials would have introduced a good

deal of subject non-stationarity into the two ensembles being generated.

Subsequent data analysis thus dealt with the results of only the last six

sessions, where it was felt that subjects were well enough "into the

learning curve" so that they were stationary within sessions and that

the tendency to improve performance with time would be balanced by

the idle days between sessions. Within a session the two different con-

ditions were presented in a random order with a constraint applied on

the probabilistic selection of the order.

A particular random trials order for a session could have been

obtained merely by taking any arbitrary sequence of 20 trials chosen

at random from a group containing 10 trials for one condition and 10

trials for the other condition. This would, however, allow the possi-

bility of obtaining an order which does not appear to be random at all,

such as 10 trials of one condition followed by 10 trials of the other
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condition. Thus, it was decided a priori to accept only random orders

which have a probability of occurance by chance that is equal to or

greater than some value, and in this case P > 0. 022 was chosen. Each

occasion within a session that the experimenter changed the variation

time from one value to the other represented as a system change; and

when the order selection was made as outlined above, the number of

system changes was a random variable with a binomial distribution.

The chosen probability then required that for this experiment, only

random orders which contained at least 5 and not more; than 14 system

changes were accepted as "appropriately random". Appendix B pre-

sents the sessions and the variable values for each.

Each of the 20 experimental trials in a session began with a

60 second initial phase, followed by one of the four transition times

and then a final phase of at least 60 seconds so that each trial lasted

240 seconds. The subject was given a random length (30 seconds or

less) of time initially to acclimate himself to the task prior to begin-

ning the actual recorded 240 second section. The subjects were not

aware of the length of this initial phase and thus could not develop a

sense of timing to determine the start of the variation.

Between each trial the subject was asked to leave the experi-

ment room and walk into the next room where he read the digital

computer output consisting of the file number and the number of

records recorded on magnetic tape. He then gave this information to

the experimenter and returned to the experiment room. Not only did
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this serve to provide a check on the data bookkeeping methods, but it

broke the monotony of the subject' s task. As the subject walked by the

computer console, he was able to see the mean-square integral error

level for each run. Although he was briefed as to the statistical varia-

tion of this measure, it did provide considerable personal motivation to

keep him alert at the task. The time between each trial was approxi-

mately one minute.

Because of the length of each run, the fatigue of the subject was

an important consideration. In order to reduce the fatigue, a complete

change of pace was made after each group of five runs, and the subject

was encouraged to get some refreshments and actively change his be-

havior for 10 to 15 minutes.

Data Recording

During the run, a (t) - the vehicle output, xp(t) - the stick de-

flection, n(t) - the disturbance noise, and E (t) - the error signal were

recorded along with a timing signal. The data signals are indicated

in Figure 3. 2 and the timing signal is a voltage which takes on values

of plus or minus ten volts depending upon what phase the simulation is

in. This timing signal also provided an on-line calibration capability

within the data, although it was not necessary to use it, since a full-

scale h 100 volt calibration signal and sinusoidal calibration signal

were recorded before and after every session.
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Data Reduction

After the data had been recorded on the CDC-160A computer

and then converted to IBM 360 compatible form, one further step was

required to put the data in its most useful form. This step consisted

of a final editing and alignment of the data runs.

The technique used in the hybrid computer to time the various

intervals within a trial was that of generating a ramp voltage and

switching modes when the ramp reached various preset voltage levels.

A more accurate method would have been to actually count the data re-

cording pulses, but the necessary equipment was not available. Thus,

when all ten replicates of a condition were compared by means of their

timing tracks, it was not uncommon to find that some of the individual

interval lengths differed by a few tenths of a second. When this oc-

curred on the initial or final static intervals, the remedy was to drop

the last few entries of the longer initial intervals or to drop the last

few entries of the longer final intervals so that they were equal in

length to those of the shortest replicate. When a difference occurred

in the time-varying intervals, a different procedure was employed. A

sequence of random numbers within the nominal range of time points

for the interval was generated. Using this sequence, entries were

removed from the larger time-varying intervals until all the intervals

were of the same length. As a rule of thumb, it was decided that any

interval which required removal of more than one percent of its
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nominal entries was not reliable for frequency information. Thus the

most that could be removed from a 1200 point interval was 12 points,

and the 750 point and 300 point intervals would allow the removal of

7 and 3 entries respectively.

When the timing editing was completed, all the data runs for

each experimental condition had exactly the same timing, and these

runs were stored on magnetic tape on the IBM 360 computer. The

data consisted of over 4 million words that were well arranged and

readily available for analysis without further editing.

Ensemble Analysis

This section presents the ensemble methods used to analyze

the experimental data, as well as a comparison with the more conven-

tional time-invariant form and some general results of applying these

methods to the data.

Mean - The mean of a time-varying signal y(t) is also a time-

varying quantity. For n replicates of the signal, the mean at time to

is computed by
n

(to) Yi(to). (5. 1)
n i=l

The time-invariant form is a constant and is given by

y-2T IfT y(t) dt, (5. 2)

which will equal (as the number of replicates get large) the time

average of time-varying mean.
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For the signals a (t), x p(t), n(t) and E(t), the expected values of

the sampling distributions of the ensemble means were essentially zero,,

and they provided unbiased estimates of the population means for those

signals. The standard errors of the replicate means were on the order

of 10% of the maximum signal levels, and while the population means

could be assumed zero, it was felt that sample variations in the signal

means would have to be accounted for.

Standard Deviation - The standard deviation of the time-varying

signal is time-varying and at to is given by

Cy(to) 1 [ Yi(t )- .(to)]Z . (5.3)

In this case too, applying the time-invariant form

y T(y(t) - )2 dt (5.4)

will yield the average value of a-y(t) over the time period 2T.

The variation of ry (t) evaluated at individual points of time for

the data was fairly large. By using quasi-stationarity and taking the

time average of the standard deviation over 1. 5 seconds, an improve-

ment was made; but, as Figure 5. 1 indicates, there was still a signifi-

cant variation present. This result was important since it influenced

some subsequent analyses. In Chapter 6, the decrease in variation

associated with increasing the number of replicates from 10 to 40 will

be shown.

Figure 5. 1 presents the 10-replicate ensemble standard devi-

ation as a function of time for 3 signals: stick deflection, xp(t);
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vehicle output, a (t); and error, E (t). The mean standard deviation of

the input noise was equal to 6. 25 mm as indicated by the straight line

superimposed on the vehicle output plot. The starting point and ending

point of the time variation are also shown. Each plot consists of 159 to

160 points separated by 1.5 seconds, and each point represents the nu-

merical average of 15 ensemble standard deviations taken at 0. 1

second intervals up to and including the point shown. Assuming quasi-

stationarity over a 1.5 second interval represents a trade-off between

the desire for accurate time varying statistics and the desire to de-

crease the effect of sample variation. When the time variation of the

vehicle is at its highest rate (30 seconds for the total transition), the

1. 5 second assumption is equivalent to assuming the system is essen-

tially stationary during 50/c of the vehicle' s transition. As the speed

of vehicle transition decreases, the validity of this assumed quasi-

stationary interval gets better. Figure 5. 1 represents the particular

condition F14T75 with Subject B. Appendix D contains a similar plot

for each subject and each point of the twelve conditions.

Autocorrelation - The autocorrelation function (and there is a

natural extension to the cross correlation function) for a time-varying

signal is a function of two time points to and tl. It is most easily

treated by thinking of to being fixed (called the midpoint) and t I varying

on both sides of the midpoint. Its ensemble form is

n

R (t i(t o ) Yi (t )  (5.5)
Ry ( t l t) n i=1
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as compared with the time-invariant form of

1 T
Ry(ti - t) -2T (to)Y(tl)dto . (5.6)

Autocovariance - In this study the autocovariance function of a

time-varying signal y(t) is defined in its ensemble form by
n

S yi(to ) - Y(to)] [Yi(tl ) - (tl)
C (tl, t ) = (57)

Yy(tl) 0y (to )

This function doesn' t really have a well known time-invariant form, but

in the following paragraphs it is shown to be similar to the autocorrela-

tion function.

Consider that the autocovariance function is taken on an ensem-

ble whose mean is zero and whose standard deviation is a constant 0y.

Then

Ry(to, tl) Ry(to tl)Cy(to, t) 2(tt Ry(to' t) (5.8)

and the autocovariance is just a normalized autocorrelation. Since it

is the purpose of this study to look at signals which are quasi-stationary,

or essentially stationary over small periods of time, it is reasonable

to assume that the mean of the signal population is zero and to account

for sample variation of the mean by subtracting it in the manner done

by the autocovariance function. By similar reasoning, one accounts

for the sample variation in standard deviation between two points in

time by using the two values of a- as normalizing factors. The validity

of the latter practice is inversely proportional to the value of

It - to0 , since as ItI - to gets larger, it becomes less likely that
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the observed variations in cr are due to sample variation trather than

system non- stationarity.

The result of using the autocovariance function as opposed to

the autocorrelation function on the experimental data is 'striking. It

improves the symmetry of the resulting plot considerably. It also

reduces peaks that occur away from the origin to an extent where 'they

become physically believable. This difference is :illustrated in

Figures,5.2 and 5.3 of autocorrelation and autocovariance respectively

for the same data. In the remainder of this study, it will be assumed

that the autocovariance function is very closely related to the auto-

correlation function and that the properties of the autocovariance

function reflect those of a hypothetical autocorrelation function

generated for the same process but with a better sample.

Figure 5.4 is a plot of C (t 1 , to) of E(t), the average of 40

autocovariance functions taken at one second intervals during the

first 60 seconds of condition F14T75 with subject B. This ,average

spans the entire 60 second time-invariant first phase of the condition

and thus the average over such large time intervals is allowable.

Using such an average provides maximum smoothness and symmetry

and generally yields an autocovariance function that is quite well

behaved.

Figures 5.5, 5.6,5.7 and5.8 show the averages of 11 autocovariance

functions taken at 0. 1 second intervals symmetrically about the stated

midpoint for each figure. They are all taken from condition F14T75,
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subject B; and they are evenly spaced at 5% intervals through the

vehicle's transition period. Using the 11 adjacent autocovariance

functions for an average serves to smooth out the data by washing out

any sample or time variations which occur in less than one second.

This provides a lower bound on the assumed region of quasi-station-

arity, since these midpoints all lie within the time interval where the

vehicle varies with time.

A plot of the average autocovariance function for the time-

invariant final phase of the experiment, is presented in Figure 5.9.

It is the average of (40) autocovariance functions taken at one second

intervals during the last 60 seconds of the run, and is similar in

character to the plot of Figure 5.4.

A similar set of average autocovariance functions can be

developed for each point in the experimental matrix for each subject.

In theory, at least, the time-varying autocovariance function provides

a complete description of the magnitude characteristics of c (t), and

thus implies a time domain description of the Pilot-Vehicle-Regulator's

gain characteristics (phase information is not present) for the given

class of inputs. On the other hand, this type of information,

doesn't provide a very meaningful description of the system; that is

to say, time domain descriptions of this sort do not provide much

insight into the character of the Pilot-Vehicle-Regulator.

The next section presents some techniques which can be

employed to obtain more useful descriptive information from the

time-varying standard deviation and autocovariance function.



6. DEVELOPMENT AND EVALUATION OF

PSEUDO -SPEC TRUM PARAME TERS

The purpose of this section is to show the development and

evaluation of the parameters used to describe the pseudo-spectra'. The

method followed is to apply the Fourier Transform to a power spectral

density and get a time-invariant autocorrelation function. Some of the

properties of this autocorrelation function can then be applied to the

autocovariance functions to give useful information about the pseudo-

spectra.

Given an autocorrelation function for a stationary signal, the

Fourier Transform provides a unique power spectral density for that

signal, at least in the theoretical sense. Practically speaking, the

transform is often difficult to perform when the autocorrelation is

given in numerical form. For functions like those plotted in Figures

5. 5 through 5. 8, the results of numerically integrating the Fourier

Transform would introduce great uncertainty. The functions are not

symmetrical, which results in imaginary components in the power

spectral density. They are not defined outside a rectangular window,

which destroys the uniqueness properties of the transform and requires

the introduction of digital filtering to smooth the resulting spectrum.

It was thus felt that an attempt to.actually transform these autocovari-

ance functions would yield spectra which would not be meaningful. On

the other hand, since there is a theoretical relationship between each

autocovariance function and a corresponding pseudo-spectrum, it

41
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should be possible to estimate some spectral information from the

autocovariance functions. One of the most important characteristics

of a spectrum is its bandwidth, and the following development shows

how this characteristic can be estimated.

Bandwidth Parameter Development

In 1944, Rice (15) showed that one could estimate the band-

width of a spectrum by counting the number of times the related signal

crossed the zero value. Specifically, he demonstrated that, for a

normally distributed random signal with mean zero and an ideal rec-

tangular spectrum, the expected number of zero crossings per second

is related to the cutoff frequency in hertz by the following equation:

E [# zeros /second] = 1. 155 fc (6.1)

This is a good indicator for a rectangular spectrum when the signal is

stationary since then the expected number of zero crossing per second

can be obtained by time averaging. When the signal is non-stationary

the expected number of zero crossings per second can be estimated by

ensemble averaging over a quasi-stationary period of time. In either

case, however, Rice' s technique is limited by the assumption that the

signal has an ideal rectangular spectrum.

There are definitions of bandwidth which do not identify cutoff

frequencies, but instead provide information about the concentration

of signal power. For example, the Mean Square bandwidth is defined

for any signal, regardless of its spectral shape. This bandwidth
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definition can be used to indicate the region on the autocovariance

functions where one might expect to find information about the band-

width of the related unknown spectra. For a stationary, zero-mean

signal y(t), the Mean Square bandwidth, given by Equation 6. 2,

WMS = (6. 2)
f Sy(()d e

can be interpreted in the time domain using the Fourier Transform

pair

F(w ) = f(r)eJWT d7 (6. 3)

and

f(T) = - F()e d (6.4)

The time differentiation theorem (13) of the Fourier Transform yields

2 S(W) d d2 R (r) (6.5)
dT z

The inverse Fourier Transform, Equation 6.4, with 7 = 0 is

S -00

and finally, combining Equations 6. 5 and 6. 6 yields

-d 2 -Ry(T) wZ S y ( ()dW (6.7)
dT 2T - oo

T=0

Similarly,

Ry(0) = 00 S () d (6.8)2T f00 y)d
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but the autocorrelation for T = 0 is also defined as

Ry(0) = 2-y (6.9)

Thus, using time-domain quantities, Equation 6.2 becomes
d2 Ry(7)

"WMS = (6. 10)

Unfortunately, when dealing with digitized signals it is very difficult

to get accurate second derivative information as is required by Equa-

tion 6. 10. The relationship does, however, serve to indicate the sort

of information that the autocovariance functions should contain in re-

gions close to the origin.

The technique utilized in this thesis consists of observing the

lowest value of I t - t o [ in the plotted autocovariance functions for

which the function has a relative minimum. This value is then used to

estimate the bandwidth of the unknown pseudo-spectrum. The estimate

is actually the bandwidth of a low-pass rectangular spectrum whose

transform or autocorrelation exhibits a first relative minimum at the

same distance from the origin as that of the autocovariance for the

unknown spe ctrum.

At this point it is necessary to develop the relationship between

the bandwidth of a rectangular spectrum and the value T of its first

relative minimum. Consider the rectangular spectrum and its corre-

sponding transform as shown in Figure 6. 1. The general form for

this sort of spectrum is given by
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S(w) a -(6
0 , elsewhere

where Zc3 is the cutoff frequency of the spectrum. The transform of

Equation 6. 11, using Equation 6.4 is

a wc sin ()c T

R() (6.12)

S (w) R
4. 0 1.0

3.0-

2.0- 0.5-

1. 0-

24

0.0 1.0 2.0 3.0 0.0 1 3

Figure 6. 1 Low-Pass Rectangular Spectrum and Corresponding
Autocorrelation Function

For the point of the first relative minimum of R(T), it is

necessary to look at

dR a c tc cos ZY T c s n e T]
dR) _ 0 (6. 13)dR 0 Zr -Wc 7( c )' J

or

csin c "
0 = cos W (6. 4)

7 c T

This equation can be solved numerically to obtain
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Wc T = 1. 43 w (6. 15)

Thus, the relationship between the first observed relative mini-

A
mum of the autocorrelation function T and the cutoff frequency of the

corresponding low-pass rectangular spectrum is given by

- 1.43w
c= A (6.16)

T

Equation 6. 16 provides the means for estimating the bandwidth

of the arbitrary spectrum; this estimate will hereafter be called the

A
Bandwidth Parameter wc. To make the estimate, one plots the auto-

Acovariance for the signal in question, observes the value T of the first

relative minimum, and then uses Equation 6. 17 to obtain the bandwidth

A
parameter w0.

A 1.4 3 Tr
Wc  (6. 17)

T

In order to give the reader a better understanding of how the

bandwidth parameter relates to the bandwidth of an arbitrary spectrum,

the following example is given: Consider the arbitrary bandlimited

spectrum shown in Figure, 6.2, along with a reasonable approximation

of its autocorrelation function. The first relative minimum occurs at
A
T = 1.03 seconds and using Equation 6. 17 results in a bandwidth pa-

A
rameter value of wc = 4. 36 radians per second. Figure 6. 3 shows a

rectangular low-pass spectrum with cutoff frequency of 4. 36 radians

per second superimposed on the original spectrum. The average

power in the rectangular spectrum was taken to be that of the original
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Figure 6.3 Comparison of Bandwidth Parameter Results and Original
Example Spectrum

A

spectrum. Clearly, the estimate wc = 4. 36 radians per second is

quite reasonable for this situation. Further validation of this tech-

nique, using experimental data signals, will be presented in the next

section of this chapter.

Further Considerations of the Bandwidth Parameter Approach -

A study of the autocovariance function plots such as Figures 5.4

through 5. 8 yields some important facts when one assumes that they

represent autocorrelations, as discussed in the previous chapter. The

plot of the autocovariance function doesn' t, in it'self, give a unique indi-

cation of the signal' s frequency content since the function's behavior

is unknown as It - to I goes toward infinity. Thus, the Fourier
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transform of the given plot would have no particular relevance to a

power spectral density. Efforts to work around this problem such as

defining the autocovariance function to be zero beyond the indicated

window and/or the use of filter windows in the Fourier Transform, all

have the property of influencing the frequency content of the resultant

power spectral density.

On the other hand, if one assumes that the spectrum or pseudo

spectrum (although unknown) of the observed signal is bandlimited, then

immediately the mathematical structure of the problem is more solid

and it follows that the bandwidth is indicated by the behavior of the auto-

covariance relatively close to the origin, without further consideration

of the behavior of the autocovariance function as It, - to I gets large.

Another consideration is that as the signal bandwidth gets

larger, the necessary autocovariance window width gets smaller. An

a priori selection of window width doesn't affect the indicated value of

bandwidth in any way, so long as a first relative minimum is, in fact,

observed. Thus, one can estimate bandwidth with relatively short

segments of data, the length depending inversely upon the signal band-

width.

Application Methods - It is useful to note that when asymmetry

does occur in the autocovariance functions, the time corresponding to

the first relative minimum to the left of the origin has a different mag-

nitude than that corresponding to the first relative minimum to the

right of the origin. Further, when the times of the relative minima
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are compared with those which result from other autocovariances gen-

erated for the same stationary signal, it is generally found that when

one time increases relative to its expected value, the other decreases.

Thus, it was decided to use

A A

A' TL + TR
7 = (6.18)2

A A A
to calculate wc, where TL and TR are the time magnitudes of the first

relative minima to the left and right of the origin respectively. This

also serves to include information about signals in both the past and

future, relative to the midpoint. Occasionally, one of the two relative

minima occurs at such a large value that it is inconsistent with the

other minimum for that function and with the minima observed in other

similar functions. When this occurs, judicious reason dictates that

A A A
value of 7L or 7R not be used to generate c . In every instance in

which this problem arose, the value of T that was in error was much

too large. Thus the rule applied was that when one value of TL or TR

was greater than 2. 5 times the other value, the smaller of the two

A
values was adopted as T.

Power Parameter Development

The arbitrary spectrum Sy(w) is related to the autocorrelation

function Ry(T) by

Ry(7) = - Sy(co) ew + d . (6.19)

Letting 7 go to zero, the relationship becomes

1 y(R (0) T Sy(w) dw (6. 20)
Y 2Tr cY
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or

f Sy () dk = 2r R (0). (6.21)

Ry(O) equals the variance of y under the mean-zero assumption.

Thus
oo

f Sy(O) d = 2r - (6. Z2)

and by defining the area under the curve of S (w) as the average power,

Py, of y, the result is

P = 2ro- y (6. 23)

.In the case of time-varying signals, the pseudo spectrum can

have a time-varying average power or power parameter given by

Py(t) = Zy o- (t) (6. 24)

Parameter Variability

In the development of any descriptive parameters for stochastic

processes, it is important to obtain some sort of estimate of the vari-

ability of the parameter. In this particular situation, it is also desir-

able to include the effects of the human subject' s variability since this

will cause variation in the thing which'is being described. When dealing

with the variability of the bandwidth parameter, one must also be con-

cerned with the various definitions ofi bandwidth. Rather than make an

a priori selection of one single definition, two useful definitions will

be used and data analyzed for both. The two definitions are: Wc, the

bandwidth of the rectangular spectrum whose area and midband density

value are equal to those of the spectrum in question; and 0c , the
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frequency at which the power density level has dropped by 3 decibels

from that at the midband. The latter bandwidth is also called the half-

power frequency.

Data Analysis - The first step in determining the precision of

A
the bandwidth parameter wc is to apply the methodology to a signal

which is stationary in the wide-sense and whose bandwidth is known.

A suitable test signal in this instance is the input disturbance or noise

which was recorded during each trial, thus providing 10 replicates of

a stationary signal. Utilizing a statistical analysis program available

in The University of Michigan Computing Center (7), the power spec-

tral density is computed by time-averaging methods for one of the

noise signals from condition Fl4TO, Subject A. The spectrum is

shown in Figure 6.4, along with the 99% confidence intervals for the

density levels. The -3db break point (half-power point) occurs at

w = 1. 05 rad/sec, and the equivalent square cutoff frequency is W =

1. 36 rad/sec. The filter break frequency is at 1.4 rad/sec, as indi-

cated.

The bandwidth parameter methodology is now applied to the

noise signals in the same condition, i. e, condition Fl4TO, Subject A.

Using ensemble techniques, autocovariance functions were generated

and in Figure 6. 5, the results of averaging 41 autocovariance func-

tions with midpoints taken one second apart is shown. The value of

A A
the first relative minima are TL = 4.2 seconds and T R = 4. 6 seconds

A
which yield the estimate wc = 1. 02 rad/sec from Equation 6. 17. Using
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Figure 6. 4 Input Disturbance Power Spectral Density, Fl4TO, Subject A
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Figure 6. 5 41-Point Average Autocovariance Function for Noise
Signal, F14TO, Subject A
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the value of the covariance function for this signal at one second inter-

vals, it can be estimated that this average is equivalent to taking one

ensemble autocovariance over about 90 replicates. This estimation is

done as follows: The actual equation for the variation of the sample

mean of error signal is developed for the case where the variance is

determined by doing ensemble averaging at time intervals of one second

and averaging the 41 resulting values. This formula is then equated td

the formula for the variation of the sample mean computed at one point

in time from N replicates, where N is an unknown integer. Using the

empirically determined correlation for the error signal, one can then

solve the equation for N, which is the number of replicates necessary

for one ensemble average, in order that it have equivalent precision to

the combined ensemble-time average. Thus, whenever autocovariance

functions are averaged in this manner, i.e., a large number taken ons

second apart in a portion of the signal that is time-stationary by defini-

tion, then the accuracy associated with eachaverage is relatively high.

Figure 6. 6 shows an autocovariance function that is the average

of 11 autocovariances with midpoints separated by 0. 1 seconds in the

10. 1 to 11. 1 second range of the condition. This average is approxi-

mately equivalent to one ensemble autocovariance taken over 13 repli-

cates when the covariance at these separations is considered. For the

A
function shown in Figure 6. 6, the bandwidth parameter w c is 1. 219

A
rad/sec. Table 6. 1 below shows ac for 15 different midpoints on the

same ensemble, of noise signals.
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Figure 6.6 11-Adjacent-Point Average Autocovariance Function for
Noise Signal, F14TO, Subject A



57

A A
Midpoint T C

(sec) (sec) (rad/sec)

10.6 3.85 1.16

16.6 4.0 1.12

22.6 3.85 1.16

28.6 2.45 1.83

34.6 4.05 1.10

40.6 4.1 1.09

46.6 4.95 .90

52.6 3.4 1. 32

58.6 3.65 1.23

64.6 3.1 1.44

70.6 2.95 1.52

.76.6 4.25 1.05

82.6 4.8 0.93

88.6 4.2 1.06

44.6 4.55 0.98

Table 6. 1 Bandwidth Parameter Values using
Midpoints in One Ensemble

Computing the sample mean and standard deviation gives 1. 19 radians

per second and 0. 256 radians per second respectively. The 9 5 /c con-

fidence limits on the population mean are 1. 337 and 1.043 rad/sec

and in Figure 6. 4, the same mean is shown along with the 950c con-

fidence interval.

Identical analyses were performed on the noise signals for

conditions F20TO and F8TO, Subject A; and the results of this effort

are presented in Table 6. 2.
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Another source of test signals to determine the variability of the

bandwidth parameter is the last 170 seconds- of data for the.situations

where the plant changes instantaneously, as is the case for conditions

F20TO, Fl4TO and F8TO. The error signals after.the switch transients

have died out are by definition, stationary in the wide sense and long

enough for time averaging techniques., Since the human in the system

can provide some time variance, :this analysis may allow the estimation

of that portion of the parameter variation which is due to the pilot. When

calculated for a particular signal in the ensemble for F.14TO,: Subject A,

the power spectral density is as shown in Figure 6.7. . Ten values of

A

c were computed from this ensemble in the manner, previously pre-

sented. The results of this analysis are shown on Figure 6.7 and are

also included in Table 6. 2.

Table 6. 2 summarizes the analysis of the variability of the

bandwidth parameter. Both the equivalent square bandwidth and the

-3db bandwidth definitions are provided as, reference points for the

reader. The variability of the samples is quite low since the 95% con-

fidence interval is between h 8% and -12% of the sample mean for each

different set of samples. In two of the cases shown on Table 6. 2, both
A

the mean wc and its 95%c confidence interval lie in between the values

of cutoff frequency for the Equivalent Square and -3db definitions. In

A
the other two cases, the mean wc is above the two reference points.

For the samples taken from generated noise signals (the first three
A

sample sources), the mean wc is reasonably close to the input filter
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Figure 6. 7 Error Signal Power Spectral Density, Fl4TO, Subject A



Sample Equiv. Sample A 95%
Source Square - 3db Sample Standard Wc Confidence

Cutoff Cutoff Mean Deviation Sample Interval on
A A AFrequency Frequency of Ac of Wc Size Mean wc

F8TO 0.76 r/s
Subject A 0.46 r/s 0.4 r/s 0.86 r/s 0.17 r/s 15 to
Noise 0.96 r/s

F14TO 1.09 r/s
Subject A 1.36 r/s 1.05 r/s 1. 19 r/s 0.25 r/s 15 to
Noise 1. 33 r/s

F2ZTO 2.14 r/s
Subject A 1. 56 r/s 1. 3 r/s 2.33 r/s 0.33 r/s 15 to
Noise i 2.52 r/s

F14TO 4.31 r/s
Subject A 4. 31 r/s 5.5 r/s 4. 87 r/s 0.73 r/s 10 to
Error 5.43 r/s

Table 6. 2 Summary of Bandwidth Parameter Variability Analyses
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A
frequency A0c. However, there appears to be no clear relationship

A

between the mean value of we and either the equivalent squre cutoff

frequency or the -3db cutoff frequency. This is not surprising when

, the relative arbitrariness of the two definitions is considered.

The analysis performed on the error signal for condition FI4TO,

Subject A, is the only one of the four entries in Table 6. 2 that can show

any effects due to pilot' s variability. Since for this case, the 95%/c con-

fidence interval is ill% of the mean c', it seems safe to say that the

introduction of the subject's variability does not significantly affect the

precision of the bandwidth parameter. The precision associated with

the power parameter is directly related to the variability of the stand-

ard deviation -. To get a measure of the variation of the points on the

plots of standard deviation, the following technique was used:

The last 173.5 seconds of one of the replicates of the error sig-

nal from F14TO, Subject A, were analyzed to get the time invariant

standard deviation -, = 1. 814 mm and mean m = 0. 0817.

The 1. 5 second average values of a- (t) computed by ensemble

methods were obtained for the same time period, resulting in 115

samples. The mean of these samples was 1.903 mm and the sample

standard deviation was 0. 633. Computing the 95% confidence interval

on the population mean yields the limits of 1.785 mm and 2. 021 mm;,

and this is -h 6% of the sample mean. The resulting power parameter

precision is ± 12% of the average power parameter value.



7, RESULTS

This chapter presents the results of the data reduction and

analysis, The emphasis is upon obtaining a description of the Pilot-

Vehicle-Regulator as previously discussed. Thus, the results c6ncen-

trate upon analysis of the error signal, E (t). There are two main

areas of experimental description, one using the standard deviation

which reflects the power parameter; and one using the autocovariance

function to generate the bandwidth parameter. This chapter also

includes a comparison of the time-varying results with the results of

time-stationary analysis of the tracking task at several different values

of 4. The effect of increasing the number of replicates from 10 to 40

is also given. Finally, an attempt to utilize the crossover model to

represent the performance of the pilot in this task is outlined, and the

results of this analytical effort are presented.

Power Parameter Results

In Figures 7. 1 and 7. 2, the standard deviation of e(t) is

presented for each subject and each point in the experimental matrix.

From these plots it can be seen that, in general the standard deviation,

and thus the power parameter, since it is proportional to o , stays at

one value during the first 60 second portion of the run and then reduces

to a lower level during the variation, where it remains throughout the

remainder of the run. This phenomenon is least evident in the case

where the input filter cutoff frequency is 0. 8 radians per second, and

for some of these cases doesn't seem to occur at all. Subject

62
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comments to the effect that these runs were very frustrating because

he wasn' t able to do any better regardless of what he tried, lead, to the

conclusion that the indicated levels for input bandwidth of.0. 8 r/s are

a lower bound, and a further reduction in input bandwidth would proba-

bly not show significant reduction in output power levels. This frustra-

tion is further indicated by the tendency for the power levels to increase

slightly near the end of the run, which indicates a high fatigue factor.

From these curves it can also be seen that the transition to the

final power level is smooth, except for those cases where an instant-

aneous transition occurs. In those latter cases, the error levels are

higher, as indicated by a rise in the standard deviation value, during

a 4-5 second period just after the switch occurs. This phenomenon

agrees qualitatively with other research efforts such as Young, et al

(19) where sudden changes in controlled dynamics were investigated.

For those situations where the transition takes place over 30,

75, or 120 seconds, the change in power level occurs during the early

portion of the transition and is completed after 30 to 50 percent of the

transition time. When the plots of the standard deviation of the error

signal are regrouped and rescaled, as is shown in Figures 7. 3 and

7.4, it can be seen that the standard deviation and hence the power levels

of the output of the Pilot-Vehicle -Regulator are heavily dependent upon

the input disturbance bandwidth, since the input power was held con-

stant. A comparison between subjects yields the fact that the output

power levels of Subject B are somewhat higher than those of Subject A,
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yet the shapes of the respective subject curves are quite similar

during the transitions.

In an effort to understand further the changes that occur in

the standard deviation of the error signal during the variations, a

separate three-way Analysis4 of Variance was performed on the standard

deviation data for each subject. The three data classifications were:

(1) by the input noise filter cutoff frequency, hereafter called the Fil-

ter Frequency; (2) the speed, in real time, at which the transition

occurred, called Speed; and (3) the percent of the variation through

which the vehicle has passed, called Percent. This is equivalent to

100 4 where 4 is varying from 0 to 1 as previously discussed. Tables

7. 1 and 7. 2 show the results of the 3-way Analysis of Variance for

Subject A and B, respectively. The Filter Frequency has 3 possible

values; 0.8, 1.4 and 2.0 radians per second. The speed has 3 possi-

ble values: high, 30 second transition; middle, 7 5 second transition;

and low, 120 second transition. The samples were taken at intervals

of 100/c of the variation yielding 11 values for the Percent Classification

since both 0% and 100% points were included. Each cell in the Analysis

of Variance contained one observation.

Table 7.2 shows that Speed is not a significant factor for

Subject B, whereas, from Table 7.1, Speed is significant for Subject A.

In an effort to further understand this phenomenon, the means for the

Speed factor from the Analysis of Variance data for Subject B were

analyzed using the Newman-Keuls Test as outlined in Reference 18.
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Degrees
of Mean

Source Freedom Square F Value

Filter Frequency 2 32.565 306.55 -

Speed 2 1.131 10.64 "

Percent 10 1.149 10.81

Filter Frequency -
Speed 4 0.131 1.24

Filter Frequency -
Percent 20 0. 317 2. 98 "

Speed - Percent 20 0. 119 1.12

Filter Frequency -
Speed - Percent 40 0. 106

-denotes significance @ P < . 001
**denotes significance @ P < . 005

Table 7. 1 3-Way Analysis of Variance for
Standard Deviation, Subject A
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Degrees
of Mean

Source Freedom Square F Value

Filter Frequency 2 57.274 198.45 ;

Speed 2 0.172 0.59

Percent 10 1.195 4.142 *

Filter Frequency -
Speed 4 0.258 0.296

Filter Frequency -
Percent 20 0.657 2. 276 *-"*

Speed - Percent 20 0.273 0.967

Filter Frequency -
Speed - Percent 40 0.288

"denotes significance @ P < .001
"'denotes significance @P< .025

Table 7.2 3-Way Analysis of Variance for
Standard Deviation, Subject B
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Analysis of Variance Data

Speed Mean

Low 1.81515

Middle 2. 13151

High 1.80666

Speed Mean Test

T T T 3  q(ror
High Low Middle r .99(r, 40)

High --- 0.00349 0. 32485 *** 3 0.2473

Low --- 0. 31636 * *  2 0. 2162

--- denotes significance @ P < . 01

Table 7.3 Newman-Keuls Test on Speed Means,

cr,, Subject A.
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Table 7. 3 shows the results of this test. Since the Newman-Kuels

Test shows that there is no significant difference between the high and

low speed, logic dictates that the significance of the middle speed

relative to the other two must be the result of some other confounding

effect. In Appendix B, the experimental sessions are outlined and

it can be noted that in every case, the middle speed trials were

performed on one day and both the high and low speed trials were

performed on a different day. By randomizing the order of high

and low speed-trials within a session, the subject non-stationarity

within a session was balanced; however, subject non-stationarity

between sessions could, and in the author's opinion it does, account

for the significant difference between the middle speed mean and both

the high and low speed means. The subject non-stationarity is thus

assumed to be the cause of the significance of the speed variable in

the Analysis of Variance and this assumption allows the assertion that

the speed variable is not important for either subject.

Figures 7.5 and 7.6 show the standard deviation

versus percent of variation for each input filter frequency and each

subject. In each case the data has been averaged over the three values

of speed, These figures are a further indication that the transition

from one level to another does not take place over the entire vehicle

variation, but rather it occurs during a portion of it, Further, the

point at which the transition is essentially completed appears to be a

function of input bandwidth, as is indicated by the significant interaction
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between Filter Frequency and Percent in the Analysis of Variance

tables for each subject. Note that where the input filter frequency is

0. 8 rad/sec, there seems to be little or no transition for either sub-

ject.

The actual manner in which the power level changes during the

transition is not entirely clear from the data considered thus far. How-

ever, it appears that the trend, based upon 10 replicates, is that of a

smooth reduction which begins at some point after the start of the tran-

sition. It was noted in informal conversations with the subjects, that

they were not consciously able to detect the system changes until well

into the variation, i.e. , around the 30-40% point, and yet they are

changing their characteristics almost immediately.

Bandwidth Parameter Results

The bandwidth parameter was evaluated at ten equally spaced

intervals during the vehicle transition for each condition. The method

of evaluating the bandwidth parameter was as shown in Chapter 6.

Tables 7.4, 7.5 and 7.6 summarize 3-way analyses of variance that

were performed on the bandwidth parameter (wc) data. A 3 x 3 x 10

Analysis of Variance was planned, using the three factors (1) Filter

Frequency, 3 values; (2) Speed, 3 values; and (3) Percent, 10 values

(10%1 intervals, 0 through 90%/c inclusive). Table 7.4 is for Subject A.

Unfortunately, the data for condition F8T120, Subject B was not suita-

ble for frequency analysis after the final editing and thus, instead of

doing a 3 x 3 x 10 Analysis of Variance, it was necessary to do a
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Degrees

of Mean

Source Freedom Square F Value

Filter Frequency 2 4.031 6.01 *40.

Speed 2 11.540 17.22 *

Percent 9 7.810 11.66 *

Filter Frequency -

Speed 4 4.230 6.31 *

Filter Frequency -
Percent 18 0.782 1.16

Speed - Percent 18 0.448 0.67

Filter Frequency -

Speed - Percent 36 0. 669

*denotes significance @ P < .001

"denotes significance @ P < .01

Table 7.4 3-Way Analysis of Variance for
Bandwidth Parameter, Subject A
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Degrees
of Mean

Source Freedom Square F Value

Filter Frequency 2 3. 753 18.41 -

Speed 2 5.928 29.09 ,

Percent 9 0.901 4.42 

Filter Frequency -
Speed 2 0.505 2.47

Filter Frequency -
Percent 18 0.232 1.14

Speed - Percent 9 0.241 1.18

Filter Frequency -
Speed - Percent 18 0.203

*denotes significance @ P <. 001
:':denotes significance @ P <. 005

Table 7.5 3 x 2 x 10 3-Way Analysis of Variance
for Bandwidth Parameter, Subject B,
High and Middle Speeds.
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Degrees
of Mean

Source Freedom Square F Value

Filter Frequency 1 0. 336 0. 14

Speed 2 3. 386 14. 88 "

Percent 9 1.516 6.66 *

Filter Frequency -
Speed 2 0.358 1.57

Filter Frequency -
'Percent 9 0.258 1.13

Speed - Percent 18 0. 249 1.09

Filter Frequency -
Speed - Percent 18 0.227

*denotes significance @ P <. 001

Table 7.6 2 x 3 x 10 3-Way Analysis of Variance
for Bandwidth Parameter, Subject B,
W(f 2. 0, 1.4 rad/sec.
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3 x 2 x 10 (Table 7. 5) and a 2 x 3 x 10 (Table 7.6) so as to work around

the missing cell.

The Analysis tables provide some insight into the relationships

present in the data, but they are rather complex; thus the data is

plotted out in Figures 7.7 though 7. 12. Figures 7.7 and 7.8 show the

data when the three different noise values are averaged together for

Subjects A and B, respectively. Figures 7.9 and 7. 10 are plots of the

data when the three speed levels are averaged. Finally, Figures 7. 11

and 7. 12 show the data when the 10 values of percent variation are

averaged for each condition.

The information contained in the Analysis of Variance tables

for Subject B indicates, by the lack of any significant two factor inter-

actions that the shapes of the curves for this subject are essentially

the same. Figure 7. 12 also indicates this fact. Subject A, on the

other hand, shows a significant interaction between Filter Frequency

and Speed in Table 7.4. Figure 7. 11 also shows this phenomenon,

where the curve for Filter Frequency = 1.4 radians per second is

significantly different from the other two.

The Newman-Keuls test applied to the Speed Means for Sub-

ject A (Table 7.7) shows that all the Speed n-e ans are significantly

different from each other. The same test applied to the Filter Fre-

quency means indicates that the values for 2.0 and 1.4 radians per

second are not significantly different. The 0. 8 radians per second

data are significantly different from the data for the 2. 0 or 1.4 radian
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Analysis of Variance Data

Filter
Speed Mean Frequency Mean

High 5.27 0.8 5.04

Middle 4.03 1.4 4.47

Low 4.68 2.0 4.43

Speed Mean Test

T I  TZ T

Middle Low High r q.99 (r, 36)MSerror/ 30

Middle --- 0.65*** 1.24*** 3 0.651

Low --- 0.59"** 2 0.569

Filter Frequency Mean Test

T I  T2 T3
2.0 1.4 0.8 r q99(r, 36)NMSerror/30

2.0 --- 0.1 0. 66*** 3 _0. 651

1.4 --- 0.62*** 2 0.569

-- denotes significance @ P < .01

Table 7.7 Newman-Keuls Test on Bandwidth
Parameter Means, Subject A
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per second condition. This latter phenomenon is also indicated in the

Subject B data by the fact that without the 0. 8 radian per second data,

the Analysis of Variance show no significant effect due to the Filter

Frequency filter. The factor does become significant when data from

all three Filter Frequencies are present.

Stationary Point Analysis

As discussed in Chapter 3, Subject B was also asked to control

a stationary plant with held constant at six different values. The

input filter cutoff frequency was 1.4 radians per second for each run.

Although a thorough analysis of this sort would require many repli-

cates of each point, it was decided to make one run of four minutes in

length for each value of p. This would then serve to indicate whether

or not the results from the stationary analysis were different enough

from the time-varying data to warrant further investigation. As will

be shown in subsequent paragraphs, the results of the stationary

analysis were indeed similar enough to the time-varying data to /

preclude further investigation.

The time-averaged standard deviation of the error signal E (t)

for each value of , is shown in Figure 7. 13. This quantitity was

calculated in the usual "time series" manner, assuming stationarity

of the signal. This same length of data was then broken into ten sub-

sets and those subsets used as replicates to perform the ensemble

standard deviation calculations. These results are also shown in

Figure 7.13. The figure shows the two sets of static results super-

imposed upon the time-varying cr plot for Subject B, F14T75, which
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Figure 7. 13 Comparison of Static and Time-Varying ac Data for F14T75, Subject B
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was obtained by ensemble averaging 10 replicates. Figure 7. 13 shows

that the time-varying standard deviation, and thus the power parameter,

seems to be in good agreement with those values predicted by the sta-

tionary point analysis.

The power spectral density of the error signal for each value

of p in the set of static runs was determined using "MIDAS"(7). The

bandwidth (-3db frequency) was computed for each case. The band-

width was also computed using the bandwidth parameter approach, by

breaking each run into 10 small replicates. The results of both meth-

ods are presented in Figure 7. 14 along with the values of wc obtained

from the time varying replicates of F14T75, Subject B. When the

points from the static set are compared to the large sets shown in

Figures 7.7 through 7. 12, it becomes apparent that the time-varying

data and the data from the static analysis are in general agreement.

This figure also gives further evidence of the validity of the bandwidth

A
parameter 0c .

Replicate Increase

The last set of verification experiments consisted of taking 40

replicates (instead of 10) of condition F14T75, Subject B. For these

runs, the duration of the initial and final stationary portions of the

runs were shortened to 40 and 45 seconds, respectively. The standard

deviations of the stick deflection xp(t), the attack angle a(t), and the

error signal e (t) are shown in Figure 7. 15. The plot can be compared

to Figure 5. 1 to see the reduced variance which results from the in-

crease in replicates.
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Numerically, the standard deviation of the error signal, calcu-

lated over the initial time invariant portion of the ensemble, has a mean

of 3. 099 mm and sample standard deviation of 0. 24 mm, resulting in

95% confidence interval of 3. 003 to 3. 195 mm, which is ± 3%c of the mean

value as compared with ± 6%c of the mean value for the 10 replicate case.

This is expected since the number of replicates has increased by a factor

of four over the 10 replicate case. The corresponding accuracy of the

power parameter is a 95% conficence interval of ± 6%/c of the mean value.

A
The value of bandwidth parameter wec during the transition is

shown on Figure 7. 16. The data points for the 10 replicate ensemble

of F14T75, Subject B are also shown to demonstrate the decrease in

scatter due to increased replicates. The trends noted for 10 repli-

cates seem to be supported by the increase in replicates.

It is necessary to note that there are two significant factors

which affect the usefulness of this 40 replicate set of data. The first

is that the session did not take place at the same relative time as the

other sessions and because of the number of trials, the trials were

not interspersed with trials for other variation speeds. The other

factor to be noted is that the subject was no longer naive, that is to

say, he had been exposed to much more information on the purpose of

the experiment and on the analysis techniques than had been the case

for the original set of conditions. Thus it seems reasonable to use

the 40 replicate data as an indication of the effect of replicate number

on the accuracy of numerical calculations and to discount somewhat
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the significance of data trends that result from this particular set of

40 replicates.

Crossover Model Comparison

As was stated in the introduction, the regulation task is very

closely related to the compensatory tracking task. In fact, the usual

compensatory task block diagram is topologically equivalent to a por-

tion of the block diagram for the regulator task, as shown in Figure

7. 17. This diagram results from the simple block diagram manipu-

lation being performed on the diagram of Figure 3. 3. Since the regu-

lator task includes the compensatory task as shown in Figure 7. 17, it

is reasonable to apply the Crossover Model (11) to the regulator task

to see how the results of using an existing analytical model agree with

the experimental results.

Model Specifics - The Crossover Model is a model which takes

advantage of the pilot' s ability to vary his own characteristics to

complement those of the vehicle he is controlling. It is a combination

of pilot and vehicle transfer functions which is relatively invariant for

a large class of vehicles and a large class of inputs. Certain adjust-

ment rules and refinements exist (11, 12) for the fundamental form,

and the one chosen is shown below
-j T e

wce

Yp Yc =  j (7. 1)p jw

In accordance with McRuer, et al (11), the parameters Te and w are

adjusted as follows:
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INPUT DISPLAY AND PLANT

- CONTROLLER

COMPENSATORY TRACKING TASK

Figure 7. 17 Block Diagram of Compensatory Tracking Task within Pilot-Vehicle-Regulator
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S+ . 18 i  (7.2)

T e o - 0. 08 i  (7. 3)

where To is taken from Table 7. 8 as presented in Reference 11, and

Oi is the input bandwidth.

YC(jw) T0 (sec)

k c  0. 33

k c / j o  0. 36

k c / (j W - -) 0. 36
c T

kc /(j )2  0. 51

Table 7. 8 Crossover Model Parameters

Experiments (11) have shown that the system crossover fre-

quency will generally lie between the values of 3 and 6 radians per

second for most controlled elements. Within this frequency range,

the 2nd order system representing the vehicle during the final phase

of the experiment is equivalent to a pure double integrator with the

proper gain constant. Thus, as far as the Crossover Model is con-

cerned,the time-varying task is merely that of matching the effects of

a changing gain constant on a pure double integrator. Unfortunately,

the methodology associated with the basic form of the Crossover Model

says that if this were the only criterion, there would be no change in

the Crossover Model, and this would preclude getting trends of

changing bandwidth and signal power which the experimental results
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clearly show. It is, however, instructive to utilize the basic Cross-

over Model in this task to see that the experimental results do show

some qualitative agreement with the analytical methods available.

For an input bandwidth of 1.4 rad/sec, with a pure double

integrator plant, the Crossover Model would be given by

-jO.4303.25e
Yp Yc =  (7.4)

An analysis of the closed loop transfer function between input

disturbance and output angle of attack yields the Bode magnitude plot

of the square of the closed loop system gain shown in Figure 7. 18.

Also shown on this figure are the results of a spectral analysis on the

input signal for one of the replicates of condition F14TO, Subject B.

By subtracting the value of the input power at a particular frequency

from the value of the output power at a particular frequency, one can

obtain the experimental version of the Bode plot shown in Figure 7. 18.

This is done using the angle-of-attack signal from the same replicate

as the input, and the result is the plot of Figure 7. 19. This figure

shows that the experimental results do indicate an increase in high

frequency content as the signal passes thru the compensatory tracking

task system.

A simple manipulation of the block diagram for the regulation

task results in a system whose input is the disturbance, whose output

is the error, and whose feedback path contains the Crossover Model.
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CROSSOVER
MODEL

Figure 7.20 Crossover Model in the Regulator Task

The forward path is unity. The Bode magnitude plot on Figure 7.21

is the result of the closed loop analysis; that is, the plot of the square

of the Pilot-Vehicle-Regulator System magnitude based on a Crossover

Model. Superimposed on this figure is plot of the same function deter-

mined expe rimentally.

Crossover Summary - One deficiency of the Crossover Model

as presented thus far in this report is its lack of ability to account

for low frequency lag which is present in experimental data. However,

a set of more sophisticated versions called "Extended Crossover Models"

can be used to eliminate this inaccuracy, and thus the apparent low fre-

quency inaccuracies shown in previous figures are explainable and

could be accounted for it necessary. The more important region for

'the purposes of this report is, however, the region withwo > 1 radian

per second where crossover occurs and where the bandwidth parameter

values lie.

The compensatory task data agree reasonably well with the

Crossover Model prediction as shown by Figures 7. 18 and 7. 19. The

model predicts somewhat higher spectral levels in the region from
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2 to 5 radians per second, than is visible in the output spectrum, but

certainly there is qualitative agreement between the model predictions

and the observed data.

In the regulator task, the agreement between the observed data

and the Crossover Model predictions is even better. The Crossover

Model predicts a significant increase in bandwidth of the output error

signal over the input noise signal and this is indeed the case. Ignoring

the low frequency inaccuracies it appears that for the data presented,the

Crossover Model predictions agree both qualitatively and quantitatively

with the experimental results.

Unfortunately, the agreement shown in the regulator task occurs

when 4 = 1.0 in the vehicle transfer function and the Crossover Model

really has no mechanism to change its form for the other observed

values of . This would be desirable since for c5 = 0. 0 in the same

run, the half-power frequency of E (t) is at about 3. 5 radians per

second as opposed to a half-power frequency at around 5 radians

per second for 4 = 1. 0 in the data shown on Figure 7. 21.

The main results of this analysis are that (1) the Crossover

Model qualitatively predicts the observed phenomena in the Pilot-

Vehicle-Regulator data, when low frequency errors are ignored or

eliminated by estension of the model and (2) the Crossover Model

doesn't have enough fidelity to be directly usable in verifying band-

width and power parameter changes that occur in the error signal

as changes in value.



8. CONCLUSIONS AND RECOMMENDATIONS

There are four main areas into which conclusions and recom-

mendations can be separated. They are General Methodology, Band-

width Parameter, Pilot-Vehicle-Regulator and Models. Each will

be treated separately in the following sections.

General Methodology

A significant result of this research effort is that the Ensem-

ble Averaging approach to analysis and description of time-varying

systems does yield meaningful information. Further, the level of

difficulty of performing the experiments and collecting the data is

not particularly high. The use of the concept of quasi-stationarity

to decrease statistical variance by time averaging the ensemble-

averaged quantities within regions of quasi-stationarity is more

effective as the sampling rate gets higher, since more samples can

be averaged. However, the correlation between two samples gets

higher as the sampling rate increases so that as the sampling rate

is increased, each increase is less effective and results in a smaller

increase in precision than the previous one. One must also consider

the effect of higher sampling rates upon the magnitude of the resulting

data set to be processed, since this can be quite costly. Clearly,

there is a tradeoff to be made between accuracy and cost which will

result in specification of ensemble size and sampling frequency.

Most time-varying situations could be analyzed by the proper choice

of quasi-stationary region size and sampling frequency, at least in

99
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terms of signal means and standard deviations which do reflect power

content. The autocorrelation or autocovariance functions and the

cross correlation or cross covariance functions can be generated

and theoretically these provide descriptions of system characteristics.

Just what practical insight can be obtained from these ensemble

average descriptors depends somewhat upon a priori information

about the system, i. e. how fast it can vary, what it is used for etc.,

and also upon what the description is to be used for.

Bandwidth Parameter

A
The bandwidth parameter wc as developed and described in

Chapter 6 is important in its own right as well as being critical to

the goal of this research effort. Although it is relatively simple to

use, its theoretical structure and justification are fairly complex.

The ability of this parameter to predict bandwidths of signals

based upon very short records of data is critical, and although in

Chapter 6 the performance of the parameter is addressed and

documented, the analysis is by no means complete. Based upon the

empirical methods used for the tests in this document, the accuracy

is quite good, but obviously this question deserves more attention in

the future.

A
The development of cc in Chapter 6 is based upon a rectangular

low-pass spectrum and the resulting position of the first relative mini-

mum in the corresponding autocorrelation function. The choice of the

rectangular low-pass spectrum yielded good results but obviously, other
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spectral shapes whose autocorrelation function exhibits a relative mini-

mum could be used. Indeed, power spectra that fall off continuously

might be more representative of the spectral shapes usually found in

manual control tasks. The change in the estimation results that would

result from using other spectral shapes is not clear. Thus, a reason-

able extension of the development of this parameter would appear to be

the analytical study of various spectral shapes and the resulting first

relative minima of the autocorrelation functions. When approached

analytically, new insight into the bandwidth parameter could be gained.

Another area of interest is the actual determination of the first

relative minimum. Obviously when working with digital data on com-

puters capable of generating accurate and uniform plots, the method

utilized in this study is relatively simple and easy to mechanize. On

the other hand, if the capability were available, a better way to estimate

the bandwidth of the unknown spectrum or pseudo-spectrum would be

to directly analyze the first and second derivative of the autocovariance

function. Here too, further effort could result in higher estimating

precision.

The bandwidth parameter approach to generating the bandwidth

of a signal has possible application to situations other than non-

stationary analysis. The relative simplicity of the necessary calcu-

lations can result in significant savings in data reduction costs. For

example, consider the use made in Chapter 6 where a recorded sta-

tionary signal was broken into ten subsections which were then used as
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replicates for the ensemble calculations. If one is only interested in

obtaining signal bandwidth, the bandwidth parameter technique may be

quite useful since the lengthof the replicates doesn't influence the

accuracy of the parameter; and the higher the bandwidth is, the shorter

the replicates can be. The only requirement is that a first relative

minimum is, in fact, observed in the autocovariance function.

Pilot - Vehicle - Re gulato r

The Pilot-Vehicle-Regulator analysis has been performed with

the goal of describing the output signal E (t) as the system varies with

time. The two descriptors used are the power parameter PE (t) and
A

the bandwidth parameter 0c(t), which together give insight into the

character of the pseudo power spectral density of e(t). One conclusion

that can immediately be drawn from the results in Chapter 7 is that for

the tasks encompassed by this experiment, the pilot's performance in

controlling the time-varying system is essentially equivalent to his

performance in controlling time-invariant systems which correspond

to various points in the transition.

Power Parameter - In Chapter 7, it was shown that for tran-

sition times of 30 seconds or longer, a- (t) was essentially independent

of the speed of the vehicle transition. It was a function of both the

bandwidth of the input disturbance (wf) and the value of by which the

vehicle dynamics are characterized. The general relation is shown

as

o,(t) = cr, (4(t), Wf). (8.1)
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This is further supported by the agreement between the data from

dynamic condition F14T75 and the static data shown.in Figure 7.13.

The significant interaction term indicates that the shape of the curve

is different for different combinations of variable values. The plots-

in Figures 7. 5 and 7. 6 show that the interaction is manifested in the

fact that the transition from the initial to the final level is slower for

larger values of input filter frequency.

One way of mathematically formulating the observed relation-

ships is shown below:

a (t) =Wf [K, + K2 {I - EXP [- K3 ,f 9 (t)] ) 1 (8. Z)

where K1 determines the initial level, K2 determines the final level,,

andK 3 influences the speed of the transition between the two levels.

For this experimental data, the K' s vary between subjects.. The

author does not intend to propose that equation 8.2 be used as anything

more than a general way of interpreting the observed data, since the

nature of the transitions in the data are still not clearly defined.

The average power P. (t) in the quasi-stationary error signal

and hence the area under the curve pseudo power spectral density

is

P (t) = 2r y- 2 (t) (8. 3 )

Using Equation 8.4, results in

P(t) = [K 1 + K, {1 - EXP [-K 3Wf(t)]} (8.4))
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An obvious question which remains unanswered is: How does

the artificial quantity affect the average power in the error signal?

Clearly the answer must lie in the relationships between j and the

parameters of the controlled vehicle transfer function, and this area

of research deserves further analysis.

Bandwidth Parameter - Chapter 7 presented the data on the

bandwidth parameter along with the results of several statistical tests.

It was felt that the tests did not in themselves produce clear insight

into the relationships present, and thus their interpretation was largely

left to this section where one can be more speculative.

The Analyses of Variance for Subject B showed that the shapes

of all the curves were essentially the same. The interaction between

Filter Frequency and Speed for Subject A appeared to be the result of

the data for Filter Frequency = 1.4 radians per second where the 75

second variation seems to be causing the different in the curve shown

on Figure 7. 11. It is felt that this could very well be caused by sub-

ject non-stationarity since this data was produced during a session

from which no other data points appear in the graphs. When the sub-

ject non-stationarity is considered, it becomes more justifiable to

A
assume that the wc curve shapes are essentially the same within

subjects.

The main factors of Filter Frequency, Speed and Percent are

all shown by the Analyses to be significant for the data. However, as

is shown by the Newman-Keuls test in Table 7.7, the middle speed or
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75 second transition data seems to be showing the effects of subject

non-stationarity by having a mean well below the other two. In the

same table, the Filter Frequency means show that only the mean for

the low value of frequency (w f = 0. 8) is significantly different and this

value has been mentioned previously as being the cause of frustration,

in the subjects. It is the opinion of the author that the significance of'

the Speed and Filter Frequency factors in the Analyses of Variance on

A
Wc should not be weighted too heavily. There are clear possibilities of

confounding effects present in the data. A further observation is that

the significance of these two factors may well be there in a statistical

sense, but whether the variance due to these factors is of practical

importance to the results of the experiment has not been answered.

The lack of interaction, and the significance of the Percent factor are-

certainly of prime importance.

A first approximation to a functional relationship for c

is that the curve shapes are the same, and that only the Percent

factor is significant. Thus,

(t ) = ( (t)). (8.5)

A functional relationship capable of exhibiting the same

general data trends is

c(t) = K4 - K5 • EXP [ -K 6 c(t)] (8.6)

where K4 - K 5 determines the initial value of c', K6 determines the,

shape of the curve, and K4 , K 5 and K6 combine to determine the

value of c for = 1.0.c
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Useful future efforts in the description of the Pilot-Vehicle-

Regulator or any time-varying pilot tracking task would be to increase

the speed of variation until it could be determined that (1) the pilot

was changing his mode as he does when the dynamics switch

instantaneously or (2) time-varying analysis results are significantly

different from those obtained from point by point stationary methods.

Models

A Descriptive Model. - The results of the analysis on the

Pilot-Vehicle-Regulator output signal, as given in Chapter 7 and

amplified in the previous section, constitute a rudimentary descrip-

tive model for the system, in the sense that given the input and some

information about how the aircraft within the system is changing, it

is possible to describe the output of the system, E (t), in terms of its

standard deviation c-(t) and its pseudo bandwidth c (t).

This descriptive model is defined only for that class of inputs

whose bandwidths are between 0. 4 and 1. 4 rad/sec. The average

2input power was constant at P = 245.4 mm ; however, it was shown

in Reference 8 and in other efforts that the pilot in a compensatory

task and also the Pilot-Vehicle-Regulator are relatively insensitive

to input gain variation within reasonable limits. Since the gain directly

affects the input standard deviation and hence the average power Pn'

it is reasonable to expect that the Pilot-Vehicle-Regulator descriptive

model will be valid for different average power levels so long as they

are not so high as to cause control limiting, or so low as to be
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comparable to those of the pilot's remnant. Also, this descriptive

model is only well defined for vehicle and transition speeds such that

the resulting changing configurations can be essentially obtained from

.K(O. 0178 4 s + 1.15 c+ 0. 25) (8. 8)

s + 0. 805 4 s + 1.35 

with Ec[O, 1] and < 0. 033 units/sec.
dt

Crossover Model. - In Chapter 7, it was shown that when the

Crossover Model and its parameter methodology was assumed, it did

not contain the fidelity to match the observed changes in the Pilot-

Vehicle-Regulator output as the vehicle varied. There is however

another way to utilize the Crossover Model.

If the general form of the Crossover Model is assumed, i. e.

-jA Te
c e

Y Y (8.9)pc j3

Then,, for a given input spectrum it should be possible to determine

A and T so as to match the observed values of A and P . This
c c c E

information would be useful in determining how the pilot is changing

his characteristics to account for changes in the vehicle, under the

assumption that the Pilot-Vehicle-Regulator output due to the pilot's

remnant is not significant.



APPENDIX A

SIMULATION DETAILS

The experiment utilized the facilities of The University of

Michigan Simulation Center. This appendix discusses the details of

the simulation that was developed. Figure A. 1 shows the flow of con-

trol and data signals within the simulation. The single line paths

represent the control of the given devices and the double line paths

represent the flow of data between the units. Within the hybrid com-

puter are six blocks representing the six different functions performed

by that device. The experiment room contained two hardware units as

well as the subject. There were four other devices utilized, and they

are shown in their respective functional positions. The following sec-

tions and subsections describe each device and its function.

Digital Noise Generator

A ZZ2-bit Pseudo-Random Binary Noise Generator was fabricated

in order to produce the low-frequency noise required for this experi-

ment. The generator developed has a variable clock frequency from

0 to 23 hz and thus can be used to generate analog signals of zero-mean,

approximately -Gaussian, bandwith-limited white noise with bandwidth

up to 7. 2 radians per second. To do this, the logic output of the noise

generator is passed through an analog filter with cutoff frequency =

clock frequency/20. The length of the shift register can be set to

5, 6, 7, 9, 10, 11, 15, 17, 18, 20, 21, or 22 bits, thus allowing the

experimenter to vary the repetition period of the noise signal.'
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Data Interrupt Generator

A variable -frequency solid-state square-pulse -train generator

was fabricated in order to provide an accurate timing signal compatible

with both the hybrid computer and the digital computer. The interrupt

signals were used to indicate the point in time at which the digital com-

puter is to sample and record the data signals. Thus the need for accu-

racy in this device was crucial, The frequency range of the interrupt

generator is from 0. 2 hz to 200 khz.

Display Reference Generator

The display reference generator provided a 7 volt rms sinusoid

at 150 hz. The device was a Test Oscillator, Model 650A, manufactured

by Hewlett Packard, Inc. The signal from the display reference gener-

ator provided hybrid computer with a timing reference for switching as

well as a time-varying voltage with which to draw the lines.

Expe riment Room

As was stated in the body of this thesis, a small room in the

Simulation Center was set up for conducting the experiment. The win-

dows were shielded and doors blocked to isolate the experiment from

peripheral disturbances. The room contained the display unit and the

chair mounted stick control unit. Figure A. 2 shows the position of the

equipment in the experiment room.

Stick Control Unit - The control stick shown in Figure A. 2 is

6 1/2 inches long, and full deflection is : 40 degrees. The restoring

spring constant is given by
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K = 0. 34 ft-lbs/radian, (A. 1)

and the coefficients in a damped second order system representation of

the control stick are

On = 78.5 radians per second (A.2)

= 0.02 (A. 3)

X-Y Display Unit - The x-y display unit was a cathode ray tube

storage display unit. The device was a Type 611 Storage Monitor,

manufactured by Tektronics, Inc. The tube had a P1 phospor, and

the unit was operated in the Non-Store mode.

Digital Computer

As discussed in the body of this thesis, data was stored on-line,

in digital form by the CDC 160-A Digital Computer, which used a twelve

bit data word. The technique was as follows: The 160-A is placed in the

proper mode by the experimenter before initiating the trial. When the

experimenter places the hybrid in operate, the hybrid sends a pulse

train down the data interrupt trunk line to the 160-A until the end of the

run, at which point the hybrid stops the pulses. Each time the 160-A

receives a data interrupt pulse, it samples and records up to 8 channels

of data. The maximum data rate is approximately 500 samples per

second on each of 8 channels. The sample sets taken at each interrupt

pulse are converted to binary numbers and are stored on magnetic tape

(two 6-bit frames per number) in files that are identified by an arbitrary

identification number, the file number on the tape, and the number of
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channels recorded. This identification is in each record block on the

tape itself and is automatically generated by the 160-A.

Since full-scale analog reference is 100 volts, the least signifi-

cantbit of the 12-bit A-D converter corresponds to 0. 05 volts. In

theory one would therefore expect a converter accuracy of the order of

0. 1 volt, In practice, the inaccuracies associated with the conversion

process appear to be zero mean Gaussian with a = 0.4 volts. The next

stage in the data reduction consists of changing the 12 bit words to two

8-bit byte words to be compatible with the IBM 360 word form. An

assembly-language digital computer program performs this conversion

in an optimum manner. The output of this routine is also stored on

magnetic tape thus making the data immediately available in a form

compatible with the IBM 360 Computer.

In their original form the data tapes can be run through the

160-A in a D-A conversion routine so that the data can be displayed in

analog form using a recording oscillograph.

Hybrid Computer

The following six functions are all performed within the Applied

Dynamics 64-PB Hybrid Computer:

Digital Computer Control Unit - A control unit for the CDC

160-A was fabricated and installed in the control panel of the 64-PB

hybrid computer to allow the experimenter to control both computers

from the same console. This unit has the capability of giving both run

and interrupt 10 signals to the digital unit.
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Timing Signal Generator - The timing signals for each trial

were a series of ramps that caused modes to be switched when the

ramps reached certain preset levels. The ramps were generated by

integrating controlled voltages that were obtained by using analog

summers to attenuate the reference voltages. Two ramps were used:

one to start the time variation and end the trial; and one to produce

100 and end the time variation,

Analog Mode Control - The timing generator caused the mode

control of various analog amplifiers to switch so as to start and stop

the trial. The analog mode control also gated the output of the data

interrupt generator. It controlled the output of the noise generator and

was used to initialize all the data signals in the simulation.

Noise Filter - The binary output of the digital noise generator

was first converted to ± 100 volt steps by electronic switches. These

steps were then filtered by a third order filter of the form shown in

Equation A. 4,

(A.4)
Wf 1)

where the clock frequency was adjusted to be twenty times the value

of Wf.

Vehicle Dynamics - One section of the analog portion of the 64-

PB was used to simulate the time-varying transfer function presented

in Chapter 3 of the body of the thesis. The time-varying parameters
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were created by using the 100 $ ramp as a multiplier on the appropriate

signals.

Display Generator - The output of the display reference signal

generator was compared against zero volts and this resulted in a logic

signal pulse train. This train was fed into a series of two flip-flops

which served as a frequency divider. The resulting logic signals were

utilized in such a way that the display wrote the moving line for one

cycle of the generator then blanked for one cycle. Next it wrote the

non-moving line and then blanked again before beginning the process

over again. The lines were actually the sinusoidal generator signal

with two different values of gain. The switch from one line position to

the other was accomplished during the blanked cycles.

Calibration

Prior to each session, the stick and display sensitivities were

calibrated to insure their agreement withthose values stated in Chapter

3. The step response of the vehicle for various values of p was also

determined in order to verify that the proper coefficients had been set

in and that the analog components were functioning properly. Before

and after each session, a set of calibration signals were generated and

tested on the analog console, and then these signals were recorded on

magnetic tape using the A-D conversion routine. The calibration sig-

nals consisted of * 100 volt reference signals, ± 10 volt signals, and

a sinusoidal signal of 22. 35 RMS volts at a frequency of 3. 14 radians

per second.



APPENDIX B

SESSION DETAILS

This appendix presents the details of each formal session of

the experiment. Each subject saw the same order of sessions. As

mentioned in the body of the thesis, the last session was an exact

duplicate of the first session. In the following sessions the transition

speeds of the vehicle are defined by the time rate of change of c as

described in Chapter 3. The speeds are defined as follows:

Speed # 1: Instantaneous Switch, = oo
dt

Speed # 2: 30 second variation, = 0. 0333 units/second
dt

Speed # 3: 75 second variation, = 0. 0133 units/second
dt

Speed # 4: 120 second variation, = 0. 00833 units/second.
dt

The hyphens between groups of five trials in the sequence of trial

speeds denote the 10 to 15 minute breaks discussed in Chapter 4.

Session 1 and Session 7

Input Disturbance Filter Frequency: 2. 0 radians per second

Noise Generator Clock Frequency: 6. 37 hz

Noise Generator Register Length: 15 bits

Noise Generator Repetition Period: 85 minutes

Sequence of Trial Speeds:

4, 2, 2, 2, 2, - 4, 4, 4, 2, 2 - 2, 2, 4, 4, 4 - 4, 2, 4, 4, 2

116
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Session 2

Input Disturbance Filter Frequency: 2.0 radians per second

Noise Generator Clock Frequency: 6. 37 hz

Noise Generator Register Length: 15 bits

Noise Generator Repetition Period: 85 minutes

Sequence of Trial Speeds:

3, 3, 1, 1, 3 - 1, 1, 1, 3, 3 - 1, 3, 1, 3, 3 - 1, 3, 1, 3, 1

Session 3

Input Disturbance Filter Frequency: 0. 8 radians per second

Noise Generator Clock Frequency: 2. 54 hz

Noise Generator Register Length: 10 bits

Noise Generator Repetition Period: 6.71 minutes

Sequence of Trial Speeds:

2, 4, 4, 4, 2 - 4, 4, 2, 2, 4 - 2, 2, 4, 2, 4 - 2, 4, 2, 4, 2

Session 4

Input Disturbance Filter Frequency: 0. 8 radians per second

Noise Generator Clock Frequency: 2. 54 hz

Noise Generator Register Length: 10 bits

Noise Generator Repetition Period: 6.71 minutes

Sequence of Trial Speeds:

1, 1, 1, 3, 1 - 1, 3, 1, 3, 3 - 1, 3, 3, 1, 1 -1, 3, 3, 3, 3

Session 5

Input Disturbance Filter Frequency: 1.4 radians per second

Noise Generator Clock Frequency: 4. 45 hz
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Noise Generator Register Length: 11 bits

Noise Generator Repetition Period: 7.6 minutes

Sequence of Trial Speeds:

2,4, 4, 4, 2 - 2, 2, 2, 4, 4 - 4, 4, 2, 2, 2 - 4, 4, 2, 2, 4

Session 6

Input Disturbance Filter Frequency: 1. 4 radians per second

Noise Generator Clock Frequency: 4, 45 hz

Noise Generator Register Length: 11 bits

Noise Generator Repetition Period: 7.6 minutes

Sequence of Trial Speeds:

1, 1, 1, 3, 3 - 3, 3, 3, 3, 1 - 3, 1, 3, 1, 1 -1, 1, 3, 1, 3



APPENDIX C

SUBJECT DATA

Subject A

Age: 32 years

Height: 71 inches

Occupation: USAF Officer-Pilot

Experience: 1700 hours in jet fighter aircraft

Subject B

Age: 32 years

Height: 73 inches

Occupation: USAF Officer-Pilot

Experience: 2200 hours in jet fighter aircraft.

Instructor Pilot

Flight Examiner
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APPENDIX D

ADDITIONAL DATA PLOTS

This appendix contains the plots of signal standard deviation

for stick deflection, angle of attack, and error, all versus time.

The six figures represent all twelve experimental conditions for

both subjects.
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