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PREFACE

This is the final report on IBM's study of All-Digital Precision Processing
of ERTS Images performed under NASA contract NAS5-21716. It summarizes the
effort and results of the entire study, and is submitted in accordance with
Item 5 of Article II of the study contract.

The principal objectives of this study were:

1. To develop and evaluate all-digital techniques for the
precision-grade radiometric and geometric correction of
ERTS RBV and MSS data

2. To evaluate several alternative hardware configurations
for applying digital corrections in a production environ-
ment .

These objectives have been accomplished. The required digital techniques
have been developed and have been used to correct one RBV scene and several
MSS scenes. Absolute geometric accuracies obtained in the digital products
are sufficient for mapping at a 1:250,000 scale.c Radiometric quality ob-
tained is excellent and is superior to that of the NDPF precision (scene
corrected) products. The results show that digital methods provide a vi-
able technology for the correction of ERTS data.

A.very effective algorithm for locating reseau marks in RBV images has been
developed. Study of the performance of the Sequential Similarity Detection
Algorithm (SSDA) has shown that it can serve as the basis for an automatic
ground control point (GCP) location scheme. Three different methods of re-
sampling the input data space to derive correct output data values have been
implemented. Further study is required to determine whether the expense of
the more costly resampling techniques is justified by an increase in output
quality and utility.

Several different production systems have been defined and evaluated. The
results show that digital implementations are economically feasible and that
system cost effectiveness can be improved by the judicious use of special-
purpose digital hardware. (As used in this report, the term "special-
purpose digital hardware" refers to microprogrammed processors and other
high-speed digital equipment.)

The following principal recommendations result from this study:

1. Digital technology should be used for future systems for
correcting high-resolution earth observation sensor data.

^ 2. The use of special-purpose digital hardware should be
considered strongly for high-throughput production image
processing systems.
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3. The possible benefits of the more expensive resampling
techniques should be studied carefully to see whether
they justify the increased processing costs.

The principal investigator for this study was R. Bernstein. He was supported
by M. Cain, C. Colby, R. Depew, D. Ferneyhough, S. Forrer, H. Markarian,
S. Murphrey, W. Niblack, and J. Przybocki.

Appreciation and thanks are extended to Mr. Paul Heffner, the Scientific
Monitor of this contract, and to J. Eck of NASA and T. Berger, M. Byerly,
and R. McEwen of the U.S. Geological Survey for their assistance during the
course of this study.
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Section 1. INTRODUCTION AND SUMMARY

1.1 PURPOSE

This is the final report on IBM's study of All-Digital Precision Processing
of ERTS Images. It describes the work performed under contract NAS5-21716
and satisfies Item 5 of Article II of that contract. Some results of addi-
tional related studies outside the scope of this contract performed by IBM
under its Independent Research and Development (IRAD) program are also de-
scribed in this report.

The report is organized into seven sections. Section 1 summarizes the study,
presents the conclusions which can be drawn from its results, and gives rec-
ommendations for future NASA actions. Section 2 discusses the radiometric
correction techniques developed. Geometric correction techniques are de-
scribed in Section 3. Methods for finding reseaux and GCPs in the image data
are discussed in Sections 4 and 5, and the results of the investigation of
three resampling techniques are presented in Section 6. Section 7 contains
the results of the configuration analysis. Two appendices provide the MSS
and RBV processing error analyses.

1.2 SCOPE OF THE STUDY .

The primary purpose of this study was to investigate the feasibility of using
all-digital techniques to apply precision-grade radiometric and geometric
corrections to ERTS RBV and MSS scenes. To accomplish this, extensive analy-
ses were conducted, the required software routines were designed and developed,
and several representative scenes were processed. The results of this pro-
cessing, in terms of computer performance and output quality, are presented
later in this report.

Particular attention was paid to three key areas of the processing. An effi-
cient and very effective method for locating reseaux in RBV images was devel-
oped. The Sequential Similarity Detection Algorithm (SSDA) was used to locate
GCPs of various types in scenes having temporal separations ranging from 18 to
378 days. Routines to perform geometric correction using bilinear interpola-
tion and cubic convolution instead of nearest neighbor replacement as the re-
sampling technique were developed and applied to one band of one scene.

A secondary purpose of the study was to design and evaluate several candidate
configurations for operational systems to process ERTS. data. Originally in-
tended to consider only general-purpose digital equipment, this part of the
study was expanded to include consideration of I/O media other than computer
compatible tape and the use of special-purpose processors. Possible man/
machine interaction in the location of GCPs was also added-as an area for
study.

1-1



1.3 SUMMARY OF EFFORT

Work on this study began in February of 1972. Many of the required software
routines already existed in rudimentary form but required modification to
accommodate the unique characteristics of ERTS data. Initial progress was
hampered by the delay in the ERTS launch (with its subsequent delay in the dis-
semination of normal data tapes) and by the idiosyncrasies of the simulated
data products which were distributed. U-2 photographs were obtained, scanned,
and digitized in an effort to have representative data on which SSDA experi-
mentation could be conducted, but tonal differences between overlapping frames
were found to be so great as to preclude meaningful results.

The first post-launch ERTS-1 data tapes were received in August 1972. They
revealed numerous deficiencies in the software which had been developed. For
example, it was found that the reseau detection routine, which worked well
with "nominal" reseaux, gave unacceptable performance with actual RBV images.
A new detection program had to be developed.

For IBM, as well as much of the user community, the shutdown of the RBV caused
a shift of emphasis to MSS processing. Correction of MSS data proved more dif-
ficult than had been anticipated, but the first full precision corrected MSS
scenes were produced in February 1973.1

The technical work of this study has now been completed, and the following has
been accomplished:

• All software required for precision digital correction
and annotation of MSS and RBV scenes has been developed.

• Several representative MSS scenes and one RBV scene have
been precision corrected and annotated.

•• A full program of SSDA experimentation has been completed.

• Several configurations for operational systems have been
developed and evaluated.

An IRAD program of related investigations outside the scope of the contract
has been defined and completed. Some of the results are included in this
report.

1.4 CONCLUSIONS

The primary conclusion to be drawn from the results of this study is that dig-
ital methods provide a viable technology for the precision-grade geometric and
.radiometric correction of ERTS RBV and MSS data. The software developed by
IBM has been applied successfully to representative ERTS scenes. RMS geometric
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errors are on the order of 50 to 60 m in the digital products and 130 to
150 m in the film products. MSS radiometric quality has been described as
"excellent" by several observers and is clearly superior to the few preci-
sion processed products produced by the NDPF. Radiometric quality of the
corrected RBV images is significantly improved relative to the uncorrected
images. There are no visible artifacts caused by the zoning technique used,
and the correction appears to be as good as can be accomplished with the
existing calibration data.

A successful reseau detection algorithm has been developed. It will find
the 81 reseaux in an RBV image in less than 10 seconds, using an IBM 370/155.
In tests on six RBV images (486 reseaux) it had 100 percent success in locat-
ing the reseaux. Its probability of false reseaux detection is on the order
of IxlO-5.

It has been shown that the SSDA provides a technique around which an opera-
tional GCP detection routine can be built. Successful locations of some
types of features have been demonstrated for temporal separations as large
as 378 days (the largest separation for which IBM obtained data). Table 1-1
summarizes the types of features that make the best GCPs, the spectral bands
in which they should be located, the probability of detection, and average
detection times on an IBM 370/155.

Table 1-1

SSDA PERFORMANCE SUMMARY

Best Average
Best GCP Spectral Probability of Detection

Feature Types . Band Detection Time (Sec)*

Large Land-Water Interfaces 7 0.88 2.08

Mountain Peaks, Hills ' 5 1.00 8.44

Airports 7 0.81 15.44

Interstate-Grade Highways 5 0.93 2.33

*0n an IBM 370/155 computer
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Resampling by bilinear interpolation and cubic convolution (as well as by
the nearest neighbor assignment technique used for most of the processing
under this contract) has been implemented and applied to a sample image.
Conclusions as to whether or not the increased processing cost of the more
complex resampling techniques is Justified by an increase in output quality
requires further analysis and must come from the user community.

The configuration analysis has shown that digital systems for correcting
ERTS data on an operational, production basis are economically feasible.
Great increases in throughput can be achieved by the use of high-speed I/O
and high-speed Tnicroprogrammable processors.

1.5 RECOMMENDATIONS

The results-of this study lead to the following recommendations for future
NASA actions:

a. Future ground systems for earth resources satellites should
be based on digital (as opposed to electro-optical) tech-
nology. In the near future, digital processing will be able
to produce better quality products in a more cost-effective
manner than electro-optical processing.

b. In future systems involving high throughput, input and out-
put to the processors should be by a high-speed means such
as high density digital tape. Conversion to low density
computer tapes, when required, should be performed off-line
so as not to slow down the processors with low-speed I/O
operations.

c. Microprogrammable processors should be seriously considered
for future systems. Although the exact throughput require-
ments can influence the configuration, special-purpose sys-

' terns are generally more cost-effective than general-purpose
systems for the highly repetitive inner loop operations
characteristic of digital image processing. Microprogramma-
ble processors provide a degree of flexibility that is dif-
ficult to attain with hard-wired equipment and are, therefore,
better choices for the experimental multi-mission sensor pro-
grams of the near future. General-purpose equipment should
still be used for the infrequent, complex, high-precision
calculations needed to support image processing; for low-
throughput image processing applications; and for image pro-
cessing research and development.

d. The present ERTS byte-pair interleaved CCT format is not
ideal from a processing standpoint. If the CCT data were
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spectrally separated (at least on a line-by-line basis),
radiometric correction could be accomplished more effi-
ciently. A single correction table would be valid for
thousands of consecutive samples, and the overhead of
referencing different correction tables would be greatly
reduced. On the other hand, byte interleaved data aids
the geometric correction process, since the resampling
parameters can be computed once and applied to four con-
secutive samples. Data that is spectrally separated by
scene makes film recording easier; but byte interleaved
data is preferable for computer^implemented multispectral
classification, since it eliminates the need to merge
separate data streams.

The choice between byte interleaved and spectrally sep-
arated data is a difficult one. It depends largely upon
the equipment to be used for processing and the intended
use of the processed data. However, the present byte-pair
interleaved format possesses the advantages of neither
byte interleaved nor spectrally separated data and should
be changed, if that can be accomplished without creating
a format conversion problem in the user community.

e. Accurate format center coordinates and normalized space-
craft velocity (A V/V) should be added to the header on
the present ERTS CCTs. This would permit users to per-
form systematic corrections without the need for Bulk
Image Annotation Tape (BIAT) data dumps. If the attitude
and altitude data presently included on the BIAT were
added to the CCT headers, still more accurate corrections
would be possible.

f. Future RBV pre-launch calibration should completely span
the image area, especially the edges and corners. Such
calibration should alleviate some of the problems that
were encountered in RBV radiometric correction.

g. During the study of methods to eliminate striping in the
MSS data, it was discovered that histograms of the indi-
vidual detectors displayed characteristics which indi-
cated possible errors somewhere in the NASA sensor/
calibration chain. This should be investigated further.

h. NASA should fund a study to develop a fully-automatic
(though, perhaps, man-monitored) GCP detection program
based on the SSDA. The study should include extensive
testing using the ERTS data which has been collected
since July 1972. Such a study should be performed under
Government supervision and funding.
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i. NASA should also fund a study to compare the results of
the three sampling techniques presently being used for ERTS
data. Several different scenes should be processed, and
the impact upon both human interpretation and machine pro-
cessing in a variety of applications areas should be evalu-
ated.

1.6 NEW TECHNOLOGY

No new technology was discovered during the course of this contract.
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Section 2. RADIOMETRIC CORRECTION

The radlometry of both the ERTS RBV and MSS was changed to correct and
enhance the images. The MSS has 24 detectors, each of which has unique
response characteristics, while the RBV radiometric response varies over
the image.

2.1 RBV RADIOMETRIC CORRECTION

The ERTS RBV CCTs contain image data which has been sampled and digitized
with 6-bit quantization. There are thus only 64 possible input data values.
If a table which specifies the correct output intensity for each of the 64
possible input intensities can be defined, radiometric correction of the
RBV images can be accomplished by a simple table lookup operation.

This is essentially the technique used by IBM. It is complicated somewhat
by the fact that the RBV radiometric errors vary across the image, requiring
the use of multiple correction tables. RBV radiometric correction is thus
conducted in two parts: generation of the correction tables (an off-line
operation) and application of the correction.

2.1.1 Generation of RBV Radiometric Correction Tables

Preflight calibration provides readings at several intensity levels from
a uniform light source, a Hovis Sphere, taken at an 18x18 array of points
across the RBV image. These readings are in terms of voltage ranging from
0.32 to 1.10, so they are first scaled to the digital range 0 to 63. From
these uniform input values, 18x18 arrays of gain(G) and bias(B) values are
computed for the correction-equation:

Vout = (Vin+B)G (1)

The uniform input readings are distributed uniformly throughout the image,
but do not include the edges. Various extrapolation techniques of up to
third order were used to estimate the edge data, but due to the radical
radiometric distortion near the edges, zero order extrapolation proved to
produce the best results.

These computations finally produce 20x20 arrays of gain and bias that com-
pletely span the image. These values can be fit in a least squared error
sense with functions B(X,Y) and G(X,Y). We now have a general expression:

Vout(X»Y> = tVin+B(X,Y)]G(X,Y) (2)
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Although (2) could be used to compute a radiometric correction for every
(X,Y) point in the image, this would be quite costly. It is computation-
ally more efficient to divide the image into zones in which constant values
of B and G can be used with acceptably small error. Such a zoning of the
Image can be accomplished by variations on the solution to the following
problem:

Given a specific input value V at point (X , Y ) of the image

and bias and gain values

Bo e B(Xo» V
Go - G(Xo* V

find the distances AX and AY such that

AVout < K

Now

AV
out 3X

°Ut AX + -^gHt (3)

3Vout 3JJ 9Vout
3B 3X 36 3X

X o > Y o
3*

(4)

and

3V.
out =

3Y

3V

38
out 38

3Y
+ aVout

3G
36
"3T

3Y X«. Yo' o
(V + B ) |$o o 3Y (5)
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Equation (3) presents a problem of one equation and two unknowns. There
are two methods of circumventing this problem:

a. Assume a relationship between AX and AY (e.g., AX = AY,
or AX = (4608/4125) AY)

b, Solve the problem as two onerdimensional problems.

2
A procedure based on the second method has been developed. Intrinsic to
the procedure is the assumption that the effects of the correction function
are more severe at the edges of the image than at the center. Since the
principal radiometric effect is shading, this assumption appears well jus-
tified. The zoning generated by this procedure is conservative in that it
processes the entire image with zones computed from "worst case" conditions
at the image edges.

For each zone, constant values of G and B are computed. These values are
then used with equation (1) to generate a table of correct values for the
64 possible input values.

This procedure was applied to the three RBV bands of scene 1002-18134. It
took approximately 165 seconds per band on a 370/155 to perform the fitting,
zoning, and table generation process. The results, in terms of the number
of zones generated, are given in Table 2-1.

Table 2-1

RBV RADIOMETRIC CORRECTION ZONES
Scene 1002-18134

Horizontal Vertical Total

Band 1 191 138 26,358

Band 2 184 119 21,896

Band 3 181 106 19,186

2.1.2 Correction Application

In a production system, the RBV radiometric correction can be applied during
the operation of the Point Shift geometric correction process. During this
process% a buffer of input image lines is kept in computer memory. This
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buffer is updated a line at a time as the correction process moves down
an image.

As each new line of input image data is read into the buffer, the line
count can be consulted to determine the vertical correction zone. As each
new vertical zone is reached, a new set of horizontal zones can be read
into main storage and used to correct that set of lines. The horizontal
zones divide the input line into segments, each one of which has its own
distinct correction table.

Segments up to 256 pixels in length can be corrected with a single Trans-
late instruction. Segments greater than 256 pixels in length would be cor-
rected in 256 pixel pieces, except for the final piece which is generally
less than 256 pixels long. This is required by the eight bit limitation on
the field of the Translate instruction which specifies the number of bytes
to be processed.

An alternative method would be to store the gain and bias values on supple-
mental storage and generate the horizontal zone tables as they are need in
the image correction process. In the first method, 4.1M bytes of supple-
mental storage are necessary to store the tables; in the alternate method,
0.5M bytes are needed. However, the image correction process in the first
method takes about 45 seconds on an IBM 370/155, while the second method
takes 100 seconds.

2.1.3 Results

The radiometric correction procedure described above was applied to the
three RBV bands of scene 1002-18134. The fully corrected images are pre-
sented in Section 3. A "before and after" pair showing the effects of
radiometric correction only is presented in Figures 2-1 and 2-2. Compari-
son of the figures shows that although the correction significantly im-
proves image shading, it is not perfect. Along the edges, and especially
in the corners, radiometric distortion is still apparent. This is due to
the fact that the preflight calibration data is taken at points interior
to the image area and does not include the edges where distortion is quite
severe. It should be possible to obtain better edge results with calibra-
tion data that extends over the entire image area.

Careful examination of the figures reveals a regular pattern of vertical
lines. Computer shade prints show that these lines are in the original
CCT data. Their cause is unknown to IBM.

2.2 MSS RADIOMETRIC CORRECTION

The MSS CCTs generated by the ERTS NDPF are radiometrically corrected.
Thus, strictly speaking, there was no need for IBM to radiometrically
"correct" the MSS data which was obtained during this study. If it were
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Figures 2-1 and 2-2 are contained in the
envelope at the back of this report.
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desired to include a radiometric correction in a digital correction system,
the basic procedure used by the NDPF would be used. Correction tables for
each detector would be generated and updated as required, based on the cal-
ibration data received. Application of the correction could occur at one
of several places in the processing stream. As the discussion of Section 7
shows, radiometric correction early in the processing stream, using loadable
special-purpose equipment, appears to be an attractive solution.

Although the MSS data did not have to be corrected, it did have to be "ad-
justed" so that it would produce the desired results when recorded on film
by the recorder used by IBM. This adjustment is a transformation that pro-
vides a film gamma compensation for a particular film and recorder combina-
tion but does not alter the quality of the digital data. In addition, an
attempt was made to eliminate the residual striping present in the CCT data.

2.2.1 . MSS Radiometric Adjustment

Two distinct methods of radiometric adjustment can be applied to the MSS
scenes, each yielding a separate output product. In the first, independent
enhancements are made for each scene to produce final images having radio-
metric qualities pleasing to the eye. In the second method, a standard cor-
rection which attempts to produce a fixed relationship between calibrated
sensor counts and film density is applied to all images.

2.2.1.1 Scene Dependent Enhancement for Pleasing Radiometric Quality

For each band of an MSS scene, the following procedure is used to determine
the radiometric enhancement to be used:

a. Select a representative subimage

b. Apply several (typically four or eight) different radio-
metric adjustments to this subimage

c. Expose on film and develop each of these adjusted subimages

d. By visual comparison and inspection, select the enhancement
providing the best radiometry.

It should be noted that this method involves an independent and subjective
evaluation for each scene processed.

Most of the sample corrected images presented in Section 3 were processed
this way.
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2.2.1.2 Standard Radiometric Adjustment

MSS scenes can also be processed with a standard scene-independent radio-
metric adjustment. This adjustment is defined by the two requirements
that (1) a linear relationship exist between sensor count and film density
and (2) the film density have a range of approximately 2.0. (The actual
range used was 0.1 - 2.1.) The table which effected this adjustment is
given in Table 2-2. The relationship given in the table is a function of
the IBM Drum Scanner/Plotter characteristics, the film used, and the de-
veloping techniques used in the photographic laboratory. A version of
scene 1080-15192 adjusted in this manner is presented in Section 3.

2.2.2 Striping Removal in MSS Scenes

Striping, or horizontal banding, is evident in numerous MSS scenes. Using
IBM IRAD funding, an investigation was undertaken to determine a means of
removing this striping from the output products. Initially, it was hoped
that a set of gain and bias coefficient [(ĝ .bi),i=l,...,6] could be deter-
mined by measuring .detector responses in areas of uniform radiance, so that
for a given detector In a given band an adjustment of the form x'=(x+bi)gi
would remove the striping. Moreover, it was hoped that these coefficients
would remain relatively constant so that they would require only occasional
adjustment and could then be applied to all MSS scenes for some period of
time. Both of these hoped-for results proved unrealistic. Partial success
was achieved on individual scenes, but striping was never completely re-
moved, and the correction applied to one scene would not work for any other
scene. Typical results are shown in Figures 2-3 and 2-4.

When a linear correction based on detector responses in areas of uniform
radiance proved insufficient, it was thought that a non-linear correction
which would adjust the histograms of all detectors in a band to some stan-
dard form might be possible. To this end, detector histograms over entire
images were compiled. Typical histograms are presented in Figures 2-5
through 2-8.

Since the histograms were generated from MSS CCTs produced by the ERTS NDPF,
they represent data which has been radiometrically corrected. The original
MSS data contains at most 64 unique values. Therefore, unless the calibra-
tion tables are altered during a scene, there should be no more than 64
unique values on a CCT for any given detector. Figures 2-5 through 2-8 all
show more than 64 unique values, which indicates that the calibration tables
applied to the original MSS data were changed at least once during each of
the three scenes represented.
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Table 2-2

IN

LINEAR COUNTS/DENSITY RELATIONSHIP
RADIOMETRIC ADJUSTMENT TABLE

OUT IN OUT IN OUT IN OUT
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

48
56
64
72
80
84
88
93
98
101
104
107
110
112
114
118
122
124
126
129
132
133
134
135
136
139
141
142
143
144
145
147

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

148
149
150
151
152
153
154
155
156
158
160
161
163
163
164
165
165
166
166
167
167
168
168
169
170
171
172
172
173
173
174
174

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

175
175
176
176
177
177
178
178
179
179
180
180
181
181
182
183
184
184
185
186
187
187
188

- 190
192
194
196
196
197
198
198
199

96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

199
200
200
201
.202
203
204
206
207
207
208
209
210
211
212
214
216
218
220
222
224
226
228
229
230
230
231
232
233
235
238
241

Note: All values shown are decimal. The table assumes 7-bit input data.
For 6-bit input data, the input values should be doubled prior to
entry to the table.
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Figures 2-3 and 2-4 are contained in the
envelope at the back of this report.
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It would be expected that the corrected outputs of adjacent detectors in a
given spectral band would have very similar histograms over a scene. For
the data shown in Figures 2-5 and 2-6, this is not the case. The data of
Figure 2-5 shows what might be expected in the presence of changing calibra-
tion tables. On the other hand, the "multi-curve" nature of Figure 2-6 is
quite unusual. The two figures plainly show that there will be striping
in the band 6 image. Since the radiometric correction process of the NDPF
should have eliminated differences in detector responses, a thorough exam-
nation of that process appears warranted.

No simple transformation will make the data of Figure 2-6 agree with that
of Figure 2-5. Therefore, so long as the CCTs contain data with the char-
acteristics shown in the figures, no simple striping removal procedure will
be successful.

The general shapes of the histograms in Figures 2-7 and 2-8 are not strik-
ingly dissimilar. Thus, it was hoped that a striping correction computed
for one of the scenes would be applicable to the other. This did not prove
to be the case, however. When a correction which significantly decreased
striping in scene 1045-06560 was applied to scene 1049-17324, the striping
in the latter scene was made slightly worse. From this, it appears that it
is not likely that a striping correction which will remain constant for rel-
atively long periods of time can be devised.
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Section 3. GEOMETRIC CORRECTION

3.1 GEOMETRIC CORRECTION TECHNIQUES

IBM's method of creating geometrically corrected film and CCT imagery from
NASA Bulk CCTs is shown in Figure 3-1. In this process there are six steps
which are functionally the same for both RBV and MSS images. How each of
these functions is accomplished for each type (RBV or MSS) of image is de-
scribed below in subsections 3.1.1 through 3.1.6.

3.1.1 Reformat Image Data

Most of IBM's image processing programs are designed to accept digital
images in the format of one record per line of image data. For most pur-
poses, this is the most suitable format. Consequently, the data on NASA
CCTs is reorganized into the above format and stored on IBM computer tapes.
A separate tape data set is created for each spectral band. Since the for-
mats of the NASA Bulk RBV and MSS CCTs are different, separate reformatting
programs are used.

3.1.2 Prepare Input

In this step, the inputs required for the rest of the process are prepared.
There are four different inputs that may be needed, and each is described
below. Functional flow charts for this task are shown in Figure 3-2.

3.1.2.1 SIZES/BIAT/GCP Data Set (RBV and MSS)

A disk data set that is used by the modeling programs is created. It con-
tains the sizes of both the output and input images, the TnaTcimum gridding
size, the minimum gridding error allowed, format center and nadir locations
(from BIAT), and (for MSS only) the normalized spacecraft velocity error
Cfrom BIAT). It also contains the nominal'(UTM coordinates) and observed
(input image pixel coordinates) locations of ground control points in the
image. The observed GCP locations may be found either manually or auto-
matically.

3.1.2.2 Reseau Detection (RBV Only)

A disk data set containing the observed reseau locations Cinput image pixel
coordinates) is created. IBM has developed an efficient algorithm for auto-
matically locating reseaux. All 81 reseaux are located in less than 10
seconds CPU time on an IBM 370/155 computer. The algorithm developed and
used by IBM to locate reseaux in an RBV bulk image is described in Section 4.
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Figure 3-1. Geometric Correction of ERTS Images
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3.1.2.3 Radiometric Correction (RBV Only)

For each band, a radiometrically corrected image is created on a computer
tape data set. The zoned, table look-up process described in Section 2.1
is used, but the correction is applied prior to (rather than during) the
Point Shift operation. Since MSS data is already radiometrically corrected,
no further correction is applied.

3.1.2.4 Radiometric Adjustment (RBV and MSS)

If a radiometric adjustment is desired, the tables to be used are deter-
mined. Adjustment is often required to make certain information more vis-
ible or to make image intensity values fall within the correct range for
a particular film recording device.

3.1.3 .Compute Global Mapping Polynomials

IBM uses a pair of global polynominals in two variables to define the trans-
formation used in the geometric correction of a digital image. The function
that these global polynomials define is a mapping from the output (i.e., geo-
metrically correct) image to the input image, as shown in Figure 3-3.

(v,u)

Mapping
Polynomials

Input Image
. Output Image

Figure 3-3. Mapping Polynomials

Specifically,

v = v (y,x)

u = u (y,x)
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where v and u are polynomials. IBM has found that 5th degree polynomials
with all terms included are quite adequate for accurate modeling the errors
of ERTS images.

3.1.4 Create Image on Computer Tape

In this part of IBM's precision processing, a fully annotated image is writ-
ten on computer compatible tape in a format suitable for film recording on
the IBM Drum Scanner/Plotter. This format is one data record on tape for
each image line. In this section, the "image" represents one band of an
ERTS scene, including all of the annotation and ground Image data. Annota-
tion and ground image data are organized to form the image in a single com-
puter load module.

3.1.4.1 Image Annotation

IBM includes both identification information and tick marks in the annota-
tion on its precision processed imagery. Some of the identification infor-
mation is obtained from the first two records on the NASA Bulk CCT. The
rest of the identification information and the data needed to include tick
marks is supplied by the error modeling routine that calculates the global
mapping polynomials. Tick marks are located within a border surrounding
the ground image data. On the inner edges of this border are UTM tick
marks, and on the outer edge are geodetic latitude and longitude tick marks.

3.1.4.2 Ground Image Data

The ground image data is constructed by resampling the data from the IBM
computer tape constructed during the reformatting step. Theoretically,
the global mapping polynomials could be used to compute the input space
coordinates for every output image pixel. This method would involve the
evaluation of two 5th degree, 21-term polynomials for more than 14 mil-
lion output image points, which would be extremely time consuming on any
computer. A more efficient method (from a computer cost point of view)
is to map only a few key points with the global mapping polynomials and
to locate the remaining points by bilinear interpolation. If these key
points are chosen so that the error introduced by this method is very
small, then this is an efficient method of performing the output image
to input image mapping.

IBM uses a rectangular array of key points (called "interpolation grid
points") to perform the mapping. The points are selected so that the
interpolation error is less than 0.1 pixels. However, due to the charac-
teristics of the Move Character (MVC) instruction (OS Assembler Language),

3-5



the key points are required to be no further than 256 pixels apart. This
constraint, rather than the 0.1 pixels maximum interpolation error, has
been the dominating factor in all MSS images processed by IBM so far.
With this constraint, the interpolation grid mesh is always 17x17 for MSS
images. For RBV images, the error bound is sometimes reached. Typically
20 to 24 grid points, horizontally and vertically, are required for RBV
images.

Once an output image point has been mapped into the input image space, a
radiometric intensity must be assigned to it. Since the output point lo-
cation generally does not coincide with the location of any input point,
the input space must be resampled at the output point location to obtain
this intensity.

One resampling method used by IBM is nearest neighbor assignment. The
intensity of the nearest input pixel is assigned to the output pixel in
question. When this is done, lines in the output image are composed of
segments of lines from the input image. The mapping polynomials permit
the lengths of the segments to be calculated. Entire segments (3 to 9
pixels long in the work done under this contract) can then be moved from
the input space to the output space with a single MVC instruction. This
is the basis of IBM's Point Shift Algorithm, which is a very efficient
method of applying a geometric correction.3>^,->

Other resampling techniques have also been implemented. Section 6 pre-
sents the results of applying bilinear interpolation and cubic convolu-
tion to a sample image.

3.1.5 Create Image on Film

The device used to record the precision processed images on black and
white photographic film is 'the IBM Drum Scanner/Plotter. This machine
can plot an image of any size up to about 760mm wide by 610mm high. It
plots a square, non-overlapping spot and has three possible spot sizes:
25 ym x 25 ym, 50 ym x 50 ym, and 100 ym x 100 ym. To obtain an image
at 1:1 000 000 scale, IBM has used the 50 ym spot. This requires a
change of scale from the NASA bulk image, which has a non-square input
picture element (pixel). All necessary scale change has been included
when calculating the global mapping polynomials. Some of the images
have also been recorded on film with the 100 ym spot, resulting in a
1:500 000 scale image. The IBM Drum Scanner/Plotter is capable of cre-
ating a first generation negative or a first generation positive trans-
parency. It is usually necessary to perform a different radiometric
adjustment of the data, for a positive rather than for a negative.
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3.1.6 Photographic Processing

Once film has been exposed by the IBM Drum Scanner/Plotter, a variety of
second generation photographic images may be made. The types of products
made by IBM from ERTS imagery are listed in Table 3-1.

Table 3-1

PHOTOGRAPHIC PRODUCTS OF ERTS•IMAGERY MADE BY IBM

Photographic
Generation

1

1

2

2

2

Type of Product

B/W negatives

B/W positive transparencies

B/W positive transparencies

B/W positive prints

False color prints

False color transparencies

Color negative

Process Used

IBM Drum Scanner/Plotter

IBM Drum Scanner/Plotter

"Contact printing

Contact printing

Three band sequential
contact printing

Three band sequential
contact printing

Enlargement of false
color transparency

3.2 RESULTS

3.2.1 Error Analyses

Error analyses of both MSS and RBV processing were performed. This work
is described in detail in Appendices A and B. Briefly, the analyses pre-
dicted the output accuracies shown in Table 3-2.
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Table 3-2

PREDICTED OUTPUT ACCURACIES (METRES)

Relative Error Absolute Error
RMS Max RMS Max

RBV

Digital Output 41.8 48.7 35.8 44.6
Film Output 56.6 61.9 52.4 58.8

MSS

Digital Output
Film Output

66.9
82.2

124.1
133.0

78.1
91.6

127.1
135.8

3.2.2 Calculated Accuracies

The mapping polynomials generated during the geometric correction process
can be used to determine geometric errors for points for which both geo-
detic and image coordinates are known. This has been done for several of
the scenes processed with the following typical results:

e RBV bands 1, 2, and 3, of scene 1002-18134 had RMS errors
of 53.1 m, 52.1 m, and 56.4 m respectively.

• » MSS scene 1002-18134 had an RMS error of 66 m.

• MSS scene 1062-1590 had an RMS error of 61 m.

• MSS scene 1080-15192 ahd an RMS error of 69 m.

The locations of 22 features in scenes 1062-15190 and 1080-15192 were com-
pared. When the average translational differences vrere removed, the RMS
residual error was 67.2 m, the maximum error was 148.0 m, and 90 percent
of the points had errors less than 85.8 m. This shows that good registra-
tion can be obtained between temporally separated scenes of the same area.
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3.2.3 Measured Accuracies

Computer shade prints were used to determine the output array locations
of 30 features in scene 1062-15190. These actual locations were compared
with the nominal locations as determined from UTM coordinates. The maxi-
mum error observed as 114 m, and the RMS error was 45 m.

Band 5 of scene 1062-15190 was recorded on film and provided to Dr. Robert
McEwen of the USGS for evaluation. Using 21 control points in the image,
he measured absolute and relative RMS errors of 135 m."

An APL program was used to estimate the mapping errors for 9 features in
each of the RBV bands of scene 1002-18134. The RMS and maximum errors
were 38 and 62 m, respectively.

3.2.4 Sample Photographic Products

Figures 3-4 through 3-26 present second generation black and white positive
prints and color 'composite prints of the following scenes:

e RBV 1002-18134

e MSS 1002-18134

o MSS 1031-17325

o MSS 1080-15192.

For all of the above, a radiometric adjustment was applied to obtain photo-
graphs with good information extraction potential. In addition, Figures
3-22 through 3-26 present MSS scene 1080-15192 radiometrically adjusted to
achieve a linear sensor count to film density relationship.
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Figures 3-4 through 3-26 are contained in the
envelope at the back of this report.
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Section 4. RESEAU DETECTION AND LOCATION

A reseau pattern composed of a 9x9 array of opaque cruciform marks is
inscribed on the RBV faceplate to provide the means of determining the
geometric distortion introduced by the sensor. The mathematical charac-
terization of the sensor-caused error in a given image requires the de-
tection and precise location of the nominally black reseau marks in that
image. The vector differences between the actual locations and the un-
distorted locations of the reseau marks are used to compute the coeffi-
cients of the bivariate mapping polynomials pertaining to the internal
errors of the RBV.

The internal geometric errors of the RBV are very stable. A 50x50 pixels
search area centered at the last known location of the reseau is suffi-
ciently large to insure that it contains the reseau.

50

Search
Area

T
i

Reseau
Mark

50

Figure 4-1. Shape and Size of Reseau Within the Search Area
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The reseau detection routine developed by IBM is based on the following
operational sequence:

a. The last known locations of reseau marks are inputs to
the program.

b. Within search areas of 50x50 pixels, each centered about
a previous reseau mark location, individual row and col-
umn sums of pixel gray levels are computed. This opera-
tion is called "shadow casting." Thus, along the nth

column, the sum would be
50

Sn = £ gmnm=l
where g^ is the gray level of the pixel located at the

row and the ntn column of the 50x50 search area.

c. ' The reseau mark contained within a search area is de-
tected by the application of the detection algorithm to
the row and column sequences Sm and Sn

A detection algorithm was developed, implemented and tested before real
RBV data was available. ' It worked well on simulated RBV test images—
finding 90 percent of the reseaux correctly. Unfortunately, the reseau
marks in real ERTS RBV images are not so well defined as Figure 4-1
would suggest. The RBV beam is distorted slightly by areas of high and
low charge density in the image. This causes the reseaux to be fuzzy and
to be darker in dark backgrounds than they are in light backgrounds.
They vary in width from 3 to 7 pixels, and the arms are often off from
horizontal and vertical (giving a greater apparent width in the shadow
casting technique).

The original detection algorithm, when applied to real RBV reseaux, proved
to be too sensitive to these distortions—only 10 percent of the reseaux
were successfully located. However, even though reseaux showed great var-
iance as to size, shape, and intensity, they were invariably the darkest
objects in the search area. A new detection algorithm was developed to
take advantage of this fact.

This algorithm finds the lowest column sum and tentatively calls this the
column center of the reseau. It then computes a threshold value based on
the lowest sum and the background intensity. The reseau is considered to
be all contiguous sums in the neighborhood of the lowest sum that are lower
than the threshold. A similar procedure is used for row sums.
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SUM
Background

Threshold =

Reseau

fr
Center of reseau S Pixel

Figure 4-2. Typical Set of Row or Column Sums

The steps of the algorithm, described with reference to the typical set
of row or column sums in Figure 4-2, are as follows:

a. Tentatively call the lowest sum, S, , the reseau center.
K.

b. Next, compute a local average background intensity the
following way:

Move to the right of S^ 3 sums and the next
4 sums are background.

Move to the left of Sfc 3 sums and the next
4 sums are background. Average the 8 back-
ground sums to get the local average back-
ground intensity (call it S ).

a

c. Compute the average of S, and S . Call this a threshold,

St= (Sa + Sk)/2'°

d. All sums below the threshold near S, are reseau pixels.
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e. If there is an odd number of pixels in the reseau, the
correct center is the middle pixel of the reseau. If
there is an even number of pixels in the reseau, the
center is the pixel just left of the middle, i.e.

Center

Reseau Reseau

As described, this lowest sum algorithm finds 81 of 81 reseaux. However,
it finds a reseau location even if there was no reseau in the search area.
Obviously, a check is necessary to detect false reseaux. The false reseau
check is based primarily on the following:

a. Real reseaux are 3 to 7 pixels wide—if we detect a
'"reseau" narrower than 3 or wider than 7 pixels, reject
it.

b. Real reseaux are much darker than the background, so the
algorithm insists that a reseau pixel must be, on the
average, at least 8 intensity levels (out of 64) darker
than the background. That is, S - S, must be greater
than 8 x (32-4) = 244. a

Both of these checks use data routinely collected during the search for
the reseau, and so take very little extra computing time. Used together
they are extremely effective.

The reseau detection program was checked on 486 reseau marks (that is,
972 searches, one search through column sums and one search through row
sums for each reseau). Every true reseau was found. Visual examination
of the reseaux showed the algorithm was finding the correct reseau cen-
ter. A further confirmation of the algorithm's accuracy is the fact
that the algorithm computed the average reseau width to be between 4 and
5 pixels. This agrees well with visual evidence.

The reseau detection program was tested on 486 false reseaux. That is,
the program was asked to search for reseaux in 486 search areas that con-
tained no reseaux. Of the 972 searches for the 486 false reseaux, the
program accepted only 3 of the 972 as being reseaux. The probability of
accepting a false row or column when no reseau is present in the search
area is thus approximately 0.003, and the probability of accepting a
false reseau is (3/972)(3/972) = approximately 0.00001. On the average,
if the program looked only in search areas that contained no reseaux
through more than 1000 images, it would reject all but one of the false
reseaux.
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Section .5. LOCATION OF GROUND CONTROL POINTS

The errors and uncertainties present in the available attitude and emphem-
eris data make it necessary to establish ground truth before precision geo-
metric correction is possible. By determining the image coordinates of
well defined geographic features (GCPs) in the scene, the correspondence
between image coordinates and geographic coordinates can be used to supple-
ment the attitude and ephemeris data during generation of the output-to-
input mapping polynomial.

In a digital image processing system, it is desirable to have ground truth
established automatically as part of the processing. The Sequential
Similarity Detection Algorithm (SSDA)^>^' has been investigated as a means
of accomplishing this. Tests have been run using this program on data from
a series of ERTS scenes of the Chesapeake Bay and Phoenix-Tucson areas.

In order to use an SSDA, prototype subimages of the selected geographic fea-
tures (sometimes called window areas) are required. For the tests conducted
by IBM, 20x20 pixel prototype subimages of the features were selected from
the earlier of the available MSS scenes. Prototypes of this size (approxi-
mately 1.8 km2 ground area) adequately characterized all features of inter-
est. Search areas containing the geographic features, consisting of 72
lines of 92 samples (approximately 30 krâ  ground area), were taken from sub-
sequent MSS scenes. Each feature was assigned to one of seven classes.
Table 5-1 presents the features, class assignments, and ERTS scenes used for
the Phoenix-Tucson area, while Table 5-2 provides similar information for
the Chesapeake Bay Area.

Preliminary tests were conducted to determine appropriate control parameter
values for the SSDA to adapt its operation to ERTS data. From the results
of these tests, a suitable error threshold function was obtained. It was
also determined that the intensity variation between scenes would require
the use of the mean-adjusted error measure to provide a zero order intensity
normalization.

The SSDA employs a random sampling sequence for comparing prototype pixels
with corresponding search area pixels. Tests were conducted to determine
whether more efficient performance could be obtained by selecting a feature-
dependent sampling sequence. This was found to be possible, but since no
systematic procedure for developing such a sequence could be devised, sub-
sequent investigations employed the random sampling sequence. Typical re-
sults of the non-random sampling experiments were presented in Table 5-3.

Initial investigations of the Phoenix-Tucson area employed scenes E-1049-
17324 and E-1085-17330. For subsequent work with this area, prototype
subimages were selected from these two scenes, and from £-1031-17325, in
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Table 5-

GCPS FROM PHDENIZ-TUCSON AREA

Class Code Interpretation

1 - Large Land-Water Interfaces
2 - Interstate-Grade Highways
3 - Airports
4 - Small Land-Water Interfaces
5 - Non-Interstate-Grade Highways
6 - Agricultural Fields
7 - Mountain Peaks, Hills

ID GCP Description Class Code

1 Bartlett Dam 1
2 T.R. Roosevelt Dam 1
3 Stewart Mtn Dam 1
4 Mormon Plat Dam 1
5 Tailings Pond 1
6 Apache Junction 2
7 Mountain Peak 7
8 Agricultural Field 6
9 Casa Grande Rd Jctn 2
10 Picacho Reservoir 1
11 Redrock Highway 2
14 Hill 7
15 Luke //6 Airfield 3
16 Rittenhouse Airfield • 3
17 Florence Jctn 5
18 Stream Confluence 4
19 River Bend 4
20 Small Dam 4
21 Oracle Jctn Store 5
22 Jctn Rts 87 & 93 - 5
23 Phoenix Hwy Jctn 5
^24 Winkleman Jctn 5
25 Owl's Nest Mtn 7
26 Casa Grande Airport 3
27 Gila Bend Airfield ' 3
28 Luke #2 Airfield 3
29 Luke #1 Airfield 3
30 Ajo Airport 3
31 Mtn at Redrock 7
32 Tailings Pond - Miami 1
33 Hill S. of Black Mtn 7
34 Bend in Gila River 4
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Table 5-1 (Continued)

ID GCP Description Class Code

35 Bend in Gila River 4
36 Mtn at Pisinmo 7
37 Mtn near Double Peak 7
38 Mtn at Schuck 7
39 Mtn in Papago Reservation 7
40 Mtn in Kovaya Hills 7
41 Guachi Mtn - Ventana 7
42 Lake Pleasant Dam 1
43 Thornydale & Overton Rds 5
44 Guachi Mtn - USGS 2801 7
45 LaCholla & Magee Rds 5

ERTS Scenes Employed: E-1031-17325
E-1049-17324
E-1085-17330
E-1121-17330
E-1121-17333
E-1211-17334
E-1283-17334
E-1337-17332
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Table 5-2

GCPS FROM CHESAPEAKE BAY AREA

Class Code Interpretation

1 - Large Land-Water Interfaces
2 - Interstate-Grade Highways
3 - Airports (Macadam)
4 - Small Land-Water Interface
5 - Airports (Concrete)

ID GCP Description Class Code

1 Center - Liberty Dam 1
2 Elk Neck 1
3 Mouth of Monocacy 1
4 Lake Needwood •• 1
5 Cabin John Bridge ° 4
6 Kent Point 1
7 Mouth - Tuckahoe Crk 1
8 Hains Point 1
9 Hallowing Point 1
10 Prison Point 1
11 Fishing Point 1
12 Lake Louisa 1
13 North Tip, Goat Island 1
14 South End, Downing Br 1
15 Glebe Point 1
16 Sandy Point • 1
17 Point Lookout 1
18 Rapidan & Rappahannock . 1
19 Rappahannock Bend 1
20 Dulles Airport 5
21 1695 and 195(N) 2
22 1695 and 183(N) 2
23 1695 and 183(S) 2
24 1695 and I70N 2
25 195 and 1495(N) 2
26 1495 and B-W Pkwy 2
27 1495 and Rt 50 2
28 1495 and Rt 4 2
29 Rt 301 and Rt 4 2
30 East End, Wilson Br 1
31 West End, 14th St Br 1
32 East End, 14th St Br 1
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Table 5-2 (Continued)

ID GCP Description Class Code

33 East End Memorial Br 1
34 East End Roosevelt Br 1
35 I70N and Rt 29 2
36 I70N and Rt 40 2
37 166 and Rt 50 2
38 166 and Rt 29(N) 2
39 166 and Rt 29 (S) 2
40 1495 and 166 2
41 1695 and B-W Pkwy 2
42 Nat'l Airport 3
43 Loch Raven Dam 1

ERTS Scenes Employed: E-1062-15190
E-1080-15192
E-1170-15193
E-1350-15192
E-1440-15175
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order to obtain prototypes free of striping. For the Chesapeake Bay area,
all prototype subimages were taken from scene E-1Q62-15190. The results
of the SSDA tests are summarized in Tables 5~4 through 5-7. Table 5-4
presents the results obtained for ground features in the Phoenix-Tucson
area, and Table 5-5 presents these results in terms of the success ratio
(number of features of a given type found divided by the number sought)
for the various feature types and search area-prototype temporal separa-
tions. Inspection of Table 5-5 reveals high success in bands 5 and 7 for
land-water interfaces, mountain peaks, a:id hills, and in band 7 for air-
fields. Attempts to locate precisely the boundaries of agricultural
fields were frustrated by the change which occurred in these features,
over time.

Tables 5-6 and 5-7 present the corresponding results for the Chesapeake
Bay area. The predominant features employed in this area were land-water
interfaces and interstate-grade highways. SSDA performance on land-water
interfaces was more successful in bands 6 and 7, and on interstate-grade
highways was more successful in band 5.

By employing an appropriate combination of feature type and spectral band,
one can obtain successful registrations in a minimal time. For example,
for the data presented here, a selection based on the spectral band fea-
ture type combinations which exhibit the highest success ratios is pre-
sented in Table 5-8.

Under IRAD funding, an experiment was conducted to see whether revision
of the SSDA threshold function could improve performance. The results,
summarized in Table 5-9, showed that altering the threshold function
could significantly decrease location times. However, no single func-
tion good for all features in a given spectral band was determined. In-
vestigation of this area is continuing.
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Table 5-5

REGISTRATION SUCCESS RATIOS AS A FUNCTION OF THE TEMPORAL SEPARATION
BETWEEN SEARCH AREA AND WINDOW AREA

Phoenix-Tucson Area

Temporal Band 4 Band 5 Band 6 Band 7
Separation
(Days)

Large Land-Water Interfaces

18 — 1.00 — 1.00
36 0.67 1.00 0.83 0.86
54 — 1.00 ~ 1.00
72 0.50 1.00 1.00 1.00
90 0.50 . 0.25 0.50 1.00
180 0.75 1.00 0.50 1.00
198 — — 0.43
234 — 0.67 — 0.67
252 1.00 1.00 0.00 0.80
306 0.00 0.00 — 1.00

Interstate-Grade Highways

18
36 -_ — '
54 _ '
72
90 • —
180
198 — — 0.67
234
252 0.67 0.67 0.33 0.00
306 0.67 0.33 — 0.33

Note: — indicates no data
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Table 5-5 (Continued)

Temporal Band 4 Band 5 Band 6 Band 7
Separation
(Days)

Airports

18
36
54
72
90
180
198
234
252
306

Small

18
• 36
54
72
90
180
198
234
252
306

--
0.00

—
— —1.00
0.00

—
—0.20
0.75

\
Land-Water Interfaces

__

0.67

—
—1.00
0.50

—
—1.00
1.00

0.50
0.00
1.00

—1.00
0.00
' —

—0.40
1.00

0.00
1.00
0.00

—1.00
0.50

—
— —1.00
1.00

—0.50

—
__

0.50
0.00
1.00

— —1.00

— —

e

__

1.00

—
—0.50
0.00

—
— —1.00
^̂

1.00
0.50
1.00_ ._

1.00
1.00

—
__

1.00
1.00

0.00
1.00
1.00

—1.00
0.50

—
—1.00
1.00

Non-Interstate-Grade Highways

18
36
54
72
90
180
198
234
252
306

__

0.25

—• — —
0.50
0.60

—
—0.50
0.50

_—

0.75

—
— —0.50
0.60

—
—0.50
0.50

.._

0.75

—
—0.25
0.00
0.50

—0.50

—

-*••.

0.75

—
— —0.50
0.40

—
—0.50
0.50

Note: — indicates no data
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Table 5-5 (Continued)

Agricultural Fields

Temporal Band 4 Band 5 Band 6 Band 7
Separation
(Days) .

18
36 1.00 1.00 0.00 0.00
54
72
90 0.00 0.00 0.00 0.00
180 0.00 0.00 0.00 0.00
198 —
234
252 — — 0.00
306 0.00 0.00 -- 0.00

Mountain Peaks, Hills

. 18
36
54
72
90
180
198
234
252
306

Note: — indicates no data

0.50

1.00
1.00

1.00
0.86

1.00
1.00
1.00

1.00
.1.00

1.00
1.00

0.50

0.00
0.50
1.00

0.80

1.00
1.00
1.00

1.00
1.00

1.00
0.86
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Table 5-7

REGISTRATION SUCCESS RATIOS AS A FUNCTION OF THE TEMPORAL SEPARATION
BETWEEN SEARCH AREA AND WINDOW AREA

Chesapeake Bay Area

Temporal Band 4 Band 5 Band 6 Band 7
Separation
(Days) . k

Large Land-Water Interfaces

18 0.40 0.33 0.93 1.00
108 0.36 0.36 0.57 0.57
288 0.79 0.64 1.00 0.93
378 0.64 0.71 1.00 1.00

Interstate-Grade Highways

18 1.00 1.00 0.94 0.94
108 1.00 1.00 0.63 0.38

• 288 0.88 1.00 0.63 0.44
378 0.88 0.88 0.75 0.88

Airports (Macadam)

18 0.00 0.00 1.00 1.00
108 1.00 1.00 1.00 1.00
288 1.00 1.00 1.00 1.00
378 1.00 1.00 1.00 1.00

Small Land-Water Interfaces

18 0.71 0.57 1.00 1.00
108 0.86 0.71 0.71 0.43
288 0.67 0.67 0.33 0.33
378 0.86 0.71 0.86 0.71

Airports (Concrete)

18 1.00 1.00 1.00 1.00
108 0.00 1.00 1.00 0.00
288 0.00 1.00 0.00 0.00
378 1.00 1.00 1.00 1.00
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Table 5-8

AVERAGE SSDA PERFORMANCE FOR SELECTED FEATURE-BAND COMBINATIONS

Average Average
Registration Success

Type/Band Time Ratio

Large Land-Water Interfaces/Band 7 2.08 sec 0.88

Mountain Peaks, Hills/Band 5 8.44 1.00

Airports/Band 7 15.44 0.81

Interstate-Grade Highways/Band 5 2.33 0.93
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Table 5-9. Effect of Revised Threshold

MSS BAND 7

GCP
ID

42

28

29

32

34

27

37

31

41

Description

Lake Pleasant Dam

Luke # 2 airfield

Luke # 1 airfield

Tailings Pond

Bend in Gila River

Gila Bend airfield

Mountain near Double Peak

Mountain at Redrock

Guachi Mountain

Scene 1337-17332
(Original

Threshold)
Time
(sees)

5.43

'69.74

69.88

5.72;

68.16

65.13

57.36

60.50

. 29.73

Success

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Scene 1283-17334
(Revised)

Threshold)
Time
(sees)

2.42

6.28

7.48

2.81

5.54

5.01

4.93

29.86

3.84

Success

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

MSS BAND 4

GCP
ID

6

23

17

15

16

19

10

9

7

27

11

14

Description

Apache Junction

Phoenix highway junction

Florence Junction

Luke #6 airfield

Rittenhouse airfield

River bend

Picacho Reservoir

Casa Grande road junction

Mountain peak

Gila Bend airfield

Redrock highway

Hill

Scene 1337-17332
(Original

Threshold)
Time
(sees)

28.44

9.46

58.27

39.43

49.95

55.42

2.20

5.34

29.80

48.38

6.07

62.23

Success

No

Yes

No

No

Yes

Yes

No

Yes

Yes

Yes

Yes

Yes

Scene 1283-17334
(Revised

Threshold)
Time
(sees)

4.64

4.63

13.33

4.53

5.08

5.41

1.67

3.74

6.11

5.44

4.24

7.55

Time

No

Yes

No

No

No

Yes

No

Yes

Yes

Yes

Yes

Yes
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Section 6. COMPARISON OF RESAMPLING TECHNIQUES

At present three different resampling techniques are being proposed for
application to ERTS data: nearest neighbor assignment, bilinear inter-
polation, and cubic convolution. This section describes the three tech-
niques and presents the results of a resampling experiment conducted
under this contract as well as some related investigations outside the
scope of the contract, conducted under IRAD funding.

6.1 NEAREST NEIGHBOR ASSIGNMENT

Of the three resampling techniques considered, nearest neighbor assign-
ment is the simplest and fastest to perform on a general-purpose digital
computer. Consider Figure 6-1. The pixels in the input and output im-
ages are rectangles whose centers have integer-valued coordinates. The
point (y,x) in the output image (y and x are integers) is mapped to the
point (v,u) in the input image (v and u are rational numbers). The out-
put image pixel at coordinates (y,x) is assigned the intensity value of
the input image pixel whose center is nearest to°the coordinates (v,u).
That is, the intensity value of the rectangular input image pixel con-
taining the point (v,u) is used as the intensity value of the output im-
age pixel (y,x).

If the horizontal scales of the input image and output image are not too
different, there will be one-to-one correspondence between line segments
of pixels in the input and output images. This is illustrated in Figure
6-2. Points 1, 2, and 3 in the output image are mapped to consecutive
points A, B, and C in the input image. These values need not be inserted
into the output image individually. Since they are consecutive in the
input image and in the output image, all three may be inserted at once
using the MVC instruction. Similarly, values of points C, D, and E may
be moved at once to points 4, 5, and 6. Then point F must be moved by
itself to point 7. Next, points F, G, H, and I are moved at once to
points 8, 9, 10, and 11. This process continues until the entire output
image array has been constructed. This is the basis of IBM's "Point
Shift" algorithm.

Moving several values at once is much more efficient than moving them
individually. In fact, efficiency increases as the move length increases
(see Table 6-1). Hence, another way to reduce computer processing time
is to maintain the original horizontal scales of the. input and output im-
ages .
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Table 6-1

POINT SHIFT PERFORMANCE

Horizontal Scale
ERTS Image Change Usual Move Length CPU Time*

RBV 4608 to 3648 3-4 300 sec

MSS 3240 to 3648 8-9 160 sec

*0n an IBM 370/155 computer

IBM has chosen its output image scale in order to obtain 1:1 000 000 scale
with a pixel size of 50 ym x 50 ym. This is a reasonably efficient scale
for MSS images, but is less so for RBV due to the much larger number of
input samples.

The major drawback to nearest neighbor assignment is the discontinuities
which are introduced by its zero-order interpolation. These produce a
"staircase" effect on slanting linear features with a particular orienta-
tion, which is visible upon close examination of the corrected images.
For users to whom this effect is objectionable, nearest neighbor assign-
ment is an unacceptable resampling technique.

6.2 BILINEAR INTERPOLATION

The bilinear interpolation'algorithm is given in Figure 6-3. Four input
image pixel intensity values are used to compute the intensity value of
each output image pixel:

11 + d «22 - X21> * Zll - d (I12 - \l>\ (1)

Various computer algorithms to implement bilinear interpolation are pos-
sible. For experimental purposes, IBM has written a bilinear interpola-
tion program which uses single precision floating point arithmetic to
evaluate formula CL). Although inefficient from a computer standpoint,
this method was chosen to minimize the programming complexity and main-
tain high accuracy.

Since bilinear interpolation requires at least six adds and three multi-
plies per output point, it is computationally more expensive to apply in
a general-purpose computer than nearest neighbor assignment. Bilinear
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Figure 6-3. Bilinear Interpolation
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interpolation smooths out the high spatial frequencies in the data and
eliminates the discontinuities present in data resampled with nearest
neighbor assignment. There is evidence that bilinear interpolation may
filter the data to such an extent that multispectral classification may
be degraded.

6.3 CUBIC CONVOLUTION.

The cubic convolution algorithm is illustrated in Figure 6-4. Sixteen
input image pixel intensity values are used to compute the intensity
value of each output pixel. The algorithm uses four input points in the
following way:

ik - a+d)

ik2a-2d+

k3

k4

jl-2Cl-d):

[4-8 (2-d) 5(2-d)2 - C2-d)3] (2)

(3)

Ik2

Formula (3) is evaluated for each row of four points. The four input image
intensity values Ikl, 1̂ 2> Jk3» Jk4 and horizontal distance d are used to
obtain an intermediate interpolated intensity value l£. Then these four in-
termediate interpolated values !•[, !£, I^> I/ and the vertical distance d1

are used in formula (3) to obtain the final intensity value lvu. Various
computer algorithms to implement cubic convolution interpolation are possi-
ble. IBM has written an experimental cubic convolution program which uses
single precision floating point arithmetic to evaluate formula (3). Al-
though very inefficient from a computer standpoint, this method was chosen
to minimize the programming complexity and maintain high accuracy.
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9
Cubic convolution (developed by TRW) is a good approximation to six x/x
interpolation, which is theoretically perfect for band-limited signals.
Thus, cubic convolution provides a high-quality resampling technique. Its
major disadvantage is its application cost. Since cubic convolution re-
quires at least 15 multiplies and 55 adds per output point, it is rela-
tively expensive to implement on a general-purpose computer. On a special-
purpose processor, however, cubic convolution is feasible, even for high-
throughput systems.

6.4 RESAMPLING EXPERIMENT

In order to produce a means by which the outputs of the three resampling
techniques could be compared, band 5 of scene 1002-18134 was processed with
all three techniques. The nearest neighbor assignment output was already
presented as Figure 3-9. The bilinear interpolation and cubic convolution
results are presented in Figures 6-5 and 6-6 respectively.

Figure 6-7 shows an enlarged area from each of the three processed images.
The image resampled by nearest neighbor assignment shows the expected stair-
case discontinuities. The bilinear interpolation image does not have these
discontinuities but appears less sharp. The cubic convolution image shows
neither the discontinuities of nearest neighbor assignment nor the blurri-
ness of bilinear interpolation.

In all three parts of Figure 6-7, the six-line discontinuities due to
sampling delay errors are visible. This is due to the fact that the pro-
grams contained no compensation for that effect. Sampling delay compen-
sation has been conducted under IRAD activity (see Section 6.5.2).

The production times on an IBM 370/155 for the three images were 160
seconds for nearest neighbor assignment, 2160 seconds for bilinear inter-
polation, and 4980 seconds for cubic convolution. These times are not
really meaningful, however, since (as mentioned previously) the bilinear
interpolation and cubic convolution programs were not efficiently coded.
It is estimated that efficient coding could reduce those production times
by 30 percent.

6.5 RELATED IRAD INVESTIGATIONS

IBM has conducted two investigations related to resampling under its IRAD
program. The results of these investigations are described below.
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Figures 6-5 through 6-7 are contained in the
envelope at the back of this report.
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6.5.1 Resampling Error Measurement

The three methods of Image interpolation were compared by generating
histograms of the pixel differences between an image obtained by inter-
polating pixel values and an image obtained by sampling at the appropri-
ate position.

To accomplish this, a set of eight digital images (four of urban areas,
four of natural features) whose samples represented 3 meter square spots
were processed to simulate the images which would be obtained using an
80 meter square spot, with 1.4 samples/IFOV along the scan direction,
and 1.0 samples/IFOV transverse to the scan direction. The three inter-
polation methods were then applied to the simulated images, generating
images composed of samples interpolated to halfway between the lines and
samples of the simulated images.

The original images were then processed again, this time to produce simu-
lated Images whose sample locations corresponded to those of the inter-
polated samples. Histograms of the differences of corresponding images
were then made. Typical examples of these histograms are presented in
Figures 6-8 and 6-9.

The histograms provide an indication of the relative intensity error to
be expected when these three interpolation techniques are employed to re-
sample digital imagery. They also provide a caution against the conve-
nient assumption that interpolated samples accurately reproduce the
samples which would be obtained on another sampling lattice. While the
sampling theorem specifies the conditions (i.e., a band limited signal
spectrum) which would permit an exact resampling, in practice one is
dealing with signals which either do not satisfy that condition, or which
have been distorted (i.e., filtered) to satisfy it. In the former case,
resampling can in principle be only approximate. In the latter case, one
can exactly reproduce an approximation of the original analog signal.

The histograms show that, as a resampling technique (i.e., a method of
estimating samples on a lattice other than the one on which available
data samples exist), cubic convolution is more accurate than bilinear
interpolation, which in turn is more accurate than nearest neighbor as-
signment. However, even with cubic convolution, resampling errors may
be on the order of 10 counts, and a one count error is more likely than
no error at all.

6.5.2 Additional Distortion Correction

At present, the ERTS NDPF applies no correction for sampling delay errors.
This practice has drawn criticism from portions of the user community.
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IBM has developed experimental versions of programs which combine the
compensations for all geometric distortions (including sampling delay
errors) into a single, composite geometric correction. In these pro-
grams, all the geometric distortions for which compensation is provided
are corrected in a single resampling. Programs have been written around
the bilinear interpolation and cubic convolution resampling techniques
discussed above. (A nearest neighbor assignment program incorporating
sampling delay error compensation was not implemented, since the sam-
pling delay offsets would only be shifted by nearest neighbor assignment.)

Band 5 of scene 1002-18134 was corrected with each of the correction pro-
grams, with the results shown in Figures 6-10 and 6-11. Enlargements of
a subimage area are given in Figure 6-12. The sampling delay discontinu-
ities have been removed. Otherwise, the comments made with regard to
Figure 6-7 apply to Figure 6-12 also.

Production times on a 370/155 were 2880 seconds for bilinear interpolation
and 6900 seconds for cubic convolution, reflecting the fact that neither
of these programs was coded efficiently. Efficient coding might reduce
these times by 30 percent ' «
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Figures 6-10 through 6-12 are contained in the
envelope at the back of this report.
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Section 7. CONFIGURATION ANALYSIS

This section describes five hardware configurations for operational ERTS
data correction systems. The configurations are analyzed in terms of
their components, operations, throughput, system cost, and cost per scene.
It should be noted that the figures presented herein are estimates to be
used for planning purposes only and do not represent any offer or commit-
ment on the part of IBM.

7.1 CONFIGURATION AND PROCESSING DESCRIPTIONS

The processing steps assumed and the configurations developed to perform
them are defined below.

7.1.1 Processing Definition

For each configuration considered, a processing day of 16 hours at 75
percent efficiency (12 hours of actual processing) was assumed. Each
configuration was assumed to perform the following processing steps:

Step 1:

Input imagery is read from magnetic tape and transformed
to a pixel interleaved (by band) format.

Supporting data (e.g., ephemeris) is read.

The image data is radiometrically corrected by table
look-up.

GCP and reseau search areas (as required) are extracted
from the input stream and stored for subsequent detection
operations.

Step 2:

• GCPs are located in the image data.

• Reseau (for RBV images only) are located in the image data.

• Required geometric correction functions are generated.

These processes are not overlapped with I/O operations.
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Step 3:

Step 4:

Geometric correction is applied, using nearest neighbor
assignment as the resampling technique.

The corrected, annotated data is written to magnetic tape
in pixel interleaved format.

User requested scenes are selected from the master output
tape and copied onto 800/1600 BPI tape.

Figure 7-1 is a set of graphs of the CPU time required to perform the
first three processing steps on various machines. The fourth step is
constant for all configurations since it is almost totally dependent on
the I/O time required to write the 800 or 1600 BPI tapes.

7.1.2 Configuration Definitions

The five configurations considered are defined in Table 7-1. For the
highest-throughput configuration (configuration E) a variation including
direct output to a laser beam recorder (LBR) was also evaluated.

7.2 MAN-MACHINE INTERACTION

All configurations analyzed include an operator station with gray scale
displays and keyboards. Cloud cover and quality assessment will be a
manual operation, wherein an operator will view a scene and key into the
information management system his assessments.

A more significant manual operation concerns ground control points (GCPs).
It is possible for a man to identify ground control points using a gray
scale display by employing an interactive "zooming" procedure wherein he
identifies a candidate position on the screen and is presented with an
expanded view of the area. After several expansions he will be viewing
a sufficiently detailed area to identify a particular scene. Given a
reference notebook containing properly scaled ground control point areas
he will be able to compare the screen with the reference material to iden-
tify the GCP. This method is feasible in a low throughput system pro-
cessing MSS scenes only. Assuming 12 GCPs are required per MSS scene and
that 2 or 3 expansions will be used for a GCP, a completely manual GCP
detection operation would require approximately 15 minutes per MSS scene
which would extend even the lowest throughput system analyzed by more
than 10 minutes per scene. RBV scenes pose a still greater problem since
GCPs would be required for each RBV band.
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A more acceptable arrangement would be to use the Sequential Similarity
Detection Algorithm (SSDA), an automatic digital GCP detection technique,
augmented with a manual backup. The same "zooming" technique as described
above could be used as back-up upon notification by the system that suf-
ficient GCPs could not be found automatically. The cost in time for this
operation will vary widely due to the many factors which affect the effi-
ciency of automatic GCP detection.

A third arrangement is to rely still more heavily on the automatic tech-
nique by providing for the searching for an excess number of GCPs and
presenting results to the screen for verification by the operator. In
this approach, as results are computed, a split screen is presented with
1) the original area displayed intact and 2) the original area with the
library GCP area inserted at the computed position. The advantages of
this approach are:

e Timely response, since only a rejection needs to be communicated
* to the system (acceptance is the default)

• Accuracy, since experimentation has shown that registration
failures are typically gross rather than narrowly off the
mark, so that manual detection of erroneous registration is
likely

• Simplified implementation, since much less new software is
implied in this approach than a more manually oriented one.

For these reasons, this third approach is the one assumed in the following
analysis.

The effects of another choice for GCP detection .on the following analysis
can be extrapolated, so that no need exists for extensive investigations
into the effect on each configuration considered below. In general, a
more manually oriented GCP approach will have a more significant impact
on higher throughput systems, since the manual operations are constant
among configurations.

7.3 HARDWARE CONFIGURATION ANALYSIS

The five configurations studied are discussed in the following sections.

7.3.1 Configuration A

The components of this configuration are.pictured in Figure 7-2. During
Step 1, image data is read from 800 BPI CCT one scene at a time into a
general purpose processor. Radiometric correction and reformatting are

7-5



accomplished, and the Image data is temporarily stored on disk. GCP
and reseau search areas are held in main memory only as long as they are
needed for Step 2 processing. When Step 2 processing is complete, the
data is read from the disk; geometric correction is applied; and the fully
corrected data is output on 6250 BPI CCT.

The performance and cost of this configuration, using five different
General-Purpose Processors (GPPs) are shown in Figure 7-3 and Table 7-2.

Image Data

800 (CCT
BPI

General Purpose Computer

Select.
Chan. 1

Select.
Chan. 2

Support
Data

Master Copy
User Copies
6250 & 800/1600 BPI

Multiplexer
Channel

Figure 7-2. Configuration A Diagram

Figure 7-3 shows that Step 1 processing is a bottleneck. With the lower
models, CPU processing severely restricts throughput. Even with the
most powerful processor, very large throughput is precluded by the I/O
time required to read 800 BPI tapes.
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7.3.2 Configuration B

Configuration B, shown in Figure 7-4, overcomes the input bottleneck of
configuration A by using HDDT as the input medium. Otherwise, operation
and equipment are the same as in configuration A.

From Table 7-3 and the graphs of Figure 7-5, it can be seen that although
throughput is greatly improved in the high range of processors (158 and
168) with a corresponding reduction in scene cost, the lower range of
computer is not improved since these were compute bound in Step 1
processing.

Image Data
Block
Multiplexor
Channel

Support
Data

Master
Copy
6250 BPI

User
Copies
800/1600 BPI

General Purpose
Processor

Selector
(Tnan. 2

Multiplex-

Data
Ada]
UnJ.

t

3 tor

/

Card
Reader

Printer

Figure 7-4. Configuration B Diagram

7.3.3 Configuration C

Improved Step 1 performance is achieved in configuration C, shown in
Figure 7-6. Image data is read from HDDT one scene at a time and is
reformatted and radiometrically corrected in a microprogrammed Special-
Purpose Processor (SPP) . From this point on, processing is the same as
in- the previous configurations.
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The performance and cost estimates for this configuration are presented
tn Figure 7-7 and Table 7-4. Step 1 processing is now constrained by
the I/O rate (estimated to be 7 x 105 bytes/sec.) that can be maintained
to disk, where the image data is stored prior to Step 3 processing. Step
2 processing is also a major constraining factor for this configuration.

Image Data

Special
Purpose
Processor

Block
Multiplexer
Channel

Selector
Channel 1

General Purpose
Processor

Selector
Channel 2

Multiplexor
Channel

Control
Unit

1
i f

support Master User
Data Copy Copies

6250 BPI 800/1600 BPI

Imagery,
etc.

Card
Reader

Printer

Figure 7-6. Configuration C Diagram

7.3.4 Configuration D

Configuration D, shown in Figure 7-8, overcomes the disk I/O rate con-
straint by writing the radiometrically corrected data on HDDT. An entire
orbital pass of data is processed through Step 1 and recorded on HDDT.
GCP and reseau search areas are extracted and stored on disk while the
image data is passing through the GPP.

A geometric correction function is computed for the entire MSS pass
(rather for each individual scene), thereby reducing the Step 2 pro-
cessing load. This is possible, since the MSS scans a continuous swath
of data. Since RBV scenes are discrete entities, they must be corrected
individually.
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Ô
06 H
P-c CO
pj Q

§
W
P-.

w

m
<

I
u

CO M

8
K
td

Pi 2M 5
tt O

CO O

< M

7-14



0)
4J
cd

1
<U
4J
c

0)
CO
o
B. 3

•V1-1
Q)
M
cu
C

cS

I-l
0)X
cu
rH

^ 51
A! -H
U 4J
O f-4
i-l 3
« S

r-( 0)
cd co
•H O
0 p
« c
P. 3

0;

/^

t

s
s
o
r

<u
o
o
M

P-l

r-t
0)

pj rH

X!
O

M
Q

(0
CO

• 8
o

>BI

»«I

2 ^

M
CU
X
CU
rH

^
U 4J
O rH
rH 3
PQ £

4J
3
Q.

>
d
ia

te
/0

u
t

CM

H
CU
a
§

JZ
U

r

^

s
0)

p
•H
4J
rH

e
c
to

r

r-l
CU

CO

I
<u
4J

A

\
s~*

EH

i-l
0)iTO

£

rH
0)

itS
6

Q)

•* \
«-• 1

• VI
CU

•a n3
n cd
cd cu
U Pi

v

0
4J

Cd (X4.

rH
Q

t-l 4-1

£ £

U

rH

2
§ -H

cu 5

i >

.1cu \
4J \
C \
•H \
M
» )

1

C^ TJ
rH t-l

CO O
V -H ) &

* \ ° A *
" V X \ ^

ATT\
-̂H» 1 W M OC ^ - 60 4J

/ PL , 0 CU /
\ / U p /V o p* /

co
0)
•H

£

/ r N J ^ 1

i — ( H V01

V ̂  ^ "

ll

I
M
to
CD
•H
P

fi

Pi
O

rt
Ma
•H

•a
cS

oo

cu

M J O O
Q CN

P O
P <M

7-15



For Step 3, the entire pass of data is read from HDDT, geometrically
corrected in the GPP, and written onto HDDT.

As Figure 7-9 and Table 7-5 show, system performance is greatly improved
in this configuration. Step 1 is now limited by the channel rate rather
than the disk rate. Step 2 processing for MSS scenes is reduced; and
Step 3 I/O time is reduced, since it, too, is limited by the channel rate
rather than the disk rate.

7.3.5 Configuration E

The final configuration considered (shows in Figure 7-10) uses a second
SPP to perform the extensive byte manipulation required for geometric
correction.

The GPP is used only for GCP and reseau detection and for correction
function computation. With this arrangement, Steps 1 and 2 are being
processed for one pass of data while Step 3 processsing is done for a
previously preprocessed pass.

The performance and cost estimates for this configuration are shown in
Figure 7-11 and Tables 7-6 and 7-7.

Table 7-6 shows cost data without considering the LBR, to permit easier
comparison with earlier configurations. Table 7-7 shows system and
scene costs, including the LBR.

The per scene cost for RBV scenes is slightly increased with this con-
figuration. However, the greatly decreased per scene cost for MSS more
than balances the difference. The combined cost for one MSS and one RBV
scene is less in this configuration than in earlier ones.

7.3.6 Configuration Summary

This section presents a summary of the results for all configurations.
Tables 7-8, 7-9, and 7-10 present in order scene throughputs, config-
uration costs, and scene cost. Two sets of figures are given for con-
figuration E, as stated earlier.

Throughput figures are given in scenes per day, assuming 12 hours per
day for the precision processing analyzed here. Many throughput figures
are far beyond any daily requirements anticipated but are listed as a
measure of excess power available for other tasks, for example, produc-
tion of user tapes. As mentioned earlier, production of user tapes will
be constrained by the I/O to those 800 or 1600 BPI tapes and therefore
will differ only negligibly from configuration to configuration.
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Figure 7-10. Configuration E Diagram
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â
wc/̂

>§

COg.

^s
CO

%

J>8
COs

«
0

w
to

o

M

oo

M

sj-
•

Moo

i_(
sr•

M
00
*

M

sr

M
CO
•

M

sr

M

00
•

M

sr

rH

g
CO

OO

CM
•

CO

CO

r**
•

a\
<t

o
i-H

sr
o

ON
rH

CM
•

rH

m•
co

CM

to

O

O

O

O

O

.O

O

o

O

o

CO

Oc

CO

vO

I~<

VO
*

rH'

sr

rH
•

rH

in

sr
rH

CM
*

rH
rH

CO

CM

O

CO
rH

t
f̂
•

CO

^

g

CM
0

CM

CM

m

"~J
f**

m
co

•̂
rH
CM

$
H
O
H
Q
W

M

§
O
O

p£ 55
U M CO
PM W

W Hw 55 5
2 W S3
M CJ M
H CO S

om

oo
CM
rH

m
rH

sr
in
so

VD'
CM
rH

sr
l-H

sr
vO

co
rH

O
sr

sr
o\
rH

K̂ f
l_3

H

^
Q
M

M̂
O
&
M

f̂
CM
ro

CO
CO

rH
O

CO
m

CO

Q
W

M

I

E*H r"*
g g

U CO

O 55
Prf M

P to

CM
•

in

CM
•

CO

ON

°̂CM

ON
in
CM

ON
ON

rH

•CO-

(£4
O
to§
M

d
M

om
vO

o
in•
CM

Om
o

mr*̂
•

CM

m

CM
rH

m
CM

co

0
m•
CM
CM

0m
sr

mr*.•
CM

m
f*s
•
m

•z
8to
wP-.

H
H

$
&

§ H
p4 cn
Py O

§
M
Piu

w

m

CA

I
Q
W

U

8

«
O
CO
CO

8
8
P-.

§

O
M
P-,

I
B
O

< z Ho ^
tO M H
M H W

w c2 fe
52 W 5
w ft. 8

o as
53 OOS

W & M
p^ Q H

to o w
M O

I I I

< M O

7-22



co
H
S31§
U
to

oo
vO

OO
m
fH

min
rH

insr
iH

m
CO

•

<̂

J
kft*

f
4J
C
PQ

>

PC

to

*
-e
c

"9.B

to

*̂
o
PQ

>

tQ
K

%

f

4-
O
PQ

i
»
a
43
4
Om

>s
to

<«
1c

r
I

H |4

COsr

sr

fHsr
rH

00
co

in

ô
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APPENDIX A

MSS PRECISION PROCESSING ERROR ANALYSIS

The effects of error sources of three types are considered in this

analysis: input errors, internal errors, and propagated errors. Input

errors are constants or distributions which are based on information

external to the MSS precision processing system. Internal errors

result from approximations in mathematical models, so that a process

having accurate input produces erroneous output. Propagated errors are

transmitted (in general nonlinearly) by a process, so that erroneous

input must be compared with erroneous output. The results reported in

Section 5 include effects of significant errors in the three categories.

1. Analysis Plan

Figure A-l shows the geometric corrections and transformations of the

MSS precision process, and the input errors for the process. Details of

the process were reported in References 1 and 2.

Figure A-2 shows the grouping of consecutive corrections and/or

transformations for purposes of the error analysis. The GCPCOR sub-

routine, which is iterated in Figure A-l, is shown only once in Figure A-2,

since what is sought for each "box" is the sensitivity matrix which

relates the Ax, Ay errors in the Ground Control Points (GCP's) on

the image to the Ax, Ay errors in the same points after the corrections

indicated in the figure have been made. The elements of the sensitivity

matrix are partial derivatives of the values of output variables of a

process with respect to the input variables. Therefore the sensitivity

matrix is a function of the operating state vector, whose components

in this case are attitude and altitude parameters. Since the attitude

angles are small (1 degree or less), one pass through GCPCOR with an

initial estimate of each angle equal to zero should define the operating

state vector with sufficient accuracy for the purpose of sensitivity

matrix computation. Spacecraft velocity measurement error, which is shown

as an input to GCPCOR in Figure A-l, was specified by GSFC as a one-sigma

error of 0.003 m/sec. Since this value is considered negligible, the

error source is not shown in Figure A-2.
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Also in Figure A-2, a set of uniformly distributed error check

points is indicated as input to the anchor point mapping subroutine.

The output-to-input mapping of each of these points is subject to grid

computation errors, anchor point mapping errors, error due to the

fitting of a bivariate quintic polynomial to the anchor point mapping

function, error due to the point shift algorithm, and film recording

error.

The error check points are shown in Figure A-3 and summarized in

Table A-l. The rectangular grid containing these check points includes

90% of the area of the output image. In Section 5 two sets of diagrams

of one-standard-deviation error ellipses centered at the check points

are shown. One set of relative error ellipses includes the effect

of the bias error introduced by computing positions relative to

the format center; -the other set of absolute error* ellipses does not

Include this bias. Composite error ellipses of both types are shown

with and without the effect of film recording errors.

2. Input Errors

As defined in the introduction, input errors are constants or

distributions which are based on information external to the MSS pre-

cision processing system. These errors are used as input data for the

computation of propagated errors discussed in Section A and are therefore

included in the composite results reported in Section 5. The input

errors enter the MSS precision process where shown in Figures A-l and A-2.

The assumed input error values are summarized in Table A-2 and

discussed in the following paragraphs. The results of Section 5 can

be modified to reflect different input error assumptions by re-running

the programs with inputs different from those of Table A-2.
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Table A-l. MSS Error Check Points

Pt. No.

1

2

3

4

5

' 6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

X

-1730

-1730

-1730

-1730

-1730

- 865

- 865

- 865

- 865

- 865

0

0

0

0

0

865

865

865

865

865

1730

1730

1730

1730

1730

Y

-1730

- 865

0

865

1730

-1730

- 865

0

865

1730

-1730

- 865

0

865

1730

-1730

- 865

0

- 865

1730

-1730

- 865

0

865

1730

(Coordinates are in

output pixels.)

A-6



Table A-2. Input Errors

ERROR SOURCE ERROR VALUE (1 Standard Deviation)

Along-track

Cross-track

UTM Map

UTM Measurement

Ephemeris 1

Measurement j

Image Measurement

S/C Velocity Measurement

Mirror Velocity Correction

Polynomial Fit

Grid Point Computation

Point Shift Algorithm

Film "I Circumferential

Recording J Axial

7.39 m.

5.00 m.

100.00 m.

30.00 m.

0.5 input pixels

zero

0.7 input pixels

0.01 output pixels

0.06 output pixels

0.29 output pixels

0.391 output pixels

0.858 output pixels

Composite error:

8.92 m.

•- A-7



UTM Map Error. National Map Accuracy Standards specify that

90% of map points must be located with a tolerance of 1/50 inch for

scales of 1:20,000 and smaller. The scale of the maps used to locate

ground control points (GCP's) is 1:24,000, so that 1/50 inch corresponds

to a 1.65-sigma ("sigma" = "standard deviation") error of 40 feet or

12.19 m. Therefore the 1-sigma error is 7.39 m.

UTM Measurement Error. The scale precision used in measuring GCP

map locations was 10 m. It was assumed that the 1-sigma error was 5m.

. Composite GCP Geographic Location Error. The UTM map and measure-

ment errors were assumed to be independent, and the composite 1-sigma

error was calculated to be 8.92 m, which is the RSS (root sum of squares)

function of 7.39 m and 5m.

Ephemeris Measurement Errors. 1-sigma errors in nadir point
4

tion are the following

track (longitudinal), 30 m.

location are the following: along-track (latitudinal), 100m; cross-

Image Measurement Error. The 1-sigma error in input image

location of GCP's is estimated to be 0.5 pixel. This estimate is

based on experience in interpretation of computer shade prints.

Spacecraft Velocity Measurement Error. The 1-sigma error in

spacecraft velocity measurement is 3 mm/sec, relative to nominal

velocity of 7.39 km/sec. This error is considered to be effectively

zero.

Mirror Velocity Correction Error. Data contained in Reference 5

was used to compute an estimate of 1.09 input pixels for the standard

deviation of the errors in the ERTS NDPF mirror velocity profile. An

independent IBM profile was,developed, which corrects images with a

mapping error less than that of the ERTS NDPF model. The estimated

standard deviation of the IBM profile is 0.7 input pixels.

- A-8



Polynomial Fit Error. Based on empirical observation of the

differences between the Anchor Point Mapping subroutine (APM) and the

polynomial approximation of the APM, the 1-sigma error in the latter

was estimated to be 0.01 output pixels. The corresponding variance

of 0.0001 output pixels has negligible effect on the propagated error.

Grid Point Computation Error. The interpolation grid points are

computed so that the magnitude of the interpolation error in either x

or y will be less than 0.1 pixel . The error is assumed to be uniformly

distributed as indicated by the symbol U[-0.1, 0.1], The variance of a

uniform distribution U[a, b] is given by the formula

o2{U[a, b]} -

(2.1)

2
Therefore o {U[-0.1, 0.1]} - 0.00333 and the standard deviation is

o {U[-0.1, 0.1]} - 0.05774 output pixels.

Point shift Algorithm Error. The "nearest neighbor" replacement

procedure of this algorithm induces a maximum error of 0.5 pixels in

the magnitude of either x or y. This error is assumed to be U[-0.5, 0.5].
2

By application of (2.1), a {U[-0.5, 0.5]} = 0.08333 and the standard

deviation is a{U[-0.5, 0.5]} - 0.28868 output pixels.

Film Recording Error. An error study was made of the IBM Scanner/

Plotter, and the results of this study were obtained In the form of

tables of circumferential and axial errors as functions of linear

distances measured on the drum. These measurements were converted

from mils to output pixels and the standard deviations shown in Table A-2

were computed. One component of the circumferential error was due

to circumferential film stretching which occurs in mounting film on

.the drum. Since this error source was eliminated by a hardware

modification, the data was modified so that the standard deviation

of the circumferential error does not reflect the film-stretch error

source.
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3. Internal Errors

As defined in the introduction, internal errors result from

mathematical approximations, so that a process having accurate input

may produce erroneous output.

The following potential sources of internal errors are shown in

Figure A-l.

o Transformation from UTM to latitude/longitude coordinates

o Transformation from latitude/longitude to tangent plane

coordinates

-o Scan skew correction

o -Pitch, yaw, and spacecraft velocity corrections

o Earth rotation correction

o Earth curvature correction

o Differential scaling correction

o Attitude/altitude fit

o Roll computation

o Format Center computation

o Transformation from image to UTM coordinates.

Each of these error sources is either negligible or does not involve any

error approximation, with the exception of the attitude/altitude fit

computation. The internal errors are discussed in the following

paragraphs.

Transformation from UTM to Latitude/Longitude Coordinates. The

program which accomplishes this transformation was obtained from the

United States Geological Service (USGS). The mathematical error in

this program is effectively zero and IBM tests obtain essentially exact
Q

agreement with an Independently calculated set of tables .

Transformation from Latitude/Longitude to Tangent Plane Coordinates.

This transformation (see Reference 1, page 17) may be written in

the form

(XT, YT, ZT)1 - RMV (3.1)

- A-10



where the prime symbol signifies transposition, M and V are a matrix

and vector function, respectively, of latitude, longitude, and azimuth

angles. R represents the geocentric distance to a point of interest

(e.g., a GCP) and is calculated by the following formula:

R2 - h2 + 2hA 2cos 2X + B 2s in 2X+ A*co%* * BAsin2X
A cos X + B sin X C • /

In the equation stated in Reference 1, the elevation h was assumed to

be zero for all points. However, since this assumption would introduce

a significant error for an image with a large range of elevation values,

the more general function (3.2) was programmed. Examination of (3.2)

shows that h + B < R < h + A as X ranges from 0° to 90°. Since GCP's

are located on maps with a 10-meter contour interval, it follows that the

maximum error in R due to a measurement error h is 5 m. From the preceding

inequality, and the fact deduced from (3.1) that R is a scale factor for

tangent plane coordinates, it follows that the maximum tangent plane error

in either XT or YT ranges from 1824(Ah)/A to 1824(Ah)/B, where Ah = 5m;

A » 6,378,165 m; B = 6,356,783 m; 1824 = maximum output-pixel coordinate

for any image point. The maximum tangent plane error in either XT or YT

is therefore 0.0014 output pixels, which is negligible. This is the only

source of internal error in the transformation.

Scan Skew Correction. The only source of internal error which is

reflected in this computation is the spacecraft velocity error, which

was reported in Section 2 to be negligible. Since no approximation is

used, this process contributes no significant internal error.

Pitch, Yaw, and Spacecraft Velocity Correction. Spacecraft velocity

correction does not require mathematical approximation; therefore there is

no internal error. Pitch and yaw corrections are applied both in the

GCPCOR and Anchor Point Mapping Subroutines of Figure A-l, and are

discussed subsequently under, the heading "Attitude/Altitude Fit".

Earth Rotation Correction. No mathematical approximation is used

lis computation. However, the formula for computii

point velocity in the orbital plane) is the following:

in this computation. However, the formula for computing v (subsatellite
8
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.̂̂  (H.4Z) (3.3)

where R^ is the geocentric distance to the subsatellite point, LI = 398604
3 2km /sec is the gravitational parameter of earth, v = 7.39 km/sec is the

nominal inertial velocity of the spacecraft , and Av/v = 0.01 is the normalized

delta velocity ratio, specified on the Bulk Image Annotation Tape (BIAT), over

the 27.6-second interval centered around the format center time, v in this
3

ratio is nominal spacecraft ground track velocity, the product v Rp/M in

(3.3) is equal to the nominal subsatellite point velocity and the factor

1 + (Av/v) compensates for the variation from the nominal velocity v.

The only sources of error, other than computational ones, are v and Av/v

in (3.3). The maximum orbital decay allowed before orbit adjustment, as

measured by the decrease in length of the semimajor orbital axis, has been

150 meters , which corresponds to an .increase in the value of v of about

0.00008 km/sec, a negligible amount. The error in Av/v is about 1% ,

which imples an error in computing v of about 0.0001 km/sec, since
3

A v/v • 0.01. Therefore the error in computing the earth rotation correction

is negligible.

Earth Curvature Correction. The polynomial formula which includes

the MSS earth curvature correction is stated in Reference 1, page 28. The

portion of this polynomial which corrects the image Y-coordinate for earth
3 25curvature is KY + K Y , where K = -1/2R̂ H, and where H is the nominal

spacecraft altitude and R^ is the radius of the reference ellipsoid. The

total image displacement AY due to earth curvature can be geometrically shown

to be12

AY « -DY/R (3.A)
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2 2
where R = x + y is the distance from the format center of the

output image to an arbitrary point and

- R2 )

H + Rg - VR2, - R2 (3.5)

is the amount by which an output image point must be moved when mapped into

the input image. If (3.5) is binomially expanded as a quotient of two

series in powers of R/Rg, and powers of R/R^ greater than or equal to 4 are

dropped, (3.5) is approximated as

D = -KR3(1 + KR2) (3.6)

where K has been previously defined. Substituting (3.6) into (3.4), there

results the polynomial function

AY - KYX2 + KY3 + K2YX4 + 2KY3X2 + K2Y5 (3.7)

which is the RBV displacement in Y. To obtain the MSS displacement

previously stated, set X = 0. The calculation of AY is exact, except for the

approximation of D. The values of D given by (3.5) and (3.6) have been compared

for an image with 4125 lines and 4600 pixels per line; the exact and approximate

values of D differ by 0.0004 pixels. Therefore the error in the earth curvature

correction is negligible.

Differential Scaling Correction. The process of changing scale

(independently for x and y coordinates) from input-pixel to output-pixel

dimensions is arithmetic, and there is no source of internal error.

Attitude-Altitude Fit. As previously reported , the distortion

in a positive MSS Image caused by sensor altitude and attitude errors

(where X » 0 for each line) can be approximated by the functions

A.X - -H0 + Yi|;
A

. AAY - (H
2 + Y2)0/H (3.8)

where Qm pitch, i|>« yaw, and 0 • roll. The same displacement can be

computed exactly by the following formulas, which are geometrically derived.

V V + %x
AEY D V + V + V (3-9)
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where the right hand terms are computed as follows:

AX = 0

A Y (H2 + Y2) sin <j)
H cos 4> - Y sin <J>

A0X - -H tan 9 (3.10)
D

AftY =
 9 Y

6 cos 6

AX - (sin i}»)Y

AY - (cos ip - 1) Y

Approximate errors in the computation of AX and AY are given by

*V _ A V A VOA e A_A — A.A

(3.11)

6Y - A...Y - A.YE A

Preliminary evaluation of (3.11) for a set of eight points uniformly

distributed on a circle concentric with an MSS image and containing 68%

of the image area showed a maximum radial displacement v(6X) + (6Y) of

0.13 pixels. This computation assumed the maximum values of 0.7° for pitch

and roll, 1° for yaw, and 492.35 n.m. - 17,961.6 pixels for altitude. The

0.13-pixel error was considered significant and was included in the MSS

error analysis in the following way. Within the above bounds for $, 0,

and 4», and for AH « + 492 pixels (a liberal estimate corresponding to about

13 n.m.), a hundred vectors ( $, 6, if;, H) were randomly selected. For

each vector, the errors (3.11) were calculated, together with the variances

of the {6X} and {6Y} distributions. The corresponding covarlance matrix

for the error check points of Figure A-3 was formulated and introduced into

the propagated error computation (see Section 4) at the point of Figure A-2

following the Attitude-Altitude Fit computation.

Roll Computation. This process .requires only a numerical evaluation

of a fourth-order polynomial whose argument is time and whose coefficients

were calculated in the Attitude-Altitude Fit subroutine. There is no

internal error source.
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Format Center Computation. The only computations involved are the

transformations from the UTM coordinates to latitude/ longitude and

from latitude/longitude to the tangent plane. There is no approximation or

other source of internal error in these subroutines, as was explained previously

in this section.

4 . Propagated Errors

Propagated errors were previously defined as those transmitted (in

general nonlinearly) by a process, so that output errors must be calculated

from input errors. The following procedure is used to carry out these

calculations.

For each transformation subprocess shown in Figure A-2 a sensitivity

matrix M is calculated as follows. Let 6a and 6l> be the respective error

vectors of the variable input and output vectors, a and £, for a given

subprocess. Then the matrix M is defined by the equation'

60" - M6a* (4.1)

where if M - OB...I). the matrix element m,. signifies the partial derivative

of b. with respect to a . In general, m.. is a function of the state vector,

whose elements may be such parameters as ground control point measurements,

image location of point, nominal altitude, and nominal attitude. Now let

a. vary to a. + Aa. , where a - (a., a2, . . .) is nominal, and compute

Ab (1-1, 2, . . .). Then

Abi/Aaj

If C and C, are the variance/covariance matrices of 6 a and 6b\

respectively, and E means "expected value of", then C » E[6a)(6a) ] and
_, ci

C. « E[(6b)(6b) ] by definition, and C, can be expressed In terms of C byo ' D a
the following argument :

C. - E[(6t)(5t)T] . (4.3)
D
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Substituting from (4.1) Into (4.3), we have

- E[(M(6a)(6l)TMT]

- ME[(Sa")(6a)T]MT

- MC&M
T (4.4)

The numerical approximation (4.2) was used to calculate M for each trans-

formation process of Figure A-2 except for the attitude/altitude fit. In

this case, the sensitivity matrix was mathematically formulated in a least-

squares sense for an arbitrary set of GCP's, in Reference 1, page 27.

An output matrix C is calculated for each process of Figure A-2. Before

being used in the next process, C, may be combined with variance values

assigned to or calculated for any new parameters which appear in the following

process. Since, beginning with the introduction of error check points in
2 2

Figure A-2, C. consists of the respective variances (a ) and (a _) of theD ' x y
displacements Ax and Ay at each of the 25 points of Figure A-3, an error

ellipse with semi-axes o and o can be plotted at each such point afterx y
each process.

The absolute errors, as described in Section 1. were computed at two

points in the process of Figure A-2. First, they were calculated with the

point-shift error included, but without film recording errors. Second,

they were calculated for the total MSS process, including film recording

errors. In both cases, a and o were computed at each of the 25 errorx y
check points of Figure A-3.

After the absolute errors were calculated, errors relative to the format

center (see Section 1) were calculated at each error check point in the

following manner. A new relative-error sensitivity matrix for anchor

point mapping was calculated by subtracting the two row-vectors corresponding

respectively to the x- and the y-coordinates of the format center from the
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two sets of row-vectors respectively containing values of partial

derivatives relative to x and y. The new sensitivity matrix contains zero

values in the format center rows and the values in the other rows are

relative to zero.

The variance/covariance matrix due to point-shift error relative to the

format center was calculated as follows, where a subscript zero corresponds

to the format center, a prime symbol identifies absolute values, and unprimed
2

symbols identify relative values. It is assumed that (6 «) =0 and it is

known that

(6x)
2 - var(x' - x^) - (ox>

2 + (oxQ)
2 - 2 cov(x X̂p

The independence of the variables implies that cov(xlx') = 0, and it is
2 2 2 2 2

assumed that (a1) " (cr'n) - (a ) . Therefore (a ) = 2 (a1) for all rows
X XiJ X X . X

not corresponding to the format center. A similar argument shows that
2 2

(o ) =2(0') . Therefore, the new variance/covariance matrix is obtainedy y
by setting the format center rows to zero and doubling all other elements

in the absolute-valued matrix.

Film errors are assumed to be random over an image, and are always

measured relative to a given point on the film. Thus film recording errors in

the absolute sense are the same as those in the relative sense.

5. Results

Figures A-4 through A-7 show absolute and relative error ellipses at each

of the 25 error check points of Figure A-3, both including and excluding film

recording errors. The corresponding data is contained in Tables A-3 through A-6.

respectively. Table A-7 summarizes overall RMS and maximum errors for both

error classes, absolute and relative.

In each table, the RSS (root sum of squares) is computed at each

point by the formula

RSS - Mo)2 + (a)2
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The RMS (root mean square) in Table A-7 is calculated by the formula

SMS = VE(RSS)2 /N

where N » 25 for absolute errors and N =• 24 for relative errors, since

in the latter case the format center is excluded.
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TABLE A-3. Absolute Errors Including Point Shift and Excluding Film Recording

Point No.

a
X

a
y

RSS

pixels

meters

pixels

meters

pixels .

meters

1

0.997

50.6

1.157

58.8

1.528

77.6

2

0.793

40.3

1.085

55.1

1.343

68.2

3

0.806

40.9

1.088

55.3

1.354

68.8

4

0.984

50.0

1.163

59.1

1.524

77.4

5

1.229

62.4

1.295

65.8

1.785

90.7

Point No.

a
Jt

ay

RSS

pixels

meters

pixe}^

meters

nixpl R

meters

6

0.936

47.5

1.107

56.2

1.450

73.6

7

0.767

39.0

1.046

53.1

1.297

65.9

8

0.697

35.4

1.025

52.1

1.240

63.0

9

0.751

38.2

1.045

53.1

1.287

65.4

10

0.905

46.0

1.101

55.9 !

1.425 !

72.4 ]

Point No.

a
X

ay

RSS

pixels

meters

nlxels

mpters

pixels

mPt-pm

11

0.785

39.9

1.057

53.7

1.317

66.9

12

0.704

35.8

1.024

52.0

1.243

63.1

13

0.680

34.5

1.016

51.6

1.223

62.1

14

0.721
36.6

1.033

52.5

1.259

64.0

15

0.817

41.5

1.073

54.5

1.348

68.5

Point No.

a
X

ay

RSS

nixels

mp.tP-T"fi

nivplfl

meters

P i ypl R

THP t"PTT^

16

0.805

40.9

1.073

54.5

1.341

68.1

17

0.713

36.2

1.034

52.5

1.256

63.8

18

0.690

35.0

1.025

52.1

1.235

62.7

19

0.737

37.4

1.047

53.2

1.280

65.0

20

0.838

42.6

1.100

55.9

1.383

70.3

Point No.

a
X

a
y

RSS

Pi vpl e

TOP tPT"fi

P*f VP 1 ̂

mpfprfi

P^ ypi ̂

rap t*pfn

21

2.040

103.6

1.448

73.6

2.501

127.1

22

1.530

77.7 '

1.371

69.6

2.055

104.4

23

1.154

58.6

1.343

68.2

1.771

90.0

24

1.193

60.6

1.368

69.5

1.815

92.2

25

1.718

87.3

1.448 -

73.6 .

2.247

114.2
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o
ex • 0.997

0y • 1.157

O
ex • 0.936

oy - 1.107

O
ex - 0.785

0 • 1.057

:O
ex • 0.805

ey - 1.073nu
•0x • 2.040
ey • 1.44J

O
ox • 0.793

cy - 1.085

O
8x - 0.767

e - 1.046

O
ex • 0.704

o i — 1.024

O
Of - 0.713

« • 1.034

ox - 1.530
ay - 1.371.

O
8X - 0.806

«y • 1.088

O
ox • 0.697

o • 1.025

O
8x - 0.680

o - 1.016

O
ox • 0.690

0 • 1.025

8^ • 1.154
o* - 1.343

ex • 0.984

8y - 1.163

O
ox - 0.751

a • 1.045

O
8x • 0.721

e • 1.033

O
af - 0.737

o^ - 1.047

«x • 1.193
ov - 1.368

O
ey • 1.295

O
GX - 0.905

e - 1.101

O
ox - 0.817

e - 1.073

O
e - 0.838

8 - 1.100

nvj
8x • 1.718
av • 1.448

(Unit Is the Pixel.)

Figure A-4. Absolute Errors Including Point Shift and ,

Excluding Film Recording
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TABLE A-4. Absolute Errors Including Film Recording

Point No.

°x

*y

RSS

., pixels

meters

nixels

meters

pixels

meters

1

1.316

66.9

1.221

62.0

1.795

91.2

2

1.169

59.4 ,

1.153

58.6

1.642

3

1.178

59.8

1.156

58.7

1.650

83.4 I 83.8

4

1.306

66.3

1.227

62.3

1.792

91.0

5

1.499

76.1

1.353

68.7

2.019

102.6

Point No.

.
X

a
y

RSS

•nixels

meters

pixels

meters

n-ixel s

meters

6

1.270

64.5

1.174

59.6

1.730

87.9

7

1.151

58.5

1.117

56.7

1.604

81.5

8

1.106

56.2

1.097

55.7

1.558

79.1

9

1.141

58.0

1.116

56.7

1.596

81.1

10

1.247

63.3

1.168

59.3

1.709 !

86.8

Point No.

a
X

a
y

RSS

nlxels

meters

nixel s

meters

nlxels

TriPt*PrG

11

1.163

59.1

1.127

57.3

1.620

82.3

12

1.110

56.3

1.096

55.7

1.560

79.3

13

1.095

55.6

1.089

55.3

1.544

78.4

14

1.121

56.9

1.105

56.1

1.574

78.0

15

1.185

60.2

1.142

58.0

1.646

83.6

Point No.

a
X

a y

RSS

oixels

meters

•novels

meters

P-fvelf;

meter*;

16

1.177

59.8

1.142

58.0

1.640

83.3

17

1.116

56.7

1.106

56.2

1.571

79.8

18

1.101

55.9

1.097

55.7

1.555

79.0

19

1.131

57.5

1.118

56.8

1.590

80.8

20

1.200

60.96

1.167

59.3

1.674

85.0

Point No.

ax

°y

RSS

P "f Vpl «!

TTP tPTfi

P4 VP! *i

TT1P tPTfi

P^ ypl ft

TnPt"PT*C

21

2.213

112.4.

1.500

76.2

2.674

135.8

22

- 1.754

89.1

1.426

72.4

2.261

114.8

23

1.438

73.0

1.399

71.1

2.006

101. Q

24

1.470

74.7

1.423

72.2

2.046

103. Q

25 -

1.921

97.6

1.500

76.2 .

2.437

l ? V R
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OK • 1.316

c • 1.221

ô  - 1.169

o_ • 1.153

Ox m 1.110

o - 1.096

- 1.178

- 1.156

ox • 1.106

o - 1.097

ô  . 1.095

o - 1.089

af - 1.306

o - 1.227

0E . 1.121

a • 1.105

OE - 1.754
a » 1.426

1.101

1.097

- 1.438

- 1.399

OK • 1.131

« - 1.118

o^ - 1,470
o - 1.423

a ' 1.200

o - 1.921

o* - 1.500

(Unit 1> the Pixel.)

Figure A-5. Absolute Errors Including Film Recording
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A-5. Relative Errors Including Point Shift and Excluding Film Recording

Point No.

o
X

a
y

RSS

pixels

meters

pixels

meters

pixels.

meterp

1

1.018

51.7

0.797

40.5

1.293

65.7

2

0.829

42.1

0.694

35.3

1.081

54.9

3

0.852

43.3

0.703

35.7

1.105

56.1

4

1.028

52.2

0.815

41.4

1.312

66.7

5

1.269

64.5

0.993

50.4

1.611

81.9

Point No.

a
X

a
y

RSS

p-f vel«?

metern

n-f vels

meterfi

n-lxelfi

meters

6

0.953

48.4

0.686

34.8

1.174

59.6

7

0.781

39.7

0.5.85

20.4

0.976

49.6

8

0.705

35.8

0.545

27.7

0.891

45.2

9

0.751

38.2

0.575

29.2

0.945

48.0

10 i
1

0.898

45.6

0.664

33.7

1.117

56.7

Point No.

a*

a
y

RSS

Tilxeln

meters

ril xels

meters

pixels

mpf-pro

11

0.771

39.2

0.555

28.2

0.950

48.3

12

0.679

34.5

0.488

24.8

0.836

42.5

13

0.000

0.0

0.000

0.0

0.000

0.0

14

0.679

34.5

0.488

24.8

0.836

42.5

15

0.773

39.3

0.555

28.2

0.951

48.3

Point No.

a
X

o
y

RSS

Til Vel H

meters

n-txels

mpterc

nlxel K

meters

16

0.810

41.1

0.618

31.4

1.018

51.7

17

0.713

36.2

0.543

27.6

0.896

45.5

18

0.684

34.7

0.517

26.3

0.857

43.5

19

0.726

36.9

0.548

27.4

0.910

46.2

20

0.823

41.8

0.632

32.1

1.038

52.7

Point No.

a
X

°y

RSS

P{ VPl ft =

tnpteyfi

Pixfrls

tnPt&Tfl

P lxfilfl

met-gyp

21

2.100

106.7

1.248

63.4

2.443

124.1

- 22

1.605

81.5

.1.155

58.7

1.977

100.4

23

1.244

63.2

1.118

56.8

1.673

95, Q

24

1.273

64.7

1.141

58.0

1.710

86. Q

25

1.769

89.9

1.231

62.5 .

2.156

i nq . s
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0
a - 1.018

X

e_ • 0.797y

0
ox - 0.953

0 • 0.686

0
ax - 0.771

oy - 0.555

0
BX - 0.810
0 - 0.618nU
Cj - 2.100
oy - X.248

0.
9K • 0.829

0 - 0.694

0
o^ - 0.781
o - 0.585y

• 0
0^ - 0.679

0 - 0.488

0
Ox - 0.713
0 - 0.543

•r\
(J

ox - 1.605
a - 1.155

o
0 - 0.852 '

X

0 - 0.703y

0
o^ - 0.705

o - 0.545y

•

0 - 0.000

0 - 0.000

0
Ox . 0.684

a - 0.517

Ox -'1.244
o - 1.118

0
o - 1.028

X
o - 0.815y

0
af - 0.751
o - 0.575y

0
o^ - Oi679
0 - 0.488

0
a^ - 0.726
o - 0.548

r^
U

Ojt - 1.273
0 -1.141

0
0, - 1.269

X

o_ - 0.993y

0
o - 0.898

o - 0.664y

0
af • 0.773

o - 0.555

0
ox - 0.823
o - 0.632

ox - 1.769
a - 1.231

(Unit it the Pixel.)

Figure A-6. .Relative Errors Including Point Shift and

Excluding Film Recording
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TABLE A-6. Relative Errors Including Film Recording

Point No.

°x

o y

RSS

oixels

meters

pixels

meters

pixels

me tern

1

' 1.332

67.7

0.888

45.1

1.600

81.3

?

1.193

60.6

0.797

40.5

1.435

72.9

^ •*

1.210

61.4

0.804

40.9

1.453

73.8

4

1.339

68.0

0.904

45.9

1.616

82.1

";

1.532

77.8

1.067

54.2

1.867

94.9

[Point No.

k

°y

RSS

pixels

meters,

pixels

meterfj

pixel s

meters,

6

1.283

65.2

0.790

40.1

1.506

76.5

7

1.161

59.0

0.704

35.7

1.357

68.9

8

1.111

56.4

0.671

34.1

1.298

65.9

9

1.141

57.9

0.695

35.3

. 1.336

67.9

10

1.242

63.1

0.753

38.3

1.453 I

73.8

Point No.

°x

o
y

RSS

pixels

meters,

tilxels

meters,

pixels

tnpf pro

11
1.154

58.6

0.679

34.5

1.339

68.0

12

1.095

55.6

0.625

31.8

1.261

64.0

13

0.000

0.0

0.000

0.0

0.000

0.0

14

1.095

55.6

0.625

31.8

1.261

64.0

15

1.155

58.7

0.679

34.5

1.340

68.1

Point No.

°x

o
y

RSS

•nlxels

irpterp

Tilxel a

meters

nlxel s

T!lPtPT*B

16

1.180

60.0

0.731

37.2

1.389

70.5

17

1.116

56.7

0.669

34.0

1.301

66.1

18

1.098

55.8

0.648

32.9

1.275

64.8

19

1.124

57.1

0.673

34.2

1.310

66.6

20

1.189

60.4

0.743

37.8

1.402

71.2

Point No.

o
X

o
y

RSS

Pf V^l «!

metPTfi

P^ Vf*l Q

TUP t̂ T'C

PI Vf>l <5

mef.pyo

21

2.269

115.2

1.308

66.4

2.619

133.0

22

1.820

92.5

1.219

61.9

2.191

111.3-'

23

1.511

76.8

1.184

60.2

.1.920

97.5

24

1.535

78.0

1.206

61.3

1.953

99.2

25

. 1.966

99.9

1.292

65.6

2.353

119. S
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a - 1.206

(Unit 1* tha Pixel.)

Figure A-7. Relative Errors Including Film Recording
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TABLE A-7. Summary of MSS Error Analysis Results

Error Class

Including Point Shift and
Excluding Film Recording

Including Film Recording

Relative Error
(Meters)

RMS

66.9

82.2

MAX

124.1

133.0

Absolute Error
(Meters)

RMS

78.1

91.6

MAX

127.1

135.8
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APPENDIX B

RBV PRECISION PROCESSING ERROR ANALYSIS

The effects of error sources of three types are considered in this

analysis: input errors, internal errors, and propagated errors. Input

errors are constants or distributions which are either assumed or based

on information external to the RBV precision processing system. Internal

errors result from approximation in mathematical models, so that a process

having accurate input produces erroneous output. Propagated errors are

transmitted (in general nonlinearly) by a process, so that erroneous

input must be compared with erroneous output. The results reported in

Section 5 include effects of significant errors in the three categories.

Most of the input and internal error data, as well as the procedure

for calculating propagated errors, is the same for the RBV and MSS pro-

cesses. The later was documented in Appendix A; other references are

listed In Section 6 of Appendix A. Where RBV precision processing or

error analysis differs from the corresponding MSS process or analysis,

the differences are documented in the following sections. Otherwise,

Appendix A Is quoted.

1. Analysis Plan

Figure B-l shows the geometric corrections and transformations of the

RBV precision process, and the input errors for the process. Details of

the process were reported in References 1 and 2.

. Figure B-2 shows the grouping of consecutive corrections and/or trans-

formations for purposes of the error analysis. What Is sought for each

"box" In Figure B-2 Is the sensitivity matrix which related the Ax, Ay

errors In the Ground Control Points (GCPs) on the image to the Ax, Ay

errors In the same points after the set of corrections Indicated in the

figure have been made. The elements of the sensitivity matrix are partial

B-l
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derivatives of the values of output variables of a process with respect

to the input variables. Therefore, the sensitivity matrix is a function

of the operating state vector at a given point in Figure B-2.

Since the coordinates of the anchor points are calculated exactly,

the anchor points are not shown as an error source in Figure B-2.

Also in Figure B-2, a set of uniformly distributed error check points

is indicated as input to the anchor point mapping subroutine. The output-

to-input mapping of each of these points is subject to grid computation

errors, anchor point mapping errors, error due to the fitting of a bivari-

ate quintic polynomial to the anchor point mapping function, error due

to the point shift algorithm, and film recording error.

The error check points are shown in Figure B-3 and summarized in Table

B-l. The rectangular grid containing these check points includes 90% of

the area of the output image. In Section 5 two sets of diagrams of one-

standard-deviation error ellipses centered at the check points are shown.

One set of relative error ellipses includes the effect of the bias error

introduced by computing positions relative to the format center; the other

set of absolute error ellipses does not include this bias. Composite

error ellipses of both types are shown with and without the effect of

film recording errors.

2. Input Errors

As defined in the introduction, input errors are constants or distri-

butions which are based on information external to the RBV precision pro-

cessing system. These errors are used as input data for the computation
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Figure B-3. RBV Error Check Points



TABLE B-l. RBV Error Check Points

Pt. No.

. 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

X

-1730

-1730

-1730

-1730

-1730

- 865

- 865

- 865

- 865

- 865

0

0

0

0

0

865

865

865

865

865

1730

1730

1730

1730

1730

Y

-1730

- 865

0

865

1730

-1730

- 865

0

865

1730

-1730

- 865

0

865

1730

-1730

- 865

0

865

1730

-1730

. - 865

0

865

1730

(Coordinates are

in output pixels)
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of propagated errors discussed in Section 4 and are therefore included in

the composite results reported in Section 5. The input errors enter the

RBV precision process where shown in Figures B-l and B-2.

The assumed input error values are summarized in Table B-2 and dis- •

cussed in the following paragraphs. The results of Section 5 can be modi-

fied to reflect different input error assumptions by re-running the pro-

grams with inputs different from those of Table B-2.

The error sources and their values shown in Table B-2 are the same as

those for the MSS, except that spacecraft velocity measurement and the

mirror velocity correction have been deleted, since they are not appli-

cable to the RBV process. Measurement and location errors in reseau

points, which are not applicable to the MSS process-, have been included

in Table B-2.



TABLE B-2. RBV Input Errors

ERROR SOURCE ERROR VALUE (1 Standard Deviation)

Along-track

Cross-track

UTM Map

UTM Measurement

Ephemeris

Measurement

Image Measurement

|""lnput Image Location

|_Nominal Location Measurement

Polynomial Fit

Grid Point Computation

Point Shift Algorithm

Film ~j Circumferential

Recording J Axial

Reseaus

7.39 m.

5.00 m.

100.00 m.

30.00 m.

0.5 input pixels

0.289 input pixels

0.066 input pixels

0.01 output pixels

0.06 output pixels

0.29 output pixels

0.391 output pixels

0.858 output pixels

PComposite error:

L 8.92 m.



"Page missing from available version"



The discussion in Appendix A of the first two items and the last

two items in the above list applies without change to the RBV process. The

MSS internal error sources requiring scan skew, earth rotation, and roll

computation corrections are not applicable to the RBV process. The RBV

differential scaling correction is included in the reseau mapping sub-

routines of Figure B-l, and since no mathematical approximation is involved,

this correction is not listed as an RBV internal error source. The three

RBV internal error sources which require correction procedures substan-

tiallyx different from those of the MSS process are discussed below.

Earth Curvature Correction. The total image displacements AX and
12

A Y due to earth curvature can be geometrically shown to be

AX = -DX/R

AY = -DY/R • (3.1)

where D is the function (3.5) of Appendix A. The D approximate (3.6)

of Appendix A will not be used in the RBV process. Since the equations

(3.1) do not involve approximations, there is no associated internal error

source.

Resection. The attitude (pitch, roll and yaw angles) and altitude

of the camera at the moment of exposure are calculated by the photogram-

metric technique of resectioning. The geometric principle involved

(Reference 3, p. 50) is that each image-lens-GCP set of three points is

collinear and that any residual discrepancy is attributable to accidental

error of image measurement. The resection equations have the form

x - kM(X - Xc) (3.2)

where x is the vector of image Cartesian coordinates of a set of GCPs,

3C is the vector of Cartesian geographic coordinates of .the same GCPs,

X is the vector of Cartesian geographic coordinates of the camera, k is
c
a scaling factor, and M is the composite attitude matrix which rotation-

ally relates the ground and camera coordinate systems. When more than

B-10



three GCPs are available, a least-squares iterative algorithm is used to

solve the error equations. There are three sources of possible error in

these calculations: the set of threshold values used to terminate the

iterative loop, the noncommutativity of the factors of the M matrix, and

the approximation of the M matrix for small values of the attitude angles.

The four attitude values are initialized, and the error equations

derived from (3.2) are iteratively solved. Values of the four parameters

R, P, Y, and H (roll, pitch, yaw and altitude) are compared with the cor-

responding values at the end of the previous pass and the calculation is

stopped when each difference is less than the appropriate threshold

value of 1 microradian (less than 1 m. on the ground) for R, P, Y and 0.1

pixel for H, These errors in the attitude^ltitude corrections are negli-

gible.

The matrix M in (3.2) is obtained as the product of three elementary

rotation matrices, M_, >L, and M.., each of which is a function of one

attitude parameter. Since these matrix factors do not commute, the values

of the six possible ordered products formed from them were calculated,

using the maximum values of 0.7° for pitch and roll and 1.0° for yaw, and

all possible sign combinations. The maximum variation in the value of an

element of M caused by such permutation of its factors is approximately

0.0003, which corresponds to a displacement of a corner point of an RBV
—8image of about 8 x 10 output pixel, which is negligible.

The error equations for the resection calculated are formulated in

terms of an approximation M of the matrix M, which is obtained by letting

each of the P, R, Y angles approach zero, since their maximum values do

not exceed 1°. The maximum displacement of an image point (at a corner)

due to this approximation was calculated to be 0.04 output pixels,

which is negligible.



In summary, the composite Internal error associated with the .

resection process is negligible.

Roll. Pitch, Yaw, and Altitude Corrections. These corrections are

implemented in the RBV process by using exact equations derived from the

resection equations. Therefore there are no internal errors associated

with these corrections.

A Propagated Errors

See Appendix A.

5 Results

The discussion'in Sections 4 and 5 of Appendix A applies without

change to the RBV process.
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TABLE B-3. Absolute RBV Errors Including Point Shift and
Excluding Film Recording

Joint No.

ax

°y

P.SS

pixels

meters

pixels

meters

Pixels

meters

1

0.563

28.6

0.554

28.2

0.790

40.1

2

0.509

25.8

0.499

25.4

0.713

36.2

3

0.503

25.5

0.491

24.9

0.703

35.7

4

0.534

27.1

0.521

26.5

0.746

37-9

5

0.603

30.6

0.590

30.0

O.R44

42.9

Point No.

ffx

°y

RSS

pixels

meters

oixels

meters

pixels

meters

6

0.490

24.9

0.483

24.6

0.688

35.0

7

0.438

22.2

0.430

21.8

0.613

31.2

R

0.432

22.0

0.432

21.5

0.605

30-7

0

0.459

23.3

0.449

22.8

0.642

32.6

10

0.539

27.4

0.531

27.0

0,756

38.4

Point No.

°x

°y

RSS

pixels_

meters

pixels

meters

pixels

meters

11 '

0.475

24.1

0.465

23.6

0.664

33.7

12

0.421

21.4

0.412

20.9

0.589

29.9

13

0.405

20.6 ,

0.396

20.1

0.566

28.8

14

0.442

22.5

0.437

22.2

0.622

31.6

1 S

0.518

26.3

0.517

26.2

0.731

37.2

J>n-fn

°x

Oy

RSS

- Mn.

pixels

meters

pixels

meters

pixels

meters

I f i

0.499

25.4

0.484

24.6

0.695

35.3

17

0.442

22.4

0.431

21.9

0.617

31.4

T f l

0.434

22.0

0,427

21.7

0.609

30.9

19

0.457

23.2

0.456

23.2

0.646

32.8

?n
0.536

27.2

0.540

27.4

0.761

38.7

x̂

Oy

RSS

f Hr>,
pixels

meters

oixels

meters

pixels

meters

21

0.576

29.3

0.557

28.3

0.802

40.7

22

0.524

26.6

0.510

25.9

0.731

37.2

91

0.518

26.3

0.510

25.9

0.727

36.9

74

0.548

27.8

0.547

27.8

0.774

39.3

9S

0.621

31.5

0.621

31.5

0.878

44.6

- B-13



o - 0.509

o - 0.499

0.438

o - 0.430

- 0.503

o - 0.491

- 0.432

o • 0.423

o • 0.459 .

o - 0.449

o - 0.603

- 0.539

- 0.475

o - 0.465

- 0.499

a - 0.484

- 0.576

oy - 0.557

o = 0.421

o - 0.412

o - 0.524

o - 0.510

• 0.405

a - 0.396

• 0.43i

o - 0.427

o^ • 0.518

oy - 0.510.

- 0.442

ay - 0.437

0.457

a - 0.456

o " 0.548

oy - 0.547

(Unit IB the pixel.)

Figure B-4. Absolute RBV Errors Including Point Shift

and Excluding Film Recording



TABLE B-4. Absolute REV Errors Including Film Recording

J>oint No.

°K

°y

».SS

pixels

meters

pixels

meters

pixels

meters

1

0.927

A7.1

0.575

29.2

1.091

55.4

2

0.896

45.5

0.522

26.5

1.037

52.7

T

0.892

45.3

0.514

26.1

1.030

52.3

L.

0.910

46.2

0.543

27.6

1.060

53.8

S

0.9S2

48.4

0.610

31.0

1.131

57.4

.Point No.

ax

°y

RSS

pixels

meters

oixels

meters

pixels

meters

6

0.885

44.9

0.507

25.8

1.020

51.8

7

0.857

43.5

0.456

23.2

0.971

49.3

8

0.855

43.4

0.450

22.8

0.966

49.1

0

0.868

44.1

0.475

24.1

0.989

50.3

10

0.913

46.4

0.553

28.1

1.067

54.2

Point No.

ax

°y

RSS

pixels_

meters

pixels

meters

pixels

meters

11

0.877

44.5

0.489

24.8

1.004

51.0

12

0.849

43.1

0.439

22.3

0.956

48.6

13

0.841

42.7

0.425

21.6

0.942

47.9

14

0.859

43.7

0.463

23.5

0.976

49.6

IS

0.901

45.8

0.539

27.4

1.049

53.3

Pnin

ax

<7y

RSS

[- No.

pixels

meters

pixels

meters

nixels

meters

Ifi

0.890

45.2

0.508

25.8

1.025

52.1

1 7

0.859

43.7

0.457

23.2

0.973

49.4

T R

0.855

43.4

0.454

23.0

0.968

49.2

19

0.867

44.1

0.481

24.5

0.992

50.4

?n
0.912.
46.3

0.561

28.5

1.070

54.4

Prt-tn

ax

<>y

RSS

[• Mr»

pixels

meters

oixels

meters

pixels

meters

21

0.936

47.5

0.578

29.4

1.100

55.9

' 22

0.904

45.9 .

0.533

27.1

1.050

53.3

71

0.901

45.7

0.533

27.1

1.046

53.2

74

0.918

46.7

0.568

28.9

1.080

54,9

?s

0.964

49.0

0.639

32.5

1.157

58.8

- B-15



(Unit la the pixel.)

Figure B-5. Absolute RBV Errors Including Film Recording
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TABLE B-5. Relative RBV errors Including Point Shift and
Excluding Film Recording

Point f}o.

ax

°y

RSS

pixels

meters

_pixels

meters

pixels

meters

1

0.655

33.3

0.656

33.3

0.927

47.1

2

0.602

30.6

0.604

30.7

0.853

43.3

3

0.577

29.3

0.577

29.3

0.816

41.5

6

0.613

31.1

0.610

31.0

0.864

43.9

5

n.fifid

33.7

0.658

33.5

0.935

47.5

Point No.

°x

°y

RSS

pixels

meters

oixels

meters

pixels

meters

fi

0.595

30.3

0.598

30.4

0.844

42.9

7

0.525

26.7

0.527

26.8

0.744

37.8

8

0.484

24.6

0.484

24.6

0.684

34.8

0

0.522

26.5
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Figure B-6. Relative RBV Errors Including Point Shift

and Excluding Flla Recording
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B-6. Relative RBV Errors Including Film Recording
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o - 0.000

a - 0.000

(Unit is the pixel.)

Fieure B-7. Relative RBV Errors Including Film Recording
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TABLE B-7. Summary of RBV Error Analysis Results

ERROR CLASS

Including Point Shift
and Excluding Film
Recording

Including Film
Recording

Relative Error
(Meters)

RMS

41.8

56.6

MAX

48.7

61.9

Absolut
(Met

RMS

35.8

52.4

:e Error
ers)

MAX

44.6

58.8
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Composite Geometric Correction
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Figure 6-10
Composite Geometric Correction

Bilinear Interpolation
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Figure 6-11
Composite Geometric Correction

Cubic Convolution
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(a) Nearest Neighbor Assignment
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(b) Bilinear Interpolation

(c) Cubic Convolution
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Fipure 6-5
Band 5

v Hi linear Interpolation
No Sampling Delav Compensation
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