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ABSTRACT

The design of a high resolution radar for altimetry and ocean

wave height estimation is studied. From basic principles, it is shown

that a short pulse wide beam radar is the most appropriate and recommended

technique for measuring both altitude and ocean wave height. To achieve

a topographic resolution of + 10 cmRMS at 5.0 meter RMS wave heights, as

required for SEASAT-A, it is recommended that the altimeter design include

an onboard adaptive processor. The resulting design, which assumes a

Maximum Likelihood Estimation (MLE) processor is shown to satisfy all per-

formance requirements. A design summary is given for the recommended radar

altimeter, which includes a full deramp STRETCH pulse compression technique

followed by an analog filter bank to separate range returns as well as the

assumed MLE processor.

A feedback loop implementation of the MLE on a digital computer

is examined in detail. Computer "size", estimation accuracies, and bias

due to range sidelobes are given for the MLE with typical SEASAT-A param-

eters. The standard deviation of the altitude estimate is developed and

evaluated for several adaptive and nonadaptive split-gate trackers. Split-

gate tracker biases due to range sidelobes and transmitter noise are exam-

ined. An approximate closed form solution for the altimeter power return

is derived and evaluated.

The feasibility of utilizing the basic radar altimeter design

for the measurement of ocean wave spectra as well, is examined. A prelim-

inary design analysis shows the resulting system parameters for the ocean

wave spectrometer to correspond very closely to those of the radar altim-

eter design. The required modifications are that the transmitter output

is switched to a 2 meter antenna which is steered 200 away from nadir and

scanned conically with a period of 5 seconds. On receive, the full deramp

processor is replaced by a surface wave pulse compressor and detector fol-

lowed by a bank of 11 one-third (1/3) octave filters to perform the spectral

analysis. The filter outputs are then detected and integrated for a period

of 26 psec per pulse. This preliminary design meets all specified perform-

ance requirements.
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Part I

ALTIMETRY AND OCEAN WAVE HEIGHT

1.0 INTRODUCTION AND SUMMARY

The design of a high resolution radar for altimetry and ocean

wave height estimation is examined in this part of the report. To achieve

a topographic resolution of 10 cm RMS over practically all sea surface

roughness, as required forSEASAT-A, it is recommended that the design include

an on-board adaptive processor. The resulting design, which assumes a

Maximum Likelihood Estimation (MLE) processor, satisfies all the specified

SEASAT-A performance requirements for altitude and wave height measurements.

Section 2.0 examines the basic principles involved in the measure-

ment of altitude and wave height. Consideration of both the short pulse

radar and two frequency interferometer technique with either a wide or nar-

row antenna beam, leads to the conclusion that a short pulse wide beam radar

is the most appropriate and recommended technique for measuring both altitude

and wave height. A design summary is given for the recommended radar which

includes a full deramp STRETCH pulse compression technique followed by an

analog filter bank to separate range returns as well as the assumed MLE

processor.

Section 3.0 describes the implementation and performance of a

joint MLE which would simultaneously estimate altitude, wave height, and

signal-to-noise ratio. A step-by-step description of a feedback loop imple-

mentation of the MLE on a digital computer is presented to show the simplic-

ity of the concepts involved. It is shown that a relatively modest mini-

computer would be of adequate "size" for implementing the processor. Esti-

mation accuracies as well as biases associated with range sidelobes are

given for typical SEASAT-A parameters. Performance requirements are shown

to be achieved with a signal-to-noise ratio greater than 5 dB even at 20

meter significant wave height. The biases due to range sidelobes are shown

to be negligible when the average RMS sidelobes are less than -50 dB. This

sidelobe level can be achieved in practice.

I-1-1



Section 4.0 examines the performance of a split-gate tracker. An

easily interpreted expression for the variance of a split-gate tracker is

derived and used to show the effect of changing gate widths and placement

of the early gate. A comparison of tracker accuracies for several adaptive

and nonadaptive split-gate trackers is given for typical SEASAT-A parameters.

Altitude bias due to range sidelobes is examined. It is shown that while

receiver weighting to reduce peak sidelobes will not be necessary, the aver-

age far out sidelobe level must be less than -50 dB RMS in order to keep the

altitude bias less than 6 cm. It is also shown that an altitude bias is

caused by the additive transmit noise burst resulting from gating the TWT

on prior to (and keeping in on after) transmitting the linear FM signal.

To maintain the bias due to this effect at an acceptable level, the ratio

of total transmit signal energy to total transmit noise energy must be at

least 17 dB.

Section 5.0 derives an approximate closed form solution for the

shape of the altimeter mean power return. The radar equation for a distrib-

uted target is derived and applied to the particular case of a satellite

altimeter. The resulting closed form solution is given in terms of the

usual radar parameters, an "effective" range distribution, which is a com-

bination of RMS wave height and RMS range resolution, and an "effective"

beamwidth which is a combination of ocean surface slope distribution and two-

way antenna beamwidth. Illustrations showing the shape of the mean power

return as a function of RMS wave height and "effective" beamwidth are given

for typical SEASAT-A parameters. It is shown that a small "effective" beam-

width causes a distortion in the shape of leading edge of the mean return and

produces a wave height dependent altitude bias. To eliminate this bias, an

antenna beamwidth of 50 to 100 would be required for SEASAT-A. Such a small

antenna would, however, require a corresponding increase in peak transmitter

power and/or compression ratio to achieve the recommended signal-to-noise

ratio. It is recommended that a study be made of all of the trade-offs

involved (including the effects of antenna pointing error) in order to deter-

mine an optimum antenna beamwidth.
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Appendix A presents the theoretical derivations for a broad class

of estimators which are obtained by minimizing a penalty functional that

depends on both the observed data and on the parameters to be estimated.

Maximum Likelihood Estimators (MLE) are special cases of this class of esti-

mators. Formulas for computing the asymptotic bias and variance of the

estimators are derived. A feedback loop implementation scheme is described

and formulas for computing the mean response and the variance of the loop

estimates are derived. The general solutions are then evaluated for the

satellite altimetry case. The resulting formulas provide the basis for the

results described in Section 3.0 of the report.

1-1-3



2.0 HIGH RESOLUTION RADAR IMPLEMENTATION

It is desirable, for geodetic purposes as well as the measurement

of many oceanographic phenomena of interest, to measure the position of the

mean sea surface to an accuracy of +10 cm RMS. The design of a satellite

radar altimeter with this accuracy would be quite simple were it not for the

unavoidable degradation in performance caused by sea surface roughness.

Recent studies (1 ) have shown that the standard deviation of the altitude

measurement is directly proportional to sea surface roughness. Thus an

altimeter design having a 10 cm RMS accuracy at 2 meter wave heights (peak-

to-trough) would only provide a 100 cm RMS accuracy at 20 meter wave height.

The design of a satellite altimeter having a topographic resolution of 10 cm

RMS over practically all sea surface roughness (1 to 20 meters peak-to-trough)

cannot be achieved on board the spacecraft with standard "split gate" tracking

algorithms.

To circumvent this problem, it is recommended that the altimeter

design include an on board adaptive processor. At the present time several

candidate adaptive processors are under consideration. These include a

Maximum Likelihood Estimate (MLE) processor (1 ), a Minimum Mean Square Error

(MMSE) processor (1 ) , and several Adaptive Split-Gate (ASG) trackers (1,2)

which either continuously or discretely approximate the weighting functions

of the MLE or MMSE processors. The theoretical basis for both the MLE and

MMSE processor was developed by Technology Service Corporation for NASA/Wallops

under Contract No. NAS6-2241. From a performance point of view, the MLE is best

since it would provide optimum (minimum variance) estimates of satellite

altitude, ocean wave height, and electromagnetic ocean surface reflectivity.

As such, only the salient parameter estimates need to be transmitted to the

ground instead of the large amount of raw data otherwise required for ground

processing. The MMSE processor and continuous ASG tracker represent pro-

gressive simplifications, respectively, in processor design and complexity

with a corresponding reduction in performance. Finally, the discrete ASG

tracker approximation to the weighting functions of the MMSE processor proposed

by MacArthur (2 ) represents the simplest processor design and complexity with

a corresponding performance that marginally meets the requirements for SEASAT-A.
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In addition to the obvious trade offs between performance and complexity,

the recommendation of a particular on board adaptive processor for SEASAT-A

requires further study and evaluation of the many subtleties associated with

each processor. However, in order to specify a complete system design, the

remainder of this section of the report assumes the selection of an on board

MLE processor.

Section 2.1 examines the basic principles envolved in the-measure-

ment of altitude and wave height. Consideration is given to both the short

pulse radar and two frequency interferometer techniques operating with either

a wide or narrow antenna beam. The ensuing discussion leads to the conclusion

that a short pulse wide beam radar is the most appropriate and recommended

technique for measuring both altitude and wave height.

Section 2.2 summarizes the design of the recommended radar which

includes an on board MLE processor. The recommended pulse compression

technique, because of bandwidth considerations, is a full deramp STRETCH

followed by an analog filter bank to separate range returns. The resulting

design achieves all specified performance requirements for altitude and wave

height measurements.

2.1 Basic Principles and Recommended Approach

The basic purpose of a satellite altimeter is to measure the height

from the satellite to the mean sea surface. For a nadir looking altimeter

this requires the measurement of the mean of the density of specular point

scatterers with respect to height. A measurement of wave height may also

be obtained with the altimeter if the spread (standard deviation) of the

density of specular point scatterers with height is available. Rigorous

theoretical developments of techniques for achieving altitude and wave height

measurements are readily available in the literature (3'4'5 )  For the most

part these works by the very nature of their rigorous and precise developments

tend to obscure the simplicity of the concepts involved. The following is an

attempt to explain the principles envolved at the expense of rigorous

justification.

1-2-2



First consider a short pulse radar altimeter which, depending upon

the geometry, can be operated in either a narrow antenna beam or wide antenna

beam mode. The impulse response (mean power response of a matched filter

receiver) of a smooth flat ocean would correspond to the radar cross section

versus range, a(R), and would appear as shown in Figure 2.1-b. In the wide

beam (pulse limited) mode a(R) is a step response which occurs at the location

of the surface and lasts until the intersection of pulse and surface passes

out of the antenna beamwidth. In the narrow beam (beam limited) mode, the

0(R) is simply the transmit pulse with an epoch corresponding to the location

of the surface. Next consider a discrete distribution of specular points with

height as shown in Figure 2.1-c. Now the composite return signals are simply

the superposition of impulse responses weighted by the distribution function.

Thus, in the wide beam mode the leading edge of the impulse response

corresponds to the integral of the specular point density (specular point

cumulative distribution function). Here an altitude measurement can be obtained

by tracking the half power point of the leading edge of the return signal (the

median) and an estimate of wave height is obtained by measuring the rise time

(shape) of the leading edge. In the narrow beam mode the impulse response

corresponds to the specular point density itself. Thus, altitude measurement

is obtained by tracking the centroid of the return signal and an estimate of

wave height is obtained from the width of the return signal. Passing now to a

realistic model for the specular point density of the sea surface, Barrick (3 )

has shown to a first order approximation that the density is normal. Thus the

impulse responses for the wide and narrow beam modes would be as shown in

Figure 2.1-d.

Now a comparison of the two modes of operation at typical satellite

altitudes shows the narrow beam mode to be impractical because of the large antenna

required. That is, in order to have an impulse response which adequately

corresponds to the wave height density, the differential path'length at the

edge of the beam AR, is required to be less than the smallest wave height of

interest and the range resolution must be about half the smallest wave height

of interest. For a 1 meter wave height and satellite altitude of 725 km this
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Figure 2.1. Impulse Response of a Short-Pulse Radar For Narrow-
and Wide-Beam Antenna.
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translates to an antenna diameter of at least 20 meters and a pulse width of

about 3 nsec. On the other hand, the wide beam mode simply requires that the

differential path length AR be much greater than the largest wave heights of

interest and the range resolution be about half the smallest peak-to-trough

wave height of interest. For the present SEASAT application this corresponds

to an antenna smaller than 1.1 meter and a pulse width of about 3 nsec, which

is readily achievable in the recommended design.

Note that in the comparison of the two modes of operation the

emphasis is placed on the ability to faithfully reproduce the wave height

density or distribution function so that an estimate of wave height may be

obtained. It is also seen that both modes required a wide bandwidth signal

(-330 MHz) in order to resolve the smallest (1 meter) wave height of interest.

As will be shown, this bandwidth requirement is basic to the measurement of

wave height regardless of the technique employed.

Consider now the two frequency correlation techniques suggested by

Weissman (5 ) for the measurement of wave height. With this method two very long

(essentially CW) signals separated in frequency by the amount Af = fl - f2
are simultaneously transmitted. Two homodyne receivers are then used to

separate the return signals at frequencies fl and f2 and measure the cross

correlation R(Af) at the frequency separation Af. Thus changing the transmitter

frequency separation Af provides a measure of R(Af). It can be shown (6) that

the cross correlation, R(Af), is simply the Fourier transform of the radar

cross section versus range G(R). Now if the radar is operating in a narrow

beam mode (for which the antenna requirement for AR<2chmin has already been

shown to be impractical at satellite altitudes) the Fourier transform of

o(R), FT[o(R)], is the characteristic function of the specular point density.

Note also that the wave height resolution of this implementation is the reciprocal

of the transmitter frequency separation, 1/Af, and hence would require the same

330 MHz for the measurement of 1 meter (peak-to-trough) wave heights as the

short pulse radar. The point to be made here is that the measurement of the

wave height density or characteristic function both require the same overall

system bandwidth and antenna requirements.
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Finally, consider operating the two frequency interferometer in a

wide beam mode for measuring wave height. Here, the measured output R(Af)

would again correspond to the FT[a(R)], but in this situation the transform

is not only that of the cumulative wave height distribution (corresponding to

the leading edge of a(R)) but also includes the so called plateau region of

o(R). Unfortunately, most of the energy in c(R) is contained within the

plateau region and hence also in FTEo(R)]. Thus, changes in wave height

would have little effect on the main response of FT[o(R)] and would probably

have to be determined by the measurement of the sidelobe structure of FTEa(R)].

While such a measurement technique has not been examined in depth (and in

fact might even be feasible) it certainly cannot compare favorably with the

short pulse wide beam radar which provides altimetry as well as wave height

information. Table 2.1 summarizes the more important characteristics of a

short pulse radar and two frequency interferometer technique for measuring

wave height.

From the above discussion it is seen that a short pulse wide beam

radar is the most appropriate (and recommended) technique for measuring both

altitude and wave height. The following sections summarize the design of such

a radar, which includes an on board MLE processor.

2.2 System Design Summary

The design of a high resolution satellite radar for measuring altitude

and wave height is described on the following pages. The resulting design achieves

all specified performance requirements. These performance requirements are

summarized in Table 2.2 and the system design is summarized in Table 2.3.

A simplified block diagram of the proposed radar is shown in

Figure 2.2. The CHIRP transmitter generates a 2.8 psec 360 MHz bandwidth

linear FM signal. When the chirp transmitter receives both a PRF trigger

and a transmit pulse gate, the output signal is fed to a TWT string identical.

to that used in GEOS-C. Full deramp pulse compression is achieved by

generating a second identical linear FM signal by means of a properly timed

range trigger from the MLE processor. This second linear FM signal is not

1-2-6



Table 2.1

Short Summary of Wave Height Measurements

Type of Radar
Quantity Short Two-Freq.

Pulse Interferometer

Resolution 1/B i/Af

Max date rate B 1/7

Energy on T T(50% loss)
target

Measured a(R) FT [G(R)]
output

a)Narrow Density Characteristic
beam

b)Wide Cumulative F.T.[C.D.F. +
beam dist. Plateau]

function

Table 2.2

System Performance Requirements

I. Geodetic accuracy 50 cm

II. Topographic resolution 10 cm RMS (7 cm allocated
to system error)

III. Wave height range: 1-20 m crest-to-trough

Accuracy: max (0.5 m.,25%)

IV. Correlation between <1/e
pulses

V. Oceanographic phenomena 0.25 Hz
of interest (maximum
spacial frequency)
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Table 2.3

Design Summary

I. Orbit Parameters

a) Height 725 km

b) Inclination 820 retrograde,

c) Eccentricity 0.0064 maximum

II. Radar Parameters

a) Antenna beamwidth 2.60

b) Pointing accuracy 20 = 0.10

c) Antenna gain 36.4 dB

d) Peak power 2 kW

e) System Losses other than 5 dB

processing losses in pulse
compressor

f) Noise figure 5.5 dB

g) Frequency 13.9 GHz

h) Uncompressed pulse width 2.8 ps
i) Uncompressed pulse bandwidth 360 MHz

j) Compressed pulse width 3.0 ns

k) Compression ratio 1000/1

1) PRF max(uncorrelated returns) 1.6 kHz

m) PRF 1500 Hz

n) S/N (single pulse) 10 dB

o) Ocean cross section +6 dB

p) Receiver weighting* -26 dB Modified Taylor

q) Pulse compression * 0.55 dB
processing loss

r) Main lobe broadening due to 23%

tapering*

III. Pulse Compression

Type Full deramp stretch

Range processing Analog filter bank

Filter bank Discrete passive

Number of filters 60
Frequency range 9.2 to 20.8 MHz

Filter bandwidth 385 kHz
Output data form Two TTL parallel words

A. Range'bin number, 6 bits
B. Range bin amplitude,

13 bits

Included in design but considered optional;

I-2-8



Table 2.3 (cont.)

III. Pulse Compression

Time required for full 450 microseconds, max.
sampling

A/D sampling frequency 1 MHz

IV. Linear FM Generation

Type* Surface wave
Bandwidth 60 MHz
Multiplier chain X6
Pulse length 2.8 ps
Linearity of FM 0.2%
Peak frequency deviation 25 kHz
(one circle of variation
across pulse)

V. Altitude and Wave Height Processing

Type MLE processor
Implementation Digital interface with on-

board computer
Interface data rate 200-360 Hz
Output data rate 3-5 words @ 1-10 per second
Tracking bandwidth 1.0 Hz

1-2-9
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transmitted but instead fed to the deramp receiver where it is mixed with the

ocean return signal. This process converts the return signal as a function

of time into an identical signal as a function of frequency.

This return signal as a function of frequency is then fed at an IF

frequency into the range processor unit. There an analog filter bank con-

sisting of 60 discrete filters is used to provide 60 samples of the leading

edge of the return signal (i.e., cumulative wave height distribution function).

The 60 range samples are then detected and fed into an analog multiplexer and

A/D converter. The output of the range processor unit then consists of two

TTL parallel words, range bin number (6 bits) and range bin amplitude (13 bits).

A more detailed breakdown of the recommended design for the chirp

transmitter, deramp receiver, and range processor is shown in Figures 2.3,

2.4 and 2.5 respectively. This particular design is the result of a previous

NASA/Wallops study ( 1). An in depth description of the rational and tradeoffs

involved in arriving at this design is available in the above referenced final

report. The most important aspect of the above design is the selection of a

full deramp pulse compression technique followed by an analog filter bank to

separate individual range returns. With this technique the A/D converter

bandwidth is less than 1 MHz as compared to other forms of pulse compression

which would require a rather impractical 330 MHz A/D converter.

The MLE processor accepts the digital output of the range processor

and simultaneously performs an optimum (minimum variance) estimate of epoch,

wave height, and signal-to-noise ratio. In addition, the MLE processor also

provides a range trigger to the chirp transmitter unit for deramping the return

signal and hence closing the altitude tracking loop. As shown in Figure 2.6,

the digital input from the range-processing unit is fed into a buffer storage

and inverted to produce negative digital video samples,-V, which when summed

with the estimated mean power return V produces a difference signal, V-V.

This difference signal is then normalized by dividing by the variance of the
-2

estimated return V , multiplied by the appropriate parameter weighting function

(-, 6V or. ), and range summed in each loop to produce the error signals

o 0 6h
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So, ECo, and E Ah. After passing through the loop filters, the estimates

are fed back as follows: the epoch estimate is used to control the range

trigger of the chirp transmitter for deramping the ocean return signal.

The wave height estimate is used to control the table look up of the mean

return signal as well as the parameter weighting functions. The signal-

to-noise ratio estimate is used as a scale factor in the generation of the

estimated mean return and as a scale factor in the generation of the epoch

and wave height weighting functions.

The implementation of a MLE processor could take one of two forms;

a complete special purpose digital logic unit or a digital interface with a

minicomputer. If a minicomputer is included in the proposed SEASAT-A con-

figuration, a digital interface would be the recommended approach. The

interface data rate would be 62 words at a nominal 200 - 360 Hz rate. The

MLE output data rate would be 3 - 5 words at a 1- 10 per second rate.

Complete details of the mathematical development of the MLP pro-

cessor are given in Reference (1), and further delineated in Section 3.0

and Appendix A of this report. Again, it should be pointed out that some

sort of adaptive processor - whether it be an MLE, MMSE, or ASG - is

necessary (and recommended) to achieve the performance requirements on board

the spacecraft. A comparison of tracking accuracies, Figure 2.7, shows that

a 5.0 meter RMS wave height, a factor of four reduction in RMS tracking error

is achieved by the MLE when compared with a conventional half power split-

gate tracker. The accuracies and biases associated with these split-gate

trackers (conventional and adaptive) are examined in detail in Section 4.0

of this report.
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3.0 MAXIMUM LIKELIHOOD ESTIMATOR

A joint Maximum Likelihood Estimator (MLE) which would simulta-

neously estimate the epoch, wave height, and signal-to-noise ratio for a

satellite altimeter was originally described in Reference (1) . This sec-

tion of the report describes a method of implementing a MLE processor on a

digital computer. Estimation accuracies as well as biases associated with

range sidelobes are given for typical SEASAT-A altimeter parameters. The

intention of this section of the report is to describe results and explain

the simplicity of the concepts involved in the implementation. The theo-

retical basis for all of the material described here is provided in Appendix

A.

Section 3.1 describes a feedback loop implementation of the MLE

processor. It is shown that for such an implementation, the logarithms of

the likelihood ratio must converge with time to a local minimum of the

likelihood function. A step-by-step description of the implementation is

presented. Simulated examples which illustrate the shape of the functions

used to generate the error signals of the processor are described in detail.

Some of these functions are shown to be generalizations of the gating func-

tions used in split-gate trackers, thus providing further insight into the

nature of the feedback loop implementation.

Section 3.2 describes the approximate "size" of the MLE processor

when implemented as a software program in a general purpose digital computer.

It is shown that the total data storage required is about 2000 words, and

the total program storage is also about 2000 words. These results indicate

that a relatively modest mini-computer would be adequate for implementing

the processor.

Section 3.3 presents the theoretical estimation accuracies of the

MLE for typical SEASAT-A system parameters. An evaluation example is given

for each of the three parameter estimates. A table of estimation accura-

cies shows that the performance requirements for SEASAT-A could be achieved

with a signal-to-noise ratio greater than 5 dB even at 20 meter significant

wave height.
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Section 3.4 provides expressions for the biases in the three param-

eter estimates caused by range sidelobes of the pulse compression network. It

is shown that all biases can be maintained at a negligible level (less than

1 percent), provided that the average RMS sidelobes are less than or equal to

-50 dB. Since these sidelobe levels can be achieved in practice, the result-

ing biases for the MLE should not cause any problems.

3.1 Feedback Loop Implementation

The implementation of a joint Maximum Likelihood Estimator (MLE)

for epoch, normalized surface reflectivity, and RMS wave height (To, a, ah)
is examined in this section of the report. Here, the intention is to explain

the simplicity of the concepts involved, at the expense of rigorous theoret-

ical justification. The theoretical developments are given in Appendix A

of this report.

First consider the recommended altimeter design, which consists

of a full deramp pulse compression technique followed by an analog filter

bank to separate individual range returns. Then, the altimeter receiver

can be modeled as (nearly) matched filtering, square law detection and

sampling as shown in Figure 3.1. The description of the MLE and its pro-

perties are simplified with this model, since the problem is now constrained

to that of finding the optimum processor for the sampled video outputs. In

the sense that only the video processing is optimized, the resulting pro-

cessor is suboptimal; however, this is not thought to be a serious limita-

tion. Aside from the fact that the optimum video processing to be described

will show considerable improvement over existing tracking schemes, it also

readily lends itself to a practical implementation with a small scale digital

computer.

The procedure to be followed will be to find a suitable approxima-

tion to the likelihood function (i.e., the joint probability density) of the

video outputs given the three parameters of interest T , Co and a . Then,

for any set of observed video samples, the joint MLE are those values (T^,
Ao o

a , ah) which maximize the logarithm of the likelihood function. The max-

imum, of course, occurs at a point in the parameter space for which the

three partial derivatives with respect to the parameters are zero. This
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Figure 3.1

Functional Model of the Altimeter Receiver
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fact suggests a technique for implementing the MLE which uses the partials

as input error signals to three feedback loops which, in turn, solve the

maximizing conditions by forcing the error signals to zero.

The form of the likelihood function for the sampled video outputs

of Figure 3.1 is simple, if it is assumed that the samples are separated by

at least one range resolution cell. In this case, the correlation between

samples is negligible, and since the underlying process is Gaussian, it is

reasonable to assume them to be independent. Thus, the likelihood function

has the form:

A (V11, V12, ... Vnk/T , a, ) = Vi- exp(- Vik /V i) (3.1)
i,k

where:

V is the sampled video output from the -th
range cell on the kth pulse.

and

V. is the expected value of the video from
the i.th range cell.

That is, the square law detected outputs form an independent

exponential process. The dependence of the likelihood function on the
o

three parameters To, a , h is contained entirely in the variation with

range of the mean value V.. Thus, taking the logarithm of (3.1), and
1

differentiating, the MLE estimates must satisfy the three equations.

-2 ~ .
0 = ( log A _ ) (V V (3.2)

1 ( i -ik i a.
k i

where "l' stands for any of the three parameters T , a and a.

The problem of determining the joint MLE of the parameters requires

solving Equations (3.2). One technique for achieving this is to use the

negative of the partial derivatives inEquations (3.2) as inputs to integrating-

feedback filters to derive the MLE estimates as shown in Figure 3.2.
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That is, since the estimates are derived from integrating filters,

one has:

dt
o K6 log A

dt ~(3

^O
do =_ Kalog A (3.3)
dt ^o

d Z h  K log A
dt - Yoh

where K is a gain factor associated with the integrators.

Now, the time rate of change of the logarithm of the likelihood

function is:

d' so dZ
d logA g) o a log d a log __) h (3.4)

dt 6 f dt o t dto aa h

or, from Equations (3.3),

dlogA = - K log A) 2 + (logA)2 + (lo 2) (3.5)
dt T ).o 0

o aha

<0

Thus, as a function of time, the logarithm of the likelihood

ratio must decrease and converge to a local minimum of the likelihood func-

tion. If the initial parameter estimates are close to the correct ones,
0

then the loops in Figure 3.2 will converge to the joint MLE of 70 , a , and

ch.

The practicality of implementing the MLE depends on the complexity

of the partial derivative calculator in Figure 3.2. The steps required to

compute the three partial derivatives are diagrammed in Figure 3.3. As can

be seen from that figure, if the mean video versus range plus the three

partial derivatives are available, then the computations required to derive

the error signals are relatively minor.
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Figures 3.2 and 3.3 give a fairly pleasing intuitive picture of

the operation of the MLE processor. In Figure 3.3, it is seen that the

error signals for the tracking loops in Figure 3.2 are derived as follows.

First, an error signal versus range, V- V, is generated which represents

the difference between the measured return as a function of range and the

estimated mean return. Secondly, this error signal is weighted inversely

proportional to its variance. That is:

-2 -2
E (V-V) = V (3.6)

Thus, after normalization, the signal may be loosely described as having

uniform information content. Finally, the normalized error-versus-range

signal is "gated" by the partial derivative of V, with respect to the

parameter of interest, and summed over range. The effect of multiplying

(gating) by the partial derivative is to emphasize those range bins which

are most affected by variations in the parameter of interest.

Thus, a very simple step-by-step description of a feedback loop

implementation, Figure 3.4, for solving the minimizing conditions

(V-Vik)ik aV
2 a

k i V

and achieving the joint MLE is as follows:

Step 1. Compare an estimate of the mean return signal with the sampled

data to obtain a difference signal V- Vik.

Step 2. Normalize the fluctuation of this difference signal by dividing

it by the estimated variance of the return V

Step 3. Weight this normalized difference signal to maximize its sensi-

tivity to the parameter being estimated (multiply by aV/a6).

Step 4. Integrate the resulting signal over range to obtain the error

signals e .

Step 5. Integrate the error signal e with time to obtain the parameter

estimates .

Step 6. Use the parameter estimates & to obtain a new estimate of the mean
return signal V so as to drive the error signal to zero.
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3.1.1 Simulated Examples

The nature of the error signals generated by the feedback loop

implementation of the MLE processor becomes more apparent from an examina-

tion of several simulated examples. These examples illustrate the shape

of the functions utilized in generating the error signals. Three examples

are given, one for an error in epoch only, one for an error in wave height

only, and one for an error in ocean reflectivity only. The parameters

used in simulating these examples are as follows:

0
Data: Ca = 10 dB, h = 2m, T = 0 (true values)

Sample Interval = 1.0m

Number of Samples Averaged = 5

Case I: I error = 1.0 m
o

o
No error in a or ah

Case II: 6h error = 1.0 m

No error in ao or T
o

Case III: do error = 3.0 dB

No error in ah or To

The shape of the functions utilized in generating the error sig-

nals for Case I,epoch error only, are shown in Figure 3.5-a through 3.5-f.

Figure 3.5-a shows the estimated mean V, the data samples V., and the true

mean of the data samples V. Here, and throughout all the examples to be

described, each data sample V. is the average of five independent samples.

That is, it is assumed that some pre-processing in the form of pulse-to-

pulse averaging is performed prior to inputting the data to the MLE pro-

cessor. In the actual MLE implementation, the amount of pre-processing

(averaging) should be such that the averaged sample values are input to

the processor at a maximum rate of 10 per second.

In addition to showing the 1.0 meter displacement between the

true and estimated epoch, Figure 3.5-a also clearly illustrates the fact

that the variance of the data samples is proportional to the mean value as

shown by the fact that the fluctuation of the data samples increases as the

mean value increases. This effect is even more pronounced in Figure 3.5-b,
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which shows the difference signal between the estimated mean and the data

samples, V-V., as well as the difference between the estimated mean and

true mean, V-V. When this difference signal is normalized by multiplying
^ 2

by the reciprocal of the estimated variance 1/V shown in Figure 3.5-c,

the normalized difference signal shown in Figure 3.5-d is obtained. The

mean value of this normalized signal is also shown in the figure. Note that

the fluctuation of the data samples of the normalized difference signal has

been reduced to about + 0.5, as compared with the difference signal shown

in Figure 3.5-b, which has fluctuations on the order of + 5.0. This type

of normalization of the data for reducing and equalizing the fluctuation

is characteristic of all maximum likelihood estimators.

When the normalized difference signal is multiplied by the epoch

weight shown in Figure 3.5-e, the signal shown in Figure 3.5-f is obtained.

Here, several observations can be made. The shape of the epoch weight shows

that the maximum weight is placed at the mean of the estimated return sig-

nal. Furthermore, since this weight is the partial derivative of the esti-

mated return, it is in fact the estimated wave height probability density

function. Thus, the width of this weighting function is equal to the esti-

mated RMS wave height ah, which of course, changes width with sea state.

This epoch weight of the MLE processor is analogous to the early gate of a

split-gate tracker. It is, of course, a more general type early gate in

the sense that the weighting is continuous, and the width changes with wave

height.

If the epoch weighted normalized difference signal shown in Figure

3.5-f were integrated (summed) over range, a single value of epoch error

signal Ero would be obtained. Integrating successive samples of eTo in the

epoch loop filter would thus provide a new epoch estimate o . While it

would have been desirable, time and funding limitations prevented includ-

ing the shape of the error signals as a function of error for this as well

as the other simulated examples. It may be shown, however, that all the

error signals are strongly coupled. That is, an error in epoch estimation

only (as in this example) produces not only an epoch error signal, but also

error signals in the reflectivity and wave height feedback loops. The same

sort of thing happens when there is an error in estimating either wave height
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or reflectivity. Whether or not this coupling of the error signals pre-

sents a problem for the feedback loop implementation of the MLE remains

to be determined. Since the coupled error signals are such that the total

error in all three loops is driven to zero as rapidly as possible, there is

reason to believe that the coupling will not be a problem. On the other

hand, if error coupling proves to be a problem, the situation can be cor-

rected by means of a decoupling network. Such a network would entail esti-

mating (and inverting) the error correlation matrix R(e), which would add

to the complexity of the processor. To resolve these questions concerning

the effects of error coupling requires a detailed study of the eigenvalues

and eigenvectors of the error correlation matrix which was beyond the scope

of the present program.

A description of the shape of the functions utilized in generat-

ing the error signals for Case II, wave height error only, shown in Figure

3.6-a through 3.6-f, and Case III, reflectivity error only, shown in Figure

3.7-a through 3.7-f, is essentially the same as the previous example except

for the weighting functions. An examination of the wave height weight,

Figure 3.6-e, shows a maximum negative weight applied one sigma (RMS wave

height oh) prior to the estimated epoch and a maximum positive weight

applied one sigma after the estimated epoch. Functionally, this weight is

formed by the product of a linear ramp and the estimated wave height density

function. A gating arrangement analogous to this wave height weight would

entail centering two gates symmetrically about the half power point of the

return signal. The difference between these two gates would thus provide

an estimate of the mean slope of the leading edge of the returns signal

and hence a measure of wave height. (This is, in fact, the method sugges-

ted by MacArthur, Reference (2), for estimating wave height.) The wave

height weight of the MLE processor is of course, more general in the sense

that the weighting is continuous, and the separation and width of the posi-

tive and negative portions change continuously with wave height.

An examination of the reflectivity weight, Figure 3.7-e, shows

the maximum weight being applied well after the estimated epoch. Since

this weight is the partial derivative of the estimated return with respect

to Go, it is simply a scaled version of-the estimated return, and hence,

corresponds to the estimated cumulative wave height distribution function.

Quite obviously, this reflectivity weight is the more general analogy to

the late gate of a split-gate tracker.
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In summary then, it is seen that the feedback loop implementation

of the MLE processor is simply a generalization of the split-gate tracker

and gating technique for estimating wave height. (Actually, the gating

technique for estimating wave height was developed as a simplification of

the MLE wave height weighting function.) Aside from the more general weight-

ing functions, the feedback loop implementation of the MLE also differs from

the gating techniques, in that a replica (or template) is compared with the

return signal, and the fluctuation of the data is then reduced by normaliz-

ing with the estimated variance. It might also be noted that if the nor-

malization by the estimated variance is eliminated, the feedback loop

implementation would be that of a MMSE processor!

3.2 Computer Sizing

In this section, an approximate "size" of an MLE is obtained.

For this estimate, it is assumed that the processor will be implemented

as a software program in a general purpose computer. The size is then

determined as the total program and data storage required, plus the total

compute time required during each data cycle. The results indicate that

a relatively modest mini-computer is required. It is shown that the total

data storage is approximately 2000 words and the total program storage is

about 2000 words; thus, only about 4kmemory words are required. Further,

assuming a compute speed roughly equivalent to the NOVA, the total comput-

ing time per data cycle is about 28ms. If the data is averaged for 0.1

sec (100ms) before the MLE acquires it, then the computer will be rela-

tively lightly loaded.

3.2.1 Approach

This study was intended only as a "quick look" estimate; thus,

the approach was correspondingly simple. First, a detailed block diagram

of the processor was developed. This is shown as Figure 3.8. In that

figure, the data is supplied to the MLE at 10 Hz. Thus for each .1 sec

data cycle 62 power values are transferred into the buffer. The levels

represent the integrated power for .1 sec (150 pulses) for each of the

60 range gates on the leading edge plus a noise gate and a plateau gate.

The diagram to the right of the dotted line represents a detailed break-

down of the computations performed in the MLE.
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The computation speed estimate was obtained from Figure 3.8 as

follows:

* On a per "data cycle" basis, count the number of arithmetic

operations and I/O requests indicated in the diagram.

.* Using "typical" computer speeds, and the above counts,

.estimate the compute time per data cycle.

* Apply 25 percent increase for program housekeeping, (loop

initialization, data shuffling, etc.)

0 Apply 15 percent increase for the real time executive.

The above approach is obviously somewhat crude, however, to obtain

better estimates, one would have to write a sample code and then count the

number of operations in the code. Further, that approach would probably not

yield particularly accurate estimates until it was actually run in a real-

time environment. Either of these approaches are beyond the scope of this

study.

The percentage increase in the running time for housekeeping and

the real-time executive have not been documented. They are "engineering

judgments" based on discussions with several people who have had experience

in programming mini-computers in a real-time environment.

The computation of the core storage requirement was obtained from

Figure 3.8 as follows:

* Data Storage

From the block diagram, count the data storage.

* Program Storage

For the tracking phase, identify major function blocks

and estimate the number of instructions per block.

Assume that the code for the acquisition phase approx-

imately equals that for the tracking phase.

Add 250 instructions for initialization.

Add 200 instructions for the executive.

Again, the constants for the initialization and the executive

represent "engineering judgment" rather than documented fact.
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3.2.2 Details of the Estimates

As stated previously, it is assumed that 60 leading edge samples

plus one noise gate plus one plateau gate are transferred to the MLE each

data cycle. The data cycle rate is 10 Hz; thus, for a 1500 Hz PRF, the

altimeter averages 150 pulses before transferring the data to the MLE.

The total number of arithmetic operations per data cycle is given

in Table 3.1. To convert the totals to required computing time, it is

assumed that, on the average, about five total instructions requiring approx-

imately 10 psec are needed for each addition or subtraction. For multiplica-

tion and division, about eight instructions and 20 psec are required. These

numbers assume that the registers are loaded from memory, and the results may

be normalized before storage. The compute time corresponse approximately to

fixed point operations on the NOVA II computer built by Data General Corporation.

Table 3.2 summarizes the total compute time per data cycle. The

compute time, housekeeping, and executive have been explained previously.

The I/0 handling represents a pessimistic estimate. It is assumed that the

computer supplies trigger information to the altimeter at the PRF, and thus

must provide 150 numbers per data cycle. Further, it is assumed that for

each number, the system must process an interrupt and store working regis-

ters before processing the data. This is assumed to take 30 psec per

interrupt.

From Table 3.2, it is seen that the total compute time is esti-

mated to be - 28 ms. Thus, the computer would be 28 percent loaded. This

seems to be an adequate margin for a computer dedicated entirely to the

MLE function. Conversely, this probably represents a significant load on

a time share system in which the computer would be performing additional

system functions.

The data storage and program storage are detailed in Tables 3.3

and 3.4. The numbers there should be self-explanatory. The major data

storage is in the tables of the wave height cumulative distribution func-

tion (CDF) and the probability density function (PDF). These tables are

used to generate an estimate of the mean return, V.
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TABLE 3-1

Speed Requirements

FUNCTION ADDS MULTIPLIES DIVIDES

Noise Integration 1 1
and Normalization

Plateau Normalization 1

Error Signal Generation

V 62 62

0 62 62 62

eT 62 *62

Eo 62 62
o

E: 62 124

Loop Filters

2 3

T 150

a 3 3

a 3 3
h

Calib. Normalization 4 1

Ramp Generator 120 2 2

Offset 150

Totals 739 389 65
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TABLE 3.2

Compute Time Per Data Cycle

"Typical" Computer:

Add Time 5 Instructions 10 psec
Multi/Div Time 8 Instructions 20 psec

Compute Time
Per Data Cycle 16.5 msec

Housekeeping (25%) 4.1 msec

Exec. (15%) 2.5 msec

I/O Data Handling 4.5 msec

Total 27.6 msec
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TABLE 3.3

Data Storage Locations

Input Buffer 124

T Buffer 150
0

Output Data 6

Intermediate
20

Storage

Loop Filters 9 (Constants)

6 (Previous Values)

Ramp Generator 6

Calibration 20

CDF Table 600 at 5 cm Resolution

PDF Table 600 for 20 m Wave Height
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TABLE 3.4

Program Storage

Tracking Mode:

Major Block Number of Instructions

Input Buffer 50

Noise Integrator 75

Error Signals 200

Loop Filters 225

Ramp Generator 50

Calibration 25

Total 625

Acquisition Mode: 625

Initialization 250

Executive 200
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The program storage estimates again were in the nature of "engi-

neering judgments" rather than actual instruction counts. It was beyond

the scope of this task to do the coding which would be required for more

accurate counts., It should also be pointed out that these counts assume

that all code has been generated from scratch. In particular, no manufac-

turer supplied standard I/O, or executive routines have been used. Such

routines would usually be more general purpose than is needed, and would

increase the storage requirements considerably (e.g., as much as a factor

of 2 or more).

In sum, the size requirements from the first cut estimates appear

to be modest, but not trivial. Approximately 4k of memory is required, and

a computing speed comparable to existing mini-computers (NOVA II) appears to

be adequate with a reasonable safety margin (28 percent loaded). This is

true, provided the computer is dedicated to the MLE, or performs only a few

additional tasks.

3.3 Estimation Accuracies

The theoretical accuracies of the joint maximum likelihood esti-

mates of epoch, wave height, and reflectivity are evaluated in this section

of the report. These accuracies are given in terms of the standard devi-

ation of the estimates due to random fluctuations only. System errors

(such as clock and timing errors) as well as errors associated with the

feedback loop implementation as described in Appendix A, are not included

in the evaluation. The theoretical basis for the expressions used in eval-

uating these accuracies was originally derived in Reference (1), and is

rederived and expressed in a much simpler and more useful format in Appen-

dix A. An example showing the method of evaluation is given for each of

the three estimates. A table of estimation accuracies as a function of

signal-to-noise ratio and wave height is provided for each parameter esti-

mate under typical SEASAT-A conditions.

The following typical SEASAT-A parameter values are used in each

of the sample calculations:
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Number of Pulses N = 1500

Range Resolution 2- = .5 m

cT

Data Interval max = 23 m
2

RMS Wave height ch = 5 m

Signal-to-Noise Ratio a = 10 dB

Here the data interval is assumed to contain half of the 60 samples on the

leading edge of the return plus an additional 16 samples contained in a

late gate. This results in a total of 46 independent range samples per

pulse.

3.3.1 Epoch Example

From Appendix A the variance of the epoch estimate is

2 = [N-1 R()- 1 ]T T (3.7)

where

R(O) - = -PAt D"I C- D-1 (A-67)

D-1 = diag(a, -1, 5) is a diagonal matrix, the (i,j) element

-1
of C is

ij l+d F1 1 ' li lj (A-66)

and

d = (a T - )(a 2 . (A-68)
max 1) l+a

Table A-I of Appendix A tabulates F.. versus signal-to-noise ratio from

-10dB to 30dB in 5dB steps. The parameter P is related to RMS wave

height via

c (3.8)
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and the constant a = .3227 arises from fitting a linear ramp to the leading

edge of the return signal in a minimum mean square sense. Also, the sub-

scripts of Equation (A-66) are related to the parameter being estimated via:

2---T (3.9)
3--0

Now substituting i'n Equation A-68,

CT
= max a 2 .3227 10)2

d = ( )(-) = (3 (23)- 1)(
Oh 2 a+ 5 11

= .4003

From Table A-I (using 10 dB signal-to-noise ratio),

F11 = 2.42, Fl2 = 3.75, F2 2 = 9.82, and from Equation A-66

T To 22 d 2
C =C =F F

22 1+dF 12
11

.4003 2
= 9.82 - + .4003 (3.75)

1 + (.4003)(2.42)

= 6.961

Substituting Equations A-67 into Equation 3.7 yields:

2 -1 2 o2 ( LAt) N I  2 C

0 0

or

c = t) rh N ' I C 0 0 (3.10)

= V. 3 2 2 7 (.5)(5)(-00) 6.961

= .061 meters or 6.1 cm
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3.3.2 Wave Height Example

The variance in estimating the parameter

aP 2 =[N-1 R(e)-] = (apAt) N-1 2 C P  (3.11)

after substituting Equation A-67.

From Table A-I, F1 1 = 2.42; F1 3 = -2.42; F3 3 = 5.14; and as in the

previous example d = .4003. Thus:

C-= C3 3 =F d F 2
33 l+d F 13

.4003 2
= 5.14 - (2.42) 2

1 + (.4003)(2.42)

= 3.95 (3.12)

Converting from the parameter P to ch and using Equation 3.11

2 2 cAt 1c
=Y -7 %h 2 ) ch N CP

.3227 (.5) (5) (3.95)= 1 15 (3.95)
1500

= .046 meters or 4.6 cm (3.13)

3.3.3 Reflectivity Example

The accuracy with which ocean reflectivity can be estimated is

given in terms of the variance of the signal-to-noise ratio

a2 =[N R() l]aa = (a. At) N a Ca  (314)
aa =

where again the substitution of Equation A-67 has been utilized for the

inverse of the error correlation matrix.
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From Table A-I, F11 = 2.42; and d = .4003. Then:

caa C11 d 2
C =C = F F

11 1+dF 11
11

= 2.42.4003 (2.42)2
1 + (.4003)(2.42)

= 1.229 (3.15)

and

At -1 -1 aa I
aa = a a -)

= 10i .3227 (.5)(.2) 1.229
1500

Estimation accuracies versus signal-to-noise ratio and significant

wave height are shown in Table 3.5 for typical SEASAT-A system parameters. An

examination of the table entries shows that even at 20 meter significant wave

height, the performance requirements for SEASAT-A could be achieved with a
joint MLE operating at signal-to-noise ratios greater than 5 dB. This assumes

that for the altitude estimate, the system errors (clock, timing, etc.) can be

maintained to within 7.0 cm, and that any errors associated with the feedback

loop implementation of the MLE processor do not significantly change the theo-

retical performance values given in Table 3.5.

3.4 Range Sidelobe Bias

The biases associated with range sidelobes (due to pulse compres-

sion) that have not been included in the model for the estimated mean power

return are summarized in this section of the report. The rather complex

theoretical developments and evaluation of these biases are provided in

Appendix A. There, it is shown that biases in estimating altitude, wave

height, and signal-to-noise ratio caused by range sidelobes can be expressed

in the following simple form:
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TABLE 3.5

Estimation Accuracies of a Joint MLE

SYSTEM PARAMETERS

PRF = 1500 Hz

Loop Bandwidth = 1 Hz

Resolution = .5 m

# Range Samples = 60

# Samples in Late Gate = 16

STANDARD DEVIATION IN ALTITUDE (cm)

Significant Wave Height (m)

S/N (dB) 5 10 20

0 5.7 8.4 13.1

5 3.2 4.8 7.8

10 2.5 3.7 6.1

20 2.1 3.1 5.3

STANDARD DEVIATION IN WAVE HEIGHT (cm)

Significant Wave Height (m)

S/N (dB) 5 10 20

0 5.9 8.5 12.6

5 3.0 4.4 6.7

10 2.0 2.9 4.6

20 1.4 2.1 3.5

STANDARD DEVIATION IN SIGNAL-TO-NOISE RATIO
(ABSOLUTE UNITS [Not dB])

Significant Wave Height (m)

S/N (dB) 5 10 20

0 .008 .008 .009

5 .017 .017 .019

10 .044 .046 .051

20 .402 .422 .472
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AR = 8 8 0 ah yl

Aah = 600 a Y1

Aa = 600 a yl (3.16)

where yl is the average RMS sidelobe level. In deriving these expressions

it has been assumed that the 3 dB (one way) antenna beamwidth of the altim-

eter is 50 and the satellite altitude is 725 km. A rather surprising fea-

ture of these results is that the biases are independent of signal-to-noise

ratio! Furthermore, the biases are all proportional to average RMS side-

lobe level, yl. Thus, to maintain these biases at a few centimeters (or

less than 1 percent) requires that yl be less than or equal to -50 dB.

Since -50 dB average RMS sidelobes levels can be achieved with the newer

pulse compression devices, such as the reflective array compressor (RAC),

the biases due to range sidelobes should be negligible for the MLE processor.
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4.0 SPLIT-GATE TRACKERS

The performance of a split-gate tracker is examined in this section

of the report. The variance of a split-gate tracker was derived previously

in reference (1). In Section 4.1 the variance of a split-gate tracker is

rederived to provide a much simpler expression for interpreting tracker

accuracy. The effect of changing the gate widths and the placement of the

early gate is examined. A comparison of tracker accuracies for several

adaptive and nonadaptive split-gate trackers is given for typical SEASAT-A

parameters.

Section 4.2 examines the altitude bias caused by range sidelobes in

the pulse compression system. It is shown that receiver weighting to reduce

peak sidelobes will not be necessary for SEASAT-A, since peak sidelobes as

large as -10 dB only produce an altitude bias of about 1 cm. However, the

far out sidelobe level must be less than -50 dB RMS in order to keep the

altitude bias less than 6 cm.

Section 4.3 describes the altitude bias-caused by the additive

transmitter noise burst resulting from gating the TWT on prior to (and keeping

it on after) transmitting the LFM signal. It is shown that this transmit noise

burst produces uniform receiver range sidelobes extending over the entire side-

lobe region. To maintain these sidelobes at -50 dB requires that the ratio

of total transmit signal energy to total transmit noise energy be at least

17 dB.

4.1 Tracker Accuracy

In this section the performance of a split-gate tracker is derived,

and the effect of changing the gate widths and the placement of the early gate

is examined. To keep the derivations relatively simple, a sampled system will

be assumed. A split-gate tracker estimates the epoch of a signal by balancing

the output of an early gate with that of a late gate. Specifically, let:

ti , i = 0, + 1, +2, ... be the times at which the signal is sampled,
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V(ti) be the square law detected output of

the receiver at time ti,

6(ti-t)h i  be the impulse response of the early
i gate,

C E 6(t -t)gi  be the impulse response of the late
i gate

and C be a constant which makes the tracker
unbiased.

Note that the Kronecker delta functions arise from the assumption of a sampled

system.

For any time delay, T70 between the tracker estimated epoch and the

true epoch, the error voltage of the split-gate tracker is given by:

8(T0 ) = C V(ti-T 0)(hi-Cgi) (4.1)

The tracker feedback loops function so that the error voltage is held at

zero. Thus the tracker estimated epoch is given by the solution of:

8(T0 ) = 0 (4.2)

If the loop time constants are long, and the tracking error is

unbiased, then 70 will be nearly zero. Expanding 8(T 0 ) in a Taylor series

about 70 = 0 and substituting into (4.2) yields:

T (0) (4.3)
0

T=0

Let E be the mean tracking error slope. Using (4.3) one has:
T=0

Var 8(0
VarT (0) (4.4)

V 30 (7) 1
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The tracker will be unbiased if

E 8(0) = 0

Thus the normalizing constant in equation 4.1 is given by:

,V(ti) h.
C = (4.5)

E V(ti) gi

where V(ti) = E V(ti) is the mean receiver power output at time t..

The mean error slope is given by

= =  V(t )(hi-C g i )  (4.6)

And the variance of the tracking error signal is given by:

Var 8(0) = (Var V(ti)) (hi-C gi) (4.7)

where the samples are assumed to be uncorrelated. (i.e., E(V -V )(V.-V.)=0,i i j. J
iij). For Gaussian processes (exponentially distributed power),

Var V(ti) = (E V(ti)) V (ti) (4.8)

Thus the tracking error variance is given by combining (4.6), (4.7), (4.8)

and (4.4) to yield:

'2 2
ar V (ti)(hi-C g )

Var TO = .V2 (4.9)
(Z (t )(hi-C g )

From equation 4.9 it is seen that the tracking error variance depends

on the shape of the early and late gates and on the characteristics of the mean

power return, V(t). To simplify the evaluation of equation 4.9, the

approximation sketched in Figure 4.1 is assumed.
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That is, the following simplifications are made

i) Square - non-overlapping gates are assumed.

ii) The late gate is positioned on the plateau.

iii) The early gate is positioned on the leading edge.

iv) The signal return power is modeled as a linear ramp

rising to a flat plateau.

v) The receiver noise level is unity.

If the following definitions are made:

At = time between independent samples

a = signal-to-noise ratio

T = rise time of the leading edge

TE = time duration of the early gate

TL = time duration of the late gate

VE = average power return at the center of the early gate

N = number of pulses averaged

8 = c= wave height parameter
2 h

ah = RMS wave height

a = .3227

the mean power return on the ramp may be expressed as

V(t) = VE + aaSt (4.10)

where t is referenced to the center of the early gate and the constant a has

been chosen such that the ramp approximates the normal integral in a mean

square sense. Thus, the mean slope of the ramp

V(t) = aaO (4.11)

and the term in the denominator of equation 4.9

E V(ti)(hi-C gi) =  V(t i)h i  (4.12)
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since V(ti) is zero on the plateau. But using equation 4.11 and approximating

the sum by an integral:

T
E

E 2

= a -E (4.13)

Similarily, the numerator of equation 4.9 is given by,

SV 2(ti) (hi-C gi = E 7V(ti)hi 2 + E V2(t)C 2gi2 (4.14)

since the gates are non-overlapping. Then substituting equation 4.10 and

approximating by an integral yields:

TE

2 2 1 2
(t)hi (E+ a  t) 2dt (4.15)

TE

- VE 2TE + (acvO) T12

and since the return is constant on the plateau

V-2(t ) (g i2 =-(l+a) eT L  (4.16)

Finally, the normalizing constant given by
T E

equation 4.5

S)_TE (V E+at)dtC V(ti)hi 2)d
C +a) (4.17)

EV(ti)g i  L

VETE

(l+a)TL
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Substituting the expressions given by equations 4.13 through 4.17 in equation

4.9 provides an expression for the tracking error variance on a per pulse basis

- 2

2 E At + + (4.18)
T 2 T T 12
o (awB) E

If the split-gate tracks the kth power point,

VE = l+ka (4.19)

and if N pulses are averaged in the tracking loop

1 2

7 N 2To p ()) E L T
T J +  +-- (4.20)

Finally, converting from delay to range, the RMS altitude error (in meters)

1 h (k+-) (+ - + (4.21)
R 2 a TE TL 12

where At can now be interpreted as a range resolution cell (since the samples

are assumed to be independent) and TE and TL the range extent of the early and

late gates, respectively.

An examination of equation 4.21 reveals the following characteristics

associated with the RMS altitude error of a split-gate tracker. The error

increases linearly with RMS wave height Ch. It decreases as the number of resolu-

tion cells in the early and late rate increases and as the tracking point k is

made smaller.

Thus, for a non-adaptive split-gate tracker (a tracker with fixed

early and late gates), the quarter power tracker, k=.25, performs better than

the half power tracker (k=.5) as shown in Figure 4.2. In this case, the

maximum width of the early gate is limited by the smallest RMS wave height

to be encountered. Thus under smooth sea conditions, the early gate can only

be made one resolution cell wide. Furthermore, with a one resolution cell
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early gate, little is to be gained by marking the late gate much wider

than 16 resolution cells. That is, increasing the late gate from 16 to

an infinite number of resolution cells only reduces aR by 3%.

Improved tracking performance can, however, be achieved with

an adapting split-gate tracker. This is accomplished by estimating the

RMS wave height and increasing the width of the early gate as the estimated

wave height increases. The early gate width can be increased in discrete

steps as suggested by MacArthur (2) or continuously as illustrated in

Figure 4.2. The performance comparison of the split-gate trackers given

in Figure 4.2 was based on typical SEASAT-A system parameters. The MLE

performance is included in the figure to indicate the ultimate improvement

achievable with an optimum tracker.

4.2 Range Sidelobe Bias

In a pulse compression system, the major effect of amplitude and

phase errors is to increase the level of the range sidelobes of the system.

These sidelobes in general do not significantly affect the altitude tracker

variance, or the accuracy of estimating wave height. They do, however,

cause bias errors in the altimeter. In this section, an approximate

expression is derived for the bias errors due to range sidelobes. The

expression is then evaluated for typical SEASAT-A parameters. It is shown

that peak sidelobes as large as -10 dB only produce an altitude bias of

about 1 cm, thus receiver weighting to reduce the peak sidelobes will not

be necessary for SEASAT-A. It is also shown, however, that the average far

out sidelobe level must be less than -50 dB RMS in order to keep the altitude

bias less than 6.0 cm.

4.2.1 Theoretical Development

The mean power versus time output from an altimeter can be written

as:

V() =/ O(t) Ip(-t) l 2 dt (4.22)
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where

G(t) is the distribution of target cross-section with

time (i.e., sea surface impulse response)

p() is the normalized radar system point target

response

and V(T) is the mean power output.

The standard split-gate tracker adjusts the epoch so that the early gate

output exactly balaqces one-half the late gate output.

Thus, the tracker finds t such that

V(t o ) = V(to+ A) (4.23)

where A is the separation between the early and late gate.

Now, for typical pulse compression systems, the point target response

consists of a narrow main lobe response plus extended sidelobes as sketched below:

ML

ISL

t
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2
Thus we may decompose the response function Ip(t)I as

2

fp(t)! -ML(t) + 0SL(t) (4.24)

The mean power output is given by:

V(7) 1 y (t)OML(-r-t)dt

+ f(t)SSL ( T-t)dt (4.25)
-- O

As long as the wave height is large compared to the system range resolu-

tion, 8ML(t) acts as essentially a delta function, thus

V(T) - Tc a(T) + VSL(T) (4.26)

where

Tc is the compressed pulse width and

VSL(T) is the distortion in the response due to

the presence of the sidelobes.

That is,

VSL(T) = f 9(t)OSL(T-t)dt (4.27)

From (4.26) and (4.23) we have at the estimated epoch:

TC r (.(t ) + VSL(t ) [ c(to+ A) + V SL(to+ A (4.28)

Now for small bias errors,

a(t o ) ' a(0) + d(O)to  (4.29)
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and

o(to+ ) .= aA) + 5(t)to (4.30)

Where we assume the true epoch is t =0. Further, at the true epoch,

a(0) = (A) (4.31)

Applying (4.29), (4.30), and (4.31) to (4.28) yields:

to[Tc(0 ) - k j(&) = 4 VSL(to ) VSL(t o) (4.32)

Now, in general, VSL is a slowly varying function, and we may write

approximately:

VSL(to) VSL(O) (4.33)

and

VSL (to+ A) VSL(A) (4.34)

So that finally, the bias is given by:

t= VSL(A) - VSL(0)

o c 6(0) - (aL)]

We assume an impulse response corresponding to a pencil beam antenna as

given by Barrick (3). That is:

o(t) = k I(t/th) + d(ti + t)/thl (4.36)

Where LCX

(LCX) = e- dt
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is the normal integral, and

20%
th =

is the (one sigma) pulse stretching due wave height ch , and

t = .125 (H(1+H/a)2)

is the duration of the impulse response for beam width B and altitude H,

where "a" is the earth radius.

In general, tI >> th, so that we may write

1 -k(t/th )

(t) = ~ eth  (4.37)

And, the bias is given by

0 ( ) - SL()) (4.38)

where we have assumed A 3th*

4.2.2 Evaluation of the Bias

To evaluate (4.38), we will assume that the sidelobes consist of

a decaying term plus a uniform level term. The decaying term follows a

power law, thus:

SL ( t ) = Y 1.5 'c n Y I < ut Tu (4.39)

where c  is the compressed pulse width

and T is the uncompressed pulse width

YO is the (nominal) height of the first sidelobe
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Yl is the "far-out" sidelobe level

n is assumed to be even since it is the decay law

for the power sidelobes.

For simplicity, we assume the uncompressed pulse length, Tu >> th,

so that the error function becomes essentially a step function when compared

to the sidelobe envelope, thus the impulse response is approximately a pulse

of duration tI .

Substituting (4.36) and (4.39) into (4.27) and making the above

approximation yields:

S t0 T T

VSL(T) = yo(1. 5 )n 7 dt + dt + -I

7 T c
c c

VSL o( ) )n- 1 c n- + lt

Sn-1 Tt T t - T (4.40)

Where for simplicity we have assumed that Tu > tI and note that the term
( n - I

(Cn-l is zero when 7 = O.

Substituting (4.40) into (4.38) yields:

t Y( 1 5)n n- 7 n- 1 T n- 1

th (n 1) + t

Y tI

2
c

Thus the total error is the sum of the error due to the decaying

sidelobes, and the error due to the uniform sidelobes.
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In most cases of interest, t >50 Tc , so that we may neglect terms

of order 7 /t . Secondly, for purposes of specifying a sidelobe budget, wec I
will assume an upper bound roll-off n = 2. Thus,

to 2 T
ty - + I - (4.42)

h c

Table 4.1 gives the altitude bias due to the close-in sidelobes

versus peak sidelobe for typical SEASAT-A parameters. Table 4.2 gives bias

due to the far-out sidelobes.

Table 4.1

Bias in Centimeters Due to Close-In Sidelobes

t /Tc = 1000, A/T c = 44

Peak Sidelobe Wave-Height

(2 Y ) ah = .25 m ah = 5.0 m

-10 (dB) .07 (cm) 1.52 (cm)

-12 .04 .97

-14 .03 .60

-16 .02 .38

-18 .012 .24

-20 .008 .15

Table 4.2

Bias in Centimeters Due to Far-Out Sidelobes

t I/Tc = 1000, A/Tc = 44

Average

Sidelobe Level Wave-Height

ch = .25 m ch = 5.0 m

-30 (dB) 32.0 (cm) 632 (cm)

-35 10.0 194

-40 3.2 64

-45 1.0 20

-50 .3 6
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4.3 Transmitter Noise Bias

In the recommended SEASAT-A system, the TWT must be turned on

prior to (and kept on after) transmitting the LFM waveform, so that the

transient response of the TWT is not superimposed on the desired signal.

This results in a burst of noise being transmitted before and after the

signal. This degrades the sidelobe response of the receiver as shown in

Figure 4.3. To maintain these far out receiver sidelobes at -50 dB (alti-

tude bias less than 6 cm) requires that the ratio of total transmit signal

energy to total transmit noise energy be at least 17 dB.

4.3.1 Analysis

Let S(t) be the desired transmit signal, and T(t) be a noise

burst on transmit. In general T1 (t) will have a time varying power level

as sketched below.

/Signal

1Noise
Burst
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Thus the transmitted signal may be represented by:

ZT(t) = S(t) + M(t) (4.43)

Let p(7) be the target (distributed) reflection coefficient at range

cT/2. Then the received signal may be represented by:

ZR(t) = p(T) ZT(t-7)dT (4.44)

If the receiver is not matched, but has receiver characteristic w(u),

then the (complex) amplitude of the receiver output at time t is given by

X(t) f w*(u)ZR(t+u)du (4.45)

Substituting (4.43) and (4.44) into (4.45) yields.

X(t) = p(7) Xsw(t-T)dT + [ p(7) N(t-T)dT (4.46)

where Xsw(7) is the cross ambiguity function given by (zero doppler):

Xsw(t) f w*(u)S(t+u)du (4.47)

and N(t) is the noise process which results from passing p(t) through the receiver.

Thus

N(t) = w*(u)l(t+u)du (4.48)
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The mean receiver output is then given by:

PR(t) = E X*(t)X(t)

f Q(7r) {IXsw(t-T)I2 + EIN(t-T) 2 ) dT (4.49)

where o(7) = Ep(T)p*(7) is the mean cross-section of the target with range.

If the noise pulse is time-varying white, we may write

Sin BN(t-t2)

((tl)*(t2)) 
= PN(tl) S BN (t1-t2 ) (4.50)

where PN(t) is the noise power at time tI.

Thus

EIN(t) 12 =!f f w*(ul)w(u2)E(t+ul) *(t+u 2 )duldu2U 1 u 2

= S S PN(t+u ) SinrBN(ul - u 2) w*(ul)w*(u2)duldu2
uI u2 1BN( 1 -u 2)

PN(t+u) jw(u ) 12du

BN

= No(t+u) Iw(u) 2du (4.51)

where No is the power spectral density.

Substituting (4.51) into (4.49) yields

PR(t) = (T) [I s wX(t-r) 2 + u No(t-2+u)+w(u) 2du d (4.52)
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Thus the effect of the noise burst is to additively distort the

idealized ambiguity function by the term:

D(t) = No (t+u) lw(u)1 2 du (4.53)

Let PN(t) be the noise power (in the signal band) at time t,

(relative to the signal). Then No(t) = PN(t)/B where B is the signal

bandwidth. Thus

D(t) = PN(t+u) 1w(u)1 2 du (4.54)

4.3.2 Approximate Evaluation

To evaluate (4.54) approximately, we assume that the noise burst

is completely suppressed by the signal, when the signal is present. Further,

we assume the envelope of the noise burst is square, and we assume that the

receiver weight is uniform. Thus, the situation is as sketched below;

T

-T/2 0 T/2 Iw(t) I

PN

N (t)

-(T )/2 (T )/2
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For these assumptions, the distortion is given by

DN Itl < AT/2D(t) = t -
2BT

= 2 B AT/2 < Iti < T/2

= (Tn/ 2 - t) N T/2 Itl < T /2 (4.55)

where AT = T -Tn

Referenced to the signal, the distortion term results in the more or less

uniform sidelobe structure shown below:

E

ATPN

-T 0 T

2 2

Figure 4.3

Receiver Sidelobes Resulting From Transmit Noise Burst
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Then the maximum sidelobes

E
N

SL = BT (4.56)
2E BT

8

where EN = total noise energy

E = total signal energy

As was shown in Section 4.2, far out sidelobes should be kept at less than

-50 dB to maintain an altitude bias of less than 6 cm at large RMS wave

heights. Since for the recommended SEASAT-A system 2BT -2000, to achieve a

-50 dB sidelobe (from equation 4.56) requires that

E

E > 17 dB (4.57)

While this requirement should not be difficult to achieve in practice, it

does point out the fact that care should be taken to minimize the time the

TWT is gated on prior to (and left on after) transmitting the LFM signal.
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5.0 ALTIMETER POWER RETURN

In this section, the radar equation for a distributed target is

derived and applied to the particular case of a satellite altimeter. The

target is modeled as a continuous distribution of independent scattering

points distributed in the three dimensions (T, V, u). Here, T is range

delay, V is the Doppler shift, and u is the sine of the angle to the

scattering point measured from the antenna boresight. Since the scattering

points are assumed to be incoherent, the total power is simply the integral

over delay, Doppler shift, and angle of the differential power received from

each point. Although the altimeter equation has been derived more rigorously

elsewhere (e.g., Barrick (3),(4) or Harger (7), this derivation is included

for completeness, and to define the notation used to obtain an approximate,

closed-form solution for the shape of the mean power return.

5.1 Theoretical Development

From the theory of high resolution radar (e.g., Rihaczek (8)

or Deley (9), the power received from a mis-matched filter can be written

in terms of the cross-ambiguity function. That is, let the received narrow-

band signal be represented as:

Sr(t) = / r g(t-T) exp[j2(f o-)(t - T )] (5.1)

where T is the round-trip delay to the scatter,

V is the Doppler shift produced by the
scatterer,

f is the carrier frequency,

g(t) is the complex modulation impressed on
the carrier,

and E is the received signal energy.
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If the receiver is matched to a complex modulation w(t), a Doppler frequency

0, and a delay, t, then the video power out of the filter at time t is given

by:

V(t) = E G B IX gw(t-T , -V)j 2  (5.2)

where X 12 is the normalized cross-ambiguity function defined by:

X gw(T,v) =f g( ) w*( +T)exp[-j21V] d (5.3)

and

GB= JG(f) 2 df = f g(t)1 2 dt

is the product of receiver gain, times its noise bandwidth. Note thatXg,

has been normalized sothat

I Xg 12 < 1

If the scattering point has differential cross-section, do, and is

located at angular position u (in sine theta space), then the signal energy

can be computed from the standard radar equation (Skolnik (10). That is:

E ETGA(u) da GA(u) L (5.4)

r 4HR 2  4HR2  41

where ET is the transmitted energy,

G is the peak antenna gain,

A(u) is the one way loss factor when the target is
not on boresight,

R cT/2 is the range to the scatterer,

X is the R.F. wave length

do is the differential cross-section at the
scattering point, and is generally a function

of all three parameters (T, v, u),

and L is the total system losses (except for

processing mis-match which is included in

the cross-ambiguity function).
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Combining Equations (5.2) and (5.4), gives the differential power

received from a scattering point located at (T, v, u):

dV(t) = ( ET) G 2 2 LGB A (u) X (t-7, 1 do (T, V, u) (5.5)
d t(3 4 gw5)

(4ln) R

Integrating this equation over the three variables, and adding the receiver

noise, yields the total average video power for a distributed target:

(t) = ETG2 2LG B fl f A2(u) X (t-,,-u) 12 do (7, v, u)

(5.6)

+ kT FNG B

where k is Bolzman's Constant,

T is the reference temperature,
o

and FN is the receiver noise figure.

Equation (5.6) is a fairly general representation of the power received

from a distributed target. To apply it to the satellite altimeter, one must now

compute an expression for the differential cross-section dO(T, V, u) which is

appropriate to the altimeter. The geometry being considered is shown in

Figure 5.1.

Consider a scattering point located at height, h, above the mean sea

surface. Then, if Co(e) is the mean cross-section per unit surface area (at

angle 0 relative to radar) and if Ph(h/ n) is the probability density function

of the distribution of scatterers with height, (scaled to RMS wave height oh)

then the differential cross-section at that point is:

do = Go() Ph(h/ah) dV (5.7)

where dV is the differential volume at the point of interest. Now, in the

spherical coordinate system (R,e,*) located at the satellite, the differential

element of volume is:
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Satellite
STrack

e u = sin

H
0

R

Sub
Track

-- .. ~Scattering Point

Mean Sea Surface

a

Figure 5.1 Geometry for Computing Mean Power Return



dV = dR (Rd@)(R sin 9 d*)

= R2 sin 0 dR dO d* (5.8)

The final step, then is to compute T, V, u and h in terms of R,

9 and *, substitute the results into Equation (5.6) and then substitute

Equation (5.8) into Equation (5.6) to obtain the final expression. But from

Figure 5.1, it is seen that

2R
c

2V
v = sin e cos

u = sin 0 (5.9)

and

h o-R cos +ae )2 + R2 sin2  - ae (5.10)

where V is the satellite velocity,

H is the satellite altitude,

and a is the radius of the earth.
e

Before making the indicated substitutions, the equations will be

simplified by making some approximations. That is, it is assumed that the

beam width of the altimeter is narrow (less than 50) so that small angle,

and related consistent approximations can be made. Thus, it is assumed that:

u = sin << 1,

R = Ho + AR,

AR << H

AR << a (5.11)

With these approximations, one can write:

1-5-5



2H
o 2AR 2AR

T =-+ - T +-
C C 0 C

H 62 Ho O
h -AR + (1+ ) (5.12)2 a

do a 0o() Ph (h/oh) H 2 e ddR de dt

2V9
and V 0 Cos

Thus, the average video power can be written finally as:

2ETG 2X 2LaoG B 1/2

V(t) = o dAR [H (1+H /a )0 d]
(4)3H 3(1+Ho/a) - o

o o e -O o

Y(0)A 2 ()Ph(- - o (1 +H /a)

21

d Xgw (t-T ' - cos )

+ kT F G B (5.13)

where Y(0) is defined by 00(8) = oy(G) and defines the variation of o (8)

with angle.

5.2 Approximate Evaluation

A closed form solution for the mean power return can now be

obtained from the triple integral of Equation 5.13. To achieve such a

solution requires some additional approximations and simplifying assumptions.

First assume that the cross ambiguity function is essentially constant over

the doppler variation of the scattering points, then
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21

do X (t-T 4, 0 - _ cos *)12d Xgw (t-o - c 2V

0

2TTI X (t-T - 2R, 0) 2 (5.14)

Further assume that the variation of the cross ambiguity function

with range delay can be approximated by a Gaussian function, thus

IX2 g(tl ) I exp[ - I) 2] = 2Tr (5.15)

where I is the normal density function and T = RMS pulse width.

Now from Barricks (3) model, the wave height density is also

normal, hence

h h
Ph(-) = R (h) (5.16)

h h

Letting H
H = (1 + o) (5.17)

e

and HO2

2

dx = HOdO (5.18)

and substituting equation 5.14 through 5.18 into the triple integral of

equation 5.13,denoted I1, yields

HT
2

13= (2T) 3/2 I dxy(x)A2 (x) f dR *

0 -C

- - 2 a (5.19)
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where cc

R - = RMS range resolution
R 2

Thus the integral over AR is simply the convolution of two normal densities

having different means and variances. As may readily be shown, this convolu-

tion produces a normal density with a mean equal to the sum of the means and a

variance equal to the sum of the variances. Letting

c(t-r 0 )

y = 2 = range measured from the mean sea surface (5.20)

and performing the indicated convolution of equation 5.19

HT
2

13 = (2Tn) 3/2 oR *y(x)A2(x) dx (5.21)

0

where
2 2 2

S= 0 R +h 2  (5.22)
e R h

Now assuming that the two way antenna pattern function can be

approximated by a Gaussian function

A2( -n) 2 (5.23)

where
B = the two way 3 dB beamwidth

And from Barricks (3) model the surface shaping function

-In 2(
2 ) 2

Y(O) - e \0sJ (5.24)

where

8s = the 3 dB spread of the slope distribution
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Then utilizing the change of variable given by equation 5.18, the product of

the surface shaping function and beam pattern can be written as

G(x) = y(x)A 2(x) = e-81n 2 H 2 (5.25)
e

where -1/2

e = ---- +  (5.26)

BW2  s

is the effective 3 dB beam width.

The remaining integral of equation 5.21 can now be expressed as

F(Y) = (G * 1) [x]

= exp - -x2 exp [-x] dx (5.27)
f/2T' a e

where
81n 2

S- 2 (5.28)
H 9

e

To evaluate the remaining integral requires completing the square in the

exponent, let

Y2 _2xy+x 2  2e 2 .L X

2 2 2
,(z )2 + px = % y -2xy+x e 2

e a a
e e

= 12 [2-2x(y-oe 2 )+ x 2

2a
e

= 1 22-(y-( )2 + (y- e2 P2 - 2x(y-e 2)+x2]

20
e
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1 - y2_y 2 +2ya o 2% 42 1 I x-(y-o 21 2
2 e e 20 2 e -

20 20e e

= (y- 2 2 x-(Y-2 P)12
(yP-Apep ) +

e

Thus

0

j(y-021)-x

Letting t e

e

- ee
F(y) = exp[ (o ) 2-y exp(- t 2 ) dt (5.30)

So that finally

F(y) = exp[ (ep.2-yp] Y e - OPe)] (5.31)

where 0 is the cumulative normal distribution function. Thus F(y) describes

the shape of the mean power return as a function of range measured from the

mean sea surface.

Substituting equation 5.31 into equation 5.21 and the result into

equation 5.13 yields the approximate closed form solution for the average

video power

(2n)3/2E 2 2 LG 2 R

V(4)(yH (1= e
0 a e

+ kT F GB (5.32)
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where

10 log (co ) = 13.6 - 5 log ch (5.33)

is the variation in cross section per unit area of the sea at normal incidence

as a function of RMS wave height (in meters) as given by Barricks (3) model.

Figure 5.2 illustrates the shape of the mean power return as given

by equation 5.32 as a function of RMS wave height ah for typical SEASAT-A

parameters. The factor of 4 or 5 variation in power at the so called "plateau"

of the return can be attributed to the change in cross section as given by

equation 5.33. If this variation in ao(n) is normalized (as with a late gate

on the plateau) the mean power return of Figure 5.3 is obtained. The droop in

the plateau region shown in Figure 5.3 is caused by the rather narrow

effective beam width 08. A small 8 also causes a distortion in the shape
e e

of the leading edge,producing a wave height dependent bias. As shown in Figure 5.4,

a bias of 19 m occurs at a 5 m RMS wave height due to this effect. A plot of

distortion and bias as a function of antenna beam width, Figure 5.5, shows that

an antenna beam width of 50to 100 would essentially eliminate this problem.

The bias as a function of antenna beam width for a 5 meter RMS wave height

is shown in Figure 5.6. While a wider antenna beam width would also reduce the

effects of antenna pointing errors, the reduction in gain would require a

corresponding increase in peak transmitter power and/or compression ratio to

achieve the recommended signal-to-noise ratio.

The scope of the present program precluded an in depth study of the

effects of pointing error on the shape of the mean power return (although it

is presently felt that the effect of pointing error could be included in

the closed form solution given by equation 5.32). It is recommended that a study

be made of all the trade offs involved in order to determine an optimum antenna

beam width.
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APPENDIX A

(Part 1)

THEORETICAL DERIVATIONS FOR THE MLE ANALYSIS

A.0 INTRODUCTION

In Reference (1), a maximum likelihood estimator (MLE) was pro-

posed which would simultaneously estimate the epoch, wave height, and

signal-to-noise ratio for a satellite altimeter. In that reference, the

asymptotic performance, when many pulses are integrated, is analyzed. In

Reference (2), a technique for implementing the processor using feedback

loops is proposed, but its performance is not analyzed. In this appendix,

a somewhat broader class of estimators is considered. That is, those esti-

mators which are obtained by minimizing a penalty functional which depends

on both the observed data and on the parameters to be estimated. Maximum

likelihood estimators (MLE) are special cases of this class of estimators.

In this appendix, formulas for'computing the asymptotic bias and

variance of the estimators are derived. In addition, an appropriate imple-

mentation scheme is discussed which is based on feedback loops. Finally,

formulas for computing the mean response, and the variance of the loop

estimators are derived. The general formulas are then evaluated for the

satellite altimeter case. The resulting formulas provide the basis for

the results discussed in Section 3.0.

A.1 Problem Definition

It is assumed that for each pulse (or data interval), a vector

of K data values are measured. Thus, let:

V. be a K dimensional vector of measurements
I taken on the ith pulse.

For the altimeter problem, the vector Vi represents the video outputs from

K range cells. For a given set of parameters, represented by the M dimen-

sional vector 9, a penalty function is defined, call it:

Q(Vi/e)

A-i



Then, for an entire sequence of N pulses, the total penalty is

N
E Q(V.i/)

i =1

The class of estimators to be considered are those estimates e which mini-

mize the total penalty, i.e.,

N N
E Q(Vi/e) = min C Q(Vi/8) (A-l)

i=1 i= 1

If one lets VT = (/81 e2' . . ., b/6M ) be the gradient

with respect to e, then (assuming existence of the derivatives) a necessary

condition on the estimator is:

N
E [VQ(Vi/ )] = 0 (A-2)

i=l

Before concluding this section, it should be noted that to derive

a MLE estimate from this formulation, one lets the penalty function be the

negative logarithm of the likelihood function. That is:

Q(V.i/) = -In((Vi/6)

where P(Vi/8) is the joint probability density function
(likelihood function) of the observed values
given the parameter vector 6.

Note that minimizing Q is equivalent to maximizing P. Note also, to derive

a least mean square estimate, one lets

Q(Vi/e) = [v i - V(W ] WY, - V(e)]

where V(6) is a model for the mean value which depends on the
parameters to be estimated,

and W is a normalizing matrix. (Note for W = I, one gets
the usual unweighted least square formulation.)

A.2 Asymptotic Bias and Variance

The asymptotic bias and variance can be estimated by expanding

(A-2) in a Taylor Series about the true parameter values. Thus, Equation

(A-2) becomes:
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N NT
0 = E V Q(V /) + E [V TQ(Vi/6) (6 - 6)

i=l i=1

+ higher order terms. (A-3)

Asymptotically, two assumptions are made:

a) 6 is close enough to 6 so that only the first term

in the Taylor Series expansion needs to be kept.

b) Enough independent pulses are included so that the

second summation may be replaced by its mean value.

Thus:

N [ V Q(v,/9)] e NE v VT Q(V/6)
i=I

If one lets:

R(6) = E V V Q(Vi/6) (A-4)

and

ei(e) = V Q(Vi/e) (A-5)

Then Equation (A-3) becomes:

N
N R(O)( - 6) = - i e.(6)

i=l 1

or

-1 -1(- ) = -N R (6) r ei(6) (A-6)
i=l 1

From (A-6) the asymptotic bias and cross correlation matrix of e

is given by:

-l
E(8- 6) = -R (e) EC(8) (A-7)

and

E(e- 0)(6- 6)T = N- R- ()[Ee(G)e T()]R- (6) (A-8)
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A.3 Special Case: MLE

For the MLE, Q has the special form:

Q(V/e) = -In P(V/6) (A-9)

And thus:

e(=) = V Q(V/)=- P V (P(V/e)) (A-10)

The bias is computed by:

E e() -P(V/V) [vP(V/6)] P(V/0) dV

= - V P(V/0) dV

= -V P(V/8) dV

= -1 = 0 (A-11)

Thus, by (A-7) the MLE is asymptotically unbiased. It should be

noted that the above manipulations are formal, and can be justified only

for regular distributions.

The information matrix, R(e), is computed by:

R(G) = E V T Q(V/O)

= -E V [P(V/e)] -  VT P(V/)

= E (P(V/e))- 2 (V P(V/e)) (VT P(V/))

- E P(V/G) I V VT P(V/8) (A-12)

Now recall, (Equation (A-10)):

e(O) = (P(V/) Y V P(V/8) (A-10)

Thus:

R(G) = E e(O) e () - E P(V/e)- 1 V VT P(V/O) (A-13)

But

E P(V/G)-I V VT P(V/) = P(V/) - 1 (V VT P(V/O)) P(V/0) dV

= VT J P(V/e) dV = V V 1 = 0 (A-14)
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Again, the above manipulations are only justified for regular

distributions. From (A-13) and (A-14) one has finally:

R(O) = E e(6) T(0) (A-15)

In summary, the asymptotic bias and covariance of the MLE estimates

are:

E(e- e) = 0 (A-16)

and

E(O- 0)(e- ) = N-1 [E e(G)C (0)] (A-17)

where

e(0) = -v In P(V/e) (A-18)

Equation (A-17) is equal to the Cramer-Rao lower bound, thus, as

is well known, the MLE is asymptotically efficient.

A.4 A Feedback Loop Implementation

Equation (A-2) stated that a necessary condition to obtain the

desired estimator is to find 0 so that the average error signal is zero.

That is, 8 must satisfy:

N

SE. i ( ) = 0 (A-2)
i=l

One technique for solving this equation is to let the error sig-

nal be an input to an integrator

N

d = -k E E ('(t)) (A-19)
dt i= I

If the loops are stable, then at steady state, d'/dt = 0, and

the steady state value of * must satisfy Equation (A-2). Hence, at steady

state i converges to the desired estimate 0 which minimizes the total

penalty.

The loop equation, (A-19), can be shown to always converge by

the following argument. By differentiating the penalty function, one gets:

d N N T d N T) d
t Q(Vi/0) =  V 9 Q(V/ dt i i () (A-20)
i=l i=l i=l
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But, by Equation (A-19) this results in:

N N N
dt E Q(V ) =-k [ iT(
dt i= i=l i=l

& 0 (A-21)

Thus, the total penalty is decreasing with time and must, there-

fore, converge to a local minimum.

The loop convergence time may be computed approximately by using

the asymptotic linearization:

N N
, e.i() e.: i(8) + N R(e)( - e) (A-22)

i=l i=l

But, by using Equation (A-6), the first term may be written in terms of *,

thus:

N
E( ) = N R(e)[-(- 8) + '- e]

i=l
= N R()( --) (A-23)

And one has:

dt = -kN R(e)(8- 0) (A-24)
dt

The solution to Equation (A-24) is:

tkN R(O)t -kN R()t kN R(O)/

(t) = ekN R()t + eN R()t e R()' kN R()e(T)) dT (A-25)

where o is the initial value for the estimate 0. Note in the above expres-

sion, 8 may vary during the loop settling time, but it is assumed that a is

not varying. By assumption 0(t) represents the minimum penalty estimate for

N pulses centered at time t. For simplicity, we assume that the estimates

are only computed at discrete times. Thus:

N(t) = . 6 (t - jN/PRF) (A-26)
PRF j
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where PRF is the pulse repetition frequency

6 is the Dirac delta function

and e. is the minimum penalty estimate computed for the pulses
occurring from time (j- )N/PRF to time (j + )N/PRF.

From (A-25) and (A-26) one has that the mean of ''(t) is given by:

E e-(t) = ekN R(e)t + N- -kN R(e)(t -jN/PRF) kN R(^) E(e) (A-27)
PRF

j<t

Assuming that the loop time constant is large compared to N/PRF, then

t
-kN R(O)t -kN R(G)t kN R(O)T ^E d(t) _ e )t + e )t kN R(8) dT(E8)

0

=E + ekN R()t ( - E ) (A-28)

Thus, the behavior of the mean of 'V is determined by the eigen-

values of the matrix:

R(e) = E V T Q(V/e) (A-29)

In particular, if all the eigenvalues of R(O) are positive, then:

lim -kN R(e)t =e = 0t4e

and

E (t) Et -+o

Further, the convergence time of the loops is determined by the minimum

eigenvalue of R(e), thus the maximum loop time constant is given by:
-1

Tc = (kN Xmin) 1  (A-30)

where Xmin is the minimum eigenvalue of R(e).

The variance of the estimate Z is computed as follows. From

(A-25) and (A-28), one has:

(t) - E Z(t) = e-kN R()t ekN R()T kN R(e) ((T) - E e) dT (A-31)
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Thus:

Cov (t)) = E (t) -E Z(t)) (6(t) - E (t)

t t

= f -kN R()(t - (kN R()) Cov ((Tl). 2O2))
O o

(kN R(0)) e-kN R() (t - T2 ) dT1 dT2  (A-32)

Now, consider Cov (O(71),' 0( 2)), from (A-26) one has:

Co ( ) N 2 Cov e] 6 (T1 - N/PRF) 6 (T 2 -mN/PRF)

C,m (A-33)

But, assuming independent pulses, one has:

Cov .j 8 = Cov j = 

= 0 j # (A-34)

Thus

C ( N 2 j^A jN ^ 6Cov O(7 2  Cov( ) 6 (- jN/PRF) 6 (T 2 - jN/PRF)

= (-PR) Cov 0 E 6 (7 1 - jN/PRF) 6 (2- jN/PRF) (A-35)

Substituting the above expression into Equation (A-32) gives:

Cov (t) = (N-)2 -kN R()(t- jN/PRF) kN R()) Cov 8(kNR(0)

PRF

j<t N

a e-kN R() (t - jN/PRF) (A-36)

Now if it is assumed that the loop time constant is large compared to N/PRF,

then

t
CoN() e-kN R(O)(t- T)(kN R) Cov 6 (kN R) e - T)dv (A-37)

The above equation can be evaluated by expanding exp [-kN R(G)(t-T)]

in terms of the eigenvalues and eigenvectors of R. Thus:

-kN R(O) (t - T)kN R() = -kN X(t - T)T (A-38)

A-8=1
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where is the th eigenvalue of R(6)

and cp0 is the corresponding eigenvector.

Thus:

t
_o[ ) N e-kN(k\+ m)(t- )

Cov[ (t) f e (k22 m) dT cpZtT [Coy ] (Pm m

kN2 e-kN(+ m)t T ov T (A-39)

PRF 
(X )] C o PM

For the special case of the MLE,

-1 -1 -1 T
Cov 6 = R (6) = N E X c. Pj .Pj

Thus (A-39) becomes:

Cov 6(t)] kN Z (1 - e2 kN )X t T
2PRF

kN (I -2kN R(e)t) (A-40)
2PRF

Further, as t-4

Cov r(t)] -4 kNI (A-41)

Equation (A-41) shows that the steady-state variance of Z can be

made small by reducing the feed-back loop gain. However, Equation (A-30)

shows that this increases the settling time of the loops. Thus the reduced

variance is achieved by increasing the loop averaging time.

A.5 Evaluation of the Satellite Altimetry Case

In the previous sections, the asymptotic variance of a MLE was

shown to depend only on the information matrix:

R(6) = E e(O) ET(e) (A-15)

where

e(6) = V Q(v/6) (A-18)
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and

Q(V/8) = -In P(v/e)

where P(V/0) is the joint likelihood function of the vector of observed

values, V, given the parameter values 8. In this section, the information

matrix will be evaluated for the satellite altimetry case.

For this section, it is assumed that the vector

V = [V. K (A-42)

represents the sampled video output of the altimeter. It is assumed that

the sampled values occur at least one range resolution cell apart, thus

the sampled values are statistically independent. Further, square law

detection is assumed so that the video samples follow an exponential dis-

tribution. With these assumptions, the likelihood function can be written:

K
P(V/8) 0= () exp -V /V (8)) (A-43)

where

Vj(8) = E (V.j/) (A-44)

Thus, the likelihood function depends only on the mean power return as a

function of range.

Applying (A-43) to (A-18), one obtains the penalty function

K

Q(V/0) = E In V. + V./V (A-45)
j=l 1 3

Thus:

e(8) = V Q(V/8)

K -2= - )--2
E I (.-V.)(V.) V V. (A-46)

And the information matrix is given by:
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R(O) = E e(8) eT(e)

K K
= E Z (V -V(V V (Vt) (V - V)

K
= (V V V)(V. V )

K T
= 1 B.B.T (A-47)j=1

Where the vector B. is given by:

--1-
B. = V. VV. (A-48)
J J J

Note that the summation in Equation (A-47) is over range. In

general, the range resolution cell is small, therefore the summation can

be approximated by an integral so that:

T

R() max B(t) BT(t) dt (A-49)

T .
min

where the limits of integration in (A-49) are from the minimum to the max-

imum range sampled, and B. is treated as a function of time delay, B(t).

In (A-49) At is the time in seconds between adjacent range samples. Note

that the dependence on the parameters is contained entirely in V.

To evaluate (A-49) further, an expression for V(t/e) is required

(i.e., the mean power return versus time given the parameter values). In

Section 5.0 a fairly detailed derivation of the mean power returned from a

distributed target is given, and a reasonably good approximation for the

altimeter case is derived. The resulting expression depends on compressed

pulse length, RMS wave height, antenna beamwidth, and the RMS surface slopes.

However, from the results in that section, it can be shown that when the

compressed pulse length is small compared to the wave height, and when the

antenna beamwidth is broad (>50), the mean power return can be written

approximately as:

v(t/e) =a ((t- To)) + 1 (A-50)
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where the significant parameters to be estimated are:

e = (a, To , P)

with a = signal-to-noise ratio

7 = epoch

and = is a measure of the RMS wave height.and = 2an

In Equation (A-50) (-) is the unit normal cumulative density

function. Further, for convenience, the known receiver noise power is

assumed to be unity.

With these assumptions, one can write:

B(t) = Ba(t)

B (t)
0

B (t) (A-51)

with

- ( ((t- To))
B (t) = a

a(p(t - To) )+l/a

B (t) = (( T ) (A-52)

0( T ) +1/a

1 o(t- T 0 (P(t- To0

P(t)= (M(t- 7 ))+ 1/a

If the above expressions are substituted directly into Equation

(A-50), the resulting integrals are difficult to evaluate. Therefore, to

simplify the computations, the cumulative normal is approximated by three

straight line segments. That is:

(u) - 0 u < -ka

w au+ uj k-1 (A-53)

S1 u > C - 1
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where the constant, a = .3227, is chosen to make the straight line segments

fit the cumulative normal in a least squares sense.

Using the above approximation, and making the change of variable:

Z = a(t- o) + + 1/a (A-54)

one finds that the components of the vector B(t) can be written in terms of

Z as follows:

-1
Since m (P(t- 7)) = aP(t- TO) + , (t- 7)I < -

= Z - i/a , 1/a < Z < 1 + i/a

= 1 , Z > 1 + 1/a (A-55)

-1
and ( ((t -T)) = , B(t- 7o) k l

1/a < Z < 1 + I/a

= 0 , otherwise (A-56)

Then B (t) = a [-1/a] , 1/a ! Z 1 + 1/aa Z
-1

= a (1 - 1/aZ), I/a < Z 1 + 1/a
-I

= a-1 (a/a+1) , Z > I + 1/a (A-57)

B (Z) = p (-a/Z) , I/a < Z 1 + 1/a

B(Z) = 1= (1 - a+) , 1/a 5 Z 1 + 1/a

Substituting the above equations into (A-50) and integrating over

Z gives the results:

1
R(D) = DC D (A-58)

where D is the diagonal matrix.

D =(a 0

0 0 -i (A-59)
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and C is given by:

C = Caa ' a0 ap0

aT To

Cap C To cg (A-60)

where

1+ /a a max - 1/a

Caa= (1-)2 dZ + ( 2 dZ

I/a 1+ 1/a

2 1 a 2
=1 log (1+a) + + (aPT -) ( )

a 1+a max 1+ a

1+ 1/a

o /O

=-a [log (1+ a) - (A-61)

1+ 1/a

CaB 1 a+2C = f(1- 1)(1-a2) dZ
/a

a+4 a+2= 1 +4 log (1+a) + a+)
2a 2(a+ 1)

2f dZ a 2 a

1+ i/a

f dZ a2 d
_ a2 + a)1/a Z

C = (1 ) dZ
Ti /a z 2aZ

= -a [log (l+a) - (a+2)a
2(a + 1)
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1+ I/a
Sa+2. 2

C (l - )2a dZ
1/a

a+2 (a+2)
= 1 - log (l+a) + (a+2)

a 4(1+a)

Since the variance of the MLE is given by N-1R' (e), it would be

useful to have a general formula for C (from which R (0) could be com-

puted). Although it is feasible to write down the inverse of a 3 by 3

matrix, the resulting formulas are unmanageably cumbersome. Therefore, we

proceed differently.

Let

C' 1 log (1+ a) + 1 a 2 (A-62)
aa a 1+a 1+a

Then if

C' = 'aa C Ca C Caa a

C C C

Cap Co C/ (A-63)

one has

C = C' + d ( 1 (l 0 0) (A-64)
0

where

d =(coT -1)( )2 (A-65)max  1+a

The advantage of writing C in this form is that C' depends only on signal-
-i1

to-noise ratio; therefore, (C')1 can be easily tabulated. Further, using

the Woodbury identity, C-1 can be computed from (C')-1
. That is, let

F = (C')-1

Then:

C = l+dFF Fli F (A-66)
ij 1 +dF 11 lj

where Ci j is the (i,j) element of C"1. Table A-I tabulates Fij versus

signal-to-noise ratio from -0 dB to 30 dB in 5dB steps.
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TABLE A-I

F Matrix vs S/N

S/N (dB) F11 Fl2 F13 F22 F23 F33

-10 242.0 374.96 -242.0 1640.5 -440.0 1563.6

- 5 34.649 53.686 - 34.649 212.78 - 76.271 194.19

0 8.0 12.395 - 8.0 41.587 - 21.408 33.579

5 3.4649 5.3686 - 3.4649 15.416 - 9.8626 9.978

10 2.42 3.7496 - 2.42 9.8201 - 6.5847 5.141

15 2.1285 3.2979 - 2.1285 8.2012 - 5.4429 3.7847

20 2.0402 3.1611 - 2.0402 7.6221 - 4.9907 3.3143

25 2.0127 3.1185 - 2.0127 7.3857 - 4.7978 3.1303
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Example

Suppose it is required to compute the variance in the epoch esti-
cat CTmax

mate when N = 1500, c At .5m and max = 23m, a = 5m and a = 10dB.
2 2 n

Now from Equation (A-58),

R-1() = cLAt D1 C- 1 D"1 (A-67)

where D-1 = diag (a, P-, ) is a diagonal matrix.

Now,

.3227 cT
a 2 3227 max ) a 2

d = ( mPT 1(-) = 2- 2 )
max 1+a 2 a

= .4003 (A-68)

From Table A-I,

F1 1 = 2.42, F1 2 = 3.75, F2 2 = 9.82

Thus
TT

C o = 6.961

and

C2 = [ N- I R  ( ) ] T T = (aPAt) N_1 P2 C 0
00 00

or

co cAt -1 oo
2 o = a(----) h N C

6.1cm (A-69)

A.6 Bias in the MLE Due to Range Sidelobes

In the satellite altimeter case, the MLE minimizes the penalty

functional:

K
Q(V/) = 2 [v./V .()] + In v.j() (A-45)

j=A-17
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where the summation is over range. In (A-45), Vj(B) is a model of the mean

power returned versus range. The model, of course, depends on e the vector

of parameters to be estimated. The resulting estimate of 6 is a true MLE

and will be unbiased only when the mean power model is complete and includes

all significant parameters. In particular, the mean return model derived in

Section 5.0 does not include the effect of range sidelobes. Therefore, when

range sidelobes are significant, and a model such as proposed in Section 5.0

is used, the resulting estimate will not be a MLE, and will, in general, have

biases. However, the estimate is still minimizing the functional (A-45),

therefore the previously developed theory may be applied to compute the bias.

Recall from (A-7), the bias is given by:

-1
E(e- e) = -R (0) E e(G) (A-7)

where

R(G) = E VVT Q(V/e) (A-4)

and

E e(G) = E V Q(V/6) (A-5)

To apply (A-7), (A-4), and (A-5) to (A-45) let

E V. = V.
J J

be the true returned power including the effects of range sidelobes.

Then,

K -2
V Q(V/e) = ) (V - V) V. V Vj (A-70)

and

K -- -- 2 -
E e(O) = E V Q(V/0) = E (j -V.) V.- Vj (A-71)

Differentiating (A-71) again, and taking expected values, one

obtains:
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R(e) = E vvT Q(V/8)

K -- -2 - T
S- (V (V V.)(V V.)

j=l

+ V.-V.) -.2 vv V - 2V VV. V V.} (A-72)

j = 1 1  3

If the average sidelobe level is small, then one may assume:

V. -V.
<< 1 (A-73)

V.

Thus the second summation in Equation (A-72) is small compared to the first

summation, and one has approximately:

K T
R(e) - - B. B . (A-74)

where

-- 1
B. = V. VV. (A-75)

Note that this is exactly the negative of the matrix which was

evaluated in the last section. Thus, to evaluate the bias due to range

sidelobes, one only needs evaluate E e(e) as given by Equation (A-71),

and then evaluate Equation (A-7) using the matrix derived in the last

section.

To evaluate the mean error signal as given by Equation (A-7), an

expression for V-V is required. This can be derived by including a uni-

form sidelobe level in the ambiguity function used in Section 5.0. That is,

in Section 5.0 the ambiguity function was approximated by:

2 (t1) e-(tl/Cr) (5.15)
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If a uniform sidelobe level is added to the above expression,

then one has:

IX2(tl) e-(tl/T ) 2 + ; t T (A-76)

where T is the uncompressed pulse length, and yl is the average sidelobe
u

level. In the approximation (A-76), only the far-out, uniform, range side-

lobes are considered. This is felt to be a reasonable approach since the

results in Section 4.2, on the split-gate tracker bias, indicate that the

far-out sidelobes are the most important ones to consider.

If the approximation (A-76) is substituted into (5.13), and all

the various variable changes required to get to Equation (5.19) are made,

and if the main lobe contribution is subtracted, one obtains:

E G2 X Loo G B
V(t) - V(t) = 1 3 (A-77)

(4 rr) 3 Ho3(l+H /a )

where 13 is the integral:

2
HIl 2c/2(t- T +T )8 o u

13 = 2dyl f dx y(x) A2(x) diR T ( AR) (A-78)
o c/ 2 (t- o - T ) h h

where all the various symbols are defined in Section 5.0. Assuming that

Tu >> Oh, then the second integral above can be evaluated approximately

as:

-(t - T +Tu)
2 u

dAR - R I ; (t- T - T ) <x c (t- +T ) (A-79)
h h 2 o u 2 o uc h h

Thus the integral 13 becomes:

Xmax

13 = (2) y f dx y(x) A2 (x) (A-80)

mi
n
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where: Xmi n = Max [0, c/2(t- T -T ) ]

Xmax = Max [0, c/2(t- ~o+Tu)

By Equation (5.25) y(x) A2(x) can be written:

y(x) A2 (x) = exp [-(8 In 2/He 2 )x] (5.25)

Thus 13 becomes:

2r- Y1 HO
2

S1n e 2i exp[ 8 In 2 c (t - T +T ,)) (A-81)
H2

e

where it has been assumed that only those times for which Xmin = 0 and

Xmax #0 are of interest (i.e., It- T01 <Tu).

Substituting (A-81) into (A-7 7) yields:

2 2 o 2
E G 2 La G B HOe 2 8 2 - T +T)

o e 8 in2 t uI (A-82)
V(t) - V(t) = 3 3 (2) 8n21 - ex 2 2 (A-82)

(41) H (+H o/a ) Heo o e e

Now, from Equation (5.32), the signal-to-noise ratio is given by:

SET G2 2L o G 3/2
ETG X LaG B (2p) a

a o R (A-83)
(4)H 3 (l+H o/a e)( kTo F G B)

Substituting into (A-82) yields:
2

a He (t- (A-84)
V(t) - V(t) = J Y1 8- exp -( ) (t - T 2 (A-84)

R eHO

where (as before) it is assumed that the noise power has been normalized to

unity (i.e., kT F G B = 1). In most cases of interest, it may be

assumed that:

c(t- To) HOe df -1
2 8 In2 (A-85)

A-21



That is, the range over which the return is sampled is much smaller than

the effective depth of the antenna beam. Here, the depth of the beam is

defined as the range change on the earth's surface between the center and

-1
the edge of the antenna beam. In the above expression, t is the depth

of the beam divided by In 2.

With this assumption, the difference in the return due to side-

lobes can be written:

-1 c(t -T +T )
" -aY1 i - o u
V(t) - V(t) - V I 1 - e 2

-1
ayp -1 -1

1 - exp(- cT /2 p- )+exp(-cT /2p )[c(t - ro)/ 2 p" (A-86)

R

Making the change of variable, Z = c4P(t- 70)+ +l/a, and doing some

manipulation yields finally:

V - V M a gl[g 2 +Z] (A-87)

where

-(---CL Tu )

g 21 c e (A-88)
1 21 a a

R

- T
2p -1 u

= -1 ) 1 (A-89)

Substituting this expression into Equation (A-71) gives the following

expression for the mean error signal:

K V. -V. VV. K V.-V.
E e(8) = Z - -- = 7 1 - B. (A-90)

j = 1 V Vj j = 1 V J

1+1/a a f T + + / a

S(1+-) B (Z) dZ+ a (g2+ Z) B (Z) dZ

1At i/a 1+1/a
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where B(Z) was defined by Equation (A-75). The above integrals can be

evaluated in closed form; the manipulations involved are fairly tedious,

but straightforward, and will not be repeated here. The results are:

gl [ 1 g 2a a 2ea = i1 +(g 2 -) log(l+a) - + ( >) g 2(T -a
a[t Ata 2a 1+a l+a 2 max

a 2 1 2
1+a max a

2
-gl ( g 2

a

E - log (l+a)+ +2 a
T At 1+a

E 9 1 + (g a ) log(1+a) (A-91)
P 2 2 2a 2(a+ 1)

These equations appear to involve too many parameters to easily

tabulate or graph them. Therefore, they were programmed, and the bias

errors were computed for a typical case of interest. For this table, the

satellite height was 725 km, the (one-way) beamwidth was 50, and the side-

lobe level was -50 dB.

The 50 beamwidth is larger than what is proposed for SEASAT;

however, the broader beam represents a "worst" case in that biases due to

range sidelobes increase as the antenna beamwidth is increased. Further,

the results in Section 5.0 indicate that the approximation (A-50) is not

valid since it does not include "beamwidth roll-off". It should be noted

that in a three loop tracker, which does not compensate for beamwidth

roll-off, bias errors will develop. These biases are likely to be more

significant than those due to range sidelobes. Unfortunately, funds on

this contract ran out before this effect could be evaluated.

As stated earlier, Table A-2 shows the effect of range sidelobe

errors. A surprising feature of the table (in view of the complexity of

the equations) is that the results are independent of signal-to-noise
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ratio, and that the epoch and wave height errors scale in proportion to

RMS wave height. These results have not been verified analytically, but

if they do hold generally, the biases have the simple form*:

2 ah
A T 880 (- ) Yo c

A h ~ 600 ch Y1

A a 600 a yl

* It can be shown analytically that the biases are proportional to
average sidelobe level, yl.
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Table A-2

MLE Altimeter Bias Due to Range Sidelobes

Average Sidelobe Level = -50 dB
Antenna Beamwidth = 50 (one way)
Satellite Altitude = 725 km

Epoch Error (cm)

S/N (dB) 5 10 20 Sig. Waveheight (m)

0 -1.1 -2.2 -4.5

5 -1.1 -2.2 -4.5

10 -1.1 -2.2 -4.5

20 -1.1 -2.2 -4.5

Waveheight Error (cm)

S/N (dB) 5 10 20 Sig. Waveheight (m)

0 .75 1.5 3.0

5 .75 1.5 3.0

10 .75 1.5 3.0

20 .75 1.5 3.0

S/N Error (dB)*

S/N (dB) 5 10 20 Sig. Waveheight (m)

0 .03 .03 .03

5 .03 .03 .03

10 .03 .03 .03

20 .03 .03 .03

* The quantity in the above table is 10 log (I+ASN/SN).
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Part II

OCEAN WAVE SPECTRA

1.0 INTRODUCTION AND SUMMARY

In Part I, the design of a high resolution radar for altimetry and

wave height estimation was discussed. The feasibility of utilizing this same

radar for the measurement of ocean wave spectra as well is examined in this

part of the report. A preliminary design analysis shows the resulting system

parameters for the ocean wave spectrometer to correspond very closely to those

of the radar altimeter design.

Section 2.0 examines the implementation and design of a high resolu-

tion radar for the measurement of directional ocean wave spectra. Commonality

of the implementation with that of the radar altimeter leads to the recommenda-

tion of a short pulse wide-band radar technique instead of the mathematically

equivalent two frequency correlation technique. Both techniques perform a

spectral analysis of the amplitude modulation (caused by ocean waves) on the

return signal at a given analysis direction. A preliminary analysis and design

shows that the required modifications to the radar altimeter design which will

allow the system to measure wave spectra are that the transmitter output is

switched to a 2 meter antenna which is steered 200 away from nadir and scanned

conically with a period of 5 sec. On receive the full deramp processor is replaced

by a surface wave pulse compressor and detector followed by a band of 11 one-third

(1/3) octave filters to perform the spectral analysis. The filter outputs are

then detected and integrated for 26 Psec per pulse. While this preliminary

design meets all the specified performance requirements, it is based primarily

on compatibility with the radar altimeter and probably does not represent an

optimum configuration. A more detailed study of the trade-offs in achieving

an optimum configuration is recommended.

Section 3.0 provides the preliminary analysis of the directional wave

spectrometer upon which much of the system design is based. The analysis should

be considered a quick "first cut" at the problem because of the many simplifying

assumptions required in a study of this size. Nevertheless, the overall
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approach, considerations, and conclusions are believed to be correct. It is

shown that the input to the spectrum analyzer consists of two noise processes,

one being the desired modulation of a due to the gravity wave spectrum of the

ocean surface and the other due to the fact that the modulation is riding on a

noise process whose mean is aG. Standard statistical theory for the detection

of a Guassian signal in Gaussian noise is used to develop approximate expressions

for the signal-to-noise ratio necessary for reliable detection of the modulation

and resulting design constraint. It is shown that the problem of measuring ocean

wave length is analogous to the beam limited satellite altimeter problem Results

developed during the TSC altimeter study are then used to establish the resulting

design equation for measurement accuracy. As with the altimeter, measurement

accuracy improves with S/N ratio up to a point, after which further increases

in S/N provide little improvement (saturation effect). In the wave spectro-

meter, this effect occurs at unity signal-to-noise into the spectrum analyzer,

(S/N) Furthermore to achieve unity (S/N). with a 2 dB modulation, it is
isa isa

necessary to resolve to the order of a 19th of a (water) wavelength.
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2.0 HIGH RESOLUTION RADAR IMPLEMENTATION

In addition to altimetry and wave height, a high resolution satellite

radar may also be used to measure directional wave spectra. A nominal perfor-

mance requirement for such an instrument is the measurement of spatial frequencies

from 50 meters to 400 meters with an accuracy of 25%. This requirement is then

compatible with a wave height measurement of 2.5 to 20 meters (peak-to-trough)

with an accuracy of 25% since wave period is approximately twenty times peak-to-

trough wave height. A directional resolution of at least (180) is also assumed

as a nominal requirement.

There are at least three types of satellite radar implementations

capable in principle of achieving the above directional ocean wave spectra

requirements. First, there is the high resolution side looking imaging radar.

With this technique both image and directional wave spectra are continuously

measured along the strip illuminated by the side looking antenna. The other two

radar techniques provide a more coarse measurement of ocean wave spectra with a

corresponding significant reduction in output data rate when compared to the

radar imaging technique. The two frequency correlation technique of Ruck,

Barrick and Kaliszewski (1 ) and the short pulse wide-band radar technique dis-

cussed by Tomiyasu (2 ) are in fact mathematically equivalent. Both techniques

perform a spectral analysis of the amplitude modulation (caused by ocean waves)

on the return signal at a given analysis direction. A slow mechanically conical

scanned antenna then permits the spectral measurement to be performed every

0 0 over the full 3600 scan.

The choice of implementing the short pulse wide-band radar technique

is based primarily on the commonality of the implementation with that of the radar

altimeter. In fact, a preliminary design analysis shows the resulting system

parameters to correspond very closely to those of the altimeter design. The

projected altimeter design can be fairly easily modified to perform ocean wave

spectra measurements. The major modifications to the altimeter design which will

allow it to measure directional surface spectra are:
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1. The transmitter output is switched to the 2 meter antenna.

The antenna beam is then steered 200 away from nadir and

scanned conically with a period of 5.0 seconds.

2. On receive the current full deramp processor is replaced

by a surface wave pulse compressor. The compressed pulse

output is detected and passed through a bank of 11 one-

third (1/3) octave* filters which span the frequency range

of 1 MHz to 9.0 MHz in logarithmic steps. The filter out-

puts are then detected and integrated for 26 psec per pulse.

2.1 Basic Principles and Recommended Approach

The basic purpose of this instrument is to measure the significant

lower end (50-400 meters) of the gravity wave spectrum of the ocean surface as

a function of angular direction. For an off nadir looking radar this requires

the measurement of the low frequency portion of the spectrum of the mean power

response of a matched filter receiver. This mean power response is the radar

cross-section versus range, 0(R), which for a large enough off nadir look angle

(200 for the present SEASAT-A geometry) will contain an amplitude modulation

spectrum corresponding to the gravity wave spectrum.

As described in section 2.0 of Part I of this report, a two frequency

correlation technique measures the Fourier transform of o(R) as a function of

frequency separation Af thus providing a direct measure of the desired amplitude

modulation spectrum. A rigorous theoretical development of this technique for

the measurement of ocean wave surface spectra is given in reference (1). With

the short pulse radar technique (2), C(R) is measured at the output of the

matched filter receiver and hence must be further processed (spectrum analyzed)

in order to obtain the desired amplitude modulation spectrum. As mentioned

previously, both techniques are mathematically equivalent and simply represent

different implementations of the same measurement process. The short pulse

radar technique is chosen only because of the commonality of equipment with

* A 1/3 octave filter has a bandwidth which is 25% of its center frequency.
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the short pulse altimeter. The following gives a rather simplistic view of

the principles involved in the measurement of ocean surface spectra by means

of a short pulse satellite radar.

Consider a short pulse satellite radar looking at some angle e0 off

nadir in the direction normal to the ocean wave (upwind or downwind) as illustrated

in Figure 2.1. Then, as shown, there is a decrease in resolution along the
c

surface AX inversely proportional to the off nadir angle 0 i.e. AR = - ando 2

AX =2 sin . Thus in order to faithfully produce an amplitude modulation on

G(R) corresponding to the smallest spatial frequency of interest (50 meters)

requires that AX - 25 meters. Note, however, that even if the pulse width T

were a delta function; the amplitude modulation of G(R) can be distorted at

large wave heights (peak-to-trough) if 8o is made too small. For 20 meter peak-

to-trough wave heights this consideration places a lower bound on Bo at 80.

But the differential path length at the edge of the beam must also be on the

order of the smallest wave period of interest. This length

H (1 - cos 9B/2)

cos e sin B
o o

which for a 2 meter antenna is about 50 meters at e = 200. It is this con-
0

sideration then that places the lower bound on eo at about 200

At this 200 off nadir angle the previous range resolution considera-

tion (AX - 25 meters) places a constraint on the maximum pulse length T at

about 57 nsec. However, in order to have adequate S/N to detect small peak-

to-peak amplitude modulations on the return it is required that

1 1

BT - y2
mc y

where the peak-to-peak modulation is given by

1 +y
m - T = compressed pulse width,

11-2- c
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H(1 - cos(.;/2))

cos e sin 9
o o

Figure 2.1 High Resolution Radar Geometry and Constraints for
Measuring Ocean Surface Spectra
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and Bm is the bandwidth of the modulation. For ocean wave spectra the band-

width is about equal to the frequency. Assuming the detection of a 2 dB

modulation as a reasonable design goal, this consideration places the

maximum pulse width at 6.0 nsec (for B = 9.0 MHz corresponding to 50 meter

wave periods).

Under the conditions described above the output of the matched filter

would appear as illustrated in Figure 2.2. The modulation of course would not

have the regularity illustrated in the figure. Since spatial frequencies, 4,

of 50 to 400 meters are to be measured, the corresponding modulation frequencies

of interest are from 9.0 MHz to 1.0 MHz since the relationship between the two

is given by

f= c
2 sin

Since the bandwidth of the modulation is approximately equal to f, a spectral

analysis of this modulation by means of filters spaced at logarithmic intervals

would seem to be a logical choice. With this selection, 11 filters having a

1/3 octive bandwidth are sufficient to cover the 1.0 to 9.0 MHz frequency band

of interest as shown in Figure 2.3.

2.2 System Design Summary

The preliminary design of a high resolution satellite radar for

measuring directional ocean wave spectra is described in the following tables.

This design meets all the specified performance requirements. These performance

requirements are summarized in Table 2.1 and the system design is summarized in

Table 2.2. The design presented in Table 2.2 was selected on the basis of

compatibility with the altimeter design and as such probably does not represent

an optimum configuration. A study to determine the trade offs involved in

achieving an optimum configuration should be made during the initial phase of

the program. A block diagram of the system is shown in Figure 2.4 and Table 2.3

presents a preliminary power budget for this sensor.
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Table 2.1

System Performance Requirements

I. Ocean Wave Spectra

Range 50-400 m

Accuracy 25%

II. Angular Directivity

Range 3600

Resolution 180 (5%)

III. Detectable Modulation 2 dB
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Table 2.2

Design Summary

I. Orbit Parameters

a) Height 725 km
b) Inclination 900 retrograde
c) Eccentricity 0.0064 maximum

II. Radar Parameters

a) Antenna beamwidth 0.80 (2m dish)
b) Pointing accuracy 20 = 0.1

c) Antenna gain 46.7 dB
d) Peak power 2 kW
e) System losses (other than processing 5 dB

losses in pulse compressor)
f) Noise figure 5.5 dB
g) Frequency 13.9 GHz
h) Uncompressed pulse width 5.6 ps
i) Uncompressed pulse bandwidth 180 MHz
j) Compressed pulse width 6.0 ns
k) Compression ratio 1000/1
1) PRF > 400 Hz
m) S/N (single pulse) 3.0 dB
n) Ocean cross section -10 dB
o) Scan period 5 sec
p) Number of footprints in 3600 154

III. Linear FM Generation

Type Surface wave
Bandwidth 180 MHz
Pulse length 5.6 Ls
Linearity of FM <0.2%
Peak frequency deviation (one circle 25 kHz

of variation across pulse)

IV. Pulse Compression

Type Surface wave
Bandwidth 167 MHz
Weighting -26 dB modified

Taylor
Processing loss 0.55 dB

V. Spectral Processing

Type Filter band
Number of filters 11
Frequency range 1.0 to 9.0 MHz
Filter spacing Logarithmic
Filter bandwidth 1/3 octave
Integration time 25 ps
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Figure 2.4 High Resolution Radar Block Diagram



Table 2.3

Signal-to-Noise Computation

cT 2
'tp C L L

t 2 sin 0 g s

S D3CR

3  cos 0) KTFN T

Pt. 33 dBW

CT 4.2 dB/m
2 sin 0

o

L2 L
g ks -5.5 dB

k

-- 13.09 dB
43

X -16.65 dB/m

3

(co ) 176.62 dB/m 3

KT -204 dBW
o

FN 5.5 dB

1
T 82.218 dB/s

CR 30 dB

D3  9.03 dB/m
3

S 13.952 dB + a
N o
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3.0 THEORETICAL ANALYSIS

This section of the report describes the analysis of a directional

wave spectrometer upon which much of the material presented in the previous

section is based. While the overall approach and considerations presented

here are believed to be correct, the following analysis should be considered

a _uick "first cut" at the problem because of the many simplifying and/or

unsubstantiated assumptions.

In section 3.1, the required receiver processing and underlying

assumptions are established and used to develop design equations for the

signal-to-noise ratio necessary for detection of the modulation caused by

the gravity wave spectrum of the ocean surface. It is shown that the input

to the spectrum analyzer consists of two noise processes, one being the

desired modulation of a( and the other due to the fact that the modulation

is riding on a noise process whose mean is a0 . Standard statistical theory

for the detection of a Gaussian signal in the presence of Gaussian noise is

then used to develop an approximate expression for the resulting design

constraint.

In section 3.2, an expression for the standard deviation of the

ocean wavelength measurement is derived. It is shown that the problem of

measuring ocean wavelength is just the satellite altimeter (beam limited)

problem in disguise. Results developed during the TSC altimeter study are

then used to establish the resulting design equation for measurement accuracy.

As with the altimeter, a saturation effect occurs when the "signal-to-noise"

into the spectrum analyzer, (S/N)isa, is near unity. Thus, a further increase

in (S/N)isa beyond this value provides little improvement in measurementisa
accuracy. However, the (S/N). is found to be a function of modulation

index, Y, and the number of resolution cells per ocean wavelength. To achieve

unity (S/N)isa with a 2 dB (peak-to-peak) modulation it is necessary to resolve

to the order of a 19th of a (water) wavelength.
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3.1 Detection of Modulation on a Noise Process

3.1.1 Assumed Processing

S Pulse S Low Pass Bank of Band

Filter S/N (Spectrum

B B S)N FN Analyzer)

Ba

At the output of the pulse compression filter the signal is given

by:

S(t) = IN + S + ySm(t)] [a(t)] cos(wt + (t)) (3.1)

where

N is the mean noise power

S is the mean signal power

m(t) is the modulation of the received signal power

y is a modulation index

a(t) is a Rayleigh process

O(t) is a random phase

Then, a(t) coso(t) and a(t) sino(t) are independent Gaussian processes

with bandwidth, Bc , equal to the pulse bandwidth. a(t) is assumed to

have unity power.

Let B be the bandwidth of the low pass filter. Assume that:

Bc > B

But

B >> Bm

where B is the bandwidth of the modulation process m(t).
m
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After detection and low pass filtering:

Z(t) = fS2 (t-T)h(t)dt (3.2)

" [N+S+ySm(t)] /a2(t-T)cos2(m(t-T)+0(t-F)h(t)dt

where [N+S+ySm(t)] is taken outside the integral since it is assumed m(t) is

constant over the response time of the filter (Bc > Bt).

The integral:

q(t) = /a2(t-T)cos2(W(t-T) + 0(t-T))h(t)dt (3.3)

Represents the result of passing the square of a narrow band Gaussian process

(a(t)(cos wt + 0(t)) through a low pass filter. The result of such an operation

is to yield a Chi-square process with 2 (Bc/B ) degrees of freedom.

But the Chi-square process can be approximated by a normal process

with mean 2(Bc/B ) and variance 4(B /B)

Let B

q(t) A 2 + 2 (t) (3.4)

where 1(t) is a unit variance normal process.

Thus B B 1

Z(t) [ (N+S) + ySm(t)] 2 - + 2 - 1(t) (3.5)

B BB

= (N+S) 2 + YS c m(t) + (N+S) 2 C 1(t)

negligible

+ 2yS (t t)(t) (3.6)
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That is, the cross product is negligible since

y<l

and

<< B

c c
B B

Thus B B
Z(t) ; 2(N+S) E + 2YS m(t) + 2(N+S) (t) (3.7)

DC Signal Noise

Thus using this approximation, the input to the spectrum analyzer

consists of a DC bias plus two Gaussian noise processes (m(t) is simply assumed

to be Gaussian). The process m(t) is the desired modulation, and the process

f(t) is due to the fact that the modulation is riding on a (nearly white) noise

process.

Define B

B

2(N+S) "B- (t) as "Noise"

Then the signal to noise ratio into the spectrum analyzer is given

by:

(S/N) [ ,2 (3.8)

isa (N+S) Bc S (

Where S m() is the spectral density of the modulation process and

S,(w) is the spectral density of the noise process.

11-3-4



Assuming band limited processes

Si(w) = (3.9)

and

S (w) -B (3.10)

Recall that things are defined so that m and ] have unit power.
Thus

(S/N) =Y2( S) B Bt (3.11)

or

(S/N) = Y2 S ( B (3.12)
isa N+S B

3.1.2 Detection Criteria

Now the detection index (3 ) for detecting Gaussian signal in the

presence of Gaussian noise is:

d = B T (S/N) 2  (3.13)
a

where Ba is the analysis bandwidth, and T is the total analysis time. i.e.,

B is the bandwidth of a filter in the spectrum analyzer, and T is the total

integration time. Then

2HB sinO
To B o N (3.14)

c cos P

where N is the number of pulses averaged in the spectrum analyzer.

Good detection (3) requires that

d > 25
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Thus

2He sine 2 B
B B N Y2 S) c > 5 (3.15)

c cos 0 m0

represents a design constraint based on the systems capability to detect

the modulation caused by ocean waves.

3.2 Measurement of Ocean Wavelength

As was shown in the previous section, the input to the spectrum

analyzer is a (nominally white) Gaussian process plus a process with a

smaller bandwidth (Gaussian process) representing the modulation due to the

wave structure, i.e.,

B B B

Z(t) R 2(N+S) + 2yS m(t) + 2(N+ S) 'I(t)

In the spectral domain:

B
m B

the problem of measuring ocean wavelength is equivalent to locating the

center of this hump in frequency.
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Note this is just the satellite altimeter problem (beam limited)

in disguise. In the spectral domain, what is required is to locate a hump

of noise in the presence of uniform.background noise. But this is just the

problem solved in the altimeter study, reference. (In fact, for a full

stretch FM altimeter system, the altimeter problem is identical to this one

since range becomes equivalent to frequency in a full stretch system.)

This being the case, much of the following relies heavily on the

results developed in the altimeter study including a consistent notation.

Assume that a split-gate tracker is used to locate the center of

the spectrum of the modulation as shown in Figure 3.1. Then the output of

the tracker is given as

e(W) =E V. - E V. (3.16)
o eg 1 g 1

where the V. are independent samples of the power, and the notation eg and

tg refer to early and late gate, respectively.

eg

(SN) isa

DC W W

Cancel lg
lg

Figure 3.1 Split-Gate Tracker
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Further assume, for simplicity, that the shape of the modulation

spectrum is symmetric about its center frequency. (The actual non-symmetric

spectrum will of course cause a bias in this type estimate.)

Then

E e(w o ) = 0 (3.17)

and

E e(W +w)= V i- X V
o eg kg

(3.18)

26w (S/N) 
(3.18)-B isa

a

Now

2 e(wo) = E Vi V. + E Vi Vj
kg eg

= 2 F E V. V. (by symmetry) (3.19)

eg

= 2 v 2 v~ + v V v

2 -2
since E Vi = 2 V for an exponential process.

Hence

S() 2{ 2 +( Vi) (3.20)
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Assuming the spectrum is nearly square:

-2 2

-2 = N (1+S/N ) (3.21)
i E isa

SV = NE(I+S/Nisa) (3.22)i

where NE is the number of samples in the.gate.

Substituting eq. (3.21) and (3.22) into 3.20 yields

S2e(W ) = 2(NE + N E2) (1 + S/N isa)2 (3.23)

Now the slope of the error signal (from eq. (3.18))

E es(w + Aw) 2(S/N)isa Aw
S(3.24)6w - B Aw

a

Thus the error in estimating the center of the modulation hump is

2 2 -

2 B/ (NE + NE )Ba
S- 2(S/N)isa  2 (S/N)isa

Now, from Figure 3.1, it is seen that the gates are assumed to cover the

entire modulation spectrum, thus

NEB a _ Bm (3.26)

and

ma m 1

-2 (SN) isa (3.27)
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Assuming that

B << B
a m

m 1 + (3.28)
B r (SIN)I
m 2 isa

Here again, the normalization of the error to the modulation bandwidth is

somewhat analogous to that of the altimeter error which normalizes to wave

height. Thus, for a given set of system parameters the error in estimating

50 meter ocean wave lengths will be a factor of 8.0 greater than the error

in estimating 400 meter ocean wave lengths.

The error expression given by equation (3.28) is on a spectrum

resolution basis. If more samples are averaged, the standard deviation

decreases as umber.

But N = B T (3.29)
a

2H8 B sine
= B N (see eq. 3.14)

c cos Po

therefore

B4HB sineo 1 1 + 1 (3.30)

B 2 (S/N)
m c cos e isa

Figure 3.2 shows the effect of (S/N)is a on estimation accuracy.

Note that a saturation effect occurs near (S/N)is a = 0 dB.
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Figure 4.2 Estimation Accuracy vs (S/N)iisa

Recall, however, that the "signal-to-noise" ratio is given by:

SINs y2 S 2 Bc
isa Y S+ N Bm

Thus, even for a receiver signal-to-noise ratio, the effective

signal-to-noise ratio becomes

B 22c Y
Y B = B ' (3.31)

m mc
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Hence, to get in the neighborhood of unity "signal-to-noise"isa
requires that

1 1
SI > 2 (3.32)
me y

This effect arises because you are trying to measure the modulation

of GO. But what you measure is a random return whose mean power is Go. Thus

you have to average several samples to estimate the mean power level. The

less variation in ao, then the more accurately you must measure the mean

power level to pick up small variations in it. But the only way to do this

(unless you want to integrate every range resolution cell for several pulses)

is to get several range cells packed into one wavelength on the water. (i.e.

make B /B large).

For y = .23 (2 dB modulation)

1
> 19 (3.33)B T

me

Thus it is necessary to resolve to the order of a 19th of a (water)

wavelength in order to recover the modulation reliably.

Table 3.1 summarizes this requirement for various modulation indexes.

Table 3.1

Modulation (dB)
(peak-to-peak) y (l/y2)

2 .23 19

4 .43 5.4

6 .60 2.8-

8 .73 1.9

10 .83
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