
NASA

%597
C.1

“’ ’
--I

q i; ? /s“ N75-21035
-m .- ”
=I -
E c.

SET PROCESSING IN A NETWORK ENVIRONMENT om m ,om P D ---~
nil- ----+

W. T. Hardgrave ,;1m x ,ulE g -I
Langley Research Center LOAN C&Y: RET, s ;
Hampton, Virginia AFWL TqeHNICAL i m x r

_ KIRTLAND AFB,‘..
March 1975

DISTRIBUTED BY:

National Technical Informatio? Service
U. S. DEPARTMENT OF COMMERCE

_ _.__

TECH LIBRARY KAFB, NM

l~llllH inl~l~~l~llIll~l~nl
ODb27L5

ICASE REPORT

. . ' .,. , ,*-1

SET PROCESSING IN A NFJWORK

ENVIRONMENT

W ; T. Hardgrave

(NASA-CR-142597) SET PROCESSING IN A N75-2;035
NETYORK ENVIRONMENT (Universities Space
Research Association)

09B Unclas
G3/60 18577

Repwt Number 75-7

Merch 31, 1975

INSTITUIF, FOIi COMPUTER APPLICATIONS

Operated by the PRKES SUBJECT TO W .. .+..

UNIVERSITIES SPACE RESEARCH ASSOCIATION

at

NASA'S IJNGLEY RESEARCH CEN'IIZR

Hampton, Vir@ .nia

Rapr.d.c.d by

NATIONAL TECHNICAL
INFORMATION SERVICE

US Department of Commerce
Spdngfiald. VA. 22151

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE

BEST COPY FURNISHED US BY THE SPONSORING

AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CER-

TAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RE-

LEASED IN THE INTEREST OF MAKING AVAILABLE

AS MUCH INFORMATION AS POSSIBLE.

!.
!
4

I

I
,
I

!

I

/

SEX' PROCESSIBG IIU' A BETWORK ENVIROPNZI~T

W. T. Hardgrave

The combination of a lccal network, a mass storage system (MES),
and an autonomous set processor serving as a data/storage management
machine .prdvides an environment that offers potential advantages to-
both the user community and the central computing facility of a
multi-mainframe computing inst2lletion. Potential advantages for
the users include:

1. Content-accessible data bases usable from
.al.l connected devices.

2. Efficient storage/access of large data bases.

3. Simple and direct programming with data mani-
pulation an6 storage management handled by the
set processor.

4. Simple data base design and~entry from source
representation tc set processor representation
with no predefiniticn necessary.

5. Capability available for user scrt/crder I
specification.

Potential advantages for the central computing facility include:

1. Significant reduction in tape/disk pack storage
and mounts.

2. Flexible envirorment that allows upgrading
hardware/software configuration without causing .
major interrupticns in service.

3. Minin.~ traffic on data communications-network.

1,. Improved central memory usage on large processors.

. ..’ . ’

1.0 Introduction

Combining the concepts of a'local data network, a mass storage
.

system (IrrsS), an autonomous data base computer and set processing

into an integrated system prcvides an environment that offers potential

advantages to both the user Fopulation and.the central ccmputing

facility of a multi-mainframe computing icstallation. The local

network provides for communication among all modules connected to ,.'

,:.
.,’

the netwGrk. This insures a large measure of flexibility for groi&h . .
and modification cf the configuraticn. The mass storage system (e.g.

'Ampex Terabit Memory System [29, 391 or ISi 385C 1!oneycomb Store [32],

provides a medi,um for the cn-line storage cf (multiple) large data I

bases (in excess of 10 12 bits) accessible to the network. -The

autonomous data base computer serves as an interface between the

network and the mass storage system. Furthermore, this mack5ne couid

be'cognizant of'logical data relatioriships and would be capable of

managing the users' data bases and the mass storage more effectively.

Set processing provides a sound theoretical basis fo2..cOr1stl'lictitlg

a data base/storage managemect computer. Set theory is conq:rehensive

<orf< -Lrari,ns making it a r,atural choice as a basis for a data base A -0

5 o.mpu ; er . Furthernore, a relatively sEal1 colle~tic~ c,:‘ operations .
t:ay k:e defined providjng the user wit.h an effective interface with

whic!l to mani@&te his data items‘ and data aggregates. Potential

ahutzges for the users include:

2

1. Content-accessible data bases usable from
'all connected devices.

2. Efficient storage/access of large data bases.

3. Simple and direct programming with data mani-
pulation and storage management handled by the
set processor.

4. Simple data base design and entry from source
representation to set processor representation

,with no predefinition necessary.

5. Capability available for user sort/order
specification.

Potential advantages for the central computing facility include:

1.' Significant reduction in tape/disk pack storage
tild mounts.

2.: Flexible environment that allows upgrading
hardware/software configuration without causing /
major interruptions in service.

3. Minimal. traffic on data communications network.

4. Improved central memory usage on large processors.'

The concepts of data networks Cl] and mass storage systems [29, 393

are relatively well known and detailed discussions are beyond the scope of

this paper. Ho-lever, the concepts of set processing (see Childs [g,lO,ll]
:
I

and Snrhweztz [41,]12]),and specialized data base computers (see Canaday

et. al. [7] tend Winter [52]),are relatively new and the investigation

UP their role as tools in data management is the primary goai of this

research. A'review of set processing and a comparison of potential

advantages Jrith those of other generalized data base,management

;
/ I ,'

approaches are given in section 2. A secondary goal was to.provide the

Leairs by which a miss storage system could be connected to a local

network so that it was conveniently accessible by the user connmtnity.

A further consideration was that the addition of the mass store did not
.-

saturate the network with data base transfers. The addition of an

autonomous set processor seems to be a suitable solution. The user

community may easily communicate with the set processor by means

of a collection of operations callable from either interactive terminals

or programs executing on connected processors. The network traffic re-

mains at a minimum because in most cases the data bases are not trans-

ferred but are manipulated at the set processor/mass storage system

. (SP/MSS) node. Only descriptive messages and data to be displayed

or used in calculations is actually transferred. This will beide- .

monstrated by example in section 4.0.
: .

A recent paper by Canaday et. al [7] describes an approach to data . !

base management using a "back-end" computer as an autonomous data base'

machine. The:.proposals set forth in our paper differ from the Canaday

proposals in'two important respects. First, we emphasize the autonomous

data base computer as a node in a network serving all connected parties.

The Canadayemphasis is on the data base computer as a back-end machine

serving one or more hosts. ,Secondly, in our proposal, the techniques

for implementing the data base machine are based on set theory (plus

estensic?!s:) while the Canada-y implementation is based on the CODASYL

DBTC [17j specifications. These differences and their implications

are discussed in deta.il in Sections 2 and 3.

I’

2.0 Background
. I

Set processing is developing in two areas of computer science:

programming languages and information systems (i.e. data base systems).

The programming language development (see Earley [21,22,23]) effort

has been iioneered by the development of SETL [42]. However, this

paper is primarily concerned'with the information system aspects

of set processing. A recent paper by Whitney [51] details the 4

evolution of data management development culminating in the fourth

generation information systems. In particular, Whitney.notes that

:

"Concepts from set‘theory and relation theory will become more widely I

used as the advantages of a sound theoretical basis for information

systems'become,more widely appreciated." Another study, Hardgrave [26],

provides more.incentives for exploring set theory as a foundation for

the analysis of mass storage structures. This study demonstrated that (1)

some queries using Boolean connectors when applied to tree structures

are open to multiple interpretations and (2) using set theory as a

tool not on>) clarifies the problems, but provides intrinsic solutions.

Another tiportant result is the development by.Childs [ll] of a

new approach, called "extended set theory", that underlies the classical '

notion of set theory and solves-or, more accurately, circumvents a

:

: ,.

number of outstanding theoretical problems. The major problem, the

general n-tuple definition, is mentioned in the text, Berztiss 133 'and

discussed in detail in Skolem [45]. This is a previously ill-defined

5

-- -- -

area of mathematics that is of the utmost importance for data structures

and information processing. To a large extent, the anomaly of the n-tuple

definition, specifically the ordered pair definition, was the impetus for I

developing extended set theory. This new theory provides a convenient

vehicle for the definition of n-tuples as well assets in a simple and.

direct manner. Most of the existing body of mathematical development

based on classical set theory is unaffected by the introduction of

extended-set theory at the lowest level. From a computer science view-

point extended set theory lends itself to the implementation of sets,
,

n-tuples, and nestings thereof more readily than classical set theory

(see [ll]). Research is still required in the area of set processor

implementations, but Childs' theory provides a solid foundatioqupon

which to build.‘

Over a period of several years, Childs and the Set-Theoretic .

Information Systems (STIS) Corporation have developed a software package

called Set-Theoretic Data System (STDS) [43]. This package is available

at the computing centers at the University of Michigan and Wayne State

University and it is commercially available to IBM 360/370 ~installations

through STIS Corporation.' Besides STDS,the STIS Corporation proposes to
.

develop a Set-Theoretic Storage Management System (ST/ENS) that will

serve as an autoncmous set processor a s well as drive and manage mass

storage devices at the controller level. The concepts behind STDS and

ST/SNS represent di,fferent approaches to solving the data handling pro-

blem although botkare based on extended set theory. Below we briefly

describe these.systems giving some points for comparison.

- _---

-
-~ .’

ir

STDS ir: a software system designed as a'research tool and implem&ted

on top of a generelpurpose operating system on third generation

computing equipent (e.g. IBM.360/67). The S'r/SMS will be a stand-&one

system of minicomputers connected 0n.on.e side to a auxiliary storage system.

On the other side, the ST/ENS may be attached to a single minicomputer,

a single large scale mainframe, a local network of mainframes or a

geographically distributed network such-as ARFANET [l]. The auxiliti '

storage system should be direct access and could range-from a single

disk to several trillion bit storage devides: This: paper concen- '

trates on a,more.detailed-study of the set processor (e.g. ST/S&) in

a lo&l network environment. STDS is currently operation&L. ST/Sk'

is still in the development stage and no prototype'exists. The .

hardware design, a proprietary,item belonging to STIS, is complete .
in the preliminary design and the minicomputers most suited to the task

have been tentatively selected. However, the system must be custom ' /
1

tailored (i.e. microprogrammed) to the mass storage device and the

network or communications protocol. Because of rapid'changes in

hardware technology and pricing structures these choices must be

constantly re-evaluated.

The user may find STDS similar in-many ways to the notion of a

relational data base system as described by Codd [12,13,14,15,16].

However, ST,DS was developed independently of and is conceptually f

different from the relational systems that are based on the Co&d'

model. .The names given to operations are different, but users of

7

J
., -T-y+ m,y<q.T?---- .i..- - 1. ,. -, . ,

both types of systems will notice -distinct'similarities. In particular,

the primary structure availab1e.i.n both STDS and the relational systems

is the n-ary relation. Formally, t'he.n-ary relation is a set of tuples

and each tuple in the set has exactly n elements. 'The system would

support a large number of relations simultaneously and n may vary from

relation to relation. From the'outset, a major concern expressed by

Codd [12] has been'that data base structures be easy to understand for ..

the non-programming user, as, well as the programmer. Relations are very

. powerful. in this respect in that they may be viewedin tabular form and

with only a few restrictions they may be.manipulated as tables of data.

There are a,lnumber of papers (see e.g. 11.63 or [lg]) available that

serve as excellent tutorial material in this area.

In contrast, ST/ENS supports not only,n+ry relations but the

entire spectrumof structures that may be defined using sets, n-tuples'

and arbitrarily deep nestings thereof. We refer to these as "set-based

structures" rather than "data structures" because the latter term "

often is intertwined-with linked structures and pointer structures in' 1 _

the minds of computer specialists. The "set-based structures" do not

imply an implementaticn technique; they serve as a formalism for

expressing the various relationships between items. This capability

to support a broad range of structures gives the ST/SMS sufficient

power tc serve as a generalized storage manager. That is, the current

design philosophies of generalized data base management systems rely

on a fixed storage structure scheme that forces all data management

requirements, no matter how diverse cr dynamic, to be supported by

a pre-structured implementation. The ST/Sl4S is h-low level suppcrt

system that replaces fixed-storage fm&rient.atior: Fhilosophy with a

dynamic and efficienf means fm- optimizing ttrr storage medip.

chrractarictics in co-op3~3:~Z.on Kit.:.? the tieta managerrent requirements.

f. StOragc management syster: (e.g. ST/SPiE) based on exter:ded set

theory allows dynamic creation, restructuring and act&sing of

diverse structure types (e.'g. sequel.t:I.al, inverted, multiply-linked I :

rings, DETG "sets";etc.).

While STPS is an existing systemwit.h. a more limited capability, .

ST/EMS is: a conceptual system that promises to '&vi'de a' number cf im-
-,

Fortant 'advantages fcr multi-me.ir.fran,e end netblork .systems. The soft-

ware for STDE is to a large extent uritten in FORTRAX and could be

installed on a third generation orerating system (e.g., KRCNOS) in

three months. Although ET/SFlE is &ill in the design stage, it seems

that a prototype could be built in one &two calendar years.

In the folloxing Faragraphs, be c&pare the set prccesscr apprcach

with other generalized data base n:anager~n~ a.Izproeches. In recent t

years,, there have been three distinct %l;eoretical approaches to.

sclving the generalized. data base mancgement problem, the TCMS +p&oach,

the CODASVL DDTG approach ac.d tab. cf set prccesior !FP> upproacl-.. The

TDIZI approach origir:ated .in the Tine-Shared Data E2zagemdnt: Fys?en. CL,?!.

The philosophy involves the use o! partitioned tree structures, :I;verted

? ORIGINAL, PAGE IS
OF POOR QUALITY

approach has been defined and revised over a period of years by the

CODASYL Data Base Task Group [17]. The philosophy employs networks

of "owner" and "member" records in-order to describe and manipulate

the logical data relationships required by users. The design provides

mechanisms for accessing data within the network relative to the

current position. An advanced commercial system using the DBTG

specifications is the Integrated Data Management System (IDMS[30,31])..

The set processor approach has been developed primarily by D. L. Childs
I

and the STIS Corporation. The only commercial system available using

the set processor approach is STDS 1431. Our purpose here is not to

compare implementations but approaches (i.e. philosophies). That' is,

we are concerned with the potential capabilities and limitations character-

istic of the three approaches. Particular implementations may have'

limitations not imposed by the corresponding philosophy. .

One other philosophy, the relational approach [12], should be

explained at this 'point. For our comparison here, the relational

approach will be considered to be included in the set processor

approach. This is due to the fact that relations are well-defined set-

based structures and as such can be easily supported by a setprocessor..

The inclusion of the relational work under set processing is not meant

to detract from its importance-to infcrmation system design. On the

contrary, relations are valuable to users because they are convenient

to define and manipulate even for the non-computer-oriented person.

Furthermore, .the theory surrounding relational data bases has been well

10

I’
I --- I.. . ..’ ’ .’ ‘..

developed by Codd [12], Date [lg] Heath [28] and others. Figure 2-1

gives a list of characteristics of the three approaches. We make no

claims that this list is complete, but hopefully it is representative

of the concerns of the potential user of an information system. We

will comment briefly on each of the characteristics.

Possibly the most important long term criteria for an information

system is its theoretical foundation. The logical data relationships,

and the operations provided to manipulate those relationships, must be

carefully and consistently defined at the theoretical level in order

to insure that anomalies cannot occur in retrieval or update processes.

These considerations are important since the primary purpose of an

information system is to provide reliable answers to queries. In order

to answer queries, the information system must incorporate a query

language as a user interface. Natural language (e.g. English), has not

been (to date) a feasible interface because of its inherent ambiguities

and idiosyncrasies necessitating extensive iteration in order to obtain

reliable answers. An acceptable query language be defined using

elementary concepts from predicate calculus and symbolic logic. This

language can be designed to be functionally similar to natural language.

This has already been achieved and is available in systems using the

TDMS approach (see [49]). The class of query languages based on the

predicate calculus make use of Boolean connectors (e.g. AND, OR, NOT)

and as such have a duality with set theory restricted to a Boolean algebra

(e.g. intersection, union, universal relative complement). If one

11

INFORMATION SYSTEM APPROACHES

POTENTIAL CHARACTERISTICS

STABLE MATHEMATICAL BASIS

DYNAMIC DEFINITION

ACCESSIBILITY BY CONTENT

AGGREGATE PROCESSING

STORAGE REDUCTION

PROGRAM ACCESS

BOOLEAN ACCESS

INTERACTIVE ACCESS

BOOLEAN ACCESS

LARGE DATA BASE SUPPORT

MSS SUPPORT

DATA INDEPENDENCE

SHARED DATA BASES

DATA BASE PROTECTION

TDMS

No
No

YES

No

No

YES

YES

YES

YES

Y IO

No

YES

YES

YE'S

DBTG

No
No

No
Y IO

No

YES

No
YES

No

?io

No

YES

YES

YES

SP -

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

FIGURE 2-1

expects responses from information systems to be consistently

reliable, it is mandatory that the information system be designed on

a consistent foundation. The mathematics of set theory provide such a

foundation. Using this foundation, with particular emphasis on the

membership condition, query languages based on the predicate calculus

may be implemented and responses will be consistent and reliable.

In the case of the TDMS approach, the application of Boolean

logic to partitioned tree structures may cause several anomalies to

occur. As mentioned previously, these sre detailed in Hardgrave [26].

A parallel study by Ray [38] predicts that even more alarming results

will occur if Boolean logic is applied to general network structures

similar to those found in the CODASYL DBTG [17] specifications (see

Parsons et. al. [36,37]). Furthermore, the DBTG [17] specifications

rely on questionable theoretical foundations. For instance, the

DBTG concept of a rtSET" is not precisely defined. This structure

is characterized in terms of "owner records" and "member records"

and if we take A to be an owner record and Ml,M,, c % to be

member records, then the DBTG "SET" concept is graphically described

as shown in Figure 2-2. However, this is not an adequate substitute

for a precise mathematical definition. In order to illustrate this

point, we will direct attention to several pitfalls that are

encountered if the basic structures of an information system are not

precisely defined. We do this by suggesting several possible candidates

13

DBTG "SET" REPRESENTATION

OWNER RECORD I

1

t

I

MEMBER RECORD I ---

FIGURE 2-2

for the DBTG "SET" defined in set-theoretic terms and written in

set-based structure notation.

(a) (A, Ml, M2,...,Mrl}

(b) <A, T, M2,-,M,’

(c) <A,{%, M2,.4$)>

(d) <A,<Ml, M2,...MN >>

(e) {A, {%,M2,..- ,h$ 1)

(f) {A,<Ml,Mg,...,% >I

The notation above uses {, 1 to delimit mathematical sets and < , > to

delimit sequences (i.e. tuples). One definition (a) relies strictly

on the notion of a mathematical set and another (b) relies strictly on

the notion of a mathematical sequence and the others (c-f) are

variations using sets and sequences. Numerous possibilities exist

using other nestings of sets and sequences. The absence of an official

set-theoretic definition of the DBTG "SETU invites an important

question. 1s Ml,M2,. . . ,s meant to represent a mathematical set or

a mathematical sequence? Consider (a) as the definition for the DBTG

" SET" . The DBTG specifications provide a "next" operator. If the

current position is established in a DBTG "SET", then the "next"

operator may be invoked to reposition to the next logical record in the

"SET" . This is in conflict with the mathematical notion of a set

in which there is no intrinsic order and as such could have no "next"

operator. Therefore definition (a) is not a viable definition for the

DBTG notion "SET". Consider (b) as the definition for "SET". This

definition relies on the notion of a sequence, and mathematical set

operations (e.g. union, intersection) do not produce meaningful

results when applied to these sequences. (We assume here that nesting

of the tuples into ordered pairs and the Kuratowski ordered pair

definition are imposed (see [45])). Therefore (b) is not a viable

definition either. Similarly the other definitions (c-f) can be

shown to be inadequate. Furthermore, if a logical structure is treated

as a mathematical set at one instant and as a tuple at another instant,

anomalies will certainly occur. In short, the CODASYL DBTG [17]

specifications, a proposed standard, has provided a data structure for

implementatian without providing a theoretical foundation for logical

data relationships and high level queries. If the set operations do not

produce meaningful results in all cases, then queries expressed in the

predicate calculus based iang-uage cannot produce reliable and consistent

responses in sll cases. An implementation of such a language will be

subject to anomalies as severe, if not worse, than those already en-

countered in TDMS approach implementations. The query capability and

associated operations can only be as reliable and consistent as the

lowest level definitions allow. The key is precisely defined low level

primitives and this can be accomplished using precisely defined membership

conditions.

Next, there is the question of a definition for a data base before

it is entered into a generalized information system. It has become fashion-

able to have "data definition languages" and force the user (or data adminis-

trator) to predefine the logical relationships before actually entering

the data. This has some advantages; however, the predefined schemata

is a constraining factor. Data bases grow not only in quantity but

often in arrangement. New logical relationships are necessary and must

be added. In a predefined environment when this occurs, existing data

bases must be "restructured" or completely dumped out in source form and

reloaded using an updated definition. Both the DBTG approach and the

TDMS approach require predefinition. The set processing requires no

definition. Definitions imposed by the user are dynamic. Logical

relationships may be created, destroyed or updated after data has been

entered. The definition of the data base is a user view. If the user

wishes to change this view, he may do so dynamically by redefining his sets

and tuples. In fact, the overhead involved in "restructuring" a set-

theoretical data base is minimal because the definition was not

frozen in advance.

Another important aspect in the analysis of information systems

and data management systems is accessibility by content. This implies

that the user of such systems may access data items and aggregates by

their attributes and values rather than by their mass storage addresses,

either absolute or relative. The DBTG specifications provide a very

limited capability to access records by identifier. In addition, it

is possible to access a record through a calculated (e.g. hash-coded)

identifier if the key was pre-defined as a calculated key. However,

there is no possibility to access a record by specifying a combination

17

of conditions as there is in the TDMS approach and the set processor

approach. The TDMS approach provides accessibility by content through

the use of a Boolean expression following the reserved word WHERE. An

example is given below:

PRINT JOB WHERE CP TIME LE 1.0 AND FIELD LENGTH LE 75000;

The general form of the access commands is:

<ACTION> <x > WERE <Q ';

The<ACTION> may be PRINT, UPDATE, etc., <X> is a list of named items and

< Q> is a Boolean qualification clause. The set processor approach provides

in its most rudimentary form a capability that is syntactically less

elegant but semantically more elegant than the TDMS access clause. First,

with a parser/translator the TDMS access clause can be syntactically

translated into the set-theoretic functions because of the duality between

the predicate calculus and set theory. Secondly, the set processing

approach provides the user with the capability to isolate and save inter-

mediate sets and perform operations on those sets as "sub-data-bases".

This leads us to a discussion of aggregates. Inherent in mathematical

set theory is the notion that name s may ‘be assigned to arbitrarily

large aggregates. This concept is carried over to the extent possible

(i.e. large finite aggregates) in the set processing approach to

inforcaticn systems. Although all three approaches allow naming

of aggregates ("sets" in DBTG, "repeating groups" in TDMS, "sets" or

"tuples" in SP) only the SP approach provides operators that take

aggregates as operands and produce aggregates as results. In DBTG

18

and TDMS in order to perform operations on data the items must be re-

trieved and operations performed on an item by item basis.

Set processing provides a potential storage reduction capability not

offered to any extent by either the DBTG or the TDMS approach. The TDMS

approach can in some very special cases reduce the overall storage re-

quirements if the data base has a large amount of redundancy and the redun-

dant values consist of long character strings (e.g. 10 characters or more).

In general totally inverted TDMS data bases may be expanded by a factor of

seven over the source character representation (without redundant blanks).

Partially inverted data bases with relatively few inverted keys may only

expand by a factor between one and two. DBTG data bases offer little

hope for storage reduction over the source character representation. The

overhead in pointers, etc. will generally expand the data base by a factor

between one and two. Set processing offers a larger potential for storage

reduction for data bases because it capitalizes on the use of the member-

ship condition. The membership condition may either be given explicitly

(i.e. by enumeration of members) or implicitly (i.e. by providing a

statement describing the circumstances defining membership). An implicit

membership condition may reference existing sets previously defined

or system defined sets (e.g. the integers or the reals representable

by a given machine). An example of an explicit definition of the set

of integers between (and including) ten and twenty is:

A = {10,11,12,13,1~,15,16,17,18,1~,20)

An example of an implicit definition for the same set is:

19

A = {i Ii is an integer and 10-L is 201

Sets and tuples that may be expr essed by an implicit definition need

not be stored explicitly. The potential for storage reduction of redundant

data through the use of implicit membership conditions is one of the

most attractive features of the set processing approach. Set theory

plus the extensions defined by Childs [lO,ll] provides a semantic

capability for implementing such an approach. Furthermore, the set

processor serving as a storage manager may go a step further. The set

processor may alter the stored version of a data base by "factoring out"

redundant items but enabling the user to retain his view that includes

redundancies. Removing a domain that has a high degree of redundancy

from a relation - thereby creating a set-based structure that is not a

relation - is an example of this. But the user continues to view his

data as a relation.

Another important aspect is that of program/interactive access.

A well-designed information system will provide both program and

interactive i tCCEtS.‘j on a compatible basis. That is, data bases will

be accessible from either executing programs or interactive terminals

through an interface that is similar in both modes. Currently, the

JJBTG specifications provide only program access. Some suggestions

!?ave been made to provide an interactive mode, but we know of no

inplecentatioc using Boolean connectors. In any case, it will be

difficult to provide an adequate query capability because of the theoretical

20

problems with Boolean operators mentioned previously. In the TDMS

approach, the interactive mode is the natural mode and usually the first

implemented. However, a program mode can be implemented in a conveniently

usable form by using a pre-processor for the host language (see [kg]).

In the set processor approach, the interface is via a collection of

set-theoretic operators and those operators may be conveniently called

from either an interactive terminal or an executing program (see[43]

or [251).

Next, there are the related issues of support for large data bases

(i.e. greater than 1012 bits) a.nrl support fol* mass storage systems (MSS)

(i.e. capacity greater than 10" bits). Since very few large data bases

exist and none of these are maintained under the three generalized

approaches mentioned here, there is little concrete evidence to support our

conjectures. The same is true for the MISS's since their appearance in

computing centers is not yet widespread. However, the following logical

arguments can be presented. First, there are two characteristics of

all proposed MSS systems that are germane to this discussion: (1) the

access times for the MSS systems will be slow relative to disks (l-15

seconds) (2) the transfer rates will be comparable to disks (5-10 million

bits per second). These figures suggest that approaches that rely

heavily on pointers and linked structures will not perform well in

conjunction.with the MSS systems. In general, each link or pointer

that must be followed requires a disk access. The DBTG approach and

the TDMS approach both rely on linked structures. In contrast, sets

21

and tuples may be stored and retrieved sequentially (for example, see

Hardgrave [27]). Thus, set operations may be implemented to take

advantage of the characteristics of the MSS systems.

Finally, there are the three issues of data independence, data

sharing, and data base protection. These issues have been considered

in numerous papers (see Stonebraker[46] and Canaday et. al. [7]) and

will not be discussed in detail here. Data independence and data

sharing are provided in all three approaches through the use of named

items and named groupings. Mechanisms for protection from unauthorized

use (security) can be implemented in conjunction with any of the three

approaches. Mechanisms for protection from inadvertent damage (integrity)

due to human or machine error can also be implemented using recovery

and rollback techniques with any of the three approaches. However,

protection from error propagation and detection of hardware errors

continues to be an srea demanding more research.

3.0 A Sample Network Configuration

In this section, a sample network configuration, shown in Figure 3-1,

is described briefly on an item by item basis. This configuration

consists of (1) a con;runications network, (2) a number of large scale

processors (LSP's), (3) a number of t.ime-sharing/remote job entry (TS/RJE)

terminals, (4) a peripheral driver, and (5) set processor/mass storage

22

Bystem (SP/wsS), Other components may be added as required; however,

those enumerated are necessary to provide batch, remote batch, and

time-sharing services in a consistent manner with universal access to

data bases. The configuration as described would exist as a local

network with all equipment except the TS/RJE terminals geographically

Concentrated in a single building. However, the network approach using

a eet processor can be readily extended to geographically distributed

configurations.

In general, each large scale processor (LSP) is a large expensive

computing system designed to run complex numerical codes. These codes

often require large amounts of data input and produce large amounts

of data output. Each LSP would normally have only scratch disks as

peripherals.

Recently, the operating systems for these third generation machines

have grown increasingly more cumbersome. Most support some level of multi-

programming. Some drive a host of peripherals such as tapes, card readers

and printers. Many have built-in permanent file systems and time-sharing or

interactive systmms. The introduction of an interactive service and perma-

nent file handlers dictates that much of the CP will be devoted to file

manipulation, character handling, text editing, and job overhead; tasks

for which these machines were not designed. These tasks can be handled

very effectively and inewensively by modern mini-computers. Furthermore,

the developxnent of such a complex operating system for a new hardware design

is a multi-manyear undertaking for the vendor and these systems are seldom

23
ORIGINAL PAGE Is
OF POOR QUALITY

SAFPLE NETWORK CONFIGURATION

. < .
l . : .

j LSP 1 1 LSP 1 -pJ pKJ

FIGURE 3-1

reliable for at least two calendar years after their introduction.

Hopefully, the network approach to computing systems will alleviate

a number of these problems while providing the flexibility to add more

equipment of any type without major upheavals in the users' operating pro-

cedures. The set processor will remove most of the file handling and data

management tasks from the LSP operating systems and the TS/RJE terminals

will remove the time-sharing, character handling and text editing

burdens. Thus, LSP operating systems may be simpler, containing at most

multiprogramming overhead and local file handlers. CP efficiencies on

these expensive machines should increase and development time for

operating systems on newly designed processors should decrease dramatically.

It is also important to realize that memory connected to LSP's has a

higher cost per bit at a given memory speed then memory associated with

a minicomputer. Therfore, buffers for auxiliary storage devices (e.g.

disks or MSS's) should reside in minicomputer :nemory and free LSP

memory to perform the functions for which it was designed.

The peripheral driver is the computer on the network to which most,

if not all, of the input/output peripherals belonging to the central

computing facility are attached. This would include high speed printers,

card readers, tape drives , plotting equipment and the like. It might

also include some specialized equipment such as graphics devices or

data aquisition machines. The computer itself might be of the same

class as an LSP (e.g. CDC 6400); however, it may be more economic to

25

use powerful minicomputers. This will depend to a large extent on

the choice of peripherals.

The time-sharing and remote job entry terminals (TS/RJE) are

the users' primary contact with the network. Each TS/RJE terminal

would be a rather large minicomputer to which both keyboard terminals

and peripherals would be attached. The memory size for a TS/RJE

should be about 128~ bytes and floating point hardware (or firmware)

should be included. These computers must be extremely reliable with

a mean time between failure measured in months. Furthermore, the

environmental conditions necessary for their operation must not

be more stringent than normal office conditions.

Peripherals on the TS/RJE terminals should include minimally

several cartridge disk units plus slow speed card reader, a tape drive,

and a printer. Higher performance card readers, printers and tape

drives may be added as the need arises. It is impossible to over-

emphasize the importance of the disk storage on the TS/RJE terminals.

This should consist of a minimum of two disk units each with at least

one removeable platter. The total capacity should exceed 10 million

bytes for each TS/RJE terminal. This storage is partially used for

the disk operating system residence and overhead; however, the bulk

of the storage will be used for storage of "small" user files

programs, and small data sets. Large data files and data bases will

reside on the mass storage system.

26

The software necessary to'produce a reasonable TS/RJE terminal is

already available to a large extent from minicomputer manufacturers.

This consists of a multi-user disk operating system that can be

bootstrapped in from a disk (i.e. deadstarted) with only a few manual

operations. The disk operating system (DOS) should also include a

file system that provides a capabi2it.y to the user community to store

small files on the local cartridge disks, and modify and delete them

as desired in an interactive mode. A good context text editor and an

ANSI FORTRAN compiler are absolutely essential. Other software may

be included as enhancements.

Each TS/RJE should accomodate 30 or more users with about 10

terminals on-line simultaneously. Larger groups may be accommodated

if more memory and disk space is added. This approach has several

distinct advantages over traditional approaches. First the user has

immediate control over his files and his tapes since they reside with him

at the TS/RJE. Secondly, should the central network be unavailable

to the TS/RJE user for any reason, he may still perform a large number

of functions at the TS/RJE. He may edit programs and small data sets,

He may compile programs, correct syntax errors, execute small test

cases, and prepare larger jobs to be sent to the central facility

when it is available. Because of the reliability cf the TS/RJE, there is

no reason why it cannot be available at all times. The operation is simple

and the user may bring up the operating system himself. Another mjor

advantage is that the central facility will only be responsible for the

27

larger data sets and data bases belonging to the user community and these

will reside on the mass storage system. This will dramatically decrease

the need for tapes and thus alleviate the tape storage problem, a major

headache of many central computing sites today. Many of the tapes that

will remain will be held by the user, not by the central computing center,

and will be read at the TS/RJE terminal and transferred over the network

' when necessary.

One other significant advantage is that terminals connected directly

to TS/RJE terminals can be driven at high data rates (e.g. 9600 bps for

storage tubes and display terminals). This is a significant increase over

many time-sharing systems running today on large scale processors and

the higher data rate s make interaction immeasurably more pleasant for

users, particularly for text editing or graphics.

The hardware, software, and peripherals necessary to obtain suitable

TS/RJE terminals are already available from a number of minicomputer

manufacturers. At present, each terminal will cost $50,000 to $100,000

depending on the amounts and types of memory, disks, and other peripherals

chosen; however, these costs are steadily decreasing as technology makes

t-he hardware less expensive.

The set processor/mass storage system (SP/MSS) provides an

on-line storage managed by a prOCeSSor capable of handling a broad

spectrum of logical data relationships and physical storage techniques.

Furthermore, the processor can react to user requests ranging from a

28

single data item to a large aggregate and transfer only the required

data. The storage environment could range in capacity from a few

disks to several trillion bit devices. For our discussions in this

paper, we will assume that the central computing facility will have

at'least one MSS. Examples of these systems currently on the

market are the Ampex Terabit Memory [29,39] and the IBM 3850 Honeycomb

Store [32]. The Ampex systems range in cost from a basic system of

approximately 10 11 bits at $600,000 to a maximum capacity of 3 x 10 12

bits at about $4,000,000. Access times for these systems will be in

the range l-15 seconds, significantly slower than disks. However,

transfer rates will be more comparable with disk rates at 6-8 million

bits per second. The set processor itself might consist of several

minicomputers connected via a high speed bus. In addition, some disk

and/or drum space is necessary for spooling and processing information.

A more detailed hardware description is beyond the scope of this paper,

but may be obtained from the STIS Corporation. However, the functional

description of the set processor will be illustrated in the next section.

4.0 Using the Set Processor

This section contains examples of user interaction with the set

processor in the network environment shown in Figure 3-l. This consists

of an example of an interactive session using a test data base plus

an example of a FORTRAN program accessing the sme data base. The

29

I
-

possibilities for a user interface to the set processor are abundant

and equally diverse. In order to demonstrate the following examples

with a minimum of preliminary discussion, we will use a test data base

that is in STDS format. It is important to recognize that constraining

the set based structures to n-ary relations is not a restriction

imposed by the set processor. However, relations are very versatile

and easy to understand and manipulate. Furthermore, a large class

of data bases may be represented in relational form.

In the following paragraphs, we will attempt to describe the set

processor in functional terms by giving examples of its usage. A

more complete description of the functions that may be available in

a typical set processor is given in Appendix A. The communication

between the set processor and the network (i.e. any machine or human

connected to the network) will be in terms of set-theoretic functions.

At any point in time the set processor will consist of a collection

of functions that it will recognize and execute. Furthermore, for each

user identifier, it, will maintain a collection of names of sets (i.e.

a universe of discourse) that it will recognize and manipulate using

the designated function. The functions that can be made available in the

set processor are also abundant and diverse. For the sake of simplicity, we

will use, in this report, only the functions defined in Appendix A. A

more complete and somewhat different collection of functions for manipulation

of relations is given in the STDS/OS Users' Guide [43]. Thus, the communi-

cation between the network and the set processor is in the form of references

30

I
,

I to functions and parameters. The parameters often reference sets, relations or

n-tuples to be manipulated. For example, the operation

IR (A,B,C) '
1

would intersect the existing sets A and B defining a new set C. Figure 4-l
i .

gives a few entries from a hypothetical'-data base that logs jobs that were

run at a sci'entific computing center. A similar data base with actual

data run at the NASA Langley Research Center computing facility may be

i found in [25]. The sample data base would contain about ten*million

characters for each y'ear logged. !Che DAY, MONJTR and YEAR dcmains (i.e.

columns) give the date -the job was introduced into the system. The JOB
1

I domajn gives an ident'kfier for the job. The CP domain gives the ‘

central processcr time in minutes used by the job, the FL gives the field

length in words (i.e. memory requirements) used by the job, the OS domain

gives the operating system calls' !i.e.
7 >:

supervisor calis) made'by the job,

and the NT domain gives the number of tape mounts required by the job.

Assur!;c an .i nterrogator legs on from a 'i':;jIi,iE terminal and he

wishes to mxess the sample data base. Figure 4-2 describes an inter-'

active session in which the interrogator send.s queries to the set

processcr and receives replies answer-i ng his questions. A "?" precedes
,3 : ! i

the lines entered by the interrogator; and all other ILi.n’es <we ‘.-

output from the set processor via the network and the TS/RJE. We will

describe the session' on a line by Ii.nc has is. At t.klo same time‘we will

I;kJc .Z!i’ft?C: on its performance. the network ant!
. . .s /

3; ORIGINAL, PAGE IS
0.3' POOR QUAT,'7"'

SAMPLE DATA BASE - COKPUTER JOB LOG

DAY fi!OlJTH YEAR Joi

01

01

01

01

01

01
,
s
8

74

74

74

74

AA13216

AA23764

AB37152

AB43261

AB71351

AC13754
I
.
,

CP FL - - 0s E

101

1837

11864

a68

ml7
I
8
,

52000

1373m

120009

145000

55m

55000
I
I
I

66

$813

1287

1575

916

323
I
8
I

FIGURE 4-1 ..3 3

INTERACTIVE USAGE

#DOM = 8 CARD = 1017341

? RS (D,NT=O,bH=N@TAPES)
#DOM = 8 CARD = 657231

'7 AK (r:3TAPES,D~F;~IT;=CP> I
AVG CP = 2,83

? RS (D,CP41,O,NEti=SflALLCP)
#D(jfi = i-j CARD = 604317

? 11; (r"~OTAPES,SI;~LLC~,r.:~';!=S~ALLJI)B)

#DOM = 8 CARD = 450911

? SAVE (SMALLJOB,SMALLJ@B-LOG-19741

FIGURE 4-2

(1)
(2)
(3)
(4)
(5)
(6)
(71
(8)
(9)

(13)
(11)
(12)
(13)
(14)
(151
(16)
(171
(18)

1

,

CALL OPEN (D,JOB=LOt-;974,ID=~TH,P~~~~~~~)
CALL RS(D,~'iOlJTH=JUlY,TJE~I=TARGE.T)
CALL RS(TARGET,NT>l,NEW=TARGET)
CALL RS(TARGET,CP&O,NEW=TARGET>
CALL RS(TARGET,FL560OOO,NEW-TARGET)
CALL RS(TARGET,OS~2OU~,REW=TARGET?
TOTkL=%G
K=KARD(TARSCT)
IF(K,EQ.O)GO TO 500
Dd 200 I=l,K
CALL SOliE(TARGET,~~=l,f~EW=OFIE)
CALL EXTW,, 203 IX=CP, 1'=CF)
CALL EXT(C)I:E,DO?'!.4IN=OS,V=OS~
CALL EXT(OWE,DOMAIN=FL,V=FL)
CP = CP + OS/2000
COST = (5*CP+FL)/60000
TOTAL = TOTAL + COST
CALL RC(TAR~ET,O~~E,~~E~~=TARGET>

(19) 200 CONTINUE
(20) 500 CONTINUE
(21) AVG L': TOTAL/K
(22) PRINT 90, AVG
(23) 91s FORMAT (1X,,W 'ER&~ CqST =',F7.2)

. . ,

The data base "JOEI-LOG-1974" is opened for access with the OPEN

statement and the set processor responds by returning the number of domains

and the cardinality (i.e. number of elements) of the set. At this point

the set processor moves the most frequently accessed part of

the data base from the slow access trillion bit store to one of its

scratch disks. Note also that the only traffic passed through the

network is less than 50 characters that comprise the OPEN command and

the return reponse of less than 30 characters (probably one packet

in each direction).

The next command given is the DOMAINS command. This command asks the

set processor to return the names of the domains of D. The response is the

domain headings that may then be used in other commands. The next command,

RS (i.e. restrict), asks the set processor to form a new set called NOTAPES

from the elements of D where the value in domain NT equals zero. That is,

NOTAPES is the subset of D such that NT equals zero. Again the set pro-

cessor returns the number of domains and the cardinality. At this point the

interrogatcr, having determined that roughly 65% of the jobs are no-tape jobs,

would like to know the average CP time used 'by these jobs. Since the no-tape

jobs have been isolated in NCT.APES, this can be easily accomplished by

issuing the AVG command on the set AOTAPES for the domain NOTAPES. The

set processor responds with the average of 2.83 CP minutes. Next, the

interrogator isolates the jobs that used one minute of CP time or less

in the set SMALLCP. The set processor responds with the number of domains

and a cardinality of 601317. Thus, about 60% of the jobs require less

than one minute of CP time. In the next command, the intersection of the

two sets, NOTAPES and SMALLCP is formed and called SMALLJOB. This is the

set of jobs using no tapes and one minute of CP time or less. About 45%

of the jobs are of this class. Finally, the set SMALLJOB is saved by the

interrogator as another data base for future use. It is important to

emphasize again that the traffic on the network activated by this

session was less than a few hundred characters. Using a third generation

data management system, it would have been necessary to transfer the

entire data base to the disk storage associated with an LSP, and then

interact with the LSP. The traffic in that case would be measured in

millions of characters. Using the set processor approach, the user may

manipulate his data base at the SP/MSS node with only messages traveling

on the network.

Figure 4-3 describes the use of set processor commands in a FORTRAN

program environment. Some liberties have been taken in the areas of

FORTRAN interface and calling sequences .(e.g. keyword parameters) for the

sake of readability. The problems in using ANSI FORTRAN is an analogous

manner would not be insurmountable; however, it would be considerably more

cumbersome than the code shown here. These shortcomings may be attributed

to FORTRAN rather than the set processor. Again we will describe the pro-

gram on a line by line basis as well as pointing out areas that may affect

overall network performance. The lines in Figure 4-3 are numbered on the

left for easy reference.

We assume that the purpose of the program is to calculate average

cost of small tape jobs run in July 1974. We arbitrarily define a small

35

tape job as one using one'minute or less of CP time, having one tape or

more, using a field length of 60G00 wcr& or less-end making 2OCC OS calls

or less. Ve also assume that the cost-function, in dollars, is

C = (5SFLK-(CP + &)/6oooc

This implies that the cost in dollars C is five dollars'per CP

minute at the ncminal field length of 60000.words. We assme t&t this

function is not built into the set processor (although it co&d be-) and

thus it i.s necessary to write a program to evaluate the'average cost ;
.

per job,.
*

The data base is opened as a local set D in line 1 in a manner similar

session. Lines.2 through 6'restrict the set to be con-

of small jobs as previously defined.' This'Produces the

to the &eractive

sidered to the'set

set "TARGET" as the set to be processed on an item by item basis in the

remainder of the program. This is a very import&st aspect because-it is

not necessary to transfer the entire data base to the Iargc scale processor

(as'would be the case k-lth, a standard file system) in order to answer a ques-

tion involving only a portion of the data base. For a typical data center

only about 10% of the jobs srould be in the class of small tape jobs and,

furthermore, we will only- consider the month of July. It would be unwise

to transfer data through the nct.xork that i s not needed in'the'calcultition

pl;ocess. ' . I

At line 7, we initialize the total cost used later to calculate

average cost. The faction call at line 8 obtains the cardinality of the

36 ORIGINAL PAGE IS
- - OF POOR QUALITY

I.

;: .

set, TARGET, and stores that in K. If the cardinality is zero, we transfeli

’ I ,
control to the exit condition. Otherwise, we enter a loop to traverse the

I 1 set element by element. The function,, SOME, referenced at line 11 gives

the programmer the capability to access one or more elements at random

from one set and form a new set of these elements. In this particular

case, we pick a single element from TARGET and put into a new set named

bNE. Lines 12 through 111 extract domains CJ?, OS and FL from the element '

'of ONE and store them in the local variables of the same names. Lines 15

I
I

I !
,: I

through 17 calciiLate and total the cost function. Line 18references

the relative complement function, RC, which in this case deletes the

element of ONE from TARGET. This loop is then continued until TARGET

is exhausted.- Lines 20 through 23 process the termination conditicn.

The average cost is calculated and printed. ,

First, the reader will notice that no - storage allocation or buffers

i 1 'are required in the memory of the large scale computer. This means that

I many programs that require large blocks of memory can be reduced to minimal

memory because the set processor manages the data. On the other hand,

’ 1
i
!

: I
I
i
1

many large scientific c&es need ready access to large blocks of data in

order to use the central processor eI'i'icicntly. For these'programs, it

will still be necessary to request that large blocks be moved to central

memory from the SP/MSS. In these cases the task is made easier in

I that the programmer may request exactly the data that he needs in exactly

i the ordering that he needs to perform the calculations. This will be of the
t
I utmost interest to those working with vector machines. 1
i

.,

I/ :, Secondly, it is important to note that programs written to call the i

I set processor are completely independent of the size of the data base.

Many times large scientific codes have been produced to process an incore

case. When the time came that the problem size exceeded the core limitations,

it caused major problems in converting the code to use auxiliary storage.

We submit that the proper approach to producing large scientific codes

is to use the following procedure. Initially write the code in a straightfor-

ward, structured and readable manner. All data management functions should

be delegated to the set processor and only required information should be

requested.

Upon execution of the code, if it is found that the performance

of the program is not satisfactory because wait times for data are ex-

cessively high, then it is necessary to do the following. For sections of

code where the data requirements are high (e.g. tight loops accessing matrix

elements), buffers (i.e. working storage) should be allocated, and requests

for data on an item by item basis should be replaced by requests on a block

basis. The programmer may additionally request that the data be ordered in

a fashion that is most suitable for him; a feature not generally available

using conventional auxiliary storage techniques.

5.0 Concluding Remarks

In this section, we will enumerate some of the more salient

advantages of the set processing approach implied if not explicitly

stated in previous sections. Many advantages may be attributed to the

mass storage system, some to the concept of a autonomous data base/storage

management computer, others to the communications network, and still others

39

than it had with stand-oloix ruain.Yrm~s. ‘[‘lie sgstan is eas: to. use .:. ,-..;i . :: .!

ORIGINAL PAGE IS
OF POOR QUALITY

The central computing center or facility stands to realize substantial

gains as well. A most urgent problem, the storage of large numbers of tapes

(many of which are only partially used) should disappear. Large data

bases will be maintained by the set processor/mass storage system.

Small files (e.g. routines under development) will either reside on the modest

file systems at the TS/RJE terminals or, possibly, on tapes held by the user.

The central facility will no longer be responsible for the small files, The

most traumatic times during the histories of large computing facilities occur

when new hardware or software is introduced that changes the overall configura-

tion of the facility. Existing programs are often difficult to convert and

each programmer must learn about a new system. Many of these problems will be

circumvented in a network environment. New hardware may be added by inter-

facing it to the network. Immediately the new hardware has access to exist-

ing data bases. Users that prefer hardware of different vendors or different

operating systems on the same hardware nay easily coexist (even using the

same data base) in the network environment. In short, this approach provides

for a maximum of flexibility because it is modular; and modules may be added,

deleted, modified or tuned for better performance without disrupting the

entire system. Another important advantage is the more efficient use of central

memory on the large scale processors. In many cases the level of multiprogrsm-

ming may be raised substantially because applications programs wiIL1 require

less memory for buffers and working storage. As a result each program will

require less total memory and thus more programs will fit in memory at one time.

As noted previously, in some cases, it will be advantageous to maintain large

buffers or working storage for the sake of computational efficiency; however,

41

I I

APPENDIX A

Set Processor Operations

Brief descriptions are given here of a few operations that would

likely appear in a typical set processor. Positional parameters and

mandatory keyword parameter are listed in the calling sequence in

small letters. Optional keyword parameters are listed in the para-

meters section. All positional parsmeters are mandatory.

Name : OPEN(s,g)

Parameters:

s: local set name

kc: global data base name

ID: user identification

PW: user pass word

Function:

Opens the global data base, g for use with local set name, s.

Name : CLOSE(S)

Parameters:

e: local set nsme

Function:

Close the set with local name, s.

A-l

,.
I;:I,! I’ : I!I,lI.;WlH;:(;, j

A-:

ORIGINAL PAGE IS'
OFPOOR QULITY

:, /

0 .‘..:,.

8: .,:
‘,’ ->

I
. --

1; ’

:i.-’ I

Name : EMTER(s,m,u,f)

Psrar2eters:

s: local set name

m: number of domains

Ll: logical input/output unit

f: FORTRAX format specification

Function:

Create a new relation, s, by reading data from unit u
by format f until an end-of-file is encountered. The
format f should specify m items to be entered. Each
record that is read represents one entry (tuple) in the
relation.

ITame : RS(s,e,NEW=n)

Parameters:

s:

e:

1-I :

local set name

expression of the form <domain> <opXvalue.>
<domain> must be a domain
<0p> must be one of #=><>< --

--value>must be a numeric value

lccal set name

Functions:

If 5 is a relational set, restrict s by the expression
e and f?rm the new relational set n. That is, n will
contain the elements of s for which e is true.

A-3

dl.>...d,,: domain names

n:, lcca.1 set xiime

Name : KARD(sj

Pa&uwters:

0RlXXIU-L P,AGE $3
'i OF POOR Quw*

i 1 ; !

Name : RC(s,m,NEW=n)

Parameters:

s,m,n: local set names

Function: Perform the relative complement of m with respect to s
forming the new set, n.

Name: ’ SD(s,m,NIW-n)

Parameters: local set names

Function: Perform the symmetric difference of the two sets, s and m,
forming the new set, n.

.
j i
,

Name : SOME(s,N=k,NEW=n)

Parameters:

6: local set name

k: positive integer

n: local set name

Function: Form the new set n by selecting k elements from s
at random. The set s is unaltered.

A-5

Name : AVC (s ,DOMAIN=d)

Parameters:

s: local set name

d: domain name

Function: If s is a relation, calculate and return the average
of all elements of domain, d.

,: i

REFERENCES IT
, I

!.
1. Abramson, N., and Kuo, F. F., Computer Communications Networks, Prentice- :

Hall, Englewood Cliffs, N.J., 1973.

2. A buyer's guidc.to data base management systems. Technical report number
2 703-O~O-6la, Datapro Research Corporation, Delran, N. J., 19711.

3. Berztiss, A. T., Data Structures: Theory andPractice, Academic Press,
New York, 1971.

4. Bleier, R. E., Treating hierarchical data structures in the SDC Time-
shared Data Management System (TDMS). Proc. ACM 22nd National .
Conference, MD1 Publications, Wayne, PA, 1967, 41-49.

5. Bleier, R. E., Vorhaus, A. H.,File organization in the SDS Time-
Shared Data Management System (TDMS). IFIP Congress 1968, North
Holland, 1968, 1245-1252.

' 6. Byrom, S. T., and Hardgrave, W. T., Representation of sets on mass
storage devices for information retrieval systems. AFIPS Conf.
Proc. Vol. 42, AFIPS Press, Montvale, N. J., 1973, 245-250.

7. Canaday, R. H., Harrison, R. D., Ivie, E. L.,'Ryder, J. L., Wehr, L. A.,
A back-end computer for data base management, Comm. ACM, 17, 18, (October
1974), 575-582.

8. Canning, R. G., The debate on data base management. EDP Analyzer,
10, 3 (March 1972).

9. Childs, D. L., Description of a set-theoretic data structure. AFIPS
Conf. Proc., Vol. 33, Part 1, AFIPS Press, Montvale, N.J. 19687
557-564.

10. Childs, D. L., Feasibility of a set-theoretic data structure: a
general structure based on a reconstructed definition of relation.
IFIP Congress 1968, North-Holland, Amsterdam, 1968, 420-430.

7 11. Childs, D. L., Extended set theory: a formalism for the design,
implementation, and operation of information systems. STIS Corp.,
Ann Arbor, Michigan, 1973.

12. Codd, E. F., A relational model of data fcr large shared data banks.
Comm. ACM, 13, (June 19701, 377-387.

13. Codd, E. F., Further normalization of the data base relational model.
Courant Computer Science Symposia 6: Data Base Systems, Englewood .
Cliffs, N.J., 1971.

14.

‘:J. 16.

17.

18.

19.

20.

21.

22.

23.

211.

25.

26.

27. 1

Codd, E. F., A data base sublanguage founded on the relational
calculus. ACM-SIGFIDhT.Workshop on Data Description, Access and
Control, ACM, New York, 1971.

Codd, E.-F., Relational completeness of data base sublanguage. Courant
Computer Science Symposia 6: Data Base Systems, Englewood, Cliffs,
N. Y., 1971.

Codd, E. F., Normalized data base structure: a brief tutqrial. Proc.
1971, ACM-SIGFIDET Workshop on Data Description, Access ,and Control,
ACM, New York 1971.

Conference of Data Systems Languages (CODASYL) Data Base Task Group *
Report, ACM, New York, Ott 1969 and April 1971.

Conference of Data Systems Languages (CODASYL) Systems Committee,
Feature analysis of generalized data management systems, ACM, New
York, May 1971.

Date, C. J;, Relational database systems: a tutorial. Information
Systems, COINS IV, Plenum, New York, 1974.

Dodd, G. E., Elements of data management systems. Computing Surveys, 1
(June 19691, 117-133.

Earley, J., On the semantics.of data structures. Courant Computer
Science Symposia 6: Data Base Systems, Prentice-Hall, Englewood
Cliffs, N.J. 1971.

Earley, J., Relational level data structures for programming lan-
&ages. Acta Informatica, 2 (Feb. 19731, 293-309.

Earley, J., Towards an understanding of data structures. Comm. ACM,
14, (October 1971), pp. 617-627.

Goldstein, R. C.,,and Strnad, A. L., The MacAims data management
system. ACM-SIGFIDET Workshop on Data Description and Access,
ACM, New York, 1970.

Hardgrave, W. T., Accessing technical data bases using STDS: a
collection of scenarios. ICASE Report 75-8, Hampton, VA 1975.

Hardgrave, W. T., BOLTS: A retrieval language for tree-structured
data base systems. Information Systems, COINS IV, Plenum, New
York, 1974.

tIardgrave, W. T., The prospects for large capacity set support systems
imbedded within generalized data management systems. International
Computing Symposium - 1973, North-Holland, Amsterdam, 1974.

- -

28. Heath, I. J., Unacceptable file operations in a relational data base,
ACM-SIGFIDET Workshop on Data Description, Access and Control,
ACM, New York, 1971.

29. Howie, H. R., Salbu, E., Mass storage implementation approaches: a
spectrum, Ampex Corporation, Sunnyvale, California, 1974.

30. IDMS Data Definition Langluage Mnaual. Cullinane Corporation,
Boston, 1974.

31. IDMS Data Manipulation Language Manual, Cullinane Corporation,
Boston, 1974.

32. Introduction to IBM 3850 mass storage system (MSS). Technical
report number GS32-0028-1, IBM Corporation, Boulder, Colorado,
1974 -

33. Krageloh, K. D., and Lockemann, P. C., Retrieval in a set-theoretically
structured data base: concepts and practical considerations. Inter
national Computing Symposium - 1973, North-Holland, Amsterdam, 197-4.

34. Kellogg, C-H., Designing artificial languages for information
storage and retrieval. Automated Language Processing, Wiley,
New York, 1967.

35. McIntosh, E., Large storage systems. DD/73/8, CERN, Geneva, March
1973.

36. Parsons, R. G., Dale, A. G., Yurkanan, C. V., A structure processing
sub-language for data base management. TSN-2&, Computation Center,
The University of Texas at Austin, August 1972.

37. Parsons, R. G., Date, A. G., Yurkanan, C. V., Data manipulation require-
ments for data management systems. The Computer Journal, 17
(May i974), 99-103.

38. Ray, F. B., Directed graph structures for data base management:
theory, storage structures, and algorithms. Ph.D. Diss.,
University of Texas, Austin, 1972.

39. Salbu, E., Current status and outlook of MSS; the IBM Memory System.
Ampex Corporaticn, Sunnyvale, California, 1974.

40. Schubert, F. F., Basic concepts in data base management systems.
Datamation,lB (July 1972) 42-47.

41. Schwartz, J. T., Abstract and concrete problems in the theory of files.
Courant Computer Symposia 6: Data Base Systems, Prentice-Hall,
Englewood Cliffs, N. J., 1971.

42. Schwartz, J. T., On Programming: An Interim Report on the :;Jl:!';I .Pro,je _: Courant Institute of Mathematical Sciences, New York University,
New York, 1973.

43. Set Theoretic Data System User's Guide. Set Theoretic information
Systems Corporation, Ann Arbor, Michigan, 1974.

44. Sibley, E. H., Taylor, R. W., Data definition and mapping language.
Comm. ACM,16 (December 1973) 790-759.

45. Skolem, T ., Two remarks on set theory. Math. Stand. 5, 40-46.

46. Stonebraker, M., A functional view of data independence. &M-
SIGFIDENT Workshop on Data Description, Access and Control,
ACM, New York, 1974.

47. Su, S. Y., Copeland, G. P., Lipovski, G. J., Retrieval Operations and
data representations in contexted addressed disc system, SIGIR
Forum,9, (Jan. 1975), 144-160.

48. Suppes, P., Axiomatic Set Theory, Van Nostrand, New York, 1960.

49. SYSTEM 2000 Data Management System, Reference Manual. MRI systems
Corp., Austin, Texas, July 1973.

50. Whitney, V. K. M., A relational data management system. Informations
Systems, COINS-IV, Plenum, New York, 1974.

51. Whitney, K. M., Fourth generation data management systems. AFIP
Conf. Proc. 42, AFIPS Press, Montvale, N. J., 1373, 239-2447

52. Winter, R., Hill, J., Greiff, W., Further data language design
concepts. Working Paper No. 8, Computer Corporation of' America, Cam-
bridge, Mass., 1973.

