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SET PROCESSING IN A NETWORK ENVIRONMENT

w. T. Har&grame.

ARSTRACT

The combination ¢f a lecel network, a mass storage system (MSS),
and an autonomous set processor serving as a data/storage management
machine provides an enviromment that offers pctential ddvantages to-
both the user community and the central computing facility of =a
multi-mainframe computing installetion. Potential advantages for

the users include:

1. Content-accessible data bases usable from
-all connected devices.

2. Efficiert storage/access of large data bases.

3. ©Simple and direct programming with detfa mani-
pulation and storage management handled by the

set processor.

4, Simple data base design and entry from source
representation tc set processor representetion -
with no predefiniticn necessary.

5. Capability available for user scrt/crder

specification.

Potential advantages for the central computing facility include:

1, Significant reduction in tape/dlsk pack storage

and mounts.

2. Flexible environment that allcws upgrading
hardware/scftware configuration thhcut cau51ng
major 1nterrupt10ng in service.

3. Mininal traffic on data cormunications- network.

L. Improved central memery usage or large processors.
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1.0 Introduction

Combining the concepts of a‘local data hetwork, a niass storage
system (MSS), an gsutonomous data bease éoﬁputer'and set processing
into an integrated system prcvides an envircrment that offers potential
advéntages to both the user population aqd-the central ccmputing
facility of a multi-mezinframe computing irnstallation. The local
network provides for commuricstion among all modules connrected to
the netwo?k. This insures a lafge measure of {lexibility for éroﬁth_
and modification of the configuraticn. The mass storage sy;tem (e.g.
"fmpex Terabit Memofy System [22, 39] or IEM 3850 Honeycemb Store [32],
provides a medium for the cn-line storage cf (multiple) large data
bases (in excess of lO12 bité) accessible to the netyork. -The.
auvtonomous déta becse coriputer serves as an interface between the
network and the mass storage system. Furthermore, this meckine could
be ‘cognizant of "logical data relationghips and would be capabie of
managing the users' data bases and the mass storage more effectively.
Sel processing provides a sound theoretical btasis foriconstructing
a deta base/storage managemert computer., {Set theory is comprehensive
in its ati]ify te describe lceogical data relaticnships énd storage
conriguraticns making if a naztural choice zs a basiz for a data base
computer. rurthermore, & relatively small collect%cn ol oéerations
nay te defirned providing the user with an effective interface with
which to manipulate his data items and data aggrégates. Potenfial

advantages for the users include:




1. Content-accessible data bases usable from
all connected devices. '

2. Efficient storage/access of large data bases.

3. Simble and direct progremming with data mani-
pulation and storage management handled by the
set processor., '

4., Simple data base desigh and entry from source
representation to set processor representation

~with no predefinition necessary.

5. Capebility available for user sort/order
specification.

Potential advantages for the central computing facility include:

1. Significant reduction in tape/disk pack storage
and mounts.

2. TFlexible environment thet allows upgrading
hardware/software configuration without causing
mejor interruptions in service.

3, Minimal traffic on data communications network.

. Improved central memory usage on laige processors.

The concepts of data networks [1] and mass storsge systems [29, 39]
are relatively well known and detailed discussions are beyond the scope of
this paper. However, the concepls of set processing (see Childs [9,10,11]
and Schwartz [41,42]),and specialized dsta base computers (see Canaday
et. at. [7] and Winter [52]), are relatively new and the investigation
o their role as tools in data nmanagement is the primary goaitof this
research. A'review of set proces;ing and a comparison of potential
advantages yith.those of other generalized data base,manageﬁent
apprcaches are given in secticn 2. A secondary goal was to provide the

neaus by which & wmass storage system could be connected to a local




network sé that it was conveniently accessible by the user community.

A further cgnsideration was that the addition of the mass store did not
saturate the network with data-ﬁaée transfers. The addition of an
autonomous set processor seems to be a suitable solution. The user
community mey easily communicate with the set processor by means

of a collection of operations callable from either interactive terminals
or programs executing on connected processors. The network traffic re-
mains at s minimum‘because in most‘cases the data bases are not trans- |
ferred but are manipulated at the.set processor/mass storage system
(SP/MSS) node. Only descriptive meséages and data to be disflayed

or used in éalculations_is actually transferred. This wiil beide—
monstrated by example in section h.O.'

A recent paper by Canaday et. al [7] describes an appro;ch to data
base menagemént using a "back-end" computer as an autonomous data base
machine. Theiﬁroposals set forth in our paper differ from the Canaday
proposals in’ two important respects. First, we emphasize the autonomous
dafa base computer as a node in a network serving 211 connected parties,
The Caneday -emphasis is on the data base-compﬁter as a back-end machine
serving one or more hosts. -Secondly, in our. proposal, the techniques
for implemenﬁing the date base machine are based on set theory (plus
extensicns) while the Canaday implemerntation is bssed on the CODASYL
DBIG {17] specifications. These differences and their implications

- are discussed in detail in Sections 2 snd 3.
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2.0 Background

Set processing is develdping in two areas of computer science:
programming languages and information éysteﬁs (i.e; date base systems).
The programming language development (see Earley [21,22,23]) effort
hes been pioneered by the development of SETL [hé]. However, this
paper is primarily concerned with the information system aspects
of set proéessing. A recent paper by Whitnéy [51] details the
évslution of data management development culminating in the fourth
generation information systems. In particulai, Whitney notes that
“Concepts from set theory and relation tﬁeor&'will become mofe widely
used as the advantages of & sound theoretical basis for informatidn
systems become more widely appreciated." Another study, Hardgrave [26],
provides mére_incentives for exploring set theory as a foundation for
the analysis of mass storage structures. This study demonstrated that (i)
some querieé using Boolean connectors when gpplied to tree structures
are open to multiple interpretations and (2) using sef theory as a
tool ot only clarifies the probleus, butvprovides intrinsic solutions.

Another important result is the development by Childs tll] of a
new approach, called "extended set theory", that ﬁnderiies the élassicél'
notion of set theory and éolves'or, more accurately, circumvents a
number of ou%st&nding theoretical problems. The major problem, the
general n-tuple definition, is mentioned in the text,wBefztiss [3] and

discussed in detail in Skolem [45]. This is a previously ill-defined




area of mathematics that is of the utmost importance for data structures
and information.processing. To a large extept, the anomaly of the n-tuple
definition, specifically the ordered pair definition, was the impetus for
developing extended set theory. This new theofy proyides a convenient
vehicle for‘the definition of n-tuples as well as sets in a simple and.
direct manner. Most of the existing body of mathematical development
based on classical set theory is unaffected by the iptroduction of
extended set theory at the lowest level. From a computer science view-
point exteﬂded set theory lends itself to the implementation of sets,.'
n~tuples, and neétings thereof more readily than élassical set theory
(see [11]). - Research is still required in the area of set processor
implementatiops, but éhilds' theory provides a solid foundation upon
which to build."

Qver a period of several years, Childs and the Set-Theoretic .
Information Systgms (STIS) Corporation have developed a software package
called Set-Theoretic Data System (STDS) [43]. This package is available
at the computing centers at the University of Michigan and Wayne State
University'and if is commercially available to IBM 360/370 -installations
through STIS Corporation. Besides STDS, the STIS Corporation proposes to
develop e Sét—Theoretic Storage Management System (ST/SMS) that will
Serve as an ;u£onomous set processor és well aé drive and manége mass
storage device; at the controller 1evel. The concepts behind STDS and
ST/SMS represept different approaches ta solving the data handling pro-
blem although both. are based on extended set theory. Below we briefly

describe these systems giving some points for comparison.
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STDé ig a software system designed as a research tool and impleménted
on top of a general purpose opersting system Qn'third generation ;
computing equipment (e.g. IBM 360/67). The ST/SMS will be a stand-alone
system of minicomputers comnected on one side to a suxiliary storage system.
On the other side, the ST/SMS may be attached to & single minicomputer,

& single large scale mainframe, a local network of mainframes or a
geographically distributed network such as ARPANET [1]. The auxiliary
storage sysﬁem should be direct access and could range from é single
disk to several trillion bit storage devices. This paper concen-
-trates on'a‘more-detailed~study of the set processor (e.g. ST/SMS) in
e local network environment. STDS is currently operationsl. ST/SMS
15 still in the development stage and no prototype exists. The.
hardwere dééign, & proprietary item belonging to STIS, is complete

'in the preliﬁinary design and the minicomputers most’sﬁi%ed:to the task

heve been tentatively selected. However, the system must be custom

L e et e = o = e

tailored (i.e, microprogrammed) to the mass storage device and the
network or communications protocol. Because of rapid chenges in
herdwere technology and pricing structures these choices must be

constantly re~evelusted.

The user may find STDS similer in-many weys to the notion of a
relationel detas base system as described by Codd [12,13,14,15,16].

However, STDS was developed independently of and is conceptually

different from the relational systems thet are based on the Codd’

model. .The names given to operations are different, but users of

LS
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both types of_éystems will notice distinet similarities. In particular,
the primary structure available in both STDS and the relationsl systems
is the A—ary relation. TFormally, thé-n—ary relation is a set of tuples
and each tuéle in the set has exactly n elements. "The system would
support a large number of relations simultanecusly and n may vary from
relation to relation. Trom the outset, a major concern expressed by
Codd [12] hés been that data base structures be easy to understand for
the non-programming user as well as the programmer. - Relations are very

- powerful in this respect in that they may be viewed .in t;bular form and
with only a few restrictions they may be manipulated as tables of data.
There are é{number of papers (see e.g. [16] or [19]) available that
serve as excellent tutorial material ir this area.

In contrast, ST/SMS supports not onl&,n—ary relations but the
entire spectrum of structures that may be defined using sets, n-tuples '
and arbitrarily deep nestings thereof. We refer to these as "set-based
structures” rather than "data structures" because the latter term
often is intertw@ned;with linked structures and pointer structures in
the minds of computer specialists, The "set-based structures" do not
imply &n implementation technique; they serve as a formalism for
expressing the various relationships between items. This capability
to support a broad range of structures gi?as the ST/SMS sufficient
power tc serve as a generalized storage manager. That is, fhe current
design philosophies of generalized data base management systems rely

on a fixed storage structure scheme that forces all data management
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requireménts, no matter how diverse cr dynemic, to be supported by

a pre-structureé implementation.‘ The Sf/SMS is a-low level suprcrt
system that replaces fixed-steorage imilementaiion philOSthy with =2
dynamic and efficieng means for crtinizing ihe storage media
characteristice in co-operatior with the deta managenert requirements.
L storage mansgement sysier (e.g. ST/SMZ) based con extended set

thecry allows dynamic creation, restructuring snd aCcéésing cf
diverse structure types (e.g. sequentiial, inVefted, ﬁuitiply—iinked o f'eﬂ
rings, DETG "sets', etc.). |

While STDS is &n existing system with e more limited capabilitf,'
ST/SMS is' a conceptusl system that promises to provide éupumber cf im~
portaht'advantages for multi-mezirframe and netwcrk.S'stems.r The soét-
ware for STDC is to a large extent written in FORTRAX and could ber
installed on a third generatior operating system (e.g.,_KRONOS) in
three months. Although ST/SME is still in the deéign stagé, it seems
that s prétotype could be built in one or two calerdar'years.

In the following paragraphs, we compare the set prcéésscr apprecach
with-other generelized data base menagerent aprreoeches, In recent - E
years, there heve been three distinct ilheoretical apprecaches to. '
sclving tlhe generalized data base management probléi; the TLMS spproach,
the CODASYL DETG apprcach ard the set prccessor (SP} apprducﬁ. The
TDMS epproach origirated in the Time-fhaved Pata Mnnageméﬁﬁ Systen [b,5].

The philosophy invelves the use of partiticned tree structures, inverted :

files, and & Boolean guery and access language. An advanced commercial

system using the TIMS sapproack ir SYOTEM 200G [49], The CODASYL DBTG

9 ORIGINAL PAGE IS
OF POOR QUALITY
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approach has_been‘defined and revised over a beriod of years by the
CODASYL Data Base Task Group [1T7]. .The philesophy employs networks

of "owner" and "member" records in -order to describe and manipulate
the logical data relationships reguired by users. Theée design provides
mechanisms for accessing data within the network relative to the
current bosition. An advanced commercial system using the DBTG
specifications is the Integrated Data Management System (IDMS[30,31]).
The set processor approach has been devéloped primarily by D. L. Childs

and'the STIS Corporation. The only commercial system available using

- the set processor approach is STDS [43]. Our purpose here is not to

compare implementations but approaches (i.e. philosophies). That 1is,

we are‘céhcerpéd with the potential capabilities and limitations cheracter-
istic of the three approaches. Particular implementations may have -
limitations not imposed by the corresponding philosophy.

One other philosophy, the relational.approach [12], should be
explained at ‘this point. For our comparison here, the relational
approach will be considered to be included in the set processor
approach.. This is due to the fact that relations are wellfdefined set-
based structures and as such cen be easily supported by a sel processor.
The inclusion of the relational work under set processing is not meant
to detract from its importance ‘to infermation system design. On the

contrary, relations are valuable to users because they are convenient

to define and manipulate even for the non-computer-oriented person.

Furthermore, the theory surrounding relational data bases has been well
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developed by Codd [12], Date [19] Heath [28] and others. Figure 2~1
gives a list of characteristics of the three approaches. We make no
claims that this list is complefe, but hopefully it is representative
of the concerns of the potential user of an information system. We
will comment briefly on each of the characteristics.

Possibly the most important long term criteria for an information

system is its theoretical foundation. The logical data relationships,

and the operations provided to manipulate those relationships, must be
carefully end consistently defined at the theoretical level in order

to insure that anomalies cannot occur in retrieval or update processes.
These considerations are important since the primary purpose of an
information system is to provide reliable answers to queries. 1In order
to answer queries, the information system must Iincorporate a gquery
language as & user interface. Natural languasge (e.g. English) has not
been (to date) a feasible interface because of its inherent ambiguities
and idiosyncrasies necessitating extensive iteration in order to obtain
reliable answers. An acceptable query language can be defined using
elementary concepts.from predicate calculus and symbolic logic. This
language can be designed to be functionally similar to natural language.
This has already been achieved and is available in systems using the
TDMS approach (see [49]). The class of query languages based on the
predicate calculus make use of Boolean connectors (e.g. AND, OR, NOT)
and as such have a duality with set theory restricted to a Boolean algebra

(e.g. intersection, union, universal relative complement). If one

11



INFORMATION SYSTEM APPROACHES

POTENTIAL CHARACTERISTICS TDMS DBTG SP

STABLE MATHEMATICAL Basis No . No YEs
Dynamic DEFINITION No No YEs
AcceSSIBILITY BY CONTENT YES No YES
AGGREGATE PROCESSING No No YES
STORAGE REDUCTION No No YEs
ProGRAM ACCESS YES YES YES

BooLEAN AcCCESS YES No YES
INTERACTIVE ACCESS YES YES YES

BooLEAN AccEss YES No YEs
LARGE DATA BASE SuPPORT No No YEs
MSS SuppPORT No No YES
DATA INDEPENDENCE YES YES YES
SHARED DATA Bases YES YES YES
DATA BASE PROTECTION YES YES YES

FIGURE 2-1



expects responSes from information systems to be consistently
reliable, it is mandatory that the informafion system be designed on

a consistent fouﬁdation. The mathematics of set theory provide such a
foundation. Using this foundation, with particular emphasis on the

membership condition, query languages based on the predicate calculus

may be implemented and responses will be consistent and reliable.

In the case of the TDMS approach, the application of Boolean
logic to partifioned tree structures may cause several anomalies to
occur. As mentioned previously, these are detailed in Hardgrave [26].
A parallel study by Ray [38] predicts that even more alarming results
will occur if Boolean logic is applied to general network structures
similar to those found in the CODASYL DBTG [17] specifications (see
Parsons et. al. [36,37]). Furthermore, the DRTG [17] specifications
rely on questionable theoretical foundations. For instance, the
DBTG concept of a "SET" is not precisely defined. This structure

"owner records" and "member records"

is characterized in terms of
and if we take A to be an owner record and Ml’ME""’MN to be

member records, then the DBTG "SET" concept is graphically described
as shown in Figure 2-2. However, this is not an adequate substitute
for a precise mathematical definition. In order to illustrate this
point, we will direct attention tc several pitfalls that are

encountered if the basic structures of an information system are not

precisely defined. We do this by suggesting several possible candidates



DBTG “SET” REPRESENTATION

A
OWNER RECORD
S I .
R S
| ¥ My |
Ml :____J
1
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FIGURE 2-2



for the DBTG "SET" defined in set-theoretic terms and written in
set-based structure notation.

(a) (A, M/, Mjyeuo M}
(b) <Ay My Mo,..o,M >
(e¢) <a, {Mi, M2,...,Mn}>
(a) A, <M, My,..lM >
(e) {4, {M,M,,....M 1]

(£) {a, <My Mg,. .My >}

The notation above uses { , } to delimit mathematical sets and <, > to
delimit sequences (i.e. tuples). One definition (a) relies strictly
on the notion of a mathematical set and another (b) relies strictly on
the notion of & mathematical sequence and the others (c-f) are
variations using sets and sequences. Numerous possibilities exist
‘using other nestings of sets and sequences. The absence of an official
set-theoretic definition of the DBTG "SET" invites an important

question. Is M, ,M

10 2,...,MN neant to represent a mathematical set or

a mathematical sequence? Consider {(2) as the definition for the DBTG
"SET". The DBTG specifications provide a "next" operator. If the
current position is established in a DBTG "SET", then the "next"
operator may be invoked to reposition to the next logical record in the
"SET". This is in conflict with the mathematical notion of a set

in which there is no intrinsic order and as such could have no "next"
operator. Therefore definition (a) is not a viable definition for the

DBTG notion "SET". C(Consider (b) as the definition for "SET". This



5§erations (e.g. union, intersection) do not produce meaningful

results when applied to these sequences. (We assume here that nesting
of the tuples into ordered pairs and the Kuratowski ordered pair
definition are imposed (see [45])). Therefore (b) is not a viable
definition either. Similarly the other definitions (c~f) can be

~shown to be inadequate. Furthermore, if a logical structure is treated
.as a mathematical set at one instant and as a tuple at another instant,
anomalies will certainly occur. In short, the CODASYL DBTG [1T]
tsPecifications,‘a proposed standard, has provided a data structure for
implementation without providing a theoretical foundation for logical
data relationships and high level queries, If the set operations do not
produce meaningful results in all cases, then queries expressed in the
predicate calculus based language cannot produce reliable and consistent
responses in all cases. An implementation of such a language Qill be
subject to anomalies as severe, if not worse, than those already en-
countered in TDMS approach implementations. The query capability and
associated operations can only be as reliable and consistent as the
lowest level definitions allow., The key is precisely defined low level

primitives and this can be accomplished using precisely defined membership

conditions.
Next, there is the question of a definiticn for a data base before
it is entered into a generalized information system. It has become fashion-

able to have "data definition languages" and force the user (or data adminis-
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trator) to predefine the logical relationships before actually entering
the data. This has some advantages; however, the predefined schemata
is a constraining factor. Data bases grow not only in quantity but
often in errangement. New logical relationships ere necessary and must
be added. In a predefined enviromment when this occurs, existing data
bases must be "restructured" or completely dumped out in source form and
reloaded using an updated definition. Both the DBTG approach and the
TDMS approach require predefinition. The set processing requires no
definition. Definitions imposed by the user are dynamic. Logical
relationships may be created, destroyed or updated after data has been

entered. The definition of the data base is a user view. If the user

wishes to change this view, he may do so dynamically by redefining his sets

and tuples. In fact, the overhead involved in "restructuring" a set-
theoretical data base is minimal because the definition was not
frozen in advance.

Another important aspect in the analysis of information systems

and data management systems is accessibility by content. This implies

that the user of such systems may access data items and aggregates by
their attributes and values rather than by their mass storage addresses,
either absolute or relative. The DBTG specifications provide & very
limited capability to access records by identifier. In addition, it

is possible to access a record through a calculated (e.g. hash-coded)
identifier if the key was pre-defined as a calculated key. However,

there is no possibility to access a record by specifying a combination

17



of conditions as there is in the TDMS epproach and the set processor
approach. The TDMS approach provides accessibiiity by content through
the use of a Boolean expression following the reserved word WHERE. An
example is given below:
PRINT JOB WHERE CP TIME LE 1.0 AND FIELD LENGTH LE T5000;

The general form of the access commands is:

< ACTION> <X > VWHERE <Q >;
The < ACTION> may be PRINT, UPDATE, etc., <X> is a list of named items and
<Q> is =& Booléan qualification clause. The set processor approach provides
in its most rudimentary form a capability that is syntactically less
elegant but semantically more elegant than the TDMS access clause. First,
with a parser/translator the TDMS access clause can be syntactically
translated into the set-theoretic functions because of the duality between
the predicate galculus and set theory. BSecondly, the set processing
approach provides the user with the capability to isolate and save inter-
mediate sets and perform operations on those sets as ''sub-data-~bases".
This leads us to a discussion of gggregates. Inherent in mathematical
set theory is the notion that nemes may be assigned to arbitrarily
large aggzegates. This concept is carried over to the extent possible
(i.e. large finite aggregates) in the set processing approach to
informaticn systems. Although all three approaches allow naming
of agegregates ("sets" in DBTG, '"repeating groups" in TDMS, "sets" or
"tuples" in SP) only the SFP approach provides operators that take

aggregates as operands and produce aggregates as results. In DBTG

18



and TDMS in order to perform operations on data the items must be re-
trieved and operations performed on an item by item basis.

Set processing provides a potential storage reduction capability not

offered to any extent by either the DBTG or the TDMS approach. The TDMS
approach can in some very special cases reduce the overall storage re~
quirements if the data base has a large amount of redundancy and the redun-
dant values consist of long character strings (e.g. 10 characters or more).
In general totally inverted TDMS data bases may be expanded by a factor of
seven over the source character representation (without redundant blanks).
Partially inverted data bases with relatively few inverted keys may only
expand by a factor between one and two. DBTG data bases offer little
hope for storage reduction over the source character representation. The
overhead in pointers, etc. will generally expand the data base by a factor
between one and two. Set processing offers a larger potential for storage
reduction for date bases because it capitalizes on the use of the member-
ship condition. The membership condition may either be given explicitly
(i.e. by enumeration of members) or implicitly (i.e. by providing a
statement describing the circumstances defining membership). An implicit
membership condition may reference existing sets previously defined
or system defined sets (e.g. the integers or the reals representable
by a given machine). An example of an explicit definition of the set
of integers between (and including) ten and twenty is:

A= {10,11,12,13,14,15,16,17,18,19,20}

An example of an implicit definition for the same set is:

19



A={1i li is an integer and 10< i< 20}

Sets and tuples that may be expressed by an implicit definition need

not be stored explicitly. Thé potential for storage reduction of redundant
data through the use of implicit membership conditions is one of the
most attractive features of the set processing approach. Set theory
plus the extensions defined by Childs [10,11] provides a semantic
capability for implementing such an approach. Furthermore, the set
processor serving as a storage manager may go a step further. The set
processor may alter the stored version of a data base by "factoring out"
redundant items but enabling the user to retain his view that includes
redundancies. Removing a domain that has a high degree of redundancy
from a reiation - thereby creating a set-based structure that is not a
rela£ion - is an example of this. But the user continues to view his

dats as a relation.

Another important aspect is that of program/interactive access.

A well-designed information system will provide both program and
interactive access on a compatible tasis. That is, data bases will
be accessible from either executing programs or interactive terminals
through an interface that is similar in both modes. Currently, the
DBTG specifications provide only program access. Some suggestions
have been made to provide an interactive mode, but we know of no
implenmentatiorn. using Boolean connectors. In any case, it will be

¢ifficult to provide an adequate query capability because of the theoretical
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problems with Boolean operators mentioned previously. In the TDMS
approach, the interactive mode is the natural mode and usually the first
implemented. However, a program mode can be implemented in a conveniently
usable form by using a pre-processor for the host language (see [L49]).

In the set processor approach, the interface is via a collection of
set-theoretic operators and those operators may be conveniently called
from either an interactive terminal or an executing program (see[l3]

or [25]).

Next, there are the related issues of support for large data bases

(i.e. greater than 1012 bits) and support for mass storage systems (MSS)

(i.e. capacity greater than lO12 bits). Since very few large data bases
exist and none of these are maintained under the three generalized
approaches mentioned here, there is little concrete evidence to support our
conjectures. The same is true for the MSS's since their appearance in
computing centers is not yet widespread. However, the following logical
arguments can be presented. First, there are two characteristics of

all proposed MSS systems that are germane to this discussion: (1) the
access times for the MSS systems will be slow relative to disks (1-15
seconds) (2) the transfer rates will be comparable to disks (5-10 million
bits per second). These figures suggest that approaches that rely
heavily on pointers and linked structures will not perform well in
conjunction . with the MSS systems. In general, each link or pointer

that must be followed requires a disk access. The DBTG approach and

the TDMS approach both rely on linked structures. In contrast, sets
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and tuples may be stored and retrieved sequentially (for example, aee
Herdgrave [2T]). Thus, set operations may be implemented to take
advantage of the characteristics of the MSS systems.

Finally, there are the three issues of date independence, data

sharing, and data base protection. These issues have been considered

in numerous papers (see Stonebraker[46] and Canaday et. al. [T]) and

will not bhe discussed in detail here. Data independence and data

sharing are provided in all three approaches through the use of named
items and named groupings. Mechanisms for protection from unauthorized
use (security) can be implemented in conjunction with any of the three
approaches. Mechanisms for protection from inadvertent damage (integrity)
due to human or machine error can also be implemented using recovery

and rollback techniques with any of the three approaches. However,
protection from error propagation and detection of hardware errors

continues to be an area demanding more reseerch,

3.0 A Sample Network Configuration

In this section, a sample network configuration, shown in Figure 3-1,
is described briefly on an item by item basis. This configuration
consists of (1) a communications network, (2) a number of large scale
processcrs (LSP's), (3) a number of time-sharing/remote job entry (TS/RJE)

terminals, (4) a peripheral driver, and (5) set processor/mass storage
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system (SP/MSS). Other components mey be added as required; however,
thoege enumerated are necessary to provide batch, remote batch, and
time-sharing services in a consistent manner with universal access to
data bases. The configuration as described would exist as a local
network with all equipment except the TS/RJE terminals geographically
concentrated in a single building. However, the network approach using
a set processor-can be readily extended to geographically distributed
configurations.

In general, each large scale processor (LSP) is a large expensive
computing system designed to run complex numerical codes. These codes
often require large amounts of dats input and produce large amounts
of data output. Each LSP would normally have only scratch disks as
peripherals.

Recently, the operating systems for these third generation machines
have grown increasingly more cumbersome. Most support some level of multi-
programming. Some drive a host of peripherals such as tapes, card readers
and printers. Many have built-in permanent file systems and time-sharing or
interactive systmms. The introduction of an interactive service and perma-
nent file handlers dictates that much of the CP will be devoted to file
manipulation, character handling, text editing, and Job overhead; tasks
for which these machines were not designed. These tasks can be handled
very effectively and inexpensively by modern mini-computers. Furthermore,
the development of such a complex operating system for a new hardware design

is a multi-manyear undertaking for the vendor and these systems are seldom
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reliable for at least two calendar years after their introduction.

Hopefully, the network approach to computing systems will alleviate
a number of these problems while prbviding the flexibility to add more
equipment of any type without major upheavals in the users' operating pro-
cedures. The set processor will remove most of the file handling and data
management tasks from the LSP operating systems and the TS/RJE terminals
will remove the time-sharing, character handling and text editing
burdens. Thus, LSP operating systems may be simpler, containing at most
multiprogramming overhead and local file handlers. CP efficiencies on
these expensive machines should increase and development time for
operating systems on newly designed processors should decrease dramatically.
It is also important to realize that memory connected to LSP's has a
higher cost per bit at a given memory speed then memory associated with
e minicomputer. Therfore, buffers for auxiliary storage devices (e.g.
disks or MSS's) should reside in minicomputer memory and free LSP
nemory to perform the functions for which it was designed.

The peripheral driver is the computer on the network to which most,
if not all, of the input/output peripherals belonging to the central
computing facility are attached. This would include high speed printers,
card readers, tape drives, plotting equipment and the like. It might
also include some specialized equipment such as graphics devices or
data aquisition machines. The computer itself might be of the same

class as an LSP (e.g. CDC 6L00); however, it may be more economic to
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use powerful minicomputers. This will depend to a large extent on

the choice of peripherals.

Thé time-sharing and remote Job entry terminals (TS/RJE) are

would be a rather large minicomputer to which both keyboard terminals
and peripherals would be attached. The memory size for a TS/RJE
should bte about 128K bytes and floating point hardware (or firmwere)
should be included. These computers must be extremely reliable with
a mean time between failure measured in months. Furthermore, the
environmental conditions necessary for their operation must not

be more stringent than normal office conditions.

Peripherals on the TS/RJE terminals should include minimally
severai cartridge disk units plus slow speed card reader, a tape drive,
and a printer. Higher performance card readers, printers and tape
drives may be added as the need arises. It is impossible to over-
emphasize the importance of the disk storage on the TS/RJE terminals.
This should consist of a minimum of two disk units each with at least
one removeable platter. The total capacity should exceed 10 million
bytes for each TS/RJE terminal. This storage is partially used for
the disk operating system residence and overhead; however, the bulk
of the storage will be used for storage of "small" user files
programs, and small deta sets. Large data files and data bases will

reside on the mass storage system.
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The softwgre necessary to'ﬁroduce a reasonable TS/RJE terminal is
already availeble to a large extent from minicomputer manufacturers.
This consists of a multi-user disk operating system that can be
bootstrapped in from a disk (i.e. deadstarted) with only & fev manual
operations. The disk operating system (DOS) should also include a
file system that provides a capability to the user community to store
small files on the local cartridge disks, and modify and delete them
as desired in an interactive mode. A good context text editor and an
ANST FORTRAN compiler are absolufely essential. Other software may
be included as enhancements.

Fach TS/RJE should accomodate 30 or more users with about 10
terminals on-line simultaneously. Larger groups may be accommodated
if more memory and disk space is added. This approach has several
distinct advantages over traditional approaches. First the user has
immediate control over his files and his tapes since they reside with him
at the TS/RJE. Secondly, should the central network be unavailable
to the TS/RJE user for any reason, he may still perform a large number
of functions at the TS/RJE. He may edit programs and small data sets.
He may compile programs, correct syntax errors, execute small test
cases, and prepare larger jobs to be sent to the central facility
when it is available. Because of the reliability of the TS/RJE, there is
no reason why it cannot be available at all times. The operation is simple
and the user may bring up the operating system himself. Another mjor

advantage is that the central facility will only be responsible for the
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larger data sets and data bases belonging to the user community and these
will reside on the mass stofage system. This will dramatically decrease
_tﬁe need for tdpes and thus alleviaté the tape storage problem, a major
headache of many central computing sites today. Many of the tapes that
will remain will be held by the user, not by the central computing center,
- and will be read at the TS/RJE terminel and transferred over the network
when necesséry.

One other significant advantage is that terminals connected directly
to TS/RJE terminels can be driven at high data rates (e.g. 9600 bps for
storage tubes and display terminals). This is a significant increase over
many time-sharing systems running today on large scale processors and
the higher data rates make interaction immeasurably more pleasant for
users, particularly for text editing or graphics.

The hardware, software, and peripherals necessary to cbtain suitable
TS/RJE terminals are already available from a number of minicomputer
manufacturers. At present, each terminal will cost $50,000 to $100,000
depending on the amounts and types of memory, disks, and other peripherals
chosen; however,'these costs are steadily decreasing as technology makes
the hardware less expensive,

The set processor/mass storage system (SP/MSS) provides an
on-line storage managed by a processor capable of hendling a broad
spectrun of logical data relationships and physical storage techniques.

Furthermore, the processor can react to user requests ranging from a
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single data item to a large asggregate and transfer only the required
data. The storage enviromment could range in capacity from a few

disks to several trillion bit devices. TFor our discussions in this
paper, we will assume that the central computing facility will have
at-least one MSS. Examples of these systems currently on the

market are the Ampex Terabit Meﬁory [29,39] and the IBM 3850 Honeycomb
Store [32]. The Ampex systems range in cost from a basic system of
approximately 10ll bits at $600,000  to a maximum capacity of 3 x 1012
bits at about $4,000,000. Access times for these systems will be in
the range 1-15 seconds, significantly slower than disks. However,
transfer rates will be more comparable with disk rates at 6-8 million
bits per second. The set processor itself might consist of several
minicomputers connected via a high speed bus. In addition, some disk
and/or drum space is necessary for spooling and processing informetion.
A more detailed hardware description is beyond the scope of this paper,
but may be obtained from the STIS Corporation. However, the functional

description of the set processor will be illustrated in the next section.

4.0 Using the Set Processor

This section contains examples of user interaction with the set
processor in the network environment shown in Figure 3-1. This consists
of an example of an interactive session using a test deata base plus

an example of a FORTRAN program accessing the same data base. The
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possibilities for a user interface to the set processor ére abundant
and equally diverse. In order to demonstrate the following examples
with a minimuﬁ.of preliminary discussion, we will use a test data base
that is in STDS m .
the set based structures to n-ary relations is not a restriction
imposed by the set processor. However, relations are very versatile
and easy to understand and manipulate. Furthermore, a large class
of data bases may be represented in relational form.

In the following paragraphs, we will attempt to describe the set
processor in functionel terms by giving examples of its usage. A
more complete description of the functions that may be available in
a typical set processor is given in Appendix A, The communication
between the set processor and the network (i.e. any machine or human
connected to the network) will be in terms of set-theoretic functionms.
At any point in time the set processor will consist of a collection
of functions that it will recognhize and execute. Furthermore, for each
user identifier, it will maintein a collection of names cof sets (i.e.
e universe of discourse) that it will recognize and manipulate using
the designated function. The functions that can be made available in the
set processor are alsc abundant and diverse. For the sake of simplicity, we
will use, in this report, only the functions defined in Appendix A. A
more corplete and somewhat different collection of functions for-manipulation
of relations is given in the STDS/0S Users' Guide [L43]. Thus, the communi-

caticn between the network and the set processor is in the form of references
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v . .
to functions and parameters. The parameters often reference sets, relations or

n-tuples to be manipulated. For example, the operation
IN (A,B,C) R

would intersect the existing sets A and B defining a new set C. Figure.h-l L
gives a few entries from a hypothetical“data'base tha; logs jobs that'%ere {“‘
run at a scientific computing center. A similar dsta base with actuai 1
datg run at the NASA Langley Research Center computing facility may be

. found in [25]. 'The sample data base would contain about ten million oot

characters for each year logged. The DAY, MONTH and YEAR domains (i.e. .

TN

columns) give the date the job was introduced into the system. The JOB

. domain gives an identifier for the job. The CP domain gives the

central processcr time in minutes used by the job, the FL gives the field

length in words (i.e. memory requirements) used by the job, the 0S domain

gives the operating system calls (i.e. supervisor calls) made by the job,
and the HT domain gives the number of tape mounts required by the job.
Agsume an inbterrvogator legs on from a T/KJE terminal and he

N

wishes to access the sample data base. Figure L-2 describes ar inter-

.,...«.__A-...H.-v.;.

active session in which the interrogator sends queries to the set R

processcr and receives replies answering his questions, A "?" precedes

the lincs entered by the interrvgator; and all other lines are ‘

output from the set processor via the network and the TS/RJE. We will f”

v

describe the session on a line by line basis. At the same time we will PO

note the Plow through the network ard bhe effect on its performance.
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SAMPLE DATA BASE -

DAY FONTH YEAR  JOB

- 01

01

0l

01

JAN

JAN

JAN

JAN

JAN

JAN

74

/4

74

74

74

74

AA13216

AA25764

AB37152

ABR3261

AB71351

AC13754

01 52000

1,37 137000

11.64 129009

1.06 145000
.68 55000
17 55000

Ficure 4-1

66

4813

1287

1575

COMPUTER JOB LOG

o

N
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INTERACTIVE USAGE

? OPEN (D, J0B-L0G-1374, ID=WTH, Pi=KCW)
#DOM = 8 CARD = 1017341

? BORAIRS (D)
DAY, WONTH, YEAR, J305, 7, FL, O3, AT

? RS (D,NT=0,NE}=NCTAPES)
#DOM = 8 CARD = 657231

? AVa (WJTAPES,DAFALL=CP)
AVG (P = 2,85

7 RS (D,CP£1.0,NEW=SHALLCP)
#DOM = 8 CARD = 601317

? IN (NOTAPES,SHALLCR, KEW=8RALLJOB)
#DOM = 3 CARD = 450911

7 SAVE (SMALLJOB, SMALLJOB-LOG-1974)

FIGURE 4-2
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200
500

CALL OPEN (D,JOB-L0G-1974, ID=HTH, Pi=NOW)
CALL RS(D,FONTH=JULY,NEW=TARGET)
CALL RS(TARGET,NT>1,MEW=TARGET)
CALL RS(TARGET,CP<1.,0,NEW=TARGET)
CALL RS(TARGET,FL<60000,NEW=TARGET)
CALL RS(TARGET,08:2000,KEW=TARGET?
T0TAL=0.0

K=KARD(TARSET)

IF(K.EQ.0)G0 TO 500

D3 200 I=1,K

CALL SOIE(TARGET,N=1,NEW=0E)

CALL EXT(QLZ,RONAIR=CP,V=CP)

CALL EXT(DLE,DOXAIN=0S,V=03)

CALL EXT(ONE,DOMAIN=FL,V=FL)

CP = CP + 0S/2000

COST = (5*CP*FL)/60000

TOTAL = TOTAL + COST

CALL RC(TARGET,QONE,NEW=TARGET)

CONT INUE

CONTINUE

AVG = TOTAL/K
PRINT 80, AVG
FORMAT (X, *AVERASE (S

-~'l

=',F7.2) -gj/

FIGUNE -3



The data base "JOB-LOG-19T4" is opened for access with the OPEN
statement and the set processor responds by returning the number of domains
and the cardinality (i.e. number of elements) of the set, At this point
the set processor moves the most frequently accessed part of
the data base from the slow access frillion bit store to one of its
scratch disks. Note also that the only traffic passed through the
network is less than 50 characters that comprise the OPEN command and
the return reponse of less than 30 characters (probably one packet
in each direction).

The next command given is the DOMAINS commend. This command asks the
set processor to return the names of the domains of D. The response is the
domain headings that may then be used in other commands. The next command,
RS (i.e. restrict), asks the set processor to form a new set called NOTAPES
from the elemenfs of D where the value in domain NT equals zero. That is,
NOTAPES is the subset of DI such that NT equals zero. Again the set pro-
cessor returns the number of domains and the cardinelity. At this point the
interrogator, having determined that roughly 65% of the jobs are no-tape Jjobs,
would like to know the average CP time used by these Jobs. Since the no-tape
Jobs have been isolated in NOTAPES, this can be easily accomplished by
issuing the AVG command on the set NOTAPES for the domain NOTAPES. The
set processor responds with the average of 2.83 CP minutes. Next, the
interrogator isolates the jobs that used one minute of CP time or less
in the set SMALLCP. The set processor responds with the number of domains
and a cardinality of 601317. Thus, about 60% of the jobs require less

than one minute of CP time. 1In the next command, the intersection of the
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two sets, NOTAPES and SMALICP is formed and caelled SMALLIJOB. This is the
set of jobs using no tapes and one minute of CP time or less. About 45%
of the jobs are of this class. Finally, the set SMALIJOB is saved by the
interrogator as another data base for future use. It_is important to
emphesize again that the traffic on the network activeted by this

session was less than a fev hundred characters. Using a third generation
data management system, it would have been necessary to transfer the
entire data base to the disk storage associated with an LSP, and then
interact with the LSP. The traffic in that case would be measured in
millions of characters. Using the set processor approach, the user may
manipulate his data base at the SP/MSS node with only messages traveling
on the network.

Figure 4-~3 describes the use of set processor commands in a FORTRAN
program environment. Some liberties have been taken in the areas of
FORTRAN interface and calling sequences (e.g. keyword parameters) for the
sake of readability. The problems in using ANSI FORTRAN is an analogous
manner would not be insurmountable; however, it would be considerably more
cumbersome than the code shown here. These shortcomings may be attributed
to FORTRAN rather than the set processor. Again we will describe the pro-
grem on a line by line basis as well as pointing out areas that may affect
overall network performance. The lines in Figure 4-3 are numbered on the
left for easy reference.

We assume that the purpose of the program is to calculate average

cost of small tape Jobs run in July 1974. We arbitrarily define a small
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tape job as one using one minute or less of CP time, having one tape or
more, using a field lerngth of 60000 werds or less-znd wdking 2000 OS calls

or less., We also assume thal the c¢cést function, in dollars, is

05

C = (5#FL*(CP + 5600

) /60006
This implies that the cost in dollars C is five dollars-per CP
minutefat the ncminal field length of 60000 words. We assume that this

function is not built into the set processor (althoﬁgh it could be) and

thus it is necessary to write a program to evaluate the average cost

per joﬁ,

| fﬁe data.base is opened as a local set D in line 1 in a mannér similar
to the interactive session. Lines -2 through 6 restrict the éet to be con~
sidered to thé'set'of small jobs as previously defined. This produces the
set "TARGET" as the set to be processed on an item by item basis in tﬁe
remaindef of the_program. This 1s a very importght aspect because it is
not pecessary to transfer the entire data base to the large scale proééséor
(as would be the case with a standard file system) in order tcvanSWer a ques-
tion involving 6n1y a portion of the dataz base. For a typical data center
only about 10% of the jobs would be in the class of small tape jobs and,
furthermore, we will only consider the month of July. It would be unwise
to transfer date through the network that is not needed in the calculation

process.

At line T, we initialize the total cost used later to calculate

average cost. The function call at line 8 obtains the cardinality of the
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set, TARGET, and stores that in K. If the cardinality is zero, we transfer

i control to the exit condition. Othefwise, we enter a loop to traverse the '
oot set element by element. The function, SOME, referenced at line 11 gives

the programmer the capability to access one or more elements at random )

from one set and form a new set of these elements. In this particular

'case, we pick a single element from TAKGET and put into a new set named “f-

ONE. Lines 12 through 1h extract domains CP, 0S and FL from the element

of ONE and store them in the local variables of the same names. Lines 15 53';

through 17 calculate and total the cost function. Line 18 references
the relative'complement function, RC, which in this case deiefés the
eleﬁent-of ONE from TARGET. This loop is then continued until TARGET
is exhausted.  Lines 20 through 23 ﬁrocess the termination conditicn.
The average cost is calculated and printed.
ﬁ C : First, thelreader will notice that no storage allocation or buffers &
i ’ -are required in the memory of the large scale computer. This méans that
- many prograﬁs.that require large blocks of memory can be reduced to minimal :
memory because the set processor manages the data. On the other hand,
many large scientific codes need ready access to large blocks of data in
order to use the central processor el{iciently. For these programs, it
\ will still be necessary to request that large blocks be moved to central

memory from the SP/MSS. In these cases the task is made easier in

that the programmer may request exactly the data that he needs in exactly
] the ordering that he needs to perform the calculations. This will be of the
i utmost interest to those working with vector machines.

Secondly, it is important to note that prcgrams written to call the '

set processor are completely independent of the size of the data base.
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Many times large scientific codes have been produced to process an incore
case., When the time came that the problem size exceeded the core limitations,
it caused maJor problems in converting the code to use auxiliary storage.
We submit that the proper approach to producing large scientific codes
is to use the following procedure. Initially write the code in a straightfor-
ward, structured and readable manner. All data management functions should
be delegated to the set processor and only required information should be
requested.

Upon execution of the code, if it is found that the performance
of the program is not satisfactory because wait times for date are ex-
cessively high, then it is necessary to do the following. For sections of
code where the data requirements are high (e.g. tight loopé accessing matrix
elements), buffers (i.e. working storage) should be allocated, and requests
for data on an item by item basis should be replaced by requests on a block
basis. The programmer may additionally request that the data be ordered in
e fashion that is most suitable for him; a feature not generally available

using conventional auxiliary storage techniques.

5.0 Concluding Remarks

In this section, we will enumerate some of the more salient
advantages of the set processing approach implied if not explicitly
stated in previous sections. Many advantages may be attributed to the
mass storage system, some to the concept of a autonomous data base/storage

management ccmputer, others to the communications network, and still others
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to wel processiug., Uowever, It i. jmpoctoul boe conaider Lo overall conti-

gundilun and examine the inhorent advantages. Sowe of Lhe benerits are
realized by the user coamunity while others are reslized by the central
comptt ing fa;ility; There is a laipe Jdegree of overiapﬂ

Tné user. cowauniiy will fiad itnedi with a weire responsive system

than it had with stand-sleone mainfrumes., 'The system is easy to use

and simpler to program,  A11 dAta }duﬁh will be sceessible by content

in either an interactive mede or a pregram mode from the I8P's, the
“S/Raﬁ'ﬁ cr other guyuwipment attached o the nQCWUrk._ The user may
reference hLis ddLa and manipulate his Jatae ba es o oan aggregate besis.
This resulis iu nere fficient procensing as well s user gonvcnience._
Mulbiple users may access e single data base simultancously, and single
USLTS ey access miltiple date bases. A comprehensive soriing CJtat 1ity
is pruvidec Lhal permils the user to obtain duta in an ocrdering most
conveudent for ﬁjs e Programs ahbpid be easier Lo read and write

beraunse the nmanercus burdens of date managemenl will te handled by

the SP/MSS, Tt will not be necessary for the user to allccaste large

plooks off cLorugzo, tablos, or oet up hal*:

i. Iie is fuanceticnally

seontated from Lhe storage media and may 2ok ior Phe dtonn, nd “dL Tor

compeitatton or dinplasy. As a lesuit, these progrews will be conceptuslly
simpler, nore structures! and easie: Lo preve correct., PFusthermore, the

pregite. shiculd goie: elossly  reflect Lhe thecretical furmulation of the

proboes.  Ctlher, dnportanl advanitages of lne sl

provesscr appioacl Lo

NELVCITRILE include & shavle mathemed iced Tourdatio: 70 Sulormation system

design, 2 Sviwmic dats Yase definition nnd restracturing vepability, a po-

tenticl o rodilcnhion ol dnla Lesto ool vegs regiirerants over ‘gsource

charauter representanicns , nd a couveclont and casy Lo use procedure for

iertiaelly entering dats bLases foue Lue (/i
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The central computing center or facility stands to realize substantiul
gains as well. A most urgent problem, the storage of large numbers of tapes
(many of which are only partially used) should disappear. Large data
bases will be maintained by the set processor/mass storage system.

Small files (e.g. routines under development) will either reside on the modest
file systems at the TS/RJE terminals or, possibly, on tapes held by the user.
The central facility will no longer be responsible for the small files. The
most traumatic times during the histories of large computing facilities occur
when new hardware or software is introduced that changes the overall configura-
tion of the facility. Existing programs are often difficult to convert and
each programmer must learn about a new system. Many of these problems will be
circumvented in a network environment. New hardware may be added by inter-
facing it to the network. Immediately the new hardware has access to exist-
ing data bases. Users that prefer hardware of different vendors or different
operating systems on the same hardware may easily coexist (even using the

same data base) in the network enviromment. In short, this approach provides
for a maximum of flexibility because it is modular; and modules may be added,
deleted, modified or tuned for better performance without disrupting the

entire system. Another important advantage is the more efficient use of central
memory on the large scale processors. In many cases the level of multiprogram-
ming may be raised substantially because applications programs will require
less memory for buffers and working storage. As a result each program will
reguire less total memory and thus more programs will fit in memory at one time.
As noted previously, in some cases, it will be advantageous to maintain large

buifers or working storage for the sake of computational efficiency; however,
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APPENDIX A

Set Processor Operations

Brief descriptions are given here of a few operations that would
likely appear in & typical set processor. Positional parameters and
mandatory keyword parameter are listed in the calling sequence in
smell letters. Optional keyword parameters are listed in the para-

meters section. All positional parameters are mandatory.

Name: OPEN(s,g)
Parameters:
s: local set name
g: globel data base name
ID: wuser identification
PW: user pass word

Function:

Opens the globsl data base, g for use with local set name, s.

Neme: CLOSE(Q)
Parameters:

e: local set neame
Function:

Close the gset with local name, s.



Bome:  BAVE(S 0/
Povapelors:

s:  tecal sol nene

Bt global ddve base vome
Function:

Gave Lhe lodnl set as a global peraancal dates base with

plobul nume, g.

{ oo Pomgae(s)
;
f tareseborn:
{
. el ol pame
ot e,
pou deonorelebicped set, lisl tie demelin nwnmes.
tinms:  @XT(s DOMAT M= V=V )
Inracielbcrs:
' 1ocel el hoene
d:  doneio naee
v o varictle e
! Pogietion:
It s iv o relutionsl set, extract the elements of domain
dmng Lt bl i e vector sleriding with loes! varisble
Y. Hole Lhat Rlis fanciion is callstle only from progrewms.
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Name: ENTER(s,m,u,f)
Parameters:
s: local set name
m: number of domains
u: logical input/output unit
f: FORTRAIl format specification
Function:
Create a new relation, s, by reading data from unit u
by format f until an end-of-file is encountered. The
format f should specify m items to be entered. Each

record that is read represents one entry (tuple) in the
relation.

Name: RS(s,e,NEW=n)
Parameters:
s: local set name
e: expression of the form <domain> <op><value.>
<dcmain> must be a domain
<op> must be one of # = > < > <
<value>must be a numeric value

n: lccal set name

Functions:

If s 1is a relational set, restrict s by the expression
e and form the new reletional set n. That is, n will

contain the elements of s for which e 1is true.



Name: DLP(b DOMATLL, J,DOMAI.N2~d2,..,,Do 1IN —dk mrx

‘s: local set name
dl.’ .e 'dk: domain names

n: liccel set name

fanction: 2L s is & relational set, form s nev relational set,. n,
wvith only the domains dl .d},. '

Hame: Kéﬁb(s)
Parameters:
EE local set’ name
Fuﬁcféon:
Returns the cerdinality of the local set s.° " Note that

hAl’D Ls callable only from programs. In 1n’cev'a.ct1ve
mode the cardinelity of any set #nested or gltéred is

aviomsticaldly returned.

e

Name: - Uli{s.,m,K&8W=n;

Parameter 5

. ﬂ m n: locel ‘g6t nemes
SRR N N "" . .
- v L _‘-’;_;a' ‘ .
Fuas +,1o*w k .}?e;-i‘orm ALhe*unics of the tue dHets "5 and m and form
B the new seb -
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Name: RC(s,m,NEW=n)
Parameters:

samy,n: Jlocal set names

Tunction: Perform the relative complement of m with respect to

forming the new set, n.

Neme: SD(s,m,NEW-n)

Parameters: local set names

Function: Perform the symmetric difference of the two

forming the new set, n.

Name: SOME(s,N=k,NEW=n)
Parameters:
8: local set name
k: positive integer

n: Jlocal set name

Function: Form the new set n by selecting k elements from
is unaltered.

at random. The set s
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Name: AVQ{c,DOMAIN=d)

Parameters:

s: local set name

d: domain name

Function:

If s is a relation, calculate and return the average
of all elements of domain, d.
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