
ICASE REPORT
(NASA-CR-142599) ACCESSING TECHNICAL .DATA N75-21-04
BASES USING STDS: A COLLECTION OF SCENARIOS
(Universities Space Research :Association) -

CSCL .09B Unclas ..
G3/61.. 18578 _

ACCESSING rECHINICAL DATA BASES USING STDS:

A C)i ECTION OF SCENARIOS

W. T. Hardgrave

koort. Number 75-8

April 16, 1975

NSI1ITUTE FOR COMPUTER APPLICATIONS

T SCIENCE AND ENGINEERING

Operated by the
PRICES SUBJECT TO &L0

UNIVERSITIES SPACE RESEARCH ASSOCIATION

aL

NASA'S LANGLEY RESEARCH CENTFR -R,,rod ce by

NATIONAL TECHNICAL
Hampton. Virginia INFORMATION SERVICE

US Departmen
t

of Commerce
Springfield, VA. 22151

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE

BEST COPY FURNISHED US BY THE SPONSORING

AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CER-

TAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RE-

LEASED IN THE INTEREST OF MAKING AVAILABLE

AS MUCH INFORMATION AS POSSIBLE.

ACCESSING TECHNICAL DATA BASES USING STDS:

A COLLECTION OF SCENARIOS

W. T. Hardgrave

ABSTRACT

This report gives a line by line description of sessions using

the Set-Theoretic Data System (STDS) to interact with technical data

bases. The data bases contain data from actual applications at NASA

Langley Research Center. The report is meant to be a tutorial docu-

ment that accompanies "Set Processing in a Network Environment" [1].

This paper was a result of work performed under NASA Grants NGR 47-102 001

and NSG 1068 while the author was in residence at ICASE, NASA Langley

Research Center, Hampton, Virginia 23665.

1.0 Introductory Remarks

This report is directed to the user who has a collection of data

that he wants to query and/or update but who has little, if any,

knowledge of either set theory or information systems. In only a few sections do

we make the tacit assumption that the reader has any experience in computing

and these cases involve only a basic knowledge of FORTRAN. We hope to

demonstrate, through the use of three scenarios, the power of a set-

theoretic system in aiding the user to isolate and examine sets of data

that may be of interest to him. The particular system used in this report

is the Set-Theoretic Data System (STDS)[2] developed by David Childs

and supported by Set Theoretic Information Systems (STIS) Incorporated.

STDS was run (remotely from a teletype in Hampton, Virginia) on the

IBM 360/67 at Wayne State University, Detroit, Michigan, using Michigan

Terminal System (MTS)[31 developed at the University of Michigan. Since

STDS is a research system rather than a production system, it is

reasonable to expect it to have a number of deficiencies. Few of these

can be classified as serious problems; most reside in the area of human

factors and although revisions here are desirable, they are not absolutely

necessary to solve the problems described herein.

A standard strategy that pervades all of the scenarios, regardless

of the data base is as follows. First, isolate the basic sets that can

be requested by a single condition (e.g. velocity 5 100 MPH). Then,

using the set operations, isolate sets that have characteristics that are

of particular interest to the interrogator. Whenever a new set is formed,

the system declares the cardinality (i.e. the number of elements) of the

2

set. If the user desires more statistical information, he may request

a summary of pertinent items that includes the maximums, minimums, means

and standard deviations. If the user requires more specialized information

about a given set, he may write a short FORTRAN routine that traverses

a set, performs calculations and outputs the necessary values. An

example of this usage is given in the VGH scenario.

3

2.0 An Introduction to STDS

In this section, a brief introduction to STDS [2] is given. This

consists of two subsections. Subsection 2.1 provides a description of

the commands necessary and responses encountered when using STDS. In

addition, other aspects of STDS that are common to all of the scenarios

(e.g. timings) are dealt with in this subsection.

Subsection 2.2 contains brief descriptions of some elementary STDS

operations. Since STDS is primarily a research system maintained by

STIS Corporation, it has a number of operations that are not particularly

germane to the discussions considered herein. As a result, we list here

only the operations that are relevant for a relational/set-theoretic

system that might appear in a scientific user environment. These operations

are listed in three categories: utility operations, restriction operations,

and set operations. Subsection 2.2 is primarily meant to be used as a

reference to accompany the examination of the scenarios.

Finally, we offer a few opinions concerning the possible installation

of STDS on CDC 6000 machines under KRONOS. STDS is written primarily in

FORTRAN with some critical routines written in assembly code. The original

STDS was implemented on an IBM 360/67 under MTS and a later implementation

is available for IBM 360/370 machines under OS. Our estimate is that STDS

could be installed under KRONOS in about three months. No special peripheral

processor routines should be necessary. The areas that might cause diffi-

culty are program arrangement and Input/Output (I/O) management. The IBM

360/67 is a virtual memory machine and the original STDS implementation used

'4

that feature to minimize manual segmentation of the program and data areas.

Therefore some effort may be necessary in order to reduce the field length

of STDS under KRONOS to an acceptable level. This will involve the use of

buffer management and overlaying techniques. The I/O philosophies of IBM

and CDC are radically different. As a result the conversion of STDS I/O

to kEONOS may be tricky. However calls to CIO using the direct access

capability should be sufficient. Higher level CDC supplied I/O routines

should be avoided.

5

2.1 STDS Operations

The STDS operations are listed below in three groups; utility operations

restriction operations, and set operations. It is necessary to provide

some informal definitions of the terms, elements, domains, and entries.

Consider the relation

A = {<1,2,3,4>, <5,6,7,8>, <9,6,8,7>1

which may also be written

A: 1 2 3 4

5678

9687

Informally, the columns are equivalent to domains, the rows to entries.

A relation is a set of entries. Each entry is an n-tuple containing n

elements. Thus the relation may be represented as a table of elements

with the columns corresponding to domains and the rows to entries.

2.1.1 Utility Operations

Name: GET

Calling Sequences:

STDS*: GET(C,'DSN')

FORTRAN: CALL GET (C,'DSN')

Arguments:

C is a set name

'DSN' is a data set name

Description:

A set stored off-line on disk, tape, datacell, etc. is brought

into core as set C for active inquiry. The contents of 'DSN'

must in fact be a set, not an array. Any 'DSN' for which GET

is used must previously have been stored by PUT.

Name: PUT

Calling Sequences:

STDS*: PUT(A,'DSN')

FORTRAN: CALL PUT(A,'DSN')

Argument s:

A is a set name

'DSN' is a dataset name

Description:

Any set A that has been created during a run using set operations

may be saved off-line in direct access storage by use of PUT. The

command PUT must have been used to place a set in storage before

that set can be retrieved by means of the command GET.

Name: ENTER

Calling Sequences:

STDS*: ENTER(A,DA,NDA, 'FMT')

Arguments:

A is the resulting set

DA is the domain declaration for A

NDA is the number of domains in A

FMT is the I/O FORMAT for A

Description:

ENTER allows a set, A, to be constructed by specifying the

individual entries. ENTER is terminated by an END OF FILE.

7

Name: LIST

Calling Sequences:

STDS*: LIST(A,I,J,'FMT')

FORTRAN: CALL LIST(A,I,J,'FMT')

Argument s:

A is the set to be listed

I,J are respectively the I-th and J-thentries of A

'IMT' is a string name specifring the output format

Description:

This operation allows listing subsets of a set A under a format

'FMT'. The subset is the I-th through the J-th entries of the

set A.

Name: LISTU

Calling Sequences:

STDS*: LISTU

Arguments:

None

Description:

This operation allows a summary of the characteristics of all sets

in the universe to be printed.

8

Name: FREE

Calling Sequences:

STDS*: FREE(A)

FORTRAN: CALL FREE(A)

Arguments:

A is the set to be freed

Description:

FREE(A) deletes A from the universe and frees the memory of

its contents.

fame: SETFMT

Calling Sequences:

STDS*: SETF1MT(DD, 'FMTf')

FORTRAN: I = SETFMT(DD,'FMT')

Argument s:

DD is the domain declaration 8, 16, 32

'FMT' is a FORTRANI format specification

I is the index associated with the specified format

Description:

SETFMT associates an index, I, with a format so that the format

may be specified via '/I/'.

ORIGINAL PAGE IS
OF POOp QUALITy

9

Name: SYSTEM

Calling Sequences:

STDS*: SYSTEM

FORTRAN: CALL SYSTEM

Arguments:

None

Description:

SYSTEM returns control to the command system in the host

operating system.

10

Name: SUM

Calling Sequences:

STDS*: SUM(A,INDEX,STAT,F)

FORTRAN: CALL SUM(A,INDEX,STAT,F)

Arguments:

A is the set to be summarized

INDEX is the index set as described below

STAT is the statistical set (NUMD=6) to be generated

F is the floating point indicator; 0 implies integer

arithmetic; 1 implies floating point arithmetic

Description:

SUM produces a statistical summary of specified elements.

Index Set:

The index set should be DD = 32 NUND = 3. Each triple <x,y,z)

in the index set should have the following form:

X is an integer key. This key is necessary when a number of

statistics are being gathered with a single index set.

Y is the starting byte of the domain. For 32 bit values, the

starting byte for a domain I can be calculated as follows:

Y = 4*(I-1) + 1

Z is the length in bytes of the domain. For 32 bit values,

z =4.

Example:

CALL SUM(A,INDEX,STAT,1) using 32-bit values and with

INDEX = <1,5,4> ,<2,9,4>) would produce the sum, mean,

minimum, maximum and standard deviation for domains 2 and 3

(with keys 1 and 2 so the user can tell which is which).

11

Name: V$

Calling Sequence:

STDS: V$($X,DD,V)

Arguments:

$X is the data mode. I implies integer, Z implies

hexadecimal, A implies EDCDIC coded, and E implies

floating point.

DD is the domain declaration (usually 32)

V is the name to be assigned to the constant

Description:

V$ provides the user with the capability to predefine

constants to be used at a later time. After entering the

V command, the system responds with a ':'. Then the user

enters the constant.

Example:

V$($I,32,KON)

:57

The user enters the V$ command. The system responds with

a ':'. The user enters the integer, '57'. Thus the user

creates the integer constant '57' with the alias KON. When-

ever KON is encountered in a command, STDS substitutes 57.

12

2.1.2 Restriction Operations

Name: RSEG,RSLTA,RSLEA,RSGEA,RSGTA,RSNE

Calling Sequences:

STDS*: RS (I,A,V,C)

FORTRAN: CALL RS (I,A,V,C)

Arguments:

I is a domain name

A is the set to be restricted

V is a full word program variable

C is the result set, a subset of A

Description:

The RS commands restrict A (forming C) as dictated by

the domain I and the constant V. C is the subset of A

containing entries of A whose Ith domain is in the

specified relation (e.g. EQ denotes 'equal') to V.

Examples:

For A =f<-10,20,37 ,< 0,5,10> ,(6,7,1000)

a) RSLTA(1,A,-2,C) produces a set C =f<-10,20,37)

b) RSLEA(2,A,10,C) produces a set C = <0,5,10>, <6,7,1000>

c) RSGTA(2,A,1O,C) produces a set C = t<-10,20,3>)

d) RSGEA(3,A,1000,C) produces a set C = <6,7,1000>)

e) RSNE(1,A,10,C) produces a set C = A

ORIGINAL PAGE IS
OF POOR QUALITY 13

Name: BRSA

Calling Sequences:

STDS*: BRSA(I,A,J,K,C)

FORTRAN: CALL BRSA(I,A,J,K,C)

Arguments:

I is a domain name

A is the set to be restricted

J,K are four byte program variables

C is the result set, a subset of A

Description:

The set C is a subset of the set A such that the values of the

entries in the I-th domain of C are greater than or equal to

J and less than or equal to K. The set A is unchanged.

Examples:

if A = {<1,2,3,4>,< 1,3,5,2>,< 2,3,6,7>}

a) then BRSA(2,A,1,2,C) produces the set

C = {<1,2,3,4>}

b) then BRSA(3,A,4,10,C) produces the set

C ={<1,3,5,2 >,< 2,3,6,7>}

c) and BRSA(4,A,4,10,C) produces the set

C ={<1,2,3,4 >,< 2,3,6,7>}

14

Name: ALEG

Calling Sequences:

STDS*: ALEG(A,I,J,LEN,CL,CE,CG)

FORTRAN: CALL ALEG(A,I,J,LEN,CL,CE,CG)

Arguments:

A is the set to be partitioned

I,J are domains

LEN is the length of the domain in bytes (usually 4)

CL,CE,CG are the output sets

Description:

The set A is partitioned into three sets, CL, CE and CG according

to domains I and J. For each entry, K of A, if domain I is

less than domain J then the Kth entry is placed in CL; if domain

I is greater than domain J, then the Kth entry is placed in CG;

and if they are equal, the Kth entry is placed in CE.

Example:

If A = (< 1,2,3,4 >,< 1,3,5,5 >,< 2,3,7,6 >,< 5,3,2,7>1

then ALEG (A,3,4,4,CL,CE,CG)

produces CL = f< 1,2,3,4 >, < 5,3,2,7>}

CE = {< 1,3,5,5 >}

CG ={< 2,3,7,6 >}

ORIGINAL PAGE IS
cp1E O9R QUALITY

15

Name: DMR

Calling Sequences:

STDS*: DMR(I,J,A,C)

FORTRAN: CALL DMR(I,J,A,C)

Arguments:

I is a domain name for the set A

J is the number of consecutive domains

A is the given set

C is the result set, the I-th domain of A

Description:

The set C is formed from the set A by taking the I-th through

J-th domains of each entry of the set A. The set A is

unchanged.

Examples:

For A = {< a,b,c >,< d,e,f >, <g,h,i>}

DMR(1,2,A,C) produces

C = f< a,b >,< d,e >,<g,h>}

16

Name: GETELM

Calling Sequences:

FORTRAN: CALL GETELM(I,A,J,L,ELM)

Arguments:

I is the entry number

A is the set name

J is the first byte of the tuple to be extracted

L is the number of bytes to be extracted (usually 4)

ELM is an array

Description:

GETELM extracts L bytes beginning at the Jth byte from

the Ith entry of the set A. This information is trans-

ferred to the user's array ELM. For 32-bit values (4 bytes)

the byte number may be calculated from the domain number by

the formula BN=4DN - 3 where BN is the byte number and

DN is the domain number.

Examples: (using 32 bit values)

If A = {<1,2,3,4 >, <1,3,5,2 >,< 2,3,6,7 >}

a) Then GETELM (2,A,5,4,ARR) produces

ARR(1) = 3

ARR(2) = 5

b) Then GETELM (3,A,1,3,ARR) produces

ARR(1) = 2

ARR(2) = 3

ARR(3) = 6

17

Name: SUBSET

Calling Sequence:

STDS: SUBSET(A,F,I,L,C)

FORTRAN: CALL SUBSET(A,F,I,L,C)

Arguments:

A is the input set

C is the output set

F is the first entry

L is the last entry

I is the increment

Description:

The Fth through the Lth elements in increments of I are

copied from A thus forming C.

Examples:

For A = {< a,b,c >, < d,e,f >, <g,h,i>}

SUBSET(A,1,2,3,C) produces

C = {< a,b,c >, < g,h,i>}

18

2.1.3 Set Operations

Name: UN

Calling Sequences:

STDS*: UN(AB,C,)

FORTRAN: CALL UN(A,B,C)

Arguments:

A,B are names of given sets to be unioned together

C is the name of the result set

Description:

Given two sets A and B, a new set C is produced containing each

entry that is in either A or B. Note that if the same

entry is in both A and B, only one representation of it

appears in C. A and B are unchanged.

Examples:

If A ={< a,b,c >,< d,e,f >,< g,h,i >,< j,k,l>}

and

B =(< a,b,c >,<m,n,o >,< p,q,r >,< s,t,u>}

then UN(A,B,C) produces

C = {< a,b,c >,< d,e,f >, < g,h,i >,< j,k,l >, < m,n,o >, <p,q,r >,< s

Note that < a,b,c > is in both A and B, and occurs but once in

set C.

19

Name: IN

Calling Sequences:

STDS*: IN(A,B,C)

FORTRAN: CALL IN(A,B,C)

Arguments:

A,B are the given sets to be intersected

C is the result set

Description:

The set C contains all those entries that are entries of

both the sets A and B. The sets A and B are unchanged.

Examples:

1. For A = < a,b,c >, <d,e,f >,< g,h,i>}

and

B = < a,b,c > < g,h,i > < j,k,l>}

IN(A,B,C) produces

C = {< a,b,c> < g,h,i>}

20

Name: RL

Calling Sequences:

STDS*: RL(A,BsC)

FORTRAN: CALL RL(A,B,C)

Arguments:

A,B are the given sets

C is the output set

Description:

The set C contains all those entries of the set A that are

not entries of the set B. The sets A and B are unchanged.

Examples:

For A = (< a,b,c >, < d,e,f >}

and

B = {< a,b,c > ,< g,h,i >, < j,k,l>}

a) RL(A,B,C) produces

C = (< d,e,f>} because < d,e,f> is not in B

b) RL(B,A,C) produces

C = < g,h,i >, < j,k,l>} because < g,h,i > and <j,k,l >

are not in A

I.. ~NAL PAGE IS
"21, Y

21

Name: SD

Calling Sequences:

STDS*: SD(A,B,C)

FORTRAN: CALL SD(A,B,C)

Arguments:

A,B are the names of the given sets whose symmetric

difference is to be found

C is the name of the result set

Description:

Given two sets A and B, a set C is produced that is the set of

entries present in either A or B but not in both. That is,

C contains the entries that the two sets do not hold in

common. A and B are unchanged.

Examples:

For A = (< a,b,c >, < d,e,f >,< g,h,i>}

and

B = < azb,c >, <d,e,f >,<x,y,z>}

SD(A,B,C) produces

C ={<g,h,i >,<x,y,z>}

22

Name: CARD

Calling Sequences:

FORTRAN: I = CARD (A)

Arguments:

A is the set

Description:

Returns the cardinality(i.e. the number of elements) of the

set A in location I.

Examples:

If A ={< 1,2,3,4 >, <1,3,5,5 >, <2,3,7,6>}

then I = CARD (A) produces I = 3

23

2.2 Entering STDS

The MTS command RUN RBLG:STDS* calls STDS into execution. MTS

issues the EXECUTION BEGINS message just prior to transferring control

to STDS. When STDS becomes active, it generates a heading and a request

for the user to enter a universe name. The universe is the set of all

sets known to STDS and is of little importance to the user. A list of

the sets in the universe may be obtained by using the LISTU command.

The user enters a four-character universe name of his selection; however,

he must take care not to use that name for some other set during the session.

Now the user is ready to proceed with his requests.

At this point, the user would normally access some data base (i.e. set)

that he has previously saved as a permanent file with the PUT command.

He may do this with the GET command; for example, GET(A,'FE') finds the

permanent file with the name FE and associates it with the local set

name, A. Next, we discuss the two lines of output that follow the GET

command, or any other set creation command. Consider some sample lines

that might follow a GET command; the first,

DD = 32 NUND = 9 CARD = 420

indicates that the domain declaration is 32, the number of domains in the

set is 9, and the cardinality of the set is 420. The domain declaration

of 32 implies that values in the set are stored as 32-bit entities. The

number of domains equal to 9 implies that each element of the set is

a 9-tuple; or more informally, the set has 9 columns of information.

A cardinality of 420 implies that the set has 420 elements. Informally,

that means that the set has 420 rows. However, it is important to

24

remember that theoretically the rows are unordered and no two rows would

have identical values in all domains.

The second line printed after a set creation, enclosed in brackets

as shown below, contains timing information. All times are in seconds.

[0.005, 0.05 / 0.136, 0.90]

The two numbers preceding the slash indicate STDS operation times;

first CPU time and then elapsed (i.e. real) time. The numbers following

the slash are total times including MTS overhead; first CPU time and

then elapsed time. They will, of course, vary with the load on the

computing system.

This same GET command used 0.005 CPU seconds and was completed in

0.05 seconds of real time (i.e. wall clock time). However, the CPU

time used including MTS overhead (for virtual memory paging,- etc.) was

0.136 seconds and the total real time from receipt of carriage return

to the issuance of the first character of output was 0.90 seconds.

25

3.0 Finite Element Scenario

The following scenario describes a situation that might arise in a

computer aided aircraft design environment using a set theoretic informa-

tion system (in this case STDS). Assume the designer is working with a

finite element model of a fuselage, a portion of which is shown in Figure 3-1.

Furthermore, assume that the model has been run through a suitable finite

element program (in this case, SNAP) applying suitable loading and boundary

conditions as shown in Figure 3-2. These input conditions may be repre-

sented as relations (because of their tabular nature) and maintained under

STDS. We have not chosen to do that in this scenario because our original

data was output from (rather than input to) the finite element program SNAP.

This results in a data base of forces and moments that the designer wishes

to examine in order to evaluate the design. The set-theoretic data base

examined in this session has nine domains with 250 entries. A portion of

the data base is shown below where FX, FY, FZ represent forces and MX,

MY, MZ represent moments.

FE TYPE NODE FX FY FZ MX MY MZ

1 Beam 1 78. -71. 0. 0. 0. 5980.

1 Beam 2 -78. 71. 0. 0. 0. -9640.

1 Quad 1 -78. 289. 241. -0. -0. -0.

1 Quad 2 -160. 599. -696. -0. -0. -0.

1 Quad 9 136. -509. 825. -0. -0. -0.

26

.. .. 13 - -.: . ' . i . • .. .- i 4, R.. ' . - : -_.' . . ' " " . 7.' " '

_. 72D

" "" \ii
/ . j 7

-1 I .L/1

Ii /~i I J:::;f3~. !ffI:5 C' ~'
' ii 17 ' ' : : : " " "": : "

'I..L JV' 7.-4'F

77;47 72427t

Figure 3-1

:::.,~ ~ ~ ~ ~ ~ ~~~~::::: i:::.:========================::: : :::: :::: i i :::::: ::::::
f , ; : f ; :: "t :. .: :: .. . ? I : : :r5 : : : : : :.!L :L : f: : : :: :: . .:::.-J . :: :: S

-.; • . ' . ', .r I > k . .v "" n .. - .. .'..'. '" .. ' " , ,. " . .. -' . .

.s" ~ ~ -' :: : :: ::.; d:l: ::::::: ::: : ::: : :::::: 1(:::: :::::: :::::::: :.!i' :::i

ii .,le icre 3-1

BOUNDARY CONDITIONS

NODE TX TY TZ RX RY RZ

1 0 1 0 1 0 1
9 0 1 0 1 0 1

15 1 1 1 1 1 1
17 0 1 0 1 0 1
25 0 1 0 1 0 1
33 0 1 0 1 0 1
3n I I 0 i1
41 0 1 0 1 0 1
49 0 1 0 1 0 1
57 0 1 0 1 0 1

0 - FREE TO MOVE 1 - FIXED

LOAD CONDITIONS

NODE DIRECTION MAGNITUDE

57 3 10000.
58 3 8666.
59 3 5000.
60 1 -10000.
61 3 -5000.
62 3 -8666.
63 3 -10000.

Figure 3-2

28

After initializing STDS, as shown in Figure 3-3, we are ready to

obtain access to the finite element data base (called FE). This is

shown in Figure 3-4. The command GET(FE,'FE') retrieves the FE data

base from the MTS permanent file system. The data base had been

previously input to STDS and stored in set-theoretic format with the

PUT command. In order to get a feeling for the data base, we would like

to print a few entries on the terminal. This may be accomplished with the

LIST command. However, it is necessary to provide a FORTRAN format to

the list command; and since formats are typically long and cumbersome to

enter, we may declare it in a SETFMT command. STDS RESPONDS WITH FMT = 1

indicating that for future reference we may access this format with /1/.

We list the first few elements of FE using E-format, and then, having

discovered the magnitudes involved, we define a new format using the F-

specification and list again using the new format, /2/.

In order to obtain statistical summaries for the overall behavior of

forces and moments, using the SUM command, it is necessary to define an

index set that specifies which domains are to be tabulated. We have pre-

defined a suitable index set "FE-INDEX" and stored it in the MTS permanent

file system. We may recall that set with GET(INDEX, "FE-INDEX"), Follow-

ing that we perform a summary on FE. The index set was set up to tabulate

domains 4,5,6,7,8,9 (as listed under KEYS) representing FX, FY, FZ, MX,

MY and MZ respectively. From this we notice immediately that the highs,

lows, and standard deviations indicate that there may be doubtful areas

in FX, FY, FZ, and MZ.

29

#RUN RRLG:STDS
#EXECUTION BEGINS

** SET-THEORETIC INFORMATION MANAGEMENT INTERACTIVE INTERFACE
1** STDS-I ** VERS:UM02-17-741

** *** *** *it *** *4* *** *** ***

*ENTER 4-CHARACTER UNIVERSE NAME *
:UNIV
*UNIVERSE UNIV HAS BEEN CREATE' *
4** **$ ** ** ** *** *** ** ***

"TAU-ON"
ECORE-MAX(8-PAGE): 16 16 161

Figure 5-5

30

?GET(FE,'FE')
OD=32 NULMD= 9 CARO)= 420
C 0.005 0.05/ 0.135, 0.903

?SETFMT32,s (I4 1X>A4,[4,6 lXE8.1))')
FMiT= 1

? LIST (FE, 1, ' !1/')
1 BEAM 1 08E 02 -0.7E 02 0. 00 00 0.0 0.6E 04
I BEAM 2 -3.-3E 02 07E 02 0.0 0.0 0.0 -0.IE 05
1 QUAD I -0.SE 02 0-3E 03 30.2E 03 -0.0 -0.0 -0.0
1 QJUADI 2 -0.2E 03 0-6E 03 -0.7E 03 -0.0 -0.0 -. 0
I QUAD 9 0.1E 03 -0.5E 03 8SE 03 -0.0 -0.0 -0.0

?SETRMTC32 '(14, 1X,A4, 14,6(1XF8.0)')
FMT= 2

?LIST(FE,1,5, '/2/')
1 iEAM 1 - 78. -71. 0. 0 0. .5980.
1 aEAM 2 -78. 71. 0. 0. 0. -9641.
I QUA,) I -78 . 2?9. 241. -0. -0i -0.
I BUJAD 2 -160. 599. -696. -0. -0. -
I QUAi) 9 135. -509. 825. -0. -0. -0.

?GET(INDEX 'FE-INDEX')
DD=32 NU:4;1= 3 CARO= 6
1 0.035, .04/ 0.145s 0.801

?SUM(FE, INDEX, S1, 1)
*** KEY SUM MEAN LOW HIGH STt) *,*?

4 -*14233 E 02 -0.03 -12600.00 16410.00 2932.33
5 0*879305E 02 0.21 -47000.00 61200.00 7755.78
6 0 56 2503E 00 0.00 -9100 .00 929-3:).0 0 13156.59
7 0.0 0.0 -0.00 0.0
38 .0 0.0 -0.00 0.00 0.00
9 -- 374224E 06 -891.01 -234)0000.3 32303:),.00 h'36 5.67,

):)=3.2 NM= 6 CAR!)= 6
1 0-55. 134/ 0.756, 44.953

Figure 3-4

51

Assume for this scenario that moments greater than 15000 and forces

gr,,aLer than 1500 are considered excessive and the designer wished to

isolate cases where those conditions occurred. As shown in Figure 3-5

we decide to isolate the positive moments in Z. We do this by using the

RSGTA command (Restrict-Greater-than-Arithmetic) and forming a new set,

POSMZ. A statistical summary reveals that the mean positive MZ is 49028.05

considerably above the tolerable level of .. In order to determine

exactly which entries are excessive, we isolate those that are equal to

or exceed the threshold with the BRSA command (Between Restrict - Arithmetic).

This command forms a new set EXCESSMZ having those entries whose values in domain

9 are between (and including) 15000.0 and 323000.0. STDS responds that

there are 28 of those - more than we would like to examine in detail.

Thcrefore, we isolate the worst ones in EX2. We find there are only 3 between

200000.0 and 323000.0; so we list them and we find that they involve nodes

7, 15 and 61.

In Figure 3-6, we decide to isolate the finite elements that connect to

nodes 7, 15, and 61; the worst offenders in positive moments in Z. Using the

RSEQ command (Restrict Equal) on domain 3, we form the sets NODE7, NODE15

and NODE61 and list their contents.

We perform a statistical summary on NODE61 in order to check that

tLh ruorces and moments about node 61 sum to zero and -5000.0 (see figure 3.2).

We ibotice that the sums for FY and FZ are -3.0 and -4998.0 respectively. The

desiliner may wish to examine his loads and boundary conditions to determine

i.' Llicse discrepancies and justified.

32

?RSGTA(9, FE, O.O,PoSZ)
OD=32 NUMD= 9 CARO= 53
S80.025, 0.03/ 0.162, 1.163

?SUMCPOSMIZ, INOEX,S I
K*e KE SUM MEAN LOW HIGA STI) 4

4 0.l11670E 05 342.77 -9620.00 9620.00 2545.-64

5 0.102513R 05 193.42 -16600,00 16600.00 4446.21

6 -. 1403880-09 -0.03 -0.00 0.00 .00

7 0.325261E-16 .000 0.00 0.00 0.00

8 -. 143238E-03 -0.00 -0.03 0.0 3.33

9 0.259349E 07 4902 .05 107.00 32300'300 65361.26

00=32 NUMD= 6 CARO= 6
.' 0.071, 0.09/ 0.286, 43.131

?BRS(9,POSMZ,150009.0,32300.0,EXCESSMZ)
DD=32 NUMD= 9 CARO= 28
E 0.004, 0.00/ 0.092, 0.203

78RS4(9,EXCESSMZ,200030.0,323000-0,EX2)

D)=32 NUNi)= 9 CARD= 3
[0.033, 0.00/ 0.091, 0.973

?LIST(EX2,1,3,'/2/')

6 .3EAM 7 -4610. 101003 0. 0o 0. 323030.

12 BEAM 15 -9620- -16600. 0. 0. 0. 225000.

46 bEA 61 5210. 7080. 0. 0. 0. 214040.

Figure 3-5

553

?RS Q(3 , 7, NODE7)
DD=32 NUMO= 9 CARD= 3
(0.012, 0.01/ 0.144, 04013

?LIST(NODE7,1,3,'/'/')
6 BEAM 7 -461,. 10100. 0. 0. 0. 323000.
6 GUJA) 7 4,610. 17200 13003. -0. -0. -0.

.99 BEAM 7 0. 0. -13000. 0. 0. 30

? RSE3, (FE, 15, NODE15)
D0=32 .NU'D= 9 CARD= 5
C 0.012, 0.01/ 0.148r 1.721

?LIST(NOE 5,1 S'/.2/')
6 QUAO 15 -10000. -37400. 32910. -0. -0. -0.
12 BEAM 15 .- 9620. -16600. 0. 0. 0. 225100.
12 QUA~ 15 -12600. -47000. -37600. -0. -0. -0.
99 BEAM 1.5 0. 0. 13000. 0. 0. 0.
10 0 BEAM 15 0. 0. -8230. 0. 0. 0.

S?RSE1(3 ,FE,61,NODE61)
00=32 NUMD= 9 CARD= 5
C 0*011, 0.01/ 0.144, 0.331

?LIST(NODE61,j,5,'/2/.)
40 01-IAD 61 820-. 2200. 892. -0. -0. -0.
41 QUAD 61 -8790. -8790. -7620. -0. -0. -,.
46 dEAM 61 5210. 7030. 0. 0. 0. 214000.
47 BEA-M 61 -4620. -493* 0. 0. 0. -2140'9.
91 3EAM 61 0. 0. 1730. 0. 0. 0.

?SUlt NODE61 INDEX, S,
WrT KFI C-.ll LI I r.IVi . C'1 A,

4 0.3 0.0 -3790.00 3 200) 6 12.77
5 -. 3039S00 31 -0.60 -879,0 0 703.03 5147.306 -;49930E z4 -199-63 -7620 . 1730.00 3372.157 7 .0 0 0.3 0 -*. 3 .0 .3 0.0 0.09 0. C 03 -214Z.0.0, 21400;.03 135345.44

03-32 N!J\1r 6 D11 3 95

1 .'13. j3.05' 0. 2i. 4.:

Figure 1-6

34l

In Figure 3-7, we isolate the forces in X, Y, and Z that exceed the

positive threshold point of 1500.0. Having isolated these in BIGFX, BIGFY and

BIGFZ, we would like to find those entries where the threshold is exceeded in

all three dimensions. This can be done by intersecting BIGFX and BIGFY

forming BIGFXY and then intersecting BIGFZY with BIGFXY forming BIGFXYZ. We

discover that only 12 entries exceed in all three dimensions and we list those

entries.

Finally in Figure 3-8 some information about timings and costs

is provided. The total time spent by the designer in querying the data base

was less than 20 minutes (as shown by elapsed time). The CPU time on a IBM

360/67 was less than 20 seconds and the cost of the job was less than $4.00.

Note that the dollar amounts given here are for a university environment and

would be somewhat higher in a commercial environment.

35

?BRSA(4, FE,1500.0,16400.0,BIGFX)
DD=32 NUMO= 9 CARO= 53
[0.017, 0.02/ 0.154, 1.113

?3RSA(S, FE, 1500.0,61200.0, BIGFY)
DD=32 NUMD= 9 CARD= 55
C 0.017, 0.03/ 0.152, 0.223

?dRSA(6, FE, 1500.0,92900.0,BIGFZ)
DD=32 NUMD= 9 CARD= 103
[0.019, 0.02/ 0.154, 0.18]

?IN(BIGFX,3IGFY,BIGFX)

DD=32 NU'D= 9 CARD= 33
[0.014, 0.04/ 0.121, 0.303

?IN(BIGFZ,BIGFX,sdIGFXYZ)
)D=32 NUMD= 9 CARD= 12

E 0.014, 0.02/ 0.116, 0.173

?LIST(3IGFXYZ,I,15,'/2/')

5 QUAD 13 5890 5890. 2490. -0. -0. -0.
6 QUAD 7 4610. 17200- 13000. -0. -0. -0.

11 QUAD 21 6090. 6090. 9280. -0. -0. -0.
12 QUA0 22 9020. 33700. 25230. -0. -0. -0.
17 QUAD 29 5800. 5800. 21300. -0. -0. -0.
18 QUAD 30 7300. 27300. 20600. -0. -0. -3.
23 QUA) 37 3370. 3370. 28O00~. -0. -0. -0.
23 QUAD 38 2040. 2040. 3110 0. -0 -0. -0.
30 QUAD 39 16400. 61200. 92900. -0. -0. -3.
36 QUAD 47 3190. 119009. 46500. -0. -0. -0.
41 QUAD 54 7960. 7960. 8923. -0. -0. -0.
42 Q0UA 55 1590. 5940. 19000. -0. -0. -.

Figure 5-7

56

?.SYSTEM
$SIGNOFR

#OFF AT 01:38.35 09-11-74
#ELAPSED TIME 13-657 MIN. 5.91
#CPU TIME USED 19.294 SEC. 1.74
4CPU STOR VMI 18.783 PAGE-MIN. I.02
qWAIT STOR VMI 23.974 PAGE-hR.
#APPROX. COST OF THIS RUN IS $3.67
#DISK STORAGE 1423.191 PAGE-HR S3.44
#APPROX. REMAINING dALANCE4 386.04

Figure 5-8

57

4.0 Dayfile Scenario

In this scenario, we consider a data base consisting of dayfile data from

the computer complex at NASA Langley Research Center. The original data,

taken from the Dayfile Summary Tape for 01 July 1974, is organized by jobs.

Each entry in the data base represents a job and each job has over 50 variables.

A data base, called DATA3, containing most of these variables is available;

ho.ever, it is not used in this scenario because it is very cumbersome to

use at an interactive terminal having only 70 or 80 columns. As a result

a data base, called NEWDAY, with all of the jobs contained in DATA3 but

with fewer variables (domains) for each job was created. The

data base, NEWDAY, has domains as shown in figure 4-1. Only THRU, CPTIME,

FL, OS CALLS, LINES, ESTIME, TAPE and CRT will be referenced in this

scenario.

The first segment of the interactive session is shown in Figure 4-2.

STDS is called with the RUN RBLG:STDS* command. We gain access to the pre-

viously created set NEWDAY (which is our entire data base) by using the

GET (NEWDAY, 'NEWDAY') command. The cardinality of NEWDAY is given as

1243. We also use the GET command to gain access to two index sets, FPX

and INX, which will be used in conjunction with the SUM command to generate

statistical summaries. An SETFMT command is used to set up a format /1/

for use in the LIST command. Finally, the LIST command is used to print

the first three elements of the data base as duplicated below with domains

(column) headings.

38

NEWDAY DOMAINS

DOMAIN NAME DESCRIPTION

1 - 2 JOBNO Job Identifier (7 characters)

3 THRU Throughput - Total time (in minutes) that job is in

the system (integer)

4 CPTIME Total CPU time used in minutes (floating point)

5 CMTIME Residence time (in minutes) in central memory not in-

cluding ROLLOUT time (floating point)

6 PPTIME PPU time used in minutes (floating point)

7 FL Field length from job card (octal)

8 OSCALLS Total number of O/S calls (floating point)

9 COST Cost in dollars (integer)

10 LINES Number of lines of output (integer)

11 ESTIME Estimated time limit - job card (floating point)

12 CP Machine: A, B, C, D, or Z

13 TAPE Number of magnetic tape assignments (1 character)

14 CRT Number of CRT assignments (1 character)

15 DC Number of data cell control cards in job (1 character)

Figure 4-1

39

In Figure 4-3 we call for statistical summaries of the entire

data base with the SUM (NEWDAY, FPX, Sl, 1) command and the SUM (NEWDAY, INX,

SO, 0) command. In this version of STDS, it is necessary to ask for floating

point summaries and integer summaries separately. Floating point domains

are summarized with the FPX index set and a "l" in the last parameter posi-

tion in the SUM command. Integer domains are summarized with INX index set

and a "0" in the last parameter position of the SUM command. After the

summaries, we calculate CP efficiency and average thruput for all jobs.

From other sources we determined that the total production time for

all five machines was approximately 117 hours for 01 July 1974. We can

calculate CP efficiency (as a percentage) by taking the sum of CPTIME

(domain 4) converting it to hours, dividing by total production time (117

hours) and multiplying by 100. The result is about 61% CP efficiency.

The CALC command is an MTS command (not an STDS command) that allows the

terminal user to evaluate expressions immediately. Average thruput for

all jobs may be calculated by converting the average thruput (domain 3)

to hours. The result is an average thruput of 4.1 hours. We use thruput

as an approximation for turnaround since there are no figures available

frou which we can calculate turnaround. Turnaround is the time measured

from the submission of a job to the time that the job is finished and

is available for pickup by the user. Turnaround is equal to thruput

plus the time necessary for manual handling of the job.

4o

"RUN R,3LG:STDS*
#EXECUTION 3EGINS

** SET-THEORETIC IN7ORMATION MIANAG ME:NT INTERACTIVE INTERFACE f,
I** STDS-1 ** VERS:U.M2-17-74]

*ENTER 4-CHARACTER UNIVERSE NAME *
:UNIV
*UNIVERSE UNIV HAS 3EEN CREATED #

"TAU-ON"
(CORE-MAXC8-PAGE): 16 16 161

?GET(NEW04 ,'NEWO f)
Of)=32 NUMD= 15 CARD= 1243
S0.004, 0.-01/ 0.127, 0.293

?GET(FPX, 'D4-FPINDEX')
UO=32 NUMD= 3 CARD= 5
S- 08.005, 0.00/ 0.133, 0.31]

?GET(INX,'DAY-INTINo0X'>
DD=3? NUOD= 3 CAR)= 4
C 0.005, 0.01/ 0.133, 0.293

?SETFMT(32,'IXP.2A4,I 4,F72,F6 IF7.9.I7,F5.1,f4,16,F5,0,X,4%1)')
F.MT= I

?LIST(NEdAf,1,3p '/ /')
CT62591 154 41.40 143.4 405.1 !5203 13236z 7S2 137 123.'EXPO0A31 34 3.11 0.4 0.35 52000 66. 5 1. 1. i01EXPO0q3 735 1.06 4.2 2. 83 145r.j) 1576. 19 -6835 5. 38002

Figure 4--2

41

?SUM(NEWUAfFPXSIl,)
**4 KE0 SUM MEAN LOW HIG STi) **

54 0425530E 04 3.42 0.02 142.71 9.41
5 0*191328E 05 15.43 0.07 357.08 30.016 0-725954E 04 '5.34 0.-7 d A3.39
8 0-271834E 07 2186.92 1.00 56985.0 4615.98

11 0.176702E 05 14-22 5010 1296.30 617.0
00=32 NUMD= 6 CARD= 5
C 1-505. 2-19/ 1-730. 38.153

?SUM(NEW~), INXS0,0)
**3 KEY SUM MEAN LOW HIGH STO) **3 0-309230E 06 247.97 1.00 1425.00 283.737 0-903568E 08 72692.50 700.00 342000.00 37931.919 0-353610E 05 28-45 5-00 2336-00 126.6710 0-410042E 07 3298.81 140.00 82551.00 6692.17CD3Z NUMU= 6 CARD= 4
E 1-322, 2-15/ 1*538, 31-361

?SCOMMENT CALCULATE CP EFFICIENCt AND AVERAGE T qUPUT

? CALC ((*42553E+4/60)/l17)*100

=60-6163091163

?SCALC 247-97/60
4=4.13233333333

Figure 4-3

42

In Figure 4-4 we have the interactive segment in which we isolate

the jobs using one minute of CPTIME or less. We consider this to be a small

demand for the CP resource. We isolate these jobs in a set called SMALLCP

and notice that the cardinality of SMALLCP is 748. We may then perform the

statistical summaries on SMALLCP. We may calculate the percentage of jobs

by using the cardinalities of SMALLCP and NEWDAY. The result is that about

60% of the jobs are SMALLCP jobs. We then use the SUM of CPTIME (domain 4)

for SMALLCP and NEWDAY to calculate percentage of CPTIME used. The result

is that the SMALLCP jobs only use 4.3% of the CP resources. Finally, we

calculate the average thruput for SMALLCP jobs by converting mean THRU

(domain 3) to hours. The result is 3.2 hours.

In the next segment of the session, Figure 4-5 we isolate jobs using five

minutes or less of CPTIME. We can classify those as small and medium length

jobs. We isolate these by using the RSLEA command in the set MEDCP. Note

that SMALLCP is a subset of MEDCP. The cardinality of MEDCP is 1054. After

asking for the floating point and integer summaries, we can calculate the

job percentage, the CP percentage and the average thruput in the same manner

as before. The results are that about 85% of the job load are MEDCP jobs.

They account for only 21% of the CP resources and their average turnaround

is 3.7 hours.

In the Figure 4-6 segment, we isolate the jobs that do not require tape

mounts. The command V$($A, 32, ZERO) sets up a constant that is type

character (as opposed to integer) and has a value of 'O'. The domains

TAPE, CRT, and DC were inadvertently input to STDS as type character

rather than type integer; therefore it is necessary to retrieve it in

character mode. The command RSEQ(13,NEWDAY,ZERO,NOTAPES) isolates the

no-tape jobs in NOTAPES. The cardinality is 806. After the two standard

ORIGINAL PAGE IS
43 OF POOR QUALITY

?%COMMENT ISOLATE JO6S WITH CPTIME .LE. 1.0 MINUTES

?RSLEA(4,NEWOAY', . SMALLCP.
00=32 NUMD= 15 CARD= 74,
1 .14 , .0.7'/ .0.591, 4.711

?SU.'(SMALLC,PX,S,l)
**t KEf SU'4 MEAN LOW HIGH STD) *,4 0.183195E 03 0.24 0.2 0.99 0.26

5 0.338022E 04 4.52 0.07 116.93 8.04
06 .191,32. 04 2.55 0.37 54.IS 4.31

8 0.566621E 06 75751 1.*03 17447.03 1679.9911 0.451563E 4 6,04 6010 75.00 10.49
DI=32 NUM)= 6 CARD= 5
[0.755, 1.9'./ 0.971, 40.801

?SUMCSMA LLCP, INXS0O)
*** KEY SUM MEAN LOW HIG STO **

3 0.143876E 06 192.35 1.00 1425.03 132.657 0.431597E 08 64334.68 7000.00 230000.00 32335.48
9 0.486100E 04 6.53 5 .00 5.0 a3 4.

10 0103142E 07 1445.75 140.00 20609.03 2211.43
00=32 NINO1)= 6 CARO= 4
C 0-643, 5.39/ 0.-52. 3: 8.9

?4COMMENT CALCULATE ZJOS *CP AND AV. THRUPUT

?,CALC 130*748/1243
4=61.17699115044

?%CALC 103*183.195/4255.3
4=4.305101872953

.=3.2a3533333333

Figure I-4

44

? CO'MENT ISOLATE JO3S WITH CPTIME .LE. 5.0 MINUTES

?RSLEA(4, NEWODA, S 5., MD)CP)
DD=32 NUMI= 15 CARO= 1054
C 0-173, 2.6'3/ 0-641, 9.333

?SU IM i)CPFPXSII
t KEY SUM MEAN LOW HIG4i STO

4 *. 0.90139SE 03 0.86 0.02 4.86 1.14
5 0.858941E 04 3.15 0.07 357.03 1.39
6 0.449352E 04 4.26 0.07 351.64 12.35

8 0.149991E 07 1423.06 1.00 31043.00 2752.34
11 0.100075E 05 9.49 0.10 1296.39 58.86

D00=32 NUMO= 6 CARD= 5
1 I.074, 6.63/ 1.293, 47.423

?SUM MEDCP, INXSSJ
t** KEY SUM MEAN LO , HIGr STD

3 0.234211E 06 222.21 1.00 '1425.00 206*.3
7 0.72999F 08 69192.75 7000*00 240.0* 353225
9 0.113233E 05 10.74 5.00 965.00 32-20

10 0 .256065E 307 2429.46 140.00 27633900 3894-53
DD=32 NUIi= 6 CARO= 4
[0-909, 2.58/ 1.107, 33.07]

?ftCOMMENT CALCULATE JO,3S, CPi, AND AV. THRUPUT

?.CALC 100*1054/1243
#=94.79485116653

=21.* 12-87782295

? CALC 222.21/60
1=3.7335

Figure 4-5

45

?;COMMENT ISOLATE NOTAPE ,JO3S

?VS.As32,ZERO)

?RSEQC13,NEWOAY,ZERONOTAPES)
00=32 NUMO= 15 CARO= 806
E 0-057, 0.091. 0.491, 1.401

?SUM(NOTPESFPX,SI,I)
S* KEY SUm MEAN LQf 1IGr STD *'

4 0.227963E 04 2.83 0.02 69.91 7949
5 0.101005E 95 12.53 0.07 357.08 .9.30
6 0.319857E 04 3.97 0.07 351-64 13.85
8 0.855233E 06 1061.08 1.00 35512.00 3047.36

t11 0.109764E 05 13.62 0.10 1296,30 74.83
DD=32 NUMO= 6 CARO= 5
C .0811. 0-88/ 1.019, 36.781

?SUM(NOTAPESIlNXS,0)
+*4 KEY SUm MEAN LOW .IG S4TO **D

3 0.156442£ 06 194.10 1.00 150,.00 172.34
7 0.577100E 08 71600.33 7000.00 2500000.00 36971.63
9 0.169150 05 20.99 5.900 1499,00 92.09

10 0.180654E 07 -2241.36 14-0.0 26965.00 3376.33
DD=32 NUMD= 6 CARO= 4
C 0.697, 0.71/ 0889, 29.511

?;COMMENT CALCULATE iJO3S, %CP, AND AV. THRUPUT

?;CALC 1i00806/1243
#=64.8431214802

?-CALC 10042279.63/4255.3
r=53-57154607195

?'CALC 194.1/60
=3.235

Figure 4-6

46

summaries are generated, we calculate the job percentage, the CP percentage

and the average thruput. The results are that about 65% of the jobs are

no-tape jobs. These require 54% of the CP time and have an average

thruput of 3.2 hours.

In the Figure 4-7 segment, we isolate the jobs requiring one or more

tapes. This is easily done by "subtracting" the set NOTAPES from the set

NEWDAY and forming the set TAPES. The relative complement command RL

performs this function. After the summaries are requested, we again calculate

the job and CP percentages and the average thruput. The approximate results

are that 35% of the jobs are tape jobs. They require 46% of the CP resources

and the average thruput is 5.8 hours.

At this point we would like to isolate the jobs that fit into our

general concept of a small job. The criteria given here is somewhat arbitrary,

but it serves to illustrate the power of a set-theoretic information system

for isolating classes of jobs that the interrogator wishes to examine.

The criteria for a "small job" is as follows:

CPTIME < 1.0 minute

FL < 100000 words (octal)

LINES < 2000 lines

OS CALLS < 2000 O/S calls

and no CRT's assigned.

The Figure 4-8 segment demonstrates how this set called SMALLJOB, is

isolated and Figure 4-9 and Figure 4-10 shows the analysis of small no-tape

jobs and small tape jobs respectively. In Figure 4-11 we isolate the

47

?COMIENT ISOLATE TAPE JO3S

?RL(NEWDCASNOTAPESTAPES)
DD=32 NUMD= 15 CARO= 437
1 0.372, 1.57/ 0-535, 1.811

?SUM(T4PES,FPX,Sl,)
+**,KEY SUM MEAN LOW HIGH STO **

4 0.197575E 04 4.52 0.23 142.71 12.11
5 0*908263E 04 20.78 0.13 246.52 • 30.57
6 0.406197E 04 9.30 0.13 94.59 11-73
8 0.186311E 07 4263.40 2.00 56985.00 6068-27

11 0.669441E 04 15.32 0.20 430.00 49.27
D0=32 NUMO= 6 CARD= 5

1 0.443, 8.49/ 0.6438 36.291

?SUM(TAPES.INX,SSO0)
+ + KEY SUM MEAN LOW HIGH STOD *

3 0.151783C 06 347.34 3.00 1425.00 280.71
7 0.326474E 93 74707.94 7000.00 342000.00 39562.93
9 0a.18450E 35 42 -1 5.0 2336.00 172.35

10 0-229389E 07 5249.17 52.00 9255100 10024.86
00=32 NU'4D= 6 CARO= 4
C 9.381, 0.40/ 0.572o 29.211

?sCOMMENT CALCULATE .'JO3S, .CP, ANO AV. THRUPUT'

?iCALC 100"437/1243
"=35.15687951971

7=46-4333339365

?-,CALC 347.34/6)
-=5-789

Figure I-7

48

.?SCOMMENT ISOLATE SMALL JOdS

? RSLE (7, NEWOJi.) 0, 1 00 3, SMALLFL)
DO=32 NU1D= 15 CARD= 993
1 0.165, 0.41/ 0.610, 3.653

?RSLEA(10,NEWDA,200J0,S:IMALLINE)
0D=32 NU,10= 15 CARO= 770
1 0.141, 0.35/ 0.578, 2.683

?RSLEA(3,NEO-AY ,223.., SMALLOS)
DD=32 NUMD= 15 CARD= 951
1 0.161, 0-21/ 0 602, 1I691

?RSEQ(14,NEWAY,ZERO,NnCRT)
DD=32 NUMO.= 15 CARD= 1227
C 0.077. 0.54/ 0~-,36 2.123

?IN(SMALLCPSMALLFL,S;4LLJO 3)
DD=32 NUM0= 15 CARD= 658
S0-.121, 1.38/ .262 , 1.90]

? N(SMALLJOdSMALLINESMALLJJd
D9=32 NUIL)= 15 CARD= 522
C 0.399, 0.94/ 0.241 1.151

?IN(SMALLJO,SMALLOSvSMALLJOB)
DD=32 NUMO= 15 CARO= 495

? IN(SMALLJO3,NOCRTS:4ALLJOd)
DU=32 NU1)0= 15 CiAR= 494
C A. l6 0.57/ 0 .44.. 0763

Figure -

49

small field length jobs in SMALLFL (card - 993), the small output jobs in

SMALLINE (card = 770), the small O/S call jobs in SMALLOS (card = 951),

and the NO-CRT jobs in NOCRT (card = 1227). We may now form the inter-

section

SMALLJOB = SMALLCP n SMALLFL n SMALLINE n SMALLOS n NOCRT

by performing four successive IN functions as shown. The (final) cardinality of

SMALLJOB is 494 or about 39.7% of the jobs.

In the Figure 4-9 segment, we isolate the small no-tape jobs in the

set NOTAPESM. This is the class of jobs that one would expect to have the

shortest turnaround. We perform the standard statistical summaries as shown.

The HIGH figure for THRU (domain 3) indicates that turnaround can go over

12 hours for even the shortest jobs. We calculate the job percentage, the CP

percentage and the average thruput. The results are that the small no-tape

jobs account for about 30% of the jobs and use only 1.3% of the CP resources.

The average thruput is 2.1 hours. Note that the total CP time necessary to

run these 376 jobs was less than one hour. One 6000 machine devoted to small

jobs of this class during normal working hours would run between 1500 and

3000 jobs in an eight hour period depending on the CP power and efficiency.

In the Figure 4-10 segment, we isolate the small, tape jobs by intersecting

SMALLJOB with TAPES forming SMALTAPE (card = 118). The statistical summaries

are requested. We calculate the job percentage, the CP percentage, and the

average thruput. The results are that almost 9.5% of the jobs are small

tape jobs, they use almost 0.6% of the CP resources and the average thruput

is 4.4 hours. In addition, the HIGH value of THRU (domain 3) indicates

that turnaround for a small tape job can approach 24 hours.

50

?;COMMENT ISOLATE SMALL JOBS WITHOUT TAPES

?IN(SMALLJO0,NOTAPESNOTAPESM)
)iO=32 NUMD)= 15 CARD= 376
1 0034, 056' 0.212, .0711

?SUMCNOTAPESMFPX,S,I)
**0 KEY SUM MEAN LOW HIGH STD *

4 0.561680E 02 0.15 0.02 0.93 0.20
5 0.100656E 04 2.68 0.07 109-55 6.56
6 0.498717E 03 1.33 0.07 11.68 1-69
8 0.879460E 05 233.90 1.00 1841*00 309.99

11 0.193047E 04 5.13 0-10 62.90 9-68
1)0=32 NUMO= 6 CARD= 5
(0.382, 0.42/ 0-590P 36.301

?SUM(NOTAPESM, INX,SO,03
* kEY SUM MEAN LOW HIGf STAD 1.H

3 0.474290E 05 126.14 I.00 765.00 96.19
7 0.20489E 03 53321.53 7000.00 10v0,,009 14192,30
9 01i92103E 04 5.11 5.00 9.00 0.45

10 0-1S3934E 06 439-32 140.00 1973.00 571.33
00)=32 NUMD= 6 CARD= 4
C 0.328, 0.33/ 0.521, 29.221

?-COMMENT CALCULATE 4JOb, ZCP, AND AV. THRUPUT

?SCALC 100*376/1243
4=30.24939662137

?- CALC 101356-168/4a55.3
4=Io31995393979?

?'CALC 126*14/60
7=2.-1'333333333

Figure 4-9

51

?COMMENT ISOLATE SMALL JOBS W4ITd TAPES

?IN(SMALLJO3,TAPES SMALTAPE)
DO=32 NU:,D= 15 CARO= 118
1 0-056, 0.64/ 0.176. 0.793

?SUMCSMALTAPE,FPX,S1,s)
h KE N MEAN LO HIH ST *

4 0.251997E 02 0.21 0.23 0.97 0.23
5 0.611853E 03 5.19 0.13 39.50 6.03
6 0.272228E 03 2.31 0.13 12.63 2.20
8 0.609370E 05 516.42 2.00 1913.00 524.16

II 0.839195E 03 7.11 0.20 50.00 12.85
00=32 NUD)= 6 CARO= 5
C 0-124, 0-15/ 0.330P 36.031

?SUM(SMALTAPE, jNXS0,0)
*** KE SUM MEAN LOW r IG GH STO ,t

3 0.313710E 05 265.86 3.00 1425.00 29. !3
7 0a640648E 07 54292.183 7000.00 10000000 18829.57
9 0.647000E 03 5.43 5.00 29.00 2.5
10 0.671560E 05 569.12 52.00 1964.00 548.31

00=32 NUMO= 6 CARD= 4
1 3-.108, 0.11/ 0.299, 29.033

?iCOMMENT CALCULATE I;JOBS. ZCP, AV. THRUPUT

?,CALC 100*118/1243
#=9-493161705551

L II±.S L. fX -r ,' I c

=592195614383

?SCALC 265.36/60
q=4.431

Figure 4-10

52

Figure 4-12 gives a manually created summary tabular form of the results

obtained during the session. Figure 4-11 provides some information about the

length and cost of the session. The total wall clock time for the session

(as given by elapsed time) was less than an hour and the cost of the session

(at university rates) was just over $10.00.

53

?COMMENT END OF SESSION

?SYSTEM
#UN
-SSIGNOFF
£OFF AT 03:51.58 09-13-74
"ELAPSED TIME 51.653 MIN. 2.52
4CPU TIME USEU 3S.775 SEC. ,3.50
#CPU STOR VMI 75.384 PAGE-MIN. S4.03
iWAIT STOR VMI 115.819 PAGE-HR.
VDRUM READS 1590
:APPROX- COST OF THIS RUN IS $10*1!
'DISK STORAGE 3244.564 PAGE-HR. '1.07
4APPROX-. REMAINING 3ALANCE: $51.50

Figure 4--ll

54

JOB CLASS % JOBS % CP AVG. THRUPUT
(Hours)

NEWDAY 100.0% 100.0% 4.13

SMALLCP 60.18% 4.3% 3.21

MEDCP 84.79% 21.18% 3.70

NOTAPES 64.84% 53.57% 3.24

TAPES .35.16% 46.43% 5.79

NOTAPESM 30.25% 1.32% 2.10

SMALTAPE 9.49% 0.59% 4.43

CP Efficiency = 61%

Figure 4-12

55

5.0 VGH Scenario

The first segment of the VGH interactive session is shown

in Figure 5-1. We are in a position to retrieve the data base

from mass storage and make it accessible to STDS. The GET

command performs this function. Then, we list the first five

elements in the data base. Each column in the listing represents

one domain of the set. Domain number one is the aircraft type,

domain two is the serial number, and so on as shown in Figure 5-2.

Only the serial number, the gust indicator, the indicated air-

speed, the altitude, and the acceleration are used in this

scenario.

For this scenario, we have prepared an appropriate index

set in advance and stored it as a permanent file. We can re-

trieve it with the command: GET(INDEX,'VGH-INDEX'). The set,

INDEX, provides for statistical summaries to be generated for

the domains, IAS (8), Q(9), ALT(10), P(11), and ACC(12). Now,

we may generate a statistical summary of the entire data base

(i. e. the set VGH) with the SUM command.

56

VRUN R-LG:STOS*
#EXECUTION SEGINS

** SET-THEORETIC INFiRMATION MANAGEMENT INTERACTIVE INTERFACE ++
C*.* STDS-1 * VERS:1U102-17-74J

*ENTER 4-CHARACTER UNIVERSE NAME *
:!JNIV
*UNIVERSE UNIV HIAS EEN CREATED L

"TAU-0N"
[CORE-MAX(8-PAGE): 16 16 16)

?SETPMT(32,'(214sISI3, I2, 1X,2I 55FS*2)')
FMT= I

?GET(VGpr*H3PT:VGH-SET')
DD=32 NUMD= 12 CARO= 7263
c 0.005, 0.01/ 0-321v 0.751

?LISTCVGHl, S,'/1/')
18 79 1 1 0 10401 I 73-90 18.56 8.60 2115.57 03.
128 79 1 1 0 1040 1 106.67 38-8.5 2190-53 1954.14 0.0
128 79 2 1 0 10402 2 80.45 22.00 530.42 2075.98 0.0
128 79 .2 0 10402 2 112.24 43.!s2 2006.59 1967.21 3.0
128 79 3 1 0 10402 3 94-02 30.09 844.90 2052-45 0.0

?GET(IN0EX,'VGH-INDEX')
00=32 NUMO= 3 CARD= 5
[0*005A 0.01/ 0.144, 0-351

?SUM(VGHlINDEXSlI,)

*** KEY SUM MEAN LOW HIG-- STO) **
8 .6603893E 06 90.99 -191-89 126.53 12.53
9 0*233569E 06 2872 '*24 -72.4

10 0.133710E 08 1840.97 -214.-9 8517.24 1405.49
11 0.143852E 03 1980.61 11.39 2132.77 100-96
12 3-381371E 43 0.05 -1.53 1.89 0.35

i)D=32 NU1M0= 6 C4iRD= 5
[8.558 12.48/ 8.327, 4,.441

ORIGINAL PAGE IS
Figure 5-1 OF POOR QUALITY

57

VGH DOMAINS

1. T - Aircraft Type Identifier

2. S - Aircraft Serial Number

3. K - A counter used to verify that data was

input correctly into the information system.

4. F - Flight Number

5. G - Gust Indicator; 0 is no data, 1 is calm, 2 is rough.

6. C1 - Clock - Upper 5 digits

7. C2 - Clock - Lower 5 digits

8. IAS - Indicated Airspeed (knots)

9. Q - Impact Pressure(PSF)

10. ALT - Pressure Altitude(Feet)

11. P - Static Pressure (PSF)

12. ACC - Acceleration (g's)

Figure 5-2

58

In Figure 5-1, we have a summary of the entire data base, VGH, and

we notice that we have some bad data points. Under KEY=8 (IAS), the LOW

figure is -191.89 and under KEY=1O, the LOW figure is -214.89. Both of

these fields should contain only non-negative numbers. Although it

is possible to make corrections, it is somewhat cumbersome in STDS. As

a result, we take the general attitude that bad data points will be

deleted. In Figure 5-3, we isolate the negative IAS with the first RSLTA

command. Since there is only one, we list the set for the purpose of

examining it. Next, we isolate the negative altitudes. Since there are

thirty, we only look at the first five. Next, with the relative complement

command, RL, we form a new set VGH2 omitting the bad IAS data point. And

again using the RL command, we form VGH3 omitting all the bad altitude data

points. The PUT command allows us to save our updated data base as an MTS

permanent file. Finally, we perform a statistical summary on the new data

base in order to verify our deletions.

Figure 5-4 describes housekeeping operations that may be performed

from time to time. The LISTU command lists the sets that are currently

active. Under the current version of STDS, the user may have only twenty

sets active concurrently. As a result, it is necessary now and then to

free sets that we are no longer using or save them as permanent files with

the PUT command. The final GET command retrieves our updated version

of the data base with our preferred name, VGH.

Figure 5-5 describes the procedure for isolating items by serial

number. Currently, the VGH Summary Program is used to obtain statistical

information from the VGH data tapes. Each tape contains some flight

59

?R;COMMENT ERRIR DE.TECTION 4AND CORECTION

?RSLTA(8,VGH,00,IASNEG)
DD=32 NUML= 12 CARD= 1
E 0-320s 2.37/ 1.726, 6.883

?LISTcIASNEGlv l,'/l/°)
128 79 952 4 1 970258196 -191.89 -3.24 3685.57 1853.51 -0.44

?RSLTA(19VG. 00,ALTNEG)
D=32 NUnD= 12 CRiD= 30
1 0.320, 0.32/ 1.707, 4.353

?LIST(ALTNEG,,5,'/1/')
18 79 43 3 0 10402 28 79.72 21.60 -186.11 2130.55 0.0
128 79 119 5 0 10i02 46 76.14 19.71 -164.51 2128.89 0.0128 79 123 5 0 10002 50 72.28 17.76 -214.89 2132.77 0.0
128 79 126 5 0 10002 53 62.43 13 27 -157.31 2123.34 0.0128 79 129 5 0 10002 56 68.73 16.05 -99.68 2123,90 0.3

?RL(VGH, ISNEG,VGH2)
)0=32 NUMi= 12 CARD= 7262

r 1-494 6-76/ 1.869, 9.961

?RLcVG{, ALTNEG,VG.3)
D00=32 NUMh = 12 CARO= 7232

9 .360 2.69/ 0680, 5.663

?PUT(VGH3, ' NE.VGi'
, D0=32 NUMO= 12 C-'RD= 7232
1 1.590p 9.70/ 1-965, 11-423

?SUM(VGH3,INDEXS2,)
*** KEY SUM MEAN LO' HIGH STO **8 06591'2E 06 91.14 30.43 126.53 11.9.9 0*23J 9O 06 28.77 3.14 54.73 7.4110 013379.3 q g 1843.34 1.2S 3517.24 1402.6711 0-143196E 03 1930).3 11.39 2116.12 11i.7412 -377032 . 03 0 05 -1.53 1.89 0.3500)=32 NU'1-= 6 C-o= 5
1 7.323, 8.63' 7.524, 44.521)

Figure 5-5

60

? iC3MMENT HOUSEKEEPING OPERAT IONS

?LISTU

NAME TYPE CRE# CARD) DI) NDO STATUS SIZE LOC
VGH TAU i 7263 32 12 1 35.11 HdPT: VGd1-SET

IN EX 'TAU 2 5 32 3 1 0.01 VGI-INDEX
Si TAU 3 5 32 6 2 0.03 CORE
IASNEG TAU 4 1 32 12 2 0.01 CORE
ALTNEG TAU 5 30 32 12 2 0.35 CORE
VGH2 TAU 6 7262 32 .12 2 '85.10 CORE
VGH3 TAU 7 7232 32 12 2 84.75 CORE
S TAU 3 5 32 6 2 0.03 CORE

?.FREE(VGH)

?FREE(SI)

?FRE(IASNEG)

?FREE(A4LTNEG)
"FREEE " IS NOT DEFINEi).

?FREE(ALTNEG)

?FREE(VGH2)

?FREECVGH3)

?FREE(S2)

u00=32 NU.li)= 12 CARi= 7232
(0.005. 0.00/ 0.062p 0*151

OIGINAL pAG IS

Figure 5-4y 00% QUATY

61

?,;COMMENT ISOLATE Y3' SERcIAL NUM IER

?RSE(.,VGH, 185, SERI35)
DD=32 NUMi)= 12 -CARL)= 2500
C 0.2183 1.37/ 1.719, 7.571

?LIST<SERI85,1,5,'/1/')
15St) 185 1 7 2 892516353 7S.64 21.03 1016.69 2039.63 J-85
150 185 2 7 2 892516354 79.01 21.22 1016.69 2039*63 0.79
150 185 3 7 2 892516355 79.91 21.70 1032.76 2038.45 1.12
15A 185 4 7 2 892516356 68.31 15.86 1024.72 2039.04 0.59
150 185 5 7 2 892516357 70.44 16.5 96|.34 2043.74 0.76

?SULM(SER15, INOEX,SI, 1)
*** KEY SUM MEAN LOW HIGH STO *+

8 0.212446E 06 84.98 60.60 114.67 6.16
9 0-617426E 05 24.70 12.47 44.94 3.34

.10 0.292511E 07 1170.04 552.38 2299.10 319.59
11 0 507010JE 07 2023.04 1946.43 2074.34 30.17
12 0.273578E 03 0.11 -1.53 1.89 0.51

OD=32 NUMD= 6 CARD= 5
C 2.550, 2.60/ 2.751, 38.42]

?RSEQ(2,VGH,79,SER79)
00=32 NUMD= 12 CARD= 2628
C 0.227, 1.66/ 1.739, 6.531

?LIST(SER79, 15, '/I/')
128 79 1 1 0 10401 1 73.90 18.56 3.60 2115-57 0-.
128 79 1 1 0 10402 1 106.67 38.85 2190.53 1954.14 8.0
128 79 2 1 0 10402 2 830.45 2200 530.42 2:075.98 0.0
128 79 2 1 0 13402 2 112.24 43.02 2006.59 1967.21 0.0
128 79 3 1 0 10402 3 94.02 30.09 844.90 2052.45 8.0

?SUM(SER79,iNDEXS2.1)
*u ~ i .I *,S T) O

8 0.252574E 06 96.11 34.35 126.53 13.68
9 0-844214E 05 3-.12 3.94 54.73 8.44

10 0.493533E 07 1866.53 1.28 8517.24 1559-04
I1 0.52AI37E 07 1973.33 11.39 2116.12 116.52
12 .0*13099353 03 3.904 -082 1. .,I

I)0=32 NUMi)= 6 CARIJ= 5
O1 .665, 2.72/ 2*.865, 38.613

Figure 5-5

62

data for a particular serial number. The VGH Summary Program passes

the tape and generates the summary. As a result all summaries are

by serial number and it is difficult to obtain answers to queries that

would require access to data for many serial numbers at one time.

Appendix A gives some information that is included in the output

record for the VGH Summary Program and we propose to answer a number

of those types of queries using STDS; but in fact there is a large

class of queries that would be useful that are not included in Appendix

A because they cannot easily be obtained from records sorted by serial

number. An example of one of these is: Give me all occurrences for all

aircraft where the acceleration is greater than or equal to 1 g. This

query is considered later in this section.

However, in many cases it will be desirable to isolate data by

serial number. First, we isolate the data for serial number 185 with the

command: RSEQ(2,VGH,185,SER185). Then, we list the first five elements

and obtain a statistical summary. From this, we can directly obtain the

average IAS (84.98) and the average altitude (1170.04) as well as the high

and low values. We perform the same operations for serial number 79; an

RSEQ followed by a LIST followed by a SUM.

Figures 5-6 and 5-7 describe the procedure for isolating items by

intervals in some domain. A number of items in Appendix A depend upon

retrieval by interval; time interval, altitude interval and velocity

interval. In this section, we demonstrate isolating readings by altitude

intervals. The same technique may be applied for time and velocity

intervals.

63

?CnOMMENT INTERVAL ISOLATION - ALTITUDE

?3RSAl(I £.dJ 23.*03000.0,INTlERVAL)
DD=32 NUMi,= 12 CARD= 1240
C 0.230, 1.821 1.679, 6-85)

?LIST(lNTERVAL, 15'/Il/')
123 79 1 1 0 10402 1 106.67 38.85 2190.53 1954.14 0.4
128 79 2 1 0 10402 2 112.24 43.02 20014.59 1967.21 0.0123 79 3 1 0 10402 3 98.34 32.95 202.57 1966.08 0.0
128 79 4 1 0 10402 4 106.51 33.73 2113.52 1959.26 0.0
128 79 5 1 0 10402 5 103.17 36.33 2134.51 1958.12 0.

?SUM(INTERVL, INOEXS3,1)
*** KEY SUM MEAN LO HIGH STD8 0.119562E 06 96.42 34.81 121.58 .13.80

9 0.401008E 05 32.34 4.11 50.52 8.32
10 0*302504E 07 2439.55 2002.65 2994.96 293.33
11 0.23989ZE 07 1934.59 11.39 1967.49 65.5912 0.320992E 01 0.00 -. 110 1.44 0.23

DD=32 NUMO= 6 CARD= 5
E. 1-266, 1.32/ 1.467, 37.203

?IN(INTERVAL,SR79, INT79)
D)=32 NU~0= 12 CARD= 514

1 0-161, 0.23/ 0.294, 0.383

?LIST(INT79,,1,5,'//')
12 79 1 1 0 10402 1 106-67 38-85 2190.53 1954.14 0.0128 79 2 1 0 10402 2 112.24 43.02 2006.59 1967.21 0.0128 79 3 1 0 10402 3 98.34 32.95 2022.57 1966.03 0.128 79 4 1 0 1040 .4 1065.51 38373 2118.52 1959.26 0.0128 79 5 1 0 10402 5 103.17 36.33 2134.51 1958.12 a.

?SUM(INT79,INDEXS4,1)
*** KEY SUM MEAN L HIGH STD

9 0.1783833 35 34.70 4.11 50.52 8.9110 0*14567E 07 2425.44 2006.59 2993.55 273 2911 0.9)396 065 1933-71 11.39 1967.21 87.1212 0.592'30E 01 0.01 -0.71 1.00 0-1600=3? NU1f,= 6 C-ARO= 5
C 3.527, '53 0.7: , 356.291

Figure 5-6

64

?IN(INTERVALSERIS, INTI85)
00=32 NUMO= 12 CARDO= 71
1 0-120 0.63/ 0.239, 0-773

?LIST(INT1S5lS 5,'/1/')

150 185 1387 3 1 '973258353 87.76 22-18 2126-21 1958.71 0.40
153 185 1088 3 1 970258351 79.91 21.70 2159.15 1956.37 -0*54
150 185 1089 3 1 970253352 85.41 24.81 2299.13 1946.43 0@4a
150 185 1090 3 1 970258353 85.73 25-00 2249.71 1949-94 -0.41
150 185 1091 3 1 970258354 79.10 21.27 2126.21 1958.71 -0056

?SUntiNTI85,INEXS5,)
*** KEf SUm MEAN LOW HIGH STO) *

8 0.604273E 04 85.11 63.25 94.89 5.45
9 0o175677E 04 24.74 13.60 30.64 3.04

10 0-151823E 06 2133.36 2002.65 2299.10 79.88
11 0.139006E 06 1957.83 1946-43 1967.49 9.32
12 -. 201997E 01 -0-03 -0.76 (.63 0.47

D0=32 NUMD= 6 CARD= 5
1 0.079, 0.08/ 0.279, 36.033

Figure 5-7

"65

First, we isolate all of the readings in the data base that have

an altitude value between 2000.0 and 3000.0 feet. This is done

with the BRSA command forming the set INTERVAL. We then list the

first five items and perform a summary. In order to isolate the

readings associated with serial number 79, we intersect the sets,

INTERVAL and SER79 forming the new set INT79. This set contains all

the readings for serial 79 in the altitude range 2000 to 3000 feet,

From the cardinality indicator, we immediately know that there are 514

readings in the set and a SUM command provides us with some additional

information; the high, low and average IAS (121.58, 34,81, 99.84), and

the high and low accelerations (-0.71, 1.00). One immediate advantage

of an interactive system over a batch environment is the following. If

the interrogator spots an area that needs further investigation, he has

at his disposal the capability to immediately search to the root of

the problem.

Next, we isolate the readings for serial 185 by intersecting the

set of interval readings, INTERVAL, with the set of readings for serial

number 185, SER185. As before, this isolates the readings for serial 185

in the altitude interval. A LIST and a SUM provide a sample of the

set contents and the usual statistical information.

FiFures 5-8 and 5-9 describe the procedure for isolating maneuver

accelerations that exceed griven thresholds. We will consider only the

positive accelerations. However, we would normally be interested in the

66

?3COMMENT ISOLATE ACCELERATIONS

?RSGTA(12sVGO.3,POSAC)
00=32 NUID= 12 CARD= 1988
C 0.512 0.9a/ 2.000, 6-473

?IN(P3SAC,SERIS5,POSACI35)
DD=32 NUMO= 12 CARD= 1463
1 0-246, 1.21/ 0.406. 1.561

?SU(POnSACI85,INEXSI1I)
*** KEf SUM MEAN LOW HIGH ST **8 0-122841E 06 83.97 62.92 114.67 6.69

9 0.353081E 05 24.13 13.45 44.94 3*64
10 0-167538~ 07 1145.17 576.00 2299.10 309.3'11 0-296981E 07 2029.94 1946.43 2072.57 34.60
12 0-767443E 03 0.52 0.39 1.89 0.15

00=32 NUMD= 6 CARD= 5
1 1-484, 1-55/ 1-685, 37.381

?IN(POSACSER79,POSAC79)
DD=32 NUMD= 12 CARD= 354
E 0*151, 1.18/ 00284, 1.371

?SUM(POSAC79,INDEXS2,1)
*** KEY SUM MEAN LOW dlIGH STD ***8 0-330032E 05 93.23 44.93 119.25 12.339 0-106664E 05 30.13 6-84 483-57 7.4510 0.398555E 06 1125.86 1.23 3:375.88 816.1711 0-719444E 06 2032.33 1836.25 2116.12 59.5912 0.171048E 03 0.48 0.40 1.02 .11
uu=3 NUiiu= 6 CARO= 5
C 0.364, 13.44/ 1.566, 36.251

Figure 5-8

67

?.£COMMENT ISOLATE IG ACCELERATIONS (CND eVER)

?RSGEA(12,POSACjI0,ONEG)
DO=32 NUMO= 12 CARD= 34
1 0*091, "*0 10/ 0.198, 0.24

?LIST(ONEG,1,5,'/I/,)

128 79 1154 21 2 852516356 85.15 24.65 2864.72 1906.25 3128.288 2089 40 2 852516356 72.44 17.84 2117.13 1959.36 1.44150 185 3 7 892516355 79.91 21.70 1032.76 2038.45 1.12150 135 7 2 892516359 74.47 18.84 937.76 2845.51 1.17

?SUMC(NEG, INOEX, S 3 ,)
*** KEY SUM MEAN LOW HIGH STO *t*8 .-260615E 04 76.65 64.58 114.67 12.119 0.6964388E 03 20.48 14.16 44.94 713410 0-376145E 5- 1106,31 764.82 2864.72 380.9511 0-6918P4E 05 9033.19 1906.25 2058.45 27.7312. 0.383193E 02 1.13 1-00 1.89 0.1700=32 NUMD= 6 CARD= 5
C 0*0410 0.07/ 9.243, 36.07]

?RSGTA(2DONEG, I5,,ONE5G)
DD=32 NUMO= 12 CARD= 1
I. 0-094, 0.00/ 0.039, 0.093

?LIST(ONESG,,I,',l/-)
150 185 30 7 2 892516383 100.34 34.29 1024.72 2039.94 1-89

Figure 5-9

68

magnitude of the acceleration in both positive and negative directions.

The positive accelerations may be isolated using the RSGTA command. To

isolate accelerations for serial 185 we intersect the positive accelera-

tion set, POSAC, with the set of readings for serial 185, SER185. Statis-

tics for this set may be obtained with the SUM command. Likewise, the

accelerations for serial 79 may be obtained by intersecting the sets, POSAC

and SER 79 and statistics may be obtained using the SUM command.

may be obtained using the SUM command.

As mentioned previously, it might be desirable to isolate all

occurrences for all aircraft of accelerations equal to or over 1 g. This

may be accomplished by using an RSGEA command forming a new set, ONEG.

We know immediately from the cardinality indicator that there are 34

occurrences. We may want to list all of them out at the terminal or

only a few (as is shown) and perform a summary. The summary

indicates that the high is 1.89; so we might decide to look at

all over 1.5 g. This is accomplished using an RSGTA command and we

find that the 1.89 reading is the only one and we look at it using

the LIST command. It occurred on serial 185.

By now the reader will be familiar with the routine of (1)

isolating a set describing a condition, (2) intersecting it with a

set of readings for a particular serial number, and (3) obtaining

statistics for the derived set. In this section, we follow an identical

strategy in examining the rough air readings as shown in Figure 5-10.

Several items in Appendix A call for statistical analysis of

sets that we have previously derived under Rough Air, Intervals, and

69

Accelerations. Figure 5-11 demonstrates the procedure for combining the rough

air and altitude interval sets to determine the occurrences of rough air

encounters in the altitude interval 2000 to 3000 feet for serials 185 and

79.

The time and cost of this session is shown in Figure 5-12. Note that

the connect time from initial dial-up to signoff was one hour and fifteen

minutes and the central processor time was about 70 seconds on an IBM

360/67. The dollar values are for a university environment and would

be somewhat higher in a commercial environment.

70

?"COMMENT ROUGH AIR

?RSEQ(S,VGH, 2, ROUGd)
DD=32 NUM;)= 12 CARD= 493
E 0.1649 0.58/ 1.596, 4.931

?IN(ROUGH,SER79,RUF79)

OD=32 NUMO= 12 CARD= 146
C 0*133, 0.91/ 0.254- 1.113

?LIST(RUF79,1,5,'/I/')
123 79 1064 3 2 892516353 87.18 25.86 1967.61 1970.05 0*59
128 79 1065 5 2 852516353 105.77 38.21 650.10 2067.03 0*.53

128 79 1066 5 2 852516354 96.95 32-01 807.41 2055.26 0.43

128 79 1067 5 2 852516355 92.92 29.40 717-48 2061.99 0.67
128 79 1068 5 2 852516356 98-69 33.18 754.94 2059.19 0*59

?SUM(RUF79,INDEX,So1)

+ KEY SUM MEAN LOW HIGH STO *t,
8 0.126607E 05 86.72 34.05 119.25 20.21

9 0.394350E 04 27.01 3.94 48.57 10.35
10 0.240504E 06 1647.29 8.60 3875.88 911-22

11 0.291163E 06 1994.27 1836.25 2115.57 66.10

12 0.566793E 02 0.39 -0.72 1.02 0.40
00=32 NUMD= 6 CARD= 5
C 0-155, 0.18/ '.356, 36.033

?IN(ROUGHvSERI85,RUF185)

DD=32 NUMD= 12 CARD= 301
1 0-0529 0-14/ 0.175, 0.28]

?LIST(RUF185,15,s'/1/')

153 185 1 7 2 892516353 78.64 21.03 1016-69 2039.63 0.85

150 185 2 7 2 892516354 79.01 21.22 1016-69 2039.63 0.79

150 185 3 7 2 892516355 79.91 21-70 1032.76 2038.45 1.12

150 185 4 7 2 892516356 68.31 15-86 1024.72 2039.04 0.59

150 185 5 7 2 892516357 70.44 16.85 961.34 2043.74 0.76

?SUM(RUFl855 INDEX.S2,)
* K* KEY SUM MEAN LOW rIGH STD *.

8 0.226744E 05 75.33 62.92 114.67 6.47
9 0-584959E 04 19-43 13.45 44.94 3.52
10 0. 87970E 35 956.71 583-87 1313.68 120 84
11 0.615275E 06 2044.10 201790 2071.98 3.53
12).214323E 13 0.71 . 0-40 189 A 2

00=32 NU"D= 6 CAiRO= 5

r 0.313, 0.63/ 0.516, 36.55)

Figure 5-10

71

?SlCMMENT C9MBINATIONS - ROUGH AIR IN THE INTERVAL 2-3 THOUSAND FT

?INCRUF.85 SNTI.S5 ISS

NULL SET!
E 0.*1322, 0.05/ 0.118P 0.181

?IN(RUF79,INT791R79)
DD=32 NUMD= 12 CARD= 21

E 0.038, 0.20/ 0.149, 0.311

?LIST(1R79s,1,5'/1/')
128 79 1077 9 2 852516353 44.15 6-62 2086-53 1961.53 -0.53

128 79 1078 9 2 852516354 42.02 6.00 2543.22 1929.09 -0.55

128 79 1118 12 2 852516392 76.90 20.11 2222.55 1951.87 0.79

128 79 1119 12 2 852516393 40.47 5.56 2535-i; i929-66 -0.55

128 79 1120 12 2 852516394 58.50 11.63 2495.06 1932.51 0.45

?SUMCIR79,INDEX,S3,1)
**+ KEY SUM MEAN LOW HIGH STU **

8 0.148883E 04 70.90 34.81 103-09 22.65

9 0.395909E 03 18.85 4o11 36.27 10.90

.10 0.545536E 05 2597.79 2086.53 2985-50 264.94

11 0.404:94E 05 1925.21 1897.67 1961-53 18.35

12 0-560000E 01 0.27 -0.62 1o00 0.5

DO=32 NUMD= 6 CARO= 5

[0-028, 0.03/ 0.?29, 36.033

Figure 5-11

72

?iCeMMENT END OF STDS SESSION

?SfSTEM
#UN
#SIG
#OFF AT 01:54.49 09-04-74

#ELAPSED TIME 74.383 MIN. $3.63

#CPU TIE USFi) 69-.93 SEC. $6-32

#CPU STOR VMI 239.938 PAGE-MIN. 313.00

#WAIT STAR VMI 199-.51 PAGE-HR-

#HRUM READS 866

#APPROX. COST RF THIS RUN IS $22.95

#DISK STORAGE' 3452.935 PAGE-HR. 31.14

#APPROX. REMAINING BALANCE: 131*8

Figure 5-12

73

5.1 USING STDS FROM FORTRAN

The reader will notice in Appendix A that there is a class of queries

that are not directly answerable from an interactive system. For example,

true airspeed does not appear explicitly in the data base; it must be

calculated from impact pressure (Q) pressure altitude (ALT) and static

pressure (P). The following equations in FORTRAN are used to obtain TAS.

AARG = 518.688 - .00356617 *ALT

SS = 29.04425 * SQRT (AARG)

XM = SQRT(5*(Q/PS + 1.0)**.2857-1))

TAS = SS*XM

In this subsection, we demonstrate how one may call STDS from an executing

(FORTRAN) program. This provides the user with the capability to perform

calculations based on items in his data base. Specifically, we demon-

strate here a program that calculates average TAS in the altitude

interval 8000.0-9000.0 feet. The interaction described herein was a

session in itself from signon to signoff. The time and costs are given

in Figure 5 - 15.

The program was keyed in and debugged in previous sessions not detailed

in this report. Figure 5 - 13 begins immediately after sign-on as we call

the MTS text editor and request it to access the file TAS in which our

FORTRAN code is stored. The command P *F *L is an editor command that

requests that the text be printed from the first line (*F) to the last

line (*L). The editor prints the entire program and finally is asked

to terminate execution with the command, STOP. Now, we may consider the

logic of the FORTRAN program itself. We assume the reader is familiar

74

#ED TAS

:P *F *L

1 C** PROGRAM TO CALCULATE TAS
2 INTEGER CARD
2.25 CALL UNIV('QQQQ ')
3 CALL GET(VGH, NEWVGH ')
3.25 IC=CARD(VGH)
3.5 PRINT 94,IC
3.6 94 FORMAT(1X,'CARD OF NEWVGH = ',16)
4 CALL BRSA(10,VGH,8000.0,9000.0,INT)
4.1 IC = CARD(INT)
4.25 PRINT 95, IC
4.5 95 FORMAT(' CARD OF INT = ', 16)
5 TSUM = d.0
6 N =
7 100 CONTINUE
7.25 K = CARD(INT)
8 IF(K .EQ. 4) GO TO 500
9 N = N + 1

10 C** GET Q PS AND ALT
11 CALL GETELM(1,INT,33,4,Q)
12 CALL GETELM(1,INT,37,4,ALT)
13 CALL GETELM(1,INT,41,4,PS)

: 14 C** CALCULATE TAS
14.25 AARG - 518.688-.OP356617*ALT
15 88 = 29.b4425*SQRT(AARG)
16 XM = SQRT(5*((Q/PS + 1.0)** .2857 -1))
17 TAS = SS*XM
18 TSUM = TSUM + TAS
19 C** DELETE THE ELEMENT FROM THE SET
20 CALL SUBSET(INT,1,1,1,UNIT)
21 CALL RL(INT,UNIT,INT)
22 GO TO 100
23 500 CONTINUE
24 C** FINISHED WITH SET
25 TMEAN = TSUM/N
26 PRINT 90, TMEAN
27 90 FORMAT(1X,'AVERAGE TAS = ',F7.2,1X,'KNOTS')
28 CALL EXIT
29 END

:STOP

Figure 5-13

75

with FORTRAN and we will explain only the calls to STDS routines. At

line 2.25, CALL UNIV ('QQQQ') sets up a universe named 'QQQQ'. At

line 3, CALL GET (VGH, 'NEWVGH') retrieves the data base 'NEWVGH'

and assigns a local variable VGH for future reference. The cardinality

of the set VGH is obtained with the CARD function and then printed by FORMAT

94. At line 4, we make our primary call to STDS. We request that elements

having altitude (domain 10) between 8000.0 and 9000.0 feet be placed in

a new set called INT. The cardinality of INT is obtained and printed.

Beginning at statement 5, we calculate average TAS for the elements of

the set INT. FORTRAN statement 100 is the top of the loop that traverses

the set INT. Statement 500 is the exit condition executed when the set

INT is exhausted.

The loop begins by obtaining the cardinality of INT. If it is non-

zero we increment the element counter, N. Then we get the actual values

for Q, ALT, and PS in the first element of the set by calling GETELM.

Parameters three and four in the call are byte-oriented rather than

domain-oriented. This is a human factors disadvantage of a number of

the STDS functions. Then we calculate TAS and add the result to the

total TAS, TSUM. Then we delete the first element of INT in the follow-

ing manner. We isolate the first element of the set in the new set

UNIT. Then we "subtract" UNIT from INT thus creating INT with one

less element. At this point we continue by jumping to the top of the

loop. At statement 500, we have completed the task and we print the

average TAS.

76

Figure 5-14 demonstrates how one compiles and executes the program

from MTS. The command RUN -L+ RBLG:STDSSUB* + OLD: LIBRARY loads

the file -L. In addition, it loads the STDS subroutines from the file

STDSSUB* under the user ID "RBLG". Furthermore, those routines require

some additional routines that are found on and loaded from the file

LIBRARY under the ID "OLD". Details of this process may be found in MTS,

Volume I [3].

After loading MTS issues the message "EXECUTION BEGINS". At this

point our program is in control. We print the cardinality of the data

base NEWVGH as requested in line 3.5 of the program. We print the cardinality

of INT as requested in line 4.25. Finally, we print the average TAS

for the altitude interval 8000.0-9000.0 feet as requested in line 26

of the program. Figure 5-15 gives the time and costs for the session.

The total cost of the session was less than $5.00 (at university rates)

and the duration of the session was less than five minutes.

77

#RUN *FTN PAR=S=TAS,L=-L
#EXECUTION BEGINS
NNO ERRORS IN MAIN

#RUN -L+RBLG:STDSSUB*+OLD:LIBRARY
#EXECUTION BEGINS
CARD OF NEWVGH = 7232
CARD OF INT = 39
AVERAGE TAS = 118.23 KNOTS

#EXECUTION TERMINATED

Figure 5-14

78

#SIGNOFF
#OFF Al 01:44.05 10-19-74
#ELAPSLu TIME 4.754 MIN. $.23
#CPU T1ML USED 29.592 SEC. $2.67
#CPU STOR VMI 32.867 PAGE-MIN. $1.78
#WAIT SiOR VMI 1.336 PAGE-HR.
#DRUM RIADS 94
#APPROX. COST OF THIS RUN IS $4.68
#DISK SIORAGE 19.25 PAGE-HR. $.01
#APPROX. REMAINING BALANCE: $257.28

OflINAL PAGE IS
ofP POOR QUALITY

Figure 5-15

79

6.0 Concluding Remarks

An information system incorporating the set-theoretic approach

(e.g. STDS) provides a flexible environment within which to solve

scientific problems needing data base support. The scenarios

described herein suggest that the engineer or scientist can mani-

pulate his own data base and obtain reliable answers to his queries

in a simple and direct fashion. Furthermore, he may access his

data base(s) from either executing programs or from on-line inter-

active terminals and he may access his data base(s) using named

variables rather than storage addresses. In addition, STDS provides

a general capability to produce statistical information.

80

References

1. Hardgrave, W. T., Set processing in a network environment. ICASE Report 75-

Hampton, Virginia, March 1974.

2. STDS/OS Users' Guide. Set Theoretic Information Systems, Ann Arbor,

Michigan, 1974.

3. The Michigan Terminal System, Volume 1. Wayne State University Computing

and Data Processing Center, Detroit, April 1974.

81

Appendix A

VGH SUMMARY INFORMATION

1. Aircraft serial No.

2. Average tru airspeed over entire A/C flight history (total).

3. Total flight miles flown.

4. Total flight hours flown.

5. Number of flights.

6. Average true airspeed during check flight.

7. Average true airspeed during operational flight.

8. Flight miles during check flight.

9. Flight miles during operational flight.

10. Flight hours during check flight.

11. Flight hours during operational flight.

12. Number of check flights

13. Average true airspeed during each flight condition (climb, cruise,

descent or operational - x-country).

14. Flight miles during each flight condition.

15. Flight hours during each flight condition.

16. Average TAS during altitude intervals.

17. Flight miles during altitude intervals.

18. Flight hours during altitude intervals.

19. Number of flights during altitude intervals.

20. Percent of flights in time duration intervals (15 min. intervals).

21. Average indicated airspeed - total.

22. Average IAS during check flight.

23. Average IAS during operational flight.

82

24. Average IAS during each flight condition.

25. Average IAS in rough and smooth air.

26. Average IAS in altitude intervals.

27. Average IAS in type of air during altitude intervals.

28. Percent of flight hours in velocity intervals (or 10, 20 know intervals).

29. Total average altitude.

30. Average Alt. during check fit.

31. Average Alt. during operational flt.

32. Average Alt. during each flt. condition.

33. Average Alt. in rough and smooth air.

34. Gust, pos. and neg. maneuvers, limit load factors.

35. Occurrences of maneuver accels. in .1 g intervals.

36. Occurences of maneuver accels in check flight (.1 g intervals).

37. Occurrences of maneuver accels. in operational flight (.1 g intervals).

38. Occurrences of maneuver Accels. in each flight cond. (.1 g intervals).

39. Occurrences of maneuver accels. in each alt. interval.

40. Occurrences of gust accels. in .1 g intervals.

41. Occurrences of gust accels. in each flt. condition.

42. Occurrences of gust accels. in each alt. interval.

43. Occurrences of derived gust velocities (4 FPS intervals).

44. Occurrences of derived gust velocities in each flt. condition.

45. Occurrences of derived gust velocities in each alt. interval.

46. Occurrences of gust accels. during check flt.

47. Occurrences of derived gust velocities during check flt.

48. Reading threshold.

49. Occurrences of maneuver accels in each velocity interval (10 or 20 knots).

50. Occurrences of gust accels in each velocity interval.

83

51. Occurrences of derived gust velocities in each velocity interval.

52. Flight miles in each velocity interval.

53. Flight hours in each velocity interval.

54. True air speed in velocity interval.

84

